WorldWideScience

Sample records for radon entry rate

  1. Characterization of radon entry rates and indoor concentrations in underground structures

    International Nuclear Information System (INIS)

    Borak, T.B.; Whicker, F.W.; Fraley, L.; Gadd, M.S.; Ibrahim, S.A.; Monette, F.A.; Morris, R.; Ward, D.C.

    1992-01-01

    An experimental facility has been designed to comprehensively determine the influence of soil and meterological conditions on the transport of radon into underground structures. Two identical basements are equipped to continuously monitor pressure differentials, temperatures, soil moisture, precipitation, barometric pressure, wind speed, wind direction, natural ventiliation rates, and radon concentrations. A computerized data acquisition system accumulates and processes data at the rate of 6000 points per day. The experimental design is based on performing experiments in one structure, with the other used as a control. Indoor radon concentrations have temporal variations ranging from 150 to 1400 Bq m -3 . The corresponding entry rate of radon ranges from 300 to 10,000 Bq h -1 . When the radon entry rate is high, the indoor radon concentration decreases, whereas elevated radon concentrations seem to be associated with slow but persistent radon entry rates. This inverse relationship is partially due to compensation from enhanced natural ventilation during periods when the radon entry rate is high. Correlations between measured variables in the soil and indoor-outdoor atmospheres are used to interpret these data. This laboratory has the capability to generate essential data required for developing and testing radon transport models

  2. Attempt to determine radon entry rate and air exchange rate variable in time from the time course of indoor radon concentration

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, J [State Office for Nuclear Protection, Prague (Czech Republic)

    1996-12-31

    For radon diagnosis in houses the `ventilation experiment` was used as a standard method. After removal of indoor radon by draught the build-up of radon concentration a(t) [Bq/m{sup 3}] was measured continuously and from the time course the constant radon entry rate A [Bq/h] and the exchange rate k [h{sup -1}] was calculated by regression analysis using model relation a(t) A(1-e{sup -kt})/kV with V [m{sup 3}] for volume of the room. The conditions have to be stable for several hours so that the assumption of constant A and k was justified. During the day both quantities were independently (?) changing, therefore a method to determine variable entry rate A(t) and exchange rate k(t) is needed for a better understanding of the variability of the indoor radon concentration. Two approaches are given for the determination of variable in time radon entry rates and air exchange rates from continuously measured indoor radon concentration - numerical solution of the equivalent difference equations in deterministic or statistic form. The approaches are not always successful. Failures giving a right ration for the searched rates but not of the rates them self could not be explained.

  3. State-space dynamic model for estimation of radon entry rate, based on Kalman filtering

    International Nuclear Information System (INIS)

    Brabec, Marek; Jilek, Karel

    2007-01-01

    To predict the radon concentration in a house environment and to understand the role of all factors affecting its behavior, it is necessary to recognize time variation in both air exchange rate and radon entry rate into a house. This paper describes a new approach to the separation of their effects, which effectively allows continuous estimation of both radon entry rate and air exchange rate from simultaneous tracer gas (carbon monoxide) and radon gas measurement data. It is based on a state-space statistical model which permits quick and efficient calculations. Underlying computations are based on (extended) Kalman filtering, whose practical software implementation is easy. Key property is the model's flexibility, so that it can be easily adjusted to handle various artificial regimens of both radon gas and CO gas level manipulation. After introducing the statistical model formally, its performance will be demonstrated on real data from measurements conducted in our experimental, naturally ventilated and unoccupied room. To verify our method, radon entry rate calculated via proposed statistical model was compared with its known reference value. The results from several days of measurement indicated fairly good agreement (up to 5% between reference value radon entry rate and its value calculated continuously via proposed method, in average). Measured radon concentration moved around the level approximately 600 Bq m -3 , whereas the range of air exchange rate was 0.3-0.8 (h -1 )

  4. Tempts to determine radon entry rate and air exchange rate variable in time from the time course of indoor radon concentration

    International Nuclear Information System (INIS)

    Thomas, J.

    1996-01-01

    For the study and explanation of the diurnal variability of the indoor radon concentration a(t) [Bq/m 3 ], which is proportional to the ratio of the radon entry rate A [Bq/h] and the air exchange rate k [1/h], it would be of advantage to know separately the diurnal variability of both determining quantities A(t) and k(t). To measure directly and continuously the radon entry rate A(t) is possible only in special studies (mostly in experimental rooms) and also continuous measuring of the air exchange rate k(t) is possible also only in special studies for a short time. But continuously measuring radon meters are now common, do not trouble people in normal living regime during day and night. The goal of this endeavour would be the evaluation of the time courses of both determining quantities from the time courses of the indoor radon concentration directly without additional experimental work and so a better utilisation of such measurements. (author)

  5. Method for the determination of the radon entry rate inside buildings; Methodik zur Bestimmung der Radonquellstaerke in Gebaeuden

    Energy Technology Data Exchange (ETDEWEB)

    Neugebauer, T.; Hingmann, H.; Buermeyer, J.; Grimm, V.; Spruck, K.; Breckow, J. [Technische Hochschule Mittelhessen (THM), Giessen (Germany). Inst. fuer Medizinische Physik und Strahlenschutz (IMPS)

    2016-07-01

    The radon entry rate describes the radon characteristics of a building, which are defined by its constructional condition (tightness of building envelope) and the geological realities (radon soil gas concentration). All possible radon sources of a building are considered. The determination of the radon entry rate is based on the measurement of the radon concentration inside a building and the determination of the air change rate. The air change rate can be calculated via several approaches, VDI 4300-7 provides the most common methods. The main approaches are based on the use of a tracer gas, which concentration is measured over the time. In a first attempt, a one-time and punctual injection of a tracer gas was used. A disadvantage was that the air change rate could be determined only for short periods. In the follow-up, the constant injection of a tracer gas at multiple spots was executed. With this method, it is possible to calculate the air change rate over several weeks on a continuous base; the data can be used to determine the radon entry rate. Based on those series of measurements a first analysis of possible dependencies of the radon entry rate was performed.

  6. A study of the influence of a gravel subslab layer on radon entry rate using two basement structures

    International Nuclear Information System (INIS)

    Robinson, A.L.; Sextro, R.G.; Fisk, W.J.; Garbesi, K.; Wooley, J.; Wollenberg, H.A.

    1993-01-01

    In buildings with elevated radon concentrations, the dominant transport mechanism of radon is advective flow of soil gas into the building substructure. However, the building-soil system is often complex, making detailed studies of the radon source term difficult. In order to examine radon entry into buildings, the authors have constructed two room-size, precisely-fabricated basement structures at a site with relatively homogeneous, moderately permeable soil. The basements are identical except that one lies directly on native soil whereas the other lies on a high permeability aggregate layer. The soil pressure field and radon entry rate have been measured for different basement pressures and environmental conditions. The subslab gravel layer greatly enhances the advective entry of radon into the structure; when the structures are depressurized, the radon entry rate into the structure with the subslab gravel layer is more than a factor of 3 times the radon entry rate into the other structure for the same depressurization. The gravel subslab layer also spreads the pressure field around the structure, extending the field of influence of the structure and the region from which it draws radon

  7. A study of the influence of a gravel subslab layer on radon entry rate using two basement structures

    International Nuclear Information System (INIS)

    Robinson, A.L.; Sextro, R.G.; Fisk, W.J.; Garbesi, K.; Wooley, J.; Wollenberg, H.A.

    1993-01-01

    In buildings with elevated radon concentrations, the dominant transport mechanism of radon is advective flow of soil gas into the building substructure. However, the building-soil system is often complex, making detailed studies of the radon source term difficult. In order-to examine radon entry into buildings, we have constructed two room-size, precisely-fabricated basement structures at a site with relatively homogeneous, moderately permeable soil. The basements are identical except that one lies directly on native soil whereas the other lies on a high permeability aggregate layer. The soil pressure field and radon entry rate have been measured for different basement pressures and environmental conditions. The subslab gravel layer greatly enhances the advective entry of radon into the structure; when the structures are depressurized, the radon entry rate into the structure with the subslab gravel layer is more than a factor of 3 times the radon entry rate into the other structure for the same depressurization. The gravel subslab layer also spreads the pressure field around the structure, extending the field of influence of the structure and the region from which it draws radon. (orig.). (7 refs., 3 figs.)

  8. Dependency of radon entry on pressure difference

    International Nuclear Information System (INIS)

    Kokotti, H.; Kalliokoski, P.

    1992-01-01

    Radon levels, ventilation rate and pressure differences were monitored continuously in four apartment houses with different ventilation systems. Two of them were ventilated by mechanical exhaust, one by mechanical supply and exhaust, and one by natural ventilation. The two-storey houses were constructed from concrete elements on a slab and located on a gravel esker. It was surprising to find that increasing the ventilation rate increased levels of radon in the apartments. Increased ventilation caused increased outdoor-indoor pressure difference, which in turn increased the entry rate of radon and counteracted the diluting effect of ventilation. The increase was significant when the outdoor-indoor pressure difference exceeded 5 Pa. Especially in the houses with mechanical exhaust ventilation the pressure difference was the most important factor of radon entry rate, and contributed up to several hundred Bq m -3 h -1 . (Author)

  9. Entry of soil gas and radon into houses

    International Nuclear Information System (INIS)

    Andersen, C.E.

    1992-04-01

    Entry of soil gas and radon into houses has been investigated by experiments conducted at radon test structures and numerical or analytical modelling. The numerical model solves the steady-state equations for Darcy flow of soil-gas and combined diffusive and advective transport of radon. Model calculations were compared with results from field experiments conducted at Risoe National Laboratory, and it was found that there was good agreement between measured and modelled pressure coupling and radon concentration profiles. Discrepancies regarding absolute values of soil-gas entry rates and radon concentrations were observed. The numerical model has been used to study the importance of soil and building related factors on radon entry rates into slab-on-grade houses. It was found that, for a house with a 3 mm perimeter crack along the floor-wall joint, the entry was mainly determined by the soil permeability and building related factors such as house depressurization and presence of a capillary breaking layer of gravel below the slab. In a house with a bare soil floor, the diffusivity of the soil was found to be of principal importance for the entry rate even for moderate permeabilities. An analytical model was developed for the purpose of studying soil-gas entry rates into houses in response to non-static driving forces. It is based on the analogy between a 'buried drain' and a basement house with a perimeter crack. The structure was depressurized sinusoidally in time and the frequency dependent pressure couplings were measured. There was fairly good agreement between theoretical and experimental results. (LN) (26 tabs., 30 ills., 66 refs.)

  10. Radon entry into buildings: Effects of atmospheric pressure fluctuations and building structural factors

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Allen Lantham [Univ. of California, Berkeley, CA (United States). Dept. of Mechanical Engineering

    1996-05-01

    An improved understanding of the factors that control radon entry into buildings is needed in order to reduce the public health risks caused by exposure to indoor radon. This dissertation examines three issues associated with radon entry into buildings: (1) the influence of a subslab gravel layer and the size of the openings between the soil and the building interior on radon entry; (2) the effect of atmospheric pressure fluctuations on radon entry; and (3) the development and validation of mathematical models which simulate radon and soil-gas entry into houses. Experiments were conducted using two experimental basements to examine the influence of a subslab gravel layer on advective radon entry driven by steady indoor-outdoor pressure differences. These basement structures are identical except that in one the floor slab lies directly on native soil whereas in the other the slab lies on a high-permeability gravel layer. The measurements indicate that a high permeability subslab gravel layer increases the advective radon entry rate into the structure by as much as a factor of 30. The magnitude of the enhancement caused by the subslab gravel layer depends on the area of the openings in the structure floor; the smaller the area of these openings the larger the enhancement in the radon entry rate caused by the subslab gravel layer. A three-dimensional, finite-difference model correctly predicts the effect of a subslab gravel layer and open area configuration on advective radon entry driven by steady indoor-outdoor pressure differences; however, the model underpredicts the absolute entry rate into each structure by a factor of 1.5.

  11. Radon entry into buildings: Effects of atmospheric pressure fluctuations and building structural factors

    International Nuclear Information System (INIS)

    Robinson, A.L.

    1996-05-01

    An improved understanding of the factors that control radon entry into buildings is needed in order to reduce the public health risks caused by exposure to indoor radon. This dissertation examines three issues associated with radon entry into buildings: (1) the influence of a subslab gravel layer and the size of the openings between the soil and the building interior on radon entry; (2) the effect of atmospheric pressure fluctuations on radon entry; and (3) the development and validation of mathematical models which simulate radon and soil-gas entry into houses. Experiments were conducted using two experimental basements to examine the influence of a subslab gravel layer on advective radon entry driven by steady indoor-outdoor pressure differences. These basement structures are identical except that in one the floor slab lies directly on native soil whereas in the other the slab lies on a high-permeability gravel layer. The measurements indicate that a high permeability subslab gravel layer increases the advective radon entry rate into the structure by as much as a factor of 30. The magnitude of the enhancement caused by the subslab gravel layer depends on the area of the openings in the structure floor; the smaller the area of these openings the larger the enhancement in the radon entry rate caused by the subslab gravel layer. A three-dimensional, finite-difference model correctly predicts the effect of a subslab gravel layer and open area configuration on advective radon entry driven by steady indoor-outdoor pressure differences; however, the model underpredicts the absolute entry rate into each structure by a factor of 1.5

  12. State-Space Dynamic Model for Estimation of Radon Entry Rate, based on Kalman Filtering

    Czech Academy of Sciences Publication Activity Database

    Brabec, Marek; Jílek, K.

    2007-01-01

    Roč. 98, - (2007), s. 285-297 ISSN 0265-931X Grant - others:GA SÚJB JC_11/2006 Institutional research plan: CEZ:AV0Z10300504 Keywords : air ventilation rate * radon entry rate * state-space modeling * extended Kalman filter * maximum likelihood estimation * prediction error decomposition Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.963, year: 2007

  13. Modeling radon entry into Florida slab-on-grade houses

    International Nuclear Information System (INIS)

    Revzan, K.L.; Fisk, W.J.; Sextro, R.G.

    1993-01-01

    Radon entry into a Florida house whose concrete slab is supported by a permeable concrete-block stem wall and a concrete footer is modeled. The slab rests on backfill material; the same material is used to fill the footer trench. A region of undisturbed soil is assumed to extend 10 m beyond and below the footer. The soil is assumed homogeneous and isotropic except for certain simulations in which soil layers of high permeability or radium content are introduced. Depressurization of the house induces a pressure field in the soil and backfill. The Laplace equation, resulting from Darcy's law and the continuity equation, is solved using a steady-state finite-difference model to determine this field. The mass-transport equation is then solved to obtain the diffusive and advective radon entry rates through the slab; the permeable stem wall; gaps at the intersections of the slab, stem wall, and footer; and gaps in the slab. These rates are determined for variable soil, backfill, and stem-wall permeability and radium content, slab-opening width and position, slab and stem-wall diffusivity, and water table depth. The variations in soil permeability and radium content include cases of horizontally stratified soil. We also consider the effect of a gap between the edge of the slab and the stem wall that restricts the passage of soil gas from the stem wall into the house. Calculations indicate that the total radon entry rate is relatively low unless the soil or backfill permeability or radium content is high. Variations in most of the factors, other than the soil permeability and radium content, have only a small effect on the total radon entry rate. However, for a fixed soil permeability, the total radon entry rate may be reduced by a factor of 2 or more by decreasing the backfill permeability, by making the stem wall impermeable and gap-free, (possibly by constructing a one-piece slab/stem-wall/footer), or by increasing the pressure in the interior of the stem wall

  14. Models of radon entry: A review

    International Nuclear Information System (INIS)

    Gadgil, A.J.

    1991-08-01

    This paper reviews existing models of radon entry into houses. The primary mechanism of radon entry in houses with high indoor concentrations is, in most cases, convective entry of radon bearing soil-gas from the surrounding soil. The driving force for this convective entry is the small indoor-outdoor pressure difference arising from the stack effect and other causes. Entry points for the soil-gas generally are the cracks or gaps in the building substructure, or though other parts of the building shell in direct contact with the soil, although entry may also occur by flow though permeable concrete or cinder block walls of the substructure. Models using analytical solutions to idealized geometrical configurations with simplified boundary conditions obtain analytical tractability of equations to be solved at the cost of severe approximations; their strength is in the insights they offer with their solutions. Models based on lumped parameters attempt to characterize the significant physical behavioral characteristics of the soil-gas and radon flow. When realistic approximations are desired for the boundary conditions and terms in the governing equations, numerical models must be used; these are usually based on finite difference or finite element solutions to the governing equations. Limited data are now available for experimental verification of model predictions. The models are briefly reviewed and their strengths and limitations are discussed

  15. Soil gas and radon entry potential measurements in central Florida houses

    International Nuclear Information System (INIS)

    Turk, B.H.

    1993-01-01

    A technique to quantify the various parameters associated with the pressure-driven entry rate of soil gas and radon into buildings has been applied to five central Florida houses with slab-on-grade construction. Results indicate that the slabs of these Florida houses are more resistant to soil gas flow than slabs in previously studied New Jersey and New Mexico houses. The data for locations near the slab perimeter show that the resistance to soil gas flow is greater for the slab than for the underlying materials/soils, implying that the slab resistance is a slightly dominant factor controlling soil gas entry in these houses. As in the New Jersey and New Mexico houses, soil gas and radon entry potentials were highest near the slab perimeters. In contrast to the earlier studies, geometric mean radon entry potentials did not correlate well with measured indoor radon levels. (orig.). (4 refs., 1 fig., 2 tabs.)

  16. Soil and gas and radon entry potentials for substructure surfaces

    International Nuclear Information System (INIS)

    Harrison, J.; Sextro, R.G.

    1990-01-01

    This paper reports on measurement techniques and parameters that describe the potential for areas of a building substructure to have high soil gas and radon entry rates which have been developed. Flows and pressures measured at test holes in substructure surfaces while the substructure was intentionally depressurized were used in a highly simplified electrical circuit to model the substructure/soil network. Data from four New Jersey houses indicate that the soil was a factor of two to six times more resistant to soil gas flow than substructure surfaces, concrete slab floors, including perimeter gaps, cracks, and other penetrations, were approximately five times more resistant to soil gas movement than hollow block walls, and radon entry potentials were highest for slab floors. These indices of entry potential may be useful for characterizing the relative leakiness of below-grade substructure surfaces and for determining the selection and placement of radon control systems

  17. Soil gas and radon entry into a simple test structure: Comparison of experimental and modelling results

    DEFF Research Database (Denmark)

    Andersen, C.E.; Søgaard-Hansen, J.; Majborn, B.

    1994-01-01

    A radon test structure has been established at a field site at Riso National Laboratory. Measurements have been made of soil gas entry rates, pressure couplings and radon depletion. The experimental results have been compared with results obtained from measured soil parameters and a two......-dimensional steady-state numerical model of Darcy flow and combined diffusive and advective transport of radon. For most probe locations, the calculated values of the pressure couplings and the radon depletion agree well with the measured values, thus verifying important elements of the Darcy flow approximation......, and the ability of the model to treat combined diffusive and advective transport of radon. However, the model gives an underestimation of the soil gas entry rate. Even if it is assumed that the soil has a permeability equal to the highest of the measured values, the model underestimates the soil gas entry rate...

  18. Raetrad model extensions for radon entry into multi-level buildings with basements or crawl spaces.

    Science.gov (United States)

    Nielson, K K; Rogers, V C; Rogers, V; Holt, R B

    1997-10-01

    The RAETRAD model was generalized to characterize radon generation and movement from soils and building materials into multi-level buildings with basements or crawl spaces. With the generalization, the model retains its original simplicity and ease of use. The model calculates radon entry rates that are consistent with measurements published for basement test structures at Colorado State University, confirming approximately equal contributions from diffusion and pressure-driven air flow at indoor-outdoor air pressure differences of deltaP(i-o) = -3.5 Pa. About one-fourth of the diffusive radon entry comes from concrete slabs and three-fourths comes from the surrounding soils. Calculated radon entry rates with and without a barrier over floor-wall shrinkage cracks generally agree with Colorado State University measurements when a sustained pressure of deltaP(i-o) = -2 Pa is used to represent calm wind (<1 m s(-1)) conditions. Calculated radon distributions in a 2-level house also are consistent with published measurements and equations.

  19. Modeling radon entry into houses with basements: Model description and verification

    International Nuclear Information System (INIS)

    Revzan, K.L.; Fisk, W.J.; Gadgil, A.J.

    1991-01-01

    We model radon entry into basements using a previously developed three-dimensional steady-state finite difference model that has been modified in the following ways: first, cylindrical coordinates are used to take advantage of the symmetry of the problem in the horizontal plant; second, the configuration of the basement has been made more realistic by incorporating the concrete footer; third, a quadratic relationship between the pressure and flow in the L-shaped gap between slab, footer, and wall has been employed; fourth, the natural convection of the soil gas which follows from the heating of the basement in winter has been taken into account. The temperature field in the soil is determined from the equation of energy conservation, using the basement, surface, and deep-soil temperatures as boundary conditions. The pressure field is determined from Darcy's law and the equation of mass conservation (continuity), assuming that there is no flow across any boundary except the soil surface (atmospheric pressure) and the opening in the basement shell (fixed pressure). After the pressure and temperatures field have been obtained the velocity field is found from Darcy's law. Finally, the radon concentration field is found from the equation of mass-transport. The convective radon entry rate through the opening or openings is then calculated. In this paper we describe the modified model, compare the predicted radon entry rates with and without the consideration of thermal convection, and compare the predicted rates with determined from data from 7 houses in the Spokane River valley of Washington and Idaho. Although the predicted rate is much lower than the mean of the rates determined from measurements, errors in the measurement of soil permeability and variations in the permeability of the area immediately under the basement slab, which has a significant influence on the pressure field, can account for the range of entry rates inferred from the data. 25 refs., 8 figs

  20. Toward resolving model-measurement discrepancies of radon entry into houses

    International Nuclear Information System (INIS)

    Garbesi, K.; Lawrence Berkeley Lab., CA

    1994-10-01

    Analysis of the literature indicated that radon transport models significantly and consistently underpredict the advective entry into houses of soil-gas borne radon. Advective entry is the dominant mechanism resulting in high concentrations of radon indoors. The author investigated the source of the model-measurement discrepancy via carefully controlled field experiments conducted at an experimental basement located in natural soil in Ben Lomond, California. Early experiments at the structure confirmed the existence and magnitude of the model-measurement discrepancy, ensuring that it was not merely an artifact of inherently complex and poorly understood field sites. The measured soil-gas entry rate during structure depressurization was found to be an order of magnitude larger than predicted by a current three-dimensional numerical model of radon transport. The exact magnitude of the discrepancy depends on whether the arithmetic or geometric mean of the small-scale measurements of permeability is used to estimate the effective permeability of the soil. This factor is a critical empirical input to the model and was determined for the Ben Lomond site in the typical fashion using single-probe static depressurization measurements at multiple locations. The remainder of the dissertation research tests a hypothesis to explain the observed discrepancy: that soil permeability assessed using relatively small-scale probe measurements does not reflect bulk soil permeability for flows that is likely to occur at larger scales of several meters or more in real houses and in the test structure. The idea is that soil heterogeneity is of a nature that, as flows occur over larger scales, larger scales of heterogeneity are encountered that facilitate larger flux rates, resulting in a scale dependence of effective soil permeability

  1. Mechanisms and sources of radon entry in buildings constructed with modern technologies

    International Nuclear Information System (INIS)

    Zhukovsky, M.V.; Vasilyev, A.V.

    2014-01-01

    To investigate the influence of modern building construction technologies on the accumulation of radon indoor, 20 rooms in buildings constructed using mostly monolithic concrete or aerated concrete blocks have been studied. Dominance of the diffusion mechanism of radon entry in buildings constructed with modern technologies has been established. As a result of computer simulations it was found that the main contribution to the variability of radon concentration was made by changes in the ventilation rate. At a low ventilation rate ( -1 ) radon concentration above 200 Bq m -3 can be observed for residential buildings. There is a need for the regulation of the radium-specific activity in building materials. According to the estimates of this study, the content of 226 Ra in building materials should not exceed the value of 100 Bq kg -1 . (authors)

  2. Determination of the factors that control migration and entry of radon into basements

    International Nuclear Information System (INIS)

    Borak, T.B.; Gadd, M.S.; Ward, D.C.; Barry, M.S.

    1992-01-01

    'Full Text:' Elevated concentrations of radon gas indoors are the result or a complicated combination of factors. This report describes results from a facility designed to test and verify theories of radon migration into underground structures. The buildings resemble miniature basements using conventional construction methods, hut eliminate other confounding factors introduced by the activities of occupants. Sensors accumulate data on soil properties such as temperature, moisture, pressure differentials, and permeability, as well as outdoor meteorological conditions and indoor environment. Results indicate that indoor radon concentrations do not correlate with changes in the adjacent soil gas concentration or the rate that radon enters the structure. When no attempt is made to control the indoor environment, periods of highest indoor concentration occur when the rate of entry is low. Methods to identify the driving mechanisms and implication for mitigation and control will he described. (author)

  3. Air pressure distribution and radon entry processes in east Tennessee schools

    International Nuclear Information System (INIS)

    Sinclair, L.D.; Dudney, C.S.; Wilson, D.L.; Saultz, R.J.

    1990-01-01

    Many building characteristics have been found to influence radon entry, including building size and configuration, substructure, location of utility supply lines, and design and operation of the heating, ventilation, and air conditioning (HVAC) system. One of the most significant factors is room depressurization resulting from the HVAC system exhausting more than it supplies. This paper represents a preliminary assessment of HVAC characteristics and how they may relate to radon entry. During the summer of 1989, a limited survey was made of air pressure and radon levels in four schools in eastern Tennessee. Short-term samples of radon and pressure were made in all rooms in contact with the soil using alpha scintillation cells and an electronic microanometer, respectively. The pressure difference and radon concentration changes induced by operation of the building ventilation system varied among sites within individual schools

  4. Effects of periodic atmospheric pressure variation on radon entry into buildings

    Science.gov (United States)

    Tsang, Y. W.; Narasimhan, T. N.

    1992-06-01

    Using a mathematical model, we have investigated the temporal variations of radon entry into a house basement in the presence of time-dependent periodic variations of barometric pressure as well as a persistent small steady depressurization within the basement. The tool for our investigation is an integral finite difference numerical code which can solve for both diffusive and advective flux of radon in the soil gas which is treated as a slightly compressible fluid. Two different boundary conditions at the house basement are considered: (1) a dirt floor basement so that diffusion is equally or more important than advective transport, and (2) an "impermeable" cement basement except for a 1-cm-wide crack near the perimeter of the basement floor; in which case, advective transport of radon flux dominates. Two frequencies of barometric pressure fluctuation with representative values of amplitudes, based on a Fourier decomposition of barometric pressure data, were chosen in this study: one with a short period of 0.5 hour with pressure amplitude of 50 Pa, the other a diurnal variation with a period of 24 hours with the typical pressure amplitude of 250 Pa. For a homogeneous soil medium with soil permeability to air between 10-13 and 10-10 m2, we predict that the barometric fluctuations increase the radon entry into the basement by up to 120% of the steady radon inflow into the basement owing to a steady depressurization of 5 Pa. If soil permeability heterogeneity is present, such as the presence of a thin layer of higher permeability aggregate immediately below the basement floor, radon flux due to atmospheric pumping is further increased. Effects of pressure pumping on radon entry are also compared to diffusion-only transport when the steady depressurization is absent. It is found that contribution to radon entry is significant for the basement crack configuration. In particular, for pressure pumping at 0.5-hour period and for a homogeneous medium of permeability of 10

  5. The effect of natural ventilation on radon and radon progeny levels in houses

    International Nuclear Information System (INIS)

    Cavallo, A.; Gadsby, K.; Reddy, T.A.; Socolow, R.

    1992-01-01

    In contradiction to the widely held assumption that ventilation is ineffective as a means of reducing indoor radon concentrations, experiments in a research house have shown that the basement radon level can be reduced by a factor of 5-10 using only natural ventilation. Measurements of the outdoor-basement pressure differential and the radon entry rate show that this unexpectedly large reduction in indoor radon levels is caused by two complementary physical processes. The first mechanism is the obvious one: dilution. Radon concentrations are lowered by the addition of uncontaminated outdoor air. The second mechanism is less evident: an open basement window reduces basement depressurisation. This decreases the rate at which radon-laden soil gas is drawn into the house. It was also found that the radon entry rate is a linear function of basement depressurisation up to a differential pressure of about 4 Pa, as would be expected for laminar soil gas flow; opening two basement windows approximately doubles the building air exchange rate and reduces the radon entry rate by up to a factor of 5. (author)

  6. Control of indoor radon and radon progeny concentrations

    International Nuclear Information System (INIS)

    Sextro, R.G.

    1985-05-01

    There are three general categories of techniques for the control of radon and radon progeny concentrations in indoor air - restriction of radon entry, reduction of indoor radon concentrations by ventilation or air cleaning, and removal of airborne radon progeny. The predominant radon entry process in most residences appears to be pressure driven flow of soil gas through cracks or other openings in the basement, slab, or subfloor. Sealing these openings or ventilation of the subslab or subfloor space are methods of reducing radon entry rates. Indoor radon concentrations may be reduced by increased ventilation. The use of charcoal filters for removal of radon gas in the indoor air by adsorption has also been proposed. Concentrations of radon progeny, which are responsible for most of the health risks associated with radon exposures, can be controlled by use of electrostatic or mechanical filtration. Air circulation can also reduce radon progeny concentrations in certain cases. This paper reviews the application and limitations of each of these control measures and discusses recent experimental results

  7. Radon as a tracer for soil-gas entry into a house located next to a contaminated dry-cleaning property; Radon som sporgas for jordluftindtraengning til hus ved forurenet renserigrund

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, C.E

    2001-07-01

    This study applies the naturally occurring radioactive gas radon-222 as a tracer for soil-gas entry into a house located next to a dry-cleaners shop. This is possible because the concentration of radon in the soil below the house is about 1000 times higher than the concentration in outdoor air. The study is based on continuous indoor measurement of radon, differential pressures, barometric pressure and temperatures and grab samples of radon below the slab and in the soil in the vicinity of the house. During the investigation, vacuum extraction were used to remove chlorinated solvents (perchloroethylene, PCE) from the unsaturated zone. The study shows that the vacuum extraction influences the radon concentration in and below the house. When the vacuum pump is on, the indoor radon concentration is only 10 Bq/m{sup 3} corresponding to the contribution from radon in outdoor air and exhalation from building materials. When the vacuum pump is set off, the average indoor radon concentration increases to 30 Bq/m{sup 3}. It is believed that the increase is caused by radon entry from the soil. Regression analysis demonstrates that changes in the indoor radon concentration can be explained by changes in indoor-outdoor pressure differences and changes in the atmospheric pressure. This suggests that advection is the primary mode of entry. Under some highly simplifying assumptions the soil-gas entry is found to be around 1 m{sup 3}/h. This, however, is most likely an overestimate. Based on the measured radon concentration in the exhaust air from the vacuum system and a typical radon emanation rate for Danish soil, it is estimated that the soil vapor extraction system ventilates about 10000 m{sup 3} of soil. The investigation is supported by numerical model calculations with the finite-volume model Rnmod3d. (au)

  8. Radon as a tracer for soil-gas entry into a house located next to a contaminated dry-cleaning property

    International Nuclear Information System (INIS)

    Andersen, C.E.

    2001-07-01

    This study applies the naturally occurring radioactive gas radon-222 as a tracer for soil-gas entry into a house located next to a dry-cleaners shop. This is possible because the concentration of radon in the soil below the house is about 1000 times higher than the concentration in outdoor air. The study is based on continuous indoor measurement of radon, differential pressures, barometric pressure and temperatures and grab samples of radon below the slab and in the soil in the vicinity of the house. During the investigation, vacuum extraction were used to remove chlorinated solvents (perchloroethylene, PCE) from the unsaturated zone. The study shows that the vacuum extraction influences the radon concentration in and below the house. When the vacuum pump is on, the indoor radon concentration is only 10 Bq/m 3 corresponding to the contribution from radon in outdoor air and exhalation from building materials. When the vacuum pump is set off, the average indoor radon concentration increases to 30 Bq/m 3 . It is believed that the increase is caused by radon entry from the soil. Regression analysis demonstrates that changes in the indoor radon concentration can be explained by changes in indoor-outdoor pressure differences and changes in the atmospheric pressure. This suggests that advection is the primary mode of entry. Under some highly simplifying assumptions the soil-gas entry is found to be around 1 m 3 /h. This, however, is most likely an overestimate. Based on the measured radon concentration in the exhaust air from the vacuum system and a typical radon emanation rate for Danish soil, it is estimated that the soil vapor extraction system ventilates about 10000 m 3 of soil. The investigation is supported by numerical model calculations with the finite-volume model Rnmod3d. (au)

  9. Radon diagnostics and tracer gas measurements

    International Nuclear Information System (INIS)

    Jilek, K.; Brabec, M.

    2004-01-01

    An outline is presented of the tracer gas technique, which is used for continuous measurements of air ventilation rate (generally time-varying) and for simultaneous estimation of air ventilation rate and radon entry rate, and some of its limitations are discussed. The performance of this technique in the calculation of the air ventilation rate is demonstrated on real data from routine measurements. The potential for air ventilation rate estimation based on radon measurements only is discussed. A practical application is described of the tracer gas technique to a simultaneous estimation of the air ventilation rate and radon entry rate in a real house where the effectiveness of radon remedy was tested. The following main advantages of the CO tracer gas techniques are stressed: (i) The averaging method continuous determination of the ventilation rate with good accuracy (≤ 20 %). (ii) The newly presented and verified method based on simultaneous measurements of radon concentration and CO gas concentration enables separate continuous measurements of the radon entry rate and ventilation rate. The results of comparative measurements performed with the aim to estimate the inaccuracy in determination of radon entry rate showed acceptable and good agreement up to approximately 10 %. The results of comparative measurements performed with the aim to estimate the mutual commensuration of the method to the determination of the ventilation rate confirmed the expected unreliability the two parametric non-linear regression method, which is the most frequently used method in radon diagnostic in the Czech Republic

  10. Radon entry into a simple test structure

    DEFF Research Database (Denmark)

    Andersen, C.E.; Søgaard-Hansen, J.; Majborn, B.

    1992-01-01

    A simple test structure for studies of radon entry into houses has been constructed at a field site at Riso National Laboratory. It consists of a 40 1, stainless-steel cylinder placed in a 0.52 m deep quadratic excavation with a side length of 2.4 m. The excavation is lined with an airtight...... membrane, and soil gas enters the cylinder through a changeable interface in the bottom. The depressurisation of the cylinder is controlled by a mass-flow controller, thereby limiting the influence of natural driving forces. Pressures, temperatures and radon concentrations are measured continuously...... in the cylinder and in selected locations in the soil. In this paper, the test structure is described, and initial results concerning the transport of soil gas and radon under steady-state conditions are reported. It is found that the soil in the vicinity of the structure is partially depleted with respect...

  11. Effect of natural ventilation on radon and radon progeny levels in houses. Rept. for Apr 90-Sep 91

    International Nuclear Information System (INIS)

    Cavallo, A.; Gadsby, K.; Reddy, T.A.; Socolow, R.

    1991-01-01

    The paper discusses the effect of natural ventilation on radon and radon progeny levels in houses. Contradicting the widely held assumption that ventilation is ineffective in reducing indoor radon concentrations, experiments in a research house have shown that the basement radon level can be reduced by a factor of 5 to 10 using only natural ventilation. Measurement of the outdoor-basement pressure differential and the radon entry rate shows that this unexpectedly large reduction in indoor radon levels is caused by two complementary physical processes: (1) the obvious one, dilution, which lowers radon concentrations by adding uncontaminated outdoor air; and (2) although less evident, introducing a pressure break in the system through an open basement window which, in turn, reduces the outdoor-basement pressure differential and the rate at which radon-laden soil gas is drawn into the house. The radon entry rate was found to be a linear function of basement depressurization up to a differential pressure of about 4 Pa, as would be expected for laminar soil gas flow; opening two basement windows approximately doubled the building air exchange rate and reduced the radon entry rate by up to a factor of 5

  12. Low air exchange rate causes high indoor radon concentration in energy-efficient buildings

    International Nuclear Information System (INIS)

    Vasilyev, A.V.; Yarmoshenko, I.V.; Zhukovsky, M.V.

    2015-01-01

    Since 1995, requirements on energy-efficient building construction were established in Russian Building Codes. In the course of time, utilisation of such technologies became prevailing, especially in multi-storey building construction. According to the results of radon survey in buildings constructed meeting new requirements on energy efficiency, radon concentration exceeds the average level in early-constructed buildings. Preponderance of the diffusion mechanism of radon entry in modern multi-storey buildings has been experimentally established. The experimental technique of the assessment of ventilation rate in dwellings under real conditions was developed. Based on estimates of average ventilation rate, it was approved that measures to increase energy efficiency lead to reduction in ventilation rate and accumulation of higher radon concentrations indoors. Obtained ventilation rate values have to be considered as extremely low. (authors)

  13. Low air exchange rate causes high indoor radon concentration in energy-efficient buildings.

    Science.gov (United States)

    Vasilyev, A V; Yarmoshenko, I V; Zhukovsky, M V

    2015-06-01

    Since 1995, requirements on energy-efficient building construction were established in Russian Building Codes. In the course of time, utilisation of such technologies became prevailing, especially in multi-storey building construction. According to the results of radon survey in buildings constructed meeting new requirements on energy efficiency, radon concentration exceeds the average level in early-constructed buildings. Preponderance of the diffusion mechanism of radon entry in modern multi-storey buildings has been experimentally established. The experimental technique of the assessment of ventilation rate in dwellings under real conditions was developed. Based on estimates of average ventilation rate, it was approved that measures to increase energy efficiency lead to reduction in ventilation rate and accumulation of higher radon concentrations indoors. Obtained ventilation rate values have to be considered as extremely low. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Analytical and numerical models for estimating the effect of exhaust ventilation on radon entry in houses with basements or crawl spaces

    International Nuclear Information System (INIS)

    Mowris, R.J.

    1986-08-01

    Mechanical exhaust ventilation systems are being installed in newer, energy-efficient houses and their operation can increase the indoor-outdoor pressure differences that drive soil gas and thus radon entry. This thesis presents simplified models for estimating the pressure driven flow of radon into houses with basements or crawl spaces, due to underpressures induced by indoor-outdoor temperature differences, wind, or exhaust ventilation. A two-dimensional finite difference model is presented and used to calculate the pressure field and soil gas flow rate into a basement situated in soil of uniform permeability. A simplified analytical model is compared to the finite difference model with generally very good agreement. Another simplified model is presented for houses with a crawl space. Literature on radon research is also reviewed to show why pressure driven flow of soil gas is considered to be the major source of radon entry in houses with higher-than-average indoor radon concentrations. Comparisons of measured vs. calculated indoor radon concentrations for a house with a basement showed the simplified basement model underpredicting on average by 25%. For a house with a crawl space the simplified crawl space model overpredicted by 23% when the crawl space vents are open and 48% when the crawl space vents are sealed

  15. Numerical modelling of radon-222 entry into houses: An outline of techniques and results

    DEFF Research Database (Denmark)

    Andersen, C.E.

    2001-01-01

    Numerical modelling is a powerful tool for studies of soil gas and radon-222 entry into houses. It is the purpose of this paper to review some main techniques and results. In the past, modelling has focused on Darcy flow of soil gas (driven by indoor–outdoor pressure differences) and combined...... diffusive and advective transport of radon. Models of different complexity have been used. The simpler ones are finite-difference models with one or two spatial dimensions. The more complex models allow for full three-dimensional and time dependency. Advanced features include: soil heterogeneity, anisotropy......, fractures, moisture, non-uniform soil temperature, non-Darcy flow of gas, and flow caused by changes in the atmospheric pressure. Numerical models can be used to estimate the importance of specific factors for radon entry. Models are also helpful when results obtained in special laboratory or test structure...

  16. Radon in energy-efficient earth-sheltered structures

    International Nuclear Information System (INIS)

    Nero, A.V.

    1983-05-01

    Exposure o the radioactive-decay products of radon 222 that are present in indoor air constitutes the most-significant radiation dose received by the general population in most countries. Indoor concentrations vary from one building to another, ranging from insignificant to very high levels that cause radiation doses higher than those experienced by uranium miners. This wide range of concentrations is attributable to variability in the rate at which radon enters buildings, and differences in the ventilation rate. Earth-sheltered dwellings, because they are more completely surrounded by earth material than other structures, have an as yet unquantified potential for having radon entry rates that are higher than typical for other houses in the region. Moreover, measures that save energy by reducing ventilation rates (for example by reducing infiltration) can also raise indoor radon concentrations. For these reasons a significant effort is needed to determine the potential for ventilation-reducing measures and earth sheltering to increase radon concentrations, especially in regions where they are already high. Where necessary, proper attention to specific design features that affect radon entry rates or residence time indoors should be adequate to avoid undue risk to the public

  17. Wind-induced contaminant transport in near-surface soils with application to radon entry into buildings

    International Nuclear Information System (INIS)

    Riley, W.J.

    1996-05-01

    Indoor air exposures to gaseous contaminants originating in soil can cause large human health risks. To predict and control these exposures, the mechanisms that affect vapor transport in near-surface soils need to be understood. In particular, radon exposure is a concern since average indoor radon concentrations lead to much higher risks than are generally accepted for exposure to other environmental contaminants. This dissertation examines an important component of the indoor radon problem: the impacts of wind on soil-gas and radon transport and entry into buildings. The research includes experimental and modeling studies of wind's interactions with a building's superstructure and the resulting soil-gas and radon flows in the surrounding soil. In addition to exploring the effects of steady winds, a novel modeling technique is developed to examine the impacts of fluctuating winds on soil-gas and radon transport

  18. Wind-induced contaminant transport in near-surface soils with application to radon entry into buildings

    Energy Technology Data Exchange (ETDEWEB)

    Riley, William Jowett [Univ. of California, Berkeley, CA (United States)

    1996-05-01

    Indoor air exposures to gaseous contaminants originating in soil can cause large human health risks. To predict and control these exposures, the mechanisms that affect vapor transport in near-surface soils need to be understood. In particular, radon exposure is a concern since average indoor radon concentrations lead to much higher risks than are generally accepted for exposure to other environmental contaminants. This dissertation examines an important component of the indoor radon problem: the impacts of wind on soil-gas and radon transport and entry into buildings. The research includes experimental and modeling studies of wind`s interactions with a building`s superstructure and the resulting soil-gas and radon flows in the surrounding soil. In addition to exploring the effects of steady winds, a novel modeling technique is developed to examine the impacts of fluctuating winds on soil-gas and radon transport.

  19. Control of radon and its progeny concentration in indoor atmosphere

    International Nuclear Information System (INIS)

    Ramachandran, T.V.; Subbaramu, M.C.

    1986-01-01

    Exposure to radon daughter concentration in indoor atmosphere can result in a significant risk to the general public. There are two generally used methods for the control of radon and progeny concentration in the indoor atmosphere, namely restriction of radon entry and reduction of indoor radon and its progeny concentration by ventilation or by air cleaning. Predominant radon entry process in most of the dwellings appears to be by pressure driven flow of soil gas through cracks or other openings in the basement slab or subfloors. Sealing these openings or ventilation of the subslab or subfloor space are the methods for reducing the radon entry rates. Indoor radon concentration can also be reduced by increasing the ventilation and by using charcoal filters for the removal of radon gas in indoor air by absorption. Concentration of radon progeny, which are responsible for most of the health risks associatd with radon exposure can also be controlled by the use of electrostatic or mechanical filters. This study describes briefly the above control strategies used for reducing the inhalation doses to persons in dwellings. (author). 9 refs., 2 tables

  20. The effects of HVAC system design and operation on radon entry into school buildings

    International Nuclear Information System (INIS)

    Turner, W.A.; Leovic, K.W.; Craig, A.B.

    1990-01-01

    Heating, ventilating, and air conditioning (HVAC) systems in schools vary considerably and tend to have a greater impact on pressure differentials--and consequently radon levels--than do heating and air-conditioning systems in houses. If the HVAC system induces a negative pressure relative to the subslab area, radon can be pulled into the building. If the HVAC system pressurizes the building, it can prevent radon entry as long as the fan is running. However, school HVAC systems are normally set back or turned off on evenings and weekends and, even if the HVAC system pressurizes the school during operation, indoor radon levels may build up during setback periods. In this paper many of the historical methods utilized to deliver ventilation air (outdoor air) over the past 40 years are summarized. In addition, for each type of system presented, the possible impact the ventilation system might be expected to have (positive or negative) on the pressure of the building envelope (and subsequent radon levels in the building) is discussed

  1. Identification of advective entry of soil-gas radon into a crawl space covered with sheets of polyethylene foil

    International Nuclear Information System (INIS)

    Andersen, C.; Koopmanns, M.; Meijer, R.J. de

    1996-04-01

    To assess the effectiveness of mitigative measures against radon ( 222 Rn) entry into houses, experiments were conducted in a crawl-space house where the dirt floor of the crawl space was covered with sheets of 0.23 mm polyethylene foil fixed to the walls. The radon concentration was measured below the foil and in the crawl space together with environmental variables such as indoor-outdoor pressure differences. The experimental data was analyzed using various types of models including a simplistic mass-balance model, a regression model, and a two-dimensional numerical model based on Darcy flow or soil gas and combined diffusive and advective transport of radon. The main outcome of the work was that: (i) The soil-gas entry rate per pascal depressurization was at the order of 1 m 3 h -1 , (ii) the stack-related part of the depressurization of the crawl space (approx. 0.1 Pa deg. C -1 ) was controlled by the temperature difference between the living room of the house and the outdoors (not by the difference between the crawl space and the outdoors), (iii) that part of the wind-related depressurization that was measured by the pressure transducers seemed to force radon into the crawl space in the same proportion as the stack-related part of the depressurization, (iv) the ratio of advective and diffusive entry was approx. 0.7, when the crawl space was depressurized 1.5 Pa, (v) the effective diffusivity of the foil was found to be three orders of magnitude larger than that measured in the laboratory (the enhanced diffusivity was most likely caused by leaks in the foil and by mixing fans located in the crawl space), and (vi) there was no measurable mitigative impact of having the sheets of foil on the crawl-space floor even if the crawl space was artificially pressurized or depressurized. (au) 28 tabs., 36 ills., 61 refs

  2. Identification of advective entry of soil-gas radon into a crawl space covered with sheets of polyethylene foil

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, C. [Risoe National Lab., Dept. of Nucl. Safety Res. and Nucl. Facilities, Roskilde (Denmark); Koopmanns, M.; Meijer, R.J. de [Kernfysische Versneller Inst., Environmental Radioactivity Res., Groningen (Netherlands)

    1996-04-01

    To assess the effectiveness of mitigative measures against radon ({sup 222}Rn) entry into houses, experiments were conducted in a crawl-space house where the dirt floor of the crawl space was covered with sheets of 0.23 mm polyethylene foil fixed to the walls. The radon concentration was measured below the foil and in the crawl space together with environmental variables such as indoor-outdoor pressure differences. The experimental data was analyzed using various types of models including a simplistic mass-balance model, a regression model, and a two-dimensional numerical model based on Darcy flow or soil gas and combined diffusive and advective transport of radon. The main outcome of the work was that: (i) The soil-gas entry rate per pascal depressurization was at the order of 1 m{sup 3} h{sup -1}, (ii) the stack-related part of the depressurization of the crawl space (approx. 0.1 Pa deg. C{sup -1}) was controlled by the temperature difference between the living room of the house and the outdoors (not by the difference between the crawl space and the outdoors), (iii) that part of the wind-related depressurization that was measured by the pressure transducers seemed to force radon into the crawl space in the same proportion as the stack-related part of the depressurization, (iv) the ratio of advective and diffusive entry was approx. 0.7, when the crawl space was depressurized 1.5 Pa, (v) the effective diffusivity of the foil was found to be three orders of magnitude larger than that measured in the laboratory (the enhanced diffusivity was most likely caused by leaks in the foil and by mixing fans located in the crawl space), and (vi) there was no measurable mitigative impact of having the sheets of foil on the crawl-space floor even if the crawl space was artificially pressurized or depressurized. (au) 28 tabs., 36 ills., 61 refs.

  3. Radon exhalation rates of some granites used in Serbia

    Directory of Open Access Journals (Sweden)

    Nikolić Mladen D.

    2015-01-01

    Full Text Available In order to address concern about radon exhalation in building material, radon exhalation rate was determined for different granites available on Serbian market. Radon exhalation rate, along with mass exhalation rate and effective radium content were determined by closed chamber method and active continuous radon measurement technique. For this research, special chambers were made and tested for back diffusion and leakage, and the radon concentrations measured were included in the calculation of radon exhalation. The radon exhalation rate ranged from 0.161 Bq/m2h to 0.576 Bq/m2h, the mass exhalation rate from 0.167 Bq/kgh to 0.678 Bq/kgh, while the effective radium content was found to be from 12.37 Bq/kg to 50.23 Bq/kg. The results indicate that the granites used in Serbia have a low level of radon exhalation.

  4. Radon level and radon effective dose rate determination in Moroccan dwellings using SSNTDs

    International Nuclear Information System (INIS)

    Oufni, L.; Misdaq, M.A.; Amrane, M.

    2005-01-01

    Inhalation of radon ( 222 Rn) and its daughter product are a major source of natural radiation exposure. The measurement of radon activity in dwelling is assuming ever increasing importance. It is known from recent surveys in many countries that radon and its progeny contribute significantly to total inhalation dose and it is fairly established that radon when inhaled in large quantity causes lung disorder. Keeping this in view, the indoor radon activity level and radon effective dose rate were carried out in the dwellings of Beni-Mellal, Khouribgra and Ben Guerir cities, Morocco, using the solid state nuclear track detectors (SSNTD) technique. Assuming an indoor occupancy factor of 0.8 and 0.4 for the equilibrium factor of radon indoors, we found that the 222 Rn effective dose rate in the studied dwellings ranges from 1.01 to 7.90mSvy -1 . The radon activity in the corresponding dwellings was found to vary from 40 to 532Bqm -3 . The radon activity has not only been found to vary with seasonal changes, but also with the age, the construction mode of houses, the ventilation conditions and with specific sites and geological materials

  5. Control methods of radon and its progeny concentration in indoor atmosphere

    International Nuclear Information System (INIS)

    Ramachandran, T.V.; Subba Ramu, M.C.

    1990-01-01

    Exposure to radon-222 and its progeny in indoor atmosphere can result in significant inhalation risk to the population particularly to those living in houses with much higher levels of Rn. There are three methods generally used for the control of Rn and its progeny concentration in the indoor environment: (1) restricting the radon entry, (2) reduction of indoor radon concentration by ventilation or by aircleaning and (3) removal of airborne radon progeny by aerosol reduction. Prominent process of radon entry in most of the residence appears to be the pressure driven flow of soil gas through cracks or through other openings in the basements slab or subfloor. Sealing off these openings or ventilation of the slab or subfloor spaces are the methods of reducing the radon entry rate. Indoor radon progeny levels can also be reduced by decreasing the aerosol load in the dwellings. The results of a few experiments carried out to study the reduction in the working level concentration of radon, by decreasing the aerosol load are discussed in this paper. (author). 9 tabs., 8 figs., 37 refs

  6. Radon exhalation rates corrected for leakage and back diffusion – Evaluation of radon chambers and radon sources with application to ceramic tile

    Directory of Open Access Journals (Sweden)

    M. Abo-Elmagd

    2014-10-01

    Full Text Available The natural radon decay, leakage and back diffusion are the main removal processes of radon from its container. Ignoring these processes leads to underestimate the measured value of radon related parameters like exhalation rate and radium content. This work is aimed to evaluate two different radon chambers through determining their leakage rate λv and evaluation of radon source by determine its back diffusion rate λb inside the evaluated radon chambers as well as a small sealed cup. Two different methods are adapted for measuring both the leakage rate and the back diffusion rate. The leakage rate can be determined from the initial slope of the radon decay curve or from the exponential fitting of the whole decay curve. This can be achieved if a continuous monitoring of radon concentration inside the chamber is available. Also, the back diffusion rate is measured by sealing the radon source in the chamber and used the initial slope of the buildup curve to determine λb and therefore the exhalation rate of the source. This method was compared with simple equation for λb based on the ratio of the source to the chamber volume. The obtained results are applied to ceramic tile as an important radon source in homes. The measurement is targeted the ceramic glaze before and after firing as well as the obtained tile after adhere the glaze on the tile main body. Also, six different tile brands from Egyptian market are subjected to the study for comparison.

  7. Dependence of radon level on ventilation systems in residences

    International Nuclear Information System (INIS)

    Kokotti, H.

    1995-01-01

    The concentration of indoor radon and radon entry from soil into a house are expected to increase with increasing radon concentration in soil pores, and indoor radon concentration is expected to decrease with increasing ventilation rate. Depressurization, which can be caused by the stack effect, by wind and by unbalanced ventilation, creates different pressure conditions in a house and in the soil beneath it. To reveal the possible differences in radon removal and entry resulting from different ventilation systems, radon concentrations were determined in three similar slab-on-grade buildings provided with mechanical supply and exhaust ventilation, mechanical exhaust or natural ventilation. To limitate the effect of differences in soil parameters, the houses were constructed on the same gravel esker in Kuopio. Thus, the variation in radon entry as a result of different depressurisation of the houses (caused by unbalanced mechanical ventilation systems) could also be observed. In addition, the effect of pressurisation on living rooms could be determined in five slab-on-grade houses constructed on the same esker in Hollola. Mechanical supply and exhaust ventilation system controlled by measured indoor-outdoor pressure difference, was installed in the six houses. The seasonal variation with and without controlled pressure conditions were followed in a slab-on-grade house constructed on a gravel esker in Rekola. Long-term radon concentrations were observed to correlate negatively with air exchange rates. However, the removal effect of ventilation was found to be disturbed by negative pressure due to the stack effect and/or to unbalanced mechanical ventilation. (91 refs., 17 figs., 10 tabs.)

  8. Effect of humidity on radon exhalation rate from concrete

    International Nuclear Information System (INIS)

    Yamanishi, Hirokuni; Obayashi, Haruo; Tsuji, Naruhito; Nakayoshi, Hisao

    1998-01-01

    The objective of the present study is evaluation of seasonal humidity effect on radon exhalation rate from concrete. Three concrete pieces have been placed in three different fixed humidity circumstances for about a year. The three fixed humidities are selected 3, 10, 25 g m -3 in absolute humidity, those correspond to dry condition as control, winter and summer, respectively. Radon exhalation rate from each concrete piece is measured every one month during humidity exposure. Under the lower humidity, radon exhalation rate from concrete is small. On the contrary, radon exhalation rate is large in the higher humidity circumstance. This trend is consistent with the seasonal variation of indoor air radon concentration in low air-exchange-rate room. (author)

  9. Application of a radon model to explain indoor radon levels in a Swedish house

    CERN Document Server

    Font, L; Jönsson, G; Enge, W; Ghose, R

    1999-01-01

    Radon entry from soil into indoor air and its accumulation indoors depends on several parameters, the values of which normally depend on the specific characteristics of the site. The effect of a specific parameter is often difficult to explain from the result of indoor radon measurements only. The adaptation of the RAGENA (RAdon Generation, ENtry and Accumulation indoors) model to a Swedish house to characterise indoor radon levels and the relative importance of the different radon sources and entry mechanisms is presented. The building is a single-zone house with a naturally-ventilated crawl space in one part and a concrete floor in another part, leading to different radon levels in the two parts of the building. The soil under the house is moraine, which is relatively permeable to radon gas. The house is naturally-ventilated. The mean indoor radon concentration values measured with nuclear track detectors in the crawl-space and concrete parts of the house are respectively 75+-30 and 200+-80 Bq m sup - sup 3...

  10. Characterizing the source of radon indoors

    International Nuclear Information System (INIS)

    Nero, A.V.; Nazaroff, W.W.

    1983-09-01

    Average indoor radon concentrations range over more than two orders of magnitude, largely because of variability in the rate at which radon enters from building materials, soil, and water supplies. Determining the indoor source magnitude requires knowledge of the generation of radon in source materials, its movement within materials by diffusion and convection, and the means of its entry into buildings. This paper reviews the state of understanding of indoor radon sources and transport. Our understanding of generation rates in and movement through building materials is relatively complete and indicates that, except for materials with unusually high radionuclide contents, these sources can account for observed indoor radon concentrations only at the low end of the range observed. Our understanding of how radon enters buildings from surrounding soil is poorer, however recent experimental and theoretical studies suggest that soil may be the predominant source in many cases where the indoor radon concentration is high. 73 references, 3 figures, 1 table

  11. Inverse method for determining radon diffusion coefficient and free radon production rate of fragmented uranium ore

    International Nuclear Information System (INIS)

    Ye, Yong-jun; Wang, Li-heng; Ding, De-xin; Zhao, Ya-li; Fan, Nan-bin

    2014-01-01

    The radon diffusion coefficient and the free radon production rate are important parameters for describing radon migration in the fragmented uranium ore. In order to determine the two parameters, the pure diffusion migration equation for radon was firstly established and its analytic solution with the two parameters to be determined was derived. Then, a self manufactured experimental column was used to simulate the pure diffusion of the radon, the improved scintillation cell method was used to measure the pore radon concentrations at different depths of the column loaded with the fragmented uranium ore, and the nonlinear least square algorithm was used to inversely determine the radon diffusion coefficient and the free radon production rate. Finally, the solution with the two inversely determined parameters was used to predict the pore radon concentrations at some depths of the column, and the predicted results were compared with the measured results. The results show that the predicted results are in good agreement with the measured results and the numerical inverse method is applicable to the determination of the radon diffusion coefficient and the free radon production rate for the fragmented uranium ore. - Highlights: • Inverse method for determining two transport parameters of radon is proposed. • A self-made experimental apparatus is used to simulate radon diffusion process. • Sampling volume and position for measuring radon concentration are optimized. • The inverse results of an experimental sample are verified

  12. Relationship between indoor radon concentrations and air exchange rate

    International Nuclear Information System (INIS)

    Wang Jingshu; Liu Yuyu; Yao Xiaohua; Meng Jianfeng; Zhang Yongyi; Wang Xiaohe; Yu Xiufen.

    1995-01-01

    The indoor concentration of radon and the air exchange rate were simultaneously measured in four empty rooms, made of brick and cement, which were located in different floors of dwelling houses in Taiyuan, Shanxi, China. SF 6 tracer gas decay method was used to measure the air exchange rate. Indoor radon was collected with the dimembrane method. When the ventilation rate increased, the concentration of radon dropped rapidly. Regression analysis indicated that the indoor concentration of radon was equal to the outdoor level of radon when the air exchange rate was greater than 3-4. SF 6 decay method was an effective and convenient method for measuring the air exchange rate. There was no marked difference in measurements obtained in different locations of a room. (N.K.)

  13. Application of a radon model to explain indoor radon levels in a Swedish house

    International Nuclear Information System (INIS)

    Font, LL.; Baixeras, C.; Joensson, G.; Enge, W.; Ghose, R.

    1999-01-01

    Radon entry from soil into indoor air and its accumulation indoors depends on several parameters, the values of which normally depend on the specific characteristics of the site. The effect of a specific parameter is often difficult to explain from the result of indoor radon measurements only. The adaptation of the RAGENA (RAdon Generation, ENtry and Accumulation indoors) model to a Swedish house to characterise indoor radon levels and the relative importance of the different radon sources and entry mechanisms is presented. The building is a single-zone house with a naturally-ventilated crawl space in one part and a concrete floor in another part, leading to different radon levels in the two parts of the building. The soil under the house is moraine, which is relatively permeable to radon gas. The house is naturally-ventilated. The mean indoor radon concentration values measured with nuclear track detectors in the crawl-space and concrete parts of the house are respectively 75±30 and 200±80 Bq m -3 . Results of the model adaptation to the house indicate that soil constitutes the most relevant radon source in both parts of the house. The radon concentration values predicted by the model indoors fall into the same range as the experimental results

  14. Determination of exhalation rate of radon from walls and indoor radon by CR-39 detectors

    International Nuclear Information System (INIS)

    Vasidov, A.; Tillaev, T.S.

    2007-01-01

    Full text: The knowledge of true value exhalation rate of radon gas from building materials represents scientific and practical interest in environmental radiation protection. This point of view in the paper exhalation rate of radon gas from building materials and a surface of walls with different constructions were determined by detectors CR-39. The values of the exhalation rate of radon per unit area of the granite, concrete, fired and unfired bricks, sand, cement, alabaster varied 0.091 - 0.1 Bq·m -2 ·h -1 . The surface of walls of dwellings constructed from different building materials the exhalation rate of radon are within in limits of 0.083-1.12 Bq·m -2 ·h -1 . Were measurements with CR-39 detectors a level of radon within 50-520 Bq/m 3 in air of rooms constructed of the different building materials

  15. RADON MITIGATION IN SCHOOLS: CASE STUDIES OF RADON MITIGATION SYSTEMS INSTALLED BY EPA IN FOUR MARYLAND SCHOOLS ARE PRESENTED

    Science.gov (United States)

    The first part of this two-part paper discusses radon entry into schools, radon mitigation approaches for schools, and school characteristics (e.g., heating, ventilation, and air-conditioning -- HVAC-- system design and operation) that influence radon entry and mitigation system ...

  16. EFFECTS OF NATURAL AND FORCED BASEMENT VENTILATION ON RADON LEVELS IN SINGLE FAMILY DWELLINGS

    Science.gov (United States)

    The report gives, for the first time, results of an extensive study of the effect of ventilation on radon concentrations and radon entry rate in a single-family dwelling. Measurements of radon concentrations, building dynamics, and environmental parameters made in Princeton Unive...

  17. Effectiveness of ventilation improvements as a protective measure against radon

    International Nuclear Information System (INIS)

    Hoving, P.; Arvela, H.

    1993-01-01

    Radon reduction rates for ventilation improvement measures vary considerably. In 70% of the cases studied, further mitigation is needed to reach a level of 400 Bq/m 3 . Ventilation measures in crawl spaces and basements have resulted in reduction rates of up to 90%, though more typically 30-70%. Installing new mechanical systems in dwellings has resulted in 20-80% reduction rates. If fan use or fan efficiency is increased, radon levels can be reduced as much as when new systems are installed. Increasing fresh-air supply through vents or window gaps reduces radon concentrations 10-40%. Low ventilation rates, measured after mitigation using the passive per fluorocarbon tracer gas method, seem to be accompanied by also low radon reduction rates. Multiple zone tracer gas measurements were conducted in order to reveal radon entry from the soil and radon transport between zones. (orig.). (3 refs., 3 figs., 2 tabs.)

  18. Measurement of the radon exhalation rate from the medium surface by tracing the radon concentration

    International Nuclear Information System (INIS)

    Yanliang Tan; Detao Xiao

    2013-01-01

    The paper will present a method based on the accumulation chamber technique for measuring of radon exhalation from the medium surface. A radon monitor traces the change of radon concentration in the accumulation chamber, and then the radon exhalation can be obtained accurately through linear fit. Based on our recent experiments, the radon exhalation rate from the medium surface obtained from this method is in good agreement with the actual exhalation rate of our simulation facility. This method is superior to the competition method which obtains the radon exhalation through the exponential fit by an external PC-system. The calculation for the exponential fit is very easy by computer and related software. However, for portable instruments, the single chip microcomputer can't calculate the exponential fit rapidly. Thus, this method is usable for developing the new portable instrument to classify building materials, etc. (author)

  19. Automatically processed alpha-track radon monitor

    International Nuclear Information System (INIS)

    Langner, G.H. Jr.

    1993-01-01

    An automatically processed alpha-track radon monitor is provided which includes a housing having an aperture allowing radon entry, and a filter that excludes the entry of radon daughters into the housing. A flexible track registration material is located within the housing that records alpha-particle emissions from the decay of radon and radon daughters inside the housing. The flexible track registration material is capable of being spliced such that the registration material from a plurality of monitors can be spliced into a single strip to facilitate automatic processing of the registration material from the plurality of monitors. A process for the automatic counting of radon registered by a radon monitor is also provided

  20. The influence of thoron on measurement results of radon exhalation rate

    CERN Document Server

    Xiao De Tao; Ling Qiu; Leung, J K C

    2002-01-01

    Because of thoron exhalation, the measurement results of radon exhalation rate using a local still method is usually larger than the true value of radon flux rate of the monitored material surface. The influence of sup 2 sup 1 sup 6 Po(ThA) on radon exhalation rate can be eliminated for sensitive radon monitors. Theoretical evaluations of the influence of sup 2 sup 1 sup 2 Bi(ThC) and sup 2 sup 1 sup 2 Po(ThC')on radon exhalation rate are carried out in a sampler with diameter of 188 mm, and height of 125 mm, and supplied electrostatic field inside (generated by high voltage and electret) under following conditions: the sampling time are 1, 2, 3 h, respectively, thoron exhalation rate is 100 times of radon's. The calculation results indicate that the measurement results of radon flux rate are possibly 35.5% larger than true value due to the influence of thoron for fast and multifunctional radon monitors with electret, high voltage, respectively and using CR-39 SSNTD as detector, but this influence is negligib...

  1. Radon in schools. Report for May 1988-September 1989

    International Nuclear Information System (INIS)

    Leovic, K.W.

    1989-01-01

    The paper discusses radon entry into schools, radon mitigation approaches for schools, and school characteristics (e.g., HVAC system design and operation) that influence radon entry and mitigation system design. It also discusses mitigation systems installed by the U.S. EPA in four schools. The primary source of radon entry into a school with significantly elevated radon levels is normally soil gas that is drawn in by pressure differentials between the soil surrounding the substructure and the building interior. If the building interior is at a lower pressure than the soil surrounding the substructure and radon is present in the soil, the radon can be pulled in through cracks and other openings that are in contact with the soil. The amount of radon in a given classroom depends on the level of radon in the underlying material, the ease with which the radon moves as a component of the soil gas through the soil, the magnitude and direction of the pressure differentials, the number and size of the radon entry routes, and dilution and mixing of the room air. HVAC systems in schools vary considerably and tend to have greater impact on pressure differentials--and consequently radon levels--than do heating and air-conditioning (HAC) systems in houses

  2. RADON MITIGATION IN SCHOOLS: HVAC SYTEMS IN SCHOOLS TEND TO HAVE A GREATER IMPACT ON RADON LEVELS THAN HVAC SYSTEMS IN HOMES

    Science.gov (United States)

    The first part of this two-part paper discusses radon entry into schools, radon mitigation approaches for schools, and school characteristics (e.g., heating, ventilation, and air conditioing -- HVAC-- system design and operationg) that influence radon entry and mitigation system ...

  3. Effects of natural and forced basement ventilation on radon levels in single-family dwellings. Final report, May 90-Aug 91

    International Nuclear Information System (INIS)

    Cavallo, A.; Gadsby, K.; Reddy, T.A.

    1992-06-01

    The report gives, for the first time, results of an extensive study of the effect of ventilation on radon concentrations and radon entry rate in a single-family dwelling. Measurements of radon concentrations, building dynamics, and environmental parameters made in Princeton University research houses over several seasons and under different building operating conditions show the functional dependence of radon entry rate on basement depressurization. The work clarifies the role of natural ventilation in reducing indoor radon concentrations. The work shows conclusively that natural ventilation can decrease radon levels two ways: (1) by simple dilution, and (2) by providing a pressure break (defined as any opening in the building shell that reduces the outdoor/indoor differential pressure). This reduces building depressurization and thus the amount of radon-contaminated soil gas that is drawn into the building

  4. Comparison of calculated and measured soil-gas radon concentration and radon exhalation rate

    International Nuclear Information System (INIS)

    Neznal, Martin; Neznal, Matej; Jiranek, Martin

    2000-01-01

    The computer model RADON2D for WINDOWS, which makes it possible to estimate the radon exhalation rate from the ground surface and the distribution of soil-gas radon concentration, was tested using a large set of experimental data coming from four reference areas located in regions with different geological structure. A good agreement between calculated and experimental data was observed. In the majority of cases, a correct description of the real situation was obtained using non-modified experimental input data. (author)

  5. Radon exhalation rate on the Sivrice (Elazig ) fault zone

    International Nuclear Information System (INIS)

    Sahin, S.; Kuluoeztuerk, M. F.; Dogru, M.

    2009-01-01

    Four radon monitoring stations were built on the Sivrice Fault Zone which is a part of the East Anatolian Fault System that one of the very important two fault systems which tends to produce earthquake in Turkey. Radon exhalation rate were analyzed in the soil and water samples which collected around the stations. Radon exhalation rate in the soil and water samples were determined by using CR-39 that it is plastic detector.

  6. Measurement of radon exhalation rate and soil gas radon concentration in areas of southern Punjab (Pakistan)

    International Nuclear Information System (INIS)

    Mujahid, S. A.; Hussain, S.; Ramzan, M.

    2010-01-01

    Plastic track detectors were used to measure the radon concentration and exhalation rate from the soil samples. The samples were collected from areas of southern Punjab (Pakistan). In a laboratory experiment, passive alpha dosemeters were installed inside cylindrical bottles containing the soil samples. The radon concentrations and the radon exhalation rate were found in the ranges of 34±7 to 260±42 Bq m -3 and 38±8 to 288±46 mBq m -2 h -1 , respectively. The on-site measurements of radon in the soil gas were also carried out in these areas using a scintillation alpha counter. The concentration of radon in the soil gas was found in the range of 423±82-3565±438 Bq m -3 . (authors)

  7. Rehabilitation Measures against radon gas entry

    International Nuclear Information System (INIS)

    Frutos Vazquez, Borja; Olaya Adan, Manuel; Esteban Saiz, Jose Luis

    2011-01-01

    Radon gas is a pathological agent for inhabitants of buildings where it is present. Due to its origin in uranium decay chain, it bears radioactive effects that inside human body lead to higher risks of developing lung cancer. It comes from soils containing granite masses or other substrates containing uranium. It enters through common material used in constructions, such as concrete ground slabs, basement walls, etc. In order to avoid such gas immission into inhabited rooms, several measurements cab be considered for existing buildings. This study intends to show the results obtained for radon reductions by means of different constructive solutions, already designed and executed so as to stop radon gas immission into a prototype building constructed for this specific purpose

  8. Compact detector for radon and radon daughter products

    International Nuclear Information System (INIS)

    Alter, H.W.; Oswald, R.A.

    1986-01-01

    This invention provides an improved compact track registration detector for radon gas. The detector comprises a housing having an open mouth, a bottom, and side walls; track registration means, supported inside the housing, which forms damage tracks along paths traversed by alpha particles; a microporous filter positioned across the mouth of the housing to prevent entry of radon daughters and particulate matter; and a cap that may be placed on the mouth of the housing to retain the filter. The housing has internal wall surfaces dimensioned to optimize the registration of alpha particles from radon and radon daughters present in the housing

  9. Significance of independent radon entry rate and air exchange rate assessment for the purpose of radon mitigation effectiveness proper evaluation: case studies

    Czech Academy of Sciences Publication Activity Database

    Froňka, A.; Jílek, K.; Moučka, L.; Brabec, Marek

    2011-01-01

    Roč. 145, 2-3 (2011), s. 133-137 ISSN 0144-8420 Institutional research plan: CEZ:AV0Z10300504 Keywords : indoor radon * kalman filter * state-space modeling Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.822, year: 2011

  10. Radon transport in fractured soil. Laboratory experiments and modelling

    International Nuclear Information System (INIS)

    Hoff, A.

    1997-10-01

    Radon (Rn-222) transport in fractured soil has been investigated by laboratory experiments and by modelling. Radon transport experiments have been performed with two sand columns (homogeneous and inhomogeneous) and one undisturbed clayey till column containing a net of preferential flow paths (root holes). A numerical model (the finite-element model FRACTRAN) and an analytic model (a pinhole model) have been applied in simulations if soil gas and radon transport in fractured soil. Experiments and model calculations are included in a discussion of radon entry rates into houses placed on fractured soil. The main conclusion is, that fractures does not in general alter transport of internally generated radon out of soil, when the pressure and flow conditions in the soil is comparable to the conditions prevailing under a house. This indicates the important result, that fractures in soil have no impact on radon entry into a house beyond that of an increased gas permeability, but a more thorough investigation of this subject is needed. Only in the case where the soil is exposed to large pressure gradients, relative to gradients induced by a house, may it be possible to observe effects of radon exchange between fractures and matrix. (au) 52 tabs., 60 ill., 5 refs

  11. Radon transport in fractured soil. Laboratory experiments and modelling

    Energy Technology Data Exchange (ETDEWEB)

    Hoff, A

    1997-10-01

    Radon (Rn-222) transport in fractured soil has been investigated by laboratory experiments and by modelling. Radon transport experiments have been performed with two sand columns (homogeneous and inhomogeneous) and one undisturbed clayey till column containing a net of preferential flow paths (root holes). A numerical model (the finite-element model FRACTRAN) and an analytic model (a pinhole model) have been applied in simulations if soil gas and radon transport in fractured soil. Experiments and model calculations are included in a discussion of radon entry rates into houses placed on fractured soil. The main conclusion is, that fractures does not in general alter transport of internally generated radon out of soil, when the pressure and flow conditions in the soil is comparable to the conditions prevailing under a house. This indicates the important result, that fractures in soil have no impact on radon entry into a house beyond that of an increased gas permeability, but a more thorough investigation of this subject is needed. Only in the case where the soil is exposed to large pressure gradients, relative to gradients induced by a house, may it be possible to observe effects of radon exchange between fractures and matrix. (au) 52 tabs., 60 ill., 5 refs.

  12. Measurement of exhalation rate of radon and radon concentration in air using open vial method

    International Nuclear Information System (INIS)

    Horiuchi, Kimiko; Ishii, Tadashi.

    1991-01-01

    It was recognized that more than half of total exposure dose on human subject is caused by radon and its decay products which originate from naturally occurring radioactive substances (1988 UNSCEAR). Since then the exhalation of radon from the ground surface has received increasing attention. The authors have developed a new method for the determination of radon in natural water using toluene extraction of radon and applying a liquid scintillation counter of an integral counting technique which is able to get the absolute counting of radon. During these studies, the authors found out that when a counting vial containing of Liquid scintillator (LS)-toluene solution, without a lid, is exposed to the atmosphere for a while, dissolution of radon clearly occurs due to high solubility of radon into toluene layer. To extend this finding for the determination of radon in the atmosphere, the authors devised a new method to actively collect the atmosphere containing radon in a glass bottle by discharging a definite amount of water in it, which is named as open-vial dynamic method. The radon concentration can be easily calculated after the necessary corrections such as the partition coefficient and others. Applying proposed method to measure the radon exhalation rate from the ground surface and radon concentration in air of the dwelling environment, radioactive mineral spring zone and various geological formation such as granitic or sedimentary rocks. (author)

  13. Fractal characters and hurst exponent of radon exhalation rate from uranium Tailings

    International Nuclear Information System (INIS)

    Hu Hanqiao; Tan Kaixuan; Li Chunguang; Lv Junwen; Liu Dong

    2010-01-01

    The uranium tailings radon exhalation is an important environmental problem. The change of the radon exhalation rate of uranium tailings with the time through laboratory experiments is measured, and the results show that the radon exhalation rate of the tailings change obviously with time in non-periodic oscillations. Applying fractal analysis to the radon exhalation rate time-series data by R/S method, the Hurst exponent of the entire time series data is 0.83, the fractal dimension is 1.17. Mobile Hurst exponent is between 0.5 and 0.8 in most cases. The Hurst exponent of the experiments in the later part are below 0.5. The exhalation rate of uranium tailings radon does not meet the long-term trend of random walk theory, the radon exhalation rate has long-term memory, but the short-term memory is not distinct. The radon exhalation from uranium tailings is a deterministic chaotic dynamics. (authors)

  14. Variability in the exhalation rate of radon

    International Nuclear Information System (INIS)

    Rundo, J.; Markun, F.; Sha, J.Y.; Cameron, P.

    1976-01-01

    In a day-long study, twenty-eight 10-min samples of breath were collected from a former radium dial painter and were analyzed for radon. The radon exhalation rate showed good short-term reproducibility, but there was a dramatic short-lived increase in the first samples collected after lunch and a slow but steady increase during the course of the day

  15. The discussion on a new measure method of radon chamber leak rate

    International Nuclear Information System (INIS)

    Zhang Junkui; Tang Bing

    2010-01-01

    Radon chamber is the third standard radon source. The leak rate is the key parameter for the radon chamber to naturally and safely operate. One way, that measure the leak rate is introduced. The experience result is that the way is simple and veracious to measure the leak rate. (authors)

  16. Effects of vegetation of radon transport processes in soil: The origins and pathways of {sup 222}Rn entering into basement structures. Final report, March 15, 1987--May 15, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Borak, T.B.

    1992-08-01

    The entry rate of {sup 22}Rn into a basement structure was measured continuously. These measurements demonstrated that radon entry did not vanish even when the structure was slightly pressurized. This persistent entry has been determined to be dominated by diffusion through the floor and walls and a combination of diffusion and convection through the floor-wall joint. The highest indoor radon concentrations occurred during calm periods when the pressure differentials between the inside and outside of the structure were small. The objectives of this work were to identify the origins of the radon and investigate the entry pathways. The radon could originate either in the concrete or in the soil surrounding the structure. Entry pathways into the basement were through the concrete floor and walls as well as through the floor-wall joint. The contributions of the origins and entry pathways were determined by continuously measuring the radon entry rate into the basement, using a trace gas system, and the flux density through portions of the floor and walls. Radon entry through the floor-wall joint could be controlled using a baseboard barrier system. Results indicated that, during calm conditions with wind speeds less than 1 m s{sup {minus}1}, 25 % of the radon enters through the floor-wall joint and 75 % enters through the concrete. About 30 % of the radon originated in the concrete floor and walls. A method for in-situ determination of the diffusion length and emanation fraction of radon in concrete was developed. For the concrete used in the structure, the average diffusion length and emanation fraction were 27{plus_minus}4 cm and 0.19{plus_minus}0.02 respectively.

  17. Methodology for determination of radon-222 production rate of residential building and experimental verification

    International Nuclear Information System (INIS)

    Tung, Thomas C.W.; Niu, J.L.; Burnett, J.; Lau, Judy O.W.

    2005-01-01

    Indoor radon concentration is mainly associated with the radon production rate of building material, ventilation rate, and the outdoor radon concentrations. Radon production rate of a room is defined as the sum of the products of the radon emanation rates and the exposed areas of the materials. Since the selection of the building materials and the exposed areas are different from room to room, it makes the radon production rate of homes fall in a wide range. Here, the radon production rate of a room is suggested to be quantified by a sealing method, in which the systematic radon growth curve is obtained. The radon production rate of the room can be determined from the initial slope of the growth curve. Three rooms at different homes in Hong Kong were selected in the study for verifying the methodology. The uncertainty characterized by data scatter arisen from the coupling effect of the leakage rate and outdoor radon was also included in the discussion. During the measurements, no occupant was allowed into the home. No mechanical ventilation was involved in the measurement. The indoor and outdoor radon concentrations of the sampled homes were monitored simultaneously and lasted for more than three days. The radon production rates and the uncertainties of three rooms at Homes 1, 2, and 3 were found to be 232.8, 46.0, 414.6, and 20.3, 9.4, 59.2Bqh -1 , respectively. The approach is valid when the air leakage rate of the room is controlled below 0.1h -1

  18. Radon reduction in wood foundation system

    International Nuclear Information System (INIS)

    Clark, R.J.

    1990-01-01

    Radon, an issue of growing concern to the building industry. Silently, invisibly, it invades existing structures as it will future foundation structures. This paper addresses the nature and causes of radon, and cost-effective prevention and retrofit techniques used for wood foundation systems. Radon also can enter homes with foundations that use the under-floor as an air distribution system. These building practices will be shown; even materials used in construction may release radon, for example, this may be a problem in a house that has a solar heating system in which its heat is stored in large beds of stone. Stone is most often used in wood foundation construction. The common radon entry points will be looked at, and the latest prevention techniques will be illustrated, such as natural and forced ventilation, sealing major radon sources and entry routes, and sub-slab and sump crock ventilations

  19. Influence of indoor air conditions on radon concentration in a detached house

    International Nuclear Information System (INIS)

    Akbari, Keramatollah; Mahmoudi, Jafar; Ghanbari, Mahdi

    2013-01-01

    Radon is released from soil and building materials and can accumulate in residential buildings. Breathing radon and radon progeny for extended periods hazardous to health and can lead to lung cancer. Indoor air conditions and ventilation systems strongly influence indoor radon concentrations. This paper focuses on effects of air change rate, indoor temperature and relative humidity on indoor radon concentrations in a one family detached house in Stockholm, Sweden. In this study a heat recovery ventilation system unit was used to control the ventilation rate and a continuous radon monitor (CRM) was used to measure radon levels. FLUENT, a computational fluid dynamics (CFD) software package was used to simulate radon entry into the building and air change rate, indoor temperature and relative humidity effects using a numerical approach. The results from analytical solution, measurements and numerical simulations showed that air change rate, indoor temperature and moisture had significant effects on indoor radon concentration. Increasing air change rate reduces radon level and for a specific air change rate (in this work Ach = 0.5) there was a range of temperature and relative humidity that minimized radon levels. In this case study minimum radon levels were obtained at temperatures between 20 and 22 °C and a relative humidity of 50–60%. - Highlights: ► We use CFD to simulate indoor radon concentration and distribution. ► The effects of ventilation rate, temperature and moisture are investigated. ► Model validation is performed through analytical solution and measurement results. ► Results show that ventilation rate is inversely proportional to radon level. ► There is a range of temperature and relative humidity that minimize radon level.

  20. Discussion on the formula of electrostatic collection radon exhalation rate monitor

    International Nuclear Information System (INIS)

    Gou Quanlu; Zhang Zhihui

    1998-01-01

    The formula for calculating radon exhalation rate from the surface of materials are deduced based the theory of radioactivity decay by considering factors which effect the change of radon and its decay products. The selection of value of Z in the formula are also discussed and some problems that exist in the available formula used to calculate the radon exhalation rate are explicated. The practical formula are deduced by adopting the effective decay constant λ e of radon in the collector. The fraction of α particles emitted by radon which effects the measurement results and the contribution of radon decay products left in the former measurement to the next measurement are also considered, and the correction factors are given respectively. The method is more complete and more practical

  1. Reduction of radon concentration in a basement workplace: study of the problem and characterization of the main parameters affecting the radon concentration

    International Nuclear Information System (INIS)

    Chiaberto, E.M.; Magnoni, M.; Righino, F.; Costa Laia, R.

    2002-01-01

    In this work is described the method used for the mitigation of high radon concentrations found in a basement workplace, the ARPA laboratory used for the metrology of EMF. In this lab was in fact measured a radon concentration up to 1900 Bq/m 3 , a value largely exceeding the Italian limit for workplaces (500 Bq/m 3 ). The basement workplace affected by radon is a room of around 500 m 3 with no windows and only one door, during work usually close, and therefore with a very low ventilation rate. In this workplace, usually two persons spent about 6 hour per day. Therefore their exposure to the radon and its decay products can attain a considerable value. For this people, accordingly to the accepted dosimetric models, an effective dose of several mSv per year could be estimated (ICRP Publication n. 65, 1993). It is thus important to reduce the radon concentration to acceptable levels, i.e. at least lower than 500 Bq/m 3 . This paper deals not only with the simple method used for the remedial action, but also to the investigation of the relevant parameters affecting the radon concentration. In particular, the monitoring of the radon concentration before and after the remedial action, allowed the calculation of the radon entry rates (Bq/s) and the ventilation rates (s-1) in the different experimental condition

  2. Field investigation of surface-deposited radon progeny as a possible predictor of the airborne radon progeny dose rate.

    Science.gov (United States)

    Sun, Kainan; Steck, Daniel J; Field, R William

    2009-08-01

    The quantitative relationships between radon gas concentration, the surface-deposited activities of various radon progeny, the airborne radon progeny dose rate, and various residential environmental factors were investigated through actual field measurements in 38 selected Iowa houses occupied by either smokers or nonsmokers. Airborne dose rate was calculated from unattached and attached potential alpha energy concentrations (PAECs) using two dosimetric models with different activity-size weighting factors. These models are labeled Pdose and Jdose, respectively. Surface-deposited 218Po and 214Po were found significantly correlated to radon, unattached PAEC, and both airborne dose rates (p fireplace, or usage of a ceiling fan significantly, or marginally significantly, reduced the Pdose to 0.65 (90% CI 0.42-0.996), 0.54 (90% CI 0.28-1.02), and 0.66 (90% CI 0.45-0.96), respectively. For Jdose, only the usage of a ceiling fan significantly reduced the dose rate to 0.57 (90% CI 0.39-0.85). In smoking environments, deposited 218Po was a significant negative predictor for Pdose (RR 0.68, 90% CI 0.55-0.84) after adjusting for long-term 222Rn and environmental factors. A significant decrease of 0.72 (90% CI 0.64-0.83) in the mean Pdose was noted, after adjusting for the radon and radon progeny effects and other environmental factors, for every 10 additional cigarettes smoked in the room. A significant increase of 1.71 in the mean Pdose was found for large room size relative to small room size (90% CI 1.08-2.79) after adjusting for the radon and radon progeny effects as well as other environmental factors. Fireplace usage was found to significantly increase the mean Pdose to 1.71 (90% CI 1.20-2.45) after adjusting for other factors.

  3. Comparison of predicted and measured variations of indoor radon concentration

    International Nuclear Information System (INIS)

    Arvela, H.; Voutilainen, A.; Maekelaeinen, I.; Castren, O.; Winqvist, K.

    1988-01-01

    Prediction of the variations of indoor radon concentration were calculated using a model relating indoor radon concentration to radon entry rate, air infiltration and meteorological factors. These calculated variations have been compared with seasonal variations of 33 houses during 1-4 years, with winter-summer concentration ratios of 300 houses and the measured diurnal variation. In houses with a slab in ground contact the measured seasonal variations are quite often in agreement with variations predicted for nearly pure pressure difference driven flow. The contribution of a diffusion source is significant in houses with large porous concrete walls against the ground. Air flow due to seasonally variable thermal convection within eskers strongly affects the seasonal variations within houses located thereon. Measured and predicted winter-summer concentration ratios demonstrate that, on average, the ratio is a function of radon concentration. The ratio increases with increasing winter concentration. According to the model the diurnal maximum caused by a pressure difference driven flow occurs in the morning, a finding which is in agreement with the measurements. The model presented can be used for differentiating between factors affecting radon entry into houses. (author)

  4. The impacts of balanced and exhaust mechanical ventilation on indoor radon

    International Nuclear Information System (INIS)

    Fisk, W.J.; Mowris, R.J.

    1987-02-01

    Models for estimating radon entry rates, indoor radon concentrations, and ventilation rates in houses with a basement or a vented crawl-space and ventilated by natural infiltration, mechanical exhaust ventilation, or balanced mechanical ventilation are described. Simulations are performed for a range of soil and housing characteristics using hourly weather data for the heating season in Spokane, WA. For a house with a basement, we show that any ventilation technique should be acceptable when the soil permeability is less than approximately 10 -12 m 2 . However, exhaust ventilation leads to substantially higher indoor radon concentrations than infiltration or balanced ventilation with the same average air exchange rate when the soil permeability is 10 -10 m 2 or greater. For houses with a crawl-space, indoor radon concentrations are lowest with balanced ventilation, intermediate with exhaust ventilation, and highest with infiltration

  5. Radon emanation rate in construction materials and various design of house

    International Nuclear Information System (INIS)

    Ahmad Asyraf Osman

    2012-01-01

    Indoor air quality are important factors that need to be addressed because it can affect the health and comfort of occupants in it. Among the major sources of indoor air pollution are radon gas. Radiological risk due to radon gas due to its intake into the human body is the major cause of lung cancer. This study was conducted to determine the radon emanation rate that occurs naturally in the building materials and its contains in several kinds of house. Construction materials studied are sand, gravel, cement and bricks. Terrace houses, double storey terrace houses, flats and wooden houses were studied in radon emanation in various types of houses. Radon emanation rates in building materials in a variety of home and the home measured using Sun Nuclear radon monitor (model 1029) and radon gas concentrations are measured in units of Bq m -3 . From the results, granites have recorded the highest radon emissions that is 2.67 μBq kg -1 s -1 , followed by sand with 2.53 μBq kg -1 s -1 . The bricks emission rate were recorded was 2.47 μBq kg -1 s -1 , while Cement recorded the lowest with only 1.46 μBq kg -1 s -1 . In study of radon in a variety of home, the results showed that the single storey terrace houses recorded the highest reading of 25.67 ± 4.96 Bq m -3 . First level Double storey terrace houses recorded 23.24 ± 3.72 Bq m -3 compared with a second level of two-storey terrace house which recorded emission rate of 16.43 ± 2.53 Bq m -3 . Flats were recorded the second lowest with only 13.07 ± 2.38 Bq m -3 . House that recorded the lowest reading was wooden houses that recorded 9.53 ± 1.96 Bq m -3 . (author)

  6. Radon exhalation rates of concrete modified with fly ash and silica fumes

    International Nuclear Information System (INIS)

    Amit Kumar; Chauhan, R.P.; Mehta, Vimal; Kant, K.

    2013-01-01

    The radiological impact of the environmental gas radon to the health of general public is of concern since many decades. Cement used for the construction blended with fly ash and silica fumes is recommended by Government in order to avoid the soil and environmental pollution. But these addition step-up the Indoor radon level in the dwelling due to radioactivity contents. The exhalation of radon from concrete blended with silica fumes and fly ash depends upon addition level, porosity, moisture and radioactivity content. In order to optimize the level of substitution of silica fumes and fly ash, measurements of radon exhalation rates from the concrete blended with different proportions of fly ash and silica fumes was carried out using active scintillation radon monitor. The effect of porosity, moisture, back diffusion and radioactivity content of the concrete on exhalation rates is studied. The measured exhalation rates were extrapolated for indoor radon concentration and effective dose equivalent using ICRP, 1987 recommendations. (author)

  7. Effect of ventilation rate on concentrations of indoor radon and its progenies

    International Nuclear Information System (INIS)

    Wang Chunhong; Liu Yanyang; Liu Fudong; Liu Senlin; Chen Ling

    2012-01-01

    To study concentrations of indoor radon and its progenies, ventilation rates and their corresponding concentrations of indoor radon and its progenies were measured using tracer-gas dilution method. Results show that both ventilation rates and concentrations of indoor radon varied insignificantly and radon concentration were higher than the outdoor environment while doors and windows were all closed with air-conditioner on and off respectively; the concentrations declined and close to the outdoor level when doors and windows were all open with ventilators in operation. Accordingly, in modern life, especially in summer, people's preference for air-conditioners but natural ventilation would result in an increase of indoor radon concentration. (authors)

  8. Radium and radon exhalation rate in soil samples of Hassan district of South Karnataka, India

    International Nuclear Information System (INIS)

    Jagadeesha, B.G.; Narayana, Y.

    2016-01-01

    The radon exhalation rate was measured in 32 soil samples collected from Hassan district of South Karnataka. Radon exhalation rate of soil samples was measured using can technique. The results show variation of radon exhalation rate with radium content of the soil samples. A strong correlation was observed between effective radium content and radon exhalation rate. In the present work, an attempt was made to assess the levels of radon in the environment of Hassan. Radon activities were found to vary from 2.25±0.55 to 270.85±19.16 Bq m"-"3 and effective radium contents vary from 12.06±2.98 to 1449.56±102.58 mBq kg"-"1. Surface exhalation rates of radon vary from 1.55±0.47 to 186.43±18.57 mBq m"-"2 h"-"1, and mass exhalation rates of radon vary from 0.312±0.07 to 37.46±2.65 mBq kg"-"1 h"-"1. (authors)

  9. Field Investigation of the Surface-deposited Radon Progeny as a Possible Predictor of the Airborne Radon Progeny Dose Rate

    Science.gov (United States)

    Sun, Kainan; Steck, Daniel J.; Field, R. William

    2009-01-01

    The quantitative relationships between radon gas concentration, the surface-deposited activities of various radon progeny, the airborne radon progeny dose rate, and various residential environmental factors were investigated through actual field measurements in 38 selected Iowa houses occupied by either smokers or nonsmokers. Airborne dose rate was calculated from unattached and attached potential alpha energy concentrations (PAECs) using two dosimetric models with different activity-size weighting factors. These models are labeled Pdose and Jdose, respectively. Surface-deposited 218Po and 214Po were found significantly correlated to radon, unattached PAEC, and both airborne dose rates (p fireplace, or usage of a ceiling fan significantly, or marginal significantly, reduced the Pdose to 0.65 (90% CI 0.42–0.996), 0.54 (90% CI 0.28–1.02) and 0.66 (90% CI 0.45–0.96), respectively. For Jdose, only the usage of a ceiling fan significantly reduced the dose rate to 0.57 (90% CI 0.39–0.85). In smoking environments, deposited 218Po was a significant negative predictor for Pdose (RR 0.68, 90% CI 0.55–0.84) after adjusting for long-term 222Rn and environmental factors. A significant decrease of 0.72 (90% CI 0.64–0.83) in the mean Pdose was noted, after adjusting for the radon and radon progeny effects and other environmental factors, for every 10 increasing cigarettes smoked in the room. A significant increase of 1.71 in the mean Pdose was found for large room size relative to small room size (90% CI 1.08–2.79) after adjusting for the radon and radon progeny effects as well as other environmental factors. Fireplace usage was found to significantly increase the mean Pdose to 1.71 (90% CI 1.20–2.45) after adjusting for other factors. PMID:19590273

  10. Radon and Thoron Exhalation Rates from Surface Soil of Bangka - Belitung Islands, Indonesia

    Directory of Open Access Journals (Sweden)

    Syarbaini Syarbaini

    2015-03-01

    Full Text Available DOI:10.17014/ijog.2.1.35-42Radon and thoron exhalation rate from soil is one of the most important factors that can influence the radioactivity level in the environment. Radon and thoron gases are produced by the decay of the radioactive elements those are radium and thorium in the soil, where its concentration depends on the soil conditions and the local geological background. In this paper, the results of radon and thoron exhalation rate measurements from surface soil of Bangka Belitung Islands at thirty six measurement sites are presented. Exhalation rates of radon and thoron were measured by using an accumulation chamber equipped with a solid-state alpha particle detector. Furthermore, the correlations between radon and thoron exhalation rates with their parent nuclide (226Ra and 232Th concentrations in collected soil samples from the same locations were also evaluated. The result of the measurement shows that mostly the distribution of radon and thoron is similar to 226Ra and 232Th, eventhough it was not a good correlation between radon and thoron exhalation rate with their parent activity concentrations (226Ra and 232Th due to the environmental factors that can influence the radon and thoron mobilities in the soil. In comparison to a world average, Bangka Belitung Islands have the 222Rn and 220Rn exhalation rates higher than the world average value for the regions with normal background radiation.

  11. Use of natural basement ventilation to control radon in single family dwellings

    International Nuclear Information System (INIS)

    Cavallo, A.; Gadsby, K.; Reddy, T.A.

    1992-01-01

    Natural basement ventilation has always been recommended as a means of reducing radon levels in houses. However, its efficacy has never been documented. In these experiments, natural ventilation has for the first time been studied systematically in two research houses during both the summer cooling season and the winter heating season. Ventilation rates, environmental and house operating parameters, as well as radon levels, have been monitored. It can be definitely concluded from radon entry rate calculations that natural ventilation can reduce radon levels in two ways. The first is by simple dilution. The second is by reducing basement depressurization and thus the amount of radon-contaminated soil gas drawn into the structure. Therefore, basement ventilation can be an effective mitigation strategy under some circumstances. It might be especially useful in houses with low radon concentrations (of the order of 370 Bq m -1 ) or those with low levels and which cannot be mitigated cost-effectively with conventional technology. (Author)

  12. Open charcoal chamber method for mass measurements of radon exhalation rate from soil surface

    International Nuclear Information System (INIS)

    Tsapalov, Andrey; Kovler, Konstantin; Miklyaev, Peter

    2016-01-01

    Radon exhalation rate from the soil surface can serve as an important criterion in the evaluation of radon hazard of the land. Recently published international standard ISO 11665-7 (2012) is based on the accumulation of radon gas in a closed container. At the same time since 1998 in Russia, as a part of engineering and environmental studies for the construction, radon flux measurements are made using an open charcoal chamber for a sampling duration of 3–5 h. This method has a well-defined metrological justification and was tested in both favorable and unfavorable conditions. The article describes the characteristics of the method, as well as the means of sampling and measurement of the activity of radon absorbed. The results of the metrological study suggest that regardless of the sampling conditions (weather, the mechanism and rate of radon transport in the soil, soil properties and conditions), uncertainty of method does not exceed 20%, while the combined standard uncertainty of radon exhalation rate measured from the soil surface does not exceed 30%. The results of the daily measurements of radon exhalation rate from the soil surface at the experimental site during one year are reported. - Highlights: • Radon exhalation rate from the soil surface area of 32 cm"2 can be measured at level of 10 mBq/(m"2s) at the uncertainty ≤30%. • The method has a metrological justification. • No need to consider climate conditions, soil properties and conditions, mechanism and rate of radon transport in the soil.

  13. On the potential importance of transient air flow in advective radon entry into buildings

    International Nuclear Information System (INIS)

    Narasimhan, T.N.; Tsang, Y.W.; Holman, H.Y.

    1990-01-01

    The authors have investigated, using a mathematical model, the temporal variations of air flux within the soil mass surrounding a basement in the presence of time dependent periodic variations of barometric pressure and a persistent under-pressure at the basement. The results of transient air flow show that for a homogeneous soil medium, the effects of barometric fluctuations are most significant in the cases where soil permeability to air is low and the fluctuation frequency is high. In these cases, the barometric fluctuation can greatly enhance the magnitude of fluxes as well as introduce flow direction reversals from surrounding soil into the basement. These large fluxes with direction reversals have strong implications in regard to advective transport of radon. The results suggest that the transient oscillations have to be accounted for in quantifying radon entry into buildings. In the actual field set up, the transient behavior will be further influenced by soil permeability heterogeneity, by soil moisture variations, and by the effects of multiple periodic components in the barometric pressure fluctuations

  14. Determination of radon exhalation rates from tiles using active and passive techniques

    International Nuclear Information System (INIS)

    Al-Jarallah, M.I.; Abu-Jarad, F.; Fazal-ur-Rehman

    2001-01-01

    Measurements of radon exhalation rates for selected samples of tiles used in Saudi Arabia were carried out using active and passive measuring techniques. These samples were granite, marble and ceramic. In the active method, a PC-based radon gas analyzer with emanation container was used, while, in the passive method, PM-355 nuclear track detectors with the 'can technique' were applied for 180 days. A comparison of the exhalation rates measured by the two techniques showed a good linear correlation coefficient of 0.7. The granite samples showed an average radon exhalation rate of 0.7 Bq m -2 h -1 , which was higher than that of marble and ceramic by more than twofold. The radon exhalation rates measured by the 'can technique' showed a non-uniform exhalation from the surface of the same tile

  15. Determination of radon exhalation rates from tiles using active and passive techniques

    Energy Technology Data Exchange (ETDEWEB)

    Al-Jarallah, M.I. E-mail: mibrahim@kfupm.edu.sa; Abu-Jarad, F.; Fazal-ur-Rehman

    2001-06-01

    Measurements of radon exhalation rates for selected samples of tiles used in Saudi Arabia were carried out using active and passive measuring techniques. These samples were granite, marble and ceramic. In the active method, a PC-based radon gas analyzer with emanation container was used, while, in the passive method, PM-355 nuclear track detectors with the 'can technique' were applied for 180 days. A comparison of the exhalation rates measured by the two techniques showed a good linear correlation coefficient of 0.7. The granite samples showed an average radon exhalation rate of 0.7 Bq m{sup -2} h{sup -1}, which was higher than that of marble and ceramic by more than twofold. The radon exhalation rates measured by the 'can technique' showed a non-uniform exhalation from the surface of the same tile.

  16. ERRICCA radon model intercomparison exercise

    DEFF Research Database (Denmark)

    Andersen, C.E.; Albarracín, D.; Csige, I.

    1999-01-01

    -state diffusive radon profiles in dry and wet soils, (2) steady-state entry of soil gas and radon into a house, (3) time-dependent radon exhalation from abuilding-material sample. These cases cover features such as: soil heterogeneity, anisotropy, 3D-effects, time dependency, combined advective and diffusive......, still remain. All in all, it seems that the exercise has served its purpose and stimulated improvements relating to the quality of numerical modelling of radon transport. To maintain a high quality of modelling, it is recommendedthat additional exercises are carried out....

  17. Contribution of radon and radon daughters to respiratory cancer

    International Nuclear Information System (INIS)

    Harley, N.; Samet, J.M.; Cross, F.T.; Hess, T.; Muller, J.; Thomas, D.

    1986-01-01

    This article reviews studies on the contribution of radon and radon daughters to respiratory cancer and proposes recommendations for further research, particularly a national radon survey. The steady-state outdoor radon concentration averages 200 pCi/m3, and indoor levels are about 4 times higher. The primary source of radon in homes is the underlying soil; entry depends on multiple variables and reduced ventilation for energy conservation increases indoor radon levels. Occupational exposures are expressed in units of radon daughter potential energy concentration or working level (WL). Cumulative exposure is the product of the working level and the time exposed. The unit for cumulative exposure is the working level month (WLM). The occupational standard for radon exposure is 4 WLM/year, and 2 WLM/year has been suggested as a guideline for remedial action in homes. Epidemiologic studies show that miners with cumulative radon daughter exposures somewhat below 100 WLM have excess lung cancer mortality. Some 3% to 8% of miners studied have developed lung cancer attributable to radon daughters. All of the underground mining studies show an increased risk of lung cancer with radon daughter exposure. All cell types of lung cancer increased with radon exposure. If radon and smoking act in a multiplicative manner, then the risk for smokers could be 10 times that for nonsmokers. The potential risk of lung cancer appears to be between 1 and 2 per 10,000/WLM, which yields a significant number of lung cancers as some 220 million persons in the United States are exposed on average to 10 to 20 WLM/lifetime

  18. Radiation and Radon Survey of Akchatau (Khazakstan) and Experience with Radon Remedial Measures

    International Nuclear Information System (INIS)

    Soroka, Y.; Molchanov, A.

    1998-01-01

    A radiation survey of the territory of Akchatau settlement has been carried out. The main factors affecting the high content of radon in dwelling houses were revealed. The experiment on isolation of under floor spaces was carried out to prevent the entry of radon-containing soil gas into living rooms. The repair works efficiency for decreasing of the radon content in hazardous houses was analysed. The survey showed a need for regulation of the value of 222 Rn exhalation on the territories planned for construction works. (author)

  19. Indoor radon level in schools of Shillong, Meghalaya

    International Nuclear Information System (INIS)

    Saxena, A.; Sharma, Y.; Maibam, D.; Walia, D.; Diengdoh, E.

    2010-01-01

    Radon ( 222 Rn) in the atmosphere is the most important contributor to human exposure from natural sources. Radon is a noble inert gas; and it decays to radionuclides that are chemically active and relatively short lived. Inhalation of the short lived radon progeny imparts a radiation dose to the lung, to which an increased risk of lung cancer is attributed due to the alpha particle irradiation of the secretory and basal cells of the respiratory tract. The indoor radon concentration is dependent on the texture, porosity, permeability, water content of the soil underlying the structure and the radon behaviour in soils on aspects of geology and climate. The direct cause of high radon entry rates into structures exhibiting high indoor radon concentrations are fractures in bedrock formations, cracks in the soil, and similar inhomogeneities in the materials of the foundation of the structures. Other factors influencing indoor radon concentration includes exhalations from the walls and ceilings, building design and material, cracks and openings in the foundation of the buildings. The geological factors in the study area promote radon accumulation especially in buildings and dwellings. The world average annual effective dose in the indoor environments is 1.01 mSv.y -1 . The importance of radon level measurements in school buildings is of interest as children are more sensitive to radon exposure than adults. Hence, radon measurements in 10 schools have been undertaken in the present study

  20. Radon and remedial action in Spokane River Valley residences: an interim report

    International Nuclear Information System (INIS)

    Turk, B.H.; Prill, R.J.; Fisk, W.J.; Grimsrud, D.T.; Moed, B.A.; Sextro, R.G.

    1986-03-01

    Fifty-six percent of 46 residences monitored in the Spokane River Valley in eastern Washington/northern Idaho have indoor radon concentrations above the National Council for Radiation Protection (NCRP) guidelines of 8 pCi/1. Indoor levels were over 20 pCi/1 in eight homes, and ranged up to 132 pCi/1 in one house. Radon concentrations declined by factors of 4 to 38 during summer months. Measurements of soil emanation rates, domestic water supply concentrations, and building material flux rates indicate that diffusion of radon does not significantly contribute to the high concentrations observed. Rather, radon entry is dominated by pressure-driven bulk soil gas transport, aggravated by the local subsurface soil composition and structure. A variety of radon control strategies are being evaluated in 14 of these homes. Sub-surface ventilation by depressurization and overpressurization, basement overpressurization, and crawlspace ventilation are capable of successfully reducing radon levels below 5 pCi/1 in these homes. House ventilation is appropriate in buildings with low-moderate concentrations, while sealing of cracks has been relatively ineffective

  1. Natural radioactivity and radon specific exhalation rate of zircon sands

    International Nuclear Information System (INIS)

    Righi, S.; Verita, S.; Bruzzi, L.; Albertazzi, A.

    2006-01-01

    The study focuses on the radon emanation from zircon sands and their derivatives, which are widely used in many sectors of industry. In particular, the results obtained by experimental measurements on samples of zircon sands and zircon flours commonly used in Italian ceramic industries are reported. Zircon sands contain a significant concentration of natural radioactivity because Th and U may substitute zirconium in the zircon crystal lattice. The relevant routes of exposure of workers to T.E.N.O.R.M. from zircon materials are external radiation and internal exposure, either by inhalation of aerosols in dusty working conditions or by inhalation of radon in workplaces. The main objective of this investigation is to provide experimental data able to better calculate the internal exposure of workers due to radon inhalation. Zircon samples were surveyed for natural radioactivity, radon specific exhalation rate and emanation fraction. Measurements of radioactivity concentration were carried out using γ-spectrometry. Methods used for determining radon consisted in determining the 222 Rn activity accumulated in a vessel after a given accumulation build-up time. The average activity concentrations of 238 U and 232 Th in samples result about 2600 and 550 Bq kg-1, respectively; these concentrations are significantly higher than the world average noticed in soils, rocks and Earth crust. The 222 Rn specific exhalation rates result very low probably due to the low porosity of the material and the consequent difficulty for radon to be released from the zircon crystal lattice. (author)

  2. Toward resolving model-measurement discrepancies of radon entry into houses

    International Nuclear Information System (INIS)

    Garbesi, K.

    1993-01-01

    My dissertation research investigated the source of the model-measurement discrepancy via carefully controlled field experiments conducted at an experimental basement located in natural soil in Ben Lomond, California. Early experiments at the structure (Chapter II) confirmed the existence and magnitude of the model-measurement discrepancy, ensuring that it was not merely an artifact of inherently complex and poorly understood field sites. The measured soil-gas entry rate during structure depressurization was found to be an order of magnitude larger than predicted by a current three-dimensional numerical model of radon transport. The exact magnitude of the discrepancy depends on whether the arithmetic or geometric mean of the small-scale measurements of permeability is used to estimate the effective permeability of the soil. This factor is a critical empirical input to the model and was determined for the Ben Lomond site in the typical fashion using single-probe static depressurization measurement at multiple locations. The remainder of the dissertation research tests a hypothesis to explain the observed discrepancy: that soil permeability assessed using relatively small-scale probe measurements (0.1-0.5 m) does not reflect bulk soil permeability for flows that is likely to occur at larger scales of several meters or more in real houses and in the test structure. The idea is that soil heterogeneity is of a nature that, as flows occur over larger scales, larger scales of heterogeneity are encountered that facilitate larger flux rates, resulting in a scale dependence of effective soil permeability. In Chapter III, I describe the development of a dual-probe dynamic pressure technique to measure soil permeability to air (and anisotropy of permeability) at various length scales. Preliminary field tests of the apparatus indicated that soil permeability was indeed scale dependent

  3. Methods of radon remediation in Finnish dwellings; Asuntojen radonkorjauksen menetelmaet

    Energy Technology Data Exchange (ETDEWEB)

    Arvela, H.

    1995-12-01

    A study was made of remedial measures taken in dwellings with high indoor radon concentrations and the results obtained. The data regarding the remedial measures taken in 400 dwellings was obtained from a questionnaire study. The mean annual average indoor radon concentration before the remedies was 1.500 Bq/m{sup 3}, the concentration exceeding in nearly every house the action level of 400 Bq/m{sup 3}. After the measures were taken the mean indoor radon concentration was 500 Bq/m{sup 3}. The resulting indoor radon concentration was less than 400 Bq/m{sup 3} in 60 percent of the dwellings. The best results were achieved using sub-slab-suction and radon well. These methods effectively decrease both the flow of radon bearing air from soil into dwellings and the radon concentration of leakage air. Typical reduction rates in radon concentration were 70-95 percent. The action level was achieved in more than 70 percent of the houses. Sealing the entry routes and improvement of the ventilation resulted typically in reduction rates of 10-50 percent. The goal of the report is to give useful information for the house owners, the do-it-yourself-mitigators, the mitigation firms and the local authorities. The report includes practical guidance, price information and examples of remedial measures. (13 refs., 10 figs., 2 tabs.).

  4. Indoor radon concentration and its possible dependence on ventilation rate and flooring type

    International Nuclear Information System (INIS)

    Ashok, G. V.; Nagaiah, N.; Shiva Prasad, N. G.

    2012-01-01

    The results of radon concentration measurements carried out in dwellings with natural ventilation for 1 y in Bangalore are reported. Measurements, covering three sessions of the day (morning, afternoon, night) were performed two times in a month for 1 y at a fixed place of each dwelling at a height of 1 m above the ground surface in selected dwellings. The low-level radon detection system (LLRDS), an active method, was used for the estimation of radon concentration. The measurements were aimed to understand the diurnal variation and the effect of ventilation rate and flooring type on indoor radon concentration. The geometric mean (±geometric standard deviation) of indoor radon concentration from about 500 measurements carried out in 20 dwellings is found to be 25.4 ±1.54 Bq m -3 . The morning, afternoon and night averages were found to be 42.6 ±2.05, 15.3 ±2.18 and 28.5 ±2.2 Bq m -3 , respectively. The approximate natural ventilation rates of the dwellings were calculated using the PHPAIDA-the on-line natural ventilation, mixed mode and air infiltration rate calculation algorithm and their effects on indoor radon concentrations were studied. The inhalation dose and the lung cancer risk due to indoor radon exposure were found to be 0.66 mSv y -1 and 11.9 per 10 6 persons, respectively. The gamma exposure rate was also measured in all the dwellings and its correlation with the inhalation dose rate was studied. (authors)

  5. Study of radon progeny distribution and radiation dose rate in the atmosphere

    International Nuclear Information System (INIS)

    Fujinami, Naoto

    2009-01-01

    The absorbed dose rate in air of airborne gamma-ray and the concentration of radon progeny in surface air have been observed continuously in Maizuru, Japan. When data observed on fine days were plotted, with dose rate as ordinate and contraction as abscissa, these points traced with a lapse of time illustrated an anticlockwise looping for each day. This result suggests that the variation of absorbed dose rate lags behind that of concentration of radon progeny; this is due to the delay time incurred as the concentration level gradually varies from ground surface to upper air. Radon progeny concentrations in precipitation and in surface air have been observed there in order to study the relationship between the two concentrations and the influence of precipitation patterns on the concentration in precipitation. Results obtained from analysis of the observed data suggest that radon progeny in precipitation originate mainly from scavenging within the cloud (rainout) and not from that below the cloud (washout). (author)

  6. Point-of-entry removal of radon from drinking water

    International Nuclear Information System (INIS)

    Lowry, J.D.; Brutsaert, W.F.; Mc Enerney, T.; Molk, C.

    1987-01-01

    Two processes were investigated in the laboratory to determine their efficiency for removing radon from household water supplies. Granular activated carbon (GAC) adsorption was found to be extremely effective as a result of an adsorption-decay steady state that is established quickly and continues for years. The GAC bed, however, adsorbs radon progeny as the radon decays, and it becomes a source of gamma radiation. This problem is believed to be manageable for the vast majority of potential applications. Diffused bubble aeration was found to be as effective as GAC, with removals of greater than 99 percent being practical. Although more costly than GAC, aeration does not have the problem of gamma activity buildup

  7. Influence of ventilation strategies on indoor radon concentrations based on a semiempirical model for Florida-style houses

    International Nuclear Information System (INIS)

    Hintenlang, D.E.; Al-Ahmady, K.K.

    1994-01-01

    Measurements in a full-scale experimental facility are used to benchmark a semiempirical model for predicting indoor radon concentrations for Florida-style houses built using slab-on-grade construction. The model is developed to provide time-averaged indoor radon concentrations from quantitative relationships between the time-dependent radon entry and elimination mechanisms that have been demonstrated to be important for this style of residential construction. The model successfully predicts indoor radon concentrations in the research structure for several pressure and ventilation conditions. Parametric studies using the model illustrate how different ventilation strategies affect indoor radon concentrations. It is demonstrated that increasing house ventilation rates by increasing the effective leakage area of the house shell does not reduce indoor radon concentrations as effectively as increasing house ventilation rates by controlled duct ventilation associated with the heating, ventilating, and air conditioning system. The latter strategy provides the potential to minimize indoor radon concentrations while providing positive control over the quality of infiltration air. 9 refs., 5 figs

  8. Radon mass exhalation rate in soil samples at South Bengaluru city, Karnataka, India

    International Nuclear Information System (INIS)

    Poojitha, C.G.; Pranesha, T.S.; Ganesh, K.E.; Sahoo, B.K.; Sapra, B.K.

    2017-01-01

    Radon mass exhalation rate in soil samples collected from different locations of South Bengaluru city were measured using scintillation based Smart radon thoron monitor (RnDuo). It has been observed that the mass exhalation rate estimated due to presence of radon concentration in soil samples ranges from 39.18 - 265.58 mBq/kg/h with an average value of 115.64 mBq/kg/h. Finally we compare our results with similar investigation from different parts of India. (author)

  9. Plate-out rates of radon progeny and particles in a spherical chamber

    International Nuclear Information System (INIS)

    Cheng, Y.S.; Chen, B.T.

    1990-01-01

    In indoor and mining environments, deposition or ''plate-out'' of radon progeny onto walls occurs simultaneously with attachment of the radon progeny to airborne particles. Attachment and plate-out processes affect the atmosphere in which radon exposures takes place by reducing concentrations and shifting activity size distributions. Both processes have important consequences in determining the deposition pattern and initial dose of inhaled radon progeny. Theoretical deposition models show that turbulence and natural convection in a room are the major factors that influence plate-out rates. Here we describe plate-out measurements for radon progeny and aerosol particles in a spherical chamber under controlled laboratory conditions. The temperature and velocity profiles in still and turbulent air were monitored. A 161-liter spherical aluminum chamber was used to study the mixing. During mixing, air velocity was detected when rotational speeds were higher than 500 rpm. Monodisperse silver aerosols and polystyrene latex particles in the size range of 5 nm to 2 μm were used in the deposition study. Radon-220 progeny were generated by passing Rn-220 gas into the chamber and letting the gas decay into 212 Pb. The deposition rates of the particles and radon progeny ( 212 Pb) in the chamber were determined by monitoring the concentration decay of the aerosol as a function of time

  10. Radon exhalation rates from slate stone samples in Aravali Range in Haryana

    International Nuclear Information System (INIS)

    Upadhyay, S.B.; Kant, K.; Chakarvarti, S.K.

    2012-01-01

    The slate stone tiles are very popular in covering the walls of the rooms. Radon is released into ambient air from slate stones due to ubiquitous uranium and radium in them, thus increasing the airborne radon concentration. The radioactivity in slates stones is related to radioactivity in the rocks from which the slate stone tiles are formed. In the present investigation, the radon emanated from slate stone samples collected from different slate mines in Aravali range of hills in the Haryana state of Northern India has been estimated. For the measurement of radon concentration emanated from these samples, alpha-sensitive LR-115 type II plastic track detectors have been used. The alpha particles emitted from the radon form tracks in these detectors. After chemical etching the track density of registered tracks is used to calculate radon concentration and exhalation rates of radon using required formulae. The measurements indicate normal to some higher levels of radon concentration emanated from the slat stone samples collected from Aravali range of hills in north India. The results will be discussed in full paper. (author)

  11. Effectiveness of radon control techniques in fifteen homes

    International Nuclear Information System (INIS)

    Turk, B.H.; Prill, R.J.; Fisk, W.J.; Grimsrud, D.T.; Sextro, R.G.

    1991-01-01

    Radon control systems were installed and evaluated in fourteen homes in the Spokane River Valley/Rathdrum Prairie and in one home in Vancouver, Washington. Because of local soil conditions, subsurface ventilation (SSV) by pressurization was always more effective in these houses than SSV by depressurization in reducing indoor radon levels to below guidelines. Basement overpressurization was successfully applied in five houses with airtight basements where practical-sized fans could develop an overpressure of 1 to 3 Pascals. Crawlspace ventilation was more effective than crawlspace isolation in reducing radon entry from the crawlspace, but had to be used in conjunction with other mitigation techniques, from the crawlspace, but had to be used in conjunction with other mitigation techniques, since the houses also had basements. Indoor radon concentrations in two houses with air-to-air heat exchangers (AAHX) were reduced to levels inversely dependent on the new total ventilation rates and were lowered even further in one house where the air distribution system was modified. Sealing penetrations in the below-grade surfaces of substructures was relatively ineffective in controlling radon. Operation of the radon control systems (except for the AAHX's) made no measurable change in ventilation rates or indoor concentrations of other measured pollutants. Installation costs ranged from approximately $4/m 2 for sealing to $28/m 2 for the AAHXs. Annual operating costs for the active systems were estimated to be approximately $60 to $170

  12. Effect of radon transport in groundwater upon gamma-ray borehole logs

    International Nuclear Information System (INIS)

    Nelson, P.H.; Rachiele, R.; Smith, A.

    1980-09-01

    Granitic rock at an experimental waste storage site at Stripa, Sweden, is unusually high in natural radioelements (40 ppM uranium) with higher concentrations occurring locally in thin chloritic zones and fractures. Groundwater seeping through fractures into open boreholes is consequently highly anomalous in its radon content, with activity as high as one microcurie per liter. When total count gamma-ray logs are run in boreholes where groundwater inflow is appreciable, the result is quite unusual: the radon daughter activity in the water adds considerably to the contribution from the rock, and in fact often dominates the log response. The total gamma activity increases where radon-charged groundwater enters a borehole, and remains at a high level as the water flows along the hole in response to the hydraulic gradient. As a consequence, the gamma log serves as a flow profile, locating zones of water entry (or loss) by an increase (or decrease) in the total gamma activity. A simple model has been developed for flow through a thin crack emanating radon at a rate E showing that the radon concentration of water entering a hole is E/Λh, where Λ is the radon decay rate and h the crack aperture, assuming that the flow rate and crack source area are such that an element of water resides within the source area for several radon half-lives or more. Concentration measurements can provide a measurement of the inflow rate. Data from the 127-mm holes in the time-scale drift behave in this fashion

  13. RAETRAD MODEL OF RADON GAS GENERATION, TRANSPORT, AND INDOOR ENTRY

    Science.gov (United States)

    The report describes the theoretical basis, implementation, and validation of the Radon Emanation and Transport into Dwellings (RAETRAD) model, a conceptual and mathematical approach for simulating radon (222Rn) gas generation and transport from soils and building foundations to ...

  14. Characterization of radon penetration of different structural domains of concrete. Final project report

    International Nuclear Information System (INIS)

    Nielson, K.K.; Rogers, V.C.

    1996-05-01

    This report documents the research activities by Rogers and Associates Engineering Corporation on grant DE-FG03-93ER61600 during the funded project period from August 1993 to April 1996. The objective of this research was to characterize the mechanisms and rates of radon gas penetration of the different structural domains of the concrete components of residential floor slabs, walls, and associated joints and penetrations. The research was also to characterize the physical properties of the concretes in these domains to relate their radon resistance to their physical properties. These objectives support the broader goal of characterizing which, if any, concrete domains and associated properties constitute robust barriers to radon and which permit radon entry, either inherently or in ways that could be remediated or avoided

  15. Natural radioactivity and radon exhalation rate of soil in southern Egypt

    International Nuclear Information System (INIS)

    Sroor, A.; El-Bahi, S.M.; Ahmed, F.; Abdel-Haleem, A.S.

    2001-01-01

    The level of natural radioactivity in soil of 30 mining samples collected from six locations in southern Egypt was measured. Concentrations of radionuclides in samples were determined by γ-ray spectrometer using HPGe detector with a specially designed shield. The obtained results of uranium and thorium series as well as potassium (K-40) are discussed. The present data were compared with data obtained from different areas in Egypt. Also, a solid state nuclear track detector SSNTD (Cr-39) was used to measure the radon concentration as well as exhalation rate for these samples. The radon concentrations were found to vary from 1.54 to 5.37 Bq/kg. The exhalation rates were found to vary from 338.81 to 1426.47 Bq/m 2 d. The values of the radon exhalation rate are found to correspond with the uranium concentration values measured by the germanium detector in the corresponding soil samples

  16. Measurement of radon exhalation rate in various building materials and soil samples

    Science.gov (United States)

    Bala, Pankaj; Kumar, Vinod; Mehra, Rohit

    2017-03-01

    Indoor radon is considered as one of the potential dangerous radioactive elements. Common building materials and soil are the major source of this radon gas in the indoor environment. In the present study, the measurement of radon exhalation rate in the soil and building material samples of Una and Hamirpur districts of Himachal Pradesh has been done with solid state alpha track detectors, LR-115 type-II plastic track detectors. The radon exhalation rate for the soil samples varies from 39.1 to 91.2 mBq kg-1 h-1 with a mean value 59.7 mBq kg-1 h-1. Also the radium concentration of the studied area is found and it varies from 30.6 to 51.9 Bq kg-1 with a mean value 41.6 Bq kg-1. The exhalation rate for the building material samples varies from 40.72 (sandstone) to 81.40 mBq kg-1 h-1 (granite) with a mean value of 59.94 mBq kg-1 h-1.

  17. Procedure for the characterization of radon potential in existing dwellings and to assess the annual average indoor radon concentration

    International Nuclear Information System (INIS)

    Collignan, Bernard; Powaga, Emilie

    2014-01-01

    Risk assessment due to radon exposure indoors is based on annual average indoor radon activity concentration. To assess the radon exposure in a building, measurement is generally performed during at least two months during heating period in order to be representative of the annual average value. This is because radon presence indoors could be very variable during time. This measurement protocol is fairly reliable but may be a limiting in the radon risk management, particularly during a real estate transaction due to the duration of the measurement and the limitation of the measurement period. A previous field study defined a rapid methodology to characterize radon entry in dwellings. The objective of this study was at first, to test this methodology in various dwellings to assess its relevance with a daily test. At second, a ventilation model was used to assess numerically the air renewal of a building, the indoor air quality all along the year and the annual average indoor radon activity concentration, based on local meteorological conditions, some building characteristics and in-situ characterization of indoor pollutant emission laws. Experimental results obtained on thirteen individual dwellings showed that it is generally possible to obtain a representative characterization of radon entry into homes. It was also possible to refine the methodology defined in the previous study. In addition, numerical assessments of annual average indoor radon activity concentration showed generally a good agreement with measured values. These results are encouraging to allow a procedure with a short measurement time to be used to characterize long-term radon potential in dwellings. - Highlights: • Test of a daily procedure to characterize radon potential in dwellings. • Numerical assessment of the annual radon concentration. • Procedure applied on thirteen dwellings, characterization generally satisfactory. • Procedure useful to manage radon risk in dwellings, for real

  18. New-construction techniques and HVAC overpressurization for radon reduction in schools

    International Nuclear Information System (INIS)

    Saum, D.; Witter, K.A.; Craig, A.B.

    1988-01-01

    Construction of a school in Fairfax County, Virginia, is being carefully monitored since elevated indoor radon levels have been identified in many existing houses near the site. Soil gas radon concentrations measured prior to pouring of the slabs were also indicative of a potential radon problem should the soil gas enter the school; however, subslab radon measurements collected thus far are lower than anticipated. Radon-resistant features have been incorporated into construction of the school and include the placing of at least 100 mm of clean coarse aggregate under the slab and a plastic film barrier between the aggregate and the slab, the sealing of all expansion joints, the sealing or plugging of all utility penetrations where possible, and the painting of interior block walls. In addition, the school's heating, ventilating, and air-conditioning (HVAC) system has been designed to operate continuously in overpressurization to help reduce pressure-driven entry of radon-containing soil gas into the building. Following completion, indoor radon levels in the school will be monitored to determine the effectiveness of these radon-resistant new-construction techniques and HVAC overpressurization in limiting radon entry into the school

  19. Radon exhalation in some building construction materials and effect of plastering and paints on the radon exhalation rate using fired bricks

    International Nuclear Information System (INIS)

    Sharma, Anil; Mahur, A.K.; Rajendra Prasad; Sonkawade, R.G.; Sharma, A.C.

    2013-01-01

    The technological endeavors of human beings have modified the levels of radiation exposure slightly. The emanation of radon is primarily associated with radium and its ultimate precursor uranium. The radiation dose received by human beings from indoor radon and its progeny is the largest of all doses received either by natural or man-made sources. In order to investigate the effect of paints available in the market on the radon exhalation rate from building materials, several bricks were collected. These bricks were plastered with a mixture of cement and sand. Before measurements bricks were dried for 24 hours. These plastered bricks were then coated with white wash and again dried for 1- 2 hours. After drying the bricks were coated with different brands and colors of paints. Radon exhalation rates measurements were carried out for these painted bricks using 'Sealed can Technique' cylindrical plastic 'Can' of 7.5 cm height and 7.0 cm diameter was sealed to the individual samples by plastic can. In each 'Can' a LR-115 type II plastic detector (2 cm 2cm) was fixed at the top inside of the 'Can', such that the sensitive surface of the detector faces the material and is freely exposed to the emergent radon. Radon decays in the volume of the can record the alpha particles resulting from the 218 Po and 214 Po deposited on the inner wall of the 'Can'. Radon and its daughters will reach an equilibrium in concentration after one week or more. Hence the equilibrium activity of the emergent radon can be obtained from the geometry of the can and the time of exposure. The results will be discussed. (author)

  20. Assessing the effectiveness of slab flooring as a barrier to soil gas and radon infiltration

    International Nuclear Information System (INIS)

    Williamson, A.D.; Fowler, C.S.; McDonough, S.E.

    1995-01-01

    Experimental studies on the entry of soil gas and radon into slab-on-grade buildings have been carried out in instrumented, single-zone test structures. This work, as part of the Florida Radon Research Program, focused on the effectiveness of slab flooring variants as barriers to soil gas/radon entry. A second objective was the study of the role of subslab fill soil as both a potential source of and barrier to radon entry. Studies were made in well-sealed (∼ 600 mm 2 ELA) unoccupied test buildings placed on well-characterized, radium-bearing sandy fill soil. The buildings were instrumented with data acquisition systems to continuously monitor indoor radon concentrations, differential pressures at several subsurface locations, weather conditions, and soil moisture. The response of the structures to mechanical depressurization as well as natural driving forces was measured. Limited measurements were made regarding direct diffusive transport of radon through apparently intact concrete slabs, as well as transport through cracks in the floor structure

  1. Phosphogypsum recycling in the building materials industry: assessment of the radon exhalation rate.

    Science.gov (United States)

    Campos, M P; Costa, L J P; Nisti, M B; Mazzilli, B P

    2017-06-01

    Phosphogypsum can be classified as a Naturally Occurring Radioactive Material (NORM) residue of the phosphate fertilizer industry. One of the main environmental concerns of its use as building material is the radon exhalation. The aim of this study is to measure the radon exhalation rate from plates and bricks manufactured with phosphogypsum from three installations of the main Brazilian producer, Vale Fertilizantes, in order to evaluate the additional health risk to dwellers. A simple and reliable accumulator method involving a PVC pipe sealed with a PVC pipe cover commercially available with CR-39 radon detector into a diffusion chamber was used for measuring radon exhalation rate from phosphogypsum made plates and bricks. The radon exhalation rate from plates varied from 0.19 ± 0.06 Bq m -2 h -1 , for phosphogypsum from Bunge Fertilizers, from 1.3 ± 0.3 Bq m -2 h -1 , for phosphogypsum from Ultrafertil. As for the bricks, the results ranged from 0.11 ± 0.01 Bq m -2 h -1 , for phosphogypsum from Bunge Fertilizers, to 1.2 ± 0.3 Bq m -2 h -1 , for phosphogypsum from Ultrafertil. The results obtained in this study for the radon exhalation rate from phosphogypsum plates and bricks are of the same order of magnitude than those from ordinary building materials. So, it can be concluded that the recycling of phosphogypsum as building material is a safe practice, since no additional health risk is expected from the radiological point of view. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Studying radon exhalation rates variability from phosphogypsum piles in the SW of Spain

    Energy Technology Data Exchange (ETDEWEB)

    López-Coto, I., E-mail: israel.lopez@dfa.uhu.es [Dpto. Física Aplicada, Facultad CC. Experimentales, University of Huelva, Campus de El Carmen s/n, 21007 Huelva (Spain); Mas, J.L. [Dpto. Física Aplicada I. Escuela Politécnica Superior, University of Sevilla, C/Virgen de Africa 7, 41012 Sevilla (Spain); Vargas, A. [Universitat Politècnica de Catalunya, Instituto de Técnicas Energéticas, Campus Sud Edificio ETSEIB, Planta 0, Pabellón C, Av. Diagonal 647, 08028 Barcelona (Spain); Bolívar, J.P. [Dpto. Física Aplicada, Facultad CC. Experimentales, University of Huelva, Campus de El Carmen s/n, 21007 Huelva (Spain)

    2014-09-15

    Highlights: • Variability of radon exhalation rates from PG piles has been studied using numerical simulation supported by experimental data. • Most relevant parameters controlling the exhalation rate are radon potential and moisture saturation. • Piling up the waste increasing the height instead of the surface allows the reduction of the exhalation rate. • A proposed cover here is expected to allow exhalation rates reductions up to 95%. - Abstract: Nearly 1.0 × 10{sup 8} tonnes of phosphogypsum were accumulated during last 50 years on a 1200 ha disposal site near Huelva town (SW of Spain). Previous measurements of exhalation rates offered very variable values, in such a way that a worst case scenario could not be established. Here, new experimental data coupled to numerical simulations show that increasing the moisture contents or the temperature reduces the exhalation rate whilst increasing the radon potential or porosity has the contrary effect. Once the relative effects are compared, it can be drawn that the most relevant parameters controlling the exhalation rate are radon potential (product of emanation factor by {sup 226}Ra concentration) and moisture saturation of PG. From wastes management point of view, it can be concluded that piling up the waste increasing the height instead of the surface allows the reduction of the exhalation rate. Furthermore, a proposed cover here is expected to allow exhalation rates reductions up to 95%. We established that the worst case scenario corresponds to a situation of extremely dry winter. Under these conditions, the radon exhalation rate (0.508 Bq m{sup −2} s{sup −1}) would be below though close to the upper limit established by U.S.E.P.A. for inactive phopsphogypsum piles (0.722 Bq m{sup −2} s{sup −1})

  3. Influence of radon daughter exposure rate, unattachment fraction, and disequilibrium on occurrence of lung tumours

    International Nuclear Information System (INIS)

    Cross, F.T.; Palmer, R.F.; Dagle, G.E.; Busch, R.H.; Buschbom, R.L.

    1984-01-01

    Groups of male, specific-pathogen-free (SPF), Wistar rats were exposed to several concentrations of radon daughters and uranium ore dust to clarify the roles of exposure rate, unattached RaA daughters, and the degree of radon daughter disequilibrium, in the development of respiratory system disease. Modelled, human dosimetric data indicate that the dose to sensitive tissues of the respiratory tract increases with increasing radon daughter unattachment fraction and degree of disequilibrium. Data bearing on these developments as well as updated results of experiments designed to test the role of radon daughter exposure rate on lung tumour incidence are reported. (author)

  4. Indoor concentrations of radon 222 and its daughters: sources, range, and environmental influences

    International Nuclear Information System (INIS)

    Nero, A.V. Jr.

    1985-04-01

    The author here reviews what is presently known about factors affecting indoor concentrations of radon 222 and its daughters. In US single-family homes, radon concentrations are found to average about 1.5 pCi/1, but substantially higher concentrations occur frequently: perhaps a million US homes have concentrations exceeding 8 pCi/1 (from which occupants receive radiation doses comparable to those now experienced by uranium miners). The major contributor to indoor radon is ordinary soil underlying homes, with this radon being transported indoors primarily by the slight depressurization that occurs toward the bottom of a house interior (due to indoor-outdoor temperature differences and winds). Water from underground sources contributes significantly in a minority of cases, primarily residences with private wells, with public water supplies contributing only a few percent of indoor radon, even when drawn from wells. The strong variability in indoor concentrations is associated primarily with variability in the amount of radon entering homes from these various sources, and secondarily with differences in ventilation rates. However, for a given entry rate, the ventilation rate is the key determinant of indoor concentrations. Human doses are also influenced strongly by the chemical behavior of the daughters (i.e., decay products of radon), and considerable progress has been made recently in investigating a major aspect of this behavior, i.e., the manner in which daughters attach to airborne particles, to walls, and - indeed - to the lining of the lung itself, where the key radiation dose occurs

  5. Radon evasion rates in the Atlantic and Pacific oceans as determined during the Geosecs program

    International Nuclear Information System (INIS)

    Peng, T.; Broecker, W.S.; Mathieu, G.G.; Li, Y.; Bainbridge, A.E.

    1979-01-01

    During the Geosecs expedition in the Atlantic and the Pacific oceans, more than 100 stations were occupied for the measurement of surface radon profiles. The radon deficiency in these profiles gives estimates of the gas transfer rate across the sea-air interface. The global mean transfer rate is estimated to be 2.9 m/d (at 20 0 C) which is corresponding to a hypothetical stagnant films thickness of about 36 microns. No clear relationship can be found between the gas exchange rate and wind speed. The CO 2 exchange rate as determined by the radon method is 80% of that given by the distributions of natural and of bomb-produced radiocarbon. One possible explanation may be that the Geosecs radon measurements were made during periods of lower than average wind speed. Another is that the conversion of CO 2 to HCO 3 - is catalyzed within the sea

  6. Measurements of the deposition rates of radon daughters on indoor surfaces

    International Nuclear Information System (INIS)

    Wang, H.; Essling, M.A.; Toohey, R.E.; Rundo, J.

    1982-01-01

    The deposition rates of radon daughters on indoor surfaces have been measured by exposing the window of a proportional counter to the air of a house with high concentrations of radon and its daughters. Deposition velocities for unattached 218 Po (RaA) and 214 Pb (RaB) of approximately 4 mm sec - 1 were obtained by dividing the deposition rates by the concentrations of unattached daughters in the air. These results agree with those obtained by other workers but are dependent on the assumptions made about the fractions of the daughters which are attached to the atmospheric aerosol

  7. Radon exhalation rate and natural radionuclide content in building materials of high background areas of Ramsar, Iran.

    Science.gov (United States)

    Bavarnegin, E; Fathabadi, N; Vahabi Moghaddam, M; Vasheghani Farahani, M; Moradi, M; Babakhni, A

    2013-03-01

    Radon exhalation rates from building materials used in high background radiation areas (HBRA) of Ramsar were measured using an active radon gas analyzer with an emanation container. Radon exhalation rates from these samples varied from below the lower detection limit up to 384 Bq.m(-2) h(-1). The (226)Ra, (232)Th and (40)K contents were also measured using a high resolution HPGe gamma- ray spectrometer system. The activity concentration of (226)Ra, (232)Th and (40)K content varied from below the minimum detection limit up to 86,400 Bq kg(-1), 187 Bq kg(-1) and 1350 Bq kg(-1), respectively. The linear correlation coefficient between radon exhalation rate and radium concentration was 0.90. The result of this survey shows that radon exhalation rate and radium content in some local stones used as basements are extremely high and these samples are main sources of indoor radon emanation as well as external gamma radiation from uranium series. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Calibration of track detectors and measurement of radon exhalation rate from solid samples

    International Nuclear Information System (INIS)

    Singh, Ajay Kumar; Jojo, P.J.; Prasad, Rajendra; Khan, A.J.; Ramachandran, T.V.

    1997-01-01

    CR-39 and LR-115 type II track detectors to be used for radon exhalation measurements have been calibrated. The configurations fitted with detectors in Can technique in the open cup mode are cylindrical plastic cup (PC) and conical plastic cup (CPC). The experiment was performed in radon exposure chamber having monodisperse aerosols of 0.2 μm size, to find the relationship between track density and the radon concentration. The calibration factors for PC and CPC type dosimeters with LR-115 type II detector were found to be 0.056 and 0.083 tracks cm -2 d -1 (Bqm -3 ) -1 respectively, while with CR-39 detector the values were 0.149 and 0.150 tracks cm -2 d -1 (Bq m -3 ) -1 . Employing the Can technique, measurements of exhalation rates from solid samples used as construction materials, are undertaken. Radon exhalation rate is found to be minimum in cement samples while in fly ash it is not enhanced as compared to coal samples. (author)

  9. Determination of radon flux rates in a uranium mine (Cluff Lake, Saskatchewan)

    International Nuclear Information System (INIS)

    1989-12-01

    The Atomic Energy Control Board contracted SENES Consultants Limited to design and implement a field program at Amok Limited's Cluff Lake uranium mine, with the overall objective of obtaining reliable radon flux data applicable for use in the VENTRAD computer model. The VENTRAD model was developed to model underground mine ventilation systems. To avoid the uncertainties inherent in localized flux measurements made on small surfaces, radon flux measurements were determined through measurement of incremental changes in the concentration of radon between the incoming and outgoing air in selected areas of the underground workings. The locations were selected throughout the mine in both ore and sterile rock. Average radon flux rates measured during three field campaigns were as follows: sterile rock decline 4 pCi/m 2 .second; sterile rock mainway 25 pCi/m 2 .second; worked-out stope 100 pCi/m 2 .second; active work stope 240 pCi/m 2 .second; and work face 14,000 pCi/m 2 .second. Data collected during the three field programs were used to validate the VENTRAD computer model. The results of the validation exercise suggest close agreement between predicted and measured air flow rates and radon concentrations were overestimated for areas immediately impacted by auxiliary ventilation fans and ore transfer mill holes which connect the ore extraction and haulage levels of the mine

  10. Study of radon exhalation and emanation rates from fly ash samples

    International Nuclear Information System (INIS)

    Raj Kumari; Jain, Ravinder; Kant, Krishan; Gupta, Nitin; Garg, Maneesha; Yadav, Mani Kant

    2013-01-01

    Fly ash, a by-product of burnt coal is technologically important material being used for manufacturing of bricks, sheets, cement, land filling etc. The increased interest in measuring radon exhalation and emanation rates in fly ash samples is due to its health hazards and environmental pollution and the same have been measured to assess the radiological impact of radon emanated from fly ash disposal sites. Samples of fly ash from different thermal power stations in northern India and National Council for Cement and Building Materials (NCB) were collected and analysed for the measurements. For the measurement, alpha sensitive LR-115 type II plastic track detectors were used. Gamma spectrometry and can technique was used for the measurements. The experimental data show that fly ash samples emanate radon in significant amount and this consequently, may result in increased radon levels in dwellings built by using fly ash bricks and excessive radiation exposure to workers residing in the surroundings of fly ash dumping sites. (author)

  11. The control of radon levels in houses

    International Nuclear Information System (INIS)

    Al-Jarallah, M. B. I.

    2007-01-01

    The article speaks about radon entry ways to houses, the technologies of controlling the level of radon in indoors and four possible ways to solve the problem of high concentration of radon gas in housing and protection from being gathered to a certain extent that is harmful to health. These methods are: removal of the radon source, modifying the radon source, ventilation and air filtration. The article also addresses the impact of reducing the consumption of heating energy in homes and buildings using thermal insulators in floors, walls, ceilings and doors and making double glazed windows that confine the air. It has been proven that there is a steady relationship between energy conservation measures in housing and the increase of radon concentration by two to three times. In a lot of buildings, where conservation measures have been taken, materials to conserve heat are used, which themselves launch radon and this may lead to increased levels of the gas in the housing.

  12. Indoor radon measurements and radon prognosis for eastern Uusimaa. Askola, Lapinjaervi, Liljendal, Loviisa, Myrskylae, Maentsaelae, Maentsaelae, Pernaja, Pornainen, Porvoo, Porvoon mlk, Pukkila, Ruotsinpyhtaeae and Sipoo

    International Nuclear Information System (INIS)

    Voutilainen, A.; Maekelaeinen, I.

    1995-02-01

    The purpose of the regional radon prognosis is to classify areas with different levels of radon risk. The radon prognosis gives the percentages of future homes expected to have indoor radon concentrations exceeding the levels of 200 and 400 Bq/m 3 . It is assumed that no protection against the entry of radon is used in construction. In the study about 2400 indoor radon measurements made in single family houses, semi-detached houses and row houses were used. Data on the location, geology and construction of buildings were determined form maps and questionnaires. An empirical statistical model, the adjusted indoor radon measurement and geological data were used to assess the radon risk form soil and bedrock in different areas. (15 refs., 19 figs., 9 tabs.)

  13. Study of radon diffusion from RHA-modified ordinary Portland cement using SSNTD technique

    International Nuclear Information System (INIS)

    Narula, A.K.; Goyal, S.K.; Chauhan, R.P.; Chakarvarti, S.K.

    2013-01-01

    The diffusion coefficient of radon is a very important factor in estimating the rate of indoor radon inflow. The aim of this work is to develop and assess the potential of radon resistant construction materials in residential buildings. Of late, rice husk ash (RHA) has been used as a component in cement. The X-ray diffraction of RHA indicates that the RHA contains mainly amorphous materials while the X-ray fluorescence analysis shows that the major percentage of it is composed of silica. The amorphous silica present in the RHA is responsible for the pozzolonic activity of the ash. The results of the present study indicate that the RHA when mixed with cement initially reduces radon diffusion coefficient, followed by enhancement when the percentage of RHA is increased above 30% by weight. - Highlights: ► Radon diffusion coefficient has been measured in Portland cement with different percentage of rice husk ash (RHA). ► The mixing of RHA to cement changes the radon diffusion coefficient. ► The mixture of cement and RHA can be used to make building materials more resistant to radon entry through diffusion

  14. Rating radon through the looking glass

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Radon emerged as a health threat in the last five years as studies showed that exposure to high levels in the home can cause lung cancer. But many families move so often that its difficult to determine their exposure over a lifetime. Now, Battelle Memorial Institute scientists at the Energy Dept.'s Pacific Northwest Lab in Richland, Wash., have devised a clever way to do so. They tape a 2-inch-square piece of clear plastic polymer to the glass on an old mirror or framed picture. Such items as wedding photos are easily datable and normally carried from home to home. As radon decays over the years, it emits alpha particles, which embed themselves in glass. The particles leave tracks in the polymer. By analyzing these tracks, scientists can estimate a person's average annual exposure to indoor radon over 20 years or more. Starting in May, the technique will be used in a three-year National Cancer Institute study that examines radon, smoking, and diet as co-factors in the risk of lung cancer

  15. The passive radon-thoron discriminative dosimeter for practical use

    International Nuclear Information System (INIS)

    Doi, Masahiro; Kobayashi, Sadayoshi

    1994-01-01

    A passive radon-thoron discriminative dosimeter for practical use has been developed. The body of the practical R-T dosimeter is made of two hemispheric diffusion chambers of carbonized plastic whose diameters are 110 mm and 70 mm, respectively. These diameters are determined to improve the detection efficiency of radon as well as thoron and also the discrimination ratio of radon to thoron. Inner surface of the detector housing is smooth and free from electrified charge to assure the uniform deposition of radon and thoron progeny, because the detector housing is molded out of carbonized plastic as an anti-static material. In addition, structure of an air inlet has improved to contact more tightly with a glass fiber filter to prevent dust from entering the detector housing. The air inlet of the detector housing is also covered with a half-cutted hemispherical windbreak to protect the glass fiber filter from weathering and to stabilize the influence of convectional air flow on the radon and thoron entry rate into two hemispherical diffusion chambers of the dosimeter. The results of calibration exercises showed that the lower detection limit of radon and thoron concentrations were estimated to be 5.1 Bqm -3 and 7.9 Bqm -3 respectively in 2 months exposure. And an interim measurement in the concrete cellar proved that the practical R-T dosimeter has enough specifications to be used in the large-scale radon-thoron discriminative survey. (author)

  16. Investigation of radon entry and effectiveness of mitigation measures in seven houses in New Jersey: Midproject report

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, T.G.; Dudney, C.S.; Monar, K.P.; Landguth, D.C.; Wilson, D.L.; Hawthorne, A.R.; Hubbard, L.M.; Gadsby, K.J.; Bohac, D.L.; Decker, C.A.

    1987-12-01

    A detailed radon mitigation study is in progress in 14 homes in the New Jersey Piedmont area. The principal goals are the refinement of diagnostic measurements for selection and implementation of mitigation systems, and the reduction of radon concentrations to acceptable levels inside the study houses. Monitoring stations were installed in each home in October, 1986. Instrumented measurements included: basement and upstairs radon; differential pressures across the basement/subslag, basement/upstairs and basement/outdoor interfaces; temperatures at basement, upstairs and outdoor locations; and central air handler usage. A weather station was located at one house, monitoring wind speed and direction; barometric pressure; precipitation; soil temperature; and outdoor temperature and relative humidity. A time-averaged value of all of the above parameters was recorded every 30 min. Several additional parameters were monitored on an intermittent basis in all or selected homes. These include multizone air infiltration rates which have been measured in all homes using passive perfluorocarbon tracers (PFT) and in two homes using a constant concentration tracer gas system (CCTG). Total radon progeny, soil gas radon concentration and permeability characteristics, and gamma radiation levels were also monitored periodically in all study homes. 10 refs., 53 figs.

  17. Investigation of radon entry and effectiveness of mitigation measures in seven houses in New Jersey: Midproject report

    International Nuclear Information System (INIS)

    Matthews, T.G.; Dudney, C.S.; Monar, K.P.

    1987-12-01

    A detailed radon mitigation study is in progress in 14 homes in the New Jersey Piedmont area. The principal goals are the refinement of diagnostic measurements for selection and implementation of mitigation systems, and the reduction of radon concentrations to acceptable levels inside the study houses. Monitoring stations were installed in each home in October, 1986. Instrumented measurements included: basement and upstairs radon; differential pressures across the basement/subslag, basement/upstairs and basement/outdoor interfaces; temperatures at basement, upstairs and outdoor locations; and central air handler usage. A weather station was located at one house, monitoring wind speed and direction; barometric pressure; precipitation; soil temperature; and outdoor temperature and relative humidity. A time-averaged value of all of the above parameters was recorded every 30 min. Several additional parameters were monitored on an intermittent basis in all or selected homes. These include multizone air infiltration rates which have been measured in all homes using passive perfluorocarbon tracers (PFT) and in two homes using a constant concentration tracer gas system (CCTG). Total radon progeny, soil gas radon concentration and permeability characteristics, and gamma radiation levels were also monitored periodically in all study homes. 10 refs., 53 figs

  18. Radon: Gas transport in soils and its relation to radon availability: Hot spot identification and flow characteristics near structures. Progress report and request for third year incremental funding

    International Nuclear Information System (INIS)

    Reimer, G.M.

    1995-01-01

    There are 3 major objectives being addressed in this research. The first is to participate, by providing ground truth quality assurance, in the DOE/LBL/EPA cooperative study to determine a methodology to predict the areas where indoor radon concentrations have the highest probability of exceeding 20 pCi/L (750 Bq/m 3 ). The second is to examine 2 common types of homes (basement and non-basement) for radon entry by monitoring specific parameters under normal living conditions. The third task is to participate with other researchers in their studies using the techniques and experience developed by this principal investigator during previously funded times. Those researchers seek assistance in measuring soil permeability, determining the effect of meteorological parameters on radon entry, determining the diffusion characteristics of standard basement wall materials, developing a GIS (Geographic Information System) data base for predicting regional radon potential, and examining the contribution of regional solution-developed permeability in limestone to the radon potential of an area

  19. Radon concentration and exhalation rates in building material samples from crushing zone in Shivalik Foot Hills

    International Nuclear Information System (INIS)

    Pundir, Anil; Kamboj, Sunil; Bansal, Vakul; Chauhan, R.P.; Rana, Rajinder Singh

    2012-01-01

    Radon ( 222 Rn) is an inert radioactive gas in the decay chain of uranium ( 238 U). It continuously emanates from soil to the atmosphere. Radon and its progeny are the major natural radioactive sources for the ambient radioactivity on Earth. A number of studies on radon were performed in recent decades focusing on its transport and movement in the atmosphere under different meteorological conditions. Building materials are the main source of radon inside buildings. Some construction materials are naturally more radioactive and removal of such material from the earth's crust and their subsequent use in construction of buildings further enhances the radioactivity level. The knowledge of radioactivity level in the building materials makes us aware about the management, guidelines and standards in construction of buildings. The main objective of the present investigations is to measure radon Concentration and exhalation rates in the samples collected from the Crushing zone of Shivalik foot hills. Different types of materials are being used in Northern part of India for construction of dwellings. For the measurement of radon concentration and its exhalation rates in building materials, LR-115 detectors were exposed in closed plastic canisters for three months. At the end of the exposure time, the detectors were subjected to a chemical etching process in 2.5N NaOH solution. The tracks produced by the alpha particles were observed and counted under an optical Olympus microscope at 600X. The measured track density was converted into radon concentration using a calibration factor. The surface and mass exhalation rates of radon have also been calculated using present data. The results indicate that the radon concentration varies appreciably from sample to sample and they were found to satisfy the safety criteria. There are samples in which radon concentration is higher and may enhance the indoor radiation levels when used as building construction materials. (author)

  20. Experimental determination of the absorption rate of unattached radon progeny from respiratory tract to blood

    International Nuclear Information System (INIS)

    Butterweck, G.; Schuler, Ch.; Vessl, G.; Mueller, R.; Marsh, J.W.; Thrift, S.; Birchall, A.

    2002-01-01

    An exposure methodology was developed for the determination of the absorption rate of unattached radon progeny deposited in the human respiratory tract to blood. Twenty-one volunteers were exposed in a radon chamber during well-controlled aerosol and radon progeny conditions, with predominantly unattached radon daughters. Special efforts were made to restrict the dose to the volunteers to an absolute maximum of 0.08 mSv. Measurements of radon gas and radon progeny in blood samples of these volunteers indicated absorption half times of 20 min to 60 min. Former determinations, mainly performed with much larger aerosol particles of diameters between 100 nm and 1000 nm, implied absorption half times around 10 h. This indicates that the absorption of radon decay products from ciliated airways into blood is dependent upon particle size and particle composition. (author)

  1. A study of indoor radon, thoron and their exhalation rates in the environment of Fazilka district, Punjab, India

    Science.gov (United States)

    Narang, Saurabh; Kumar, Deepak; Sharma, Dinesh Kumar; Kumar, Ajay

    2018-02-01

    Over the last few decades, the study of radioactive radon gas has gained huge momentum due to its possible role in health related hazards. In the present work, pin-hole twin chamber single entrance dosimeters have been used for track measurements of radon and thoron. The annual average radon concentration varies from 50.3 to 204 Bq/m3 at all locations. Almost all the values are below the safe range provided by ICRP. Radon concentration is found to be higher in winter as compared to other seasons. Variation of radon with quality of dwellings is also discussed. The values of annual effective dose due to radon and thoron are also well within the range provided by ICRP and WHO. Radon and thoron exhalation rates are measured using SMART RnDuo monitor. The radon mass exhalation rates ranged from 11 to 71 mBq/kg/h while the thoron surface values ranged from 36 to 2048 Bq/m2/h. All the values are on the lower side. A weak correlation is found between radon and thoron concentrations and their exhalation rates. When compared with the values of other parts of northern India, the values of present investigation are on higher side.

  2. Indoor radon measurements and radon prognosis for the province of Kymi, southeastern Finland

    International Nuclear Information System (INIS)

    Pennanen, M.; Maekelaeinen, I.; Voutilainen, A.

    1996-12-01

    The purpose of the regional radon prognosis is to classify areas with different levels of radon risk. The radon prognosis gives the percentages of future homes expected to have indoor radon concentrations exceeding the levels of 200 and 400 Bq/m 3 . It is assumed that no protection against the entry of radon is used in construction. In this study about 5900 indoor radon measurements made in single family houses, semi-detached houses and row houses were used. Data on the location, geology and construction of buildings were determined from maps and questionnaires. An empirical statistical model, the adjusted indoor radon measurements and geological data were used to assess the radon risk from soil and bedrock in different areas. The building sites of the province of Kymi were divided into thirteen sub-areas. The radon prognosis are calculated for the most radon-prone foundation types including 1) houses with a slab-on-grade and 2) houses with a basement or hillside houses with open stairwells between basement and first floor. The radon levels are generally greater in the western part of the area. The radon risk is highest in gravel-dominated esker areas in southwestern, western (in Pyhtaa, Kotka, Anjalankoski, litti, Valkeala) and central (Taipalsaari) parts of the area. The radon risk is also high in some bedrock and till areas, also in southwestern and western parts of the area. In these areas the level of 200 Bq/m 3 will be exceeded in 80 % of new houses. About half of the future houses in these areas will have indoor radon concentrations exceeding 400 Bq/m 3 . The radon risk is lowest in the eastern part of the province of Kymi in every soil type. In this area the level of 200 Bq/m 3 will be exceeded in 30 % of new houses. Below 10 % will exceed 400 Bq/m 3 . (orig.) (14 refs.)

  3. Review of existing instrumentation and evaluation of possibilities for research and development of instrumentation to determine future levels of radon at a proposed building site

    International Nuclear Information System (INIS)

    1983-01-01

    The rate at which radon enters houses from the soil depends on the pressure differential between the house and the soil, the resistance of the soil to gas movement, and the radon release rate of the soil near the house. The pressure differential between house and soil is caused by wind forces and temperature differences, which depend on the size of the building and the season, and are therefore almost independent of the site location. The soil resistance (permeability) and radon release rate are site specific, and a computer study of radon movement through the soil suggested that these parameters could be combined to give a Radon Index Number (RIN) for a site that would be proportional to the radon entry rate into a typical house. Regional RIN estimates would be produced using existing airborne gamma survey maps to estimate average soil radon release rate, plus agricultural soil classification maps to estimate permeability. Area RIN estimates would be produced using portable gamma spectroscopy equipment to estimate soil radon release rates over an area, plus simple soil grain size analysis techniques to estimate permeability. Site RIN estimates would be produced using laboratory techniques to measure both the radon release rate and the permeability of several undisturbed soil core samples taken at depths over the site. These would provide the most accurate value of RIN possible for a given site

  4. Measurement of HOx· production rate due to radon decay in air

    International Nuclear Information System (INIS)

    Ding, Huiling.

    1993-08-01

    Radon in indoor air may cause the exposure of the public to excessive radioactivity. Radiolysis of water vapor in indoor air due to radon decay could produce (·OH and HO 2 ·) that may convert atmospheric constituents to compounds of lower vapor pressure. These lower vapor pressure compounds might then nucleate to form new particles in the indoor atmosphere. Chemical amplification was used to determine HO x · production rate in indoor air caused by radon decay. Average HO x · production rate was found to be (4.31±0.07) x 10 5 HO x · per Rn decay per second (Bq) 3.4 to 55.0% at 22C. This work provided G (HO x ·) -value, 7.86±0.13 No./100 eV in air by directly measuring [HO x ·] formed from the radiolysis procedure. This G value implies that HO x · produced by radon decay in air might be formed by multiple processes and may be result of positive ion-molecule reactions, primary radiolysis, and radical reactions. There is no obvious relation between HO x · production rate and relative humidity. A laser-induced fluorescence (LIF) system has been used for ·OH production rate measurement; it consists of an excimer laser, a dye laser, a frequency doubler, a gaseous fluorescence chamber, and other optical and electronic parts. This system needs to be improved to eliminate the interferences of light scattering and artificial ·OH produced from the photolysis of O 3 /H 2 O

  5. Radon and its daughters in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Rundo, J

    1984-05-01

    Prolonged exposure to radon should build up a reservoir of radon in body fat and fluids. Movement of the subject to an environment with a lower radon concentration from an environment with a higher level of radon would result in an exhalation of radon, and the initial exhalation rate of radon should depend on the radon concentration inhaled. This paper describes the behavior of radon and its daughters in vivo and a relationship between the radon exhalation rate and the time after a meal. A major but short-lived postprandial increase in the exhalation rate of radon was observed. We report a similar effect in the exhalation rate of radon by persons containing no radium. It should be noted that the possibility exists that a large amount of radon daughters in the chest may interfere in the investigation of possible internal contamination with plutonium or other actinides by external counting. (author).

  6. Radon in water aeration system operational performance

    International Nuclear Information System (INIS)

    Lamarre, B.L.

    1990-01-01

    North East Environmental Products, Inc. is a manufacturer of residential scale aeration systems for removal of radon and volatile organic chemicals from private water supplies. This paper is a review of the operational history of residential scale point of entry (POE) radon aeration systems. Emphasis is placed on the difficulties and solutions encountered in actual installations caused by both mechanical difficulties and water quality parameters. A summary of radon reduction efficiency is presented for wells with radon concentrations from 21,000 to 2,600,000 pCi/L. A discussion of customer concerns and attitudes is presented along with other areas for further technical improvement. Training techniques for dealers and installers are also discussed. An update of the current status of the radon in water industry includes current sales volumes as compared to the potential market and an update on the radon in water MCL standard setting process from an industry perspective

  7. Measurement and apportionment of radon source terms for modeling indoor environments

    International Nuclear Information System (INIS)

    Harley, N.H.

    1990-01-01

    This research has two main goals; (1) to quantify mechanisms for radon entry into homes of different types and to determine the fraction of indoor radon attributable to each source and (2) to model and calculate the dose (and therefore alpha particle fluence) to cells in the human and animal tracheobronchial tree that is pertinent to induction of bronchogenic carcinoma from inhaled radon daughters

  8. Multivariate signal processing in measurements of radon and radon daughters in air

    International Nuclear Information System (INIS)

    Urbanski, P.; Machaj, B.

    2000-01-01

    Extensive measurements of radon and radon daughters concentration gauge in a radon chamber were carried out. Count rate 'spectra' against time at the output of radiation detectors were measured and registered. The count rate spectra were then processed employing Principal Component Regression (PCR). A root mean square error of the count rate was estimated. It was found that PCR processing removes a great part of count rate random fluctuations originating from the radiation statistics that results in a decrease of count rate random error. The root mean square error of count rate in a radon daughter monitor is about 3 times lower, which is equivalent to the error of the gauge with a 9 times higher air flow rate if no PCR processing is used. In case of the radon concentration gauge the increase of sensitivity is even higher and amounts to 5 times. (author)

  9. Characteristics of radon and thoron exhalation rates in Okinawa, subtropical region of Japan

    International Nuclear Information System (INIS)

    Shiroma, Y.; Kina, S.; Fujitani, T.; Hosoda, M.; Sorimachi, A.; Ishikawa, T.; Sahoo, S. K.; Tokonami, S.; Furukawa, M.

    2012-01-01

    Radon and thoron exhalation rates from the ground surface were estimated in three islands of Okinawa Prefecture, a subtropical region of Japan. In situ measurements of the exhalation rates were conducted at a total of 88 points using an accumulation technique with a ZnS(Ag) scintillation detector. The radon and thoron exhalation rates were calculated to be 1-137(arithmetic mean: 21) mBq m -2 s -1 and 32-6244 (1801) mBq m -2 s -1 , respectively. In the surface soil samples collected at 53 measurement points, 238 U and 232 Th series concentrations were estimated to be 17.9-254.0 (64.0) Bq kg -1 dry and 17.8-136.1 (58.8) Bq kg -1 dry, respectively. The maximum rates and concentrations were observed in the dark red soil area. Recent studies strongly suggest that the base material of the soils may be the eolian dust derived from the southeastern part of China, a high background radiation area. The eolian dust is, therefore, considered to be an enhancer for the radon and thoron exhalations in Okinawa. (authors)

  10. Radon and its daughters in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Rundo, J

    1984-05-01

    Prolonged exposure to radon should build up a reservoir of radon in body fat and fluids. If the subject moved to an environment with a lower radon concentration from an environment with a higher level of radon, the result would be an exhalation of radon, and the initial exhalation rate of radon should depend of the radon concentration inhaled. This paper describes the behavior of radon and its daughters in vivo and a relationship between the radon exhalation rate and the time after a meal. A major but short-lived postprandial increase in the exhalation rate of radon was observed. The author reports a similar effect in the exhalation rate of radon by persons containing no radium. It should be noted that the possibility exists that a large amount of radon daughters in the chest may interfere in the investigation of possible internal contamination with plutonium or other actinides by external counting. 8 figures.

  11. Cost-benefit analysis of decreased ventilation rates and radon exhalation from building materials

    International Nuclear Information System (INIS)

    Ericson, S.O.

    1984-01-01

    Decreased ventilation, achieved by weather stripping and other tightening measures, is the most cost effective way to energy conservation. A very low investment can result in a considerable decrease in ventilation rate. For a typical detached house in Sweden this can be equivalent to a decrease in oil consumption of 0.5 m 3 . At present price this corresponds to a saving of SEK 1200, 150 US dollars per annum. The contribution of the building materials to the concentration of radon in indoor air is approximately the inverse to air exchange rate. For a small change in ventilation rate and cost, in SEK/man Sv or US dollar/man Sv, is a function of ventilation rate, exhalation from building materials, the ratio between surface of walls, floor and ceiling to the volume of air. Thus, it is possible to find the specific ventilation rate where the marginal cost for a small increase in ventilation rate and the marginal reduction in radon concentration will give a specific amount of money for each man Sv. Examples are given. Conclusions are that for most building materials in a climate like the Swedish, there are other factors than exhalation of radon from building materials that sets the lower limit of recommendable ventilation rate. (Author)

  12. Estimation of the variations of ventilation rate and indoor radon concentration using the observed wind velocity and indoor-outdoor temperature difference

    International Nuclear Information System (INIS)

    Nagano, Katsuhiro; Inose, Yuichi; Kojima, Hiroshi

    2006-01-01

    The indoor radon concentration in the building depends on the ventilation rate. Measurement results of indoor-outdoor pressure difference showed the ventilation rate correlated closely with the indoor-outdoor pressure difference. The observation results showed that one of factor of indoor-outdoor pressure difference was the wind velocity. When the wind velocity is small, the ventilation rate is affected by the indoor-outdoor temperature difference and the effect depends on the wind velocity. The temporal variation of indoor radon concentration was predicted by the time depending indoor radon balance model and the ventilation rate estimated from the wind velocity and the indoor-outdoor temperature difference. The temporal variations of predicted radon concentration gave good agreement with the experimental values. The measurement method, indoor radon concentration and ventilation rate, factors of temporal variation of ventilation rate, and prediction of indoor radon concentration are reported. (S.Y.)

  13. Radon mitigation in schools

    International Nuclear Information System (INIS)

    Saum, D.; Craig, A.B.; Leovic, K.

    1990-01-01

    Since 1987, more than 40 schools in Maryland, Virginia, Tennessee and North Carolina were visited by the U.S. Environmental Protection Agency (EPA). School characteristics that potentially influence radon entry and impact mitigation system design and performance were identified. Mitigation systems that had proven successful in house mitigation were then installed in several of these schools. Many of the systems were installed by school personnel with some assistance from EPA and an experienced radon diagnostician. This article presents the diagnostic measurements made in the schools and it discusses in detail the specific mitigation systems that were installed in four Maryland schools by the EPA

  14. A review of radon mitigation in large buildings in the US

    International Nuclear Information System (INIS)

    Craig, A.B.

    1994-01-01

    The Environmental Protection Agency of the US carried out its initial research on radon mitigation in houses, both existing and new. A review of this work is presented in another paper at this workshop. Four years ago, this work was expanded to include the study of radon in schools, both new and existing, and now includes studies in other large buildings, as well. Factors affecting ease of mitigation of existing schools using active soil depressurisation (ASD) have been identified and quantified. Examination of the building and architectural plans makes it possible to predict the ease of mitigation of a specific building. Many schools can be easily and inexpensively mitigated using ASD. However, examination of a fairly large number of schools has shown that a significant percentage of existing schools will be hard to mitigate with ASD. In some cases, the heating, ventilating, and air conditioning (HVAC) system can be used to pressurise the building and retard radon entry. However, in some cases no central HVAC system exists and the school is difficult and/or expensive to mitigate by any technique. Prevention of radon entry is relatively easy and inexpensive to accomplish during construction of schools and other large buildings. It is also possible to control radon to near ambient levels in new construction, a goal which is much more difficult to approach in existing large buildings. The preferred method of radon prevention in the construction of large buildings is to design the HVAC system for building pressurisation, install a simple ASD system, and seal all entry routes between the sub-slab and the building interior. (author)

  15. ERRICCA radon model intercomparison exercise

    International Nuclear Information System (INIS)

    Andersen, C.E.; Albarracin, D.; Csige, I.; Graaf, E.R. van der; Jiranek, M.; Rehs, B.; Svoboda, Z.; Toro, L.

    1999-04-01

    Numerical models based on finite-difference or finite-element methods are used by various research groups in studies of radon-222 transport through soil and building materials. Applications range from design of radon remediation systems to more fundamental studies of radon transport. To ascertain that results obtained with these models are of good quality, it is necessary that such models are tested. This document reports on a benchmark test organized by the EU project ERRICCA: European Research into Radon in Construction Concerted Action. The test comprises the following cases: 1) Steady-state diffusive radon profiles in dry and wet soils, 2) steady-state entry of soil gas and radon into a house, 3) time-dependent radon exhalation from a building-material sample. These cases cover features such as: soil heterogeneity, anisotropy, 3D-effects, time dependency, combined advective and diffusive transport of radon, flux calculations, and partitioning of radon between air and water in soil pores. Seven groups participated in the intercomparison. All groups submitted results without knowing the results of others. For these results, relatively large group-to-group discrepancies were observed. Because of this, all groups scrutinized their computations (once more) and engaged in follow-up discussions with others. During this debugging process, problems were indeed identified (and eliminated). The accordingly revised results were in better agreement than those reported initially. Some discrepancies, however, still remain. All in all, it seems that the exercise has served its purpose and stimulated improvements relating to the quality of numerical modelling of radon transport. To maintain a high quality of modelling, it is recommended that additional exercises are carried out. (au)

  16. Application of the can technique and radon gas analyzer for radon exhalation measurements

    Energy Technology Data Exchange (ETDEWEB)

    Fazal-ur-Rehman E-mail: fazalr@kfupm.edu.sa; Al-Jarallah, M.I.; Musazay, M.S.; Abu-Jarad, F

    2003-12-01

    A passive 'can technique' and an active radon gas analyzer with an emanation container were applied for radon exhalation rate measurements from different construction materials, viz. five marble seven ceramic and 100 granite tiles used in Saudi Arabia. The marble and ceramic tiles did not show detectable radon exhalation using the active radon gas analyzer system. However the granite tiles showed relatively high radon exhalations, indicating a relatively high uranium content. A comparison of the radon exhalation rates measured by the two techniques showed a linear correlation coefficient of 0.57. The radon exhalation rates from the granites varied from 0.02 to 6.58 Bq m{sup -2} h{sup -1} with an average of 1.35{+-}1.40 Bq m{sup -2} h{sup -1}. The geometric mean and the geometric standard deviation of the frequency distribution were found to be 0.80 and 3.1, respectively. The track density found on the nuclear track detectors in the can technique exposed to the granites, having high exhalation rates, varied linearly with exposure time with a linear correlation coefficient of 0.99. This experimental finding agrees with the theoretical prediction. The can technique showed sensitivity to low radon exhalation rates from ceramic, marble and some granite over a period of 2 months, which were not detectable by the active radon gas analyzer system. The reproducibility of data with both measuring techniques was found to be within a 7% deviation.

  17. Characterizing the occurrence, sources, and variability of radon in Pacific Northwest homes.

    Science.gov (United States)

    Turk, B H; Prill, R J; Grimsrud, D T; Moed, B A; Sextro, R G

    1990-04-01

    A compilation of data from earlier studies of 172 homes in the Pacific Northwest indicated that approximately 65 percent of the 46 homes tested in the Spokane River Valley/Rathdrum Prairie region of eastern Washington/northern Idaho had heating season indoor radon (222Rn) concentrations above the U. S. EPA guideline of 148 Bq m-3 (4 pCi L-1). A subset of 35 homes was selected for additional study. The primary source of indoor radon in the Spokane River Valley/Rathdrum Prairie was pressure-driven flow of soil gas containing moderate radon concentrations (geometric mean concentration of 16,000 Bq m-3) from the highly permeable soils (geometric mean permeability of 5 x 10(-11) m2) surrounding the house substructures. Estimated soil gas entry rates ranged from 0.4 to 39 m3h-1 and 1 percent to 21 percent of total building air infiltration. Radon from other sources, including domestic water supplies and building materials was negligible. In high radon homes, winter indoor levels averaged 13 times higher than summer concentrations, while in low radon homes winter levels averaged only 2.5 times higher. Short-term variations in indoor radon were observed to be dependent upon indoor-outdoor temperature differences, wind speed, and operation of forced-air furnace fans. Forced-air furnace operation, along with leaky return ducts and plenums, and openings between the substructure and upper floors enhanced mixing of radon-laden substructure air throughout the rest of the building.

  18. Characterizing the occurrence, sources, and variability of radon in pacific northwest homes

    International Nuclear Information System (INIS)

    Turk, B.H.; Prill, R.J.; Grimsrud, D.T.; Moed, B.A.; Sextro, R.G.

    1990-01-01

    A compilation of data from earlier studies of 172 homes in the Pacific Northwest indicated that approximately 65 percent of the 46 homes tested in the Spokane River Valley/Rathdrum Prairie region of eastern Washington/northern Idaho had heating season indoor radon ( 222 Rn) concentrations above the U.S. EPA guideline of 148 Bq m -3 (4 pCi L -1 ). A subset of 35 homes was selected for additional study. The primary source of indoor radon in the Spokane River Valley/Rathdrum Prairie was pressure-driven flow of soil gas containing moderate radon concentrations (geometric mean concentration of 16,000 Bq m -3 ) from the highly permeable soils (geometric mean permeability of 5 x 10 -11 m 2 ) surrounding the house substructures. Estimated soil gas entry rates ranged from 0.4 to 39 m 3 h -1 and 1 percent to 21 percent of total building air infiltration. Radon from other sources, including domestic water supplies and building materials was negligible. In high radon homes, winter indoor levels averaged 13 times higher than summer concentrations, while in low radon homes winter levels averaged only 2.5 times higher. Short-term variations in indoor radon were observed to be dependent upon indoor-outdoor temperature differences, wind speed, and operation of forced-air furnace fans. Forced-air furnace operations, along with leaky return ducts and plenums, and openings between the substructure and upper floors enhanced mixing of radon laden substructure air throughout the rest of the building

  19. Radon exhalation rate and natural radionuclide content in building materials of high background areas of Ramsar, Iran

    International Nuclear Information System (INIS)

    Bavarnegin, E.; Fathabadi, N.; Vahabi Moghaddam, M.; Vasheghani Farahani, M.; Moradi, M.; Babakhni, A.

    2013-01-01

    Radon exhalation rates from building materials used in high background radiation areas (HBRA) of Ramsar were measured using an active radon gas analyzer with an emanation container. Radon exhalation rates from these samples varied from below the lower detection limit up to 384 Bq.m −2 h −1 . The 226 Ra, 232 Th and 40 K contents were also measured using a high resolution HPGe gamma- ray spectrometer system. The activity concentration of 226 Ra, 232 Th and 40 K content varied from below the minimum detection limit up to 86,400 Bq kg −1 , 187 Bq kg −1 and 1350 Bq kg −1 , respectively. The linear correlation coefficient between radon exhalation rate and radium concentration was 0.90. The result of this survey shows that radon exhalation rate and radium content in some local stones used as basements are extremely high and these samples are main sources of indoor radon emanation as well as external gamma radiation from uranium series. -- Highlights: ► In the selection process of local samples, portable scintillometer (NaI) was used. ► The activity concentration of 226 Ra varied from below the MDL up to 86400 Bq kg −1 . ► The activity concentration of 232 Th varied from below the MDL up to 187 Bq kg −1 . ► The activity concentration of 40 K varied from below the MDL up to 1350 Bq kg −1

  20. Measurement of radon activity, exhalation rate and radiation dose in fly ash and coal samples from NTPC, Badarpur, Delhi, India

    International Nuclear Information System (INIS)

    Gupta, Mamta; Verma, K.D.; Mahur, A.K.; Prasad, R.; Sonkawade, R.G.

    2013-01-01

    In the present study radon activities and exhalation rates from fly ash and coal samples from NTPC (National Thermal Power Corporation) situated at Badarpur, Delhi, India, have been measured. 'Sealed Can Technique' using LR-115 type II track detectors was employed. In fly ash samples, radon activity has been found to vary from 400.0 ± 34.7 to 483.9 ± 38.1Bqm -3 with an average value of 447.1 ± 36.6 Bqm -3 and in coal samples, radon activity has been found to vary from 504.0 ± 39.0 to 932.1 ± 52.9 Bqm -3 with an average value of 687.2 ± 45.2 Bqm -3 . Radon exhalation rate from coal is found to be higher than radon exhalation rate from its ash products, whereas the opposite is expected. Indoor inhalation exposure (radon) effective dose has also been estimated. (author)

  1. Radon exhalation rates from soil and sand samples collected from the vicinity of Yamuna river

    International Nuclear Information System (INIS)

    Garg, A.K.; Sushil Kumar; Chauhan, Pooja; Chauhan, R.P.

    2011-01-01

    Soil, sand and stones are the most popular building materials for Indian dwellings. Radon is released into ambient air from these materials due to ubiquitous uranium and radium in them, thus increasing the airborne radon concentration. The radioactivity in sand and soils is related to radioactivity in the rocks from which they are formed. These materials contain varying amount of uranium. In the present investigation, the radon emanated from soil and sand samples from different locations in the vicinity of Yamuna river has been estimated. The samples have been collected from different locations near the Yamuna river. The samples collecting sites are from Yamunanagar in Haryana to Delhi. The radon concentration in different samples has been calculated, based upon the data, the mass and the surface exhalation rates of radon emanated from them have also been calculated

  2. Measurement and apportionment of radon source terms for modeling indoor environments

    International Nuclear Information System (INIS)

    Harley, N.H.

    1992-01-01

    This research has two main goals; (1) to quantify mechanisms for radon entry into homes of different types and to determine the fraction of indoor radon attributable to each source and (2) to model and calculate the dose (and therefore alpha particle fluence) to cells in the human and animal tracheobronchial tree that is pertinent to induction of bronchogenic carcinoma from inhaled radon daughters. The dosimetry has been extended to include organs other than the lung

  3. Radon

    Energy Technology Data Exchange (ETDEWEB)

    Weigel, F [Muenchen Univ. (Germany, F.R.). Inst. fuer Anorganische Chemie

    1978-09-01

    The noble gas radon, formerly called emanation, was discovered a few years after radium. /sup 222/Rn, the longest-lived isotope, has a half-life of 3,82 days. This half life is so short that the experimental techniques available at present (1978) are not sufficient for a characterization of defined radon compounds, even though there are definite indications for the existence of such compounds, and one may expect such radon compounds to be even more stable than the numerous known xenon compounds. - The radon isotopes /sup 219/Rn (Actinon), /sup 220/Rn (Thoron), and /sup 222/Rn (Radon) occur in nature despite their rather short half-lives, because they are continously generated from their mothers /sup 223/Ra, /sup 224/Ra, and /sup 226/Ra, which are in secular equilibrium with long-lived isotopes /sup 235/U, /sup 238/U, and /sup 232/Th, and are in turn continously formed from these long-lived isotopes. Since the radon isotopes are gases, they enter the atmosphere and are carried for long distances with air currents. - Because radon is so short-lived, its practical applications are rather limited. For medical applications, small sealed glass tubes filled with radon are used as radiation sources after the radon has decayed, because the whole series of Po-, Bi-, and Pb-isotopes of the radium decay chain are formed, whose penetrating radiation is useful for therapy. When solids are spiked with Ra isotopes, radon is evolved at a constant rate. On heating such solids, phase transitions show up by sudden increased radon evolution (Hahn's emanation method). - On the basis of nuclear theoretical calculations, there is hardly a chance for the discovery of a long-lived radon species. Therefore, major progress in radon chemistry is hardly to be expected in the near future.

  4. Modelling radiation exposure in homes from siporex blocks by using exhalation rates of radon

    Directory of Open Access Journals (Sweden)

    Nikolić Mladen D.

    2015-01-01

    Full Text Available Building materials are the second major source of indoor radon, after soil. The contribution of building materials to indoor radon amount depends upon the radium content and exhalation rates, which can be used as a primary index for radon levels in the dwellings. This paper presents the results of using the experimentally determined exhalation rates of siporex blocks and concrete plates, to assess the radiation exposure in dwellings built of siporex blocks. The annual doses in rooms have been estimated depending on the established modes of ventilation. Realistic scenario was created to predict an annual effective dose for an old person, a housewife, a student, and an employed tenant, who live in the same apartment, spending different periods of time in it. The results indicate the crucial importance of good ventilation of the living space.

  5. Radon mitigation in schools utilising heating, ventilating and air conditioning systems

    International Nuclear Information System (INIS)

    Fisher, G.; Ligman, B.; Brennan, T.; Shaughnessy, R.; Turk, B.H.; Snead, B.

    1994-01-01

    As part of a continuing radon in schools technology development effort, EPA's School Evaluation Team has performed radon mitigation in schools by the method of ventilation/pressurisation control technology. Ventilation rates were increased, at a minimum, to meet the American Society of Heating, Refrigeration and Air Conditioning Engineers (ASHRAE) standard, Ventilation for Acceptable Indoor Air Quality (ASHRAE 62-1989). This paper presents the results and the preliminary evaluations which led to the team's decision to implement this technology. Factors considered include energy penalties, comfort, indoor air quality (IAQ), building shell tightness, and equipment costs. Cost benefit of heat recovery ventilation was also considered. Earlier results of the SEP team's efforts have indicated a severe ventilation problem within the schools of the United States. Two case studies are presented where HVAC technology was implemented for controlling radon concentrations. One involved the installation of a heat recovery ventilator to depressurise a crawl space and provide ventilation to the classrooms which previously had no mechanical ventilation. The other involved the restoration of a variable air volume system in a two-storey building. The HVAC system's controls were restored and modified to provide a constant building pressure differential to control the entry of radon. Pre-mitigation and post-mitigation indoor air pollutant measurements were taken, including radon, carbon dioxide (CO 2 ), particulates, and bio-aerosols. Long-term monitoring of radon, CO 2 , building pressure differentials, and indoor/outdoor temperature and relative humidity is presented. (author)

  6. Impact of ventilation systems and energy savings in a building on the mechanisms governing the indoor radon activity concentration.

    Science.gov (United States)

    Collignan, Bernard; Powaga, Emilie

    2017-11-23

    For a given radon potential in the ground and a given building, the parameters affecting the indoor radon activity concentration (IRnAC) are indoor depressurization of a building and its air change rate. These parameters depend mainly on the building characteristics, such as airtightness, and on the nature and performances of the ventilation system. This study involves a numerical sensitivity assessment of the indoor environmental conditions on the IRnAC in buildings. A numerical ventilation model has been adapted to take into account the effects of variations in the indoor environmental conditions (depressurization and air change rate) on the radon entry rate and on the IRnAC. In the context of the development of a policy to reduce energy consumption in a building, the results obtained showed that IRnAC could be strongly affected by variations in the air permeability of the building associated with the ventilation regime. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Comparable stocks, boundedly rational stock markets and IPO entry rates.

    Directory of Open Access Journals (Sweden)

    Jay Chok

    Full Text Available In this study, we examine how initial public offerings (IPO entry rates are affected when stock markets are boundedly rational and IPO firms infer information from their counterparts in the market. We hypothesize a curvilinear relationship between the number of comparable stocks and initial public offerings (IPO entry rates into the NASDAQ Stock Exchange. Furthermore, we argue that trading volume and changes in stock returns partially mediates the relationship between the number of comparable stocks and IPO entry rates. The statistical evidence provides strong support for the hypotheses.

  8. Basement radon entry and stack driven moisture infiltration reduced by active soil depressurization

    Science.gov (United States)

    C.R. Boardman; Samuel V. Glass

    2015-01-01

    This case study presents measurements of radon and moisture infiltration from soil gases into the basement of an unoccupied research house in Madison, Wisconsin, over two full years. The basement floor and exterior walls were constructed with preservative-treated lumber and plywood. In addition to continuous radon monitoring, measurements included building air...

  9. Mechanisms of radon injury

    International Nuclear Information System (INIS)

    Cross, F.T.

    1988-01-01

    In this new project, they conduct molecular, cellular and whole-animal research relevant to understanding the inhalation toxicology of radon and radon-daughter exposures. The work specifically addresses the exposure-rate effect in radon-daughter carcinogenesis; the induction-promotion relationships associated with exposure to radon and cigarette-smoke mixtures; the role of oncogenes in radon-induced cancers; the effects of radon on DNA as well as on DNA repair processes; and the involvement of growth factors and their receptors in radon-induced carcinogenesis. Preliminary experiments showed that oncogenes are activated in radon-induced lung tumors. They have therefore begun further exposures pertinent to the oncogene and growth-factor studies. An in vitro radon cellular-exposure system was designed, and cell exposures were initiated. Initiation-promotion-initiation studies with radon and cigarette-smoke mixtures have also begun; and they are compiling a radon health-effects bibliography

  10. Survey of Gamma Dose and Radon Exhalation Rate from Soil Surface of High Background Natural Radiation Areas in Ramsar, Iran

    Directory of Open Access Journals (Sweden)

    Rouhollah Dehghani

    2013-09-01

    Full Text Available Background: Radon is a radioactive gas and the second leading cause of death due to lung cancer after smoking. Ramsar is known for having the highest levels of natural background radiation on earth. Materials and Methods: In this research study, 50 stations of high radioactivity areas of Ramsar were selected in warm season of the year. Then gamma dose and radon exhalation rate were measured.Results: Results showed that gamma dose and radon exhalation rate were in the range of 51-7100 nSv/hr and 9-15370 mBq/m2s, respectively.Conclusion: Compare to the worldwide average 16 mBq/m2s, estimated average annual effective of Radon exhalation rate in the study area is too high.

  11. Radon and its daughters in vivo

    International Nuclear Information System (INIS)

    Rundo, J.

    1983-01-01

    Some aspects of the behavior of radon and its short-lived daughters in vivo are described and a relationship between the radon exhalation rate and time after a meal is demonstrated. A major but short-lived postprandial increase in the exhalation rate of radon produced from skeletally-deposited radium was observed and a similar effect in exhalation rate of environmental radon by persons containing no radium was noted. Persons living in houses with elevated concentrations of radon may contain sufficient activity for its detection by external gamma-ray counting. Some of the activity observed is due to inhaled daughter-products in the chest, and some to daughter-products associated with and produced by the decay of radon throughout the body. 3 references, 8 figures. (MF)

  12. A Radon Chamber without Radium Source for Detector Calibration and Radon Measurements

    International Nuclear Information System (INIS)

    Al-Azmi, D.; Karunakara, N.

    2008-01-01

    A radon chamber of volume 216 liters was designed and constructed for calibration of radon detectors and radon test measurements. The main feature of this chamber is that the active 226 Ra source, to generate the 222 Rn inside the chamber volume, is not required. Instead, 222 Rn from soil gas is utilized for this purpose. The supply of radon comes from the soil gas. Soil gas is drawn from the soil to fill the chamber with high radon concentration levels (∼ 80 kBq/m3). Desired radon concentration levels can be obtained by drawing the soil gas for different time durations and/or flow rate (author)

  13. Map showing radon potential of rocks and soils in Montgomery County, Maryland

    Science.gov (United States)

    Gundersen, L.C.; Reimer, G.M.; Wiggs, C.R.; Rice, C.A.

    1988-01-01

    This report summarizes the radon potential of Montgomery County in the context of its geology. Radon is a naturally occurring gas produced by the radioactive decay of uranium. Radon produced by uraniferous rocks and soils may enter a house through porous building materials and through openings in walls and floors. Radon gases has a tendency to move from the higher pressure commonly existing in the soil to the lower pressure commonly existing in the house. The U.S. Environmental Protection Agency (U.S. EPA, 1986a) estimates that elevated levels of indoor radon may be associated with 5,000 to 20,000 of the 130,000 lung cancer deaths per year. They also estimate that 8 to 12 percent of the homes in the United States will have annual average indoor radon levels exceeding 4 picoCuries per liter of air (pCi/L). Above this level, the U.S. EPA recommends homeowners take remedial action. May factors control the amount of radon which may enter a home from the geologic environment. Soil drainage, permeability, and moisture content effect the amount of radon that can be released from rocks and soils (known as the emmanation) and may limit or increase how far it can migrate. Well drained, highly permeable soils facilitate the movement of radon. Soils with water content in the 8 to 15 percent range enhance the emmanation of radon (Lindmark, 1985). Daily and seasonal variations in soil and indoor radon can be caused by meteorologic factors such as barometric pressure, temperature, and wind (Clements and Wilkening, 1974; Schery and other, 1984). Construction practices also inhibit or promote entry of radon into the home (U.S. EPA, 1986b). In general, however, geology controls the source and distribution of radon (Akerblom and Wilson, 1982; Gundersen and others, 1987, 1988; Sextro and others, 1987; U.S. EPA, 1983; Peake, 1988; Peake and Hess, 1988). The following sections describe: 1) the methods used to measure radon and equivalent uranium (eU) in soil; 2) the radon potential

  14. Determination of radon emission rate with regard to energetic reconstruction of buildings; Bestimmung der Radonquellstaerke im Zusammenhang mit Massnahmen zur energetischen Sanierung von Gebaeuden

    Energy Technology Data Exchange (ETDEWEB)

    Neugebauer, Thomas; Grund, A.L.; Hingmann, H.; Buermeyer, J.; Grimm, V.; Breckow, J. [Technische Hochschule Mittelhessen (THM), Giessen (Germany). Inst. fuer Medizinische Physik und Strahlenschutz (IMPS)

    2015-07-01

    In frame of a project funded by the Federal Office for Radiation Protection (BfS) the influence of meteorological and room climate parameters and energetic reconstruction on the radon concentration inside buildings has been investigated. For this purpose parameters like temperature, air pressure, relative humidity and carbon dioxide concentration have been measured. The daily and seasonal variations of the radon concentration were influenced by the behaviour of the residents. A parameter less influenced by this behaviour is the radon emission rate. Complementary to the above mentioned project the method of determination of the radon emission rate has been developed in frame of a project funded by the Ministry of the Environment of Hesse (HMUKLV). With the improved method, it is possible to determine the radon emission rate on a continuous base. Therefore both, the radon concentration and the air exchange rate of a building have to be determined. For the verification of the method simulations and measurements have been performed. Additionally meteorological parameters have been recorded in order to evaluate possible influences on the radon emission rate.

  15. Measurement of Radon Exhalation Rate in Sand Samples from Gopalpur and Rushikulya Beach Orissa, Eastern India

    Science.gov (United States)

    Mahur, Ajay Kumar; Sharma, Anil; Sonkawade, R. G.; Sengupta, D.; Sharma, A. C.; Prasad, Rajendra

    Natural radioactivity is wide spread in the earth's environment and exists in various geological formations like soils, rocks, water and sand etc. The measurement of activities of naturally occurring radionuclides 226Ra, 232Th and 40K is important for the estimation of radiation risk and has been the subject of interest of research scientists all over the world. Building construction materials and soil beneath the house are the main sources of radon inside the dwellings. Radon exhalation rate from building materials like, cement, sand and concrete etc. is a major source of radiation to the habitants. In the present studies radon exhalation rates in sand samples collected from Gopalpur and Rushikulya beach placer deposit in Orissa are measured by using "Sealed Can technique" with LR-115 type II nuclear track detectors. In Samples from Rushikulya beach show radon activities varying from 389 ± 24 to 997 ± 38 Bq m-3 with an average value of 549 ±28 Bq m-3. Surface exhalation rates in these samples are found to vary from 140 ± 9 to 359 ± 14 mBq m-2 h-1with an average value of 197 ±10 mBq m-2 h-1, whereas, mass exhalation rates vary from 5 ± 0.3 to 14 ± 0.5 mBq kg-1 h-1 with an average value of 8 ± 0.4 mBq kg-1 h-1. Samples from Gopalpur radon activities are found to vary from 371 ± 23 to 800 ± 34 Bq m-3 with an average value of 549 ± 28 Bq m-3. Surface exhalation rates in these samples are found to vary from 133 ± 8 to 288 ± 12 mBq m-2h-1 with an average value of 197 ± 10 mBq m-2 h-1, whereas, mass exhalation rates vary from 5 ± 0.3 to 11 ± 1 mBq kg-1 h-1 with an average value of 8 ± 0.4 mBq kg-1 h-1.

  16. Determination of indoor radon concentration levels and the associated annual effective dose rate in some Ghanaian dwellings

    International Nuclear Information System (INIS)

    Nsiah-Akoto, I.

    2010-01-01

    Radon and its decay products in indoor air are the main source of natural internal irradiation of man. In this present work, the indoor radon concentration, the annual exposure, the annual effective dose and the annual dose equivalent to the lung received by the population were estimated in the dwellings at Dome in the Ga-East District of the Greater Accra Region, Ghana using time-integrated passive radon detectors; LR-115 Type II solid state nuclear track detector (SSNTD) technique. The primary objective of this project was to assess the annual effective dose rate due to the indoor radon concentration levels and the associated level of risk. Measurements were carried out from December 2009 to March 2010. After the 3 months exposure, the detectors were subjected to chemical etching in a 2.5M analytical grade sodium hydroxide solution at (60 ±1) o C, for 90mins in a constant temperature water bath to enlarge the latent tracks produced by alpha particles from the decay of radon. The etched tracks were magnified using the microfiche reader and counted with a tally counter. The mean indoor radon concentration was found to be (466.9±1.2) Bqm -3 and the mean annual exposure was (2.03±0.08) WLM. Assuming an indoor occupancy factor of 0.4 and 0.4 for equilibrium factor for radon indoors, we found out that the mean Rn-222 effective dose rate and the annual equivalent dose rate to the lung in the present study dwellings was (14.13±0.22)mSvy -1 and (3.74 E-07 ±3.50 E-06)Svy -1 respectively. The mean values of radon concentrations at Dome, Kwabenya, Biakpa, and South-Eastern part of Ghana, Prestea and Kassena-Nakana District in the previous research ranged from (9.4±0.5) to (518.7±4.0) Bqm -3 . The mean annual exposure, annual effective dose rate and the annual equivalent for the previous work ranged from (0.04±0.03)WLM to (0.58±0.05)WLM, (0.28±0.08) to (15.54±0.69mSvy -1 ), (8.23E-12±4.33E-07) to (4.15E-07± 1.13E-04) respectively. Odds ratios (ORs) for lung

  17. The role of the ventilation industry in addressing indoor radon

    International Nuclear Information System (INIS)

    Wellford, B.W.

    1988-01-01

    It is generally acknowledged that radon mitigation can only be accomplished on a national scale through a cooperative effort of government, industry and an informed public. The Environmental Protection Agency has developed, demonstrated and published acceptable procedures for testing and preventing the entry or radon into occupancies, as well as procedures for removal when it is not possible or economically viable to prevent radon from entering these occupancies. Various states have instituted programs for industry implementation of EPA procedures and public education programs are now underway. Industry effort will be required to mitigate existing housing stock, to insure new radon resistant housing and, equally important, to provide for radon monitoring and servicing of mitigation measures for centuries to come. What the nature of that industry can and should be and how government agencies can encourage the development of such industry is the subject of this paper

  18. Radon/radon-daughter measurement methods and instrumentation

    International Nuclear Information System (INIS)

    Rock, R.L.

    1977-01-01

    Radon-daughter measurement equipment and techniques have been continuously improved over the last 25 years. Improvements have been in the areas of accuracy, time and convenience. We now have miniaturized scalers and detectors available for measuring the alpha particle count rates from aerosol samples collected on filter papers. We also have small lightweight efficient pumps for conveniently collecting samples and we have various counting methods which allow us to choose between making very precise measurements or nominal measurements. Radon-daughter measurement methods used in uranium mines and mills are discussed including a personal radon-daughter-exposure integrating device which can be worn by miners

  19. An approach to discriminatively determine thoron and radon emanation rates for a granular material with a scintillation cell

    International Nuclear Information System (INIS)

    Sakoda, Akihiro; Meisenberg, Oliver; Tschiersch, Jochen

    2016-01-01

    A powder sandwich technique was applied to determine thoron ("2"2"0Rn) and radon ("2"2"2Rn) emanation rates for a granular material. The feature of this technique is the sample preparation, in which a granular material is put and fixed between two membrane filters. Airflow is directly given to this sandwich sample, will include thoron and radon emanated from the material, and then is transferred to the detector. This method makes sure that thoron and radon emanated are not retained in pore space within the sample volume, which is crucial for the appropriate emanation test. This technique was first introduced by Kanse et al. (2013) with the intention to measure the emanation of thoron - but not of radon - from materials having much higher "2"2"4Ra activity than "2"2"6Ra. In the present study, the methodology for the discriminative determination of thoron and radon emanation rates from a granular material has been examined using a flow-through scintillation cell and sandwich sample. The mathematical model was developed to differentiate total alpha counts into thoron- and radon-associated counts. With a sample of uranium ore, this model was experimentally validated by comparison between the scintillation cell and a reference detector that can discriminatively measure thoron and radon concentrations. Furthermore, the detection limits and uncertainties were evaluated to discuss the characteristics of this method. Key parameters for improving the determination of thoron and radon emanations were found to be the background radon concentration and the leakage of radon from the measurement system, respectively. It was concluded that the present method is advantageous to a sample that has much higher "2"2"6Ra activity than "2"2"4Ra. - Highlights: • The methodology of appropriate and discriminative measurement of thoron and radon emanation is presented. • Measurement of thoron and radon emanated from a sample was made using a scintillation cell. • Detection limits and

  20. Variation of indoor radon concentration and ambient dose equivalent rate in different outdoor and indoor environments

    Energy Technology Data Exchange (ETDEWEB)

    Stojanovska, Zdenka; Janevik, Emilija; Taleski, Vaso [Goce Delcev University, Faculty of Medical Sciences, Stip (Macedonia, The Former Yugoslav Republic of); Boev, Blazo [Goce Delcev University, Faculty of Natural and Technical Sciences, Stip (Macedonia, The Former Yugoslav Republic of); Zunic, Zora S. [University of Belgrade, Institute of Nuclear Sciences ' ' Vinca' ' , Belgrade (Serbia); Ivanova, Kremena; Tsenova, Martina [National Center of Radiobiology and Radiation Protection, Sofia (Bulgaria); Ristova, Mimoza [University in Ss. Cyril and Methodius, Faculty of Natural Sciences and Mathematic, Institute of Physics, Skopje (Macedonia, The Former Yugoslav Republic of); Ajka, Sorsa [Croatian Geological Survey, Zagreb (Croatia); Bossew, Peter [German Federal Office for Radiation Protection, Berlin (Germany)

    2016-05-15

    Subject of this study is an investigation of the variations of indoor radon concentration and ambient dose equivalent rate in outdoor and indoor environments of 40 dwellings, 31 elementary schools and five kindergartens. The buildings are located in three municipalities of two, geologically different, areas of the Republic of Macedonia. Indoor radon concentrations were measured by nuclear track detectors, deployed in the most occupied room of the building, between June 2013 and May 2014. During the deploying campaign, indoor and outdoor ambient dose equivalent rates were measured simultaneously at the same location. It appeared that the measured values varied from 22 to 990 Bq/m{sup 3} for indoor radon concentrations, from 50 to 195 nSv/h for outdoor ambient dose equivalent rates, and from 38 to 184 nSv/h for indoor ambient dose equivalent rates. The geometric mean value of indoor to outdoor ambient dose equivalent rates was found to be 0.88, i.e. the outdoor ambient dose equivalent rates were on average higher than the indoor ambient dose equivalent rates. All measured can reasonably well be described by log-normal distributions. A detailed statistical analysis of factors which influence the measured quantities is reported. (orig.)

  1. Uranium in soil and gamma dose rate as proxies for the indoor radon risk: situation in Belgium

    International Nuclear Information System (INIS)

    Tondeur, F.; Cinelli, G.; Dehandschutter, B.

    2017-01-01

    Radon risk maps are usually based either on indoor radon data, or on measurements of soil gas radon and soil permeability. If these data are not available or not sufficient, it was suggested that other data could be used as an approximate substitute (a proxy) to the missing information, like the concentration of 238 U or 226 Ra in soils or the terrestrial gamma dose rate (TGDR). We examine here the correlation between airborne measurements of soil U and indoor radon, and between airborne U and TGDR, and their link with affected/unaffected areas. No clear correlation is found between airborne U and affected areas, as strongly affected areas are not characterised by a higher U level. Only the moderately affected area of Condroz can be connected to a higher U level, related to a few U anomalies. TGDR shows a rather good correlation with airborne U, but its relation with radon risk is less clear. Soil uranium and TGDR may help to screen out areas with very low U and very low TGDR, which have a low indoor radon risk, but they cannot be considered as good proxies for predicting radon-affected areas in Belgium. (authors)

  2. The use of mechanical ventilation with heat recovery for controlling radon and radon-daughter concentrations

    International Nuclear Information System (INIS)

    Nazaroff, W.W.; Boegel, M.L.; Hollowell, C.D.; Roseme, G.D.

    1980-01-01

    An energy research house in Maryland was found to have radon concentrations far in excess of recommended guidelines. A mechanical ventilation system with heat recovery was installed in this house to test its effectiveness as an energy-efficient control technique for indoor radon. Radon concentration was monitored continuously for two weeks under varying ventilation conditions (0.07 to 0.8 air changes per hour (ach)) and radon daughter concentrations were measured by grab-sample techniques about nine times daily during this period. At ventilation rates of 0.6 ach and higher radon and radon daughter levels dropped below guidelines for indoor concentrations. Comparison with other studies indicates that indoor radon buildup may be a problem in a considerable portion of houses characterized by their low infiltration rates. The use of mechanical ventilation systems with air-to-air heat exchangers may offer a practical, cost-effective, and energy-efficient means of alleviating not only the radon problem specifically but also the general deterioration of indoor air quality in houses designed or retrofitted to achieve low infiltration

  3. Mapping radon-prone areas using γ-radiation dose rate and geological information

    International Nuclear Information System (INIS)

    García-Talavera, M; Rey, C; Ramos, L; García-Pérez, A

    2013-01-01

    Identifying radon-prone areas is key to policies on the control of this environmental carcinogen. In the current paper, we present the methodology followed to delineate radon-prone areas in Spain. It combines information from indoor radon measurements with γ-radiation and geological maps. The advantage of the proposed approach is that it lessens the requirement for a high density of measurements by making use of commonly available information. It can be applied for an initial definition of radon-prone areas in countries committed to introducing a national radon policy or to improving existing radon maps in low population regions. (paper)

  4. Blower door method in radon diagnostics

    International Nuclear Information System (INIS)

    Fronka, A.; Moucka, L.

    2004-01-01

    The idea of the radon transfer factor is commonly presented as the ratio of the building indoor radon concentration to the subsoil radon concentration. Ventilation and the pressure field over the whole building envelope, which varies in a time over a very wide range even in the same building, poses a major problem. Therefore a new approach based on the controlled conditions determining the soil air infiltration was developed. Radon in soil gas infiltrates into the building indoor environment particularly through cracks and other leakages in the structure providing the building contact with its subsoil. The infiltration is driven by the air pressure difference on the two sides of the structure. The pressure difference is caused by the stack effect and its value ranges from 1-2 Pa in family houses to some tens of Pa in higher buildings. Unfortunately, the pressure difference is very unstable under normal conditions, being affected by a host of parameters such as the height of the building, distribution and geometry of leakages, outdoor-indoor temperature difference, etc. Wind direction and velocity of the wind plays a major role. In our research the blower door method was applied in combination with a monitoring of the indoor radon concentration. The indoor-outdoor pressure difference and the pressure difference at the two sides of the screen shutter of the blower door fan are also measured. The blower door ensures a constant, evaluable air exchange rate. The fan power is regulated to provide a stable pressure difference within the range of roughly 5-100 Pa. This approach provides very well defined conditions allowing us to apply a constant ventilation-constant radon supply model. In such circumstances the dynamical changes of radon concentrations are very fast, and therefore a unique continual radon monitor was applied. The radon supply rate is evaluated from the radon steady state of the time course of radon concentration. The dependence of the radon supply rate on

  5. Pre- and post construction radon measurements in a new housing development

    International Nuclear Information System (INIS)

    Rydock, J.P.; Naess-Rolstad, A.; Brunsell, J.T.

    2001-01-01

    Results from pre- and post construction radon measurements in a new housing development are presented. The houses were built in an area that had not been previously associated with elevated indoor radon concentrations. Exhalation measurements of gravel and stone from the site and soil gas measurements under several houses did not indicate an elevated radon potential. However, 4 of 21 finished houses (or 19%) exhibited annual average indoor radon concentrations over 200 Bq.m -3 (5.4 pCi/l). The highest concentrations were observed in the first house built in 1 of the 6 houses built differently than the original designs, with the elements of a sub floor ventilation system included for possible radon control if necessary. These results suggest that site investigations can be of limited value in determining where not to include radon protection measures in new housing. Also, that care must be taken to adequately inform everyone involved in the building process of the importance of maintaining a tight seal against the ground to prevent possible radon gas entry into a house. (author)

  6. Radon exhalation from building materials for decorative use

    Energy Technology Data Exchange (ETDEWEB)

    Chen Jing, E-mail: jing.chen@hc-sc.gc.c [Radiation Protection Bureau, Health Canada, 775 Brookfield Road, Ottawa K1A 1C1 (Canada); Rahman, Naureen M.; Atiya, Ibrahim Abu [Radiation Protection Bureau, Health Canada, 775 Brookfield Road, Ottawa K1A 1C1 (Canada)

    2010-04-15

    Long-term exposure to radon increases the risk of developing lung cancer. There is considerable public concern about radon exhalation from building materials and the contribution to indoor radon levels. To address this concern, radon exhalation rates were determined for 53 different samples of drywall, tile and granite available on the Canadian market for interior home decoration. The radon exhalation rates ranged from non-detectable to 312 Bq m{sup -2} d{sup -1}. Slate tiles and granite slabs had relatively higher radon exhalation rates than other decorative materials, such as ceramic or porcelain tiles. The average radon exhalation rates were 30 Bq m{sup -2} d{sup -1} for slate tiles and 42 Bq m{sup -2} d{sup -1} for granite slabs of various types and origins. Analysis showed that even if an entire floor was covered with a material having a radon exhalation rate of 300 Bq m{sup -2} d{sup -1}, it would contribute only 18 Bq m{sup -3} to a tightly sealed house with an air exchange rate of 0.3 per hour. Generally speaking, building materials used in home decoration make no significant contribution to indoor radon for a house with adequate air exchange.

  7. Radon emanation from soils

    International Nuclear Information System (INIS)

    Markkanen, M.; Arvela, H.

    1992-01-01

    The results of gamma spectrometric sample measurements of radon ( 222 Rn) emanation coefficients and radium concentrations ( 226 Ra) from about 800 Finnish soil samples are presented. The radon emanation rate was measured in about 400 soil samples, using radon-tight cans and Lucas cells. The effects of water content and temperature on radon emanation were investigated, using various samples of different soil types. Radon emanation and the effect of water content on radon emanation were investigated separately for different grain sizes (samples of till). The results provide some information on radon emanation in different soil types and relate emanation in laboratory conditions to conditions in ground soil. In routine measurements of radon emanation from soil samples, use of a 5% water content was considered advisable. The correction coefficients of radon emanation varied between 0.3 and 1.5, depending on the water content and soil type. At 5% water content, hardly any difference was found between radon emanation at temperatures of 20 and 1 o C. Radon emanation was found to be an inverse function of grain sizes larger than 0.5 mm in diameter. (author)

  8. Radon and energy efficient homes

    International Nuclear Information System (INIS)

    Burkart, W.

    1981-09-01

    Radon and its daughters in indoor air are presently responsible for dose equivalents of about 31 mSv/year (3 rem/year) to parts of the respiratory tract. Linear extrapolation from the dose response values of uranium miners heavily exposed to radon and its decay products would suggest that almost all lung cancers in the non-smoking population are caused by environmental 222 Rn. Using epidemiological data on the types of lung cancer found in non-smokers of the general public as compared to the miners, a smaller effect of low level radon exposure is assumed, which would result in a lung cancer mortality rate due to radon of about 10 deaths per year and million or 25% of the non-smoker rate. Higher indoor radon concentrations in energy efficient homes mostly caused by reduced air exchange rates will lead to a several fold increase of the lung cancer incidence from radon. Based on the above assumption, about 100 additional lung cancer deaths/year-million will result both from an increase in radionuclide concentrations in indoor air and a concomitant rise in effectiveness of radiation to cause cancer with higher exposure levels. Possibilities to reduce indoor radon levels in existing buildings and costs involved are discussed. (Auth.)

  9. The effect of time-dependent ventilation and radon (thoron) gas emanation rates in underground uranium mines

    International Nuclear Information System (INIS)

    Bigu, J.

    1987-01-01

    A theoretical radiation mine model, suitable for underground uranium mines, has been investigated. In this model, the rate of ventilation and/or the radon (thoron) gas emanation from mine walls are time-dependent. Several cases of practical interest have been investigated including sinusoidal, linear, exponential, stepwise, or a combination of two or more of the above. Analytical solutions were obtained for the time-dependent radon (thoron) gas emanation rate. However, because of the extreme analytical complexity of the solutions corresponding to the time-dependent ventilation rate case, numerical solutions were found using a special Runge-Kutta procedure and the Hamming's modified predictor-corrector method for the solution of linear initial-value problems. The mine model makes provisions for losses of radioactivity, other than by ventilation and radioactive decay, by, say, plate-out on mine walls, and by other mechanisms. Radioactivity data, i.e., radon, thoron, and their progeny, obtained with the above mine model for a number of ventilation and emanation conditions, are presented. Experimental data obtained in an inactive stope of an underground uranium mine for a time-dependent air flow case are shown. Air flow conditions (ventilation rate) were determined by tracer gas techniques using SF 6

  10. Effect of fresh air ventilation on indoor radon concentration

    International Nuclear Information System (INIS)

    Sun Hao; Wu Jianhua; Fu Shi

    2012-01-01

    The radon concentration of laboratory for radon simulation (LRS) was measured by the RAD7 radon monitor, and the effect of the different fresh air ventilations on indoor radon concentration was studied and analyzed. The indoor radon concentration of LRS can be accumulated up to 2000 Bq/m 3 and the average radon exhalation rate of the LRS is 14.5 Bq · m -2 . h -1 . Furthermore, when the fresh air enters into the LRS continuously, the indoor radon concentration decreases exponentially with the increase of time. The equilibrium radon concentration and equilibrium time of LRS decrease exponentially with the increase of the rate of fresh air ventilation. In addition, the indoor radon concentration increases by accumulation with the decrease of the rate of fresh air ventilation. (authors)

  11. 226Ra, 232Th and 40K contents and radon exhalation rate from materials used for construction and decoration in Cameroon

    International Nuclear Information System (INIS)

    Ngachin, M; Njock, M G Kwato; Garavaglia, M; Giovani, C; Scruzzi, E; Nourreddine, A; Lagos, L

    2008-01-01

    This work deals with the measurement of radioactivity and radon exhalation rate from building materials manufactured in Douala city from geological materials. Nine types of building material were surveyed for their natural radioactivity contents using high-resolution gamma-ray spectrometry. The activity concentrations for 226 Ra, 232 Th and 40 K varied from 11.5 to 49 Bq kg -1 , 16 to 37 Bq kg -1 and 306 to 774 Bq kg -1 , respectively. The absorbed dose rate in the samples investigated at 1 m above ground level ranged from 28.5 to 66.6 nGy h -1 . External and internal hazard indices were also estimated as defined by the European Commission. The Ra equivalents of the materials studied ranged from 57.5 to 133 Bq kg -1 and are much smaller than the recommended limit of 370 Bq kg -1 for construction materials for dwellings. Polycarbonate nuclear track detectors (NTDs), type CR-39, were used for measuring the radon concentration from different materials. In fact, knowledge of the radon exhalation rate from building materials is important for understanding the individual contribution of each material to the total indoor radon exposure. Samples were hermetically closed in glass vessels and the radon growth was followed as a function of time. The radon exhalation rate was therefore derived from the experimental measurement of α-track densities. The radon exhalation varied from (5.77 ± 0.06) x 10 -5 to (7.61 ± 0.07) x 10 -5 Bq cm -2 h -1 in bricks, from (5.79 ± 0.05) x 10 -5 to (11.6 ± 0.12) x 10 -5 in tiles, and was (6.95 ± 0.03) x 10 -5 Bq cm -2 h -1 in concrete. A correlation (correlation coefficient approx. = 0.8) was found between radium concentration measured with a HPGe detector and the radon exhalation rate obtained using nuclear track detectors

  12. Correlation between the radon levels and the lung cancer mortality rates - experimental and theoretical problems

    International Nuclear Information System (INIS)

    Tran Dai Nghiep; Vo Thi Anh

    2003-01-01

    Radon is a radioactive gas and is present in the most earth materials such as soil, stone, air, water and others. Comprehensive and scientifically rigorous studies found a low lung cancer mortality rates in high radon areas. It is opposite to the linear no-threshold hypothesis (LNTH), which is a popular theory in the field of radiation safety. The fact is explained by the theory of energy transfer model, that takes accounts of the competitive processes arising in material during irradiation.(author)

  13. Locating and limiting radon in dwellings

    International Nuclear Information System (INIS)

    Hildingson, O.; Gustafsson, J.; Nilsson, I.

    1984-01-01

    More than 3,300 Swedish dwellings have an indoor radon daughter concentration above 400 Bq.m -3 (or 0.108 WL). It is considered to be unsafe to live in any of these dwellings and the radon daughter concentration has to be reduced. Before deciding what measures to take, it is important to determine the radon sources. Possible sources are exhalation from building materials and/or radon transport from the ground into the building through cracks and joints in the slab. Different methods of locating the sources have been developed. To locate cracks and joints in slabs the ventilation rate and the air pressure difference relative to the ground are changed while monitoring radon/radon daughter concentration. The effect of five different measures to reduce the indoor radon daughter concentration have also been evaluated: increased ventilation rate by mechanical ventilation, ventilation of the small spaces between the floor and the slab, sealing the surface of radon exhaling walls, sealing joints and cracks in the slab, and ventilation of the drainage under the slab. (author)

  14. Modelling and experimental study of the behavior of radon and radon decay products in an enclosure. Application to houses

    International Nuclear Information System (INIS)

    Gouronnec, A.M.

    1995-01-01

    Since the eighties, more and more studies were performed about radon and its decay products in houses with one of the aim being the estimation of the dose received by their inhabitants. Then, the principal objective of this work is to describe the behaviour of radon and its decay products within a dwelling. In the first part to the report, a few definitions are given and data from literature give an idea of indoor radon and radon decay products activities and/or size distribution. Aspects of dosimetry are presented too. In the second part of the work, a mathematical model, called 'PRADDO' of Physic of Radon and radon Decay products in Domestic environment is developed on the basis of the classical model written by Jacobi in 1972. On the one hand, it has to predict radon decay products activities in systems consisting in one or more enclosure(s), from radon activity and from ambient aerosol concentration and size distribution. On the other hand, one part of the model is assigned to study the influence of the entry model parameters variation on the calculated quantities. Then, in the third part of the work, two experimental studies are realised in order to compare measurements to modelization. The first experimentation is a laboratory work, made on the test bench ICARE from IPSN, and the second one consists in describing the basement of an occupied house from Brittany. In the two cases, the comparison between experiments and modelling shows a good agreement if particles are present in the air, but any conclusion is made when is no aerosol in the enclosure. (author). 158 refs., 81 figs., 42 tabs

  15. Instrumentation for a radon research house

    International Nuclear Information System (INIS)

    Nazaroff, W.W.; Revzan, K.L.; Robb, A.W.

    1981-07-01

    A highly automated monitoring and control system for studying radon and radon-daughter behavior in residences has been designed and built. The system has been installed in a research house, a test space contained in a two-story wood-framed building, which allows us to conduct controlled studies of (1) pollutant transport within and between rooms, (2) the dynamics of radon daughter behavior, and (3) techniques for controlling radon and radon daughters. The system's instrumentation is capable of measuring air-exchange rate, four-point radon concentration, individual radon daughter concentrations, indoor temerature and humidity, and outdoor weather parameters (temperature, humidity, modules, wind speed, and wind direction). It is also equipped with modules that control the injection of radon and tracer gas into the test space, the operation of the forced-air furnace, the mechanical ventilation system, and the mixing fans located in each room. A microcomputer controls the experiments and records the data on magnetic tape and on a printing terminal. The data on tape is transferred to a larger computer system for reduction and analysis. In this paper we describe the essential design and function of the instrumentation system, as a whole, singling out those components that measure ventilation rate, radon concentration, and radon daughter concentrations

  16. Radon programme in the Czech Republic

    International Nuclear Information System (INIS)

    Hulka, J.; Thomas, J.

    2003-01-01

    The framework of the Radon programme in the Czech republic includes both precautionary measures and interventions. The programme informally started in early eighties has been now incorporated in national legislation (Atomic Act, Radiation Protection Decree, etc.). Aim of precautionary measures is to avert construction of building above natural radiation guidance levels (200 Bq/m 3 for indoor radon concentration and 0.5 Sv/h for gamma dose rate) by protection of new buildings against soil radon ingress, by regulation of natural radioactivity in building materials and supplied water. Aim of interventions is to identify buildings affected by enhanced natural radioactivity and help owners to put into effect reasonable remedial measures. Two sets of intervention levels for indoor natural exposure were established: guidance intervention levels 400 Bq/m 3 (indoor radon), 1.0 Sv/h (indoor gamma dose rate) and limit values 4000 Bq/m 3 and 10 Sv/h. The radon programme is based both on governmental and private activities. The governmental activities include representative and targeted indoor radon survey, subsidy for radon mitigation, mitigation test measurements and public information on radon issue. The private activities include radon measurement (radon index of building site, indoor measurements, radon diagnosis) and remedial measures. More than 100 commercial companies were authorised by Radiation Protection Authority (SUJB) to provide these measurements

  17. Radon removal using point-of-entry water-treatment techniques. Final report, October 1988-June 1990

    International Nuclear Information System (INIS)

    Kinner, N.E.; Malley, J.P.; Clement, J.A.

    1990-10-01

    The purpose of the EPA Cooperative Agreement was to evaluate the performance of POE granular activated carbon (GAC), and diffused bubble and bubble place aeration systems treating a ground water supply containing radon (35,620 + or - 6,717 pCi/L). The pattern of loading to the units was designed to simulate daily demand in a household. Each of the systems was evaluated with respect to three primary factors: radon removal efficiency, potential problems, and economics. The radon removal efficiencies of the POE GAC units gradually deteriorated over time from 99.7% to 79% for the GAC without pretreatment and 99.7% to 85% for the units preceded by ion exchange. The bubble plate and diffused bubble POE units were very efficient (99%) at removing radon from the water. The resilience is primarly due to the high air to water ratios supplied by the aeration blowers. One major problem associated with the aeration techniques is iron oxidation/precipitation

  18. Radon transport modelling: User's guide to RnMod3d

    DEFF Research Database (Denmark)

    Andersen, Claus Erik

    2000-01-01

    RnMod3d is a numerical computer model of soil-gas and radon transport in porous media. It can be used, for example, to study radon entry from soil into houses in response to indoor-outdoor pressure differences or changes in atmospheric pressure. It canalso be used for flux calculations of radon...... decay, diffusion and advection of radon can be solved. Moisture is included in the model, and partitioning ofradon between air, water and soil grains (adsorption) is taken into account. Most parameters can change in time and space, and transport parameters (diffusivity and permeability) may...... be anisotropic. This guide includes benchmark tests based on simpleproblems with known solutions. RnMod3d has also been part of an international model intercomparison exercise based on more complicated problems without known solutions. All tests show that RnMod3d gives results of good quality....

  19. Indoor radon concentration and outdoor/indoor pressure difference correlation

    International Nuclear Information System (INIS)

    Cechak, T.; Fronka, A.; Moucka, L.

    2004-01-01

    In the current approach to the radon issue, the radon risk for people living in a building is estimated based on the average indoor radon concentration. Short-term measurements as usually applied fail to reflect the wide range of radon variations arising from ventilation, radon supply and, in particular, human activities in the building. For this reason, efforts are made to find a new approach to the assessment of the quality of a building as a radon barrier, independent of the weather conditions and residential habits. A simple model of radon volume activity entering the building at a constant rate and simultaneously ventilated at a constant rate is applicable to this task. The rate of radon ingress can be regarded as a parameter making it possible to quantify the leakage of structures provided the barrier against the radon in a soil gas. The ventilation rate, on the other hand, characterizes the leakage of the whole building envelope at a given outdoor/indoor pressure difference. A unique measuring technique called the blower door exists whereby a defined pressure difference between the indoor and outdoor atmosphere can be established. Under such conditions both the ventilation rate and the rate of radon ingress can be measured and expressed as a function of the pressure difference. An analysis of the model of a room with a constant ventilation and constant radon supply is presented and the relationship between radon supply and ventilation rate can be assumed. Some experimental results show how the model can be utilized. The real indoor-outdoor air pressure differences, the indoor-soil air pressure differences, and some effects of different ventilation regimes are given. Other experiments, which have been done by using the blower door method, illustrate the possible effects and some restrictions for a routine application are discussed

  20. A review of lung-to-blood absorption rates for radon progeny

    International Nuclear Information System (INIS)

    Marsh, J. W.; Bailey, M. R.

    2013-01-01

    The International Commission on Radiological Protection (ICRP) Publication 66 Human Respiratory Tract Model (HRTM) treats clearance of materials from the respiratory tract as a competitive process between absorption into blood and particle transport to the alimentary tract and lymphatics. The ICRP recommended default absorption rates for lead and polonium (Type M) in ICRP Publication 71 but stated that the values were not appropriate for short-lived radon progeny. This paper reviews and evaluates published data from volunteer and laboratory animal experiments to estimate the HRTM absorption parameter values for short-lived radon progeny. Animal studies showed that lead ions have two phases of absorption: ∼10 % absorbed with a half-time of ∼15 min, the rest with a half-time of ∼10 h. The studies also indicated that some of the lead ions were bound to respiratory tract components. Bound fractions, f b , for lead were estimated from volunteer and animal studies and ranged from 0.2 to 0.8. Based on the evaluations of published data, the following HRTM absorption parameter values were derived for lead as a decay product of radon: f r = 0.1, s r = 100 d -1 , s s = 1.7 d -1 , f b = 0.5 and s b = 1.7 d -1 . Effective doses calculated assuming these absorption parameter values instead of a single absorption half-time of 10 h with no binding (as has generally been assumed) are only a few per cent higher. However, as there is some conflicting evidence on the absorption kinetics for radon progeny, dose calculations have been carried out for different sets of absorption parameter values derived from different studies. The results of these calculations are discussed. (authors)

  1. Comparison of ventilation measurement techniques in real conditions

    International Nuclear Information System (INIS)

    Jilek, K.; Tomasek, L.

    2001-01-01

    Ventilation and radon entry rate are the only two quantities that influence on indoor radon behaviour. In order to investigate the effect of ventilation and radon entry rate on indoor radon behaviour separately , the Institute was equipped with continuous monitor of carbon monoxide (CO). Carbon monoxide serves as a tracer gas for the determination of air exchange rate. The use of a continuous radon monitor and the continuous monitor of CO gas at the same time enables to measure the radon entry rate and the air exchange rate separately. In the lecture are summarized results of comparison of the following three basic methods performed in real living conditions: - constant decay method; - constant tracer method; and steady rate of tracer injection to determine the air exchange rate for 222 Rn and CO gas, which were used as tracer gases. (authors)

  2. Estimated effective dose rates from radon exposure in workplaces and residences within Los Alamos county in New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Whicker, Jeffrey J [Los Alamos National Laboratory; Mcnaughton, Michael [Los Alamos National Laboratory

    2009-01-01

    Many millions of office workers are exposed to radon while at work and at home. Though there has been a multitude of studies reporting the measurements of radon concentrations and potential lung and effective doses associated with radon and progeny exposure in homes, similar studies on the concentrations and subsequent effective dose rates in the workplace are lacking. The purposes of this study were to measure radon concentrations in office and residential spaces in the same county and explore the radiation dose implications. Sixty-five track-etch detectors were deployed in office spaces and 47 were deployed in residences, all within Los Alamos County, New Mexico, USA. The sampling periods for these measurements were generally about three months. The measured concentrations were then used to calculate and compare effective dose rates resulting from exposure while at work and at home. Results showed that full-time office workers receive on average about nine times greater exposure at home than while in the office (691 mrem yr{sup -1} versus 78 mrem yr{sup -1}). The estimated effective dose rate for a more homebound person was 896 mrem yr{sup -1}. These effective dose rates are contrasted against the 100 mrem yr{sup -1} threshold for regulation of a 'radiological worker' defined in the Department of Energy regulations occupational exposure and the 10 mrem yr{sup -1} air pathway effective public dose limit regulated by the Environmental Protection Agency.

  3. Evaluation of color and radon exhalation rate in granite rocks between accelerated aging cycles

    International Nuclear Information System (INIS)

    Silva, Francisco Diones Oliveira

    2016-01-01

    Data used for the assessment of the analyzes performed on three types of dimension stone (Juparana Bordeaux, Branco Nevasca and Golden Artico), in natural state and after several cycles of accelerated aging are presented, correlating them with the gas exhalation rate radon issued by the analyzed lithologies. In the samples were conducted permeability, porosity, colorimetry, image analysis, petrographic and exhalation rate of radon, accompanied by aging tests on climate simulation chamber which simulates change situations of materials by weathering agents, accelerating wear and tear samples. The measurements were performed on samples in natural state, with 50 and 100 cycles of aging acceleration, where each cycle corresponds to variations in temperature and humidity in climatic simulation chamber, with the addition of an internal atmosphere of SO_2 with 25 concentration ppm. The results obtained during the tests were related to better analysis of the changes observed on the samples and the variation rate of exhalation radon emitted. The rocks have radon concentration values above the limits suggested by relevant international agencies (200-400 Bq/m³), with average values in the natural state, in 6149, 1619 and 866 Bq/m³ for Juparana Bordeaux, Branco Nevasca and Golden Arctic, respectively. The other aging cycles (50 and 100 cycles) showed an average increase of 0.8% for Juparana Bordeaux, 6.9% for White Blizzard and -23.87% for the Golden Arctic, with 50 cycles. From 50 to 100 cycles, there was reduction of 3.43% for Juparana Bordeaux and 22.15% for Branco Nevasca and an increase of 13.82% in the Golden Artico. The porosity results in the natural state obtained values an average of 0.696% for Juparana Bordeaux, 0.919% for Branco Nevasca and 0.830% for Golden Artico, and after 50 cycles of accelerated aging, obtained 0.621% to Juparana Bordeaux, 0.910% for Branco Nevasca and 0.840% for Golden Artico. The permeability of the samples showed values in the natural

  4. Indoor Radon Concentration Related to Different Radon Areas and Indoor Radon Prediction

    Science.gov (United States)

    Juhásová Šenitková, Ingrid; Šál, Jiří

    2017-12-01

    Indoor radon has been observed in the buildings at areas with different radon risk potential. Preventive measures are based on control of main potential radon sources (soil gas, building material and supplied water) to avoid building of new houses above recommended indoor radon level 200 Bq/m3. Radon risk (index) estimation of individual building site bedrock in case of new house siting and building protection according technical building code are obligatory. Remedial actions in buildings built at high radon risk areas were carried out principally by unforced ventilation and anti-radon insulation. Significant differences were found in the level of radon concentration between rooms where radon reduction techniques were designed and those where it was not designed. The mathematical model based on radon exhalation from soil has been developed to describe the physical processes determining indoor radon concentration. The model is focused on combined radon diffusion through the slab and advection through the gap from sub-slab soil. In this model, radon emanated from building materials is considered not having a significant contribution to indoor radon concentration. Dimensional analysis and Gauss-Newton nonlinear least squares parametric regression were used to simplify the problem, identify essential input variables and find parameter values. The presented verification case study is introduced for real buildings with respect to various underground construction types. Presented paper gives picture of possible mathematical approach to indoor radon concentration prediction.

  5. Radon concentration distribution mapping in a small detached house

    International Nuclear Information System (INIS)

    Muellerova, Monika; Moravcsik, Attila; Holy, Karol; Hutka, Miroslav; Hola, Olga

    2013-01-01

    Radon activity concentration was investigated in an older, single storey detached house. The rooms of the house are in contact with the bedrock. The house is fitted with plastic windows and populated mostly during the summer. Integral (Raduet) and continuous (AlphaGUARD) methods were used to measure the radon activity concentration. Average radon and thoron activity concentrations in the house were 150 Bq/m 3 and 40 Bq/m 3 , respectively. The impact of the house occupancy on radon activity concentration was significant only during the summer months when a decrease of radon activity concentration was recorded due to an increased ventilation rate. In the autumn and winter months, the impact of the house occupancy on radon activity concentration was relatively small - up to 20 %. The increases in radon activity concentration after the room had been thoroughly ventilated were analysed in order to estimate the ventilation rate and the rate of radon supply into the house. (orig.)

  6. Summary of EPA's radon-reduction research in schools during 1989-90

    International Nuclear Information System (INIS)

    Leovic, K.W.

    1990-10-01

    The report details radon mitigation research in schools conducted by EPA during 1989 and part of 1990. The major objective was to evaluate the potential of active subslab depressurization (ASD) in various geologic and climatic regions. The different geographic regions also presented a variety of construction types and heating, ventilating, and air-conditioning (HVAC) system designs that are encountered in radon mitigation of school buildings. A secondary objective was to initiate research in difficult-to-mitigate schools. The research led to the following major conclusions on radon diagnostics and mitigation in schools: (1) Schools have many physical characteristics that typically make their mitigation more complex than house mitigation, including building size and substructure, subslab barriers, HVAC systems, and locations of utility lines. (2) Important school diagnostic procedures and measurements include review of radon measurements and building plans, investigation of the building to assess potential radon entry routes and confirm information in the building plans, analysis of the HVAC system and its influence on pressure differentials and radon levels, and subslab pressure field extension measurements to determine the potential applicability of ASD. (3) ASD can be applied successfully in schools where subslab communication barriers are limited

  7. Radon exposure and lung cancer

    International Nuclear Information System (INIS)

    Planinic, J.; Vukovic, B.; Faj, Z.; Radolic, V.; Suveljak, B.

    2003-01-01

    Although studies of radon exposure have established that Rn decay products are a cause of lung cancer among miners, the lung cancer risk to the general population from indoor radon remains unclear and controversial. Our epidemiological investigation of indoor radon influence on lung cancer incidence was carried out for 201 patients from the Osijek town. Ecological method was applied by using the town map with square fields of 1 km 2 and the town was divided into 24 fields. Multiple regression study for the lung cancer rate on field, average indoor radon exposure and smoking showed a positive linear double regression for the mentioned variables. Case-control study showed that patients, diseased of lung cancer, dwelt in homes with significantly higher radon concentrations, by comparison to the average indoor radon level of control sample. (author)

  8. Mathematical models for indoor radon prediction

    International Nuclear Information System (INIS)

    Malanca, A.; Pessina, V.; Dallara, G.

    1995-01-01

    It is known that the indoor radon (Rn) concentration can be predicted by means of mathematical models. The simplest model relies on two variables only: the Rn source strength and the air exchange rate. In the Lawrence Berkeley Laboratory (LBL) model several environmental parameters are combined into a complex equation; besides, a correlation between the ventilation rate and the Rn entry rate from the soil is admitted. The measurements were carried out using activated carbon canisters. Seventy-five measurements of Rn concentrations were made inside two rooms placed on the second floor of a building block. One of the rooms had a single-glazed window whereas the other room had a double pane window. During three different experimental protocols, the mean Rn concentration was always higher into the room with a double-glazed window. That behavior can be accounted for by the simplest model. A further set of 450 Rn measurements was collected inside a ground-floor room with a grounding well in it. This trend maybe accounted for by the LBL model

  9. Radon concentration, absorbed dose rate in air and concentration of natural radionuclides in soil in the Osaka district of Japan

    International Nuclear Information System (INIS)

    Megumi, K.; Matsunami, T.; Ishiyama, T.; Abe, M.; Kimura, S.; Yamazaki, K.; Tsujimoto, T.

    1992-01-01

    Radon concentrations in outdoor air at 18 sites in the Osaka district, in the central part of Japan's main island, were measured with electrostatic integrating radon monitors which were developed by Y Ikebe et al of the Osaka survey centre as part of a nationwide survey of radon indoors and outdoors in Japan conducted by the National Institute of Radiological Science. The mean radon concentration in outdoor air during 2-month periods was measured over a period of a year and a half. In addition, the absorbed dose rate in air and the concentration of natural radionuclides in soil were measured at 40 sites in Osaka Prefecture which is located in the central part of the Osaka district using thermoluminescence dosemeters and with gamma ray spectrometry, respectively. Radon concentration in outdoor air showed a seasonal pattern, reaching its maximum during the winter and its minimum during the summer, but this variation was not significant at the coastal sites. It was concluded that this variation is correlated with a seasonal wind which blows from the continental interior to the ocean in winter and in the opposite direction in summer, as well as with geographical factors. Radon concentration in outdoor air in the Osaka district ranged from 0.6 to 17.9 Bq.m -3 and mean annual radon concentration in outdoor air at the 18 sites ranged from 2.7 to 6.9 Bq.m -3 . It was discovered that radon concentration in outdoor air decreased with wind speed in both winter and summer. The absorbed dose rate in air ranged from 66 to 114 nGy.h -1 , and the concentration of 226 Ra in soil ranged from 20 to 60 Bq.kg -1 respectively. (author)

  10. Evaluation method of radon preventing effect in underground construction

    International Nuclear Information System (INIS)

    Luo Shaodong; Deng Yuequan; Dong Faqin; Qu Ruixue; Xie Zhonglei

    2014-01-01

    Background: It's difficult to evaluate the radon prevention effect because of the short operating time of measuring instrument under the circumstances of high humidity in underground construction. Purpose: A new rapid method to evaluate the radon prevention efficiency of underground construction was introduced. Methods: The radon concentrations before and after shielding operation were determined, and according to the regularity of radon decay, the shielding rate can be calculated. Results: The results showed that radon shielding rate in underground construction remains generally stable with variation of time, and the actual relatively standard deviation was 3.95%. So the rapid determination and evaluation of radon preventing effect under special conditions in underground construction can be realized by taking shielding rate in a short time for the final shielding rate. Compared with those by the local static method in ground lab, the results were similar. Conclusion: This paper provided a prompt, accurate and practicable way for the evaluation of radon prevention in underground construction, having a certain reference value. (authors)

  11. Radon mitigation experience in difficult-to-mitigate schools

    International Nuclear Information System (INIS)

    Leovic, K.W.; Craig, A.B.

    1990-01-01

    Initial radon mitigation experience in schools has shown sub-slab depressurization (SSD) to be generally effective in reducing elevated levels of radon in schools that have a continuous layer of clean, coarse aggregate underneath the slab. However, mitigation experience is limited in schools without sub-slab aggregate and in schools with characteristics such as return-air ductwork underneath the slab or unducted return-air plenums in the drop ceiling that are open to the sub-slab area (via open tops of block walls). Mitigation of schools with utility tunnels and of schools constructed over crawl spaces is also limited. Three Maryland schools exhibiting some of the above characteristics are being researched to help understand the mechanisms that control radon entry and mitigation in schools where standard SSD systems are not effective. This paper discusses specific characteristics of potentially difficult-to-mitigate schools and, where applicable, details examples from the three Maryland schools

  12. Measurement of radon, thoron and their progeny concentrations in the dwellings of Pauri Garhwal, Uttarakhand, India

    International Nuclear Information System (INIS)

    Joshi, Veena; Bijalwan, Pramesh; Rawat, Jasbir; Yadav, Manjulata; Ramola, R.C.; Mishra, Rosaline

    2015-01-01

    It is well known that inhalation of radon, thoron and their progeny contribute more than 50% of natural background radiation dose to human being. The time integrated passive measurements of radon, thoron and their progeny concentrations were carried out in the dwellings of Pauri Garhwal, Uttarakhand, India. The measurements of radon and thoron concentrations were performed by LR-115 detector based single entry Pin-Hole dosimeter while for the measurement of progeny concentrations, LR-115 deposition based DTPS/DRPS technique was used. The experimental techniques and results obtained are discussed in detail. (author)

  13. Radon in workplaces

    International Nuclear Information System (INIS)

    Reichelt, A.; Lehmann, K.-H.; Reineking, A.; Porstendoerfer, J.; Schwedt, J.; Streil, T.

    2000-01-01

    The radiological assessment of the results of radon measurements in dwellings is not automatically applicable to workplaces due to different forms of utilization, constructional conditions, time of exposure, heating and ventilation conditions, additional aerosol sources, aerosol parameters, chemical substances, etc. In order to investigate the peculiarities of the radon situation in workplaces located inside buildings compared with that in dwellings, long-time recordings of radon, attached radon progeny and unattached radon progeny concentrations ( 218 Po, 214 Pb, 214 Bi) are carried out at several categories of workplaces (e.g. offices, social establishments, schools, production rooms, workshops, kitchens, agricultural facilities). 36 workplaces have been investigated. There have been carried out at least 2-3 long-time recordings for each workplace during different seasons. At the same time the gamma dose rate, meteorological conditions, aerosol particle concentrations have been registered. Many special dates from the workplaces and the buildings have been recorded. Activity size distribution of the aerosol-attached and unattached fraction of short-lived radon decay products have been determinated in 20 workplaces. Mainly the following measurement systems were used: Radon- and Radon Progeny Monitor EQF 3020, SARAD GmbH, Germany. Alpha-Track Radon Detectors, BfS Berlin, Germany. Screen Diffusion Batteries with Different Screens, University of Goettingen, Germany. Low-Pressure Cascade Impactor, Type BERNER. Condensation Nuclei Counter, General Electric, USA. PAEC-f p -Rn-Monitor, University of Goettingen, Germany. Through the measurements, many peculiarities in the course of the radon-concentration, the equilibrium factor F, the unattached fraction f p and the activity size distribution have been determined. These amounts are influenced mainly by the working conditions and the working intervals. The influence of these peculiarities in workplaces on the dose have

  14. MEASUREMENT OF RADON EXHALATION RATE, RADIUM ACTIVITY AND ANNUAL EFFECTIVE DOSE FROM BRICKS AND CEMENT SAMPLES COLLECTED FROM DERA ISMAIL KHAN

    OpenAIRE

    Nisar Ahmad; Mohamad Suhaimi Jaafar; Sohail Aziz Khan; Tabassum Nasir; Sajjad Ahmad; Muhammad Rahim

    2014-01-01

    Radon concentration, exhalation rate, radium activity and annual effective dose have been measured from baked and unbaked bricks and cement samples commonly used as construction material in the dwellings of Dera Ismail Khan City, Pakistan. CR-39 based NRPB radon dosimeters and RAD7 have been used as passive and active devises. The values of radon concentration for baked, unbaked bricks and cements obtained from passive and active techniques were found in good agreement. Average values of rado...

  15. Radon Concentration in Caves of Croatia - Assesing Effective Radon Doses for Occupational Workers and Visitors

    International Nuclear Information System (INIS)

    Radolic, V.; Miklavcic, I.; Poje, M.; Stanic, D.; Vukovic, B.; Paar, D.

    2011-01-01

    Radon monitoring at potentially highly radioactive location such as caves is important to assess the radiological hazards to occupational workers and occasional visitors. In its Publication 65 the ICRP has produced recommendations dealing with exposure to elevated background radiation, in particular, the risk associated with the inhalation of radon and radon progeny. Recommended annual effective dose from radon 222Rn and its short-lived progeny for workers should not exceed 20 mSv and for occasional users (visitors) the same recommendation is 1 mSv. Measurements were performed with series of track etched detectors (LR115 - type II) in several caves in Croatia. The obtained values for the radon concentration ranged from ambient values up to several thousand Bq m -3 . Radon concentration was measured in about 20 caves of Velebit and Zumberak mountains and the highest radon concentration was in Lubuska jama (3.8 kBq m -3 ) and cave Dolaca (21.8 kBq m -3 ), respectively. Djurovica cave is especially interesting because of its huge tourist potential due to its location bellow Dubrovnik airport. Its mean annual radon concentration of 17.6 kBq m -3 classifies Djurovica cave among caves with high radon concentration. A visitor during half an hour visit at summer time would receive an effective dose of 30.6 μSv. Calculated mean dose rate of 44 μSv/h means that workers (mainly tourist guides) should limit their time inside cave to 454 hours per year. Manita pec is the only cave open for tourists on the territory of Paklenica National Park. The preliminary radon measurements performed during summer 2010, gave an average radon concentration of 1.1 kBq m -3 . An exposure to average dose rate of 3.7 μSv/h means that the tourist guides would receive an effective dose of 0.42 mSv during summer period according to their working schedule. A visitor during half an hour visits would receive an effective dose of 1.86 μSv. (author)

  16. Identifying areas with potential for high indoor radon levels: analysis of the national airborne radiometric reconnaissance data for California and the Pacific Northwest

    Energy Technology Data Exchange (ETDEWEB)

    Moed, B.A.; Nazaroff, W.W.; Nero, A.V.; Schwehr, M.B.; Van Heuvelen, A.

    1984-04-01

    Radon-222 is an important indoor air pollutant which, through the inhalation of its radioactive decay products, accounts for nearly half of the effective dose equivalent to the public from natural ionizing radiation. Indoor radon concentrations vary widely, largely because of local and regional differences in the rate of entry from sources. The major sources are soil and rock near building foundations, earth-based building materials, and domestic water; of these, soil and rock are thought to be predominant in many buildings with higher-than-average concentrations. Thus, one key factor in determining radon source potential is the concentration of radium, the progenitor of radon, in surficial rocks and soils. Aerial radiometric data were analyzed, collected for the National Uranium Resource Evaluation Program, for seven Western states to: (1) provide information on the spatial distribution of radium contents in surficial geologic materials for those states; and (2) investigate approaches for using the aerial data, which have been collected throughout the contiguous United States and Alaska, to identify areas where high indoor radon levels may be common. Radium concentrations were found to be relatively low in central and western portions of Washington, Oregon, and northern California; they were found to be relatively high in central and southern California. A field validation study, conducted along two flight-line segments near Spokane, Washington, showed close correspondence between the aerial data, in situ measurements of both radium content and radon flux from soil, and laboratory measurements of both radium content of and radon emanation rate from soil samples. 99 references, 11 figures, 3 tables.

  17. Identifying areas with potential for high indoor radon levels: analysis of the national airborne radiometric reconnaissance data for California and the Pacific Northwest

    International Nuclear Information System (INIS)

    Moed, B.A.; Nazaroff, W.W.; Nero, A.V.; Schwehr, M.B.; Van Heuvelen, A.

    1984-04-01

    Radon-222 is an important indoor air pollutant which, through the inhalation of its radioactive decay products, accounts for nearly half of the effective dose equivalent to the public from natural ionizing radiation. Indoor radon concentrations vary widely, largely because of local and regional differences in the rate of entry from sources. The major sources are soil and rock near building foundations, earth-based building materials, and domestic water; of these, soil and rock are thought to be predominant in many buildings with higher-than-average concentrations. Thus, one key factor in determining radon source potential is the concentration of radium, the progenitor of radon, in surficial rocks and soils. Aerial radiometric data were analyzed, collected for the National Uranium Resource Evaluation Program, for seven Western states to: (1) provide information on the spatial distribution of radium contents in surficial geologic materials for those states; and (2) investigate approaches for using the aerial data, which have been collected throughout the contiguous United States and Alaska, to identify areas where high indoor radon levels may be common. Radium concentrations were found to be relatively low in central and western portions of Washington, Oregon, and northern California; they were found to be relatively high in central and southern California. A field validation study, conducted along two flight-line segments near Spokane, Washington, showed close correspondence between the aerial data, in situ measurements of both radium content and radon flux from soil, and laboratory measurements of both radium content of and radon emanation rate from soil samples. 99 references, 11 figures, 3 tables

  18. Radon in the Houses of Virovitica and Podravina County

    International Nuclear Information System (INIS)

    Varga Pajtler, M.; Miklavcic, I.; Poje, M.; Radolic, V.; Vukovic, B.; Ivkovic, I.; Jurisic, D.

    2011-01-01

    222Ra is the gaseous radioactive product of the decay of radium isotope 226Ra which is present in soil. Radon atoms that are released from the ground are transported by diffusion and then released in the atmosphere. Radon entries into buildings by advection that is driven by the pressure difference between the building and the ground around the foundation. The aim of this study was to measure radon concentrations in the houses of Virovitica and Podravina county. The measurements were performed by means of two passive track detectors LR-115 (Kodak-Pathe, France), one of which (the open detector) detected total number of alpha-particles of radon and its short-lived progeny, while the other (diffusion detector) registerd tracks only of alpha particles emitted by radon. After being exposed to radiation, the LR-115 detectors were etched in 10 % NaOH aqueous solution at 60 degrees of C for 120 minutes and the detector tracks were counted. Radon concentrations in air were determined according to equation (1), where D 0 was the number of tracks per one day of exposure of the open detector and k is the sensitivity coefficient od the person that counted the tracks. For the track densities D and D 0 of the open and diffusion detectors, respectively, the equilibrium factor was calculated according to equation (2), with the parameters a = 0,50, and b = -0,53. Obtained value for the equilibrium factor was 0,85. Measurements gave radon concentrations in the range of 5.7 - 187.7 Bq m -3 . Average annual effective radon dose for population of Virovitica and Podravina county is 1,5 mSv. (author)

  19. Measurement of radon exhalation rates in some soil samples collected near the international monument Taj Mahal, Agra

    International Nuclear Information System (INIS)

    Sharma, Jyoti; Kumar, Rupesh; Indolia, R.S.; Swarup, R.; Mahur, A.K.; Singh, Hargyan; Sonkawade, R.G.

    2011-01-01

    Human beings are exposed to ionizing radiation from natural sources due to the occurrence of natural radioactive elements in solids, rocks, sand, soil etc. used as building construction materials and to the internal exposure from radioactive elements through good, water and air. Radon exhalation rate is of prime importance for the estimation of radiation risk from various materials. In the present study soil samples collected near the Tajmahal Agra. Sealed Can Technique was adopted for radon exhalation measurements. All the soil samples collected were grinded, dried and sieved through a 100 mesh sieve. Equal amount of each sieved (100μm grain size) sample (100 gm) was placed at the base of the Cans of 7.5 cm height and 7.0 cm diameter similar to those used in the calibration experiment (Singh et al., 1997). LR-115 type II plastic track detector (2 cm x 2 cm) was fixed on the top inside of the cylindrical Can. Radon exhalation rate varies from 529 mBqm -2 h -1 to 1254 mBqm -2 h -1 . The results will be presented. (author)

  20. {sup 226}Ra, {sup 232}Th and {sup 40}K contents and radon exhalation rate from materials used for construction and decoration in Cameroon

    Energy Technology Data Exchange (ETDEWEB)

    Ngachin, M; Njock, M G Kwato [Center for Atomic, Molecular Physics and Quantum Optics, University of Douala, PO Box 8580, Douala (Cameroon); Garavaglia, M; Giovani, C; Scruzzi, E [Regional Agency for Environmental Protection (ARPA), 91 via Tavagnacco, 33100 Udine (Italy); Nourreddine, A [Institut Pluridisciplinaire Hubert-Curien, UMR7178 CNRS-IN2P3 and Universite Louis Pasteur, 23 rue de Loess, BP 28, F-67037, Strasbourg cedex 02 (France); Lagos, L [Applied Research Center, Florida International University, 10555 W Flagler Street, EC 2100, Miami, FL 33174 (United States)], E-mail: mngachin@yahoo.com

    2008-09-01

    This work deals with the measurement of radioactivity and radon exhalation rate from building materials manufactured in Douala city from geological materials. Nine types of building material were surveyed for their natural radioactivity contents using high-resolution gamma-ray spectrometry. The activity concentrations for {sup 226}Ra, {sup 232}Th and {sup 40}K varied from 11.5 to 49 Bq kg{sup -1}, 16 to 37 Bq kg{sup -1} and 306 to 774 Bq kg{sup -1}, respectively. The absorbed dose rate in the samples investigated at 1 m above ground level ranged from 28.5 to 66.6 nGy h{sup -1}. External and internal hazard indices were also estimated as defined by the European Commission. The Ra equivalents of the materials studied ranged from 57.5 to 133 Bq kg{sup -1} and are much smaller than the recommended limit of 370 Bq kg{sup -1} for construction materials for dwellings. Polycarbonate nuclear track detectors (NTDs), type CR-39, were used for measuring the radon concentration from different materials. In fact, knowledge of the radon exhalation rate from building materials is important for understanding the individual contribution of each material to the total indoor radon exposure. Samples were hermetically closed in glass vessels and the radon growth was followed as a function of time. The radon exhalation rate was therefore derived from the experimental measurement of {alpha}-track densities. The radon exhalation varied from (5.77 {+-} 0.06) x 10{sup -5} to (7.61 {+-} 0.07) x 10{sup -5} Bq cm{sup -2} h{sup -1} in bricks, from (5.79 {+-} 0.05) x 10{sup -5} to (11.6 {+-} 0.12) x 10{sup -5} in tiles, and was (6.95 {+-} 0.03) x 10{sup -5} Bq cm{sup -2} h{sup -1} in concrete. A correlation (correlation coefficient approx. = 0.8) was found between radium concentration measured with a HPGe detector and the radon exhalation rate obtained using nuclear track detectors.

  1. Modeling ventilation and radon in new dutch dwellings

    International Nuclear Information System (INIS)

    Janssen, M.P.M.

    2003-01-01

    Indoor radon concentrations were estimated for various ventilation conditions, the differences being mainly related to the airtightness of the dwelling and the ventilation behavior of its occupants. The estimations were aimed at describing the variation in air change rates and radon concentrations to be expected in the representative newly built Dutch dwellings and identifying the most important parameters determining air change rate and indoor radon concentration. The model estimations were compared with measurements. Most of the air was predicted to enter the model dwelling through leaks in the building shell, independent of the ventilation conditions of the dwelling. Opening the air inlets was shown to be an efficient way to increase infiltration and thus to decrease radon concentration. The effect of increasing the mechanical ventilation rate was considerably less than opening the air inlets. The mechanical ventilation sets the lower limit to the air change rate of the dwelling, and is effective in reducing the radon concentration when natural infiltration is low. Opening inside doors proved to be effective in preventing peak concentrations in poorly ventilated rooms. As the airtightness of newly built dwellings is still being improved, higher radon concentrations are to be expected in the near future and the effect of occupant behavior on indoor radon concentrations is likely to increase. According to the model estimations soil-borne radon played a moderate role, which is in line with measurements. (au)

  2. Work to save dose: contrasting effective dose rates from radon exposure in workplaces and residences against the backdrop of public and occupational limits

    International Nuclear Information System (INIS)

    Whicker, Jeffrey J.; Mcnaughton, Michael W.

    2009-01-01

    Office workers are exposed to radon while at work and at home. Though there has been a multitude of studies reporting the measurements of radon concentrations and potential lung and effective doses associated with radon and progeny exposure in homes, similar studies on the concentrations and subsequent effective dose rates in the non-mine workplaces are lacking. Additionally, there are few, if any, comparative analyses of radon exposures at more 'typical' workplace with residential exposures within the same county. The purposes of this study were to measure radon concentrations in office and residential spaces in the same county and explore the radiation dose implications. Sixty-five track-etch detectors were deployed in office spaces and 47 were deployed in residences, all within Los Alamos County, New Mexico, USA. The sampling periods for these measurements were generally about three months. The measured concentrations were used to calculate and compare effective dose rates resulting from exposure while at work and at home. Results showed that full-time office workers receive on average about 8 times greater exposure at home than while in the office (2.3 mSv yr- versus 0.3 mSv yr-). The estimated effective dose rate for a more homebound person was about 3 mSv yr-. Estimating effective doses from background radon exposure in the same county as Los Alamos National Laboratory, with thousands of'radiological workers,' highlights interesting contrasts in radiation protection standards that span public and occupational settings. For example, the effective dose rate from background radon exposure in unregulated office spaces ranged up to 1.1 mSv yr-, which is similar to the 1 mSv yr- threshold for regulation ofa 'radiological worker,' as defined in the Department of Energy regulations for occupational exposure. Additionally, the estimated average effective dose total of> 3 mSv yf from radon background exposure in homes stands in contrast to the 0.1 mSv yr- air pathway

  3. Work to save dose: contrasting effective dose rates from radon exposure in workplaces and residences against the backdrop of public and occupational limits

    Energy Technology Data Exchange (ETDEWEB)

    Whicker, Jeffrey J [Los Alamos National Laboratory; Mcnaughton, Michael W [Los Alamos National Laboratory

    2009-01-01

    Office workers are exposed to radon while at work and at home. Though there has been a multitude of studies reporting the measurements of radon concentrations and potential lung and effective doses associated with radon and progeny exposure in homes, similar studies on the concentrations and subsequent effective dose rates in the non-mine workplaces are lacking. Additionally, there are few, if any, comparative analyses of radon exposures at more 'typical' workplace with residential exposures within the same county. The purposes of this study were to measure radon concentrations in office and residential spaces in the same county and explore the radiation dose implications. Sixty-five track-etch detectors were deployed in office spaces and 47 were deployed in residences, all within Los Alamos County, New Mexico, USA. The sampling periods for these measurements were generally about three months. The measured concentrations were used to calculate and compare effective dose rates resulting from exposure while at work and at home. Results showed that full-time office workers receive on average about 8 times greater exposure at home than while in the office (2.3 mSv yr-! versus 0.3 mSv yr-!). The estimated effective dose rate for a more homebound person was about 3 mSv yr-!. Estimating effective doses from background radon exposure in the same county as Los Alamos National Laboratory, with thousands of'radiological workers,' highlights interesting contrasts in radiation protection standards that span public and occupational settings. For example, the effective dose rate from background radon exposure in unregulated office spaces ranged up to 1.1 mSv yr-!, which is similar to the 1 mSv yr-! threshold for regulation ofa 'radiological worker,' as defined in the Department of Energy regulations for occupational exposure. Additionally, the estimated average effective dose total of> 3 mSv yf! from radon background exposure in homes stands in

  4. Attachment of radon progeny to cigarette-smoke aerosols

    International Nuclear Information System (INIS)

    Biermann, A.H.; Sawyer, S.R.

    1995-05-01

    The daughter products of radon gas are now recognized as a significant contributor to radiation exposure to the general public. It is also suspected that a synergistic effect exists with the combination cigarette smoking and radon exposure. We have conducted an experimental investigation to determine the physical nature of radon progeny interactions with cigarette smoke aerosols. The size distributions of the aerosols are characterized and attachment rates of radon progeny to cigarette-smoke aerosols are determined. Both the mainstream and sidestream portions of the smoke aerosol are investigated. Unattached radon progeny are very mobile and, in the presence of aerosols, readily attach to the particle surfaces. In this study, an aerosol chamber is used to contain the radon gas, progeny and aerosol mixture while allowing the attachment process to occur. The rate of attachment is dependent on the size distribution, or diffusion coefficient, of the radon progeny as well as the aerosol size distribution. The size distribution of the radon daughter products is monitored using a graded-screen diffusion battery. The diffusion battery also enables separation of the unattached radon progeny from those attached to the aerosol particles. Analysis of the radon decay products is accomplished using alpha spectrometry. The aerosols of interest are size fractionated with the aid of a differential mobility analyzer and cascade impactor. The measured attachment rates of progeny to the cigarette smoke are compared to those found in similar experiments using an ambient aerosol. The lowest attachment coefficients observed, ∼10 -6 cm 3 /s, occurred for the ambient aerosol. The sidestream and mainstream smoke aerosols exhibited higher attachment rates in that order. The results compared favorably with theories describing the coagulation process of aerosols

  5. Radon in buildings: instrumentation of an experimental house

    International Nuclear Information System (INIS)

    Ameon, R.; Diez, O.; Dupuis, M.; Merle-Szeremeta, A.

    2004-01-01

    IRSN decided to develop a code called RADON 2 for conducting simple and methodical studies of indoor radon concentrations. Since a validity check must be performed of the phenomenological model on which the code is based, an experimental program was initiated in 2002, within which a house in Brittany, located on a well-characterized uranium-bearing geological formation, was fitted with special instruments. After characterizing the soil underlying the house, the instrumentation implemented on site continuously monitors a number of parameters to characterize: the radon source term in the building (exhalation rate of 222 Rn at the ground/building interface and at soil surface, radon concentration in the soil and in outdoor air); radon penetration by advection (differential pressure in the house basement); the driving mechanisms for natural ventilation in the house (weather conditions, indoor temperature and relative humidity); radon distribution throughout the house by air flow and radon diffusion (indoor radon concentration at each floor of the house). Using the experimental data acquired over the past two years, the phenomena governing radon penetration inside the house (wind and stack effect) and radon extraction (fresh air supply rate) have been characterized to lay down the bases for validating the newly developed code

  6. Scopingreport radon

    International Nuclear Information System (INIS)

    Blaauboer, R.O.; Vaas, L.H.; Hesse, J.M.; Slooff, W.

    1989-09-01

    This report contains general information on radon concerning the existing standards, sources and emissions, the exposure levels and effect levels. lt serves as a basis for the discussion during the exploratory melting to be held in November/December 1989, aimed at determining the contents of the Integrated Criteria Document Radon. Attention is focussd on Rn-222 (radon) and Rn-220 (thoron), presently of public interest because of radon gas pollution in private homes. In the Netherlands air quality standards nor product standards for the exhalation rate of building materials have been recommended. The major source of radon in the Netherlands is the soil gas (> 97%), minor sources are phosphate residues and building materials (> 2% in total). Hence, the major concern is the transfer through the inhalation of air, the lung being the most critical organ at risk to develop cancer. Compared to risks for humans, the risks of radon and its daughters for aquatic and terrestric organisms, as well as for agricultural crops and livestock, are assumed to be limited. In the Netherlands the average dose for man due to radon and thoron progeny is appr. 1.2 mSv per year, the estimated dose range being 0.1-3.5 mSv per year. This dose contributes for about 50% to rhe total exposure due to all sources of ionizing radiation. Of this dose respectively 80% is caused by radon and about 90% is received indoor. The estimated dose for the general population corresponds to a risk for inducing fatal cancers of about 15 x 10-6 per year, ranging from 1.2 x 10-6 to 44 x 10-6 which exceeds the risk limit of 1 x 10-6 per year -as defined in the standardization policy in the Netherlands for a single source of ionizing radiation-with a factor 15 (1- 44). Reduction of exposure is only possible in the indoor environment. Several techniques have been described to reduce the indoor dose, resulting from exhalation of the soil and building materials. )aut- hor). 37 refs.; 3 figs.; 8 tabs

  7. Health effects of radon in air

    International Nuclear Information System (INIS)

    Cohen, B.L.

    1988-01-01

    Widely accepted risk estimates for exposure to radon in homes are derived largely from studies of miners. These include large groups of US Czechoslovakian, and Canadian uranium miners, Newfoundland fluorspar miners, and Swedish iron, lead, and zinc miners, all of which give roughly consistent results, with the excess risk of lung cancer increasing linearly with the exposure to radon. The authors have studied correlations between average radon levels and lung cancer rates in counties of the US. One study based on 50,000 purchased measurements in the main living areas of houses in which there have been no previous measurements involves 310 counties. It gives a weak but statistically significant negative correlation between mean radon levels and lung cancer rates for both females and males, whereas the usual risk estimates predict a large positive correlation

  8. Removal of radon daughters from indoor air

    International Nuclear Information System (INIS)

    Jonassen, N.

    1985-01-01

    The internal radiological exposure of the general population is largely due to the airborne daughter products of radon and thoron, which are found in two states, attached to aerosols or unattached, of which the latter species according to several dose models have the highest radiological dose efficiency of the two. The radon daughters may be removed from indoor air by a series of processes like ventilation, filtration, plateout, and electrostatic deposition. Ventilation (with radon-free air) is, on the one hand, a very effective measure, but usually involves introduction of colder air, in variance with energy-saving efforts. Internal filtration will not affect the radon concentration but may reduce the level of daughter activities, roughly inversely proportional to the filtration rate. At the same time, however, filtration may also change the aerosol distribution and concentration of the air and, consequently, the partitioning of the radon daughters between the attached and unattached state. This, in turn, influences the rate of deposition of radon daughters both by diffusional plateout and as an effect of an electric field. Experiments are reported demonstrating reductions in the airborne potential alpha energy by factors of 4 to 5 by use of filtration rates of 3-4 times per hour. In case of low aerosol concentrations, however, the corresponding reduction in radiological dose to critical parts of the respiratory tract may be much smaller, due to the shift toward higher fractions of the radon daughters being in the unattached state caused by the filtration. The possibility of using electrostatic deposition of radon daughters is also discussed

  9. White sand potentially suppresses radon emission from uranium tailings

    Science.gov (United States)

    Abdel Ghany, H. A.; El Aassy, Ibrahim E.; Ibrahim, Eman M.; Gamil, S. H.

    2018-03-01

    Uranium tailings represent a huge radioactive waste contaminant, where radon emanation is considered a major health hazard. Many trials have been conducted to minimize radon exhalation rate by using different covering materials. In the present work, three covering materials, commonly available in the local environment, (kaolin, white sand and bentonite) have been used with different thickness 10, 15, and 20 mm). 238U, 232Th, 40K and the radon exhalation rate were measured by using gamma spectrometry with a Hyper Pure Germanium (HPGe) detector and solid state nuclear track detectors (CR-39). Radon exhalation rate, calculated before and after covering, ranged from 2.80 ± 0.14 to 4.20 ± 0.21 Bq m-2 h-1, and from 0.30 ± 0.01 to 4.00 ± 0.20 Bq m-2 h-1, respectively. Also, the attenuation coefficients of different covering materials and radon emanation were calculated. The obtained results demonstrate that covering of uranium tailings by kaolin, white sand and bentonite has potentially minimized both the radon exhalation rate and the corresponding internal doses.

  10. Sorption of radon-222 to natural sediments

    International Nuclear Information System (INIS)

    Wong, C.S.; Chin, Y.P.; Gschwend, P.M.

    1992-01-01

    The sorption of radon to sediments was investigated, since this may affect the use of porewater radon profiles for estimating bed irrigation rates. Batch experiments showed that radon has an organic-carbon-normalized sediment-water partition coefficient (K oc , L kg oc -1 ) of 21.1 ± 2.9 for a Boston Harbor sediment, 25.3 ± 2.1 for a Charles River sediment, and 22.4 ± 2.6 for a Buzzards Bay sediment. These values are in close agreement with predictions using radon's octanol-water partition coefficient (K ow ), which was measured to be 32.4 ± 1.5. Temperature and ionic strength effects on K oc were estimated to be small. Given rapid sorption kinetics, the authors suggest that slurry stripping techniques used by many investigators to measure 222 Rn in sediment samples collect both sorbed and dissolved radon. Sorption effects were included in a transport model to obtain revised estimates of irrigation rates from existing literature profiles. Irrigation rates had to be increased over previously reported values in proportion to the sediment organic matter content

  11. Modelling and experimental study of the behavior of radon and radon decay products in an enclosure. Application to houses; Modelisation et etude experimentale du comportement du radon et de ses descendants dans une enceinte confinee. Application a une habitation

    Energy Technology Data Exchange (ETDEWEB)

    Gouronnec, A M

    1995-02-03

    Since the eighties, more and more studies were performed about radon and its decay products in houses with one of the aim being the estimation of the dose received by their inhabitants. Then, the principal objective of this work is to describe the behaviour of radon and its decay products within a dwelling. In the first part to the report, a few definitions are given and data from literature give an idea of indoor radon and radon decay products activities and/or size distribution. Aspects of dosimetry are presented too. In the second part of the work, a mathematical model, called `PRADDO` of Physic of Radon and radon Decay products in Domestic environment is developed on the basis of the classical model written by Jacobi in 1972. On the one hand, it has to predict radon decay products activities in systems consisting in one or more enclosure(s), from radon activity and from ambient aerosol concentration and size distribution. On the other hand, one part of the model is assigned to study the influence of the entry model parameters variation on the calculated quantities. Then, in the third part of the work, two experimental studies are realised in order to compare measurements to modelization. The first experimentation is a laboratory work, made on the test bench ICARE from IPSN, and the second one consists in describing the basement of an occupied house from Brittany. In the two cases, the comparison between experiments and modelling shows a good agreement if particles are present in the air, but any conclusion is made when is no aerosol in the enclosure. (author). 158 refs., 81 figs., 42 tabs.

  12. Uniformity in radon exhalation from construction materials using can technique

    Energy Technology Data Exchange (ETDEWEB)

    El-Amri, E.A.; Al-Jarallah, M.I. E-mail: mibrahim@kfupm.edu.sa; Abu-Jarad, F.; Fazal-ur-Rehman

    2003-06-01

    The uniformity in radon exhalation rates for 46 tiles of granite, marble and ceramic used as construction materials were determined using 'Can Technique' employing CR-39 nuclear track detectors (NTDs). On each tile, two sealed cans, each enclosing one NTD fixed at the center of the tile surface area covered by the can, were mounted at two different locations of each individual tiles. The track production rates on the NTDs representing radon exhalation rates were measured. The radon exhalation rates from the surface of individual tiles showed uniform exhalations within the calculated uncertainties of the measured values. This makes Can Technique an alternative simple method to measure radon exhalation rates. Calibration required to convert track production rates into radon exhalation rates for the used can and NTD was done using an active technique. The correlation between the measurements by the two techniques shows a good linear correlation coefficient (0.83)

  13. Measurement of mean radon concentrations in the Tokai districts

    International Nuclear Information System (INIS)

    Iida, Takao; Ikebe, Yukimasa; Yamanishi, Hirokuni

    1989-01-01

    This paper describes an electrostatic integrating radon monitor designed for the environmental radon monitoring and longterm measurements of mean radon concentrations in outdoor and indoor air. The position of the collecting electrode within the monitor was determined based on the calculation of the internal electric field. The radon exchange rate between the monitor and the outside air through the filter was 0.75 h -1 . The exchange rate can make the radon concentration inside the monitor to follow thoroughly the outside concentration. Since the electrostatic collection of RaA + ( 218 Po + ) atoms depends on the humidity of the air, the inside of the monitor was dehumidified with a diphosphorus pentaoxide (P 2 O 5 ) drying agent which is powerful and dose not absorb radon gas. From the relationship between track density and radon exposure, the calibration factor was derived to be 0.52 ± 0.002 tracks cm -2 (Bq m -3 h) -1 . The detection limit of mean radon level is 1.2 Bq m -3 for an exposure time fo 2 months. The mean radon concentrations in various environments were measured through the year using the monitors this developed. The annual mean outdoor radon level in the Tokai districts was 7.0 Bq m -3 . The mean radon concentrations was found to vary from 3.5 to 11.7 Bq m -3 depending upon the geographical conditions even in this relatively small region. The annual indoor radon concentrations at Nagoya and Sapporo ranged from 6.4 to 11.9 Bq m -3 and from 15.5 to 121.1 Bq m -3 , respectively, with the type of building material and the ventilation rate. The mean radon concentrations in tightly built houses selected at Sapporo are about 10 times as high as those in drafty houses at Nagoya. (author)

  14. Radon monitoring technique with electret collecting

    International Nuclear Information System (INIS)

    Tian Zhiheng; Zuo Fuqi; Xiao Detao; Zhao Xkiuliang

    1991-12-01

    The integrating radon monitoring technique with electret collecting is a method which collects the 218 Po + positive ions by electrostatic field produced by electret. It has greatly improved the sensitivity of radon measurement. The response factor of this method reaches to 4.7 cm -2 Bq -1 m 3 h -1 , 1000 times larger than that of common passive sampling method. The monitoring device and its principle are introduced. The measuring results of radon concentration and radon flux rate and quality assurance system by using this method in the Qinshan Nuclear Power Plant, Human Environmental Monitoring Central Station and some uranium mines are also presented. The analytical results show that the radon concentration in the Qinshan Nuclear Power Plant is affected by wind direction. When wind directs toward sea, the radon concentration is high. If the wind is to the contrary, it is low. The radon concentration ratio of both is about 2

  15. Parametric modelling of temporal variations in radon concentrations in homes

    International Nuclear Information System (INIS)

    Revzan, K.L.; Turk, B.H.; Harrison, J.; Nero, A.V.; Sextro, R.G.

    1988-01-01

    The 222 Rn concentrations in the living area, the basement, and the undelying soil of a New Jersey home have been measured at half-hour intervals over the course of a year, as have indoor and outdoor temperatures, wind speed and direction, and indoor-outdoor and basement-subslab pressures; in addition, periods of furnace opration have been logged. We generalize and extend an existing radon entry model in order to demonstrate the dependence of the radon concentration on the environmental variales and the extent of furnace use. The model contains parameters which are dependent on geological and structural factors which have not been measured or otherwise determined; statistical methods are used to find the best values of the parameters. The non-linear regression of the model predictions (over time) on the measured living area radon concentrations yields an R/aup 2/ of 0.88. 9 refs., 2 figs

  16. Indoor radon concentration in Poland

    International Nuclear Information System (INIS)

    Mamont-Ciesla, K.; Jagielak, J.; Rosinski, S.W.; Sosinka, A.; Bysiek, M.; Henschke, J.

    1996-01-01

    Preliminary survey of Rn concentration indoors by means of track detectors and y-ray dose rate with the use of TLD in almost 500 homes in selected areas of Poland was performed in the late 1980s. It was concluded that radon contributes 1.16 mSv i.e. about 46 per cent of the total natural environment ionizing radiation dose to the Polish population. Comparison of the average radon concentrations in 4 seasons of a year and in 3 groups of buildings: masonry, concrete and wood, revealed that the ground beneath the building structure is likely the dominant source of radon indoors. Since the National Atomic Energy Agency in its regulations of 1988-03-31 set up the permissible limit of the equilibrium equivalent concentration of radon in new buildings (equal 100 Bq/m3), the nation-scale survey project for radon in buildings has been undertaken. These regulations were supposed to take effect in 1995-01-01. The project has 3 objectives: to estimate the radiation exposure due to radon daughters received by Polish population to identify radon-prone areas in Poland to investigate dependence of the indoor radon concentrations on such parameters as: type of construction material, presence (or absence) of cellar under the building, number of floor

  17. Health effects of radon

    International Nuclear Information System (INIS)

    Easterly, C.

    1994-01-01

    Exposure of people to radon has taken on increased interest during the last decade because of the understanding that buildings can serve to trap radon and its daughters, and thereby build up undesirable concentrations of these radioactive elements. Numerous studies of underground miners (often uranium miners) have shown an increased risk of lung cancer in comparison with nonexposed populations. Laboratory animals exposed to radon daughters also develop lung cancer. The abundant epidemiological and experimental data have established the carcinogenicity of radon progeny. Those observations are of considerable importance, because uranium, from which radon and its progeny arise, is ubiquitous in the earth's crust, including coal mines. Risk estimates of the health effects of long-term exposures at relatively low levels require continued development, especially to address the potential health effects of radon and radon daughters in homes and occupational settings where the exposure levels are less than levels in underground uranium and other metal mines that have been the subject of epidemiological studies. Two approaches can be used to characterize the lung-cancer risks associated with radon-daughter exposure: mathematical representations of the respiratory tract that model radiation doses to target cells and epidemiological investigation of exposed populations, mainly underground uranium miners. The mathematically-based dosimetric approach provides an estimate of lung cancer risk related to radon-daughter exposure based specifically on modeling of the dose to target cells. The various dosimetric models all require assumptions, some of which are not subject to direct verification, as to breathing rates; the deposition of radon daughters in the respiratory tract; and the type, nature, and location of the target cells for cancer induction. The most recent large committee effort drawn together to evaluate this issue was sponsored by the National Research Council

  18. Radon anomalies: When are they possible to be detected?

    Science.gov (United States)

    Passarelli, Luigi; Woith, Heiko; Seyis, Cemil; Nikkhoo, Mehdi; Donner, Reik

    2017-04-01

    Records of the Radon noble gas in different environments like soil, air, groundwater, rock, caves, and tunnels, typically display cyclic variations including diurnal (S1), semidiurnal (S2) and seasonal components. But there are also cases where theses cycles are absent. Interestingly, radon emission can also be affected by transient processes, which inhibit or enhance the radon carrying process at the surface. This results in transient changes in the radon emission rate, which are superimposed on the low and high frequency cycles. The complexity in the spectral contents of the radon time-series makes any statistical analysis aiming at understanding the physical driving processes a challenging task. In the past decades there have been several attempts to relate changes in radon emission rate with physical triggering processes such as earthquake occurrence. One of the problems in this type of investigation is to objectively detect anomalies in the radon time-series. In the present work, we propose a simple and objective statistical method for detecting changes in the radon emission rate time-series. The method uses non-parametric statistical tests (e.g., Kolmogorov-Smirnov) to compare empirical distributions of radon emission rate by sequentially applying various time window to the time-series. The statistical test indicates whether two empirical distributions of data originate from the same distribution at a desired significance level. We test the algorithm on synthetic data in order to explore the sensitivity of the statistical test to the sample size. We successively apply the test to six radon emission rate recordings from stations located around the Marmara Sea obtained within the MARsite project (MARsite has received funding from the European Union's Seventh Programme for research, technological development and demonstration under grant agreement No 308417). We conclude that the test performs relatively well on identify transient changes in the radon emission

  19. Measurements of radon concentrations in dwelling houses

    International Nuclear Information System (INIS)

    Birkholz, W.; Klink, T.

    1993-01-01

    Radon and its daughter products gain in importance in health protection and radiation safety. Especially in the southern region of Saxony radon concentrations in dwellings may be high by former silver and uranium mines. We found radon contents of about 20.000 Bq/m 3 in dwellings. To redevelop such houses it is necessary to know intrude path of radon. In present work we studied different measuring systems, active and passive detectors, short and long term integrating devices. By means of investigation of radon sources several redeveloping methods are rates as well from radiological as from civil engineering point of view. (author)

  20. Quantification of lung cancer risk after low radon exposure and low exposure rate: synthesis from epidemiological and experimental data

    International Nuclear Information System (INIS)

    Timarche, M.

    2004-03-01

    Radon is a radioactive gas produced during the decay of uranium 238 that is present in soil. It was classified as a human lung carcinogen in 1988, based on evidence both from animal studies and from human studies of miners with high levels of radon exposure. Radon is present everywhere; therefore the quantification of the risk associated with exposure to it is a key public health issue. The project aimed to analyse the risk associated with radon inhalation at low doses and at low rates of exposure. It involved researchers from three different fields: epidemiology, animal experiments and mechanistic modelling and provided a unique opportunity to study the influence of dose rate, mainly in the range of low daily exposures over long periods, by analysing in parallel results from both animal and epidemiological studies. The project comprised 6 work packages (W.P.). Firstly, the partners involved in epidemiology and animal experiments worked on the validation and the analysis of the data. Secondly, the data from W.P.1 and W.P.4 were transferred to the partners involved in W.P.5 for the application of mechanistic models. In the final step a synthesis of the results was prepared. (N.C)

  1. Quantification of lung cancer risk after low radon exposure and low exposure rate: synthesis from epidemiological and experimental data

    Energy Technology Data Exchange (ETDEWEB)

    Timarche, M

    2004-03-15

    Radon is a radioactive gas produced during the decay of uranium 238 that is present in soil. It was classified as a human lung carcinogen in 1988, based on evidence both from animal studies and from human studies of miners with high levels of radon exposure. Radon is present everywhere; therefore the quantification of the risk associated with exposure to it is a key public health issue. The project aimed to analyse the risk associated with radon inhalation at low doses and at low rates of exposure. It involved researchers from three different fields: epidemiology, animal experiments and mechanistic modelling and provided a unique opportunity to study the influence of dose rate, mainly in the range of low daily exposures over long periods, by analysing in parallel results from both animal and epidemiological studies. The project comprised 6 work packages (W.P.). Firstly, the partners involved in epidemiology and animal experiments worked on the validation and the analysis of the data. Secondly, the data from W.P.1 and W.P.4 were transferred to the partners involved in W.P.5 for the application of mechanistic models. In the final step a synthesis of the results was prepared. (N.C)

  2. Measurements of radon activity concentrations in air at Niska spa

    International Nuclear Information System (INIS)

    Adrovic, F.; Vuckovic, B.; Ninkovic, M.

    2004-01-01

    Radon activity concentrations in air were measured in the recreational-tourist center of Niska Banja. Alpha Guard PQ 2000/ MC50 instrumentation (Genitron instruments, Frankfurt) was used. The observed indoor radon concentrations in the air of the Radon Hotel pool lay within the range of 0.980-1.908 kBq/m 3 and were directly dependent on the exhalation of radon from thermomineral waters. Radon concentrations were also measured outdoors, at locations for capping thermomineral water, as well as at locations for draining used water from the Radon Hotel pool. Outdoor radon concentrations as high as over 500 Bq/m 3 were observed. Gamma dose rates were measured in parallel and found to lie within the range of 72-420 nSv/h. The gamma doses correlated well with the observed radon levels. The largest gamma dose rates in air were measured in the pool of Radon Hotel and at the site where this thermomineral water is being capped

  3. Factors influencing radon attenuation by tailing covers

    International Nuclear Information System (INIS)

    Silker, W.B.; Rogers, V.C.

    1981-07-01

    The US NRC, in its Generic Environmental Impact Statement on uranium milling has specified that the radon flux escaping a uranium mill tailings pile will be reduced to pCi/m 2 s by application of covering layers of soils and clays. These covers present a radon diffusion barrier, which sufficiently increases the time required for radon passage from the tailings to the atmosphere to allow for decay of 222 Rn within the cover. The depth of cover necessary to reduce the escaping radon flux to the prescribed level is to be determined by calculation, and requires precise knowledge of the radon diffusion coefficient in the covering media. A Radon Attenuation Test Facility was developed to determine rates of radon diffusion through candidate cover materials. This paper describes this facility and its application for determining the influence of physical properties of the soil column on the radon diffusion coefficient

  4. Modeling dynamic behavior of Radon-222 in the planetary boundary layer

    International Nuclear Information System (INIS)

    Yuan, Y.C.; Stunder, M.J.

    1983-01-01

    A model has been used to simulate the dynamic behavior of radon concentration in the lower atmosphere from naturally occurring sources. The model includes prediction of radon exhalation rate from the surface of the ground due to convection and diffusion processes and the radon concentration profile in the planetary boundary layer. A time-dependent radon exhalation rate, variable mixing height, and altitude-dependent diffusivity are incorporated into the diffusion model by transforming the governing equation. The Galerkin finite-element technique and Crank-Nicholson finite different time marching are used in solving the discretized differential equations. The model-simulated time-varying radon concentrations near the ground agree well with measurements made over a period of seven days. It has been demonstrated that the model provides a reasonably good prediction of ambient radon concentration. As a general tool, with the input of actual radon concentration measurements, the model is also capable of estimating average radon exhalation rate from the ground surface. With current techniques, radon flux measurement is still a time-consuming and difficult task

  5. Contribution of radon in natural gas to the dose from aiborne radon-daughters in homes

    International Nuclear Information System (INIS)

    Barton, C.J.; Moore, R.E.; Rohwer, P.S.

    1973-01-01

    Data have been obtained on the radon concentration in natural gas supplied to several metropolitan areas in the United States. The average value of 20 pCi/l was selected to estimate the contribution of this source of natural radioactivity to doses from radon-daughters received by individuals in homes. Radon-daughter concentrations in the home atmosphere were calculated by use of computer programs for an 8000 ft 3 house in which 27 ft 3 of gas per day was used for cooking in an unvented kitchen range. The total estimated dose to the bronchial epithelium included contributions from radon plus daughters in the outside ventilation air, each of which was assumed to be present at a concentration of 0.13 pCi/l, and from the radon plus daughters in the natural gas. The latter contribution averaged approximately 3 percent of the total dose. There was a 3.5 percent decrease in the estimated total dose when the air change rate increased from 0.25 to 2.0 per hour. We conclude that radon and radon-daughters entering the home with natural gas produce a negligible fraction of the total dose to the respiratory system of home occupants from airborne radon-daughters

  6. An investigation into the knowledge and attitudes towards radon testing among residents in a high radon area

    International Nuclear Information System (INIS)

    Clifford, Susan; Menezes, Gerard; Hevey, David

    2012-01-01

    The aim of this study was to investigate the knowledge and attitudes of residents in the Castleisland area to radon. Castleisland in Co. Kerry was described as a high radon area following the discovery of a house in the area with radon levels 245 times that of the national reference level. Residents in this area were then asked to measure their homes for radon in the Castleisland radon survey. The uptake of this measurement was 17%. In order to investigate this response rate further, a questionnaire was designed and distributed to residents in the Castleisland area. This questionnaire measured the testing history of the participants, the reasons for testing/not testing, the factors important to them when considering having their home tested, radon knowledge and finally intentions to measure their home for radon. It was found that the main reason people do not test their home for radon is that they believe their home does not have a problem. Optimistic bias was thought to play a role here. The subjective norm component of the theory of planned behaviour was found to have a significant independent contribution in the variation in intentions to measure one’s home for radon and this in turn could be targeted to increase uptake of radon measurement in the future. (note)

  7. Radon concentration; source strength and ventilation rate: how well do we know the connections

    International Nuclear Information System (INIS)

    Ring, J.W.

    1984-01-01

    The simple steady state model which is frequently used to relate radon concentration (C), source strength (S) and ventilation rate (l/'tau') is expressed in the equation C=S'tau'. The assumptions of this model are given and their validity explored in this paper. In particular the assumption of steady state conditions fot the ventilation rate is studied experimentally in a simple one chamber building, the Solar Classroom at Hamilton College. Even in this simple case variations are found of a factor of three or more in 'tau' which can be attributed to wind and stack effects. Studies of other houses are cited which show that variations of 'tau' between houses can be as large as factor of sixty or more. The implications of these results for developing ventilation standards or for mitigating the indoor radon problem are suggested. Individual houses can be understood and mitigating strategies implemented in them on a case by case basis but a statistical treatment of houses in general does not seem to be a fruitful approach. (Author)

  8. Radon-thoron discrimination using a polythene foil: an application in uranium exploration

    International Nuclear Information System (INIS)

    Ramola, R.C.; Singh, M.; Sandhu, A.S.; Singh, S.; Virk, H.S.

    1989-01-01

    Integrated measurements of radon concentrations in subsurface soil are being used extensively for uranium exploration and earthquake prediction. For uranium exploration only the radon signals are needed; however, a part of the α-activity may derive from thoron. To exclude thoron, a polythene foil has been used as an anti-thoron membrane to delay the entry of thoron into the detector system so that only the longer lived isotope 222 Rn survives to be measured. A long term integrated measurement has been carried out using LR-115 and CR-39 plastic track detectors. The observed track density has been determined as a function of foil thickness. It is found that a polythene foil of appropriate thickness could be successfully employed for the separation of radon and thoron in soil. (author)

  9. Radon-daughter exposures in energy-efficient buildings

    International Nuclear Information System (INIS)

    Nero, A.V.; Berk, J.V.; Boegel, M.L.; Hollowell, C.D.; Ingersoll, J.G.; Nazaroff, W.W.

    1981-10-01

    A radon concentration of 1 pCi/1 (37 Bq/m 3 ) appears to lie in the range that is typical for air inside US residential buildings. Moreover, some US residences have concentrations higher than 1 pCi/1, sometimes by an order of magnitude, implying significant individual risk to occupants. For typical radon daughter equilibrium ratios, this concentration corresponds to a radon daughter exposure rate of 0.2 working level months (WLM) per year. This exposure rate may account for a significant lung cancer incidence if data on lung cancers per unit exposure in miners are applicable to such low exposures. Reductions in air exchange rates may rise the typical exposure rate and even increase it to unacceptable levels in some cases. Measures that reduce energy use by reducing natural infiltration or mechanical ventilation in new or retrofit buildings are therefore undergoing severe scrutiny. Lawrence Berkeley Laboratory has performed measurements in buildings specifically designed to use energy efficiently or utilize solar heating. In many of these buildings radon concentrations appear to arise primarily from soil underlying the buildings. Measures to control higher levels, e.g., by mechanical ventilation with heat recuperation, appear to be economical. However, to evaluate energy-saving programs adequately requires a much more comprehensive characterization of radon sources (for example, by geographical area) and a much fuller understanding of the dynamics of radon and its daughters indoors than now exist

  10. Moisture dependence of radon transport in concrete : Measurements and modeling

    NARCIS (Netherlands)

    Cozmuta, [No Value; van der Graaf, ER; de Meijer, RJ

    2003-01-01

    The moisture dependence of the radon-release rate of concrete was measured under well controlled conditions. It was found that the radon-release rate almost linearly increases up to moisture contents of 50 to 60%. At 70 to 80% a maximum was found and for higher moisture contents the radon-release

  11. The radon influence of SAGE results

    International Nuclear Information System (INIS)

    Gavrin, V.N.; Gorbachev, V.V.; Mirmov, I.N.

    2002-01-01

    The method for evaluating systematic errors, connected with radon, is described in the experiment on determining the SAGE solar neutrino flux. The systematic error by the measured neutrino capture rate in the gallium 75 SNU target does not exceed 0.3 SNU. The obtained value (0.3 SNU) is the upper limit of the radon systematic error. Its low value means, that radon does not contribute significantly to the SAGE result [ru

  12. A complete low cost radon detection system

    International Nuclear Information System (INIS)

    Bayrak, A.; Barlas, E.; Emirhan, E.; Kutlu, Ç.; Ozben, C.S.

    2013-01-01

    Monitoring the 222 Rn activity through the 1200 km long Northern Anatolian fault line, for the purpose of earthquake precursory, requires large number of cost effective radon detectors. We have designed, produced and successfully tested a low cost radon detection system (a radon monitor). In the detector circuit of this monitor, First Sensor PS100-7-CER-2 windowless PIN photodiode and a custom made transempedence/shaping amplifier were used. In order to collect the naturally ionized radon progeny to the surface of the PIN photodiode, a potential of 3500 V was applied between the conductive hemi-spherical shell and the PIN photodiode. In addition to the count rate of the radon progeny, absolute pressure, humidity and temperature were logged during the measurements. A GSM modem was integrated to the system for transferring the measurements from the remote locations to the data process center. - Author-Highlights: • Low cost radon detection. • Integrated GSM modem for early warning of radon anomalies. • Radon detection in environment

  13. Characterization of radon levels in indoor air

    International Nuclear Information System (INIS)

    George, A.C.

    1982-01-01

    The purpose is to describe the different types of monitoring and sampling techniques that can determine the radiation burden of the general public from radon and its decay products. This is accomplished by measuring the range and distribution of radon and radon decay products through broad surveys using simple and convenient integrating monitoring instruments. For in-depth studies of the behavior of radon decay products and calculation of the radiation dose to the lung, fewer and more intensive and complex measurements of the particle size distribution and respiratory deposition of the radon decay products are required. For diagnostic purposes, the paper describes measurement techniques of the sources and exhalation rate of radon and the air exchange inside buildings. Measurement results form several studies conducted in ordinary buildings in different geographical areas of the United States, using the described monitoring techniques, indicate that the occupants of these buildings are exposed to radon and radon decay product concentrations, varying by as much as a factor of 20

  14. Radon transport modelling: User's guide to RnMod3d

    International Nuclear Information System (INIS)

    Andersen, C.E.

    2000-08-01

    RnMod3d is a numerical computer model of soil-gas and radon transport in porous media. It can be used, for example, to study radon entry from soil into houses in response to indoor-outdoor pressure differences or changes in atmospheric pressure. It can also be used for flux calculations of radon from the soil surface or to model radon exhalation from building materials such as concrete. The finite-volume model is a technical research tool, and it cannot be used meaningfully without good understanding of the involved physical equations. Some understanding of numerical mathematics and the programming language Pascal is also required. Originally, the code was developed for internal use at Risoe only. With this guide, however, it should be possible for others to use the model. Three-dimensional steady-state or transient problems with Darcy flow of soil gas and combined generation, radioactive decay, diffusion and advection of radon can be solved. Moisture is included in the model, and partitioning of radon between air, water and soil grains (adsorption) is taken into account. Most parameters can change in time and space, and transport parameters (diffusivity and permeability) may be anisotropic. This guide includes benchmark tests based on simple problems with known solutions. RnMod3d has also been part of an international model intercomparison exercise based on more complicated problems without known solutions. All tests show that RnMod3d gives results of good quality. (au)

  15. Control of respirable particles and radon progeny with portable air cleaners

    International Nuclear Information System (INIS)

    Offermann, F.J.; Sextro, R.G.; Fisk, W.J.; Nazaroff, W.W.; Nero, A.V.; Revzan, K.L.; Yater, J.

    1984-02-01

    Eleven portable air cleaning devices have been evaluated for control of indoor concentrations of respirable particles and radon progeny. Following injection of cigarette smoke and radon in a room-size chamber, decay rates for particles and radon progeny concentrations were measured with and without air cleaner operation. Particle concentrations were obtained for total number concentration and for number concentration by particle size. In tests with no air cleaner the natural decay rate for cigarette smoke was observed to be 0.2 hr -1 . Air cleaning rates for particles were found to be negligible for several small panel-filters, a residential ion-generator, and a pair of mixing fans. The electrostatic precipitators and extended surface filters tested had significant particle removal rates, and a HEPA-type filter was the most efficient air cleaner. The evaluation of radon progeny control produced similar results; the air cleaners which were effective in removing particles were also effective in removing radon progeny. At low particle concentrations plateout of the unattached radon progeny is an important removal mechanism. Based on data from these tests, the plateout rate for unattached progeny was found to be 15 hr -1 . The unattached fraction and the overall removal rate due to deposition of attached and unattached nuclides have been estimated for each radon decay product as a function of particle concentration. While air cleaning can be effective in reducing total radon progeny, concentrations of unattached radon progeny can increase with increasing air cleaning. 39 references, 26 figures, 9 tables

  16. Radon in an underground cave system in Victoria

    International Nuclear Information System (INIS)

    Hedt, J.C.; Boal, T.J.

    1998-01-01

    Radon levels in a cave system in Victoria have been measured. The variation of radon and radon progeny levels with time, position throughout the cave and season have been determined. The radiation exposure of tour guides were estimated. The data is being used to develop a radiation management plan for the tour guides. Radon concentration within a cave system was proven to be dependent to a large extent upon the rate of air exchange with outside. Cave ventilation is the single most important factor in determining if there is diurnal variation in the radon concentration

  17. Radiological risk assessment of environmental radon

    Energy Technology Data Exchange (ETDEWEB)

    Khalid, Norafatin; Majid, Amran Ab; Yahaya, Redzuwan; Yasir, Muhammad Samudi [Nuclear Science Programme, School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan (Malaysia)

    2013-11-27

    Measurements of radon gas ({sup 222}Rn) in the environmental are important to assess indoor air quality and to study the potential risk to human health. Generally known that exposure to radon is considered the second leading cause of lung cancer after smoking. The environmental radon concentration depends on the {sup 226}Ra concentration, indoor atmosphere, cracking on rocks and building materials. This study was carried out to determine the indoor radon concentration from selected samples of tin tailings (amang) and building materials in an airtight sealed homemade radon chamber. The radiological risk assessment for radon gas was also calculated based on the annual exposure dose, effective dose equivalent, radon exhalation rates and fatal cancer risk. The continuous radon monitor Sun Nuclear model 1029 was used to measure the radon concentration emanates from selected samples for 96 hours. Five types of tin tailings collected from Kampar, Perak and four samples of building materials commonly used in Malaysia dwellings or building constructions were analysed for radon concentration. The indoor radon concentration determined in ilmenite, monazite, struverite, xenotime and zircon samples varies from 219.6 ± 76.8 Bq m{sup −3} to 571.1 ± 251.4 Bq m{sup −3}, 101.0 ± 41.0 Bq m{sup −3} to 245.3 ± 100.2 Bq m{sup −3}, 53.1 ± 7.5 Bq m{sup −3} to 181.8 ± 9.7 Bq m{sup −3}, 256.1 ± 59.3 Bq m{sup −3} to 652.2 ± 222.2 Bq m{sup −3} and 164.5 ± 75.9 Bq m{sup −3} to 653.3 ± 240.0 Bq m{sup −3}, respectively. Whereas, in the building materials, the radon concentration from cement brick, red-clay brick, gravel aggregate and cement showed 396.3 ± 194.3 Bq m{sup −3}, 192.1 ± 75.4 Bq m{sup −3}, 176.1 ± 85.9 Bq m{sup −3} and 28.4 ± 5.7 Bq m{sup −3}, respectively. The radon concentration in tin tailings and building materials were found to be much higher in xenotime and cement brick samples than others. All samples in tin tailings were exceeded the

  18. Communicating the risk from radon

    International Nuclear Information System (INIS)

    Fisher, A.; McClelland, G.H.; Schulze, W.D.; Doyle, J.K.

    1991-01-01

    A prominent television station developed a special series of newscasts and public service announcements about radon. This was combined with their advertising of the availability of reduced-price radon test kits in a local supermarket chain. The large number of test kits sold was a success from a marketing perspective, but not from a public health perspective - especially because of the very small share of high readings that were mitigated. In contrast, a study of housing sales showed a much higher testing rate and corresponding mitigation when risk communication accompanied the housing transaction, rather than being directed toward the general public. This paper examined the relative effectiveness of these alternative approaches to radon risk communication, emphasizing the implications for developing and implementing radon programs

  19. Indoor radon and childhood leukaemia

    International Nuclear Information System (INIS)

    Raaschou-Nielsen, O.

    2008-01-01

    This paper summarises the epidemiological literature on domestic exposure to radon and risk for childhood leukaemia. The results of 12 ecological studies show a consistent pattern of higher incidence and mortality rates for childhood leukaemia in areas with higher average indoor radon concentrations. Although the results of such studies are useful to generate hypotheses, they must be interpreted with caution, as the data were aggregated and analysed for geographical areas and not for individuals. The seven available case - control studies of childhood leukaemia with measurement of radon concentrations in the residences of cases and controls gave mixed results, however, with some indication of a weak (relative risk < 2) association with acute lymphoblastic leukaemia. The epidemiological evidence to date suggests that an association between indoor exposure to radon and childhood leukaemia might exist, but is weak. More case - control studies are needed, with sufficient statistical power to detect weak associations and based on designs and methods that minimise misclassification of exposure and provide a high participation rate and low potential selection bias. (authors)

  20. The natural radionuclide concentration and radon exhalation rate of Turkish natural stones

    International Nuclear Information System (INIS)

    Yasar, O.; Yaprak, G.; Guer, F.

    2006-01-01

    Geological materials usually contaminated with naturally occurring radioactive materials (NORM) have become a focus great attention. These NORM under certain conditions can reach hazardous contamination levels. Some contamination levels may be sufficiently severe that precautions must be taken. The Turkey has very important natural stones potential with over 5 billion m 3 marble reserves. According to 2002 giving data the number of Turkish stones export is 303 million US Dollars. In this regards, the present study deals with 120 Turkish natural stones. The studied samples were analyzed and the concentrations in Bq/kg dry weight of radioisotopes were determined by gamma-ray spectrometry using HPGe defector in Bq/kg dry weight. For the measurement of the radon exhalation rate, the 'can technique' using sensitive alpha sensitive LR-115 type II plastic defectors were used. The radium equivalent activity varied from 285 Bq/kg to 325 Bq/kg for granite samples and from 2 Bq/kg to 32 Bq/kg for marble samples. The value of radon exhalation rate ranged from 0.06 Bq/m 2 h - 1 to 0.46 Bq/m 2 h - 1 for garnite samples and from 0.006 Bq/m 2 h - 1 to 0.011 Bq/m 2 h - 1 for marble samples. According to the recommended values and the calculated external hazard index values the samples are acceptable for use as building materials and decoration

  1. Suggestions for inclulsion of radon exhalation control target in building materials radioactivity standards

    International Nuclear Information System (INIS)

    Liu Fudong; Liu Senlin; Pan Ziqiang; Zhang Yonggui

    2010-01-01

    The specific-activity and radon exhalation rate from 26 building material samples from different areas were measured with high pure germanium (HPGe) gamma spectrometer and activated carbon cartridge. It is shown that the radium content is not completely relevant to radon exhalation rate from some building material. The existing national standards on 'The Limit of Radionuclides in Building Materials' (GB 6566-2001) only present internal exposure index as control target but not for radon exhalation rate; in fact, the radon exhalation rate from building materials is closely nearly related to indoor radon concentration. So we suggest that the radon exhalation control target should be included in the national standards on 'The Limit of Radionuclides in Building Materials'. (authors)

  2. Radon emanation from backfilled mill tailings in underground uranium mine.

    Science.gov (United States)

    Sahu, Patitapaban; Mishra, Devi Prasad; Panigrahi, Durga Charan; Jha, Vivekananda; Patnaik, R Lokeswara; Sethy, Narendra Kumar

    2014-04-01

    Coarser mill tailings used as backfill to stabilize the stoped out areas in underground uranium mines is a potential source of radon contamination. This paper presents the quantitative assessment of radon emanation from the backfilled tailings in Jaduguda mine, India using a cylindrical accumulator. Some of the important parameters such as (226)Ra activity concentration, bulk density, bulk porosity, moisture content and radon emanation factor of the tailings affecting radon emanation were determined in the laboratory. The study revealed that the radon emanation rate of the tailings varied in the range of 0.12-7.03 Bq m(-2) s(-1) with geometric mean of 1.01 Bq m(-2) s(-1) and geometric standard deviation of 3.39. An increase in radon emanation rate was noticed up to a moisture saturation of 0.09 in the tailings, after which the emanation rate gradually started declining with saturation due to low diffusion coefficient of radon in the saturated tailings. Radon emanation factor of the tailings varied in the range of 0.08-0.23 with the mean value of 0.21. The emanation factor of the tailings with moisture saturation level over 0.09 was found to be about three times higher than that of the absolutely dry tailings. The empirical relationship obtained between (222)Rn emanation rate and (226)Ra activity concentration of the tailings indicated a significant positive linear correlation (r = 0.95, p < 0.001). This relationship may be useful for quick prediction of radon emanation rate from the backfill material of similar nature. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. A study of indoor radon levels and radon effective dose in dwellings of some cities of Gezira State in Sudan

    Directory of Open Access Journals (Sweden)

    Elzain Abd-Elmoniem Ahmed

    2014-01-01

    Full Text Available Exposure to natural sources of radiation, especially 222Rn and its short-lived daughter products has become an important issue throughout the world because sustained exposure of humans to indoor radon may cause lung cancer. The indoor radon concentration level and radon effective dose rate were carried out in the dwellings of Medani, El Hosh, Elmanagil, Haj Abd Allah, and Wad Almahi cities, Gezira State - Central Sudan, in 393 measurements, using passive integrated solid-state nuclear track devices containing allyl diglycol carbonate plastic detectors. The radon concentration in the corresponding dwellings was found to vary from (57 ± 8 Bq/m3 in Medani to 41 ± 9 Bq/m3 in Wad Almahi, with an average of 49 ± 10 Bq/m3. Assuming an indoor occupancy factor of 0.8 and 0.4 for the equilibrium factor of radon indoors, we found that the annual effective dose rate from 222Rn in the studied dwellings ranges from 1.05 to 1.43 mSv per year and the relative lung cancer risk for radon exposure was 1.044%. In this research, we also correlated the relationship of radon concentration and building age. From our study, it is clear that the annual effective dose rate is larger than the “normal” background level as quoted by UNSCEAR, lower than the recommended action level of ICRP, and less than the maximum permissible dose defined by the International Atomic Energy Agency.

  4. Entry rates and recycling of glucose in buffalo calves fed on urea molasses liquid diet

    International Nuclear Information System (INIS)

    Varma, Arun; Singh, U.B.; Verma, D.N.; Ranjhan, S.K.

    1974-01-01

    Entry rates of glucose have been measured in buffalo calves by using a dual-isotope dilution method based on continuous infusion of (U- 14 C)D-glucose and (6- 3 H)D-glucose into the blood at a precise controlled rate for 540 min. After 5 h a plateau was obtained in the specific radioactivity of the plasma glucose from which glucose synthesis and entry rates were calculated. The average entry rates of glucose were 112 and 145 mg/min measured by 14 C and 3 H labelled glucose respectively. About 23 percent of the glucose carbon was recycled in the pool. The average recycling rate was 33 mg/min. (author)

  5. Radon anomalies prior to earthquakes (2). Atmospheric radon anomaly observed before the Hyogoken-Nanbu earthquake

    International Nuclear Information System (INIS)

    Ishikawa, Tetsuo; Tokonami, Shinji; Yasuoka, Yumi; Shinogi, Masaki; Nagahama, Hiroyuki; Omori, Yasutaka; Kawada, Yusuke

    2008-01-01

    Before the 1995 Hyogoken-Nanbu earthquake, various geochemical precursors were observed in the aftershock area: chloride ion concentration, groundwater discharge rate, groundwater radon concentration and so on. Kobe Pharmaceutical University (KPU) is located about 25 km northeast from the epicenter and within the aftershock area. Atmospheric radon concentration had been continuously measured from 1984 at KPU, using a flow-type ionization chamber. The radon concentration data were analyzed using the smoothed residual values which represent the daily minimum of radon concentration with the exclusion of normalized seasonal variation. The radon concentration (smoothed residual values) demonstrated an upward trend about two months before the Hyogoken-Nanbu earthquake. The trend can be well fitted to a log-periodic model related to earthquake fault dynamics. As a result of model fitting, a critical point was calculated to be between 13 and 27 January 1995, which was in good agreement with the occurrence date of earthquake (17 January 1995). The mechanism of radon anomaly before earthquakes is not fully understood. However, it might be possible to detect atmospheric radon anomaly as a precursor before a large earthquake, if (1) the measurement is conducted near the earthquake fault, (2) the monitoring station is located on granite (radon-rich) areas, and (3) the measurement is conducted for more than several years before the earthquake to obtain background data. (author)

  6. Measuring radon source magnitude in residential buildings

    International Nuclear Information System (INIS)

    Nazaroff, W.W.; Boegel, M.L.; Nero, A.V.

    1981-08-01

    A description is given of procedures used in residences for rapid grab-sample and time-dependent measurements of the air-exchange rate and radon concentration. The radon source magnitude is calculated from the results of simultaneous measurements of these parameters. Grab-sample measurements in three survey groups comprising 101 US houses showed the radon source magnitude to vary approximately log-normally with a geometric mean of 0.37 and a range of 0.01 to 6.0 pCi 1 -1 h -1 . Successive measurements in six houses in the northeastern United States showed considerable variability in source magnitude within a given house. In two of these houses the source magnitude showed a strong correlation with the air-exchange rate, suggesting that soil gas influx can be an important transport process for indoor radon

  7. Radon

    Science.gov (United States)

    ... radon-resistant features. These features include gravel and plastic sheeting below the foundation, along with proper sealing ... lower the radon level. Detailed information about radon reduction in your home or building can be found ...

  8. The application of air pressure difference in reducing indoor radon concentration

    International Nuclear Information System (INIS)

    Leung, J.K.C.; Tso, M.Y.W.

    2000-01-01

    In densely populated tropical cities like Hong Kong, people usually live and work inside high-rise buildings. And because of the hot and humid climate, air conditioning systems are used throughout the year, particularly in commercial buildings. Previous territory-wide surveys have shown that over 10% of commercial buildings in Hong Kong have indoor radon concentrations above 200 Bq m -3 . Since the major source of indoor radon in high-rise buildings is the building materials, increasing ventilation and applying radon barriers on wall surfaces seem to be the only ways to reduce the indoor radon concentration. But it was noted that the ventilation rate the many commercial buildings are not efficient enough to remove the radon because of various reasons such as energy saving, lack of maintenance, etc. In this study, radon mitigation was achieved by reducing the rate of radon exhaled from the building materials. A special laboratory, which has the capability of simulating any meteorological conditions that could be faced by high-rise buildings in Hong Kong, was built. The reduction of radon exhalation rate by applying pressure difference and temperature difference across walls was studied in the laboratory. This paper summarizes the results and tactics for applying pressure difference in existing commercial buildings. A new technique of reducing radon exhalation rate in new buildings by depressurizing the interior of walls was also developed. Tunnels can be embedded in the concrete walls of new buildings during construction. By using simple vacuum pumps, radon exhalation rate from the walls can be reduced significantly by depressurizing the tunnels. The feasibility and applicability of the technique is presented in this paper. (author)

  9. Indoor radon problem in energy efficient multi-storey buildings.

    Science.gov (United States)

    Yarmoshenko, I V; Vasilyev, A V; Onishchenko, A D; Kiselev, S M; Zhukovsky, M V

    2014-07-01

    Modern energy-efficient architectural solutions and building construction technologies such as monolithic concrete structures in combination with effective insulation reduce air permeability of building envelope. As a result, air exchange rate is significantly reduced and conditions for increased radon accumulation in indoor air are created. Based on radon survey in Ekaterinburg, Russia, remarkable increase in indoor radon concentration level in energy-efficient multi-storey buildings was found in comparison with similar buildings constructed before the-energy-saving era. To investigate the problem of indoor radon in energy-efficient multi-storey buildings, the measurements of radon concentration have been performed in seven modern buildings using radon monitoring method. Values of air exchange rate and other parameters of indoor climate in energy-efficient buildings have been estimated. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. The radon

    International Nuclear Information System (INIS)

    1998-01-01

    This booklet is intended to answer briefly the most important questions about the nature and sources of radon, its pathways from environment to organism, as well as the ways to minimize its concentration in the habitat's atmosphere. The radon is a naturally appearing radioactive gas, produced through the decay of uranium and radium present in the terrestrial crust. It can be found everywhere on the planet's surface and it is emitted particularly from the granite and volcanic underground rocks as well as from certain construction materials. It is one of the agents producing pulmonary cancer, although not so dangerous as the tobacco is. The following items are elaborated in this booklet: - the place of radon in the average exposure to ionizing radiations of the French population; - the risk; - the radon in the environment (the meteorological conditions, the nature of the rocks); - radon in dwellings (radon measurements in the French dwellings, the entrance pathways of radon, the dependence of radon concentration on the profession and way of life of the inhabitants); - radon measurements; - how to reduce the radon concentration in dwellings

  11. Assessment of natural radiation exposure and radon exhalation rates from the soil of Islamabad District of Pakistan

    International Nuclear Information System (INIS)

    Mujahid, S.A.

    2007-01-01

    Complete text of publication follows. The earth's crust is a main source of natural radionuclides in soils and rocks. The specific levels of background gamma radiation depend upon the geological composition of each lithologically separated area, and the content of the rock from which the soils originate the radioactive elements of 226Rn, 232Th and 40K. These naturally occurring radionuclides of terrestrial origin in soil can be a source of external radiation exposure through the gamma ray emission whereas internal exposure occurs through the inhalation of radon gas. The measurements of natural radioactivity and the assessment of radiological hazards in the soil samples of Islamabad district of Pakistan have been carried out using High Purity Germanium (HPGe) detector. The radon exhalation rates from these samples have also been estimated employing the 'closed-can' technique of passive dosimeters. The measured activities of 226Ra, 232Th and 40K were found in the range 14 - 30, 18 - 40 and 301 - 655 Bq.kg-1. The annual effective dose was calculated in the range 0.15 - 0.31 mSv. The values of external and internal hazard indices were less than 1. The radon exhalation rates these areas were found in the range 200 - 345 mBq.m-2h-1.

  12. Developmental toxicology of radon exposures

    International Nuclear Information System (INIS)

    Sikov, M.R.; Cross, F.T.; Mast, T.J.; Palmer, H.E.; James, A.C.; Thrall, K.D.

    1992-01-01

    Concerns about hazards associated with radon exposure in dwellings may be especially relevant to pregnant women, many of whom spend substantial amounts of time in their homes. There are few data concerning the placental transfer and fetoplacental distribution of inhaled radon and decay products or their effects on the conceptus. We performed a study in rats to determine if prenatal effects could be produced by prolonged inhalation exposures to high concentrations of radon throughout gestation. A group of 43 pregnant rats was exposed 18 h d -1 , at a rate of 124 working level months (WLM) per day, from 6 to 19 days of gestation (dg), of radon and daughters adsorbed onto ore dust. A group of 26 pregnant rats from the same shipment was exposed to a filtered-air atmosphere as controls. At 20 dg, the rats were removed from the chambers, killed, and necropsied. The fetuses were evaluated for the presence of toxic effects, which included detailed teratology protocols. These exposures did not produce detectable reproductive toxicity nor teratogenic change. Two other rats were removed from the radon chambers during the last day of exposure, and their tissues were analyzed to determine the distribution of radioactivity and for dosimetry. Samples from these rats suggested that the dose rates to the placenta were roughly threefold those to the fetus but were similar to those to the liver and femur of the pregnant rats. These data indicate that the dose to the conceptus from the decay of placentally transferred radon and its progeny is more important than the contribution of translocated decay products. Translocated radon decay products are an important source of radiation doses to placental structures, however, and may have most of the radioactivity content at birth

  13. Radon and the seal offered by the building shell

    International Nuclear Information System (INIS)

    Crameri, R.; Furrer, D.; Burkart, W.

    1992-01-01

    Long term measurements of the radon level before and after the building shell is sealed were carried out in 25 apartment buildings and 7 houses. The average values of the most important meteorological parameters of wind speed, external temperature and barometric pressure which may influence the radon level, were absolutely comparable during the measurement periods before and after the energy renovation of the buildings. Both in houses and in apartment buildings the radon level remained practically unchanged after the building shell was sealed. The lack of any increase in the radon level after reducing the air exchange rate can be explained by virtue of the fact that the balance between the infiltration and elimination of the radon before and after the energy renovation of the buildings remained unchanged. In addition to reducing the air exchange rate, sealing the building shell therefore also results in a reduction in radon infiltration from the soil. Although it is possible in certain cases for the radon level to increase after the building shell has been sealed, a general increase in radon levels inside living areas as a result of energy renovation work can be dismissed. 2 figs., 3 tabs., 30 refs

  14. Radon dynamics in underwater thermal radon therapy

    International Nuclear Information System (INIS)

    Lettner, H.; Hofmann, W.; Winkler, R.; Rolle, R.; Foisner, W.

    1998-01-01

    At a facility for underwater thermal radon therapy in Bad Hofgastein, experiments were carried out with the aim of establishing radon in the air exhaled by the treated patients and of radon decay products on the skin of the patients. The time course of radon concentration in the exhaled air shows a maximum a few minutes after entering the bath, then the Rn concentration remains constant over the remaining time spent in the bath. Taking into account several simplifying assumptions, the average dose to the epidermis from radon daughters is about 50 μGy. (A.K.)

  15. Estimation of the radon dose in buildings by measuring the exhalation rate from building materials

    International Nuclear Information System (INIS)

    Steiner, V.; Kovler, K.; Perevalov, A.; Kelm, H.

    2004-01-01

    We review the accumulator technique using active (CRM) and passive detectors (activated charcoal and electret). We describe the ERS2 detector, an electrostatic radon sampler followed by alpha spectrometry, with improved algorithm and adapted to measure the exhalation rate from walls. The technique produces accurate results over a broad range of materials: concrete, Pumice, ceramics, tiles, granite, etc. The measured exhalation rate is the same, within errors, as measured by the standard detectors

  16. Radon in Schools

    Science.gov (United States)

    ... Search Search Radon Contact Us Share Radon in Schools Related Information Managing Radon in Schools Radon Measurement ... Radon Could Be a Serious Threat to Your School Chances are you've already heard of radon - ...

  17. Radon levels and transport parameters in Atlantic Forest soils

    International Nuclear Information System (INIS)

    Farias, E.E.G. de; Silva Neto, P.C. da; Souza, E.M. de; De Franca, E.J.; Hazin, C.A.

    2016-01-01

    In natural forest soils, the radon transport processes can be significantly intensified due to the contribution of living organism activities to soil porosity. In this paper, the first results of the radon concentrations were obtained for soil gas from the Atlantic Forest, particularly in the Refugio Ecologico Charles Darwin, Brazil. The estimation of permeability and radon exhalation rate were carried out in this conservation unit. For forested soils, radon concentrations as high as 40 kBq m -3 were found. Based on the radon concentrations and on the permeability parameter, the results indicated considerable radon hazard for human occupation in the neighborhood. (author)

  18. Radon-technical design methods based on radon classification of the soil

    International Nuclear Information System (INIS)

    Kettunen, A.V.

    1993-01-01

    Radon-technical classification of the foundation soil divides the foundation soil into four classes: negligible, normal, high and very high. Separate radon-technical designing methods and radon-technical solutions have been developed for each class. On regions of negligible class, no specific radon-technical designing methods are needed. On regions of normal radon class, there is no need for actual radon-technical designing based on calculations, whereas existing radon-technical solutions can be used. On regions of high and very high radon class, a separate radon-technical designing should be performed in each case, where radon-technical solutions are designed so that expected value for indoor radon content is lower than the maximum allowable radon content. (orig.). (3 refs., 2 figs., 2 tabs.)

  19. Entry rates and recycling of glucose in buffalo calves fed on urea molasses liquid diet

    Energy Technology Data Exchange (ETDEWEB)

    Varma, A; Singh, U B; Verma, D N; Ranjhan, S K [Indian Veterinary Research Inst., Izatnagar. Div. of Animal Nutrition

    1974-12-01

    Entry rates of glucose have been measured in buffalo calves by using a dual-isotope dilution method based on continuous infusion of (U-/sup 14/C)D-glucose and (6-/sup 3/H)D-glucose into the blood at a precise controlled rate for 540 min. After 5 h a plateau was obtained in the specific radioactivity of the plasma glucose from which glucose synthesis and entry rates were calculated. The average entry rates of glucose were 112 and 145 mg/min measured by /sup 14/C and /sup 3/H labelled glucose respectively. About 23 percent of the glucose carbon was recycled in the pool. The average recycling rate was 33 mg/min.

  20. Radon in houses due to radon in potable water

    International Nuclear Information System (INIS)

    Hess, C.T.; Korsah, J.K.; Einloth, C.J.

    1987-01-01

    Radon concentration in the air of 10 houses has been measured as a function of water use and meterological parameters such as barometric pressure, wind velocity and direction, indoor and outdoor temperature, and rainfall. Results of calibrations and data collected in winter, spring, fall, and summer are given for selected houses. Average values of radon concentration in air are from 0.80 to 77 rhoCi/1. Water use average ranges from 70 to 240 gal/day. Average potential alpha energy concentrations in these houses range from 0.02 to 1.6 working levels. The radon level due to water use ranges from 0 to 36% of the house radon from soil and water combined. The radon level change due to use of a filter on the water supply shows a 60% reduction in radon in the house. Conclusions are that water radon can be a major fraction of the radon in houses. The ratio of airborne radon concentration due to water use to the radon concentration in water is 4.5 x 10/sup -5/ - 13 x 10/sup -5/

  1. Radon exhalation of hardening concrete: monitoring cement hydration and prediction of radon concentration in construction site.

    Science.gov (United States)

    Kovler, Konstantin

    2006-01-01

    The unique properties of radon as a noble gas are used for monitoring cement hydration and microstructural transformations in cementitious system. It is found that the radon concentration curve for hydrating cement paste enclosed in the chamber increases from zero (more accurately - background) concentrations, similar to unhydrated cement. However, radon concentrations developed within 3 days in the test chamber containing cement paste were approximately 20 times higher than those of unhydrated cement. This fact proves the importance of microstructural transformations taking place in the process of cement hydration, in comparison with cement grain, which is a time-stable material. It is concluded that monitoring cement hydration by means of radon exhalation method makes it possible to distinguish between three main stages, which are readily seen in the time dependence of radon concentration: stage I (dormant period), stage II (setting and intensive microstructural transformations) and stage III (densification of the structure and drying). The information presented improves our understanding of the main physical mechanisms resulting in the characteristic behavior of radon exhalation in the course of cement hydration. The maximum value of radon exhalation rate observed, when cement sets, can reach 0.6 mBq kg(-1) s(-1) and sometimes exceeds 1.0 mBq kg(-1) s(-1). These values exceed significantly to those known before for cementitious materials. At the same time, the minimum ventilation rate accepted in the design practice (0.5 h(-1)), guarantees that the concentrations in most of the cases will not exceed the action level and that they are not of any radiological concern for construction workers employed in concreting in closed spaces.

  2. Meteorological factors influencing on the radon concentrations in indoor and outdoor airs

    International Nuclear Information System (INIS)

    Kojima, Hiroshi

    1989-01-01

    Factors influencing radon concentrations in indoor and outdoor airs are discussed. A balance between source and loss is required in determining the radon concentration. Source refers to as the outdoor and indoor exhalation rate from the ground and the building materials. Loss is caused by turbulent diffusion outdoors and ventilation indoors. A significant factor influencing the exhalation rate of indoor and outdoor radon may be the change in atmospheric pressure. A drop of pressure feeds the high concentration air under the ground or building materials into the open air, and contributes to the increased exhalation rate. The exhalation rate of radon closely depends on the moisture content of the ground or building materials. Up to a certain level of moisture, the radon exhalation increases with increasing moisture content because the emanation power increases by a recoil effect of a fluid present in the internal pores of the materials. Beyond a certain level of moisture, the exhalation decreases rapidly because the pores are filled with water. Radon exhalated from the ground is spread out by turbulent diffusion. The turbulent diffusion may be related to wind velocity and the lapse rate of temperature. There is a remakable difference between indoor and outdoor radon concentrations. The ventilation rate of the house exerted a great effect upon the indoor radon concentration. The ventilation rate is influenced by meteorological factors together with human activities. Of such factors, wind velocity and temperature gradient between indoor and outdoor airs may be the most significant. The correlation coefficients between RaA or radon and some meteorological factors were calculated on the data from the long term measurements on radon and its decay products in and out of a house under normal living conditions. The changes in atmospheric pressure and wind velocity are found to be a significant factor in the variation of concentration of these nuclides. (N.K.)

  3. Study on indoor radon concentration and gamma radiation dose rate in different rooms in some dwellings around Bharath Gold Mines Limited, Karnataka State, India

    International Nuclear Information System (INIS)

    Umesha Reddy, K.; Jayasheelan, A.; Sannappa, J.

    2012-01-01

    Indoor radon contributes significantly to the total radiation exposure caused to human beings. The indoor concentration of radon in different rooms in the same type of dwellings around Bharath Gold Mines Limited (BGML), Karnataka State (12°57' min N and 78°16' min E) were measured by using LR-115 (type-Il) Solid State Nuclear Track Detectors (SSNTDs). The maximum indoor radon concentration is observed in the bathroom and minimum in the hall. The maximum average indoor radon concentration is observed in the Champion and minimum in the BEML nagar. The indoor gamma radiation dose rate is also measured in these locations using scintillometer. The geology of this part forms predominantly Hornblende Schist, Granite gneiss, Champion gneiss, Quartzite etc. The indoor radon concentration shows good correlation with the indoor gamma radiation dose. (author)

  4. Fluxes and exchange rates of radon and oxygen across an air-sea interface

    International Nuclear Information System (INIS)

    Duenas, C.; Fernandez, M.C.; La Torre, M. de

    1986-01-01

    The flux of 222 Rn and O 2 from shallow water off the Bay of Malaga has been measured. The mean value of flux of 222 Rn is evaluated to be 74 atoms/m 2 · s. The Bay is a weak source of oxygen to the atmosphere, where the net production of oxygen is found to be 1.82 mol/m 2 · y. Moreover, the gas exchange rates of 222 Rn and O 2 across the air-sea interface has been determined by the radon method. The gas exchange rates and the wind speed have been estimated. (author)

  5. Improved air ventilation rate estimation based on a statistical model

    International Nuclear Information System (INIS)

    Brabec, M.; Jilek, K.

    2004-01-01

    A new approach to air ventilation rate estimation from CO measurement data is presented. The approach is based on a state-space dynamic statistical model, allowing for quick and efficient estimation. Underlying computations are based on Kalman filtering, whose practical software implementation is rather easy. The key property is the flexibility of the model, allowing various artificial regimens of CO level manipulation to be treated. The model is semi-parametric in nature and can efficiently handle time-varying ventilation rate. This is a major advantage, compared to some of the methods which are currently in practical use. After a formal introduction of the statistical model, its performance is demonstrated on real data from routine measurements. It is shown how the approach can be utilized in a more complex situation of major practical relevance, when time-varying air ventilation rate and radon entry rate are to be estimated simultaneously from concurrent radon and CO measurements

  6. Radon in dwellings and lung cancer - a discussion

    International Nuclear Information System (INIS)

    Stranden, E.

    1980-01-01

    A discussion of the lung cancer risk associated with radon exposure inside dwellings is presented. The risk factors found for miners are discussed and modified according to the lower mean breathing rates inside dwellings and the differences in atmosphere. Statistical information on the lung cancer incidence in the Norwegian population indicates that a 'doubling exposure rate' of radon daughters inside dwellings may be about 2-3 WLM/yr. This corresponds to a radon concentration of about 10-15 pCi/l. These values are used in a discussion of the consequences of a future reduction of the mean ventilation rates in modern houses. (author)

  7. Factors influencing indoor concentrations of radon and daughter products

    International Nuclear Information System (INIS)

    Wang Hengde

    1985-01-01

    The correlation between indoor concentrations of 222 Rn and its daughters and some influencing factors is discussed and expressions of concentrations are derived with relation to radon exhalation rate from indoor surfaces, air exchange rate and daughter deposition velocities on indoor surfaces. Experimental methods for determining radon exhalation rate, air exchange rate and daughter deposition velocities are also mentioned

  8. Determination of the exhalation rate of radon and thoron from building materials by detectors Cr-39

    International Nuclear Information System (INIS)

    Vasidov, A.

    2005-01-01

    Full text: The building materials (BM) such as granite, bricks, sand, cement etc., contain uranium and thorium in various amounts. Therefore the knowledge of true value exhalation rate of Rn and Tn from BM represents scientific and practical interest in environmental radiation protection. In present work, we have used calibrated plastic cups with two detectors Cr-39. The detected surface of the cup is situated in perpendicular position surface BM and were exposed for 20-30 days. The first detector fixed the bottom on distance from surface of BM and records alpha particles from Rn-222 only. The second detector records alpha particles of the thoron and radon. After exposition, the detectors chemically etched and analyzed. The values of the exhalation rate per unit area of the granite, concrete, fired and unfired bricks, sand, cement, alabaster varied 0.091 - 0.1 Bq m -2 h -1 for the radon, 200 - 5800 Bq m -2 h - 1 for the thoron, accordingly

  9. Measurements of radon exhalation from building materials under model climate conditions

    International Nuclear Information System (INIS)

    Jann, O.; Schneider, U.; Koeppke, J.; Lehmann, R.

    2003-01-01

    The inhalation of 222 Rn (radon) is the most important reason for lung cancer as a result of smoking. The cause for enhanced radon concentration in the air of buildings is mostly the building ground. But also building products can lead to increased radon concentrations in indoor air when the products contain raw materials or residues with higher contents of 226 Ra (radium), especially in combination with low air exchange rates. For a realistic estimation of radon concentrations it is helpful to perform emission tests on the basis of emission test chambers. Emissions test chambers are already used successfully for the measurement of volatile organic compounds (VOC) emitted from different materials and products. The analysis of radon in air was performed with a test device based on the principle of ionisation chamber (ATMOS 12 D). It could be show that radon concentrations emitted from building materials can be determined reliably if certain boundary conditions such as temperature, relative humidity and especially area specific air flow rate are met. It was also shown that reduced area specific air flow rates or reduced air exchange rates lead to higher radon concentrations. It is remarkable that no conclusion can be drawn from the activity concentration of radium to the radon concentration in the air. Therefore in some cases much higher radon concentrations in air were determined that had been expected. Obviously diffusion within the material plays an important role. (orig.)

  10. Radon gas as a tracer for volcanic processes

    International Nuclear Information System (INIS)

    Thomas, D.M.

    1990-01-01

    Radon emissions from volcanic systems have been under investigation for several decades. Soil gas and groundwater radon activities have been used to map faults and to characterize geothermal systems, and measurements of atmospheric radon and radon daughter concentrations have been used to estimate the volume of magma chambers feeding active eruptions. Several studies have also shown that temporal variations in radon concentration have been associated with the onset of volcanic eruptions or changes in the rates or character of an eruption. Some of these studies have been able to clearly define the cause of the radon anomalies but others have proposed models of radon emission and transport that are not well supported by the known physical and chemical processes that occur in a volcanic system. In order to better characterize the processes that control radon activities in volcanic systems, it is recommended that future radon monitoring programs attempt to maintain continuous recording of radon activities; individual radon measurements should be made over the shortest time intervals possible that are consistent with acceptable counting statistics and geophysical, meteorological, and hydrological parameters should be measured in order to better define the physical processes that affect radon activities in volcanic systems. (author). 63 refs

  11. Study of radon transport through concrete modified with silica fume

    International Nuclear Information System (INIS)

    Chauhan, R.P.; Kumar, Amit

    2013-01-01

    The concentration of radon in soil usually varies between a few kBq/m 3 and tens or hundreds of kBq/m 3 depending upon the geographical region. This causes the transport of radon from the soil to indoor environments by diffusion and advection through the pore space of concrete. To reduce indoor radon levels, the use of concrete with low porosity and a low radon diffusion coefficient is recommended. A method of reducing the radon diffusion coefficient through concrete and hence the indoor radon concentration by using silica fume to replace an optimum level of cement was studied. The diffusion coefficient of the concrete was reduced from (1.63 ± 0.3) × 10 −7 to (0.65 ± 0.01) × 10 −8 m 2 /s using 30% substitution of cement with silica fume. The compressive strength of the concrete increased as the silica-fume content increased, while radon exhalation rate and porosity of the concrete decreased. This study suggests a cost-effective method of reducing indoor radon levels. -- Highlights: • Radon diffusion study through silica fume modified concrete was carried out. • Radon diffusion coefficient of concrete decreased with increase of silica fume contents. • Compressive strength increased with increase of silica fume. • Radon exhalation rates and porosity of samples decreased with addition of silica fume. • Radon diffusion coefficient decreased to 2.6% by 30% silica fume substitution

  12. Radon and health

    International Nuclear Information System (INIS)

    Chobanova, Nina

    2016-01-01

    Radon is radioactive noble gas that can be found in soil, water, outdoor and indoor air. Since environmental radon on average accounts for about half of all human exposure to radiation from natural sources, increasing attention has been paid to exposure to radon and its associated health risks. Many countries have introduced regulations to protect their population from radon in dwellings and workplaces. In this article are discussed main characteristics of radon, including sources of exposure, variation in radon exposure, how managing risks from radon exposure, how to measure the concentration of radon. There are results of measurements conducted under the 'National radon programme' in Bulgaria also. Key words: radon, sources of exposure, risk, cancer, measure to decrease the concentration [bg

  13. Radon exhalation from samples of Danish soils, subsoils and sedimentary rocks

    International Nuclear Information System (INIS)

    Korsbech, U.

    1985-01-01

    For some years it has been known that the ground below a house could be the major source of radon and radon daughters in the indoor air. Th amount of radon penetrating into buildings from the ground depends on several factors e.g. the amount of radon produced in the ground, the amount of cracks and holes in the foundation of buildings, and the pressure difference between the air in the ground (sol air) and the indoor air. As a first step in determining the influence of the ground below Danish buildings 60 samples of soils, subsoils, and sedimentary rocks have been measured for their exhalation rates of radon i.e. the amount of radon escaping the sample per mass unit and per second (Bq.kg -1 .s -1 or radon atoms per kg and per sec.). The results of the measurements of the radon exhalation are presented and commented, and a conclusion concerning the methods for finding geological deposits with a high radon halation rate is presented. (author)

  14. Dry radon gas generator

    International Nuclear Information System (INIS)

    Vandrish, G.

    1979-10-01

    A radon gas standard with a source strength of 120037 pCi capable of delivering 121 pCi of radon gas successively to a large number of cells has been developed. The absolute source strength has been calibrated against two radium solution standards and is accurate to 4 percent. A large number of cells (approxiiately 50) may be calibrated conveniently on a daily basis with appropriate corrections for sequential changes in the amount of gas delivered, and a correction for the growth of radon in the standard on successive days. Daily calibration of ten cells or less does not require these corrections. The standard is suitable for field use and the source emanation rate is stable over extreme temperatue and pressure ranges and over six months

  15. Variation of Radon Emanation in Workplaces as a Function of Room Parameters

    International Nuclear Information System (INIS)

    Norafatin Khalid; Amran Abdul Majid; Aznan Fazli Ismail; Muhamad Samudi Yasir; Redzuwan Yahaya; Izzaty Azani Mustafa

    2013-01-01

    Modern life style requires people to spend most of their time indoors either in a house or in the workplace. Most modern buildings are made from soil based material which may consist of low concentration of naturally occurring radioactive materials (NORM). It is known that one of the daughters of natural uranium is 226 Ra which eventually produce radon ( 222 Rn) gas. Recently, more evidence has linked lung cancer to exposure to high levels of radon and also to cigarette-smoking. Consequently, this research was conducted to study the radon emanation rates in different workplaces. The radon emanations in 27 rooms with three different dimension (54 m 3 , 210 m 3 and 351 m 3 ) and different building materials were determined for 96 hours using Sun Nuclear Radon Monitor. The radon emanations in the rooms studied were found to be in the range of 20.6 Bq m -3 hour -1 to 134.3 Bq m -3 hour -1 .The increase in humidity was found to significantly increase the radon emanation rates in the building, whereas the increase in temperature will result the decrease of radon emanation rates. In addition, the findings shows that the radon emanation rates in building were higher during the night until early in the morning which is in agreement with the findings on humidity and temperature factors. (author)

  16. Radon exposure of passengers in the Prague metro

    International Nuclear Information System (INIS)

    Sabol, J.

    1996-01-01

    This paper summarises the results of radon concentration monitoring in the carriages and at some stations of the Prague Metro network. The measurements revealed that radon levels in the Metro are relatively low in comparison to those normally encountered in dwellings in the Prague region. On average, the radon concentrations in the air inside the carriages have been found to be about 11 - 12 Bq m -3 while the levels at most stations reached values between 10 and 15 Bq m -3 . The Metro is intensively ventilated by means of powerful blowers and fans; the piston effect of the moving trains also contributes to air exchange. The ventilation rate is typically 3-4 h -1 . The highest rate is in line C, where the air in all underground areas is completely exchanged 6 times within each hour. These results demonstrate that Metro passengers receive about the same effective dose as passengers using surface transport. The doses from radon in the metro are only slightly higher than radon-related doses in the open air, while exposure due to external photon radiation seems to be a few percent lower than dose rates common in typical Czech houses. (author)

  17. Review of selected state-of-the-art applications of diagnostic measurements for radon-mitigation planning. Report for April 1986-June 1987

    International Nuclear Information System (INIS)

    Hubbard, L.M.; Harrje, D.T.; Gadsby, K.J.; Sanchez, D.C.; Turk, B.H.

    1987-09-01

    Since late-1984, EPA's AEERL has supported a program to develop and demonstrate radon-mitigation techniques for single-family detached dwellings. As part of the program, projects have been started, directed at developing and demonstrating the use of diagnostic measurements in all phases of the radon-mitigation process. Diagnostic measurements are used to assess: (1) the radon sources strengths, variability, and locations; and, (2) radon transport to the house and its entry and distribution in the house as influenced by environmental, house characteristics, and occupancy factors. The diagnostic measurements reported include: (1) soil-gas grab sampling; (2) communication (air flow or pressure-field extension) tests; (3) whole house infiltration; (4) differential pressure, (5) gamma radiation; and, (6) radon flux. The paper concludes that the above selected diagnostic measurements were especially useful in characterizing houses with indoor radon problems attributable to soil-gas-borne radon that may be amenable to mitigation through the use of subslab ventilation

  18. Mortality and indoor radon daughter concentrations in 13 Canadian cities

    International Nuclear Information System (INIS)

    Letourneau, E.G.; Wigle, D.T.

    1980-01-01

    A study was carried out to determine if lung cancer and general mortality rates in 13 Canadian cities were significantly correlated with average indoor radon daughter concentrations. The radon daughter measurements were obtained from a study of 10,000 homes chosen in a statistically valid grab sample basis. Cancer deaths by year of death, sex, age, and cause were retrieved for each of the cities for the period 1957-1976. Age specific and age standardized mortality rates were calculated. The results showed no evidence of any substantial association between general or lung cancer mortality rates and indoor radon daughter concentrations. The limitations of this study and the feasibility of a common international program of epidemiology of radon daughter exposure are discussed. A proposal is made for the use of case control studies of lung cancer to assess the relative importance of smoking, occupational and domestic exposure to radon daughters

  19. Radon concentration in air and external gamma dose rate. Is there a correlation?

    International Nuclear Information System (INIS)

    Yoshimura, E.M.; Umisedo, N.K.; Marcos Rizzotto; Hugo Velasco; Valladares, D.L.

    2016-01-01

    We checked the existence of correlations between experimentally determined radon concentration in indoor air and gamma dose rate, in different environments: residences, workplaces in subway stations and radiotherapies, and a gold mine. Except for the mine environment, where a linear correlation (r 2 = 0.86) was obtained with statistical significance, we found no correlations between those quantities. Both radiation sources are originated from natural radionuclides, nonetheless the observation of correlations depends on various conditions, as we discuss here. (author)

  20. Predicting radon/radon daughter concentrations in underground mines

    International Nuclear Information System (INIS)

    Leach, V.A.

    1984-01-01

    A detailed description of a computer programme is outlined for the calculation of radon/radon daughter concentrations in air. This computer model is used to predict the radon/radon daughter concentrations in Working Level (WL) at the workplace and at the various junctions at either end of the branches in a typical ventilation network proposed for the Jabiluka mine in the Northern Territory

  1. Radon exhalation study in cements and other building materials

    International Nuclear Information System (INIS)

    Singh, J.; Sharma, N.

    2012-01-01

    Radon is a radioactive inert gas, which is produced during the decay of radium, an element present in the naturally occurring uranium series. In the recent past, environmental scientists all over the world have been expressing great concern about the radiation hazard from radon and its short lived daughter products inside buildings. The radon concentration inside a building depends upon the radon exhalation from the building materials used for the construction and the soil underneath the building. In the present investigations, a comparative study for radon exhalation rate has been carried out in some Indian and Pakistani cements and other building materials being used locally such as sand, soil, bricks, marbles, CaCO 3 , POPs by using Track Etch Technique. The Pakistani cement with the trade name 'Elephant' shows the minimum mass exhalation rate while the Indian 'Birla White' cement has shown the maximum. Among the other building materials studied, CaCO 3 has shown the minimum, while local soil the maximum mass exhalation rate. Out of the fired clay bricks, roof tiles, floor tiles and different marbles, floor tiles have the minimum areal exhalation rate while roof tiles the maximum. (author)

  2. Radon-222 Study in Ceramics and Indoor Air

    International Nuclear Information System (INIS)

    Moussa, N.L.A.A.

    2011-01-01

    A total 50 samples of 13 different ceramic tiles companies collected from the Egyptian market for the measurements of radon exhalation rate. Three homes include twenty rooms were selected. The period of the survey was in range 2-3 months for homes for each season while it was about 15 days for ceramic tiles. The radon exhalation rate of ceramic tiles (clay and glaze) and indoor radon activity concentration were measured by alpha tracks technique. The average radon exhalation rate in three homes was observed to be in the range 2.2-5.2 mBq.m -2 .h -1 . The average of Ra-226 activity for all ceramic tiles either the floor or wall tile is in the range 16-64 Bq.kg -1 . The porosity of ceramic tiles is found in the range 0.19-0.29. The effective dose in all rooms is found in the range 0.9- 1.3 mSv.y -1 .

  3. Radon: Chemical and physical states of radon progeny. Final technical report

    International Nuclear Information System (INIS)

    Castleman, A.W. Jr.

    1996-01-01

    The evolving chemical and physical form of radon progeny influence their transport to the bioreceptor and the extent to which that receptor can take up these species into various tissues. When first born following radioactive decay processes, the potentially deleterious radon progeny undergo various physical and chemical transformations as they transcend from a highly charged to a neutral state, and interact with various constituents of the environment. These transformations impact on the extent to which the radon progeny become associated with aerosol particles on the one hand, and their ultimate chemical form that is available for uptake in the biosystem, on the other. The program, which originally commenced in 1987, dealt with the basic chemistry and physics of radon progeny and hence impacted on several themes of importance to the DOE/OHER radon program. One of these is dose response, which is governed by the physical forms of the radon progeny, their transport to the bioreceptor and the chemical forms that govern their uptake. The second theme had to do with cellular responses, one of the major issues motivating the work. It is well known that various sizes of ions and molecules are selectively transported across cell membrane to differing degrees. This ultimately has to do with their chemical and physical forms, charge and size. The overall objective of the work was threefold: (1) quantifying the mechanisms and rates of the chemical and physical transformation; (2) ascertaining the ultimate chemical forms, and (3) determining the potential interactions of these chemical species with biological functional groups to ascertain their ultimate transport and incorporation within cells

  4. Radon: a case for public persuasion

    International Nuclear Information System (INIS)

    Green, B.M.R.; Lomas, P.R.

    1996-01-01

    The importance of reducing individual to elevated levels of radon is well understood by radiation protection specialists, and successful methods of locating the areas most at risk have been developed. However, less attention has been paid to informing the general public about the health rifles and encouraging those in radon-prone areas to take action. In the United Kingdom, techniques have been developed to persuade householders in high radon areas to take advantage of a government scheme that provides free long-term measurements of radon in the home. Improvements in the methods of contacting householders in the target areas and in the presentation of the facts has resulted in a twofold increase in the rate of take-up of measurements since the first large-scale surveys. (author)

  5. Radon in homes of the Portland, Oregon Area: Radon data from local radon testing companies collected by CRM (Continuous Radon Measurement) machines

    Science.gov (United States)

    Whitney, H.; Lindsey, K.; Linde, T.; Burns, S. F.

    2013-12-01

    Students from the Department of Geology at Portland State University paired up with the Oregon Health Authority to better understand radon gas values in homes of the Portland metropolitan area. This study focuses on radon values collected by continuous radon measurement (CRM) machines, taken by local radon testing companies. The local companies participating in this study include Alpha Environmental Services, Inc., Cascade Radon, Environmental Works, The House Detectives, LLC, and Soil Solutions Environmental Services, Inc. In total, 2491 radon readings spanning across 77 zip codes were collected from local companies in the Portland metropolitan area. The maximum value, average value, percentage of homes greater than 4 pCi/L and total rank sum was calculated and used to determine the overall radon potential for each zip code (Burns et al., 1998). A list and four maps were produced showing the results from each category. Out of the total records, 24 zip codes resulted in high radon potential and the average reading for the entire Portland Metropolitan area was 3.7 pCi/L. High potential zip codes are thought to be a result of sand and gravel (Missoula Flood deposits) and faults present in the subsurface. The CRM data was compared with both long-term and short-term data provided by the Oregon Health Authority to validate radon potentials in each zip code. If a home is located in a zip code with high or moderate radon potential across two types of data sets, it is recommended that those homes be tested for radon gas.

  6. Lung cancer incidence after exposure of rats to low doses of radon: influence of dose rate

    Energy Technology Data Exchange (ETDEWEB)

    Morlier, J.P.; Morin, M.; Monchaux, G.; Fritsch, P.; Lafuma, J.; Masse, R. [CEA Centre d`Etudes Nucleaires de Fontenay-aux-Roses, 92 (France). Dept. de Protection Technique; Pineau, J.F. [ALGADE, Bessines (France); Chameaud, J. [Compagnie Generale des Matieres Nucleaires (COGEMA), 87 - Razes (France)

    1994-12-31

    To study the effect on lung cancer incidence of a long exposure to low levels of radon, 500 male 3-months-old Sprague-Dawley rats, were exposed to a cumulative dose of 25 WLM of radon and its daughters, 6 hours a day, 5 days a week, during 18 months. Exposure conditions were controlled in order to maintain a defined PAEC: 42 x 10{sup 6} J.m{sup -3} (2 WL), in the range of domestic and environmental exposures. Animals were kept until they died or given euthanasia when moribund. Mean survival times were similar in both irradiated and control groups: 828 days (SD = 169) and 830 days (SD = 137), as well as lung cancer incidence, 0.60% at 25 WLM and 0.63% for controls. The incidence of lung lesions was compared statistically with controls and those previously obtained at cumulative exposures of 25 and 50 WLM delivered over a 4-6 month period, inducing a significant increase of lung cancer, 2.2% and 3.8% respectively. Such a comparison showed a decreased lung cancer incidence related to a decrease in the dose rate for low levels of radon exposure. (author).

  7. Lung cancer incidence after exposure of rats to low doses of radon: influence of dose rate

    International Nuclear Information System (INIS)

    Morlier, J.P.; Morin, M.; Monchaux, G.; Fritsch, P.; Lafuma, J.; Masse, R.; Chameaud, J.

    1994-01-01

    To study the effect on lung cancer incidence of a long exposure to low levels of radon, 500 male 3-months-old Sprague-Dawley rats, were exposed to a cumulative dose of 25 WLM of radon and its daughters, 6 hours a day, 5 days a week, during 18 months. Exposure conditions were controlled in order to maintain a defined PAEC: 42 x 10 6 J.m -3 (2 WL), in the range of domestic and environmental exposures. Animals were kept until they died or given euthanasia when moribund. Mean survival times were similar in both irradiated and control groups: 828 days (SD = 169) and 830 days (SD = 137), as well as lung cancer incidence, 0.60% at 25 WLM and 0.63% for controls. The incidence of lung lesions was compared statistically with controls and those previously obtained at cumulative exposures of 25 and 50 WLM delivered over a 4-6 month period, inducing a significant increase of lung cancer, 2.2% and 3.8% respectively. Such a comparison showed a decreased lung cancer incidence related to a decrease in the dose rate for low levels of radon exposure. (author)

  8. Multagenicity of radon and radon daughters. Final technical report, January 1, 1993--December 31, 1996

    International Nuclear Information System (INIS)

    Evans, H.H.

    1997-01-01

    The objective of this research was to investigate the dose-response relationship with regard to the lethal and mutagenic effects of exposure of cells to radon and its decay products. Dose-rate dependence was studied, as well as the nature of the DNA lesions. The effect of DNA repair on the lethal and mutagenic effects of exposure and on the character of the DNA lesions was investigated by comparing the response of L5178Y strains that differ in their ability to rejoin X radiation-induced DNA double strand breaks. The nature of radon/radon daughter-induced mutational lesions in human lymphoblasts was also investigated

  9. Mitigation of radon and thoron decay products by filtration

    International Nuclear Information System (INIS)

    Wang Jin; Meisenberg, Oliver; Chen Yongheng; Karg, Erwin; Tschiersch, Jochen

    2011-01-01

    Inhalation of indoor radon ( 222 Rn) and thoron ( 220 Rn) decay products is the most important source of exposure to ionizing radiation for the human respiratory tract. Decreasing ventilation rates due to energy saving reasons in new buildings suggest additional active mitigation techniques to reduce the exposure in homes with high radon and thoron concentrations but poor ventilation. Filtration techniques with HEPA filters and simple surgical mask material have been tested for their potential to reduce the indoor exposure in terms of the total effective dose for mixed radon and thoron indoor atmospheres. The tests were performed inside an experimental room providing stable conditions. Filtration (at filtration rates of 0.2 h -1 and larger) removes attached radon and thoron decay products effectively but indoor aerosol as well. Therefore the concentration of unattached decay products (which have a higher dose coefficient) may increase. The decrease of the attached decay product concentrations could be theoretically described by a slowly decreasing exponential process. For attached radon decay products, it exhibited a faster but weaker removal process compared to attached thoron decay products (- 70% for attached radon decay products and - 80% for attached thoron decay products at a filtration rate of 0.5 h -1 with an HEPA filter). The concentration of unattached thoron decay products increased distinctly during the filtration process (+ 300%) while that of unattached radon decay products rose only slightly though at a much higher level (+ 17%). In the theoretical description these observed differences could be attributed to the different half-lives of the nuclides. Considering both effects, reduced attached and increased unattached decay product concentrations, filtration could significantly decrease the total effective dose from thoron whereas the overall effect on radon dose is small. A permanent filtration is recommended because of the slow decrease of the

  10. Overview of current radon and radon daughter research at LBL

    International Nuclear Information System (INIS)

    1983-01-01

    This report provides a brief summary of radon and radon daughter research at Lawrence Berkeley Laboratory. The radon and radon daughter research program has two broad goals: (1) the study of sources of radon and its subsequent transport into houses, and (2) research on the behavior of radon daughters in indoor environments. Additional research effort is directed to several auxiliary areas, including development of instrumentation and monitoring techniques, studies of indoor air movement, and measurement and control of indoor particulate concentrations

  11. Treatment technology for removing radon from small community water supplies

    International Nuclear Information System (INIS)

    Kinner, N.E.; Quern, P.A.; Schell, G.S.; Lessard, C.E.; Clement, J.A.

    1990-01-01

    This paper reports on the selection of an appropriate treatment system to remove radon from drinking water which depends primarily upon percent removal; capital and operating and maintenance costs; safety; raw water quality with respect to parameters such as Fe, Mn, bacteria, and organics. The radon removal efficiency of the diffused bubble and packed tower aeration exceeded 99% at A:W ratios of 15:1 and 5:1, respectively; the GAC system averaged 81 ± 7.7%. Though our field evaluations indicated that GAC systems may not be as efficient as aeration systems, the system tested was operated above design requirements for most of the study period. Other researchers have found removals of greater than 99% with GAC point-of-entry applications. Therefore, each of these processes has the potential to consistently remove 99% of the radon applied. However, even this percent removal may not be sufficient to meet an MCL in the range of 200 to 1000 pCi/L if the raw water contained more than 20,000 to 100,000 pCi/L, respectively

  12. Seismic and radon monitoring of Algocen site at Elliot Lake

    International Nuclear Information System (INIS)

    1981-03-01

    Remedial works to reduce radon/radon daughters to acceptable levels in houses in Elliot Lake have been going on for the last three years under the Atomic Energy Control Board (AECB) remedial action program. In December 1978, a routine inspection of treated houses showed extensions to cracks already filled, and the opening up of filled cracks. The homeowners attributed this to the blasting operations for building construction which were going on in town at that time. This prompted the need to monitor any subsequent major scale blasting in the town and to record the damages in nearby houses. This report presents the results of monitoring one such major blasting operation which was carried out between March 1979 and June 1979 for the building of the Algocen Shopping Mall east of Hutchison Avenue. The AECB were concerned about the possible damage to the houses along Hutchison Avenue which had already received remedial treatment to prevent the entry of radon gas, and authorized DSMA/Acres to record the level of vibrations and damages in these houses during the blasting period. (author)

  13. Radon analyser

    International Nuclear Information System (INIS)

    1981-01-01

    The process claimed includes the steps of transferring radon gas produced by a sample to a charcoal trap, cooled to a temperature whereby the radon is absorbed by the charcoal, heating the charcoal trap to a sufficient temperature to release the radon, and transferring the radon to a counting device where the gas particles are counted

  14. Radon transport modelling: User's guide to RnMod3d

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, C.E

    2000-08-01

    RnMod3d is a numerical computer model of soil-gas and radon transport in porous media. It can be used, for example, to study radon entry from soil into houses in response to indoor-outdoor pressure differences or changes in atmospheric pressure. It can also be used for flux calculations of radon from the soil surface or to model radon exhalation from building materials such as concrete. The finite-volume model is a technical research tool, and it cannot be used meaningfully without good understanding of the involved physical equations. Some understanding of numerical mathematics and the programming language Pascal is also required. Originally, the code was developed for internal use at Risoe only. With this guide, however, it should be possible for others to use the model. Three-dimensional steady-state or transient problems with Darcy flow of soil gas and combined generation, radioactive decay, diffusion and advection of radon can be solved. Moisture is included in the model, and partitioning of radon between air, water and soil grains (adsorption) is taken into account. Most parameters can change in time and space, and transport parameters (diffusivity and permeability) may be anisotropic. This guide includes benchmark tests based on simple problems with known solutions. RnMod3d has also been part of an international model intercomparison exercise based on more complicated problems without known solutions. All tests show that RnMod3d gives results of good quality. (au)

  15. The effect of humidity on the detection of radon

    International Nuclear Information System (INIS)

    Money, M.; Heaton, B.

    1976-01-01

    As part of the investigation into the performance of a radon monitoring system the effect of altering the humidity on the levels of radon detected by the system whilst attempting to keep other factors constant, has been investigated. The variations in the levels of radon detected in four experiments, as the humidity of the surrounding atmosphere was artificially raised, are shown graphically together with the variations in temperature and water vapour pressure, as calculated from the relative humidity and saturation vapour pressure. In each case a general rise and fall in radon detected follows a similar rise and fall in humidity, but temperature rise has only a small effect on the radon emanation rate. As the levels of humidity do not alter the rate of emanation it is assumed that the efficiency of collection is altered in some way. Mechanisms are discussed. (U.K.)

  16. Radon remediation in irish schools

    International Nuclear Information System (INIS)

    Synnott, H.

    2006-01-01

    Full text: Commencing in 1998, the Radiological Protection Institute of Ireland carried out radon measurements in 3826 schools in the Republic of I reland on behalf of the Irish Department of Education and Science (D.E.S.). This represents approximately 97% of all schools in the country. Approximately 25% (984) schools had radon concentrations above the Irish national schools Reference Level for radon of 200 Bq/m 3 and required remedial work. The number of individual rooms with radon concentrations above 200 Bq/m 3 was 3020. Remedial work in schools commenced in early 2000. In general schools with maximum radon concentrations in the range 200 -400 Bq/m 3 in one or more rooms were remediated through the installation of passive systems such as an increase in permanent background ventilation mainly wall vents and trickle vents in windows. Schools with maximum radon concentrations greater than 400 Bq/m 3 were usually remediated through the provision of active systems mainly fan assisted sub -slab de pressurization or where this was not possible fan assisted under floor ventilation. The cost of the remedial programme was funded by central Government. Active systems were installed by specialized remedial contractors working to the specifications of a radon remedial expert appointed by the D.E.S. to design remedial systems for affected schools. Schools requiring increased ventilation were granted aided 190 pounds per affected room and had to organize the work themselves. In most schools radon remediation was successful in reducing existing radon concentrations to below the Reference Level. Average radon concentration reduction factors for sub-slab de pressurization systems and fan assisted fan assisted under floor ventilation ranged from 5 to 40 with greater reduction rates found at higher original radon concentrations. Increasing ventilation in locations with moderately elevated radon concentrations (200 - 400 Bq/m 3 ) while not as effective as active systems produced on

  17. Modification of radon levels in homes

    International Nuclear Information System (INIS)

    Breysse, P.A.

    1987-01-01

    Radon infiltration from the ground into a house is primarily due to pressure differences between the interior of the home and the soil. If the atmospheric pressure inside the home is lower than the pressure in the soil, flow into the house will be accelerated since air flows from high pressure to lower pressure. Pressure differences can arise due to wind action. Temperature differences between indoors and outdoors also affect the relative indoor and outdoor pressure. These temperature and pressure variations can produce a stack effect which sucks air in from the bottom of the structure where the interior pressure is lowered and out toward the top. The internal pressure in houses is usually less than the gas pressure in the soil. Internal pressure in houses, however, can be further lowered as the result of the operation of kitchen, bathroom and attic exhaust fans as well as by the use of fireplaces, furnaces and wood stoves, and clothes dryers. This further reduction in internal pressure will likely increase the entry of radon into the house

  18. Indoor radon concentration levels, gamma dose rates and impact of geology - A case study in Kotli, State of Azad Jammu and Kashmir, sub-Himalayas, in Pakistan

    International Nuclear Information System (INIS)

    Iqbal, A.; Shahid Baig, M.; Akram, M.; Qureshi, A.A.

    2012-01-01

    Inhalation of indoor radon has been recognized as the largest contributor to the total effective dose received by human beings. Indoor radon data were collected from the dwellings lying on the sedimentary rocks (sandstones, siltstones and clays) of the Murree Formation, Nagri Formation, Dhok Pathan Formation, Mirpur conglomerate and surficial deposits of the Kotli area in Azad Jammu and Kashmir, Pakistan. Radon measurements were made using the passive time-integrated method using Kodak CN-85 Solid-State Nuclear Track Detectors. The radon concentration in dwellings varied from 13 ± 6 Bq.m -3 to 185 ± 23 Bq.m -3 , with an average of 73 ± 15 Bq.m -3 .The radon concentration in the Murree Formation, Nagri Formation, river terrace and Dhok Pathan Formation were 89.7 ± 16.5, 72 ± 15, 68.5 and 69 Bq.m -3 , respectively. The average value of all the measured concentrations (73 ± 15 Bq.m -3 ) within the framework of this study is more than the world average value of 40 Bq.m -3 given by UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation, report to the General Assembly, United Nations, New York, 2000) and is within the action level of 200-600 Bq.m -3 fixed by the ICRP (International Commission on Radiological Protection, ICRP publication 65, Protection against radon at home and at work, 1993). The ambient gamma dose rates both indoors and outdoors in different parts of Kotli were also measured. The average value of gamma absorbed dose rates prevailing in the indoor environment was 131.2 ± 16.6 nGy/h. The gamma exposure rates recorded outdoors were 35% lower than in the indoor environment. The measured gamma dose rates have a weak positive correlation with indoor radon concentration. The annual effective dose for inhabitants in Kotli due to radon ranged from 0.32 to 4.7 mSv.y -1 , with an average value of 1.8 mSv.y -1 . This dose is relatively higher than the world mean dose of 1.15 mSv/y. That is explained by the particular geology of the

  19. Radon programme in Czech Republic. Results, experience and future

    International Nuclear Information System (INIS)

    Hulka, J.; Thomas, J.; Fojtikova, I.; Vlcek, J.; Moucka, L.; Fronka, A.; Jilek, K.; Heribanova, A.; Slovak, J.; Barnet, I.; Burian, I.; Jiranek, M.; Cechak, T.

    2004-01-01

    The beginning of the radon programme in the Czech republic dates back to the early 1980s. Incorporated in national legislation (Atomic Act, Radiation Protection Decree), the programme includes now both preventive measures and interventions. Preventive measures are based on the control of major potential radon sources (soil gas, building material and supplied water) to prevent construction of new houses where the recommended indoor radon level of 200 Bq/m 3 would be exceeded. Radon risk (index) assessment of the individual building site bedrock in the case of new house siting and building protection as stipulated by the technical building code are obligatory. The estimation of the radon-related index of building sites is based on a standard method involving a set of radon soil and soil permeability measurements. In addition, producers of building materials are obligated to monitor natural radioactivity in their products. The activity index (including 40 K, 226 Ra and 232 Th) is used as a screening level for regulation of the potential indoor gamma dose rate, and the 226R a mass activity is used as a limiting value for radon exhalation. A similar regulatory system is in place for public water supplies based on obligatory radon, total alpha and total beta measurements. A survey of effectiveness of the preventive measures was carried out during the past years. It appeared, however, that the indoor radon level of 200 Bq/m 3 is exceeded in some 20 % of new houses. An unexpectedly low air exchange rate in modern energy-saving houses seems to be among the reasons. Remedial actions are aimed at promoting targeted indoor radon survey in existing buildings and helping owners to put reasonable remedial measures into effect. Governmental activities include representative and targeted indoor radon survey, subsidies for remediation measures and test measurements, and improving the level of public awareness of the radon issue. Indoor radon survey is targeted on radon-prone areas

  20. Investigations of radon and radon daughters in surficial aquifers of florida

    International Nuclear Information System (INIS)

    1991-05-01

    The principal purpose of the investigation was to test the hypothesis that radon soil flux, considered the principal source of indoor radon contamination, has an underlying relationship to the radon content of associated shallow groundwaters. The working hypothesis was that radon build-up in both soil and shallow groundwater is basically a consequence of the same factor, radon emanation from soil grains and the solid surfaces of the aquifers. Groundwater may be advantageous as an indicator of radon potential. Another object of the project was to investigate temporal and spatial trends of radon daughter products in shallow aquifers. After analyzing all of the radon soil, flux, and groundwater measurements made over the two-year study period, it is clear that while there is no direct relationship between either radon soil concentration or flux and groundwater radon. Measurements in wells where polonium is present at very high concentrations have shown that 210Po is largely unsupported by its radioactive predecessor, and that polonium is considerably more variable, in both space and time than other parameters measured in the same wells, including radon

  1. On the behaviour of radon in indoor air

    International Nuclear Information System (INIS)

    Lehtimaeki, M.; Kivistoe, T.

    1983-01-01

    In this work the behaviour of radon in indoor air has been studied. A simple mathematical model is presented to describe the variations in radon concentration in case of a periodic ventilation. This model has been tested with the aid of long-term measurements in two office buildings, in a large shipyard hall, and in a dwelling. The variations predicted by the simple model were observed in all buildings studied. It seems even possible that if the mixing of radon in the building is effective, the radon measurements can be used in estimating the infiltration rates. The measurement in one of the office buildings, however, indicated that the mixing of radon in a many-storied building can be extremely incomplete. The measurements also indicate that the soil can be a very important source of radon. (orig.) [de

  2. Radon dosimetry: a review of radon and radon daughter exposure conditions in dwellings and other structures

    International Nuclear Information System (INIS)

    Ryan, M.T.; Goldsmith, W.A.; Poston, J.W.; Haywood, F.F.; Witherspoon, J.P.

    1983-07-01

    Within the past few years several situations have been brought to light which indicate an increased radiation exposure of certain segments of the general population caused by human activities. The most widely publicized activities are those associated with the mining and milling of uranium in the western United States, the phosphate industry in Florida, and those potential problems represented by former Manhattan Engineer District sites. One of the primary problems involves exposure to radon and radon daughters which are released from large waste piles or, in some cases, evolve from backfill and construction materials used in homes, schools, and other buildings. This report presents a review of the available data on radon and radon daughter concentrations in dwellings and other structures. The primary objectives were to compile and tabulate pertinent radon exposure data and to prepare a statistical summary of the data which will be useful in the prediction of normal levels of radon and radon daughter concentrations in these structures. In addition, other parameters associated with radon exposure conditions are presented and discussed

  3. Concentration of Radon, thoron and their progeny levels in different types of floorings, walls, rooms and building materials

    International Nuclear Information System (INIS)

    Sathish, L. A.; Nagaraja, K.; Ramanna, H. C.; Nagesh, V.; Sundareshan, S.

    2009-01-01

    Radon, thoron and their progenies are the most important contributions to human exposure from natural sources. Radon exists in soil gas, building materials, Indoor atmosphere etc. Among all the natural sources of radiation dose to human beings, inhalation of radon contributes a lot. The work presented here emphasizes the long term measurements of radon, thoron and their progeny concentrations in about 100 dwellings using solid state nuclear track detectors. Materials and Methods: Measurements were made using dosimeters and the concentrations were estimated by knowing the track density of films through spark counter, and sensitivity factor for bare, filter and membrane films. Results: Presence of radon and thoron in houses is the effect of several aspects such as the activity concentrations of uranium, radium and thorium in the local soil, building materials, ventilation of houses and also entry of radon into houses through the cracks in floor/wall. Conclusion: The observations reveal that the concentrations of radon and/or thoron are relatively higher in granite than in concrete, cement and bricks. In continuation to this the concentration observed in bathrooms is more compared to kitchen bedroom and living rooms. This study discloses that the residential rooms of good ventilation will avoid the health hazards due to radon and its rich materials.

  4. Monitoring and measurement of radon activity in a new design of radon calibration chamber

    International Nuclear Information System (INIS)

    Heidary, S.; Setayeshi, S.; Ghannadi-Maragheh, M.; Negarestani, A.

    2011-01-01

    A new radon calibration chamber has been designed, constructed and tested to set various desired environmental parameters. The chamber is cubic with two trapezoid sides with a total volume size of 0.498 m 3 . The three parameters, temperature, humidity and flow are controlled in the range of 20-45 deg. C (±2 deg. C), 10-70% (±2.5%) and 0.2-10 m 3 /min (±0.1 m 3 /min) respectively. The chamber is equipped with a controllable speed centrifugal fan to achieve a desirably uniform radon flow rate. Many parts of this system are controlled and monitored with a PLC (Programmable Logic Control) and HMI (Human Monitoring Interface) software (Citect Scada). Finally a radon detector (Alpha-Guard) registers the activity parameter.

  5. Background concentrations of radon and radon daughters in Canadian homes

    International Nuclear Information System (INIS)

    McGregor, R.G.; Vasudev, P.; Letourneau, E.G.; McCullough, R.S.; Prantl, F.A.; Taniguchi, H.

    1980-01-01

    Measurements of radon and radon daughters were carried out in 14 Canadian cities on a total of 9999 homes selected in a statistically random manner. The geometric means of the different cities varied from 0.14 to 0.88 pCi/l. for radon and 0.0009 to 0.0036 Working Levels for radon daughters. The radon originates from natural radioactivity in the soil surrounding the homes. (author)

  6. Utilization of rice husk ash to enhance radon resistant potential of concrete

    International Nuclear Information System (INIS)

    Jain, Ravinder; Kant, Krishan; Yadav, Mani Kant; Chauhan, R.P.

    2013-01-01

    The radiological and health implication posed by radon and their decay products are well known. The soil containing varying amount of radionuclides is the primary source of indoor radon. The indoor radon level depends upon its entrance through the pores of the ground and floor. Thus it is necessary to restrict the radon from soil to enter indoors by application of materials with low radon diffusion coefficient. The method used for radon shielding purpose in present study utilizes the rice husk ash for substitution with cement to achieve low diffusion coefficient. The study describes the method to optimize the condition of preparation of rice husk ash using X-ray diffraction and fluorescence spectroscopy techniques. The rice husk substitution with cement was optimized by compressive and porosity test of concrete cubes. The diffusion coefficient through concrete modified by rice husk ash was carried out by scintillation radon monitor and specially design radon diffusion chamber. The radon exhalation rates from concrete carried out using active technique decreasing radon emanation from concrete with increase of rice husk ash. The result of present study suggest substitution of 20-30% rice husk ash with cement to achieve lower radon diffusion and exhalation rates with higher compressive strength as compared to control concrete. (author)

  7. Radon in public buildings; Radon in oeffentlichen Gebaeuden

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, H.; Flesch, K. [IAF - Radiooekologie GmbH, Dresden (Germany); Hermann, E. [B.P.S. Engineering GmbH, Zwickau (Germany); Loebner, W. [Wismut GmbH, Chemnitz (Germany); Leissring, B. [Bergtechnisches Ingenieurbuero GEOPRAX, Chemnitz (Germany)

    2009-07-01

    From the Free State of Saxony, a study was commissioned to survey how reliable measurements to characterize the radon situation in public buildings at a reasonable financial and human effort can be carried out to reduce radiation exposure in public buildings. The study approach was for 6 objects. To characterize the radon situation the time evolution measurement of radon concentrations of more than 1 to 2 weeks turned out to be sufficient. A novel data analysis enables the identification of a ''typical daily alteration of the radon concentration'' depending on the ventilation conditions and the daily use of the offices or class rooms. The identification of typical diurnal radon variations for the working time and weekends or holidays is of fundamental importance for assessing the exposure situation in public buildings. It was shown that the radon concentration during working time are in general much lower than in the times when the buildings (offices) are unused. It turned out that the long-term radon measurements with nuclear track detectors within distinct time regimes (day / night, working hours / leisure time) by utilizing switch modules are very efficient to estimate the actual exposure. (orig.)

  8. Radon in outdoor air at various sites in Slovakia

    International Nuclear Information System (INIS)

    Bulko, Martin; Holy, Karol; Muellerova, Monika; Polaskova, Anna; Hola, Olga

    2010-01-01

    Radon 222 was continuously monitored at four sites of Slovakia, viz. at the campus of the Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava (FMPI CU), at the Slovak Metrological Institute in Bratislava (SMI), at Jaslovske Bohunice (with its nuclear power plant), and at Novaky (coal mining area). The minima and maxima of the daily radon waves occurred at different periods of the day. The average radon activity concentration (RAC) in Novaky was more than twice as high as at the remaining sites, presumably due to a higher rate of radon exhalation from soil. By using the 'box' model, the exhalation rate at Novaky was estimated to be 40 mBq.m -2 .s -1 , which is about 2.5 times that at the FMPI CU in Bratislava. This higher exhalation rate in Novaky is probably caused by a different bedrock in this area. The average annual effective dose from radon and its daughters estimated by the UNSCEAR methodology is 0.06 mSv in the atmosphere of Bratislava and Jaslovske Bohunice and 0.13 mSv in the atmosphere of Novaky

  9. Radon -- an environmental hazard

    International Nuclear Information System (INIS)

    Faheem, M.; Rahman, R.; Rahman, S.; Matiullah

    2005-01-01

    Humans have always been exposed throughout its period of experience to naturally occurring sources of ionizing radiation or natural background radiation, It is an established fact that even these low background doses are harmful to man and cause increased cancer risk. About half of our radiation comes from radon, a radioactive gas coming from normal materials in the ground. Several building materials such as granite, bricks, sand, cement etc., contain uranium in various amounts. The radioactive gas /sup 222/Rn produced in these materials due to decay of 226Ra is transported to indoor air through diffusion and convective flow. It seeps out of soil and rocks, well water, building materials and other sources at a varied rate. Amongst the naturally occurring radioisotopes, radon is the most harmful one that can be a cause of lung cancer. Radon isotopes are born by the decay of radium and radium production in turns comes from uranium or thorium decay. For humans the greatest importance among Radon isotopes is attributed to /sup 222/Rn because it is the longest lived of the three naturally produced isotopes. Drinking water also poses a threat. Radon gas is dissolved in water and is released into the air via water faucets, showerheads, etc. the lack of understanding has so far lead to speculative estimates of pollutant related health hazards. (author)

  10. Radon in Austria

    International Nuclear Information System (INIS)

    Friedmann, H.

    2000-01-01

    Several projects in Austria deal with the problem of enhanced radon exposure to the public. The Austrian Radon Project is the largest project within this task, with the aim of investigating the radon concentrations in Austrian homes. Another project concerns mitigation methods. According to the EU directive EURATOM 96/29 it is also necessary to check working places for possibly enhanced radon concentrations. These projects are and will be funded by the government. The federal government of Upper Austria sponsored a project to test the indoor air quality in kindergartens including radon measurements. Within an EU research project, the radon concentrations in Austrian springs and groundwater were systematically listed and analyzed. Additional investigations will focus on methods to improve the radon potential maps from the Austrian Radon Project by including geological and other information. (author)

  11. Use of commercial radon monitors for low level radon measurements in dynamically operated VOC emission test chambers

    International Nuclear Information System (INIS)

    Hofmann, M.; Richter, M.; Jann, O.

    2017-01-01

    Compared to the intended EU reference level of 300 Bq m -3 for indoor radon concentrations, the contribution of building materials appears to be low. Considering the recommended limit of 100 Bq m -3 by WHO, their contribution is supposed to be relevant, especially at low air exchange rates. This study as part of a two-part research project investigated the suitability of direct low level 222 Rn measurement under simulated indoor conditions with commercial radon monitors and dynamically operated emission test chambers. Active measuring devices based on ionisation or scintillation chambers with 1-σ uncertainties below 8.6% at 20 Bq m -3 were found to be best suitable for a practical test procedure for the determination of radon exhalation rates of building materials. For the measurement of such low concentrations, the knowledge of the accurate device background level is essential. (authors)

  12. Measurements of indoor radon and radon progeny in Mexico City

    International Nuclear Information System (INIS)

    Cheng, Y.S.; Rodriguez, G.P.

    1996-01-01

    Indoor radon has been a public concern associated with increased lung cancer risks. Radon decay products interact with indoor aerosols to form progeny with different size distributions, which may influence the lung dosimetry when the progeny are inhaled. Air pollution in Mexico City is a serious problems with high particulate concentrations, but there are few reports of indoor radon measurement. The purposes of this study were to measure the aerosol concentration, radon concentration, and radon activity size distribution in the living area of three houses in Mexico City. The radon concentration was monitored by a RGM-3 radon gas monitor (Eberline, Inc., Santa Fe, NM). A graded diffusion battery was used to determine the progeny concentration and activity size distribution. The concentration and size distribution of the indoor aerosols were monitored by a quartz, crystal microbalance cascade impactor. Our measurements showed high concentrations of indoor aerosols (20-180 gg m -3 ). However, the radon concentrations-were low ( -1 ), but showed a clear diurnal pattern with peak concentrations from 2-10 AM. The activity size distributions of radon progeny were trimodal, with peaks of 0.6 nm, 4-5 nm, and 100 rim. Most activities were associated with large particle sizes. Our results indicated that indoor radon concentration was not high, due in part to a relatively high air exchange with outdoor air. The high aerosol concentration may also play an important part in the activity size distribution of radon progeny

  13. Radon Exhalation from some Finishing Materials Frequently used in Syria

    International Nuclear Information System (INIS)

    Shweikani, R.; Raja, G.

    2011-01-01

    Building materials are one of the main radon sources in dwellings. Therefore, the determination of radon exhalation from these materials will help in prediction the existence of dwelling with potential radon risk. Ceramic tiles and marble samples were collected from Syrian local market. The correlation between radon exhalation from these materials and radium-226 content was studied. Results showed that there is no clear relation between radium content and radon exhalation rate, and the exhalation of radon did not exceed the permissible limits of American Environment Protection Agency (EPA). In addition, the additional annual dose from radon and gamma of the natural radioactivity in ceramic and marble when used as finishing materials in houses was also estimated and found to be not exceeding 20 μSv and 35 μSv from radon and gamma respectively. (author)

  14. Radon exhalation from some Finishing Materials frequently used in Syria

    International Nuclear Information System (INIS)

    Shweikani, R.; Raja, G.

    2009-02-01

    Building materials are one of the main radon sources in dwellings. Therefore, the determination of radon exhalation from these materials will help in prediction the existence of dwelling with potential radon risk. Ceramic tiles and marble samples were collected from Syrian local market. The correlation between radon exhalation from these materials and radium-226 content were studied. Results showed that there is no clear relation between radium content and radon exhalation rate, and the exhalation of radon did not exceed the permissible limits of American Environment Protection Agency (EPA). In addition, the additional annual dose from radon and gamma of the natural radioactivity in ceramic and marble when used as finishing materials in houses were also estimated and found to be not exceeding 20 μSv and μ35 Sv from radon and gamma respectively. (author)

  15. Radon and radon daughters in South African underground mines

    International Nuclear Information System (INIS)

    Rolle, R.

    1980-01-01

    Radon and the radon daughters are the radionuclides which primarily determine the level of the radiation hazard in underground uranium mines and to a smaller extent in non-uranium mines. Radon is a gas, and its daughters adsorb on aerosol particles which are of respirable size. The hazard thus arises from the alpha decay of radon and its daughters in contact with lung tissue. Radon is itself part of the uranium decay chain. The major radionuclide, 238 U, decays successively through thirteen shorter-lived radionuclides to 206 Pb. Radon is the only gaseous decay product at room temperature; the other twelve are solids. The main hazard presented by the uranium decay chain is normally determined by the radon concentration because gaseous transport can bring alpha emitters close to sensitive tissue. There is no such transport route for the other alpha emitters, and the level of beta and gamma radiation caused by the uranium decay chain generally presents a far lower external radiation hazard. Radon itself is the heaviest of the noble gases, which are He, Ne, Ar, Kr, Xe and Rn. Its chemical reactions are of no concern in regard to its potential hazard in mines as it may be considered inert. It does, however, have a solubility ten times higher than oxygen in water, and this can play a significant part in assisting the movement of the gas from the rock into airways. Radon continuously emanates into mine workings from uranium ores and from the uranium present at low concentrations in practically any rock. It has been found that the control of the exposure level is most effectively achieved by sound ventilation practices. In South African mines the standard of ventilation is generally high and exposure to radon and radon daughters is at acceptably low levels

  16. Effects of various tailings covers on radon gas emanation from pyritic uranium tailings

    International Nuclear Information System (INIS)

    Dave, N.K.; Lim, T.P.

    1987-01-01

    Radon emanation studies were carried out at an inactive pyritic uranium tailings site in Elliot Lake, Ontario, Canada, to evaluate the effects of various existing dry and wet covers on radon flux rates. Measurements were taken using activated charcoal cartridges for various surface covers consisting of bare, vegetated, acidophilic moss with high degree of water saturation, compacted crushed rock and gravel, and winter snow. The results showed that at a given site, there was no significant difference in radon emanation rates between various tailings covers and bare tailings. In particular, no increase In radon emanation rates from vegetated areas compared to bare tailings was observed. Radon emanation rates varied spatially depending on tailings grain size, porosity, moisture content and on pressure and water table variations. The emanation rates were higher for tailings with low water contents compared to those for wet and moss covered tailings

  17. Comparison of radon and radon-daughter grab samples obtained during the winter and summer

    International Nuclear Information System (INIS)

    Karp, K.E.

    1987-08-01

    The Technical Measurements Center (TMC), under the auspices of the US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) program, is investigating short-term methods for estimating annual average indoor radon-daughter concentrations (RDC). A field study at 40 sample locations in 26 residential structures in Grand Junction, Colorado, was conducted once in the winter and once in the summer. The short-term methods investigated as part of this study include ten-minute radon and radon-daughter grab sampling and hourly RDC measurements. The results of the field study indicate that ten-minute radon grab samples from basement locations are reproducible over different seasons during controlled sampling conditions. Nonbasement radon and RDC grab samples are highly variable even when the use of the location by the occupant is controlled and the ventilation rate is restricted. The grab sampling was performed under controlled occupied conditions. These results confirm that a short-term radon or RDC measurement in a nonbasement location in a house is not a standardized measurement that can be used to infer an annual average concentration. The hourly RDC measurements were performed under three sets of conditions over a 72-hour period. The three sets of conditions were uncontrolled occupied, controlled occupied, and controlled unoccupied. These results indicate that it is not necessary to relocate the occupants during the time of grab sampling. 8 refs., 8 figs., 10 tabs

  18. Temperature calibration formula for activated charcoal radon collectors

    International Nuclear Information System (INIS)

    Cooper, Alexandre; Le, Thiem Ngoc; Iimoto, Takeshi; Kosako, Toshiso

    2011-01-01

    Radon adsorption by activated charcoal collectors such as PicoRad radon detectors is known to be largely affected by temperature and relative humidity. Quantitative models are, however, still needed for accurate radon estimation in a variable environment. Here we introduce a temperature calibration formula based on the gas adsorption theory to evaluate the radon concentration in air from the average temperature, collection time, and liquid scintillation count rate. On the basis of calibration experiments done by using the 25 m 3 radon chamber available at the National Institute of Radiological Sciences in Japan, we found that the radon adsorption efficiency may vary up to a factor of two for temperatures typical of indoor conditions. We expect our results to be useful for establishing standardized protocols for optimized radon assessment in dwellings and workplaces. - Research highlights: → The temperature effect on radon adsorption is proportional to αe β/T . → The calibration formula is CF(T,t)=3.1x10 -5 e (2887)/((T+273)) [1-e -0.080t ]. → The radon adsorption efficiency varies up to a factor of two for T = 8.5-31 o C. → The average temperature is suitable for estimating CF(T,t) in a fluctuating environment.

  19. Temperature calibration formula for activated charcoal radon collectors

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, Alexandre, E-mail: alexandre.cooper@gmail.co [Graduate School of Engineering, University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan); Le, Thiem Ngoc [Institute of Nuclear Science and Technology, Vietnam Atomic Energy Commission, 59 Ly Thuong Kiet, Hanoi (Viet Nam); Iimoto, Takeshi; Kosako, Toshiso [Graduate School of Engineering, University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan)

    2011-01-15

    Radon adsorption by activated charcoal collectors such as PicoRad radon detectors is known to be largely affected by temperature and relative humidity. Quantitative models are, however, still needed for accurate radon estimation in a variable environment. Here we introduce a temperature calibration formula based on the gas adsorption theory to evaluate the radon concentration in air from the average temperature, collection time, and liquid scintillation count rate. On the basis of calibration experiments done by using the 25 m{sup 3} radon chamber available at the National Institute of Radiological Sciences in Japan, we found that the radon adsorption efficiency may vary up to a factor of two for temperatures typical of indoor conditions. We expect our results to be useful for establishing standardized protocols for optimized radon assessment in dwellings and workplaces. - Research highlights: {yields} The temperature effect on radon adsorption is proportional to {alpha}e{sup {beta}/T}. {yields} The calibration formula is CF(T,t)=3.1x10{sup -5}e{sup (2887)/((T+273))} [1-e{sup -0.080t}]. {yields} The radon adsorption efficiency varies up to a factor of two for T = 8.5-31 {sup o}C. {yields} The average temperature is suitable for estimating CF(T,t) in a fluctuating environment.

  20. Treatment of radon rich well water

    International Nuclear Information System (INIS)

    Mose, D.; Mushrush, G.; Chrosniak, C.

    1991-01-01

    Private wells supply potable water to about 25% of the homes in northern Virginia, and almost all water wells contain radon, a carcinogenic radionuclide derived form uranium in rocks and soil. The average Virginia well provides about 2,000-3,000 pCi/l of dissolved radon; the US Environmental Protection Agency has proposed that 300 pCi/l of should be the allowed maximum for public water supplies. To estimate the ability of activated charcoal to remove radon from private well water, a home supplied by a water well carrying at sign 4,000 pCi/l was studied. Following 1 year of water measurements, an in-line tank containing 1 cubic foot of activated charcoal was installed, and a subsequent 6 month interval of radon measurements on untreated and on treated water was conducted. Although removal rates of more than 90% have been reported, this study home showed a 60-70% radiation removal in the tank. A high percentage removal rate was reached in less than a month after installation, and was maintained for about 4 months, but the removal rate declined to about 50% by the end of the testing interval. Additional studies are being conducted to determine the effect of using different charcoal volumes, different charcoal types; also being studied is the gamma emission of the charcoal tank

  1. Result of the intercomparison exercise on radon measuring instruments and radon detectors 'bev- radon ring 2005'

    International Nuclear Information System (INIS)

    Baumgartner, A.; Maringer, F.J.; Michai, P.; Kreuziger, M.

    2006-01-01

    In spring 2005 the Federal Office of Metrology and Surveying (B.E.V.) invited all in Austria working radon measuring institutes to an intercomparison exercise at the radon calibration laboratory in the Arsenal. The aim of this intercomparison was on the one hand an objective inquiry and documentation of the current metrological potential on the section of radon measurement in Austria - both quantitative and qualitative- and on the other hand an initiative for the participating laboratories to optimize and improve their applied calibration-, measurement and analyse technique. Ten contacted Austrian radon laboratories were prepared to participate on the radon intercomparison exercise. The intercomparison exercise was carried out from 14. till 29. June at the radon calibration laboratory in the Arsenal of the B.E.V.. As radon emanation source a five stepped arranged, at the Arsenal built radon source was used. The source ( A.D.O.T.T.O. 1 is filled with a certified Ra- 226-standard solution of the Czech Metrological Institute (C.M.I.), Prag. A simple statistic based model was used for the evaluation and assessment of the results from the participants, which consider the statistic nature of the radioactive decay combined uncertainty. Altogether 183 measuring instruments participated the intercomparison exercise. Two reference measuring instruments, 22 active and 159 passive measuring instruments. The active measuring instruments formed 6 types of instruments and as passive radon detectors were 7 different types used from the participants. The positioning of the radon measuring instruments and detectors in the radon calibration laboratory was executed in regard to statistic points of view. From the active measuring instruments 17 could qualify and from the passive methods six from eight participants were in compliance to the given criteria. Radon measurements, which could have financial and economics relating implications (e.g. architectural redevelopment or

  2. Comparison of two methods for investigating indoor radon daughters

    International Nuclear Information System (INIS)

    Vanmarcke, H.; Raes, F.

    1988-01-01

    The dynamics of radon daughters in realistic indoor environments has been investigated experimentally at the Universities of Gottingen and Gent. Both studies yielded the important result that the fraction of unattached radon daughters is higher than is assumed in earlier studies. Reineking-Porstendorfer and Vanmarcke-Raes adopted quite different methodologies to determine the unattached fraction. In this paper the methodologies are compared by means of joint measurements performed in a house with elevated radon concentrations. The results for the attachment rate, the deposition rate of the unattached daughters and the unattached fraction differ significantly, while the results for the deposition rate of the attached daughters and the equilibrium factor broadly agree. (author)

  3. Radon soil gas measurements in a geological versatile region as basis to improve the prediction of areas with a high radon potential

    International Nuclear Information System (INIS)

    Kabrt, Franz; Rechberger, Fabian; Schuff, Michael; Seidel, Claudia; Baumgartner, Andreas; Friedmann, Harry; Maringer, Franz Josef

    2014-01-01

    With the aim to predict the radon potential by geological data, radon soil gas measurements were made in a selected region in Styria, Austria. This region is characterised by mean indoor radon potentials of 130-280 Bq m -3 and a high geological diversity. The distribution of the individual measuring sites was selected on the basis of geological aspects and the distribution of area settlements. In this work, the radon soil gas activity concentration and the soil permeability were measured at 100 sites, each with three single measurements. Furthermore, the local dose rate was determined and soil samples were taken at each site to determine the activity concentration of natural radionuclides. During two investigation periods, long-term soil gas radon measurements were made to study the time dependency of the radon activity concentration. All the results will be compared and investigated for correlation among each other to improve the prediction of areas with high radon potential. (authors)

  4. Studies on radon exhalation rate from building materials of Mysuru district, Karnataka

    International Nuclear Information System (INIS)

    Chandini, M.; Lavanya, B.S.K.; Chandrashekara, M.S.; Pruthvi Rani, K.S.

    2017-01-01

    In the present study, mass exhalation rate of 222 Rn from soil and building materials was studied using scintillation based Smart Radon Monitor (SRM) and also using Solid State Nuclear Track Detectors (SSNTD) employing Can Technique, following standard procedure. Mass exhalation rate of 222 Rn from various building material samples such as brick, sand, cement, concrete and from different types of flooring materials was determined. The results obtained from these methods were compared and analysed. The samples of construction materials were collected from various locations of Mysuru city. The city has an area of about 128 sq km with population of about 1 million. Mining industries of magnetite, dunite and lime stone are located around Mysuru city. In addition to this, quarrying and crushing of granite stones for building activities also exist nearby

  5. Radon and lung cancer in Bangalore Metropolitan, India

    International Nuclear Information System (INIS)

    Sathish, L.A.; Nethravathi, K.S.; Ramachandran, T.V.

    2012-01-01

    Radon is a radioactive gas released from the normal decay of 238 U in rocks and soil. It is an invisible, odorless, tasteless gas that seeps up through the ground and diffuses into the air. In a few areas, depending on local geology, radon dissolves into ground water and can be released into the air when the water is used. Radon gas usually exists at very low levels outdoors. However, in areas without adequate ventilation, such as underground mines, radon can accumulate to levels that substantially increase the risk of lung cancer. Radon decays quickly, giving off tiny radioactive particles. When inhaled, these radioactive particles can damage the cells that line the lung. Long-term exposure to radon can lead to lung cancer, the only cancer proven to be associated with inhaling radon. Public interest in radon has been occasionally piqued by articles in the general press. Considerable attention has been given to the high radon levels that were uncovered in the Reading Prong region of Pennsylvania, following the discovery in late 1984 of extremely high levels in one home. Several epidemiological study programmes in different countries are in progress to estimate the population exposures due to natural radiation with a view to obtain the radiation risk coefficients at low dose rate levels. In this regard, radiation surveys in high background areas (HBRAs) can provide excellent settings for epidemiological studies relating to the effects of low doses of radiation. In view of these, a comprehensive estimate of the natural inhalation dose requires both 222 Rn and 220 Rn levels in the indoor atmosphere. In this outlook an attempt is made to investigate the 222 Rn and 220 Rn levels in dwellings of Bangalore Metropolitan, India. Three year results shows that the activity concentrations of 226 Ra, 232 Th, radon in ground water, the concentrations 222 Rn and 220 Rn and the dose rate (mSvy -1 ) are at alarming levels for the environment of Bangalore Metropolitan, India. The

  6. Human disease from radon exposures: the impact of energy conservation in buildings

    International Nuclear Information System (INIS)

    Budnitz, R.J.; Berk, J.V.; Hollowell, C.D.; Nazaroff, W.W.; Nero, A.V.; Rosenfeld, A.H.

    1978-01-01

    The level of radon and its daughters inside conventional buildings is often higher than the ambient background level. Interest in conserving energy is motivating home-owners and builders to reduce the rate of infiltration of fresh air into homes, and hence to increase the concentration of indoor air contaminants, including radon. It is unlikely, but possible, that the present radiation levels from radon daughters account for much of the lung cancer rate in non-smokers. In any event, it is likely that some increased lung cancer risk would result from increased radon exposures; hence, it is desirable not to allow radon concentrations to rise significantly. There are several ways to circumvent the increased risk without compromising energy conservation considerations

  7. Study on the measurement method of diffusion coefficient for radon in the soil. 2

    International Nuclear Information System (INIS)

    Iida, Takao

    2000-03-01

    To investigate radon behavior in the soil at Ningyo Pass, the radon concentrations in the soil and the radon exhalation rate from soil surface were measured by four continuous soil radon monitoring systems, soil gas sampling method, and accumulation method. The radon concentrations in the soil measured with continuous soil radon monitoring systems varied form 5000 Bq·m -3 to 15000 Bq·m -3 at 10 cm to 40 cm depth. On the other hand, the radon concentrations measured by soil gas sampling method was 15000 Bq·m -3 at 15 cm depth. The accumulation method gives the vales of 0. 36∼0.68 Bq·m -2 ·s -1 for radon exhalation rate from soil surface. To simulate the radon transport in soil, the following parameters of the soil are important: radon diffusion coefficients, dry density, wet density, soil particle density, true density, water content and radium concentration. The measured radon diffusion coefficients in the soil were (1.61±0.09)x10 -6 m 2 s -1 , (8.68±0.23)x10 -7 m 2 s -1 ∼ (1.53±0.12)x10 -6 m 2 s -1 and (2.99±0.32)x10 -6 m 2 s -1 ∼ (4.39±0.43)x10 -6 m 2 s -1 for sandy soils of the campus of Nagoya University, Tsuruga peninsula, and Ningyo Pass, respectively. By using these parameters, the radon transport phenomena in the soil of two layers were calculated by analytical and numerical methods. The radon profile calculated by numerical method agrees fairly well with measured values. By covering of 2 m soil, the radon exhalation rate decreases to 1/4 by analytical method, and 3/5 by numerical method. The covering of normal soil is not so effective for reducing the radon exhalation rate. (author)

  8. Radon daughter plate-out onto Teflon

    Science.gov (United States)

    Morrison, E. S.; Frels, T.; Miller, E. H.; Schnee, R. W.; Street, J.

    2018-01-01

    Radiopure materials for detector components in rare event searches may be contaminated after manufacturing with long-lived 210Pb produced by the decay of atmospheric radon. Charged radon daughters deposited on the surface or implanted in the bulk of detector materials have the potential to cause noticeable backgrounds within dark matter regions of interest. Understanding the mechanics governing these background signals is therefore a paramount concern in dark matter experiments in order to distinguish a real signal from internal detector backgrounds. Teflon (i.e. PTFE) is a specific material of interest because it makes up the walls of the inner detector of many liquid noble detectors such as the LUX-ZEPLIN experiment. The rate of radon daughter plate-out onto Teflon can be orders of magnitude larger than the plate-out rate onto other materials. Mitigation of plate-out onto Teflon and steel by proximity to other materials is demonstrated.

  9. An overview of PNL radon experiments with reference to epidemiological data

    International Nuclear Information System (INIS)

    Cross, F.T.; Palmer, R.F.; Busch, R.H.; Dagle, G.E.; Filipy, R.E.; Ragan, H.A.

    1986-01-01

    Biological effects observed in dogs and rodents after the inhalation of radon and radon daughters have included, primarily, respiratory carcinoma, pulmonary fibrosis, emphysema, and life-span shortening. Extrapulmonary lesions observed are not considered significant except for certain hematological effects. In this paper we present biological effects data resulting from chronic exposures of hamsters, rats, and beagle dogs. Emphasis is placed on the carcinogenic effects of radon and radon daughters, including the influences of radon-daughter exposure rate, unattachment fraction, and disequilibrium and of concomitant exposure to other pollutants. These data are correlated with results from human epidemiological studies. Plausible values for the radon (radon-daughter) lifetime lung-cancer risk coefficient are provided. 30 refs., 3 tabs

  10. Radon and thoron monitoring in the environment of Kumaun Himalayas: survey and outcomes

    International Nuclear Information System (INIS)

    Ramola, R.C.; Negi, M.S.; Choubey, V.M.

    2005-01-01

    Monitoring of radon, thoron and their daughter products was carried out in houses of Kumaun Himalaya, India using LR-115 plastic track detectors. The measurements were made in residential houses from June 1999 to May 2000 at a height of 2.5 m from ground level using a twin chamber radon dosimeter. The twin chamber radon dosimeter can record the values of radon, thoron and their decay products separately. Maximum and minimum indoor radon and thoron concentrations were evaluated and activity concentrations of radon and thoron daughters were estimated. The resulting dose rates due to radon, thoron and their decay products varied from 0.04 to 1.89 μSv/h. A detailed analysis of the distribution of radon, thoron and their decay products inside the house is also reported. The observed dose rates inside the houses of Kumaun Himalaya were found to be lower than the ICRP recommended value of 200 Bq/m 3 and thus are within safe limits

  11. Indoor radon

    International Nuclear Information System (INIS)

    1997-12-01

    The radon, a natural radioactive gas, is present almost everywhere on the earth's surface. It can be accumulated at high concentration in confined spaces (buildings, mines, etc). In the last decades many studies conducted in several countries showed that inhaling important amounts of radon rises the risk of lung cancer. Although, the radon is a naturally appearing radioactive source, it may be the subject of a human 'enhancement' of concentration. The increasing radon concentration in professional housing constitutes an example of enhanced natural radioactivity which can induce health risks on workers and public. Besides, the radon is present in the dwelling houses (the domestic radon). On 13 May 1996, the European Union Council issued the new EURATOM Instruction that establishes the basic standards of health protection of population and workers against the ionizing radiation hazards (Instruction 96/29/EURATOM, JOCE L-159 of 29 June 1996). This instruction does not apply to domestic radon but it is taken into consideration by another EURATOM document: the recommendation of the Commission 90/143/EURATOM of 21 February 1990 (JOCE L-80 of 27 March 1990). The present paper aims at establishing in accordance to European Union provisions the guidelines for radon risk management in working places, as well as in dwelling houses, where the implied risk is taken into account. This document does not deal with cases of high radon concentration on sites where fabrication, handling or storage of radium sources take place. These situations must be treated by special studies

  12. Radon reduction and radon-resistant construction demonstrations in New York state. Final report

    International Nuclear Information System (INIS)

    1991-02-01

    A survey of radon levels in New York State homes indicates that approximately 4.4 percent of the homes have long-term living area radon concentrations above the U.S. EPA guideline of four pCi/l. The project addressed the effectiveness of techniques to reduce the radon level in existing homes and to prevent the occurrence of high radon concentrations in new homes. The goal of the project was to demonstrate the effectiveness of radon reduction techniques in homes containing indoor radon concentrations of more than the current EPA guidelines of four pCi/l. At the same time, radon-resistant construction techniques were demonstrated in homes under construction to provide guidelines for houses being built in areas with a danger of high radon levels. The project demonstrated new radon mitigation techniques in homes containing indoor radon concentrations exceeding four pCi/l; assessed the value of previously installed radon reduction procedures, and demonstrated new radon-resistant construction methods

  13. Evaluation of experiences in long-term radon and radon-daughter measurements

    International Nuclear Information System (INIS)

    Young, J.A.; Jackson, P.O.; Thomas, V.W.

    1982-12-01

    Pacific Northwest Laboratory (PNL) is performing side-by-side measurements of radon and radon daughter concentrations using several instruments and techniques, and is comparing these measurements with side-by-side measurements made by other investigators at other locations. The standard deviation of the differences between the (natural) logarithms of the Terradex Track Etch radon concentrations and the logarithms of the Radon Progency Integrating Sampling Units (RPISU) radon daughter concentrations (S.D.-ln) measured in 50 buildings in Edgemont, South Dakota, was 0.37. Using this S.D.-ln, it can be calculated that if the Track Etch radon daughter concentration is 0.010 WL there should be only a 14% probability that the RPISU average would be greater than 0.015 WL, and only a 3% probability tht the RPISU average would be greater than 0.020 WL. If buildings had been cleared from remedial action when the Track Etch averages were less than 0.10 WL, then about 61% of the buildings would have been cleared from remedial action, and only a few percent of these buildings would have actually had average RPISU concentrations greater than 0.015 WL. The S.D.-ln between the Track Etch radon measurements and the RPISU radon daughter measurements made by ALARA at Grand Junction, the PERM radon measurements and the MOD-225 radon daughter measurements made by Mound Facility at Canonsburg and Middlesex, and the PERM and Track Etch radon measurements made by Mound Facility at Salt Lake City were similar to the S.D.-ln between the Track Etch radon measurements and the RPISU radon daughter measurements at Edgemont

  14. Natural radioactivity content and radon exhalation from materials used for construction and decoration

    International Nuclear Information System (INIS)

    Ngachin, M.; Garavaglia, M.; Giovani, C.; Scruzzi, E.; Kwato Njock, M.G.; Nourreddine, A.

    2007-02-01

    The present work deals with the measurement of radioactivity and radon exhalation rate from geological samples manufactured in Douala city and used as building materials. Nine types of building materials were surveyed for their natural radioactivity content using a hyper purity germanium (HPGe) detector. The absorbed dose rate in the samples investigated ranged from 28.5 to 66.6 nGy h -1 for brick samples, from 32.4 to 63.1 nGy h -1 for roofing tiles and was 30.3 nGy h -1 for concrete. External and internal hazard indexes were also estimated as defined by the European Commission. The study of radon exhalation rate from building materials is important for well understanding the individual contribution of each material to the total indoor radon exposure. Solid state nuclear track detectors, CR-39 were used for measuring the radon concentration from different materials. Samples were hermetically closed in glass vessels and the radon growth was followed as a function of time. Exploring the one-dimension radon transport equation, we derived the radon exhalation rate from the experimental measurement of α-track densities. The radon exhalation varied from (5.77±0.06) x 10 -5 to (7.61±0.07) x 10 -5 Bq cm -2 h -1 in bricks, from (5.79±0.05) x 10 -5 to (11.6±0.12) x 10 -5 in tiles and was (6.95±0.03) x 10 -5 Bq cm -2 h -1 in concrete. A positive correlation was found between uranium concentration measured with HPGe detector radon exhalation rate and radium content obtained using nuclear track detectors. (author)

  15. Radon: Chemical and physical processes associated with its distribution

    International Nuclear Information System (INIS)

    Castleman, A.W. Jr.

    1992-01-01

    Assessing the mechanisms which govern the distribution, fate, and pathways of entry into biological systems, as well as the ultimate hazards associated with the radon progeny and their secondary reaction products, depends on knowledge of their chemistry. Our studies are directed toward developing fundamental information which will provide a basis for modeling studies that are requisite in obtaining a complete picture of growth, attachment to aerosols, and transport to the bioreceptor and ultimate incorporation within. Our program is divided into three major areas of research. These include measurement of the determination of their mobilities, study of the role of radon progeny ions in affecting reactions, including study of the influence of the degree of solvation (clustering), and examination of the important secondary reaction products, with particular attention to processes leading to chemical conversion of either the core ions or the ligands as a function of the degree of clustering

  16. Experimental and theoretical study of radon levels in a house

    Energy Technology Data Exchange (ETDEWEB)

    Ameon, R.; Dupuis, M.; Marie, L.; Diez, O.; LionS, J. [Institute for Radiological Protection and Nuclear Safety, Fontenay-aux-roses (France); Tymen, G. [LARAAH, Universite de Bretagne Occidentale, Brest (France)

    2006-07-01

    Full text of publication follows: Radon being a radioactive gas of natural origin is omnipresent everywhere at the surface of earth. It is created by the radium decay issued from the uranium contained in the earth crust and more specifically in granitic and volcanic subsoils. Because of the dilution due to air masses, its concentration in open air is low. On the other hand, radon may accumulate in the confined atmosphere of buildings and achieve high concentration levels. Across France, it has been estimated that 300 000 individual dwellings present concentration higher than the French reference level of 400 Bq.m{sup -3} and that 60 000 other ones would exhibit concentration above 1 000 Bq.m{sup -3}, the French warning threshold. Indoor radon concentration may vary significantly for various reasons, including design of buildings, radium content and texture of the soil in contact with the building's slab and walls, the under pressure value between the inside and outside and the fresh air supply rate. These considerations have led the I.R.S.N. to develop a code called R.A.D.O.N. 2 for conducting simple and methodical studies of indoor radon concentrations, to take into account the above-mentioned factors. But, the achievement of an effective diagnosis and risk management -aiding tool requires to first check its validity on the phenomenological model at the origin of the code. A 3-year experimental follow-up was, thus, conducted within an unoccupied house built on an uranium-bearing geological formation. After characterization of the subsoil, the instrumentation was implemented on site to continuously monitor the following parameters: - the radon source term in the building (exhalation rate of {sup 222}Rn at the ground/building interface and at soil surface, radon concentration at the soil and in outdoor air), - the radon penetration by advection (differential pressure in the house basement), - the driving mechanisms for natural ventilation in the house (weather

  17. Experimental and theoretical study of radon levels in a house

    International Nuclear Information System (INIS)

    Ameon, R.; Dupuis, M.; Marie, L.; Diez, O.; LionS, J.; Tymen, G.

    2006-01-01

    Full text of publication follows: Radon being a radioactive gas of natural origin is omnipresent everywhere at the surface of earth. It is created by the radium decay issued from the uranium contained in the earth crust and more specifically in granitic and volcanic subsoils. Because of the dilution due to air masses, its concentration in open air is low. On the other hand, radon may accumulate in the confined atmosphere of buildings and achieve high concentration levels. Across France, it has been estimated that 300 000 individual dwellings present concentration higher than the French reference level of 400 Bq.m -3 and that 60 000 other ones would exhibit concentration above 1 000 Bq.m -3 , the French warning threshold. Indoor radon concentration may vary significantly for various reasons, including design of buildings, radium content and texture of the soil in contact with the building's slab and walls, the under pressure value between the inside and outside and the fresh air supply rate. These considerations have led the I.R.S.N. to develop a code called R.A.D.O.N. 2 for conducting simple and methodical studies of indoor radon concentrations, to take into account the above-mentioned factors. But, the achievement of an effective diagnosis and risk management -aiding tool requires to first check its validity on the phenomenological model at the origin of the code. A 3-year experimental follow-up was, thus, conducted within an unoccupied house built on an uranium-bearing geological formation. After characterization of the subsoil, the instrumentation was implemented on site to continuously monitor the following parameters: - the radon source term in the building (exhalation rate of 222 Rn at the ground/building interface and at soil surface, radon concentration at the soil and in outdoor air), - the radon penetration by advection (differential pressure in the house basement), - the driving mechanisms for natural ventilation in the house (weather conditions, indoor

  18. Study of the radon released from open drill holes

    International Nuclear Information System (INIS)

    Pacer, J.C.

    1981-06-01

    The radon emanating from three open drill holes was measured at a site of known uranium mineralization in the Red Desert of south central Wyoming. The radon flux from the soil and drill holes was measured by the accumulator method with activated charcoal cartridges. The surface soil was found to release radon at an average rate of 0.41 atoms/cm 2 /sec; the radon emanating from the holes was more variable than that from the soil. The three holes studied released an average of 47 atoms/cm 2 /sec of radon. This average is equivalent to the radon released to the atmosphere by 14.5 ft 2 of soil. The data indicate that the radon emanated from an open drill hole is not as significant as other possible activities at a drill site (i.e. digging a trench or drilling a hole) or from household activities involving the usage of water

  19. Development of model DTY-104 radon measuring meter

    International Nuclear Information System (INIS)

    Shi Zhixia; Zhang Aiming; Li Yachun; Wang Qingheng

    2000-01-01

    Model DTY-104 radon measuring meter is an improvement on Model DTY-103. 'Difference value method' is used, which has been strictly developed and makes the radon exhalation rate more accurate, instead of using 'simplified difference value method'. The electronic circuit is redesigned and 80C31 single chip processor is used, which makes the operation more convenient and the function strengthened. In a more reasonable manner, the humidity sensor is mounted in the collection chamber. The collection efficiency can be automatically corrected. The technique of exchanging the collection mylar reduces the waiting time and improves work efficiency. The apparatus is applied to the measurement of the radon concentration in the environment and the radon exhalation from the surface of the building materials, walls and ground. The lower detection limit is about 4Bq/m 3 for 222 Rn concentration and 5 x 10 -5 Bq/s/m 2 for 222 Rn exhalation rate

  20. Construction of radon/radon daughter calibraton chamber

    International Nuclear Information System (INIS)

    Fry, J.; Gan, T.H.; Leach, V.A.; Saddlier, J.; Solomon, S.B.; Tam, K.K.; Travis, E.; Wykes, P.

    1983-01-01

    The radon/radon daughter test chamber is a copper lined room 1.65x1.75x2.75m with an effective volume of 8000 litres. The air residence time is controlled by circulating the air in the chamber through absolute filters which remove 99.9% of particulates. Radon is drawn into the chamber from a 17 μCi 226 RaCl source using the pressure differential across the blowers (<3 psi)

  1. Modeled atmospheric radon concentrations from uranium mines

    Energy Technology Data Exchange (ETDEWEB)

    Droppo, J.G.

    1985-04-01

    Uranium mining and milling operations result in the release of radon from numerous sources of various types and strengths. The US Environmental Protection Agency (EPA) under the Clean Air Act, is assessing the health impact of air emissions of radon from underground uranium mines. In this case, the radon emissions may impact workers and residents in the mine vicinity. To aid in this assessment, the EPA needs to know how mine releases can affect the radon concentrations at populated locations. To obtain this type of information, Pacific Northwest Laboratory used the radon emissions, release characteristics and local meterological conditions for a number of mines to model incremental radon concentrations. Long-term, average, incremental radon concentrations were computed based on the best available information on release rates, plume rise parameters, number and locations of vents, and local dispersion climatology. Calculations are made for a model mine, individual mines, and multiple mines. Our approach was to start with a general case and then consider specific cases for comparison. A model underground uranium mine was used to provide definition of the order of magnitude of typical impacts. Then computations were made for specific mines using the best mine-specific information available for each mine. These case study results are expressed as predicted incremental radon concentration contours plotted on maps with local population data from a previous study. Finally, the effect of possible overlap of radon releases from nearby mines was studied by calculating cumulative radon concentrations for multiple mines in a region with many mines. The dispersion model, modeling assumptions, data sources, computational procedures, and results are documented in this report. 7 refs., 27 figs., 18 tabs.

  2. Modeled atmospheric radon concentrations from uranium mines

    International Nuclear Information System (INIS)

    Droppo, J.G.

    1985-04-01

    Uranium mining and milling operations result in the release of radon from numerous sources of various types and strengths. The US Environmental Protection Agency (EPA) under the Clean Air Act, is assessing the health impact of air emissions of radon from underground uranium mines. In this case, the radon emissions may impact workers and residents in the mine vicinity. To aid in this assessment, the EPA needs to know how mine releases can affect the radon concentrations at populated locations. To obtain this type of information, Pacific Northwest Laboratory used the radon emissions, release characteristics and local meterological conditions for a number of mines to model incremental radon concentrations. Long-term, average, incremental radon concentrations were computed based on the best available information on release rates, plume rise parameters, number and locations of vents, and local dispersion climatology. Calculations are made for a model mine, individual mines, and multiple mines. Our approach was to start with a general case and then consider specific cases for comparison. A model underground uranium mine was used to provide definition of the order of magnitude of typical impacts. Then computations were made for specific mines using the best mine-specific information available for each mine. These case study results are expressed as predicted incremental radon concentration contours plotted on maps with local population data from a previous study. Finally, the effect of possible overlap of radon releases from nearby mines was studied by calculating cumulative radon concentrations for multiple mines in a region with many mines. The dispersion model, modeling assumptions, data sources, computational procedures, and results are documented in this report. 7 refs., 27 figs., 18 tabs

  3. Application of single-chip microcomputer to portable radon and radon daughters monitor

    International Nuclear Information System (INIS)

    Meng Yecheng; Huang Zhanyun; She Chengye

    1992-01-01

    Application of single-chip microcomputer to portable radon and radon daughters monitor is introduced in this paper. With the single-chip microcomputer automation comes into effect in the process from sampling to measuring of radon and radon daughters. The concentrations of radon and radon daughters can be easily shown when the conversion coefficients are pre-settled before the measurement. Moreover, the principle and design are briefly discussed according to the characteristics of the monitor

  4. Continuous measurement of the radon concentration in water using electret ion chamber method

    International Nuclear Information System (INIS)

    Dua, S.K.; Hopke, P.K.

    1992-10-01

    A radon concentration of 300 pCi/L has been proposed by the US Environmental Protection Agency as a limit for radon dissolved in municipal drinking water supplies. There is therefore a need for a continuous monitor to insure that the daily average concentration does not exceed this limit. In order to calibrate the system, varying concentrations of radon in water have been generated by bubbling radon laden air through a dynamic flowthrough water system. The value of steady state concentration of radon in water from this system depends on the concentration of radon in air, the air bubbling rate, and the water flow rate. The measurement system has been designed and tested using a 1 L volume electret ion chamber to determine the radon in water. In this dynamic method, water flows directly through the electret ion chamber. Radon is released to the air and measured with the electret. A flow of air is maintained through the chamber to prevent the build-up of high radon concentrations and too rapid discharge of the electret. It was found that the system worked well when the air flow was induced by the application of suction. The concentration in the water was calculated from the measured concentration in air and water and air flow rates. Preliminary results suggest that the method has sufficient sensitivity to measure concentrations of radon in water with acceptable accuracy and precision

  5. The use of soil gas as radon source in radon chambers

    International Nuclear Information System (INIS)

    Al-Azmi, Darwish

    2009-01-01

    A procedure is described in which soil gas is utilized as an alternative to the 226 Ra source for the supply of the radon gas required to fill a radon chamber where radon-measuring devices are calibrated. The procedure offers opportunities to vary the radon concentration within the chamber around an average value of about 500 Bq/m 3 , which is considered to be sufficient for calibrating indoor radon detectors. The procedure is simple and the radon source does not require radiation protection certification (for import and/or use), unlike the commercially produced standard radioactive ( 226 Ra) sources.

  6. Radon in Antarctica

    International Nuclear Information System (INIS)

    Ilic, R.; Rusov, V.D.; Pavlovych, V.N.; Vaschenko, V.M.; Hanzic, L.; Bondarchuk, Y.A.

    2005-01-01

    The paper reviews results of radon measurements obtained in Antarctic research stations in the last 40 years by both active and passive radon monitors. A brief description of the radon laboratory set-up in the Ukrainian Academician Vernadsky station on the Antarctic Peninsula (W 64 o 16 ' , S 65 o 15 ' ), where radon is measured by two types of etched track Rn dosimeter and 4 types of continuous radon monitoring devices is presented. Some selected results of research work are described related to: (i) analysis of radon storms, defined as an abrupt increase of 222 Rn during the occurrence of a cyclone, and its applicability for the study of the transport of air masses of continental origin to Antarctica; (ii) a study of the correlation of changes of radon concentration and geomagnetic field induced by tectonic activity and its application to predicting tectonomagnetic anomalies, and (iii) verification of a newly developed theoretical model based on noise analysis of the measured radon signal for earthquake prediction. Suggestions for future utilization of radon for basic research in Antarctica (and not only in Antarctica) conclude the contribution. conclude the contribution

  7. Radon-Instrumentation; Radon-Instrumentacion

    Energy Technology Data Exchange (ETDEWEB)

    Moreno y Moreno, A. [Departamento de Apoyo en Ciencias Aplicadas, Benemerita Universidad Autonoma de Puebla, 4 Sur 104, Centro Historico 72000 Puebla (Mexico)

    2003-07-01

    The presentation of the active and passive methods for radon, their identification and measure, instrumentation and characteristics are the objectives of this work. Active detectors: Active Alpha Cam Continuous Air Monitor, Model 758 of Victoreen, Model CMR-510 Continuous Radon Monitor of the Signature Femto-Tech. Passive detectors: SSNTD track detectors in solids Measurement Using Charcoal Canisters, disk of activated coal deposited in a metallic box Electrets Methodology. (Author)

  8. Indoor radon in Tunisian spas

    International Nuclear Information System (INIS)

    Labidi, S.; Al-Azmi, Darwish; Ben Salah, R.

    2012-01-01

    Indoor radon concentrations were measured in four well-known spas of Tunisia using nuclear track detectors. The radon concentrations in these spas were found to be in the range of 19 - 870 Bq.m -3 . The equilibrium factor F between radon and its progeny was found to vary in the range of 0.2 - 0.5, depending upon the ventilation rates within the buildings of the spas. Using the exposure-dose conversion factor, the effective doses to patients and workers were estimated and the dose was found to vary in the range 3.7 x 10 -3 - 12.5 x 10 -3 mSv.y -1 and 0.45 - 1.5 mSv.y -1 for patients and workers, respectively. These values are well inside the limit recommended for the annual dose limit of 20 mSv.y -1 for an occupational worker. The radium content in the groundwater of all four spas was measured and the results showed no correlation between the 226 Ra concentration in water and radon concentration in indoor air of the investigated spas. (authors)

  9. Radon risks in animals with reference to man

    International Nuclear Information System (INIS)

    Gilbert, E.S.; Cross, F.T.

    1988-10-01

    Radon inhalation studies in animals provide important supplementary information to human data. Because the measurement of exposure characteristics in experimental studies is more accurate than in epidemiological studies, animal studies may provide a more reliable assessment of the dependence of risks on radon-daughter cumulative exposure. Experimental data have also provided information on the dependence of risks on radon-progeny exposure rate, unattached fraction, and disequilibrium, as well as on concomitant exposures to cigarette smoke. A summary of radon studies in animals has been published. Two examples of results from these studies are included; in both cases, results were based on the percent of animals with lung tumors. 8 refs., 4 figs., 3 tabs

  10. Radon and radon daughters in public, private and commercial buildings in communities associated with uranium mining and processing in Canada

    International Nuclear Information System (INIS)

    Eaton, R.S.

    1982-01-01

    The elevated indoor radon levels in certain communities in Canada have been studied. An overview of the investigational and remedial action programs are presented in this paper. It is suggested that radon daughter concentrations can be controlled by: (a) removing source; (b) placing a barrier between the source and the living space; (c) diverting the radon before it enters a building: (d) increasing the ventilation rate. All methods have been proven but no one technique is the most cost effective because of widely varying conditions found in older housing

  11. Exposure to unusually high indoor radon levels

    International Nuclear Information System (INIS)

    Rasheed, F.N.

    1993-01-01

    Unusually high indoor radon concentrations were reported in a small village in western Tyrol, Austria. The authors have measured the seasonal course of indoor radon concentrations in 390 houses of this village. 71% of houses in winter and 33% in summer, showed radon values on the ground floor above the Austrian action level of 400 Bq/cm 3 . This proportion results in an unusually high indoor radon exposure of the population. The radon source was an 8,700-year-old rock slide of granite gneiss, the largest of the alpine crystalline rocks. It has a strong emanating power because its rocks are heavily fractured and show a slightly increased uranium content. Previous reports show increased lung cancer mortality, myeloid leukemia, kidney cancer, melanoma, and prostate cancer resulting from indoor radon exposure. However, many studies fail to provide accurate information on indoor radon concentrations, classifying them merely as low, intermediate, and high, or they record only minor increases in indoor radon concentrations. Mortality data for 1970-91 were used to calculate age and sex standardized mortality rates (SMR) for 51 sites of carcinoma. The total population of Tyrol were controls. A significantly higher risk was recorded for lung cancer. The high SMR for lung cancer in female subjects is especially striking. Because the numbers were low for the other cancer sites, these were combined in one group to calculate the SMR. No significant increase in SMR was found for this group

  12. Assessment of radiological effect of the indoor radon and its progeny

    International Nuclear Information System (INIS)

    Ramachandran, T.V.; Subbaramu, M.C.; Mishra, U.C.

    1988-01-01

    Of all the sources of environmental radiation, radon and its progeny are considered to be responsible for a significant dose to man, especially when they are in enclosed areas like underground mines, caves, cellars, poorly designed and badly ventilated houses. Linear extrapolation from the dose response value of the uranium miners exposed to higher levels of radon and its daughters also suggest that the majority of the lung cancer incidence could be due to radon. Higher indoor radon levels and shift in the disequilibrium of the progeny concentration in dwellings caused by the lower ventilation rate leads to severalfold increase of lung cancer incidence from radon. The large risk which is anticipated calls for further studies in this field and may also lead to the conclusion that the slight, but much feared, burden due to man-made radioactivity could be more than compensated by controlling critical segments of the environmental radioactivity. In this report the study of risk due to breathing of indoor radon is briefly reviewed. Dose equivalent to the exposed tissue of the respiratory tract of the people living in dwellings are evaluated. Like most of the risk assessment of low level radiation, the effort to quantify the effect of radon in terms of death rate dose due to lung cancer attributable to radon levels indoors, has to rely on the extrapolation from the effects of the higher exposure rate. In situations where soil or building materials contain elevated radium levels, living in energy efficient houses may be as dangerous as heavy smoking. (author). 8 tabs., 5 figs., 41 refs

  13. Mapping of gas radon in soil of the Fresnillo City, Zacatecas; Mapeo de gas radon en suelo de la Ciudad de Fresnillo, Zacatecas

    Energy Technology Data Exchange (ETDEWEB)

    Gomez Q, I. S.; Lopez del R, H.; Davila R, J. I.; Mireles G, F., E-mail: hlopezdelrio@hotmail.com [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico)

    2012-10-15

    With the purpose of locating areas with high rates of gas radon exhalation, it has begun to measure the radon flow in soil for residence use in the Fresnillo City, Zacatecas State, Mexico, applying the method of the open vial and liquid scintillation. The gas radon accumulation is made in a camera situated to a depth between 25 and 35 cm. In this work the partial results of the research in course are presented. The values obtained for the radon exhalation have varied of <2.25 up to 14.42 Bq/m{sup 2}{center_dot}h. (Author)

  14. Wind direction correlated measurements of radon and radon progeny in atmosphere: a method for radon source identification

    International Nuclear Information System (INIS)

    Akber, R.A.; Pfitzner, J.; Johnston, A.

    1994-01-01

    This paper describes the basic principles and methodology of a wind direction correlated measurement technique which is used to distinguish the mine-related and background components of radon and radon progeny concentrations in the vicinity of the ERA Ranger Uranium Mine. Simultaneous measurements of atmospheric radon and radon progeny concentrations and wind speed and direction were conducted using automatic sampling stations. The data were recorded as a time series of half hourly averages and grouped into sixteen 22.5 degrees wind sectors. The sampling interval and the wind sector width were chosen considering wind direction variability (σ θ ) over the sampling time interval. The data were then analysed for radon and radon progeny concentrations in each wind sector. Information about the wind frequency wind speed seasonal and diurnal variations in wind direction and radon concentrations was required for proper data analysis and interpretation of results. A comparison with model-based estimates for an identical time period shows agreement within about a factor of two between the two methods. 15 refs., 1 tab., 5 figs

  15. Testing of indoor radon-reduction techniques in central Ohio houses: Phase 1 (Winter 1987-1988). Report for October 1987-August 1988 (Final)

    International Nuclear Information System (INIS)

    Findlay, W.O.; Robertson, A.; Scott, A.G.

    1989-07-01

    The U.S. Environmental Protection Agency (EPA) has a program to demonstrate practical, cost-effective methods to reduce indoor radon concentrations in housing to 150 Bq/cu m (4 pCi/L) or less. The complete program will evaluate the full range of radon-reduction methods, i.e., house ventilation, sealing of entry routes, soil ventilation, radon removal from water, and air cleaning in the full range of housing substructure types and building styles, and geological conditions across the continental United States. The program described in the report demonstrated certain radon-reduction methods in housing and geology typical of southern Ohio in particular, and the central Great Plains States in general. The testing of radon-mitigation systems in Ohio houses is envisioned as taking place in two phases. The report describes Phase 1, which was carried out in 16 existing houses in the Dayton area during the 1987-1988 heating season

  16. Radon in Dwellings in the Republic of Kalmykia. Results from the National Radon Survey 2006-2007

    International Nuclear Information System (INIS)

    Aakerblom, Gustav; German, Olga; Soederman, Ann-Louise; Stamat, Ivan; Venkov, Vladimir

    2009-02-01

    The National Radon Survey in the Republic of Kalmykia, Russian Federation during 2006-2007 was carried out in a cooperation project between the Swedish Radiation Protection Authority (SSI) and the Russian Institute of Radiation Hygiene (RIRH). In August 2006 SSI, RIRH, federal and local authorities carried out a field study in Kalmykia when radon daughter measurements (equilibrium equivalent radon concentrations in the air) and gamma radiation measurements were made in 103 buildings. Gamma spectrometry measurements were made at several sites. During the visit the cooperating parties devoted some time to the education of local authorities on radon related issues. During three months in the winter season 2006-2007, long term radon trace measurements were made in 525 randomly chosen dwellings in the Republic of Kalmykia. The radon gas activity varied between 3 and 973 Bq/m 3 , with a mean value of 122 Bq/m 3 . In 19 of a total of 835 measurement points, the radon activity exceeded the maximum permitted value in Russia of 200 Bq/m 3 of EERC. The year-round radon trace measurement were made in 20 houses in Elista, the capital of the Republic of Kalmykia, for comparison with the three-month measurements. The year-round measurements showed some higher values for the radon activity, and a correction factor of 0.85 was applied. Using data on the number of people living in detached houses and apartments, and applying the radon activities measured, the number of new lung cancer cases caused by radon was calculated to be 20 to 40 of the 100 new cases reported annually. The methods of construction of the dwellings in Kalmykia is greatly influenced by the history and culture. Most of them were built after World War II and there are only a few that are newly built because of the poor economic situation and the low population growth rate in the Republic. Most people live in detached houses, one-storied with 3-5 rooms, built directly on the ground or on coquina blocks or on a cast

  17. Instruments to measure radon activity concentration or exposure to radon. Interlaboratory comparison 2011

    International Nuclear Information System (INIS)

    Foerster, Elisabeth; Beck, Thomas; Buchroeder, Helmut; Doering, Joachim; Schmidt, Volkmar

    2011-10-01

    According to the Directive 96/29/EURATOM the monitoring of occupational radiation exposures shall base on individual measurements carried out by an approved dosimetric service. Pursuant to the European Directive an approved dosimetric service is a body responsible for the calibration, reading or interpretation of individual monitoring devices.., whose capacity to act in this respect is recognized by the competent authorities. This concept will also be applied to radon services issuing passive radon measurement devices. Passive radon measurement devices 1 using solid state nuclear track detectors or electrets are recommended for individual monitoring of exposures to radon. German regulations lay down that radon measuring devices are appropriate for purposes of occupational radiation monitoring if the devices are issued by recognized radon measurement services, and the measurement service submits devices of the same type issued for radon monitoring to regular intercomparisons conducted by BfS. A radon measuring service is recognized by the competent authority if it proves its organizational and technical competence, e. g. by accreditation. These regulations have been introduced in the area of occupational radiation exposures. Nevertheless, it is recommended that radon measuring services which carry out radon measurements in other areas (e.g. dwellings) should subject themselves to these measures voluntarily. The interlaboratory comparisons comprise the organization, exposure, and evaluation of measurements of radon activity concentration or exposure to radon. The comparisons only concern radon-222; radon-220 is not in the scope. Radon services being interested can get further information from the website www.bfs.de/de/ion/radon/fachinfomessung/vergleichspruefungen.html and from the European Information System on Proficiency Testing Schemes (eptis) available in the internet. (orig.)

  18. Uncertainties of estimating average radon and radon decay product concentrations in occupied houses

    International Nuclear Information System (INIS)

    Ronca-Battista, M.; Magno, P.; Windham, S.

    1986-01-01

    Radon and radon decay product measurements made in up to 68 Butte, Montana homes over a period of 18 months were used to estimate the uncertainty in estimating long-term average radon and radon decay product concentrations from a short-term measurement. This analysis was performed in support of the development of radon and radon decay product measurement protocols by the Environmental Protection Agency (EPA). The results of six measurement methods were analyzed: continuous radon and working level monitors, radon progeny integrating sampling units, alpha-track detectors, and grab radon and radon decay product techniques. Uncertainties were found to decrease with increasing sampling time and to be smaller when measurements were conducted during the winter months. In general, radon measurements had a smaller uncertainty than radon decay product measurements. As a result of this analysis, the EPA measurements protocols specify that all measurements be made under closed-house (winter) conditions, and that sampling times of at least a 24 hour period be used when the measurement will be the basis for a decision about remedial action or long-term health risks. 13 references, 3 tables

  19. Radon programme: presence and future

    International Nuclear Information System (INIS)

    Hulka, J.

    2009-01-01

    In this presentation an overview of radon programme experiences is presented. The paper summarises national radon policy, national programmes, legislation, the role of preventive measures and interventions with respect to existing and future exposure and knowledge of radon risk, problems of remediation strategies, practical protection in dwellings, radon measurements strategies, progress in radon measurement of an individual house (radon diagnosis), radon mapping process and sense of delineation of radon prone areas, natural radioactivity of building materials and radioactivity in public water and their role in the radon programme, public awareness on radon issue and publicity campaign. Some research activities are proposed aiming at effective solutions of radon issues in future

  20. Radon

    International Nuclear Information System (INIS)

    1990-01-01

    This leaflet in the At-a-Glance Series, describes what radon is, where it is found, why it presents a risk to health, the official advice, and the remedies that are available to reduce radon levels. (author)

  1. Testing of indoor radon reduction techniques in eastern Pennsylvania: An update

    International Nuclear Information System (INIS)

    Henschel, D.B.; Scott, A.G.

    1987-01-01

    EPA has installed radon reduction measures in 38 houses in the Reading Prong region of eastern Pennsylvania. All were basement houses with hollow block or poured concrete foundation walls. The reduction approaches tested in most houses involved active soil ventilation, including: suction on the footing drain tile system; suction underneath the concrete slabs, using pipes inserted through the slabs from inside the house; and ventilation of the void network inside hollow block foundation walls. Heat recovery ventilators (HRVs) were tested in three houses. The current results confirm that, for the houses tested here, drain tile suction appears consistently able to provide high radon reductions when a complete loop of drain tile exists, often reducing high-radon houses to 4 pCi/l (148 B1/m 3 ) and less. Sub-slab suction (with pipes through the slab) can also provide high reductions if a sufficient number of suction pipes are located properly. Placement of one or more sub-slab suction pipes near each perimeter wall appears in this testing to aid in treating the major soil gas entry routes, although fewer pipes can sometimes give high reductions if conditions are favorable. For effective radon reduction using any active soil ventilation technique, it is important that major wall and slab openings be closed, and that a fan be employed that is capable of developing adequate static pressure

  2. Residential Radon Exposure and Lung Cancer: Evidence of an Inverse Association in Washington State.

    Science.gov (United States)

    Neuberger, John S.; And Others

    1992-01-01

    Presents results of a descriptive study of lung cancer death rates compared to county levels of radon in Washington State. Age-specific death rates were computed for white female smokers according to radon exposure. A significant lung cancer excess was found in lowest radon counties. No significant difference was found between the proportion of…

  3. Preliminary indoor radon and gamma measurements in kindergartens and schools in Bucharest

    International Nuclear Information System (INIS)

    Dumitrescu, A.; Milu, C.; Gheorghe, R.; Vaupotic, J.; Stegnar, P.

    2001-01-01

    A pilot study on indoor radon and gamma dose rates in schools and kindergartens (totalling one hundred buildings) in the Bucharest metropolitan area was performed jointly by the Institute of Public Health, Bucharest, Romania, and the J. Stefan Institute, Ljubljana, Slovenia. Because the geological structure of subsoil over the whole Bucharest area is uniform (a loess platform), the criteria for selecting a kindergarten or a school to be monitored were the age of the building and the building materials. Indoor radon concentrations were measured by a single one-month exposure of radon monitoring device based on etched track detectors in December 2000. Data show a lognormal distribution within the concentration range of 43/477 Bq/m 3 . An arithmetic mean of 146 Bq/m 3 and a geometric mean of 128 Bq/m 3 were obtained. Concomitant with indoor radon levels gamma dose rates were also measured, using thermoluminescent dosimeters. Values ranged from 54 to 100 μSv mo -1 , with a mean value of 74 μSv mo -1 . Having only a single average indoor radon concentration for a winter month, it is not possible to comment on our results, applying the ICRP Publication 65 methodology for indoor radon action level for the general public. Nevertheless, they give a preliminary picture of indoor radon and gamma dose rate levels in schools and kindergartens in Bucharest, and constitute a solid basis on which to design and perform a nation-wide radon survey programme.(author)

  4. Radon concentration of waters in Greece and Cyprus

    Science.gov (United States)

    Nikolopoulos, D.; Vogiannis, E.; Louizi, A.

    2009-04-01

    Alpha Guard are connected via plastic radon proof tubes. Forced degassing of radon gas is performed by circulating the air in the set up with the use of a pump. Water sampling (to avoid radon escape) was driven by a strict protocol. Water taps were opened for 10 minutes before drawing the sample. Glass storage vessels of 200 to 1000 ml, with adjustment glass stoppers with standard NS 29/32 grounding, as well as sealing rings and granted security clamps for taper grounding, were completely filled slowly and immediately closed (to avoid the formation of air bubbles). Similar procedure (except tap opening) was followed for underground and surface waters. Laboratory measurements were performed at least one hour after drawing the sample in order to assure the full decay of any thoron content and to the minimum achievable time interval, so as the radon content to be the highest possible to allow higher precision. For the measurement the glass stopper was removed and immediately exchanged with the degassing cap. Afterwards water quantity was reduced to about half and measured. From the measurements, the mean annual equivalent dose rate (aEDr) delivered to stomach due to ingestion and the contribution to aEDr due to inhalation of radon in drinking water were calculated as using the EURATOM 2001 dose conversion factor (0.00144 mSv/Bq). Radon concentrations in drinking waters ranged between (1.1+/-0.5) Bq/L and (15+/4) Bq/L. Only three samples collected from the radon prone area of Arnea Chalkidikis presented high radon concentrations (120+/20 Bq/L, 320+/-40 Bq/L, 410+/-50 Bq/L). Radon concentrations in underground waters ranged between (1.2+/-0.7) Bq/L and (14.7+/-1.1) Bq/L. The corresponding concentration range in surface waters was (2.7+/-0.8) Bq/L and (24+/-6) Bq/L. The radon concentrations in thermal waters (some of which are used for drinking) were quite higher (in the range of (220+/-20) to (340+/-40) Bq/L). In both countries, no correlation of radon in underground waters

  5. Result of the intercomparison exercise on radon measuring instruments and radon detectors 'bev- radon ring 2005'

    Energy Technology Data Exchange (ETDEWEB)

    Baumgartner, A. [Vienna Univ. of Technology, Atominstitut, Wien (Austria); Maringer, F.J.; Michai, P.; Kreuziger, M. [BEV-Federal Office of Metrology and Surveying, Wien (Austria)

    2006-07-01

    In spring 2005 the Federal Office of Metrology and Surveying (B.E.V.) invited all in Austria working radon measuring institutes to an intercomparison exercise at the radon calibration laboratory in the Arsenal. The aim of this intercomparison was on the one hand an objective inquiry and documentation of the current metrological potential on the section of radon measurement in Austria - both quantitative and qualitative- and on the other hand an initiative for the participating laboratories to optimize and improve their applied calibration-, measurement and analyse technique. Ten contacted Austrian radon laboratories were prepared to participate on the radon intercomparison exercise. The intercomparison exercise was carried out from 14. till 29. June at the radon calibration laboratory in the Arsenal of the B.E.V.. As radon emanation source a five stepped arranged, at the Arsenal built radon source was used. The source ( A.D.O.T.T.O. 1 is filled with a certified Ra- 226-standard solution of the Czech Metrological Institute (C.M.I.), Prag. A simple statistic based model was used for the evaluation and assessment of the results from the participants, which consider the statistic nature of the radioactive decay combined uncertainty. Altogether 183 measuring instruments participated the intercomparison exercise. Two reference measuring instruments, 22 active and 159 passive measuring instruments. The active measuring instruments formed 6 types of instruments and as passive radon detectors were 7 different types used from the participants. The positioning of the radon measuring instruments and detectors in the radon calibration laboratory was executed in regard to statistic points of view. From the active measuring instruments 17 could qualify and from the passive methods six from eight participants were in compliance to the given criteria. Radon measurements, which could have financial and economics relating implications (e.g. architectural redevelopment or

  6. One cubic metre NIST traceable radon test chamber

    International Nuclear Information System (INIS)

    Kotrappa, P.; Stieff, F.

    2008-01-01

    With the availability of the National Inst. of Standards and Technology (NIST) Radon Emanation Standard with a content of ∼5000 Bq of 226 Ra, it is possible to build a flow through a practical radon test chamber. A standard glove box with four gloves and a transfer port is used. Air is pumped through a flow integrator, water jar for humidification and NIST source holder, and into the glove box through a manifold. A derived theoretical expression provides the calculated radon concentration inside the chamber. The calculation includes a derived decay correction due to the large volume and low flow rate of the system. Several calibrated continuous radon monitors and passive integrating electret ion chambers tested in the chamber agreed fairly well with the calculated radon concentrations. The chamber is suitable for handling the calibration of several detectors at the same time. (authors)

  7. Radon in geological medium

    Energy Technology Data Exchange (ETDEWEB)

    Hricko, J [GEOCOMPLEX, a.s., Bratislava (Slovakia)

    1996-12-31

    The paper presented deals with behavior of the radon in geological medium and with some results of the radon survey in Bratislava and Kosice regions. 1) The a{sub v} has been detected in the holes 0.80 m deep. The density of observations - 3 reference areas (one represents 20 stations) per 1 km{sup 2}. The radon risk maps in 1:25000 and 1:50000 scales have been compiled. The 56.8% of the project area lies in low radon risk, 37.6% in medium radon risk and 5.6% in high radon risk. Follow-up monitoring of the equivalent volume radon activity (EVRA) at the flats, located in the areas with high radon risk of the surface layer, has showed values several times higher than Slovak limits (Marianka, Raca, Vajnory). The evidence that neotectonic is excellent medium for rising up emanation to the subsurface layer, is shown on the map. The tectonic zone of Liscie udolie in Bratislava-Karlova Ves area has been clearly detected by profile radon survey (a{sub v} > 50 kBq/m{sup 3}). 2) At present, northern half of the area of Kosice in question was covered by radon survey. The low and medium radon risks have been observed here, while localities with high radon risk are small in extent. The part of radon risk and soil permeability map from northern Kosice area is shown. (J.K.) 3 figs., 2 refs.

  8. Radon in geological medium

    International Nuclear Information System (INIS)

    Hricko, J.

    1995-01-01

    The paper presented deals with behavior of the radon in geological medium and with some results of the radon survey in Bratislava and Kosice regions. 1) The a v has been detected in the holes 0.80 m deep. The density of observations - 3 reference areas (one represents 20 stations) per 1 km 2 . The radon risk maps in 1:25000 and 1:50000 scales have been compiled. The 56.8% of the project area lies in low radon risk, 37.6% in medium radon risk and 5.6% in high radon risk. Follow-up monitoring of the equivalent volume radon activity (EVRA) at the flats, located in the areas with high radon risk of the surface layer, has showed values several times higher than Slovak limits (Marianka, Raca, Vajnory). The evidence that neotectonic is excellent medium for rising up emanation to the subsurface layer, is shown on the map. The tectonic zone of Liscie udolie in Bratislava-Karlova Ves area has been clearly detected by profile radon survey (a v > 50 kBq/m 3 ). 2) At present, northern half of the area of Kosice in question was covered by radon survey. The low and medium radon risks have been observed here, while localities with high radon risk are small in extent. The part of radon risk and soil permeability map from northern Kosice area is shown. (J.K.) 3 figs., 2 refs

  9. Comparison of active and passive methods for radon exhalation from a high-exposure building material

    International Nuclear Information System (INIS)

    Abbasi, A.; Mirekhtiary, F.

    2013-01-01

    The radon exhalation rates and radon concentrations in granite stones used in Iran were measured by means of a high-resolution high purity Germanium gamma-spectroscopy system (passive method) and an AlphaGUARD model PQ 2000 (active method). For standard rooms (4.0 x 35.0 m area x 32.8 height) where ground and walls have been covered by granite stones, the radon concentration and the radon exhalation rate by two methods were calculated. The activity concentrations of 226 Ra in the selected granite samples ranged from 3.8 to 94.2 Bq kg -1 . The radon exhalation rate from the calculation of the 226 Ra activity concentration was obtained. The radon exhalation rates were 1.31-7.86 Bq m -2 h -1 . The direction measurements using an AlphaGUARD were from 218 to 1306 Bq m -3 with a mean of 625 Bq m -3 . Also, the exhalation rates measured by the passive and active methods were compared and the results of this study were the same, with the active method being 22% higher than the passive method. (authors)

  10. Intercomparison and intercalibration of passive/active radon and active radon progeny instruments and methods in North America

    International Nuclear Information System (INIS)

    George, A.C.; Tu, Keng W.

    1993-06-01

    An intercomparison and intercalibration exercise for radon and radon progeny measurements made with active and passive instruments was held at EML from October 22--30,1992. Twenty-five participants submitted 96 passive integrating devices, eight active devices for radon, and seven integrating devices for potential alpha energy concentration (PAEC). In addition, 40 grab samples for radon progeny analysis were taken by five groups that participated in person during the intercomparison. The results reported to EML indicate that the majority of the participants (70%) obtained mean results within 10% of the EML reference value. Although the instruments used in this exercise are based on different principles of collection and detection, they all appear reliable. However, in some instances there seemed to be some minor problems with quality control and calibration bias. Also, the large counting errors for the PAEC experienced by some of the participants can be minimized by using higher sampling air flow rates without sacrificing instrument portability

  11. Radiation exposure due to radon and radon daughters

    International Nuclear Information System (INIS)

    Ullmann, W.

    1976-01-01

    Underground miners working over long periods of time in mines with a high content of radon and radon daughters belong to that group of occupationally exposed persons who are subject to the greatest somatic risk, with values especially high if the permissible dose limits are exceeded. Follwing an overview of the permissible limits currently in use for radon and radon daughters as well as the results of examinations performed in nationally-owned underground mining of the G.D.R., considerations are presented on the measuring quantities requisite for statistical, control and safety measurements in this field. Finally, conclusions are drawn concerning the measuring procedures and instruments to be employed for practical work. (author)

  12. Radon and aldehyde concentrations in the indoor environment. Final report

    International Nuclear Information System (INIS)

    Moschandreas, D.J.; Rector, H.E.

    1981-04-01

    Findings regarding indoor air contaminants in the energy-efficient residence (EER) in Mt. Airy, Maryland are reported. The objectives of the study were to collect and analyze relevant air quality samples (specifically radon and aldehydes), characterize the indoor air quality with respect to radon and aldehydes, and develop relationships between air infiltration rates and contaminant levels. One-fifth of the measured formaldehyde concentrations were in the range that may cause health concerns. Although indoor temperature and relative humidity affect indoor HCHO concentration, the elevated formaldehyde concentrations were measured under very low air infiltration rates. The data show that ventilation of the indoor air space is somewhat effective in reducing high HCHO concentrations. The operation of the heat exchanger led to an increase of the air infiltration rate which in turn resulted in substantial reduction of formaldehyde concentrations. A considerable number of the collected samples of indoor air displayed radon concentrations at levels higher than 1.0 to 4.0 nCim -3 (assuming an equilibrium factor of 0.5, these radon levels would correspond to working levels above the health guidelines suggested by the US EPA for homes in Florida built on land reclaimed from phosphate mining). As in the case of indoor formaldehyde concentrations, elevated indoor concentrations are substantially reduced when the infiltration rate is increased. The data base shows that the use of the air to air heat exchanger leads to reduction of indoor radon concentration by increasing the residential ventilation rate

  13. BGS Radon Protective Measures GIS

    International Nuclear Information System (INIS)

    Appleton, D.; Adlam, K.

    2000-01-01

    The British Geological Survey Radon Protective Measures Geographical Information System is described. The following issues are highlighted: Identification of development sites where radon protection is required in new dwellings; Mapping radon potential on the basis of house radon and geology; Radon Protective Measures GIS; Radon site reports; and Follow-up radon protective measures sire reports

  14. Air pollution. Actions to promote radon testing

    International Nuclear Information System (INIS)

    Guerrero, Peter F.; Adams, Charles M.; McGee, William F.; Goldsmith, Larry A.; Feldesman, Alice G.; Grissinger, Charles R.; Updegraff, William D.; Langdon, Robin S.; Bartholomew, Philip L.

    1992-12-01

    To promote radon testing, EPA initiated public information and awareness programs and provided grants to states to develop programs aimed at encouraging homeowners to test for radon. Nationwide telephone surveys, according to EPA, indicate that these efforts have raised the public awareness of radon to as high as 78 percent but that about only 9 percent of those surveyed have tested their homes for radon. Concerned about improving risk reduction through its radon program, EPA convened a review panel. The panel not only recommended in May 1992 that the current voluntary approach be continued but also called for program changes to encourage more testing. These changes include targeting public information and other resources to areas where radon levels are predicted to be high and promoting testing and mitigation at the time of real estate transactions. To support state radon efforts, the Congress authorized a grant program for yearly grants of $10 million for 3 years. Funds for this program were recently extended for a fourth year through fiscal year 1993. Information to measure states' success in promoting testing by homeowners was generally not available because (1) much of the grant funding has been used to identify the extent of the radon problem; (2) federally funded public information projects were often directed to large audiences, making it difficult to measure testing rates; and (3) EPA's evaluation process for the grant program did not contain a component to measure increases in testing. We did, however, identify some state projects that have increased radon testing by targeting program efforts to homes in areas with potentially high levels of radon. The results of the state projects would seem to support the EPA review panel's recommendations on promoting radon testing through targeting program resources. In two states we surveyed, the voluntary use of disclosure statements as part of a real estate sales contract was a frequent occurrence, and in one state

  15. Does attention speed up processing? Decreases and increases of processing rates in visual prior entry.

    Science.gov (United States)

    Tünnermann, Jan; Petersen, Anders; Scharlau, Ingrid

    2015-03-02

    Selective visual attention improves performance in many tasks. Among others, it leads to "prior entry"--earlier perception of an attended compared to an unattended stimulus. Whether this phenomenon is purely based on an increase of the processing rate of the attended stimulus or if a decrease in the processing rate of the unattended stimulus also contributes to the effect is, up to now, unanswered. Here we describe a novel approach to this question based on Bundesen's Theory of Visual Attention, which we use to overcome the limitations of earlier prior-entry assessment with temporal order judgments (TOJs) that only allow relative statements regarding the processing speed of attended and unattended stimuli. Prevalent models of prior entry in TOJs either indirectly predict a pure acceleration or cannot model the difference between acceleration and deceleration. In a paradigm that combines a letter-identification task with TOJs, we show that indeed acceleration of the attended and deceleration of the unattended stimuli conjointly cause prior entry. © 2015 ARVO.

  16. Risk assessment of exposure to radon decay products

    Energy Technology Data Exchange (ETDEWEB)

    Monchaux, G

    1999-07-01

    The aim of this project was to assess the risk due to inhalation of radon and its decay products using an horizontal approach across a large scale research programme. The central objective was the assessment of human risk which requires combination of several topics involving a multidisciplinary approach. In the Aerosol Studies Group, progress was achieved in improvement, calibration and automation of experimental techniques for continuous and integrated measurements of the unattached fraction f{sub p}- and equilibrium factor F- values. Measurements were performed to determine the variation of size distributions of unattached and aerosol-associated radon decay products under typical living conditions. All aerosol groups performed controlled chamber studies to understand the basic behaviour of airborne activity concentrations. Measurements were performed to determine neutralisation rates of {sup 218}Po, to understand the cluster growth with residence time and to understand the hygroscopic growth of aerosol particles. In the Modelling Group, the programme RADEP has been developed to calculate the weighted committed equivalent lung dose per unit exposure of radon progeny (H{sub w}/P{sub p}) which implements the ICRP Publication 66 Human Respiratory Tract Model (HRTM). The stochastic deposition model (IDEAL) has been compared with the deposition model used by the HRTM, and the agreement between the two deposition models was excellent. A deterministic radon progeny dosimetry model (RADOS) has been developed. This model includes all bronchial airway generations compared with the HRTM that groups the 16 airway generations into three regions. Initial calculations with RADOS show that the basal and secretory cell doses are slightly smaller compared with that of the HRTM. A sensitivity analysis has been performed that has identified those HRTM model parameters that most affect the Hw/Pp. A stochastic rat deposition model (RALMO) and a clearance model for the rat based on the

  17. Risk assessment of exposure to radon decay products

    International Nuclear Information System (INIS)

    Monchaux, G.

    1999-01-01

    The aim of this project was to assess the risk due to inhalation of radon and its decay products using an horizontal approach across a large scale research programme. The central objective was the assessment of human risk which requires combination of several topics involving a multidisciplinary approach. In the Aerosol Studies Group, progress was achieved in improvement, calibration and automation of experimental techniques for continuous and integrated measurements of the unattached fraction f p - and equilibrium factor F- values. Measurements were performed to determine the variation of size distributions of unattached and aerosol-associated radon decay products under typical living conditions. All aerosol groups performed controlled chamber studies to understand the basic behaviour of airborne activity concentrations. Measurements were performed to determine neutralisation rates of 218 Po, to understand the cluster growth with residence time and to understand the hygroscopic growth of aerosol particles. In the Modelling Group, the programme RADEP has been developed to calculate the weighted committed equivalent lung dose per unit exposure of radon progeny (H w /P p ) which implements the ICRP Publication 66 Human Respiratory Tract Model (HRTM). The stochastic deposition model (IDEAL) has been compared with the deposition model used by the HRTM, and the agreement between the two deposition models was excellent. A deterministic radon progeny dosimetry model (RADOS) has been developed. This model includes all bronchial airway generations compared with the HRTM that groups the 16 airway generations into three regions. Initial calculations with RADOS show that the basal and secretory cell doses are slightly smaller compared with that of the HRTM. A sensitivity analysis has been performed that has identified those HRTM model parameters that most affect the Hw/Pp. A stochastic rat deposition model (RALMO) and a clearance model for the rat based on the HRTM have been

  18. Influence of radon diffusion on the 210Pb distribution in sediments

    International Nuclear Information System (INIS)

    Imboden, D.M.; Stiller, M.

    1982-01-01

    A mathematical model is presented which describes the distribution of radon 222 in sediments having a constant or variable depth distribution of radium 226. The model is extended to the distribution of lead 210, taking into account the mobility of radon (the precursor of 210 Pb) within the sediment column. The 210 Pb model is compared, at constant radium activity, with the conventional approach which disregards the radon diffusion when estimating sedimentation rates by the 210 Pb method. The ratio between apparent and real sedimentation rate, s'/s, expressed as a function of three dimensionless parameters, demonstrates the importance of the radon diffusion effect. This effect is particularly important for sediments with small initial excess 210 Pb activity, small sedimentation rate, large radon diffusivity, or a combination of these factors. Applied to Lake Geneva, the sedimentation is estimated to be larger by 30--50% than the original value by Krishnaswami et al, (1971). In sediments which are mixed at the surface (physical mixing or bioturbation), the 210 PB activity in the mixed layer is diminished compared to that in the settling sediment material (Robbins et al., 1977), and radon diffusion makes the activity difference even larger, especially for low initial excess 210 Pb activity, small sedimentation rate, and large mixing intensity. This result may be of importance for the balance of 210 Pb in an aquatic system if the calculations are based on activities measured in the sediment

  19. Radon: possible links with leukaemia and other non-lung cancers

    International Nuclear Information System (INIS)

    Henshaw, D.L.; Eatough, J.P.

    1993-01-01

    The evidence for possible links between domestic radon exposure and incidence of leukaemia and other non-lung cancers is reviewed. Recent calculations of the radon derived dose to red bone marrow suggests that if background radiation is linked to leukaemia in the general population then radon exposure may be a causative factor. Accordingly, statistically significant geographical correlations between domestic radon exposure and incidence of leukaemia have been observed in several data sets. In a preliminary study the level of hprt mutation in peripheral blood of individuals has been found to correlate with radon concentration in their homes. Geographical associations have also been observed between domestic radon exposure and certain other cancers. A model has been developed which predicts the possible carcinogenic effect of simultaneous exposure to alpha particles and gamma radiation and to radon and cigarette smoke, reflecting the nature of natural exposures. The model is used to suggest a mechanism for an antagonistic effect of radon and smoking at domestic levels but a synergistic effect at higher dose rates such as in uranium miners. (orig.)

  20. Radon Measurements in Vojvodina

    International Nuclear Information System (INIS)

    Bikit, I.; Bikit, K.; Forkapic, S.; Mrda, D.; Nikolov, J.; Todorovic, N.; Veskovic, M.

    2013-01-01

    Recent analyses of epidemiological studies of lung cancer risk from residential exposures demonstrate a statistically significant increase per unit of exposure below average annual concentrations of about 200 Bq/m 3 . Indoor radon measurements performed in Novi Sad in about 400 houses and flats are presented and discussed in this paper. By measuring gamma-activity of radon daughters, radon activity concentration was determined to be 50 Bq/m 3 . In Vojvodina region indoor radon levels were measured by alpha track detectors CR-39 on about 3000 locations during the winter seasons in the period of three years (2003-2005). The main aim of the present study was to explore the critical group of population for radon exposure and to estimate maximal annual doses. Existing radon maps which identify regions with elevated radon levels will improve data collection and analysis for the future radon campaigns. Collaboration on the JRC program of European indoor radon map and implementation of grid system are also discussed.(author)

  1. Radon and cancer

    International Nuclear Information System (INIS)

    2011-01-01

    This publication proposes an overview on what is known about the carcinogenic effect of radon. It recalls the origin of radon, its presence in the environment, and its radioactivity. It comments data on the relationship between exposure to radon and lung cancer, and with other forms of cancer. It discusses the role of the exposure level, and the cases of professional and domestic exposure with respect to these risks. It indicates the hazardous areas in France which are well identified, outlines that smokers are more likely victims of risks related to radon, that this risk is still underrated and underestimated (notably by the public). It gives an overview of existing regulations regarding exposure to radon, of public health policies and national plans concerning radon, and recalls some WHO recommendations

  2. Preliminary study on the rate of broncho-pulmonary cancer in a Romanian department (Bihor) for the estimation of radon risk exposure

    International Nuclear Information System (INIS)

    Vaida, T.; Maghiar, F.; Cosma, C.; Ristoiu, D.; Ramboiu, S.; Pacurar, V.; Poffijn, A.

    1996-01-01

    The purpose of this paper is a retrospective estimation on the rate of lung cancer at the population in the Bihor district (Romania) in two years (1993 -1994) and the potential bronchopulmonary cancer risk from indoor radon. In this time were found 473 cases with primary bronchopulmonary cancer: 400 men (84.5%) and 73 women (15.4%). Most cases ( 64.4%) were from rural environment while the other 35.5% were from urban environment. Preliminary study on the potential lung cancer risk from indoor radon encompassed 40 cases and 66 non-cancer controls in the period March-July 1995. (author)

  3. Radon awareness in Ireland: a assessment of the effectiveness of radon road shows

    International Nuclear Information System (INIS)

    Synnott, H.

    2006-01-01

    Full text: In late 2004 the Radiological Protection Institute of Ireland (R.P.I.I.) initiated a series of radon road shows in areas designated as High Radon Areas 1 in the R.P.I.I. s national radon survey of homes. The main objective of these road shows was to provide information to a local audience on the risks of exposure to radon. These road shows target both employers and householders. Each road show has the same general format. A presentation and/or meeting with a major employer representative group within the area. The purpose is to make employers aware of the risks associated with exposure to radon in the workplace and to highlight their obligations under current Irish health and safety legislation regarding radon in the workplace. An information stand on radon manned by R.P.I.I. staff members in a local shopping centre or other similar area. This provides those concerned about radon with accessible information on radon exposure risks, how to measure radon and the steps a home owner could take to reduce radon concentrations where necessary. Where possible R.P.I.I. staff members visit one or more schools in the general area. A short presentation on radon was given to students and students were given an opportunity to asks questions Maximizing media exposure to publicize our visits is vital to the success of these visits. Each visit is preceded by a Press Release whose main aim is to brief local and national media on the radon issue so as to achieve maximum publicity mainly through radio and television coverage. In general the media are very interested in the whole radon area and R.P.I.I. staff members have given 57 radio and 10 television interviews to date since the commencement of this initiative. The four road shows carried out to date have been successful in encouraging householders to carry out radon measurements. Since the start of the road shows to the present, the R.P.I.I. has seen a 44% increase in the number of householders requesting radon

  4. Study of radon exhalation rates using solid state nuclear track detectors in stone mining area of Aravali range in Pali region, district Faridabad

    International Nuclear Information System (INIS)

    Raj Kumari; Yadav, A.S.; Kant, Krishan; Garg, Maneesha

    2013-01-01

    It is well established that indoor radon-thoron and daughters are the largest contributor to total radiation dose received by populations. They account for more than 50% of the total dose and the radiation exposure beyond permissible levels can lead to deleterious effects on health. This fact necessitates extensive studies of natural radioactivity levels in the stone mining area of Aravali range in Faridabad. The stone mining area of Aravali Range in Pali, District Faridabad bears significant geological features. Radon exhalation from ground plays an important role in enhanced indoor radon levels and can pose grave health hazards to the workers and the residents. Exhalation rates (mass and surface) from stone samples of the area have been studied using LR-115, Type II nuclear track detectors. The mass and surface exhalation rates from crushed stone samples, also called stone dust varied in the range 3.41-9.11 mBq kg -1 h - 1 and 75.9-202.7 mBq m -2 h -1 , respectively. The study has revealed substantial presence of radionuclides in the samples collected from the mining area. (author)

  5. Project Radon

    International Nuclear Information System (INIS)

    Ekholm, S.

    1988-01-01

    The project started in March 1987. The objective is to perform radon monitoring in 2000 dwellings occupied by people employed by State Power Board and to continue to contribute to the development of radon filters. The project participates in developing methods for radon measurement and decontamination and in adapting the methods to large scale application. About 400 so called radon trace measurements (coarse measurement) and about 10 action measurements (decontamination measurement) have been made so far. Experience shows that methods are fully applicable and that the decontamination measures recommended give perfectly satisfactory results. It is also established that most of the houses with high radon levels have poor ventilation Many of them suffer from moisture and mould problems. The work planned for 1988 and 1989 will in addition to measurements be directed towards improvement of the measuring methods. An activity catalogue will be prepared in cooperation with ventilation enterprises. (O.S.)

  6. Dosimetry of inhaled radon and thoron progeny

    International Nuclear Information System (INIS)

    James, A.C.

    1994-06-01

    This chapter reviews recent developments in modeling doses received by lung tissues, with particular emphasis on application of ICRP's new dosimetric model of the respiratory tract for extrapolating to other environments the established risks from exposure to radon progeny in underground mines. Factors discussed include: (1) the influence of physical characteristics of radon progeny aerosols on dose per unit exposure, e.g., the unattached fraction, and the activity-size distributions of clustered and attached progeny; (2) the dependence of dose on breathing rate, and on the exposed subject (man, woman or child); (3) the variability of dose per unit exposure in a home when exposure is expressed in terms of potential α energy or radon gas concentration; (4) the comparative dosimetry of thoron progeny; and (5) the effects of air-cleaning on lung dose. Also discussed is the apparent discrepancy between lung cancer risk estimates derived purely from dosimetry and the lung cancer incidence observed in the epidemiological studies of radon-exposed underground miners. Application of ICRP's recommended risk factors appears to overestimate radon lung-cancer risk for miners by a factor of three. ''Normalization'' of the calculated effective dose is therefore needed, at least for α dose from radon and thoron progeny, in order to obtain a realistic estimate of lung cancer risk

  7. Analysis of radon protection cover on uranium tailings pile

    International Nuclear Information System (INIS)

    Zhang Zhe

    1993-01-01

    The average radon emanation rate of the whole surface over one year was used for evaluating the radon release of uranium tailings pile. The effective of radon protection cover depends on the shape and property of the tailings pile, the properties of covering and the control of air vadose in the pile. It was indicated that the covering with low diffusion coefficient, small porosity and bad permeability was suitable to cover the pile. The analytical formula of the covering layer thickness was given

  8. Radon levels in dwelling shielded spaces (DSS) in Israel

    International Nuclear Information System (INIS)

    Haquin, G.; Margaliot, M.; Riemer, T.; Shamash, S.; Even, O.; Shamai, Y.

    2002-01-01

    Exposure to radon gas is known as the major contributor to the general public exposure to ionizing radiation. The typical radon concentration in Israeli houses with a direct ground contact is about 50 Bq/m 3 , attributed mainly to soil gas penetration into the house. All newly constructed buildings (since 1991) must include Dwelling Shielded Spaces (DSS) which are rooms made of massive solid concrete, equipped with air-tight steel door and window. The DSS serve as shelters against both explosive and chemical warfare. In normal practice, the DSS serves as a conventional room in the household. Standard size DSS contain a mass of around 35 tons of concrete with typical 2 26R a activity concentration of 30 Bq/kg. This mass of concrete is expected to increase the radon concentration in the DSS room due to exhalation from the building material. Published exhalation rate values from concrete in the US and Europe vary from 0.1 to 8 mBq/m 2 sec. (0.5 - 30 Bq/m 2 h). This work presents short and long-term radon measurements performed in high-rise building DSS's. Measurements of the free exhalation rate and wall exhalation rate as well as ventilation rate in DSS are also presented and the relation between these quantities is analyzed

  9. Indoor Radon and Lung Cancer Risk in Osijek

    International Nuclear Information System (INIS)

    Planinic, J.; Vukovic, B.; Faj, Z.; Radolic, V.; Culo, D.; Smit, G.; Suveljak, B.; Stanic, D.; Faj, D.

    2001-01-01

    Full text: Although studies of radon exposure have established that Rn decay products are a cause of lung cancer among miners, the lung cancer risk to the general population from indoor radon remains unclear. Our investigation of indoor radon influence on lung cancer incidence was carried out for 188 cases of the disease appeared in Osijek town during last five years. Radon concentration was measured in homes of the patients as well as for a control group. An ecologic method was applied by using the town map with square fields of 1,1km2 and the town was divided into 24 fields. For indoor radon level in the fields and belonging number of the diseases, a positive correlation coefficient was obtained, that was statistically significant, and a linear regression equation of cancer mortality rates was determined. In the mentioned population of the patients, subgroups of smokers and nonsmokers, males and females were also particularly investigated. (author)

  10. Radon reduction in waterworks

    International Nuclear Information System (INIS)

    Raff, O.; Haberer, K.; Wilken, R.D.; Funk, H.; Stueber, J.; Wanitschek, J.; Akkermann-Kubillus, A.; Stauder, S.

    2000-01-01

    The removal of radon from water using water aeration is one of the most effective methods for reducing radon in waterworks. Therefore, this report describes investigations on packed tower columns and shallow aeration devices and a method for mathematical modelling of gas exchange processes for dimensioning packed tower columns for radon removal. Moreover, possibilities for removing radon using active carbon filtration under waterworks typical conditions and for reducing indoor radon levels in waterworks are discussed. Finally, conclusions on the necessity of radon removal in German waterworks are drawn. (orig.) [de

  11. Radon house doctor

    International Nuclear Information System (INIS)

    Nitschke, I.A.; Brennan, T.; Wadach, J.B.; O'Neil, R.

    1986-01-01

    The term house doctor may be generalized to include persons skilled in the use of instruments and procedures necessary to identify, diagnose, and correct indoor air quality problems as well as energy, infiltration, and structural problems in houses. A radon house doctor would then be a specialist in radon house problems. Valuable experience in the skills necessary to be developed by radon house doctors has recently been gained in an extensive radon monitoring and mitigation program in upstate New York sponsored by Niagara Mohawk Power Corporation and the New York State Energy Research and Development Authority. These skills, to be described in detail in this paper, include: (i) the use of appropriate instruments, (ii) the evaluation of the symptoms of a radon-sick house, (iii) the diagnostic procedures required to characterize radon sources in houses, (iv) the prescription procedures needed to specify treatment of the problem, (v) the supervision of the implementation of the treatment program, (vi) the check-up procedures required to insure the house cured of radon problems. 31 references, 3 tables

  12. Theoretical evaluation of indoor radon control using a carbon adsorption system

    International Nuclear Information System (INIS)

    Bocanegra, R.; Hopke, P.K.

    1989-01-01

    The conceptual framework for a carbon-based adsorption system for the control of indoor radon is presented. Based on the adsorptivity of typically available activated carbons, it is shown theoretically that carbon bed adsorbers can be effective in lowering indoor radon levels particularly when the area of radon ingress (the basement) has a relatively low exchange rate with the rest of the house

  13. MEASUREMENT OF INDOOR RADON-THORON IN AIR AND EXHALATION FROM SOIL IN THE ENVIRONMENT OF WESTERN HARYANA, INDIA.

    Science.gov (United States)

    Mann, Nisha; Kumar, Amit; Kumar, Sushil; Chauhan, R P

    2016-10-01

    Measurement of indoor radon and thoron is important because the inhalation of radon-thoron and their daughters contributes more than 50 % of the total dose from natural sources. One of the important parameters to find out the contribution of soil and building materials towards indoor radon is radon exhalation rates, which can be used for estimation of indoor radon levels. The indoor radon and thoron levels from the air and radon exhalation rates from soil samples collected from two districts (Hisar and Fatehabad) of Western Haryana are measured using pin-hole-based radon-thoron dosimeter and LR-115 solid-state nuclear track detector by canister technique. The results show that the indoor radon and thoron levels from Hisar district varied from 11 to 112 and 11 to 80 Bq m -3 , while for Fatehabad district from 5 to 24 and 59 to 105 Bq m -3 , respectively, in summer season. In winter season, indoor radon and thoron levels from Hisar district varied from 15 to 43 and 32 to 102 Bq m -3 , while for Fatehabad district from 18 to 31 and 11 to 80 Bq m -3 , respectively. The indoor radon levels of 95 % locations lie well below the limit recommended by International Commission of Radiation Protection, 2011. The radon mass exhalation rate varied from 6 to 56 mBq kg -1 h -1 The radon mass exhalation rates from the soil samples were lower than the worldwide average, i.e. 56 mBq kg -1 h -1 There exists a poor correlation between indoor radon and exhalation rates. More investigations of measurement of radionuclide contents from rock and stone of study area can improve the understanding. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. A nationwide survey of radon concentration in Japan. Indoor, outdoor and workplace

    International Nuclear Information System (INIS)

    Sanada, Tetsuya; Oikawa, Shinji; Kanno, Nobuyuki; Abukawa, Johji; Higuchi, Hideo

    2004-01-01

    The nationwide indoor, outdoor and workplace radon concentrations were surveyed in Japan. These surveys were conducted to estimate the natural radiation dose due to radon and its progeny for the general public. The radon concentration was measured using passive type radon monitor. The number of radon monitors were installed at indoor, outdoor and workplace for 940 houses, 705 points and 705 sites, respectively. The radon concentration was measured for one year at each measurement site. Annual mean radon concentration was obtained from four quarters measurements of 47 prefectures in Japan. The nationwide indoor, outdoor and workplace annual mean radon concentration were 15.5 Bq m -3 , 6.1 Bq m -3 and 20.8 Bq m -3 , respectively. Their radon concentration shows approximately a logarithmic normal distribution. Workplace showed relatively high radon concentration compared with other environments, may be due to construction materials and low ventilation rate. The indoor radon concentration found to be seasonal variation and architectural dependences. Seasonal variation and regional distribution of outdoor radon concentration was also observed. From the results of these radon surveys, the annual effective dose to the general public due to radon and its progeny was estimated to be 0.49 mSv y -1 in Japan. (author)

  15. Reasons for increasing radon concentrations in radon remediated houses

    International Nuclear Information System (INIS)

    Clavensjoe, B.

    1997-01-01

    The study comprises 31 single-dwelling houses where remedial actions were carried out in the 1980s. In all of them the radon concentrations have increased more than 30% according to recent control measurements. Radon sources are building material as well as the soil. The remedial actions dealt with ventilation systems, leakage through the basement floor, air cushions, sub-slab suction or radon wells according to the original problems. Causes for the increase varied: In many houses with soil radon problems, the installation of a normal mechanical ventilation system is not a good remedial action. In some houses on a ground with high permeability and high radon content in the soil air, the radon concentration may increase by the lowering of the indoor air pressure. In other houses the increase was a measurement effect, where sites/rooms were confused. Living related causes were identified in a number of cases, where fan speeds were reduced for energy conservation/noise reduction purposes or different use of windows airing had occurred. Extension of the dwelling space without changing the ventilation system caused the increase in one house. 23 refs

  16. Radon mitigation for the SuperCDMS SNOLAB dark matter experiment

    Science.gov (United States)

    Street, J.; Bunker, R.; Miller, E. H.; Schnee, R. W.; Snyder, S.; So, J.

    2018-01-01

    A potential background for the SuperCDMS SNOLAB dark matter experiment is from radon daughters that have plated out onto detector surfaces. To reach desired backgrounds, understanding plate-out rates during detector fabrication as well as mitigating radon in surrounding air is critical. A radon mitigated cleanroom planned at SNOLAB builds upon a system commissioned at the South Dakota School of Mines & Technology (SD Mines). The ultra-low radon cleanroom at SD Mines has air supplied by a vacuum-swing-adsorption radon mitigation system that has achieved >1000× reduction for a cleanroom activity consistent with zero and <0.067 Bq m-3 at 90% confidence. Our simulation of this system, validated against calibration data, provides opportunity for increased understanding and optimization for this and future systems.

  17. EPA program to demonstrate mitigation measures for indoor radon: initial results

    International Nuclear Information System (INIS)

    Henschel, D.B.; Scott, A.G.

    1986-01-01

    EPA has installed radon mitigation techniques in 18 concrete block basement homes in the Reading Prong region of eastern Pennsylvania. Three alternative active soil ventilation approaches were tested: suction on the void network within the concrete block basement walls; suction on the footing drain tile system; and suction on the aggregate underneath the concrete slab. The initial 18 mitigation installations were designed to demonstrate techniques which would have low to moderate installation and operating costs. Where effective closure of major openings in the block walls is possible, suction on the wall voids has proved to be extremely effective, able to reduce homes having very high radon Working Levels (up to 7 WL) to 0.02 WL and less. However, where inaccessible major openings are concealed within the wall, it is more difficult and/or more expensive to develop adequate suction on the void network, and performance is reduced. Testing is continuing to demonstrate the steps required to achieve high performance with wall suction in homes with such difficult-to close walls. Drain tile suction can be very effective where the drain tiles completely surround the home; drain tile suction is the least expensive and most aesthetic of the active soil ventilation approaches, but appears susceptible to spikes in radon levels when the basement is depressurized. Sub-slab suction as tested in this study - with one or two individual suction points in the slab - does not appear adequate to ensure sustained high levels of reduction on block wall basement homes; it appears to effectively treat slab-related soil gas entry routes so long as a uniform layer of aggregate is present, but it does not appear to effectively treat the wall-related entry routes. Closure of major openings might have improved sub-slab suction performance. 5 figures, 3 tables

  18. Environmental assessment of indoor radon gas exposure health hazards and some of its public risks

    International Nuclear Information System (INIS)

    Hussein, Abd El-Razik. Z.; Ibrahim, M.Se.; Ragab, M.H.; El-Bukhari, M.S.

    2005-01-01

    This study examine the relationship between indoor radon gas exposure and the cancer risk and housing characteristics in lung cancer risk houses (CRH) compared to non lung cancer risk houses (NCRH). Mean radon concentrations measured by active method were significantly higher among CRH compared to NCRH, 9:93 pCi/L versus 4.56 pCi/L, respectively. There was no statistically significant diurnal variation as regards radon levels in all examined houses. Indoor radon concentrations show statistically significance in houses with bad ventilation (low air change rate) compared to houses with good ventilation (high air change rate). Houses with floor material of tiles, had statistically significant higher radon concentrations. Neither finishing wall material nor indoor gas source shows statistically significance as regard radon levels. Radon levels > 4 pCi/L (US EPA action level) were statistically significance higher in bed rooms compared levels in living rooms. High radon concentrations were reported in lung cane risk houses and in houses with bad ventilation

  19. Determination of Lung-to-Blood Absorption Rates for Lead and Bismuth which are Appropriate for Radon Progeny

    International Nuclear Information System (INIS)

    Marsh, J.W.; Birchall, A.

    1999-01-01

    The ICRP Publication 66 Human Respiratory Tract Model (HRTM) treats clearance as a competitive process between absorption into blood and particle transport to the gastrointestinal tract and lymphatics. The ICRP recommends default absorption rates for lead and bismuth in ICRP Publication 71 but states that the values are not appropriate for short-lived radon progeny. This paper describes an evaluation of published data from volunteer experiments to estimate the absorption half-times of lead and bismuth that are appropriate for short-lived radon progeny. The absorption half-time for lead was determined to be 10±2 h, based on 212 Pb lung and blood retention data from several studies. The absorption half-time for bismuth was estimated to be about 13 h, based on 212 Bi urinary excretion data from one experiment and the ICRP biokinetic model for bismuth as a decay product of lead. (author)

  20. A numerical study on the performance evaluation of ventilation systems for indoor radon reduction

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ji Eun; Park, Hoon Chae; Choi, Hang Seok; Cho, Seung Yeon; Jeong, Tae Young; Roh, Sung Cheoul [Yonsei University, Wonju (Korea, Republic of)

    2016-03-15

    Numerical simulations were conducted using computational fluid dynamics to evaluate the effect of ventilation conditions on radon ({sup 222}Rn) reduction performance in a residential building. The results indicate that at the same ventilation rate, a mechanical ventilation system is more effective in reducing indoor radon than a natural ventilation system. For the same ventilation type, the indoor radon concentration decreases as the ventilation rate increases. When the air change per hour (ACH) was 1, the indoor radon concentration was maintained at less than 100 Bq/m{sup 3}. However, when the ACH was lowered to 0.01, the average indoor radon concentration in several rooms exceeded 148 Bq/ m{sup 3}. The angle of the inflow air was found to affect the indoor air stream and consequently the distribution of the radon concentration. Even when the ACH was 1, the radon concentrations of some areas were higher than 100 Bq/m{sup 3} for inflow air angles of 5 .deg. and 175 .deg.

  1. Instruments to measure radon-222 activity concentration or exposure to radon-222. Intercomparison 2014

    International Nuclear Information System (INIS)

    Foerster, Elisabeth; Beck, Thomas; Buchroeder, Helmut; Doering, Joachim; Schmidt, Volkmar

    2014-10-01

    According to the Directive 96/29/EURATOM the monitoring of occupational radiation exposures shall base on individual measurements carried out by an approved dosimetric service. Pursuant to the European Directive an approved dosimetric service is a body responsible for the calibration, reading or interpretation of individual monitoring devices.., whose capacity to act in this respect is recognized by the competent authorities. This concept will also be applied to radon services issuing passive radon measurement devices. Passive radon measurement devices 1 using solid state nuclear track detectors or electrets are recommended for individual monitoring of exposures to radon. German regulations lay down that radon measuring devices are appropriate for purposes of occupational radiation monitoring if the devices are issued by recognized radon measurement services, and the measurement service submits devices of the same type issued for radon monitoring to regular intercomparisons conducted by the Bundesamt fuer Strahlenschutz (BfS). A radon measuring service is recognized by the competent authority if it proves its organisational and technical competence, e. g. by accreditation. These regulations have been introduced in the area of occupational radiation exposures. Nevertheless, it is recommended that radon measuring services which carry out radon measurements in other areas (e.g. dwellings) should subject themselves to these measures voluntarily. The interlaboratory comparisons comprise the organization, exposure, and evaluation of measurements of radon activity concentration or exposure to radon. The comparisons only concern radon-222; radon-220 is not in the scope. Radon services being interested can get further information from the European Information System on Proficiency Testing Schemes (EPTIS) and from the BfS websites.

  2. Public perceptions of radon risk

    International Nuclear Information System (INIS)

    Mainous, A.G. III; Hagen, M.D.

    1993-01-01

    Since 1984, a significant amount of media attention has focused on health threats from radon gas exposure. Using a probability telephone survey of adults (n = 685), we studied public perceptions of risk from radon exposure versus other environmental health risks. The results indicated that 92% of those individuals who had heard of radon believe radon to be a health risk, although only 4% believe they are currently exposed to high levels of radon gas. Perception of risk from radon was positively related to other perceptions of environmental risks. Younger and less educated individuals were more likely to perceive radon as a health risk. Women were three-and-one-half times as likely as men to perceive risk from radon. However, there was no significant relationship between perceived risk from radon and cigarette smoking. Media attention has apparently led to public awareness of radon hazards, but further attention is needed to improve smokers' awareness of their special risks from radon

  3. Radon Research Program, FY 1991

    International Nuclear Information System (INIS)

    1992-03-01

    The scientific information being sought in this program encompasses research designed to determine radon availability and transport outdoors, modeling transport into and within buildings, physics and chemistry of radon and radon progeny, dose response relationships, lung cancer risk, and mechanisms of radon carcinogenesis. The main goal of the DOE/OHER Radon Research Program is to develop information to reduce these uncertainties and thereby provide an improved health risk estimate of exposure to radon and its progeny as well as to provide information useful in radon control strategies. Results generated under the Program were highlighted in a National Research Council report on radon dosimetry. The study concluded that the risk of radon exposure is 30% less in homes than in mines. This program summary of book describes the OHER FY-1991 Radon Research Program. It is the fifth in an annual series of program books designed to provide scientific and research information to the public and to other government agencies on the DOE Radon Research Program

  4. Swiss radon programme 'RAPROS'

    International Nuclear Information System (INIS)

    Zeller, W.

    1992-03-01

    The results of the five-year radon research program RAPROS presented in this report, allow for scientifically valid statements on the origin of elevated levels of indoor radon in Switzerland. These results form a basis for recommendations and for actions to be taken. Indoor radon concentrations have been measured in more than 4000 living-rooms and 2000 basements; a sampling density of about 0.2% of the Swiss housing stock. According to these measurements radon leads to an estimated average annual effective dose of 2 milli-Sievert, although in some regions the annual dose may be much higher. Extrapolation of the existing data shows that in about 10'000 Swiss houses radon may exceed 1000 Bq/m 3 . For these houses remedial actions are recommended. There seems to be no radon problem in the large cities in the Swiss Plateau. High indoor radon concentrations in Switzerland are due to the soil beneath the buildings. Data from the study indicated that the most important soil characteristic influencing indoor radon concentrations was its gas permeability. Because natural ventilation in a heated house creates a slight underpressure in the lower levels with respect to surrounding soils, radon is driven from the soil into the building. Weatherization of the houses to reduce energy consumption had in most cases no effect on the indoor radon concentrations. Radon from tap water or from building materials does not contribute significantly to indoor radon levels in Switzerland. The high levels in the Jura Mountains are thought to be associated with karstic limestone bedrock. Several houses within Switzerland have now been modified to reduce radon levels. The most successful mitigation technique combined forced-air ventilation with tightening of the basement to decrease or prevent air infiltration from the soil. (author) figs., tabs., refs

  5. Environmental radon

    International Nuclear Information System (INIS)

    Majumdar, S.K.; Schmalz, R.F.; Miller, E.W.

    1990-01-01

    This book covers many aspects of environmental radon, including: historical perspectives; occurrence and properties; detection, measurement, and mitigation, radon and health; and political, economic, and legislative impacts

  6. Radon thematic days - Conference proceedings

    International Nuclear Information System (INIS)

    2011-03-01

    This document brings together the available presentations given at the Radon thematic days organized by the French society of radiation protection (SFRP). Twenty five presentations (slides) are compiled in the document and deal with: 1 - General introduction about radon (Sebastien Baechler, IRA); 2 - Survey of epidemiological studies (Dominique Laurier, IRSN); 3 - Dosimetric model (Eric Blanchardon, Estelle Davesne, IRSN); 4 - Radon issue in Franche-Comte: measurement of the domestic exposure and evaluation of the associated health impact (Francois Clinard, InVS); 5 - WHO's (World Health Organization) viewpoint in limiting radon exposure in homes (Ferid Shannoun, OMS); 6 - Radon measurement techniques (Roselyne Ameon, IRSN); 7 - Quality of radon measurements (Francois Bochud, IRA); 8 - International recommendations (Jean-Francois Lecomte, IRSN); 9 - Radon management strategy in Switzerland - 1994-2014 (Christophe Murith, OFSP); 10 - 2011-2015 action plan for radon risk management (Jean-Luc Godet, Eric Dechaux, ASN); 11 - Radon at work place in Switzerland (Lisa Pedrazzi, SUVA); 12 - Strategies of radiation protection optimization in radon exposure situations (Cynthia Reaud, CEPN); 13 - Mapping of the radon potential of geologic formations in France (Geraldine Ielsch, IRSN); 14 - Radon database in Switzerland (Martha Gruson, OFSP); 15 - Radon 222 in taps water (Jeanne Loyen, IRSN); 16 - Buildings protection methods (Bernard Collignan, CSTB, Roselyne Ameon, IRSN); 17 - Preventive and sanitation measures in Switzerland (Claudio Valsangiacomo, SUPSI); 18 - Training and support approach for building specialists (Joelle Goyette-Pernot, Fribourg engineers and architects' school); 19 - Status of radon bulk activity measurements performed between 2005-2010 in public areas (Cyril Pineau, ASN); 20 - Neuchatel Canton experiments (Didier Racine, SENE); 21 - Montbeliard region experience in the radon risk management (Isabelle Netillard, Pays de Montbeliard Agglomeration); 22

  7. Lung cancer mortality and indoor radon concentrations in 18 Canadian cities

    International Nuclear Information System (INIS)

    Letourneau, E.G.; Mao, Y.; McGregor, R.G.; Semenciw, R.; Smith, M.H.; Wigle, D.T.

    1983-01-01

    Indoor radon and radon daughter concentrations were measured in a survey of 14,000 homes in 18 Canadian cities conducted in the summers of 1978 through 1980. Mortality and population data for the period 1966 through 1979 were retrieved for the geographic areas surveyed in each city. The results of analysis of the relation between lung cancer and radon daughter concentration, smoking habits and socioeconomic indicators for each city showed no detectable association between radon daughter concentrations and lung cancer mortality rates with or without adjustment for differences in smoking habits between cities

  8. Radon in Estonian dwellings - Results from a National Radon Survey

    Energy Technology Data Exchange (ETDEWEB)

    Pahapill, Lia; Rulkov, Anne; Rajamaee, Raivo [Estonian Radiation Protection Centre (Kiirguskeskus), Tallinn (Spain); Aakerblom, Gustav [Swedish Radiation Protection Authority, Stockholm (Sweden)

    2003-10-01

    A countrywide survey of radon concentrations in Estonian dwellings was carried out during the period 1998-2001. The survey formed a part of the cooperation program on radiation protection between the Estonian Radiation Protection (Kiirguskeskus) Centre and the Swedish Radiation Protection Authority (SSI). The survey included measurements in a number of dwellings representative for Estonia in detached houses and multifamily buildings (only dwellings on the bottom floor were included in the survey). Altogether, radon concentrations were measured in 515 dwellings, a number large enough to be statistically significant. All measurements were made with alphatrack film detectors of the same type that SSI uses in Sweden. The measurements were made during a 2-3 month period during the winter half-year. Two detectors were used in each dwelling. In Estonia there are 0.17 million dwellings in detached houses and 0.45 million in multi apartment buildings. Of the 1.26 million inhabitants in Estonia. 0.36 million live in detached houses and 0.90 million in multi apartment buildings. Most of the latter were built during the Soviet occupation. Of the dwellings in multifamily buildings 30 % are assumed to be situated on the first floor. The mean radon concentration in dwellings in detached hoses, according to the survey results, is 103 Bq/m{sup 3}, in dwellings on the bottom floor in multi apartment buildings it is 78 Bq/m{sup 3}. In 1% of the dwellings the radon concentration exceeded 400 Bq/m{sup 3}. The highest radon concentration found in the study was 1040 Bq/m{sup 3}. Based on the assumption that the average radon concentration in the dwellings in multi-apartment buildings that are not situated on the bottom floor is 30 Bq/m{sup 3}, and that these dwellings constitute 70% of all dwellings in multi apartment buildings, the mean radon concentration in dwellings in multi apartment buildings is calculated to be 44 Bq/m{sup 3}. The mean value for all Estonia dwellings is calculated

  9. Radon in Estonian dwellings - Results from a National Radon Survey

    International Nuclear Information System (INIS)

    Pahapill, Lia; Rulkov, Anne; Rajamaee, Raivo; Aakerblom, Gustav

    2003-10-01

    A countrywide survey of radon concentrations in Estonian dwellings was carried out during the period 1998-2001. The survey formed a part of the cooperation program on radiation protection between the Estonian Radiation Protection (Kiirguskeskus) Centre and the Swedish Radiation Protection Authority (SSI). The survey included measurements in a number of dwellings representative for Estonia in detached houses and multifamily buildings (only dwellings on the bottom floor were included in the survey). Altogether, radon concentrations were measured in 515 dwellings, a number large enough to be statistically significant. All measurements were made with alphatrack film detectors of the same type that SSI uses in Sweden. The measurements were made during a 2-3 month period during the winter half-year. Two detectors were used in each dwelling. In Estonia there are 0.17 million dwellings in detached houses and 0.45 million in multi apartment buildings. Of the 1.26 million inhabitants in Estonia. 0.36 million live in detached houses and 0.90 million in multi apartment buildings. Most of the latter were built during the Soviet occupation. Of the dwellings in multifamily buildings 30 % are assumed to be situated on the first floor. The mean radon concentration in dwellings in detached hoses, according to the survey results, is 103 Bq/m 3 , in dwellings on the bottom floor in multi apartment buildings it is 78 Bq/m 3 . In 1% of the dwellings the radon concentration exceeded 400 Bq/m 3 . The highest radon concentration found in the study was 1040 Bq/m 3 . Based on the assumption that the average radon concentration in the dwellings in multi-apartment buildings that are not situated on the bottom floor is 30 Bq/m 3 , and that these dwellings constitute 70% of all dwellings in multi apartment buildings, the mean radon concentration in dwellings in multi apartment buildings is calculated to be 44 Bq/m 3 . The mean value for all Estonia dwellings is calculated to be 60 Bq/m 3 . Using

  10. Radon-film-badges by solid radiators to complement track detector-based radon monitors

    International Nuclear Information System (INIS)

    Tommasino, L.; Tommasino, M.C.; Viola, P.

    2009-01-01

    Existing passive radon monitors, based on track detectors, present many shortcomings, such as a limited response sensitivity for one-week-indoor measurements and a limited response linearity for the assessment of large radon exposures indoors, in thermal spa, in caves, and in soil. Moreover, for in-soil measurements these monitors are too bulky and are often conducive to wrong results. For what concerns the radon-in-water measurements, they are just not suitable. A new generation of passive radon monitors is introduced in this paper, which are very similar to the compact badges used in neutron- and gamma-dosimetry and will be referred to as radon-film-badges. These film-badges are formed by thin-film radiators with suitable radon-sorption characteristics, facing track detectors. The key strategy adopted for these radiators is to exploit an equilibrium type of radon sorption in solids. Even though this new generation of passive monitors is at its infancy, it appears already clear that said monitors make it finally possible to overcome most of the shortcomings of existing passive radon monitors. These devices are uniquely simple and can be easily acquired by any existing radon service to complement their presently used passive radon monitors with little or no effort.

  11. Radon measurements: the sources of uncertainties

    International Nuclear Information System (INIS)

    Zhukovsky, Michael; Onischenko, Alexandra; Bastrikov, Vladislav

    2008-01-01

    uncertainties for retrospective measurements conducted by surface traps techniques can be divided in two groups: errors of surface 210 Pb ( 210 Po) activity measurements and uncertainties of transfer from 210 Pb surface activity in glass objects to average radon concentration during this object exposure. The sources of 210 Pb ( 210 Po) surface activity measurement uncertainties are: errors in the calibration of energy-angle dependence of alpha-particles registration efficiency; random Poisson errors during measurements, the influence of background alpha radiation from the glass; unknown U-Ra-Th activity ratio in the glass, nonuniform 210 Po distribution on the surface of glass object. Uncertainty factors of Jacobi model for connection of 210 Pb surface activity and average radon concentration are: unknown aerosol concentration, ventilation rate, surface/volume ratio in investigated room, long term radon variations, aerosol deposition rates and errors in the age estimation of glass object. It is shown that total measurement error of surface trap retrospective technique can be decreased to 35%. The analysis of errors for grab sampling measurements, charcoal canisters and track detectors are presented in the full paper

  12. Radon in buildings

    International Nuclear Information System (INIS)

    Connell, J.J.

    1991-01-01

    This guide is intended to inform designers, householders and other building owners about the radon problem and to help in deciding if there is need to take any action to reduce radon levels in their homes or other buildings.It explains what radon is, how it enters buildings and what effect it may have on health. Reference is made to some of the usual ways of reducing the level of radon and guidance is given on some sources of assistance

  13. Radon and its hazards

    International Nuclear Information System (INIS)

    Chang Guilan

    2002-01-01

    The author describes basic physical and chemical properties of radon and the emanation, introduces methods of radon measurement, expounds the hazards of non-mine radon accumulation to the health of human being and the protection, as well as the history how the human being recognizes the hazards of radon through the specific data and examples, and finally proposes protecting measures to avoid the hazards of radon to the health of human being, and to do ecologic evaluation of environments

  14. Long term performance of different radon remedial methods in Sweden

    CERN Document Server

    Clavensjoe, B

    2002-01-01

    The object of this project was to investigate the long time effectiveness of different radon remedial methods. The ten years project started 1991. From start the investigation comprised of 105 dwellings (91 single-family houses and 14 flats in multi-family buildings). In all of the dwellings remedial measures were carried out in the eighties. Before and immediately after the reduction the local measured the radon concentrations. New measurements of the radon concentrations have been made every third year; in 1991, 1994, 1997 and in 2000. Twelve different radon remedial methods and method combinations were used. The radon sources were building materials as well as sub-soils. In all of the dwellings the radon concentrations were measured by nuclear track films during 3 months (January-March) measurements and in half of them the air change rates by passive tracer gas methods. The results of the 2000 and the 1991 (within brackets) studies showed that the radon concentration was up to 200 Bq/m sup 3 in 54 (54) sin...

  15. Radon generation and transport. A journey though matter

    Energy Technology Data Exchange (ETDEWEB)

    Cozmuta, I. [Beckman Institute 139-74 Caltech, Pasadena, CA 91125 (United States)

    2001-12-07

    The transport of radon in concrete takes place through the complicated network of interconnected pores that is, at any time, the result of the process of hydration of cement and of moisture distribution and transport. Initially the microstructure of concrete depends on the mix proportions and curing conditions, its time-evolution being conditioned by its surrounding environment. Radon transport will be consequently a function of time, as it is influenced by the changing microstructure (total porosity and its distribution) and by the amount and distribution of the moisture contained in the pore system. A selection of information from the large amount of literature available on concrete is presented in chapter 2. A model that describes the process of hydration, of microstructure development and of moisture transport is presented in chapter 3. The physics of radon diffusion in homogeneous porous materials is outlined in chapter 4. The coupling of the numerical implementation of the hydration and radon transport (chapter 6) offers the possibility to achieve calculated values for porosity and moisture content thus, reducing the number of material parameters in the radon-transport equation that have to be determined experimentally. Chapter 7 covers the experimental methods and techniques. Chapter 5 presents a survey of the information available in literature on radon release from concrete and on radon barriers. This chapter also summarises results of several experimental studies investigating the radon reduction efficiency and also the permeability of various covers. On basis of this information, a selection was made for the covering materials to be assessed in this thesis. Radon-release rates of uncovered and completely covered concrete samples were measured. From these measurements the reduction efficiencies of various sealants (epoxy glue, double-sided aluminised polyethylene foil, soluble glass) were calculated (chapter 12). Also, as a result of the collaboration

  16. Radon generation and transport. A journey though matter

    International Nuclear Information System (INIS)

    Cozmuta, I.

    2001-01-01

    The transport of radon in concrete takes place through the complicated network of interconnected pores that is, at any time, the result of the process of hydration of cement and of moisture distribution and transport. Initially the microstructure of concrete depends on the mix proportions and curing conditions, its time-evolution being conditioned by its surrounding environment. Radon transport will be consequently a function of time, as it is influenced by the changing microstructure (total porosity and its distribution) and by the amount and distribution of the moisture contained in the pore system. A selection of information from the large amount of literature available on concrete is presented in chapter 2. A model that describes the process of hydration, of microstructure development and of moisture transport is presented in chapter 3. The physics of radon diffusion in homogeneous porous materials is outlined in chapter 4. The coupling of the numerical implementation of the hydration and radon transport (chapter 6) offers the possibility to achieve calculated values for porosity and moisture content thus, reducing the number of material parameters in the radon-transport equation that have to be determined experimentally. Chapter 7 covers the experimental methods and techniques. Chapter 5 presents a survey of the information available in literature on radon release from concrete and on radon barriers. This chapter also summarises results of several experimental studies investigating the radon reduction efficiency and also the permeability of various covers. On basis of this information, a selection was made for the covering materials to be assessed in this thesis. Radon-release rates of uncovered and completely covered concrete samples were measured. From these measurements the reduction efficiencies of various sealants (epoxy glue, double-sided aluminised polyethylene foil, soluble glass) were calculated (chapter 12). Also, as a result of the collaboration

  17. Concentration and entry rate of amino acids in buffalo calves fed on two planes of crude protein

    International Nuclear Information System (INIS)

    Verma, D.N.; Singh, U.B.; Varma, A.; Ranjhan, S.K.

    1974-01-01

    Amino acid entry rates into the body pool have been estimated in buffalo calves using a single injection isotope dilution technique. The animals received 2 levels of crude protein, 13 percent lower and 19 percent higher than NRC recommendation. The concentrations of free amino acid in plasma were 5.49 and 7.17 mg/100 ml in animals fed on low and high crude protein diet, respectively. There was significant differences in the plasma amino acid concentration and entry rates between the groups. Amino acid entry rates were 79.17 and 117.78 mg per min in groups fed on low and high plane of crude protein respectively, showing that availability of amino acid is better in animals given ratio high in crude protein contents. (author)

  18. Radon reduction

    International Nuclear Information System (INIS)

    Hamilton, M.A.

    1990-01-01

    During a radon gas screening program, elevated levels of radon gas were detected in homes on Mackinac Island, Mich. Six homes on foundations with crawl spaces were selected for a research project aimed at reducing radon gas concentrations, which ranged from 12.9 to 82.3 pCi/l. Using isolation and ventilation techniques, and variations thereof, radon concentrations were reduced to less than 1 pCi/l. This paper reports that these reductions were achieved using 3.5 mil cross laminated or 10 mil high density polyethylene plastic as a barrier without sealing to the foundation or support piers, solid and/or perforated plastic pipe and mechanical fans. Wind turbines were found to be ineffective at reducing concentrations to acceptable levels. Homeowners themselves installed all materials

  19. Human perception of radon risk and radon mitigation: Some remarks

    International Nuclear Information System (INIS)

    Neznal, M.; Neznal, M.

    2008-01-01

    The Radon program in the Czech Republic has a relatively long and rich history. Procedures, which enable to evaluate the risk of radon penetration from the ground, to protect new buildings, to find existing buildings with elevated indoor radon levels and to realise remedial measures in such buildings, have been developed, published and tested. In some cases, the whole system may fail due to psychological or sociological reasons. Three types of problems (conflicts) will be presented: human behaviour affecting measurement results, conflict between individual and 'all-society' points of view, interpretation of radon risk itself. (authors)

  20. Ventilation techniques and radon in small houses

    International Nuclear Information System (INIS)

    Keskinen, J.; Graeffe, G.; Janka, K.

    1988-01-01

    Indoor radon is the main cause of radiation exposure in Finland. The National Board of Health set the recommended concentration limits in 1986: an action level of 800 Bq/m 3 and a planning value of 200 Bq/m 3 for new buildings. The 800 Bq/m 3 concentration is estimated to be exceeded in 1.4% of the housing. This rather high number has motivated a number of studies concerning countermeasures against radon in existing houses. The purpose of this study was to find out possible remedial actions against radon using standard ventilation techniques. The ventilation rates were not increased over 0.71/h in order to have a realistic view about the possibilities of the state-of-the-art techniques. Special attention was given to methods which would be generally applicable to a large number of dwellings already existing. Results are reported of a pilot study with six small houses with established high radon concentrations

  1. Surface-water radon-222 distribution along the west-central Florida shelf

    Science.gov (United States)

    Smith, C.G.; Robbins, L.L.

    2012-01-01

    In February 2009 and August 2009, the spatial distribution of radon-222 in surface water was mapped along the west-central Florida shelf as collaboration between the Response of Florida Shelf Ecosystems to Climate Change project and a U.S. Geological Survey Mendenhall Research Fellowship project. This report summarizes the surface distribution of radon-222 from two cruises and evaluates potential physical controls on radon-222 fluxes. Radon-222 is an inert gas produced overwhelmingly in sediment and has a short half-life of 3.8 days; activities in surface water ranged between 30 and 170 becquerels per cubic meter. Overall, radon-222 activities were enriched in nearshore surface waters relative to offshore waters. Dilution in offshore waters is expected to be the cause of the low offshore activities. While thermal stratification of the water column during the August survey may explain higher radon-222 activities relative to the February survey, radon-222 activity and integrated surface-water inventories decreased exponentially from the shoreline during both cruises. By estimating radon-222 evasion by wind from nearby buoy data and accounting for internal production from dissolved radium-226, its radiogenic long-lived parent, a simple one-dimensional model was implemented to determine the role that offshore mixing, benthic influx, and decay have on the distribution of excess radon-222 inventories along the west Florida shelf. For multiple statistically based boundary condition scenarios (first quartile, median, third quartile, and maximum radon-222 inshore of 5 kilometers), the cross-shelf mixing rates and average nearshore submarine groundwater discharge (SGD) rates varied from 100.38 to 10-3.4 square kilometers per day and 0.00 to 1.70 centimeters per day, respectively. This dataset and modeling provide the first attempt to assess cross-shelf mixing and SGD on such a large spatial scale. Such estimates help scale up SGD rates that are often made at 1- to 10-meter

  2. Radon occurrence in soil-gas and groundwater around an active landslide

    Energy Technology Data Exchange (ETDEWEB)

    Ramola, R.C. [Department of Physics, H.N.B. Garhwal University, Badshahi Thaul Campus, Tehri Garhwal -249 199 (India)], E-mail: rcramola@gmail.com; Choubey, V.M. [Wadia Institute of Himalayan Geology, Dehradun 248 001 (India); Negi, M.S.; Prasad, Yogesh; Prasad, Ganesh [Department of Physics, H.N.B. Garhwal University, Badshahi Thaul Campus, Tehri Garhwal -249 199 (India)

    2008-01-15

    This paper presents the results of investigation of radon levels in the soil-gas and groundwater of Uttarkashi, India within the distance of 5 km in vertical and horizontal directions from the landslide of Varunawat hill. Radon release from the soil and groundwater was found higher than the normal values. Radon concentration in groundwater over and around the landslide was found to vary from 0.51 to 86kBqm{sup -3}. The soil-gas radon concentration was found to vary from 219 to 3kBqm{sup -3} along the slope of landslide. Radon exhalation rate in collected soil samples was found to vary from 2.28x10{sup -5} to 9.01x10{sup -5}Bqkg{sup -1}h{sup -1}. Radon values were not found correlated with major and trace element contents in the upper soil of the area, which indicate that the migration of radon from deeper part of the earth along with landslide contribute to the surface radon concentration. Recorded values show a close association with local geology and Varunawat eruptions.

  3. Radon occurrence in soil-gas and groundwater around an active landslide

    International Nuclear Information System (INIS)

    Ramola, R.C.; Choubey, V.M.; Negi, M.S.; Prasad, Yogesh; Prasad, Ganesh

    2008-01-01

    This paper presents the results of investigation of radon levels in the soil-gas and groundwater of Uttarkashi, India within the distance of 5 km in vertical and horizontal directions from the landslide of Varunawat hill. Radon release from the soil and groundwater was found higher than the normal values. Radon concentration in groundwater over and around the landslide was found to vary from 0.51 to 86kBqm -3 . The soil-gas radon concentration was found to vary from 219 to 3kBqm -3 along the slope of landslide. Radon exhalation rate in collected soil samples was found to vary from 2.28x10 -5 to 9.01x10 -5 Bqkg -1 h -1 . Radon values were not found correlated with major and trace element contents in the upper soil of the area, which indicate that the migration of radon from deeper part of the earth along with landslide contribute to the surface radon concentration. Recorded values show a close association with local geology and Varunawat eruptions

  4. EML indoor radon workshop, 1982

    International Nuclear Information System (INIS)

    George, A.C.; Lowder, W.; Fisenne, I.; Knutson, E.O.; Hinchliffe, L.

    1983-07-01

    A workshop on indoor radon, held at the Environmental Measurements Laboratory (EML) on November 30 and December 1, 1982, covered recent developments in radon daughter research and development. Thirty papers were presented dealing with standardization and quality assurance measurement methods, surveys, measurements strategy, physical mechanisms of radon and radon daughter transport and development of guidance standards for indoor exposures. The workshop concluded with a planning session that identified the following needs: (1) national and international intercomparisons of techniques for measuring radon and radon daughter concentrations, working level and radon exhalation flux density; (2) development and refinement of practical measurement techniques for thoron and its daughter products; (3) quantitative definition of the sources of indoor radon and the mechanisms of transport into structures; (4) better knowledge of the physical properties of radon daughters; (5) more complete and accurate data on the population exposure to radon, which can only be met by broadly based surveys; and (6) more international cooperation and information exchange among countries with major research programs

  5. The daily radon dose in body organs caused by drinking milk and water

    International Nuclear Information System (INIS)

    Mansoureh Mansour Bahmani; Mohammad Reza Rezaie; Elham Rezvan Nejad; Hassan Reza Dehghan

    2014-01-01

    Milk is considered as the richest nutrition, being used by people. When drinking milk or water the radon gas will transfer from air to them rapidly. Since milk is majorly composed of water, probably radon existence in livestock consumable water could be the main cause of its presence in milk. Different portion of milk changed by radon gamma ray and consumption of radon included water or milk has its effects on the human body. For investigation the effect of radon in water or milk on human organs, this study has been done in two phases with MCNPX software. In the first phase, the dose rate of absorbed gamma ray by different portion of milk which is indoctrinated by 1 Bq/m 3 of radon during a day is calculated. Moreover, the effects shown by milk and its components in radon gamma spectrum, which is demonstrator of milk absorption spectrum, are also surveyed. In the second phase as well, according to the human body phantom, the absorbed gamma dose caused by daily consumption of indoctrinated water or milk with 1 Bq/m 3 radon is calculated. The production rate of free radicals in milk and its different components are derived according to escape data of MCNPX code. (author)

  6. Effective dose to radon considering people's activities

    International Nuclear Information System (INIS)

    Shimo, M.; Seki, K.; Kikuchi, I.

    1992-01-01

    The tidal volume was estimated for evaluating the effective dose due to radon concentration in the atmosphere. In this study regional population was separated to vocation and non-vocation. The occupancy time and the breathing rate for both vocation and non-vocation groups were estimated, and the annual tidal volume for both groups were calculated. Human actions were separated to 18 activities in the process for estimating the breathing rate. It was clear that the breathing rate depended on human activity and that the human activity changed with its age, so the breathing rate varied with age. Finally the effective doses due to radon and radon progeny indoors and outdoors were evaluated. The maximum annual effective dose was estimated to be 1.2 mSv, minimum 0.2 mSv, and mean 0.51 mSv for vocation. For non-vocation, the male maximum value 0.43 mSv was obtained at the 16 age and the minimum 0.12 mSv at the 70 age, whereas female maximum 0.26 mSv was obtained at the 12 age and the minimum 0.11 mSv at the 70 age. In addition in this study objective areas are Aichi, Gifu, and Mie prefectures for vocation and only Aichi prefecture for non-vocation. (author)

  7. Radon therapy; Radon in der Therapie

    Energy Technology Data Exchange (ETDEWEB)

    Spruck, Kaija [Technische Hochschule Mittelhessen, Giessen (Germany). Inst. fuer Medizinische Physik und Strahlenschutz

    2017-04-01

    Radon therapies are used since more than 100 years in human medicine. Today this method is controversially discussed due to the possible increase of ionizing radiation induced tumor risk. Although the exact mode of biological radiation effect on the cell level is still not known new studies show the efficiency of the radon therapy without side effect for instance for rheumatic/inflammatory or respiratory disorders.

  8. ASSESSMENT OF RADON IN SOIL AND WATER IN DIFFERENT REGIONS OF KOLHAPUR DISTRICT, MAHARASHTRA, INDIA.

    Science.gov (United States)

    Raste, P M; Sahoo, B K; Gaware, J J; Sharma, Anil; Waikar, M R; Shaikh, A A; Sonkawade, R G

    2018-03-19

    Researchers have already established that inhalation of high radon concentration is hazardous to human health. Radon concentration has been measured in water and soil, in various part of Kolhapur district has been carried out by the AQTEK Smart RnDuo which is an active device technique. The observed minimum value of the radon mass exhalation rate of the soil is 13.16 ± 0.83 mBq/kg/h and maximum is 35.11 ± 1.84 mBq/kg/h. The minimum value of the Radon concentration in water is 0.33 ± 0.052 Bq/L and maximum is 7.32 ± 0.078 Bq/L. These values of radon concentration are below the action of recommended level by the USEPA, which is set as the maximum contaminant level of 11.1-148 Bq/L of radon in drinking water. Total annual effective dose rate of water is 11 μSv/y. The purpose of present study is to assess radiological risk from consumption of water that provide in Kolhapur district and to evaluate the radon mass exhalation rate of soil in few places of Kolhapur district.

  9. Test of the linear-no threshold theory of radiation carcinogenesis for inhaled radon decay products

    International Nuclear Information System (INIS)

    Cohen, B.L.

    1995-01-01

    Data on lung cancer mortality rates vs. average radon concentration in homes for 1,601 U.S. counties are used to test the linear-no threshold theory. The widely recognized problems with ecological studies, as applied to this work, are addressed extensively. With or without corrections for variations in smoking prevalence, there is a strong tendency for lung cancer rates to decrease with increasing radon exposure, in sharp contrast to the increase expected from the theory. The discrepancy in slope is about 20 standard deviations. It is shown that uncertainties in lung cancer rates, radon exposures, and smoking prevalence are not important and that confounding by 54 socioeconomic factors, by geography, and by altitude and climate can explain only a small fraction of the discrepancy. Effects of known radon-smoking prevalence correlations - rural people have higher radon levels and smoke less than urban people, and smokers are exposed to less radon than non-smokers - are calculated and found to be trivial. In spite of extensive efforts, no potential explanation for the discrepancy other than failure of the linear-no threshold theory for carcinogenesis from inhaled radon decay products could be found. (author)

  10. Radon atlas of Finland

    International Nuclear Information System (INIS)

    Voutilainen, A.; Maekelaeinen, I.; Pennanen, M.; Reisbacka, H.; Castren, O.

    1997-11-01

    The most efficient means of reducing indoor radon exposure is to locate and mitigate dwellings with radon concentration exceeding the action level of 400 Bq/m 3 and to build new houses so that radon concentrations do not exceed 200 Bq/m 3 . The maps and tables in this report are useful tools for those who plan and decide what kind of radon mitigation measures are needed in municipalities. STUK (The Radiation and Nuclear Safety Authority) has an indoor radon database of 52 000 dwellings, for which the indoor radon concentration and construction details are known. The building site soil type of about 38 000 dwellings is known. This atlas is a summary of all indoor radon measurements made by STUK in lowrise dwellings and in first-floor flats. The results are shown as arithmetic means of 5- or 10-km squares on maps of the provinces. Three radon maps have been made for each province. On one map the data consist of all measurements the position coordinates of which are known. On the two other maps the building sites of houses are classified into permeable and low-permeable soil types. The tables show statistics for all indoor radon measurements by municipality and building site soil type. (orig.)

  11. Indoor radon and environmental gamma radiation in Hong Kong

    International Nuclear Information System (INIS)

    Yu, K.N.; Young, E.C.M.; Stokes, M.J.; Luo, D.L.; Zhang, C.X.

    1992-01-01

    Activated charcoal canisters have been used to measured the indoor radon concentrations of 160 sites in different buildings in Hong Kong during the period from July to October 1990. The average value is 40.0 Bq.m -3 . Furthermore, CR-39 nuclear track detectors and two kinds of LiF TLDs have been used to measure the average indoor radon concentrations and the absorbed gamma dose rates in air of 71 sites over the period from January to April 1991. The results all show log-normal distribution. The indoor radon concentrations are respectively 72.2 Bq.m -3 and 155.4 Bq.m -3 for dwellings and offices, while the absorbed gamma dose rates in air are respectively 213.0 nGy.h -1 and 198.3 nGy.h -1 . (author)

  12. Postprandial changes in the exhalation of radon from the environment

    International Nuclear Information System (INIS)

    Rundo, J.; Markun, F.; Plondke, N.J.

    1978-01-01

    The exhalation of radon originally inhaled from the home environment and dissolved in body fluids and tissues has been studied serially for periods of several hours in six persons. The observation of a pronounced postprandial peak in the rate of exhalation of radon shows that the similar peak observed in the exhalation of radon produced from radium in vivo results from the flushing of a reservoir in soft tissue and not from a change in the fraction lost from bone

  13. Radon concentrations profiles over the brazilian Amazon basin during wet season

    International Nuclear Information System (INIS)

    Pereira, E.B.; Dias, P.L.S.; Nordemann, D.J.R.

    1991-01-01

    Atmospheric radon measurements were performed airborne in the Brazilian Amazon Basin during the wet season ABLE-2B experiment. The vertical profiles of radon showed a small decrease of concentration with increasing altitude at a rate varying from 6.5 to 11 x 10 - 2 Bq m - 3 km - 1. The calculation of the flux balance of radon in the troposphere above the Amazon Basin indicated a residual flux at the upper boundary of the measurement domain (6 km) of 0.14 atom cm - 2 s - 1. This residue may be associated with the turbulent transport of radon due to cloud activity. (author)

  14. Preliminary results of soil radon gas survey of the Lake Bosomtwi impact crater

    International Nuclear Information System (INIS)

    Preko, S.; Danuor, S.K.; Menyeh, A.

    2004-01-01

    Soil radon gas survey was carried out in the Lake Bosomtwi impact crater area on eight profiles, which ran rapidly toward the end of the crater. One thousand soil samples, each weighing about 100g were acquired at a depth of 20 cm and at regular intervals of 10 m. The radon gas decay rate of the soil samples was then determined in the laboratory using the RDA-200 Radon detector and RDU-200 Degassing unit. It was found that generally areas south and east of the crater, which are severally sheared, faulted and fractured recorded high radon gas decay rates of the order of 800 counts/min whilst relatively undisturbed zones west of the crater recorded lower rates of the order of 20 counts/min. the cause of fracturing, shearing and faulting have been attributed to the effect of the meteorite impact in the Bosomtwi area, and therefore the results indicate that the soil radon gas survey could serve as a useful tool in mapping the impact-related structural characteristics of the crater. (author)

  15. Independence of Terminal-Link Entry Rate and Immediacy in Concurrent Chains

    Science.gov (United States)

    Berg, Mark E.; Grace, Randolph C.

    2004-01-01

    In Phase 1, 4 pigeons were trained on a three-component multiple concurrent-chains procedure in which components differed only in terms of relative terminal-link entry rate. The terminal links were variable-interval schedules and were varied across four conditions to produce immediacy ratios of 4:1, 1:4, 2:1, and 1:2. Relative terminal-link entry…

  16. Radiation doses due to natural radon gas releases from the final disposal facility of spent fuel

    International Nuclear Information System (INIS)

    Vesterbacka, K.; Arvela, H.

    1998-03-01

    Building an underground repository for the spent nuclear fuel increases releases of natural radon gas. In the report the radon releases, the resulting doses as well as the radon concentration in the repository air are investigated. There are four optional building locations for the underground repository and three different strategies of construction. Optional sites are Olkiluoto of Eurajoki, Romuvaara of Kuhmo, Haestholmen of Loviisa and Kivetty of Aeaenekoski. The most significant radon sources in the underground repository are the rockwalls and the groundwater leaking to the repository. High groundwater radon concentrations can increase significantly radon concentration in the repository air despite the groundwater leak rate is low. The radon source strength from the rockwalls, groundwater and macadam spreaded on the floor of the repository is estimated in this report. Using these results the radon concentration in the repository is calculated for several air exchange rates. Data from petrological studies performed at the optional building sites as well as the measurement data of the Radiation and Nuclear Safety Authority has been utilized. Rough approximations were needed when estimating the radon source strength. The estimated total radon source strength varies between 1 - 600 MBq/h depending on the repository construction strategy. Repository indoor air radon concentration with no air exchange varies between 0,7 - 120 kBq/m 3 . Using the most probable estimates on radon source strength, the allowed indoor radon concentration of 400 Bq/m 3 at workplaces is achieved by using the air exchange rate of 0,5 l/h in every optional repository. Repository exhaust air and the pile of macadam increases the radon levels in the environment. The radiation dose to the critical person depends on the open volume of the repository. The annual radiation dose calculated from the most probable radon source strength at the distance of 500 metres is below 0,005 mSv at all sites

  17. Investigation of radon-222 emissions from underground uranium mines. Progress report No. 2

    International Nuclear Information System (INIS)

    Jackson, P.O.; Glissmeyer, J.A.; Enderlin, W.I.; Schwendiman, L.C.; Wogman, N.A.; Perkins, R.W.

    1980-02-01

    A reliable estimate of radon emissions to the environment from underground uranium mines was obtained through measurements of radon in ventilation exhaust air at 24 uranium mines and estimates of radon release from ore piles and waste piles at mines and in water pumped from mines. Three additional mines sampled in 1978 but not in 1979 were included in the overall results. Total production of U 3 O 8 from the mines thus far sampled represent about 63% of total 1978 US production from underground mines. Wide variation in radon emission per unit of production was shown from mine to mine; hence, it became necessary to sum all radon from all mines measured and divide by the sum of all U 3 O 8 production in 1978 from these mines to arrive at a valid estimate of Ci per ton of U 3 O 8 . This value was found to be 26.7 per ton or 5400 Ci/RRY (182 metric tons). The radon emitted in mine ventilation air was by far the dominant source, with other than ventilation exhaust sources accounting for less than three percent of radon in ventilation exhaust. Other observations of interest in this study were the diurnal fluctuations of radon with barometric pressure and the statistically significant relationship between radon released per year from a mine and the cumulative ore production at the time of radon measurement. The linear relationship between Ci/yr of radon and cumulative ore accounted for about half the variability.Several sources of random errors and possible biases were evaluated using some simple descriptive statistics insofar as the current data permitted. Errors in air flow rate in the vents sampled, fluctuations in radon emission with time of day, counting instrument calibration and production rate were estimated and combined to give an uncertainty of about +- 24 percent at the 95 percent confidence level

  18. Radon og boligen

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn

    Radon er en radioaktiv og sundhedsskadelig luftart, som ved indånding øger risikoen for lungekræft. Der er ingen dokumenteret nedre grænse for, hvornår radon er ufarligt. Derfor anbefales det, at man tilstræber et så lavt radonindhold i indeluften som muligt. Man kan hverken lugte, se, høre eller...... smage radon, så vil du vide, om du har radon i din bolig, må du måle radonindholdet i indeluften. Radon forekommer naturligt i jorden og kan suges ind sammen med jordluft, hvis der inde er et undertryk, og hvis konstruktionerne mod jord er utætte. Jordluft trænger ind gennem revner og utætte samlinger......, fx omkring rør til kloak, vand og varmeforsyning. Koncentrationen af radon i jorden varierer meget fra sted til sted, også lokalt og gennem året. Tidligere undersøgelser har vist, at der kan forekomme høje koncentrationer i Sydgrønland, specielt i området syd for Narsalik ved Paamiut, 61°30’N....

  19. Assessment of current techniques for reduction of indoor radon concentration in existing and new houses in European countries

    International Nuclear Information System (INIS)

    Holmgren, O.; Arvela, H.

    2012-03-01

    Radon control technologies aim at the reduction of indoor radon concentrations in existing buildings and in new construction through remedial and preventive measures. In recent years, rising ecological awareness and rising energy costs have stimulated the development of low energy and passive houses to save energy. This report contains the analysis and assessment of current techniques and technologies used to achieve the reduction of indoor radon concentrations in existing and new houses with regard to the reduction efficiency and potential impact on energy consumption (qualitative analysis). A questionnaire was prepared and sent to all RADPAR partners in 14 different countries in order to gather national information about the current remediation and prevention techniques. Responses with variable amounts of information were obtained. Based on the questionnaire responses, the status of radon remediation and prevention in each country was assessed, in addition to the reduction efficiency and potential impact on energy consumption of the current remediation and prevention techniques. The number of dwellings with an elevated indoor radon concentration typically ranges from tens of thousands to a million. The percentage of these houses already remediated varies from zero to 15%. Preventive measures in new construction have been taken from a small number of houses to over half a million houses. The research data on the current situation, the number of houses with preventive measures and the efficiency of these measures is currently still quite inadequate. Assessment of the techniques and also the surveys aiming at exploring the impact of remedial and preventive measures is greatly needed in order to promote the work at the national level. The most efficient remediation method is the active sub-slab depressurization (SSD) and the radon well, for which the reduction in the radon concentration is typically 70 - 95%. Other methods, such as sealing entry routes and improving

  20. Radon campaigns. Status report 2008

    International Nuclear Information System (INIS)

    Arvela, H.; Valmari, T.; Reisbacka, H.; Niemelae, H.; Oinas, T.; Maekelaeinen, I.; Laitinen-Sorvari, R.

    2008-12-01

    Radon campaigns aim at activating citizens to make indoor radon measurements and remediation as well as increasing the common awareness of indoor radon questions. Indoor radon increases the risk of lung cancer. Through radon campaigns Radiation and Nuclear Safety Authority (STUK) also promotes the attainment of those goals that the Ministry of Social Affairs and Health has set for municipal authorities in Finland for prevention of the harmful effects of radon. The Ministry of Social Affairs and Health supports this campaign. Radon campaigns were started in autumn 2003. By autumn 2008 the campaigns have been organised already in 64 regions altogether in 160 municipalities. In some municipalities they have already arranged two campaigns. Altogether 14 100 houses have been measured and in 2 100 of these the action limit of radon remediation 400 Bq / m 3 has been exceeded. When participating in radon campaigns the house owners receive a special offer on radon detectors with a reduced price. In 2008 a new practice was introduced where the campaign advertisements were distributed by mail to low-rise residential houses in a certain region. The advertisement includes an order / deposit slip with postage paid that the house owner can send directly to STUK to easily make an order for radon measurement. In the previous radon campaigns in 2003 - 2007 the municipal authorities collected the orders from house owners and distributed later the radon detectors. The radon concentrations measured in the campaign regions have exceeded the action limit of 400 Bq / m 3 in 0 - 39% of houses, depending on the region. The total of 15% of all measurements made exceeded this limit. The remediation activities have been followed by sending a special questionnaire on remedies performed to the house owners. In 2006 - 2007 a questionnaire was sent to those households where the radon concentration of 400 Bq / m 3 was exceeded during the two first campaign seasons. Among the households that replied

  1. Radon-thoron exposures in high background radiation areas: a review

    International Nuclear Information System (INIS)

    Nambi, K.S.

    1994-01-01

    The radon-thoron measurements reported in literature for the high background radiation areas (HBRAs) of the world are summarised here. The most important areas covered are the Radon Spas and the thorium bearing monazite deposits. Special mention is made of the ongoing programmes of radon-thoron survey in the monazite beach areas of India; preliminary measurements indicate significant levels of thoron exposures. The diurnal and seasonal variations are quite wide underscoring the importance of carrying out integrated measurements for meaningful assessments of population exposures. Radon-thoron inhalation dose rates upto 30 mSv/y have been measured in lran as well as India. It has been generally observed that the cumulative population doses due to radon-thoron inhalation are as high as those due to the external exposures in these HBRAs. (author). 7 refs., 2 tabs., 3 figs

  2. Realization of a reference system for the generation radon 222

    International Nuclear Information System (INIS)

    Guelin, M.

    1990-11-01

    After some general considerations on radon and its calibration techniques, the methods and technologies developed in order to realize a reference system for the generation of radon 222 are presented. Two original patented techniques have been developed. The former technique deals with the realization of radon 222 solid sources from radium 226 deposit on acrylic fibres. This new technology offers the advantage of very quickly obtaining a constant emission rate near to 100%. The latter technique deals with the standard measurement of radon 222 volumic activity via gamma spectrometry of its short-lived daughters. This new procedure is the only one allowing to relate this measure to gaseous standards. An aeraulic/ventilation circuit makes it possible to calibrate the radon measurement instrumentation within a wide volumic activity range from to 4 to 4 000 Bq/m 3

  3. Risks and radiation doses due to residential radon in Germany

    International Nuclear Information System (INIS)

    Beck, T.R.

    2017-01-01

    The population-averaged risk rate and the annual average effective dose due to residential radon in Germany were calculated. The calculations were based on an epidemiological approach taking into account the age- and gender-specific lung cancer incidence rates for the German population and the excess relative risk of 0.16 per 100 Bq.m"-"3 for residential radon. In addition, the risk estimates adjusted for the smoking habits were determined. The population-averaged risk rate for the whole population was estimated with 4.1.10"-"5 y"-"1 (95% confidence interval (CI) 1.4.10"-"5 - 7.6.10"-"5 y"-"1). Residential radon causes a detriment per year of 3.3.10"-"5 y"-"1 (95% CI 1.1.10"-"5 - 6.0.10"-"5 y"-"1), which corresponds to an annual average effective dose of 0.6 mSv (95% CI 0.2-1.1 mSv). Annually, ∼3400 lung cancer incidences are attributed to residential radon. The results from the epidemiological approach exercised in this study are considerably lower than the effective dose, which would be obtained from the dose conversion coefficient calculated using biokinetic and dosimetric models. (author)

  4. Radon in balneology - measurement of radon retention by patients and radiation protection for personell

    International Nuclear Information System (INIS)

    Just, G.; Falkenbach, A.; Grunewald, W.A.; Philipsborn, H. von

    2001-01-01

    In radon balneology patients are exposed to radon either from water or air through the skin or through inhalation. Drinking radon water was not included in the study. Previously, the radon transfer has been determined for an estimate of the medically active amount of radon retained in the patient. A simpler approach of measuring radon in expiration under and after exposure has now been standardised and applied to probands under different conditions of exposure. In addition, radon decay products were measured in sweat, saliva and in the skin. Experimental parameters were evaluated for a comparison of different concentrations observed under different conditions. Results are likely to improve both therapy for patients and radiation protection for members of the personnel. (orig.) [de

  5. Radon Mapping of the Osijek Town

    International Nuclear Information System (INIS)

    Radolic, V.; Faj, Z.; Smit, G.; Culo, D.; Planinic, J.

    1998-01-01

    After ten years investigation of radon seasonal variations at three very different locations, as well as radon concentration measurements in kindergartens and schools, systematical indoor radon measurements were undertaken in dwellings of Osijek. Indoor radon was measured by means of the LR-115 nuclear track detector at 48 town locations that gave the arithmetic mean of 71.6 Bq m -3 , standard deviation of 44.0 Bq m -3 and geometric mean of 60.1 Bq m -3 , for the radon concentration range from 23 to 186 Bq m -3 . The empirical frequency distribution of radon concentrations, with the class width of 20 Bq m -3 , was in accordance with the theoretical log-normal distribution which was shown with χ 2 - test. The radon map pointed out a region of higher radon concentrations (central part of the town) that was ascribed to the geological soil structure. Thus supposition was confirmed by radon measurement in the soil gas using radon emanators with the LR-115 film that showed the positive correlation between radon concentrations in the soil and indoors. Radon measurements in Osijeks primary schools pointed out a school that had the highest radon concentration (300 Bq m -3 ) considering all the former indoor radon measurements. The radon distribution in the school building was investigated afterwards radon mitigation procedures were undertaken. (author)

  6. The effect and the amendment of thermoregulation to the stability of radon concentration in radon chamber

    International Nuclear Information System (INIS)

    Zhang Xiongjie; Wang Renbo; Qu Jinhui; Tang Bin; Zhu Zhifu; Man Zaigang

    2010-01-01

    When the temperature in the airtight radon chamber was adjusted, it would induce the frequent changes of the air pressure in chamber, then the radon concentration in the radon chamber would continuously reduce, which could seriously destroy the stability of the radon concentration in radon chamber. In this paper, on the study of the effect reasons to the stability of radon concentration in airtight radon chamber due to the thermoregulation, a new amendment scheme was put forward, and the solutions of the relevant parameters were discussed. The amendment scheme had been successfully applied to HD-6 radon chamber, and achieved good results. (authors)

  7. CONTRIBUTION OF RADON FLOWS AND RADON SOURCES TO THE RADON CONCENTRATION IN A DWELLING

    NARCIS (Netherlands)

    DEMEIJER, RJ; STOOP, P; PUT, LW

    1992-01-01

    In this paper a model is presented for analysis of the radon concentrations in a compartment in terms of contributions from transport by flows of air between compartments and from radon sources in the compartment. Measurements were made to study the effect of increased natural ventilation of the

  8. Radon and radon daughter monitoring (including thoron daughter monitoring)

    International Nuclear Information System (INIS)

    Leach, V.A.; Grealy, G.; Gan, W.

    1982-01-01

    Radon/radon daughter and thoron daughter measurement techniques are outlined. The necessary precautions and critical assessments of each method are also presented with a view to providing a better understanding of the various measurement methods

  9. Time-integrated radon measurements in spring and well waters by track technique

    International Nuclear Information System (INIS)

    Somogyi, G.

    1986-01-01

    The radon content dissolved in natural waters seems to be a very sensitive indicator of potential uranium deposits. We have developed different track methods to perform time-integrated, ''in-situ'' measurements of radon in different natural waters (spring, lake, well) and their neighbouring soil gas. One of our main purposes was to study the seasonal variation of radon content and its possible correlation with certain water (yield, flow rate) and environmental (depth, temperature) parameters. Simultaneous radon measurements have been carried out in lake and spring waters in a cave, in thermal and cold water springs of a public bath and in a deep drilled well. The radon profiles obtained in the deep well lend support to the idea that the environmental radon can travel large distances in microbubbles of a ''carrier geogas''. (author)

  10. Uranium prospecting through radon detection; La prospection de l'uranium par le radon

    Energy Technology Data Exchange (ETDEWEB)

    Pradel, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1956-07-01

    Prospecting rests on the determination of the concentration of ground air in radon. Radon diffusing from deep uranium bearing layers is detected in upper ground layers. (author) [French] La prospection est basee sur l'etude de la concentration en radon dans l'air du sol. Dans les terrains superficiels, on decele le radon qui diffuse a partir des couches profondes uraniferes. (auteur)

  11. Certain problems about radon. Pt.1

    International Nuclear Information System (INIS)

    Wu Huishan

    2005-01-01

    Discussion has been made on certain pointed out problems which presently influence the work and development of radon survey, and certain specific problems have been put forward which should be paid much attention and taken measures. Among the problems, some come from cognition, i.e. two kinds of balance and examination about radon, chief culprit of radon's daughter, multiply control and migration, the significance of radon in the water and soil, important standards for designing and evaluating the sites of construction projects, thoughts on the mechanism of the harm of radon and its daughters, diseases causing of both high and low radon, difficulty of emanation of indoor radon, normal low radon from natural marble; and others must be resolved specifically, i.e. establishment of national radon standards as quickly as possible, improvement of on-the-spot examination technique, national-wide radon survey with multiple disciplines and technology, the research on the mechanism of radon's harm and the establishment national radon study center. (authors)

  12. Risks from radon

    International Nuclear Information System (INIS)

    Doll, Richard

    1992-01-01

    The best estimate of risk to which everyone is exposed from natural radon in buildings is now obtained by extrapolation from observations on men exposed to radon in mines. The relationship between dose and effect derived by the US National Research Council implies that about 6% of the current life-time risk of developing the disease in the UK is attributable to radon, but for residents of some houses it will be much greater. This estimate is dependent on many assumptions, some of which are certainly wrong, and reliable estimates can be obtained only by direct observations on people living in different houses. It is possible that radon may also cause some risk of other cancers, notably leukaemia, but such risks, if real, are certainly small. Studies in progress should provide reliable estimates of all radon induced risks within a few years. (author)

  13. Radon: Detection and treatment

    International Nuclear Information System (INIS)

    Loken, S.; Loken, T.

    1989-01-01

    Within the last few years, natural radon exposure in non-industrial settings, primarily homes, has become a health concern. Research has demonstrated that many homes throughout the United States have radon concentrations much higher than the legal federal limits set for miners. Thousands of unsuspecting people are being exposed to high levels of radiation. It is estimated that up to 15 percent of lung cancers are caused from radon. This is a significant health risk. With basic knowledge of the current information on radon, a primary health care provider can address patients' radon concerns and make appropriate referrals

  14. Rapid determination of radon daughter concentrations

    International Nuclear Information System (INIS)

    Bigu, J.

    1990-08-01

    A technical evaluation of four radon 222 progeny measuring instruments has been conducted. The evaluation has been carried out under laboratory controlled conditions and at several locations in an underground uranium mine. The laboratory evaluation consisted of a thorough study of the behaviour and performance of the instruments under a wide variety of environmental conditions such as radon 222 gas concentration, radon 222 progeny concentration, temperature, relative humidity, aerosol concentration, and gamma-field exposure. The four instruments tested were: the Pylon WL-1000C, the MDA IWLM-811, the MIMIL IIM, and the EDA WLM-30. The readings of the instruments were compared with a widely accepted radon 222 progeny concentration measuring method, namely, the Thomas-Tsivoglou method. Two variables affected two instruments significantly, namely, under high aerosol concentration conditions, one of the instruments (EDA WLM-30) ceased to operate because of filter loading. The other variable was gamma-field exposure which affected another instrument (MDA-811) adversely. The instruments were rated according to several criteria. The overall best performer was the MIMIL IIM, although other instruments also fared quite well under a variety of experimental conditions

  15. Managing Radon in Schools

    Science.gov (United States)

    EPA recommends testing all schools for radon. As part of an effective IAQ management program, schools can take simple steps to test for radon and reduce risks to occupants if high radon levels are found.

  16. Radon in workplaces

    International Nuclear Information System (INIS)

    Gooding, Tracy

    1995-01-01

    The naturally occurring radioactive gas radon has been found at excessive levels in many workplaces other than mines throughout the country. Prolonged exposure to radon and its decay products increases the risk of developing lung cancer, and controls to protect employees from excessive exposure are included in the Ionising Radiations Regulations 1985. The control of occupational exposure to radon is discussed here. (author)

  17. STUDY OF RADIATION EXPOSURE DUE TO RADON, THORON AND THEIR PROGENY IN THE INDOOR ENVIRONMENT OF RAJPUR REGION OF UTTARAKHAND HIMALAYA.

    Science.gov (United States)

    Kandari, Tushar; Aswal, Sunita; Prasad, Mukesh; Pant, Preeti; Bourai, A A; Ramola, R C

    2016-10-01

    In the present study, the measurements of indoor radon, thoron and their progeny concentrations have been carried out in the Rajpur region of Uttarakhand, Himalaya, India by using LR-115 solid-state nuclear track detector-based time-integrated techniques. The gas concentrations have been measured by single-entry pin-hole dosemeter technique, while for the progeny concentrations, deposition-based Direct Thoron and Radon Progeny Sensor technique has been used. The radiation doses due to the inhalation of radon, thoron and progeny have also been determined by using obtained concentrations of radon, thoron and their progeny in the study area. The average radon concentration varies from 75 to 123 Bq m -3 with an overall average of 89 Bq m -3 The average thoron concentration varies from 29 to 55 Bq m -3 with an overall average of 38 Bq m -3 The total annual effective dose received due to radon, thoron and their progeny varies from 2.4 to 4.1 mSv y -1 with an average of 2.9 mSv y -1 While the average equilibrium factor for radon and its progeny was found to be 0.39, for thoron and its progeny, it was 0.06. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Radon and radon daughter measurements at and near the former Middlesex Sampling Plant, Middlesex, New Jersey

    International Nuclear Information System (INIS)

    Haywood, F.F.; Perdue, P.T.; Christian, D.J.; Leggett, R.W.; Dickson, H.W.; Myrick, T.E.

    1980-03-01

    The results of the radon and radon daughter measurements made to date (1978) at the Middlesex Sampling Plant in Middlesex, New Jersey, are presented in this report. These measurements were one portion of a more comprehensive radiological survey conducted at this site and the surrounding area from 1976 to 1978. The surveyed property served as a uranium ore sampling plant during the 1940's and early 1950's and as a result contains elevated levels of surface an subsurface contamination. On-site indoor radon daughter and radon concentrations exceeded both the US Surgeon General Guidelines and the Nuclear Regulatory Commission's maximum permissible concentration limits for radon (10 CFR Part 20) in all structures surveyed. Off-site structures showed concentrations of radon and radon daughters at or only slightly above background levels, except for one site where the radon levels were found to be above the 10 CFR Part 20 guidelines. Outdoor radon ad radon daughter concentrations, measured both on and off the site, were well below the guidelines, and the data give no indication of significant radon transport from the site

  19. Radon measurements concerning engineering-geological problems in lignite mining

    Energy Technology Data Exchange (ETDEWEB)

    Heinicke, J

    1986-07-01

    Radon measurements have been carried out by the aid of solid-state track detectors at the highwall of a lignite mine in order to forecast the eventual course of a landslide. The measured radon distributions and their changes as a function of time indicated that the slope was geodynamically active, but it was not possible to forecast the rate of sliding.

  20. Geographical associations between radon and cancer: is domestic radon level a marker of socioeconomic status?

    International Nuclear Information System (INIS)

    Wolff, S.P.; Stern, G.

    1991-01-01

    Previous studies showing a geographical association between radon and various cancers, particularly the leukaemias and lymphomas, appear to be confounded by the role of radon levels as a surrogate for socioeconomic status. Higher socioeconomic status (at least at the UK county level) is correlated with higher levels of domestic radon. Controlling for the relationship between socioeconomic status and radon removes the correlation between radon exposure and lymphoproliferative disease. Reported associations between radon and lymphoproliferative disease (and possibly other cancers) may be secondary to socioeconomic variables. (author)

  1. Human Lung Cancer Risks from Radon – Part III - Evidence of Influence of Combined Bystander and Adaptive Response Effects on Radon Case-Control Studies - A Microdose Analysis

    Science.gov (United States)

    Leonard, Bobby E.; Thompson, Richard E.; Beecher, Georgia C.

    2012-01-01

    Since the publication of the BEIR VI (1999) report on health risks from radon, a significant amount of new data has been published showing various mechanisms that may affect the ultimate assessment of radon as a carcinogen, in particular the potentially deleterious Bystander Effect (BE) and the potentially beneficial Adaptive Response radio-protection (AR). The case-control radon lung cancer risk data of the pooled 13 European countries radon study (Darby et al 2005, 2006) and the 8 North American pooled study (Krewski et al 2005, 2006) have been evaluated. The large variation in the odds ratios of lung cancer from radon risk is reconciled, based on the large variation in geological and ecological conditions and variation in the degree of adaptive response radio-protection against the bystander effect induced lung damage. The analysis clearly shows Bystander Effect radon lung cancer induction and Adaptive Response reduction in lung cancer in some geographical regions. It is estimated that for radon levels up to about 400 Bq m−3 there is about a 30% probability that no human lung cancer risk from radon will be experienced and a 20% probability that the risk is below the zero-radon, endogenic spontaneous or perhaps even genetically inheritable lung cancer risk rate. The BEIR VI (1999) and EPA (2003) estimates of human lung cancer deaths from radon are most likely significantly excessive. The assumption of linearity of risk, by the Linear No-Threshold Model, with increasing radon exposure is invalid. PMID:22942874

  2. What did we learn from the Austrian radon project?

    International Nuclear Information System (INIS)

    Friedmann, H.

    2004-01-01

    Approximately 40000 measurements of indoor radon concentrations were performed in randomly selected homes during the Austrian Radon Project. These measurements were carried out by using long-term measuring devices (SSNTD and Electret detectors) and short-term charcoal detectors with liquid scintillation counting as the method of analysis. In addition to the equilibrium factor, soil gas measurements and quasi-continuous indoor measurements, parallel-measurements with different detector systems in randomly selected homes were also performed. Very different results were occasionally obtained for one and the same room at the same time. This was so not only when comparing the long-term and short-term measuring devices; actually, different long-term detector systems also often showed significant discrepancies in results, although all detector systems had been carefully calibrated and tested in laboratories. The essential conclusion was that during a longer exposure in randomly selected homes, the detectors may be moved, opened, or handled in other unfavourable ways which introduce additional uncertainties in the measuring results. The aim of the Austrian Radon Project was to estimate the radon risk for geographic areas (municipalities). This task is different from the evaluation of the mean radon concentration in a single home. Generally, while long-term measurements (a year or even longer) are necessary to get reliable results for a particular house, this is not so where only the mean indoor radon concentrations for an area are of interest. Observed indoor radon concentrations give information about the actual radon exposures of the inhabitants but not about the radon risk from the ground. The house type, the way the house is constructed, the storey where people live, and some living patterns (ventilation rate etc.) modify the geological risk significantly, although it is the geological situation that has to be primarily taken into account when planning and constructing

  3. Experimental pulmonary carcinogenesis by radon and its daughters

    International Nuclear Information System (INIS)

    Sato, Fumiaki

    1989-01-01

    Information on experimental pulmonary carcinogenesis by radon and its daughters has come mostly from experiments carried out in France and United States of America. In rats a dose response relation was estimated to be linear with dose at low dose region. Studies of rats exposed daily to radon and radon daughters indicated that the frequency of pulmonary cancer at total exposure greater than 3000 WLM was greater when the exposure rates were low. At low total exposures the dose-rate effect was less apparent. Cigarette smoke increased the pulmonary cancer in rats but decreased in dogs. The decrease may be due to a decrease of absorbed doses with increased secretion of mucus and to an enhancement of mucociliary clearance. After inhalation of 222 Ru at equilibrium with radon daughters, rats were inoculated intrapleurally with asbestos fibres or glass fibres. The additive co-carcinogenic effects of this type of insult were demonstrated by the increased incidence of malignant thoracic tumours. As for species differences, dogs and hamsters are relatively resistant to cancer induction and rats are sensitive. While bronchogenic carcinomas are the most frequently observed radiation-induced pulmonary cancer in humans, bronchioloalveolar carcinomas are the most frequent type in most animal species. (author)

  4. Studies of Radon and Radon Progeny in Air Conditioned Rooms in Hospitals

    International Nuclear Information System (INIS)

    Marley, F.; Denman, A.R.; Phillips, P.S.

    1998-01-01

    A series of continuous real-time radon and radon progeny measurements together with passive etched track detector measurements were performed in hospital premises during 1996. In one small room, detailed measurements over several weeks showed that both the radon concentration and the Equilibrium Factor depended on the intermittent operation of a filtered positive pressure displacement air-conditioning system, which was designed to conform to operating theatre standards. The average radon level measured while the air-conditioning was off was almost four times higher than that recorded whilst it was on. The progeny level was over five times higher than that whilst it was on. Thus, the Equilibrium Factor (F), was significantly lower when the air-conditioning was on. Measurements in similar rooms in two hospitals, confirmed that the reduction in radon level was a general finding. Thus staff working in such environments receive significantly lower radiation dose from radon than staff working in nearby normally ventilated rooms. (author)

  5. Cellular dosimetry for radon progeny alpha particles in bronchial tissue

    International Nuclear Information System (INIS)

    Mohamed, A.; Hofmann, W.; Balashazy, I.

    1996-01-01

    Inhaled radon progeny are deposited in different regions of the human bronchial tree as functions of particle size and flow rate. Following deposition and mucociliary clearance, the sensitive bronchial basal and secretory cells are irradiated by two different alpha particle sources: (i) radon progeny in the sol and/or gel phase of the mucous layer, and (ii) radon progeny within the bronchial epithelium. In the case of internally deposited radionuclides, direct measurement of the energy absorbed from the ionizing radiation emitted by the decaying radionuclides is rarely, if ever, possible. Therefore, one must rely on dosimetric models to obtain estimates of the spatial and temporal patterns of energy deposition in tissues and organs of the body. When the radionuclide is uniformly distributed throughout the volume of a tissue of homogeneous composition and when the size of the tissue is large compared to the range of the particulate emissions of the radionuclide, then the dose rate within the tissue is also uniform and the calculation of absorbed dose can proceed without complication. However, if non-uniformities in the spatial and temporal distributions of the radionuclide are coupled with heterogeneous tissue composition, then the calculation of absorbed dose becomes complex and uncertain. Such is the case with the dosimetry of inhaled radon and radon progeny in the respiratory tract. There are increasing demands to obtain a definitive explanation of the role of alpha particles emitted from radon daughters in the induction of lung cancer. Various authors have attempted to evaluate the dose to the bronchial region of the respiratory tract due to the inhalation of radon daughters

  6. A comparison of contemporary and retrospective radon gas measurements in high radon dwellings in Ireland

    International Nuclear Information System (INIS)

    Kelleher, K.; McLaughlin, J.P.; Fenton, D.; Colgan, P.A.

    2006-01-01

    Little correlations has been found between contemporary radon gas measurements made in the past and retrospective radon gas measurements in Irish dwellings. This would suggest that these two techniques would result in two significantly different cumulative radon exposure estimates. Contemporary radon gas measurements made a few years apart in the same room of a dwelling were found to be significantly different. None of these differences could be explained by known changes to the rooms themselves., such ventilation or structural alterations to the room. This highlights the limitations of the contemporary radon gas measurements as a surrogate measurement for use in residential radon epidemiology. The contemporary radon gas measurements made by the Radiological Protection Institute of Ireland (R.P.I.I.) and University College of Dublin (U.C.D.) do not cover the same exposure period as the retrospective estimates and so the accuracy of the retrospective measurements cannot be demonstrated. A weak correlation can be seen between the retrospective radon gas estimates and a combination of the two contemporary radon gas estimates. It is not unreasonable to expect improvement in the correlation if further contemporary radon gas measurements were made in these rooms. (N.C.)

  7. Thoron and radon measurements in houses

    International Nuclear Information System (INIS)

    Gauthier, C.

    1980-01-01

    Studies were made to determine what effect thoron daughters have on radon working level measurements in occupied houses at Elliot Lake. The decay of radon daughters is faster than that of thoron daughters. Six hours after sampling radon daughters are no longer present on the filter, and essentially all alpha activity is due to thoron C in transient equilibrium with thoron B. The concentrations can be extrapolated back to the time of the Kuznetz count, and the WL overestimation due to the presence of thoron daughters calculated. It was found using this method that in 70 percent of the samples the thoron contribution was no more than one mWL equivalent, less than the statistical error in the estimation of working levels. Only in buildings with very low ventilation rates and large areas of exposed concrete may corrections for the presence of thoron be necessary

  8. Radon in workplaces

    International Nuclear Information System (INIS)

    Markkanen, M.; Annanmaeki, M.; Oksanen, E.

    2000-01-01

    The EU Member States have to implement the new Basic Safety Standards Directive (BSS) by May 2000. The Title VII of the Directive applies in particular to radon in workplaces. The Member States are required to identify workplaces which may be of concern, to set up appropriate means for monitoring radon exposures in the identified workplaces and, as necessary, to apply all or part of the system of radiological protection for practices or interventions. The BSS provisions on natural radiation are based on the ICRP 1990 recommendations. These recommendations were considered in the Finnish radiation legislation already in 1992, which resulted in establishing controls on radon in all types of workplaces. In this paper issues are discussed on the practical implementation of the BSS concerning occupational exposures to radon basing on the Finnish experiences in monitoring radon in workplaces during the past seven years. (orig.) [de

  9. Radon Research Program, FY 1992

    International Nuclear Information System (INIS)

    1993-04-01

    The United States Department of Energy, Office of Health and Environmental Research (DOE/OHER) is the principal federal agency conducting basic research related to indoor radon. The scientific information being sought in this program encompasses research designed to determine radon availability and transport outdoors, modeling transport into and within buildings, physics and chemistry of radon and radon progeny, dose response relationships, lung cancer risk, and mechanisms of radon carcinogenesis. There still remains a significant number of uncertainties in the currently available knowledge that is used to estimate lung cancer risk from exposure to environmental levels of radon and its progeny. The main goal of the DOE/OHER Radon Research Program is to develop information to reduce these uncertainties and thereby provide an improved health risk estimate of exposure to radon and its progeny and to identify and understand biological mechanisms of lung cancer development and required copollutants at low levels of exposure. Information useful in radon control strategies is also provided by the basic science undertaken in this program

  10. Modeling of indoor radon

    International Nuclear Information System (INIS)

    Paschoa, A.S.

    1990-01-01

    This paper reports on models for radon, which are developed not only to describe the behavior of radon and daughters since the moment that radon is created in natural sources by the alpha decay of 226 Ra up to the point that doses to humans are estimated based on the inhalation of radon and its progeny. The objective of a model should be determinant in defining the model structure and boundaries. Modeling indoors radon is particularly useful when the 226 Ra concentration in building materials and soils can be known before a house will be built with such 226 Ra bearing materials and over 226 Ra rich soils. The reported concentrations of 226 Ra in building materials range from 0.3 Bq · kg -1 in wood to about 2.6 x 10 3 Bq · kg -1 in aerated concrete based on alum shale. 30 In addition, when a house is built on a soil containing a high 226 Ra concentration, radon exhalation from the soil contributes to increase radon concentration indoors. The reported radon exhalation from soils range from 3.4 Bq · m -2 · s -1 in latosolic soil from Osaka, Japan to about 53 mBq · m -2 · s -1 in chernozemic soil from Illinois

  11. Scopingsreport Radon

    NARCIS (Netherlands)

    Blaauboer RO; Vaas LH; Hesse JM; Slooff W

    1989-01-01

    Dit scopingsrapport vormt een onderdeel van de voorbereiding tot het opstellen van het basisdocument radon. Het doel van dit rapport is het algemene kennisniveau van de deelnemers aan de scopingsbijeenkomst aangaande radon op eenzelfde peil te brengen en discussie- en beslispunten inzake de

  12. Exposures to radon in homes in Adana

    International Nuclear Information System (INIS)

    Yegingil, Z.

    1990-01-01

    Radon escaping from soil into homes appears to present the single greatest source of radiation exposure that most people will ever face. The use of solid state nuclear tracks detectors (SSNTD) is one of the most convenient techniques to assess the average radiation levels of alpha activities in the environment. By using CR-39 and LR-115 detectors long term alpha activities have been investigated to be noticeable the concentrations of natural radionuclides and Rn-222 exhalation rate under different environmental conditions in Adana. The radon distributions have been measured in soils an in single houses and apartment buildings in various floors in the summer and winter time. The seasonal variation of the radon concentration measured by CR-39 and LR-115 displayed a correlation. (author). 25 refs, 2 tabs

  13. Radon in dwellings

    International Nuclear Information System (INIS)

    Erikson, B.E.; Boman, C.A.; Nyblom, L.; Swedjemark, G.A.

    1980-06-01

    The report presents the function of the ventilation by natural draught in three-storey houses. In some cases also the measurement of gamma radiation, radon and radon daughters was made. The investigation took place in Uppsala. The houses were built of light weight concrete made of alum-shale. The measurements showed that the contents of radon daughters were far below the provisional limits. (G.B.)

  14. Design of a recirculating radon progeny aerosol generation and animal exposure system

    International Nuclear Information System (INIS)

    Newton, G.J.; Cuddihy, R.G.; Yeh, H.C.; Barr, E.B.; Boecker, B.B.

    1988-01-01

    Inhalation studies are being conducted at ITRI using laboratory animals exposed to radon-222 progeny attached to vector aerosols that are typical of indoor environments. The purpose of these studies is to identify the cells at risk from inhaled radon progeny and their locations within the respiratory tract. These studies require exposures up to 1000 working level months (WLM) within a few hours. Thus, large amounts of radium-226 are needed to produce the gaseous radon-222. A once-through-exposure-system was considered to be impractical because of statutory discharge limitations and the large amounts of radium that would be required. Therefore, a recirculating exposure system was designed and constructed that removes the aerosol after passing through the exposure chambers and recirculates purified air and radon. The purified radon is mixed with freshly evolving radon from a radon generator and passed Into a reaction-aging chamber where attachment of radon progeny to the vector aerosol occurs. The design includes: (1) 50-200 mg radium-226 in a radon generator, (2) 40 L/min total flow rate, (3) CO 2 removal, (4) reconstitution of oxygen tension and water vapor content to atmospheric levels, and (5) a trap for radon gas. A radon progeny exposure concentration in the range of 4,000 to 50,000 WL is being produced. (author)

  15. Time-integrated radon measurements in spring and well waters by track technique

    Energy Technology Data Exchange (ETDEWEB)

    Somogyi, G.; Lenart, L.

    1986-01-01

    The radon content dissolved in natural waters seems to be a very sensitive indicator of potential uranium deposits. We have developed different track methods to perform time-integrated, ''in-situ'' measurements of radon in different natural waters (spring, lake, well) and their neighbouring soil gas. One of our main purposes was to study the seasonal variation of radon content and its possible correlation with certain water (yield, flow rate) and environmental (depth, temperature) parameters. Simultaneous radon measurements have been carried out in lake and spring waters in a cave, in thermal and cold water springs of a public bath and in a deep drilled well. The radon profiles obtained in the deep well lend support to the idea that the environmental radon can travel large distances in microbubbles of a ''carrier geogas''.

  16. Geologic influence on indoor radon concentrations and gamma radiation levels in Norwegian dwellings

    Energy Technology Data Exchange (ETDEWEB)

    Sundal, Aud Venche

    2003-09-01

    dose rates are measured in the areas covered by nearly impermeable silt and clay deposits. Indoor gamma dose rates as high as 620 nGy/h are obtained in the areas of exposed carbonatites, primarily due to enhanced thorium concentrations in these rock types. The observed correlations between geological factors and indoor radon concentrations in Norway indicate that geological information is a useful tool in radon risk analysis. Resources can be concentrated to regions of high geologic radon potential when screening programs are planned, and efficient follow-up surveys can be established based on geological data in combination with radon measurements in a representative sample of the building stock. The observed contrasts in radon risk potential between different types of building grounds also enable the prediction of radon risk in areas which are not currently inhabited. (Author)

  17. Progress in indoor radon measurement. Review of previous research (July 1981-February 1985)

    International Nuclear Information System (INIS)

    1985-01-01

    Research progress in the following areas is reported: (1) scintillation cell development and applications, (2) charcoal adsorption development and applications; (3) surveys with Terradex detectors; (4) radon carcinogenesis epidemiology; (5) large scale surveys of radon concentrations in randomly selected houses; (6) ventilation rate studies; (7) soil studies; (8) diffusion of radon through materials other than soil; and (9) test house studies

  18. Study of properties of active charcoal used for measuring of low radon activities

    International Nuclear Information System (INIS)

    Muellerova, M.; Holy, K.

    2011-01-01

    We used the German charcoal Silicarbon for adsorption of radon from the air. From the column with activated carbon arranged in a row, we obtain cut-off dependence of radon on activated carbon at various temperatures, cooling and also at different speeds, drawing radon air through activated charcoal. From information we have chosen the most appropriate combination of temperature and cooling flow in order to maximize capture efficiency of radon in the first column of active charcoal. To change active carbon and optimization of operation allows us to measure the radon exhalation rate from various materials up to the level of 3·10 -9 Bq/s. (authors)

  19. Comparing summer and winter indoor radon and radon daughters activity in Campinas, Brazil

    International Nuclear Information System (INIS)

    Guedes, O.S.; Hadler, N.J.C.; Iunes, P.J.; Neman, R.S.; Souza, W.F.; Tello, S.C.A.; Paulo, S.R.

    2002-01-01

    We developed a technique - based on alpha particle track detection using CR-39 - where the activity originated from indoor radon can be potentially separated into three fraction: (i) radon in the air, (ii) radon daughters (RD), 218 Po and 214 Po, in the air and (iii) RD plated-out on the detector surface during exposure. In this work only a partial separation was carried out, then our results are limited to radon plus RD in the air and RD attached to detector surface. These activities can be separated if size and gray level of the round tracks are measured using an automatic optical microscopy system.Our group carried out an indoor radon and radon daughters (RD) survey in Campinas made up by a summer (November, 96 to May, 97) and a winter (May, 97 to November, 97) exposure, where the detectors were placed in the same rooms of the same dwellings (approximately 100) in both cases. Comparing winter and summer alpha activity for the detectors analyzed up to now, approximately 45 dwellings, we observed that: i) it seems that the source of radon is the material (brick and concrete mainly) making up walls, floor and ceiling of the dwellings, ii) there is no clear relationship between intensity of aeration and the activities measured in this work, and iii) the average ratio between winter and summer activity in the air (radon plus RD) is approximately equal to similar ratios observed in other countries, but for radon only. (author)

  20. The Castleisland radon Survey (Sw Ireland)

    Energy Technology Data Exchange (ETDEWEB)

    Organo, C. [Radiological Protection Institute of Ireland, Dublin (Ireland); O' sullivan, F. [London Univ. College, Dept of Geomatic Engineering, London, (United Kingdom)

    2006-07-01

    Full text: In September 2003, following the identification of a house near Castleisland in County Kerry (Sw Ireland) with a seasonally adjusted annual average radon concentration of 49,000 Bq/m{sup 3}, the Radiological Protection of Ireland (R.P.I.I.) undertook to carry out a localised radon survey, the so-called 'Castleisland Radon Survey' (C.R.S.). The aim was to investigate the possibility that similarly extreme radon concentrations could be present in other houses in the surrounding area. A studied area of 400 km{sup 2} was designated around the town of Castleisland, divided in four 10 x 10 km{sup 2} grid squares, and all of the approximately 2,500 householders living in this area were invited to participate. Four hundred and eighteen householders responded to the invitation (17% response rate) but only 383 completed the survey. Fourteen percent of these 383 homes were found to have an annual average radon concentration above the Irish national Reference Level for domestic dwellings of 200 Bq/m{sup 3} while 2% were found to be above 800 Bq/m{sup 3}. An arithmetic mean of 147 Bq/m{sup 3} and a geometric mean of 70 Bq/m{sup 3} were calculated for the four studied grid squares. These can be compared with the respective values of 98 and 56 Bq/m3 calculated for the same area by the Irish National Radon Survey (N.R.S.). Similar trends are observed on a grid square by grid square basis where in one of them in particular, the C.R.S. allowed us to predict that 21% of all houses would have radon concentrations in excess of 200 Bq/m{sup 3}, against 6% predicted by the N.R.S.. This clearly indicates that the extent of the radon problem in the area has been underestimated by the N.R.S.. Two of the four grid squares investigated are currently designated as High Radon Areas (where 10% or more of all houses are predicted to exceed 200 Bq/m{sup 3}) based on the results from the N.R.S.. If one was to use predictions based on the results from the C.R.S., all four grid