WorldWideScience

Sample records for radon entry rate

  1. Dependency of radon entry on pressure difference

    Science.gov (United States)

    Kokotti, H.; Kalliokoski, P.; Jantunen, M.

    Radon levels, ventilation rate and pressure differences were monitored continuously in four apartment houses with different ventilation systems. Two of them were ventilated by mechanical exhaust, one by mechanical supply and exhaust, and one by natural ventilation. The two-storey houses were constructed from concrete elements on a slab and located on a gravel esker. It was surprising to find that increasing the ventilation rate increased levels of radon in the apartments. Increased ventilation caused increased outdoor-indoor pressure difference, which in turn increased the entry rate of radon and counteracted the diluting effect of ventilation. The increase was significant when the outdoor-indoor pressure difference exceeded 5 Pa. Especially in the houses with mechanical exhaust ventilation the pressure difference was the most important factor of radon entry rate, and contributed up to several hundred Bq m -3 h -1.

  2. MODELNG RADON ENTRY INTO FLORIDA HOUSES WITH CONCRETE SLABS AND CONCRETE-BLOCK STEM WALLS, FLORIDA RADON RESEARCH PROGRAM

    Science.gov (United States)

    The report discusses results of modeling radon entry into a typical Florida house whose interior is slightly depressurized. he model predicts that the total radon entry rate is relatively low unless the soil or backfill permeability or radium content is high. ost of the factors c...

  3. Radon entry into a simple test structure

    DEFF Research Database (Denmark)

    Andersen, C.E.; Søgaard-Hansen, J.; Majborn, B.

    1992-01-01

    A simple test structure for studies of radon entry into houses has been constructed at a field site at Riso National Laboratory. It consists of a 40 1, stainless-steel cylinder placed in a 0.52 m deep quadratic excavation with a side length of 2.4 m. The excavation is lined with an airtight...

  4. Soil gas and radon entry into a simple test structure: Comparison of experimental and modelling results

    DEFF Research Database (Denmark)

    Andersen, C.E.; Søgaard-Hansen, J.; Majborn, B.

    1994-01-01

    A radon test structure has been established at a field site at Riso National Laboratory. Measurements have been made of soil gas entry rates, pressure couplings and radon depletion. The experimental results have been compared with results obtained from measured soil parameters and a two......-dimensional steady-state numerical model of Darcy flow and combined diffusive and advective transport of radon. For most probe locations, the calculated values of the pressure couplings and the radon depletion agree well with the measured values, thus verifying important elements of the Darcy flow approximation......, and the ability of the model to treat combined diffusive and advective transport of radon. However, the model gives an underestimation of the soil gas entry rate. Even if it is assumed that the soil has a permeability equal to the highest of the measured values, the model underestimates the soil gas entry rate...

  5. Radon exhalation rates from some soil samples of Kharar, Punjab

    Energy Technology Data Exchange (ETDEWEB)

    Mehta, Vimal [Deptt of Physics, M. M. University, Mullana (Ambala)-133 207 (India); Deptt of Physics, Punjabi University, Patiala- 147 001 (India); Singh, Tejinder Pal, E-mail: tejinders03@gmail.com [Deptt of Physics, S.A. Jain (P.G.) College, Ambala City- 134 003 (India); Chauhan, R. P. [Deptt of Physics, National Institute of Technology, Kurukshetra- 136 119 (India); Mudahar, G. S. [Deptt of Physics, Punjabi University, Patiala- 147 001 (India)

    2015-08-28

    Radon and its progeny are major contributors in the radiation dose received by general population of the world. Because radon is a noble gas, a large portion of it is free to migrate away from radium. The primary sources of radon in the houses are soils and rocks source emanations, emanation from building materials, and entry of radon into a structure from outdoor air. Keeping this in mind the study of radon exhalation rate from some soil samples of the Kharar, Punjab has been carried out using Can Technique. The equilibrium radon concentration in various soil samples of Kharar area of district Mohali varied from 12.7 Bqm{sup −3} to 82.9 Bqm{sup −3} with an average of 37.5 ± 27.0 Bqm{sup −3}. The radon mass exhalation rates from the soil samples varied from 0.45 to 2.9 mBq/kg/h with an average of 1.4 ± 0.9 mBq/kg/h and radon surface exhalation rates varied from 10.4 to 67.2 mBq/m{sup 2}/h with an average of 30.6 ± 21.8 mBq/m{sup 2}/h. The radon mass and surface exhalation rates of the soil samples of Kharar, Punjab were lower than that of the world wide average.

  6. Radon as a tracer for soil-gas entry into a house located next to a contaminated dry-cleaning property; Radon som sporgas for jordluftindtraengning til hus ved forurenet renserigrund

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, C.E

    2001-07-01

    This study applies the naturally occurring radioactive gas radon-222 as a tracer for soil-gas entry into a house located next to a dry-cleaners shop. This is possible because the concentration of radon in the soil below the house is about 1000 times higher than the concentration in outdoor air. The study is based on continuous indoor measurement of radon, differential pressures, barometric pressure and temperatures and grab samples of radon below the slab and in the soil in the vicinity of the house. During the investigation, vacuum extraction were used to remove chlorinated solvents (perchloroethylene, PCE) from the unsaturated zone. The study shows that the vacuum extraction influences the radon concentration in and below the house. When the vacuum pump is on, the indoor radon concentration is only 10 Bq/m{sup 3} corresponding to the contribution from radon in outdoor air and exhalation from building materials. When the vacuum pump is set off, the average indoor radon concentration increases to 30 Bq/m{sup 3}. It is believed that the increase is caused by radon entry from the soil. Regression analysis demonstrates that changes in the indoor radon concentration can be explained by changes in indoor-outdoor pressure differences and changes in the atmospheric pressure. This suggests that advection is the primary mode of entry. Under some highly simplifying assumptions the soil-gas entry is found to be around 1 m{sup 3}/h. This, however, is most likely an overestimate. Based on the measured radon concentration in the exhaust air from the vacuum system and a typical radon emanation rate for Danish soil, it is estimated that the soil vapor extraction system ventilates about 10000 m{sup 3} of soil. The investigation is supported by numerical model calculations with the finite-volume model Rnmod3d. (au)

  7. Radon exhalation rates of some granites used in Serbia

    Directory of Open Access Journals (Sweden)

    Nikolić Mladen D.

    2015-01-01

    Full Text Available In order to address concern about radon exhalation in building material, radon exhalation rate was determined for different granites available on Serbian market. Radon exhalation rate, along with mass exhalation rate and effective radium content were determined by closed chamber method and active continuous radon measurement technique. For this research, special chambers were made and tested for back diffusion and leakage, and the radon concentrations measured were included in the calculation of radon exhalation. The radon exhalation rate ranged from 0.161 Bq/m2h to 0.576 Bq/m2h, the mass exhalation rate from 0.167 Bq/kgh to 0.678 Bq/kgh, while the effective radium content was found to be from 12.37 Bq/kg to 50.23 Bq/kg. The results indicate that the granites used in Serbia have a low level of radon exhalation.

  8. Low air exchange rate causes high indoor radon concentration in energy-efficient buildings.

    Science.gov (United States)

    Vasilyev, A V; Yarmoshenko, I V; Zhukovsky, M V

    2015-06-01

    Since 1995, requirements on energy-efficient building construction were established in Russian Building Codes. In the course of time, utilisation of such technologies became prevailing, especially in multi-storey building construction. According to the results of radon survey in buildings constructed meeting new requirements on energy efficiency, radon concentration exceeds the average level in early-constructed buildings. Preponderance of the diffusion mechanism of radon entry in modern multi-storey buildings has been experimentally established. The experimental technique of the assessment of ventilation rate in dwellings under real conditions was developed. Based on estimates of average ventilation rate, it was approved that measures to increase energy efficiency lead to reduction in ventilation rate and accumulation of higher radon concentrations indoors. Obtained ventilation rate values have to be considered as extremely low.

  9. Numerical modelling of radon-222 entry into houses: An outline of techniques and results

    DEFF Research Database (Denmark)

    Andersen, C.E.

    2001-01-01

    Numerical modelling is a powerful tool for studies of soil gas and radon-222 entry into houses. It is the purpose of this paper to review some main techniques and results. In the past, modelling has focused on Darcy flow of soil gas (driven by indoor–outdoor pressure differences) and combined...... diffusive and advective transport of radon. Models of different complexity have been used. The simpler ones are finite-difference models with one or two spatial dimensions. The more complex models allow for full three-dimensional and time dependency. Advanced features include: soil heterogeneity, anisotropy......, fractures, moisture, non-uniform soil temperature, non-Darcy flow of gas, and flow caused by changes in the atmospheric pressure. Numerical models can be used to estimate the importance of specific factors for radon entry. Models are also helpful when results obtained in special laboratory or test structure...

  10. Radon exhalation rate of some building materials used in Egypt.

    Science.gov (United States)

    Maged, A F; Ashraf, F A

    2005-09-01

    Indoor radon has been recognized as one of the health hazards for mankind. Common building materials used for construction of houses, which are considered as one of the major sources of this gas in indoor environment, have been studied for exhalation rate of radon. Non-nuclear industries, such as coal fired power plants or fertilizer production facilities, generate large amounts of waste gypsum as by-products. Compared to other building materials waste gypsum from fertilizer production facilities (phosphogypsum) shows increased rates of radon exhalation. In the present, investigation solid state alpha track detectors, CR-39 plastic detectors, were used to measure the indoor radon concentration and the radon exhalation rates from some building materials used in Egypt. The indoor radon concentration and the radon exhalation rate ranges were found to be 24-55 Bq m(-3 )and 11-223 mBq m(-2) h(-1), respectively. The effective dose equivalent range for the indoor was found 0.6-1.4 mSv y(-1). The equilibrium factor between radon and its daughters increased with the increase of relative humidity.

  11. Radon exhalation rates corrected for leakage and back diffusion – Evaluation of radon chambers and radon sources with application to ceramic tile

    Directory of Open Access Journals (Sweden)

    M. Abo-Elmagd

    2014-10-01

    Full Text Available The natural radon decay, leakage and back diffusion are the main removal processes of radon from its container. Ignoring these processes leads to underestimate the measured value of radon related parameters like exhalation rate and radium content. This work is aimed to evaluate two different radon chambers through determining their leakage rate λv and evaluation of radon source by determine its back diffusion rate λb inside the evaluated radon chambers as well as a small sealed cup. Two different methods are adapted for measuring both the leakage rate and the back diffusion rate. The leakage rate can be determined from the initial slope of the radon decay curve or from the exponential fitting of the whole decay curve. This can be achieved if a continuous monitoring of radon concentration inside the chamber is available. Also, the back diffusion rate is measured by sealing the radon source in the chamber and used the initial slope of the buildup curve to determine λb and therefore the exhalation rate of the source. This method was compared with simple equation for λb based on the ratio of the source to the chamber volume. The obtained results are applied to ceramic tile as an important radon source in homes. The measurement is targeted the ceramic glaze before and after firing as well as the obtained tile after adhere the glaze on the tile main body. Also, six different tile brands from Egyptian market are subjected to the study for comparison.

  12. Radon

    Science.gov (United States)

    Exposure to radon is the second leading cause of lung cancer after smoking. Radon is a colorless, odorless, tasteless and invisible gas produced by the decay of naturally occurring uranium in soil and water.

  13. Radon

    Science.gov (United States)

    ... can move to air, groundwater, and surface water. Radon-222 has a radioactive half-life of about 4 ... concerns. The main isotope of health concern is radon-222 ( 222 Rn). Many scientists believe that the alpha ...

  14. Wind-induced contaminant transport in near-surface soils with application to radon entry into buildings

    Energy Technology Data Exchange (ETDEWEB)

    Riley, W J [Univ. of California, Berkeley, CA (United States)

    1996-05-01

    Indoor air exposures to gaseous contaminants originating in soil can cause large human health risks. To predict and control these exposures, the mechanisms that affect vapor transport in near-surface soils need to be understood. In particular, radon exposure is a concern since average indoor radon concentrations lead to much higher risks than are generally accepted for exposure to other environmental contaminants. This dissertation examines an important component of the indoor radon problem: the impacts of wind on soil-gas and radon transport and entry into buildings. The research includes experimental and modeling studies of wind`s interactions with a building`s superstructure and the resulting soil-gas and radon flows in the surrounding soil. In addition to exploring the effects of steady winds, a novel modeling technique is developed to examine the impacts of fluctuating winds on soil-gas and radon transport.

  15. Natural radioactivity and radon specific exhalation rate of zircon sands

    Energy Technology Data Exchange (ETDEWEB)

    Righi, S.; Verita, S.; Bruzzi, L. [Bologna Univ., Centro Interdipartimentale di Ricerca per le Scienze Ambientali and Dipt. di Fisica, Ravenna (Italy); Albertazzi, A. [Italian Ceramic Center, Bologna (Italy)

    2006-07-01

    The study focuses on the radon emanation from zircon sands and their derivatives, which are widely used in many sectors of industry. In particular, the results obtained by experimental measurements on samples of zircon sands and zircon flours commonly used in Italian ceramic industries are reported. Zircon sands contain a significant concentration of natural radioactivity because Th and U may substitute zirconium in the zircon crystal lattice. The relevant routes of exposure of workers to T.E.N.O.R.M. from zircon materials are external radiation and internal exposure, either by inhalation of aerosols in dusty working conditions or by inhalation of radon in workplaces. The main objective of this investigation is to provide experimental data able to better calculate the internal exposure of workers due to radon inhalation. Zircon samples were surveyed for natural radioactivity, radon specific exhalation rate and emanation fraction. Measurements of radioactivity concentration were carried out using {gamma}-spectrometry. Methods used for determining radon consisted in determining the {sup 222}Rn activity accumulated in a vessel after a given accumulation build-up time. The average activity concentrations of {sup 238}U and {sup 232}Th in samples result about 2600 and 550 Bq kg-1, respectively; these concentrations are significantly higher than the world average noticed in soils, rocks and Earth crust. The {sup 222}Rn specific exhalation rates result very low probably due to the low porosity of the material and the consequent difficulty for radon to be released from the zircon crystal lattice. (author)

  16. Radon concentration in soil gas and radon exhalation rate at the Ravne Fault in NW Slovenia

    Directory of Open Access Journals (Sweden)

    J. Vaupotič

    2010-04-01

    Full Text Available The Ravne tectonic fault in north-west (NW Slovenia is one of the faults in this region, responsible for the elevated seismic activity at the Italian-Slovene border. Five measurement profiles were fixed in the vicinity of the Ravne fault, four of them were perpendicular and one parallel to the fault. At 18 points along these profiles the following measurements have been carried out: radon activity concentration in soil gas, radon exhalation rate from ground, soil permeability and gamma dose rate. The radon measurements were carried out using the AlphaGuard equipment, and GammaTracer was applied for gamma dose rate measurements. The ranges of the obtained results are as follows: 0.9–32.9 kBq m−3 for radon concentration (CRn, 1.1–41.9 mBq m−2 s−1 for radon exhalation rate (ERn, 0.5–7.4×10-13 m2 for soil permeability, and 86–138 nSv h−1 for gamma dose rate. The concentrations of 222Rn in soil gas were found to be lower than the average for Slovenia. Because the deformation zones differ not only in the direction perpendicular to the fault but also along it, the behaviour of either CRn or ERn at different profiles differ markedly. The study is planned to be continued with measurements being carried out at a number of additional points.

  17. Identification of advective entry of soil-gas radon into a crawl space covered with sheets of polyethylene foil

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, C. [Risoe National Lab., Dept. of Nucl. Safety Res. and Nucl. Facilities, Roskilde (Denmark); Koopmanns, M.; Meijer, R.J. de [Kernfysische Versneller Inst., Environmental Radioactivity Res., Groningen (Netherlands)

    1996-04-01

    To assess the effectiveness of mitigative measures against radon ({sup 222}Rn) entry into houses, experiments were conducted in a crawl-space house where the dirt floor of the crawl space was covered with sheets of 0.23 mm polyethylene foil fixed to the walls. The radon concentration was measured below the foil and in the crawl space together with environmental variables such as indoor-outdoor pressure differences. The experimental data was analyzed using various types of models including a simplistic mass-balance model, a regression model, and a two-dimensional numerical model based on Darcy flow or soil gas and combined diffusive and advective transport of radon. The main outcome of the work was that: (i) The soil-gas entry rate per pascal depressurization was at the order of 1 m{sup 3} h{sup -1}, (ii) the stack-related part of the depressurization of the crawl space (approx. 0.1 Pa deg. C{sup -1}) was controlled by the temperature difference between the living room of the house and the outdoors (not by the difference between the crawl space and the outdoors), (iii) that part of the wind-related depressurization that was measured by the pressure transducers seemed to force radon into the crawl space in the same proportion as the stack-related part of the depressurization, (iv) the ratio of advective and diffusive entry was approx. 0.7, when the crawl space was depressurized 1.5 Pa, (v) the effective diffusivity of the foil was found to be three orders of magnitude larger than that measured in the laboratory (the enhanced diffusivity was most likely caused by leaks in the foil and by mixing fans located in the crawl space), and (vi) there was no measurable mitigative impact of having the sheets of foil on the crawl-space floor even if the crawl space was artificially pressurized or depressurized. (au) 28 tabs., 36 ills., 61 refs.

  18. Radon activity in the lower troposphere and its impact on ionization rate : a global estimate using different radon emissions

    NARCIS (Netherlands)

    Zhang, K. .; Feichter, J.; Kazil, J.; Wan, H.; Zhuo, W.; Griffiths, A. D.; Sartorius, H.; Zahorowski, W.; Ramonet, M.; Schmidt, Martina; Yver, C.; Neubert, R. E. M.; Brunke, E. -G.; Schulz, M.

    2011-01-01

    The radioactive decay of radon and its progeny can lead to ionization of air molecules and consequently influence aerosol size distribution. In order to provide a global estimate of the radon-related ionization rate, we use the global atmospheric model ECHAM5 to simulate transport and decay

  19. Radon activity in the lower troposphere and its impact on ionization rate: a global estimate using different radon emissions

    Directory of Open Access Journals (Sweden)

    K. Zhang

    2011-01-01

    Full Text Available The radioactive decay of radon and its progeny can lead to ionization of air molecules and consequently influence aerosol size distribution. In order to provide a global estimate of the radon-related ionization rate, we use the global atmospheric model ECHAM5 to simulate transport and decay processes of the radioactive tracers. A global radon emission map is put together using regional fluxes reported recently in the literature. The near-surface radon concentrations simulated with this new map compare well with measurements.

    Radon-related ionization rate is calculated and compared to that caused by cosmic rays. The contribution of radon and its progeny clearly exceeds that of the cosmic rays in the mid- and low-latitude land areas in the surface layer. In winter, strong radon-related ionization coincides with low temperature in China, USA, and Russia, providing favorable condition for the formation of aerosol particles. This suggests that it is probably useful to include the radon-induced ionization in global models when investigating the interaction between aerosol and climate.

  20. Radon exhalation rate from soil samples of South Kumaun Lesser Himalayas, India

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, Yogesh; Prasad, Ganesh; Gusain, G.S. [Department of Physics, H.N.B. Garhwal University, Badshahi Thaul Campus, Tehri Garhwal 249 199 (India); Choubey, V.M. [Wadia Institute of Himalayan Geology, Dehradun 248 001 (India); Ramola, R.C. [Department of Physics, H.N.B. Garhwal University, Badshahi Thaul Campus, Tehri Garhwal 249 199 (India)], E-mail: rcramola@gmail.com

    2008-08-15

    Ionizing radiation exposure experienced by the general population is mainly due to the indoor radon. Major part of radon comes from the top layer of the earth. The radon emanation is associated with radon in soil and sleepy back radium in the soil. Both field and laboratory measurements were carried out for the instantaneous and integrated radon concentration in soil-gas. The radon exhalation rate from collected soil samples was measured using LR-115 Type II plastic track detector. The soil-gas radon concentration was measured with the help of radon Emanometry method. The effective radium content of the soil samples was also calculated. The correlation coefficient between radium contents in collected soil samples and soil-gas radon from the same locations was calculated as 0.1, while it is 0.2 between radon exhalation rate and soil-gas radon concentration. The results show weak positive correlation due to the geological disturbance in the equilibrium conditions and high mobility of radon in the same geological medium.

  1. The rate of radon remediation in Ireland 2011-2015: Establishing a base line rate for Ireland's National Radon Control Strategy.

    Science.gov (United States)

    Dowdall, A; Fenton, D; Rafferty, B

    2016-10-01

    Radon is the greatest source of radiation exposure to the public. In Ireland, it is estimated that approximately 7% of the national housing stock have radon concentrations above the Reference Level of 200 Bq m(-3). A radon test can be carried out to identify homes with radon levels above the Reference Level. However there is no health benefit associated with radon testing unless it leads to remediation. Surveys to establish the rate of remediation in Ireland, that is the proportion of householders who having found levels of radon above the Reference Level proceed to carry out remediation work have been carried out in 2011 and 2013. Reasons for not carrying out remediation work were also investigated. In 2015 the survey was repeated to establish the current rate of remediation and reasons for not remediating. This report presents the results of that survey. It also compiles the data from all three surveys to identify any trends over time. The rate of remediation is an important parameter in estimating the effectiveness of programmes aimed at reducing radon levels. Currently the rate of remediation is 22% and the main reasons householders gave for not remediating were not certain there is a serious risk and concern about the cost of the work. In Ireland, this figure of 22% will be now used as a baseline metric against which the effectiveness of its National Radon Control Strategy will be measured over time. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. The Influence of Radon (Gas and Progeny) and Weather Conditions on Ambient Dose Equivalent Rate.

    Science.gov (United States)

    Márquez, J L; Benito, G; Saez, J C; Navarro, N; Alvarez, A; Quiñones, J

    2016-08-13

    The purpose of this study is to identify the influence of radon (gas and progeny) on the ambient dose equivalent rate measured at the reference station ESMERALDA, where continuous measurements of the ambient dose equivalent rate (every 10 min) combined with activity concentration measurements of radon gas and radon progeny as well as meteorological parameters have been collected. This study has been performed using a correlation study based on a principal components analysis and the Spearman's rank correlation coefficient.

  3. Radon exhalation rates and gamma doses from ceramic tiles.

    Science.gov (United States)

    O'Brien, R S; Aral, H; Peggie, J R

    1998-12-01

    This study was carried out to assess the possible radiological hazard resulting from the use of zircon in glaze applied to tiles used in buildings. The 226Ra content of various stains and glazing compounds was measured using gamma spectroscopy and the 222Rn exhalation rates for these materials were measured using adsorption on activated charcoal. The radon exhalation rates were found to be close to or less than the minimum detectable values for the equipment used. This limit was much lower than the estimated exhalation rates, which were calculated assuming that the parameters controlling the emanation and diffusion of 222Rn in the materials studied were similar to those of soil. This implied that the 222Rn emanation coefficients and/or diffusion coefficients for most of the materials studied were very much lower than expected. Measurements on zircon powders showed that the 222Rn emanation coefficient for zircon was much lower than that for soil, indicating that only a small fraction of the 222Rn produced by the decay of 226Ra was able to escape from the zircon grains. The estimated increase in radon concentration in room air and the estimated external gamma radiation dose resulting from the use of zircon glaze are both much lower than the relevant action level and dose limit.

  4. Micronuclei rate and hypoxanthine phosphoribosyl transferase mutation in radon-exposed rats

    Institute of Scientific and Technical Information of China (English)

    Fengmei Cui; Saijun Fan; Mingjiang Hu; Jihua Nie; Hongmei Li; Jian Tong

    2008-01-01

    The genetic changes in rats with radon exposure were studied by the micronucleus technology and detection of hypoxanthine phosphoribosyl transferase (hprt) mutations.The rate of the micronuclei in peripheral blood lymphocytes and tracheal-bronchial epithelial cells in the radon-inhaled rats was higher than that of the controls (P < 0.05).A similar result was obtained from the hprt assay,which showed a higher mutation frequency in radon-exposed rats.Our results suggested that micronuclei rate and hprt deficiency could be used as biomarkers for the genetic changes with radon exposure.

  5. RADIUM AND RADON EXHALATION RATE IN SOIL SAMPLES OF HASSAN DISTRICT OF SOUTH KARNATAKA, INDIA.

    Science.gov (United States)

    Jagadeesha, B G; Narayana, Y

    2016-10-01

    The radon exhalation rate was measured in 32 soil samples collected from Hassan district of South Karnataka. Radon exhalation rate of soil samples was measured using can technique. The results show variation of radon exhalation rate with radium content of the soil samples. A strong correlation was observed between effective radium content and radon exhalation rate. In the present work, an attempt was made to assess the levels of radon in the environment of Hassan. Radon activities were found to vary from 2.25±0.55 to 270.85±19.16 Bq m(-3) and effective radium contents vary from 12.06±2.98 to 1449.56±102.58 mBq kg(-1) Surface exhalation rates of radon vary from 1.55±0.47 to 186.43±18.57 mBq m(-2) h(-1), and mass exhalation rates of radon vary from 0.312±0.07 to 37.46±2.65 mBq kg(-1) h(-1). © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. The influence of thoron on measurement results of radon exhalation rate

    CERN Document Server

    Xiao De Tao; Ling Qiu; Leung, J K C

    2002-01-01

    Because of thoron exhalation, the measurement results of radon exhalation rate using a local still method is usually larger than the true value of radon flux rate of the monitored material surface. The influence of sup 2 sup 1 sup 6 Po(ThA) on radon exhalation rate can be eliminated for sensitive radon monitors. Theoretical evaluations of the influence of sup 2 sup 1 sup 2 Bi(ThC) and sup 2 sup 1 sup 2 Po(ThC')on radon exhalation rate are carried out in a sampler with diameter of 188 mm, and height of 125 mm, and supplied electrostatic field inside (generated by high voltage and electret) under following conditions: the sampling time are 1, 2, 3 h, respectively, thoron exhalation rate is 100 times of radon's. The calculation results indicate that the measurement results of radon flux rate are possibly 35.5% larger than true value due to the influence of thoron for fast and multifunctional radon monitors with electret, high voltage, respectively and using CR-39 SSNTD as detector, but this influence is negligib...

  7. Radon and Thoron Exhalation Rates from Surface Soil of Bangka - Belitung Islands, Indonesia

    Directory of Open Access Journals (Sweden)

    Syarbaini Syarbaini

    2015-03-01

    Full Text Available DOI:10.17014/ijog.2.1.35-42Radon and thoron exhalation rate from soil is one of the most important factors that can influence the radioactivity level in the environment. Radon and thoron gases are produced by the decay of the radioactive elements those are radium and thorium in the soil, where its concentration depends on the soil conditions and the local geological background. In this paper, the results of radon and thoron exhalation rate measurements from surface soil of Bangka Belitung Islands at thirty six measurement sites are presented. Exhalation rates of radon and thoron were measured by using an accumulation chamber equipped with a solid-state alpha particle detector. Furthermore, the correlations between radon and thoron exhalation rates with their parent nuclide (226Ra and 232Th concentrations in collected soil samples from the same locations were also evaluated. The result of the measurement shows that mostly the distribution of radon and thoron is similar to 226Ra and 232Th, eventhough it was not a good correlation between radon and thoron exhalation rate with their parent activity concentrations (226Ra and 232Th due to the environmental factors that can influence the radon and thoron mobilities in the soil. In comparison to a world average, Bangka Belitung Islands have the 222Rn and 220Rn exhalation rates higher than the world average value for the regions with normal background radiation.

  8. Investigation of radon entry and effectiveness of mitigation measures in seven houses in New Jersey: Midproject report

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, T.G.; Dudney, C.S.; Monar, K.P.; Landguth, D.C.; Wilson, D.L.; Hawthorne, A.R.; Hubbard, L.M.; Gadsby, K.J.; Bohac, D.L.; Decker, C.A.

    1987-12-01

    A detailed radon mitigation study is in progress in 14 homes in the New Jersey Piedmont area. The principal goals are the refinement of diagnostic measurements for selection and implementation of mitigation systems, and the reduction of radon concentrations to acceptable levels inside the study houses. Monitoring stations were installed in each home in October, 1986. Instrumented measurements included: basement and upstairs radon; differential pressures across the basement/subslag, basement/upstairs and basement/outdoor interfaces; temperatures at basement, upstairs and outdoor locations; and central air handler usage. A weather station was located at one house, monitoring wind speed and direction; barometric pressure; precipitation; soil temperature; and outdoor temperature and relative humidity. A time-averaged value of all of the above parameters was recorded every 30 min. Several additional parameters were monitored on an intermittent basis in all or selected homes. These include multizone air infiltration rates which have been measured in all homes using passive perfluorocarbon tracers (PFT) and in two homes using a constant concentration tracer gas system (CCTG). Total radon progeny, soil gas radon concentration and permeability characteristics, and gamma radiation levels were also monitored periodically in all study homes. 10 refs., 53 figs.

  9. Experimental study on new monitoring method of radon release rate from uranium tailings

    CERN Document Server

    Fu Jin; HanYaozHao; He Wen Xing; Zhang Biao

    2002-01-01

    Two new monitoring methods of radon release rate from uranium tailings are introduced. They are the active carbon absorption and gamma energy spectrum method. The instrument and sampler of active carbon absorption is presented with the manufacture, function, performance and calibration, the conditional test of the method and its measuring contrast to that of local static method. One-year continuous in-site monitoring of radon release rate of uranium tailings was done. The annual change regularity of radon release rate from uranium tailings was observed. The optimum season and condition of monitoring the annual average radon release rate are summarized. The parameter monitoring, calculating method and experimentation of gamma energy spectrum method is discussed

  10. Assessment of radioactivity and radon exhalation rate in Egyptian cement.

    Science.gov (United States)

    El-Bahi, S M

    2004-05-01

    The cement industry is considered as one of the basic industries that plays an important role in the national economy of developing countries. Activity concentration of 238U, 232Th, and 40K in local cement types from different Egyptian factories has been measured using a shielded HPGe detector. The average values obtained for 238U, 232Th, and 40K activity concentrations in different types of cement are lower than the corresponding global values reported in UNSCEAR publications. On the basis of the hazard index and the radium equivalent concentration, it can be shown that the natural radioactivity of cement samples is not greater than the values permitted in the established standards in other countries. A solid-state nuclear track detector SSNTD (Cr-39) was used to measure the radon concentration as well as exhalation rate for these samples. The effective radium content and the exhalation rate are found to vary from 12.75 to 38.52 Bq kg(-1) and 61.19 to 181.39 Bq m(-2) d(-1), respectively.

  11. Radium activity and radon exhalation rates from phosphate ores using CR-39 on-line with an electronic radon gas analyzer 'Alpha GUARD'

    Energy Technology Data Exchange (ETDEWEB)

    Saad, A.F. [Physics Department, Faculty of Science, Zagazig University, Zagazig (Egypt)], E-mail: abdallahsaad@hotmail.com

    2008-08-15

    Nuclear track detectors (NTDs) have seen a major expansion in application to general physical and geological problems reflecting its advances in understanding the exhalation dependence of radon as well as radon and radium concentration distributions in the earth's crust. However, considerable uncertainties still persist, in particular, concerning the detection efficiency of track detectors which are not calibrated precisely to a standard method or an active detector of a unique efficiency. In this investigation, CR-39 NTDs and an electronic radon gas analyzer 'Alpha GUARD' were used for the measurement of radon exhalation rate and radium concentration in phosphate samples collected from two different mines of El-Sobaeya and El-Suez, Egypt. The phosphate sample was loaded into an emanation container (Genitron Instruments GmbH) equipped with a PC-based radon gas analyzer. The CR-39 track detectors were mounted inside a diffusion cup used simultaneously with the Alpha GUARD radon gas analyzer. Radium activity in phosphate samples was found to vary from 1.8 to 361.3kBqkg{sup -1}. The radon exhalation rates in these samples were found to vary from 0.020 (0.003) to 4.125Bqm{sup -2}h{sup -1}(0.658Bqkg{sup -1}h{sup -1})

  12. Radon exhalation rate from the soil, sand and brick samples collected from NWFP and FATA, Pakistan.

    Science.gov (United States)

    Rahman, Said; Mati, N; Matiullah; Ghauri, Badar

    2007-01-01

    In order to characterise the building materials as an indoor radon source, knowledge of the radon exhalation rate from these materials is very important. In this regard, soil, sand and brick samples were collected from different places of the North West Frontier Province (NWFP) and Federally Administered Tribal Areas (FATA), Pakistan. The samples were processed and placed in plastic containers. NRPB radon dosemeters were installed in it at heights of 25 cm above the surface of the samples and containers were then hermetically sealed. After 40-80 d of exposure to radon, CR-39 detectors were removed from the dosemeter holders and etched in 25% NaOH at 80 degrees C for 16 h. From the measured radon concentration values, (222)Rn exhalation rates were determined. Exhalation rate form soil, sand and brick samples was found to vary from 114 +/- 11 to 416 +/- 9 mBq m(-2) h(-1), 205 +/- 16 to 291 +/- 13 mBq m(-2) h(-1) and 245 +/- 12 to 365 +/- 11 mBq m(-2) h(-1), respectively.

  13. Natural radioactivity and radon exhalation rate of soil in southern Egypt.

    Science.gov (United States)

    Sroor, A; El-Bahi, S M; Ahmed, F; Abdel-Haleem, A S

    2001-12-01

    The level of natural radioactivity in soil of 30 mining samples collected from six locations in southern Egypt was measured. Concentrations of radionuclides in samples were determined by gamma-ray spectrometer using HPGe detector with a specially designed shield. The obtained results of uranium and thorium series as well as potassium (K-40) are discussed. The present data were compared with data obtained from different areas in Egypt. Also, a solid state nuclear track detector SSNTD (Cr-39) was used to measure the radon concentration as well as exhalation rate for these samples. The radon concentrations were found to vary from 1.54 to 5.37 Bq/kg. The exhalation rates were found to vary from 338.81 to 1426.47 Bq/m2d. The values of the radon exhalation rate are found to correspond with the uranium concentration values measured by the germanium detector in the corresponding soil samples.

  14. Estimation of the radon production rate in granite rocks and evaluation of the implications for geogenic radon potential maps: A case study in Central Portugal.

    Science.gov (United States)

    Pereira, A; Lamas, R; Miranda, M; Domingos, F; Neves, L; Ferreira, N; Costa, L

    2017-01-01

    The goal of this study was to estimate radon gas production rate in granitic rocks and identify the factors responsible for the observed variability. For this purpose, 180 samples were collected from pre-Hercynian and Hercynian rocks in north and central Portugal and analysed for a) (226)Ra activity, b) radon ((222)Rn) per unit mass activity, and c) radon gas emanation coefficient. On a subset of representative samples from the same rock types were also measured d) apparent porosity and e) apparent density. For each of these variables, the values ranged as follows: a) 15 to 587 Bq kg(-1), b) 2 to 73 Bq kg(-1), c) 0.01 to 0.80, d) 0.3 to 11.4 % and e) 2530 to 2850 kg m(-3). Radon production rate varied between 40 to 1386 Bq m(-3) h(-1). The variability observed was associated with geologically late processes of low and high temperature which led to the alteration of the granitic rock with mobilization of U and increase in radon (222)Rn gas emanation. It is suggested that, when developing geogenic radon potential maps, data on uranium concentration in soils/altered rock should be used, rather than data obtained from unaltered rock. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Modelling radiation exposure in homes from siporex blocks by using exhalation rates of radon

    Directory of Open Access Journals (Sweden)

    Nikolić Mladen D.

    2015-01-01

    Full Text Available Building materials are the second major source of indoor radon, after soil. The contribution of building materials to indoor radon amount depends upon the radium content and exhalation rates, which can be used as a primary index for radon levels in the dwellings. This paper presents the results of using the experimentally determined exhalation rates of siporex blocks and concrete plates, to assess the radiation exposure in dwellings built of siporex blocks. The annual doses in rooms have been estimated depending on the established modes of ventilation. Realistic scenario was created to predict an annual effective dose for an old person, a housewife, a student, and an employed tenant, who live in the same apartment, spending different periods of time in it. The results indicate the crucial importance of good ventilation of the living space.

  16. Phosphogypsum recycling in the building materials industry: assessment of the radon exhalation rate.

    Science.gov (United States)

    Campos, M P; Costa, L J P; Nisti, M B; Mazzilli, B P

    2017-06-01

    Phosphogypsum can be classified as a Naturally Occurring Radioactive Material (NORM) residue of the phosphate fertilizer industry. One of the main environmental concerns of its use as building material is the radon exhalation. The aim of this study is to measure the radon exhalation rate from plates and bricks manufactured with phosphogypsum from three installations of the main Brazilian producer, Vale Fertilizantes, in order to evaluate the additional health risk to dwellers. A simple and reliable accumulator method involving a PVC pipe sealed with a PVC pipe cover commercially available with CR-39 radon detector into a diffusion chamber was used for measuring radon exhalation rate from phosphogypsum made plates and bricks. The radon exhalation rate from plates varied from 0.19 ± 0.06 Bq m(-2) h(-1), for phosphogypsum from Bunge Fertilizers, from 1.3 ± 0.3 Bq m(-2) h(-1), for phosphogypsum from Ultrafertil. As for the bricks, the results ranged from 0.11 ± 0.01 Bq m(-2) h(-1), for phosphogypsum from Bunge Fertilizers, to 1.2 ± 0.3 Bq m(-2) h(-1), for phosphogypsum from Ultrafertil. The results obtained in this study for the radon exhalation rate from phosphogypsum plates and bricks are of the same order of magnitude than those from ordinary building materials. So, it can be concluded that the recycling of phosphogypsum as building material is a safe practice, since no additional health risk is expected from the radiological point of view. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Studying radon exhalation rates variability from phosphogypsum piles in the SW of Spain

    Energy Technology Data Exchange (ETDEWEB)

    López-Coto, I., E-mail: israel.lopez@dfa.uhu.es [Dpto. Física Aplicada, Facultad CC. Experimentales, University of Huelva, Campus de El Carmen s/n, 21007 Huelva (Spain); Mas, J.L. [Dpto. Física Aplicada I. Escuela Politécnica Superior, University of Sevilla, C/Virgen de Africa 7, 41012 Sevilla (Spain); Vargas, A. [Universitat Politècnica de Catalunya, Instituto de Técnicas Energéticas, Campus Sud Edificio ETSEIB, Planta 0, Pabellón C, Av. Diagonal 647, 08028 Barcelona (Spain); Bolívar, J.P. [Dpto. Física Aplicada, Facultad CC. Experimentales, University of Huelva, Campus de El Carmen s/n, 21007 Huelva (Spain)

    2014-09-15

    Highlights: • Variability of radon exhalation rates from PG piles has been studied using numerical simulation supported by experimental data. • Most relevant parameters controlling the exhalation rate are radon potential and moisture saturation. • Piling up the waste increasing the height instead of the surface allows the reduction of the exhalation rate. • A proposed cover here is expected to allow exhalation rates reductions up to 95%. - Abstract: Nearly 1.0 × 10{sup 8} tonnes of phosphogypsum were accumulated during last 50 years on a 1200 ha disposal site near Huelva town (SW of Spain). Previous measurements of exhalation rates offered very variable values, in such a way that a worst case scenario could not be established. Here, new experimental data coupled to numerical simulations show that increasing the moisture contents or the temperature reduces the exhalation rate whilst increasing the radon potential or porosity has the contrary effect. Once the relative effects are compared, it can be drawn that the most relevant parameters controlling the exhalation rate are radon potential (product of emanation factor by {sup 226}Ra concentration) and moisture saturation of PG. From wastes management point of view, it can be concluded that piling up the waste increasing the height instead of the surface allows the reduction of the exhalation rate. Furthermore, a proposed cover here is expected to allow exhalation rates reductions up to 95%. We established that the worst case scenario corresponds to a situation of extremely dry winter. Under these conditions, the radon exhalation rate (0.508 Bq m{sup −2} s{sup −1}) would be below though close to the upper limit established by U.S.E.P.A. for inactive phopsphogypsum piles (0.722 Bq m{sup −2} s{sup −1})

  18. Comparable stocks, boundedly rational stock markets and IPO entry rates.

    Directory of Open Access Journals (Sweden)

    Jay Chok

    Full Text Available In this study, we examine how initial public offerings (IPO entry rates are affected when stock markets are boundedly rational and IPO firms infer information from their counterparts in the market. We hypothesize a curvilinear relationship between the number of comparable stocks and initial public offerings (IPO entry rates into the NASDAQ Stock Exchange. Furthermore, we argue that trading volume and changes in stock returns partially mediates the relationship between the number of comparable stocks and IPO entry rates. The statistical evidence provides strong support for the hypotheses.

  19. Measurement of radon exhalation rate in various building materials and soil samples

    Science.gov (United States)

    Bala, Pankaj; Kumar, Vinod; Mehra, Rohit

    2017-03-01

    Indoor radon is considered as one of the potential dangerous radioactive elements. Common building materials and soil are the major source of this radon gas in the indoor environment. In the present study, the measurement of radon exhalation rate in the soil and building material samples of Una and Hamirpur districts of Himachal Pradesh has been done with solid state alpha track detectors, LR-115 type-II plastic track detectors. The radon exhalation rate for the soil samples varies from 39.1 to 91.2 mBq kg-1 h-1 with a mean value 59.7 mBq kg-1 h-1. Also the radium concentration of the studied area is found and it varies from 30.6 to 51.9 Bq kg-1 with a mean value 41.6 Bq kg-1. The exhalation rate for the building material samples varies from 40.72 (sandstone) to 81.40 mBq kg-1 h-1 (granite) with a mean value of 59.94 mBq kg-1 h-1.

  20. Measurement of radon exhalation rate in various building materials and soil samples

    Indian Academy of Sciences (India)

    Pankaj Bala; Vinod Kumar; Rohit Mehra

    2017-03-01

    Indoor radon is considered as one of the potential dangerous radioactive elements. Common building materials and soil are the major source of this radon gas in the indoor environment. In the present study, the measurement of radon exhalation rate in the soil and building material samples of Una and Hamirpurdistricts of Himachal Pradesh has been done with solid state alpha track detectors, LR-115 type-II plastic track detectors. The radon exhalation rate for the soil samples varies from 39.1 to 91.2 mBq kg⁻¹ h⁻¹with a mean value 59.7 mBq kg⁻¹ h⁻¹. Also the radium concentration of the studied area is found and it varies from 30.6 to 51.9 Bq kg⁻¹ with a mean value 41.6 Bq kg⁻¹ . The exhalation rate for the building material samples varies from 40.72 (sandstone) to 81.40 mBq kg⁻¹ h⁻¹ (granite) with a mean value of59.94 mBq kg⁻¹ h⁻¹.

  1. Influence of indoor air conditions on radon concentration in a detached house.

    Science.gov (United States)

    Akbari, Keramatollah; Mahmoudi, Jafar; Ghanbari, Mahdi

    2013-02-01

    Radon is released from soil and building materials and can accumulate in residential buildings. Breathing radon and radon progeny for extended periods hazardous to health and can lead to lung cancer. Indoor air conditions and ventilation systems strongly influence indoor radon concentrations. This paper focuses on effects of air change rate, indoor temperature and relative humidity on indoor radon concentrations in a one family detached house in Stockholm, Sweden. In this study a heat recovery ventilation system unit was used to control the ventilation rate and a continuous radon monitor (CRM) was used to measure radon levels. FLUENT, a computational fluid dynamics (CFD) software package was used to simulate radon entry into the building and air change rate, indoor temperature and relative humidity effects using a numerical approach. The results from analytical solution, measurements and numerical simulations showed that air change rate, indoor temperature and moisture had significant effects on indoor radon concentration. Increasing air change rate reduces radon level and for a specific air change rate (in this work Ach = 0.5) there was a range of temperature and relative humidity that minimized radon levels. In this case study minimum radon levels were obtained at temperatures between 20 and 22 °C and a relative humidity of 50-60%.

  2. Radon exhalation rate for phosphate rocks samples using alpha track detectors

    Directory of Open Access Journals (Sweden)

    Hesham A. Yousef

    2016-01-01

    Full Text Available Solid state nuclear track detectors are used in very broad fields of technical applications and successfully applied in different areas of environmental physics and geophysics. Radon concentration and surface exhalation rate for phosphate samples from El-Sebaeya and Abu-Tartur, Egypt, were measured using nuclear tracks detectors from types CR-39 and LR-115. The average values of radon concentration are 12711.03 and 10925.02 Bqm−3 in El-Sebaeya area using CR-39 and LR-115 detectors, respectively. Also the average values of radon concentration are 15824.16 and13601.48 Bqm−3 in Abu-Tartur area using CR-39 and LR-115 detectors, respectively. From the obtained results we can conclude that the average values of radon concentration in Abu-Tartur are higher than El-Sebaeya. The present study is important to detect any harmful radiation which, can be used as reference information to assess any changes in the radioactive background level in the surrounding environment.

  3. Variation of indoor radon concentration and ambient dose equivalent rate in different outdoor and indoor environments.

    Science.gov (United States)

    Stojanovska, Zdenka; Boev, Blazo; Zunic, Zora S; Ivanova, Kremena; Ristova, Mimoza; Tsenova, Martina; Ajka, Sorsa; Janevik, Emilija; Taleski, Vaso; Bossew, Peter

    2016-05-01

    Subject of this study is an investigation of the variations of indoor radon concentration and ambient dose equivalent rate in outdoor and indoor environments of 40 dwellings, 31 elementary schools and five kindergartens. The buildings are located in three municipalities of two, geologically different, areas of the Republic of Macedonia. Indoor radon concentrations were measured by nuclear track detectors, deployed in the most occupied room of the building, between June 2013 and May 2014. During the deploying campaign, indoor and outdoor ambient dose equivalent rates were measured simultaneously at the same location. It appeared that the measured values varied from 22 to 990 Bq/m(3) for indoor radon concentrations, from 50 to 195 nSv/h for outdoor ambient dose equivalent rates, and from 38 to 184 nSv/h for indoor ambient dose equivalent rates. The geometric mean value of indoor to outdoor ambient dose equivalent rates was found to be 0.88, i.e. the outdoor ambient dose equivalent rates were on average higher than the indoor ambient dose equivalent rates. All measured can reasonably well be described by log-normal distributions. A detailed statistical analysis of factors which influence the measured quantities is reported.

  4. External gamma-ray dose rate and radon concentration in indoor environments covered with Brazilian granites

    Energy Technology Data Exchange (ETDEWEB)

    Anjos, R.M., E-mail: meigikos@if.uff.br [LARA - Laboratorio de Radioecologia, Instituto de Fisica, Universidade Federal Fluminense, Av. Gal Milton Tavares de Souza, s/no, Gragoata, 24210-340 Niteroi, RJ (Brazil); Juri Ayub, J. [LARA - Laboratorio de Radioecologia, Instituto de Fisica, Universidade Federal Fluminense, Av. Gal Milton Tavares de Souza, s/no, Gragoata, 24210-340 Niteroi, RJ (Brazil); GEA-Instituto de Matematica Aplicada San Luis (IMASL), Universidad Nacional de San Luis, Consejo Nacional de Investigaciones Cientificas y Tecnicas, CCT-San Luis, Ej. de los Andes 950, D5700HHW San Luis (Argentina); Cid, A.S.; Cardoso, R.; Lacerda, T. [LARA - Laboratorio de Radioecologia, Instituto de Fisica, Universidade Federal Fluminense, Av. Gal Milton Tavares de Souza, s/no, Gragoata, 24210-340 Niteroi, RJ (Brazil)

    2011-11-15

    Health hazard from natural radioactivity in Brazilian granites, covering the walls and floor in a typical dwelling room, was assessed by indirect methods to predict external gamma-ray dose rates and radon concentrations. The gamma-ray dose rate was estimated by a Monte Carlo simulation method and validated by in-situ measurements with a NaI spectrometer. Activity concentrations of {sup 232}Th, {sup 226}Ra, and {sup 40}K in an extensive selection of Brazilian commercial granite samples measured by using gamma-ray spectrometry were found to be 4.5-450 Bq kg{sup -1}, 4.9-160 Bq kg{sup -1} and 190-2029 Bq kg{sup -1}, respectively. The maximum external gamma-ray dose rate from floor and walls covered with the Brazilian granites in the typical dwelling room (5.0 m x 4.0 m area, 2.8 m height) was found to be 120 nGy h{sup -1}, which is comparable with the average worldwide exposure to external terrestrial radiation of 80 nGy h{sup -1} due to natural sources, proposed by United Nations Scientific Committee on the Effects of Atomic Radiation. Radon concentrations in the room were also estimated by a simple mass balance equation and exhalation rates calculated from the measured values of {sup 226}Ra concentrations and the material properties. The results showed that the radon concentration in the room ventilated adequately (0.5 h{sup -1}) will be lower than 100 Bq m{sup -3}, value recommended as a reference level by the World Health Organization. - Highlights: > We used indirect methods to predict external gamma dose rate and radon concentration. > The gamma-ray dose rate was estimated by a Monte Carlo simulation method. > The results were validated by in-situ measurements with a NaI spectrometer. > Radon concentrations in the room were estimated by a simple mass balance equation. > Radon concentration in the room ventilated adequately will be lower than 100 Bq m{sup -3}.

  5. Studying radon exhalation rates variability from phosphogypsum piles in the SW of Spain.

    Science.gov (United States)

    López-Coto, I; Mas, J L; Vargas, A; Bolívar, J P

    2014-09-15

    Nearly 1.0 × 10(8) tonnes of phosphogypsum were accumulated during last 50 years on a 1,200 ha disposal site near Huelva town (SW of Spain). Previous measurements of exhalation rates offered very variable values, in such a way that a worst case scenario could not be established. Here, new experimental data coupled to numerical simulations show that increasing the moisture contents or the temperature reduces the exhalation rate whilst increasing the radon potential or porosity has the contrary effect. Once the relative effects are compared, it can be drawn that the most relevant parameters controlling the exhalation rate are radon potential (product of emanation factor by (226)Ra concentration) and moisture saturation of PG. From wastes management point of view, it can be concluded that piling up the waste increasing the height instead of the surface allows the reduction of the exhalation rate. Furthermore, a proposed cover here is expected to allow exhalation rates reductions up to 95%. We established that the worst case scenario corresponds to a situation of extremely dry winter. Under these conditions, the radon exhalation rate (0.508 Bqm(-2)s(-1)) would be below though close to the upper limit established by U.S.E.P.A. for inactive phopsphogypsum piles (0.722 Bqm(-2)s(-1)).

  6. A dose rate model predicting radon-induced lung cancer risk in rats

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, W.; Lettner, H. (Salzburg Univ. (Austria). Div. of Biophysics); Crawford-Brown, D.J. (North Carolina Univ., Chapel Hill, NC (United States). Dept. of Environmental Sciences and Engineering)

    1992-01-01

    The laboratory rat has been used in inhalation studies as a surrogate to estimate human lung cancer risk following exposure to ambient radon progeny. Deposition, mucociliary clearance and dosimetry for the inhalation of radon progeny in the rat lung have been simulated for a variety of inhalation conditions. A state-vector model for radiation carcinogenesis has then been applied to predict the carcinogenic risk in the rat lung for different doses and dose rates. The model is based on the concepts of initiation and promotion, with the irradiation acting both to damage intercellular structures and to change the state of cells surrounding an initiated cell. Predicted lung cancer incidences show fair agreement with the experimental data. Consistent with the experimental evidence is the inverse dose rate effect observed for intermediate cumulative exposures. (author).

  7. Survey of Gamma Dose and Radon Exhalation Rate from Soil Surface of High Background Natural Radiation Areas in Ramsar, Iran

    Directory of Open Access Journals (Sweden)

    Rouhollah Dehghani

    2013-09-01

    Full Text Available Background: Radon is a radioactive gas and the second leading cause of death due to lung cancer after smoking. Ramsar is known for having the highest levels of natural background radiation on earth. Materials and Methods: In this research study, 50 stations of high radioactivity areas of Ramsar were selected in warm season of the year. Then gamma dose and radon exhalation rate were measured.Results: Results showed that gamma dose and radon exhalation rate were in the range of 51-7100 nSv/hr and 9-15370 mBq/m2s, respectively.Conclusion: Compare to the worldwide average 16 mBq/m2s, estimated average annual effective of Radon exhalation rate in the study area is too high.

  8. Radon level and radon effective dose rate determination using SSNTDs in Sannur cave, Eastern desert of Egypt.

    Science.gov (United States)

    Amin, Rafat M; Eissa, M F

    2008-08-01

    For the assessment of inhalation doses due to radon and its progeny to cavern workers and visitors, it is necessary to have information on the time integrated gas concentrations and equilibrium factors. Passive single cup dosimeters using solid state nuclear track detectors (SSNTD) is the best suited for this purpose in wadi Sannur cave, Beni Suef, Egypt. The average radon concentration measurements for the cave are 836 +/- 150 Bq m(-3) by CR-39 detectors and for equilibrium factor an overall average of all measured values was used 0.687. The effective dose for cave workers is 3.65 mSv/year while for visitors is 23 muSv/year. Comparing these values to the Ionizing Radiation Regulations (IRR) values which indicate that the estimated effective doses for workers and visitors in this cave are less than the average overall radon dose.

  9. LARGE BUILDING RADON MANUAL

    Science.gov (United States)

    The report summarizes information on how bilding systems -- especially the heating, ventilating, and air-conditioning (HVAC) system -- inclurence radon entry into large buildings and can be used to mitigate radon problems. It addresses the fundamentals of large building HVAC syst...

  10. LARGE BUILDING RADON MANUAL

    Science.gov (United States)

    The report summarizes information on how bilding systems -- especially the heating, ventilating, and air-conditioning (HVAC) system -- inclurence radon entry into large buildings and can be used to mitigate radon problems. It addresses the fundamentals of large building HVAC syst...

  11. Development of a technique for the measurement of the radon exhalation rate using an activated charcoal collector

    Energy Technology Data Exchange (ETDEWEB)

    Iimoto, Takeshi [Graduate School of Engineering, University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan)], E-mail: iimoto@n.t.u-tokyo.ac.jp; Akasaka, Yoshinori [Graduate School of Engineering, University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan); Koike, Yuya [Radioisotope Center, University of Tokyo (Japan); Kosako, Toshiso [Graduate School of Engineering, University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan)

    2008-04-15

    A simple system to evaluate the {sup 222}Rn (radon) exhalation rate from soil has been improved. A sampling cuvette of 2.1 L is placed so that it covers the targeted ground soil, and radon emanating from the soil accumulates within the cuvette for 24 h. Its internal radon concentration is measured by the combination of an activated charcoal (PICO-RAD) and a liquid scintillation counting system. This study shows variations of the conversion factor (CF: unit Bq m{sup -3}/cpm) of PICO-RAD. The range of CF due to temperature (10-30 deg. C) was between -21% and +69%, and this due to humidity (30-90%) was between 0% and -15%. Humidity and radon concentration in the cuvette covering soil tended to saturate in a few hours. The above information was used to correct the CF for the evaluation. The improved system shows high reliability and can be easily applied to natural environments.

  12. Development of a technique for the measurement of the radon exhalation rate using an activated charcoal collector.

    Science.gov (United States)

    Iimoto, Takeshi; Akasaka, Yoshinori; Koike, Yuya; Kosako, Toshiso

    2008-04-01

    A simple system to evaluate the 222Rn (radon) exhalation rate from soil has been improved. A sampling cuvette of 2.1 L is placed so that it covers the targeted ground soil, and radon emanating from the soil accumulates within the cuvette for 24 h. Its internal radon concentration is measured by the combination of an activated charcoal (PICO-RAD) and a liquid scintillation counting system. This study shows variations of the conversion factor (CF: unit Bq m(-3)/cpm) of PICO-RAD. The range of CF due to temperature (10-30 degrees C) was between -21% and +69%, and this due to humidity (30-90%) was between 0% and -15%. Humidity and radon concentration in the cuvette covering soil tended to saturate in a few hours. The above information was used to correct the CF for the evaluation. The improved system shows high reliability and can be easily applied to natural environments.

  13. Measurements of natural radioactivity and radon exhalation rates from different brands of cement used in Pakistan.

    Science.gov (United States)

    Mujahid, S A; Rahim, A; Hussain, S; Farooq, M

    2008-01-01

    The measurement of activity due to the naturally occurring radionuclide has been carried out in different brands of cement available in Pakistan. The gamma spectra of the collected samples were obtained using high-purity germanium detector and analysed for the presence of 232Th, 238U and 40K. The assessment of radiological hazards due to these radionuclides has also been made. The studies concerning the determination of radon-exhalation rates from these samples of cement were also carried out using CR-39 based NRPB radon dosimeters. The range of activity concentrations were found for 226Ra (from 25.10 +/- 1.55 to 52.60 +/- 3.20 Bq kg(-1)), 232Th (from 10.30 +/- 0.65 to 30.40 +/- 1.70 Bq kg(-1)) and 40K (from 17.25 +/- 1.55 to 292.95 +/- 23.05 Bq kg(-1)). The estimated value of radium equivalent concentration was from 11.16 +/- 2.60 to 114.98 +/- 7.11 Bq kg(-1). The calculated absorbed dose rate in air and the annual effective dose were in the range from 18.54 +/- 1.17 to 52.90 +/- 3.31 nGy h(-1) and 0.09 +/- 0.01 to 0.26 +/- 0.02 mSv, respectively. The external and internal hazard indices were in the range from 0.11 +/- 0.01 to 0.31 +/- 0.02 and 0.18 +/- 0.01 to 0.45 +/- 0.03, respectively. The radon exhalation rates from different brands of cement were found in the range from 3.3 +/- 0.7 to 8.1 +/- 1.7 mBq kg(-1) h(-1).

  14. Natural radioactivity and radon exhalation rate in Brazilian igneous rocks

    Energy Technology Data Exchange (ETDEWEB)

    Moura, C.L.; Artur, A.C. [Departamento de Petrologia e Metalogenia, Instituto de Geociencias e Ciencias Exatas, Universidade Estadual Paulista (UNESP), Av. 24-A No. 1515, C.P. 178, CEP 13506-900, Rio Claro, Sao Paulo (Brazil); Bonotto, D.M., E-mail: danielbonotto@yahoo.com.b [Departamento de Petrologia e Metalogenia, Instituto de Geociencias e Ciencias Exatas, Universidade Estadual Paulista (UNESP), Av. 24-A No. 1515, C.P. 178, CEP 13506-900, Rio Claro, Sao Paulo (Brazil); Guedes, S. [Departamento de Cronologia e Raios Cosmicos, Instituto de Fisica Gleb Wataghin, Universidade Estadual de Campinas (UNICAMP), Rua Sergio Buarque de Holanda No. 777, CEP 13083-859, Campinas, Sao Paulo (Brazil); Martinelli, C.D. [Departamento de Petrologia e Metalogenia, Instituto de Geociencias e Ciencias Exatas, Universidade Estadual Paulista (UNESP), Av. 24-A No. 1515, C.P. 178, CEP 13506-900, Rio Claro, Sao Paulo (Brazil)

    2011-07-15

    This paper reports the natural radioactivity of Brazilian igneous rocks that are used as dimension stones, following the trend of other studies on the evaluation of the risks to the human health caused by the rocks radioactivity as a consequence of their use as cover indoors. Gamma-ray spectrometry has been utilized to determine the {sup 40}K, {sup 226}Ra and {sup 232}Th activity concentrations in 14 rock types collected at different quarries. The following activity concentration range was found: 12.18-251.90 Bq/kg for {sup 226}Ra, 9.55-347.47 Bq/kg for {sup 232}Th and 407.5-1615.0 Bq/kg for {sup 40}K. Such data were used to estimate Ra{sub eq}, H{sub ex} and I{sub {gamma}}, which were compared with the threshold limit values recommended in literature. They have been exceeded for Ra{sub eq} and H{sub ex} in five samples, where the highest indices corresponded to a rock that suffered a process of ductile-brittle deformation that caused it a microbrecciated shape. The exhalation rate of Rn and daughters has also been determined in slabs consisting of rock pieces {approx}10 cm-long, 5 cm-wide and 3 cm-thick. It ranged from 0.24 to 3.93 Bq/m{sup 2}/h and exhibited significant correlation with eU (={sup 226}Ra), as expected. The results indicated that most of the studied rocks did not present risk to human health and may be used indoors, even with low ventilation. On the other hand, igneous rocks that yielded indices above the threshold limit values recommended in literature may be used outdoors without any restriction or indoors with ample ventilation.

  15. An investigation of radon exhalation rate and estimation of radiation doses in coal and fly ash samples.

    Science.gov (United States)

    Mahur, A K; Kumar, Rajesh; Mishra, Meena; Sengupta, D; Prasad, Rajendra

    2008-03-01

    Coal is a technologically important material used for power generation. Its cinder (fly ash) is used in the manufacturing of bricks, sheets, cement, land filling etc. Coal and its by-products often contain significant amounts of radionuclides, including uranium which is the ultimate source of the radioactive gas radon. Burning of coal and the subsequent atmospheric emission cause the redistribution of toxic radioactive trace elements in the environment. In the present study, radon exhalation rates in coal and fly ash samples from the thermal power plants at Kolaghat (W.B.) and Kasimpur (U.P.) have been measured using sealed Can technique having LR-115 type II detectors. The activity concentrations of 238U, 232Th, and 40K in the samples of Kolaghat power station are also measured. It is observed that the radon exhalation rate from fly ash samples from Kolaghat is higher than from coal samples and activity concentration of radionuclides in fly ash is enhanced after the combustion of coal. Fly ash samples from Kasimpur show no appreciable change in radon exhalation. Radiation doses from the fly ash samples have been estimated from radon exhalation rate and radionuclide concentrations.

  16. Methods of radon remediation in Finnish dwellings; Asuntojen radonkorjauksen menetelmaet

    Energy Technology Data Exchange (ETDEWEB)

    Arvela, H.

    1995-12-01

    A study was made of remedial measures taken in dwellings with high indoor radon concentrations and the results obtained. The data regarding the remedial measures taken in 400 dwellings was obtained from a questionnaire study. The mean annual average indoor radon concentration before the remedies was 1.500 Bq/m{sup 3}, the concentration exceeding in nearly every house the action level of 400 Bq/m{sup 3}. After the measures were taken the mean indoor radon concentration was 500 Bq/m{sup 3}. The resulting indoor radon concentration was less than 400 Bq/m{sup 3} in 60 percent of the dwellings. The best results were achieved using sub-slab-suction and radon well. These methods effectively decrease both the flow of radon bearing air from soil into dwellings and the radon concentration of leakage air. Typical reduction rates in radon concentration were 70-95 percent. The action level was achieved in more than 70 percent of the houses. Sealing the entry routes and improvement of the ventilation resulted typically in reduction rates of 10-50 percent. The goal of the report is to give useful information for the house owners, the do-it-yourself-mitigators, the mitigation firms and the local authorities. The report includes practical guidance, price information and examples of remedial measures. (13 refs., 10 figs., 2 tabs.).

  17. A COMPARATIVE STUDY OF RADIUM CONTENT AND RADON EXHALATION RATE FROM SOIL SAMPLES USING ACTIVE AND PASSIVE TECHNIQUES.

    Science.gov (United States)

    Yadav, Manjulata; Prasad, Mukesh; Joshi, Veena; Gusain, G S; Ramola, R C

    2016-10-01

    Soil is the most important factor affecting the radon level in the human living environments. It depends not only on uranium and thorium contents but also on the physical and chemical properties of the soil. In this paper, the measurements of radium content and mass exhalation rate of radon from the soil samples collected from Uttarkashi area of Garhwal Himalaya are presented. The correlation between radium content and radon mass exhalation rate from soil has also been obtained. The radium was measured by gamma ray spectrometry, while the mass exhalation rate of radon has been determined by both active and passive methods. The radium activity in the soil of study area was found to vary from 45±7 to 285±29 Bq kg(-1) with an average of 99 Bq kg(-1) The radon mass exhalation rate was found to vary from 0.59 × 10(-5) to 2.2 × 10(-5) Bq kg(-1) h(-1) with an average of 1.4 × 10(-5) Bq kg(-1) h(-1) by passive technique and from 0.8 × 10(-5) to 3.2 × 10(-5) Bq kg(-1) h(-1) with an average of 1.5 × 10(-5) Bq kg(-1) h(-1) by active technique. The results suggest that the measured radium value is positively correlated with the radon mass exhalation rate measured with both the active and passive techniques. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Radon transport in fractured soil. Laboratory experiments and modelling

    Energy Technology Data Exchange (ETDEWEB)

    Hoff, A.

    1997-10-01

    Radon (Rn-222) transport in fractured soil has been investigated by laboratory experiments and by modelling. Radon transport experiments have been performed with two sand columns (homogeneous and inhomogeneous) and one undisturbed clayey till column containing a net of preferential flow paths (root holes). A numerical model (the finite-element model FRACTRAN) and an analytic model (a pinhole model) have been applied in simulations if soil gas and radon transport in fractured soil. Experiments and model calculations are included in a discussion of radon entry rates into houses placed on fractured soil. The main conclusion is, that fractures does not in general alter transport of internally generated radon out of soil, when the pressure and flow conditions in the soil is comparable to the conditions prevailing under a house. This indicates the important result, that fractures in soil have no impact on radon entry into a house beyond that of an increased gas permeability, but a more thorough investigation of this subject is needed. Only in the case where the soil is exposed to large pressure gradients, relative to gradients induced by a house, may it be possible to observe effects of radon exchange between fractures and matrix. (au) 52 tabs., 60 ill., 5 refs.

  19. Neutron activation analysis of ceramic tiles and its component and radon exhalation rate

    Institute of Scientific and Technical Information of China (English)

    A. El-Shershaby; A. Sroor; F. Ahmed; A.S. Abdel-Haleem; Z. Abdel

    2004-01-01

    The concentrations of 20 trace elements in several ceramics tiles and ceramic composites used in Egypt were elementally analyzed by neutron activation analysis(NAA) technique. The samples and standard were irradiated with reactor for 4 h( in the Second The gamma-ray spectra obtained were measured for several times by means of the hyper pure germanium detection system( HPGe).Also a solid state nuclear track detector(SSNTD) CR-39, was used to measure the emanation rate of radon for these samples. The radium concentrations were found to vary from 0.39-3.59 ppm and the emanation rates were found to vary from (0.728-5.688) x 10-4The elemental analysis of the ceramic tiles and ceramic composites have a great importance in assigning the physical properties and in turn the quality of the material.

  20. Estimated effective dose rates from radon exposure in workplaces and residences within Los Alamos county in New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Whicker, Jeffrey J [Los Alamos National Laboratory; Mcnaughton, Michael [Los Alamos National Laboratory

    2009-01-01

    Many millions of office workers are exposed to radon while at work and at home. Though there has been a multitude of studies reporting the measurements of radon concentrations and potential lung and effective doses associated with radon and progeny exposure in homes, similar studies on the concentrations and subsequent effective dose rates in the workplace are lacking. The purposes of this study were to measure radon concentrations in office and residential spaces in the same county and explore the radiation dose implications. Sixty-five track-etch detectors were deployed in office spaces and 47 were deployed in residences, all within Los Alamos County, New Mexico, USA. The sampling periods for these measurements were generally about three months. The measured concentrations were then used to calculate and compare effective dose rates resulting from exposure while at work and at home. Results showed that full-time office workers receive on average about nine times greater exposure at home than while in the office (691 mrem yr{sup -1} versus 78 mrem yr{sup -1}). The estimated effective dose rate for a more homebound person was 896 mrem yr{sup -1}. These effective dose rates are contrasted against the 100 mrem yr{sup -1} threshold for regulation of a 'radiological worker' defined in the Department of Energy regulations occupational exposure and the 10 mrem yr{sup -1} air pathway effective public dose limit regulated by the Environmental Protection Agency.

  1. Radon metrology

    Energy Technology Data Exchange (ETDEWEB)

    Naismith, S.; Howarth, C. [National Radiological Protection Board, Chilton (United Kingdom)

    1996-09-01

    NRPB carries out calibrations of various types of radon and radon decay product measurement systems for its own purposes and for laboratories throughout Europe. There are currently two radon calibration facilities at NRPB: a 43 m{sup 3} radon chamber and the Fast Radon Exposure Device (FRED), a sealed steel drum. The radon chamber is used for active radon detection systems and the calibration of large numbers of passive detectors. Fred has a high radon concentration and is used to calibrate small numbers of passive radon gas detectors in a short period. (Author).

  2. Quantification of lung cancer risk after low radon exposure and low exposure rate: synthesis from epidemiological and experimental data

    Energy Technology Data Exchange (ETDEWEB)

    Timarche, M

    2004-03-15

    Radon is a radioactive gas produced during the decay of uranium 238 that is present in soil. It was classified as a human lung carcinogen in 1988, based on evidence both from animal studies and from human studies of miners with high levels of radon exposure. Radon is present everywhere; therefore the quantification of the risk associated with exposure to it is a key public health issue. The project aimed to analyse the risk associated with radon inhalation at low doses and at low rates of exposure. It involved researchers from three different fields: epidemiology, animal experiments and mechanistic modelling and provided a unique opportunity to study the influence of dose rate, mainly in the range of low daily exposures over long periods, by analysing in parallel results from both animal and epidemiological studies. The project comprised 6 work packages (W.P.). Firstly, the partners involved in epidemiology and animal experiments worked on the validation and the analysis of the data. Secondly, the data from W.P.1 and W.P.4 were transferred to the partners involved in W.P.5 for the application of mechanistic models. In the final step a synthesis of the results was prepared. (N.C)

  3. Determination of radon emission rate with regard to energetic reconstruction of buildings; Bestimmung der Radonquellstaerke im Zusammenhang mit Massnahmen zur energetischen Sanierung von Gebaeuden

    Energy Technology Data Exchange (ETDEWEB)

    Neugebauer, Thomas; Grund, A.L.; Hingmann, H.; Buermeyer, J.; Grimm, V.; Breckow, J. [Technische Hochschule Mittelhessen (THM), Giessen (Germany). Inst. fuer Medizinische Physik und Strahlenschutz (IMPS)

    2015-07-01

    In frame of a project funded by the Federal Office for Radiation Protection (BfS) the influence of meteorological and room climate parameters and energetic reconstruction on the radon concentration inside buildings has been investigated. For this purpose parameters like temperature, air pressure, relative humidity and carbon dioxide concentration have been measured. The daily and seasonal variations of the radon concentration were influenced by the behaviour of the residents. A parameter less influenced by this behaviour is the radon emission rate. Complementary to the above mentioned project the method of determination of the radon emission rate has been developed in frame of a project funded by the Ministry of the Environment of Hesse (HMUKLV). With the improved method, it is possible to determine the radon emission rate on a continuous base. Therefore both, the radon concentration and the air exchange rate of a building have to be determined. For the verification of the method simulations and measurements have been performed. Additionally meteorological parameters have been recorded in order to evaluate possible influences on the radon emission rate.

  4. A macroscopic and microscopic study of radon exposure using Geant4 and MCNPX to estimate dose rates and DNA damage

    Science.gov (United States)

    van den Akker, Mary Evelyn

    Radon is considered the second-leading cause of lung cancer after smoking. Epidemiological studies have been conducted in miner cohorts as well as general populations to estimate the risks associated with high and low dose exposures. There are problems with extrapolating risk estimates to low dose exposures, mainly that the dose-response curve at low doses is not well understood. Calculated dosimetric quantities give average energy depositions in an organ or a whole body, but morphological features of an individual can affect these values. As opposed to human phantom models, Computed Tomography (CT) scans provide unique, patient-specific geometries that are valuable in modeling the radiological effects of the short-lived radon progeny sources. Monte Carlo particle transport code Geant4 was used with the CT scan data to model radon inhalation in the main bronchial bifurcation. The equivalent dose rates are near the lower bounds of estimates found in the literature, depending on source volume. To complement the macroscopic study, simulations were run in a small tissue volume in Geant4-DNA toolkit. As an expansion of Geant4 meant to simulate direct physical interactions at the cellular level, the particle track structure of the radon progeny alphas can be analyzed to estimate the damage that can occur in sensitive cellular structures like the DNA molecule. These estimates of DNA double strand breaks are lower than those found in Geant4-DNA studies. Further refinements of the microscopic model are at the cutting edge of nanodosimetry research.

  5. Measurement of radioactivity and radon exhalation rate in different kinds of marbles and granites.

    Science.gov (United States)

    El-Dine, N W; El-Shershaby, A; Ahmed, F; Abdel-Haleem, A S

    2001-12-01

    Geological materials usually contaminated with naturally occurring radioactive materials (NORM) have become a focus of great attention. These NORM under certain conditions can reach hazardous contamination levels. Some contamination levels may be sufficiently severe that precautions must be taken. The present study deals with 60 geological samples (marble and granite) from both Egyptian and foreign locations. The studied samples were analyzed and the concentrations in Bq/kg dry weight of radioisotopes were determined by gamma-ray spectrometry using hyper-pure germanium (HPGe) detector in Bq/kg dry weight. The absorbed dose rate due to the natural radioactivity in the samples under investigation ranged from 2.45 +/- 0.07 to 64.44 +/- 1.93 nGy/h for marble and from 41.55 +/- 1.25 to 111.94 +/- 3.36 nGy/h for granite. The radium equivalent activity varied from 5.46 +/- 0.16 to 150.52 +/- 4.52 Bq/kg for marble samples and from 229.52 +/- 6.89 to 92.16 +/- 2.76 Bq/kg for granite. The representative external hazard index values for the corresponding samples are also estimated and given. The radon exhalation rates for marble and granite samples were also calculated by using solid state nuclear track detector (CR-39). The value of radium exhalation rate varied from 8.0 +/- 2.39 to 30.20 +/- 5.06 Bq/m2/d for marble and 6.89 +/- 1.72 to 25.79 +/- 4.38 Bq/m2/d for granite and the effective radium content was found to vary from 1.700 +/- 0.51 to 6.42 +/- 1.08 Bq/kg for marble and 1.29 +/- 0.32 to 5.63 +/- 0.96 Bq/kg for granite. The values of the radon exhalation rate and effective radium content are found to correspond with the values of uranium concentration measured by the HPGe detector in the corresponding sample.

  6. RADON MITIGATION IN SCHOOLS: CASE STUDIES OF RADON MITIGATION SYSTEMS INSTALLED BY EPA IN FOUR MARYLAND SCHOOLS ARE PRESENTED

    Science.gov (United States)

    The first part of this two-part paper discusses radon entry into schools, radon mitigation approaches for schools, and school characteristics (e.g., heating, ventilation, and air-conditioning -- HVAC-- system design and operation) that influence radon entry and mitigation system ...

  7. RADON MITIGATION IN SCHOOLS: CASE STUDIES OF RADON MITIGATION SYSTEMS INSTALLED BY EPA IN FOUR MARYLAND SCHOOLS ARE PRESENTED

    Science.gov (United States)

    The first part of this two-part paper discusses radon entry into schools, radon mitigation approaches for schools, and school characteristics (e.g., heating, ventilation, and air-conditioning -- HVAC-- system design and operation) that influence radon entry and mitigation system ...

  8. Neutron activation analysis of ceramic tiles and its component and radon exhalation rate.

    Science.gov (United States)

    El-Shershaby, A; Sroor, A; Ahmed, F; Abdel-Haleem, A S; Abdel, Z

    2004-01-01

    The concentrations of 20 trace elements in several ceramics tiles and ceramic composites used in Egypt were elementally analyzed by neutron activation analysis(NAA) technique. The samples and standard were irradiated with reactor for 4 h (in the Second Research Egyptian Reactor(Et-RR-2)) with thermal neutron flux 5.9 x 10(13) n/(cm2 x s). The gamma-ray spectra obtained were measured for several times by means of the hyper pure germanium detection system(HPGe). Also a solid state nuclear track detector(SSNTD) CR-39, was used to measure the emanation rate of radon for these samples. The radium concentrations were found to vary from 0.39-3.59 ppm and the emanation rates were found to vary from (0.728-5.688) x 10(-4) kg/(m2 x s). The elemental analysis of the ceramic tiles and ceramic composites have a great importance in assigning the physical properties and in turn the quality of the material.

  9. Measurement of HO{sub x}{center_dot} production rate due to radon decay in air

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Huiling

    1993-08-01

    Radon in indoor air may cause the exposure of the public to excessive radioactivity. Radiolysis of water vapor in indoor air due to radon decay could produce ({center_dot}OH and HO{sub 2} {center_dot}) that may convert atmospheric constituents to compounds of lower vapor pressure. These lower vapor pressure compounds might then nucleate to form new particles in the indoor atmosphere. Chemical amplification was used to determine HO{sub x}{center_dot} production rate in indoor air caused by radon decay. Average HO{sub x}{center_dot} production rate was found to be (4.31{plus_minus}0.07) {times} 10{sup 5} HO{sub x}{center_dot} per Rn decay per second (Bq) 3.4 to 55.0% at 22C. This work provided G{sub (HO{sub x}{center_dot})}-value, 7.86{plus_minus}0.13 No./100 eV in air by directly measuring [HO{sub x}{center_dot}] formed from the radiolysis procedure. This G value implies that HO{sub x}{center_dot} produced by radon decay in air might be formed by multiple processes and may be result of positive ion-molecule reactions, primary radiolysis, and radical reactions. There is no obvious relation between HO{sub x}{center_dot} production rate and relative humidity. A laser-induced fluorescence (LIF) system has been used for {center_dot}OH production rate measurement; it consists of an excimer laser, a dye laser, a frequency doubler, a gaseous fluorescence chamber, and other optical and electronic parts. This system needs to be improved to eliminate the interferences of light scattering and artificial {center_dot}OH produced from the photolysis of O{sub 3}/H{sub 2}O.

  10. Determining the radon exhalation rate from a gold mine tailings dump by measuring the gamma radiation.

    Science.gov (United States)

    Ongori, Joash N; Lindsay, Robert; Newman, Richard T; Maleka, Peane P

    2015-02-01

    The mining activities taking place in Gauteng province, South Africa have caused millions of tons of rocks to be taken from underground to be milled and processed to extract gold. The uranium bearing tailings are placed in an estimated 250 dumps covering a total area of about 7000 ha. These tailings dumps contain considerable amounts of radium and have therefore been identified as large sources of radon. The size of these dumps make traditional radon exhalation measurements time consuming and it is difficult to get representative measurements for the whole dump. In this work radon exhalation measurements from the non-operational Kloof mine dump have been performed by measuring the gamma radiation from the dump fairly accurately over an area of more than 1 km(2). Radon exhalation from the mine dump have been inferred from this by laboratory-based and in-situ gamma measurements. Thirty four soil samples were collected at depths of 30 cm and 50 cm. The weighted average activity concentrations in the soil samples were 308 ± 7 Bq kg(-1), 255 ± 5 Bq kg(-1) and 18 ± 1 Bq kg(-1) for (238)U, (40)K and (232)Th, respectively. The MEDUSA (Multi-Element Detector for Underwater Sediment Activity) γ-ray detection system was used for field measurements. The radium concentrations were then used with soil parameters to obtain the radon flux using different approaches such as the IAEA (International Atomic Energy Agency) formula. Another technique the MEDUSA Laboratory Technique (MELT) was developed to map radon exhalation based on (1) recognising that radon exhalation does not affect (40)K and (232)Th activity concentrations and (2) that the ratio of the activity concentration of the field (MEDUSA) to the laboratory (HPGe) for (238)U and (40)K or (238)U and (232)Th will give a measure of the radon exhalation at a particular location in the dump. The average, normalised radon flux was found to be 0.12 ± 0.02 Bq m(-2) s(-1) for the mine dump.

  11. Adrenal secretion of catecholamines by inhalation of radon water in relation to an increase of the tissue perfusion rate in rabbits

    Energy Technology Data Exchange (ETDEWEB)

    Suzuka, Ichio (Okayama Univ. (Japan). School of Medicine)

    1993-06-01

    To clarify the relationship between the increase in subcutaneous tissue perfusion rate (TPR) upon inhalation of radon water and the vasoactive effects of radon, rabbits inhaled nebulized water containing 14,000-18,000 Bq/1 radon (radon group) taken from Ikeda Mineral Spring, Shimane, Japan. Control rabbits inhaled radon water from the same springs which had been kept for over 10 radon half-life periods. TPR was evaluated 15 minutes after the beginning of inhalation by mass spectrometry. After inhalation for 90 minutes, plasma and adrenal glands were removed, and levels of adrenaline and noradrenaline were analyzed by high-performance liquid chromatography (THI method). Each group was divided into 4 subgroups according to intravenously injected medication as follows: (1) no medication (without adrenergic blocker), (2) phentolamine ([alpha]-blocker), 0.05 mg/kg/min, (3) propranolol (non-selective [beta]-blocker), 1 mg/kg/, and (4) atenolol (selective [beta]-blocker), 6 mg/kg. In the radon group, plasma adrenaline and noradrenaline levels were significantly higher (p<0.01, p<0.05), and adrenal adrenaline and noradrenaline levels were significantly lower (p<0.01, p<0.01) than those in the control group. In the no medication and phentolamine subgroups, TPRs in the radon group were significantly higher than those in the control group (p<0.01, p<0.01). In the propranolol and atenolol subgroups, no significant change of TPR was found. It is suggested that catecholamines are secreted from the adrenal glands upon inhalation of radon water and that the [beta][sub 1]-action of catecholamines contributes to the increase in tissue perfusion. (author).

  12. Effects of vegetation of radon transport processes in soil: The origins and pathways of {sup 222}Rn entering into basement structures. Final report, March 15, 1987--May 15, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Borak, T.B.

    1992-08-01

    The entry rate of {sup 22}Rn into a basement structure was measured continuously. These measurements demonstrated that radon entry did not vanish even when the structure was slightly pressurized. This persistent entry has been determined to be dominated by diffusion through the floor and walls and a combination of diffusion and convection through the floor-wall joint. The highest indoor radon concentrations occurred during calm periods when the pressure differentials between the inside and outside of the structure were small. The objectives of this work were to identify the origins of the radon and investigate the entry pathways. The radon could originate either in the concrete or in the soil surrounding the structure. Entry pathways into the basement were through the concrete floor and walls as well as through the floor-wall joint. The contributions of the origins and entry pathways were determined by continuously measuring the radon entry rate into the basement, using a trace gas system, and the flux density through portions of the floor and walls. Radon entry through the floor-wall joint could be controlled using a baseboard barrier system. Results indicated that, during calm conditions with wind speeds less than 1 m s{sup {minus}1}, 25 % of the radon enters through the floor-wall joint and 75 % enters through the concrete. About 30 % of the radon originated in the concrete floor and walls. A method for in-situ determination of the diffusion length and emanation fraction of radon in concrete was developed. For the concrete used in the structure, the average diffusion length and emanation fraction were 27{plus_minus}4 cm and 0.19{plus_minus}0.02 respectively.

  13. Map showing radon potential of rocks and soils in Montgomery County, Maryland

    Science.gov (United States)

    Gundersen, L.C.; Reimer, G.M.; Wiggs, C.R.; Rice, C.A.

    1988-01-01

    This report summarizes the radon potential of Montgomery County in the context of its geology. Radon is a naturally occurring gas produced by the radioactive decay of uranium. Radon produced by uraniferous rocks and soils may enter a house through porous building materials and through openings in walls and floors. Radon gases has a tendency to move from the higher pressure commonly existing in the soil to the lower pressure commonly existing in the house. The U.S. Environmental Protection Agency (U.S. EPA, 1986a) estimates that elevated levels of indoor radon may be associated with 5,000 to 20,000 of the 130,000 lung cancer deaths per year. They also estimate that 8 to 12 percent of the homes in the United States will have annual average indoor radon levels exceeding 4 picoCuries per liter of air (pCi/L). Above this level, the U.S. EPA recommends homeowners take remedial action. May factors control the amount of radon which may enter a home from the geologic environment. Soil drainage, permeability, and moisture content effect the amount of radon that can be released from rocks and soils (known as the emmanation) and may limit or increase how far it can migrate. Well drained, highly permeable soils facilitate the movement of radon. Soils with water content in the 8 to 15 percent range enhance the emmanation of radon (Lindmark, 1985). Daily and seasonal variations in soil and indoor radon can be caused by meteorologic factors such as barometric pressure, temperature, and wind (Clements and Wilkening, 1974; Schery and other, 1984). Construction practices also inhibit or promote entry of radon into the home (U.S. EPA, 1986b). In general, however, geology controls the source and distribution of radon (Akerblom and Wilson, 1982; Gundersen and others, 1987, 1988; Sextro and others, 1987; U.S. EPA, 1983; Peake, 1988; Peake and Hess, 1988). The following sections describe: 1) the methods used to measure radon and equivalent uranium (eU) in soil; 2) the radon potential

  14. Indoor radon, geogenic radon surrogates and geology - Investigations on their correlation.

    Science.gov (United States)

    Friedmann, H; Baumgartner, A; Bernreiter, M; Gräser, J; Gruber, V; Kabrt, F; Kaineder, H; Maringer, F J; Ringer, W; Seidel, C; Wurm, G

    2017-01-01

    The indoor radon concentration was measured in most houses in a couple of municipalities in Austria. At the same time the activity concentration of radium in soil, the soil gas radon concentration, the permeability of the ground and the ambient dose equivalent rate were also measured and the geological situations (geological units) were recorded too. From the indoor radon concentration and different house and living parameters a radon potential (Austrian radon potential) was derived which should represent the radon concentration in a standard room. Another radon potential (Neznal radon potential) was calculated from the soil gas radon concentration and the permeability. The aim of the investigation was to correlate all the different variables and to test if the use of surrogate data (e.g. geological information, ambient dose equivalent rate, etc.) can be used to judge the radon risk for an area without performing numerous indoor measurements.

  15. RADON MITIGATION IN SCHOOLS: HVAC SYTEMS IN SCHOOLS TEND TO HAVE A GREATER IMPACT ON RADON LEVELS THAN HVAC SYSTEMS IN HOMES

    Science.gov (United States)

    The first part of this two-part paper discusses radon entry into schools, radon mitigation approaches for schools, and school characteristics (e.g., heating, ventilation, and air conditioing -- HVAC-- system design and operationg) that influence radon entry and mitigation system ...

  16. RADON MITIGATION IN SCHOOLS: HVAC SYTEMS IN SCHOOLS TEND TO HAVE A GREATER IMPACT ON RADON LEVELS THAN HVAC SYSTEMS IN HOMES

    Science.gov (United States)

    The first part of this two-part paper discusses radon entry into schools, radon mitigation approaches for schools, and school characteristics (e.g., heating, ventilation, and air conditioing -- HVAC-- system design and operationg) that influence radon entry and mitigation system ...

  17. MEASUREMENT OF RADON EXHALATION RATE, RADIUM ACTIVITY AND ANNUAL EFFECTIVE DOSE FROM BRICKS AND CEMENT SAMPLES COLLECTED FROM DERA ISMAIL KHAN

    Directory of Open Access Journals (Sweden)

    Nisar Ahmad

    2014-01-01

    Full Text Available Radon concentration, exhalation rate, radium activity and annual effective dose have been measured from baked and unbaked bricks and cement samples commonly used as construction material in the dwellings of Dera Ismail Khan City, Pakistan. CR-39 based NRPB radon dosimeters and RAD7 have been used as passive and active devises. The values of radon concentration for baked, unbaked bricks and cements obtained from passive and active techniques were found in good agreement. Average values of radon exhalation rates in baked, unbaked bricks and cement were found (1.202±0.212 Bq m-2 h-1, (1.419±0.230 Bq m-2 h-1 and (0.386±0.117 Bq m-2 h-1 and their corresponding average radium activity and annual effective dose were found (0.956±0.169 Bq/kg, (1.13±0.184 Bq/kg, (0.323±0.098 Bq/kg and (33.96±5.99 µSv y-1, (40.3±6.51 µSv y-1 and (10.94±3.28 µSv y-1, respectively. Radon concentration, exhalation rate and their corresponding radium activity and annual effective dose were found higher in unbaked bricks as compared to baked bricks and cement but overall values of radon exhalation rate, annual effective dose and radium activity were found well below the world average values of 57.600 Bq m-2 h-1, 1100 µSv y-1 and 370 Bq/kg, respectively.

  18. {sup 226}Ra, {sup 232}Th and {sup 40}K contents and radon exhalation rate from materials used for construction and decoration in Cameroon

    Energy Technology Data Exchange (ETDEWEB)

    Ngachin, M; Njock, M G Kwato [Center for Atomic, Molecular Physics and Quantum Optics, University of Douala, PO Box 8580, Douala (Cameroon); Garavaglia, M; Giovani, C; Scruzzi, E [Regional Agency for Environmental Protection (ARPA), 91 via Tavagnacco, 33100 Udine (Italy); Nourreddine, A [Institut Pluridisciplinaire Hubert-Curien, UMR7178 CNRS-IN2P3 and Universite Louis Pasteur, 23 rue de Loess, BP 28, F-67037, Strasbourg cedex 02 (France); Lagos, L [Applied Research Center, Florida International University, 10555 W Flagler Street, EC 2100, Miami, FL 33174 (United States)], E-mail: mngachin@yahoo.com

    2008-09-01

    This work deals with the measurement of radioactivity and radon exhalation rate from building materials manufactured in Douala city from geological materials. Nine types of building material were surveyed for their natural radioactivity contents using high-resolution gamma-ray spectrometry. The activity concentrations for {sup 226}Ra, {sup 232}Th and {sup 40}K varied from 11.5 to 49 Bq kg{sup -1}, 16 to 37 Bq kg{sup -1} and 306 to 774 Bq kg{sup -1}, respectively. The absorbed dose rate in the samples investigated at 1 m above ground level ranged from 28.5 to 66.6 nGy h{sup -1}. External and internal hazard indices were also estimated as defined by the European Commission. The Ra equivalents of the materials studied ranged from 57.5 to 133 Bq kg{sup -1} and are much smaller than the recommended limit of 370 Bq kg{sup -1} for construction materials for dwellings. Polycarbonate nuclear track detectors (NTDs), type CR-39, were used for measuring the radon concentration from different materials. In fact, knowledge of the radon exhalation rate from building materials is important for understanding the individual contribution of each material to the total indoor radon exposure. Samples were hermetically closed in glass vessels and the radon growth was followed as a function of time. The radon exhalation rate was therefore derived from the experimental measurement of {alpha}-track densities. The radon exhalation varied from (5.77 {+-} 0.06) x 10{sup -5} to (7.61 {+-} 0.07) x 10{sup -5} Bq cm{sup -2} h{sup -1} in bricks, from (5.79 {+-} 0.05) x 10{sup -5} to (11.6 {+-} 0.12) x 10{sup -5} in tiles, and was (6.95 {+-} 0.03) x 10{sup -5} Bq cm{sup -2} h{sup -1} in concrete. A correlation (correlation coefficient approx. = 0.8) was found between radium concentration measured with a HPGe detector and the radon exhalation rate obtained using nuclear track detectors.

  19. (226)Ra, (232)Th and (40)K contents and radon exhalation rate from materials used for construction and decoration in Cameroon.

    Science.gov (United States)

    Ngachin, M; Garavaglia, M; Giovani, C; Nourreddine, A; Kwato Njock, M G; Scruzzi, E; Lagos, L

    2008-09-01

    This work deals with the measurement of radioactivity and radon exhalation rate from building materials manufactured in Douala city from geological materials. Nine types of building material were surveyed for their natural radioactivity contents using high-resolution gamma-ray spectrometry. The activity concentrations for (226)Ra, (232)Th and (40)K varied from 11.5 to 49 Bq kg(-1), 16 to 37 Bq kg(-1) and 306 to 774 Bq kg(-1), respectively. The absorbed dose rate in the samples investigated at 1 m above ground level ranged from 28.5 to 66.6 nGy h(-1). External and internal hazard indices were also estimated as defined by the European Commission. The Ra equivalents of the materials studied ranged from 57.5 to 133 Bq kg(-1) and are much smaller than the recommended limit of 370 Bq kg(-1) for construction materials for dwellings. Polycarbonate nuclear track detectors (NTDs), type CR-39, were used for measuring the radon concentration from different materials. In fact, knowledge of the radon exhalation rate from building materials is important for understanding the individual contribution of each material to the total indoor radon exposure. Samples were hermetically closed in glass vessels and the radon growth was followed as a function of time. The radon exhalation rate was therefore derived from the experimental measurement of alpha-track densities. The radon exhalation varied from (5.77 +/- 0.06) x 10(-5) to (7.61 +/- 0.07) x 10(-5) Bq cm(-2) h(-1) in bricks, from (5.79 +/- 0.05) x 10(-5) to (11.6 +/- 0.12) x 10(-5) in tiles, and was (6.95 +/- 0.03) x 10(-5) Bq cm(-2) h(-1) in concrete. A correlation (correlation coefficient approximately 0.8) was found between radium concentration measured with a HPGe detector and the radon exhalation rate obtained using nuclear track detectors.

  20. Work to save dose: contrasting effective dose rates from radon exposure in workplaces and residences against the backdrop of public and occupational limits

    Energy Technology Data Exchange (ETDEWEB)

    Whicker, Jeffrey J [Los Alamos National Laboratory; Mcnaughton, Michael W [Los Alamos National Laboratory

    2009-01-01

    Office workers are exposed to radon while at work and at home. Though there has been a multitude of studies reporting the measurements of radon concentrations and potential lung and effective doses associated with radon and progeny exposure in homes, similar studies on the concentrations and subsequent effective dose rates in the non-mine workplaces are lacking. Additionally, there are few, if any, comparative analyses of radon exposures at more 'typical' workplace with residential exposures within the same county. The purposes of this study were to measure radon concentrations in office and residential spaces in the same county and explore the radiation dose implications. Sixty-five track-etch detectors were deployed in office spaces and 47 were deployed in residences, all within Los Alamos County, New Mexico, USA. The sampling periods for these measurements were generally about three months. The measured concentrations were used to calculate and compare effective dose rates resulting from exposure while at work and at home. Results showed that full-time office workers receive on average about 8 times greater exposure at home than while in the office (2.3 mSv yr-! versus 0.3 mSv yr-!). The estimated effective dose rate for a more homebound person was about 3 mSv yr-!. Estimating effective doses from background radon exposure in the same county as Los Alamos National Laboratory, with thousands of'radiological workers,' highlights interesting contrasts in radiation protection standards that span public and occupational settings. For example, the effective dose rate from background radon exposure in unregulated office spaces ranged up to 1.1 mSv yr-!, which is similar to the 1 mSv yr-! threshold for regulation ofa 'radiological worker,' as defined in the Department of Energy regulations for occupational exposure. Additionally, the estimated average effective dose total of> 3 mSv yf! from radon background exposure in homes stands in

  1. Variation in radon concentration and terrestrial gamma radiation dose rates in relation to the lithology in southern part of Kumaon Himalaya, India

    Energy Technology Data Exchange (ETDEWEB)

    Ramola, R.C. [Department of Physics, HNB. Garhwal University, Badshahi Thaul Campus, Tehri Garhwal 249199 (India)]. E-mail: rcramola@sancharnet.in; Choubey, V.M. [Wadia Institute of Himalayan Geology, 33 General Mahadeo Singh Road, Dehradun 248001 (India); Prasad, Yogesh [Department of Physics, HNB. Garhwal University, Badshahi Thaul Campus, Tehri Garhwal 249199 (India); Prasad, Ganesh [Department of Physics, HNB. Garhwal University, Badshahi Thaul Campus, Tehri Garhwal 249199 (India); Bartarya, S.K. [Wadia Institute of Himalayan Geology, 33 General Mahadeo Singh Road, Dehradun 248001 (India)

    2006-07-15

    Radon concentrations in groundwater and soil-gas along with the terrestrial gamma radiation dose rate have been measured in the different geological formation of Kumaon Himalaya, India. Radon concentrations were found to vary from 1 to 392Bq/l with a mean of 50Bq/l in water and 398Bq/m{sup 3} to 25.8kBq/m{sup 3} with a mean value of 5.867kBq/m{sup 3} in soil-gas. The radium content in collected groundwater samples from the study area was found to vary from 0.11 to 0.75Bq/l with a mean value 0.35Bq/l. The terrestrial gamma radiation dose rate and uranium content in soil were found to vary from 21.67 to 57.50{mu}R/h with a mean value of 36.15{mu}R/h and 0.8 to 15.3ppm with a mean value 3.4ppm, respectively, in different lithotectonic units. The emanation of radon in groundwater and soil-gas are found to be controlled by the geological formation of the area. It was also found to be controlled by the tectonic structure of the area. Radon level was found higher in the area consisting of granite, quartz porphyry, schist, phyllites slates and lowest in the area having sedimentary rocks, predominantly dominated by quartzite rocks. The terrestrial gamma radiation dose rate in the area was found positively correlated with radon concentrations in groundwater and soil-gas. A strong positive correlation was observed between uranium content in soil and terrestrial gamma radiation dose rate. Soil-gas radon concentration was also found positively correlated with the uranium content in the soil. However, a weak correlation was found between uranium content in soil and radon concentrations in groundwater samples from the study area. No correlation was observed between radon concentrations in groundwater and soil-gas.

  2. A robust and quick method for the estimation of long-term average indoor radon concentrations (extended Blower-Door method); Ein robustes und schnelles Verfahren zur Abschaetzung der langzeitlich mittleren Radonkonzentration in einem Gebaeude (erweiterte Blower-Door-Methode)

    Energy Technology Data Exchange (ETDEWEB)

    Maringer, F.J. [Bundesversuchs- und Forschungsanstalt Arsenal, Vienna (Austria); Akis, M.C.; Stadtmann, H. [Oesterreichisches Forschungszentrum Seibersdorf GmbH (Austria); Kaineder, H. [Amt der Oberoesterreichischen Landesregierung, Linz (Austria); Kindl, P. [Technische Univ., Graz (Austria); Kralik, C. [Bundesanstalt fuer Lebensmitteluntersuchung und -forschung, Vienna (Austria); Lettner, H.; Winkler, R. [Salzburg Univ. (Austria); Ringer, W. [Salzburg Univ. (Austria)]|[Atominstitut der Oesterreichischen Universitaeten, Vienna (Austria)

    1998-12-31

    Within the Austrian radon mitigation project `SARAH` different methods of radon diagnosis had been used. For these investigations a `Blower-Door` had been employed to apply a low pressure and to look for radon entry paths. On the occasion of the radon sniffing the team got the idea to measure the radon concentration in the Blower-Door exhaust air to get an estimate of the long-term average radon concentration in the building. In this paper the new method and their application possibilities are given. The estimation of the average radon entry rate, the average long-term radon concentration, and the evaluation of the mitigation success are described and discussed. The advantage of this procedure is to obtain a result for the annual mean indoor radon concentration after only about three hours. (orig.) [Deutsch] Im Rahmen des oesterreichischen Radonsanierungsprojekts `SARAH` wurden verschiedene Methoden zur Radondiagnose von Gebaeuden angewandt. Zum raschen Auffinden von Radoneintrittspfaden wurde auch ein `Blower-Door` zur Applikation eines Unterdrucks (-50 Pa) innerhalb der untersuchten Haeuser verwendet. Dabei entsprang die Idee, durch Messung der Radonkonzentration der Blower-Door-Abluft einen Hinweis auf die durchschnittliche Radonkonzentration im Gebaeude zu erhalten. In dieser Arbeit werden die neue Methode und deren Anwendungsmoeglichkeit zur Abschaetzung der mittleren Radoneintrittsrate und der langzeitlich mittleren Radonkonzentrationen (`Jahresmittelwert`) sowie des Sanierungserfolges (Ausmass der Radonreduktion) eines Gebaeudes beschrieben und diskutiert. Der Vorteil der Methode liegt darin, dass innerhalb von etwa drei Stunden Messzeit eine Abschaetzung fuer den Jahresmittelwert der Radonkonzentration eines Gebaeudes vorliegt. (orig.)

  3. Spanish experience on the design of radon surveys based on the use of geogenic information.

    Science.gov (United States)

    Sainz Fernández, C; Quindós Poncela, L S; Fernández Villar, A; Fuente Merino, I; Gutierrez-Villanueva, J L; Celaya González, S; Quindós López, L; Quindós López, J; Fernández, E; Remondo Tejerina, J; Martín Matarranz, J L; García Talavera, M

    2017-01-01

    One of the requirements of the recently approved EU-BSS (European Basic Safety Standards Directive, EURATOM, 2013) is the design and implementation of national radon action plans in the member states (Annex XVIII). Such plans require radon surveys. The analysis of indoor radon data is supported by the existing knowledge about geogenic radiation. With this aim, we used the terrestrial gamma dose rate data from the MARNA project. In addition, we considered other criterion regarding the surface of Spain, population, permeability of rocks, uranium and radium contain in soils because currently no data are available related to soil radon gas concentration and permeability in Spain. Given that, a Spanish radon map was produced which will be part of the European Indoor Radon Map and a component of the European Atlas of Natural Radiation. The map indicates geographical areas with high probability of finding high indoor radon concentrations. This information will support legislation regarding prevention of radon entry both in dwellings and workplaces. In addition, the map will serve as a tool for the development of strategies at all levels: individual dwellings, local, regional and national administration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Ambulatory blood pressure and heart rate during shuttle flight, entry and landing

    Science.gov (United States)

    Thornton, W.; Moore, T. P.; Uri, J.

    1993-01-01

    Ambulatory blood pressures (BP) and heart rates (HR) were recorded on a series of early Shuttle flights during preflight and pre-entry, entry, landing and egress. There were no significant differences between flight and preflight values during routine activity. Systolic blood pressure was slightly elevated in the deorbit period and systolic and diastolic blood pressure and heart rates were all elevated with onset of gravitoinertial loads and remained so through egress. Two of seven subjects had orthostatic problems in egress but their data did not show significant differences from others except in heart rate. Comparison of this data to that from recent studies show even larger increase in HR/BP values during current deorbit and entry phases which is consistent with increased heat and weight loads imposed by added survival gear. Both value and limitations of ambulatory heart rate/blood pressure data in this situation are demonstrated.

  5. Mutagenicity of radon and radon daughters

    Energy Technology Data Exchange (ETDEWEB)

    Evans, H.H.

    1991-01-01

    The objective of our research is to investigate the dose-response relationship of the lethal and mutagenic effects of exposure of cells to radon and its decay products. Dose rate dependence and the nature of the DNA lesion will be studied, using the thymidine kinase and HPRT loci to measure mutation frequency. A deficiency in DNA repair is shown to lead to a greater proportion of mutants with intergenic lesions. The cytotoxic effects of radon and its daughters are similar in human TK6 lymphoblasts and mouse L5178Y lymphoblasts, the cell line used in previous experiments. The results of molecular analysis of four spontaneous and 25 X-radiation induced HPRT{sup {minus}} mutants. Eleven radon-induced HPRT{sup {minus}} mutants have been isolated, and will be analyzed in a similar fashion. 9 figs.

  6. Scopingsreport Radon

    NARCIS (Netherlands)

    Blaauboer RO; Vaas LH; Hesse JM; Slooff W

    1989-01-01

    Dit scopingsrapport vormt een onderdeel van de voorbereiding tot het opstellen van het basisdocument radon. Het doel van dit rapport is het algemene kennisniveau van de deelnemers aan de scopingsbijeenkomst aangaande radon op eenzelfde peil te brengen en discussie- en beslispunten inzake de inho

  7. Scopingsreport Radon

    NARCIS (Netherlands)

    Blaauboer RO; Vaas LH; Hesse JM; Slooff W

    1989-01-01

    Dit scopingsrapport vormt een onderdeel van de voorbereiding tot het opstellen van het basisdocument radon. Het doel van dit rapport is het algemene kennisniveau van de deelnemers aan de scopingsbijeenkomst aangaande radon op eenzelfde peil te brengen en discussie- en beslispunten inzake de inho

  8. Thermo-diffusional radon waves in soils.

    Science.gov (United States)

    Minkin, Leonid; Shapovalov, Alexander S

    2016-09-15

    A new theoretical framework for diurnal and seasonal oscillations of the concentration of radon in soil and open air is proposed. The theory is based on the existing temperature waves in soils and thermo-diffusional gas flux in porous media. As soil is a non-isothermal porous medium, usually possessing a large fraction of microscopic pores belonging to Knudsen's free molecular field, a thermo-diffusional gas flow in soil has to arise. The radon mass transfer equation in soil for sinusoidal temperature oscillations at the soil-atmosphere boundary is solved, which reveals that radon concentration behaves as a damped harmonic wave. The amplitude of radon concentration oscillations and phase shift between radon concentration oscillations and soil temperature depend on the radon diffusion coefficient in soil, rate of radon production, soil thermal conductivity, average soil temperature, decay constant, and heat of radon transfer. Primarily numerical calculations are presented and comparisons with experimental data are shown.

  9. Natural radioactivity and radon exhalation rates in man-made tiles used as building materials in Japan.

    Science.gov (United States)

    Iwaoka, K; Hosoda, M; Suwankot, N; Omori, Y; Ishikawa, T; Yonehara, H; Tokonami, S

    2015-11-01

    Man-made tiles frequently used in Japan were collected, and activity concentrations and radon ((222)Rn) exhalation rates in these tiles were measured. Dose estimations for inhabitants living in houses built using these tiles were also carried out. The activity concentrations of (226)Ra, (228)Ra and (40)K in the man-made tiles were 31-170, 35-110 and 260-980 Bq kg(-1), respectively. The (222)Rn exhalation rates in the tiles were 8.8-21 μBq m(-2) s(-1). The ranges of experimental activity concentrations and (222)Rn exhalation rates were almost identical to those of natural rocks used as typical building materials in Japan. The maximum value of effective dose to inhabitants living in houses built with the man-made tiles was 0.14 mSv y(-1), which is lower than the reference level range (1-20 mSv y(-1)) for abnormally high levels of natural background radiation published in the ICRP Publication 103.

  10. Application of a radon model to explain indoor radon levels in a Swedish house

    CERN Document Server

    Font, L; Jönsson, G; Enge, W; Ghose, R

    1999-01-01

    Radon entry from soil into indoor air and its accumulation indoors depends on several parameters, the values of which normally depend on the specific characteristics of the site. The effect of a specific parameter is often difficult to explain from the result of indoor radon measurements only. The adaptation of the RAGENA (RAdon Generation, ENtry and Accumulation indoors) model to a Swedish house to characterise indoor radon levels and the relative importance of the different radon sources and entry mechanisms is presented. The building is a single-zone house with a naturally-ventilated crawl space in one part and a concrete floor in another part, leading to different radon levels in the two parts of the building. The soil under the house is moraine, which is relatively permeable to radon gas. The house is naturally-ventilated. The mean indoor radon concentration values measured with nuclear track detectors in the crawl-space and concrete parts of the house are respectively 75+-30 and 200+-80 Bq m sup - sup 3...

  11. Study on the solubility of radon in tissues; Untersuchung der Loeslichkeit von Radon in Gewebe

    Energy Technology Data Exchange (ETDEWEB)

    Fournier, Claudia; Kraft, Gerhard; Maier, Andreas; Beek, Patrick van [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany)

    2016-08-01

    At the GSI Helmholtz Center in Darmstadt a radon chamber with conditions similar to the radon galleries was built for studies on the solubility of radon in tissues using cell cultures and animals. The samples are investigated using gamma spectroscopy following the radon exposure measuring Pb-214 and Bi-214. The original concentration of Rn-222 in the sample is determined by the time dependence of the decay rates of Rn-222. The experimental conditions and preliminary measurements are described.

  12. Simulation of the steady-state transport of radon from soil into houses with basements under constant negative pressure

    Energy Technology Data Exchange (ETDEWEB)

    de Oliveira Loureiro, C.

    1987-05-01

    A theoretical model was developed to simulate this phenomenon, under some specific assumptions. The model simulates: the generation and decay of radon within the soil; its transport throughout the soil due to diffusion and convection induced by the pressure disturbance applied at a crack in the basement; its entrance into the house through the crack; and the resultant indoor radon concentration. The most important assumptions adopted in the model were: a steady-state condition; a house with a basement; a geometrically well-defined crack at the wall-floor joint in the basement; and a constant negative pressure applied at the crack in relation to the outside atmospheric pressure. Two three-dimensional finite-difference computer programs were written to solve the mathematical equations of the model. The first program, called PRESSU, was used to calculate: the pressure distribution within the soil as a result of the applied disturbance pressure at the crack; and the resultant velocity distribution of the soil gas throughout the soil matrix. The second program, called MASTRA, was used to: solve the radon mass-transport equation, and to calculate the concentration distribution of radon in the soil gas within the whole soil; and to calculate the entry rate of radon through the crack into the basement, and the final indoor radon concentration. A parametric sensitivity analysis performed on the model, revealed several features of the mechanisms involved in the transport of radon into the house. 84 refs., 66 figs., 16 tabs.

  13. Novel method of measurement of radon exhalation from building materials.

    Science.gov (United States)

    Awhida, A; Ujić, P; Vukanac, I; Đurašević, M; Kandić, A; Čeliković, I; Lončar, B; Kolarž, P

    2016-11-01

    In the era of the energy saving policy (i.e. more air tight doors and windows), the radon exhaled from building materials tends to increase its concentration in indoor air, which increases the importance of the measurement of radon exhalation from building materials. This manuscript presents a novel method of the radon exhalation measurement using only a HPGe detector or any other gamma spectrometer. Comparing it with the already used methods of radon exhalation measurements, this method provides the measurement of the emanation coefficient, the radon diffusion length and the radon exhalation rate, all within the same measurement, which additionally defines material's radon protective properties. Furthermore it does not necessitate additional equipment for radon or radon exhalation measurement, which simplifies measurement technique, and thus potentially facilitates introduction of legal obligation for radon exhalation determination in building materials. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. The inverse dose-rate effect and the extrapolation of radon risk estimates from exposures of miners to low-level exposures in homes

    Energy Technology Data Exchange (ETDEWEB)

    Pushkin, J.S. (Environmental Protection Agency, Washington, DC (United States))

    1994-04-01

    This letter is written in response to a paper in which the author discusses the inverse dose-rate dependence of oncogenic transformation by high-LET radiation. The author asserts that, as a consequence, the extrapolation of results from miners exposed to high levels of radon daughters could overestimate the risk due to environmental exposures. By using a model increased cell sensitivity in one part of the cell cycle, the author assumes an inverse dose-rate effect should occur only at high doses, but the author of this letter points out that this does not imply a lower risk per unit dose at low doses. According to this letter, the existence of an inverse dose-rate effect for high-LET radiation provides no grounds for projecting lower lung cancer risks per unit exposure at environmental radon levels than at the higher radon level in mines. Failure to adjust for any inverse dose-rate effect in the studies of miners can only lead to an underestimation of the environmental risk.

  15. Thermo-diffusional radon waves in soils

    Energy Technology Data Exchange (ETDEWEB)

    Minkin, Leonid, E-mail: lminkin@pcc.edu [Portland Community College, 12000 SW 49th Ave, Portland, OR 97219 (United States); Shapovalov, Alexander S. [Saratov State University, 83 Astrakhanskay Street, Saratov 410012 (Russian Federation)

    2016-09-15

    A new theoretical framework for diurnal and seasonal oscillations of the concentration of radon in soil and open air is proposed. The theory is based on the existing temperature waves in soils and thermo-diffusional gas flux in porous media. As soil is a non-isothermal porous medium, usually possessing a large fraction of microscopic pores belonging to Knudsen's free molecular field, a thermo-diffusional gas flow in soil has to arise. The radon mass transfer equation in soil for sinusoidal temperature oscillations at the soil–atmosphere boundary is solved, which reveals that radon concentration behaves as a damped harmonic wave. The amplitude of radon concentration oscillations and phase shift between radon concentration oscillations and soil temperature depend on the radon diffusion coefficient in soil, rate of radon production, soil thermal conductivity, average soil temperature, decay constant, and heat of radon transfer. Primarily numerical calculations are presented and comparisons with experimental data are shown. - Highlights: • Temperature oscillations in atmosphere generate radon waves in soil. • Radon flux in atmosphere is a harmonic function of time. • Radon concentration waves in soil have the same frequency as the temperature waves.

  16. Study of Active Carbon Measuring Method for Accurate Measurements of Radon Exhalation Rates for Building Materials%活性炭盒法准确测量建材222 Rn析出率的研究

    Institute of Scientific and Technical Information of China (English)

    吕丽丹; 邱小平; 邱寿康; 何正忠; 贺夔

    2014-01-01

    通过活性炭-γ能谱法测量表面经过预处理后的不同建材样品氡析出率,计算求得该建材氡固有析出率。实验结果表明,建材固有氡析出率能真实反映出建材氡析出率的情况且不受建材自身形状因素的影响,不失为一种准确可靠测量建材表面氡析出率值的方法。%Radon exhalation rate from different building materials after pretreatment were measured using the charcoal canister method for calculating radon inherent exhalation rate. The results showed that radon inherent exhalation rate can represent the true radon in building materials and not be affected by the shape factor of building materials. It is simple and reliable for the method to calculate radon inherent exhalation rate. It can be regarded as a method for accurate measurements of radon exhalation rates for building materials.

  17. Assessment of the radiological impact of gamma and radon dose rates at former U mining sites in Tajikistan.

    Science.gov (United States)

    Lespukh, E; Stegnar, P; Yunusov, M; Tilloboev, H; Zyazev, G; Kayukov, P; Hosseini, A; Strømman, G; Salbu, B

    2013-12-01

    An assessment of the radiological situation due to exposure to gamma radiation, radon ((222)Rn) and thoron ((220)Rn) was carried out at former uranium (U) mining and processing sites in Taboshar and at Digmai in Tajikistan. Gamma dose rate measurements were made using various field instruments. (222)Rn/(220)Rn measurements were carried out with field instruments for instantaneous measurements and then discriminative (222)Rn/(220)Rn solid state nuclear track detectors (SSNTD) were used for longer representative measurements. The detectors were exposed for an extended period of time in different outdoor and indoor public and residential environments at the selected U legacy sites. The results showed that gamma, (222)Rn and (220)Rn doses were in general low, which consequently implies a low to relatively low radiological risk. The radiation doses deriving from external radiation (gamma dose rate), indoor (222)Rn and (220)Rn with their short-lived progenies did not exceed national or international standards. At none of the sites investigated did the average individual annual effective doses exceed 10 mSv, the recommended threshold value for the general public. A radiation hazard could be associated with exceptional situations, such as elevated exposures to ionizing radiation at the Digmai tailings site and/or in industrial facilities, where gamma and (222)Rn/(220)Rn dose rates could reach values of several 10 mSv/a. Current doses of ionizing radiation do not represent a hazard to the health of the resident public, with the exception of some specific situations. These issues should be adequately addressed to further reduce needless exposure of the resident public to ionizing radiation.

  18. DETERMINATION OF RADIUM AND RADON CONCENTRATIONS IN SOME ROCK SAMPLES

    OpenAIRE

    BAYKARA, Oktay

    2006-01-01

    The concentrations of radium (226Ra), radon (222Rn) and radon exhalation rate in nine rock samples have been determined using solid-state nuclear track detectors (CR-39). The measured maximum values of radium, radon and radon exhalation rate in rock samples were found to be 24.62 Bq/kg, 4911.32 Bq/m3 and 4,86 Bqm-2h-1, respectively. Linear correlation was observed among radon concentration, radon exhalation and radium concentration. The linear correlation coefficient between radium content an...

  19. EFFECTIVENESS OF RADON CONTROL FEATURES IN NEW HOUSE CONSTRUCTION - SOUTH CENTRAL FLORIDA

    Science.gov (United States)

    The report gives results of a study to evaluate the effectiveness of two slab types (monolithic and slab-in-stem wall) in retarding radon entry in new homes built in accordance with the State of Florida's proposed radon standard for new construction over high radon potential soil...

  20. Radon risk management. Construction solutions

    Directory of Open Access Journals (Sweden)

    Borja Frutos Vázquez

    2011-12-01

    Full Text Available Radon gas is a radioactive element that appears in nature by the decay of radium found in terrestrial soils. This gas is able to travel between the pores of the ground and enter into the buildings where the concentration can increase and becoming a health risk to occupants from inhaling. The World Health Organization rate the radon gas as a level 1 carcinogen agent. According to this organization, radon is the second leading cause of lung cancer contraction after tobacco. Based on the perception of risk derived from epidemiological medical studies, some countries have established radon concentration values as safety limits, above which is recommended or required an architectural intervention to reduce levels. From an architectural perspective, there have been studies of several radon protection techniques to reduce radon immission in buildings or to evacuate it, in order to reduce the radon levels below the safety limits. This article develops some protection strategies that have been being used for these purposes, some of which have been tested in Spain thanks to a research project funded by the Nuclear Safety Council, and developed by the Eduardo Torroja Institute and the University of Cantabria.

  1. RADON DIAGNOSTIC MEASUREMENT GUIDANCE FOR LARGE BUILDINGS - VOLUME 2. APPENDICES

    Science.gov (United States)

    The report discusses the development of radon diagnostic procedures and mitigation strategies applicable to a variety of large non-residential buildings commonly found in Florida. The investigations document and evaluate the nature of radon occurrence and entry mechanisms for rad...

  2. RADON DIAGNOSTIC MEASUREMENT GUIDANCE FOR LARGE BUILDINGS - VOLUME 2. APPENDICES

    Science.gov (United States)

    The report discusses the development of radon diagnostic procedures and mitigation strategies applicable to a variety of large non-residential buildings commonly found in Florida. The investigations document and evaluate the nature of radon occurrence and entry mechanisms for rad...

  3. Managing Radon in Schools

    Science.gov (United States)

    EPA recommends testing all schools for radon. As part of an effective IAQ management program, schools can take simple steps to test for radon and reduce risks to occupants if high radon levels are found.

  4. STUDY OF RADON FLUX FROM SOIL IN BUDHAKEDAR REGION USING SRM.

    Science.gov (United States)

    Bourai, A A; Aswal, Sunita; Kandari, Tushar; Kumar, Shiv; Joshi, Veena; Sahoo, B K; Ramola, R C

    2016-10-01

    In the present study, the radon flux rate of the soil is measured using portable radon monitor (scintillation radon monitor) in the Budhakedar region of District Tehri, India. The study area falls along a fault zone named Main Central Thrust, which is relatively rich in radium-bearing minerals. Radon flux rate from the soil is one of the most important factors for the evaluation of environmental radon levels. The earlier studies in the Budhakedar region shows a high level of radon (>4000 Bq m(-3)). Hence, it is important to measure the radon flux rate. The aim of the present study is to calculate the average estimate of the surface radon flux rate as well as the effective mass exhalation rate. A positive correlation of 0.54 was found between radon flux rate and radon mass exhalation rate. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. The radon influence of SAGE results

    CERN Document Server

    Gavrin, V N; Mirmov, I N

    2002-01-01

    The method for evaluating systematic errors, connected with radon, is described in the experiment on determining the SAGE solar neutrino flux. The systematic error by the measured neutrino capture rate in the gallium 75 SNU target does not exceed 0.3 SNU. The obtained value (0.3 SNU) is the upper limit of the radon systematic error. Its low value means, that radon does not contribute significantly to the SAGE result

  6. Radon concentration measurements in bituminous coal mines.

    Science.gov (United States)

    Fisne, Abdullah; Okten, Gündüz; Celebi, Nilgün

    2005-01-01

    Radon measurements were carried out in Kozlu, Karadon and Uzülmez underground coal mines of Zonguldak bituminous coal basin in Turkey. Passive-time integrating method, which is the most widely used technique for the measurement of radon concentration in air, was applied by using nuclear etched track detectors (CR-39) in the study area. The radon concentration measurements were performed on a total of 42 points in those three mines. The annual exposure, the annual effective dose and lifetime fatality risk, which are the important parameters for the health of workers, were estimated based on chronic occupational exposure to the radon gas, which is calculated using UNCEAR-2000 and ICRP-65 models. The radon concentrations at several coal production faces are higher than the action level of 1000 Bq m(-3). It is suggested that the ventilation rates should be rearranged to reduce the radon concentration.

  7. Radiological assessment of water treatment processes in a water treatment plant in Saudi Arabia: Water and sludge radium content, radon air concentrations and dose rates

    Energy Technology Data Exchange (ETDEWEB)

    Al-Jaseem, Q.Kh., E-mail: qjassem@kacst.edu.sa [Nuclear Science Research Institute (NSRI), King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442 (Saudi Arabia); Almasoud, Fahad I. [Nuclear Science Research Institute (NSRI), King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442 (Saudi Arabia); Ababneh, Anas M. [Physics Dept., Faculty of Science, Islamic University in Madinah, Al-Madinah, P.O. Box 170 (Saudi Arabia); Al-Hobaib, A.S. [Nuclear Science Research Institute (NSRI), King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442 (Saudi Arabia)

    2016-09-01

    There is an increase demand for clean water sources in Saudi Arabia and, yet, renewable water resources are very limited. This has forced the authorities to explore deep groundwater which is known to contain large concentrations of radionuclides, mainly radium isotopes. Lately, there has been an increase in the number of water treatment plants (WTPs) around the country. In this study, a radiological assessment of a WTP in Saudi Arabia was performed. Raw water was found to have total radium activity of 0.23 Bq/L, which exceeds the international limit of 0.185 Bq/L (5 pCi/L). The WTP investigated uses three stages of treatment: flocculation/sedimentation, sand filtration and reverse osmosis. The radium removal efficiency was evaluated for each stage and the respective values were 33%, 22% and 98%. Moreover, the activity of radium in the solid waste generated from the WTP in the sedimentation and sand filtrations stages were measured and found to be 4490 and 6750 Bq/kg, respectively, which exceed the national limit of 1000 Bq/kg for radioactive waste. A radiological assessment of the air inside the WTP was also performed by measuring the radon concentrations and dose rates and were found in the ranges of 2–18 Bq/m{sup 3} and 70–1000 nSv/h, respectively. The annual effective dose was calculated and the average values was found to be 0.3 mSv which is below the 1 mSv limit. - Highlights: • Radiological assessment of groundwater treatment plant was performed. • Radium Removal efficiency was calculated for different stages during water treatment. • Radium concentrations in sludge were measured and found to exceed the national limit for radioactive waste. • Air radon concentrations and dose rates were monitored in the water treatment plant. • The Reverse Osmosis (RO) unit was found to record the highest air radon concentrations and dose rates.

  8. Indoor radon measurements and radon prognosis for the province of Kymi, southeastern Finland; Huoneilman radonmittaukset Kymen laeaenissae: Tilannekatsaus ja radonennuste

    Energy Technology Data Exchange (ETDEWEB)

    Pennanen, M.; Maekelaeinen, I.; Voutilainen, A.

    1996-12-01

    The purpose of the regional radon prognosis is to classify areas with different levels of radon risk. The radon prognosis gives the percentages of future homes expected to have indoor radon concentrations exceeding the levels of 200 and 400 Bq/m{sup 3}. It is assumed that no protection against the entry of radon is used in construction. In this study about 5900 indoor radon measurements made in single family houses, semi-detached houses and row houses were used. Data on the location, geology and construction of buildings were determined from maps and questionnaires. An empirical statistical model, the adjusted indoor radon measurements and geological data were used to assess the radon risk from soil and bedrock in different areas. The building sites of the province of Kymi were divided into thirteen sub-areas. The radon prognosis are calculated for the most radon-prone foundation types including (1) houses with a slab-on-grade and (2) houses with a basement or hillside houses with open stairwells between basement and first floor. The radon levels are generally greater in the western part of the area. The radon risk is highest in gravel-dominated esker areas in southwestern, western (in Pyhtaa, Kotka, Anjalankoski, litti, Valkeala) and central (Taipalsaari) parts of the area. The radon risk is also high in some bedrock and till areas, also in southwestern and western parts of the area. In these areas the level of 200 Bq/m{sup 3} will be exceeded in 80 % of new houses. About half of the future houses in these areas will have indoor radon concentrations exceeding 400 Bq/m{sup 3}. The radon risk is lowest in the eastern part of the province of Kymi in every soil type. In this area the level of 200 Bq/m{sup 3} will be exceeded in 30 % of new houses. Below 10 % will exceed 400 Bq/m{sup 3}. (orig.) (14 refs.).

  9. Delayed Workforce Entry and High Emigration Rates for Recent Canadian Radiation Oncology Graduates

    Energy Technology Data Exchange (ETDEWEB)

    Loewen, Shaun K., E-mail: shaun.loewen@cancercare.mb.ca [CancerCare Manitoba, Winnipeg, MB (Canada); Halperin, Ross; Lefresne, Shilo [BC Cancer Agency, Vancouver, BC (Canada); Trotter, Theresa [Tom Baker Cancer Centre, Calgary, AB (Canada); Stuckless, Teri [Dr H. Bliss Murphy Cancer Centre, St. John' s, NL (Canada); Brundage, Michael [Cancer Centre of Southeastern Ontario, Kingston, ON (Canada)

    2015-10-01

    Purpose: To determine the employment status and location of recent Canadian radiation oncology (RO) graduates and to identify current workforce entry trends. Methods and Materials: A fill-in-the-blank spreadsheet was distributed to all RO program directors in December 2013 and June 2014, requesting the employment status and location of their graduates over the last 3 years. Visa trainee graduates were excluded. Results: Response rate from program directors was 100% for both survey administrations. Of 101 graduates identified, 99 (98%) had known employment status and location. In the December survey, 5 2013 graduates (16%), 17 2012 graduates (59%), and 18 2011 graduates (75%) had permanent staff employment. Six months later, 5 2014 graduates (29%), 15 2013 graduates (48%), 24 2012 graduates (83%), and 21 2011 graduates (88%) had secured staff positions. Fellowships and temporary locums were common for those without staff employment. The proportion of graduates with staff positions abroad increased from 22% to 26% 6 months later. Conclusions: Workforce entry for most RO graduates was delayed but showed steady improvement with longer time after graduation. High emigration rates for jobs abroad signify domestic employment challenges for newly certified, Canadian-trained radiation oncologists. Coordination on a national level is required to address and regulate radiation oncologist supply and demand disequilibrium in Canada.

  10. Build to order and entry/exit strategies under exchange rate uncertainty

    Directory of Open Access Journals (Sweden)

    Lin Chin-Tsai

    2004-01-01

    Full Text Available Under uncertainty of exchange rate, we extend the build to order production model of Lin et al. (2002 by considering the export-oriented manufacturer to make decisions to switch production location freely between domestic and foreign ones. The export-oriented manufacturer is risk neutral and has rational expectations. When we transfer the production location from domestic (foreign to foreign (domestic, and the production location transferring cost and the drift of real exchange rate are both equal to zero, then the optimal entry and exit threshold value of Cobb-Douglas production function are equal, no matter whether we use real options or net present value method. Thus export-oriented manufacturer can make decisions at the optimal transfer threshold value for transferable locations wherever the production locations are. It provides the export-oriented manufacturer with another way of thinking.

  11. Analysis of effects of foreign bank entry on credit interest rate behavior in Serbia

    Directory of Open Access Journals (Sweden)

    Đukić Đorđe

    2007-01-01

    Full Text Available Following foreign bank entry, credit interest rates have been extremely high in Serbia compared with a reference group of countries: Croatia, Bulgaria and Romania. This is connected with monetary authorities' poor predictions regarding the behavior of those banks in setting interest rates, creating an illusion that competition, per se, would rapidly result in decreasing interest rates; as well as undertaking monetary policy measures-such as an extreme increase in the reserve requirements rate-that contributed to unchanged or increased credit interest rates. The final outcome of poor predictions and measures undertaken by the National Bank of Serbia is limited to periodical appeals by its highest officials to citizens to consider the conditions under which they borrow from banks. However, under conditions of fully inelastic demand for bank credit and a cartel presence in the banking sector, such appeals are ineffective, merely reflecting an attempt to avoid responsibility for a possible wave of bankruptcies in the household sector. Only increasing competition among banks can lead to a significant decrease in credit interest rates in Serbia in the medium term. Empirical analysis shows that competition should be most intensive on the mortgage loan market.

  12. Domestic Radon and Childhood Cancer in Denmark

    DEFF Research Database (Denmark)

    Raaschou-Nielsen, Ole; Andersen, Claus Erik; Andersen, Helle P.

    2008-01-01

    Background: Higher incidence rates of childhood cancer and particularly leukemia have been observed in regions with higher radon levels, but case-control studies have given inconsistent results. We tested the hypothesis that domestic radon exposure increases the risk for childhood cancer. Methods...

  13. Radon exhalation from Libyan soil samples measured with the SSNTD technique.

    Science.gov (United States)

    Saad, A F; Abdallah, R M; Hussein, N A

    2013-02-01

    Radon concentrations in soil samples collected from the cities of Benghazi and Al-Marj, located in northeastern Libya, were measured using the sealed-can technique based on the CR-39 SSNTDs. Mass and areal radon exhalation rates, radium content and radon concentration contribute to indoor radon, and annual effective doses were determined. The results indicate mostly normal rates, but there were some higher levels of radon concentration and emanation in samples collected from Al-Marj and one sample from Benghazi.

  14. E-Finance, Entry Deterrence, and Optimal Loan Rate of a Potential Entrant: An Option-Based Valuation

    OpenAIRE

    Chuen-Ping Chang

    2010-01-01

    This paper examines the relationships among electronic finance (e-finance), entry deterrence, and the potential entrant's optimal loan interest rate in a two-stage model where the sunk costs are the entry barriers. The two key findings are: (i) in the loan rate determination stage, the potential entrant's loan rate is negatively related to its involvement level in e-finance with its own strategic substitutes, to the incumbent's involvement level in e-finance in realization of a more risky sta...

  15. XENON1T radon assay

    Energy Technology Data Exchange (ETDEWEB)

    Bruenner, Stefan [MPIK, Heidelberg (Germany); Collaboration: XENON-Collaboration

    2016-07-01

    The radioactive isotope {sup 222}Rn is one of the most dominant intrinsic background sources for experiments dealing with a low event rate like the XENON1T Dark Matter detector. Being part of the primordial decay chain of {sup 238}U the noble gas {sup 222}Rn permanently emanates from almost all materials. Therefore, it is crucial to determine the radon emanation rate of those detector components that will be in contact with the xenon target. The technique of the radon emanation measurements, making use of ultra low background proportional counters is presented as well as selected results for XENON1T.

  16. The latest trend of the research on radon

    Energy Technology Data Exchange (ETDEWEB)

    Kojima, Hiroshi [Science Univ. of Tokyo, Noda, Chiba (Japan). Faculty of Science and Technology

    1996-12-01

    In June, 1995, the international conference of sixth Natural Radiation Environment was held in Montreal. More than 80% of more than 200 published researches were concerned with radon and thoron. The participants came from 32 countries. The classification of the research on radon and the number of the publication are shown. The contents of the researches in respective items of measuring method, concentration level and dose evaluation, indoor model and indoor and outdoor radon balance, the countermeasures for reducing indoor radon, radon potential, dose evaluation model, the particle size distribution of aerosol including the particle size distribution of free daughter nuclides and radon in the atmosphere are described. The research on the radon in water is excluded. The most remarkable trend is the theme of radon potential. The trend of connecting the research on radon in soil and the research on dissipation rate to radon potential and the forecast of indoor and outdoor radon concentration seems to become stronger. As to the research on concentration level, the detection of hot spots and the supplementary measurement for clarifying cause are carried out in the advanced countries concerning radon based on the results of survey in whole country. The researches in schools are conspicuous. (K.I.)

  17. Radon detection and measurement. (Latest citations from the EI compendex*plus database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    The bibliography contains citations concerning the measurement of radon and radon daughter isotopes in various environments. Radon measurement in homes and buildings, mines, rainwater, groundwater, soils, the Arctic and other atmosphere, and exhaled air is discussed. Radon exhalation rates of building materials and mine tailings are noted. Analytical methods and equipment used to measure radon and radon isotopes are described. Radon detection as an earthquake prediction tool is briefly presented.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  18. Nasopharyngeal Carriage Rate and Serogroups of Neisseria meningitidis in Turkish recruits upon entry to the military

    Directory of Open Access Journals (Sweden)

    Ahmet Basustaoglu

    2011-08-01

    Full Text Available Aim: The aim of this study was to determine nasopharyngeal carriage rate and serogroup of Neisseria meningitidis strains isolated from Turkish recruits upon entry to the military. Material and Methods: Nasopharyngeal swab samples were obtained from 1995 soldiers and were inoculated immediately on BBL-modified Thayer-Martin medium plates. The plates were examined for the presence of colonies showing the typical morphology of N. meningitidis. Suspect colonies were screened for oxidase reactivity, and positive colonies were Gram stained. If Gram-negative diplococci were present, a biochemical profile by the API NH system was used for confirmation. Serogrouping of the meningococcal isolates was performed by a slide agglutination technique. Findings: The nasopharyngeal carriage rate of N. meningitidis was found to be 4.2% (n=83. Of these meningococci, 15.6% (n=13 were serogroup Y, 10.8% (n=9 were serogroup W-135, 9.6% (n=8 were serogroup C, 6.1% (n=5 were serogroup B, 2.4% (n=2 were serogroup A. The 46 isolates (55.4% were detected as nonserogroupable. Conclusion: Since serogroup Y and W-135 are predominant in this study population, it was suggest that Turkish recruits should be vaccinated by quadrivalent vaccine (A,C,Y, and W-135 upon the military instead of A+C polysaccharide vaccine and now quadrivalent vaccine has been carried out. [TAF Prev Med Bull 2011; 10(4.000: 447-450

  19. A complete low cost radon detection system.

    Science.gov (United States)

    Bayrak, A; Barlas, E; Emirhan, E; Kutlu, Ç; Ozben, C S

    2013-08-01

    Monitoring the (222)Rn activity through the 1200 km long Northern Anatolian fault line, for the purpose of earthquake precursory, requires large number of cost effective radon detectors. We have designed, produced and successfully tested a low cost radon detection system (a radon monitor). In the detector circuit of this monitor, First Sensor PS100-7-CER-2 windowless PIN photodiode and a custom made transempedence/shaping amplifier were used. In order to collect the naturally ionized radon progeny to the surface of the PIN photodiode, a potential of 3500 V was applied between the conductive hemi-spherical shell and the PIN photodiode. In addition to the count rate of the radon progeny, absolute pressure, humidity and temperature were logged during the measurements. A GSM modem was integrated to the system for transferring the measurements from the remote locations to the data process center.

  20. Mutagenicity of radon and radon daughters. Annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    Evans, H.H.

    1991-12-01

    The objective of our research is to investigate the dose-response relationship of the lethal and mutagenic effects of exposure of cells to radon and its decay products. Dose rate dependence and the nature of the DNA lesion will be studied, using the thymidine kinase and HPRT loci to measure mutation frequency. A deficiency in DNA repair is shown to lead to a greater proportion of mutants with intergenic lesions. The cytotoxic effects of radon and its daughters are similar in human TK6 lymphoblasts and mouse L5178Y lymphoblasts, the cell line used in previous experiments. The results of molecular analysis of four spontaneous and 25 X-radiation induced HPRT{sup {minus}} mutants. Eleven radon-induced HPRT{sup {minus}} mutants have been isolated, and will be analyzed in a similar fashion. 9 figs.

  1. Radon resistant potential of concrete manufactured using Ordinary Portland Cement blended with rice husk ash

    Science.gov (United States)

    Chauhan, R. P.; Kumar, Amit

    2013-12-01

    The emission of radon from building materials and soil depends upon the radium content, porosity, moisture content and radon diffusion length of materials. Several techniques have been used to reduce the radon emission from the soil using different flooring materials. But the effectiveness of radon shielding depends upon the diffusion of radon through these materials. The present study proposes a method for producing a radon resistant material for decreasing radon diffusion through it. The method involves rice husk ash (RHA) in addition to cement for the preparation of concrete used for flooring and walls. The radon diffusion, exhalation and mechanical property of concrete prepared by rice husk ash blended cement were studied. The addition of RHA caused the reduction in radon diffusion coefficient, exhalation rates, porosity and enhanced the compressive strength of concrete. The bulk radon diffusion coefficient of cementitious concrete was reduced upto 69% by addition of rice husk ash as compare to that of control concrete.

  2. Compilation of geogenic radon potential map of Pest County, Hungary

    Science.gov (United States)

    Szabó, K. Zs.; Pásztor, L.; Horváth, Á.; Bakacsi, Zs.; Szabó, J.; Szabó, Cs.

    2010-05-01

    222Rn and its effect on the human health have recently received major importance in environmental studies. This natural radioactive gas accounts for about 9% of lung cancer death and about 2% of all deaths from cancer in Europe due to indoor radon concentrations. It moves into the buildings from the natural decay chain of uranium in soils, rocks and building materials. Radon mapping regionalizes the average hazard from radon in a selected area as a radon risk map. Two major methods (concerning the applied radon data) have been used for mapping. One uses indoor radon data whereas the other is based on soil gas radon data. The outputs of the second approach are the geogenic radon potential maps. The principal objective of our work is to take the first step in geogenic radon mapping in Hungary. Soil samples collected in Pest County (Central Region of Hungary) in the frame of a countrywide soil survey (Soil Information and Monitoring System) were studied to have empirical information of the potential radon risk. As the first two steps radium concentration of soil samples, collected at 43 locations sampling soil profiles by genetic horizons from the surface level down to 60-150 cm, were determined using HPGe gamma-spectroscopy technique, as well as measurement of radon exhalation on the soil samples were carried out applying closed radon accumulation chamber coupled with RAD7 radon monitor detector. From these data the exhalation coefficient was calculated, which shows how many percent of the produced radon can come out from the sample. This rate strongly depends on the depth: at circa 100 cm a drastic decrease have been noticed, which is explained by the change in soil texture. The major source of indoor radon is the soil gas radon concentration (Barnet et al., 2005). We estimated this value from the measured radon exhalation and calculated soil porosity and density. The soil gas radon concentration values were categorized after Kemski et al. (2001) and then the

  3. Air exchange rates and alternative vapor entry pathways to inform vapor intrusion exposure risk assessments.

    Science.gov (United States)

    Reichman, Rivka; Roghani, Mohammadyousef; Willett, Evan J; Shirazi, Elham; Pennell, Kelly G

    2016-11-12

    Vapor intrusion (VI) is a term used to describe indoor air (IA) contamination that occurs due to the migration of chemical vapors in the soil and groundwater. The overall vapor transport process depends on several factors such as contaminant source characteristics, subsurface conditions, building characteristics, and general site conditions. However, the classic VI conceptual model does not adequately account for the physics of airflow around and inside a building and does not account for chemical emissions from alternative "preferential" pathways (e.g. sewers and other utility connections) into IA spaces. This mini-review provides information about recent research related to building air exchange rates (AERs) and alternative pathways to improve the accuracy of VI exposure risk assessment practices. First, results from a recently published AER study for residential homes across the United States (US) are presented and compared to AERs recommended by the US Environmental Protection Agency (USEPA). The comparison shows considerable differences in AERs when season, location, building age, and other factors are considered. These differences could directly impact VI assessments by influencing IA concentration measurements. Second, a conceptual model for sewer gas entry into buildings is presented and a summary of published field studies is reported. The results of the field studies suggest that alternative pathways for vapors to enter indoor spaces warrant consideration. Ultimately, the information presented in this mini-review can be incorporated into a multiple-lines-of-evidence approach for assessing site-specific VI exposure risks.

  4. Durability of radon remedial actions

    Energy Technology Data Exchange (ETDEWEB)

    Naismith, S. [National Radiological Protection Board, Chilton (United Kingdom)

    1997-10-01

    In the UK, approximately 3600 householders are believed to have taken action to reduce high radon concentrations in their homes. In 1993 a number of those householders who had taken successful remedial actions were invited to participate in a study of durability of radon remedial actions. This involved the radon concentration being remeasured annually. Results for 26 such homes where a complete set of data are available and a further 32 with incomplete data are discussed here. All remedial actions were shown to remain durable during a period of 5 years. The largest variation in effectiveness was found in houses with natural ventilation of the underfloor void. The failure rate for all remedial measures was found to be 4.0% per annum, but in most cases the problems were noticed by the householder and corrected. The frequency of failures which were not noticed until a remeasurement was carried out was 0.4% per annum. (Author).

  5. (Mutagenicity of radon and radon daughters)

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    The current objective of our research is to investigate the dose-response relationship of the lethal and mutagenic effects of exposure of cells to radon and its decay products. Dose-rate dependence will be studied, as well as the nature of the DNA lesions. The effect of DNA repair on the lethal and mutagenic effects of exposure and on the character of the DNA lesions will be investigated by comparing the response of L5178Y strains which differ in their ability to rejoin X radiation-induced DNA double-strand breaks. This report discusses progress incurred from 4/1/1988--10/1/1990. 5 refs., 9 figs., 6 tabs.

  6. Radon Guide for Tenants

    Science.gov (United States)

    This guide is for people who rent their apartments or houses. The guide explains what radon is, and how to find out if there is a radon problem in your home. The guide also talks about what you can do if there are high radon levels in your home.

  7. Health Risk of Radon

    Science.gov (United States)

    ... Radon in Homes EPA 402-R-03-003. Summary Fact Sheet on the updated risk assessment . Top of Page Former U.S. Surgeon General ... WHO) launched an international radon project to help countries increase ... reduce radon-related risks. The U.S. EPA is one of several government ...

  8. A Rapid Method for Radon Determination

    Energy Technology Data Exchange (ETDEWEB)

    Enkhbat, N.; Shin, S. G.; Key, Y. U.; Cho, M. H. [POSTECH, Pohang (Korea, Republic of); Norov, N. [National University of Mongolia, Ulaanbaatar (Mongolia); Kim, G. [Kungpook National University, Daegu (Korea, Republic of); Namkung, W.; Lee, H. S. [Pohang Accelerator Laboratory, Pohang (Korea, Republic of)

    2015-05-15

    Research carried out in last decades has shown that more than 70% of a total annual radioactive dose received by people originates from natural sources of ionizing radiation, whereby 40% is due to inhalation and ingestion of natural radioactive gas radon {sup 222}Rn and its progeny. Radon has 3.5 days of half-life. However, its progeny is dangerous than Radon in the view of radiation protection. Radon measurement is commonly used in controlling radon concentration in underground mine, closed room and in forecasting earthquake. Radon gas emission rate in the immediate opening of the west ventilation shaft depends on the operation of the ventilation system, duration of ventilation system operation, and the air flow rate through the underground development. Specific activity of radon progeny in air (RaA (Po-218), RaB (Pb-214) and RaC (Bi-214)) and Ra-222 in radioactive equilibrium was calculated by formula 1 and 2, respectively. We include result of measurement carried out in the air around a mining. In Fig.2 shown that the distribution of Po-218, Pb-214, Bi-214 and Ra-222 isotopes releasing from west ventilation shaft in Gurvanbulag underground uranium mine in the eastern part of Mongolia.

  9. Procedure for the characterization of radon potential in existing dwellings and to assess the annual average indoor radon concentration.

    Science.gov (United States)

    Collignan, Bernard; Powaga, Emilie

    2014-11-01

    Risk assessment due to radon exposure indoors is based on annual average indoor radon activity concentration. To assess the radon exposure in a building, measurement is generally performed during at least two months during heating period in order to be representative of the annual average value. This is because radon presence indoors could be very variable during time. This measurement protocol is fairly reliable but may be a limiting in the radon risk management, particularly during a real estate transaction due to the duration of the measurement and the limitation of the measurement period. A previous field study defined a rapid methodology to characterize radon entry in dwellings. The objective of this study was at first, to test this methodology in various dwellings to assess its relevance with a daily test. At second, a ventilation model was used to assess numerically the air renewal of a building, the indoor air quality all along the year and the annual average indoor radon activity concentration, based on local meteorological conditions, some building characteristics and in-situ characterization of indoor pollutant emission laws. Experimental results obtained on thirteen individual dwellings showed that it is generally possible to obtain a representative characterization of radon entry into homes. It was also possible to refine the methodology defined in the previous study. In addition, numerical assessments of annual average indoor radon activity concentration showed generally a good agreement with measured values. These results are encouraging to allow a procedure with a short measurement time to be used to characterize long-term radon potential in dwellings.

  10. Radon exhalation from building materials used in Libya

    Science.gov (United States)

    Saad, A. F.; Al-Awami, Hend H.; Hussein, N. A.

    2014-08-01

    Radon exhalation rates have been determined for various different samples of domestic and imported building materials available in the Libyan market for home construction and interior decoration. Radon exhalation rates were measured by the sealed-can technique based on CR-39 nuclear track detectors (NTDs). The results show that radon exhalation rates from some imported building materials used as foundations and for decoration are extremely high, and these samples are the main sources of indoor radon emanation. Radium contents and annual effective doses have also been estimated.

  11. The radon indicator

    Science.gov (United States)

    Samuelsson, L.

    2005-11-01

    The radon indicator is an efficient instrument for measuring the radon daughter concentrations in a house or dwelling. Physics or environmental science students could build a radon indicator as a student project. Another possibility would be to use a radon indicator in a student investigation of radon levels in different houses. Finally the radon indicator is an excellent device for producing a radioactive source, free of charge, for the study of α-, β- and γ-radiation. The half-life of the activity collected is approximately 40 min. The radon indicator makes use of an electrostatic method by which charged particles are drawn to a small aluminium plate with a high negative voltage (-5 kV), thus creating a strong electric field between the plate and a surrounding copper wire. The radioactivity on the plate is subsequently measured by a GM-counter and the result calculated in Bq m-3. The collecting time is just 5.5 min and therefore the instrument is only suitable for use in a short-time method for indicating the radon concentration. An improved diagram, ground-radon and/or wall-radon in houses, is presented on the basis of the author's measurements recorded with the radon indicator over many years. This diagram is very useful when discussing how to reduce radiation levels in homes.

  12. Radon in the soil air of Estonia.

    Science.gov (United States)

    Petersell, Valter; Täht-Kok, Krista; Karimov, Mark; Milvek, Heli; Nirgi, Siim; Raha, Margus; Saarik, Krista

    2017-01-01

    Several investigations in Estonia during 1996¬-1999 have shown that permissible level (200 Bq/m(3)) of radon (222Rn) in indoor air is exceeded in 33% of the inspected dwellings. This makes Estonia one of the five countries with highest radon risk in Europe (Fig 1). Due to correlation between the soil radon risk level and radon concentration in houses, small scale radon risk mapping of soil air was carried out (one study point per 70-100 km(2)). It turned out that one-third of Estonian mainland has high radon risk potential, where radon concentration in soil air exceeds safe limit of 50 kBq/m(3). In order to estimate radon content in soil air, two different methods developed in Sweden were used simultaneously. Besides measuring radon content from soil air at the depth of 80 cm with an emanometer (RnM), maximum potential content of radon in soil (RnG) was estimated based on the rate of eU (226Ra) concentration in soil, which was acquired by using gamma-ray spectrometer. Mapping and following studies revealed that simultaneously measured RnG and RnM in study points may often differ. To inspect the cause, several monitoring points were set up in places with different geological conditions. It appeared that unlike the RnG content, which remains close to average level in repeated measurements, the RnM content may differ more than three times periodically. After continuous observations it turned out that concentration of directly measured radon depended on various factors being mostly controlled by mineral composition of soil, properties of topsoil as well as different factors influencing aeration of soil. The results of Rn monitoring show that reliable level of radon risk in Estonian soils can only be acquired by using calculated Rn-concentration in soil air based on eU content and directly measured radon content of soil air in combination with interpreting specific geological and geochemical situations in the study points. Copyright © 2016 Elsevier Ltd. All rights

  13. Radon exhalation from building materials for decorative use.

    Science.gov (United States)

    Chen, Jing; Rahman, Naureen M; Abu Atiya, Ibrahim

    2010-04-01

    Long-term exposure to radon increases the risk of developing lung cancer. There is considerable public concern about radon exhalation from building materials and the contribution to indoor radon levels. To address this concern, radon exhalation rates were determined for 53 different samples of drywall, tile and granite available on the Canadian market for interior home decoration. The radon exhalation rates ranged from non-detectable to 312 Bq m(-2) d(-1). Slate tiles and granite slabs had relatively higher radon exhalation rates than other decorative materials, such as ceramic or porcelain tiles. The average radon exhalation rates were 30 Bq m(-2) d(-1) for slate tiles and 42 Bq m(-2) d(-1) for granite slabs of various types and origins. Analysis showed that even if an entire floor was covered with a material having a radon exhalation rate of 300 Bq m(-2) d(-1), it would contribute only 18 Bq m(-3) to a tightly sealed house with an air exchange rate of 0.3 per hour. Generally speaking, building materials used in home decoration make no significant contribution to indoor radon for a house with adequate air exchange.

  14. Observations of surface radon in Central Italy

    Science.gov (United States)

    Carlo, Piero Di; Pitari, Giovanni; de Luca, Natalia; Battisti, Domenico

    2009-07-01

    Two years of in situ radon concentration measurements in the atmospheric surface layer have been collected in a central Italy town (L’Aquila), located in the Aterno river valley. These data have been analyzed in order to study the controlling mechanisms of surface radon abundance; observations of coincident meteorological parameters confirmed the role of dynamics on the local removal rate of this tracer. The relatively high negative correlation of hourly data of surface wind speed and radon activity concentration ( R = -0.54, on annual scale) suggests that dynamical removal of radon is one of the most important controlling processes of the tracer accumulation in the atmospheric surface layer. An attempt is made to quantify the precipitation impact on radon soil fluxes. No anticorrelation of radon and precipitation comes out from the data ( R = -0.15), as in previous studies. However, since the main physical parameter affecting the ground radon release is expected to be the soil accumulation of water, snow or ice, the emission flux has also been correlated with soil moisture; in this way a much clearer anticorrelation is found ( R = -0.54).

  15. The radon, synthesis of knowledge and results of first investigations in mining environment; Le radon, synthese des connaissances et resultats des premieres investigations en environnement minier

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-12-15

    After presenting the properties of radon and health effects it can induce, the document discusses the various techniques available for measuring radon. The dosimetry and regulatory aspects are then presented. The document then deals specifically radon in mining environment, especially with the various possible sources of exposure.The relevant section is illustrated by concrete cases from the literature and studies conducted by INERIS in some large French mines. The last section presents the mechanisms of radon entry in buildings and associated remediation techniques. (N.C.)

  16. Indoor radon; Le radon dans les batiments

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    The radon, a natural radioactive gas, is present almost everywhere on the earth's surface. It can be accumulated at high concentration in confined spaces (buildings, mines, etc). In the last decades many studies conducted in several countries showed that inhaling important amounts of radon rises the risk of lung cancer. Although, the radon is a naturally appearing radioactive source, it may be the subject of a human 'enhancement' of concentration. The increasing radon concentration in professional housing constitutes an example of enhanced natural radioactivity which can induce health risks on workers and public. Besides, the radon is present in the dwelling houses (the domestic radon). On 13 May 1996, the European Union Council issued the new EURATOM Instruction that establishes the basic standards of health protection of population and workers against the ionizing radiation hazards (Instruction 96/29/EURATOM, JOCE L-159 of 29 June 1996). This instruction does not apply to domestic radon but it is taken into consideration by another EURATOM document: the recommendation of the Commission 90/143/EURATOM of 21 February 1990 (JOCE L-80 of 27 March 1990). The present paper aims at establishing in accordance to European Union provisions the guidelines for radon risk management in working places, as well as in dwelling houses, where the implied risk is taken into account. This document does not deal with cases of high radon concentration on sites where fabrication, handling or storage of radium sources take place. These situations must be treated by special studies.

  17. RADON DIAGNOSTIC MEASUREMENT GUIDANCE FOR LARGE BUILDINGS - VOLUME 1. TECHNICAL REPORT

    Science.gov (United States)

    The report discusses the development of radon diagnostic procedures and mitigation strategies applicable to a variety of large non-residential buildings commonly found in Florida. The investigations document and evaluate the nature of radon occurrence and entry mechanisms for rad...

  18. RADON DIAGNOSTIC MEASUREMENT GUIDANCE FOR LARGE BUILDINGS - VOLUME 1. TECHNICAL REPORT

    Science.gov (United States)

    The report discusses the development of radon diagnostic procedures and mitigation strategies applicable to a variety of large non-residential buildings commonly found in Florida. The investigations document and evaluate the nature of radon occurrence and entry mechanisms for rad...

  19. Consumer's Guide to Radon Reduction

    Science.gov (United States)

    ... Radon Share Facebook Twitter Google+ Pinterest Contact Us Consumer's Guide to Radon Reduction: How to Fix Your ... See EPA’s About PDF page to learn more. Consumer's Guide to Radon Reduction: How to Fix Your ...

  20. Radiological risk assessment of environmental radon

    Science.gov (United States)

    Khalid, Norafatin; Majid, Amran Ab; Yahaya, Redzuwan; Yasir, Muhammad Samudi

    2013-11-01

    Measurements of radon gas (222Rn) in the environmental are important to assess indoor air quality and to study the potential risk to human health. Generally known that exposure to radon is considered the second leading cause of lung cancer after smoking. The environmental radon concentration depends on the 226Ra concentration, indoor atmosphere, cracking on rocks and building materials. This study was carried out to determine the indoor radon concentration from selected samples of tin tailings (amang) and building materials in an airtight sealed homemade radon chamber. The radiological risk assessment for radon gas was also calculated based on the annual exposure dose, effective dose equivalent, radon exhalation rates and fatal cancer risk. The continuous radon monitor Sun Nuclear model 1029 was used to measure the radon concentration emanates from selected samples for 96 hours. Five types of tin tailings collected from Kampar, Perak and four samples of building materials commonly used in Malaysia dwellings or building constructions were analysed for radon concentration. The indoor radon concentration determined in ilmenite, monazite, struverite, xenotime and zircon samples varies from 219.6 ± 76.8 Bq m-3 to 571.1 ± 251.4 Bq m-3, 101.0 ± 41.0 Bq m-3 to 245.3 ± 100.2 Bq m-3, 53.1 ± 7.5 Bq m-3 to 181.8 ± 9.7 Bq m-3, 256.1 ± 59.3 Bq m-3 to 652.2 ± 222.2 Bq m-3 and 164.5 ± 75.9 Bq m-3 to 653.3 ± 240.0 Bq m-3, respectively. Whereas, in the building materials, the radon concentration from cement brick, red-clay brick, gravel aggregate and cement showed 396.3 ± 194.3 Bq m-3, 192.1 ± 75.4 Bq m-3, 176.1 ± 85.9 Bq m-3 and 28.4 ± 5.7 Bq m-3, respectively. The radon concentration in tin tailings and building materials were found to be much higher in xenotime and cement brick samples than others. All samples in tin tailings were exceeded the action level for radon gas of 148 Bq m-3 proposed by EPA except monazite 0.15 kg, struverite 0.15 kg and 0.25 kg. Whereas

  1. Identifying areas with potential for high indoor radon levels: analysis of the national airborne radiometric reconnaissance data for California and the Pacific Northwest

    Energy Technology Data Exchange (ETDEWEB)

    Moed, B.A.; Nazaroff, W.W.; Nero, A.V.; Schwehr, M.B.; Van Heuvelen, A.

    1984-04-01

    Radon-222 is an important indoor air pollutant which, through the inhalation of its radioactive decay products, accounts for nearly half of the effective dose equivalent to the public from natural ionizing radiation. Indoor radon concentrations vary widely, largely because of local and regional differences in the rate of entry from sources. The major sources are soil and rock near building foundations, earth-based building materials, and domestic water; of these, soil and rock are thought to be predominant in many buildings with higher-than-average concentrations. Thus, one key factor in determining radon source potential is the concentration of radium, the progenitor of radon, in surficial rocks and soils. Aerial radiometric data were analyzed, collected for the National Uranium Resource Evaluation Program, for seven Western states to: (1) provide information on the spatial distribution of radium contents in surficial geologic materials for those states; and (2) investigate approaches for using the aerial data, which have been collected throughout the contiguous United States and Alaska, to identify areas where high indoor radon levels may be common. Radium concentrations were found to be relatively low in central and western portions of Washington, Oregon, and northern California; they were found to be relatively high in central and southern California. A field validation study, conducted along two flight-line segments near Spokane, Washington, showed close correspondence between the aerial data, in situ measurements of both radium content and radon flux from soil, and laboratory measurements of both radium content of and radon emanation rate from soil samples. 99 references, 11 figures, 3 tables.

  2. Anomalous indoor radon concentration in a dwelling in Qatif City, Saudi Arabia.

    Science.gov (United States)

    Al-Jarallah, M I; Fazal-ur-Rehman

    2005-01-01

    An indoor radon survey was carried out recently in nine cities of Saudi Arabia using nuclear track detectors (NTD)-based passive radon detectors. The survey included Qatif City in the Eastern Province of Saudi Arabia, where 225 detectors were collected back successfully. It was found that the average indoor radon concentration in the dwellings was 22 +/- 15 Bq m(-3). However, one of the dwellings showed an anomalous radon concentration of 535 +/- 23 Bq m(-3). This finding led to a detailed investigation of this dwelling using active and passive techniques. In the active technique, an AlphaGUARD 2000 PRQ radon gas analyser was used. In the passive technique, CR-39 based passive radon detectors were used in all the rooms of the dwelling. Radon exhalation from the wall and the floor was also measured using the can technique. The active measurement confirms the passive one. Before placing the passive radon detectors in all the rooms of the two-storey building, the inhabitant was advised to ventilate his house regularly. The radon concentration in the different rooms was found to vary from 124 to 302 Bq m(-3). Radon exhalation from the floor and the wall of the room with the anomalous radon concentration was found to vary from 0.5 to 0.8 Bq m(-2) h(-1). These low radon exhalation rates suggest that the anomalous radon concentration is most probably due to underground radon diffusion into the dwelling through cracks and joints in the concrete floor.

  3. ANALYSIS OF RADON MITIGATION TECHNIQUES USED IN EXISTING U.S. HOUSES

    Science.gov (United States)

    This paper reviews the full range of techniques that have been installed in existing US houses for the purpose of reducing indoor radon concentrations resulting from soil gas entry. The review addresses the performance, installation and operating costs, applicability, mechanisms,...

  4. ANALYSIS OF RADON MITIGATION TECHNIQUES USED IN EXISTING U.S. HOUSES

    Science.gov (United States)

    This paper reviews the full range of techniques that have been installed in existing US houses for the purpose of reducing indoor radon concentrations resulting from soil gas entry. The review addresses the performance, installation and operating costs, applicability, mechanisms,...

  5. Radon therapy; Radon in der Therapie

    Energy Technology Data Exchange (ETDEWEB)

    Spruck, Kaija [Technische Hochschule Mittelhessen, Giessen (Germany). Inst. fuer Medizinische Physik und Strahlenschutz

    2017-04-01

    Radon therapies are used since more than 100 years in human medicine. Today this method is controversially discussed due to the possible increase of ionizing radiation induced tumor risk. Although the exact mode of biological radiation effect on the cell level is still not known new studies show the efficiency of the radon therapy without side effect for instance for rheumatic/inflammatory or respiratory disorders.

  6. Radon-Instrumentation; Radon-Instrumentacion

    Energy Technology Data Exchange (ETDEWEB)

    Moreno y Moreno, A. [Departamento de Apoyo en Ciencias Aplicadas, Benemerita Universidad Autonoma de Puebla, 4 Sur 104, Centro Historico 72000 Puebla (Mexico)

    2003-07-01

    The presentation of the active and passive methods for radon, their identification and measure, instrumentation and characteristics are the objectives of this work. Active detectors: Active Alpha Cam Continuous Air Monitor, Model 758 of Victoreen, Model CMR-510 Continuous Radon Monitor of the Signature Femto-Tech. Passive detectors: SSNTD track detectors in solids Measurement Using Charcoal Canisters, disk of activated coal deposited in a metallic box Electrets Methodology. (Author)

  7. Multagenicity of radon and radon daughters. Final technical report, January 1, 1993--December 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Evans, H.H.

    1997-06-01

    The objective of this research was to investigate the dose-response relationship with regard to the lethal and mutagenic effects of exposure of cells to radon and its decay products. Dose-rate dependence was studied, as well as the nature of the DNA lesions. The effect of DNA repair on the lethal and mutagenic effects of exposure and on the character of the DNA lesions was investigated by comparing the response of L5178Y strains that differ in their ability to rejoin X radiation-induced DNA double strand breaks. The nature of radon/radon daughter-induced mutational lesions in human lymphoblasts was also investigated.

  8. Durability of radon remedial actions

    Energy Technology Data Exchange (ETDEWEB)

    Naismith, S. [National Radiological Protection Board, Chilton (United Kingdom)

    1997-07-01

    It is estimated that at least 3600 householders in the UK have taken remedial action to reduce radon concentrations found to be above the government Action Level. A study has been carried out on the durability of these remedial actions. It involved annual reassessment of the radon levels in a number of homes. The results for 26 of these homes where data over five years are available show that in general the remedial actions remained effective. The remedy with the largest variation in efficacy was natural ventilation of the underfloor void. The failure rate was found to be 4.0% per annum for all measures, but in the majority of cases the failure was discovered by the householder and rectified. The rate of failures not noticed by the householders was 0.4% per annum. (UK).

  9. Preliminary results regarding the first map of residential radon in some regions in Romania.

    Science.gov (United States)

    Cosma, C; Cucoş Dinu, A; Dicu, T

    2013-07-01

    Radon represents the most important contribution of population exposure to natural ionising radiation. This article presents the first indoor radon map in some regions of Romania based on 883 surveyed buildings in the Ştei-BăiŢa radon-prone region and 864 in other regions of Romania. Indoor radon measurements were performed in the last 10 y by using CR-39 nuclear track detectors exposed for 3-12 months on ground floor levels of dwellings. Excluding the Ştei-BăiŢa radon-prone region, an average indoor radon concentration of 126 Bq m(-3) was calculated for Romanian houses. In the Ştei-BăiŢa radon-prone area, the average indoor concentration was 292 Bq m(-3). About 21 % of the investigated dwellings in the Ştei-BăiŢa radon-prone region exceed the threshold of 400 Bq m(-3), while 5 % of the dwellings in other areas of Romania exceed the same threshold. As expected, indoor radon concentration is not uniformly distributed throughout Romania. The map shows a high variability among surveyed regions, mainly due to the differences in geology. The radon emanation rate is substantially influenced by the soil characteristics, such as the soil permeability and soil gas radon concentration. Since higher permeability enables the increased migration of soil gas and radon from the soil into the building, elevated levels of indoor radon can be expected in more permeable soil environments.

  10. Radon and Cancer

    Science.gov (United States)

    ... exposure and lung cancer: the Iowa Radon Lung Cancer Study. American Journal of Epidemiology 2000; 151(11):1091–1102. [PubMed Abstract] Frumkin H, Samet JM. Radon. CA: A Cancer Journal for Clinicians 2001; 51(6):337–344. [ ...

  11. Methods for measuring diffusion coefficients of radon in building materials

    NARCIS (Netherlands)

    Cozmuta, [No Value; van der Graaf, ER

    2001-01-01

    Two methods for determining the Rn-222 diffusion coefficient in concrete are presented. Experimentally, the flush and adsorption technique to measure radon release rates underlines both methods. Theoretically, the first method was developed fur samples of cubical geometry. The radon diffusion

  12. Radon release and dispersion from an open pit uranium mine

    Energy Technology Data Exchange (ETDEWEB)

    Kisieleski, W.E.

    1980-06-01

    Radon-222 flux from representative sections of the United Nuclear St. Anthony open-pit mine complex was measured. The collected radon was adsorbed on activated charcoal and the radon activity was measured by gamma spectroscopy. System design, calibration, and the procedure to determine radon flux density (pCi/m/sup 2/.s) are described. A continuous series of radon flux densities were measured over a 5-month period at a control point in the mine. The average flux density at the control point was 1.9 pCi/m/sup 2/.s. A close correlation between radon flux density variations and changes in barometric pressure was observed by a comparison of meteorological data and average daily radon flux density measured at the control point. The release rate from each section of the mine was calculated from the average radon flux density and the area of the section, as determined from enlarged aerial photographs. The average radon flux density for eight locations over the ore-bearing section was 7.3 pCi/m/sup 2/.s. The average flux density for four locations over undisturbed topsoil was 0.17 pCi/m/sup 2/.s. The average Ra-226 content of ten samples taken from the ore-bearing region was 102 pCi/g ore. The ratio of radon flux density to radium content (specific flux) was 0.072. The release rate from the entire St. Anthony open pit was determined to be 3.5 x 10/sup 5/ pCi/s. This rate is comparable to the natural release of radon from one square mile of undisturbed topsoil. 16 refs., 31 figs., 11 tabs.

  13. Re-entry communication through a plasma sheath using standing wave detection and adaptive data rate control

    Science.gov (United States)

    Xie, Kai; Yang, Min; Bai, Bowen; Li, Xiaoping; Zhou, Hui; Guo, Lixin

    2016-01-01

    Radio blackout during the re-entry has puzzled the aerospace industry for decades and has not yet been completely resolved. To achieve a continuous data link in the spacecraft's re-entry period, a simple and practicable communication method is proposed on the basis that (1) the electromagnetic-wave backscatter of the plasma sheath affects the voltage standing wave ratio (VSWR) of the antenna, and the backscatter is negatively correlated to transmission components, and (2) the transmission attenuation caused by the plasma sheath reduces the channel capacity. We detect the voltage standing wave ratio changes of the antenna and then adjust the information rate to accommodate the varying channel capacity, thus guaranteeing continuous transmission (for fewer critical data). The experiment was carried out in a plasma generator with an 18-cm-thick and 30-cm-diameter hollow propagation path, and the adaptive communication was implemented using spread spectrum frequency, shift key modulation with a variable spreading factor. The experimental results indicate that, when the over-threshold of VSWR was detected, the bit rate reduced to 250 bps from 4 Mbps automatically and the tolerated plasma density increased by an order of magnitude, which validates the proposed scheme. The proposed method has little additional cost, and the adaptive control does not require a feedback channel. The method is therefore applicable to data transmission in a single direction, such as that of a one-way telemetry system.

  14. Radiological assessment of water treatment processes in a water treatment plant in Saudi Arabia: Water and sludge radium content, radon air concentrations and dose rates.

    Science.gov (United States)

    Al-Jaseem, Q Kh; Almasoud, Fahad I; Ababneh, Anas M; Al-Hobaib, A S

    2016-09-01

    There is an increase demand for clean water sources in Saudi Arabia and, yet, renewable water resources are very limited. This has forced the authorities to explore deep groundwater which is known to contain large concentrations of radionuclides, mainly radium isotopes. Lately, there has been an increase in the number of water treatment plants (WTPs) around the country. In this study, a radiological assessment of a WTP in Saudi Arabia was performed. Raw water was found to have total radium activity of 0.23Bq/L, which exceeds the international limit of 0.185Bq/L (5pCi/L). The WTP investigated uses three stages of treatment: flocculation/sedimentation, sand filtration and reverse osmosis. The radium removal efficiency was evaluated for each stage and the respective values were 33%, 22% and 98%. Moreover, the activity of radium in the solid waste generated from the WTP in the sedimentation and sand filtrations stages were measured and found to be 4490 and 6750Bq/kg, respectively, which exceed the national limit of 1000Bq/kg for radioactive waste. A radiological assessment of the air inside the WTP was also performed by measuring the radon concentrations and dose rates and were found in the ranges of 2-18Bq/m(3) and 70-1000nSv/h, respectively. The annual effective dose was calculated and the average values was found to be 0.3mSv which is below the 1mSv limit.

  15. Influence of radiant energy exchange on the determination of convective heat transfer rates to Orbiter leeside surfaces during entry

    Science.gov (United States)

    Throckmorton, D. A.

    1982-01-01

    Temperatures measured at the aerodynamic surface of the Orbiter's thermal protection system (TPS), and calorimeter measurements, are used to determine heating rates to the TPS surface during atmospheric entry. On the Orbiter leeside, where convective heating rates are low, it is possible that a significant portion of the total energy input may result from solar radiation, and for the wing, cross radiation from the hot (relatively) Orbiter fuselage. In order to account for the potential impact of these sources, values of solar- and cross-radiation heat transfer are computed, based upon vehicle trajectory and attitude information and measured surface temperatures. Leeside heat-transfer data from the STS-2 mission are presented, and the significance of solar radiation and fuselage-to-wing cross-radiation contributions to total energy input to Orbiter leeside surfaces is assessed.

  16. Etabolism in compensatory growth . III. The urea, glucose and C02 entry rates in animal undergoing compensatory growth

    Directory of Open Access Journals (Sweden)

    Pram Mahyudin

    1996-03-01

    Full Text Available Glucose (GER, Urea (UER and C02 (C02 ER entry rates were studied at four points in the growth curve viz: before feed restriction (PI after 8 weeks of feed restriction (P2, after 3 weeks (P3 and 15 weeks (P4 following resumption ofad libitum feeding. Sixteen Merino wethers were used and offerred pelleted lucerne (Medicago sativa ad libitum for 3 weeks; then they were divided into 2 groups of eight. Group I continued to be fed ad libitum and Group 11 was fed pelleted lucerne at half maintenance level for 8 weeks and then fed ad libitum until the end of experiment. During feed restriction (P2, UER, urinary urea and urea transferred from the blood to the gut were 74% lower in group II than those in group I due to the reduction of N intake . At P2 GER and C02ER were also lower (53% and 56%, respectively because of the reduction of available glucose precursor and metabolic rate. Similarly AV concentration difference of glucose, glucose taken up by the hind-limb muscle and the percentage of glucose taken up by muscle that was oxidised were reduced by 52%, 86% and 48%, respectively . When animals resumed ad libitum feeding, the components of urea entry rate (except plasma urea concentration, GER and C02ER were markedly increased indicating A switch to the anabolic mode, followed by increased glucose taken up and oxidised by the hind-limb muscle . The significance of glucose in muscle metabolism during compensatory growth was shown in the dramatic increase in the actual rate of glucose oxidation per unit muscle weight . It appears that the priority of usage of glucose taken up by muscle during compensatory growth is for oxidation to both C02 and lactate.

  17. 氡析出率测量过程中抽气采集容器内氡运移的数值研究%Numerical Investigation of Radon Migration in the Collection Chamber in the Process of the Radon Exhalation Rate Measurement

    Institute of Scientific and Technical Information of China (English)

    谭延亮; 肖德涛; 袁红志; 单健; 周青芝

    2014-01-01

    氡及其子体是人类所受到的来自天然辐射的主要辐射照射源,近年来我国掺渣建材的广泛使用使得室内氡平均水平有所提高。建筑工程上的防护和减缓是降低室内氡的关键及低成本方法。GB50325-2010首次给出了建材氡析出率检测方法标准。其中主动抽气采集型测定建筑材料表面氡析出率步骤要求抽气采集容器的平均高度为0.5 m。论文通过数值模拟得到较高的高度有利于减少222 Rn测量中220 Rn的干扰,而且可以降低采气容器内的222 Rn浓度,减少反扩散效应。因此222 Rn的析出率可以利用低成本的仪器和简洁的计算得到。%The main radiation exposure from natural radiation sources for human are Radon and its daughters .In recent years , the widespread use of building materials mixed with slag make the average indoor radon level in -creased .The protection and mitigation on construction work are the key and low -cost method to reduce indoor radon.The average height of collection chamber is 0.5m required by the procedure of active drawing air type for measuring radon exhalation rates from building materials surface defined by GB 50325-2010 .In this paper , we find that higher height of the collection chamber can reduce the 220 Rn interference in 222 Rn measurements by nu-merical simulation;and also can decrease the 222 Rn concentration in the collection chamber to reduce the effect of back-diffusion.222 Rn exhalation rate can be obtained by low -cost equipment and simple calculations .

  18. Indoor radon in Slovenia

    Directory of Open Access Journals (Sweden)

    Vaupotič Janja

    2003-01-01

    Full Text Available The Slovenian Radon Programme started in 1990. Since then, radon and radon short-lived decay products have been surveyed in 730 kindergartens, 890 schools, 1000 randomly selected homes, 5 major spas, 26 major hospitals, 10 major municipal water supply plants, and 8 major wineries. Alpha scintillation cells, etched track detectors, electret-based detectors and various continuously measuring devices have been used. On the basis of estimated effective doses, decisions were made on appropriate mitigation. In total, 35 buildings have been appropriately modified. The programme is displayed and results reviewed chronologically and discussed.

  19. Survey of radon and thoron in homes of Indian Himalaya.

    Science.gov (United States)

    Ramola, Rakesh Chand

    2011-07-01

    Measurements of radon, thoron and their progeny were carried out in some houses from Garhwal and Kumaun Himalayas of India using a LR-115 plastic track detector. The measurements were made in various residential houses of the area at a height of 2.5 m above the ground level using a twin chamber radon dosemeter, which can record the values of radon, thoron and their progeny separately. The concentrations of radon and thoron in these homes were found to vary from 11 to 191 and 1 to 156 Bq m(-3), respectively. The equilibrium factor between radon and progeny varies from 0.02 to 0.90, with an average of 0.26 for the region. The resulting dose rate due to radon, thoron and their decay products was found to vary from 0.02 to 0.84 μSv h(-1) with an arithmetic mean of 0.27 μSv h(-1). A detailed analysis of the distribution of radon, thoron and their decay products inside a house is also reported. The observed dose rates due to radon, thoron and progeny were found somewhat higher but well below the international recommendations.

  20. Study of indoor radon distribution using measurements and CFD modeling.

    Science.gov (United States)

    Chauhan, Neetika; Chauhan, R P; Joshi, M; Agarwal, T K; Aggarwal, Praveen; Sahoo, B K

    2014-10-01

    Measurement and/or prediction of indoor radon ((222)Rn) concentration are important due to the impact of radon on indoor air quality and consequent inhalation hazard. In recent times, computational fluid dynamics (CFD) based modeling has become the cost effective replacement of experimental methods for the prediction and visualization of indoor pollutant distribution. The aim of this study is to implement CFD based modeling for studying indoor radon gas distribution. This study focuses on comparison of experimentally measured and CFD modeling predicted spatial distribution of radon concentration for a model test room. The key inputs for simulation viz. radon exhalation rate and ventilation rate were measured as a part of this study. Validation experiments were performed by measuring radon concentration at different locations of test room using active (continuous radon monitor) and passive (pin-hole dosimeters) techniques. Modeling predictions have been found to be reasonably matching with the measurement results. The validated model can be used to understand and study factors affecting indoor radon distribution for more realistic indoor environment.

  1. Radon Optical Processing in Radon Space.

    Science.gov (United States)

    1986-06-15

    yields one line through the three-dimensional Fourier transform 1. Radon, J., " Uber die Bestimmung von Funktiontn of the three-dimensional function (3...Alamos, New Mexico , April 11-15. 1983.a 6. W. G. Wee, "Application of projection techniques to image image. Figure 1(a) has approximately 8.0 bits/pixel

  2. The reliability of radon as seismic precursor

    Science.gov (United States)

    Emilian Toader, Victorin; Moldovan, Iren Adelina; Ionescu, Constantin; Marmureanu, Alexandru

    2016-04-01

    Our multidisciplinary network (AeroSolSys) located in Vrancea (Curvature Carpathian Mountains) includes radon concentration monitoring in five stations. We focus on lithosphere and near surface low atmosphere phenomena using real-time information about seismicity, + / - ions, clouds, solar radiation, temperature (air, ground), humidity, atmospheric pressure, wind speed and direction, telluric currents, variations of the local magnetic field, infrasound, variations of the atmospheric electrostatic field, variations in the earth crust with inclinometers, electromagnetic activity, CO2 concentration, ULF radio wave propagation, seismo-acoustic emission, animal behavior. The main purpose is to inform the authorities about risk situation and update hazard scenarios. The radon concentration monitoring is continuously with 1 hour or 3 hours sample rate in locations near to faults in an active seismic zone characterized by intermediate depth earthquakes. Trigger algorithms include standard deviation, mean and derivative methods. We correlate radon concentration measurements with humidity, temperature and atmospheric pressure from the same equipment. In few stations we have meteorological information, too. Sometime the radon concentration has very high variations (maxim 4535 Bq/m3 from 106 Bq/m3) in short time (1 - 2 days) without being accompanied by an important earthquake. Generally the cause is the high humidity that could be generated by tectonic stress. Correlation with seismicity needs information from minimum 6 month in our case. For 10605 hours, 618 earthquakes with maxim magnitude 4.9 R, we have got radon average 38 Bq/m3 and exposure 408111 Bqh/m3 in one station. In two cases we have correlation between seismicity and radon concentration. In other one we recorded high variation because the location was in an area with multiple faults and a river. Radon can be a seismic precursor but only in a multidisciplinary network. The anomalies for short or long period of

  3. Radon emanation from low-grade uranium ore.

    Science.gov (United States)

    Sahu, Patitapaban; Mishra, Devi Prasad; Panigrahi, Durga Charan; Jha, Vivekanand; Patnaik, R Lokeswara

    2013-12-01

    Estimation of radon emanation in uranium mines is given top priority to minimize the risk of inhalation exposure due to short-lived radon progeny. This paper describes the radon emanation studies conducted in the laboratory as well as inside an operating underground uranium mine at Jaduguda, India. Some of the important parameters, such as grade/(226)Ra activity, moisture content, bulk density, porosity and emanation fraction of ore, governing the migration of radon through the ore were determined. Emanation from the ore samples in terms of emanation rate and emanation fraction was measured in the laboratory under airtight condition in glass jar. The in situ radon emanation rate inside the mine was measured from drill holes made in the ore body. The in situ(222)Rn emanation rate from the mine walls varied in the range of 0.22-51.84 × 10(-3) Bq m(-2) s(-1) with the geometric mean of 8.68 × 10(-3) Bq m(-2) s(-1). A significant positive linear correlation (r = 0.99, p 222)Rn emanation rate and the ore grade was observed. The emanation fraction of the ore samples, which varied in the range of 0.004-0.089 with mean value of 0.025 ± 0.02, showed poor correlation with ore grade and porosity. Empirical relationships between radon emanation rate and the ore grade/(226)Ra were also established for quick prediction of radon emanation rate from the ore body.

  4. Indoor Radon Measurement in Van

    Science.gov (United States)

    Kam, E.; Osmanlioglu, A. E.; Dogan, I.; Celebi, N.

    2007-04-01

    In this study, indoor radon concentrations obtained from the radon surveys conducted in the Van. Radon monitoring was performed by applying a passive, time-integrating measuring technique. For this purpose, CR-39 nuclear track detectors were installed in dwellings for 2 months. After the monitoring period, detectors were collected. In order to make the alpha tracks visible, chemical etching was applied to the exposed detectors. Nuclear track numbers and the corresponding indoor radon concentrations were determined. Annual effective dose equivalents and the risk probabilities caused by indoor radon inhalation were calculated, and the found results compared with the indoor radon concentrations' data measured in different provinces of Turkey.

  5. ROE Radon Data

    Data.gov (United States)

    U.S. Environmental Protection Agency — The polygon dataset represents predicted indoor radon screening levels in counties across the United States. These data were provided by EPA’s Office of Radiation...

  6. Radon in Schools

    Science.gov (United States)

    ... strategy below. Top of Page Testing and Mitigation Standards for Schools Copies of the following Radon Standards ... control is a critical component of any comprehensive indoor air quality (IAQ) management program, l earn how to manage ...

  7. Radon i danske lejeboliger

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn; Skytte Clausen, Louise

    I denne undersøgelse kortlægges radonindholdet i indeluften og det undersøges, hvordan indholdet af radon i indeluften er fordelt og spredes i en ejendom, og om det er muligt at pege på en bygningsdel eller en bygningskomponent som en spredningsvej for radon i boliger. Boligerne er lejeboliger og...... ligger i etageejendomme, kæde- og rækkehuse tilhørende bygningstyper opført fra 1850 og frem. De udvalgte ejendomme ligger i områder af landet, hvor der ved tidligere undersøgelser har vist sig at være en stor andel af huse med et højt indhold af radon i indeluften. Koncentrationen af radon er målt over...

  8. Health assessment of natural radioactivity and radon exhalation rate in granites used as building materials in Lebanon.

    Science.gov (United States)

    Kobeissi, M A; El-Samad, O; Rachidi, I

    2013-03-01

    Measurements of specific activities (Bq kg(-1)) of gamma-emissions from radioactive nuclides, (238)U, (226)Ra, (214)Bi, (232)Th, (212)Pb and (40)K, contained in 28 granite types, used as building materials in indoors in Lebanon, were performed on the powdered granites. The concentration of the nuclides, (226)Ra, (232)Th and (40)K, in the granites varied from below detection level (BDL) to 494 Bq kg(-1), BDL to 157.2 Bq kg(-1) and BDL to 1776 Bq kg(-1), respectively. (226)Ra concentration equivalents, C(Raeq), were obtained and ranged between 37 and 591 Bq kg(-1), with certain values above the allowed limit of 370 Bq kg(-1). Calculated annual gamma-absorbed dose in air, D(aR), varied from 17.7 to 274.5 (nGy h(-1)). Annual effective dose, E (mSv y(-1)), of gamma radiations related to the studied granites and absorbed by the inhabitants was evaluated. E (mSv y(-1)) ranged from 0.09 to 1.35 mSv y(-1). Some granite types produced E above the allowed limit of 1 mSv y(-1) set by ICRP. Values of (222)Rn mass exhalation rate, E(M) (mBq kg(-1)h(-1))(,) in granite powder were obtained using the CR-39 detector technique. Diffusion factors, f, in 23 granite types were calculated with f ranging between (0.1 ± 0.02)×10(-2) and (6.6 ± 1.01)×10(-2).

  9. Systematic grid-wise radon concentration measurements and first radon map in Cyprus

    CERN Document Server

    Theodoulou, G; Parpottas, Y; 10.1016/j.radmeas.2012.03.019

    2012-01-01

    A systematic study of the indoor airborne radon concentration in the central part of the Nicosia district was conducted, using high-sensitivity active radon portable detectors of the type "RADIM3A". From a total of 108 measurements in 54 grids of 1 km^2 area each, the overall mean value is 20.6 \\pm 13.2 Bq m^-3 (A.M.\\pm S.D.). That is almost twice less than the corresponding average worldwide value. The radon concentration levels in drinking water were also measured in 24 sites of the residential district, using the high-sensitivity radon detector of the type "RADIM3W". The mean value obtained from these measurements is 243.8 \\pm 224.8 mBq L^-1, which is relatively low compared to the corresponding internationally accepted level. The associated annual effective dose rates to each measurement were also calculated and compared to the corresponding worldwide values. From the geographical coordinates of the measuring sites and the corresponding radon concentration values, the digital radon map of the central part...

  10. Ultra-low level radon assays in gases

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xin Ran [University College London, Gower Street, London, WC1E 6BT (United Kingdom)

    2015-08-17

    The SuperNEMO experiment aims to search for the neutrinoless double beta decay (0νβ β) to T{sub 1{sub /{sub 2}}}(0ν) > 10{sup 26} years, this corresponds to an effective neutrino mass of 50-100 meV. The extremely rare event rate means the minimisation of background is of critical concern. The stringent strategy instigated to ensure detector radiopurity is outlined here for all construction materials. In particular the large R&D programme undertaken to reach the challengingly low level of radon, < 0.15 mBq/m{sup 3}, required inside the SuperNEMO gaseous tracker will be detailed. This includes an experiment designed to measure radon diffusion through various materials. A “Radon Concentration Line” (RnCL) was developed to be used in conjunction with a state-of-the-art radon detector in order to achieve world leading sensitivity to {sup 222}Rn content in large gas volumes at the level of a few µBq/m{sup 3}. A radon purification system was developed and installed which has demonstrated radon suppression by several orders of magnitude depending on the carrier gas. This apparatus has now been commissioned and measurements of cylindered gas have been made to confirm radon suppression by a factor 20 when using nitrogen as the carrier gas. The results from measurements of radon content in various gases, used inside SuperNEMO, using the RnCL will be presented.

  11. Plant Science Alumni Rate Their Education Based upon Entry-Level Professional Experience.

    Science.gov (United States)

    Long, G. A.; And Others

    1992-01-01

    The relevance of plant science curriculum at Utah State University was evaluated by students graduating in 1976 through 1986 using a modified Borich Model. Oral and written communication and interpersonal skills were rated as most important. Respondents recommended including business, computer, science, oral and written communications classes, and…

  12. Radon og boligen

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn

    Radon er en radioaktiv og sundhedsskadelig luftart, som ved indånding øger risikoen for lungekræft. Der er ingen dokumenteret nedre grænse for, hvornår radon er ufarligt. Derfor anbefales det, at man tilstræber et så lavt radonindhold i indeluften som muligt. Man kan hverken lugte, se, høre eller...... smage radon, så vil du vide, om du har radon i din bolig, må du måle radonindholdet i indeluften. Radon forekommer naturligt i jorden og kan suges ind sammen med jordluft, hvis der inde er et undertryk, og hvis konstruktionerne mod jord er utætte. Jordluft trænger ind gennem revner og utætte samlinger......, fx omkring rør til kloak, vand og varmeforsyning. Koncentrationen af radon i jorden varierer meget fra sted til sted, også lokalt og gennem året. Tidligere undersøgelser har vist, at der kan forekomme høje koncentrationer i Sydgrønland, specielt i området syd for Narsalik ved Paamiut, 61°30’N....

  13. Radon Release and Its Simulated Effect on Radiation Doses.

    Science.gov (United States)

    Orabi, Momen

    2017-03-01

    One of the main factors that affect the uncertainty in calculating the gamma-radiation absorbed dose rate inside a room is the variation in the degree of secular equilibrium of the considered radioactive series. A component of this factor, considered in this paper, is the release of radon (Rn) from building materials to the living space of the room. This release takes place through different steps. These steps are represented and mathematically formulated. The diffusion of radon inside the material is described by Fick's second law. Some of the factors affecting the radon release rate (e.g. covering walls, moisture, structure of the building materials, etc.) are discussed. This scheme is used to study the impact of radon release on the gamma-radiation absorbed dose rate inside a room. The investigation is carried out by exploiting the MCNP simulation software. Different building materials are considered with different radon release rates. Special care is given to Rn due to its relatively higher half-life and higher indoor concentration than the other radon isotopes. The results of the presented model show that the radon release is of a significant impact in some building materials.

  14. Marine-entry timing and growth rates of juvenile Chum Salmon in Alaskan waters of the Chukchi and northern Bering seas

    Science.gov (United States)

    Vega, Stacy L.; Sutton, Trent M.; Murphy, James M.

    2017-01-01

    Climate change in the Arctic has implications for influences on juvenile Chum Salmon Oncorhynchus keta early life-history patterns, such as altered timing of marine entry and/or early marine growth. Sagittal otoliths were used to estimate marine entry dates and daily growth rates of juvenile Chum Salmon collected during surface trawl surveys in summers 2007, 2012, and 2013 in the Chukchi and northern Bering seas. Inductively coupled plasma-mass spectrometry (ICP-MS) was used to discriminate between freshwater and marine sagittal growth on the otoliths, and daily growth increments were counted to determine marine-entry dates and growth rates to make temporal and regional comparisons of juvenile Chum Salmon characteristics. Marine-entry dates ranged from mid-June to mid-July, with all region and year combinations exhibiting similar characteristics in entry timing (i.e. larger individuals at the time of capture entered the marine environment earlier in the growing season than smaller individuals in the same region/year), as well as similar mean marine-entry dates. Juvenile Chum Salmon growth rates were on average 4.9% body weight per day in both regions in summers 2007 and 2012, and significantly higher (6.8% body weight per day) in the Chukchi Sea in 2013. These results suggest that juvenile Chum Salmon in the northern Bering and Chukchi seas currently exhibit consistent marine-entry timing and early marine growth rates, despite some differences in environmental conditions between regions and among years. This study also provides a baseline of early marine life-history characteristics of Chum Salmon for comparisons with future climate change studies in these regions.

  15. Radon in land use planning; Radon i arealplanlegging

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-11-01

    Radon poses a health risk. Therefore, it is important that the municipality takes into account radon, in land use planning. This Radiation Info provides an overview of what makes an additional radon prone area and what tools are available to assess this. The background is the Planning and Building Act provisions on risk analysis (ROS) and zones. (eb)

  16. Radon as a hydrological indicator

    Energy Technology Data Exchange (ETDEWEB)

    Komae, Takami [National Research Inst. of Agricultural Engineering, Tsukuba, Ibaraki (Japan)

    1997-02-01

    The radon concentration in water is measured by a liquid scintillation method. After the radioactive equilibrium between radon and the daughter nuclides was attained, the radon concentration was determined by the liquid scintillation analyzer. {alpha}-ray from radon, then two {beta}- and two {alpha}-ray from the daughter nuclei group were released, so that 500% of the apparent counting efficiency was obtained. The detector limit is about 0.03 Bq/l, the low value, which corresponds to about 5.4x10{sup -15} ppm. By determining the radon concentration in groundwater, behavior of radon in hydrological process, the groundwater exchange caused by pumping and exchange between river water and groundwater were investigated. The water circulation analysis by means of radon indicator in the environment was shown. By using the large difference of radon concentration between in river water and in groundwater, arrival of injected water to the sampling point of groundwater was detected. (S.Y.)

  17. Radon emanation from backfilled mill tailings in underground uranium mine.

    Science.gov (United States)

    Sahu, Patitapaban; Mishra, Devi Prasad; Panigrahi, Durga Charan; Jha, Vivekananda; Patnaik, R Lokeswara; Sethy, Narendra Kumar

    2014-04-01

    Coarser mill tailings used as backfill to stabilize the stoped out areas in underground uranium mines is a potential source of radon contamination. This paper presents the quantitative assessment of radon emanation from the backfilled tailings in Jaduguda mine, India using a cylindrical accumulator. Some of the important parameters such as (226)Ra activity concentration, bulk density, bulk porosity, moisture content and radon emanation factor of the tailings affecting radon emanation were determined in the laboratory. The study revealed that the radon emanation rate of the tailings varied in the range of 0.12-7.03 Bq m(-2) s(-1) with geometric mean of 1.01 Bq m(-2) s(-1) and geometric standard deviation of 3.39. An increase in radon emanation rate was noticed up to a moisture saturation of 0.09 in the tailings, after which the emanation rate gradually started declining with saturation due to low diffusion coefficient of radon in the saturated tailings. Radon emanation factor of the tailings varied in the range of 0.08-0.23 with the mean value of 0.21. The emanation factor of the tailings with moisture saturation level over 0.09 was found to be about three times higher than that of the absolutely dry tailings. The empirical relationship obtained between (222)Rn emanation rate and (226)Ra activity concentration of the tailings indicated a significant positive linear correlation (r = 0.95, p < 0.001). This relationship may be useful for quick prediction of radon emanation rate from the backfill material of similar nature. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Evaluation of the intake of radon through skin from thermal water

    Science.gov (United States)

    Sakoda, Akihiro; Ishimori, Yuu; Tschiersch, Jochen

    2016-01-01

    The biokinetics of radon in the body has previously been studied with the assumption that its absorption through the skin is negligibly small. This assumption would be acceptable except in specific situations, such as bathing in a radon hot spring where the radon concentration in thermal water is far higher than that in air. The present study focused on such a situation in order to better understand the biokinetics of radon. To mathematically express the entry of radon through the skin into the body, we first modified the latest sophisticated biokinetic model for noble gases. Values of an important parameter for the model—the skin permeability coefficient K (m s−1)—were derived using data from previous human studies. The analysis of such empirical data, which corresponded to radon concentrations in the air exhaled by subjects during and following bathing in radon-rich thermal water, revealed that the estimated K values had a log-normal distribution. The validity of the K values and the characteristics of the present model are then discussed. Furthermore, the impact of the intake of radon or its progeny via inhalation or skin absorption on radiation dose was also assessed for possible exposure scenarios in a radon hot spring. It was concluded that, depending on the radon concentration in thermal water, there might be situations in which the dose contribution resulting from skin absorption of radon is comparable to that resulting from inhalation of radon and its progeny. This conclusion can also apply to other therapeutic situations (e.g. staying in the pool for a longer period). PMID:26983980

  19. Evaluation of the intake of radon through skin from thermal water.

    Science.gov (United States)

    Sakoda, Akihiro; Ishimori, Yuu; Tschiersch, Jochen

    2016-07-01

    The biokinetics of radon in the body has previously been studied with the assumption that its absorption through the skin is negligibly small. This assumption would be acceptable except in specific situations, such as bathing in a radon hot spring where the radon concentration in thermal water is far higher than that in air. The present study focused on such a situation in order to better understand the biokinetics of radon. To mathematically express the entry of radon through the skin into the body, we first modified the latest sophisticated biokinetic model for noble gases. Values of an important parameter for the model-the skin permeability coefficient K (m s(-1))-were derived using data from previous human studies. The analysis of such empirical data, which corresponded to radon concentrations in the air exhaled by subjects during and following bathing in radon-rich thermal water, revealed that the estimated K values had a log-normal distribution. The validity of the K values and the characteristics of the present model are then discussed. Furthermore, the impact of the intake of radon or its progeny via inhalation or skin absorption on radiation dose was also assessed for possible exposure scenarios in a radon hot spring. It was concluded that, depending on the radon concentration in thermal water, there might be situations in which the dose contribution resulting from skin absorption of radon is comparable to that resulting from inhalation of radon and its progeny. This conclusion can also apply to other therapeutic situations (e.g. staying in the pool for a longer period).

  20. Radon transport modelling: User's guide to RnMod3d

    DEFF Research Database (Denmark)

    Andersen, Claus Erik

    2000-01-01

    RnMod3d is a numerical computer model of soil-gas and radon transport in porous media. It can be used, for example, to study radon entry from soil into houses in response to indoor-outdoor pressure differences or changes in atmospheric pressure. It canalso be used for flux calculations of radon...... decay, diffusion and advection of radon can be solved. Moisture is included in the model, and partitioning ofradon between air, water and soil grains (adsorption) is taken into account. Most parameters can change in time and space, and transport parameters (diffusivity and permeability) may...... from the soil surface or to model radon exhalation from building materials such as concrete. The finite-volume model is a technical research tool, and it cannot be used meaningfully without good understandingof the involved physical equations. Some understanding of numerical mathematics...

  1. A study of indoor radon levels and radon effective dose in dwellings of some cities of Gezira State in Sudan

    Directory of Open Access Journals (Sweden)

    Elzain Abd-Elmoniem Ahmed

    2014-01-01

    Full Text Available Exposure to natural sources of radiation, especially 222Rn and its short-lived daughter products has become an important issue throughout the world because sustained exposure of humans to indoor radon may cause lung cancer. The indoor radon concentration level and radon effective dose rate were carried out in the dwellings of Medani, El Hosh, Elmanagil, Haj Abd Allah, and Wad Almahi cities, Gezira State - Central Sudan, in 393 measurements, using passive integrated solid-state nuclear track devices containing allyl diglycol carbonate plastic detectors. The radon concentration in the corresponding dwellings was found to vary from (57 ± 8 Bq/m3 in Medani to 41 ± 9 Bq/m3 in Wad Almahi, with an average of 49 ± 10 Bq/m3. Assuming an indoor occupancy factor of 0.8 and 0.4 for the equilibrium factor of radon indoors, we found that the annual effective dose rate from 222Rn in the studied dwellings ranges from 1.05 to 1.43 mSv per year and the relative lung cancer risk for radon exposure was 1.044%. In this research, we also correlated the relationship of radon concentration and building age. From our study, it is clear that the annual effective dose rate is larger than the “normal” background level as quoted by UNSCEAR, lower than the recommended action level of ICRP, and less than the maximum permissible dose defined by the International Atomic Energy Agency.

  2. Effects of air exchange property of passive-type radon-thoron discriminative detectors on performance of radon and thoron measurements.

    Science.gov (United States)

    Omori, Y; Janik, M; Sorimachi, A; Ishikawa, T; Tokonami, S

    2012-11-01

    Pairs of diffusion chambers with different air exchange rates are used in a large-scale survey to determine radon and thoron, separately. When they are enclosed in radon-proof bags for keeping after the exposure, since radon does not escape out immediately from the low-diffusion chamber, it leads to further exposure in the bags and disturbs the estimation of radon and thoron concentrations. In this study, the effects of the different air exchange properties of the radon-thoron discriminative detectors with CR-39 chips on the estimations of radon and thoron concentrations were investigated. The commercially available and frequently used detectors, Raduet, are examined in this study. The result shows that radon escapes out in 10 h. When degassing is not enough after the exposure in a calibration experiment or high-background radiation area, the residual radon causes the overestimation of the radon concentration and increase in the uncertainty in the thoron concentration, i.e. a low-performance quality of radon and thoron measurements.

  3. The effects of market structure and payment rate on the entry of private health plans into the Medicare market.

    Science.gov (United States)

    Frakt, Austin B; Pizer, Steven D; Feldman, Roger

    2012-01-01

    Private insurance firms participating in Medicare can offer up to three principal plan types: coordinated care plans (CCPs), prescription drug plans (PDPs), and private fee-for-service (PFFS) plans. Firms can make entry and marketing decisions separately across plan types and geographic regions. In this study, we estimate firm-level models of Medicare private plan entry using data from the years 2007 to 2009. Our models include a measure of market structure and separately identify CCP, PDP, and PFFS entry. We find evidence that entry barriers associated with CCP market concentration affect all three product types. We also find evidence of cross-product competition and common cost or demand factors that make entry with certain product combinations more likely. We predict that the market presence of CCPs and PFFS plans will decrease and that of PDPs will increase in response to payment reductions included in the new health reform law.

  4. On the air-filled effective porosity parameter of Rogers and Nielson's (1991) bulk radon diffusion coefficient in unsaturated soils.

    Science.gov (United States)

    Saâdi, Zakaria

    2014-05-01

    The radon exhalation rate at the earth's surface from soil or rock with radium as its source is the main mechanism behind the radon activity concentrations observed in both indoor and outdoor environments. During the last two decades, many subsurface radon transport models have used Rogers and Nielson's formula for modeling the unsaturated soil bulk radon diffusion coefficient. This formula uses an "air-filled effective porosity" to account for radon adsorption and radon dissolution in the groundwater. This formula is reviewed here, and its hypotheses are examined for accuracy in dealing with subsurface radon transport problems. The author shows its limitations by comparing one dimensional steady-state analytical solutions of the two-phase (air/water) transport equation (Fick's law) with Rogers and Nielson's formula. For radon diffusion-dominated transport, the calculated Rogers and Nielson's radon exhalation rate is shown to be unrealistic as it is independent of the values of the radon adsorption and groundwater dissolution coefficients. For convective and diffusive transport, radon exhalation rates calculated using Fick's law and this formula agree only for high values of gas-phase velocity and groundwater saturation. However, these conditions are not usually met in most shallow subsurface environments where radon migration takes place under low gas phase velocities and low water saturation.

  5. Estimation of radon concentrations in coal mines using a hybrid technique calibration curve.

    Science.gov (United States)

    Jamil, K; Ali, S

    2001-01-01

    The results of epidemiological studies in various countries show that radon and its progeny cause carcinogenic effects on mine workers. Therefore, it becomes of paramount importance to monitor radon concentrations and consequently determine the radon dose rates in coal mines for the protection of coal miners. A new calibration curve was obtained for radon concentration estimation using hybrid techniques. A calibration curve was generated using 226Ra activity concentration measured by a HPGe detector-based gamma-ray spectrometer versus alpha-track-density rate due to radon and its progeny on CR-39 track detector. Using the slope of the experimentally determined curve in the units of Becqueral per kilogram (Bq kg-1) per unit alpha-track-density per hour (cm-2 h-1), radon concentrations (Bq m-3) were estimated using coal samples from various coal mines in two provinces of Pakistan, Punjab and Balochistan. Consequently, radon dose rates were computed in the simulated environment of the coal mines. Results of these computations may be considered with a caveat that the method developed in this paper provides only a screening method to indicate the radon dose in coal mines. It has been shown that the actual measurements of radon concentrations in the coal mines are in agreement with the estimated radon concentrations using the hybrid-technique calibration curve.

  6. Geologic influence on indoor radon concentrations and gamma radiation levels in Norwegian dwellings

    Energy Technology Data Exchange (ETDEWEB)

    Sundal, Aud Venche

    2003-09-01

    dose rates are measured in the areas covered by nearly impermeable silt and clay deposits. Indoor gamma dose rates as high as 620 nGy/h are obtained in the areas of exposed carbonatites, primarily due to enhanced thorium concentrations in these rock types. The observed correlations between geological factors and indoor radon concentrations in Norway indicate that geological information is a useful tool in radon risk analysis. Resources can be concentrated to regions of high geologic radon potential when screening programs are planned, and efficient follow-up surveys can be established based on geological data in combination with radon measurements in a representative sample of the building stock. The observed contrasts in radon risk potential between different types of building grounds also enable the prediction of radon risk in areas which are not currently inhabited. (Author)

  7. Radon emanation from phosphogypsum and related mineral samples in Cyprus

    Energy Technology Data Exchange (ETDEWEB)

    Lysandrou, M. [Geological Survey Department, Ministry of Agriculture, Natural Resources and Environment (Cyprus); Department of Chemistry, University of Cyprus, P.O. Box 20537, Cy-1678 Lefkosia (Cyprus); Charalambides, A. [Geological Survey Department, Ministry of Agriculture, Natural Resources and Environment (Cyprus); Pashalidis, I. [Department of Chemistry, University of Cyprus, P.O. Box 20537, Cy-1678 Lefkosia (Cyprus)], E-mail: pspasch@ucy.ac.cy

    2007-10-15

    Radon emanation rates from phosphogypsum samples have been determined to assess the radiological impact of radon emanated from a phosphogypsum disposal site. For comparison corresponding measurements were conducted with samples of phosphate rock, fertilizer, natural gypsum, and calcite. The experimental data show that phosphate rock and phosphogypsum samples emanate radon in significantly higher rates (up to almost two orders of magnitude). The exhalation rates determined for samples obtained from a phosphogypsum stack in Cyprus range from 0.35 to 1.1Bqh{sup -1}. This, consequently, may result in increased radon levels in dwellings build and excessive radiation exposure to workers residing on the stack, which could reach in extreme cases values up to 17mSvy{sup -1}.

  8. The radon EDM apparatus

    Science.gov (United States)

    Tardiff, E. R.; Rand, E. T.; Ball, G. C.; Chupp, T. E.; Garnsworthy, A. B.; Garrett, P.; Hayden, M. E.; Kierans, C. A.; Lorenzon, W.; Pearson, M. R.; Schaub, C.; Svensson, C. E.

    2014-01-01

    The observation of a permanent electric dipole moment (EDM) at current experimentally accessible levels would provide clear evidence of physics beyond the Standard Model. EDMs violate CP symmetry, making them a possible route to explaining the size of the observed baryon asymmetry in the universe. The Radon EDM Experiment aims to search for an EDM in radon isotopes whose sensitivity to CP-odd interactions is enhanced by octupole-deformed nuclei. A prototype apparatus currently installed in the ISAC hall at TRIUMF includes a gas handling system to move radon from a collection foil to a measurement cell and auxiliary equipment for polarization diagnostics and validation. The features and capabilities of the apparatus are described and an overview of the experimental design for a gamma-ray-anisotropy based EDM measurement is provided.

  9. Radon: a bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Lepman, S.R.; Boegel, M.L.; Hollowell, C.D.

    1981-01-01

    The Lawrence Berkeley Laboratory, with the support of the Department of Energy, has developed a computerized database to manage research information in the area of building ventilation and indoor air quality. This literature survey contains references pertaining to the physical properties of radon and its daughters, instrumentation for their measurement, health effects, surveys and measurements, and regulatory information. The references in the bibliography are sequenced in alphabetical order and abstracts are included when supplied by the author. The objective of this report is to disseminate the bibliographic references compiled at the laboratory relating to radon research portion of the program. Interested database users are encouraged to contact the laboratory to receive instructions for direct database acess. A flyer describing the database is supplied at the end of the bibliography and a brief overview of the Radon Research porgram is given.

  10. Radon programmes and health marketing.

    Science.gov (United States)

    Fojtikova, Ivana; Rovenska, Katerina

    2011-05-01

    Being aware of negative health effects of radon exposure, many countries aim for the reduction of the radon exposure of their population. The Czech radon programme was commenced >20 y ago. Since then experts have gathered a lot of knowledge, necessary legislation has been enacted, tens of thousands of inhabitants have been offered free measurement and subsidy for the mitigation. Despite the effort, the effectiveness of the radon programme seems to be poor. Newly built houses still exhibit elevated radon concentrations and the number of houses mitigated is very low. Is it possible to enhance the effectivity of radon programme while keeping it on a voluntary basis? One possible way is to employ health marketing that draws together traditional marketing theories and science-based strategies to prevention. The potential of using marketing principles in communication and delivery of radon information will be discussed.

  11. Radon in Dwellings in the Republic of Kalmykia

    Energy Technology Data Exchange (ETDEWEB)

    Aakerblom, Gustav (Aakerblom och Aakerblom HP, Skaerholmen (Sweden)); German, Olga; Soederman, Ann-Louise (Swedish Radiation Safety Authority, Stockholm (Sweden)); Stamat, Ivan; Venkov, Vladimir (Research Inst. of Radiation Hygiene, St. Petersburg (Russian Federation))

    2009-02-15

    The National Radon Survey in the Republic of Kalmykia, Russian Federation during 2006-2007 was carried out in a cooperation project between the Swedish Radiation Protection Authority (SSI) and the Russian Institute of Radiation Hygiene (RIRH). In August 2006 SSI, RIRH, federal and local authorities carried out a field study in Kalmykia when radon daughter measurements (equilibrium equivalent radon concentrations in the air) and gamma radiation measurements were made in 103 buildings. Gamma spectrometry measurements were made at several sites. During the visit the cooperating parties devoted some time to the education of local authorities on radon related issues. During three months in the winter season 2006-2007, long term radon trace measurements were made in 525 randomly chosen dwellings in the Republic of Kalmykia. The radon gas activity varied between 3 and 973 Bq/m3, with a mean value of 122 Bq/m3. In 19 of a total of 835 measurement points, the radon activity exceeded the maximum permitted value in Russia of 200 Bq/m3 of EERC. The year-round radon trace measurement were made in 20 houses in Elista, the capital of the Republic of Kalmykia, for comparison with the three-month measurements. The year-round measurements showed some higher values for the radon activity, and a correction factor of 0.85 was applied. Using data on the number of people living in detached houses and apartments, and applying the radon activities measured, the number of new lung cancer cases caused by radon was calculated to be 20 to 40 of the 100 new cases reported annually. The methods of construction of the dwellings in Kalmykia is greatly influenced by the history and culture. Most of them were built after World War II and there are only a few that are newly built because of the poor economic situation and the low population growth rate in the Republic. Most people live in detached houses, one-storied with 3-5 rooms, built directly on the ground or on coquina blocks or on a cast

  12. Radon assay for SNO+

    Energy Technology Data Exchange (ETDEWEB)

    Rumleskie, Janet [Laurentian University, Greater Sudbury, Ontario (Canada)

    2015-12-31

    The SNO+ experiment will study neutrinos while located 6,800 feet below the surface of the earth at SNOLAB. Though shielded from surface backgrounds, emanation of radon radioisotopes from the surrounding rock leads to back-grounds. The characteristic decay of radon and its daughters allows for an alpha detection technique to count the amount of Rn-222 atoms collected. Traps can collect Rn-222 from various positions and materials, including an assay skid that will collect Rn-222 from the organic liquid scintillator used to detect interactions within SNO+.

  13. Simulated equilibrium factor studies in radon chamber

    Energy Technology Data Exchange (ETDEWEB)

    Tiehchi Chu; Holing Liu [National Tsing Hua Univ., Hsinchu, Taiwan (China). Dept. of Nuclear Science

    1996-05-01

    A series of experiments have been conducted to study the influences of environmental parameters on the equilibrium factor. Most of them were carried out in a walk-in type chamber. The deposition velocity was calculated using the Jacobi model. The ranges of the environmental parameters studied in the experiments are humidity 30-90% r.h. and radon concentration 2-40 kBqm{sup -3}. The aerosol sources included electric fumigator, mosquito coil, incense, a cigarette with the particle concentration 2000-6500 cm{sup -3} and the attachment rate 10-350 h{sup -1}. The results of the experiment show that the equilibrium factor tends to decrease as the radon concentration increases. On the other hand, the equilibrium factor tends to increase as the humidity increases, and so is the increasing attachment rate. Of all the parameters mentioned above, the influence that aerosols have on the equilibrium factor is the predominant factor. The calculated deposition velocity for the unattached fraction of radon daughters tends to increase as the radon concentration increases. However, it tends to decrease as the humidity increases. (Author).

  14. Long term performance of different radon remedial methods in Sweden

    CERN Document Server

    Clavensjoe, B

    2002-01-01

    The object of this project was to investigate the long time effectiveness of different radon remedial methods. The ten years project started 1991. From start the investigation comprised of 105 dwellings (91 single-family houses and 14 flats in multi-family buildings). In all of the dwellings remedial measures were carried out in the eighties. Before and immediately after the reduction the local measured the radon concentrations. New measurements of the radon concentrations have been made every third year; in 1991, 1994, 1997 and in 2000. Twelve different radon remedial methods and method combinations were used. The radon sources were building materials as well as sub-soils. In all of the dwellings the radon concentrations were measured by nuclear track films during 3 months (January-March) measurements and in half of them the air change rates by passive tracer gas methods. The results of the 2000 and the 1991 (within brackets) studies showed that the radon concentration was up to 200 Bq/m sup 3 in 54 (54) sin...

  15. Mapping of gas radon in soil of the Fresnillo City, Zacatecas; Mapeo de gas radon en suelo de la Ciudad de Fresnillo, Zacatecas

    Energy Technology Data Exchange (ETDEWEB)

    Gomez Q, I. S.; Lopez del R, H.; Davila R, J. I.; Mireles G, F., E-mail: hlopezdelrio@hotmail.com [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico)

    2012-10-15

    With the purpose of locating areas with high rates of gas radon exhalation, it has begun to measure the radon flow in soil for residence use in the Fresnillo City, Zacatecas State, Mexico, applying the method of the open vial and liquid scintillation. The gas radon accumulation is made in a camera situated to a depth between 25 and 35 cm. In this work the partial results of the research in course are presented. The values obtained for the radon exhalation have varied of <2.25 up to 14.42 Bq/m{sup 2}{center_dot}h. (Author)

  16. Indoor radon measurements in Kosovo and Metohija over the period 1995-2007

    Energy Technology Data Exchange (ETDEWEB)

    Milic, Gordana [Faculty of Natural Sciences, University of Pristina, Lole Ribara 29, 28000 Kosovska Mitrovica (Serbia); Yarmoshenko, Ilia V., E-mail: ivy@ecko.uran.r [Institute of Industrial Ecology, Ural Branch of Russian Academy of Sciences, Ekaterinburg (Russian Federation); Jakupi, Bajram [Faculty of Natural Sciences, University of Pristina, Lole Ribara 29, 28000 Kosovska Mitrovica (Serbia); Kovacevic, Milojko; Zunic, Zora S. [VINCA Institute of Nuclear Science, Mike Alasa St., 12-14, 11000 Belgrade (Serbia)

    2011-01-15

    The paper deals with the results of the investigations of indoor radon measurements in more than 300 rural and urban dwellings in Kosovo and Metohija. All measurements were carried out using CR-39 solid state nuclear track detectors by similar protocols and within two series in 1990-s and in 2000-s, in 34 settlements divided by 9 regions, thus covering significant part of Kosovo. For most of measured points the adjustment for seasonal variation was necessary and had been conducted. Highest average values of indoor radon concentrations were found in rural settlements of Lipljan and Vitina regions, 512 and 452 Bq/m{sup 3}, respectively. Combined analysis allows indoor radon concentration of 220 Bq/m{sup 3} to be suggested as representative estimate for Kosovo, while additional data appear. Observed pattern of indoor radon seasonal variation and difference of radon levels between ground and upper floors suggest soil radon as primary source of indoor radon and significance of convection type radon entry.

  17. Residential radon and brain tumour incidence in a Danish cohort.

    Directory of Open Access Journals (Sweden)

    Elvira V Bräuner

    Full Text Available BACKGROUND: Increased brain tumour incidence over recent decades may reflect improved diagnostic methods and clinical practice, but remain unexplained. Although estimated doses are low a relationship between radon and brain tumours may exist. OBJECTIVE: To investigate the long-term effect of exposure to residential radon on the risk of primary brain tumour in a prospective Danish cohort. METHODS: During 1993-1997 we recruited 57,053 persons. We followed each cohort member for cancer occurrence from enrolment until 31 December 2009, identifying 121 primary brain tumour cases. We traced residential addresses from 1 January 1971 until 31 December 2009 and calculated radon concentrations at each address using information from central databases regarding geology and house construction. Cox proportional hazards models were used to estimate incidence rate-ratios (IRR and 95% confidence intervals (CI for the risk of primary brain tumours associated with residential radon exposure with adjustment for age, sex, occupation, fruit and vegetable consumption and traffic-related air pollution. Effect modification by air pollution was assessed. RESULTS: Median estimated radon was 40.5 Bq/m(3. The adjusted IRR for primary brain tumour associated with each 100 Bq/m(3 increment in average residential radon levels was 1.96 (95% CI: 1.07; 3.58 and this was exposure-dependently higher over the four radon exposure quartiles. This association was not modified by air pollution. CONCLUSIONS: We found significant associations and exposure-response patterns between long-term residential radon exposure radon in a general population and risk of primary brain tumours, adding new knowledge to this field. This finding could be chance and needs to be challenged in future studies.

  18. Modeling and experimental examination of water level effects on radon exhalation from fragmented uranium ore.

    Science.gov (United States)

    Ye, Yong-Jun; Dai, Xin-Tao; Ding, De-Xin; Zhao, Ya-Li

    2016-12-01

    In this study, a one-dimensional steady-state mathematical model of radon transport in fragmented uranium ore was established according to Fick's law and radon transfer theory in an air-water interface. The model was utilized to obtain an analytical solution for radon concentration in the air-water, two-phase system under steady state conditions, as well as a corresponding radon exhalation rate calculation formula. We also designed a one-dimensional experimental apparatus for simulating radon diffusion migration in the uranium ore with various water levels to verify the mathematical model. The predicted results were in close agreement with the measured results, suggesting that the proposed model can be readily used to determine radon concentrations and exhalation rates in fragmented uranium ore with varying water levels. Copyright © 2016. Published by Elsevier Ltd.

  19. Estimation of radon concentrations in coal mines using a hybrid technique calibration curve

    Energy Technology Data Exchange (ETDEWEB)

    Jamil, K.; Ali, S. [PINSTECH, Islamabad (Pakistan). Radiation Physics Division, Environmental Radiation Group

    2001-07-01

    A calibration curve was generated using Ra-226 activity concentration measured by a HPGe detector-based gamma-ray spectrometer versus alpha-track-density rate due to radon and its progeny on CR-39 track detector. Using the slops of the experimentally determined curve in the units of Becquerel per kilogram (Bq kg{sup -1}) per unit alpha -track-density per hour (cm{sup -2}h{sup -1}), radon concentrations (Bq m{sup -3}) were estimated using coal samples from various coal mines in two provinces of Pakistan, Punjab and Balochistan. Consequently, radon dose rates were computed in the simulated environment of the coal mines. These results provide only a screening method to indicate the radon dose in coal mines, It was shown that the actual measurements of radon concentrations in the coal mines are in agreement with the estimated radon concentrations using the hybrid-technique calibration curve.

  20. Long-term radon variations at a hot spring in China

    Science.gov (United States)

    Yan, Rui; Woith, Heiko; Wang, Rongjiang; Wang, Guangcai

    2017-04-01

    Radon concentration is monitored continuously in mainland China by China Earthquake Administration (CEA) for the purpose of earthquake prediction. An almost gap-free radon record of nearly 40 years (from April 1976 to December 2015) of monitoring of water-dissolved radon at the hot spring site of BangLazhang (BLZ), Southwestern China is analysed. The length of the time series allows the investigation of long-term periodicities of radon. Ancillary observation data, i.e. water temperature, spring discharge rate, barometric pressure, combined with regional rainfall, galactic cosmic ray (as a proxy for solar activity) and regional seismicity are complemented for the same period to identify potentially influencing factors controlling the changes of radon. The long-term variations in radon concentration and ancillary observation data are studied by using the continuous Wavelet Power Spectrum (WPS), Wavelet Coherence (WTC), and Partial Wavelet Coherence (PWC) methods. The results of WPSs and WTCs show that the long-periodic radon concentration is characterized by a significant decadal cycle, matching well with the concurrent periodicity in water temperature, spring discharge rate, and galactic cosmic ray. The analysis of PWCs among radon, discharge rate, water temperature, and galactic cosmic ray reveals that the 11-year solar cycle might influence radon, water temperature, and spring discharge, though a direct physical link between the solar activity and the monitored parameters seems unlikely. Moreover, PWCs of radon, discharge rate and water temperature suggests that water temperature variations explain most of the coherent variability of radon and the discharge rate. Possible mechanisms are discussed. We tentatively propose that the multi-year periodic variations in radon concentration are mainly explained by variations of water temperature and/or spring discharge, which are modified and inter-modulated by earthquakes and decadal variations of unknown origin.

  1. Publications about Radon

    Science.gov (United States)

    There is no known safe level of exposure to radon. EPA strongly recommends that you fix your home if your test shows 4 picocuries (pCi/L) or more. These publications and resources will provide you with the information you need to fix your home.

  2. What Is Radon?

    Science.gov (United States)

    ... in both cigarette smoke and radon. In some animals, the risk of certain other cancers was also increased. In lab studies using human ... cancer grow is called a carcinogen .) The American Cancer Society looks to these ... laboratory, animal, and human research studies. Based on animal and ...

  3. The Chemistry of Radon

    Science.gov (United States)

    Avrorin, V. V.; Krasikova, R. N.; Nefedov, V. D.; Toropova, M. A.

    1982-01-01

    We shall review the discovery of this element, studies of its chemical nature, and modern ideas on its chemical and physical properties. Possible chemical and nuclear-chemical methods of synthesising new radon compounds and of determining their properties and their identity will be discussed, using information published up to May 1980. 121 references.

  4. Environmental radon studies in Mexico.

    Science.gov (United States)

    Segovia, N; Gaso, M I; Armienta, M A

    2007-04-01

    Radon has been determined in soil, groundwater, and air in Mexico, both indoors and outdoors, as part of geophysical studies and to estimate effective doses as a result of radon exposure. Detection of radon has mainly been performed with solid-state nuclear track detectors (SSNTD) and, occasionally, with active detection devices based on silicon detectors or ionization chambers. The liquid scintillation technique, also, has been used for determination of radon in groundwater. The adjusted geometric mean indoor radon concentration (74 Bq m-3) in urban developments, for example Mexico City, is higher than the worldwide median concentration of radon in dwellings. In some regions, particularly hilly regions of Mexico where air pollution is high, radon concentrations are higher than action levels and the effective dose for the general population has increased. Higher soil radon levels have been found in the uranium mining areas in the northern part of the country. Groundwater radon levels are, in general, low. Soil-air radon contributing to indoor atmospheres and air pollution is the main source of increased exposure of the population.

  5. A simple model for the assessment of indoor radionuclide Pb-210 surface contamination due to the presence of radon

    Directory of Open Access Journals (Sweden)

    Mrđa Dušan S.

    2013-01-01

    Full Text Available The presented, very simplified model provides a possibility for estimation of surface Pb-210 activity, depending on the changes of Rn-222 concentration during the long-term radon presence inside the closed room. This can be useful for retrospective assessment of the average indoor radon concentration for certain historical period, based on the surface contamination by the radionuclide Pb-210 in a closed or poorly ventilated room over a long period of time. However, the surface Pb-210 contamination depends on the pattern of radon concentration changes, and in this model is supposed that the change of indoor radon concentration, which periodically enters the room, is affected only by the radioactive decay and the inserted amount of radon in each entry. So, each radon entry can be comprehended as a “net amount” of radon, or excess which remains inside the room due to radon’s periodical in-out flow. It is shown, that under the conditions of the model, the achieved average value of radon concentration of 275 Bq/m3, implies that the saturated surface contamination by the Pb-210 of 160 Bq/m2 after approximately 150 years. [Projekat Ministarstva nauke Republike Srbije, br. 171002: Nuclear Methods Investigations of Rare Processes and Cosmic Rays i br. 43002: Biosensing Technologies and Global System for Continuous Research and Integrated Management of ecosystems

  6. The NIST Primary Radon-222 Measurement System

    OpenAIRE

    Collé, R.; Hutchinson, J. M. R.; Unterweger, M. P.

    1990-01-01

    Within the United States, the national standard for radon measurements is embodied in a primary radon measurement system that has been maintained for over 50 years to accurately measure radon (222Rn) against international and national radium (226Ra) standards. In turn, all of the radon measurements made at the National Institute of Standards and Technology (NIST) and the radon transfer calibration standards and calibration services provided by NIST are directly related to this national radon ...

  7. Tracing and quantifying groundwater inflow into lakes using radon-222

    Directory of Open Access Journals (Sweden)

    T. Kluge

    2007-06-01

    Full Text Available Due to its high activities in groundwater, the radionuclide 222Rn is a sensitive natural tracer to detect and quantify groundwater inflow into lakes, provided the comparatively low activities in the lakes can be measured accurately. Here we present a simple method for radon measurements in the low-level range down to 3 Bq m−3, appropriate for groundwater-influenced lakes, together with a concept to derive inflow rates from the radon budget in lakes. The analytical method is based on a commercially available radon detector and combines the advantages of established procedures with regard to efficient sampling and sensitive analysis. Large volume (12 l water samples are taken in the field and analyzed in the laboratory by equilibration with a closed air loop and alpha spectrometry of radon in the gas phase. After successful laboratory tests, the method has been applied to a small dredging lake without surface in- or outflow in order to estimate the groundwater contribution to the hydrological budget. The inflow rate calculated from a 222Rn balance for the lake is around 530 m3 per day, which is comparable to the results of previous studies. In addition to the inflow rate, the vertical and horizontal radon distribution in the lake provides information on the spatial distribution of groundwater inflow to the lake. The simple measurement and sampling technique encourages further use of radon to examine groundwater-lake interaction.

  8. Radon and lung cancer; Radon et cancer du poumon

    Energy Technology Data Exchange (ETDEWEB)

    Baysson, H; Billon, S.; Catelinois, O.; Gambard, J.P.; Laurier, D.; Rogel, A.; Tirmarche, M

    2004-12-01

    Radon is a natural radioactive gas that tends to accumulate in indoor environments; its concentration is highest in areas with granite sub-soils. Epidemiologic studies of uranium miners and animal data demonstrate the radon inhalation increases the risk of lung cancer. The objective of this paper is to present the available data on the French population's exposure to radon and the current epidemiologic knowledge of its effects, from cohort studies of uranium miners and indoor radon case-control studies.

  9. Radon as a natural geochemical tracer for study of groundwater discharge into lakes

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Axel

    2008-06-27

    In the presented work the suitability of the naturally occurring radioactive noble gas isotope radon-222 for qualitative and quantitative description of groundwater discharge into lakes was studied. Basis of these investigations was the development of two innovative techniques for the on-site determination of radon in water. In the ex-situ radon measurement procedure, water from the source concerned is taken up in an exchange cell used for this purpose. Inside this cell, the radon dissolved in water is transferred via diffusion into a closed counter-flow of air and subsequently detected by a radon-in-air monitor. Where the in-situ radon determination is concerned, a module composed of a semipermeable membrane is introduced into a water column. Subsequently, the radon dissolved in the water body diffuses through the membrane into the corresponding air flow, by means of which it is transferred into a radon-in-air monitor and is detected. Combination of the developed mobile radon extraction techniques with a suitable and portable radon monitor allow the detection of radon-222 with sufficient accuracy (smaller 20 %) in groundwater as well as in surface waters, i.e., within a broad range of concentrations. Radon-222 was subsequently used to characterize groundwater discharge into a meromictic and a dimictic lake, i.e. two types of lake basically distinct from each other with respect to their water circulation properties were investigated. The use of the noble gas isotope radon-222 as a geochemical tracer makes the application of on-site detection techniques possible and that this in turn permits a rapid, reliable, and cost-effective assessment of groundwater discharge rates into lake water bodies.

  10. Legal issues in radon affairs

    Energy Technology Data Exchange (ETDEWEB)

    Massuelle, M.H. [Inst. de Protection et de Surete Nucleaire, Fontenay aux Roses (France)

    1999-12-01

    In France, it was only recently that cases related to high radon concentrations in dwellings received substantial publicity. This irruption of radon as a public health issue came with the general progress of scientific knowledge and the availability of a research capacity in France able to develop expertise. We are interested here in the legal implications of issues that arise from the lag between the activity of expertsand the regulatory activity in the domain of radon. We use the term expertise very broadly, to cover the practical application of research findings, the relation of the researchers with the community, and finally the acts by which experts provide their knowledge to the community. We first examine the course by which science developed the radon issue and the way they organized to move from research to expertise; here we try to characterize the various needs for radon expertise. We then discuss the legal difficulties associated with radon expertise.

  11. Radon mapping strategies in Austria.

    Science.gov (United States)

    Gruber, V; Ringer, W; Wurm, G; Friedmann, H

    2015-11-01

    According to current European and international recommendations (e.g. by IAEA, WHO and European Union), countries shall identify high radon areas. In Austria, this task was initiated already in the early 1990s, which yielded the first Austrian Radon Potential Map. This map is still in use, updated with recent indoor radon data in 2012. The map is based on radon gas measurements in randomly selected dwellings, normalised to a standard situation. To meet the current (legal) requirements, uncertainties in the existing Austrian radon map should be reduced. A new indoor radon survey with a different sampling strategy was started, and possible mapping methods are studied and tested. In this paper, the methodology for the existing map as well as the planned strategies to improve this map is discussed.

  12. Legal issues in radon affairs

    Energy Technology Data Exchange (ETDEWEB)

    Massuelle, M.H. [Inst. de Protection et de Surete Nucleaire, Fontenay aux Roses (France)

    1999-12-01

    In France, it was only recently that cases related to high radon concentrations in dwellings received substantial publicity. This irruption of radon as a public health issue came with the general progress of scientific knowledge and the availability of a research capacity in France able to develop expertise. We are interested here in the legal implications of issues that arise from the lag between the activity of expertsand the regulatory activity in the domain of radon. We use the term expertise very broadly, to cover the practical application of research findings, the relation of the researchers with the community, and finally the acts by which experts provide their knowledge to the community. We first examine the course by which science developed the radon issue and the way they organized to move from research to expertise; here we try to characterize the various needs for radon expertise. We then discuss the legal difficulties associated with radon expertise.

  13. Fractal and Chaos Analysis for Dynamics of Radon Exhalation from Uranium Mill Tailings

    Science.gov (United States)

    Li, Yongmei; Tan, Wanyu; Tan, Kaixuan; Liu, Zehua; Xie, Yanshi

    2016-08-01

    Tailings from mining and milling of uranium ores potentially are large volumes of low-level radioactive materials. A typical environmental problem associated with uranium tailings is radon exhalation, which can significantly pose risks to environment and human health. In order to reduce these risks, it is essential to study the dynamical nature and underlying mechanism of radon exhalation from uranium mill tailings. This motivates the conduction of this study, which is based on the fractal and chaotic methods (e.g. calculating the Hurst exponent, Lyapunov exponent and correlation dimension) and laboratory experiments of the radon exhalation rates. The experimental results show that the radon exhalation rate from uranium mill tailings is highly oscillated. In addition, the nonlinear analyses of the time series of radon exhalation rate demonstrate the following points: (1) the value of Hurst exponent much larger than 0.5 indicates non-random behavior of the radon time series; (2) the positive Lyapunov exponent and non-integer correlation dimension of the time series imply that the radon exhalation from uranium tailings is a chaotic dynamical process; (3) the required minimum number of variables should be five to describe the time evolution of radon exhalation. Therefore, it can be concluded that the internal factors, including heterogeneous distribution of radium, and randomness of radium decay, as well as the fractal characteristics of the tailings, can result in the chaotic evolution of radon exhalation from the tailings.

  14. ERRICCA radon model intercomparison exercise

    DEFF Research Database (Denmark)

    Andersen, C.E.; Albarracín, D.; Csige, I.

    1999-01-01

    Numerical models based on finite-difference or finite-element methods are used by various research groups in studies of radon-222 transport through soil and building materials. Applications range from design of radon remediation systems to morefundamental studies of radon transport. To ascertain ......, still remain. All in all, it seems that the exercise has served its purpose and stimulated improvements relating to the quality of numerical modelling of radon transport. To maintain a high quality of modelling, it is recommendedthat additional exercises are carried out....

  15. An Exploration of Factors Reducing Recidivism Rates of Formerly Incarcerated Youth with Disabilities Participating in a Re-Entry Intervention

    Science.gov (United States)

    Unruh, Deanne K.; Gau, Jeff M.; Waintrup, Miriam G.

    2009-01-01

    Juvenile offenders are costly to our society in terms of the monetary and social expenditures from the legal system, victims' person costs, and incarceration. The re-entry and community reintegration outcomes for formerly incarcerated youth with a disabling condition are bleak compared to peers without disabilities. In this study, we examined the…

  16. An Exploration of Factors Reducing Recidivism Rates of Formerly Incarcerated Youth with Disabilities Participating in a Re-Entry Intervention

    Science.gov (United States)

    Unruh, Deanne K.; Gau, Jeff M.; Waintrup, Miriam G.

    2009-01-01

    Juvenile offenders are costly to our society in terms of the monetary and social expenditures from the legal system, victims' person costs, and incarceration. The re-entry and community reintegration outcomes for formerly incarcerated youth with a disabling condition are bleak compared to peers without disabilities. In this study, we examined the…

  17. Functional test of a Radon sensor based on a high-resistivity-silicon BJT detector

    Energy Technology Data Exchange (ETDEWEB)

    Dalla Betta, G.F., E-mail: dallabe@disi.unitn.it [DISI, Università di Trento, and INFN Trento, Trento (Italy); RSens srl, Modena (Italy); Tyzhnevyi, V. [DISI, Università di Trento, and INFN Trento, Trento (Italy); Bosi, A.; Bonaiuti, M. [RSens srl, Modena (Italy); Angelini, C.; Batignani, G.; Bettarini, S.; Bosi, F.; Forti, F.; Giorgi, M.A.; Morsani, F.; Paoloni, E.; Rizzo, G.; Walsh, J. [Dipartimento di Fisica, Università di Pisa, and INFN Pisa, Pisa (Italy); Lusiani, A. [Scuola Normale Superiore and INFN Pisa, Pisa (Italy); Ciolini, R.; Curzio, G.; D' Errico, F.; Del Gratta, A. [Dipartimento di Ingegneria Meccanica, Nucleare e della Produzione, Università di Pisa, Pisa (Italy); Bidinelli, L. [En and tech, Università di Modena e Reggio Emilia, Reggio Emilia (Italy); RSens srl, Modena (Italy); and others

    2013-08-01

    A battery-powered, wireless Radon sensor has been designed and realized using a BJT, fabricated on a high-resistivity-silicon substrate, as a radiation detector. Radon daughters are electrostatically collected on the detector surface. Thanks to the BJT internal amplification, real-time α particle detection is possible using simple readout electronics, which records the particle arrival time and charge. Functional tests at known Radon concentrations, demonstrated a sensitivity up to 4.9 cph/(100 Bq/m{sup 3}) and a count rate of 0.05 cph at nominally-zero Radon concentration.

  18. Radon - environmental pollutant from underground. Radon - Umweltgift aus dem Erdreich

    Energy Technology Data Exchange (ETDEWEB)

    Obertreis, R.

    1988-01-01

    Radon is responsible for about 50% of the natural radiation load of 200 mrem/a in the Federal Republic of Germany. This implies that approximately 190.000 households with about 600.000 citizens of the Federal Republic face an increased risk of lung cancer. Hints are given as to the reduction of radon values in cellars and living rooms. (DG).

  19. Residential radon and lung cancer incidence in a Danish cohort

    Energy Technology Data Exchange (ETDEWEB)

    Braeuner, Elvira V., E-mail: ole@cancer.dk [Diet, Genes and Environment, Danish Cancer Society Research Centre, Copenhagen (Denmark); Danish Building Research Institute, Aalborg University (Denmark); Andersen, Claus E. [Center for Nuclear Technologies, Radiation Research Division, Riso National Laboratory for Sustainable Energy, Technical University of Denmark, Roskilde (Denmark); Sorensen, Mette [Diet, Genes and Environment, Danish Cancer Society Research Centre, Copenhagen (Denmark); Jovanovic Andersen, Zorana [Diet, Genes and Environment, Danish Cancer Society Research Centre, Copenhagen (Denmark); Center for Epidemiology Screening, Department of Public Health, University of Copenhagen (Denmark); Gravesen, Peter [Geological Survey of Denmark and Greenland, Copenhagen (Denmark); Ulbak, Kaare [National Institute of Radiation Protection, Herlev (Denmark); Hertel, Ole [Department of Environmental Science, Aarhus University, Aarhus (Denmark); Pedersen, Camilla [Diet, Genes and Environment, Danish Cancer Society Research Centre, Copenhagen (Denmark); Overvad, Kim [Department of Epidemiology, School of Public Health, Aarhus University, Aarhus (Denmark); Tjonneland, Anne; Raaschou-Nielsen, Ole [Diet, Genes and Environment, Danish Cancer Society Research Centre, Copenhagen (Denmark)

    2012-10-15

    High-level occupational radon exposure is an established risk factor for lung cancer. We assessed the long-term association between residential radon and lung cancer risk using a prospective Danish cohort using 57,053 persons recruited during 1993-1997. We followed each cohort member for cancer occurrence until 27 June 2006, identifying 589 lung cancer cases. We traced residential addresses from 1 January 1971 until 27 June 2006 and calculated radon at each of these addresses using information from central databases regarding geology and house construction. Cox proportional hazards models were used to estimate incidence rate ratios (IRR) and 95% confidence intervals (CI) for lung cancer risk associated with residential radon exposure with and without adjustment for sex, smoking variables, education, socio-economic status, occupation, body mass index, air pollution and consumption of fruit and alcohol. Potential effect modification by sex, traffic-related air pollution and environmental tobacco smoke was assessed. Median estimated radon was 35.8 Bq/m{sup 3}. The adjusted IRR for lung cancer was 1.04 (95% CI: 0.69-1.56) in association with a 100 Bq/m{sup 3} higher radon concentration and 1.67 (95% CI: 0.69-4.04) among non-smokers. We found no evidence of effect modification. We find a positive association between radon and lung cancer risk consistent with previous studies but the role of chance cannot be excluded as these associations were not statistically significant. Our results provide valuable information at the low-level radon dose range.

  20. Residential radon and lung cancer incidence in a Danish cohort.

    Science.gov (United States)

    Bräuner, Elvira V; Andersen, Claus E; Sørensen, Mette; Andersen, Zorana Jovanovic; Gravesen, Peter; Ulbak, Kaare; Hertel, Ole; Pedersen, Camilla; Overvad, Kim; Tjønneland, Anne; Raaschou-Nielsen, Ole

    2012-10-01

    High-level occupational radon exposure is an established risk factor for lung cancer. We assessed the long-term association between residential radon and lung cancer risk using a prospective Danish cohort using 57,053 persons recruited during 1993-1997. We followed each cohort member for cancer occurrence until 27 June 2006, identifying 589 lung cancer cases. We traced residential addresses from 1 January 1971 until 27 June 2006 and calculated radon at each of these addresses using information from central databases regarding geology and house construction. Cox proportional hazards models were used to estimate incidence rate ratios (IRR) and 95% confidence intervals (CI) for lung cancer risk associated with residential radon exposure with and without adjustment for sex, smoking variables, education, socio-economic status, occupation, body mass index, air pollution and consumption of fruit and alcohol. Potential effect modification by sex, traffic-related air pollution and environmental tobacco smoke was assessed. Median estimated radon was 35.8 Bq/m(3). The adjusted IRR for lung cancer was 1.04 (95% CI: 0.69-1.56) in association with a 100 Bq/m(3) higher radon concentration and 1.67 (95% CI: 0.69-4.04) among non-smokers. We found no evidence of effect modification. We find a positive association between radon and lung cancer risk consistent with previous studies but the role of chance cannot be excluded as these associations were not statistically significant. Our results provide valuable information at the low-level radon dose range.

  1. A survey of radon concentrations in a monazite rich region

    Energy Technology Data Exchange (ETDEWEB)

    Magalhaes, Maisa H.; Melo, Vicente de Paula; Lauria, Dejanira C. [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)]. E-mail: maisa@ird.gov.br

    2005-03-15

    This paper concerns to radon concentration in indoor and outdoor environments in a monazite rich regional and compares the obtained data with those from another Brazilian high radiation area, Pocos de Caldas region, and the radon concentration in a normal background radiation area, Rio de Janeiro city. The survey was performed by integrated measurements of radon in a period of three months in indoor and outdoor environments in Buena village, using a Solid State Nuclear Track Detectors Technique (SSNTD). The radon gas concentration in dwellings ranged from 28 Bq.m{sup -3} to 400 Bq.m{sup -3} and from 32 Bq.m{sup -3} to 300 Bq.m{sup -3} in outdoor environment. The high ventilation rate in the houses can explain the similar concentrations found indoor and outdoor. The median radon concentration in Buena dwellings (94 Bq.m{sup -3}) is twice higher than that one one of Rio de Janeiro city (40 Bq.m{sup -3}), whereas Pocos de Caldas region is twice higher (204 Bq.m{sup -3}) than Buena. The value of the median of radon outdoor concentration in Pocos de Caldas (130 Bq.m{sup -3}) is one and half higher than the Buena (89 Bq.m{sup -3}). (author)

  2. MEASUREMENT OF RADON, THORON AND THEIR PROGENY CONCENTRATIONS IN THE DWELLINGS OF PAURI GARHWAL, UTTARAKHAND, INDIA.

    Science.gov (United States)

    Joshi, Veena; Dutt, Sanjay; Yadav, Manjulata; Mishra, Rosaline; Ramola, R C

    2016-10-01

    It is well known that inhalation of radon, thoron and their progeny contributes more than 50 % of natural background radiation dose to human being. The time-integrated passive measurements of radon, thoron and their progeny concentrations were carried out in the dwellings of Pauri Garhwal, Uttarakhand, India. The measurements of radon and thoron concentrations were performed by LR-115 detector-based single-entry pin-hole dosemeter, while for the measurement of progeny concentrations, LR-115 deposition-based direct radon and thoron progeny sensors technique was used. The experimental techniques and results obtained are discussed in detail. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. A primary standard source of radon-222 based on the HPGe detector.

    Science.gov (United States)

    Mostafa, M Y A; Vasyanovich, M; Zhukovsky, M

    2017-02-01

    The present paper describes the prototype of a calibration standard system for radon concentrations to be used in establishing the traceability of radon concentration measurements in dwellings. Radon gas was generated with a radium-226 solid source in a certified volume as a closed system. The activity of the radon that was released in the closed system was determined from the difference between the absolute activity of the standard radium solid source and the residual radon decay products ((214)Bi or (214)Pb). A high-purity germanium (HPGe) detector, which was calibrated using gamma reference standard sources, was used to measure the activity of a radium solid source and radon decay products ((214)Bi or (214)Pb). The emanation factor of the (226)Ra source was controlled online with the HPGe detector. Radon activity was achieved at ~1500±45Bq from the radium source at 3.95±0.2kBq under equilibrium conditions. After this activity, the radon gas was transferred into the closed system producing radon activity concentrations of 31.1±0.3kBq/m(3). Systematic errors were found of less than 4% with a random error around 0.5%. The random error is generally associated with the estimation of the count rate of the measured radon progenies ((214)Po and (214)Po for alpha measurements or (214)Pb and (214)Bi for gamma measurements), but systematic errors are associated with the errors introduced by the instrumentation and measurement technique. The system that was developed has a high degree of accuracy and can be recommended as a national or regional prototype standard of radon activity concentration to calibrate different working radon measurement devices.

  4. APPLICATION OF RADON REDUCTION METHODS

    Science.gov (United States)

    The document is intended to aid homeowners and contractors in diagnosing and solving indoor radon problems. It will also be useful to State and Federal regulatory officials and many other persons who provide advice on the selection, design and operation of radon reduction methods...

  5. Indoor radon exposure and lung cancer: a review of ecological studies.

    Science.gov (United States)

    Yoon, Ji Young; Lee, Jung-Dong; Joo, So Won; Kang, Dae Ryong

    2016-01-01

    Lung cancer has high mortality and incidence rates. The leading causes of lung cancer are smoking and radon exposure. Indeed, the World Health Organization (WHO) has categorized radon as a carcinogenic substance causing lung cancer. Radon is a natural, radioactive substance; it is an inert gas that mainly exists in soil or rock. The gas decays into radioactive particles called radon progeny that can enter the human body through breathing. Upon entering the body, these radioactive elements release α-rays that affect lung tissue, causing lung cancer upon long-term exposure thereto. Epidemiological studies first outlined a high correlation between the incidence rate of lung cancer and exposure to radon progeny among miners in Europe. Thereafter, data and research on radon exposure and lung cancer incidence in homes have continued to accumulate. Many international studies have reported increases in the risk ratio of lung cancer when indoor radon concentrations inside the home are high. Although research into indoor radon concentrations and lung cancer incidence is actively conducted throughout North America and Europe, similar research is lacking in Korea. Recently, however, studies have begun to accumulate and report important data on indoor radon concentrations across the nation. In this study, we aimed to review domestic and foreign research into indoor radon concentrations and to outline correlations between indoor radon concentrations in homes and lung cancer incidence, as reported in ecological studies thereof. Herein, we noted large differences in radon concentrations between and within individual countries. For Korea, we observed tremendous differences in indoor radon concentrations according to region and year of study, even within the same region. In correlation analysis, lung cancer incidence was not found to be higher in areas with high indoor radon concentrations in Korea. Through our review, we identified a need to implement a greater variety of

  6. Variation with socioeconomic status of indoor radon levels in Great Britain: The less affluent have less radon.

    Science.gov (United States)

    Kendall, Gerald M; Miles, Jon C H; Rees, David; Wakeford, Richard; Bunch, Kathryn J; Vincent, Tim J; Little, Mark P

    2016-11-01

    We demonstrate a strong correlation between domestic radon levels and socio-economic status (SES) in Great Britain, so that radon levels in homes of people with lower SES are, on average, only about two thirds of those of the more affluent. This trend is apparent using small area measures of SES and also using individual social classes. The reasons for these differences are not known with certainty, but may be connected with greater underpressure in warmer and better-sealed dwellings. There is also a variation of indoor radon levels with the design of the house (detached, terraced, etc.). In part this is probably an effect of SES, but it appears to have other causes as well. Data from other countries are also reviewed, and broadly similar effects seen in the United States for SES, and in other European countries for detached vs other types of housing. Because of correlations with smoking, this tendency for the lower SES groups to experience lower radon levels may underlie the negative association between radon levels and lung cancer rates in a well-known ecological study based on US Counties. Those conducting epidemiological studies of radon should be alert for this effect and control adequately for SES. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Modern state of radon chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Avrorin, V.V.; Krasikova, R.N.; Nefedov, V.D.; Toropova, M.A. (Leningradskij Gosudarstvennyj Univ. (USSR))

    1982-01-01

    A review of works on radon chemistry published up to May, 1980, is presented. Physical properties of the element, are described as well as peculiarities in the field of its chemical investigations connected with unfavourable nuclear-physical characteristics of radon isotopes, with specificity of its electron structure. Characteristics of the known radon compounds, including impurity compounds, their stability, are given. Possible chemical and nuclear-chemical approaches to the solution of problems of synthesis, determination of properties, and identification of its new compounds are discussed. The advantage of using electron capture processes for radon compound synthesis, possibility to use nuclear reactions induced by accelerated elementary particles, are pointed out. Possible applications of radon compounds are considered.

  8. Modelling and experimental study of the behavior of radon and radon decay products in an enclosure. Application to houses; Modelisation et etude experimentale du comportement du radon et de ses descendants dans une enceinte confinee. Application a une habitation

    Energy Technology Data Exchange (ETDEWEB)

    Gouronnec, A.M.

    1995-02-03

    Since the eighties, more and more studies were performed about radon and its decay products in houses with one of the aim being the estimation of the dose received by their inhabitants. Then, the principal objective of this work is to describe the behaviour of radon and its decay products within a dwelling. In the first part to the report, a few definitions are given and data from literature give an idea of indoor radon and radon decay products activities and/or size distribution. Aspects of dosimetry are presented too. In the second part of the work, a mathematical model, called `PRADDO` of Physic of Radon and radon Decay products in Domestic environment is developed on the basis of the classical model written by Jacobi in 1972. On the one hand, it has to predict radon decay products activities in systems consisting in one or more enclosure(s), from radon activity and from ambient aerosol concentration and size distribution. On the other hand, one part of the model is assigned to study the influence of the entry model parameters variation on the calculated quantities. Then, in the third part of the work, two experimental studies are realised in order to compare measurements to modelization. The first experimentation is a laboratory work, made on the test bench ICARE from IPSN, and the second one consists in describing the basement of an occupied house from Brittany. In the two cases, the comparison between experiments and modelling shows a good agreement if particles are present in the air, but any conclusion is made when is no aerosol in the enclosure. (author). 158 refs., 81 figs., 42 tabs.

  9. Citizen's Guide to Radon: The Guide to Protecting Yourself and Your Family from Radon

    Science.gov (United States)

    ... Agency Search Search Radon Contact Us Share A Citizen's Guide to Radon: The Guide to Protecting Yourself ... EPA’s About PDF page to learn more. A Citizen's Guide to Radon - Revised December 2016 (PDF) (16 ...

  10. CONTRIBUTION OF RADON FLOWS AND RADON SOURCES TO THE RADON CONCENTRATION IN A DWELLING

    NARCIS (Netherlands)

    DEMEIJER, RJ; STOOP, P; PUT, LW

    1992-01-01

    In this paper a model is presented for analysis of the radon concentrations in a compartment in terms of contributions from transport by flows of air between compartments and from radon sources in the compartment. Measurements were made to study the effect of increased natural ventilation of the cra

  11. CONTRIBUTION OF RADON FLOWS AND RADON SOURCES TO THE RADON CONCENTRATION IN A DWELLING

    NARCIS (Netherlands)

    DEMEIJER, RJ; STOOP, P; PUT, LW

    1992-01-01

    In this paper a model is presented for analysis of the radon concentrations in a compartment in terms of contributions from transport by flows of air between compartments and from radon sources in the compartment. Measurements were made to study the effect of increased natural ventilation of the cra

  12. Development of radon {center_dot} thoron exhalation measuring system and its application

    Energy Technology Data Exchange (ETDEWEB)

    Saegusa, Jun; Yamasaki, Keizo; Yoshimoto, Takaaki; Okamoto, Kenichi; Tsujimoto, Tadashi [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst.; Shimo, Michikuni

    1995-02-01

    As representative methods to determine radon/thoron exhalation rate from the surface of ground, we have used `accumulation method`, `adsorption method` or `vertical profile method`. These methods, however, are complicated in their procedures and not always measure radon/thoron activities directly. To make up for these weakness, we developed a radon/thoron exhalation in-situ measuring system with large-sized ZnS(Ag) scintillator. This system is basically composed of, skirt part which covers the ground, scintillation detector (30cmx40cm), light guide, photomultiplier tube, digital ratemeter, recorder (hand-held computer) and printer. The nuclides which accumulate in the skirt and contribute to counts are {sup 222}Rn, {sup 218}Po, and {sup 214}Po in the U-series, {sup 220}Rn, {sup 216}Po, in the Th-series. Each count due to radon and thoron can be distinguished from the difference of half time. We can assess exhalation rates readily and speedy using the counts of alpha particles from these nuclides. The calibration of the system was performed by the comparison with the accumulation method or the `flow method`. We applied this system on the spot located at Tsuruga district of Fukui prefecture in Japan. Radon/thoron concentrations at this spot is very high. To investigate the source of radon we used this system and the PICO-RAD system, and the relation between radon concentrations and radon exhalation rates will be reported. (author).

  13. INDOOR RADON REDUCTION IN CRAWL-SPACE HOUSES: A REVIEW OF ALTERNATIVE APPROACHES

    Science.gov (United States)

    An analysis has been completed of the performance, mechanisms, and costs of alternative technologies for preventing radon entry into the living areas of houses having crawl-space foundations. Sub-membrane depressurization (SMD) is consistently the most effective technique, often ...

  14. INDOOR RADON REDUCTION IN CRAWL-SPACE HOUSES: A REVIEW OF ALTERNATIVE APPROACHES

    Science.gov (United States)

    An analysis has been completed of the performance, mechanisms, and costs of alternative technologies for preventing radon entry into the living areas of houses having crawl-space foundations. Sub-membrane depressurization (SMD) is consistently the most effective technique, often ...

  15. Uranium mill tailings and radon

    Energy Technology Data Exchange (ETDEWEB)

    Hanchey, L A

    1981-01-01

    The major health hazard from uranium mill tailings is presumed to be respiratory cancer resulting from the inhalation of radon daughter products. A review of studies on inhalation of radon and its daughters indicates that the hazard from the tailings is extremely small. If the assumptions used in the studies are correct, one or two people per year in the US may develop cancer as a result of radon exhaled from all the Uranium Mill Tailings Remedial Action Program sites. The remedial action should reduce the hazard from the tailings by a factor of about 100.

  16. Radon and thoron monitoring in the environment of Kumaun Himalayas: survey and outcomes

    Energy Technology Data Exchange (ETDEWEB)

    Ramola, R.C. E-mail: rcramola@sancharnet.in; Negi, M.S.; Choubey, V.M

    2005-07-01

    Monitoring of radon, thoron and their daughter products was carried out in houses of Kumaun Himalaya, India using LR-115 plastic track detectors. The measurements were made in residential houses from June 1999 to May 2000 at a height of 2.5 m from ground level using a twin chamber radon dosimeter. The twin chamber radon dosimeter can record the values of radon, thoron and their decay products separately. Maximum and minimum indoor radon and thoron concentrations were evaluated and activity concentrations of radon and thoron daughters were estimated. The resulting dose rates due to radon, thoron and their decay products varied from 0.04 to 1.89 {mu}Sv/h. A detailed analysis of the distribution of radon, thoron and their decay products inside the house is also reported. The observed dose rates inside the houses of Kumaun Himalaya were found to be lower than the ICRP recommended value of 200 Bq/m{sup 3} and thus are within safe limits.

  17. Application of thoron interference as a tool for simultaneous measurement of radon and thoron with a pulse ionisation chamber.

    Science.gov (United States)

    Tripathi, R M; Sumesh, C G; Vinod Kumar, A; Puranik, V D

    2013-07-01

    Pulse ionisation chamber (PIC)-based monitors measuring radioactive gas radon ((222)Rn) without energy discrimination will have interference due to thoron ((220)Rn) present in the atmosphere. A technique has been developed to use this property of interference for simultaneous measurement of radon and thoron gas. These monitors work on the principle of counting of gross alphas emitted from radon and its progeny. A theoretical model has been developed for the variation of thoron sensitivity with respect to the flow rate of gas through the monitor. The thoron sensitivity of the monitor is found to vary with the flow rate of gas through the monitor. Using this sensitivity, the sampling procedure has been developed and verified for simultaneous measurement of radon and thoron. The PIC-measured radon and thoron concentration using this procedure agrees well with those measured by using standard radon and thoron discriminating monitor.

  18. Guidance on Radon Resistant Construction and Radon Mitigation

    Science.gov (United States)

    This Unnumbered Letter regarding radon gas mitigation applies to all housing and community facilities, low-rise buildings and dwellings for the mentioned programs. Its intention is to guide staff to best serve our borrowers and protect their health.

  19. Geohydrological control on radon availability in groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, Yogesh; Prasad, Ganesh [Department of Physics, H. N. B. Garhwal University, Badshahi Thaul Campus, Tehri Garhwal 249 199 (India); Choubey, V.M. [Wadia Institute of Himalayan Geology, Dehradun 248001 (India); Ramola, R.C. [Department of Physics, H. N. B. Garhwal University, Badshahi Thaul Campus, Tehri Garhwal 249 199 (India)], E-mail: rcramola@gmail.com

    2009-01-15

    The radon content in groundwater sources depends on the radium concentration in the rock of the aquifer. Radon was measured in water in many parts of the world, mostly for the risk assessment due to consumption of drinking water. The exposure to radon through drinking water is largely by inhalation and ingestion. Airborne radon can be released during normal household activities and can pose a greater potential health risk than radon ingested with water. Transport of radon through soil and bedrock by water depends mainly on the percolation of water through the pores and along fractured planes of bedrock. In this study, radon concentration in springs and hand pumps of Kumaun and Garhwal Himalaya, India was measured using radon emanometry technique. The study shows that radon concentration in springs and hand pumps is controlled by geohydrological characteristics, which in turn is also governed by tectonic processes.

  20. Determination of Geogenic Radon Potential (GEORP) in Pocos de Caldas - Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Marcelo T.; Silva, Nivaldo C.; Guerrero, Eder T.Z., E-mail: apoc@cnen.gov.br [Comissao Nacional de Energia Nuclear (LAPOC/CNEN-MG), Pocos de Caldas, MG (Brazil). Laboratorio de Pocos de Caldas; Navarro, Fabiano C.; Oliveira, Rodrigo J., E-mail: campus.pcaldas@unifal-mg.edu.br [Universidade Federal de Alfenas (UNIFAL), Pocos de Caldas, MG (Brazil). Instituto de Ciencia e Tecnologia

    2015-07-01

    The noble gas {sup 222}Rn is a radioactive isotope of the element radon that can be found in atmospheric air, among others gases, at broad range of concentration. This isotope decays from {sup 238}U series, which is normally found in soil and rocks, especially in fault zones and fractures, where uranium presents greater mobility. The atmospheric high concentration of this gas is frequently related to confined environments including dwellings and other buildings with low air ventilation rate. Inhalation of this gas is acknowledged by international agencies such as WHO, as the second leading cause of lung cancer, being the first among the non-smoker population. That is the reason why, some countries have defined their regions with high radon potential where it is justified the implementation of construction techniques to reduce indoor radon concentration. This paper uses the Geogenic Radon Potential (GEORP) approach aiming to identify radon prone areas in the urban zone of Pocos de Caldas - Brazil. GEORP encompasses simultaneous measurements of the soil gas permeability and radon soil gas concentration. This investigation was accomplished using RADON-JOK permeameter, a device specially developed for in situ soil gas permeability, and ALPHAGUARD, a professional radon monitor. A large variability was observed in both radon soil concentration and soil gas permeability. Some areas have presented low gas permeability due to clayey soil characteristics thus medium GEORP. The majority of the points in this paper have been identified with high radon soil gas concentration showing values that reached 1,000 kBq.m{sup -3} and presenting high radon index. (author)

  1. Radon emanation fractions from concretes containing fly ash and metakaolin

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Lange, Sarah C., E-mail: taylorlanges@utexas.edu [Department of Civil, Architectural, and Environmental Engineering, 1 University Station C1748, The University of Texas at Austin, Austin, TX 78712 (United States); Juenger, Maria C.G. [Department of Civil, Architectural, and Environmental Engineering, 1 University Station C1748, The University of Texas at Austin, Austin, TX 78712 (United States); Siegel, Jeffrey A. [Department of Civil, Architectural, and Environmental Engineering, 1 University Station C1748, The University of Texas at Austin, Austin, TX 78712 (United States); Department of Civil Engineering, 35 St. George Street, University of Toronto, Toronto, ON, M5S 1A4 (Canada)

    2014-01-01

    Radon ({sup 222}Rn) and progenies emanate from soil and building components and can create an indoor air quality hazard. In this study, nine concrete constituents, including the supplementary cementitious materials (SCMs) fly ash and metakaolin, were used to create eleven different concrete mixtures. We investigated the effect of constituent radium specific activity, radon effective activity and emanation fraction on the concrete emanation fraction and the radon exhalation rate. Given the serious health effects associated with radionuclide exposure, experimental results were coupled with Monte Carlo simulations to demonstrate predictive differences in the indoor radon concentration due to concrete mixture design. The results from this study show that, on average, fly ash constituents possessed radium specific activities ranging from 100 Bq/kg to 200 Bq/kg and emanation fractions ranging from 1.1% to 2.5%. The lowest emitting concrete mixture containing fly ash resulted in a 3.4% reduction in the concrete emanation fraction, owing to the relatively low emanation that exists when fly ash is part of concrete. On average, the metakaolin constituents contained radium specific activities ranging from 67 Bq/kg to 600 Bq/kg and emanation fractions ranging from 8.4% to 15.5%, and changed the total concrete emanation fraction by roughly ± 5% relative to control samples. The results from this study suggest that SCMs can reduce indoor radon exposure from concrete, contingent upon SCM radionucleotide content and emanation fraction. Lastly, the experimental results provide SCM-specific concrete emanation fractions for indoor radon exposure modeling. - Highlights: • Fly ash or metakaolin SCMs can neutralize or reduce concrete emanation fractions. • The specific activity of constituents is a poor predictor of the concrete emanation fraction. • Exhalation from fly ash concretes represents a small fraction of the total indoor radon concentration.

  2. Radon risk in the house; Il rischio radon nelle abitazioni

    Energy Technology Data Exchange (ETDEWEB)

    Bressa, G. [Padua Univ., Padua (Italy). Dipt. di Farmacologia e Anestesiologia, Lab. di Tossicologia

    2001-04-01

    Radon was discovered in 1900, but its potential dangerousness for man was fully understood only in 1950. Being a radioactive natural gas - and therefore particularly dangerous - radon results from the long decay chain of radionuclides, such as thorium and radium. Some igneous rocks (granite, tufa and lava) as well as coal are considered to be the main sources of this radionuclide. A number of epidemiologic studies have shown the carcinogenicity of this element, particularly among miners and workers subjected to high level exposure in confined spaces such as basements, garages, cellars, etc. There are, however, some techniques to remove radon in order to reduce exposure to minimum values. [Italian] Il radon fu scoperto nel 1900, ma solo nel 1950 si comprese la sua potenziale pericolosita' per l'uomo. Il radon e' particolarmente pericoloso essendo un gas naturale radioattivo. Esso proviene dalla lunga catena di decadimento di radionuclidi come il torio e di radio. Sorgenti di tale radionuclide sono da considerarsi principalmente alcune rocce ignee (graniti, tufi e lave) e il carbone. Diversi studi epidemiologici hanno evidenziato la cancerogenicita' di tale elemento, specie tra i minatori e soggetti esposti ad alti livelli in ambienti confinati quali scantinati, garage sotterranei, ecc.. Esistono comunque tecniche di intervento per la rimozione del gas radon in modo tale da ridurre l'esposizione a valori minimi.

  3. Radon Like atmospheric pollutant; El gas Radon como contaminante atmosferico

    Energy Technology Data Exchange (ETDEWEB)

    Quindos Poncela, L. S.; Sainz Fernandez, C.; Quindos Lopez, L.; Fuente Merino, I.; Arteche, J. L.

    2008-07-01

    In this work different aspects about the problem of the radon in dwellings are approached. This gas of natural origin is virtually present in all the soils in the earths crust due to the presence of uranium and radium in the composition of them. Depending on architectural factors and of occupancy habits of the house, high concentrations of this gas can be reached indoors. In these situations, there is a quantifiable increment of the risk of developing lung cancer in the inhabitants of the housing. In the last years the methodological improvements in the realization of epidemiologic studies have led to the obtaining of scientific evidence about the relationship between the presence of indoor radon and the risk of lung cancer. This relationship fund years ago in workers of uranium mines, has been corroborated in the case of the residential radon by the light of several recent meta-analysis performed on groups of epidemiologic studies. More than 4000 radon measurements have been carried out in spain during the las 25 years. A summary of the results obtained from the main national radon surveys are also presented, as well as the criteria recently established by the Spanish Nuclear Safety Council concerning radon action levels in dwellings and workplaces. (Author) 18 refs.

  4. Radium concentration and radon exhalation measurements using LR-115 type II plastic track detectors

    Science.gov (United States)

    Azam, A.; Naqvi, A. H.; Srivastava, D. S.

    1995-12-01

    The “Track-Etch” technique using LR-115 type II plastic track detectors has been employed for measuring the radium content and radon exhalation rates of different types of building materials. Among the eight materials studied it was found that fine aggregates (Badarpur) show the greatest radon exhalation, whereas portland cement produces minimum values of radon exhalation. Experimentally-measured values of the “effective radium content” (in Bq kg-1) their “mass exhalation” rates (in Bq kg-1d-1) and “surface exhalation” rates (in Bq m-2d-1 ) are reported.

  5. Radon-thoron measurements in air and soil from some districts of northern part of India

    Directory of Open Access Journals (Sweden)

    Mann Nisha

    2015-01-01

    Full Text Available Radon, thoron and their progenies in the indoor environment are considered as one of the health hazards. The alpha emitting nature of these gases made it possible to detect in indoor environment with the help of nuclear track detector techniques. The soil is the main source of indoor radon as it contains varying amounts of uranium and thorium. Thus the exhalation of radon from soil and its environmental activity needs to be studied. In the present study, the measurement of the indoor radon-thoron from the indoor environment and exhalation from soil are carried out using solid state nuclear track detector technique from Sirsa and Bhiwani districts of northern part of India. The canister technique was used to measure the radon ex- halation rate from the soil samples collected from the study area and pinhole based radon-thoron dosimeters were used to measure indoor radon and thoron concentration. The results show that indoor radon concentration varied from 9 to 28 Bq/m3, with an average of 18.9 Bq/m3 and from 5 to 21 Bq/m3, with an average of 13.8 Bq/m3, for Bhiwani and Sirsa, respectively. Similarly, thoron concentration varied from 14 to 48 Bq/m3, with average of 28.9 Bq/m3 and 27 to 54 Bq/m3, with the average of 39.0 Bq/m3, for Bhiwani and Sirsa, respectively. The mass exhalation rates from soil samples were also measured, to estimate their contribution to indoor radon. A correlation study was carried out between soil exhalation rates and indoor radon concentration.

  6. VENTILATION INFLUENCE UPON INDOOR AIR RADON LEVEL

    Institute of Scientific and Technical Information of China (English)

    田德源

    1995-01-01

    Levels of indoor radon in air are studied by a continuous electrostatic radon monitor under normal living conditions to evaluate the influence of air conditioned ventilation on indoor air radon level.Results show that the indoor air radon concentrations are not much more than those without household conditioner living condition.although using household conditioner requires a sealed room which should lead to a higher radon level.Turning on air conditioner helps lower indoor radon level.Therefore.the total indoor air Rn levels are normal>ventilation>exhaust or indraft> exhaust plus indraft.

  7. Evolution of radon dose evaluation

    Directory of Open Access Journals (Sweden)

    Fujimoto Kenzo

    2004-01-01

    Full Text Available The historical change of radon dose evaluation is reviewed based on the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR reports. Since 1955, radon has been recognized as one of the important sources of exposure of the general public. However, it was not really understood that radon is the largest dose contributor until 1977 when a new concept of effective dose equivalent was introduced by International Commission on Radiological Protection. In 1982, the dose concept was also adapted by UNSCEAR and evaluated per caput dose from natural radiation. Many researches have been carried out since then. However, lots of questions have remained open in radon problems, such as the radiation weighting factor of 20 for alpha rays and the large discrepancy of risk estimation among dosimetric and epidemiological approaches.

  8. A Physician's Guide to Radon

    Science.gov (United States)

    This booklet has been developed for physicians by the U.S. Environmental Protection Agency in consultation with the American Medical Association (AMA). Its purpose is to enlist physicians in the national effort to inform the American public about radon.

  9. A Radon Progeny Deposition Model

    CERN Document Server

    Guiseppe, V E; Hime, A; Rielage, K; Westerdale, S

    2011-01-01

    The next generation low-background detectors operating underground aim for unprecedented low levels of radioactive backgrounds. Although the radioactive decays of airborne radon (particularly Rn-222) and its subsequent progeny present in an experiment are potential backgrounds, also problematic is the deposition of radon progeny on detector materials. Exposure to radon at any stage of assembly of an experiment can result in surface contamination by progeny supported by the long half life (22 y) of Pb-210 on sensitive locations of a detector. An understanding of the potential surface contamination from deposition will enable requirements of radon-reduced air and clean room environments for the assembly of low background experiments. It is known that there are a number of environmental factors that govern the deposition of progeny onto surfaces. However, existing models have not explored the impact of some environmental factors important for low background experiments. A test stand has been constructed to depos...

  10. Radon diffusion coefficients in soils of varying moisture content

    Science.gov (United States)

    Papachristodoulou, C.; Ioannides, K.; Pavlides, S.

    2009-04-01

    Radon is a naturally occurring radioactive gas that is generated in the Earth's crust and is free to migrate through soil and be released to the atmosphere. Due to its unique properties, soil gas radon has been established as a powerful tracer used for a variety of purposes, such as exploring uranium ores, locating geothermal resources and hydrocarbon deposits, mapping geological faults, predicting seismic activity or volcanic eruptions and testing atmospheric transport models. Much attention has also been given to the radiological health hazard posed by increased radon concentrations in the living and working environment. In order to exploit radon profiles for geophysical purposes and also to predict its entry indoors, it is necessary to study its transport through soils. Among other factors, the importance of soil moisture in such studies has been largely highlighted and it is widely accepted that any measurement of radon transport parameters should be accompanied by a measurement of the soil moisture content. In principle, validation of transport models in the field is encountered by a large number of uncontrollable and varying parameters; laboratory methods are therefore preferred, allowing for experiments to be conducted under well-specified and uniform conditions. In this work, a laboratory technique has been applied for studying the effect of soil moisture content on radon diffusion. A vertical diffusion chamber was employed, in which radon was produced from a 226Ra source, was allowed to diffuse through a soil column and was finally monitored using a silicon surface barrier detector. By solving the steady-state radon diffusion equation, diffusion coefficients (D) were determined for soil samples of varying moisture content (m), from null (m=0) to saturation (m=1). For dry soil, a D value of 4.1×10-7 m2s-1 was determined, which increased moderately by a factor of ~3 for soil with low moisture content, i.e. up to m ~0.2. At higher water fractions, a decrease

  11. Estimating large-scale fractured rock properties from radon data collected in a ventilated tunnel

    Energy Technology Data Exchange (ETDEWEB)

    Unger, Andre; Finsterle, Stefan; Bodvarsson, Gudmundur S.

    2003-05-12

    To address regulatory issues regarding worker safety, radon gas concentrations have been monitored as part of the operation of a deep tunnel excavated from a highly fractured tuff formation. The objective of this study was to examine the potential use of the radon data to estimate large-scale formation properties of fractured rock. An iTOUGH2 model was developed to predict radon concentrations for prescribed ventilation rates. The numerical model was used (1) to estimate the permeability and porosity of the fractured formation at the length scale of the tunnel and extending tens of meters into the surrounding rock, and (2) to understand the mechanism leading to radon concentrations that potentially exceed the regulatory limit. The mechanism controlling radon concentrations in the tunnel is a function of atmospheric barometric fluctuations propagated down the tunnel. In addition, a slight suction is induced by the ventilation system. The pressure fluctuations are dampened in the fractured formation according to its permeability and porosity. Consequently, as the barometric pressure in the tunnel drops, formation gases from the rock are pulled into the opening, resulting in high radon concentrations. Model calibration to both radon concentration data measured in the tunnel and gas phase pressure fluctuations observed in the formation yielded independent estimates of effective, large-scale fracture permeability and porosity. The calibrated model was then used as a design tool to predict the effect of adjusting the ventilation-system operation strategy for reducing the probability that radon gas concentrations will exceed the regulatory limit.

  12. Study of radon dispersion in typical dwelling using CFD modeling combined with passive-active measurements

    Science.gov (United States)

    Rabi, R.; Oufni, L.

    2017-10-01

    Inhalation of radon (222Rn) and its decay products are a major source of natural radiation exposure. It is known from recent surveys in many countries that radon and its progeny contribute significantly to total inhalation dose and it is fairly established that radon when inhaled in large quantity causes lung disorder. Indoor air conditions and ventilation systems strongly influence the indoor radon concentration. This study focuses on investigating both numerically and experimentally the influence of environmental conditions on the indoor radon concentration and spatial distribution. The numerical results showed that ventilation rate, temperature and humidity have significant impacts on both radon content and distribution. The variations of radon concentration with the ventilation, temperature and relative humidity are discussed. The measurement results show the diurnal variations of the indoor radon concentration are found to exhibit a positive correlation with relative humidity and negatively correlate with the air temperature. The analytic solution is used to validate the numeric results. The comparison amongst analytical, numerical and measurement results shows close agreement.

  13. Radon occurrence in soil-gas and groundwater around an active landslide

    Energy Technology Data Exchange (ETDEWEB)

    Ramola, R.C. [Department of Physics, H.N.B. Garhwal University, Badshahi Thaul Campus, Tehri Garhwal -249 199 (India)], E-mail: rcramola@gmail.com; Choubey, V.M. [Wadia Institute of Himalayan Geology, Dehradun 248 001 (India); Negi, M.S.; Prasad, Yogesh; Prasad, Ganesh [Department of Physics, H.N.B. Garhwal University, Badshahi Thaul Campus, Tehri Garhwal -249 199 (India)

    2008-01-15

    This paper presents the results of investigation of radon levels in the soil-gas and groundwater of Uttarkashi, India within the distance of 5 km in vertical and horizontal directions from the landslide of Varunawat hill. Radon release from the soil and groundwater was found higher than the normal values. Radon concentration in groundwater over and around the landslide was found to vary from 0.51 to 86kBqm{sup -3}. The soil-gas radon concentration was found to vary from 219 to 3kBqm{sup -3} along the slope of landslide. Radon exhalation rate in collected soil samples was found to vary from 2.28x10{sup -5} to 9.01x10{sup -5}Bqkg{sup -1}h{sup -1}. Radon values were not found correlated with major and trace element contents in the upper soil of the area, which indicate that the migration of radon from deeper part of the earth along with landslide contribute to the surface radon concentration. Recorded values show a close association with local geology and Varunawat eruptions.

  14. Modeling Joint Exposures and Health Outcomes for Cumulative Risk Assessment: The Case of Radon and Smoking

    Directory of Open Access Journals (Sweden)

    Jonathan I. Levy

    2011-09-01

    Full Text Available Community-based cumulative risk assessment requires characterization of exposures to multiple chemical and non-chemical stressors, with consideration of how the non-chemical stressors may influence risks from chemical stressors. Residential radon provides an interesting case example, given its large attributable risk, effect modification due to smoking, and significant variability in radon concentrations and smoking patterns. In spite of this fact, no study to date has estimated geographic and sociodemographic patterns of both radon and smoking in a manner that would allow for inclusion of radon in community-based cumulative risk assessment. In this study, we apply multi-level regression models to explain variability in radon based on housing characteristics and geological variables, and construct a regression model predicting housing characteristics using U.S. Census data. Multi-level regression models of smoking based on predictors common to the housing model allow us to link the exposures. We estimate county-average lifetime lung cancer risks from radon ranging from 0.15 to 1.8 in 100, with high-risk clusters in areas and for subpopulations with high predicted radon and smoking rates. Our findings demonstrate the viability of screening-level assessment to characterize patterns of lung cancer risk from radon, with an approach that can be generalized to multiple chemical and non-chemical stressors.

  15. Association of School District Policies for Radon Testing and Radon-Resistant New Construction Practices with Indoor Radon Zones.

    Science.gov (United States)

    Foster, Stephanie; Everett Jones, Sherry

    2016-12-13

    Radon is a naturally occurring, colorless, odorless, and tasteless radioactive gas. Without testing, its presence is unknown. Using nationally representative data from the 2012 School Health Policies and Practices Study, we examined whether the prevalence of school district policies for radon testing and for radon-resistant new construction practices varied by district location in relation to the U.S. Environmental Protection Agency Map of Radon Zones. Among school districts located in counties with high predicted average indoor radon, 42.4% had policies for radon testing and 37.5% had policies for radon-resistant new construction practices. These findings suggest a critical need for improved awareness among policy makers regarding potential radon exposure for both students and school staff.

  16. Indoor radon and radon daughters survey at Campinas-Brazil using CR-39: First results

    CERN Document Server

    Guedes, S; Iunes, P J; Navia, L M S; Neman, R S; Paulo, S R; Rodrigues, V C; Souza, W F; Tello, C A S; Zúñiga, A G

    1999-01-01

    The first results of a radon and radon daughters (RD) survey performed at Campinas-SP, Brazil, are presented. We employed a technique that, potentially, makes possible to measure the radon and RD activity in the air and to separate from this result the activity of radon, alone. In this preliminary paper only the former activity is studied.

  17. Environmental effects of radon and its progeny from uranium waste rock piles. Pt. 1. Measurements by passive and continuous monitors

    Energy Technology Data Exchange (ETDEWEB)

    Ishimori, Yuu; Ito, Kimio; Furuta, Sada-aki [Ningyo Toge Works, Power Reactor and Nuclear Fuel Development Corporation, Kamisaibara, Okayama (Japan)

    1998-12-31

    The radon concentration in atmosphere on and around the uranium waste rock pile sites has been measured by integrating passive monitors since 1989. In fiscal 1996, except for the Katamo-shimo 1, the average concentration of radon on the sites, around the sites and in control areas, ranged from 11 to 194 Bq/m{sup 3} (average: 45 Bq/m{sup 3}), from 8 to 75 Bq/m{sup 3} (average: 26 Bq/m{sup 3}), and from 9 to 77 Bq/m{sup 3} (average: 30 Bq/m{sup 3}), respectively. Additionally, the typical daily and seasonal variations of radon concentration, radon progeny concentration and radon exhalation rate are observed with continuous or automatic monitors. According to the measurement results by passive monitors and continuous monitors, the environmental effects of radon and its progeny from the waste rock pile sites are estimated small in residential regions around the sites. (author)

  18. Radon in Estonian dwellings - Results from a National Radon Survey

    Energy Technology Data Exchange (ETDEWEB)

    Pahapill, Lia; Rulkov, Anne; Rajamaee, Raivo [Estonian Radiation Protection Centre (Kiirguskeskus), Tallinn (Spain); Aakerblom, Gustav [Swedish Radiation Protection Authority, Stockholm (Sweden)

    2003-10-01

    A countrywide survey of radon concentrations in Estonian dwellings was carried out during the period 1998-2001. The survey formed a part of the cooperation program on radiation protection between the Estonian Radiation Protection (Kiirguskeskus) Centre and the Swedish Radiation Protection Authority (SSI). The survey included measurements in a number of dwellings representative for Estonia in detached houses and multifamily buildings (only dwellings on the bottom floor were included in the survey). Altogether, radon concentrations were measured in 515 dwellings, a number large enough to be statistically significant. All measurements were made with alphatrack film detectors of the same type that SSI uses in Sweden. The measurements were made during a 2-3 month period during the winter half-year. Two detectors were used in each dwelling. In Estonia there are 0.17 million dwellings in detached houses and 0.45 million in multi apartment buildings. Of the 1.26 million inhabitants in Estonia. 0.36 million live in detached houses and 0.90 million in multi apartment buildings. Most of the latter were built during the Soviet occupation. Of the dwellings in multifamily buildings 30 % are assumed to be situated on the first floor. The mean radon concentration in dwellings in detached hoses, according to the survey results, is 103 Bq/m{sup 3}, in dwellings on the bottom floor in multi apartment buildings it is 78 Bq/m{sup 3}. In 1% of the dwellings the radon concentration exceeded 400 Bq/m{sup 3}. The highest radon concentration found in the study was 1040 Bq/m{sup 3}. Based on the assumption that the average radon concentration in the dwellings in multi-apartment buildings that are not situated on the bottom floor is 30 Bq/m{sup 3}, and that these dwellings constitute 70% of all dwellings in multi apartment buildings, the mean radon concentration in dwellings in multi apartment buildings is calculated to be 44 Bq/m{sup 3}. The mean value for all Estonia dwellings is calculated

  19. Radon legislation and national guidelines

    Energy Technology Data Exchange (ETDEWEB)

    Aakerblom, G

    1999-07-01

    The International Commission on Radiological Protection (ICRP) and The Council of the European Union have recommended the Member States to take action against radon in homes and at workplaces. Within the EU project European Research into Radon in Construction Concerted Action, ERRICCA, the Topic Group on Legal and Building Code Impact was designated to study the current radon legislation and give advice regarding future enactment of laws and recommendations. On behalf of the Group, a questionnaire on radon legislation was sent out to nearly all European states and a selection of non-European states. Questions were asked regarding reference levels for dwellings, workplaces and drinking water, and about regulations or recommendations for building materials and city planning. All 15 EU Member States, 17 non-EU European countries and 10 non-European countries responded to the questionnaire. Their answers are considered current as of the end of 1998. Most European States and many non-European countries have recommended reference levels for dwellings and workplaces, and some have guidelines for measures against radon incorporated in their building codes and guidelines for construction techniques. However, only a few countries have enforced reference levels or regulations for planning and construction. The reference levels for indoor radon concentration in existing and new dwellings or workplaces are within the range 150-1000 Bq/m{sup 3}. Sweden is the only country (Out of 15 EU member states) which has enforced limits for existing dwellings. Sweden and the UK have both enforced levels for new dwellings. 7 non-European countries (Out of 17 responding countries) have enforced levels for existing dwellings and 9 have them for new dwellings. At the end of 1998, only Finland, Sweden, the Czech Republic, Romania, Russia and the Slovak Republic had limits for radon in water, although 8 countries were planning to introduce such limits. The present limits are within the range for

  20. Development of a high efficiency personal/environmental radon dosimeter using polycarbonate detectors.

    Science.gov (United States)

    Taheri, M; Jafarizadeh, M; Baradaran, S; Zainali, Gh

    2006-12-01

    Passive radon dosimeters, based on alpha particle etched track detectors, are widely used for the assessment of radon exposure. These methods are often applied in radon dosimetry for long periods of time. In this research work, we have developed a highly efficient method of personal/environmental radon dosimetry that is based upon the detection of alpha particles from radon daughters, (218)Po and (214)Po, using a polycarbonate detector (PC). The radon daughters are collected on the filter surface by passing a fixed flow of air through it and the PC detector, placed at a specified distance from the filter, is simultaneously exposed to alpha particles. After exposure, the latent tracks on the detector are made to appear by means of an electrochemical etching process; these are proportional to the radon dose. The air flow rate and the detector-filter distance are the major factors that can affect the performance of the dosimeter. The results obtained in our experimental investigations have shown that a distance of 1.5 cm between the detector and the filter, an absorber layer of Al with a thickness of 12 microm and an air flow rate of 4 l min(-1) offer the best design parameters for a high efficiency radon dosimeter. Then, the designed dosimeter was calibrated against different values of radon exposures and the obtained sensitivity was found to be 2.1 (tracks cm(-2)) (kBq h m(-3))(-1). The most important advantages of this method are that it is reliable, fast and convenient when used for radon dose assessment. In this paper, the optimized parameters of the dosimeter structure and its calibration procedure are presented and discussed.

  1. Radon and radioactivity at a town overlying Uranium ores in northern Greece.

    Science.gov (United States)

    Kourtidis, K; Georgoulias, A K; Vlahopoulou, M; Tsirliganis, N; Kastelis, N; Ouzounis, K; Kazakis, N

    2015-12-01

    Extensive measurements of (222)Rn in the town of Xanthi in N Greece show that the part of the town overlying granite deposits and the outcrop of a uranium ore has exceptionally high indoor radon levels, with monthly means up to 1500 Bq m(-3). A large number of houses (40%) in this part of the town exhibit radon levels above 200 Bq m(-3) while 11% of the houses had radon levels above 400 Bq m(-3). Substantial interannual variability as well as the highest in Europe winter/summer ratios (up to 12) were observed in this part of the town, which consist of traditional stone masonry buildings of the late 19th-early 20th century. Measurements of (238)U and (232)Th content of building materials from these houses as well as radionuclide measurements in different floors show that the high levels of indoor radon measured in these buildings are not due to high radon emanation rates from the building materials themselves but rather due to high radon flux from the soil because of the underlying geology, high radon penetration rates into the buildings from underground due to the lack of solid concrete foundations in these buildings, or a combination thereof. From the meteorological variables studied, highest correlation with indoor (222)Rn was found with temperature (r(2) = 0.65). An indoor radon prognostic regression model using temperature, pressure and precipitation as input was developed, that reproduced indoor radon with r(2) = 0.69. Hence, meteorology is the main driving factor of indoor radon, with temperature being the most important determinant. Preliminary flux measurements indicate that the soil-atmosphere (222)Rn flux should be in the range 150-250 Bq m(-2) h(-1), which is in the upper 10% of flux values for Europe.

  2. Radon as geological tracer

    Energy Technology Data Exchange (ETDEWEB)

    Lacerda, T.; Anjos, R.M. [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Inst. de Fisica; Valladares, D.L.; Rizzotto, M.; Velasco, H.; Ayub, J. Juri [Universidad Nacional de San Luis (Argentina). Inst. de Matematica Aplicada San Luis (IMASL); Silva, A.A.R. da; Yoshimura, E.M. [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica

    2012-07-01

    Full text: This work presents measurements of {sup 222}Rn levels performed in La Carolina gold mine and Los Condores tungsten mine at the province of San Luis, Argentina, today used for tourist visitation, and can evaluate the potential use of such radioactive noble gas as tracer or marker for geological processes in underground environments. By concentrations of {sup 40}K, {sup 232}Th and {sup 23}'8U were also measured in the walls of tunnels were determined the rocks mineral composition, what indicated that the mines have the same composition. In this sense, we used nuclear trace plastic detectors CR-39, gamma spectrometry of rock samples and Geiger-Muller (GM) monitors The patterns of radon gas transportation processes revealed that La Carolina could be interpreted through a model based on a radioactive gas confined into a single entrance tube, with constant cross section and air velocity. Los Condores, which has a second main entrance, could be interpreted through a model based on a radioactive gas confined into a two entrance tube, allowing a chimney effect for air circulation. The results showed the high potential of using {sup 222}Rn as a geological tracer. In what concerns the occupational hazard, in summer (time of more intense tourist activity in the mine) La Carolina presented a mean concentration of the radioactive noble gas that exceeds in four times the action level of 1,5 kBq m{sup -3} recommended by the International Commission of Radiological Protection (ICRP). The chimney effect shows the low mean concentration of radon in Los Condores. (author)

  3. Residential Radon and Brain Tumour Incidence in a Danish Cohort

    DEFF Research Database (Denmark)

    Bräuner, Elvira V.; Andersen, Zorana J.; Andersen, Claus Erik;

    2013-01-01

    Background: Increased brain tumour incidence over recent decades may reflect improved diagnostic methods and clinical practice, but remain unexplained. Although estimated doses are low a relationship between radon and brain tumours may exist. Objective: To investigate the long-term effect...... of exposure to residential radon on the risk of primary brain tumour in a prospective Danish cohort. Methods: During 1993–1997 we recruited 57,053 persons. We followed each cohort member for cancer occurrence from enrolment until 31 December 2009, identifying 121 primary brain tumour cases. We traced...... residential addresses from 1 January 1971 until 31 December 2009 and calculated radon concentrations at each address using information from central databases regarding geology and house construction. Cox proportional hazards models were used to estimate incidence rate-ratios (IRR) and 95% confidence intervals...

  4. The Austrian radon activities on the way to the national radon action plan.

    Science.gov (United States)

    Gruber, V; Ringer, W; Wurm, G; Haider, W

    2014-07-01

    Based on the new Euratom Basic Safety Standards (BSS), all EU member states will be obliged to design a strategy to address long-term risks from radon exposure, which is laid down in the 'national radon action plan'. In Austria, the National Radon Centre is responsible for the development of the action plan. This paper presents the current and planned radon protection activities on the way to establish the radon action plan--like the national radon database, the definition of radon risk areas by improving the existing radon map, as well as strategies and activities to increase the radon awareness of the public and decision-makers and to involve the building sector. The impact of and the need for actions caused by the BSS requirements on the Austrian radon legislation, strategy and programme are discussed.

  5. Risk assessment of exposure to radon decay products

    Energy Technology Data Exchange (ETDEWEB)

    Monchaux, G

    1999-07-01

    The aim of this project was to assess the risk due to inhalation of radon and its decay products using an horizontal approach across a large scale research programme. The central objective was the assessment of human risk which requires combination of several topics involving a multidisciplinary approach. In the Aerosol Studies Group, progress was achieved in improvement, calibration and automation of experimental techniques for continuous and integrated measurements of the unattached fraction f{sub p}- and equilibrium factor F- values. Measurements were performed to determine the variation of size distributions of unattached and aerosol-associated radon decay products under typical living conditions. All aerosol groups performed controlled chamber studies to understand the basic behaviour of airborne activity concentrations. Measurements were performed to determine neutralisation rates of {sup 218}Po, to understand the cluster growth with residence time and to understand the hygroscopic growth of aerosol particles. In the Modelling Group, the programme RADEP has been developed to calculate the weighted committed equivalent lung dose per unit exposure of radon progeny (H{sub w}/P{sub p}) which implements the ICRP Publication 66 Human Respiratory Tract Model (HRTM). The stochastic deposition model (IDEAL) has been compared with the deposition model used by the HRTM, and the agreement between the two deposition models was excellent. A deterministic radon progeny dosimetry model (RADOS) has been developed. This model includes all bronchial airway generations compared with the HRTM that groups the 16 airway generations into three regions. Initial calculations with RADOS show that the basal and secretory cell doses are slightly smaller compared with that of the HRTM. A sensitivity analysis has been performed that has identified those HRTM model parameters that most affect the Hw/Pp. A stochastic rat deposition model (RALMO) and a clearance model for the rat based on the

  6. The history, development and the present status of the radon measurement programme in the United States of America.

    Science.gov (United States)

    George, A C

    2015-11-01

    The US radon measurement programme began in the late 1950s by the US Public Health Service in Colorado, New Mexico and Utah during the uranium frenzy. After the 1967 Congressional Hearings on the working conditions in uranium mines, the US Atomic Energy Commission (AEC) was asked to conduct studies in active uranium mines to assess the exposure of the miners on the Colorado Plateau and in New Mexico. From 1967 to 1972, the Health and Safety Laboratory of the US AEC in New York investigated more than 20 uranium mines for radon and radon decay product concentrations and particle size in 4 large uranium mines in New Mexico. In 1970, the US Environmental Protection Agency (EPA) was established and took over some of the AEC radon measurement activities. Between 1975 and 1978, the Environmental Measurements Laboratory of the US Department of Energy conducted the first detailed indoor radon survey in the USA. Later in 1984, the very high concentrations of radon found in Pennsylvania homes set the wheels in motion and gave birth to the US Radon Industry. The US EPA expanded its involvement in radon issues and assumed an active role by establishing the National Radon Proficiency Program to evaluate the effectiveness of radon measurement and mitigation methods. In 1998, due to limited resources EPA privatised the radon programme. This paper presents a personal perspective of past events and current status of the US radon programme. It will present an update on radon health effects, the incidence rate of lung cancer in the USA and the number of radon measurements made from 1988 to 2013 using short-term test methods. More than 23 million measurements were made in the last 25 y and as a result more than 1.24 million homes were mitigated successfully. It is estimated that radon measurements performed in the USA are made using long-term testing devices. The number of homes above the US action level of 148 Bq m(-3) (4 pCi l(-1)) may be ∼8.5 million because ∼50 million homes

  7. Workshop on dosimetry for radon and radon daughters

    Energy Technology Data Exchange (ETDEWEB)

    Turner, J.E.; Holoway, C.F.; Loebl, A.S. (eds.)

    1978-05-01

    Emphasis is placed on the dosimetry for radon and daughters, rather than on monitoring and instrumentation. The objectives of the meeting were to exchange scientific information, to identify problem areas in radon-daughter dosimetry, and to make any observations or recommendations by the participants through issuance of this report. The discussion topics included the history of dosimetry for radon and daughters, human data, aerosols, deposition and movement in the respiratory tract, dose calculations, dose-to-working-level-month (WLM) conversion factors, animal experiments, and the development of regulations and remedial criteria for reducing population exposures to radon daughters. This report contains a summary of Workshop discussions plus individual statements contributed by several of the participants. The outstanding problem areas from the standpoint of dosimetry appear to involve the appropriate lung organ mass to be used (average lung-tissue dose vs. high-level local dose); recognition of the discrete, rather than continuous, structure of the mucus; lack of knowledge about lung clearance; the variability of dose with the degree of disequilibrium and the unattached fraction of radon daughters for a given WLM; and questions about the character of uranium mine atmospheres actually breathed in the older mines from which much of the epidemiological information originates. The development of criteria for taking remedial action to reduce exposures involves additional concerns of basing long-term risk assessment on short-term sampling and applying WLM data for miners to general populations.

  8. Indoor radon measurements in dwellings and other buildings in the metropolitan region of Belo Horizonte, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Talita de Oliveira [Centro Federal de Educacao Tecnologica de Minas Gerais (CEFET-MG), Belo Horizonte, MG (Brazil)]. E-mail: talitaolsantos@yahoo.com.br; Rocha, Zildete [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil). Servico de Quimica e Radioquimica]. E-mail: rochaz@cdtn.br

    2007-07-01

    Radon is a radioactive noble gas derived from the natural decay series of {sup 238}U, {sup 235}U, and {sup 232}Th, which are present in rocks and soils. By diffusion and convection, radon migrates from the rocks and soils to the surface and through fissures, pipes and holes it may enter the dwellings and other buildings. Another important indoor radon source is the building material construction. Therefore, it may accumulate indoor environments with reduced ventilation rates. Radon progeny attach to the aerosol particle in the air. The attached and unattached radon progeny may deposit in the lungs and irradiate to the lung tissue as they decay. Radon has been recognized as a radiation hazard, that causes excess of lung cancer among underground miners and there is an evidence that radon is also a heath hazard in dwellings and other indoor environments. Radon accounts for about half of all human exposure to natural radiation. Radon concentration measurements were carried out in dwellings, schools and shopping centers in the Metropolitan Region of Belo Horizonte - RMBH. Most part of the inhabitants of the RMBH lives over the granitic gneissic complex, which has a variable depth out coming in some areas. For the radon concentration measurement continuous detectors, AlphaGUARD PQ2000PRO, RAD7 and Pylon Lucas Cells were used and, for Potential Alpha Energy Concentration-PAEC measurement a solid state alpha spectroscope, the DOSEman PRO was used. The experiments showed that most results are below 50 Bqm{sup -3} (mean+3{sigma}). This value is bellowing the action levels of the USEPA, ICRP and others, which varies in the range from 148 to 200 Bqm{sup -3}. The values are in the low range, as it was expected for a tropical climate. (author)

  9. Mechanisms of radon loss from zircon: Microstructural controls on emanation and diffusion

    Science.gov (United States)

    Eakin, Marty; Brownlee, S. J.; Baskaran, M.; Barbero, L.

    2016-07-01

    Understanding how radon escapes from minerals is important for many fields in Earth science, yet few studies have focused on the mechanisms for radon escape. We measured radon emanation rate and radon loss upon heating for crushed aliquots of three large zircon crystals from three localities: Mud Tank (Australia), Bancroft (Canada), and Malawi (Africa). Our study, in conjunction with published data, shows that the room temperature radon emanation coefficient (REC) varies over 5 orders of magnitude in zircon. For low U zircon, Mud Tank, there are variations in REC that appear to be related to annealing at different temperatures, possibly due to annealing of fission tracks, however, all REC values for Mud Tank zircon are within error of one another. Bancroft and Malawi zircons have higher U content and do not show any systematic relationship of REC to annealing temperature. Results from Mud Tank zircon suggest that partial annealing of fission tracks decreases REC, but when all fission tracks are annealed REC reaches a maximum. REC in zircons with high U content, Bancroft and Malawi, is slightly higher than in zircon with lower U, although results are within error. Results of measurements of radon loss upon heating suggest that radon diffusion is slow, ∼30% of the radon is lost during heating at 975 °C for 48 h. Samples heated a second time yield less fractional radon loss, ∼10%, suggesting that diffusion parameters are changed during heating at temperatures ⩾975 °C, which is likely the result of annealing of radiation damage. Diffusion parameters calculated from the fractional loss experiments reflect diffusion in highly radiation damaged or metamict zircons. Our results indicate that internal microstructures in zircon, such as fission tracks and alpha-radiation damage, influence radon escape for diffusion and recoil mechanisms, and hence if these effects can be further characterized, measurements of 222Rn escape have the potential to be useful for probing

  10. Modelling of radon transport in porous media

    NARCIS (Netherlands)

    van der Graaf, E.R.; de Meijer, R.J.; Katase, A; Shimo, M

    1998-01-01

    This paper aims to describe the state of the art of modelling radon transport in soil on basis of multiphase radon transport equations. Emphasis is given to methods to obtain a consistent set of input parameters needed For such models. Model-measurement comparisons with the KVI radon transport Facil

  11. Modelling of radon transport in porous media

    NARCIS (Netherlands)

    van der Graaf, E.R.; de Meijer, R.J.; Katase, A; Shimo, M

    1998-01-01

    This paper aims to describe the state of the art of modelling radon transport in soil on basis of multiphase radon transport equations. Emphasis is given to methods to obtain a consistent set of input parameters needed For such models. Model-measurement comparisons with the KVI radon transport Facil

  12. Reducing Radon in Schools: A Team Approach.

    Science.gov (United States)

    Ligman, Bryan K.; Fisher, Eugene J.

    This document presents the process of radon diagnostics and mitigation in schools to help educators determine the best way to reduce elevated radon levels found in a school. The guidebook is designed to guide school leaders through the process of measuring radon levels, selecting the best mitigation strategy, and directing the efforts of a…

  13. Radon content in Danish till deposits: relationship with redox conditions and age

    Energy Technology Data Exchange (ETDEWEB)

    Gravesen, P.; Roll Jakobsen, P.

    2010-07-15

    This paper presents some results concerning the radon content and emanation rates in different Danish till deposits of Saalian and Weichselian age from a study carried out by the Geological Survey of Denmark and Greenland (GEUS). (LN)

  14. The radon 222 transport in soils. The case of the storage of residues coming from uranium ores processing; La migration du radon 222 dans un sol. Application aux stockages de residus issus du traitement des minerais d'uranium

    Energy Technology Data Exchange (ETDEWEB)

    Ferry, C

    2000-07-01

    Uranium Mill Tailings (UMT) contain comparatively large quantities of radium-226. This radionuclide yields, by radioactive decay, the radioactive gas radon-222. Tailing piles are routinely covered to reduce the radon release-rate into the atmosphere. In order to assess the long term environmental impact of a UMT repository, mechanisms governing radon exhalation at the soil surface must be deciphered and understood. A model of radon transport in the unsaturated zone is developed for this purpose: water- and air-flow in the porous material are determined, as well as radon transport by diffusion in the pore space and advection by the gas phase. The radon transport model in the unsaturated zone - TRACI (which stands, in French, for Radon Transport within the Unsaturated Layer) - calculates moisture contents in the soil, Darcy's velocities of the liquid and gas phases, radon concentrations in the gas phase and radon flux at the soil surface. TRACI's results are compared with observations carried out on a UMT and a cover layer. Input parameters are derived from the textural analysis of the material under study, whereas upper boundary conditions are given by meteorological data. If we consider measurement errors and uncertainties on the porous medium characterisation, model's results are generally in good agreement with observations, at least on the long run. Moreover, data analysis shows hat transient phenomena are understood as well, in most situations. (author)

  15. Comparison of radon doses based on different radon monitoring approaches.

    Science.gov (United States)

    Vaupotič, Janja; Smrekar, Nataša; Žunić, Zora S

    2017-04-01

    In 43 places (23 schools, 3 kindergartens, 16 offices and one dwelling), indoor radon has been monitored as an intercomparison experiment, using α-scintillation cells (SC - Jožef Stefan Institute, Slovenia), various kinds of solid state nuclear track detectors (KfK - Karlsruhe Institute of Technology, Germany; UFO - National Institute of Radiological Sciences, Chiba, Japan; RET - University College Dublin, Ireland) and active electronic devices (EQF, Sarad, Germany). At the same place, the radon levels and, consequently, the effective doses obtained with different radon devices differed substantially (by a factor of 2 or more), and no regularity was observed as regards which detector would show a higher or lower dose. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. A numerical study on the performance evaluation of ventilation systems for indoor radon reduction

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ji Eun; Park, Hoon Chae; Choi, Hang Seok; Cho, Seung Yeon; Jeong, Tae Young; Roh, Sung Cheoul [Yonsei University, Wonju (Korea, Republic of)

    2016-03-15

    Numerical simulations were conducted using computational fluid dynamics to evaluate the effect of ventilation conditions on radon ({sup 222}Rn) reduction performance in a residential building. The results indicate that at the same ventilation rate, a mechanical ventilation system is more effective in reducing indoor radon than a natural ventilation system. For the same ventilation type, the indoor radon concentration decreases as the ventilation rate increases. When the air change per hour (ACH) was 1, the indoor radon concentration was maintained at less than 100 Bq/m{sup 3}. However, when the ACH was lowered to 0.01, the average indoor radon concentration in several rooms exceeded 148 Bq/ m{sup 3}. The angle of the inflow air was found to affect the indoor air stream and consequently the distribution of the radon concentration. Even when the ACH was 1, the radon concentrations of some areas were higher than 100 Bq/m{sup 3} for inflow air angles of 5 .deg. and 175 .deg.

  17. Radon emanation fractions from concretes containing fly ash and metakaolin.

    Science.gov (United States)

    Taylor-Lange, Sarah C; Juenger, Maria C G; Siegel, Jeffrey A

    2014-01-01

    Radon ((222)Rn) and progenies emanate from soil and building components and can create an indoor air quality hazard. In this study, nine concrete constituents, including the supplementary cementitious materials (SCMs) fly ash and metakaolin, were used to create eleven different concrete mixtures. We investigated the effect of constituent radium specific activity, radon effective activity and emanation fraction on the concrete emanation fraction and the radon exhalation rate. Given the serious health effects associated with radionuclide exposure, experimental results were coupled with Monte Carlo simulations to demonstrate predictive differences in the indoor radon concentration due to concrete mixture design. The results from this study show that, on average, fly ash constituents possessed radium specific activities ranging from 100 Bq/kg to 200 Bq/kg and emanation fractions ranging from 1.1% to 2.5%. The lowest emitting concrete mixture containing fly ash resulted in a 3.4% reduction in the concrete emanation fraction, owing to the relatively low emanation that exists when fly ash is part of concrete. On average, the metakaolin constituents contained radium specific activities ranging from 67 Bq/kg to 600 Bq/kg and emanation fractions ranging from 8.4% to 15.5%, and changed the total concrete emanation fraction by roughly ±5% relative to control samples. The results from this study suggest that SCMs can reduce indoor radon exposure from concrete, contingent upon SCM radionucleotide content and emanation fraction. Lastly, the experimental results provide SCM-specific concrete emanation fractions for indoor radon exposure modeling.

  18. Instruments to measure radon-222 activity concentration or exposure to radon-222. Intercomparison 2014; Messgeraete zur Bestimmung der Radon-222-Aktivitaetskonzentration oder der Radon-222-Exposition. Vergleichspruefung 2014

    Energy Technology Data Exchange (ETDEWEB)

    Foerster, Elisabeth; Beck, Thomas; Buchroeder, Helmut; Doering, Joachim; Schmidt, Volkmar

    2014-10-15

    According to the Directive 96/29/EURATOM the monitoring of occupational radiation exposures shall base on individual measurements carried out by an approved dosimetric service. Pursuant to the European Directive an approved dosimetric service is a body responsible for the calibration, reading or interpretation of individual monitoring devices.., whose capacity to act in this respect is recognized by the competent authorities. This concept will also be applied to radon services issuing passive radon measurement devices. Passive radon measurement devices{sup 1} using solid state nuclear track detectors or electrets are recommended for individual monitoring of exposures to radon. German regulations lay down that radon measuring devices are appropriate for purposes of occupational radiation monitoring if the devices are issued by recognized radon measurement services, and the measurement service submits devices of the same type issued for radon monitoring to regular intercomparisons conducted by the Bundesamt fuer Strahlenschutz (BfS). A radon measuring service is recognized by the competent authority if it proves its organisational and technical competence, e. g. by accreditation. These regulations have been introduced in the area of occupational radiation exposures. Nevertheless, it is recommended that radon measuring services which carry out radon measurements in other areas (e.g. dwellings) should subject themselves to these measures voluntarily. The interlaboratory comparisons comprise the organization, exposure, and evaluation of measurements of radon activity concentration or exposure to radon. The comparisons only concern radon-222; radon-220 is not in the scope. Radon services being interested can get further information from the European Information System on Proficiency Testing Schemes (EPTIS) and from the BfS websites.

  19. Indoor radon measurements in Turkey dwellings.

    Science.gov (United States)

    Celebi, N; Ataksor, B; Taskın, H; Bingoldag, N Albayrak

    2015-12-01

    In this work, indoor radon radioactivity concentration levels have been measured in dwellings of Turkey within the frame of the National Radon Monitoring Programme. The (222)Rn concentrations were measured with time-integrating passive nuclear etched track detectors in 7293 dwellings in 153 residential units of 81 provinces, and the radon map of Turkey was prepared. Indoor radon concentrations were distributed in the range of 1-1400 Bq m(-3). The arithmetic mean of the radon gas concentration was found to be 81 Bq m(-3); the geometric mean was 57 Bq m(-3) with a geometric standard deviation of 2.3.

  20. Residential radon and COPD. An ecological study in Galicia, Spain.

    Science.gov (United States)

    Barbosa-Lorenzo, Raquel; Ruano-Ravina, Alberto; Ramis, Rebeca; Aragonés, Nuria; Kelsey, Karl T; Carballeira-Roca, Consuelo; Fernández-Villar, Alberto; López-Abente, Gonzalo; Barros-Dios, Juan M

    2017-02-01

    Radon is a human lung carcinogen but it might be linked with other respiratory diseases. We aimed to assess the relationship between residential radon exposure and COPD (chronic obstructive pulmonary disease) prevalence and hospital admissions at a municipal level. We designed an ecological study where we included those municipalities with at least three radon measurements. Using mixed Poisson regression models, we calculated the relative risk (RR) for COPD for each 100 Bq/m(3) of increase in radon concentration and also the relative risk for COPD using a cut-off point of 50 Bq/m(3). We did not have individual data on cigarette smoking and therefore we used a proxy (bladder cancer standardized mortality rate) that has proved to account for tobacco consumption. We performed separate analyses for sex and also sensitivity analysis considering age and rurality. A total of 3040 radon measurements and 49,393 COPD cases were included. The relative risk for COPD prevalence was 0.95 (95% CI: 0.92-0.97) while for hospital admissions the RR was 1.04 (95% CI: 1.00-1.10) for each 100 Bq/m(3). Relative risks were higher for women compared to men. Using a categorical analysis with a cut-off point of 50 Bq/m(3), the RR for COPD prevalence was 1.06 (95% CI: 1.02-1.10) and for hospital admissions it was 1.08 (95% CI: 1.00-1.17) for women living in municipalities with more than 50 Bq/m(3). All risks were also higher for women. No relevant differences were observed for age, rurality or other categories for radon exposure. While the influence of radon on COPD prevalence is unclear depending on the approach used, it seems that residential radon might increase the risk of hospital admissions in COPD patients. Women have a higher risk than men in all situations. Since this is an ecological study, results should be interpreted cautiously.

  1. 30 CFR 57.5046 - Protection against radon gas.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Protection against radon gas. 57.5046 Section... Protection against radon gas. Where radon daughter concentrations exceed 10 WL, respirator protection against radon gas shall be provided in addition to protection against radon daughters. Protection against...

  2. Residential Radon Exposure and Incidence of Childhood Lymphoma in Texas, 1995–2011

    Science.gov (United States)

    Peckham, Erin C.; Scheurer, Michael E.; Danysh, Heather E.; Lubega, Joseph; Langlois, Peter H.; Lupo, Philip J.

    2015-01-01

    There is warranted interest in assessing the association between residential radon exposure and the risk of childhood cancer. We sought to evaluate the association between residential radon exposure and the incidence of childhood lymphoma in Texas. The Texas Cancer Registry (n = 2147) provided case information for the period 1995–2011. Denominator data were obtained from the United States Census. Regional arithmetic mean radon concentrations were obtained from the Texas Indoor Radon Survey and linked to residence at diagnosis. Exposure was assessed categorically: ≤25th percentile (reference), >25th to ≤50th percentile, >50th to ≤75th percentile, and >75th percentile. Negative binomial regression generated adjusted incidence rate ratios (aIRR) and 95% confidence intervals (CI). We evaluated lymphoma overall and by subtype: Hodgkin (HL; n = 1248), Non-Hodgkin excluding Burkitt (non-BL NHL; n = 658), Burkitt (BL; n = 241), and Diffuse Large B-cell (DLBCL; n = 315). There was no evidence that residential radon exposure was positively associated with lymphoma overall, HL, or BL. Areas with radon concentrations >75th percentile had a marginal increase in DLBCL incidence (aIRR = 1.73, 95% CI: 1.03–2.91). In one of the largest studies of residential radon exposure and the incidence of childhood lymphoma, we found little evidence to suggest a positive or negative association; an observation consistent with previous studies. PMID:26404336

  3. Residential Radon Exposure and Incidence of Childhood Lymphoma in Texas, 1995–2011

    Directory of Open Access Journals (Sweden)

    Erin C. Peckham

    2015-09-01

    Full Text Available There is warranted interest in assessing the association between residential radon exposure and the risk of childhood cancer. We sought to evaluate the association between residential radon exposure and the incidence of childhood lymphoma in Texas. The Texas Cancer Registry (n = 2147 provided case information for the period 1995–2011. Denominator data were obtained from the United States Census. Regional arithmetic mean radon concentrations were obtained from the Texas Indoor Radon Survey and linked to residence at diagnosis. Exposure was assessed categorically: ≤25th percentile (reference, >25th to ≤50th percentile, >50th to ≤75th percentile, and >75th percentile. Negative binomial regression generated adjusted incidence rate ratios (aIRR and 95% confidence intervals (CI. We evaluated lymphoma overall and by subtype: Hodgkin (HL; n = 1248, Non-Hodgkin excluding Burkitt (non-BL NHL; n = 658, Burkitt (BL; n = 241, and Diffuse Large B-cell (DLBCL; n = 315. There was no evidence that residential radon exposure was positively associated with lymphoma overall, HL, or BL. Areas with radon concentrations >75th percentile had a marginal increase in DLBCL incidence (aIRR = 1.73, 95% CI: 1.03–2.91. In one of the largest studies of residential radon exposure and the incidence of childhood lymphoma, we found little evidence to suggest a positive or negative association; an observation consistent with previous studies.

  4. Real-time setup to record radon emission during rock deformation: implications for geochemical surveillance

    Science.gov (United States)

    Tuccimei, P.; Mollo, S.; Soligo, M.; Scarlato, P.; Castelluccio, M.

    2015-02-01

    Laboratory experiments can represent a valid approach to unravel the complex interplay between the geochemical behaviour of radon and rock deformation mechanisms. In light of this, we present a new real-time experimental setup for analyzing in continuum the alpha-emitting 222Rn and 220Rn daughters over variable stress-strain regimes. The most innovative segment of this setup consists of the radon accumulation chamber obtained from a tough and durable material that can host large cylindrical rock samples. The accumulation chamber is connected, in a closed-loop configuration, to a gas-drying unit and to a RAD7 radon monitor. A re-circulating pump moves the gas from the rock sample to a solid-state detector for alpha counting of radon and thoron progeny. The measured radon signal is enhanced by surrounding the accumulation chamber with a digitally controlled heating belt. As the temperature is increased, the number of effective collision of radon atoms increases favouring the diffusion of radon through the material and reducing the analytical uncertainty. The accumulation chamber containing the sample is then placed into an uniaxial testing apparatus where the axial deformation is measured throughout a linear variable displacement transducer. A dedicated software allows to obtain a variety of stress-strain regimes from fast deformation rates to long-term creep tests. Experiments conducted with this new real-time setup have important ramifications for the interpretation of geochemical anomalies recorded prior to volcanic eruptions or earthquakes.

  5. Real-time setup to measure radon emission during rock deformation: implications for geochemical surveillance

    Science.gov (United States)

    Tuccimei, P.; Mollo, S.; Soligo, M.; Scarlato, P.; Castelluccio, M.

    2015-05-01

    Laboratory experiments can represent a valid approach to unravel the complex interplay between the geochemical behaviour of radon and rock deformation mechanisms. In light of this, we present a new real-time experimental setup for analysing in continuum the alpha-emitting 222Rn and 220Rn daughters over variable stress-strain regimes. The most innovative segment of this setup consists of the radon accumulation chamber obtained from a tough and durable material that can host large cylindrical rock samples. The accumulation chamber is connected, in a closed-loop configuration, to a gas-drying unit and to a RAD7 radon monitor. A recirculating pump moves the gas from the rock sample to a solid-state detector for alpha counting of radon and thoron progeny. The measured radon signal is enhanced by surrounding the accumulation chamber with a digitally controlled heating belt. As the temperature is increased, the number of effective collisions of radon atoms increases favouring the diffusion of radon through the material and reducing the analytical uncertainty. The accumulation chamber containing the sample is then placed into a uniaxial testing apparatus where the axial deformation is measured throughout a linear variable displacement transducer. A dedicated software allows obtaining a variety of stress-strain regimes from fast deformation rates to long-term creep tests. Experiments conducted with this new real-time setup have important ramifications for the interpretation of geochemical anomalies recorded prior to volcanic eruptions or earthquakes.

  6. Real-time setup to record radon emission during rock deformation: implications for geochemical surveillance

    Directory of Open Access Journals (Sweden)

    P. Tuccimei

    2015-02-01

    Full Text Available Laboratory experiments can represent a valid approach to unravel the complex interplay between the geochemical behaviour of radon and rock deformation mechanisms. In light of this, we present a new real-time experimental setup for analyzing in continuum the alpha-emitting 222Rn and 220Rn daughters over variable stress–strain regimes. The most innovative segment of this setup consists of the radon accumulation chamber obtained from a tough and durable material that can host large cylindrical rock samples. The accumulation chamber is connected, in a closed-loop configuration, to a gas-drying unit and to a RAD7 radon monitor. A re-circulating pump moves the gas from the rock sample to a solid-state detector for alpha counting of radon and thoron progeny. The measured radon signal is enhanced by surrounding the accumulation chamber with a digitally controlled heating belt. As the temperature is increased, the number of effective collision of radon atoms increases favouring the diffusion of radon through the material and reducing the analytical uncertainty. The accumulation chamber containing the sample is then placed into an uniaxial testing apparatus where the axial deformation is measured throughout a linear variable displacement transducer. A dedicated software allows to obtain a variety of stress–strain regimes from fast deformation rates to long-term creep tests. Experiments conducted with this new real-time setup have important ramifications for the interpretation of geochemical anomalies recorded prior to volcanic eruptions or earthquakes.

  7. Radon monitoring and hazard prediction in Ireland

    Science.gov (United States)

    Elio, Javier; Crowley, Quentin; Scanlon, Ray; Hodgson, Jim; Cooper, Mark; Long, Stephanie

    2016-04-01

    Radon is a naturally occurring radioactive gas which forms as a decay product from uranium. It is the largest source of natural ionizing radiation affecting the global population. When radon is inhaled, its short-lived decay products can interact with lung tissue leading to DNA damage and development of lung cancer. Ireland has among the highest levels of radon in Europe and eighth highest of an OECD survey of 29 countries. Every year some two hundred and fifty cases of lung cancer in Ireland are linked to radon exposure. This new research project will build upon previous efforts of radon monitoring in Ireland to construct a high-resolution radon hazard map. This will be achieved using recently available high-resolution airborne gamma-ray spectrometry (radiometric) and soil geochemistry data (http://www.tellus.ie/), indoor radon concentrations (http://www.epa.ie/radiation), and new direct measurement of soil radon. In this regard, legacy indoor radon concentrations will be correlated with soil U and Th concentrations and other geogenic data. This is a new approach since the vast majority of countries with a national radon monitoring programme rely on indoor radon measurements, or have a spatially limited dataset of soil radon measurements. Careful attention will be given to areas where an indicative high radon hazard based on geogenic factors does not match high indoor radon concentrations. Where such areas exist, it may imply that some parameter(s) in the predictive model does not match that of the environment. These areas will be subjected to measurement of radon soil gas using a combination of time averaged (passive) and time dependant (active) measurements in order to better understand factors affecting production, transport and accumulation of radon in the natural environment. Such mapping of radon-prone areas will ultimately help to inform when prevention and remediation measures are necessary, reducing the radon exposure of the population. Therefore, given

  8. 76 FR 72006 - Draft Interim Staff Guidance: Evaluations of Uranium Recovery Facility Surveys of Radon and Radon...

    Science.gov (United States)

    2011-11-21

    ... COMMISSION Draft Interim Staff Guidance: Evaluations of Uranium Recovery Facility Surveys of Radon and Radon... Recovery Facility Surveys of Radon and Radon Progeny in Air and Demonstrations of Compliance with 10 CFR 20... that existing guidance does not sufficiently detail how the NRC staff reviews surveys of radon and...

  9. Efficacy of radon remedial measures

    Energy Technology Data Exchange (ETDEWEB)

    Naismith, S. (National Radiological Protection Board, Chilton (United Kingdom))

    1994-04-01

    About 2000 householders in the UK have taken remedial action to reduce high radon levels in their homes. Some 800 of these householders have sought measurements to confirm the effectiveness of the action. Results for 528 such homes are discussed. (author).

  10. Low Radon Cleanroom at the University of Alberta

    Science.gov (United States)

    Grant, Darren; Hallin, Aksel; Hanchurak, Stephen; Krauss, Carsten; Liu, Shengli; Soluk, Richard

    2011-04-01

    A cleanroom laboratory designed to create and maintain a low concentration of radon in the air has been designed and is now under construction. We describe the clean room, the radon stripping system, and various radon monitoring tools.

  11. Radon safety in terms of energy efficiency classification of buildings

    Science.gov (United States)

    Vasilyev, A.; Yarmoshenko, I.; Zhukovsky, M.

    2017-06-01

    According to the results of survey in Ekaterinburg, Russia, indoor radon concentrations above city average level have been found in each of the studied buildings with high energy efficiency class. Measures to increase energy efficiency were confirmed to decrease the air exchange rate and accumulation of high radon concentrations indoors. Despite of recommendations to use mechanical ventilation with heat recovery as the main scenario for reducing elevated radon concentrations in energy-efficient buildings, the use of such systems did not show an obvious advantage. In real situation, mechanical ventilation system is not used properly both in the automatic and manual mode, which does not give an obvious advantage over natural ventilation in the climate of the Middle Urals in Ekaterinburg. Significant number of buildings with a high class of energy efficiency and built using modern space-planning decisions contributes to an increase in the average radon concentration. Such situation contradicts to “as low as reasonable achievable” principle of the radiation protection.

  12. Passive and active measurements of radon-related parameters inside ancient Egyptian tombs in Luxor

    Energy Technology Data Exchange (ETDEWEB)

    Abo-Elmagd, M. [Radiation Measurements Department, National Institute for Standard, Giza (Egypt)]. E-mail: abo_elmgd@hotmail.com; Metwally, S.M. [Faculty of Science, Department of Physics, Ain Shams University, Cairo (Egypt); El-Fiki, S.A. [Faculty of Science, Department of Physics, Ain Shams University, Cairo (Egypt); Eissa, H.M. [Radiation Measurements Department, National Institute for Standard, Giza (Egypt); Salama, E. [Faculty of Science, Department of Physics, Ain Shams University, Cairo (Egypt)

    2007-01-15

    Radon and its related parameters were measured using passive (CR-39) and active (Alpha-Guard analyzer) techniques inside seven ancient Egyptian tombs of the Valley of the Kings in Luxor. The measurements were performed throughout the winter and summer seasons. The average radon concentration inside the tombs ranges from 96.9+/-10.8 to 415+/-43Bqm{sup -3} in winter and from 86.4+/-13.8 to 6102.8+/-573.6 in summer. Because of the variations of tombs dimensions and their ventilation systems, the equilibrium factor between radon and its progeny ranges from 0.228+/-0.02 to 0.95+/-0.05. The effective doses for the tomb workers, the tour guide and visitors were calculated. Active measurements show that radon exhalation rates range from 0.68+/-0.30 to 1.47+/-0.27Bqm{sup -2}h{sup -1} and from 0.60+/-0.03 to 1.42+/-0.05Bqm{sup -2}h{sup -1} for passive measurements. The real radium content was determined for all examined tombs by HPGe detector, while the effective radium content was obtained by Alpha-Guard and sealed cup techniques. Radon exhalation rates were correlated with the real radium content. A good correlation was found between active and passive measurements of radon exhalation rate.

  13. Tracing and quantifying groundwater inflow into lakes using a simple method for radon-222 analysis

    Directory of Open Access Journals (Sweden)

    T. Kluge

    2007-09-01

    Full Text Available Due to its high activities in groundwater, the radionuclide 222Rn is a sensitive natural tracer to detect and quantify groundwater inflow into lakes, provided the comparatively low activities in the lakes can be measured accurately. Here we present a simple method for radon measurements in the low-level range down to 3 Bq m−3, appropriate for groundwater-influenced lakes, together with a concept to derive inflow rates from the radon budget in lakes. The analytical method is based on a commercially available radon detector and combines the advantages of established procedures with regard to efficient sampling and sensitive analysis. Large volume (12 l water samples are taken in the field and analyzed in the laboratory by equilibration with a closed air loop and alpha spectrometry of radon in the gas phase. After successful laboratory tests, the method has been applied to a small dredging lake without surface in- or outflow in order to estimate the groundwater contribution to the hydrological budget. The inflow rate calculated from a 222Rn balance for the lake is around 530 m³ per day, which is comparable to the results of previous studies. In addition to the inflow rate, the vertical and horizontal radon distribution in the lake provides information on the spatial distribution of groundwater inflow to the lake. The simple measurement and sampling technique encourages further use of radon to examine groundwater-lake water interaction.

  14. 9th Saxonian radon day. 11th meeting on radon safe structural engineering; 9. Saechsischer Radontag. 11. Tagung radonsicheres Bauen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-07-01

    The proceedings of the meeting in radon-safe structural engineering covers contributions on the following issues: implementation of the EU standards, radon protection in underground cavities, radon protection at working places, reports on experiences.

  15. A European-wide 222Radon and 222Radon progeny comparison study

    OpenAIRE

    Schmithüsen, Dominik; Chambers, Scott; Fischer, Bernd; Gilge, Stefan; Hatakka, Juha; Kazan, Victor; Neubert, Rolf; Paatero, Jussi; Ramonet, Michel; Schlosser, Clemens; Schmid, Sabine; Vermeulen, Alex; Levin, Ingeborg

    2016-01-01

    A European-wide 222Radon/222Radon progeny comparison study has been conducted in order to determine correction factors that could be applied to existing atmospheric 222Radon data sets for quantitative use of this tracer in atmospheric transport model validation. Two compact and easy-to-transport Heidelberg Radon Monitors (HRM) were moved around to run for at least one month at each of the nine European measurement stations that were included in the comparison. Linear regressions between paral...

  16. Long term performance of different radon remedial methods in Sweden; Radonaatgaerders bestaendighet

    Energy Technology Data Exchange (ETDEWEB)

    Clavensjoe, Bertil [Bjerking AB, Uppsala (Sweden)

    2002-06-01

    The object of this project was to investigate the long time effectiveness of different radon remedial methods. The ten years project started 1991. From start the investigation comprised of 105 dwellings (91 single-family houses and 14 flats in multi-family buildings). In all of the dwellings remedial measures were carried out in the eighties. Before and immediately after the reduction the local authorities measured the radon concentrations. New measurements of the radon concentrations have been made every third year; in 1991, 1994, 1997 and in 2000. Twelve different radon remedial methods and method combinations were used. The radon sources were building materials as well as sub-soils. In all of the dwellings the radon concentrations were measured by nuclear track films during 3 months (January-March) measurements and in half of them the air change rates by passive tracer gas methods. The results of the 2000 and the 1991 (within brackets) studies showed that the radon concentration was up to 200 Bq/m{sup 3} in 54 (54) single-family houses and 7 (7) flats, between 210 Bq/m{sup 3} and 400 Bq/m{sup 3} in 23 (18) single-family houses and 5 (6) flats, and higher than 400 Bq/m{sup 3} in 12 (18) single-family houses and 2 (1) flats. The study 1991 showed also that in about 40 % of the cases the radon concentration had increased by more than 30 % only a few years after reduction actions had been taken. In 19 dwellings the radon concentration was at least doubled. In no fewer than 38 dwellings the radon level has been over 400 Bq/m{sup 3} in at least one of the four measuring occasions. The change in radon concentrations was not specific to any given method but seemed to be evenly distributed over all of them. The investigation results showed the necessity for repeated measuring where counter measures have been taken. The causes for increasing radon levels have been made clear in all except 2-3 cases.

  17. The radon: evaluation and risk management; Le radon: evaluation et gestion du risque

    Energy Technology Data Exchange (ETDEWEB)

    Lacoste, A.C. [Direction Generale de la Surete Nucleaire et de la Radioprotection, 75 - Paris (France); Masse, R. [Academie des Technologies, 75 - Paris (France); Aurengo, A. [Hopital Pitie-Salpetriere, Service de Medecine Nucleaire, 75 - Paris (France); Erich Wichmann, H. [Neuberberg Munich Univ. (Germany); Timarche, M.; Laurier, D.; Robe, M.Ch. [Institut de Radioprotection et de Surete Nucleaire (IRSN), 92 - Clamart (France); Baubron, J.C.; Bonijoly, D. [BRGM, 75 - Paris (France); Collignan, B. [Centre Scientifique et Technique du Batiment, (CSTB), 75 - Paris (France); Berrier, H. [Direction Gle de l' Urbanisme de l' Habitat et de la Construction, 75 - Paris (France); Jaouen, J. [Direction Departementale des Affaires Sanitaires et Sociales de la Haute-Vienne (France); Caamano, D. [Direction Departementale des Affaires Sanitaires et Sociales de l' Essonne, 91 (France); Guiot, F. [Direction Departementale des Affaires Sanitaires et Sociales de la Haute-Marne (France); Grall, B. [Direction Departementale des Affaires Sanitaires et Sociales de Bretagne (France); Frutos Vasquez, B.; Olaya Adan, M. [Istituto de Ciencias de la Construction (Italy); Garcia Cadierno, J.P.; Martin Matarranz, J.L.; Serrano Renedo, J.; Suarez Mahou, E. [Consejo de Seguridad Nuclear, Madrid (Spain); Fernandez, J.A. [ENUSA Industrias Avanzadas (Spain); Mjones, L.; Pirard, P. [Institut de veille sanitaire, 94415 - Saint-Maurice (France); Godet, J.L.; Rougy, Ch. [Direction Gle de la Surete Nucleaire et de la Radioprotection, 75 - Paris (France)

    2003-06-15

    The radon exposure constitutes for the French population the first cause of natural irradiation among the different natural sources of irradiation. It is possible to have a significant action on it, either by making draught proof in order to avoid to radon to get inside houses, either by ventilating in order to dispel the radon and improve air quality. (N.C.)

  18. A perspective on risks from radon

    Energy Technology Data Exchange (ETDEWEB)

    Higson, D. J., E-mail: higsond@bigpond.net.a [Australasian Radiation Protection Society, PO Box 7108, Upper Ferntree Gully, Victoria 3156 (Australia)

    2010-10-15

    In its Statement on Radon (November 2009), the International Commission on Radiological Protection (ICRP) has reduced the upper reference level for radon gas in dwellings to 300 Bq m{sup -3}. The recommended level for workplaces is 1000 Bq m{sup -3}. A risk coefficient of 8 x 10{sup -10} per Bq h m{sup -3} is recommended without reference to smoking habits. On the basis of these figures: 1) The estimated risk of fatal cancer from exposure to radon at home and at work could be greater than the observed risk of accidental death from travelling by car, which would be surprising if true. 2) The estimated risk of lung cancer from radon could be greater than the observed risk of lung cancer from all causes, which is actually known to be dominated by smoking. The author is not aware of any direct evidence of risks from inhaling radon in Australian dwellings, 99% of which have radon levels below 50 Bq m{sup -3}. Evidence available from other countries shows that: 1) The effects of radon in the incidences of lung cancer are uncertain at levels less then about 50-100 Bq m{sup -3}. 2) The estimation of risks at levels below 200 Bq m{sup -3} depends on extrapolation from risks observed at higher levels. 3) Risks to non-smokers from radon are 25 times less than risks to smokers. Its concluded that the ICRP Statement on Radon and radon policies in the US and UK have the potential to cause unwarranted concern. Some people may be made to feel they need to spend money modifying their homes and workplaces to protect occupants from exposure to radon when there is no compelling reason to show that this is necessary. The vast majority of non-smokers do not need to be protected from radon. (Author)

  19. A Fuzzy Radon Transform for Track Recognition

    CERN Document Server

    De Laat, C T A M; CERN. Geneva; Lourens, W; Kamermans, R

    1993-01-01

    In this contribution a fuzzy Radon transform is shown for application in ALICE and ATLAS (typical track density of 8000 in one unit of rapidity). Resolution is introduced by the "broadening" of the matching tracks in the Radon transform, which is obtained by making a convolution of the matching tracks with Gaussian kernel. In a good approximation, an analytical expression for the fuzzy Radon transform is given. An example of two track separation with noisy input is added.

  20. Use of simulink to address key factors for radon mitigation in a Fairbanks home.

    Science.gov (United States)

    Marsik, Tom; Johnson, Ron

    2008-05-01

    Hilly areas around Fairbanks, Alaska, are known to have elevated soil radon concentrations. Due to geological conditions, cold winters, and the resulting stack effect, houses in these areas are prone to higher indoor radon concentrations. Key variables with respect to radon mitigation were addressed in this paper by using a dynamic model implemented in MATLAB Simulink. These variables included the ventilation rate; the foundation flow resistance, which can be affected by sealing the foundation during the construction of a house; and the differential pressure between the subslab and the house interior, which can be affected by using a subslab depressurization system. The model was used for the scenario of a varying differential pressure and then for the scenario of a varying ventilation rate at a Fairbanks home where real-time radon concentrations were measured. The correlation coefficients between the model-predicted and measured radon concentrations were 0.96 and 0.94, for both scenarios respectively, which verified the feasibility of the model for predicting indoor radon concentrations.

  1. Unexpected Daily Peaks in a Laboratory Simulation Experiment of Radon Signals

    Science.gov (United States)

    Bezaly, Orr Rose; Steinitz, Gideon; Israelevich, Peter; Kotlarsky, Peter; Piatibratova, Oksana; Malik, Uri; Asperil, Tal; Marco, Shmuel

    2017-04-01

    Radon is a noble radioactive gas of special interest in earth sciences due to both its unique chemical and physical properties and its natural abundance. The most stable isotope of radon, 222Rn, has a half-life of 3.823 days and is the only gas-phase atom in the 238U decay series. Radon could be considered as a possible tracer for tectonic and volcanic processes, yet the physical mechanisms that influence radon emanation from rock and transport are unclear. Our team strives to observe and analyse radon signals in monitored environments. Simulation of radon signals and investigation of their characteristics in laboratory experiments are conducted using radon in an enclosed chamber, termed "Enhanced Confined Mode" (ECM). An ECM experiment will be described; its arrangement comprises of two 222Rn sources of activity ˜105Bq each. The sources are connected in parallel via tube to a horizontal stainless steel cylinder (˜570cm3) that contains air at atmospheric pressure. Direct count rate measurements were performed using a NaI (2x2") gamma-ray scintillation detector aligned along the cylinder's axis, at one minute resolution, for over 60 days. Radon is supplied into the ECM chamber by diffusion and it disintegrates as it undergoes radioactive decay. A priori, a steady state of diffusion and radioactive decay rates is expected. However, our results show evident deviations from this expected steady state, namely fluctuations that are significant relative to the uncertainty in measurements. Predominant daily peaks characterise the data. Signal processing and analysis of these daily peaks will be presented.

  2. Radon surveys and monitoring at active volcanoes: an open window on deep hydrothermal systems and their dynamics

    Science.gov (United States)

    Cigolini, Corrado; Laiolo, Marco; Coppola, Diego

    2017-04-01

    The behavior of fluids in hydrothermal systems is critical in volcano monitoring and geothermal prospecting. Analyzing the time series of radon emissions on active volcanoes is strategic for detecting and interpreting precursory signals of changes in volcanic activity, eventually leading to eruptions. Radon is a radioactive gas generated from the decay of U bearing rocks, soils and magmas. Although radon has been regarded as a potential precursor of earthquakes, radon anomalies appear to be better suited to forecast volcanic eruptions since we know where paroxysms may occur and we can follow the evolution of volcanic activity. Radon mapping at active volcanoes is also a reliable tool to assess diffuse and concentrated degassing as well as efficiently detecting earthquake-volcano interactions. Systematic radon monitoring has been shown to be a key factor for evaluating the rise of volcanic and hydrothermal fluids. In fact, the decay properties of radon, the duration of radon anomalies together with sampling rates may be cross-checked with the chemistry of hydrothermal fluids (and their transport properties) to constrain fluids ascent rates and to infer the permeability and porosity of rocks in sectors surrounding the active conduits. We hereby further discuss the data of radon surveys and monitoring at Somma-Vesuvius, Stromboli and La Soufrière (Guadeloupe, Lesser Antilles). The integrated analysis of seismic and geochemical data, including radon emissions, may be successfully used in testing temperature distributions and variations of porosity and permeability in volcanic hydrothermal systems and can be used as a proxy to analyze geothermal reservoirs.

  3. Radon atlas of Finland; Suomen radonkartasto

    Energy Technology Data Exchange (ETDEWEB)

    Voutilainen, A.; Maekelaeinen, I.; Pennanen, M.; Reisbacka, H.; Castren, O.

    1997-11-01

    The most efficient means of reducing indoor radon exposure is to locate and mitigate dwellings with radon concentration exceeding the action level of 400 Bq/m{sup 3} and to build new houses so that radon concentrations do not exceed 200 Bq/m{sup 3}. The maps and tables in this report are useful tools for those who plan and decide what kind of radon mitigation measures are needed in municipalities. STUK (The Radiation and Nuclear Safety Authority) has an indoor radon database of 52 000 dwellings, for which the indoor radon concentration and construction details are known. The building site soil type of about 38 000 dwellings is known. This atlas is a summary of all indoor radon measurements made by STUK in lowrise dwellings and in first-floor flats. The results are shown as arithmetic means of 5- or 10-km squares on maps of the provinces. Three radon maps have been made for each province. On one map the data consist of all measurements the position coordinates of which are known. On the two other maps the building sites of houses are classified into permeable and low-permeable soil types. The tables show statistics for all indoor radon measurements by municipality and building site soil type. (orig.). 11 refs. The publication contains all texts both in Finnish and in English.

  4. Radon in Himalayan springs: a geohydrological control

    Energy Technology Data Exchange (ETDEWEB)

    Choubey, V.M.; Bartarya, S.K. [Wadia Inst. of Himalayan Geology, Dehra Dun (India); Ramola, R.C. [Garhwal Univ., Srinagar, Uttar Pradesh (India). Dept. of Physics

    2000-04-01

    This paper presents the results of radon measurements in springs of the Himalayan region by using radon emanometry technique. The radon was measured in different springs, draining from different geohydrological setups, and from stream water in order to find the geohydrological control over radon concentration in groundwater emanating in the form of spring. The radon values were found to vary from 0.4 Bq/l to 887 Bq/l, being observed lowest for a turbulent stream and highest for the spring. The radon values were recorded highest in the springs draining through gneiss, granite, mylonite, etc. Radon concentrations have been related with four spring types viz. fracture-joint related spring, fault-lineament related spring, fluvial related spring and colluvial related spring, showing geohydrological characteristics of the rocks through which they are emanating. The high radon concentration in fracture-joint and fault-lineament springs is related to increased ratio of rock surface area to water volume and uranium mineralisation in the shear zones present in the close vicinity of fault and thrust. The low concentration of radon in fluvial and colluvial springs is possibly because of high transmissivity and turbulent flow within such deposits leading to natural de-emanation of gases. (orig.)

  5. Radon transfer and intracorporal deposition of radon decay products under balneotherapeutic conditions; Radon-Transfer und intrakorporale Deposition von Radon-Folgeprodukten unter balneotherapeutischen Bedingungen

    Energy Technology Data Exchange (ETDEWEB)

    Grunewald, Wolfgang A. [Kurmittelhaus Sibyllenbad, Neualbenreuth (Germany); Just, Guenther [Forschungsbuero Radon, Grosspoesna (Germany); Petzold, Juergen [Klinik und Poliklinik fuer Nuklearmedizin, Universitaetsklinikum, Leipzig (Germany); Philipsborn, Henning von [Radiometrisches Seminar, Univ. Regensburg (Germany)

    2009-07-01

    The intracorporal deposition of radon decay products was determined on four persons after 40 and 30 min respectively in radon water with about 1500 Bq/L by whole-body gamma spectrometry. The measurements started about 2 1/2h after exposure. In addition, the radon activity concentration of inspiratory and expiratory air was measured on one person during and after exposure and the deposition of radon decay products on the skin was measured on another person. The radon activity leaving the body with the expiratory air during exposure in the water (called ''radon transfer'') amounts to about 800 Bq. An intracorporal radon activity immediately after therapeutic exposure of about 3000 Bq was obtained as a result of first measurements by extrapolation from measurements starting about 2 1/2 hours later. Additional studies are necessary. There are indications that both the radon transfer and the intracorporal deposition can be increased by exposure in mixed radon-CO{sub 2} water. (orig.)

  6. Low-Cost Radon Reduction Pilot Study

    Energy Technology Data Exchange (ETDEWEB)

    Rose, William B. [Partnership for Advanced Residential Retrofit, Champaign, IL (United States); Francisco, Paul W. [Partnership for Advanced Residential Retrofit, Champaign, IL (United States); Merrin, Zachary [Partnership for Advanced Residential Retrofit, Champaign, IL (United States)

    2015-09-01

    The aim of the research was to conduct a primary scoping study on the impact of air sealing between the foundation and the living space on radon transport reduction across the foundation-living space floor assembly. Fifteen homes in the Champaign, Illinois area participated in the study. These homes were instrumented for hourly continuous radon measurements and simultaneous temperature and humidity the foundation was improved. However, this improved isolation did not lead to significant reductions in radon concentration in the living space. Other factors such as outdoor temperature were shown to have an impact on radon concentration.

  7. Risk assessment of exposure to radon decay products

    Energy Technology Data Exchange (ETDEWEB)

    Monchaux, G

    1999-07-01

    The aim of this project was to assess the risk due to inhalation of radon and its decay products using an horizontal approach across a large scale research programme. The central objective was the assessment of human risk which requires combination of several topics involving a multidisciplinary approach. In the Aerosol Studies Group, progress was achieved in improvement, calibration and automation of experimental techniques for continuous and integrated measurements of the unattached fraction f{sub p}- and equilibrium factor F- values. Measurements were performed to determine the variation of size distributions of unattached and aerosol-associated radon decay products under typical living conditions. All aerosol groups performed controlled chamber studies to understand the basic behaviour of airborne activity concentrations. Measurements were performed to determine neutralisation rates of {sup 218}Po, to understand the cluster growth with residence time and to understand the hygroscopic growth of aerosol particles. In the Modelling Group, the programme RADEP has been developed to calculate the weighted committed equivalent lung dose per unit exposure of radon progeny (H{sub w}/P{sub p}) which implements the ICRP Publication 66 Human Respiratory Tract Model (HRTM). The stochastic deposition model (IDEAL) has been compared with the deposition model used by the HRTM, and the agreement between the two deposition models was excellent. A deterministic radon progeny dosimetry model (RADOS) has been developed. This model includes all bronchial airway generations compared with the HRTM that groups the 16 airway generations into three regions. Initial calculations with RADOS show that the basal and secretory cell doses are slightly smaller compared with that of the HRTM. A sensitivity analysis has been performed that has identified those HRTM model parameters that most affect the Hw/Pp. A stochastic rat deposition model (RALMO) and a clearance model for the rat based on the

  8. Radon as an Anthropogenic Indoor Air Pollutant

    Science.gov (United States)

    Gillmore, Gavin; Crockett, Robin

    2016-04-01

    Radon is generally regarded as a naturally occurring radiological hazard but we report here measurements of significant, hazardous radon concentrations that arise from man-made sources, including granite ornaments/artefacts, uranium glass and glazed objects as well radium dial watches. This presentation concerns an examination and assessment of health risks from radium and uranium found in historical artefacts, many of which were once viewed as everyday items, and the radon that emanates from them. Such objects were very popular in industrialised countries such as the USA, UK and European countries) particularly between and including the two World Wars but are still readily available. A watch collection examined gave rise to a hazardous radon concentration of 13.24 kBq•m-3 approximately 67 times the Domestic Action Level of 200 Bq•m-3.The results for an aircraft altimeter are comparable to those of the watches, indicating radon activity equivalent to several watches, and also indicate an equilibrium concentration in the 16.3 m3 room ca. 33 times the UK domestic Action Level. Results from a granite block indicate a radon emanation of 19.7 Bq•kg-1, but the indicated equilibrium concentration in the 16.3 m3 room is only ca. 1.7% of the UK domestic Action Level. Uranium-glazed crockery and green uranium glass were scoped for radon activity. The former yielded a radon concentration of ca. 44 Bq•m-3 in a small (7 L) sealed container. The latter yielded a lower radon concentration in a larger (125 L) sealed container of ca. 6 Bq•m-3. This is barely above the background radon concentration in the laboratory, which was typically ca. 1-2 Bq•m-3. Individual items then are capable of giving rise to radon concentrations in excess of the UK Domestic Action Level in rooms in houses, particularly if poorly ventilated. We highlight the gap in the remediation protocols, which are focused on preventing radon entering buildings from outside, with regard to internally

  9. Current state of radon chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Avrorin, V.V.; Krasikova, R.N.; Nefedov, V.D.; Toropova, M.A.

    1982-01-01

    This article summarizes the data available prior to May 1980 on the physical, chemical and radioactive properties of radon. Tables include a list of the known isotopes together with the half-lives, types of emitted radiation and daughter products and a list of the inert gases Rn, Xe, Kr, Ar and Ne together with the hydrate stability, ionization potential, ionic character of bonding, dissociation energy, electronegativity and others. Experimental difficulties of working with radon, such as its short half-life and its fugitive nature, are mentioned. The compound RNF/sub 2/ can be prepared from several different fluorinating reagents such as ClF/sub 3/, KrF/sub 3/, BrF/sub 3/, K/sub 2/NiF/sub 6/ in HF and others. Until now it has not been possible to prepare organic compounds of inert gases using classical techniques. Noble gas compounds may also be prepared via radiochemical techniques. Some applications of radon compounds, such as in decontamination of reactor and mine effluents, are discussed.

  10. Radon in homes of the Portland, Oregon Area: Radon data from local radon testing companies collected by CRM (Continuous Radon Measurement) machines

    Science.gov (United States)

    Whitney, H.; Lindsey, K.; Linde, T.; Burns, S. F.

    2013-12-01

    Students from the Department of Geology at Portland State University paired up with the Oregon Health Authority to better understand radon gas values in homes of the Portland metropolitan area. This study focuses on radon values collected by continuous radon measurement (CRM) machines, taken by local radon testing companies. The local companies participating in this study include Alpha Environmental Services, Inc., Cascade Radon, Environmental Works, The House Detectives, LLC, and Soil Solutions Environmental Services, Inc. In total, 2491 radon readings spanning across 77 zip codes were collected from local companies in the Portland metropolitan area. The maximum value, average value, percentage of homes greater than 4 pCi/L and total rank sum was calculated and used to determine the overall radon potential for each zip code (Burns et al., 1998). A list and four maps were produced showing the results from each category. Out of the total records, 24 zip codes resulted in high radon potential and the average reading for the entire Portland Metropolitan area was 3.7 pCi/L. High potential zip codes are thought to be a result of sand and gravel (Missoula Flood deposits) and faults present in the subsurface. The CRM data was compared with both long-term and short-term data provided by the Oregon Health Authority to validate radon potentials in each zip code. If a home is located in a zip code with high or moderate radon potential across two types of data sets, it is recommended that those homes be tested for radon gas.

  11. Residential Radon Exposure and Skin Cancer Incidence in a Prospective Danish Cohort

    Science.gov (United States)

    Bräuner, Elvira Vaclavik; Loft, Steffen; Sørensen, Mette; Jensen, Allan; Andersen, Claus Erik; Ulbak, Kaare; Hertel, Ole; Pedersen, Camilla; Tjønneland, Anne; Krüger Kjær, Susanne; Raaschou-Nielsen, Ole

    2015-01-01

    Background Although exposure to UV radiation is the major risk factor for skin cancer, theoretical models suggest that radon exposure can contribute to risk, and this is supported by ecological studies. We sought to confirm or refute an association between long-term exposure to residential radon and the risk for malignant melanoma (MM) and non-melanoma skin cancer (NMSC) using a prospective cohort design and long-term residential radon exposure. Methods During 1993–1997, we recruited 57,053 Danish persons and collected baseline information. We traced and geocoded all residential addresses of the cohort members and calculated radon concentrations at each address lived in from 1 January 1971 until censor date. Cox proportional hazards models were used to estimate incidence rate-ratios (IRR) and confidence intervals (CI) for the risk associated with radon exposure for NMSC and MM, and effect modification was assessed. Results Over a mean follow-up of 13.6 years of 51,445 subjects, there were 3,243 cases of basal cell carcinoma (BCC), 317 cases of squamous cell carcinoma (SCC) and 329 cases of MM. The adjusted IRRs per 100 Bq/m3 increase in residential radon levels for BCC, SCC and MM were 1.14 (95% CI: 1.03, 1.27), 0.90 (95% CI: 0.70, 1.37) and 1.08 (95% CI: 0.77, 1.50), respectively. The association between radon exposure and BCC was stronger among those with higher socio-economic status and those living in apartments at enrollment. Conclusion and Impact Long-term residential radon exposure may contribute to development of basal cell carcinoma of the skin. We cannot exclude confounding from sunlight and cannot conclude on causality, as the relationship was stronger amongst persons living in apartments and non-existent amongst those living in single detached homes. PMID:26274607

  12. Assessment of the effectiveness of radon screening programs in reducing lung cancer mortality.

    Science.gov (United States)

    Gagnon, Fabien; Courchesne, Mathieu; Lévesque, Benoît; Ayotte, Pierre; Leclerc, Jean-Marc; Belles-Isles, Jean-Claude; Prévost, Claude; Dessau, Jean-Claude

    2008-10-01

    The present study was aimed at assessing the health consequences of the presence of radon in Quebec homes and the possible impact of various screening programs on lung cancer mortality. Lung cancer risk due to this radioactive gas was estimated according to the cancer risk model developed by the Sixth Committee on Biological Effects of Ionizing Radiations. Objective data on residential radon exposure, population mobility, and tobacco use in the study population were integrated into a Monte-Carlo-type model. Participation rates to radon screening programs were estimated from published data. According to the model used, approximately 10% of deaths due to lung cancer are attributable to residential radon exposure on a yearly basis in Quebec. In the long term, the promotion of a universal screening program would prevent less than one death/year on a province-wide scale (0.8 case; IC 99%: -3.6 to 5.2 cases/year), for an overall reduction of 0.19% in radon-related mortality. Reductions in mortality due to radon by (1) the implementation of a targeted screening program in the region with the highest concentrations, (2) the promotion of screening on a local basis with financial support, or (3) the realization of systematic investigations in primary and secondary schools would increase to 1%, 14%, and 16.4%, respectively, in the each of the populations targeted by these scenarios. Other than the battle against tobacco use, radon screening in public buildings thus currently appears as the most promising screening policy for reducing radon-related lung cancer.

  13. STUDY OF RADIATION EXPOSURE DUE TO RADON, THORON AND THEIR PROGENY IN THE INDOOR ENVIRONMENT OF RAJPUR REGION OF UTTARAKHAND HIMALAYA.

    Science.gov (United States)

    Kandari, Tushar; Aswal, Sunita; Prasad, Mukesh; Pant, Preeti; Bourai, A A; Ramola, R C

    2016-10-01

    In the present study, the measurements of indoor radon, thoron and their progeny concentrations have been carried out in the Rajpur region of Uttarakhand, Himalaya, India by using LR-115 solid-state nuclear track detector-based time-integrated techniques. The gas concentrations have been measured by single-entry pin-hole dosemeter technique, while for the progeny concentrations, deposition-based Direct Thoron and Radon Progeny Sensor technique has been used. The radiation doses due to the inhalation of radon, thoron and progeny have also been determined by using obtained concentrations of radon, thoron and their progeny in the study area. The average radon concentration varies from 75 to 123 Bq m(-3) with an overall average of 89 Bq m(-3) The average thoron concentration varies from 29 to 55 Bq m(-3) with an overall average of 38 Bq m(-3) The total annual effective dose received due to radon, thoron and their progeny varies from 2.4 to 4.1 mSv y(-1) with an average of 2.9 mSv y(-1) While the average equilibrium factor for radon and its progeny was found to be 0.39, for thoron and its progeny, it was 0.06. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Probabilistic Assessment of Radon Transport at the Monticello, Utah Uranium Mill Tailings Disposal Site

    Science.gov (United States)

    Arnold, B. W.; Ho, C. K.; Cochran, J. R.; Taira, R. Y.

    2001-12-01

    One objective of the cover design at the Monticello site is attenuation of the radon emanation from the mill tailings to the atmosphere. The landfill cover acts as a diffusion barrier, allowing time for the decay of the relatively short-lived Rn-222 gas during migration through the pore spaces of the cover soil. The conceptual model of radon migration through the landfill cover is one-dimensional upward transport driven by the difference in concentration in the tailings and the atmosphere. The processes affecting transport are molecular diffusion and radioactive decay. Uncertainty in the radon emanation rate from the tailings, as well as uncertainties in the effective diffusion coefficient and moisture content for individual layers in the landfill cover are assessed for both present and future conditions. Transport of radon gas by diffusion is enhanced at higher moisture content because of the reduced air phase volume in the soil under these conditions. In a competing manner, higher moisture content results in a lower effective diffusion coefficient for radon gas. Multiple realizations of the system and simulations of radon transport were performed using the RAECOM and FRAMES computer programs. Results indicate a very low probability of exceeding the regulatory limit of 20 pCi/m2/s under present conditions and a low probability of exceedence for future conditions. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000.

  15. A statistical evaluation of the influence of housing characteristics and geogenic radon potential on indoor radon concentrations in France.

    Science.gov (United States)

    Demoury, C; Ielsch, G; Hemon, D; Laurent, O; Laurier, D; Clavel, J; Guillevic, J

    2013-12-01

    Radon-222 is a radioactive natural gas produced by the decay of radium-226, known to be the main contributor to natural background radiation exposure. Effective risk management needs to determine the areas in which the density of buildings with high radon levels is likely to be highest. Predicting radon exposure from the location and characteristics of a dwelling could also contribute to epidemiological studies. Beginning in the nineteen-eighties, a national radon survey consisting in more than 10,000 measurements of indoor radon concentrations was conducted in French dwellings by the Institute for Radiological Protection and Nuclear Safety (IRSN). Housing characteristics, which may influence radon accumulation in dwellings, were also collected. More recently, the IRSN generated a French geogenic radon potential map based on the interpretation of geological features. The present study analyzed the two datasets to investigate the factors influencing indoor radon concentrations using statistical modeling and to determine the optimum use of the information on geogenic radon potential that showed the best statistical association with indoor radon concentration. The results showed that the variables associated with indoor radon concentrations were geogenic radon potential, building material, year of construction, foundation type, building type and floor level. The model, which included the surrounding geogenic radon potential (i.e. the average geogenic radon potential within a disc of radius 20 km centered on the indoor radon measurement point) and variables describing house-specific factors and lifestyle explained about 20% of the overall variability of the logarithm of radon concentration. The surrounding geogenic radon potential was fairly closely associated with the local average indoor radon concentration. The prevalence of exposure to radon above specific thresholds and the average exposures to radon clearly increased with increasing classes of geogenic radon

  16. US Ports of Entry

    Data.gov (United States)

    Department of Homeland Security — HSIP Non-Crossing Ports-of-Entry A Port of Entry is any designated place at which a CBP officer is authorized to accept entries of merchandise to collect duties, and...

  17. Uranium prospecting using radon (1963); La prospection de l'uranium par le radon (1963)

    Energy Technology Data Exchange (ETDEWEB)

    Pradel, J.; Billard, F.; Miribel, J.; Gangloff, A.; Puybaraud, Y.; Tayeb, G. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1963-07-01

    The radon which diffuses in the ground and which migrates in the atmosphere is a natural radioactive tracer. The study of its production can give useful information on the uranium content and structure of the rocks from which it comes. Numerous authors have therefore suggested that uranium deposits be prospected by means of this radon. Three analytic methods have been used successively by the C.E.A.: the method of accumulation in a hole, the method of instantaneous sampling in the ground, and the method of sampling by scanning. Only the last has proved interesting and has been the object of systematic studies. It consists in purging the measurement recipient with air drawn from the probe and in measuring the variations in activity with time and with the volume drawn up, using a portable apparatus producing scintillations in a sulphurated flask. The first series of measurements made it possible to develop an apparatus (flow rate, hole depth, scintillating probe) and to distinguish between tbe activities of the thoron and of the radon by making two measurements at an interval of 54 seconds. A campaign of systematic sampling was then carried out. It made It possible to show the good reproducibility of the results obtained and tbe good agreement with conventional methods. This method is the best one for areas having large overlap. In the appendix the detector and its mode of use are briefly described, and the first results of an emanometric prospecting test in the Vendee mining division are given. (authors) [French] Le radon qui diffuse dans le sol et migre dans l'atmosphere constitue un traceur radioactif naturel. L'etude de son degagement peut apporter de precieux renseignements sur la teneur en uranium et la structure des roches dont il est issu. De nombreux auteurs ont donc propose la prospection des gisements d'uranium par le radon. Trois methodes d'analyse ont ete successivement utilisees au C.E.A.: la methode d'accumulation dans un trou

  18. The distribution of indoor radon in Transylvania (Romania) - influence of the natural and anthropogenic factors

    Science.gov (United States)

    Cucos Dinu, Alexandra; Baciu, Calin; Dicu, Tiberius; Papp, Botond; Moldovan, Mircea; Bety Burghele, Denissa; Tenter, Ancuta; Szacsvai, Kinga

    2017-04-01

    Exposure to radon in homes and workplaces is now recognized as the most important natural factor in causing lung cancer. Radon activity is usually higher in buildings than in the outside atmosphere, as it may be released from building materials and soil beneath the constructions, and the concentration builds-up indoor, due to the low air renewal rates. Indoor radon levels can vary from one to multiple orders of magnitude over time and space, as it depends on several natural and anthropogenic factors, such us the radon concentration in soil under the construction, the weather conditions, the degree of containment in the areas where individuals are exposed, building materials, outside air, tap water and even city gas, the architecture, equipment (chimney, mechanical ventilation systems, etc.), the environmental parameters of the building (temperature, pressure, etc.), and on the occupants' lifestyle. The study presents the distribution of indoor radon in Transylvania, Romania, together with the measurements of radon in soil and soil water. Indoor radon measurements were performed by using CR-39 track detectors exposed for 3 months on ground-floor level of dwellings, according to the NRPB Measurement Protocol. Radon concentrations in soil and water were measured using the LUK3C device. A complete map was plotted at the date, based on 3300 indoor radon measurements, covering an area of about 42% of the Romanian territory. The indoor radon concentrations ranged from 5 to 3287 Bq m-3, with an updated preliminary arithmetic mean of 179 Bq m-3, and a geometric mean of 122 Bq m-3. In about 11% of the investigated grid cells the indoor radon concentrations exceed the threshold of 300 Bq m-3. The soil gas radon concentration varies from 0.8 to 169 kBq m-3, with a geometric mean of 26 kBq m-3. For water samples, the results show radon concentrations within the range of 0.3 - 352.2 kBq m-3, with a geometric mean of 7.7 Bq L-1. A weak correlation between the three sets of values

  19. Atmospheric dispersion of radon around uranium mill tailings of the former Pridneprovsky Chemical Plant in Ukraine.

    Science.gov (United States)

    Kovalets, Ivan V; Asker, Christian; Khalchenkov, Alexander V; Persson, Christer; Lavrova, Tatyana V

    2017-06-01

    Simulations of atmospheric dispersion of radon around the uranium mill tailings of the former Pridneprovsky Chemical Plant (PChP) in Ukraine were carried out with the aid of two atmospheric dispersion models: the Airviro Grid Model and the CALMET/CALPUFF model chain. The available measurement data of radon emission rates taken in the territories and the close vicinity of tailings were used in simulations. The results of simulations were compared to the yearly averaged measurements of concentration data. Both models were able to reasonably reproduce average radon concentration at the Sukhachivske site using averaged measured emission rates as input together with the measured meteorological data. At the same time, both models significantly underestimated concentrations as compared to measurements collected at the PChP industrial site. According to the results of both dispersion models, it was shown that only addition of significant radon emission rate from the whole territory of PChP in addition to emission rates from the tailings could explain the observed concentration measurements. With the aid of the uncertainty analysis, the radon emission rate from the whole territory of PChP was estimated to be between 1.5 and 3.5 Bq·m(-2)s(-1). Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Changes in environmental radon related with the day eclipse; Cambios de radon ambiental relacionados con el eclipse del dia 11 de julio 1991

    Energy Technology Data Exchange (ETDEWEB)

    Gaso P, M.I.; Cervantes, M.L.; Segovia A, N.; Espindola, V.H

    1992-05-15

    Systematic studies of radon and of gamma dose in air in the Nuclear Center of Mexico during a period of nine months that include the total Sun eclipse happened at July 11, 1991 were carried out. The radon concentrations were measured with an electronic equipment that measures in continuous form and the rate of gamma dose in air was obtained with a ionization chamber. The results show that the radon fluctuations in air are influenced by the meteorological changes showing behaviors different to long and short term. The variations of long term are correlated directly with the external temperature while those of short term have an inverse relationship with the temperature. These last results are discussed regarding drastic atmospheric changes happened in the period and those light changes result of the total Sun eclipse. The rate of gamma dose in air showed stability during the study. (Author)

  1. Find a Radon Test Kit or Measurement and Mitigation Professional

    Science.gov (United States)

    Find a qualified radon service professional to fix or mitigate your home. If you have questions about a radon, you should contact your state radon contact and/or contact one or both of the two privately-run National Radon Proficiency Programs

  2. Systematic radon survey over active volcanoes

    Energy Technology Data Exchange (ETDEWEB)

    Seidel, J.L.; Monnin, M.; Garcia Vindas, J.R. [Centre National de la Recherche Cientifique, Montpellier (France). Lab. GBE; Ricard, L.P.; Staudacher, T. [Observatoire Volcanologique Du Pitou de la Fournaise, La Plaine des Cafres (France)

    1999-08-01

    Data obtained since 1993 on Costa Rica volcanos are presented and radon anomalies recorded before the eruption of the Irazu volcano (December 8, 1994) are discussed. The Piton de la Fournaise volcano is inactive since mid 1992. The influence of the external parameters on the radon behaviour is studied and the type of perturbations induced on short-term measurements are individuate.

  3. Radon Measurements in Schools: An Interim Report.

    Science.gov (United States)

    Environmental Protection Agency, Washington, DC. Office of Radiation Programs.

    Radon-222 is a colorless, odorless, tasteless, radioactive gas that occurs naturally in soil, rocks, underground water, and air. The United States Environmental Protection Agency (EPA) and other scientific organizations have identified an increased risk of lung cancer associated with exposure to elevated levels of radon in homes. Schools in many…

  4. Removal of Radon from Household Water.

    Science.gov (United States)

    Environmental Protection Agency, Washington, DC. Office of Research and Development.

    By far, the greatest risk to health from radon occurs when the gas enters the house from underlying soil and is inhaled. The U.S. Environmental Protection Agency (EPA) is studying ways to reduce radon in houses, including methods to remove the gas from water to prevent its release in houses when the water is used. While this research has not…

  5. Radon Risk Communication Strategies: A Regional Story.

    Science.gov (United States)

    Cheng, Winnie

    2016-01-01

    Risk communication on the health effects of radon encounters many challenges and requires a variety of risk communication strategies and approaches. The concern over radon exposure and its health effects may vary according to people's level of knowledge and receptivity. Homeowners in radon-prone areas are usually more informed and have greater concern over those not living in radon-prone areas. The latter group is often found to be resistant to testing. In British Columbia as well as many other parts of the country, some homes have been lying outside of the radon-prone areas have radon levels above the Canadian guideline, which is the reason Health Canada recommends that all homes should be tested. Over the last five years, the Environment Health Program (EHP) of Health Canada in the British Columbia region has been using a variety of different approaches in their radon risk communications through social media, workshops, webinars, public forums, poster contests, radon distribution maps, public inquiries, tradeshows and conference events, and partnership with different jurisdictions and nongovernmental organizations. The valuable lessons learned from these approaches are discussed in this special report.

  6. Radon Measurement in Schools. Revised Edition.

    Science.gov (United States)

    Environmental Protection Agency, Washington, DC.

    The Environmental Protection Agency (EPA) and other major national and international scientific organizations have concluded that radon is a human carcinogen and a serious environmental health problem. The EPA has conducted extensive research on the presence and measurement of radon in schools. This report provides school administrators and…

  7. Radon Reduction Methods: A Homeowner's Guide.

    Science.gov (United States)

    Environmental Protection Agency, Washington, DC.

    The U.S. Environmental Protection Agency (EPA) is studying the effectiveness of various ways to reduce high concentrations of radon in houses. This booklet was produced to share what has been learned with those whose radon problems demand immediate action. The booklet describes nine methods that have been tested successfully--by EPA and/or other…

  8. Surface-water radon-222 distribution along the west-central Florida shelf

    Science.gov (United States)

    Smith, C.G.; Robbins, L.L.

    2012-01-01

    In February 2009 and August 2009, the spatial distribution of radon-222 in surface water was mapped along the west-central Florida shelf as collaboration between the Response of Florida Shelf Ecosystems to Climate Change project and a U.S. Geological Survey Mendenhall Research Fellowship project. This report summarizes the surface distribution of radon-222 from two cruises and evaluates potential physical controls on radon-222 fluxes. Radon-222 is an inert gas produced overwhelmingly in sediment and has a short half-life of 3.8 days; activities in surface water ranged between 30 and 170 becquerels per cubic meter. Overall, radon-222 activities were enriched in nearshore surface waters relative to offshore waters. Dilution in offshore waters is expected to be the cause of the low offshore activities. While thermal stratification of the water column during the August survey may explain higher radon-222 activities relative to the February survey, radon-222 activity and integrated surface-water inventories decreased exponentially from the shoreline during both cruises. By estimating radon-222 evasion by wind from nearby buoy data and accounting for internal production from dissolved radium-226, its radiogenic long-lived parent, a simple one-dimensional model was implemented to determine the role that offshore mixing, benthic influx, and decay have on the distribution of excess radon-222 inventories along the west Florida shelf. For multiple statistically based boundary condition scenarios (first quartile, median, third quartile, and maximum radon-222 inshore of 5 kilometers), the cross-shelf mixing rates and average nearshore submarine groundwater discharge (SGD) rates varied from 100.38 to 10-3.4 square kilometers per day and 0.00 to 1.70 centimeters per day, respectively. This dataset and modeling provide the first attempt to assess cross-shelf mixing and SGD on such a large spatial scale. Such estimates help scale up SGD rates that are often made at 1- to 10-meter

  9. Measurements of radon around closed uranium mines

    Energy Technology Data Exchange (ETDEWEB)

    Furuta, Sadaaki E-mail: furuta@ningyo.jnc.go.jp; Ito, Kimio; Ishimori, Yuu

    2002-07-01

    There are several waste rock yards at closed uranium mines around Ningyo-toge, in the Western Honshu Island of Japan, and measurements of radon were carried out by both the passive method and the sampling method around these yards. As comparatively high radon concentrations were observed in two districts through routine measurements, more detailed measurements were made by the passive method in these districts. The impact of radon emanation from the waste rock yards was small for both residential districts and around these yards when considering the natural background level of radon. In addition, by simultaneous continuous measurements of radon and its progeny at two locations, it was estimated that the effective dose caused by the representative uranium waste rock yards was less than the public effective dose limit of 1 mSv year{sup -1} at the fenced boundary of the waste rock site.

  10. Indoor radon survey in the Vojvodina region

    Energy Technology Data Exchange (ETDEWEB)

    Forkapic, S.; Todorovic, N.; Bikit, I.; Mrda, D.; Slivka, J.; Veskovic, M. [Department of Physics, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovica 4, 21000 Novi Sad (Serbia)

    2010-07-01

    The results of an indoor radon survey in the Vojvodina region (Serbia) are presented. Long-term average radon measurements in an existing building can be measured relatively simply and inexpensively using a passive device, such as an alpha track detector. Houses in the suburbs were chosen as the target locations of the present investigations. Indoor radon concentrations were measured with CR-39 alpha track detectors at {approx}1000 locations in Vojvodina during the winter period. Effect of floor level, space under the rooms, boarding and the heating system on radon accumulation are discussed in this paper. For the dwellings typical of such regions, we measure a mean annual radon activity concentration of 112 Bq/m{sup 3} (747 measurements using the alpha track detector CR-39). (authors)

  11. Indoor radon risk potential of Hawaii

    Science.gov (United States)

    Reimer, G.M.; Szarzi, S.L.

    2005-01-01

    A comprehensive evaluation of radon risk potential in the State of Hawaii indicates that the potential for Hawaii is low. Using a combination of factors including geology, soils, source-rock type, soil-gas radon concentrations, and indoor measurements throughout the state, a general model was developed that permits prediction for various regions in Hawaii. For the nearly 3,100 counties in the coterminous U.S., National Uranium Resource Evaluation (NURE) aerorad data was the primary input factor. However, NURE aerorad data was not collected in Hawaii, therefore, this study used geology and soil type as the primary and secondary components of potential prediction. Although the radon potential of some Hawaiian soils suggests moderate risk, most houses are built above ground level and the radon soil potential is effectively decoupled from the house. Only underground facilities or those with closed or recirculating ventilation systems might have elevated radon potential. ?? 2005 Akade??miai Kiado??.

  12. Radon in houses and soil of Croatia

    Energy Technology Data Exchange (ETDEWEB)

    Radolic, V.; Vukovic, B.; Stanic, D.; Miklavcic, I.; Planinic, J. [Osijek Univ., Dept. of Physics (Croatia)

    2006-07-01

    Long-term indoor radon measurements in thousand Croatian homes, randomly selected, were performed by the LR-115 track etch detectors during a year 2003/2004. The obtained values of arithmetic means of radon concentrations in 20 Croatian counties were in range from 33 to 198 Bq/m{sup 3}, while the arithmetic and geometric means for Croatia were 68 and 50 Bq/m{sup 3}, respectively. Indoor radon concentrations follow log-normal distribution and the percentage of dwellings with concentrations above 400 Bq/m{sup 3} was 1.8 %. Radon concentrations in soil gas, at depth of 0.8 m, were measured by 'Alphaguard' measuring system. Association between levels of indoor and soil radon was investigated. (authors)

  13. Radon exposure and oropharyngeal cancer risk.

    Science.gov (United States)

    Salgado-Espinosa, Tania; Barros-Dios, Juan Miguel; Ruano-Ravina, Alberto

    2015-12-01

    Oropharyngeal cancer is a multifactorial disease. Alcohol and tobacco are the main risk factors. Radon is a human carcinogen linked to lung cancer risk, but its influence in other cancers is not well known. We aim to assess the effect of radon exposure on the risk of oral and pharyngeal cancer through a systematic review of the scientific literature. This review performs a qualitative analysis of the available studies. 13 cohort studies were included, most of them mortality studies, which analysed the relationship between occupational or residential radon exposure with oropharyngeal cancer mortality or incidence. Most of the included studies found no association between radon exposure and oral and pharyngeal cancer. This lack of effect was observed in miners studies and in general population studies. Further research is necessary to quantify if this association really exists and its magnitude, specially performing studies in general population, preferably living in areas with high radon levels.

  14. Experimental study of effectiveness of four radon mitigation solutions, based on underground depressurization, tested in prototype housing built in a high radon area in Spain

    Energy Technology Data Exchange (ETDEWEB)

    Frutos Vazquez, Borja, E-mail: borjafv@ietcc.csic.e [Eduardo Torroja Institute for Construction Science (a Spanish National Research Council body), C/Serreno Galvache 4, 28033 Madrid (Spain); Olaya Adan, Manuel [Eduardo Torroja Institute for Construction Science (a Spanish National Research Council body), C/Serreno Galvache 4, 28033 Madrid (Spain); Santiago Quindos Poncela, Luis; Sainz Fernandez, Carlos; Fuente Merino, Ismael [Medical Physics, Chair of the Faculty of Medicine, University of Cantabria, Cardenal Herrera Oria s/n, 39011 Santander (Spain)

    2011-04-15

    The present paper discusses the results of an empirical study of four approaches to reducing indoor radon concentrations based on depressurization techniques in underground sumps. The experiments were conducted in prototype housing built in an area of Spain where the average radon concentration at a depth of 1 m is 250 kBq m{sup -3}. Sump effectiveness was analysed in two locations: underneath the basement, which involved cutting openings into the foundation, ground storey and roof slabs, and outside the basement walls, which entailed digging a pit alongside the building exterior. The effectiveness of both sumps was likewise tested with passive and forced ventilation methods. The systems proved to be highly efficient, lowering radon levels by 91-99%, except in the solution involving passive ventilation and the outside sump, where radon levels were reduced by 53-55%. At wind speeds of over 8 m/s, however, passive ventilation across an outside sump lowered radon levels by 95% due to a Venturi effect induced drop in pressure. - Highlights: {yields} This experience can help to delimit effectiveness of this kind of depressurization solutions because all of them has been tested in the same radon exhalation rate conditions and in the same building. In this sense this paper constitute an original work and even more if we note that initial radon concentration were very high, in order of 40 kBq m{sup -3} in the basement {yields} Radon reduction up to 300 Bq m{sup -3} from 40 kBq m{sup -3} (initial conditions inside the building) {yields} The systems proved to be highly efficient, reducing radon levels by 91-99%, with the exception of the outside sump-natural convection combination, where rates declined on the order of 53-55% {yields} The effectiveness of the sump located outside the basement walls rose by 40 percentage points (from 53 to 93%) when forced rather than passive extraction was used. {yields} The natural convection extraction systems proved to be 40% more

  15. Radon exposure of the skin: I. Biological effects

    Energy Technology Data Exchange (ETDEWEB)

    Charles, M W [School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom)

    2007-09-15

    Radon progeny can plate out on skin and give rise to exposure of the superficial epidermis from alpha emitters Po-218 (7.7 MeV, range {approx}66 {mu}m) and Po-214 (6 MeV, range {approx}44 {mu}m). Dose rates from beta/gamma emitters Pb-214 and Bi-214 are low and only predominate at depths in excess of the alpha range. This paper reviews the evidence for a causal link between exposure from radon and its progeny, and deterministic and stochastic biological effects in human skin. Radiation induced skin effects such as ulceration and dermal atrophy, which require irradiation of the dermis, are ruled out for alpha irradiation from radon progeny because the target cells are considerably deeper than the range of alpha particles. They have not been observed in man or animals. Effects such as erythema and acute epidermal necrosis have been observed in a few cases of very high dose alpha particle exposures in man and after acute high dose exposure in animals from low energy beta radiations with similar depth doses to radon progeny. The required skin surface absorbed doses are in excess of 100 Gy. Such effects would require extremely high levels of radon progeny. They would involve quite exceptional circumstances, way outside the normal range of radon exposures in man. There is no definitive identification of the target cells for skin cancer induction in animals or man. The stem cells in the basal layer which maintain the epidermis are the most plausible contenders for target cells. The majority of these cells are near the end of the range of radon progeny alpha particles, even on the thinnest body sites. The nominal depth of these cells, as recommended by the International Commission on Radiological Protection (ICRP), is 70 {mu}m. There is evidence however that some irradiation of the hair follicles and/or the deeper dermis, as well as the inter-follicular epidermis, is also necessary for skin cancer induction. Alpha irradiation of rodent skin that is restricted to the

  16. Estimating the radon concentration in water and indoor air.

    Science.gov (United States)

    Maged, A F

    2009-05-01

    The paper presents the results of radon concentration measurements in the vicinity of water, indoor air and in contact to building walls. The investigations were carried out using CR-39 track detectors. Samples of ground water flowing out of many springs mostly in Arabian Gulf area except one from Germany have been studied. The results are compared with international recommendations and the values are found to be lower than the recommended value. Measuring the mean indoor radon concentrations in air and in contact to building walls in the dwellings of Kuwait University Campus were found 24.2 +/- 7.7, and 462 +/- 422 Bq m(-3) respectively. These values lead to average effective dose equivalent rates of 1.3 +/- 0.4 and 23 +/- 21 mSv year(-1), respectively.

  17. A comparison of contemporary and retrospective radon gas measurements in high radon dwellings in Ireland

    Energy Technology Data Exchange (ETDEWEB)

    Kelleher, K.; McLaughlin, J.P. [University College Dublin (Ireland); Fenton, D.; Colgan, P.A. [Radiological Protection Institute of Ireland, Dublin (Ireland)

    2006-07-01

    Little correlations has been found between contemporary radon gas measurements made in the past and retrospective radon gas measurements in Irish dwellings. This would suggest that these two techniques would result in two significantly different cumulative radon exposure estimates. Contemporary radon gas measurements made a few years apart in the same room of a dwelling were found to be significantly different. None of these differences could be explained by known changes to the rooms themselves., such ventilation or structural alterations to the room. This highlights the limitations of the contemporary radon gas measurements as a surrogate measurement for use in residential radon epidemiology. The contemporary radon gas measurements made by the Radiological Protection Institute of Ireland (R.P.I.I.) and University College of Dublin (U.C.D.) do not cover the same exposure period as the retrospective estimates and so the accuracy of the retrospective measurements cannot be demonstrated. A weak correlation can be seen between the retrospective radon gas estimates and a combination of the two contemporary radon gas estimates. It is not unreasonable to expect improvement in the correlation if further contemporary radon gas measurements were made in these rooms. (N.C.)

  18. Experimental assessment of indoor radon and soil gas variability: the RADON project

    Science.gov (United States)

    Barbosa, S. M.; Pereira, A. J. S. C.; Neves, L. J. P. F.; Steinitz, G.; Zafrir, H.; Donner, R.; Woith, H.

    2012-04-01

    Radon is a radioactive noble gas naturally present in the environment, particularly in soils derived from rocks with high uranium content. Radon is formed by alpha decay from radium within solid mineral grains, but can migrate via diffusion and/or advection into the air space of soils, as well as into groundwater and the atmosphere. The exhalation of radon from the pore space of porous materials into the atmosphere of indoor environments is well known to cause adverse health effects due to the inhalation of radon's short-lived decay products. The danger to human health is particularly acute in the case of poorly ventilated dwellings located in geographical areas of high radon potential. The RADON project, funded by the Portuguese Science Foundation (FCT), aims to evaluate the temporal variability of radon in the soil and atmosphere and to examine the influence of meteorological effects in radon concentration. For that purpose an experimental monitoring station is being installed in an undisturbed dwelling located in a region of high radon potential near the old uranium mine of Urgeiriça (central Portugal). The rationale of the project, the set-up of the experimental radon monitoring station, and preliminary monitoring results will be presented.

  19. Uranium distribution and radon exhalation from Brazilian dimension stones

    Energy Technology Data Exchange (ETDEWEB)

    Amaral, P.G.Q.; Galembeck, T.M.B. [Departamento de Petrologia e Metalogenia, Instituto de Geociencias e Ciencias Exatas, Universidade Estadual Paulista (UNESP), Av. 24-A No. 1515, C.P. 178, CEP 13506-900, Rio Claro, Sao Paulo (Brazil); Bonotto, D.M., E-mail: danielbonotto@yahoo.com.br [Departamento de Petrologia e Metalogenia, Instituto de Geociencias e Ciencias Exatas, Universidade Estadual Paulista (UNESP), Av. 24-A No. 1515, C.P. 178, CEP 13506-900, Rio Claro, Sao Paulo (Brazil); Artur, A.C. [Departamento de Petrologia e Metalogenia, Instituto de Geociencias e Ciencias Exatas, Universidade Estadual Paulista (UNESP), Av. 24-A No. 1515, C.P. 178, CEP 13506-900, Rio Claro, Sao Paulo (Brazil)

    2012-04-15

    This paper provides evaluations of the radiometric behavior and exhalation patterns of radon gas in decorative and dimension stones explored in the Brazilian states of Minas Gerais and Espirito Santo, given the importance of determining radon gas concentrations in human-inhabited environments. A total of 10 silicate rock types were studied, featuring different petrographic/petrophysical characteristics given by seven magmatic rocks (three of which are granitic pegmatites) and three metamorphic rocks. The study, comprising radiometric data of U and monitoring of {sup 222}Rn gas exhalation, shows a strong correlation between petrographic parameters and the physical properties of rocks. U levels ranged between 2.9 and 37 ppm, revealing a good coherence between the presence and the absence of radioactive element-bearing accessory minerals for each rock type. The rate of radon exhalation from the stones is related to the petrographic/petrophysical features of each material. By comparing the {sup 222}Rn level generated by a rock to the amount effectively emanated by it, the rate of emanated gas proves to be insignificant; also, a rock that produces more Rn will not always emanate more. Simulations performed to estimate the radon levels inside residences or any given indoor environment showed that nine samples attained values below the 4 pCi/L EPA limit, whereas one was above that limit. - Highlights: Black-Right-Pointing-Pointer Integration of distinct radiometric data acquired in dimension stones. Black-Right-Pointing-Pointer Dimension stones are extensively commercialized abroad. Black-Right-Pointing-Pointer Rn exhalation above the EPA threshold limit of 4 pCi/L.

  20. Soil radon as a possible earthquake precursor: Preliminary results from Ileia (Greece)

    Science.gov (United States)

    Petraki, Ermioni; Nikolopoulos, Dimitrios; Louizi, Anna; Zisos, Athanasios

    2010-05-01

    into AG at a rate of 1 L/min. Pumping is performed via a 1-m soil probe to minimize meteorological influences and a 25-m radon proof 25-mm tube to avoid simultaneous measurement of soil 220Rn. Proper dust and moisture filters are employed. Radon is monitored every 10 minutes. This interval can be reduced to 1 minute, however with lower accuracy and data storage capacity. For comparison purposes, calibrated passive radon dosimeters based on CR-39 Solid State Nuclear Track Detectors (SSNTD's) were periodically installed and exposed to soil radon in 50 cm holes were dug near the 1-m probe. The exposures lasted 1-2 weeks. Afterwards, the SSNTD's were removed, etched and measured via standard methods (optical microscopy track counting). The period of comparison measurements was 6 months. Continuous monitoring and passive measurements were cross-calibrated and found to provide similar estimates of mean soil radon concentration. Active techniques are much more precise and quick, however, they indicated the necessity of periodical checks for the pumping and measurement status, especially after strong rainfalls.The mean soil radon concentration was found fairly constant (~ 25-30 kBq m-3). Numerous soil radon concentration anomalies were detected. These were arbitrarily corresponded in terms of magnitude and duration to seismic events of the near area. All detected anomalies were sudden, significantly (p

  1. Orion Entry Handling Qualities Assessments

    Science.gov (United States)

    Bihari, B.; Tiggers, M.; Strahan, A.; Gonzalez, R.; Sullivan, K.; Stephens, J. P.; Hart, J.; Law, H., III; Bilimoria, K.; Bailey, R.

    2011-01-01

    The Orion Command Module (CM) is a capsule designed to bring crew back from the International Space Station (ISS), the moon and beyond. The atmospheric entry portion of the flight is deigned to be flown in autopilot mode for nominal situations. However, there exists the possibility for the crew to take over manual control in off-nominal situations. In these instances, the spacecraft must meet specific handling qualities criteria. To address these criteria two separate assessments of the Orion CM s entry Handling Qualities (HQ) were conducted at NASA s Johnson Space Center (JSC) using the Cooper-Harper scale (Cooper & Harper, 1969). These assessments were conducted in the summers of 2008 and 2010 using the Advanced NASA Technology Architecture for Exploration Studies (ANTARES) six degree of freedom, high fidelity Guidance, Navigation, and Control (GN&C) simulation. This paper will address the specifics of the handling qualities criteria, the vehicle configuration, the scenarios flown, the simulation background and setup, crew interfaces and displays, piloting techniques, ratings and crew comments, pre- and post-fight briefings, lessons learned and changes made to improve the overall system performance. The data collection tools, methods, data reduction and output reports will also be discussed. The objective of the 2008 entry HQ assessment was to evaluate the handling qualities of the CM during a lunar skip return. A lunar skip entry case was selected because it was considered the most demanding of all bank control scenarios. Even though skip entry is not planned to be flown manually, it was hypothesized that if a pilot could fly the harder skip entry case, then they could also fly a simpler loads managed or ballistic (constant bank rate command) entry scenario. In addition, with the evaluation set-up of multiple tasks within the entry case, handling qualities ratings collected in the evaluation could be used to assess other scenarios such as the constant bank angle

  2. A campaign of discrete radon concentration measurements in soil of Niska Banja town, Serbia

    Energy Technology Data Exchange (ETDEWEB)

    Zunic, Z.S. [Institute of Nuclear Sciences ' Vinca' , ECE LAB, P.O. Box 522, 11001 Belgrade, Serbia (Serbia); Kozak, K. [Henryk Niewodniczanski Institute of Nuclear Physics PAN, ul. Radzikowskiego 152, PL-31-342 Cracow (Poland)], E-mail: Krzysztof.Kozak@ifj.edu.pl; Ciotoli, G. [Department of Earth Sciences, University of Rome ' La Sapienza' , Piazzale A. Moro, 5-00185 Rome (Italy); Ramola, R.C. [Department of Physics, H.N.B. Garhwal University, Badshahi Thaul Campus, Tehri Garhwal 249 199 (India); Kochowska, E. [Henryk Niewodniczanski Institute of Nuclear Physics PAN, ul. Radzikowskiego 152, PL-31-342 Cracow (Poland); Ujic, P.; Celikovic, I. [Institute of Nuclear Sciences ' Vinca' , ECE LAB, P.O. Box 522, 11001 Belgrade (Serbia); Mazur, J.; Janik, M. [Henryk Niewodniczanski Institute of Nuclear Physics PAN, ul. Radzikowskiego 152, PL-31-342 Cracow (Poland); Demajo, A. [Institute of Nuclear Sciences ' Vinca' , ECE LAB, P.O. Box 522, 11001 Belgrade (Serbia); Birovljev, A. [RADONLAB, Forskningsveien 3 B, 0373 Oslo (Norway); Bochicchio, F. [Italian National Institute of Health, Department of Technology and Health, Unit of Radioactivity and Related Health Effects, Viale Regina Elena 299, 00161 Rome (Italy); Yarmoshenko, I.V. [Radiation Laboratory Institute of Industrial Ecology, Ural Branch of Russian Academy of Sciences, 20A S. Kovalevskoy Street, Ekaterinburg 620219 (Russian Federation); Kryeziu, D. [Low-level Counting Laboratory, Faradaygasse 3, Arsenal Objekt 214, A-1030 Vienna (Austria); Olko, P. [Henryk Niewodniczanski Institute of Nuclear Physics PAN, ul. Radzikowskiego 152, PL-31-342 Cracow (Poland)

    2007-11-15

    The first radon soil gas survey in Serbia, using passive detectors (SSNTD, CR-39), was carried out in June 2005 at field sites in Niska Banja town. The aim of the survey was to identify risk zones characterised by high levels of this radioactive gas. Radon measurements were made at the depth of 50 cm, in the ground according to a systematic grid pattern. Furthermore, at all 48 measurement points, the surface gamma dose rates in the air was also measured at the same locations and soil samples were collected for gamma spectrometric analysis for the radionuclides {sup 226}Ra, {sup 228}Th and {sup 40}K. Radon concentrations were found to range from 1270 to 155000Bqm{sup -3} with an average of 33765Bqm{sup -3} and a median value of 12626Bqm{sup -3}. The geometrical mean value and geometrical standard deviation were calculated as 16160Bqm{sup -3} and 3.5Bqm{sup -3}, respectively. Gamma dose rate varies from 92 to 316nGyh{sup -1}, with an average of 132nGyh{sup -1}. The radium content in collected soil samples ranges from 24 to 1810Bqkg{sup -1} with an average of 187Bqkg{sup -1}. High correlations (r{sup 2}>0.8) between soil gas radon concentration, gamma dose rate and {sup 226}Ra content in soil were found for each pair. The distribution of radon concentrations in soil gas shows bimodal shape.

  3. High sensitivity radon emanation measurements.

    Science.gov (United States)

    Zuzel, G; Simgen, H

    2009-05-01

    The presented radon detection technique employs miniaturized ultra-low background proportional counters. (222)Rn samples are purified, mixed with a counting gas and filled into a counter using a special glass vacuum line. The absolute sensitivity of the system is estimated to be 40 microBq (20 (222)Rn atoms). For emanation investigations two metal sealed stainless steel vessels and several glass vials are available. Taking into account their blank contributions, measurements at a minimum detectable activity of about 100 microBq can be performed.

  4. Measurements of radon and chemical elements: Popocatepetl volcano; Mediciones de radon y elementos quimicos: Volcan Popocatepetl

    Energy Technology Data Exchange (ETDEWEB)

    Pena, P.; Segovia, N.; Lopez, B.; Reyes, A.V. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico); Armienta, M.A.; Valdes, C.; Mena, M. [IGFUNAM, Ciudad Universitaria, 04510 Mexico D.F. (Mexico); Seidel, J.L.; Monnin, M. [UMR 5569 CNRS Hydrosciences, Montpellier (France)

    2002-07-01

    The Popocatepetl volcano is a higher risk volcano located at 60 Km from Mexico City. Radon measurements on soil in two fixed seasons located in the north slope of volcano were carried out. Moreover the radon content, major chemical elements and tracks in water samples of three springs was studied. The radon of soil was determined with solid detectors of nuclear tracks (DSTN). The radon in subterranean water was evaluated through the liquid scintillation method and it was corroborated with an Alpha Guard equipment. The major chemical elements were determined with conventional chemical methods and the track elements were measured using an Icp-Ms equipment. The radon on soil levels were lower, indicating a moderate diffusion of the gas across the slope of the volcano. The radon in subterranean water shown few changes in relation with the active scene of the volcano. The major chemical elements and tracks showed a stable behavior during the sampling period. (Author)

  5. Radon, Smoking, and Lung Cancer: The Need to Refocus Radon Control Policy

    Science.gov (United States)

    Mendez, David; Philbert, Martin A.

    2013-01-01

    Exposure to radon is the second leading cause of lung cancer, and the risk is significantly higher for smokers than for nonsmokers. More than 85% of radon-induced lung cancer deaths are among smokers. The most powerful approach for reducing the public health burden of radon is shaped by 2 overarching principles: public communication efforts that promote residential radon testing and remediation will be the most cost effective if they are primarily directed at current and former smokers; and focusing on smoking prevention and cessation is the optimal strategy for reducing radon-induced lung cancer in terms of both public health gains and economic efficiency. Tobacco control policy is the most promising route to the public health goals of radon control policy. PMID:23327258

  6. A study on the correlation between soil radon potential and average indoor radon potential in Canadian cities.

    Science.gov (United States)

    Chen, Jing; Ford, Ken L

    2017-01-01

    Exposure to indoor radon is identified as the main source of natural radiation exposure to the population. Since radon in homes originates mainly from soil gas radon, it is of public interest to study the correlation between radon in soil and radon indoors in different geographic locations. From 2007 to 2010, a total of 1070 sites were surveyed for soil gas radon and soil permeability. Among the sites surveyed, 430 sites were in 14 cities where indoor radon information is available from residential radon and thoron surveys conducted in recent years. It is observed that indoor radon potential (percentage of homes above 200 Bq m(-3); range from 1.5% to 42%) correlates reasonably well with soil radon potential (SRP: an index proportional to soil gas radon concentration and soil permeability; average SRP ranged from 8 to 26). In five cities where in-situ soil permeability was measured at more than 20 sites, a strong correlation (R(2) = 0.68 for linear regression and R(2) = 0.81 for non-linear regression) was observed between indoor radon potential and soil radon potential. This summary report shows that soil gas radon measurement is a practical and useful predictor of indoor radon potential in a geographic area, and may be useful for making decisions around prioritizing activities to manage population exposure and future land-use planning. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  7. Soil radon levels across the Amer fault

    Energy Technology Data Exchange (ETDEWEB)

    Font, Ll. [Grup de Fisica de les Radiacions, Edifici Cc, Departament de Fisica, Universitat Autonoma de Barcelona, E-08193 Bellaterra (Spain)], E-mail: lluis.font@uab.cat; Baixeras, C.; Moreno, V. [Grup de Fisica de les Radiacions, Edifici Cc, Departament de Fisica, Universitat Autonoma de Barcelona, E-08193 Bellaterra (Spain); Bach, J. [Unitat de Geodinamica externa, Departament de Geologia, Edifici Cs, Universitat Autonoma de Barcelona, E-08193 Bellaterra (Spain)

    2008-08-15

    Soil radon levels have been measured across the Amer fault, which is located near the volcanic region of La Garrotxa, Spain. Both passive (LR-115, time-integrating) and active (Clipperton II, time-resolved) detectors have been used in a survey in which 27 measurement points were selected in five lines perpendicular to the Amer fault in the village area of Amer. The averaged results show an influence of the distance to the fault on the mean soil radon values. The dynamic results show a very clear seasonal effect on the soil radon levels. The results obtained support the hypothesis that the fault is still active.

  8. Risks related to exposure to radon

    Directory of Open Access Journals (Sweden)

    Juan Miguel Barros Dios

    2010-12-01

    Full Text Available They discuss the different scientific evidence that radon and its short half-life descendants are responsible for the appearance of a considerable number of lung cancers among the exposed population in homes and public buildings (occupational exposure. It also draws a small glimpse at the road traveled by this knowledge and acceptance difficult administrations in many countries and, in particular, of Spain, as well as the various investigations that the team do Galego Radon and Radon Laboratory from Galicia, the area of Public Health, University of Santiago de Compostela (USC, are contributing to scientific knowledge. Finally, they appreciate the few legislative initiatives on the problem in Spain.

  9. Indoor radon concentration forecasting in South Tyrol.

    Science.gov (United States)

    Verdi, L; Weber, A; Stoppa, G

    2004-01-01

    In this paper a modern statistical technique of multivariate analysis is applied to an indoor radon concentration data base. Several parameters are more or less significant in determining the radon concentration inside a building. The elaboration of the information available on South Tyrol makes it possible both to identify the statistically significant variables and to build up a statistical model that allows us to forecast the radon concentration in dwellings, when the values of the same variables involved are given. The results confirm the complexity of the phenomenon.

  10. Radon screening for XENON1T

    Energy Technology Data Exchange (ETDEWEB)

    Lindemann, Sebastian [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany)

    2015-07-01

    Radon with its isotope {sup 222}Rn is one of the dominant sources of internal background in liquid xenon detectors searching for low energetic rare events like WIMP-nucleon scattering. In my talk I briefly review the problem posed by {sup 222}Rn and motivate the screening strategy followed by XENON1T. I introduce the radon emanation technique making use of ultra low background proportional counters and present selected results obtained during the design and construction phases of XENON1T. Finally, I sketch advances in radon emanation assay techniques and give a short outlook on upcoming measurements.

  11. Radon - kilder og måling

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn; Wraber, Ida Kristina

    Når man skal vurdere en bygnings indeklima er det vigtigt at have viden om radonindholdet. Denne viden får man ved måling, da radon hverken kan ses, lugtes, høres, smages eller føles. Denne anvisning redegør for radons oprindelse og indvirkning på menneskers sundhed. Anvisningen beskriver metoder...... til måling og analyse af radonindholdet i en bygnings indeluft. Læseren får indsigt i, hvordan man relativt let med standardiserede metoder kan eftervise, om en bygning opfylder bygningsreglementets krav til radon i indeluften. Anvisningen henvender sig til bygningsejere, bygherrer, projekterende og...

  12. Coprecipitation of radon oxide with cesium fluoroxenate

    Energy Technology Data Exchange (ETDEWEB)

    Avrorin, V.V.; Krasikova, R.N.; Nefedov, V.D.; Toropova, M.A.

    1986-03-01

    This paper presents a study of the processes of coprecipitation of radon oxide with cesium fluoroxenate in aqueous solutions. It has been shown that the reason for the coprecipitation in the case at hand is the occurrence of a process of isomorphous cocrystallization. The results obtained are examined as a confirmation of the suggestion that the hydrolysis product of the radon fluoride which is formed on thermal initiation of reaction in the rn-F2-BrF5-NaF system is radon trioxide, Rno3.

  13. Cytogenetic damage in human blood lymphocytes exposed in vitro to radon

    Energy Technology Data Exchange (ETDEWEB)

    Hamza, V. Zareena [Radiological Safety Division, Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam-603 102, Tamilnadu (India); Mohankumar, Mary N. [Radiological Safety Division, Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam-603 102, Tamilnadu (India)], E-mail: marynmk@igcar.gov.in

    2009-02-10

    The effect of radon in inducing DNA damage was investigated in vitro by two well-established cytogenetic assays. Blood samples were irradiated with radon using a novel irradiation assembly. Doses varied between 0 and 127 mGy for chromosome aberration (CA) assay and 0 and 120 mGy for cytokinesis blocked micronucleus (CBMN) assay. Dose-rates varied between 0.000054 and 0.708 mGy/min. After the irradiation period of 3 h, excess radon gas was released and cultures were initiated using standard procedures. Chromosome aberrations such as dicentrics, excess acentric fragments, acentric rings, centric rings, chromatid breaks were observed. Micronuclei, nucleoplasmic bridges and nuclear buds were scored by the CBMN assay. A significant increase in the frequency of dicentrics, excess acentric fragments and centric rings was observed with increasing radon dose, whereas total acentric rings plus double minute and chromatid breaks/cell were not significantly elevated. In CBMN assay, the frequency of micronuclei was found to be significantly raised whereas that of nucleoplasmic bridges and nuclear buds were not. Nucleoplasmic bridges and nuclear buds tended to increase with dose but did not achieve statistical significance. There was a strong positive correlation between nucleoplasmic bridges and dicentrics (P < 0.028) or rings (P < 0.0001) and between micronuclei and acentric fragments (P < 0.0005). The study shows that radon is capable of inducing significant chromosome damage at very low doses and dose-rates.

  14. Deposition pattern of inhaled radon progeny size distribution in human lung

    Directory of Open Access Journals (Sweden)

    Amer Mohamed

    2014-07-01

    Full Text Available One of the important factors controlling the distribution of radiation dose to the different portions of the human respiratory tract is the deposition pattern of radon progeny containing aerosol. Based on the activity size distribution parameters of radon progeny, which were measured in Minia University, the deposition behavior of radon progeny (attached and unattached has been studied by using a stochastic deposition model. The attached fraction was collected using a low pressure Berner cascade impactor technique. A screen diffusion battery was used for collecting the unattached fraction. Most of the attached activities for 222Rn progeny were associated with aerosol particles of the accumulation mode. The bronchial deposition fraction of particles in the size range of attached radon progeny was found to be lower than those of unattached progeny. The effect of radon progeny deposition by adult male has been also studied for various levels of physical exertion. An increase in the breathing rate was found to decrease the fraction with which inhaled progeny were deposited in the bronchi. As the ventilation rate increases from 0.54 to 1.5 m3 h−1, the average deposition fraction of airway generation 1 through 8 are expected to decrease by 22% for 1.4 nm particles and by 38% for 150 nm particles.

  15. Radon exhalation study of manganese clay residue and usability in brick production.

    Science.gov (United States)

    Kovács, Tibor; Shahrokhi, Amin; Sas, Zoltán; Vigh, Tamás; Somlai, János

    2017-03-01

    The reuse of by-products and residue streams is an important topic due to environmental and financial aspects. Manganese clay is a residue of manganese ore processing and is generated in huge amounts. This residue may contain some radionuclides with elevated concentrations. In this study, the radon emanation features and the massic exhalation rate of the heat-treated manganese clay were determined with regard to brick production. From the manganese mud depository, 20 samples were collected and after homogenization radon exhalation characteristics were determined as a function of firing temperatures from 100 to 750 °C. The major naturally occurring radionuclides (40)K, (226)Ra and (232)Th concentrations were 607 ± 34, 52 ± 6 and 40 ± 5 Bq kg(-1), respectively, comparable with normal clay samples. Similar to our previous studies a strong correlation was found between the internal structure and the radon emanation. The radon emanation coefficient decreased by ∼96% from 0.23 at 100 °C to 0.01 at 750 °C. The massic radon exhalation rate of samples fired at 750 °C reduced by 3% compared to samples fired at 100 °C. In light of the results, reusing of manganese clay as a brick additive is possible without any constraints.

  16. Comparison of two numerical modelling approaches to a field experiment of unsaturated radon transport in a covered uranium mill tailings soil (Lavaugrasse, France).

    Science.gov (United States)

    Saâdi, Zakaria; Guillevic, Jérôme

    2016-01-01

    Uncertainties on the mathematical modelling of radon ((222)Rn) transport in an unsaturated covered uranium mill tailings (UMT) soil at field scale can have a great impact on the estimation of the average measured radon exhalation rate to the atmosphere at the landfill cover. These uncertainties are usually attributed to the numerical errors from numerical schemes dealing with soil layering, and to inadequate modelling of physical processes at the soil/plant/atmosphere interface and of the soil hydraulic and transport properties, as well as their parameterization. In this work, we demonstrate how to quantify these uncertainties by comparing simulation results from two different numerical models to experimental data of radon exhalation rate and activity concentration in the soil-gas measured in a covered UMT-soil near the landfill site Lavaugrasse (France). The first approach is based on the finite volume compositional (i.e., water, radon, air) transport model TOUGH2/EOS7Rn (Transport Of Unsaturated Groundwater and Heat version 2/Equation Of State 7 for Radon; Saâdi et al., 2014), while the second one is based on the finite difference one-component (i.e., radon) transport model TRACI (Transport de RAdon dans la Couche Insaturée; Ferry et al., 2001). Transient simulations during six months of variable rainfall and atmospheric air pressure showed that the model TRACI usually overestimates both measured radon exhalation rate and concentration. However, setting effective unsaturated pore diffusivities of water, radon and air components in soil-liquid and gas to their physical values in the model EOS7Rn, allowed us to enhance significantly the modelling of these experimental data. Since soil evaporation has been neglected, none of these two models was able to simulate the high radon peaks observed during the dry periods of summer. However, on average, the radon exhalation rate calculated by EOS7Rn was 34% less than that was calculated by TRACI, and much closer to the

  17. Radon exposure in abandoned metalliferous mines of South America

    Energy Technology Data Exchange (ETDEWEB)

    Silva, A.A.R. da; Umisedo, N.; Yoshimura, E.M. [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica. Lab. de Dosimetria; Anjos, R.M. [Universidade Federal Fluminense (LARA/UFF), Niteroi, RJ (Brazil). Inst. de Fisica. Lab. de Radioecologia; Valladares, D.L.; Velasco, H.; Rizzotto, M. [Universidad Nacional de San Luis (UNSL) (Argentina). Inst. de Matematica Aplicada San Luis

    2011-07-01

    Since the days of the Spanish and Portuguese conquerors, South America has been closely associated with the metalliferous ore mining. Gold, silver, tin, lead, tungsten, nickel, copper, and palladium ores have been explored over the last centuries. In addition, there has also been the development and promotion of other economic activities related to mining, as the underground mine tourism. A few works have been published on radon levels in the South American mining. In this study, we investigated the radon transport process and its health hazard in two exhausted and abandoned mines in San Luis Province, Argentina. These mines were chosen because they have different physical configurations in their cavities, features which can affect the air flow patterns and radon concentrations. La Carolina gold mine (32 deg 48' 0'' S, 66 deg 60' 0'' W) is currently a blind end system, corresponding to a horizontal excavation into the side of a mountain, with only a main adit. Los Condores wolfram mine (32 deg 33' 25'' S, 65 deg 15' 20'' W) is also a horizontal excavation into the side of a mountain, but has a vertical output (a shaft) at the end of the main gallery. Three different experimental methodologies were used. Radon concentration measurements were performed by CR-39 nuclear track detectors. The distribution of natural radionuclide activities ({sup 40}K, {sup 232}Th and {sup 238}U) was determined from rock samples collected along their main adits, using in laboratory gamma-ray spectrometry. The external gamma dose rate was evaluated using thermoluminescent dosimeters and a portable survey meter. The values for the {sup 222}Rn concentration ranged from 0.43 {+-} 0.04 to 1.48 {+-} 0.12 kBq/m{sup 3} in the Los Condores wolfram mine and from 1.8 {+-} 0.1 to 6.0{+-}0.5 kBq/m{sup 3} in the La Carolina gold mine, indicating that, in this mine, the radon levels exceed up to four times the action level of 1.5 kBq/m{sup 3

  18. Methodology developed to make the Quebec indoor radon potential map.

    Science.gov (United States)

    Drolet, Jean-Philippe; Martel, Richard; Poulin, Patrick; Dessau, Jean-Claude

    2014-03-01

    This paper presents a relevant approach to predict the indoor radon potential based on the combination of the radiogeochemical data and the indoor radon measurements in the Quebec province territory (Canada). The Quebec ministry of health asked for such a map to identify the radon-prone areas to manage the risk for the population related to indoor radon exposure. Three radiogeochemical criteria including (1) equivalent uranium (eU) concentration from airborne surface gamma-ray surveys, (2) uranium concentration measurements in sediments, (3) bedrock and surficial geology were combined with 3082 basement radon concentration measurements to identify the radon-prone areas. It was shown that it is possible to determine thresholds for the three criteria that implied statistically significant different levels of radon potential using Kruskal-Wallis one way analyses of variance by ranks. The three discretized radiogeochemical datasets were combined into a total predicted radon potential that sampled 98% of the studied area. The combination process was also based on Kruskal-Wallis one way ANOVA. Four statistically significant different predicted radon potential levels were created: low, medium, high and very high. Respectively 10 and 13% of the dwellings exceed the Canadian radon guideline of 200 Bq/m(3) in low and medium predicted radon potentials. These proportions rise up to 22 and 45% respectively for high and very high predicted radon potentials. This predictive map of indoor radon potential based on the radiogeochemical data was validated using a map of confirmed radon exposure in homes based on the basement radon measurements. It was shown that the map of predicted radon potential based on the radiogeochemical data was reliable to identify radon-prone areas even in zones where no indoor radon measurement exists.

  19. Soil radon and electromagnetic anomalies before the Ileia(Greece) M6.8 earthquake

    Science.gov (United States)

    Nikolopoulos, D.; Vogiannis, E.; Louizi, A.; Zisos, A.

    2009-04-01

    -Thoron) with the aid of a mechanical pump working continuously at a rate of 1 L/min. Radon is continuously measured every ten minutes. Additionally, calibrated passive radon dosimeters based on CR-39 Solid State Nuclear Track Detectors (SSNTD's) are periodically (every two weeks) installed in 50 cm holes dug near the 1-m probe and exposed (passively) to soil radon. After the end of each exposure period, the dosimeters are collected and the SSNTD's are measured via standard methods (optical microscopy track counting). Both methods (active with AG and passive with SSNTD's) provide similar estimates of mean soil radon concentration. Active techniques are much more precise and quick, however, they indicated the necessity of periodical checks for the pumping and measurement status, especially after strong rainfalls. The mean soil radon concentration was found fairly constant (to within +/- 10%) and approximately equal to 25-27 kBq m-3. Numerous soil radon concentration anomalies (sudden statistically significant (p

  20. A study of indoor radon levels in rural dwellings of Ezine (Canakkale, Turkey) using solid-state nuclear track detectors.

    Science.gov (United States)

    Orgün, Y; Altinsoy, N; Sahin, S Y; Ataksor, B; Celebi, N

    2008-01-01

    Indoor radon activity level and radon effective dose (ED) rate have been carried out in the rural dwellings of Ezine (Canakkale) during the summer season using Radosys-2000, a complete set suitable to radon concentration measurements with CR-39 plastic alpha track detectors. The range of radon concentration varied between 9 and 300 Bq m(-3), with an average of 67.9 (39.9 SD) Bq m(-3). Assuming an indoor occupancy factor of 0.8 and 0.4 for the equilibrium factor of radon indoors, it has been found that the 222Rn ED rate in the dwellings studied ranges from 0.4 to 5.2 mSv y(-1), with an average value of 1.7 (1.0) mSv y(-1). There is a possibility that low radon concentrations exist indoors during the summer season in the study area because of relatively high ventilation rates in the dwellings. A winter survey will be needed for future estimation of the annual ED.

  1. Methodology developed to make the Quebec indoor radon potential map

    Energy Technology Data Exchange (ETDEWEB)

    Drolet, Jean-Philippe, E-mail: jean-philippe.drolet@ete.inrs.ca [Institut national de la recherche scientifique, Eau Terre Environnement Research Centre (ETE-INRS), 490 de la Couronne, G1K 9A9 Quebec (Canada); Martel, Richard [Institut national de la recherche scientifique, Eau Terre Environnement Research Centre (ETE-INRS), 490 de la Couronne, G1K 9A9 Quebec (Canada); Poulin, Patrick [Institut national de santé publique du Québec (INSPQ), 945 avenue Wolfe, G1V 5B3 Quebec (Canada); Dessau, Jean-Claude [Agence de la santé et des services sociaux des Laurentides, 1000 rue Labelle, J7Z 5 N6 Saint-Jérome (Canada)

    2014-03-01

    This paper presents a relevant approach to predict the indoor radon potential based on the combination of the radiogeochemical data and the indoor radon measurements in the Quebec province territory (Canada). The Quebec ministry of health asked for such a map to identify the radon-prone areas to manage the risk for the population related to indoor radon exposure. Three radiogeochemical criteria including (1) equivalent uranium (eU) concentration from airborne surface gamma-ray surveys, (2) uranium concentration measurements in sediments, (3) bedrock and surficial geology were combined with 3082 basement radon concentration measurements to identify the radon-prone areas. It was shown that it is possible to determine thresholds for the three criteria that implied statistically significant different levels of radon potential using Kruskal–Wallis one way analyses of variance by ranks. The three discretized radiogeochemical datasets were combined into a total predicted radon potential that sampled 98% of the studied area. The combination process was also based on Kruskal–Wallis one way ANOVA. Four statistically significant different predicted radon potential levels were created: low, medium, high and very high. Respectively 10 and 13% of the dwellings exceed the Canadian radon guideline of 200 Bq/m{sup 3} in low and medium predicted radon potentials. These proportions rise up to 22 and 45% respectively for high and very high predicted radon potentials. This predictive map of indoor radon potential based on the radiogeochemical data was validated using a map of confirmed radon exposure in homes based on the basement radon measurements. It was shown that the map of predicted radon potential based on the radiogeochemical data was reliable to identify radon-prone areas even in zones where no indoor radon measurement exists. - Highlights: • 5 radiogeochemical datasets were used to map the geogenic indoor radon potential. • An indoor radon potential was determined for

  2. Thorough investigations on indoor radon in Baita radon-prone area (Romania)

    Energy Technology Data Exchange (ETDEWEB)

    Cucos, Alexandra; Cosma, Constantin [Faculty of Environmental Science and Engineering, ' Babes-Bolyai' University, Fantanele No. 30, 400294, Cluj-Napoca (Romania); Dicu, Tiberius, E-mail: tiberius.dicu@ubbcluj.ro [Faculty of Environmental Science and Engineering, ' Babes-Bolyai' University, Fantanele No. 30, 400294, Cluj-Napoca (Romania); Begy, Robert; Moldovan, Mircea; Papp, Botond; Nita, Dan; Burghele, Bety [Faculty of Environmental Science and Engineering, ' Babes-Bolyai' University, Fantanele No. 30, 400294, Cluj-Napoca (Romania); Sainz, Carlos [Faculty of Environmental Science and Engineering, ' Babes-Bolyai' University, Fantanele No. 30, 400294, Cluj-Napoca (Romania); Department of Medical Physics, Faculty of Medicine, University of Cantabria, c/Herrera Oria s/n., 39011, Santander (Spain)

    2012-08-01

    A comprehensive radon survey has been carried out in Baita radon-prone area, Transylvania, Romania, in 4 localities (Baita, Nucet, Finate, and Cimpani) situated in the vicinity of former Romanian uranium mines. Indoor radon concentrations have been measured in 1128 ground floor rooms and cellars of 303 family houses by using CR-39 diffusion type radon detectors. The annual average of indoor radon concentration for Baita area was found to be 241 {+-} 178 Bq m{sup -3}, which is about two times higher than the average value of 126 Bq m{sup -3}, computed for Romania. About 28% of investigated houses exceed the reference level of radon gas in dwellings of 300 Bq m{sup -3}. The indoor radon measurements on each house have been carried out in several rooms simultaneously with the aim of obtaining a more detailed picture on the exposure to radon in the studied area. An analysis on the variability of radon levels among floors (floor-to-floor variation) and rooms (room-to-room variation) and also the influence of factors like the presence of cellar or the age of the building is presented. The coefficient of variation (CV) within ground floor rooms of the same house (room-to-room variation) ranged between 0.9 and 120.8%, with an arithmetic mean of 46.2%, a large variability among rooms within surveyed dwellings being clearly identified. The mean radon concentration in bedrooms without cellar was higher than in bedrooms above the cellar, the difference being statistically significant (t test, one tail, p < 0.001, n = 82). For houses built during 1960-1970 an increasing trend for radon levels was observed, but overall there was no significant difference in indoor radon concentrations by age of dwelling (one-way ANOVA test, p > 0.05). - Highlights: Black-Right-Pointing-Pointer The annual average of indoor radon concentration for Baita area was 241 {+-} 178 Bq m{sup -3}. Black-Right-Pointing-Pointer A large variability among rooms within surveyed dwellings was clearly evidenced

  3. Comparison of retrospective and contemporary indoor radon measurements in a high-radon area of Serbia

    Energy Technology Data Exchange (ETDEWEB)

    Zunic, Z.S. [Institute of Nuclear Sciences ' Vinca' , Belgrade (Serbia); Yarmoshenko, I.V. [Institute of Industrial Ecology, Ural Branch of Russian Academy of Sciences, Ekaterinburg (Russian Federation)], E-mail: ivy@ecko.uran.ru; Kelleher, K. [Radiological Protection Institute of Ireland, Dublin (Ireland); Paridaens, J. [SCK.CEN Mol (Belgium); Mc Laughlin, J.P. [School of Physics, University College Dublin (Ireland); Celikovic, I.; Ujic, P. [Institute of Nuclear Sciences ' Vinca' , Belgrade (Serbia); Onischenko, A.D. [Institute of Industrial Ecology, Ural Branch of Russian Academy of Sciences, Ekaterinburg (Russian Federation); Jovanovic, S.; Demajo, A. [Institute of Nuclear Sciences ' Vinca' , Belgrade (Serbia); Birovljev, A. [Radonlab Ltd., Oslo (Norway); Bochicchio, F. [Italian National Institute of Health, Rome (Italy)

    2007-11-15

    In Niska Banja, Serbia, which is a high-radon area, a comparison was made between two retrospective radon measuring methods and contemporary radon measurements. The two retrospective methods derive the radon concentrations that occurred in dwellings over longer periods in the past, based on the amount of trapped {sup 210}Po on the surface of glass objects (surface traps, ST) or in the bulk of porous materials (volume traps, VT). Both surface implanted {sup 210}Po in glass objects and contemporary radon in air were measured in 46 rooms, distributed in 32 houses of this radon spa-town, using a dual alpha track detector configuration (CR-39 and LR115) and CR-39 track etched detectors, respectively. In addition to the use of surface trap measurements, in 18 rooms (distributed in 15 houses) VT samples of suitable material were also collected, allowing to compare ST and VT retrospective radon concentration estimates. For each room, contemporary annual radon concentrations (CONT) were measured or estimated using seasonal correction factors. The distribution of the radon concentration in all data sets was found to be close to lognormal (Chi-square test > 0.05). Geometric means (GM) are similar, ranging from 1040 to 1380 Bq m{sup -3}, whereas geometric standard deviations (GSD) for both the retrospective methods are greater than for the CONT method, showing reasonable agreement between VT, ST and CONT measurements. A regression analysis, with respect to the lognormal distribution of each data set, shows that for VT-ST the correlation coefficient r is 0.85, for VT-CONT r is 0.82 and for ST-CONT r is 0.73. Comparison of retrospective and contemporary radon concentrations with regard to supposed long-term indoor radon changes further supports the principal agreement between the retrospective and conventional methods.

  4. Comparison of retrospective and contemporary indoor radon measurements in a high-radon area of Serbia.

    Science.gov (United States)

    Zunić, Z S; Yarmoshenko, I V; Kelleher, K; Paridaens, J; Mc Laughlin, J P; Celiković, I; Ujić, P; Onischenko, A D; Jovanović, S; Demajo, A; Birovljev, A; Bochicchio, F

    2007-11-15

    In Niska Banja, Serbia, which is a high-radon area, a comparison was made between two retrospective radon measuring methods and contemporary radon measurements. The two retrospective methods derive the radon concentrations that occurred in dwellings over longer periods in the past, based on the amount of trapped (210)Po on the surface of glass objects (surface traps, ST) or in the bulk of porous materials (volume traps, VT). Both surface implanted (210)Po in glass objects and contemporary radon in air were measured in 46 rooms, distributed in 32 houses of this radon spa-town, using a dual alpha track detector configuration (CR-39 and LR115) and CR-39 track etched detectors, respectively. In addition to the use of surface trap measurements, in 18 rooms (distributed in 15 houses) VT samples of suitable material were also collected, allowing to compare ST and VT retrospective radon concentration estimates. For each room, contemporary annual radon concentrations (CONT) were measured or estimated using seasonal correction factors. The distribution of the radon concentration in all data sets was found to be close to lognormal (Chi-square test>0.05). Geometric means (GM) are similar, ranging from 1040 to 1380 Bq m(-3), whereas geometric standard deviations (GSD) for both the retrospective methods are greater than for the CONT method, showing reasonable agreement between VT, ST and CONT measurements. A regression analysis, with respect to the lognormal distribution of each data set, shows that for VT-ST the correlation coefficient r is 0.85, for VT-CONT r is 0.82 and for ST-CONT r is 0.73. Comparison of retrospective and contemporary radon concentrations with regard to supposed long-term indoor radon changes further supports the principal agreement between the retrospective and conventional methods.

  5. Thorough investigations on indoor radon in Băiţa radon-prone area (Romania).

    Science.gov (United States)

    Cucoş Dinu, Alexandra; Cosma, Constantin; Dicu, Tiberius; Begy, Robert; Moldovan, Mircea; Papp, Botond; Niţă, Dan; Burghele, Bety; Sainz, Carlos

    2012-08-01

    A comprehensive radon survey has been carried out in Băiţa radon-prone area, Transylvania, Romania, in 4 localities (Băiţa, Nucet, Fînaţe, and Cîmpani) situated in the vicinity of former Romanian uranium mines. Indoor radon concentrations have been measured in 1128 ground floor rooms and cellars of 303 family houses by using CR-39 diffusion type radon detectors. The annual average of indoor radon concentration for Băiţa area was found to be 241±178 Bq m(-3), which is about two times higher than the average value of 126 Bq m(-3), computed for Romania. About 28% of investigated houses exceed the reference level of radon gas in dwellings of 300 Bq m(-3). The indoor radon measurements on each house have been carried out in several rooms simultaneously with the aim of obtaining a more detailed picture on the exposure to radon in the studied area. An analysis on the variability of radon levels among floors (floor-to-floor variation) and rooms (room-to-room variation) and also the influence of factors like the presence of cellar or the age of the building is presented. The coefficient of variation (CV) within ground floor rooms of the same house (room-to-room variation) ranged between 0.9 and 120.8%, with an arithmetic mean of 46.2%, a large variability among rooms within surveyed dwellings being clearly identified. The mean radon concentration in bedrooms without cellar was higher than in bedrooms above the cellar, the difference being statistically significant (t test, one tail, pradon levels was observed, but overall there was no significant difference in indoor radon concentrations by age of dwelling (one-way ANOVA test, p>0.05).

  6. Radon measurements in some areas in Bangladesh

    Energy Technology Data Exchange (ETDEWEB)

    Hamid Khan, M.A. [Physics Division, Atomic Energy Centre, Bangladesh Atomic Energy Commission, P.O. Box 164, Dhaka-1000 (Bangladesh)], E-mail: hamidkhan1950@yahoo.com; Chowdhury, M.S. [Physics Department, Dhaka University, Dhaka-1000 (Bangladesh)

    2008-08-15

    A survey of radon level measurements using CR-39 has been carried out in some of urban and rural residential areas and one gas explosion area in Bangladesh. The lowest level of radon concentration was found to be 49Bqm{sup -3} inside a hospital in Cox's Bazar district and the highest level was found to be 835Bqm{sup -3} inside a mud-made old residential house in Sylhet city. It was observed that old residential houses were found to have higher levels of radon concentrations compared to newly built houses. The radon level at the gas explosion area at Magurchara in Moulvibazar district was found to be 408{+-}98Bqm{sup -3}.

  7. GEOMETRICALLY INVARIANT WATERMARKING BASED ON RADON TRANSFORMATION

    Institute of Scientific and Technical Information of China (English)

    Cai Lian; Du Sidan; Gao Duntang

    2005-01-01

    The weakness of classical watermarking methods is the vulnerability to geometrical distortions that widely occur during normal use of the media. In this letter, a new imagewatermarking method is presented to resist Rotation, Scale and Translation (RST) attacks. The watermark is embedded into a domain obtained by taking Radon transform of a circular area selected from the original image, and then extracting Two-Dimensional (2-D) Fourier magnitude of the Radon transformed image. Furthermore, to prevent the watermarked image from degrading due to inverse Radon transform, watermark signal is inversely Radon transformed individually.Experimental results demonstrate that the proposed scheme is able to withstand a variety of attacks including common geometric attacks.

  8. Radon measurement using a liquid scintillation spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Koga, Taeko; Morishima, Hiroshige; Kawai, Hiroshi; Kondo, Sohei (Kinki Univ., Higashi-Osaka, Osaka (Japan). Atomic Energy Research Inst.); Mifune, Masaki; Konishi, Masanobu; Shirai, Chiaki

    1992-12-01

    A convenient radon detecting device for the purpose of estimating natural radiation exposure is described. The [alpha] radioactivity of radon gas absorbed in fine active carbon particles exposed to air is measured with a liquid scintillation spectrometer (Packard-PICO-RAD system). Its detection limits are 2mBq/l in air and 0.5 Bq/l in water with an accuracy of about 10 %. Radon concentrations at Misasa hot springs in Tottori prefecture were measured using this method. They were 0.16 [approx] 7.7 Bq/l in a bath room and 0.057 [approx] 0.36 Bq/l outdoors. Radon concentrations of the hot springs were 82 [approx] 1,700 Bq/l. (author).

  9. Radon Transform and Light-Cone Distributions

    Science.gov (United States)

    Teryaev, O. V.

    2016-08-01

    The relevance of Radon transform for generalized and transverse momentum dependent parton distributions is discussed. The new application for conditional (fracture) parton distributions and dihadron fragmentation functions is suggested.

  10. Radon in private drinking water wells.

    Science.gov (United States)

    Otahal, P; Merta, J; Burian, I

    2014-07-01

    At least 10% of inhabitants in the Czech Republic are supplied with water from private sources (private wells, boreholes). With the increasing cost of water, the number of people using their own sources of drinking water will be likely to increase. According to the Decree of the State Office for Nuclear Safety about the Radiation Protection 307/2002 as amended by Decree 499/2005, the guideline limit for the supplied drinking water ('drinking water for public supply') for radon concentration is 50 Bq·l(-1). This guideline does not apply to private sources of drinking water. Radon in water influences human health by ingestion and also by inhalation when radon is released from water during showering and cooking. This paper presents results of measurements of radon concentrations in water from private wells in more than 300 cases. The gross concentration of alpha-emitting radionuclides and the concentrations of radium and uranium were also determined.

  11. El gas radon y la hormesis

    National Research Council Canada - National Science Library

    Garzon Valencia, Gustavo

    2006-01-01

    ..., el cual sale desde el interior de la Tierra. Una construccion con poca ventilacion puede servir de lugar de acumulacion del gas radon y por lo tanto puede aumentar las dosis efectivas de radiactividad sobre el organismo de sus residentes...

  12. Radon Exhalation Considered in Building Material Standard

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>In order to investigate the relationship between radon exhalation and specific activity of natural nuclides in building material, here different kinds of samples of building materials were measured by the

  13. Novel Radon Sub-Slab Suctioning System

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn

    2013-01-01

    the zone below the ground-floor construction. For this purpose a new system of prefabricated lightweight elements is introduced. The effectiveness of the system is demonstrated for the case of a ground-floor reinforced concrete slab situated on top of a rigid insulation layer (consisting of a thermal......A new principle for radon protection is currently presented which makes use of a system of horizontal pressurised air ducts located within the lower part of the rigid insulation layer of the ground-floor slab. The function of this system is based on the principles of pressure reduction within...... a grid of horizontal air ducts with low pressure which are able to remove air and radon from the ground. Results showed the system to be effective in preventing radon infiltrating from the ground through the ground-floor slab, avoiding high concentrations of radon being accumulated inside houses...

  14. Distribution of indoor radon levels in Mexico

    CERN Document Server

    Espinosa, G; Rickards, J; Gammage, R B

    1999-01-01

    Our laboratory has carried out a systematic monitoring and evaluation of indoor radon concentration levels in Mexico for ten years. The results of the distribution of indoor radon levels for practically the entire country are presented, together with information on geological characteristics, population density, socioeconomic levels of the population, and architectural styles of housing. The measurements of the radon levels were made using the passive method of nuclear tracks in solids with the end-cup system. CR-39 was used as the detector material in combination with a one-step chemical etching procedure and an automatic digital- image counting system. Wherever a high level was measured, a confirming measurement was made using a dynamic method. The results are important for future health studies, including the eventual establishment of patterns for indoor radon concentration, as it has been done in the USA and Europe.

  15. RADON AND CARCINOGENIC RISK IN MOSCOW

    Directory of Open Access Journals (Sweden)

    S. M. Golovanev

    2015-01-01

    Full Text Available Objective: comparative evaluation of carcinogenic risk inMoscowfrom radon in indoor and atmospheric pollutants.Materials and methods: the lung cancer incidence in Moscow; radiation-hygienic passport of the territory; .U.S. EPA estimated average age at all and radon induced deaths, years of life lost; Report of UNSCEAR 2006 and WHO handbook on indoor radon, 2009. Trend analysis of incidence; evaluation of the excess relative risk; assessment of ratio radon-induced population risk and published values оf total population carcinogenic risk from chemical carcinogens.Results: it is shown that the 304 cases of lung cancer per year (1. 85 10-3 on average from 2006 to 2011 (21280diseases for 70 years in addition to background level induced by radon; the differences in average trends of all lungcancer incidence in the districts can exceed 25%.Conclusion. The potential of risk reduction by measures of mitigation radon concentration exceeds 5 times the cost efficiency to reduce emissions from vehicles and can reduce cancer incidence, on average 236 cases per year; population risk 16520 cases over 70 years or save not less than 2832 person-years of life per year. The annual effect of reducing losses from not-survival of 12 years as a result of radon-induced lung cancer deaths exceeds 14160000 dollars. The evaluating of the carcinogenic risk from radon in accordance with the definition of population risk increases the predictive evaluation of the effectiveness of preventive measures more than twice.

  16. Quantitative Interpretation of Air Radon Progeny Fluctuations in Terms of Stability Conditions in the Atmospheric Boundary Layer

    Science.gov (United States)

    Salzano, Roberto; Pasini, Antonello; Casasanta, Giampietro; Cacciani, Marco; Perrino, Cinzia

    2016-09-01

    Determining the mixing height using a tracer can improve the information obtained using traditional techniques. Here we provide an improved box model based on radon progeny measurements, which considers the vertical entrainment of residual layers and the variability in the soil radon exhalation rate. The potential issues in using progeny instead of radon have been solved from both a theoretical and experimental perspective; furthermore, the instrumental efficiency and the counting scheme have been included in the model. The applicability range of the box model has been defined by comparing radon-derived estimates with sodar and lidar data. Three intervals have been analyzed ("near-stable", "transition" and "turbulent"), and different processes have been characterized. We describe a preliminary application case performed in Rome, Italy, while case studies will be required to determine the range limits that can be applied in any circumstances.

  17. The Influence of Internal Wall and Floor Covering Materials and Ventilation Type on Indoor Radon and Thoron Levels in Hospitals of Kermanshah, Iran

    Science.gov (United States)

    Pirsaheb, Meghdad; Najafi, Farid; Haghparast, Abbas; Hemati, Lida; Sharafi, Kiomars; Kurd, Nematullah

    2016-01-01

    Background Building materials and the ventilation rate of a building are two main factors influencing indoor radon and thoron levels (two radioactive gases which have the most important role in human natural radiation exposure within dwellings). Objectives This analytical descriptive study was intended to determine the relationship between indoor radon and thoron concentrations and the building materials used in interior surfaces, as well as between those concentrations and the type of ventilation system (natural or artificial). Materials and Methods 102 measurements of radon and thoron levels were taken from different parts of three hospital buildings in the city of Kermanshah in the west of Iran, using an RTM-1688-2 radon meter. Information on the type of building material and ventilation system in the measurement location was collected and then analyzed using Stata 8 software and multivariate linear regression. Results In terms of radon and thoron emissions, travertine and plaster were found to be the most appropriate and inappropriate covering for walls, respectively. Furthermore, granite and travertine were discovered to be inappropriate materials for flooring, while plastic floor covering was found suitable. Natural ventilation performed better for radon, while artificial ventilation worked better for thoron. Conclusions Internal building materials and ventilation type affect indoor radon and thoron concentrations. Therefore, the use of proper materials and adequate ventilation can reduce the potential human exposure to radon and thoron. This is of utmost importance, particularly in buildings with a high density of residents, including hospitals.

  18. Natural radium and radon tracers to quantify water exchange and movement in reservoirs

    Science.gov (United States)

    Smith, Christopher G.; Baskaran, Mark

    2011-01-01

    Radon and radium isotopes are routinely used to quantify exchange rates between different hydrologic reservoirs. Since their recognition as oceanic tracers in the 1960s, both radon and radium have been used to examine processes such as air-sea exchange, deep oceanic mixing, benthic inputs, and many others. Recently, the application of radon-222 and the radium-quartet (223,224,226,228Ra) as coastal tracers has seen a revelation with the growing interest in coastal groundwater dynamics. The enrichment of these isotopes in benthic fluids including groundwater makes both radium and radon ideal tracers of coastal benthic processes (e.g. submarine groundwater discharge). In this chapter we review traditional and recent advances in the application of radon and radium isotopes to understand mixing and exchange between various hydrologic reservoirs, specifically: (1) atmosphere and ocean, (2) deep and shallow oceanic water masses, (3) coastal groundwater/benthic pore waters and surface ocean, and (4) aquifer-lakes. While the isotopes themselves and their distribution in the environment provide qualitative information about the exchange processes, it is mixing/exchange and transport models for these isotopes that provide specific quantitative information about these processes. Brief introductions of these models and mixing parameters are provided for both historical and more recent studies.

  19. Radon survey and soil gamma doses in primary schools of Batman, Turkey.

    Science.gov (United States)

    Damla, Nevzat; Aldemir, Kamuran

    2014-06-01

    A survey was conducted to evaluate levels of indoor radon and gamma doses in 42 primary schools located in Batman, southeastern Anatolia, Turkey. Indoor radon measurements were carried out using CR-39 solid-state nuclear track detector-based radon dosimeters. The overall mean annual (222)Rn activity in the surveyed area was found to be 49 Bq m(-3) (equivalent to an annual effective dose of 0.25 mSv). However, in one of the districts (Besiri) the maximum radon value turned out to be 307 Bq m(-3). The estimated annual effective doses are less than the recommended action level (3-10 mSv). It is found that the radon concentration decreases with increasing floor number. The concentrations of natural and artificial radioisotopes were determined using gamma-ray spectroscopy for soil samples collected in close vicinity of the studied schools. The mean gamma activity concentrations in the soil samples were 31, 25, 329 and 12 Bq kg(-1) for (226)Ra, (232)Th, (40)K and (137)Cs, respectively. The radiological parameters such as the absorbed dose rate in air and the annual effective dose equivalent were calculated. These radiological parameters were evaluated and compared with the internationally recommended values.

  20. Surface-to-mountaintop transport characterised by radon observations at the Jungfraujoch

    Directory of Open Access Journals (Sweden)

    A. D. Griffiths

    2014-07-01

    Full Text Available Atmospheric composition measurements at Jungfraujoch are affected intermittently by thermally-driven (anabatic mountain winds as well as by other vertical transport mechanisms. Using radon-222 observations, and a new analysis method, we quantify the land surface influence hour-by-hour and detect the presence of anabatic winds on a daily basis. During 2010–2011, anabatic winds occurred on roughly 40% of days, but only from April–September. Anabatic wind days were associated with warmer air temperatures over a large fraction of Europe and with a shift in airmass properties. Shifts were evident even when comparing the same radon concentrations, a proxy for land-surface influence. Aerosol washout, when quantified as a function of rain-rate using a radon normalisation technique, was also influenced by anabatic winds being more pronounced on non-anabatic days. Excluding the influence of anabatic winds, however, did not lead to a better definition of the unperturbed aerosol background than a definition based on radon alone, supporting the use of a radon threshold to identify periods with weak land-surface influence.

  1. Personal radon dosimetry from eyeglass lenses.

    Science.gov (United States)

    Fleischer, R L; Meyer, N R; Hadley, S A; MacDonald, J; Cavallo, A

    2001-01-01

    Eyeglass lenses are commonly composed of allyl-diglycol carbonate (CR-39), an alpha-particle detecting plastic, thus making such lenses personal radon dosemeters. Samples of such lenses have been obtained, etched to reveal that radon and radon progeny alpha tracks can be seen in abundance, and sensitivities have been calibrated in radon chambers as a primary calibration, and with a uranium-based source of alpha particles as a convenient secondary standard. With one exception natural, environmental (fossil) track densities ranged from less than 3,000 to nearly 70,000 per cm2 for eyeglasses that had been worn for various times from one to nearly five years. Average radon concentrations to which those wearers were exposed are inferred to be in the range 14 to 130 Bq x m(-3) (0.4 to 3.5 pCi x l(-1)). A protocol for consistent, meaningful readout is derived and used. In the exceptional case the fossil track density was 1,780,000 cm(-2) and the inferred (24 h) average radon concentration was 6500 Bq x m(-3) (175 pCi x l(-1)) for a worker at an inactive uranium mine that is used for therapy.

  2. Radon emanation from radium specific adsorbents.

    Science.gov (United States)

    Alabdula'aly, Abdulrahman I; Maghrawy, Hamed B

    2010-01-01

    Pilot studies were undertaken to quantify the total activity of radon that is eluted following no-flow periods from several Ra-226 adsorbents loaded to near exhaustion. The adsorbents studied included two types of barium sulphate impregnated alumina (ABA-8000 and F-1) and Dowex MSC-1 resin treated by either barium hydroxide or barium chloride. In parallel, radium loaded plain activated aluminas and Dowex MSC-1 resin were similarly investigated. The results revealed that radon was quantitatively eluted during the first few bed volumes of column operation after no-flow periods. Although similar radon elution profiles were obtained, the position of the radon peak was found to vary and depended on the adsorbent type. Radon levels up to 24 and 14 kBq dm(-3) were measured after a rest period of 72h from radium exhausted Dowex MSC-1 treated with barium chloride and F-1 impregnated alumina with barium sulphate, respectively. The eluted radon values measured experimentally were compared to those calculated theoretically from accumulated radium quantities for the different media. For plain adsorbents, an agreement better than 10% was obtained. For treated resin-types a consistency within 30% but for impregnated alumina-types high discrepancy between respective values were obtained.

  3. The radon gas. An air pollutant

    Directory of Open Access Journals (Sweden)

    Luis Santiago Quindós Poncela

    2010-12-01

    Full Text Available In this work different aspects about the problem of the radon in dwellings are approached. This gas of natural origin is virtually present in all the soils in the earth’s crust due to the presence of uranium and radium in the composition of them. Depending on architectural factors and of occupancy habits of the house, high concentrations of this gas can be reached indoors. In these situations, there is a quantifiable increment of the risk of developing lung cancer in the inhabitants of the housing. In the last years the methodological improvements in the realization of epidemiologic studies have led to the obtaining of scientific evidences about the relationship between the presence of indoor radon and the risk of lung cancer. This relationship, found years ago in workers of uranium mines, has been corroborated in the case of the residential radon by the light of several recent meta-analysis performed on groups of epidemiologic studies. More than 6.000 radon measurements have been carried out in Spain during the last 25 years. A summary of the results obtained from the main national radon surveys are also presented, as well as the criteria recently established by the Spanish Nuclear Safety Council concerning radon action levels in dwellings and workplaces.

  4. RADON REDUCTION AND RADON-RESISTANT CONSTRUCTION DEMONSTRATIONS IN NEW YORK - VOLUME 2: APPENDICES

    Science.gov (United States)

    Growing concern about health risks associated with exposure to indoor radon, a radioactive gas found in varying amounts in nearly all houses, has underscored the need for dependable radon reduction methods in existing and newly constructed houses. Responding to this need, the U....

  5. Radon and radon-daughter concentrations in air in the vicinity of the Anaconda Uranium Mill

    Energy Technology Data Exchange (ETDEWEB)

    Momeni, M H; Lindstrom, J B; Dungey, C E; Kisieleski, W E

    1979-11-01

    Radon concentration, working level, and meteorological variables were measured continuously from June 1977 through June 1978 at three stations in the vicinity of the Anaconda Uranium Mill with measurements integrated to hourly intervals. Both radon and daughters show strong variations associated with low wind velocities and stable atmospheric conditions, and diurnal variations associated with thermal inversions. Average radon concentration shows seasonal dependence with highest concentrations observed during fall and winter. Comparison of radon concentrations and working levels between three stations shows strong dependence on wind direction and velocity. Radon concentrations and working-level distributions for each month and each station were analyzed. The average maximum, minimum, and modal concentration and working levels were estimated with observed frequencies. The highest concentration is 11,000 pCi/m/sup 3/ on the tailings. Working-level variations parallel radon variations but lag by less than one hour. The highest working levels were observed at night when conditions of higher secular radioactive equilibrium for radon daughters exist. Background radon concentration was measured at two stations, each located about 25 km from the mill, and the average is 408 pCi/m/sup 3/. Average working-level background is 3.6 x 10/sup -3/.

  6. Determination of air-loop volume and radon partition coefficient for measuring radon in water sample.

    Science.gov (United States)

    Lee, Kil Yong; Burnett, William C

    A simple method for the direct determination of the air-loop volume in a RAD7 system as well as the radon partition coefficient was developed allowing for an accurate measurement of the radon activity in any type of water. The air-loop volume may be measured directly using an external radon source and an empty bottle with a precisely measured volume. The partition coefficient and activity of radon in the water sample may then be determined via the RAD7 using the determined air-loop volume. Activity ratios instead of absolute activities were used to measure the air-loop volume and the radon partition coefficient. In order to verify this approach, we measured the radon partition coefficient in deionized water in the temperature range of 10-30 °C and compared the values to those calculated from the well-known Weigel equation. The results were within 5 % variance throughout the temperature range. We also applied the approach for measurement of the radon partition coefficient in synthetic saline water (0-75 ppt salinity) as well as tap water. The radon activity of the tap water sample was determined by this method as well as the standard RAD-H2O and BigBottle RAD-H2O. The results have shown good agreement between this method and the standard methods.

  7. RADON REDUCTION AND RADON-RESISTANT CONSTRUCTION DEMONSTRATIONS IN NEW YORK - VOLUME 2: APPENDICES

    Science.gov (United States)

    Growing concern about health risks associated with exposure to indoor radon, a radioactive gas found in varying amounts in nearly all houses, has underscored the need for dependable radon reduction methods in existing and newly constructed houses. Responding to this need, the U....

  8. Measurment of radon, thoron and their progeny in indoor environment of Mohali, Punjab, Northern India, using pinhole dosimeters

    Directory of Open Access Journals (Sweden)

    Mehta Vimal

    2016-01-01

    Full Text Available The health hazards of radon and its decay products above certain levels are well known. However, for any preventive measures to be taken, we have to be aware of radon levels of that particular area. Measurement of radon and its decay products in indoor environments is an important aspect of assessing indoor air quality and health conditions associated with it. Keeping this in mind, measurements of radon, thoron and their progeny concentrations were carried out in Mohali, Northern India, using pinhole-based twin cup dosimeters. Radon exhalation rates of soil samples in the dwellings/areas were measured via an active technique of a continuous radon monitor. The indoor radon concentration in Mohali varied from 15.03 ± 0.61 Bq/m3 to 39.21 ± 1.46 Bq/m3 with an average of 26.95 Bq/m3 ,while thoron concentration in the same dwellings varied from 9.62 ± 0.54 Bq/m3 to 52.84 ± 2.77 Bq/m3 with an average of 31.09 Bq/m3. Radon progeny levels in dwellings under study varied from 1.63 to 4.24 mWL, with an average of 2.94 mWL, while thoron progeny levels varied from 0.26 to 1.43 mWL , with an average of 0.84 mWL. The annual dose received by the inhabitants of dwellings under study varied from 0.78 to 2.36 mSv, with an average of 1.61 mSv. The in situ gamma dose rate varied from 0.12 to 0.32 mSv/h.

  9. Determination of radon exhalation from construction materials using VOC emission test chambers.

    Science.gov (United States)

    Richter, M; Jann, O; Kemski, J; Schneider, U; Krocker, C; Hoffmann, B

    2013-10-01

    The inhalation of (222) Rn (radon) decay products is one of the most important reasons for lung cancer after smoking. Stony building materials are an important source of indoor radon. This article describes the determination of the exhalation rate of stony construction materials by the use of commercially available measuring devices in combination with VOC emission test chambers. Five materials - two types of clay brick, clinker brick, light-weight concrete brick, and honeycomb brick - generally used for wall constructions were used for the experiments. Their contribution to real room concentrations was estimated by applying room model parameters given in ISO 16000-9, RP 112, and AgBB. This knowledge can be relevant, if for instance indoor radon concentration is limited by law. The test set-up used here is well suited for application in test laboratories dealing with VOC emission testing.

  10. How to Ensure Low Radon Concentrations in Indoor Environments

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn; Wraber, Ida Kristina

    2011-01-01

    This paper focuses on methods for measuring radon levels in the indoor air in buildings as well as on concrete solutions that can be carried out in the building to prevent radon leakage and to lower the radon concentration in the indoor air of new buildings. The radon provision in the new Danish...... Building Regulations from 2010 has been tightened as a result of new recommendations from the World Health Organization. Radon can cause lung cancer and it is not known whether there is a lower limit for its harmfulness. It is therefore important to reduce the radon concentration as much as possible in new...... buildings. The airtightness is a major factor when dealing with radon in buildings. Above the ground it is important to build airtight in compliance with energy requirements and against the ground it is important to prevent radon from seeping into the building. There is a direct connection between...

  11. Radon removal from gaseous xenon with activated charcoal

    Science.gov (United States)

    Abe, K.; Hieda, K.; Hiraide, K.; Hirano, S.; Kishimoto, Y.; Kobayashi, K.; Koshio, Y.; Liu, J.; Martens, K.; Moriyama, S.; Nakahata, M.; Nishiie, H.; Ogawa, H.; Sekiya, H.; Shinozaki, A.; Suzuki, Y.; Takachio, O.; Takeda, A.; Ueshima, K.; Umemoto, D.; Yamashita, M.; Hosokawa, K.; Murata, A.; Otsuka, K.; Takeuchi, Y.; Kusaba, F.; Motoki, D.; Nishijima, K.; Tasaka, S.; Fujii, K.; Murayama, I.; Nakamura, S.; Fukuda, Y.; Itow, Y.; Masuda, K.; Nishitani, Y.; Takiya, H.; Uchida, H.; Kim, Y. D.; Kim, Y. H.; Lee, K. B.; Lee, M. K.; Lee, J. S.; Xmass Collaboration

    2012-01-01

    Many low background experiments using xenon need to remove radioactive radon to improve their sensitivities. However, no method of continually removing radon from xenon has been described in the literature. We studied a method to remove radon from xenon gas through an activated charcoal trap. From our measurements we infer a linear relationship between the mean propagation velocity vRn of radon and vXe of xenon in the trap with vRn/vXe=(0.96±0.10)×10-3 at -85 °C. As the mechanism for radon removal in this charcoal trap is its decay, knowledge of this parameter allows us to design an efficient radon removal system for the XMASS experiment. The verification of this system found that it reduces radon by a factor of 0.07, which is in line with its expected average retention time of 14.8 days for radon.

  12. Radon

    Science.gov (United States)

    ... face' showdown over Obama-era tailpipe rule Blog: Yoga, Tai Chi and Your Lungs: The Benefits of ... list_name').hide(); } $("#local_list_xml").quickPagination(); }, error: function() { console.log("An error occurred while processing XML ...

  13. Modeling of geogenic radon in Switzerland based on ordered logistic regression.

    Science.gov (United States)

    Kropat, Georg; Bochud, François; Murith, Christophe; Palacios Gruson, Martha; Baechler, Sébastien

    2017-01-01

    The estimation of the radon hazard of a future construction site should ideally be based on the geogenic radon potential (GRP), since this estimate is free of anthropogenic influences and building characteristics. The goal of this study was to evaluate terrestrial gamma dose rate (TGD), geology, fault lines and topsoil permeability as predictors for the creation of a GRP map based on logistic regression. Soil gas radon measurements (SRC) are more suited for the estimation of GRP than indoor radon measurements (IRC) since the former do not depend on ventilation and heating habits or building characteristics. However, SRC have only been measured at a few locations in Switzerland. In former studies a good correlation between spatial aggregates of IRC and SRC has been observed. That's why we used IRC measurements aggregated on a 10 km × 10 km grid to calibrate an ordered logistic regression model for geogenic radon potential (GRP). As predictors we took into account terrestrial gamma doserate, regrouped geological units, fault line density and the permeability of the soil. The classification success rate of the model results to 56% in case of the inclusion of all 4 predictor variables. Our results suggest that terrestrial gamma doserate and regrouped geological units are more suited to model GRP than fault line density and soil permeability. Ordered logistic regression is a promising tool for the modeling of GRP maps due to its simplicity and fast computation time. Future studies should account for additional variables to improve the modeling of high radon hazard in the Jura Mountains of Switzerland. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Active versus passive radon monitoring at the Yucca Mountain site

    Energy Technology Data Exchange (ETDEWEB)

    Griffin, M.D. [Science Applications International Corp., Las Vegas, NV (United States)

    1994-12-31

    Federal Regulations have mandated that a baseline assessment for the Yucca Mountain Site be performed. This includes the detection and monitoring of specific radionuclides present at the site. These radionuclides include radon 222, a decay progeny of naturally occurring uranium. Two radon monitoring systems are utilized at the Yucca Mountain site to detect ambient levels of radon. The first is a passive time integrated system, and the second is a continuous radon monitoring (CRM) system.

  15. Radon and its decay product activities in the magmatic area and the adjacent volcano-sedimentary Intrasudetic Basin

    Directory of Open Access Journals (Sweden)

    D. Tchorz

    2007-06-01

    Full Text Available In the magmatic area of Sudetes covering the Karkonosze granite and adjacent volcano-sedimentary Intrasudetic Basin a study of atmospheric radon activity was performed by means of SSNTD Kodak LR-115. The study was completed by gamma spectrometric survey of eU and eTh determined by gamma activity of radon decay products 214Bi and 208Tl respectively. In the case of the western part of the Karkonosze granite area the radon decay products activity in the granitic basement was found to be as high as 343 Bq/kg for 214Bi and 496 Bq/kg for 208Tl respectively. Atmospheric radon content measured by means of Kodak LR115 track detector at the height of 1.5 m was found as high as 70 Bq/m3 in the regions, where no mining activities took place. However in the eastern part of the granitic massif in the proximity of abandoned uranium mine atmospheric radon content was found to be 6000 Bq/m3. In the case of sedimentary basin where sedimentary sequence of Carboniferous rocks has been penetrated by younger gases and fluids of volcanic origin uranium mineralization developed. The region known from its CO2 outburst during coal mining activity is characterized by good ventilation of the uranium enriched geological basement resulting in increased atmospheric radon activity being in average 72 Bq/m3. In the vicinity of coal mine tailing an increase up to 125 Bq/m3 can be observed. Seasonal variations of atmospheric radon content are influenced in agricultural areas by cyclic cultivation works (plough on soils of increased uranium content and in the case of post-industrial brownfields varying rates of radon exhalation from tailings due to different meteorological conditions.

  16. Estimation of the residential radon levels and the population annual effective dose in dwellings of Al-kharj, Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Ahmed M. Maghraby

    2014-10-01

    Full Text Available Indoor radon levels and the annual effective dose are measured in Al-kharj city, Saudi Arabia dwellings using CR-39 detector. The dwellings are classified according their types (schools, homes and working area. The influence of some factors like number of floors and ventilation conditions on indoor radon levels, equilibrium factor and radon effective doses were studied. Can and bare method is used for determine the equilibrium factor between radon and its daughters. Based on the dosemetric approach and epidemiological determinations conversions convention for radon exposures, the annual effective doses are calculated and compared. The average radon concentration varies from 76 ± 38 Bq m−3 in work places to 114 ± 41 Bq m−3 in homes. About 77% of the studied dwellings give radon concentration in the range from 50 to 150 Bq m−3. The overall weighted mean of radon level is equal to 94 ± 41 Bq m−3 which about 2.5 times the global average. The equilibrium factor has a wide range from 0.1 to 0.6 with overall weighted average equal to 0.308 ± 0.13. The variety of living style, constructed materials and ventilation rates are responsible for this wide range and subsequently the obtained high uncertainty (42%. Homes showed larger annual effective dose (3.186 ± 0.75 mSv than other dwellings which locate in the range of the recommended action level but about three times the global average. The result shows that the ventilation condition is the major but not the only factor affects the results. Poor ventilated dwellings showed the maximum annual effective dose on the other hand the number of floor has insignificant difference.

  17. Ogoya old copper mine as a monitoring station for various fields of earth sciences and radon anomaly observed at Tatsunokuchi

    Energy Technology Data Exchange (ETDEWEB)

    Komura, Kazuhisa; Wataguchi, Teru; Yamazaki, Seiji [Kanazawa Univ. (Japan)

    1997-02-01

    To utilize the tunnel of old Ogoya mine for measurement of low-level radioactivity, the intensity of cosmic ray have been determined at various points in the tunnel and basic data regarding radon level, wind velocity and temperature have been collected. Here, recent studies made in the underground laboratory in the tunnel were briefly outlined. The reciprocal of radon activity was found to be closely correlated with wind velocity. The mean activity was ca. 25 Bq/m{sup 3}, slightly higher than that in an ordinal house at the wind velocity of 0.4 m/sec and it was highest in the conditions of no wind. Thus, the tunnel was found to be suitable for the measurement of low-level radioactivity. Then, the effects of radon on the background level for the Ge-detector set in the underground laboratory were investigated and an attempt for their elimination was made using nitrogen gas. The peak counting rates of {sup 214}Pb and {sup 214}Bi, both of which are daughter nuclides of radon were remarkably reduced by introducing the gas. Further, the radon level of the atmosphere upon the ground was determined using a radon detector with electrostatic trap aiming to catch the abnormality in radon level, which is regarded as an omen of earthquake. Thus, it was suggested that the radon anomaly observed in Tatsunokuchi during from Aug. 31 to Sep. 12 might be associated with the earthquake with a magnitude of 3.2 occurred 9 Km apart from the town on September 10. (M,N.)

  18. Indoor randon concentration. Temperature and wind effects; Concentrazione di radon indoor. Effetto del vento e della temperatura

    Energy Technology Data Exchange (ETDEWEB)

    Sesana, L.; Benigni, S. [Milan Univ., Milan (Italy). Ist. di Fisica Generale Applicata

    2000-12-01

    The present study analyses and discusses the behaviour of the indoor radon concentration in a research house. Hourly measurements were carried out in the basement of the house from November 1998 up to June 1999. In many sequences of days radon concentration in the room under analysis shows strong variation all day long with accumulation in the evening and overnight and decrease in the morning and in the afternoon. Measurements of wind velocity, indoor and outdoor temperatures and outdoor-indoor pressure difference were performed and their trend is compared with the observed radon concentration. The exhalation of radon from walls, floor and ceiling and the pressure difference driven exhalation from the soil are discussed, particularly the relation with the temperature differences. The air exchange rates between the house and the outdoor air are studied. [Italian] Si analizza e si discute il comportamento della concentrazione di radon indoor nel seminterrato di una casa di ricerca. Misure orarie sono state effettuate da novembre 1998 a giugno 1999. In molte sequenze di giorni la concentrazione del radon nel locale in analisi presenta forti variazioni nel corso della giornata con un accumulo notturno e decrescita nelle ore diurne. Sono state eseguite misure della velocita' del vento, delle temperature outdoor e indoor e della differenza di pressione outdoor-indoor e il loro andamento e' stato confrontato con quello della concentrazione del radon. Vengono discusse l'esalazione del radon dalle pareti, dal pavimento e dal soffitto e l'esalazione pressure difference driven dal suolo. Il rateo dei ricambi d'aria tra il locale e l'aria outdoor e' studiato.

  19. RESOLVING THE RADON PROBLEM IN CLINTON, NEW JERSEY HOUSES

    Science.gov (United States)

    The paper discusses the resolution of a radon problem in Clinton, New Jersey, where significantly elevated radon concentrations were found in several adjacent houses. The U.S. EPA screened 56 of the houses and selected 10 for demonstration of radon reduction techniques. Each of t...

  20. RESOLVING THE RADON PROBLEM IN CLINTON, NEW JERSEY HOUSES

    Science.gov (United States)

    The paper discusses the resolution of a radon problem in Clinton, New Jersey, where significantly elevated radon concentrations were found in several adjacent houses. The U.S. EPA screened 56 of the houses and selected 10 for demonstration of radon reduction techniques. Each of t...

  1. Assessment of indoor radon gas concentration change of college

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hoon Hee; Jeong, Eui Hwan; Kim, Hak Jae; Lyu, Kang Yeul [Dept. of of Radiological Technology, Shingu College, Seongnam (Korea, Republic of); Lee, Ju Young [Dept. of Radiological Technology, Songho College, Hoengseong (Korea, Republic of)

    2017-03-15

    The purpose of this study was to assess the impact by comparing the concentration of indoor radon and look for ways to lower the concentration of indoor radon gas measurements of three variables, the year of completion, volume of the building and ventilation. Measurement target is six classrooms on the sixth floor of building that was constructed in 1973 and was extended in 2011. Selected classroom's volume is different. Four classrooms were selected to compare the radon concentration in accordance with the year of completion, Classrooms that is same year of completion were selected to compare the radon concentration in accordance with the volume, six classroom was performed closure and ventilation to compare radon concentration according to ventilation. Radon concentrations in accordance with the year of building completion showed a high concentration of radon in a building recently built. Also, Radon concentration in volume is high the smaller the volume. Radon concentration change according to ventilation showed a reduction of about 80% when the ventilation than during closing. Especially, The radon concentrations were high detected while the recently year of building completion and the smaller volume. Ventilation of the three variables is considered that can be expected to exposure reduction effect by radon affecting the greatest radon concentration reduction.

  2. From Complex Fractional Fourier Transform to Complex Fractional Radon Transform

    Institute of Scientific and Technical Information of China (English)

    FAN Hong-Yi; JIANG Nian-Quan

    2004-01-01

    We show that for n-dimensional complex fractional Fourier transform the corresponding complex fractional Radon transform can also be derived, however, it is different from the direct product of two n-dimensional real fractional Radon transforms. The complex fractional Radon transform of two-mode Wigner operator is calculated.

  3. A prediction model for assessing residential radon concentration in Switzerland

    NARCIS (Netherlands)

    Hauri, D.D.; Huss, A.; Zimmermann, F.; Kuehni, C.E.; Roosli, M.

    2012-01-01

    Indoor radon is regularly measured in Switzerland. However, a nationwide model to predict residential radon levels has not been developed. The aim of this study was to develop a prediction model to assess indoor radon concentrations in Switzerland. The model was based on 44,631 measurements from the

  4. 40 CFR 61.203 - Radon monitoring and compliance procedures.

    Science.gov (United States)

    2010-07-01

    ..., each owner or operator of an inactive phosphogypsum stack shall test the stack for radon-222 flux in... the radon-222 flux testing. Each report shall also include the following information: (i) The name and... provide EPA with a report detailing the actions taken and the results of the radon-222 flux testing....

  5. Fractional Radon Transform and Transform of Wigner Operator

    Institute of Scientific and Technical Information of China (English)

    FAN Hong-Yi; CHEN Jun-Hua

    2003-01-01

    Based on the Radon transform and fractional Fourier transform we introduce the fractional Radon trans-formation (FRT). We identify the transform kernel for FRT. The FRT of Wigner operator is derived, which naturallyreduces to the projector of eigenvector of the rotated quadrature in the usual Radon transform case.

  6. Analysis of the main factors affecting the evaluation of the radon dose in workplaces: The case of tourist caves

    Energy Technology Data Exchange (ETDEWEB)

    Sainz, Carlos [Department of Medical Physics, RADON Group, Faculty of Medicine, University of Cantabria, c/Cardenal Herrera Oria s/n, 39011 Santander (Spain); Quindos, Luis Santiago [Department of Medical Physics, RADON Group, Faculty of Medicine, University of Cantabria, c/Cardenal Herrera Oria s/n, 39011 Santander (Spain)]. E-mail: quindosl@unican.es; Fuente, Ismael [Department of Medical Physics, RADON Group, Faculty of Medicine, University of Cantabria, c/Cardenal Herrera Oria s/n, 39011 Santander (Spain); Nicolas, Jorge [Department of Medical Physics, RADON Group, Faculty of Medicine, University of Cantabria, c/Cardenal Herrera Oria s/n, 39011 Santander (Spain); Quindos, Luis [Department of Medical Physics, RADON Group, Faculty of Medicine, University of Cantabria, c/Cardenal Herrera Oria s/n, 39011 Santander (Spain)

    2007-07-16

    High concentrations of radon exist in several workplaces like tourist caves mainly because of the low ventilation rates existing at these enclosures. In this sense, in its 1990 publication, the ICRP recommended that high exposures of radon in workplaces should be considered as occupational exposure. In developed caves in which guides provide tours for the general public great care is needed for taking remedial actions concerning radon, because in some circumstances forced ventilation may alter the humidity inside the cave affecting some of the formations or paintings that attract tourists. Tourist guides can work about 1900 h per year, so the only option to protect them and other cave workers from radon exposure is to apply an appropriate system of radiation protection mainly based on limitation of exposure by restricting the amount of time spent in the cave. Because of the typical environmental conditions inside the caves, the application of these protecting actions requires to know some indoor air characteristics like particle concentration, as well as radon progeny behaviour in order to get more realistic effective dose values In this work the results of the first two set of radon measurements program carried out in 10 caves located in the region of Cantabria (Spain) are presented.

  7. Radon 222 tracing of soil and forest canopy trace gas exchange in an open canopy boreal forest

    Science.gov (United States)

    Ussler, William, III; Chanton, Jeffrey P.; Kelley, Cheryl A.; Martens, Christopher S.

    1994-01-01

    A set of continuous, high-resolution atmospheric radon (Rn-222) concentration time series and radon soil flux measurements were acquired during the summer of 1990 at a micrometeorological tower site 13 km northwest of Schefferville, Quebec, Canada. The tower was located in a dry upland, open-canopy lichen-spruce woodland. For the period July 23 to August 1, 1990, the mean radon soil flux was 41.1 +/- 4.8 Bq m(exp -2)/h. Radon surface flux from the two end-member forest floor cover types (lichen mat and bare soil) were 38.8 +/- 5.1 and 61.8 +/- 15.6 Bq m(exp -2)/h, respectively. Average total forest canopy resistances computed using a simple 'flux box' model for radon exchange between the forest canopy and the overlying atmosphere range from 0.47 +/- 0.24 s cm(exp -1) to 2.65 +/- 1.61 cm(exp -1) for daytime hours (0900-1700 LT) and from 3.44 +/- 0.91 s cm(exp -1) to 10.55 +/- 7.16 s cm(exp -1) for nighttime hours (2000-0600) for the period July 23 to August 6, 1990. Continuous radon profiling of canopy atmospheres is a suitable approach for determining rates of biosphere/atmosphere trace gas exchange for remote field sites where daily equipment maintenance is not possible. where daily equipment maintenance is not possible.

  8. Analysis of the main factors affecting the evaluation of the radon dose in workplaces: the case of tourist caves.

    Science.gov (United States)

    Sainz, Carlos; Quindós, Luis Santiago; Fuente, Ismael; Nicolás, Jorge; Quindós, Luis

    2007-07-16

    High concentrations of radon exist in several workplaces like tourist caves mainly because of the low ventilation rates existing at these enclosures. In this sense, in its 1990 publication, the ICRP recommended that high exposures of radon in workplaces should be considered as occupational exposure. In developed caves in which guides provide tours for the general public great care is needed for taking remedial actions concerning radon, because in some circumstances forced ventilation may alter the humidity inside the cave affecting some of the formations or paintings that attract tourists. Tourist guides can work about 1900 h per year, so the only option to protect them and other cave workers from radon exposure is to apply an appropriate system of radiation protection mainly based on limitation of exposure by restricting the amount of time spent in the cave. Because of the typical environmental conditions inside the caves, the application of these protecting actions requires to know some indoor air characteristics like particle concentration, as well as radon progeny behaviour in order to get more realistic effective dose values In this work the results of the first two set of radon measurements program carried out in 10 caves located in the region of Cantabria (Spain) are presented.

  9. Measurements of the radon-222 concentration in residences of Lima - Peru; Mediciones de la concentracion de radon 222 en residencias de Lima - Peru

    Energy Technology Data Exchange (ETDEWEB)

    Pereyra, P.; Lopez, M. E.; Perez, B., E-mail: ppereyr@pucp.edu.pe [Pontificia Universidad Catolica del Peru, Seccion Fisica, Av. Universitaria 1801, Lima (Peru)

    2014-08-15

    The measurement of the Radon-222 levels was realized in the first semester of 2013 in residences corresponding to 16 districts of the metropolitan area of Lima, including to the zones North, Center and South of the city, during one period of 3 to 6 months in continuous form, with measurement periods of 1 to 2 months. The houses where the measurements were made were selected considering diverse variables as antiquity, construction materials, coatings, soil type, occupational use of the monitored rooms, etc. The measurements were realized in basements, first and second floor of the residences. For the Radon-222 measurements passive detectors of cellulose nitrate (Lr-115) were used. The procedure of data collection, dosimeters reading and the measurement results are shown in this work; this monitoring is the first one that is carried out in this city. The results are only indicators of the present radon rate, by the detectors type not is possible to discriminate the presence of the Radon-222 descendants. (Author)

  10. Radon as a groundwater tracer in Forsmark and Laxemar

    Energy Technology Data Exchange (ETDEWEB)

    Grolander, Sara

    2009-10-15

    Radon concentrations were measured in different water types in Forsmark and Laxemar during the site investigation and within this study. From these measurements it can be concluded that large differences between surface water, near surface groundwater and deep groundwater can be found in both Laxemar and Forsmark. The differences in radon concentrations between different water types are used in this study to detect interactions between surface water, near surface water and deep groundwater. From the radon measurements it can also be concluded that radon concentration in deep groundwater varies largely with depth. These variations with depth are probably caused by groundwater flow in conductive fracture zones in the bedrock. The focus of this study has been the radon concentration of near surface groundwater and the interaction between near surface groundwater and deep groundwater. Radon measurements have been done using the RAD-7 radon detector within this study. It could be concluded that RAD-7 is a good technique for radon measurements and also easy to use in field. The radon concentrations measured in near surface groundwater in Laxemar within this study were low and homogenous. The variation in radon concentration has been analyses and compared to other parameters. Since the hypothesis of this study has been that there are differences in radon concentrations between recharging and discharging groundwater, the most important parameter to consider is the recharge/discharge field classification of the wells. No correlation between the recharge/discharge classifications of wells and the radon concentrations were found. The lack of correlation between groundwater flow patterns and radon concentration means that it is not possible to detect flow patterns in near surface groundwater using radon as a tracer in the Laxemar area. The lack of correlation can be caused by the fact that there are just a few wells located in areas classified as recharge area. It can also be

  11. Metrology of the radon in air volume activity at the italian radon reference chamber

    Energy Technology Data Exchange (ETDEWEB)

    Sciocchetti, G.; Cotellessa, G.; Soldano, E.; Pagliari, M. [Istituto Nazionale di Metrologia delle Radiazioni Ionizzanti, ENEA Centro Ricerche Casaccia Roma (Italy)

    2006-07-01

    The approach of the Italian National Institute of Ionising Radiations (I.N.M.R.I.-ENEA) on radon metrology has been based on a complete and integrated system which can be used to calibrate the main types of {sup 222}Rn in air measuring instruments with international traceability. The Italian radon reference chamber is a research and calibration facility developed at the Casaccia Research Center in Roma. This facility has an inner volume of one m{sup 3}. The wall is a cylindrical stainless steel vessel coupled with an automated climate apparatus operated both at steady and dynamic conditions. The control and data acquisition equipment is based on Radotron system, developed to automate the multitasking management of different sets of radon monitors and climatic sensors. A novel approach for testing passive radon monitors with an alpha track detector exposure standard has been developed. It is based on the direct measurement of radon exposure with a set of passive integrating monitors based on the new ENEA piston radon exposure meter. This paper describes the methodological approach on radon metrology, the status-of-art of experimental apparatus and the standardization procedures. (authors)

  12. Radon in soil gas in Kosovo.

    Science.gov (United States)

    Kikaj, Dafina; Jeran, Zvonka; Bahtijari, Meleq; Stegnar, Peter

    2016-11-01

    An assessment of the radiological situation due to exposure to radon and gamma emitting radionuclides was conducted in southern Kosovo. This study deals with sources of radon in soil gas. A long-term study of radon concentrations in the soil gas was carried out using the SSNTDs (CR-39) at 21 different locations in the Sharr-Korabi zone. The detectors were exposed for an extended period of time, including at least three seasonal periods in a year and the sampling locations were chosen with respect to lithology. In order to determine the concentration of the natural radioactive elements (238)U and (226)Ra, as a precursor of (222)Rn, soil samples were collected from each measuring point from a depth of 0.8 m, and measured by gamma spectrometry. The levels (Bq kg(-1)) of naturally occurring radionuclides and levels (kBq m(-3)) of radon in soil gas obtained at a depth 0.8 m of soil were: 21-53 for (226)Ra, 22-160 for (238)U and 0.295-32 for (222)Rn. With respect to lithology, the highest value for (238)U and (226)Ra were found in limestone and the highest value for (222)Rn was found in metamorphic rocks. In addition, the results showed seasonal variations of the measured soil gas radon concentrations with maximum concentration in the spring months. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Indoor radon concentrations in Adana, Turkey.

    Science.gov (United States)

    Degerlier, M; Celebi, N

    2008-01-01

    The indoor radon concentration in Adana, Turkey was measured in living rooms of 52 houses during winter 2005 and 57 houses during summer 2005. Forty-four houses were selected for both winter and summer researches for estimating seasonal variations. Indoor radon concentrations were measured seasonally over hotter and colder 2 months over the whole year, using CR-39 passive nuclear track radon detectors. The radon concentrations were ranged from 15 to 97 Bq m(-3) on January-February 2005 for 60 d and from 5 to 70 Bq m(-3) on June-July 2005 for 60 d. The average summer concentration measured was 25.8 Bq m(-3) and the average winter concentration was 48.9 Bq m(-3) in 44 houses that observed seasonal variations. The differences between winter and summer periods were ranged from 1 to 77 Bq m(-3). The average value in both winter and summer periods is 37 Bq m(-3) in 44 houses that observed seasonal variations. This value is below the worldwide indoor radon concentration distribution of 46 Bq m(-3). The annual effective dose equivalent from (222)Rn was 0.9 mSv y(-1).

  14. Radon measurements with a PIN photodiode

    Energy Technology Data Exchange (ETDEWEB)

    Martin-Martin, A. [Laboratorio de Investigacion en Baja Radiactividad (LIBRA), Edificio I-D, Campus Miguel Delibes, Universidad de Valladolid, Valladolid 47011 (Spain) and Departamento de Fisica Teorica, Atomica y Optica, Universidad de Valladolid, Valladolid 47011 (Spain)]. E-mail: alonsomm@libra.uva.es; Gutierrez-Villanueva, J.L. [Laboratorio de Investigacion en Baja Radiactividad (LIBRA), Edificio I-D, Campus Miguel Delibes, Universidad de Valladolid, Valladolid 47011 (Spain); Departamento de Fisica Teorica, Atomica y Optica, Universidad de Valladolid, Valladolid 47011 (Spain); Munoz, J.M. [Departamento de Electricidad y Electronica, Universidad de Valladolid, Valladolid 47011 (Spain); Garcia-Talavera, M. [Laboratorio de Investigacion en Baja Radiactividad (LIBRA), Edificio I-D, Campus Miguel Delibes, Universidad de Valladolid, Valladolid 47011 (Spain); Departamento de Fisica Teorica, Atomica y Optica, Universidad de Valladolid, Valladolid 47011 (Spain); Adamiec, G. [Departamento de Fisica Teorica, Atomica y Optica, Universidad de Valladolid, Valladolid 47011 (Spain); Iniguez, M.P. [Departamento de Fisica Teorica, Atomica y Optica, Universidad de Valladolid, Valladolid 47011 (Spain)

    2006-10-15

    Silicon photodiodes are well suited to detect alphas coming from different sources as neutron reactions or radon daughters. In this work a radon in air detecting device, using an 18x18 mm silicon PIN photodiode is studied. The ionized airborne decay products formed during radon diffusion were focused by an accelerating high voltage to the PIN surface. Several conducting rings were disposed inside a cylindrical PVC vessel in such a way that they reproduced the electric field created by a punctual charge located behind PIN position. Alpha spectra coming from the neutral and ionized species deposited on the PIN surface, dominated by {sup 218}Po and {sup 214}Po progeny peaks, were recorded for varying conditions. Those include radon concentration from a Pylon source, high voltage (thousands of volts) and PIN inverse bias voltage. Different parameters such as temperature and humidity were also registered during data acquisition. The increase in the particle collection efficiency with respect to zero electric field was compared with the corresponding to a parallel plates configuration. A discussion is made in terms of the most appropriate voltages for different radon concentrations.

  15. Radon monitoring in Bologna (Italy) homes

    Energy Technology Data Exchange (ETDEWEB)

    Beozzo, M.; Bottazzi, E.; Degli Esposti, L.; Folesani, M.; Frassinetti, J.; Giacomelli, G.; Lembo, L.; Maltoni, G.; Massera, F.; Nicoli, F. (Bologna Univ. (Italy). Dept. di Fisica ENEA Centro Ricerche Energia, Bologna (Italy). Area Energia, Ambiente e Salute Istituto Nazionale di Fisica Nucleare, Bologna (Italy))

    1991-01-01

    This paper first reviews the origin and behaviour of naturally present radon gas which is thought to account for more than 50% of radiation doses derived from natural radioactivity and deemed responsible for increased risk of lung cancer. An analysis is made of the many factors influencing radon concentration levels in residential buildings. These include such factors as the presence of thermal bridges, type of ventilation and seasonal climatic variations. In addition, since the density of radon is eight times greater than that of air, concentration levels vary greatly according to room height above ground level. The paper then reports on a home radon monitoring campaign conducted by ENEA (Italian Commission for New Technologies, Energy and Environment) with the aim of providing sufficient and accurate information to public health authorities to enable them to set up and implement effective radiation protection policies. The monitoring was done with two methods to allow comparisons to be made. One was based on the use of a passive nuclear trace detector (CR-39), the other, based on the use of gas adsorption by activated carbon. Results with the two methods agreed well and only modest amounts of indoor radon were detected.

  16. Determination of Radon concentration in air using scinti-cell radon monitor

    Energy Technology Data Exchange (ETDEWEB)

    Koga, Taeko [Kinki Univ., Higashi-Osaka, Osaka (Japan). Atomic Energy Research Inst; Morishima, Hiroshige; Arai, Naoki; Shiraishi, Masatoshi; Shigehara, Makiko [Dept. of Nuclear Engineering, School of Science and Technology, Kinki Univ., Higashi-Osaka, Osaka(Japan); Mifune, Masaaki

    2000-01-01

    This study is carried out the methodology characteristics of {sup 222}Rn (Radon) concentration in air using the scinti-cell radon monitor (Trace environmental level detector (PMT-TEL) and Lucas cell (300 A), Pylon Co. and the determination of Radon concentrations in air on Misasa spa area in Tottori pref. and Ikeda spa in Shimane pref. on November 1995 and 1996. We have reached to the following results; (1) Minimum detectable Radon concentrations in air using the scinti-cell monitor are 7.6 Bq/m{sup 3} with 23% of accuracy (relative standard deviation) on the grab sampling of Lucas cell and 0.58 Bq/m{sup 3} with that of 17% on the continuous measuring of PMT-TEL, when it measured after 3.5 hours on the air sampling to determine the mean radon concentrations. The radon concentrations by the PMT-TEL method is about ten times more detectable than those by Lucas cell, that the former is the most sensitive among the detectors used on this research and is able to detect low level environmental concentrations, particularly outdoor and the later is valuable to use conveniently and portably on grab spot sampling of high level radon concentrations indoor air. (2) On the comparison of characteristics on spot monitoring of radon in air, a pico-rad method is suitable for the determination of the mean concentration for continuous sampling period by PMT-TEL and Lucas cell 300 A, and the variation of radon concentration can be observed on elapse of time course. (author)

  17. Assessment of the exposure to and dose from radon decay products in normally occupied homes

    Energy Technology Data Exchange (ETDEWEB)

    Hopke, P.K.; Jensen, B.; Li, C.S.; Montassier, N.; Wasiolek, P. [Clarkson Univ., Potsdam, NY (United States); Cavallo, A.J.; Gatsby, K.; Socolow, R.H. [Princeton Univ., NJ (United States); James, A.C. [Pacific Northwest Lab., Richland, WA (United States)

    1995-05-01

    The exposure to radon decay products has been assessed in seven homes in the northeastern United States and southeastern Canada. In two of the houses, there was a single individual who smoked cigarettes. There were a variety of heating and cooking appliances among these homes. These studies have provide 565 measurements of the activity-weighted size distributions in these houses. The median value for the equilibrium factor was 0.408 as compared with the previously employed value of 0.50. Using the recently adopted ICRP lung deposition and dosimetry model, the hourly equivalent lung dose rate per unit, radon exposure was estimated for each measured size distribution. Differences between houses with smokers present and absent were noted in the exposure conditions, but the resulting dose rate per unit of radon gas concentration was essentially the same for the two groups. Expressed in terms of ICRP`s unit of effective dose for members of the public, the mean dose rate conversion coefficient with respect to radon gas concentration found in this study was 3.8 nSv h{sup -} Bq{sup -} m{sup -3}. 26 refs., 8 figs., 3 tabs.

  18. The use of track registration detectors to reconstruct contemporary and historical airborne radon ( sup 2 sup 2 sup 2 Rn) and radon progeny concentrations for a radon-lung cancer epidemiologic study

    CERN Document Server

    Steck, D J

    1999-01-01

    Epidemiologic studies that investigate the relationship between radon and lung cancer require accurate estimates for the long-term average concentrations of radon progeny in dwellings. Year-to-year and home-to-home variations of radon in domestic environments pose serious difficulties for reconstructing an individual's long-term radon-related exposure. The use of contemporary radon gas concentrations as a surrogate for radon-related dose introduces additional uncertainty in dose assessment. Studies of glass exposed in radon chambers and in a home show that radon progeny deposited on, and implanted in, glass hold promise for reconstructing past radon concentrations in a variety of atmospheres. We developed an inexpensive track registration detector for the Iowa Radon Lung Cancer Study (IRLCS) that simultaneously measures contemporary airborne radon concentrations, surface deposited alpha activity density, and implanted sup 2 sup 1 sup 0 Po activity density. The implanted activity is used to reconstruct the cum...

  19. Mimicking lung dose by wire-mesh-capped deposition sensors: a new dosimetric strategy of radon (thoron) decay products.

    Science.gov (United States)

    Mishra, Rosaline; Mayya, Y S; Tommasino, L

    2012-06-01

    The dose conversion factor (DCF) of radon decay products may vary by a factor of ∼40 within the particle size range from ∼0.5 nm to tens of micrometres. An ideal detector should have a response, which closely mimics the strong dependence of the DCF on the particle size. This dependence is essentially determined by the different deposition rates of the particles with different sizes on the trachea-bronchial tree and alveoli. These deposition rates versus the particle sizes are similar to those of the decay products onto indoor surfaces. These conclusions are conducive to a new strategy for the dosimetry of radon (thoron) decay products, which is simply based on the detection of decay products deposited on flat surfaces. The dependence of the deposition rate of radon decay products onto flat surfaces versus the particle size is necessarily different from that of the deposition rate on the trachea-bronchial region, especially for particle sizes smaller than a few nanometres and larger than a few micrometres. In the present work, in order to obtain a better mimic between the measurement of flat-surface-deposited radon (thoron) decay products and the DCF at any given particle size, a suitable screen is placed against the surrogate surface, used for the assessment of the radon (thoron) decay products deposition.

  20. Residential radon in Finland: sources, variation, modelling and dose comparisons

    Energy Technology Data Exchange (ETDEWEB)

    Arvela, H.

    1995-09-01

    The study deals with sources of indoor radon in Finland, seasonal variations in radon concentration, the effect of house construction and ventilation and also with the radiation dose from indoor radon and terrestrial gamma radiation. The results are based on radon measurements in approximately 4000 dwellings and on air exchange measurements in 250 dwellings as well as on model calculations. The results confirm that convective soil air flow is by far the most important source of indoor radon in Finnish low-rise residential housing. (97 refs., 61 figs., 30 tabs.).

  1. Indoor radon and decay products: Concentrations, causes, and control strategies

    Energy Technology Data Exchange (ETDEWEB)

    Nero, A.V.; Gadgil, A.J.; Nazaroff, W.W.; Revzan, K.L.

    1990-11-01

    This report is another in the on going technical report series that addresses various aspects of the DOE Radon Research Program. It provides an overview of what is known about the behavior of radon and its decay products in the indoor environment and examines the manner in which several important classes of factors -- structural, geological, and meteorological -- affect indoor radon concentrations. Information on US indoor radon concentrations, currently available monitoring methods and novel radon control strategies are also explored. 238 refs., 22 figs., 9 tabs.

  2. Measurement of soil and indoor radon in Italy

    Energy Technology Data Exchange (ETDEWEB)

    Torri, G.; Azimi-Garakani, D.; Oppon, O.C.; Piermattei, S.; Susanna, A.F.; Seidel, J.-L.; Tommasino, L.; Ardanese, L. (ENEA, Rome (Italy))

    1988-01-01

    In spite of the fact that in the majority of cases the most important radon source is the soil and the rock beneath the house, no large scale survey of soil radon has ever been made in Italy. In this paper the results of a large scale survey of soil radon are presented from measurements made in hundreds of different sites in Latium and Campania. For several locations, results of measurements gathered for different years are described and up-dated. As a pilot project for indoor radon survey monthly variations of radon concentrations in typical houses have been investigated. (author).

  3. The European radon mapping project

    Energy Technology Data Exchange (ETDEWEB)

    Bossew, P., E-mail: pbossew@bfs.de [German Federal Office for Radiation Protection, Berlin (Germany); Tollefsen, T.; Gruber, V.; De Cort, M., E-mail: tore.tollefsen@jrc.ec.europa.eu, E-mail: valeria.gruber@gmail.com, E-mail: marc.de-cort@jrc.ec.europa.eu [Institute for Transuranium Elements, Ispra, VA (Italy). DG Joint Research Centre. European Commission

    2013-07-01

    There is almost unanimous agreement that indoor radon (Rn) represents a hazard to human health. Large-scale epidemiological studies gave evidence that Rn is the second-most important cause o flung cancer after smoking and that also relatively low Rn concentrations can be detrimental. This has increasingly led to attempts to limit Rn exposure through regulation, mainly building codes. The proposed Euratom Basic Safety Standards (BSS) require Member States to establish Rn action plans aimed at reducing Rn risk, and to set reference values for Imitating indoor Rn concentration. In 2006 the JRC started a project on mapping Rn at the European level, in addition and complementary lo (but not as a substitute for) national efforts. These maps are part of the European Atlas of Natural Radiation project. which is planned eventually 10 comprise geographical assessments of ali sources of exposure to natural radiation. Started first, a map of indoor Rn is now in an advanced phase, but still incomplete as national Rn surveys are ongoing in a number of European countries. A European map of geogenic Rn, conceptually and technically more complicated, was started in 2008. The main difficulty encountered is heterogeneity of survey designs, measurement and evaluation methods and database semantics and structures. An important part or the work on the Atlas is therefore to harmonize data and methods. We present the current state of the Rn maps and discuss some of the methodological challenges. (author)

  4. Turbidimetry for measurement of radon concentration

    Energy Technology Data Exchange (ETDEWEB)

    Wang Huanqiang [HuBei Provincial Academy of Medical Sciences, WuHan (China). Inst. of Radioactive Protection

    1993-12-31

    This paper describes a turbidimetric technique counting the tracks registered on CR-39 foils exposed to radon. Instead of eyeview through microscope, by using the differential spectrophotometer, strong correlation between the radon cumulative concentration and track turbidence was observed(r=0.999). Under the etching condition of 7.07 mol{center_dot}L{sup -1} KOH water solution at 80{sup o}C for 16 hr, linear regression showed that the ratio of track turbidence and cumulative concentration of radon exposure was 1.99 x 10{sup -1} turbidence (KBq m{sup -1}h){sup -1} and the determination limit was 36 KBq m{sup -3}h. The details of the experiments are represented in this paper. (Author).

  5. Radon barrier: Method of testing airtightness

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn; Buch-Hansen, Thomas Cornelius

    2017-01-01

    The test method NBI 167/02 Radon membrane: Test of airtightness can be used for determining the airtightness of a radon barrier as a system solution. The test determines the air infiltration through the radon barrier for a number of levels of air pressure differences. The airflow through versus...... the difference in air pressure over the barrier is measured. The air pressure difference is kept constant, at a number of manually controlled levels. At each pressure level, the difference is measured in a single point close to the point where the suction for lowering the air pressure is located. Improvements...... to the test method were suggested. A digital stirring and control system, and a method for determining the mean air pressure difference, as well as a method for testing barriers with a very low air infiltration, were provided. The digital stirring and control system ensured automatic control and measuring...

  6. Biological and therapeutical effects of Radon

    Energy Technology Data Exchange (ETDEWEB)

    Deetjen, P. [Institute of Physiologie and Balneologie, University of Innsbruck (Austria)

    1998-12-31

    In spas with a somewhat elevated Radon{sup 222} (Rn) activity (between 300 and 3000 Bq/l), the empirical medicine ended - in all parts of the world - with the same list of indications. It mainly includes the more painful rheumatic diseases such as deformation or degeneration of the joints and non bacterial inflammation of muscles, tendons or joints; Morbus Bechterew and other diseases of the vertebral column like spondylosis, spondylarthrosis or osteochondrosis. While informer times these effects were seldom documented in an objective manner, in recent years several prospective randomized double-blind studies proved the pain reducing efficacy of Radon therapy in patients with cervical pain syndromes, with chronic polyarthritis or with Morbus Bechterew. Studies in experimental animal models have accumulated remarkable data in organs, tissue and cultured cells that provide a rationale to explain the observed effects of Radon therapy in patients. (author)

  7. Radon concentration in houses over a closed Hungarian uranium mine

    Energy Technology Data Exchange (ETDEWEB)

    Somlai, Janos; Kovacs, Tibor [University of Veszprem Department of Radiochemistry, H-8200, Veszprem P.O.B.: 158 (Hungary); Gorjanacz, Zoran [Mecsek Ore Environmental Protection Co. H-7614, Pecs, P.O.B.: 121 (Hungary); Varhegyi, Andras [Mecsek-OEko Environmental Protection Co. H-7614, Pecs, P.O.B.: 121 (Hungary)

    2006-08-31

    High radon concentration (average 410 kBq m{sup -3}) has been measured in a tunnel of a uranium mine, located 15-55 m below the village of Kovagoszolos, Hungary. The mine was closed in 1997; the artificial ventilation of the tunnel was then terminated and recultivation works begun. In this paper, a study has been made as to whether the tunnel has an influence on the radon concentration of surface dwellings over the mining tunnel. At different distances from the surface projection of the mining tunnel, radon concentration, the gamma dose, radon exhalation and radon concentration of soil gas were measured. The average radon concentration in the dwellings was 483 Bq m{sup -3}. Significantly higher radon concentrations (average 667 Bq m{sup -3}) were measured in houses within +/-150 m from the surface projection of the mining tunnel +50 m, compared with the houses further than the 300-m belt (average 291 Bq m{sup -3}). The average radon concentration of the soil gas was 88.8 kBq m{sup -3}, the average radon exhalation was 71.4 Bq m{sup -2} s{sup -1} and higher values were measured over the passage as well. Frequent fissures crossing the passage and running up to the surface and the high radon concentration generated in the passage (average 410 kBq m{sup -3}) may influence the radon concentration of the houses over the mining tunnel. (author)

  8. Variation in residential radon levels in new Danish homes.

    Science.gov (United States)

    Bräuner, E V; Rasmussen, T V; Gunnarsen, L

    2013-08-01

    Radon-222 gas arises from the radioactive decay of radium-226 and has a half-life of 3.8 days. This gas percolates up through soil into buildings, and if it is not evacuated, there can be much higher exposure levels indoors than outdoors, which is where human exposure occurs. Radon exposure is classified as a human carcinogen, and new Danish homes must be constructed to ensure indoor radon levels below 100 Bq/m(3). Our purpose was to assess how well 200 newly constructed single detached homes perform according to building regulations pertaining to radon and identify the association between indoor radon in these homes and municipality, home age, floor area, floor level, basement, and outer wall and roof construction. Median (5-95 percentile) indoor radon levels were 36.8 (9.0-118) Bq/m(3) , but indoor radon exceeded 100 Bq/m(3) in 14 of these new homes. The investigated variables explained nine percent of the variation in indoor radon levels, and although associations were positive, none of these were statistically significant. In this study, radon levels were generally low, but we found that 14 (7%) of the 200 new homes had indoor radon levels over 100 Bq/m(3). More work is needed to determine the determinants of indoor radon.

  9. DLMS Voice Data Entry.

    Science.gov (United States)

    1980-06-01

    between operator and computer displayed on ADM-3A 20c A-I Possible Hardware Configuration for a Multistation Cartographic VDES ...this program a Voice Recognition System (VRS) which can be used to explore the use of voice data entry ( VDE ) in the DIMS or other cartographic data...Multi-Station Cartographic Voice Data Entry System An engineering development model voice data entry system ( VDES ) could be most efficiently

  10. Calibration system for measuring the radon flux density.

    Science.gov (United States)

    Onishchenko, A; Zhukovsky, M; Bastrikov, V

    2015-06-01

    The measurement of radon flux from soil surface is the useful tool for the assessment of radon-prone areas and monitoring of radon releases from uranium mining and milling residues. The accumulation chambers with hollow headspace and chambers with activated charcoal are the most used devices for these purposes. Systematic errors of the measurements strongly depend on the geometry of the chamber and diffusion coefficient of the radon in soil. The calibration system for the attestation of devices for radon flux measurements was constructed. The calibration measurements of accumulation chambers and chambers with activated charcoal were conducted. The good agreement between the results of 2D modelling of radon flux and measurements results was observed. It was demonstrated that reliable measurements of radon flux can be obtained by chambers with activated charcoal (equivalent volume ~75 l) or by accumulation chambers with hollow headspace of ~7-10 l and volume/surface ratio (height) of >15 cm.

  11. Theoretical aspects of the design of a passive radon dosemeter.

    Science.gov (United States)

    Wilkinson, P; Saunders, B J

    1985-10-01

    Some mathematical aspects of the development and design of a passive radon dosemeter are considered. In particular, a mathematical model is presented that is concerned with the gaseous diffusion of radon into a confined region bounded by a plastic material of known diffusion coefficient. The relationship between the time-integrated radon concentrations, inside and outside a sealed plastic container are derived. Estimates of the exposure of people to radon can be made using the time integrated radon concentration inside a calibrated container containing a CR-39 etched-track device. As a consequence of the analysis, it is possible to design a passive radon dosemeter that will be accurate, resistant to moisture and whose response will be independent of rapid variations in radon concentration. The possibility of using a container of this type for the measurement of diffusion coefficients is discussed.

  12. The Radon Monitoring System in Daya Bay Reactor Neutrino Experiment

    CERN Document Server

    Chu, M C; Kwok, M W; Kwok, T; Leung, J K C; Leung, K Y; Lin, Y C; Luk, K B; Pun, C S J

    2016-01-01

    We developed a highly sensitive, reliable and portable automatic system (H$^{3}$) to monitor the radon concentration of the underground experimental halls of the Daya Bay Reactor Neutrino Experiment. H$^{3}$ is able to measure radon concentration with a statistical error less than 10\\% in a 1-hour measurement of dehumidified air (R.H. 5\\% at 25$^{\\circ}$C) with radon concentration as low as 50 Bq/m$^{3}$. This is achieved by using a large radon progeny collection chamber, semiconductor $\\alpha$-particle detector with high energy resolution, improved electronics and software. The integrated radon monitoring system is highly customizable to operate in different run modes at scheduled times and can be controlled remotely to sample radon in ambient air or in water from the water pools where the antineutrino detectors are being housed. The radon monitoring system has been running in the three experimental halls of the Daya Bay Reactor Neutrino Experiment since November 2013.

  13. Radon release from granites in south-west England

    CERN Document Server

    Poole, J

    2001-01-01

    accessory minerals. The enhancement of surface area was attributed to the alteration of feldspar to sericite. This has implications for the release of radon. It is thought that the large surface area provides a sink for the adsorption of radon, retaining it in the rock structure. This radon retention explains the paradoxical decline in radon release at small particle size/large specific surface area. Various mechanisms for radon emanation are discussed with reference to the Cornubian granites. It is shown that, based on the measured specific surface areas, inter-crystalline diffusion is a slow process and not a significant contributor to overall radon release (0.01%). Approximately 1% of the total radon produced can be attributed to direct recoil processes, based on the calculated recoil ranges (36 nm). The remainder was attributed to diffusion processes through crystal imperfections and dislocations. The microscopic scale model developed here is extended to the macroscopic scale through examination of the la...

  14. Indoor radon survey in dwellings of some regions in Yemen

    Energy Technology Data Exchange (ETDEWEB)

    Khayrat, A.H. E-mail: akhayrat@yahoo.com; Al-Jarallah, M.I.; Fazal-ur-Rehman, X.; Abu-Jarad, F

    2003-06-01

    Indoor radon survey in a total of 241 dwellings, distributed in some regions of Yemen was performed, using CR-39 based radon monitors. The objective of this radon survey is to get representative indoor radon data of three regions, namely Dhamar, Taiz and Hodeidah, situated at different altitudes above sea level. The radon concentrations varied from 3 to 270 Bq m{sup -3} with an average of 42 Bq m{sup -3}. It was found that the average radon concentration in the surveyed areas increases with altitudes. The highest average radon concentration of 59 Bq m{sup -3} was found in Dhamar city while the lowest average concentration of 8 Bq m{sup -3} was found in Hodeidah city.

  15. Entry at Venus

    Science.gov (United States)

    Venkatapathy, Ethiraj; Smith, Brandon

    2016-01-01

    This is lecture to be given at the IPPW 2016, as part of the 2 day course on Short Course on Destination Venus: Science, Technology and Mission Architectures. The attached presentation material is intended to be introduction to entry aspects of Venus in-situ robotic missions. The presentation introduces the audience to the aerodynamic and aerothermodynamic aspects as well as the loads, both aero and thermal, generated during entry. The course touches upon the system design aspects such as TPS design and both high and low ballistic coefficient entry system concepts that allow the science payload to be protected from the extreme entry environment and yet meet the mission objectives.

  16. Uncertainties of retrospective radon concentration measurements by multilayer surface trap detector

    Energy Technology Data Exchange (ETDEWEB)

    Bastrikov, V.; Kruzhalov, A. [Ural State Technical Univ., Yekaterinburg (Russian Federation); Zhukovsky, M. [Institute of Industrial Ecology UB RAS, Yekaterinburg (Russian Federation)

    2006-07-01

    The detector for retrospective radon exposure measurements is developed. The detector consists of the multilayer package of solid-state nuclear track detectors LR-115 type. Nitrocellulose films works both as {alpha}-particle detector and as absorber decreasing the energy of {alpha}-particles. The uncertainties of implanted {sup 210}Pb measurements by two- and three-layer detectors are assessed in dependence on surface {sup 210}Po activity and gross background activity of the glass. The generalized compartment behavior model of radon decay products in the room atmosphere was developed and verified. It is shown that the most influencing parameters on the value of conversion coefficient from {sup 210}Po surface activity to average radon concentration are aerosol particles concentration, deposition velocity of unattached {sup 218}Po and air exchange rate. It is demonstrated that with the use of additional information on surface to volume room ratio, air exchange rate and aerosol particles concentration the systematic bias of conversion coefficient between surface activity of {sup 210}Po and average radon concentration can be decreased up to 30 %. (N.C.)

  17. Radon-222 signatures of natural ventilation regimes in an underground quarry.

    Science.gov (United States)

    Perrier, Frédéric; Richon, Patrick; Crouzeix, Catherine; Morat, Pierre; Le Mouël, Jean Louis

    2004-01-01

    Radon-222 activity concentration has been monitored since 1999 in an underground limestone quarry located in Vincennes, near Paris, France. It is homogeneous in summer, with an average value of 1700 Bq m(-3), and varies from 730 to 1450 Bq m(-3) in winter, indicating natural ventilation with a rate ranging from 0.5 to 2.4 x 10(-6) s(-1) (0.04-0.22 day(-1)). This hypothesis is supported by measurements in the vertical access pit where, in winter, a turbulent air current produces a stable radon profile, smoothly decreasing from 700 Bq m(-3) at 20 m depth to 300 Bq m(-3) at surface. In summer, a thermal stratification is maintained in the pit, but the radon-222 concentration jumps repeatedly between 100 and 2000 Bq m(-3). These jumps are due to atmospheric pressure pumping, which induces ventilation in the quarry at a rate of about 0.1 x 10(-6) s(-1) (0.009 day(-1)). Radon-222 monitoring thus provides a dynamical characterisation of ventilation regimes, which is important for the assessment of the long-term evolution of underground systems.

  18. Seasonal variations of natural ventilation and radon-222 exhalation in a slightly rising dead-end tunnel.

    Science.gov (United States)

    Perrier, Frédéric; Richon, Patrick; Gautam, Umesh; Tiwari, Dilli Ram; Shrestha, Prithvi; Sapkota, Soma Nath

    2007-01-01

    The concentration activity of radon-222 has been monitored, with some interruptions, from 1997 to 2005 in the end section of a slightly rising, dead-end, 38-m long tunnel located in the Phulchoki hill, near Kathmandu, Nepal. While a high concentration varying from 6 x 10(3) Bq m(-3) to 10 x 10(3) Bq m(-3) is observed from May to September (rainy summer season), the concentration remains at a low level of about 200 Bq m(-3) from October to March (dry winter season). This reduction of radon concentration is associated with natural ventilation of the tunnel, which, contrary to expectations for a rising tunnel, takes place mainly from October to March when the outside air temperature drops below the average tunnel temperature. This interpretation is supported by temperature measurements in the atmosphere of the tunnel, a few meters away from the entrance. The temporal variations of the diurnal amplitude of this temperature indeed follow the ventilation rate deduced from the radon measurements. In the absence of significant ventilation (summer season), the radon exhalation flux at the rock surface into the tunnel atmosphere can be inferred; it exhibits a yearly variation with additional transient reductions associated with heavy rainfall, likely to be due to water infiltration. No effect of atmospheric pressure variations on the radon concentration is observed in this tunnel. This experiment illustrates how small differences in the location and geometry of a tunnel can lead to vastly different behaviours of the radon concentration versus time. This observation has consequences for the estimation of the dose rate and the practicability of radon monitoring for tectonic purposes in underground environments.

  19. Recent developments in radon metrology: new aspects in the calibration of radon, thoron and progeny devices.

    Science.gov (United States)

    Röttger, A; Honig, A

    2011-05-01

    Due to the importance of reliable measurements of radon activity concentration, one of the past developments in metrology was applied to the field of radon, thus meeting two basic needs: (1) the harmonisation of metrology within the scope of the mutual recognition arrangement, an arrangement drawn up by the International Committee of Weights and Measures for the mutual recognition of national standards and of calibrations issued by national metrology institutes and (2) the increased demands of the European Atomic Energy Community (EURATOM) directive, transferred into national radiation protection regulations with regard to natural radioactivity and its quality-assured measurements. This paper gives an overview of typical technical procedures in the radon-measuring technique group of PTB, covering all aspects of reference atmospheres (primary standards) for radon, thoron and their respective progenies.

  20. Occupational exposure to radon in Australian Tourist Caves an Australian-wide study of radon levels

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, S.B.; Langroo, R.; Peggie, J.R. [Australian Radiation Laboratory. Yallambie, VIC (Australia); Lyons, R.G. [University of Auckland, Auckland, (New Zealand). Department of Physics; James, J.M. [University of Sydney, Sydney, NSW (Australia). Department of Chemisty

    1996-02-01

    The study described in this report sets out to determine which Australian show caves have long- term radon levels in excess of the proposed action level of 1000 Bq m{sup -3}. The collaborative study between the Australian Radiation Laboratory (ARL), the University of Sydney and the University of Auckland, was carried out with the support of a Research Grant from Worksafe Australia. The aims of this study were to measure radon levels for each season over a period of one year, at representative sites in all developed show caves around Australia, to determine yearly average radon levels for each cave tour, based on these site measurements, to estimate the radiation doses to the tour guides employed in these caves, and to identify caves with radon concentrations in excess of the action level. (authors) 7 refs., 10 tabs., 2 figs.

  1. From the similarities between neutrons and radon to advanced radon-detection and improved cold fusion neutron-measurements

    Science.gov (United States)

    Tommasino, L.; Espinosa, G.

    2014-07-01

    Neutrons and radon are both ubiquitous in the earth's crust. The neutrons of terrestrial origin are strongly related to radon since they originate mainly from the interactions between the alpha particles from the decays of radioactive-gas (namely Radon and Thoron) and the light nuclei. Since the early studies in the field of neutrons, the radon gas was used to produce neutrons by (α, n) reactions in beryllium. Another important similarity between radon and neutrons is that they can be detected only through the radiations produced respectively by decays or by nuclear reactions. These charged particles from the two distinct nuclear processes are often the same (namely alpha-particles). A typical neutron detector is based on a radiator facing a alpha-particle detector, such as in the case of a neutron film badge. Based on the similarity between neutrons and radon, a film badge for radon has been recently proposed. The radon film badge, in addition to be similar, may be even identical to the neutron film badge. For these reasons, neutron measurements can be easily affected by the presence of unpredictable large radon concentration. In several cold fusion experiments, the CR-39 plastic films (typically used in radon and neutron film-badges), have been the detectors of choice for measuring neutrons. In this paper, attempts will be made to prove that most of these neutron-measurements might have been affected by the presence of large radon concentrations.

  2. Novel determination of radon-222 velocity in deep subsurface rocks and the feasibility to using radon as an earthquake precursor

    Science.gov (United States)

    Zafrir, Hovav; Ben Horin, Yochai; Malik, Uri; Chemo, Chaim; Zalevsky, Zeev

    2016-09-01

    A novel technique utilizing simultaneous radon monitoring by gamma and alpha detectors to differentiate between the radon climatic driving forces and others has been improved and used for deep subsurface investigation. Detailed long-term monitoring served as a proxy for studying radon movement within the shallow and deep subsurface, as well as for analyzing the effect of various parameters of the radon transport pattern. The main achievements of the investigation are (a) determination, for the first time, of the radon movement velocity within rock layers at depths of several tens of meters, namely, 25 m/h on average; (b) distinguishing between the diurnal periodical effect of the ambient temperature and the semidiurnal effect of the ambient pressure on the radon temporal spectrum; and (c) identification of a radon random preseismic anomaly preceding the Nuweiba, M 5.5 earthquake of 27 June 2015 that occurred within Dead Sea Fault Zone.

  3. Study of the atmospheric chemistry of radon progeny in laboratory and real indoor atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Hopke, P.K.

    1992-07-01

    This report describes studies on the chemical and physical behavior of the [sup 218]Po atom immediately following its formation by the alpha decay of radon. Because small changes in size for activity in the sub-10 nm size range result in large changes in the delivered dose per unit exposure, this behavior must be understood if the exposure to radon progeny and its dose to the cells in the respiratory tract are to be fully assessed. The specific tasks of the controlled laboratory studies are to determine the formation rates of [center dot]OH radicals formed by the radiolysis of air following radon decay, to examine the formation of particles by the radiolytic oxidation of substances like SO[sub 2] ethylene, and H[sub 2]S to lower vapor pressure compounds and determine the role of gas phase additives such as H[sub 2]O and NH[sub 3] in determining the particle size, to measure the rate of ion-induced nucleation using a thermal diffusion cloud chamber, and to measure the neutralization rate of [sup 218]Po[sub x][sup +] in O[sub 2] at low radon concentrations. Tasks of the exposure studies in occupied indoor spaces are to initiate measurements of the activity size distributions in actual homes with occupants present so that the variability of the indoor activity size distributions can be assessed with respect to indoor aerosol sources and general lifestyle variations of the occupants, to initiate a prospective study of the utility of measurement of deposited [sup 210]Pb embedded in glass surfaces as a measure of the long-term, integrated exposure of the population to radon, and to develop the methodology to determine the hygroscopicity of the indoor aerosol so that the changes in deposition efficiency of the radioactive indoor aerosol with hygroscopic growth in the respiratory tract can be assessed.

  4. Double entry bookkeeping vs single entry bookkeeping

    Directory of Open Access Journals (Sweden)

    Ileana Andreica

    2016-11-01

    Full Text Available Abstract: A financial management eficiently begin, primarily, with an accounting record kept in the best possible conditions, this being conditioned on the adoption of a uniform forms, rational, clear and simple accounting. Throughout history, there have been known two forms of accounting: the simple and double entry. Romanian society after 1990 underwent a substantial change in social structure, the sector on which put a great emphasis being private, that of small manufacturers, peddler, freelance, who work independently and authorized or as associative form (family enterprises, various associations (owners, tenants, etc., liberal professions, etc.. They are obliged to keep a simple bookkeeping, because they have no juridical personality. Companies with legal personality are required to keep double entry bookkeeping; therefore, knowledge and border demarcation between the two forms of organisation of accounting is an essential. The material used for this work is mainly represented by the financial and accounting documents, by the analysis of the economic, by legislative updated sources, and as the method was used the comparison method, using hypothetical data, in case of an authorized individual and a legal entity. Based on the chosen material, an authorized individual (who perform single entry accounting system and a juridical entity (who perform double entry accounting system were selected comparative case studies, using hypothetical data, were analysed advantages and disadvantages in term of fiscal, if using two accounting systems, then were highlighted some conclusion that result.

  5. RADON REDUCTION IN A CRAWL SPACE HOUSE

    Science.gov (United States)

    Radon, a naturally occurring radioactive gas, is drawn from the soil into a house when low air pressure exists in the house. This is a commonplace environmental hazard in the United States, Canada, and northern Europe. The U.S. Environmental Protection Agency (EPA) is developing ...

  6. Protect Your Home and Family from Radon

    Science.gov (United States)

    DALLAS - (Jan. 11, 2016) Radon-the silent killer-is responsible for about 21,000 lung cancer deaths every year. The U.S. Environmental Protection Agency encourages Americans around the country to test their homes for this naturally occurring radioac

  7. Novel Radon Sub-Slab Suctioning System

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn

    2013-01-01

    insulation layer located on top of a capillary-breaking layer) mounted in turn on stable ground. The new system of prefabricated lightweight elements consists of the capillary-breaking layer and a pressure-reduction zone which is working as the radonsuction zone. The radon-suctioning layer is formed from...

  8. RADON REDUCTION IN A CRAWL SPACE HOUSE

    Science.gov (United States)

    Radon, a naturally occurring radioactive gas, is drawn from the soil into a house when low air pressure exists in the house. This is a commonplace environmental hazard in the United States, Canada, and northern Europe. The U.S. Environmental Protection Agency (EPA) is developing ...

  9. Status of the European indoor radon map

    Energy Technology Data Exchange (ETDEWEB)

    Bossew, P.; Tollefsen, T.; De Cort, M. [European Commission, Joint Reserch Centre (JRC) (Italy). Inst. of Environment and Sustainability

    2009-07-01

    Since 2006 a harmonized European indoor radon map is under production. At the moment (June 2009) 15 European countries have contributed data, further input is expected. This article informs about historical and legal backgrounds of the project, outlines the technical procedure and presents some preliminary results. (orig.)

  10. Radon Transform for Finite Dimensional Hilbert Space

    CERN Document Server

    Revzen, M

    2012-01-01

    Finite dimensional, d, Hilbert space operators are underpinned with ?nite geometry. The analysis emphasizes a central role for mutual unbiased bases (MUB) states projectors. Interrelation among the Hilbert space operators revealed via their (?nite) dual a?ne plane geometry (DAPG) underpin- ning is studied and utilized in formulating a ?nite dimensional Radon transformation. The ?nite geometry required for our study is outlines.

  11. Low-cost Radon Reduction Pilot Study

    Energy Technology Data Exchange (ETDEWEB)

    Rose, William B. [Univ. of Illinois, Urbana-Champaign, IL (United States); Francisco, Paul W. [Univ. of Illinois, Urbana-Champaign, IL (United States); Merrin, Zachary [Univ. of Illinois, Urbana-Champaign, IL (United States)

    2015-09-01

    The U.S. Department of Energy's Building America research team Partnership for Advanced Residential Retrofits conducted a primary scoping study on the impact of air sealing between the foundation and the living space on radon transport reduction across the foundation and living space floor assembly. Fifteen homes in the Champaign, Illinois, area participated in the study. These homes were instrumented for hourly continuous radon measurements and simultaneous temperature and humidity measurements. Blower door and zone pressure diagnostics were conducted at each house. The treatments consisted of using air-sealing foams at the underside of the floor that separated the living space from the foundation and providing duct sealing on the ductwork that is situated in the foundation area. The hypothesis was that air sealing the floor system that separated the foundation from the living space should better isolate the living space from the foundation; this isolation should lead to less radon entering the living space from the foundation. If the hypothesis had been proven, retrofit energy-efficiency programs may have chosen to adopt these isolation methods for enhanced radon protection to the living space.

  12. Radon-222 exhalation from Danish building materials: H + H Industri A/S results

    DEFF Research Database (Denmark)

    Andersen, Claus Erik

    1999-01-01

    (and partly remove) the bias of the method relative to an ideal measurement of the free exhalation rate. Experimental results obtained with the method are found to be in agreement with the results of anopen-chamber method (which is subject to different sources of error). Results of radon-222 exhalation......This report describes a closed-chamber method for laboratory measurements of the rate at which radon-222 degasses (exhales) from small building material samples. The chamber is 55 L in volume and the main sample geometry is a slab of dimensions 5x30x30cm"3 . Numerical modelling is used to assess...... rate measurements for 10 samples of Danish building materials are reported. Samples include ordinary concrete, lightweight aggregate concrete,autoclaved aerated concrete, bricks, and gypsum board. The maximum mass-specific exhalation rate is about 20 m Bq h"-"1 kg "-"1. Under consideration...

  13. Fast Computation of Radon-Wigner Transform & Radon-Ambiguity Transform and its Application in SAR/GMTI%Radon-Wigner和Radon-Ambiguity快速算法及其在SAR/GMTI中的应用

    Institute of Scientific and Technical Information of China (English)

    盛蔚; 毛士艺

    2003-01-01

    本文针对Radon-Wigner Transform、Radon-Ambiguity Transform检测线性调频信号中的若干问题进行研究.Radon-Wigner Transform和Radon-Ambiguity Transform保留了Wigner-Ville分布和模糊函数时频聚集性高的优点,克服了它们在检测多分量信号时存在严重的交叉项问题.本文首先分析并证明了Wigner-Ville分布和模糊函数中交叉项与自主项的不同,指出该"不同"即是Radon-Wigner Transform和Radon-Ambiguity Transform能够抑制交叉项的根本原因;其次,本文证明了Radon-Wigner Transform的一种快速计算方法,并且以分数阶傅利叶变换为桥梁,给出了Radon-Ambiguity Transform的快速计算方法;最后,本文将Radon-Wigner Transform和Radon-Ambiguitiy Transform快速计算方法用于合成孔径雷达对地面运动目标的检测和参数估计中,取得了预期的较好的检测结果.

  14. Systematic effects in radon mitigation by sump/pump remediation

    Energy Technology Data Exchange (ETDEWEB)

    Groves-Kirkby, C.J.; Denman, A.R. [Northampton General Hospital, Medical Physics Dept. (United Kingdom); Groves-Kirkby, C.J.; Woolridge, A.C. [Northampton Univ., School of Health (United Kingdom); Woolridge, A.C.; Phillips, P.S.; Crockett, R.G.M. [Northampton Univ., School of Applied Sciences (United Kingdom); Tornberg, R. [Radon Centres Ltd., Grove Farm, Moulton, Northampton (United Kingdom)

    2006-07-01

    Sump/Pump remediation is widely used in the United Kingdom to mitigate indoor radon gas levels in residential properties. To quantify the effectiveness of this technology, a study was made of radon concentration data from a set of 173 homes situated in radon Affected Areas in and around Northamptonshire, U.K., re-mediated using conventional sump/pump tology. This approach is characterised by a high incidence of satisfactory mitigation outcomes, with more than 75% of the sample exhibiting mitigation factors (defined as the ratio of radon concentrations following and prior to remediation) of 0.2 or better. There is evidence of a systematic trend, where houses with higher initial radon concentrations have higher mitigation factors, suggesting that the total indoor radon concentration within a dwelling can be represented by two components, one susceptible to mitigation by sump/pump remediation, the other remaining essentially unaffected by these remediation strategies. The first component can be identified with ground-radon emanating from the subsoil and bedrock geologies, percolating through the foundations of the dwelling as a component of the soil-gas, potentially capable of being attenuated by sump/pump or radon-barrier remediation. The second contribution is attributed to radon emanating from materials used in the construction of the dwelling, principally concrete and gypsum plaster-board, with a further small contribution from the natural background level, and is essentially unaffected by ground-level remediation strategies. Modelling of such a two-component radon dependency using realistic ground-radon attenuation factors in conjunction with typical structural-radon levels yields behaviour in good agreement with the observed inverse-power dependence of mitigation factor on initial radon concentration. (authors)

  15. Soil gas radon mapping of Muzaffarabad city, Pakistan

    Directory of Open Access Journals (Sweden)

    Tareen Aleem Dad Khan

    2016-01-01

    Full Text Available Soil-based radon investigations are of value in correlating radon production and its transportation into buildings through the processes of convection and diffusion. Such studies can help in identifying land areas that pose special concerns. We present preliminary results of soil radon gas measurements at 60 different locations in an attempt to map out the geohazard zone of the city of Muzaffarabad. The seismic geohazard microzonation for the area includes five microzones based on different hazard parameters: a very high hazard zone, a high hazard zone, a moderate hazard zone, a low hazard zone, and a safe zone. Measurements were taken with an active radon monitoring system at the depths of 30, 40, 50, and 60 cm below the ground surface. The results obtained were explained by the lithology of the area. Average soil radon gas concentrations were correlated with the depth from the ground surface and indoor radon values for the study area. No significant correlation was found between soil radon gas and meteorological parameters, however soil radon gas increases as the depth from the surface of the ground grows. The results showed a linear relation between soil radon concentrations with depth from ground surface (R2 = 0.9577. The minimum soil radon concentration (68.5 Bq/m3 was found at a depth of 30 cm in the very high hazard zone, the maximum value (53.300 Bq/m3 at a depth of 60 cm in the seismically safe zone. Measured soil gas radon concentrations at depths of 30, 40, 50, and 60 cm were mapped for high, moderate, and low radon concentrations. Elevated soil radon gas concentrations were found in the safe zone, otherwise considered to be suitable for any type of construction.

  16. MEASUREMENT OF RADON CONCENTRATION IN DWELLINGS IN THE REGION OF HIGHEST LUNG CANCER INCIDENCE IN INDIA.

    Science.gov (United States)

    Zoliana, B; Rohmingliana, P C; Sahoo, B K; Mishra, R; Mayya, Y S

    2016-10-01

    Indoor radon/thoron concentration has been measured in Aizawl district, Mizoram, India, which has the highest lung cancer incidence rates among males and females in India. Simultaneously, radon flux emanated from the surrounding soil of the dwellings was observed in selected places. The annual average value of concentration of radon(thoron) of Aizawl district is 48.8(22.65) Bq m(-3) with a geometric standard deviation of 1.25(1.58). Measured radon flux from the soil has an average value of 22.6 mBq m(-2) s(-1) These results were found to be much below the harmful effect or action level as indicated by the World Health Organisation. On the other hand, food habit and high-level consumption of tobacco and its products in the district have been found to increase the risk of lung cancer incidence in the district. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Radon in water samples around Ningyo Toge area

    Energy Technology Data Exchange (ETDEWEB)

    Furuta, Sadaaki [Power Reactor and Nuclear Fuel Development Corp., Kamisaibara, Okayama (Japan). Ningyo Toge Works

    1997-02-01

    Radon concentrations of river water and drinking water were surveyed. Water samples were collected from the region around Ningyo-Toge Works which were positioned on a granitic layer having uranium deposit. Each sample was taken using a separating funnel and the radioactivity was counted by liquid scintillation counter (ALOKA, LB-2). Since there were old working places of mine in the region, mine drainages from them were also analyzed. The radon concentration of drinking water from the region ranged from 0.1 to 230 Bq/l. The samples with a higher activity than 100 Bq/l were water from springs or wells and the area of the highest Rn concentration was on a typical granitic layer, suggesting some geographic effects on Rn concentration. Some samples of drinking water had slightly higher levels of Rn, probably due to the utilization of underflow as its source. The mean concentration of Rn became higher in the order; river water, drinking water, mine drainage in the region. In addition, a negative correlation between Rn concentration of water and the river flow rate was observed in this region. (M.N.)

  18. Measurement of simulated lung deposition of radon daughters

    Energy Technology Data Exchange (ETDEWEB)

    Jonassen, N.; Jensen, B. (Technical Univ. of Denmark, Lyngby (Denmark). Lab. of Applied Physics 3)

    1992-01-01

    A measurement system for the lung deposition of radon daughters based on respiratory models was suggested by Hopke et al. By choosing suitable mesh size and flow velocities it is possible to design a multiple-wire screen sampler simulating deposition in the respiratory tract of aerosols over the size range 0.5-1000 nm. This paper describes a preliminary investigation where simulated deposition in the nasal tract and in the bronchii (for mouth breathing as well as nasal breathing) is determined. The measurements were performed in atmospheres where the normalised exposure rate (equilibrium factor) was varied by changing the aerosol loading of the air as well as by enhanced electrostatic plateout. The general results of the measurements are that the energy deposited in the nose with nasal breathing and in the bronchii with mouth breathing varies as the calculated dose while the energy deposited in the bronchii with nasal breathing follows the exposure. It is also demonstrated that the energy deposited for a fixed value of the radon concentration may vary by a factor of 2-7 depending on the treatment of the air. (author).

  19. Mapping geogenic radon potential by regression kriging.

    Science.gov (United States)

    Pásztor, László; Szabó, Katalin Zsuzsanna; Szatmári, Gábor; Laborczi, Annamária; Horváth, Ákos

    2016-02-15

    Radon ((222)Rn) gas is produced in the radioactive decay chain of uranium ((238)U) which is an element that is naturally present in soils. Radon is transported mainly by diffusion and convection mechanisms through the soil depending mainly on the physical and meteorological parameters of the soil and can enter and accumulate in buildings. Health risks originating from indoor radon concentration can be attributed to natural factors and is characterized by geogenic radon potential (GRP). Identification of areas with high health risks require spatial modeling, that is, mapping of radon risk. In addition to geology and meteorology, physical soil properties play a significant role in the determination of GRP. In order to compile a reliable GRP map for a model area in Central-Hungary, spatial auxiliary information representing GRP forming environmental factors were taken into account to support the spatial inference of the locally measured GRP values. Since the number of measured sites was limited, efficient spatial prediction methodologies were searched for to construct a reliable map for a larger area. Regression kriging (RK) was applied for the interpolation using spatially exhaustive auxiliary data on soil, geology, topography, land use and climate. RK divides the spatial inference into two parts. Firstly, the deterministic component of the target variable is determined by a regression model. The residuals of the multiple linear regression analysis represent the spatially varying but dependent stochastic component, which are interpolated by kriging. The final map is the sum of the two component predictions. Overall accuracy of the map was tested by Leave-One-Out Cross-Validation. Furthermore the spatial reliability of the resultant map is also estimated by the calculation of the 90% prediction interval of the local prediction values. The applicability of the applied method as well as that of the map is discussed briefly. Copyright © 2015 Elsevier B.V. All rights

  20. Mathematical model for radon diffusion in earthen materials

    Energy Technology Data Exchange (ETDEWEB)

    Nielson, K.K.; Rogers, V.C.

    1982-10-01

    Radon migration in porous, earthen materials is characterized by diffusion in both the air and water components of the system as well as by the interaction of the radon between the air and water. The size distribution and configuration of the pore spaces and their moisture distributions are key parameters in determining the radon diffusion coefficient for the bulk material. A mathematical model is developed and presented for calculating radon diffusion coefficients solely from the moisture content and pore size distribution of a soil, reducing the need for resorting to radon diffusion measurements. The resulting diffusion coefficients increase with the median pore diameter of the soil and decrease with increasing widths of the pore size distribution. The calculated diffusion coefficients are suitable for use in simple homogeneous-medium diffusion expressions for predicting radon transport and compare well with measured diffusion coefficients and with empirical diffusion coefficient correlations.

  1. Ambient Radon-222 Monitoring in Amargosa Valley, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    L.H. Karr; J.J. Tappen; D. Shafer; K.J. Gray

    2008-06-05

    As part of a program to characterize and baseline selected environmental parameters in the region around the proposed repository at Yucca Mountain, Nevada, ambient radon-222 monitoring was conducted in the rural community of Amargosa Valley, the community closest to the proposed repository site. Passive integrating radon monitors and a continuous radon monitoring instrument were deployed adjacent to the Community Environmental Monitoring Program (CEMP) (http://www.cemp.dri.edu/index.html) station located in the Amargosa Valley Community Center near the library. The CEMP station provided real-time ambient gamma exposure and meteorological data used to correct the integrated radon measurements as well as verify meteorological data collected by the continuous radon monitoring instrument. Additionally, different types of environmental enclosures that housed the monitors and instrument were used to determine if particular designs influenced the ambient radon measurements.

  2. A search profile for dwellings with elevated radon levels

    DEFF Research Database (Denmark)

    Damkjær, A.; Andersen, C.E.; Majborn, B.;

    1996-01-01

    basement/slab-on-grade foundation built on either fractured granitic basement rocks, or fractured limestone. Clayey till areas were also included in the profile in order to confirm earlier findings. Three areas representing these surface geologies were selected for indoor radon measurements with CR-39...... track detectors, and a total of 200 houses matching the profile underwent radon measurements during the winter 1994-95. The distribution of the measured radon concentrations were found in most cases to comply with log-normal distributions. Measurements in the living rooms of houses in each of the three......A search profile for dwellings with elevated radon levels has been employed to investigate possibly radon-prone areas in Denmark and to find houses suitable for radon mitigation studies. The profile is defined as dwellings which are single-family houses with slab-on-grade foundation or partly...

  3. Etched track radiometers in radon measurements: a review

    CERN Document Server

    Nikolaev, V A

    1999-01-01

    Passive radon radiometers, based on alpha particle etched track detectors, are very attractive for the assessment of radon exposure. The present review considers various devices used for measurement of the volume activity of radon isotopes and their daughters and determination of equilibrium coefficients. Such devices can be classified into 8 groups: (i) open or 'bare' detectors, (ii) open chambers, (iii) sup 2 sup 2 sup 2 Rn chambers with an inlet filter, (iv) advanced sup 2 sup 2 sup 2 Rn radiometers, (v) multipurpose radiometers, (vi) radiometers based on a combination of etched track detectors and an electrostatic field, (vii) radiometers based on etched track detectors and activated charcoal and (viii) devices for the measurement of radon isotopes and/or radon daughters by means of track parameter measurements. Some of them such as the open detector and the chamber with an inlet filter have a variety of modifications and are applied widely both in geophysical research and radon dosimetric surveys. At the...

  4. Design Criteria for Achieving Low Radon Concentration Indoors

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn

    2016-01-01

    Design criteria for achieving low radon concentration indoors are presented in this paper. The paper suggests three design criteria. These criteria have to be considered at the early stage of the building design phase to meet the latest recommendations from the World Health Organization in most...... the radon concentration in the indoor air. In addition, a cheap and reliable method for measuring the radon concentration in the air indoors is described. The provision on radon in the Danish Building Regulations complies with the latest recommendations from the World Health Organization. Radon can cause...... lung cancer and it is not known whether there is a lower limit for when it is not harmful to human beings. Therefore, it is important to reduce the radon concentration as much as possible indoors in buildings. Airtightness is an important factor when dealing with buildings. For the building envelope...

  5. Radon Concentration in the Drinking Water of Aliabad Katoul, Iran

    Science.gov (United States)

    Adinehvand, Karim; Sahebnasagh, Amin; Hashemi-Tilehnoee, Mehdi

    2016-01-01

    Background According to the world health organization, radon is a leading cause of cancer in various internal organs and should be regarded with concern. Objectives The aim of this study is to evaluate the concentration of soluble radon in the drinking water of the city of Aliabad Katoul, Iran. Materials and Methods The radon concentration was measured by using a radon meter, SARADTM model RTM 1688-2, according to accepted standards of evaluation. Results The mean radon concentration in the drinking water of Aliabad Katoul is 2.90 ± 0.57 Bq/L. Conclusions The radon concentration in Aliabad Katoul is below the limit for hazardous levels, but some precautions will make conditions even safer for the local populace. PMID:27651948

  6. Two-stage model of radon-induced malignant lung tumors in rats: effects of cell killing

    Science.gov (United States)

    Luebeck, E. G.; Curtis, S. B.; Cross, F. T.; Moolgavkar, S. H.

    1996-01-01

    A two-stage stochastic model of carcinogenesis is used to analyze lung tumor incidence in 3750 rats exposed to varying regimens of radon carried on a constant-concentration uranium ore dust aerosol. New to this analysis is the parameterization of the model such that cell killing by the alpha particles could be included. The model contains parameters characterizing the rate of the first mutation, the net proliferation rate of initiated cells, the ratio of the rates of cell loss (cell killing plus differentiation) and cell division, and the lag time between the appearance of the first malignant cell and the tumor. Data analysis was by standard maximum likelihood estimation techniques. Results indicate that the rate of the first mutation is dependent on radon and consistent with in vitro rates measured experimentally, and that the rate of the second mutation is not dependent on radon. An initial sharp rise in the net proliferation rate of initiated cell was found with increasing exposure rate (denoted model I), which leads to an unrealistically high cell-killing coefficient. A second model (model II) was studied, in which the initial rise was attributed to promotion via a step function, implying that it is due not to radon but to the uranium ore dust. This model resulted in values for the cell-killing coefficient consistent with those found for in vitro cells. An "inverse dose-rate" effect is seen, i.e. an increase in the lifetime probability of tumor with a decrease in exposure rate. This is attributed in large part to promotion of intermediate lesions. Since model II is preferable on biological grounds (it yields a plausible cell-killing coefficient), such as uranium ore dust. This analysis presents evidence that a two-stage model describes the data adequately and generates hypotheses regarding the mechanism of radon-induced carcinogenesis.

  7. Remote online monitoring of radon wells used for therapy in bathtubs

    Science.gov (United States)

    von Philipsborn, Henning

    2017-04-01

    Sibyllenbad, in the community of Neualbenreuth, 140 km NNE of Regensburg, is well known for two radon wells and one containing carbon dioxide. The water is used pure or mixed for therapy in 200 L bathtubs for a number of indications. Since its beginning, 26 years ago, the author is active in measuring radon and radon decay products and their factor of equilibrium in air and in water for radiation protection of the personnel and for radon water quality assurance for the patients. For the special local operating conditions - high time resolution of measurements is asked - novel measuring methods and instruments were developed. These proved to be useful for several other applications, not foreseen at the beginning. Recently, a probe was installed for online monitoring of water entering the main water storage tank of 42 m3, at the Kurhaus, two km from the radon wells. The probe consists of a 51 mm x 76 mm NaI (Tl) scintillator with photomultiplier, immersed in continuously flowing water in an 8 L pot. The MCA registers the pulses between 200 and 650 keV of the Rn decay products Pb-214 and Bi-214. Specially developed software calculates the gross [cps] from the total counts for variable counting times. The background, determined separately, is subtracted and the net is multiplied with a calibration factor [Bq/L per net cps], determined separately. The activity concentration [Bq/L] of the radon decay products in water is plotted vs. real time (plot P). With Teamviewer, remote online monitoring is possible from the Radiometric Seminar. At the Rn wells, the flow rate [L/s] of the discontinuously working pumps and the lowering of the water level in [m] is measured online. The two quantities are directly correlated, and with a time lag to the demand of radon water from the Kurhaus. Several series of discrete measurements of water, both at the well and at the storage tank, fresh and after 1, 2 and 3 h after storage in full, closed bottles, reveal factors of equilibrium k

  8. Assessment of inhalation and ingestion doses from exposure to radon gas using passive and active detecting techniques

    Energy Technology Data Exchange (ETDEWEB)

    Ismail, A. H.; Jafaar, M. S. [Universiti Sains Malaysia, 11800 USM, Penang (Malaysia)

    2011-07-01

    The aim of this study was to assess an environmental hazard of radon exhalation rate from the samples of soil and drinking water in selected locations in Iraqi Kurdistan, passive (CR-39NTDs) and active (RAD7) detecting techniques has been employed. Long and short term measurements of emitted radon concentrations were estimated for 124 houses. High and lower radon concentration in soil samples was in the cities of Hajyawa and Er. Tyrawa, respectively. Moreover, for drinking water, high and low radon concentration was in the cities of Similan and Kelak, respectively. A comparison between our results with that mentioned in international reports had been done. Average annual dose equivalent to the bronchial epithelium, stomach and whole body in the cities of Kelak and Similan are estimated, and it was varied from 0.04{+-}0.01 mSv to 0.547{+-}0.018 mSv, (2.832{+-}0.22)x10{sup -5} to (11.972{+-}2.09)x10{sup -5} mSv, and (0.056 {+-}0.01) x10{sup -5} to (0.239{+-}0.01)x10{sup -5} mSv, respectively. This indicated that the effects of dissolved radon on the bronchial epithelium are much than on the stomach and whole body. (authors)

  9. Radon Assessment of Occupational Facilities, Homestead ARB, FL

    Science.gov (United States)

    2013-11-21

    Consultative Letter 3. DATES COVERED (From – To) May 2013 – August 2013 4. TITLE AND SUBTITLE Radon Assessment of Occupational Facilities...unlimited. Case Number: 88ABW-2013-4919, 21 Nov 2013 13. SUPPLEMENTARY NOTES 14. ABSTRACT An assessment of indoor radon concentrations was...established in AFI 48-148 for long-term monitoring. Historical results indicate a radon risk characterization category of “medium,” requiring all

  10. Radon Emission from Coal Mines of Kuzbass Region

    Science.gov (United States)

    Portola, V. A.; Torosyan, E. S.; Antufeyev, V. K.

    2016-04-01

    The article represents the results of a research in radionuclides concentration in coal and rocks of Kuzbass mines as well as radon concentration in operative mines and mined-out spaces. It is proved that radon concentration in mines is considerably higher than in the atmosphere and it rises drastically in the mined-out spaces. It is found out that radon is carried out from mines by ventilation flows and from open pits, generating anomalous concentrations over self-ignition areas.

  11. The contribution of groundwater discharge to the overall water budget of two typical Boreal lakes in Alberta/Canada estimated from a radon mass balance

    Directory of Open Access Journals (Sweden)

    A. Schmidt

    2010-01-01

    Full Text Available Radon-222, a naturally-occurring radioisotope with a half-life of 3.8 days, was used to estimate groundwater discharge to small lakes in wetland-dominated basins in the vicinity of Fort McMurray, Canada. This region is under significant water development pressure including both oil sands mining and in situ extraction. Field investigations were carried out in March and July 2008 to measure radon-222 distributions in the water column of two lakes as a tracer of groundwater discharge. Radon concentrations in these lakes ranged from 0.5 to 72 Bq/m3, while radon concentrations in groundwaters ranged between 2000 and 8000 Bq/m3. A radon mass balance, used in comparison with stable isotope mass balance, suggested that the two lakes under investigation had quite different proportions of annual groundwater inflow (from 0.5% to about 14% of the total annual water inflow. Lower discharge rates were attributed to a larger drainage area/lake area ratio which promotes greater surface connectivity. Interannual variability in groundwater proportions is expected despite an implied seasonal constancy in groundwater discharge rates. Our results demonstrate that a combination of stable isotope and radon mass balance approaches provides information on flowpath partitioning that is useful for evaluating surface-groundwater connectivity and acid sensitivity of individual water bodies of interest in the Alberta Oil Sands Region.

  12. Mapping geogenic radon potential by regression kriging

    Energy Technology Data Exchange (ETDEWEB)

    Pásztor, László [Institute for Soil Sciences and Agricultural Chemistry, Centre for Agricultural Research, Hungarian Academy of Sciences, Department of Environmental Informatics, Herman Ottó út 15, 1022 Budapest (Hungary); Szabó, Katalin Zsuzsanna, E-mail: sz_k_zs@yahoo.de [Department of Chemistry, Institute of Environmental Science, Szent István University, Páter Károly u. 1, Gödöllő 2100 (Hungary); Szatmári, Gábor; Laborczi, Annamária [Institute for Soil Sciences and Agricultural Chemistry, Centre for Agricultural Research, Hungarian Academy of Sciences, Department of Environmental Informatics, Herman Ottó út 15, 1022 Budapest (Hungary); Horváth, Ákos [Department of Atomic Physics, Eötvös University, Pázmány Péter sétány 1/A, 1117 Budapest (Hungary)

    2016-02-15

    Radon ({sup 222}Rn) gas is produced in the radioactive decay chain of uranium ({sup 238}U) which is an element that is naturally present in soils. Radon is transported mainly by diffusion and convection mechanisms through the soil depending mainly on the physical and meteorological parameters of the soil and can enter and accumulate in buildings. Health risks originating from indoor radon concentration can be attributed to natural factors and is characterized by geogenic radon potential (GRP). Identification of areas with high health risks require spatial modeling, that is, mapping of radon risk. In addition to geology and meteorology, physical soil properties play a significant role in the determination of GRP. In order to compile a reliable GRP map for a model area in Central-Hungary, spatial auxiliary information representing GRP forming environmental factors were taken into account to support the spatial inference of the locally measured GRP values. Since the number of measured sites was limited, efficient spatial prediction methodologies were searched for to construct a reliable map for a larger area. Regression kriging (RK) was applied for the interpolation using spatially exhaustive auxiliary data on soil, geology, topography, land use and climate. RK divides the spatial inference into two parts. Firstly, the deterministic component of the target variable is determined by a regression model. The residuals of the multiple linear regression analysis represent the spatially varying but dependent stochastic component, which are interpolated by kriging. The final map is the sum of the two component predictions. Overall accuracy of the map was tested by Leave-One-Out Cross-Validation. Furthermore the spatial reliability of the resultant map is also estimated by the calculation of the 90% prediction interval of the local prediction values. The applicability of the applied method as well as that of the map is discussed briefly. - Highlights: • A new method

  13. Correction factors for determination of annual average radon concentration in dwellings of Poland resulting from seasonal variability of indoor radon

    Energy Technology Data Exchange (ETDEWEB)

    Kozak, K., E-mail: Krzysztof.Kozak@ifj.edu.pl [Institute of Nuclear Physics PAN, Radzikowskiego 152, 31-342 Krakow (Poland); Mazur, J. [Institute of Nuclear Physics PAN, Radzikowskiego 152, 31-342 Krakow (Poland); KozLowska, B. [University of Silesia, Bankowa 12, 40-007 Katowice (Poland); Karpinska, M. [Medical University of Bialystok, Jana Kilinskiego 1, 15-089 BiaLystok (Poland); Przylibski, T.A. [WrocLaw University of Technology, Wybrzeze S. Wyspianskiego 27, 50-370 WrocLaw (Poland); Mamont-Ciesla, K. [Central Laboratory for Radiological Protection, Konwaliowa 7, 03-194 Warszawa (Poland); Grzadziel, D. [Institute of Nuclear Physics PAN, Radzikowskiego 152, 31-342 Krakow (Poland); Stawarz, O. [Central Laboratory for Radiological Protection, Konwaliowa 7, 03-194 Warszawa (Poland); Wysocka, M. [Central Mining Institute, Plac Gwarkow1, 40-166 Katowice (Poland); Dorda, J. [University of Silesia, Bankowa 12, 40-007 Katowice (Poland); Zebrowski, A. [WrocLaw University of Technology, Wybrzeze S. Wyspianskiego 27, 50-370 WrocLaw (Poland); Olszewski, J. [Nofer Institute of Occupational Medicine, Sw.Teresy od Dzieciatka Jezus 8, 91-348 lodz (Poland); Hovhannisyan, H. [Institute of Nuclear Physics PAN, Radzikowskiego 152, 31-342 Krakow (Poland); Dohojda, M. [Institute of Building Technology (ITB), Filtrowa 1, 00-611 Warszawa (Poland); KapaLa, J. [Medical University of Bialystok, Jana Kilinskiego 1, 15-089 BiaLystok (Poland); Chmielewska, I. [Central Mining Institute, Plac Gwarkow1, 40-166 Katowice (Poland); KLos, B. [University of Silesia, Bankowa 12, 40-007 Katowice (Poland); Jankowski, J. [Nofer Institute of Occupational Medicine, Sw.Teresy od Dzieciatka Jezus 8, 91-348 lodz (Poland); Mnich, S. [Medical University of Bialystok, Jana Kilinskiego 1, 15-089 BiaLystok (Poland); KoLodziej, R. [Central Mining Institute, Plac Gwarkow1, 40-166 Katowice (Poland)

    2011-10-15

    The method for the calculation of correction factors is presented, which can be used for the assessment of the mean annual radon concentration on the basis of 1-month or 3-month indoor measurements. Annual radon concentration is an essential value for the determination of the annual dose due to radon inhalation. The measurements have been carried out in 132 houses in Poland over a period of one year. The passive method of track detectors with CR-39 foil was applied. Four thermal-precipitation regions in Poland were established and correction factors were calculated for each region, separately for houses with and without basements. - Highlights: > Using radon concentration results in houses we calculated the correction factors. > Factors were calculated for each month, 2 house types in different regions in Poland. > They enable the evaluation of average annual radon concentration in the house. > Annual average radon concentration basing on 1 or 3 months detector exposure.

  14. A theoretical investigation of the distribution of indoor radon concentrations

    Science.gov (United States)

    Rabi, R.; Oufni, L.

    2017-05-01

    Inhalation of radon (222Rn) and its decay products are a major source of natural radiation exposure. It is known from recent surveys in many countries that radon and its progeny contribute significantly to total inhalation dose and it is fairly established that radon when inhaled in large quantity causes lung disorder. In recent times, numerical modelling has become the cost effective replacement of experimental methods for the prediction and visualization of indoor pollutant distribution. The aim of this study is to implement the Finite Volume Method (FVM) for studying the radon distribution indoor. The findings show that the radon concentration which is distributed in a non-homogeneous way in the room is due to the difference in the radon concentration of different sources (wall, floor and ceiling). Moreover, the radon concentration is much larger near walls, and decreases in the middle of the room because of the effect of air velocity. We notice that the simulation results of radon concentration are in agreement with the results of other experimental studies. The annual effective dose of radon in the model room has been also investigated.

  15. Estimation of radon concentration in dwellings in and around Guwahati

    Science.gov (United States)

    Dey, Gautam Kumar; Das, Projit Kumar

    2012-02-01

    It has been established that radon and its airborne decay products can present serious radiation hazards. A long term exposure to high concentration of radon causes lung cancer. Besides, it is also known that out of the total radiation dose received from natural and man-made sources, 60% of the dose is due to radon and its progeny. Taking this into account, an attempt has been made to estimate radon concentration in dwellings in and around Guwahati using aluminium dosimeter cups with CR-39 plastic detectors. Results of preliminary investigation presented in this paper show that the mean concentration is 21.31 Bq m - 3.

  16. Estimation of radon concentration in dwellings in and around Guwahati

    Indian Academy of Sciences (India)

    Gautam Kumar Dey; Projit Kumar Das

    2012-02-01

    It has been established that radon and its airborne decay products can present serious radiation hazards. A long term exposure to high concentration of radon causes lung cancer. Besides, it is also known that out of the total radiation dose received from natural and man-made sources, 60% of the dose is due to radon and its progeny. Taking this into account, an attempt has been made to estimate radon concentration in dwellings in and around Guwahati using aluminium dosimeter cups with CR-39 plastic detectors. Results of preliminary investigation presented in this paper show that the mean concentration is 21.31 Bq m−3.

  17. Soil gas and indoor radon studies in Doon Valley, India

    Energy Technology Data Exchange (ETDEWEB)

    Choubey, V.M.; Sharma, K.K. (Wadia Inst. of Himalayan Geology, Dehra Dun (India)); Ramola, R.C. (Garhwal University, Tehri Garhwal (India). Dept. of Physics)

    1994-02-01

    Radon studies have been carried out in the soil and in dwellings around the Doon Valley, north-west India, using Kodak LR-115 Type II plastic track detectors. Soil gas radon concentrations were found to be higher in carbonaceous shales of the Infra-Krol and in the sandstone of the middle Siwaliks. High values of radon were also observed along prominent tectonic zones, such as the Main Boundary Thrust and the Main Frontal Thrust. In dwellings, the radon values were found to depend on the geology of the area, on the building materials and on the type and construction of the houses. (Author).

  18. Assessment of Radon level in dwellings of Tabriz

    Directory of Open Access Journals (Sweden)

    Gholamhassan Haddadi

    2011-06-01

    Full Text Available Background & Objective: Indoor radon gas (222Rn has been recognized as one of the causes of lung cancer. The presence of radioactive radium in the construction & materials in the buildings its changes in contact with radon gas may lead to increase level of radon gas in the residential houses. In this regards, indoor radon measurement is important. This study was conducted to determine radon concentration in Tabriz houses. Materials & Methods: In this study, 196 radon diffusion dosimeters were left in different floors of houses constructed with different materials such as cement (betony, heated brick & clay with raw brick at every floor for 6 months. The “electrochemical etching” method was applied to detect “alpha tracks” on the polymers of dosimeters and based on number of these tracks, radon concentration was determined. Results: This study showed that average radon concentration were 39Bqm-3 in the houses. At different floors & different construction material the average effective dose equivalent of lung tissue was 0.97msvy-1. Conclusion: Based on these results, it can be concluded that, the indoor radon levels in the Tabriz houses are within acceptable range.

  19. Nonlinear Radon Transform Using Zernike Moment for Shape Analysis

    Directory of Open Access Journals (Sweden)

    Ziping Ma

    2013-01-01

    Full Text Available We extend the linear Radon transform to a nonlinear space and propose a method by applying the nonlinear Radon transform to Zernike moments to extract shape descriptors. These descriptors are obtained by computing Zernike moment on the radial and angular coordinates of the pattern image's nonlinear Radon matrix. Theoretical and experimental results validate the effectiveness and the robustness of the method. The experimental results show the performance of the proposed method in the case of nonlinear space equals or outperforms that in the case of linear Radon.

  20. Current international intercomparison measurement on radon and its progeny

    Energy Technology Data Exchange (ETDEWEB)

    Yamasaki, Keizo [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst.

    1996-12-01

    The international intercomparison measurement on radon and its progeny was held between the EML of USDOE and several Japanese organisations, using the radon test chamber installed in EML. Japanese results of radon concentration by the active method using the ionization chamber or scintillation cell and the passive method using the solid track detector were about 5% small compared to that of EML. On the results of radon progeny, there were not any large systematic differences between EML and Japanese participants in spite of wide range of deviation except for the results at the condition of low aerosol density. (author)

  1. Strategy for the reduction of radon exposure in Norway

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-05-15

    Elevated indoor radon concentrations are a more extensive problem in Norway than in many other countries. It has been estimated that indoor radon causes approximately 300 deaths from lung cancer each year in Norway. On average, avoiding lung cancer increases life expectancy by 14 to 18 years. Radon is a radioactive noble gas formed continually is a decay product from uranium. Uranium is a natural constituent existing in varying concentrations in bedrock, minerals and soils. For this reason, both the soil air and groundwater contain radon. Radon in buildings normally originates from the soil air in the underlying ground. Indoor air pressure is often low, so that radon-containing air from the surrounding ground gets sucked in through cracks in the building foundations. Elevated indoor radon concentrations can be due to household water drawn from groundwater wells, and radon gas can also be emitted from building materials such as certain types of stone or concrete containing high levels of natural radioactivity. Norway, Sweden and Finland are among the the countries in the world with the highest average indoor radon concentrations. Geological conditions and the cool climate pose a big challenge, but the radon problem can be solved in a cost-effective way. Radon is the most common cause of lung cancer after active smoking. At a radon concentration of 100 Bq/m3, which is not far from the estimated average for Norwegian housing, the risks of dying of radon-induced lung cancer before the age of 75 are 0.1 % for non-smokers and 2 % for smokers, respectively. Many buildings in Norway have radon levels that exceed this. The most important health impact of radon exposure is the increased risk of lung cancer. This increase in risk is assumed to be linear in relation to radon concentration (i.e., the risk is 10 times higher at 1000 Bq/m3 compared to 100 Bq/m3). The risk also increases linearly with exposure time, i.e. there is a tenfold greater risk of contracting lung cancer

  2. Strategy for the reduction of radon exposure in Norway

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-05-15

    Elevated indoor radon concentrations are a more extensive problem in Norway than in many other countries. It has been estimated that indoor radon causes approximately 300 deaths from lung cancer each year in Norway. On average, avoiding lung cancer increases life expectancy by 14 to 18 years. Radon is a radioactive noble gas formed continually is a decay product from uranium. Uranium is a natural constituent existing in varying concentrations in bedrock, minerals and soils. For this reason, both the soil air and groundwater contain radon. Radon in buildings normally originates from the soil air in the underlying ground. Indoor air pressure is often low, so that radon-containing air from the surrounding ground gets sucked in through cracks in the building foundations. Elevated indoor radon concentrations can be due to household water drawn from groundwater wells, and radon gas can also be emitted from building materials such as certain types of stone or concrete containing high levels of natural radioactivity. Norway, Sweden and Finland are among the the countries in the world with the highest average indoor radon concentrations. Geological conditions and the cool climate pose a big challenge, but the radon problem can be solved in a cost-effective way. Radon is the most common cause of lung cancer after active smoking. At a radon concentration of 100 Bq/m3, which is not far from the estimated average for Norwegian housing, the risks of dying of radon-induced lung cancer before the age of 75 are 0.1 % for non-smokers and 2 % for smokers, respectively. Many buildings in Norway have radon levels that exceed this. The most important health impact of radon exposure is the increased risk of lung cancer. This increase in risk is assumed to be linear in relation to radon concentration (i.e., the risk is 10 times higher at 1000 Bq/m3 compared to 100 Bq/m3). The risk also increases linearly with exposure time, i.e. there is a tenfold greater risk of contracting lung cancer

  3. Design, construction and testing of a radon experimental chamber; Diseno, construccion y pruebas de una camara experimental de radon

    Energy Technology Data Exchange (ETDEWEB)

    Chavez B, A.; Balcazar G, M

    1991-10-15

    To carry out studies on the radon behavior under controlled and stable conditions it was designed and constructed a system that consists of two parts: a container of mineral rich in Uranium and an experimentation chamber with radon united one to the other one by a step valve. The container of uranium mineral approximately contains 800 gr of uranium with a law of 0.28%; the radon gas emanated by the mineral is contained tightly by the container. When the valve opens up the radon gas it spreads to the radon experimental chamber; this contains 3 accesses that allow to install different types of detectors. The versatility of the system is exemplified with two experiments: 1. With the radon experimental chamber and an associated spectroscopic system, the radon and two of its decay products are identified. 2. The design of the system allows to couple the mineral container to other experimental geometries to demonstrate this fact it was coupled and proved a new automatic exchanger system of passive detectors of radon. The results of the new automatic exchanger system when it leave to flow the radon freely among the container and the automatic exchanger through a plastic membrane of 15 m. are shown. (Author)

  4. Behavior of radon and its decay products in physical media; Comportamiento de radon y sus productos en medios fisicos

    Energy Technology Data Exchange (ETDEWEB)

    Chavez B, A

    1990-06-15

    This study was carried out to know the radon behavior, it shows some of its decay products of short life, the same as the equations that describe the growth of the activity of each decay product in a source that initially is radon. The study threw results that they are applicable in geology, uranium prospecting, as well as in radiological safety. The use of membranes to filter the decay products of radon and the use of these for protection of the detector, it has opened a new line in the study of the radon. (Author)

  5. Monitoring of radon in water of Taiwan

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yu-Ming; Chen, Chin-Chiang (Taiwan Radiation Monitoring Station, Atomic Energy Council of Executive Yuan, Kaohsiung Hsien (Republic of China))

    1983-03-01

    The toluene extraction-liquid scintillation counting method was used to measure the radon concentration in water samples of Taiwan, R.O.C. The experimental results showed that the counting efficiency for both ..cap alpha.. and ..beta.. emitted from radon and its daughters could reach 100%. The separation of activity of /sup 222/Rn from /sup 220/Rn was performed according to Bunny method. Thirty sampling stations including water samples from wells and hot springs throughout Taiwan were analyzed. The measured data show that /sup 220/Rn has much higher concentration than /sup 222/Rn. The concentration for the former is in the order of 10/sup -7/ Ci/l while that for the later is about 10/sup -10/ Ci/l.

  6. Radon in soil concentration levels in Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Segovia, N.; Tamez, E.; Mena, M

    1991-09-15

    Radon in soil surveys in Mexico have been carried out since 1974 both for uranium prospectus and to correlate mean values of the gas emanation with local telluric behaviour. The mapping includes the northern uranium mining region, the Mexican Neo volcanic Belt, the coastal areas adjacent to the zone of subduction of the Cocos Plate under the North American Plate, some of the active volcanoes of Southern Mexico and several sedimentary valleys in Central Mexico. Recording of {sup 222} Rn alpha decay is systematically performed with LR115 track detectors. Using mean values averaged over different observation periods at fixed monitoring stations, a radon in soil map covering one third of the Mexican territory is presented. The lowest mean values have been found in areas associated with active volcanoes. The highest levels are found in uranium ore zones. Intermediate values are obtained in regions with enhanced hydrothermal activity and stations associated with intrusive rocks. (Author)

  7. A study of radon indoor concentration; Un estudio de concentracion de radon intramuros

    Energy Technology Data Exchange (ETDEWEB)

    Pena, P.; Ruiz, W.; Segovia, N.; Ponciano, G. [ININ, Gerencia de Ciencias Ambientales, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    2000-07-01

    It was realized a study of radon concentration in houses of Mexico City and in a laboratory of the Nuclear Centre of Salazar, State of Mexico. The radon determination in air was realized with solid nuclear track detectors and with Honeywell and Alpha guard automatic equipment. The results show that the majority of houses have values under 148 Bq/m{sup 3} obtaining some housings with upper values located in the Lomas zone. A study in smokers houses and another of controls showed very similar distributions. It was studied the day time fluctuations finding that radon increases considerably during the dawn. Some upper values obtained in a laboratory of the Nuclear Centre were remedied with ventilation. (Author)

  8. Radon-222 exhalation from Danish building materials: H + H Industri A/S results

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, C.E

    1999-08-01

    This report describes a closed-chamber method for laboratory measurements of the rate at which radon-222 degasses (exhales) from small building material samples. The chamber is 55 L in volume and the main sample geometry is a slab of dimensions 5x30x30 cm{sup 3} . Numerical modelling is used to assess (and partly remove) the bias of the method relative to an ideal measurement of the free exhalation rate. Experimental results obtained with the method are found to be in agreement with the results of an open-chamber method (which is subject to different sources of error). Results of radon-222 exhalation rate measurements for 10 samples of Danish building materials are reported. Samples include ordinary concrete, lightweight aggregate concrete, autoclaved aerated concrete, bricks, and gypsum board. The maximum mass-specific exhalation rate is about 20 mBq h{sup -1} kg{sup -1}. Under consideration of the specific applications of the investigated building materials, the contribution to the indoor radon-222 concentration in a single-family reference house is calculated. Numerical modelling is used to help extrapolate the laboratory measurements on small samples to full scale walls. Application of typical materials will increase the indoor concentration by less than 10 Bq m{sup -3}. (au) 6 tabs., 15 ills., 29 refs.

  9. Estimation of human dose to radon progeny

    Energy Technology Data Exchange (ETDEWEB)

    Shimo, Michikuni [Gifu Coll. of Medical Technology, Sekiichi, Gifu (Japan)

    1996-12-01

    The aim of the paper is the estimation of the effective dose due to radon progeny for Japanese population. The estimation was performed by a modified UNSCEAR equation. The equation was needed the radon concentration annual occupancy time and the tidal volume on Japanese people and the dose conversion coefficient are needed. Furthermore, not only these figures but also unattached fraction and aerosol distribution data obtained in Japan and the factor related to the Japanese living style were used in the calculation. We used following figures as representative value in Japan; radon concentration: 13(6 - 25) Bq/m{sup 3} indoors and 6.7(3.5 - 13) Bq/m{sup 3} outdoors; the equilibrium factor: 0.45(0.35 - 0.57) indoors and 0.70(0.50 - 0.90) outdoors; the occupancy factor: 0.87 indoors, 0.09 outdoors and 0.04 in vehicle for male and 0.91 indoors, 0.06 outdoors and 0.03 in vehicle for female; the tidal volume: 7,000 (4,000 - 8,000) m{sup 3} for male, 6,200 (3,500 - 7,500) m{sup 3} for female. The effective doses due to radon progeny were estimated to be 0.45 mSv/y for male and 0.40 mSv/y for female, and the variance was -80 - +130%. These values were 1/2 - 1/3 as small as values shown by UNSCEAR 1993 Report and estimated by ICRP Publication 65. (author)

  10. Environmental radon with RAD7 detector; Radon ambiental con detector RAD7

    Energy Technology Data Exchange (ETDEWEB)

    Lopez M, A.; Balcazar, M. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Fernandez G, I. M.; Capote F, E., E-mail: arturo.lopez@inin.gob.mx [Centro de Proteccion e Higiene de las Radiaciones, Carretera La Victoria II Km 2.5 e/ Monumental y Final, Guanabacoa, La Habana (Cuba)

    2016-09-15

    Experimental results of the radon detection with the equipment RAD7 are presented. The use of a solid state detector placed in a semi-spherical chamber with an electric field allows a high sensitivity of 0.4 cpm/P Ci/l. Radon detection is achieved by the spectroscopy of its decay products. In accordance with a table of errors for various ranges of counts and radon concentrations, reported by the manufacturer, an equation was obtained that allows establishing operation criteria of the equipment. For radon detection at ambient concentrations as low as 30 Bq m{sup -3}, is shown that short counts of 10 minutes are good enough to make decisions on radiation protection matter. In places where concentrations are close to 200 Bq m{sup -3}, counting intervals of the order of 0.5 hours will have an acceptable counting error of the order of 20%. The determination of radon in soil was, according to the expected, on the order of 10 kBq m{sup -3}, and was found that even with the recommended counting times of 5 minutes, there is a risk of increased humidity inside the detector above 20% Rh, with associated reduction of detection efficiency, if the desiccant is not used properly. The equipment was subjected to a radon exposure in air of 13, 373 Bq m{sup -3} ± 3.7%, contained within a controlled chamber, with a variation in temperature of (19-21) degrees Celsius and in the relative humidity of (5-7) %, the good stability of the chamber allows to propose calibration processes of these equipment s by assessing the concentration by means of a Ge (Hp) detector. (Author)

  11. The Estimated Annual Effective Dose Caused By Radon and Thoron Gases in the Vicinity of Active Faults in the North East of Iran

    Directory of Open Access Journals (Sweden)

    Ali Asghar Mowlavi

    2017-04-01

    Full Text Available Background: Active faults are actually the most important factor in the entry of radon and thoron to the surface of Earth. The location of residential areas on these faults is one of the main reasons for increasing the concentration of these radioactive gases in them. Materials and Methods: By using RTM1688, the concentration of Radon and Thoron was measured in 200 houses in rural residential areas placed on the active faults in Northern Khorasan in the north-east of Iran. Results: Radon measurements range was registered from 12Bqm-3 and 188 Bqm-3 with an average of 75.43 Bqm-3. The highest annual effective dose in samples was 5.45 mSv and the lowest was 0.35 mSv with an average of 2.187mSv. The range of Thoron was registered between 0.0 Bqm-3 and 840Bqm-3 with an average of 325.48 Bqm-3. The highest annual effective dose in samples was 21.17 mSv and the lowest was 0 mSv with an average of 8.20 mSv. Conclusion: The results show that in close areas to active faults of north-east of Iran the concentration of Thoron and Radon is two to three times more than the safe level. It was found that 20 percent of residential areas are subject to annual effective dose greater than the limit for radon and 54 percent for Thoron. The high concentration of Thoron and Radon in these areas show that the active faults play the main role of producing of these gases which may increase of lung diseases.

  12. Sex and smoking sensitive model of radon induced lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Zhukovsky, M.; Yarmoshenko, I. [Institute of Industrial Ecology of Ural Branch of Russian Academy of Sciences, Yekaterinburg (Russian Federation)

    2006-07-01

    Radon and radon progeny inhalation exposure are recognized to cause lung cancer. Only strong evidence of radon exposure health effects was results of epidemiological studies among underground miners. Any single epidemiological study among population failed to find reliable lung cancer risk due to indoor radon exposure. Indoor radon induced lung cancer risk models were developed exclusively basing on extrapolation of miners data. Meta analyses of indoor radon and lung cancer case control studies allowed only little improvements in approaches to radon induced lung cancer risk projections. Valuable data on characteristics of indoor radon health effects could be obtained after systematic analysis of pooled data from single residential radon studies. Two such analyses are recently published. Available new and previous data of epidemiological studies of workers and general population exposed to radon and other sources of ionizing radiation allow filling gaps in knowledge of lung cancer association with indoor radon exposure. The model of lung cancer induced by indoor radon exposure is suggested. The key point of this model is the assumption that excess relative risk depends on both sex and smoking habits of individual. This assumption based on data on occupational exposure by radon and plutonium and also on the data on external radiation exposure in Hiroshima and Nagasaki and the data on external exposure in Mayak nuclear facility. For non-corrected data of pooled European and North American studies the increased sensitivity of females to radon exposure is observed. The mean value of ks for non-corrected data obtained from independent source is in very good agreement with the L.S.S. study and Mayak plutonium workers data. Analysis of corrected data of pooled studies showed little influence of sex on E.R.R. value. The most probable cause of such effect is the change of men/women and smokers/nonsmokers ratios in corrected data sets in North American study. More correct

  13. Uranium and radon estimation in water and plants using SSNTD

    Energy Technology Data Exchange (ETDEWEB)

    Singh, N.P.; Singh, M.; Singh, S.; Virk, H.S. (Guru Nanak Dev Univ., Amritsar (India). Dept. of Physics)

    1984-01-01

    Lexan plastic track detector is used to estimate the uranium content of water and plant samples collected from the Dalhousie area, Chamba district, Himachal Pradesh, India. Uranium content has been found to vary from 0.26 +- 0.01 to 6.77 +- 0.06 ppb in water and from 0.65 +- 0.04 to 2.61 +- 0.08 ppm in plant samples. The track production rate due to radon in water has been found to vary from 1.44 +- 0.18 to 385.25 +- 0.70 tracks cm/sup -2/ hr/sup -1/ litre/sup -1/ using LR-115 plastic as a solid state nuclear track detector.

  14. Behavior of radon progeny in low frequency electromagnetic fields

    CERN Document Server

    Oda, K; Yamamoto, T

    1999-01-01

    Whether the electro-magnetic (EM) fields are carcinogenic or not still remains to be discussed from scientific point of view. Recently a possibility was pointed out that increased deposition of radon progeny in the EM-fields should enhance exposure dose to internal body. We investigated the behavior of charged sup 2 sup 2 sup 2 Rn progeny and aerosols containing them by measuring the pattern and the magnitude of the deposition rate of decay products on both CR-39 track detectors and imaging plates under various conditions. We concluded that the attachment to wire cables should be increased mainly by electric component of low frequency EM-fields and possibly by electric field induced by strong changing magnetic ones.

  15. Face Feature Extraction for Recognition Using Radon Transform

    Directory of Open Access Journals (Sweden)

    Justice Kwame Appati

    2016-07-01

    Full Text Available Face recognition for some time now has been a challenging exercise especially when it comes to recognizing faces with different pose. This perhaps is due to the use of inappropriate descriptors during the feature extraction stage. In this paper, a thorough examination of the Radon Transform as a face signature descriptor was investigated on one of the standard database. The global features were rather considered by constructing a Gray Level Co-occurrences Matrices (GLCMs. Correlation, Energy, Homogeneity and Contrast are computed from each image to form the feature vector for recognition. We showed that, the transformed face signatures are robust and invariant to the different pose. With the statistical features extracted, face training classes are optimally broken up through the use of Support Vector Machine (SVM whiles recognition rate for test face images are computed based on the L1 norm.

  16. A COMPARISON OF WINTER SHORT-TERM AND ANNUAL AVERAGE RADON MEASUREMENTS IN BASEMENTS OF A RADON-PRONE REGION AND EVALUATION OF FURTHER RADON TESTING INDICATORS

    Science.gov (United States)

    Barros, Nirmalla G.; Steck, Daniel J.; Field, R. William

    2014-01-01

    The primary objective of this study was to investigate the temporal variability between basement winter short-term (7 to 10 days) and basement annual radon measurements. Other objectives were to test the short-term measurement’s diagnostic performance at two reference levels and to evaluate its ability to predict annual average basement radon concentrations. Electret ion chamber (short-term) and alpha track (annual) radon measurements were obtained by trained personnel in Iowa residences. Overall, the geometric mean of the short-term radon concentrations (199 Bq m−3) was slightly greater than the geometric mean of the annual radon concentrations (181 Bq m−3). Short-term tests incorrectly predicted that the basement annual radon concentrations would be below 148 Bq m−3 12% of the time and 2% of the time at 74 Bq m−3. The short-term and annual radon concentrations were strongly correlated (r=0.87, pradon potential when the reference level is lowered to 74 Bq m−3. PMID:24670901

  17. Investigation on the movements and the distributions of radon, thoron and their decay nuclides on the life circumstances

    Energy Technology Data Exchange (ETDEWEB)

    Morishima, Hiroshige; Koga, Taeko [Kinki Univ., Higashi-Osaka, Osaka (Japan). Atomic Energy Research Inst

    2001-03-01

    districts, Yamanashi pref. at th