WorldWideScience

Sample records for radiometry l-band signal

  1. A field experiment on microwave forest radiometry: L-band signal behaviour for varying conditions of surface wetness

    DEFF Research Database (Denmark)

    Grant, J. P.; Wigneron, J. P.; Van de Grind, A. A.

    2007-01-01

    France, using a multi-angle L-band (1.4 GHz) radiometer to measure from above the forest at horizontal polarization. At the same time, ground measurements were taken of soil and litter moisture content, while precipitation was also permanently monitored. This experiment was done in the context...... of the upcoming SMOS mission in order to improve our understanding of the behaviour of the L-band signal from forested areas for different wetness conditions and viewing angles. This is especially relevant for solving the problem of heterogeneity since a large fraction of SMOS pixels (~30x30 km²) is partially...... covered by forest. This paper describes the objectives and the overall set-up of the Bray-2004 experiment and shows some first results. The greater part of the horizontally polarized L-band signal is found to be dominated by the influence of physical temperature. Variations in soil and/or litter moisture...

  2. Spatial and temporal variability of biophysical variables in southwestern France from airborne L-band radiometry

    Directory of Open Access Journals (Sweden)

    E. Zakharova

    2012-06-01

    Full Text Available In 2009 and 2010 the L-band microwave Cooperative Airborne Radiometer for Ocean and Land Studies (CAROLS campaign was performed in southwestern France to support the calibration and validation of the new Soil Moisture and Ocean Salinity (SMOS satellite mission. The L-band Microwave Emission of the Biosphere (L-MEB model was used to retrieve surface soil moisture (SSM and the vegetation optical depth (VOD from the CAROLS brightness temperature measurements. The CAROLS SSM was compared with in situ observations at 11 sites of the SMOSMANIA (Soil Moisture Observing System-Meteorological Automatic Network Integrated Application network of Météo-France. For eight of them, significant correlations were observed (0.51 ≤ r ≤ 0.82, with standard deviation of differences ranging from 0.039 m3 m−3 to 0.141 m3 m−3. Also, the CAROLS SSM was compared with SSM values simulated by the A-gs version of the Interactions between Soil, Biosphere and Atmosphere (ISBA-A-gs model along 20 flight lines, at a resolution of 8 km × 8 km. A significant spatial correlation between these two datasets was observed for all the flights (0.36 ≤ r ≤ 0.85. The CAROLS VOD presented significant spatial correlations with the vegetation water content (VWC derived from the spatial distribution of vegetation types used in ISBA-A-gs and from the Leaf Area Index (LAI simulated for low vegetation. On the other hand, the CAROLS VOD presented little temporal changes, and no temporal correlation was observed with the simulated LAI. For low vegetation, the ratio of VOD to VWC tended to decrease, from springtime to summertime. The ISBA-A-gs grid cells (8 km × 8 km were sampled every 5 m by CAROLS observations, at a spatial resolution of about 2 km. For 83% of the grid cells, the standard deviation of the sub-grid CAROLS SSM was lower than 0.05 m3 m−3. The presence of small water bodies within the

  3. What do we learn about the impact of extreme hydrological events on tropical wetlands from the synergistic use of altimetry from Sentinel-3/SARAL-Altika and L-Band radiometry from SMOS/SMAP ?

    Science.gov (United States)

    Al Bitar, Ahmad; Parrens, Marie; Frappart, Frederic; Cauduro Dias de Paiva, Rodrigo; Papa, Fabrice; Kerr, Yann

    2017-04-01

    What do we learn about the impact of extreme hydrological events on tropical wetlands from the synergistic use of altimetry from Sentinel-3/SARAL-Altika and L-Band radiometry from SMOS/SMAP ? The question of the contribution of the tropical basins to the carbon and water cycle remains an open question in the science community. The tropical basins are highly impact by the wetlands dynamics but the also the link with extreme events like El-Nino are yet to be clarified. The main reason to this uncertainty is that the monitoring of inland water surfaces via remote sensing over tropical areas is a difficult task because of impact of vegetation and cloud cover. The most common solution is to use microwave remote sensing. In this study we combine the use of L-band microwave brightness temperatures and altimetric data from SARAL/ALTIKA and Sentinel-3 to derive water storage maps at relatively high (7days) temporal frequency. This study concerns the Amazon and Congo basin. The water fraction in inland are estimated by inversing a first order radiative model is used to derive surface water over land from the brightness temperature measured by ESA SMOS and SMAP mission at coarse resolution (25 km x 25 km) and 7-days frequency. The product is compared to the static land cover map such as ESA CCI and the International Geosphere-Biosphere Program (IGBP) and also dynamic maps from GIEMS and SWAPS products. Water storage is then obtained by combining the altimetric data from SARAL/ALTIKA and Sentinel-3 to the water surface fraction using an hypsometric approach. The water surfaces and water storage products are then compared to precipitation data from GPM TRMM datasets and river discharge data from field data. The amplitudes and time shifts of the signals is compared based on the sub-basin definition from Hydroshed database. The dataset is then divided into years of strong and weak El-Nino signal and the anomaly is between the two dataset is compared. The results show a strong

  4. Reconfigurable L-band Radar Transceiver using Digital Signal Synthesis Project

    Data.gov (United States)

    National Aeronautics and Space Administration — IAI proposes to develop a reconfigurable L-band radar transceiver module. The emphasis will be to implement most of critical radar functionalities like: ? Baseband...

  5. Qualitative Analysis of the Time-Frequency Signature Induced by a Reflected L-Band Signal from Time Evolving Sea Surfaces

    CERN Document Server

    Coatanhay, Arnaud

    2013-01-01

    Passive remote sensing techniques have become more and more popular for detection and characterization purposes. The advantage of using the Global Navigation Satellite Systems (GNSS) are the well known signals emitted and the availability in most areas on Earth. In the present paper, L-Band signals (including GNSS signals) are considered for oceanographic purposes. The main interest in this contribution is the analysis of the signal reflected by an evolving sea surface using time-frequency transforms. The features which occur in this domain are examined in relation to the physical phenomena: interaction of the electromagnetic waves with the moving sea surface.

  6. A Passive Microwave L-Band Boreal Forest Freeze/Thaw and Vegetation Phenology Study

    Science.gov (United States)

    Roy, A.; Sonnentag, O.; Pappas, C.; Mavrovic, A.; Royer, A.; Berg, A. A.; Rowlandson, T. L.; Lemay, J.; Helgason, W.; Barr, A.; Black, T. A.; Derksen, C.; Toose, P.

    2016-12-01

    The boreal forest is the second largest land biome in the world and thus plays a major role in the global and regional climate systems. The extent, timing and duration of seasonal freeze/thaw (F/T) state influences vegetation developmental stages (phenology) and, consequently, constitute an important control on how boreal forest ecosystems exchange carbon, water and energy with the atmosphere. The effective retrieval of seasonal F/T state from L-Band radiometry was demonstrated using satellite mission. However, disentangling the seasonally differing contributions from forest overstory and understory vegetation, and the soil surface to the satellite signal remains challenging. Here we present initial results from a radiometer field campaign to improve our understanding of the L-Band derived boreal forest F/T signal and vegetation phenology. Two L-Band surface-based radiometers (SBR) are installed on a micrometeorological tower at the Southern Old Black Spruce site in central Saskatchewan over the 2016-2017 F/T season. One radiometer unit is installed on the flux tower so it views forest including all overstory and understory vegetation and the moss-covered ground surface. A second radiometer unit is installed within the boreal forest overstory, viewing the understory and the ground surface. The objectives of our study are (i) to disentangle the L-Band F/T signal contribution of boreal forest overstory from the understory and ground surface, (ii) to link the L-Band F/T signal to related boreal forest structural and functional characteristics, and (iii) to investigate the use of the L-Band signal to characterize boreal forest carbon, water and energy fluxes. The SBR observations above and within the forest canopy are used to retrieve the transmissivity (γ) and the scattering albedo (ω), two parameters that describe the emission of the forest canopy though the F/T season. These two forest parameters are compared with boreal forest structural and functional

  7. Faraday Rotation and L Band Oceanographic Measurements

    DEFF Research Database (Denmark)

    Skou, Niels

    2003-01-01

    Spaceborne radiometric measurements of the L band brightness temperature over the oceans make it possible to estimate sea surface salinity. However, Faraday rotation in the ionosphere disturbs the signals and must be corrected. Two different ways of assessing the disturbance directly from the rad...

  8. Comments on the paper: M. Pawlak, K. Strzałkowski, Identification of the photoluminescence response in the frequency domain modulated infrared radiometry signal of ZnTe:Cr bulk crystal, Infrared Phys. Technol. 78 (2016) 190-194

    Science.gov (United States)

    Pawlak, M.

    2017-09-01

    The frequency-domain expression for the photoluminescence signal SPL (the photocarrier radiometry signal which is the form of the near infrared photoluminescence) which consists of the discrete lifetimes can be written as following [1

  9. A novel L-band polarimetric radiometer featuring subharmonic sampling

    DEFF Research Database (Denmark)

    Rotbøll, J.; Søbjærg, Sten Schmidl; Skou, Niels

    2003-01-01

    A novel L-band radiometer trading analog components for digital circuits has been designed, built and operated. It is a fully polarimetric radiometer of the correlation type, and it is based on the subharmonic sampling principle in which the L-band signal is directly sampled by a fast A to D...

  10. L-Band Polarimetric Correlation Radiometer with Subharmonic Sampling

    DEFF Research Database (Denmark)

    Rotbøll, Jesper; Søbjærg, Sten Schmidl; Skou, Niels

    2001-01-01

    A novel L-band radiometer trading analog complexity for digital ditto has been designed and built. It is a fully polarimetric radiometer of the correlation type and it is based on the sub-harmonic sampling principle in which the L-band signal is directly sampled by a fast A to D converter...

  11. Verification of L-band SAR calibration

    Science.gov (United States)

    Larson, R. W.; Jackson, P. L.; Kasischke, E.

    1985-01-01

    Absolute calibration of a digital L-band SAR system to an accuracy of better than 3 dB has been verified. This was accomplished with a calibration signal generator that produces the phase history of a point target. This signal relates calibration values to various SAR data sets. Values of radar cross-section (RCS) of reference reflectors were obtained using a derived calibration relationship for the L-band channel on the ERIM/CCRS X-C-L SAR system. Calibrated RCS values were compared to known RCS values of each reference reflector for verification and to obtain an error estimate. The calibration was based on the radar response to 21 calibrated reference reflectors.

  12. Large Aperture, Scanning, L-Band SAR

    Science.gov (United States)

    Moussessian, Alina; DelCastillo, Linda; Bach, Vinh; Grando, Maurio; Quijano, Ubaldo; Smith, Phil; Zawadzki, Mark

    2011-01-01

    We have developed the first L-band membrane-based active phased array. The antenna is a 16x16 element patch array with dimensions of 2.3mx2.6m. The array uses membrane-compatible Transmit/Receive (T/R) modules for electronic beam steering. We will discuss the antenna design, the fabrication of this large array, the T/R module development, the signal distribution approach and the measured results of the array

  13. The importance of signals in the Doppler broadening range for middle-atmospheric microwave wind and ozone radiometry

    Science.gov (United States)

    Rüfenacht, Rolf; Kämpfer, Niklaus

    2017-09-01

    Doppler microwave radiometry is a novel technique for the measurement of horizontal wind profiles at altitudes between 10 and 0.03 hPa, where there is a substantial lack of observations. All wind radiometers currently in use rely on ground-based observations of microwave radiation emitted by atmospheric ozone. Besides the well-known primary ozone layer in the stratosphere a secondary ozone layer forms near 10-3 hPa during nighttime. We show that the emission signal of this secondary ozone layer cannot be neglected for the retrieval of mesospheric winds and that it can even alter nighttime ozone retrievals. However, the present study also demonstrates that with a reasonably adequate representation of the atmospheric reality in the mesopause region bias-free wind retrievals throughout the entire sensitive altitude range of the instruments can be achieved during day and nighttime. By applying the improved ozone a priori setup to real observation data the average zonal wind difference to models was substantially reduced and a realistic diurnal cycle was reproduced. Moreover the presence of the high nighttime mesopause ozone signal could enable future retrievals of mean winds beyond the altitude range dominated by pressure broadening.

  14. Characterizing the dependence of vegetation model parameters on crop structure, incidence angle, and polarization at L-band

    DEFF Research Database (Denmark)

    Wigneron, J-P.; Pardé, M.; Waldteufel, P.

    2004-01-01

    To retrieve soil moisture over vegetation-covered areas from microwave radiometry, it is necessary to account for vegetation effects. At L-band, many retrieval approaches are based on a simple model that relies on two vegetation parameters: the optical depth (tau) and the single-scattering albedo......, wheat, grass, and alfalfa) based on L-band experimental datasets. The results should be useful for developing more accurate forward modeling and retrieval methods over mixed pixels including a variety of vegetation types....

  15. Global map of soil roughness using L-band SMOS data

    Science.gov (United States)

    Parrens, Marie; Wigneron, Jean-Pierre; Richaume, Philippe; Al-Bitar, Ahmad; Mialon, Arnaud; Wang, Shu; Fernandez-Moran, Roberto; Al-Yaari, Amen; Kerr, Yann

    2015-04-01

    Since 2010, soil moisture (SM) has been mapped over the Earth by the Soil Moisture and Ocean Salinity (SMOS) satellite. This mission is the first one to monitor SM over land using passive L-band radiometry technique. At this frequency the signal depends on SM and vegetation but is significantly affected by surface soil roughness. Quantifying the surface soil roughness on ground surface emissivity is a key issue to improve the quality of passive microwave large-scale SM products. The core of the SMOS algorithm permitting to provide SM operational data is the inversion of the L-band Microwave Emission of Biosphere (L-MEB) model that is the result of an extensive review of the current knowledge of the microwave emission. In this model, surface soil roughness is modeled with empirical parameters (Qr , Hr , Nrp , with p = H or V polarizations). These parameters have been estimated by numerous studies but only at local scale using in situ measurements or airborne campaigns. However, these local estimations are not representative at large scale and they are not consistent with the actual surface roughness conditions, especially in agricultural areas and can lead to important errors in the SM retrievals. In this study, a method has been developed to obtain the first global map of the roughness parameter, by combining the vegetation and soil roughness into one parameter, referred to as TR. SM and TR were retrieved globally using the SMOS L3 brigthness temperature and the forward emission model L-MEB for 2011. The effect of vegetation and roughness can be separated in TR using the LAI MODIS data to account for the vegetation. This map could lead to improve soil moisture retrievals for present and future microwave remote sensing missions such as SMOS and the Soil Moisture Active Passive (SMAP).

  16. ELBARA II, an L-band radiometer system for soil moisture research.

    Science.gov (United States)

    Schwank, Mike; Wiesmann, Andreas; Werner, Charles; Mätzler, Christian; Weber, Daniel; Murk, Axel; Völksch, Ingo; Wegmüller, Urs

    2010-01-01

    L-band (1-2 GHz) microwave radiometry is a remote sensing technique that can be used to monitor soil moisture, and is deployed in the Soil Moisture and Ocean Salinity (SMOS) Mission of the European Space Agency (ESA). Performing ground-based radiometer campaigns before launch, during the commissioning phase and during the operative SMOS mission is important for validating the satellite data and for the further improvement of the radiative transfer models used in the soil-moisture retrieval algorithms. To address these needs, three identical L-band radiometer systems were ordered by ESA. They rely on the proven architecture of the ETH L-Band radiometer for soil moisture research (ELBARA) with major improvements in the microwave electronics, the internal calibration sources, the data acquisition, the user interface, and the mechanics. The purpose of this paper is to describe the design of the instruments and the main characteristics that are relevant for the user.

  17. Compact L-band SAR payload for UAV

    OpenAIRE

    Zaragoza Arbo, Josep

    2016-01-01

    Design and development of a Compact L-band SAR payload for UAV Design of a signal interference canceller due to the coupling between antennas for a SAR system. Diseño de un cancelador de señal interferente debido al acoplamiento entre antenas para un sistema SAR. Disseny d'un cancel·lador de senyal interferent degut a l'acoblament entre antenes per un sistema SAR.

  18. Application of Reflected Global Navigation Satellite System (GNSS-R) Signals in the Estimation of Sea Roughness Effects in Microwave Radiometry

    Science.gov (United States)

    Voo, Justin K.; Garrison, James L.; Yueh, Simon H.; Grant, Michael S.; Fore, Alexander G.; Haase, Jennifer S.; Clauss, Bryan

    2010-01-01

    In February-March 2009 NASA JPL conducted an airborne field campaign using the Passive Active L-band System (PALS) and the Ku-band Polarimetric Scatterometer (PolSCAT) collecting measurements of brightness temperature and near surface wind speeds. Flights were conducted over a region of expected high-speed winds in the Atlantic Ocean, for the purposes of algorithm development for salinity retrievals. Wind speeds encountered were in the range of 5 to 25 m/s during the two weeks deployment. The NASA-Langley GPS delay-mapping receiver (DMR) was also flown to collect GPS signals reflected from the ocean surface and generate post-correlation power vs. delay measurements. This data was used to estimate ocean surface roughness and a strong correlation with brightness temperature was found. Initial results suggest that reflected GPS signals, using small low-power instruments, will provide an additional source of data for correcting brightness temperature measurements for the purpose of sea surface salinity retrievals.

  19. Estuarine Salinity Mapping From Airborne Radiometry

    Science.gov (United States)

    Walker, J. P.; Gao, Y.; Cook, P. L. M.; Ye, N.

    2016-12-01

    Estuaries are critical ecosystems providing both ecological habitat and human amenity including boating and recreational fishing. Salinity gradients, caused by the mixing of fresh and salt water, exert an overwhelming control on estuarine ecology and biogeochemistry as well as being a key tracer for model calibration. At present, salinity monitoring within estuaries typically uses point measurements or underway boat-based methods, which makes sensing of localised phenomena such as upwelling of saline bottom water difficult. This study has pioneered the use of airborne radiometry (passive microwave) sensing as a new method to remotely quantify estuarine salinity, allowing rapid production of high resolution surface salinity maps. The airborne radiometry mapping was conducted for the Gippsland Lakes, the largest estuary in Australia, in February, July, October and November of 2015, using the Polarimetric L-band Microwave Radiometer (PLMR). Salinity was retrieved from the brightness temperature collected by PLMR with results validated against boat sampling conducted concurrently with each flight. Results showed that the retrieval accuracy of the radiative transfer model was better than 5 ppt for most flights. The spatial, temporal and seasonal variations of salinity observed in this study are also analysed and discussed.

  20. Impact of ionosphere on high-bandwidth chirp in L-band SAR and its mitigation

    Science.gov (United States)

    Nandy, Partha Sarathi; Putrevu, Deepak

    2016-05-01

    There is a trend of SAR imaging at low frequencies (VHF/UHF, L-band) and wide bandwidth, for penetration into foliage for high resolution applications. The propagation of spaceborne radar signals operating at L-band frequency or below can be seriously affected by the ionosphere. While these effects are negligible at X-band, Faraday Rotation and the frequency-dependent path delays can become seriously problematic at L-band. Range delay, interferometric phase bias, range defocussing and Faraday rotation are the most prominent ones. Due to ionospheric effects, blind use of a generic matched filter causes inaccuracies when correlating the received signal with transmitted replica. In this paper we study the effects of frequency dependent path delays in L-band SAR chirp signal due to ionospheric electron density. Also a method to correct ionospheric anomalies without the knowledge of electron content level in a single SAR acquisition is proposed.

  1. HIGH CURRENT L-BAND LINAC

    Energy Technology Data Exchange (ETDEWEB)

    S. RUSSELL; B. CARLSTEN; J. GOETTEE

    2001-02-01

    The Sub-Picosecond Accelerator (SPA) at the Los Alamos National Laboratory is an L-band photoinjector. Using magnetic compression, the SPA routinely compresses 8 MeV, 1 nC per bunch electron beams from an initial temporal FWHM bunch length of 20 ps to less than 1 ps. In recent plasma wakefield accelerator experiments, we have compressed a 2 nC per bunch electron beam to an approximate temporal length of 1 ps.

  2. L-band radar scattering from grass

    Science.gov (United States)

    Chauhan, N.; O'Neill, P.; Le Vine, D.; Lang, R.; Khadr, N.

    1992-01-01

    A radar system based on a network analyzer has been developed to study the backscatter from vegetation. The radar is operated at L-band. Radar measurements of a grass field were made in 1991. The radar returns from the grass were measured at three incidence angles. Ground truth and canopy parameters such as blade and stem dimensions, moisture content of the grass and the soil, and blade and stem density, were measured. These parameters are used in a distorted Born approximation model to compute the backscatter coefficients from the grass layer. The model results are compared with the radar data.

  3. First Results of the TOPSAR C-Band / L-Band Interferometer: Calibration and Differential Penetration

    Science.gov (United States)

    Rosen, Paul A.; Hensley, Scott

    1996-01-01

    The NASA/JPL TOPSAR instrument recently was extended from a single wavelength C-band dual aperture synthetic aperture radar (SAR) interferometer to include a second wavelength at the L-band. Adding the second wavelength invites comparison of wavelength-diverse effects in topographic mapping of surfaces, with the principal goal of understanding the penetration of the radar signals in vegetation canopies, and determining the inferred topographic height. A first analysis of these data was conducted at two sites. Elkhorn Slough near Monterey, California presented flat, vegetation free terrain required for calibrating the radar interferometer parameters. A second site stretching from San Jose to Santa Cruz, California, which is heavily vegetated, provided the first test case for wavelength diverse penetration studies. Preliminary results show that: (a) the interferometer calibration determined at Elkhorn Slough is extenable to Laurel Quad and gives confidence in the C- and L-band height measurements; (b) Clear differences were observed between the C- and L-band heights associated with vegetation, with the C-band derived topographic heights generally higher than those from L-band. The noise level in the L-band interferometer is presently the limiting factor in penetration studies.

  4. Davos-Laret Remote Sensing Field Laboratory: 2016/2017 Winter Season L-Band Measurements Data-Processing and Analysis

    Directory of Open Access Journals (Sweden)

    Reza Naderpour

    2017-11-01

    Full Text Available The L-band radiometry data and in-situ ground and snow measurements performed during the 2016/2017 winter campaign at the Davos-Laret remote sensing field laboratory are presented and discussed. An improved version of the procedure for the computation of L-band brightness temperatures from ELBARA radiometer raw data is introduced. This procedure includes a thorough explanation of the calibration and filtering including a refined radio frequency interference (RFI mitigation approach. This new mitigation approach not only performs better than conventional “normality” tests (kurtosis and skewness but also allows for the quantification of measurement uncertainty introduced by non-thermal noise contributions. The brightness temperatures of natural snow covered areas and areas with a reflector beneath the snow are simulated for varying amounts of snow liquid water content distributed across the snow profile. Both measured and simulated brightness temperatures emanating from natural snow covered areas and areas with a reflector beneath the snow reveal noticeable sensitivity with respect to snow liquid water. This indicates the possibility of estimating snow liquid water using L-band radiometry. It is also shown that distinct daily increases in brightness temperatures measured over the areas with the reflector placed on the ground indicate the onset of the snow melting season, also known as “early-spring snow”.

  5. Obituary: David L. Band (1957-2009)

    Science.gov (United States)

    Cominsky, Lynn

    2011-12-01

    David L. Band, of Potomac Maryland, died on March 16, 2009 succumbing to a long battle with spinal cord cancer. His death at the age of 52 came as a shock to his many friends and colleagues in the physics and astronomy community. Band showed an early interest and exceptional aptitude for physics, leading to his acceptance at the Massachusetts Institute of Technology as an undergraduate student in 1975. After graduating from MIT with an undergraduate degree in Physics, Band continued as a graduate student in Physics at Harvard University. His emerging interest in Astrophysics led him to the Astronomy Department at the Harvard Smithsonian Center for Astrophysics (CfA), where he did his dissertation work with Jonathan Grindlay. His dissertation (1985) entitled "Non-thermal Radiation Mechanisms and Processes in SS433 and Active Galactic Nuclei" was "pioneering work on the physics of jets arising from black holes and models for their emission, including self-absorption, which previewed much to come, and even David's own later work on Gamma-ray Bursts," according to Grindlay who remained a personal friend and colleague of Band's. Following graduate school, Band held postdoctoral positions at the Lawrence Livermore Laboratory, the University of California at Berkeley and the Center for Astronomy and Space Sciences at the University of California San Diego where he worked on the BATSE experiment that was part of the Compton Gamma Ray Observatory (CGRO), launched in 1991. BATSE had as its main objective the study of cosmic gamma-ray bursts (GRBs) and made significant advances in this area of research. Band became a world-renowned figure in the emerging field of GRB studies. He is best known for his widely-used analytic form of gamma-ray burst spectra known as the "Band Function." After the CGRO mission ended, Band moved to the Los Alamos National Laboratory where he worked mainly on classified research but continued to work on GRB energetics and spectra. When NASA planned

  6. Effective Tree Scattering at L-Band

    Science.gov (United States)

    Kurum, Mehmet; ONeill, Peggy E.; Lang, Roger H.; Joseph, Alicia T.; Cosh, Michael H.; Jackson, Thomas J.

    2011-01-01

    For routine microwave Soil Moisture (SM) retrieval through vegetation, the tau-omega [1] model [zero-order Radiative Transfer (RT) solution] is attractive due to its simplicity and eases of inversion and implementation. It is the model used in baseline retrieval algorithms for several planned microwave space missions, such as ESA's Soil Moisture Ocean Salinity (SMOS) mission (launched November 2009) and NASA's Soil Moisture Active Passive (SMAP) mission (to be launched 2014/2015) [2 and 3]. These approaches are adapted for vegetated landscapes with effective vegetation parameters tau and omega by fitting experimental data or simulation outputs of a multiple scattering model [4-7]. The model has been validated over grasslands, agricultural crops, and generally light to moderate vegetation. As the density of vegetation increases, sensitivity to the underlying SM begins to degrade significantly and errors in the retrieved SM increase accordingly. The zero-order model also loses its validity when dense vegetation (i.e. forest, mature corn, etc.) includes scatterers, such as branches and trunks (or stalks in the case of corn), which are large with respect to the wavelength. The tau-omega model (when applied over moderately to densely vegetated landscapes) will need modification (in terms of form or effective parameterization) to enable accurate characterization of vegetation parameters with respect to specific tree types, anisotropic canopy structure, presence of leaves and/or understory. More scattering terms (at least up to first-order at L-band) should be included in the RT solutions for forest canopies [8]. Although not really suitable to forests, a zero-order tau-omega model might be applied to such vegetation canopies with large scatterers, but that equivalent or effective parameters would have to be used [4]. This requires that the effective values (vegetation opacity and single scattering albedo) need to be evaluated (compared) with theoretical definitions of

  7. Photothermal Radiometry for Skin Research

    Directory of Open Access Journals (Sweden)

    Perry Xiao

    2016-02-01

    Full Text Available Photothermal radiometry is an infrared remote sensing technique that has been used for skin and skin appendages research, in the areas of skin hydration, hydration gradient, skin hydration depth profiling, skin thickness measurements, skin pigmentation measurements, effect of topically applied substances, transdermal drug delivery, moisture content of bio-materials, membrane permeation, and nail and hair measurements. Compared with other technologies, photothermal radiometry has the advantages of non-contact, non-destructive, quick to make a measurement (a few seconds, and being spectroscopic in nature. It is also colour blind, and can work on any arbitrary sample surfaces. It has a unique depth profiling capability on a sample surface (typically the top 20 µm, which makes it particularly suitable for skin measurements. In this paper, we present a review of the photothermal radiometry work carried out in our research group. We will first introduce the theoretical background, then illustrate its applications with experimental results.

  8. Earth Studies Using L-band Synthetic Aperture Radar

    Science.gov (United States)

    Rosen, Paul A.

    1999-01-01

    L-band SAR has played an important role in studies of the Earth by revealing the nature of the larger-scale (decimeter) surface features. JERS-1, by supplying multi-seasonal coverage of the much of the earth, has demonstrated the importance of L-band SARs. Future L-band SARs such as ALOS and LightSAR will pave the way for science missions that use SAR instruments. As technology develops to enable lower cost SAR instruments, missions will evolve to each have a unique science focus. International coordination of multi-parameter constellations and campaigns will maximize science return.

  9. High gain L-band erbium-doped fiber amplifier with two-stage ...

    Indian Academy of Sciences (India)

    An experiment on gain enhancement in the long wavelength band erbium-doped fiber amplifier (L-band EDFA) is demonstrated using dual forward pumping scheme in double-pass system. Compared to a single-stage single-pass scheme, the small signal gain for 1580 nm signal can be improved by 13.5 dB. However ...

  10. Digital Conically Scanned L-Band Radar Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed effort seeks to develop a digitally steered polarimetric phased array L-Band radar utilizing a novel, high performance architecture leveraging recent...

  11. Modelling of the L-band brightness temperatures measured with ELBARA III radiometer on Bubnow wetland

    Science.gov (United States)

    Gluba, Lukasz; Sagan, Joanna; Lukowski, Mateusz; Szlazak, Radoslaw; Usowicz, Boguslaw

    2017-04-01

    Microwave radiometry has become the main tool for investigating soil moisture (SM) with remote sensing methods. ESA - SMOS (Soil Moisture and Ocean Salinity) satellite operating at L-band provides global distribution of soil moisture. An integral part of SMOS mission are calibration and validation activities involving measurements with ELBARA III which is an L-band microwave passive radiometer. It is done in order to improve soil moisture retrievals - make them more time-effective and accurate. The instrument is located at Bubnow test-site, on the border of cultivated field, fallow, meadow and natural wetland being a part of Polesie National Park (Poland). We obtain both temporal and spatial dependences of brightness temperatures for varied types of land covers with the ELBARA III directed at different azimuths. Soil moisture is retrieved from brightness temperature using L-band Microwave Emission of the Biosphere (L-MEB) model, the same as currently used radiative transfer model for SMOS. Parametrization of L-MEB, as well as input values are still under debate. We discuss the results of SM retrievals basing on data obtained during first year of the radiometer's operation. We analyze temporal dependences of retrieved SM for one-parameter (SM), two-parameter (SM, τ - optical depth) and three-parameter (SM, τ, Hr - roughness parameter) retrievals, as well as spatial dependences for specific dates. Special case of Simplified Roughness Parametrization, combining the roughness parameter and optical depth, is considered. L-MEB processing is supported by the continuous measurements of soil moisture and temperature obtained from nearby agrometeorological station, as well as studies on the soil granulometric composition of the Bubnow test-site area. Furthermore, for better estimation of optical depth, the satellite-derived Normalized Difference Vegetation Index (NDVI) was employed, supported by measured in situ vegetation parameters (such as Leaf Area Index and Vegetation

  12. Performance Enhancement in L-Band Edfa Through Dual Stage Technique

    Directory of Open Access Journals (Sweden)

    S. W. Harun and H. Ahmad

    2012-10-01

    Full Text Available An experiment on gain enhancement in the long wavelength band erbium doped fiber amplifier (L-band EDFA is demonstrated. It uses a dual stage technique with dual forward pumping scheme. Compared to a conventional single stage amplifier, the small signal gain for 1580nm signal can be improved by 5.5dB without paying much noise figure penalty. The corresponding noise figure penalty was 0.3dB due to the insertion loss of the optical isolator. The optimum pump power ratio for the first pump is experimentally determined to be 33%. The maximum gain improvement of 8.3dB was obtained at a signal wavelength of 1568nm while signal and total pump powers were fixed at -30dBm and 92mW, respectively. The employment of dual stage amplifier system seems to play an important role in the development of practical L-band EDFA from the perspective of economical usage of pump power.Key Words:  erbium doped fibre; optical amplifier; L-band EDFA; dual stage EDFA; amplified spontaneous emission

  13. Radiometry in medicine and biology

    Science.gov (United States)

    Nahm, Kie-Bong; Choi, Eui Y.

    2012-10-01

    Diagnostics in medicine plays a critical role in helping medical professionals deliver proper diagnostic decisions. Most samples in this trade are of the human origin and a great portion of methodologies practiced in biology labs is shared in clinical diagnostic laboratories as well. Most clinical tests are quantitative in nature and recent increase in interests in preventive medicine requires the determination of minimal concentration of target analyte: they exist in small quantities at the early stage of various diseases. Radiometry or the use of optical radiation is the most trusted and reliable means of converting biologic concentrations into quantitative physical quantities. Since optical energy is readily available in varying energies (or wavelengths), the appropriate combination of light and the sample absorption properties provides reliable information about the sample concentration through Beer-Lambert law to a decent precision. In this article, the commonly practiced techniques in clinical and biology labs are reviewed from the standpoint of radiometry.

  14. EMISAR: C- and L-band polarimetric and interferometric SAR

    DEFF Research Database (Denmark)

    Christensen, Erik Lintz; Dall, Jørgen; Skou, Niels

    1996-01-01

    EMISAR is a C- and L-band fully polarimetric (i.e. 4 complex channel per frequency) synthetic aperture radar designed for remote sensing with high demands for resolution (2 m), polarization discrimination, and absolute radiometric and polarimetric calibration. The present installation has one 3-a...

  15. Integrated L-Band T/R Module Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of this Phase II project is to deliver an integrated L-band transmit/receive (T/R) module which will be fabricated from a GaAs-based combined HBT/PHEMT...

  16. Differential Interferometry Techniques on L-Band Data Employed for ...

    African Journals Online (AJOL)

    Challenges for mining companies lie in the detection and monitoring of surface subsidence and there exists a need for a long term monitoring system. ... The results confirm that L-band synthetic aperture radar data through dInSAR techniques can be used for the long-term monitoring of surface subsidence associated with ...

  17. The airborne EMIRAD L-band radiometer system

    DEFF Research Database (Denmark)

    Søbjærg, Sten Schmidl; Kristensen, Steen Savstrup; Balling, Jan E.

    2013-01-01

    This paper describes the EMIRAD L-band radiometer, developed in support of the ESA/SMOS mission. The instrument is a fully polarimetric, dual antenna system, built with special focus on antenna accuracy, receiver stability, and detection and mitigation of radio frequency interference (RFI...

  18. The Breakthrough Listen Search for Intelligent Life: L-Band Data Recovery and Analysis

    Science.gov (United States)

    Lifset, Noah

    2018-01-01

    Breakthrough Listen is a next generation SETI project conducted under the leadership of UC Berkeley. In January 2016, it began collecting data with the Green Bank Telescope in West Virginia. It started a targeted campaign of stars within 50 pc with the L-band receiver (1.1-1.9 GHz). Enriquez et al. (2017) analyzed two thirds of this data comprising an homogeneous sample. The remaining one third of the L-band data taken since then is incomplete in some way, and thus required a different analysis. This project identified all possible issues with this data, and classified it based on its ability to be analyzed. Seven issues were found, and six are able to be accounted for with adapted analysis techniques. The data set consisted of observations of 366 stars within 50 pc, with 297 able to be analyzed and 69 needing to be re-observed. The Breakthrough Listen observation strategy uses 6 five minute observations per target star alternating between ON-target and OFF-target in the form ABACAD, which allows for easier radio-frequency interference identification. The analysis techniques, called turboSETI, search for a narrowband signal with a drifting doppler shift. For this data, a maximum drift rate of 4 Hz/s was chosen, which corresponds to an ET emitter on a planet three times the size of earth rotating three times as fast. An SNR threshold for signal detection of 15 was chosen, which allows for detection of signals with an EIRP (Equivalent Isotropic Radiated Power) of 9.72 x109 W for an emitter at a distance of 10 Ly. A total of 10 candidates signals were found, which were all determined to be either a satellite or another type of RFI. We can infer an upper limit of ~ 5 x108 stars in the milky way transmitting continuously towards earth in the L-band with a EIRP of 1012 W or greater.

  19. CV-990 L-band SAR: A calibration experiment

    Science.gov (United States)

    Held, D. N.; Werner, C.

    1985-01-01

    Calibrated image data is required by most users of synthetic aperture radar (SAR) data particularly those attempting to classify targets based upon their radar backscatter signature as a function of frequency polarization or incidence angle. In this experiment, the backscatter derived by calibrating the NASA/JPL CV-990 L-band SAR, and the backscatter reported from a pass of the NASA/JSC C-130 scatterometer as the two instruments flew over the same site at different times are compared.

  20. Newly Formed Sea Ice in Arctic Leads Monitored by C- and L-Band SAR

    Science.gov (United States)

    Johansson, A. Malin; Brekke, Camilla; Spreen, Gunnar; King, Jennifer A.; Gerland, Sebastian

    2016-08-01

    We investigate the scattering entropy and co-polarization ratio for Arctic lead ice using C- and L-band synthetic aperture radar (SAR) satellite scenes. During the Norwegian Young sea ICE (N-ICE2015) cruise campaign overlapping SAR scenes, helicopter borne sea ice thickness measurements and photographs were collected. We can therefore relate the SAR signal to sea ice thickness measurements as well as photographs taken of the sea ice. We show that a combination of scattering and co-polarization ratio values can be used to distinguish young ice from open water and surrounding sea ice.

  1. Microwave Radiometry and Radiometers for Ocean Applications

    DEFF Research Database (Denmark)

    Skou, Niels

    2008-01-01

    aperture radiometer technique, both yielding imaging capability without scanning. Typical applications of microwave radiometry concerning oceans are: sea salinity, sea surface temperature, wind speed and direction, sea ice detection and classification. However, in an attempt to measure properties...

  2. Mapping Regional Inundation with Spaceborne L-Band SAR

    Directory of Open Access Journals (Sweden)

    Bruce Chapman

    2015-04-01

    Full Text Available Shortly after the launch of ALOS PALSAR L-band SAR by the Japan Space Exploration Agency (JAXA, a program to develop an Earth Science Data Record (ESDR for inundated wetlands was funded by NASA. Using established methodologies, extensive multi-temporal L-band ALOS ScanSAR data acquired bi-monthly by the PALSAR instrument onboard ALOS were used to classify the inundation state for South America for delivery as a component of this Inundated Wetlands ESDR (IW-ESDR and in collaboration with JAXA’s ALOS Kyoto and Carbon Initiative science programme. We describe these methodologies and the final classification of the inundation state, then compared this with results derived from dual-season data acquired by the JERS-1 L-band SAR mission in 1995 and 1996, as well as with estimates of surface water extent measured globally every 10 days by coarser resolution sensors. Good correspondence was found when comparing open water extent classified from multi-temporal ALOS ScanSAR data with surface water fraction identified from coarse resolution sensors, except in those regions where there may be differences in sensitivity to widespread and shallow seasonal flooding event, or in areas that could be excluded through use of a continental-scale inundatable mask. It was found that the ALOS ScanSAR classification of inundated vegetation was relatively insensitive to inundated herbaceous vegetation. Inundation dynamics were examined using the multi-temporal ALOS ScanSAR acquisitions over the Pacaya-Samiria and surrounding areas in the Peruvian Amazon.

  3. Picture processing of SAR L-band imagery

    Science.gov (United States)

    Bryan, M. L.; Stromberg, W. D.; Farr, T.

    1977-01-01

    Data digitization and thresholding are applied to two scenes - sea ice and fresh-water lakes - to define the possible uses of automatic picture processing of uncalibrated SAR L-band imagery. It is shown that certain types of features, those which have constant returns which are also very high or very low in intensity can be effectively studied using simple automatic picture processing techniques applied to uncalibrated radar data. In areas which are generally inaccessible or in which monitoring of the changes of some types of earth surfaces are required, the uncalibrated SAR data can provide valuable inputs for modeling and mapping purposes.

  4. UAVSAR: Airborne L-band Radar for Repeat Pass Interferometry

    Science.gov (United States)

    Moes, Timothy R.

    2009-01-01

    The primary objectives of the UAVSAR Project were to: a) develop a miniaturized polarimetric L-band synthetic aperture radar (SAR) for use on an unmanned aerial vehicle (UAV) or piloted vehicle. b) develop the associated processing algorithms for repeat-pass differential interferometric measurements using a single antenna. c) conduct measurements of geophysical interest, particularly changes of rapidly deforming surfaces such as volcanoes or earthquakes. Two complete systems were developed. Operational Science Missions began on February 18, 2009 ... concurrent development and testing of the radar system continues.

  5. Aquarius L-Band Radiometers Calibration Using Cold Sky Observations

    Science.gov (United States)

    Dinnat, Emmanuel P.; Le Vine, David M.; Piepmeier, Jeffrey R.; Brown, Shannon T.; Hong, Liang

    2015-01-01

    An important element in the calibration plan for the Aquarius radiometers is to look at the cold sky. This involves rotating the satellite 180 degrees from its nominal Earth viewing configuration to point the main beams at the celestial sky. At L-band, the cold sky provides a stable, well-characterized scene to be used as a calibration reference. This paper describes the cold sky calibration for Aquarius and how it is used as part of the absolute calibration. Cold sky observations helped establish the radiometer bias, by correcting for an error in the spillover lobe of the antenna pattern, and monitor the long-term radiometer drift.

  6. An Inflatable L-Band Microstrip SAR Array

    Science.gov (United States)

    Huang, J.; Lou, M.; Feria, A.; Kim, Y.

    1998-01-01

    Inflatable structures have been identified as one of the enabling technologies to achieve low mass, high packaging efficiency, and reliable deployment for future NASA spaceborne synthetic aperture radar (SAR) array antennas. A current L-band SAR antenna development, with aperture size of 10 m x 3 m, is required to have the capabilities of dual-linear polarization, 80-MHz bandwidth, electronic beam scanning, and less than 100 kg of mass. An inflatable concept, which employs the inflatable tubular frame structure to support a multilayer, thin membrane, microstrip array radiating aperture, has been identified. It uses a "roll-up" concept, for deploying the thin membranes to form a planar array aperture. To demonstrate this concept, two contracts were independently given to ILC Dover, Inc. and L'Garde Corp. for each to construct a 1/3 size (3.3 m x 1.0 m) functional model with an inflatable structure at L-band frequency. JPL provided both contractors with the antenna RF design and the etched thin membranes. The ILC Dover model has been delivered to JPL and gone through a series of deployment and RF tests. This is believed to be the first inflatable array antenna ever developed. This paper presents the mechanical and electrical constructions of this inflatable array and its test results.

  7. Evaluation of Spaceborne L-band Radiometer Measurements for Terrestrial Freeze/Thaw Retrievals in Canada

    Science.gov (United States)

    Roy, A.; Royer, A.; Derksen, C.; Brucker, L.; Langlois, A.; Mailon, A.; Kerr, Y.

    2015-01-01

    The landscape freeze/thaw (FT) state has an important impact on the surface energy balance, carbon fluxes, and hydrologic processes; the timing of spring melt is linked to active layer dynamics in permafrost areas. L-band (1.4 GHz) microwave emission could allow the monitoring of surface state dynamics due to its sensitivity to the pronounced permittivity difference between frozen and thawed soil. The aim of this paper is to evaluate the performance of both Aquarius and Soil Moisture and Ocean Salinity (SMOS) L-band passive microwave measurements using a polarization ratio-based algorithm for landscape FT monitoring. Weekly L-band satellite observations are compared with a large set of reference data at 48 sites across Canada spanning three environments: tundra, boreal forest, and prairies. The reference data include in situ measurements of soil temperature (Tsoil) and air temperature (Tair), and Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature (LST) and snow cover area (SCA) products. Results show generally good agreement between Lband FT detection and the surface state estimated from four reference datasets. The best apparent accuracies for all seasons are obtained using Tair as the reference. Aquarius radiometer 2 (incidence angle of 39.6) data gives the best accuracies (90.8), while for SMOS the best results (87.8 of accuracy) are obtained at higher incidence angles (55- 60). The FT algorithm identifies both freeze onset and end with a delay of about one week in tundra and two weeks in forest and prairies, when compared to Tair. The analysis shows a stronger FT signal at tundra sites due to the typically clean transitions between consistently frozen and thawed conditions (and vice versa) and the absence of surface vegetation. Results in the prairies were poorer because of the influence of vegetation growth in summer (which decreases the polarization ratio) and the high frequency of ephemeral thaw events during winter. Freeze onset

  8. L band microwave remote sensing and land data assimilation improve the representation of prestorm soil moisture conditions for hydrologic forecasting

    Science.gov (United States)

    Crow, W. T.; Chen, F.; Reichle, R. H.; Liu, Q.

    2017-06-01

    Recent advances in remote sensing and land data assimilation purport to improve the quality of antecedent soil moisture information available for operational hydrologic forecasting. We objectively validate this claim by calculating the strength of the relationship between storm-scale runoff ratio (i.e., total streamflow divided by total rainfall accumulation in depth units) and prestorm surface soil moisture estimates from a range of surface soil moisture data products. Results demonstrate that both satellite-based, L band microwave radiometry and the application of land data assimilation techniques have significantly improved the utility of surface soil moisture data sets for forecasting streamflow response to future rainfall events.Plain Language SummaryForecasting streamflow conditions is important for minimizing loss of life and property during flooding and adequately planning for low streamflow conditions accompanying drought. One way to improve these forecasts is measuring the amount of water in the soil—since soil moisture conditions determine what fraction of rainfall will run off horizontally into stream channels (versus vertically infiltrate into the soil column). Within the past 5 years, there have been important advances in our ability to monitor soil moisture over large scales using both satellite-based sensors and the application of new land data assimilation techniques. This paper illustrates that these advances have significantly improved our capacity to forecast how much streamflow will be generated by future precipitation events. These results may eventually be used by operational forecasters to improve flash flood forecasting and agricultural water use management.

  9. The design of a GaAs MMIC L-band voltage controlled oscillator in a surface mount package

    Science.gov (United States)

    Olsen, Alan; Ravid, Shmuel

    1991-09-01

    The design, fabrication, and performance characteristics of an L-band voltage controlled oscillator (VCO) in a surface-mount package utilizing two GaAs MMIC chips are described. The VCO generates a +15 dBm minimum output signal that is voltage tunable over an 8-10-percent bandwidth centered anywhere in the lower L-band (1-1.5 GHz). The design approach provides a frequency stability of better than + or - 4 MHz over the temperature range -54 to +85 C, a tuning sensitivity linearity of better than + or - 1 MHz, and a phase noise performance of less than -120 dBc/Hz at 100 kHz from the carrier frequency.

  10. Development of soil moisture retrieval algorithm for L-band SAR measurements

    Science.gov (United States)

    Shi, Jiancheng; Van Zyl, Jakob J.; Soares, Joao V.; Engman, Edwin T.

    1992-01-01

    A study of algorithm development and testing for soil moisture retrieval for bare fields using L-band synthetic aperture radar (SAR) imagery is reported. First-order surface scattering models predict that the copolarization ratio is sensitive to soil moisture but not to surface roughness. All possible ratios of the co-polarization signals and their linear combinations are evaluated. The best sensitivity to soil moisture is achieved from measurements as predicted by the first-order surface scattering model. The effects of system noise and volume scattering of soil are evaluated. To minimize the effect of the volume scattering, an algorithm which includes both the surface and volume scattering has been developed and tested using Jet Propulsion Laboratory Airborne SAR (JPL AIRSAR) data. The results show that the estimation of soil moisture can be improved after removing the system noise and including the volume scattering effect at large incidence angles.

  11. Systems implications of L-band fade data statistics for LEO mobile systems

    Science.gov (United States)

    Devieux, Carrie L.

    1993-01-01

    This paper examines and analyzes research data on the role of foliage attenuation in signal fading between a satellite transmitter and a terrestrial vehicle-mounted receiver. The frequency band of measurement, called L-Band, includes the region 1610.0 to 1626.5 MHz. Data from tests involving various combinations of foliage and vehicle movement conditions clearly show evidence of fast fading (in excess of 0.5 dB per millisecond) and fade depths as great or greater than 16 dB. As a result, the design of a communications link power control that provides the level of accuracy necessary for power sensitive systems could be significantly impacted. Specific examples of this include the communications links that employ Code Division Multiple Access (CDMA) as a modulation technique.

  12. Aquarius Active-Passive RFI Environment at L-Band

    Science.gov (United States)

    Le Vine, David M.; De Matthaeis, Paolo

    2014-01-01

    Active/Passive instrument combinations (i.e., radiometer and radar) are being developed at L-band for remote sensing of sea surface salinity and soil moisture. Aquarius is already in orbit and SMAP is planned for launch in the Fall of 2014. Aquarius has provided for the first time a simultaneous look at the Radio Frequency Interference (RFI) environment from space for both active and passive instruments. The RFI environment for the radiometer observations is now reasonably well known and examples from Aquarius are presented in this manuscript that show that RFI is an important consideration for the scatterometer as well. In particular, extensive areas of the USA, Europe and Asia exhibit strong RFI in both the radiometer band at 1.41 GHz and in the band at 1.26 GHz employed by the Aquarius scatterometer. Furthermore, in areas such as the USA, where RFI at 1.4 GHz is relatively well controlled, RFI in the scatterometer band maybe the limiting consideration for the operation of combination active/passive instruments.

  13. Recalibration and Validation of the SMAP L-Band Radiometer

    Science.gov (United States)

    Peng, Jinzheng; Piepmeier, Jeffrey; Le Vine, David M.; Dinnat, Emmanuel; Bindlish, Rajat; De amici, Giovanni; Mohammed, Priscilla; Misra, Sidharth; Yueh, Simon; Meissner, Thomas

    2017-01-01

    SMAP mission was launched on 31st January 2015 in a 6 AM 6 PM sun-synchronous orbit at 685 km altitude to measure soil moisture and freethaw globally. The passive instrument of SMAP is a fully polarimetric L-band radiometer (1.4GHz) operating with a bandwidth of 24MHz. The radiometer L1B data product version 3 has been released for public science activities. Post-launch calibration and validation activities are described in [4,5]. Validation results show that SMAP antenna temperature (TA) is 2.6 K warmer over galactic Cold Sky (CS), and land TB is 2.6 K colder comparing to SMOS land TB (compared at the top of the atmosphere) after the update of the reflectors thermal model. Due to the biases, the SMAP radiometer is under re-calibration for next data release in 2018.We present the updated calibration approaches for the SMAP radiometer product. We will discuss the various radiometer calibration parameters and part of the validation process and result.

  14. Spatial Variability of L-Band Brightness Temperature during Freeze/Thaw Events over a Prairie Environment

    Directory of Open Access Journals (Sweden)

    Alexandre Roy

    2017-08-01

    Full Text Available Passive microwave measurements from space are known to be sensitive to the freeze/thaw (F/T state of the land surface. These measurements are at a coarse spatial resolution (~15–50 km and the spatial variability of the microwave emissions within a pixel can have important effects on the interpretation of the signal. An L-band ground-based microwave radiometer campaign was conducted in the Canadian Prairies during winter 2014–2015 to examine the spatial variability of surface emissions during frozen and thawed periods. Seven different sites within the Kenaston soil monitoring network were sampled five times between October 2014 and April 2015 with a mobile ground-based L-band radiometer system at approximately monthly intervals. The radiometer measurements showed that in a seemingly homogenous prairie landscape, the spatial variability of brightness temperature (TB is non-negligible during both frozen and unfrozen soil conditions. Under frozen soil conditions, TB was negatively correlated with soil permittivity (εG. This correlation was related to soil moisture conditions before the main freezing event, showing that the soil ice volumetric content at least partly affects TB. However, because of the effect of snow on L-Band emission, the correlation between TB and εG decreased with snow accumulation. When compared to satellite measurements, the average TB of the seven plots were well correlated with the Soil Moisture Ocean Salinity (SMOS TB with a root mean square difference of 8.1 K and consistent representation of the strong F/T signal (i.e., TB increases and decreases when soil freezing and thawing, respectively. This study allows better quantitative understanding of the spatial variability in L-Band emissions related to landscape F/T, and will help the calibration and validation of satellite-based F/T retrieval algorithms.

  15. Development of Wideband, Dual Polarized L-Band Array Antenna for Digital Beam forming SAR Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Using analytical methods to conceptualization L-band antenna structures that offer potentials of wideband operation. Perform extensive computer simulations on these...

  16. L-band transmission over 1000 km using standard and dispersion compensating fibers in a pre-compensation scheme optimised at 1550 nm

    DEFF Research Database (Denmark)

    Peucheret, Christophe; Muñoz, Irene; Buxens, Alvaro A.

    1999-01-01

    Transmission over 1000 km of a 10 Gbit/s signal at 1597 nm is demonstrated in a recirculating loop using standard fibre and wideband dispersion-compensating fibre in the pre-compensation configuration. It is shown that dispersion maps optimised for 1550 nm can be successfully used in the L-band, ......-band, removing the need for separate band dispersion compensation....

  17. Tunable L-band semiconductor laser based on Mach-Zehnder interferometer

    Science.gov (United States)

    Dernaika, Mohamad; Caro, Ludovic; Kelly, Niall P.; Shayesteh, Maryam; Peters, Frank H.

    2017-11-01

    A regrowth-free tunable L-band semiconductor laser based on Mach-Zehnder interferometer is presented in this paper. The laser exhibit a side mode suppression ratio of 38 dB and linewidth of 500 kHz. A tuning range of 30 nm across the L-band is also demonstrated.

  18. Validation of Aquarius Measurements Using Radiative Transfer Models at L-Band

    Science.gov (United States)

    Dinnat, E.; LeVine, David M.; Abraham, S.; DeMattheis, P.; Utku, C.

    2012-01-01

    Aquarius/SAC-D was launched in June 2011 by NASA and CONAE (Argentine space agency). Aquarius includes three L-band (1.4 GHz) radiometers dedicated to measuring sea surface salinity. We report detailed comparisons of Aquarius measurements with radiative transfer model predictions. These comparisons were used as part ofthe initial assessment of Aquarius data. In particular, they were used successfully to estimate the radiometer calibration bias and stability. Further comparisons are being performed to assess the performance of models in the retrieval algorithm for correcting the effect of sources of geophysical "noise" (e.g. the galactic background, atmospheric attenuation and reflected signal from the Sun). Such corrections are critical in bringing the error in retrieved salinity down to the required 0.2 practical salinity unit (psu) on monthly global maps at 150 km by 150 km resolution. The forward models making up the Aquarius simulator have been very useful for preparatory studies in the years leading to Aquarius' launch. The simulator includes various components to compute effects ofthe following processes on the measured signal: 1) emission from Earth surfaces (ocean, land, ice), 2) atmospheric emission and absorption, 3) emission from the Sun, Moon and celestial Sky (directly through the antenna sidelobes or after reflection/scattering at the Earth surface), 4) Faraday rotation, and 5) convolution of the scene by the antenna gain patterns. Since the Aquarius radiometers tum-on in late July 2011, the simulator has been used to perform a first order validation of the data. This included checking the order of magnitude ofthe signal over ocean, land and ice surfaces, checking the relative amplitude of signal at different polarizations, and checking the variation with incidence angle. The comparisons were also used to assess calibration bias and monitor instruments calibration drift. The simulator is also being used in the salinity retrieval. For example, initial

  19. Microwave-derived soil moisture over Mediterranean land uses: from ground-based radiometry to SMOS first observations

    Science.gov (United States)

    Saleh, Kauzar; Antolín, Carmen; Juglea, Silvia; Kerr, Yann; Millán-Scheiding, Cristina; Novello, Nathalie; Pardé, Mickael; Wigneron, Jean-Pierre; Zribi, Mehrez; López-Baeza, Ernesto

    2010-05-01

    This communication will present the main results of a series of airborne and ground-based experiments conducted at the Valencia Anchor Station (VAS) site for the implementation of the SMOS emission model L-MEB (L-band Microwave Emission model of the Biosphere, Wigneron et al., 2007), and will evaluate the performance of L-MEB against SMOS measurements. The L-MEB model has been implemented in the context of the SMOS mission and through numerous radiometry experiments over different land uses. Within L-MEB, each land use is characterised by model parameterisations that are used to describe the radiative transfer at L-band. They describe, for instance, the attenuation properties of different canopies, or the effect of soil roughness on the surface emission. In recent years, the Valencia Anchor Station site (VAS) has hosted various radiometry experiments. These were performed at different scales, from the plot scale to the regional scale (up to 50 km), using ground-based and airborne-based radiometry. The main results are discussed in this communication, and some preliminary comparisons with SMOS measurements are presented. 1) Ground-based experiments. MELBEX-I was a ground-radiometry experiment run in 2005 using the L-band radiometer EMIRAD over a plot of shrub land. We will present results from this experiment (Cano et al., 2009), that highlighted a constant (and small) contribution of Mediterranean shrub land to the overall emission, and investigated the role of exposed rocks in the surface emission. MELBEX-II was a ground-radiometry experiment run in 2007 using the EMIRAD L-band radiometer over a plot of vineyards throughout the whole vegetation cycle. Vineyards are the main land use at the VAS site, therefore parameterisations for vineyards are key for the validation of SMOS data at VAS. This communication will discuss, in particular, estimates of microwave surface roughness throughout the crop year, and changes in the canopy microwave properties throughout the

  20. Effective Albedo of Vegetated Terrain at L-Band

    Science.gov (United States)

    Kurum, Mehmet; O'Neill, Peggy E.; Lang, Roger H.

    2011-01-01

    This paper derives an explicit expression for an effective albedo of vegetated terrain from the zero- and multiple- order radiative transfer (RT) model comparison. The formulation establishes a direct physical link between the effective vegetation parameterization and the theoretical description of absorption and scattering within the canopy. The paper will present an evaluation of the derived albedo for corn canopies with data taken during an experiment at Alabama A&M Winfield A. Thomas Agricultural Research Station near Huntsville, Alabama in June, 1998. The test site consisted of two 50-m x 60-m plots - one with a bare surface and the other with grass cover - and four 30-m x 50-m plots of corn at different planting densities. One corn field was planted at a full density of 9.5 plants/sq m while the others were planted at 1/3, 1/2 and 2/3 of the full density. The fields were observed with a truck-mounted L-band radiometer at incident angle of 15 degree for the period of two weeks. Soil moisture (SM) changed daily due to irrigation and natural rainfall. Variations in gravimetric SM from 18 % to 34 % were seen during this period. Ground truth data, including careful characterization of the corn size and orientation statistics, and its dielectric, was also collected and used to simulate the effective albedo for the vegetation. The single-scattering albedo is defined as the fractional power scattered from individual vegetation constituents with respect to canopy extinction. It represents single-scattering properties of vegetation elements only, and is independent of ground properties. The values of the albedo get higher when there is dense vegetation (i.e. forest, mature corn, etc.) with scatterers, such as branches and trunks (or stalks in the case of corn), which are large with respect to the wavelength. This large albedo leads to a reduction in brightness temperature in the zero-order RT solution (known as tau-omega model). Higher-order multiple-scattering RT

  1. InGaP DHBT for High Efficiency L-band T/R Module Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A fully monolithically integrated L-band T/R module using InGaP/GaAs-based HBTs (heterojunction bipolar transistors) for both the transmit and receive functions is...

  2. Potential loess landslide deformation monitoring using L-band SAR interferometry

    National Research Council Canada - National Science Library

    Liu, Yuzhou; Liao, Mingsheng; Shi, Xuguo; Zhang, Lu; Cunningham, Cory

    2016-01-01

    .... The results demonstrate that L-band SAR has high potential in landslide monitoring applications and can be used as the basis for landslide recognizing, precursory information extracting, and early warning.

  3. Comparing C- and L-band SAR images for sea ice motion estimation

    OpenAIRE

    J. Lehtiranta; S. Siiriä; Karvonen, J

    2015-01-01

    Pairs of consecutive C-band synthetic-aperture radar (SAR) images are routinely used for sea ice motion estimation. The L-band radar has a fundamentally different character, as its longer wavelength penetrates deeper into sea ice. L-band SAR provides information on the seasonal sea ice inner structure in addition to the surface roughness that dominates C-band images. This is especially useful in the Baltic Sea, which lacks multiyear ice and icebergs, known to be confusing ta...

  4. Soil moisture limitations on monitoring boreal forest regrowth using spaceborne L-band SAR data

    Science.gov (United States)

    Eric S. Kasischke; Mihai A. Tanase; Laura L. Bourgeau-Chavez; Matthew Borr

    2011-01-01

    A study was carried out to investigate the utility of L-band SAR data for estimating aboveground biomass in sites with low levels of vegetation regrowth. Data to estimate biomass were collected from 59 sites located in fire-disturbed black spruce forests in interior Alaska. PALSAR L-band data (HH and HV polarizations) collected on two dates in the summer/fall of 2007...

  5. Characterizing L-band Radio-Frequency Interference (RFI) Using SMAP Microwave Radiometer Data

    Science.gov (United States)

    Mohammed, P.; Piepmeier, J. R.; Bringer, A.; Johnson, J. T.; Soldo, Y.; de Matthaeis, P.

    2016-12-01

    The L-band microwave radiometer on NASA's Soil Moisture Active Passive (SMAP) satellite measures electromagnetic radiation upwelling from Earth within the 1400-1427 MHz band. This relatively low microwave frequency is used to achieve penetration through vegetation and first few centimeters of soil. This frequency band is specifically selected, however, because it is exclusively allocated, on a primary basis, to passive sensing in the Earth Exploration Satellite and Radio Astronomy Services by international treaty. Thus, local administrations prohibit intentional transmissions within the band, and any non-natural signal in this band is considered to be radio-frequency interference (RFI). The SMAP radiometer has an advanced radiometer receiver providing time, frequency, polarization, and statistical diversity information on observed signals for RFI detection and filtering. Here we use this signal information to characterize the RFI environmental on local, regional, and global bases. RFI environment assessment is of interest for several reasons: 1) Reporting instances of interference harmful to SMAP performance to the appropriate regulators; 2) Informing spectrum managers and regulators of the state of the spectrum; and 3) Alerting SMAP users and future developers of trouble spots. We find the RF environment is highly variable around the globe. Global maps of RFI rate-of-occurrence exhibit a contrast in detected RFI between Eastern and Western Hemispheres and between Northern and Southern Hemispheres. Peak-hold maps show both isolated and distributed regions of severe RFI, some of which correspond to populated areas and others to geographically isolated long-range radars. Maps of kurtosis-excess reveal much RFI likely due to terrestrial radar systems, although other analysis indicates proliferation of low-level non-radar sources. In one case of intense RFI there is no kurtosis-excess indicating noise-like behavior due to either the use advanced digital modulation

  6. Fpga based L-band pulse doppler radar design and implementation

    Science.gov (United States)

    Savci, Kubilay

    As its name implies RADAR (Radio Detection and Ranging) is an electromagnetic sensor used for detection and locating targets from their return signals. Radar systems propagate electromagnetic energy, from the antenna which is in part intercepted by an object. Objects reradiate a portion of energy which is captured by the radar receiver. The received signal is then processed for information extraction. Radar systems are widely used for surveillance, air security, navigation, weather hazard detection, as well as remote sensing applications. In this work, an FPGA based L-band Pulse Doppler radar prototype, which is used for target detection, localization and velocity calculation has been built and a general-purpose Pulse Doppler radar processor has been developed. This radar is a ground based stationary monopulse radar, which transmits a short pulse with a certain pulse repetition frequency (PRF). Return signals from the target are processed and information about their location and velocity is extracted. Discrete components are used for the transmitter and receiver chain. The hardware solution is based on Xilinx Virtex-6 ML605 FPGA board, responsible for the control of the radar system and the digital signal processing of the received signal, which involves Constant False Alarm Rate (CFAR) detection and Pulse Doppler processing. The algorithm is implemented in MATLAB/SIMULINK using the Xilinx System Generator for DSP tool. The field programmable gate arrays (FPGA) implementation of the radar system provides the flexibility of changing parameters such as the PRF and pulse length therefore it can be used with different radar configurations as well. A VHDL design has been developed for 1Gbit Ethernet connection to transfer digitized return signal and detection results to PC. An A-Scope software has been developed with C# programming language to display time domain radar signals and detection results on PC. Data are processed both in FPGA chip and on PC. FPGA uses fixed

  7. Normality Analysis for RFI Detection in Microwave Radiometry

    Directory of Open Access Journals (Sweden)

    Adriano Camps

    2009-12-01

    Full Text Available Radio-frequency interference (RFI present in microwave radiometry measurements leads to erroneous radiometric results. Sources of RFI include spurious signals and harmonics from lower frequency bands, spread-spectrum signals overlapping the “protected” band of operation, or out-of-band emissions not properly rejected by the pre-detection filters due to its finite rejection. The presence of RFI in the radiometric signal modifies the detected power and therefore the estimated antenna temperature from which the geophysical parameters will be retrieved. In recent years, techniques to detect the presence of RFI in radiometric measurements have been developed. They include time- and/or frequency domain analyses, or time and/or frequency domain statistical analysis of the received signal which, in the absence of RFI, must be a zero-mean Gaussian process. Statistical analyses performed to date include the calculation of the Kurtosis, and the Shapiro-Wilk normality test of the received signal. Nevertheless, statistical analysis of the received signal could be more extensive, as reported in the Statistics literature. The objective of this work is the study of the performance of a number of normality tests encountered in the Statistics literature when applied to the detection of the presence of RFI in the radiometric signal, which is Gaussian by nature. A description of the normality tests and the RFI detection results for different kinds of RFI are presented in view of determining an omnibus test that can deal with the blind spots of the currently used methods.

  8. Semi-Empirical Calibration of the Integral Equation Model for Co-Polarized L-Band Backscattering

    Directory of Open Access Journals (Sweden)

    Nicolas Baghdadi

    2015-10-01

    Full Text Available The objective of this paper is to extend the semi-empirical calibration of the backscattering Integral Equation Model (IEM initially proposed for Synthetic Aperture Radar (SAR data at C- and X-bands to SAR data at L-band. A large dataset of radar signal and in situ measurements (soil moisture and surface roughness over bare soil surfaces were used. This dataset was collected over numerous agricultural study sites in France, Luxembourg, Belgium, Germany and Italy using various SAR sensors (AIRSAR, SIR-C, JERS-1, PALSAR-1, ESAR. Results showed slightly better simulations with exponential autocorrelation function than with Gaussian function and with HH than with VV. Using the exponential autocorrelation function, the mean difference between experimental data and Integral Equation Model (IEM simulations is +0.4 dB in HH and −1.2 dB in VV with a Root Mean Square Error (RMSE about 3.5 dB. In order to improve the modeling results of the IEM for a better use in the inversion of SAR data, a semi-empirical calibration of the IEM was performed at L-band in replacing the correlation length derived from field experiments by a fitting parameter. Better agreement was observed between the backscattering coefficient provided by the SAR and that simulated by the calibrated version of the IEM (RMSE about 2.2 dB.

  9. Soil Moisture Limitations on Monitoring Boreal Forest Regrowth Using Spaceborne L-Band SAR Data

    Science.gov (United States)

    Kasischke, Eric S.; Tanase, Mihai A.; Bourgeau-Chavez, Laura L.; Borr, Matthew

    2011-01-01

    A study was carried out to investigate the utility of L-band SAR data for estimating aboveground biomass in sites with low levels of vegetation regrowth. Data to estimate biomass were collected from 59 sites located in fire-disturbed black spruce forests in interior Alaska. PALSAR L-band data (HH and HV polarizations) collected on two dates in the summer/fall of 2007 and one date in the summer of 2009 were used. Significant linear correlations were found between the log of aboveground biomass (range of 0.02 to 22.2 t ha-1) and (L-HH) and (L-HV) for the data collected on each of the three dates, with the highest correlation found using the LHV data collected when soil moisture was highest. Soil moisture, however, did change the correlations between L-band and aboveground biomass, and the analyses suggest that the influence of soil moisture is biomass dependent. The results indicate that to use L-band SAR data for mapping aboveground biomass and monitoring forest regrowth will require development of approaches to account for the influence that variations in soil moisture have on L-band microwave backscatter, which can be particularly strong when low levels of aboveground biomass occur

  10. Traceable radiometry underpinning terrestrial- and helio-studies (TRUTHS)

    NARCIS (Netherlands)

    Fox, N.; Aiken, J.; Barnett, J.J.; Briottet, X.; Carvell, R.; Frohlich, C.; Groom, S.B.; Hagolle, O.; Haigh, J.D.; Kieffer, H.H.; Lean, J.; Pollock, D.B.; Quinn, T.; Sandford, M.C.W.; Schaepman, M.E.; Shine, K.P.; Schmutz, W.K.; Teillet, P.M.; Thome, K.J.; Verstraete, M.M.; Zalewski, E.

    2003-01-01

    The Traceable Radiometry Underpinning Terrestrial- and Helio- Studies (TRUTHS) mission offers a novel approach to the provision of key scientific data with unprecedented radiometric accuracy for Earth Observation (EO) and solar studies, which will also establish well-calibrated reference

  11. Comparison of Model Prediction With Measurements of Galactic Background Noise at L-Band

    DEFF Research Database (Denmark)

    Le Vine, David M.; Abraham, Saji; Kerr, Yann H.

    2005-01-01

    The spectral window at L-band (1.413 GHz) is important for passive remote sensing of surface parameters such as soil moisture and sea surface salinity that are needed to understand the hydrological cycle and ocean circulation. Radiation from celestial sources (mostly galactic) is strong...... in this window, and an accurate accounting of this background radiation is often needed for calibration. This paper presents a comparison of the background radiation predicted by a model developed from modern radio astronomy measurements with measurements made with several modern L-band remote sensing...... radiometers. The comparison validates the model and illustrates the magnitude of the correction necessary in remote sensing applications....

  12. Description and Performance of an L-Band Radiometer with Digital Beamforming

    Directory of Open Access Journals (Sweden)

    Juan F. Marchan-Hernandez

    2010-12-01

    Full Text Available This paper presents the description and performance tests of an L-band microwave radiometer with Digital Beamforming (DBF, developed for the Passive Advanced Unit (PAU for ocean monitoring project. PAU is an instrument that combines, in a single receiver and without time multiplexing, a microwave radiometer at L-band (PAU-RAD and a GPS-reflectometer (PAU-GNSS-R. This paper focuses on the PAU‑RAD beamformer’s first results, analyzing the hardware and software required for the developed prototype. Finally, it discusses the first results measured in the Universitat Politècnica de Catalunya (UPC anechoic chamber.

  13. An L-Band Polarized Electron PWT Photoinjector for the International Linear Collider (ILC)

    CERN Document Server

    Yu, David; Chen Ping; Lundquist, Martin; Luo, Yan; Smirnov, Alexei Yu

    2005-01-01

    A multi-cell, standing-wave, L-band, p-mode, plane-wave-transformer (PWT) photoinjector with an integrated photocathode in a novel linac structure is proposed by DULY Research Inc. as a polarized electron source. The PWT photoinjector is capable of operation in ultra high vacuum and moderate field gradient. Expected performance of an L-band polarized electron PWT injector operating under the parameters for the International Linear Collider is presented. The projected normalized transverse rms emittance is an order of magnitude lower than that produced with a polarized electron dc gun followed by subharmonic bunchers.

  14. An empirical model of L-band scintillation S4 index constructed by using FORMOSAT-3/COSMIC data

    Science.gov (United States)

    Chen, Shih-Ping; Bilitza, Dieter; Liu, Jann-Yenq; Caton, Ronald; Chang, Loren C.; Yeh, Wen-Hao

    2017-09-01

    Modern society relies heavily on the Global Navigation Satellite System (GNSS) technology for applications such as satellite communication, navigation, and positioning on the ground and/or aviation in the troposphere/stratosphere. However, ionospheric scintillations can severely impact GNSS systems and their related applications. In this study, a global empirical ionospheric scintillation model is constructed with S4-index data obtained by the FORMOSAT-3/COSMIC (F3/C) satellites during 2007-2014 (hereafter referred to as the F3CGS4 model). This model describes the S4-index as a function of local time, day of year, dip-latitude, and solar activity using the index PF10.7. The model reproduces the F3/C S4-index observations well, and yields good agreement with ground-based reception of satellite signals. This confirms that the constructed model can be used to forecast global L-band scintillations on the ground and in the near surface atmosphere.

  15. L-Band RFI as Experienced During Airborne Campaigns in Preparation for SMOS

    DEFF Research Database (Denmark)

    Skou, Niels; Misra, Sidharth; Balling, Jan E.

    2010-01-01

    In support of the European Space Agency Soil Moisture and Ocean Salinity (SMOS) mission, a number of soil moisture and sea salinity campaigns, including airborne L-band radiometer measurements, have been carried out. The radiometer used in this context is fully polarimetric and has built-in radio...

  16. Retrieval of Wind Speed Using an L-band Synthetic Aperture Radar

    DEFF Research Database (Denmark)

    Monaldo, Frank M.; Thompson, Donald R.; Badger, Merete

    2007-01-01

    usefulness over the ocean. Most recent wind retrievals from spaceborne SARs have been at C-band for ERS-1/2, Radarsat, and Envisat. With the launch of the sophisticated multi- polarization Phased Array L-band Synthetic Aperture Radar (PALSAR) on the Advanced Land Observing Satellite (ALOS), we renew...

  17. Gain-clamping techniques in two-stage double-pass L-band EDFA

    Indian Academy of Sciences (India)

    over the conventional single pass amplifier, but one drawback is the higher noise figure. Besides gain improvement, L-band EDFAs for DWDM system must also be able to maintain constant gain during channel add/drop or abrupt failure in the system. To satisfy the requirement of broadband transmission in DWDM systems,.

  18. The CoSMOS L-band experiment in Southeast Australia

    DEFF Research Database (Denmark)

    Saleh, K.; Kerr, Y.H.; Boulet, G.

    2007-01-01

    The CoSMOS (Campaign for validating the Operation of the Soil Moisture and Ocean Salinity mission) campaign was conducted during November of 2005 in the Goulburn River Catchment, in SE Australia. The main objective of CoSMOS was to obtain a series of L-band measurements from the air in order...

  19. Estimation of Soil Moisture for Vegetated Surfaces Using Multi-Temporal L-Band SAR Measurements

    Science.gov (United States)

    Shi, Jian-Cheng; Sun, G.; Hsu, A.; Wang, J.; ONeill, P.; Ranson, J.; Engman, E. T.

    1997-01-01

    This paper demonstrates the technique to estimate ground surface and vegetation scattering components, based on the backscattering model and the radar decomposition theory, under configuration of multi-temporal L-band polarimetric SAR measurement. This technique can be used to estimate soil moisture of vegetated surface.

  20. An L-band SAR for repeat pass deformation measurements on a UAV platform

    Science.gov (United States)

    Wheeler, Kevin; Hensley, Scott; Lou, Yunling

    2004-01-01

    We are proposing to develop a miniaturized polarimetric L-band synthetic aperture radar (SAR) for repeatpass differential interferometric measurements of deformation for rapidly deforming surfaces of geophysical interest such as volcanoes or earthquakes that is to be flown on a unmanned aerial vehicle (UAV or minimally piloted vehicle (MPV).

  1. Airborne L-band radiometer mapping of the dome-C area in Antarctica

    DEFF Research Database (Denmark)

    Skou, Niels; Kristensen, Steen Savstrup; Søbjærg, Sten Schmidl

    2015-01-01

    A 350 km × 350 km area near the Concordia station on the high plateau of Dome-C in Antarctica has been mapped by an airborne L-band radiometer system. The area was expected to display a rather uniform brightness temperature (TB) close to the yearly mean temperature-well suited for calibration...

  2. Mapping of the DOME-C area in Antarctica by an airborne L-band radiometer

    DEFF Research Database (Denmark)

    Skou, Niels; Kristensen, Steen Savstrup; Søbjærg, Sten Schmidl

    2014-01-01

    A 350 × 350 km area near the Concordia station on the high plateau of Dome C in Antarctica has been mapped by an airborne L-band radiometer system. The area was expected to display a rather uniform brightness temperature close to the yearly mean temperature — well suited for calibration checks...

  3. Parametric exponentially correlated surface emission model for L-band passive microwave soil moisture retrieval

    Science.gov (United States)

    Surface soil moisture is an important parameter in hydrology and climate investigations. Current and future satellite missions with L-band passive microwave radiometers can provide valuable information for monitoring the global soil moisture. A factor that can play a significant role in the modeling...

  4. Gain-clamping techniques in two-stage double-pass L-band EDFA

    Indian Academy of Sciences (India)

    Two designs of long-wavelength band erbium-doped fiber amplifier (L-band EDFA) for gain clamping in double-pass systems are demonstrated and compared. The first design is based on ring laser technique where a backward amplified spontaneous emission (ASE) from the second stage is routed into the feedback loop ...

  5. L-Band Radiometers Measuring Salinity From Space: Atmospheric Propagation Effects

    DEFF Research Database (Denmark)

    Skou, Niels; Hofman-Bang, Dorthe

    2005-01-01

    Microwave radiometers can measure sea surface salinity from space using L-band frequencies around 1.4 GHz. However, requirements to the accuracy of the measurements, in order to be satisfactory for the user, are so stringent that the influence of the intervening atmosphere cannot be neglected...

  6. Inter-comparison of SMAP, SMOS and Aquarius L-band brightness temperature observations

    Science.gov (United States)

    Verifying the calibration of the SMAP radiometer over land observations is an important mission requirement. Inter-comparison of L-band brightness temperature observations from different satellites (SMAP, SMOS and Aquarius) is a useful tool for radiometer calibration. Brightness temperatures observa...

  7. An Improved Spectrum Model for Sea Surface Radar Backscattering at L-Band

    Directory of Open Access Journals (Sweden)

    Yanlei Du

    2017-07-01

    Full Text Available L-band active microwave remote sensing is one of the most important technical methods of ocean environmental monitoring and dynamic parameter retrieval. Recently, a unique negative upwind-crosswind (NUC asymmetry of L-band ocean backscatter over a low wind speed range was observed. To study the directional features of L-band ocean surface backscattering, a new directional spectrum model is proposed and built into the advanced integral equation method (AIEM. This spectrum combines Apel’s omnidirectional spectrum and an improved empirical angular spreading function (ASF. The coefficients in the ASF were determined by the fitting of radar observations so that it provides a better description of wave directionality, especially over wavenumber ranges from short-gravity waves to capillary waves. Based on the improved spectrum and the AIEM scattering model, L-band NUC asymmetry at low wind speeds and positive upwind-crosswind (PUC asymmetry at higher wind speeds are simulated successfully. The model outputs are validated against Aquarius/SAC-D observations under different incidence angles, azimuth angles and wind speed conditions.

  8. Inter-comparison of SMAP, Aquarius and SMOS L-band brightness temperature observations

    Science.gov (United States)

    Soil Moisture Active Passive (SMAP) mission is scheduled for launch on January 29, 2015. SMAP will make observations with an L-band radar and radiometer using a shared 6 m rotating reflector antenna. SMAP is a fully polarimetric radiometer with the center frequency of 1.41 GHz. The target accuracy o...

  9. Spaceborne L-band Radiometers: Push-broom or Synthetic Aperture?

    DEFF Research Database (Denmark)

    Skou, Niels

    2004-01-01

    L-band radiometers can measure ocean salinity and soil moisture from space. A synthetic aperture radiometer system, SMOS, is under development by ESA for launch in 2007. A real aperture push-broom system, Aquarius, has been approved by NASA for launch in 2008. Pros et cons of the two fundamentally...

  10. Influence from Polarized Galactic Background Noise on L-band Measurements of the Sea Surface Salinity

    DEFF Research Database (Denmark)

    Søbjærg, Sten Schmidl; Skou, Niels

    2004-01-01

    The polarimetric EMIRAD radiometer, based on novel digital down conversion and detection techniques, has been installed on a C-130 aircraft from the Royal Danish. Air Force during the L-band Ocean Salinity Airborne Campaign (LOSAC) in 2001 and 2003. Full 360° circle flight patterns around the same...

  11. Polarimetric Signatures from a Crop Covered Land Surface Measured by an L-band Polarimetric Radiometer

    DEFF Research Database (Denmark)

    Søbjærg, Sten Schmidl; Skou, Niels

    2003-01-01

    This paper describes preliminary results from field measurements of polarimetric azimuth signatures with the EMIRAD L-band polarimetric radiometer, performed over a land test site at the Institut National de la Recherche Agronomique in Avignon, France. Scans of 180 degrees in azimuth were carried...

  12. Measurement of Wind Signatures on the Sea Surface using an L-band Polarimetric Radiometer

    DEFF Research Database (Denmark)

    Søbjærg, Sten Schmidl; Rotbøll, Jesper; Skou, Niels

    2002-01-01

    A series of circle flights have been carried out over the wind driven sea, using the EMIRAD L-band polarimetric radiometer, described in J. Rotboll et al. (2001). Data are calibrated and corrected for aircraft attitude, and 360 degrees azimuth profiles are generated. The results show some variation...

  13. IN-VIVO RADIATION DOSIMETRY USING PORTABLE L BAND EPR: ON-SITE MEASUREMENT OF VOLUNTEERS IN FUKUSHIMA PREFECTURE, JAPAN

    Science.gov (United States)

    Miyake, Minoru; Nakai, Yasuhiro; Yamaguchi, Ichiro; Hirata, Hiroshi; Kunugita, Naoki; Williams, Benjamin B.; Swartz, Harold M.

    2016-01-01

    The aim of this study was to make direct measurements of the possible radiation-induced EPR signals in the teeth of volunteers who were residents in Fukushima within 80 km distance from the Fukushima Nuclear Power plant at the time of the disaster, and continued to live there for at least 3 month after the disaster. Thirty four volunteers were enrolled in this study. These measurements were made using a portable L-band EPR spectrometer, which was originally developed in the EPR Center at Dartmouth. All measurements were performed using surface loop resonators that have been specifically designed for the upper incisor teeth. Potentially these signals include not only radiation-induced signals induced by the incident but also background signals including those from prior radiation exposure from the environment and medical exposure. We demonstrated that it is feasible to transport the dosimeter to the measurement site and make valid measurements. The intensity of the signals that were obtained was not significantly above those seen in volunteers who had not had potential radiation exposures at Fukushima. PMID:27522046

  14. Coastal Sediments and Habitats in the German Wadden Sea Imaged by Polarimetric X-, C- and L-band SAR

    Science.gov (United States)

    Wang, Wensheng; Gade, Martin

    2017-04-01

    Microwave remote sensing using synthetic aperture radar (SAR) can be used to obtain geophysical parameters of intertidal surface independent of day time and cloud coverage. Polarimetric SAR imagery can provide more detailed information about surface features, moisture and roughness, which supports the classification of intertidal sediments and habitats. In this paper, the polarimetric characteristics of exposed intertidal flats are analyzed using spaceborne SAR imagery from TerraSAR-X (X-band), Radarsat-2 (C-band), and ALOS-2 (L-band) satellites. Four test sites in the German Wadden Sea coast were chosen, which represent typical surface compositions of different sediments, vegetation, and habitats, and of which a large amount of SAR imagery was used for our analyses. We studied the dominant scattering mechanisms of various surface types, including sediments (mud and sand flats) and bivalve (oyster and mussel) beds, using both fully and dual polarimetric multi-frequency and multi-temporal SAR imagery. The polarimetric characteristics of each surface type were then quantitatively compared using depolarization parameters derived from algebraic operations of the normalized Kennaugh elements. In addition, combining X-, C- and L-band SAR imagery, we not only provide Kennaugh elements for coastal sediments and bivalve beds, but also demonstrate the different scattering behavior of each surface type when observed at various wavelengths. Our results show that even-bounce scattering plays a key role in the radar backscattering from sand flats, while for bivalve beds odd-bounce scattering dominates the received signals. The Kennaugh elements, especially the real (K3) and imaginary (K7) parts of the inter-channel correlations, contain useful information about different sediments, vegetation, and habitats; and the combined K3 and K7 elements have great potential to discriminate bivalve beds from sand flats on exposed intertidal flats. Furthermore, we demonstrate that the

  15. Estimation of Bare Surface Soil Moisture and Surface Roughness Parameter Using L-Band SAR Image Data

    Science.gov (United States)

    Shi, Jian-Cheng; Wang, James; Hsu, Ann Y.; ONeill, Peggy E.; Engman, Edwin T.

    1997-01-01

    An algorithm based on a fit of the single-scattering Integral Equation Method (IEM) was developed to provide estimation of soil moisture and surface roughness parameter (a combination of rms roughness height and surface power spectrum) from quad-polarized synthetic aperture radar (SAR) measurements. This algorithm was applied to a series of measurements acquired at L-band (1.25 GHz) from both AIRSAR (Airborne Synthetic Aperture Radar operated by the Jet Propulsion Laboratory) and SIR-C (Spaceborne Imaging Radar-C) over a well- managed watershed in southwest Oklahoma. Prior to its application for soil moisture inversion, a good agreement was found between the single-scattering IEM simulations and the L band measurements of SIR-C and AIRSAR over a wide range of soil moisture and surface roughness conditions. The sensitivity of soil moisture variation to the co-polarized signals were then examined under the consideration of the calibration accuracy of various components of SAR measurements. It was found that the two co-polarized backscattering coefficients and their combinations would provide the best input to the algorithm for estimation of soil moisture and roughness parameter. Application of the inversion algorithm to the co-polarized measurements of both AIRSAR and SIR-C resulted in estimated values of soil moisture and roughness parameter for bare and short-vegetated fields that compared favorably with those sampled on the ground. The root-mean-square (rms) errors of the comparison were found to be 3.4% and 1.9 dB for soil moisture and surface roughness parameter, respectively.

  16. True-time-delay photonic beamformer for an L-band phased array radar

    Science.gov (United States)

    Zmuda, Henry; Toughlian, Edward N.; Payson, Paul M.; Malowicki, John E.

    1995-10-01

    The problem of obtaining a true-time-delay photonic beamformer has recently been a topic of great interest. Many interesting and novel approaches to this problem have been studied. This paper examines the design, construction, and testing of a dynamic optical processor for the control of a 20-element phased array antenna operating at L-band (1.2-1.4 GHz). The approach taken here has several distinct advantages. The actual optical control is accomplished with a class of spatial light modulator known as a segmented mirror device (SMD). This allows for the possibility of controlling an extremely large number (tens of thousands) of antenna elements using integrated circuit technology. The SMD technology is driven by the HDTV and laser printer markets so ultimate cost reduction as well as technological improvements are expected. Optical splitting is efficiently accomplished using a diffractive optical element. This again has the potential for use in antenna array systems with a large number of radiating elements. The actual time delay is achieved using a single acousto-optic device for all the array elements. Acousto-optic device technologies offer sufficient delay as needed for a time steered array. The topological configuration is an optical heterodyne system, hence high, potentially millimeter wave center frequencies are possible by mixing two lasers of slightly differing frequencies. Finally, the entire system is spatially integrated into a 3D glass substrate. The integrated system provides the ruggedness needed in most applications and essentially eliminates the drift problems associated with free space optical systems. Though the system is presently being configured as a beamformer, it has the ability to operate as a general photonic signal processing element in an adaptive (reconfigurable) transversal frequency filter configuration. Such systems are widely applicable in jammer/noise canceling systems, broadband ISDN, and for spread spectrum secure communications

  17. Reconfigurable L-band Radar Transceiver using Digital Signal Synthesis Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Phase II proposal, builds upon the extensive research and digital radar design that has been successfully completed during the Phase I contract. Key innovations...

  18. Soil moisture retrieval through a merging of multi-temporal L-band SAR data and hydrologic modelling

    National Research Council Canada - National Science Library

    Mattia, F; Satalino, G; Pauwels, V. R. N; Loew, A

    2009-01-01

    ... ) from multi-temporal L-band synthetic aperture radar (SAR) data and hydrologic modelling. The study focuses on assessing the performances of an L-band SAR retrieval algorithm intended for agricultural areas and for watershed spatial scales (e.g...

  19. MAPSAR: a small L-band SAR mission for land observation

    Science.gov (United States)

    Schröder, Reinhard; Puls, Jürgen; Hajnsek, Irena; Jochim, Fritz; Neff, Thomas; Kono, Janio; Renato Paradella, Waldir; Marcos Quintino da Silva, Mario; de Morisson Valeriano, Dalton; Pereira Farias Costa, Maycira

    2005-01-01

    This paper introduces Multi-Application Purpose SAR (MAPSAR). A new Synthetic Aperture Radar (SAR) mission for earth observation. MAPSAR is the result of a joint pre-phase A study conducted by INPE and DLR targeting a mission for assessment, management and monitoring of natural resources. The applicability of the sensor system was investigated for cartography, forestry, geology, geomorphology, hydrology, agriculture, disaster management, oceanography, urban studies and security. An L-band SAR, based on INPE's multi-mission platform (MMP), has been chosen as payload of the satellite. The key component of the SAR instrument is the SAR antenna, which is designed as an elliptical parabolic reflector antenna. L-band (high spatial resolution, quad-pol) has been selected for the SAR sensor as optimum frequency accounting for the majority of Brazilian and German user requirements. At the moment, the pre-phase A has been concluded and the phase A is planned to start in early 2003.

  20. Simulated Biomass Retrieval from the Spaceborne Tomographic SAOCOM-CS Mission at L-Band

    Science.gov (United States)

    Blomberg, Erik; Soja, Maciej J.; Ferro-Famil, Laurent; Ulander, Lars M. H.; Tebaldini, Stefano

    2016-08-01

    This paper presents an evaluation of above-ground biomass (ABG) retrieval in boreal forests using simulated tomographic synthetic-aperture radar (SAR) data corresponding to the future SAOCOM-CS (L-band 1.275 GHz) mission. Using forest and radar data from the BioSAR 2008 campaign at the Krycklan test site in northern Sweden the expected performance of SAOCOM-CS is evaluated and compared with the E-SAR airborne L- band SAR (1.300 GHz). It is found that SAOCOM-CS data produce retrievals on par with those obtained with E-SAR, with retrievals having a relative RMSE of 30% or less. This holds true even if the acquisitions are limited to a single polarization, with HH results shown as an example.

  1. Optical System Of The Powerful Multiple Beam L-band Klystron For Linear Collider

    CERN Document Server

    Larionov, A

    2004-01-01

    An optical system reported here was proposed and designed for Toshiba MBK (E3736). Toshiba MBK is the 10MW L-band multiple beam klystron being developed for TESLA (XFEL) project. The key features of this device are following. A new compact scheme of confined flow focusing, which allows using ring shape cavities at the klystron, operating on the fundamental mode. Low cathodes loading (2

  2. Optimizing Performance of a Microwave Salinity Mapper: STARRS L-Band Radiometer Enhancements

    Science.gov (United States)

    2007-05-04

    contrast to the SLFMR. the STARRS L-band ra- The experiment deployed STARRS to generate air- diometer is a true multichannel instrument with six re- borne...supported by the Office of Naval Research as part measure this roughness influence. It is a multichannel of the NRL’s basic research project Salinity... shop on EuroSTARRS, WISE, LOSAC Campaigns, Tou- -,-,G. S. E. Lagerloef, S. Yueh, F. Pellerano, E. Dinnat, and F. louse, France, European Space Agency, 67-72.

  3. Multi-Resolution L-Band Microwave Observations for Growing Vegetation during SMAPVEX16-IA

    Science.gov (United States)

    Judge, J.; Liu, P. W.; Chakrabarti, S.; De Roo, R. D.; Colliander, A.; Misra, S.; Yueh, S. H.; Williamson, R.; Ramos, I.; Tripp, S.; England, A. W.

    2016-12-01

    Microwave observations, such as those at L-band, are highly sensitive to soil moisture in the upper few centimeters (near-surface). The NASA Soil Moisture Active/Passive (SMAP) mission includes passive sensor at L-band that provides global observations of SM at 36 km, with a repeat coverage of every 2-3 days. These observations can significantly improve root zone soil moisture when data assimilated into land surface models (LSMs). The SMAP Validation Experiment-2016 (SMAPVEX16) was conducted during the summer from May through August 2016 in predominantly agricultural regions in Iowa (SMAPVEX16-IA) and Manitoba. During the experiment, aircraft and ground-based observations of L-band active and passive signatures of corn and soybean were obtained at the SMAP incidence angle of 40•. The aircraft measurements were obtained from the NASA/JPL Passive Active L- and S-band Sensor (PALS) during the time of SMAP overpasses from May 23 through June 3 and from August 3 through August 16, 2016. The ground-based University of Florida (UFLMR) and University of Michigan L-band Radiometer (UMLMR) systems observed microwave signatures of soybean and corn, respectively, at the Sweeney Farms, about 70 km north of Ames, IA. The ground-based sensors conducted every 15-minutes observations from May 23 through September 2, 2016. In addition, soil, vegetation, and micro-meteorological conditions were also monitored throughout the growing season. In this study, we discuss the satellite observations from SMAP and ESA Soil Moisture and Ocean Salinity (SMOS) along with those from PALS, and UFLMR/UMLMR at differing resolutions to understand implications of spatial heterogeneity on soil moisture retrievals in agricultural regions. resolutions. The preliminary results show SMAP observations at 36 km correspond well with the ground-based observations for corn, the predominant land cover in the region.

  4. Detection and Monitoring of Inundation with Polarimetric L-Band SAR

    Science.gov (United States)

    Chapman, B. D.; Celi, J. E.; Hamilton, S. K.; McDonald, K. C.

    2014-12-01

    It has been known for decades that at wavelengths L-band or longer, SAR is a sensitive indicator of inundation underneath forest canopies. The high resolution detection of below-canopy inundation is difficult to accomplish at regional to continental scales using other types of remote sensing sensors, making it a compelling SAR measurement especially useful for studying wetland inundation dynamics, particularly in difficult-to-reach access, canopy-covered tropical forest environments. Most results have utilized spaceborne SAR observations with less than fully polarimetric data. Since one of the objectives of the NISAR mission is to characterize and understand the fundamental process that drives changes to ecosystems such as wetland inundated areas, we will discuss the sensitivity of L-band SAR to inundation. We will illustrate the detection of inundation using fully polarimetric L-band SAR data from UAVSAR, NASA's airborne SAR, over a tropical forest region in Ecuador and Peru. At the same time as the data collection, measurements were made on the ground to characterize vegetation and inundation characteristics. The field data were used to validate the results of classifying the vanZyl decomposition of the polarimetric data. We compare this classification with that possible with a reduced subset of the polarimetric observations.

  5. L-Band Digital Aeronautical Communications System Engineering - Initial Safety and Security Risk Assessment and Mitigation

    Science.gov (United States)

    Zelkin, Natalie; Henriksen, Stephen

    2011-01-01

    This document is being provided as part of ITT's NASA Glenn Research Center Aerospace Communication Systems Technical Support (ACSTS) contract NNC05CA85C, Task 7: "New ATM Requirements--Future Communications, C-Band and L-Band Communications Standard Development." ITT has completed a safety hazard analysis providing a preliminary safety assessment for the proposed L-band (960 to 1164 MHz) terrestrial en route communications system. The assessment was performed following the guidelines outlined in the Federal Aviation Administration Safety Risk Management Guidance for System Acquisitions document. The safety analysis did not identify any hazards with an unacceptable risk, though a number of hazards with a medium risk were documented. This effort represents a preliminary safety hazard analysis and notes the triggers for risk reassessment. A detailed safety hazards analysis is recommended as a follow-on activity to assess particular components of the L-band communication system after the technology is chosen and system rollout timing is determined. The security risk analysis resulted in identifying main security threats to the proposed system as well as noting additional threats recommended for a future security analysis conducted at a later stage in the system development process. The document discusses various security controls, including those suggested in the COCR Version 2.0.

  6. Precipitation estimation using L-band and C-band soil moisture retrievals

    Science.gov (United States)

    Koster, Randal D.; Brocca, Luca; Crow, Wade T.; Burgin, Mariko S.; De Lannoy, Gabrielle J. M.

    2016-09-01

    An established methodology for estimating precipitation amounts from satellite-based soil moisture retrievals is applied to L-band products from the Soil Moisture Active Passive (SMAP) and Soil Moisture and Ocean Salinity (SMOS) satellite missions and to a C-band product from the Advanced Scatterometer (ASCAT) mission. The precipitation estimates so obtained are evaluated against in situ (gauge-based) precipitation observations from across the globe. The precipitation estimation skill achieved using the L-band SMAP and SMOS data sets is higher than that obtained with the C-band product, as might be expected given that L-band is sensitive to a thicker layer of soil and thereby provides more information on the response of soil moisture to precipitation. The square of the correlation coefficient between the SMAP-based precipitation estimates and the observations (for aggregations to ˜100 km and 5 days) is on average about 0.6 in areas of high rain gauge density. Satellite missions specifically designed to monitor soil moisture thus do provide significant information on precipitation variability, information that could contribute to efforts in global precipitation estimation.

  7. Building Damage Estimation by Integration of Seismic Intensity Information and Satellite L-band SAR Imagery

    Directory of Open Access Journals (Sweden)

    Nobuoto Nojima

    2010-09-01

    Full Text Available For a quick and stable estimation of earthquake damaged buildings worldwide, using Phased Array type L-band Synthetic Aperture Radar (PALSAR loaded on the Advanced Land Observing Satellite (ALOS satellite, a model combining the usage of satellite synthetic aperture radar (SAR imagery and Japan Meteorological Agency (JMA-scale seismic intensity is proposed. In order to expand the existing C-band SAR based damage estimation model into L-band SAR, this paper rebuilds a likelihood function for severe damage ratio, on the basis of dataset from Japanese Earth Resource Satellite-1 (JERS-1/SAR (L-band SAR images observed during the 1995 Kobe earthquake and its detailed ground truth data. The model which integrates the fragility functions of building damage in terms of seismic intensity and the proposed likelihood function is then applied to PALSAR images taken over the areas affected by the 2007 earthquake in Pisco, Peru. The accuracy of the proposed damage estimation model is examined by comparing the results of the analyses with field investigations and/or interpretation of high-resolution satellite images.

  8. Improved geodetic earthquake source modelling through correction of ionospheric disturbances in L-band InSAR data

    Science.gov (United States)

    Sudhaus, Henriette; Gomba, Giorgio; Eineder, Michael

    2016-04-01

    The use of L-band InSAR data for observing the surface displacements caused by earthquakes can be very beneficial. The retrieved signal is generally more stable against temporal phase decorrelation with respect to C-band and X-band InSAR data, such that fault movements also in vegetated areas can be observed. Also, due to the longer wavelength, larger displacement gradients that occur close to the ruptures can be measured. A serious draw back of L-band data on the other hand is that it more strongly reacts to heterogeneities in the ionosphere. The spatial variability of the electron content causes spatially long wavelength trends in the interferometric phase, distorts the surface deformation signal therefore impacts on the earthquake source analysis. A well-known example of the long-wavelength distortions are the ALOS-1 InSAR observations of the 2008 Wenchuan earthquake. To mitigate the effect of ionospheric phase in the geodetic modelling of earthquake sources, a common procedure is to remove any obvious linear or quadratic trend in the surface displacement data that may have been caused by ionospheric phase delays. Additionally, remaining trends may be accounted for by including so-called ambiguity (or nuisance) parameters in the modelling. The introduced ionospheric distortion, however, is only approximated arbitrarily by such simple ramp functions with the true ionospheric phase screen unknown. As a consequence, either a remaining ionospheric signal may be mistaken for surface displacement or, the other way around, long-wavelength surface displacement may be attributed to ionospheric distortion and is removed. The bias introduced to the source modelling results by the assumption of linear or quadratic ionospheric effects is therefore unknown as well. We present a more informed and physics-based correction of the surface displacement data in earthquake source modelling by using a split-spectrum method to estimate the ionospheric phase screen superimposed to the

  9. The ground-based H, K, and L-band absolute emission spectra of HD 209458b

    OpenAIRE

    Zellem, Robert T.; Griffith, Caitlin A.; Deroo, Pieter; Swain, Mark R.; Waldmann, Ingo P.

    2014-01-01

    Here we explore the capabilities of NASA's 3.0 meter Infrared Telescope Facility (IRTF) and SpeX spectrometer and the 5.08 meter Hale telescope with the TripleSpec spectrometer with near-infrared H, K, and L-band measurements of HD 209458b's secondary eclipse. Our IRTF/SpeX data are the first absolute L-band spectroscopic emission measurements of any exoplanet other than the hot Jupiter HD 189733b. Previous measurements of HD 189733b's L-band indicate bright emission hypothesized to result fr...

  10. Characterization of L-band synthetic aperture radar (SAR) backscatter from floating and grounded thermokarst lake ice in Arctic Alaska

    OpenAIRE

    Engram, M.; Anthony, K. W.; Meyer, F.J.; Grosse, G.

    2013-01-01

    Radar remote sensing is a well-established method to discriminate lakes retaining liquid-phase water beneath winter ice cover from those that do not. L-band (23.6 cm wavelength) airborne radar showed great promise in the 1970s, but spaceborne synthetic aperture radar (SAR) studies have focused on C-band (5.6 cm) SAR to classify lake ice with no further attention to L-band SAR for this purpose. Here, we examined calibrated L-band single- and quadrature-polarized SAR returns f...

  11. L-Band Emission of Soil Freeze-Thaw State in a Tibetan Meadow Ecosystem

    Science.gov (United States)

    Zheng, Donghai; Wang, Xin; van der Velde, Rogier; Su, Zhongbo; Zeng, Yijian; Wen, Jun; Wang, Zuoliang; Schwank, Mike; Ferrazzoli, Paolo

    2017-04-01

    Soil freeze-thaw transition monitoring is essential for quantifying climate change and hydrologic dynamics over cold regions, for instance, the Tibetan Plateau. We investigate the L-band (1.4 GHz) microwave emission characteristics of soil freeze-thaw cycle via analysis of tower-based brightness temperature (TB) measurements using the ELBARA III radiometer in combination with simulations performed by a model of soil emission considering vertical variations of permittivity and soil temperature. Vegetation effects are modelled using the Tor Vergata discrete model. As part of Soil Moisture and Ocean Salinity (SMOS) and Soil Moisture Active Passive (SMAP) calibration and validation activities, the ELBARA III radiometer is installed on a 4.8 m high tower located in a seasonally frozen Tibetan meadow ecosystem to measure diurnal cycles of L-band TB. The daily measurements include elevation scanning sequences toward the ground and zenith (sky) measurements. The angular range considered for the elevation scans is performed every 30 min between 40°-70° (relative to nadir) in steps of 5°. The sky measurement is performed at 23:55 every day with an observation angle of 155°. Supporting micro-meteorological (e.g. solar radiation, air temperature and humidity) as well as soil moisture and temperature profile measurements are also conducted near the radiometer. Analyses of the measurements reveal that the impact on TB caused by diurnal changes of ground permittivity is generally stronger than the effect of changing ground temperature. Moreover, the simulations performed with the integrated Tor Vergata model and Noah land surface model indicate that the TB signatures of diurnal soil freeze-thaw cycle is most sensitive to the liquid water content of the soil surface layer, and the measurements taken at 5 cm depth are less representative for the L-band emission.

  12. Development of Toshiba L-Band Multi-Beam Klystron for European XFEL Project

    CERN Document Server

    Ho-Chin, Yong; Miyake, Setsuo; Yano, Atsunori

    2005-01-01

    A 10MW L-band multi-beam klystron (MBK)is under develpment at Toshiba, Japan for DESY X-FEL and a future linear collider projects. The design goals are to have 10MW peak power with 65% efficiency at 1.5 ms pulse length at 10Hz repetition rates. The Toshiba MBK has six low-perveance beams operated at low voltage of 115kV (for 10MW) to enable a higher efficiency than a single-beam klystron for a similar power. The prototyp·10-0

  13. Development of NASA's Next Generation L-Band Digital Beamforming Synthetic Aperture Radar (DBSAR-2)

    Science.gov (United States)

    Rincon, Rafael; Fatoyinbo, Temilola; Osmanoglu, Batuhan; Lee, Seung-Kuk; Ranson, K. Jon; Marrero, Victor; Yeary, Mark

    2014-01-01

    NASA's Next generation Digital Beamforming SAR (DBSAR-2) is a state-of-the-art airborne L-band radar developed at the NASA Goddard Space Flight Center (GSFC). The instrument builds upon the advanced architectures in NASA's DBSAR-1 and EcoSAR instruments. The new instrument employs a 16-channel radar architecture characterized by multi-mode operation, software defined waveform generation, digital beamforming, and configurable radar parameters. The instrument has been design to support several disciplines in Earth and Planetary sciences. The instrument was recently completed, and tested and calibrated in a anechoic chamber.

  14. Computer processing of SAR L-band imagery. [Synthetic Aperture Radar for ice mapping

    Science.gov (United States)

    Bryan, M. L.; Stromberg, W. D.; Farr, T. G.

    1977-01-01

    The described work in the areas of hydrology and polar ice defines possible uses of automatic picture processing of uncalibrated radar images. The data used in the study were collected with the aid of an L-band synthetic aperture radar mounted in the NASA CV-990 aircraft. The radar was operated at approximately 30,000 feet altitude. One study area used was located in the Beaufort Sea and contained sea ice. The other study area contained lakes on the Alaskan North Slope. The reported investigations demonstrate that certain types of features can be efficiently studied by using simple automatic picture processing techniques applied to uncalibrated radar data.

  15. Interpretation key for SAR /L-band/ imagery of sea ice

    Science.gov (United States)

    Bryan, M. L.

    1976-01-01

    An interpretation key, similar to those previously developed for use with aerial photography and other remotely sensed data, was developed for L-band (25 cm) radar imagery collected over the Arctic Ocean. Data from April, August, and October were considered. The procedure for developing a valid interpretation key for operation use involves substituting time for space. Open water situations (polynyas, leads, flaws), examples of unconsolidated ice (frazil, slush, brash), thin ice (nilas), and annual ice (first year, multi-year ice) situations are examined. It is suggested that the interpretation key will enhance the use of side looking airborne radar data in the qualitative photo interpretation mode.

  16. L-Band Polarimetric SAR Signatures of Lava Flows in the Northern Volcanic Zone, Iceland

    DEFF Research Database (Denmark)

    Dierking, Wolfgang; Haack, Henning

    1998-01-01

    of polarimetric L-band radar signatures observed over different lava flows located in the Northern Volcanic Zone in Iceland. Intensity images with a high spatial resolution are well suited for geological interpretation, both in the discrimination of lava flows from the surrounding terrain and in the recognition......Studies of radar scattering signatures typical for lava surfaces are needed in order to interprete SAR images of volcanic terrain on the Earth and on other planets, and to establish a physical basis for the choice of optimal radar configurations for geological mapping. The authors focus on a study...

  17. A Dual-polarized Microstrip Subarray Antenna for an Inflatable L-band Synthetic Aperture Radar

    Science.gov (United States)

    Zawadzki, Mark; Huang, John

    1999-01-01

    Inflatable technology has been identified as a potential solution to the problem of achieving small mass, high packaging efficiency, and reliable deployment for future NASA spaceborne synthetic aperture radar (SAR) antennas. Presently, there exists a requirement for a dual-polarized L-band SAR antenna with an aperture size of 10m x 3m, a center frequency of 1.25GHz, a bandwidth of 80MHz, electronic beam scanning, and a mass of less than 100kg. The work presented below is part of the ongoing effort to develop such an inflatable antenna array.

  18. Estimating Sea Surface Salinity and Wind Using Combined Passive and Active L-Band Microwave Observations

    Science.gov (United States)

    Yueh, Simon H.; Chaubell, Mario J.

    2012-01-01

    Several L-band microwave radiometer and radar missions have been, or will be, operating in space for land and ocean observations. These include the NASA Aquarius mission and the Soil Moisture Active Passive (SMAP) mission, both of which use combined passive/ active L-band instruments. Aquarius s passive/active L-band microwave sensor has been designed to map the salinity field at the surface of the ocean from space. SMAP s primary objectives are for soil moisture and freeze/thaw detection, but it will operate continuously over the ocean, and hence will have significant potential for ocean surface research. In this innovation, an algorithm has been developed to retrieve simultaneously ocean surface salinity and wind from combined passive/active L-band microwave observations of sea surfaces. The algorithm takes advantage of the differing response of brightness temperatures and radar backscatter to salinity, wind speed, and direction, thus minimizing the least squares error (LSE) measure, which signifies the difference between measurements and model functions of brightness temperatures and radar backscatter. The algorithm uses the conjugate gradient method to search for the local minima of the LSE. Three LSE measures with different measurement combinations have been tested. The first LSE measure uses passive microwave data only with retrieval errors reaching 1 to 2 psu (practical salinity units) for salinity, and 1 to 2 m/s for wind speed. The second LSE measure uses both passive and active microwave data for vertical and horizontal polarizations. The addition of active microwave data significantly improves the retrieval accuracy by about a factor of five. To mitigate the impact of Faraday rotation on satellite observations, the third LSE measure uses measurement combinations invariant under the Faraday rotation. For Aquarius, the expected RMS SSS (sea surface salinity) error will be less than about 0.2 psu for low winds, and increases to 0.3 psu at 25 m/s wind speed

  19. L-band Radiometer Calibration Consistency Assessment for the SMOS, SMAP, and Aquarius Instruments

    Science.gov (United States)

    Dinnat, Emmanuel; Le Vine, David

    2016-01-01

    Three L-band radiometers have been observing the Earth in order to retrieve soil moisture and ocean salinity. They use different instrument configurations and calibration and retrieval algorithms. In any case, the brightness temperature retrieved at the Earth surface should be consistent between all instruments. One reason for inconsistency would be the use of different approaches for the instrument calibration or the use of different models to retrieve surface brightness temperature. We report on the different approaches used for the SMOS, SMAP and Aquarius instruments and their impact on the observations consistency.

  20. Soil Moisture Active Passive (SMAP) L-Band Microwave Radiometer Post-Launch Calibration

    Science.gov (United States)

    Peng, Jinzheng; Piepmeier, Jeffrey R.; Misra, Sidharth; Dinnat, Emmanuel P.; Hudson, Derek; Le Vine, David M.; De Amici, Giovanni; Mohammed, Priscilla N.; Yueh, Simon H.; Meissner, Thomas

    2016-01-01

    The SMAP microwave radiometer is a fully-polarimetric L-band radiometer flown on the SMAP satellite in a 6 AM/ 6 PM sun-synchronous orbit at 685 km altitude. Since April, 2015, the radiometer is under calibration and validation to assess the quality of the radiometer L1B data product. Calibration methods including the SMAP L1B TA2TB (from Antenna Temperature (TA) to the Earth's surface Brightness Temperature (TB)) algorithm and TA forward models are outlined, and validation approaches to calibration stability/quality are described in this paper including future work. Results show that the current radiometer L1B data satisfies its requirements.

  1. L-Band System Engineering - Concepts of Use, Systems Performance Requirements, and Architecture

    Science.gov (United States)

    Henriksen, Stephen; Zelkin, Natalie

    2011-01-01

    This document is being provided as part of ITT s NASA Glenn Research Center Aerospace Communication Systems Technical Support (ACSTS) contract NNC05CA85C, Task 7: New ATM Requirements-Future Communications, C-band and L-band Communications Standard Development. Task 7 was motivated by the five year technology assessment performed for the Federal Aviation Administration (FAA) under the joint FAA-EUROCONTROL cooperative research Action Plan (AP-17), also known as the Future Communications Study (FCS). It was based on direction provided by the FAA project-level agreement (PLA FY09_G1M.02-02v1) for "New ATM Requirements-Future Communications." Task 7 was separated into two distinct subtasks, each aligned with specific work elements and deliverable items. Subtask 7-1 addressed C-band airport surface data communications standards development, systems engineering, test bed development, and tests/demonstrations to establish operational capability for what is now referred to as the Aeronautical Mobile Airport Communications System (AeroMACS). Subtask 7-2, which is the subject of this report, focused on preliminary systems engineering and support of joint FAA/EUROCONTROL development and evaluation of a future L-band (960 to 1164 MHz) air/ground (A/G) communication system known as the L-band digital aeronautical communications system (L-DACS), which was defined during the FCS. The proposed L-DACS will be capable of providing ATM services in continental airspace in the 2020+ timeframe. Subtask 7-2 was performed in two phases. Phase I featured development of Concepts of Use, high level functional analyses, performance of initial L-band system safety and security risk assessments, and development of high level requirements and architectures. It also included the aforementioned support of joint L-DACS development and evaluation, including inputs to L-DACS design specifications. Phase II provided a refinement of the systems engineering activities performed during Phase I, along

  2. InGaP HBT Lift-Off for High Efficiency L-band T/R Module Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal addresses the need for the development of higher efficiency power amplifiers at L-band using GaAs HBT (heterojunction bipolar transistors) for pulsed...

  3. L-Band SAR Backscatter Related to Forest Cover, Height and Aboveground Biomass at Multiple Spatial Scales across Denmark

    National Research Council Canada - National Science Library

    Neha P Joshi; Edward T A Mitchard; Johannes Schumacher; Vivian K Johannsen; Sassan Saatchi; Rasmus Fensholt

    2015-01-01

    .... Here, we attempt to quantify the effect of these factors by relating L-band ALOS PALSAR HV backscatter and unique country-wide LiDAR-derived maps of vegetation penetrability, height and AGB over...

  4. Characterization of L-band synthetic aperture radar (SAR) backscatter from floating and grounded thermokarst lake ice in Arctic Alaska

    Science.gov (United States)

    Engram, M.; Anthony, K. W.; Meyer, F. J.; Grosse, G.

    2013-11-01

    Radar remote sensing is a well-established method to discriminate lakes retaining liquid-phase water beneath winter ice cover from those that do not. L-band (23.6 cm wavelength) airborne radar showed great promise in the 1970s, but spaceborne synthetic aperture radar (SAR) studies have focused on C-band (5.6 cm) SAR to classify lake ice with no further attention to L-band SAR for this purpose. Here, we examined calibrated L-band single- and quadrature-polarized SAR returns from floating and grounded lake ice in two regions of Alaska: the northern Seward Peninsula (NSP) where methane ebullition is common in lakes and the Arctic Coastal Plain (ACP) where ebullition is relatively rare. We found average backscatter intensities of -13 dB and -16 dB for late winter floating ice on the NSP and ACP, respectively, and -19 dB for grounded ice in both regions. Polarimetric analysis revealed that the mechanism of L-band SAR backscatter from floating ice is primarily roughness at the ice-water interface. L-band SAR showed less contrast between floating and grounded lake ice than C-band; however, since L-band is sensitive to ebullition bubbles trapped by lake ice (bubbles increase backscatter), this study helps elucidate potential confounding factors of grounded ice in methane studies using SAR.

  5. Characteristics of observed tropopause height derived from L-band sounder over the Tibetan Plateau and surrounding areas

    Science.gov (United States)

    Jiang, Xiaoling; Wang, Donghai; Xu, Jianjun; Zhang, Yuwei; Chiu, Long S.

    2017-02-01

    The tropopause, which plays important roles in the stratosphere-troposphere exchange, is an interface between the troposphere and stratosphere. In this study, the characteristics of tropopause is investigated with the high vertical resolution daily sounding data during the period from 2008 to 2014 collected by the network of L-band sounder at 119 observational stations over Mainland China developed by the China Meteorological Administration (CMA). The results show that the tropopause height increases from the north to the south and has little correspondence with the station elevation. In addition, the spectral analyses and wavelet analyses are also performed to understand the intraseasonal variations of the tropopause. The results show that usually there are seasonal cycles with maximum in summer and minimum in winter. The strongest spectral band with period of 25-35 days is observed over the Southeast China. Besides, 20-60 days signals over the Changjiang River basin and the Tibetan Plateau has a good correlation to the Oceanic Niño Index (ONI), suggesting that the behavior of tropopause over the regions between 30oN and 40oN could relate to the Niño events.

  6. Total electron content and l-band amplitude and phase scintillation measurements in the polar-cap ionosphere

    Energy Technology Data Exchange (ETDEWEB)

    Klobuchar, J.A.; Bishop, G.J.; Doherty, P.H.

    1987-03-30

    The first measurements of absolute Total Electron Content (TEC) and L-band amplitude and phase scintillation was made from Thule, Greenland, a polar cap station, in early 1984. These measurements were made using signals transmitted from the Global Positioning System (GPS) satellites. The variability of the TEC, especially during the afternoon to pre-midnight hours, is large, with increases in TEC above the background values of greater than 100% not uncommon. During one disturbed time, quasi-periodic TEC enhancements having periods as short as ten minutes and amplitudes equal to the background TEC were observed for over two hours. The TEC during some of the disturbed periods in the dark Thule ionosphere exceeded mid-latitude daytime values. Amplitude scintillations were small, not exceeding 3 dB peak to peak during the entire observing period, but they were associated with the times of TEC enhancements, with some evidence for stronger scintillation occurring during the negative gradients of the TEC enhancements. Phase scintillations were highest during some of the times of enhanced TEC, and depend critically upon the phase detrend internal used.

  7. Uplift of Kelud Volcano Prior to the November 2007 Eruption as Observed by L-Band Insar

    Directory of Open Access Journals (Sweden)

    Ashar Muda Lubis

    2014-09-01

    Full Text Available Kelud volcano, a stratovolcano with summit elevation of 1731 m above sea level, is considered to be one of the most dangerous volcanoes in Java, Indonesia. Kelud volcano erupts frequently, with the most recent eruption occurred on November 3, 2007. Therefore, volcano monitoring, especially detecting precursory signals prior to an eruption, is important for hazard mitigation for Kelud volcano. Interferometric Synthetic Aperture Radar (InSAR has been proven to bea powerful tool for investigating earth-surface deformation. Hence, we applied D-InSAR (differential InSAR in an effort to identify pre-eruptive deformation of Kelud volcano before November 2007 eruption. SAR images, L band ALOS-PALSAR, were used to construct 3 coherent interferograms between January to May 2007. We used the D-InSAR technique to remove topographic effects from interferometry images. During the interval observation, we detected a continuous inflation with a maximum line-of-sight (LOS displacement of 11cm. Uplift of Kelud volcano was also observed by the tiltmeter 1-2 months prior to the November 2007 eruption. We interpret this inflation as a manifestation of increased volume of magmatic material in the shallow reservoir and magmatic migration towards the surface, indicating an imminent eruption. This study confirms that InSAR technique is a valuable tool for monitoring volcano towards better hazard mitigations.

  8. Impact of the Ionosphere on an L-band Space Based Radar

    Science.gov (United States)

    Chapin, Elaine; Chan, Samuel F.; Chapman, Bruce D.; Chen, Curtis W.; Martin, Jan M.; Michel, Thierry R.; Muellerschoen, Ronald J.; Pi, Xiaoqing; Rosen, Paul A.

    2006-01-01

    We have quantified the impact that the ionosphere would have on a L-band interferometric Synthetic Aperture Radar (SAR) mission using a combination of simulation, modeling, Global Positioning System (GPS) data collected during the last solar maximum, and existing spaceborne SAR data. We conclude that, except for high latitude scintillation related effects, the ionosphere will not significantly impact the performance of an L-band InSAR mission in an appropriate orbit. We evaluated the strength of the ionospheric irregularities using GPS scintillation data collected at Fairbanks, Alaska and modeled the impact of these irregularities on azimuth resolution, azimuth displacement, peak sidelobe ratio (PSLR), and integrated sidelobe ratio (ISLR). Although we predict that less than 5% of auroral zone data would show scintillation related artifacts, certain sites imaged near the equinoxes could be effected up to 25% of the time because the frequency of occurrence of scintillation is a strong function of season and local time of day. Our examination of ionospheric artifacts observed in InSAR data has revealed that the artifacts occur primarily in the polar cap data, not auroral zone data as was previously thought.

  9. Validation of Forested Inundation Extent Revealed by L-Band Polarimetric and Interferometric SAR Data

    Science.gov (United States)

    Chapman, Bruce; Celi, Jorge; Hamilton, Steve; McDonald, Kyle

    2013-01-01

    UAVSAR, NASA's airborne Synthetic Aperture Radar (SAR), conducted an extended observational campaign in Central and South America in March 2013, primarily related to volcanic deformations along the Andean Mountain Range but also including a large number of flights studying other scientific phenomena. During this campaign, the L-Band SAR collected data over the Napo River in Ecuador. The objectives of this experiment were to acquire polarimetric and interferometric L-Band SAR data over an inundated tropical forest in Ecuador simultaneously with on-the-ground field work ascertaining the extent of inundation, and to then derive from this data a quantitative estimate for the error in the SAR-derived inundation extent. In this paper, we will first describe the processing and preliminary analysis of the SAR data. The polarimetric SAR data will be classified by land cover and inundation state. The interferometric SAR data will be used to identify those areas where change in inundation extent occurred, and to measure the change in water level between two observations separated by a week. Second, we will describe the collection of the field estimates of inundation, and have preliminary comparisons of inundation extent measured in the field field versus that estimated from the SAR data.

  10. Mangrove vegetation structure in Southeast Brazil from phased array L-band synthetic aperture radar data

    Science.gov (United States)

    de Souza Pereira, Francisca Rocha; Kampel, Milton; Cunha-Lignon, Marilia

    2016-07-01

    The potential use of phased array type L-band synthetic aperture radar (PALSAR) data for discriminating distinct physiographic mangrove types with different forest structure developments in a subtropical mangrove forest located in Cananéia on the Southern coast of São Paulo, Brazil, is investigated. The basin and fringe physiographic types and the structural development of mangrove vegetation were identified with the application of the Kruskal-Wallis statistical test to the SAR backscatter values of 10 incoherent attributes. The best results to separate basin to fringe types were obtained using copolarized HH, cross-polarized HV, and the biomass index (BMI). Mangrove structural parameters were also estimated using multiple linear regressions. BMI and canopy structure index were used as explanatory variables for canopy height, mean height, and mean diameter at breast height regression models, with significant R2=0.69, 0.73, and 0.67, respectively. The current study indicates that SAR L-band images can be used as a tool to discriminate physiographic types and to characterize mangrove forests. The results are relevant considering the crescent availability of freely distributed SAR images that can be more utilized for analysis, monitoring, and conservation of the mangrove ecosystem.

  11. Relief Effects on the L-Band Emission of a Bare Soil

    Directory of Open Access Journals (Sweden)

    Ingo Völksch

    2015-10-01

    Full Text Available In a combined experimental and model study, we investigated effects of surface topography (relief on the thermal L-band emission of a sandy soil. To this end, brightness temperatures of two adjacent footprint areas were measured quasi-simultaneously with an L-band radiometer at the observation angle of 55° relative to nadir for one year. One footprint featured a distinct relief in the form of erosion gullies with steep slopes, whereas the surface of the second footprint was smooth. Additionally, hydrometeorological variables, in situ soil moisture and temperature were measured, and digital terrain models of the two scenes were derived from terrestrial laser scanning. A facet model, taking into account the topography of the footprint surfaces as well as the antenna’s directivity, was developed and brightness temperatures of both footprints were simulated based on the hydrometeorological and in situ soil data. We found that brightness temperatures of the footprint with the distinct surface relief were increased at horizontal and decreased at vertical polarization with respect to those of the plane footprint. The simulations showed that this is mainly due to modifications of local (facet observation angles and due to polarization mixing caused by the pronounced relief. Measurements furthermore revealed that brightness temperatures of both areas respond differently to changing ambient conditions indicating differences in their hydrological properties.

  12. Soil Moisture Estimations Based on Airborne CAROLS L-Band Microwave Data

    Directory of Open Access Journals (Sweden)

    Arnaud Mialon

    2011-12-01

    Full Text Available The SMOS satellite mission, launched in 2009, allows global soil moisture estimations to be made using the L-band Microwave Emission of the Biosphere (L-MEB model, which simulates the L-band microwave emissions produced by the soil–vegetation layer. This model was calibrated using various sources of in situ and airborne data. In the present study, we propose to evaluate the L-MEB model on the basis of a large set of airborne data, recorded by the CAROLS radiometer during the course of 20 flights made over South West France (the SMOSMANIA site, and supported by simultaneous soil moisture measurements, made in 2009 and 2010. In terms of volumetric soil moisture, the retrieval accuracy achieved with the L-MEB model, with two default roughness parameters, ranges between 8% and 13%. Local calibrations of the roughness parameter, using data from the 2009 flights for different areas of the site, allowed an accuracy of approximately 5.3% to be achieved with the 2010 CAROLS data. Simultaneously we estimated the vegetation optical thickness (t and we showed that, when roughness is locally adjusted, MODIS NDVI values are correlated (R2 = 0.36 to t. Finally, as a consequence of the significant influence of the roughness parameter on the estimated absolute values of soil moisture, we propose to evaluate the relative variability of the soil moisture, using a default soil roughness parameter. The soil moisture variations are estimated with an uncertainty of approximately 6%.

  13. A sea-ice thickness retrieval model for 1.4 GHz radiometry and application to airborne measurements over low salinity sea-ice

    Directory of Open Access Journals (Sweden)

    L. Kaleschke

    2010-12-01

    Full Text Available In preparation for the European Space Agency's (ESA Soil Moisture and Ocean Salinity (SMOS mission, we investigated the potential of L-band (1.4 GHz radiometry to measure sea-ice thickness.

    Sea-ice brightness temperature was measured at 1.4 GHz and ice thickness was measured along nearly coincident flight tracks during the SMOS Sea-Ice campaign in the Bay of Bothnia in March 2007. A research aircraft was equipped with the L-band Radiometer EMIRAD and coordinated with helicopter based electromagnetic induction (EM ice thickness measurements.

    We developed a three layer (ocean-ice-atmosphere dielectric slab model for the calculation of ice thickness from brightness temperature. The dielectric properties depend on the relative brine volume which is a function of the bulk ice salinity and temperature.

    The model calculations suggest a thickness sensitivity of up to 1.5 m for low-salinity (multi-year or brackish sea-ice. For Arctic first year ice the modelled thickness sensitivity is less than half a meter. It reduces to a few centimeters for temperatures approaching the melting point.

    The campaign was conducted under unfavorable melting conditions and the spatial overlap between the L-band and EM-measurements was relatively small. Despite these disadvantageous conditions we demonstrate the possibility to measure the sea-ice thickness with the certain limitation up to 1.5 m.

    The ice thickness derived from SMOS measurements would be complementary to ESA's CryoSat-2 mission in terms of the error characteristics and the spatiotemporal coverage. The relative error for the SMOS ice thickness retrieval is expected to be not less than about 20%.

  14. Application of the Tor Vergata Scattering Model to L Band Backscatter During the Corn Growth Cycle

    Science.gov (United States)

    Joseph, A. T.; vanderVelde, R.; ONeill, P. E.; Lang, R.; Gish, T.

    2010-01-01

    At the USDA's Optimizing Production Inputs for Economic and Environmental Enhancement (OPE3) experimental site in Beltsville, Maryland, USA) a field campaign took place throughout the 2002 corn growth cycle from May 10th (emergence of corn crops) to October 2nd (harvest). One of the microwave instruments deployed was the multi-frequency (X-, C- and L-band) quad-polarized (HH, HV, VV, VH) NASA GSFC/George Washington University (GWU) truck mounted radar. During the field campaign, this radar system provided once a week fully polarized C- and L-band (4.75 and 1.6 GHz) backscatter measurements from incidence angle of 15, 35, and 55 degrees. In support of microwave observations, an extensive ground characterization took place, which included measurements of surface roughness, soil moisture, vegetation biomass and morphology. The field conditions during the campaign are characterized by several dry downs with a period of drought in the month of August. Peak biomass the corn canopies was reached on July 24th with a total biomass of approximately 6.5 kg/sq m. This dynamic range in both soil moisture and vegetation conditions within the data set is ideal for the validation of discrete medium vegetation scattering models. In this study, we compare the L band backscatter measurements with simulations by the Tor Vergata model (ferrazzoli and Guerriero 1996). The measured soil moisture, vegetation biomass and most reliably measured vegetation morphological parameters (e.g. number of leaves, number of stems and stem height) were used as input for the Tor Vergata model. The more uncertain model parameters (e.g. surface roughness, leaf thickness) and the stem diameter were optimized using a parameter estimation routine based on the Levenberg-Marquardt algorithm. As cost function for this optimization, the HH and VV polarized backscatter measured and stimulated by the TOR Vergata model for incidence angle of 15, 35, and 55 degrees were used (6 measurements in total). The calibrated

  15. Analysis of a Least-Squares Soil Moisture Retrieval Algorithm from L-band Passive Observations

    Directory of Open Access Journals (Sweden)

    Alessandra Monerris

    2010-01-01

    Full Text Available The Soil Moisture and Ocean Salinity (SMOS mission of the European Space Agency (ESA, launched on November 2009, is an unprecedented initiative to globally monitor surface soil moisture using a novel 2-D L-band interferometric radiometer concept. Airborne campaigns and ground-based field experiments have proven that radiometers operating at L-band are highly sensitive to soil moisture, due to the large contrast between the dielectric constant of soil minerals and water. Still, soil moisture inversion from passive microwave observations is complex, since the microwave emission from soils depends strongly on its moisture content but also on other surface characteristics such as soil type, soil roughness, surface temperature and vegetation cover, and their contributions must be carefully de-coupled in the retrieval process. In the present study, different soil moisture retrieval configurations are examined, depending on whether prior information is used in the inversion process or not. Retrievals are formulated in terms of vertical (Tvv and horizontal (Thh polarizations separately and using the first Stokes parameter (TI , over six main surface conditions combining dry, moist and wet soils with bare and vegetation-covered surfaces. A sensitivity analysis illustrates the influence that the geophysical variables dominating the Earth’s emission at L-band have on the precision of the retrievals, for each configuration. It shows that, if adequate constraints on the ancillary data are added, the algorithm should converge to more accurate estimations. SMOS-like brightness temperatures are also generated by the SMOS End-to-end Performance Simulator (SEPS to assess the retrieval errors produced by the different cost function configurations. Better soil moisture retrievals are obtained when the inversion is constrained with prior information, in line with the sensitivity study, and more robust estimates are obtained using TI than using Tvv and Thh. This

  16. Electro-optical system analysis and design a radiometry perspective

    CERN Document Server

    Willers, Cornelius J

    2013-01-01

    The field of radiometry can be dangerous territory to the uninitiated, faced with the risk of errors and pitfalls. The concepts and tools explored in this book empower readers to comprehensively analyze, design, and optimize real-world systems. This book builds on the foundation of solid theoretical understanding, and strives to provide insight into hidden subtleties in radiometric analysis. Atmospheric effects provide opportunity for a particularly rich set of intriguing observations.

  17. Microwave Radiometry for Oil Pollution Monitoring, Measurements, and Systems

    OpenAIRE

    Skou, Niels

    1986-01-01

    Work is presently carried out in Europe to change the Status of the microwave radiometer, namely, to develop it from a research instrument to an operational instrument-especially for measuring oil pollution on the sea surface. The Technical University of Denmark (TUD), with its long experience in airborne microwave radiometry, is heavily involved in this process. The TUD multichannel imaging radiometer system has been flown in several large-scale oil-pollution experiments, the collected data ...

  18. STATE STANDARDS OF THE REPUBLIC OF BELARUS IN OPTICAL RADIOMETRY

    Directory of Open Access Journals (Sweden)

    A. V. Galygo

    2010-01-01

    Full Text Available The results of joint activities of the BelGIM and the Institute of Physics of the NAS of Belarus on the construction and modernization of state standards of the physical units in optical radiometry, as well as the high accuracy measurement facilities for test the energy, temporal, spatial, spectral and polarization characteristics of laser equipments and calibration of devices for measuring the energy characteristics of laser radiation are presented.

  19. Monitoring Everglades freshwater marsh water level using L-band synthetic aperture radar backscatter

    Science.gov (United States)

    Kim, Jin-Woo; Lu, Zhong; Jones, John W.; Shum, C.K.; Lee, Hyongki; Jia, Yuanyuan

    2014-01-01

    The Florida Everglades plays a significant role in controlling floods, improving water quality, supporting ecosystems, and maintaining biodiversity in south Florida. Adaptive restoration and management of the Everglades requires the best information possible regarding wetland hydrology. We developed a new and innovative approach to quantify spatial and temporal variations in wetland water levels within the Everglades, Florida. We observed high correlations between water level measured at in situ gages and L-band SAR backscatter coefficients in the freshwater marsh, though C-band SAR backscatter has no close relationship with water level. Here we illustrate the complementarity of SAR backscatter coefficient differencing and interferometry (InSAR) for improved estimation of high spatial resolution water level variations in the Everglades. This technique has a certain limitation in applying to swamp forests with dense vegetation cover, but we conclude that this new method is promising in future applications to wetland hydrology research.

  20. Wetlands Maps of Central Canada based on L-band SAR Imagery

    Science.gov (United States)

    Whitcomb, J.; Moghaddam, M.; Clewley, D.; McDonald, K. C.; Podest, E.; Chapman, B. D.

    2013-12-01

    Many boreal wetlands appear to be evolving into significant sources of greenhouse gases. The ability to accurately quantify the locations, types, and extents of northern wetlands is important to understanding their role in the global carbon cycle and responses to changes in climate. However, due to the extent of boreal wetlands and their inaccessibility, there have been few maps produced of this important ecosystem. To address this need, we have been constructing high-resolution (100 m) thematic maps of North American boreal wetlands. The maps are developed using space-based synthetic aperture radar (SAR), which is capable of efficiently providing high-resolution imagery of vast and often inaccessible regions. Unlike optical imagery, space-based SAR imagery is unaffected by cloud cover. Additionally, L-band SAR is able to sense vegetation structure and moisture content, as well as ground and surface water characteristics (even under vegetation canopies), thereby providing information unobtainable from optical sensors. Space-based L-band SAR thus constitutes an excellent tool for mapping boreal wetlands. One wetlands map is based on HH-polarized L-band SAR imagery from the Japanese Earth Resources Satellite (JERS-1), collected for both summer and winter in the late 1990s. A second map is based on dual-polarized (HH and HV) imagery from the Phased Array L-band SAR (PALSAR) sensor, collected in the summer of 2007. Prior to classification, a sequence of preprocessing steps are executed, including filtering, mosaicking, resampling, reprojection, co-registration, and the formation of supplementary data layers such as image texture, topographic slope, and proximity to water. This preprocessing is implemented by a semi-automated software suite specifically designed to handle the large volumes of data involved in the project. Training/testing data needed in the classification process are formed by merging national wetland inventory and land cover databases. Finally, a

  1. CAROLS: A New Airborne L-Band Radiometer for Ocean Surface and Land Observations

    DEFF Research Database (Denmark)

    Zribi, Mehrez; Parde, Mickael; Boutin, Jacquline

    2011-01-01

    on board a dedicated French ATR42 research aircraft, in conjunction with other airborne instruments (C-Band scatterometer-STORM, the GOLD-RTR GPS system, the infrared CIMEL radiometer and a visible wavelength camera). Following initial laboratory qualifications, three airborne campaigns involving 21......The "Cooperative Airborne Radiometer for Ocean and Land Studies" (CAROLS) L-Band radiometer was designed and built as a copy of the EMIRAD II radiometer constructed by the Technical University of Denmark team. It is a fully polarimetric and direct sampling correlation radiometer. It is installed...... flights were carried out over South West France, the Valencia site and the Bay of Biscay (Atlantic Ocean) in 2007, 2008 and 2009, in coordination with in situ field campaigns. In order to validate the CAROLS data, various aircraft flight patterns and maneuvers were implemented, including straight...

  2. High power L-band mode-locked fiber laser based on topological insulator saturable absorber.

    Science.gov (United States)

    Meng, Yichang; Semaan, Georges; Salhi, Mohamed; Niang, Alioune; Guesmi, Khmaies; Luo, Zhi-Chao; Sanchez, Francois

    2015-09-07

    We demonstrate a passive mode-locked Er:Yb doped double-clad fiber laser using a microfiber-based topological insulator (Bi(2)Se(3)) saturable absorber (TISA). By optimizing the cavity loss and output coupling ratio, the mode-locked fiber laser can operate in L-band with high average output power. With the highest pump power of 5 W, 91st harmonic mode locking of soliton bunches with average output power of 308 mW was obtained. This is the first report that the TISA based erbium-doped fiber laser operating above 1.6 μm and is also the highest output power yet reported in TISA based passive mode-locked fiber laser.

  3. Polarimetric Decomposition Analysis of the Deepwater Horizon Oil Slick Using L-Band UAVSAR Data

    Science.gov (United States)

    Jones, Cathleen; Minchew, Brent; Holt, Benjamin

    2011-01-01

    We report here an analysis of the polarization dependence of L-band radar backscatter from the main slick of the Deepwater Horizon oil spill, with specific attention to the utility of polarimetric decomposition analysis for discrimination of oil from clean water and identification of variations in the oil characteristics. For this study we used data collected with the UAVSAR instrument from opposing look directions directly over the main oil slick. We find that both the Cloude-Pottier and Shannon entropy polarimetric decomposition methods offer promise for oil discrimination, with the Shannon entropy method yielding the same information as contained in the Cloude-Pottier entropy and averaged in tensity parameters, but with significantly less computational complexity

  4. New improved algorithm for sky calibration of L-band radiometers JLBARA and ELBARA II

    KAUST Repository

    Dimitrov, Marin

    2012-03-01

    We propose a new algorithm for sky calibration of the L-band radiometers JLBARA and ELBARA II, introducing the effective transmissivities of the instruments. The suggested approach was tested using experimental data obtained at the Selhausen test site, Germany. It was shown that for JLBARA the effective transmissivities depend strongly on the air temperature and decrease with increasing air temperature, while for ELBARA II such strong dependence was not observed. It was also shown that the effective transmissivities account for the antenna and feed cable loss effects, and for the variations of the radiometer gain due to air temperature changes. The new calibration algorithm reduces significantly the bias of brightness temperature estimates for both radiometers, especially for JLBARA. © 2012 IEEE.

  5. A composite L-band HH radar backscattering model for coniferous forest stands

    Science.gov (United States)

    Sun, Guoquing; Simonett, David S.

    1988-01-01

    The radar backscattering model developed by Richards et al. (1987), has been improved and further tested in this research. The trunk term may now be calculated from the exact solution to the electromagnetic wave equations instead of the corner reflector equation. Rough surface models have been introduced into the radar model, so that the forward reflectance and the backscattering from the ground surface are now calculated from the same model and, thus, are consistent. The number of trees in an individual pixel is assumed to be Poisson distributed, with tree height in a stand log-normally distributed. The simulated results show that the match of backscattering coefficients for eight forest stands between SIR-B image data and the simulated results are satisfying, and that the trunk term now seems to be convincingly established as the dominant term in the L-band HH radar return from coniferous forest stands.

  6. Color composite C-band and L-band image of Kilauea volcanoe on Hawaii

    Science.gov (United States)

    1994-01-01

    This color composite C-band and L-band image of the Kilauea volcano on the Big Island of Hawaii was acuired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperature Radar (SIR-C/X-SAR) flying on the Space Shuttle Endeavour. The city of Hilo can be seen at the top. The image shows the different types of lava flows around the crater Pu'u O'o. Ash deposits which erupted in 1790 from the summit of Kilauea volcano show up as dark in this image, and fine details associated with lava flows which erupted in 1919 and 1974 can be seen to the south of the summit in an area called the Ka'u Desert. Other historic lava flows can also be seen. Highway 11 is the linear feature running from Hilo to the Kilauea volcano. The Jet Propulsion Laboratory alternative photo number is P-43918.

  7. Comparisons of Aquarius Measurements over Oceans with Radiative Transfer Models at L-Band

    Science.gov (United States)

    Dinnat, E.; LeVine, D.; Abraham, S.; DeMattheis, P.; Utku, C.

    2012-01-01

    The Aquarius/SAC-D spacecraft includes three L-band (1.4 GHz) radiometers dedicated to measuring sea surface salinity. It was launched in June 2011 by NASA and CONAE (Argentine space agency). We report detailed comparisons of Aquarius measurements with radiative transfer model predictions. These comparisons are used as part of the initial assessment of Aquarius data and to estimate the radiometer calibration bias and stability. Comparisons are also being performed to assess the performance of models used in the retrieval algorithm for correcting the effect of various sources of geophysical "noise" (e.g. Faraday rotation, surface roughness). Such corrections are critical in bringing the error in retrieved salinity down to the required 0.2 practical salinity unit on monthly global maps at 150 km by 150 km resolution.

  8. Aquarius L-Band Microwave Radiometer: Three Years of Radiometric Performance and Systematic Effects

    Science.gov (United States)

    Piepmeier, Jeffrey R.; Hong, Liang; Pellerano, Fernando A.

    2015-01-01

    The Aquarius L-band microwave radiometer is a three-beam pushbroom instrument designed to measure sea surface salinity. Results are analyzed for performance and systematic effects over three years of operation. The thermal control system maintains tight temperature stability promoting good gain stability. The gain spectrum exhibits expected orbital variations with 1f noise appearing at longer time periods. The on-board detection and integration scheme coupled with the calibration algorithm produce antenna temperatures with NEDT 0.16 K for 1.44-s samples. Nonlinearity is characterized before launch and the derived correction is verified with cold-sky calibration data. Finally, long-term drift is discovered in all channels with 1-K amplitude and 100-day time constant. Nonetheless, it is adeptly corrected using an exponential model.

  9. Compact Front-end Prototype for Next Generation RFI-rejecting Polarimetric L-band Radiometer

    DEFF Research Database (Denmark)

    Jensen, Brian Sveistrup; Søbjærg, Sten Schmidl; Skou, Niels

    2009-01-01

    Realizing the need for lower noise figure and smaller physical size in todays higly sensitive radiometers, this paper presents a new compact analog front-end (AFE) for use with the existing L-band (1400-1427 MHz) radiometer designed and operated by the Technical University of Denmark. Using...... subharmonic sampling to sample directly at the RF-frequency, this radiometer obtains a fully polarimetric response and enables detection and removal of radio frequency interference (RFI). A more compact AFE will enable various desired features, as for example the ability to use the front-end with antenna...... arrays needing one receiver per antenna (Synthetic Aperture Radiometer, SARad), reduced weight for airborne missions and an easy temperature stabilization, i.e. improved instrument stability. The new front-end possesses an improved system noise temperature of only 76 K (roughly 40 K improvement) measured...

  10. A high resolution polarimetric L-band SAR-design and first results

    DEFF Research Database (Denmark)

    Skou, Niels; Granholm, Johan; Woelders, Kim

    1995-01-01

    An L-band polarimetric SAR system has been developed as part of the dual frequency (L- and C-band), polarimetric, airborne EMISAR system. The SAR features a unique combination of fine resolution (2×2 m) and wide swath (9.3 km). The transmitter power is 6 kW. From a flight altitude of 41,000 ft th...... in the JRC EARSEC initiative aiming at supplying state-of-the-art remote sensing data to European scientists...... over the EMISAR calibration scene: An agricultural site in Denmark featuring a range of different fields and forested areas as well as several trihedrals and dihedrals. Based on the imagery data, sensor performance is assessed. The L- & C-band polarimetric EMISAR instrument is one of the key sensors...

  11. Efficient regenerative wavelength conversion at 10Gbit/s over C- and L-band (80nm span) using a Mach-Zehnder interferometer with monolithically integrated semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Dülk, M.; Fischer, St.; Gamper, E.

    2000-01-01

    A demonstration is presented of 10Gbit/s 2R regenerative wavelength up- and down-conversion within the C-band as well as up-conversion to the L-band using a monolithically integrated Mach-Zehnder interferometer module with semiconductor optical amplifiers (MZI-SOAs). The converted output signals ...... exhibit very low noise and chirp which is accompanied by a negative power penalty.......A demonstration is presented of 10Gbit/s 2R regenerative wavelength up- and down-conversion within the C-band as well as up-conversion to the L-band using a monolithically integrated Mach-Zehnder interferometer module with semiconductor optical amplifiers (MZI-SOAs). The converted output signals...

  12. Optimizing the subwavelength grating of L-band annular groove phase masks for high coronagraphic performance

    Science.gov (United States)

    Vargas Catalán, E.; Huby, E.; Forsberg, P.; Jolivet, A.; Baudoz, P.; Carlomagno, B.; Delacroix, C.; Habraken, S.; Mawet, D.; Surdej, J.; Absil, O.; Karlsson, M.

    2016-11-01

    Context. The annular groove phase mask (AGPM) is one possible implementation of the vector vortex coronagraph, where the helical phase ramp is produced by a concentric subwavelength grating. For several years, we have been manufacturing AGPMs by etching gratings into synthetic diamond substrates using inductively coupled plasma etching. Aims: We aim to design, fabricate, optimize, and evaluate new L-band AGPMs that reach the highest possible coronagraphic performance, for applications in current and forthcoming infrared high-contrast imagers. Methods: Rigorous coupled wave analysis (RCWA) is used for designing the subwavelength grating of the phase mask. Coronagraphic performance evaluation is performed on a dedicated optical test bench. The experimental results of the performance evaluation are then used to accurately determine the actual profile of the fabricated gratings, based on RCWA modeling. Results: The AGPM coronagraphic performance is very sensitive to small errors in etch depth and grating profile. Most of the fabricated components therefore show moderate performance in terms of starlight rejection (a few 100:1 in the best cases). Here we present new processes for re-etching the fabricated components in order to optimize the parameters of the grating and hence significantly increase their coronagraphic performance. Starlight rejection up to 1000:1 is demonstrated in a broadband L filter on the coronagraphic test bench, which corresponds to a raw contrast of about 10-5 at two resolution elements from the star for a perfect input wave front on a circular, unobstructed aperture. Conclusions: Thanks to their exquisite performance, our latest L-band AGPMs are good candidates for installation in state of the art and future high-contrast thermal infrared imagers, such as METIS for the E-ELT.

  13. Impact of surface roughness on L-band emissivity of the sea ice

    Science.gov (United States)

    Miernecki, M.; Kaleschke, L.; Hendricks, S.; Søbjærg, S. S.

    2015-12-01

    In March 2014 a joint experiment IRO2/SMOSice was carried out in the Barents Sea. R/V Lance equipped with meteorological instruments, electromagnetic sea ice thickness probe and engine monitoring instruments, was performing a series of tests in different ice conditions in order to validate the ice route optimization (IRO) system, advising on his route through pack ice. In parallel cal/val activities for sea ice thickness product obtained from SMOS (Soil Moisture and Ocean Salinity mission) L-band radiometer were carried out. Apart from helicopter towing the EMbird thickness probe, Polar 5 aircraft was serving the area during the experiment with L-band radiometer EMIRAD2 and Airborne Laser Scanner (ALS) as primary instruments. Sea ice Thickness algorithm using SMOS brightness temperature developed at University of Hamburg, provides daily maps of thin sea ice (up to 0.5-1 m) in polar regions with resolution of 35-50 km. So far the retrieval method was not taking into account surface roughness, assuming that sea ice is a specular surface. Roughness is a stochastic process that can be characterized by standard deviation of surface height σ and by shape of the autocorrelation function R to estimate it's vertical and horizontal scales respectively. Interactions of electromagnetic radiation with the surface of the medium are dependent on R and σ and they scales with respect to the incident wavelength. During SMOSice the radiometer was observing sea ice surface at two incidence angles 0 and 40 degrees and simultaneously the surface elevation was scanned with ALS with ground resolution of ~ 0.25 m. This configuration allowed us to calculate σ and R from power spectral densities of surface elevation profiles and quantify the effect of surface roughness on the emissivity of the sea ice. First results indicate that Gaussian autocorrelation function is suitable for deformed ice, for other ice types exponential function is the best fit.

  14. L-band InSAR Penetration Depth Experiment, North Slope Alaska

    Science.gov (United States)

    Muskett, Reginald

    2017-04-01

    Since the first spacecraft-based synthetic aperture radar (SAR) mission NASA's SEASAT in 1978 radars have been flown in Low Earth Orbit (LEO) by other national space agencies including the Canadian Space Agency, European Space Agency, India Space Research Organization and the Japanese Aerospace Exploration Agency. Improvements in electronics, miniaturization and production have allowed for the deployment of SAR systems on aircraft for usage in agriculture, hazards assessment, land-use management and planning, meteorology, oceanography and surveillance. LEO SAR systems still provide a range of needful and timely information on large and small-scale weather conditions like those found across the Arctic where ground-base weather radars currently provide limited coverage. For investigators of solid-earth deformation attention must be given to the atmosphere on Interferometric SAR (InSAR) by aircraft and spacecraft multi-pass operations. Because radar has the capability to penetrate earth materials at frequencies from the P- to X-band attention must be given to the frequency dependent penetration depth and volume scattering. This is the focus of our new research project: to test the penetration depth of L-band SAR/InSAR by aircraft and spacecraft systems at a test site in Arctic Alaska using multi-frequency analysis and progressive burial of radar mesh-reflectors at measured depths below tundra while monitoring environmental conditions. Knowledge of the L-band penetration depth on lowland Arctic tundra is necessary to constrain analysis of carbon mass balance and hazardous conditions arising form permafrost degradation and thaw, surface heave and subsidence and thermokarst formation at local and regional scales.

  15. The ground-based H-, K-, and L-band absolute emission spectra of HD 209458b

    Energy Technology Data Exchange (ETDEWEB)

    Zellem, Robert T.; Griffith, Caitlin A. [Lunar and Planetary Laboratory, University of Arizona, 1629 East University Boulevard, Tucson, AZ 85721 (United States); Deroo, Pieter; Swain, Mark R. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Waldmann, Ingo P., E-mail: rzellem@lpl.arizona.edu [University College London, Department of Physics and Astronomy, Gower Street, London WC1E 6BT (United Kingdom)

    2014-11-20

    Here we explore the capabilities of NASA's 3.0 m Infrared Telescope Facility (IRTF) and SpeX spectrometer and the 5.08 m Hale telescope with the TripleSpec spectrometer with near-infrared H-, K-, and L-band measurements of HD 209458b's secondary eclipse. Our IRTF/SpeX data are the first absolute L-band spectroscopic emission measurements of any exoplanet other than the hot Jupiter HD 189733b. Previous measurements of HD 189733b's L band indicate bright emission hypothesized to result from non-LTE CH{sub 4} ν{sub 3} fluorescence. We do not detect a similar bright 3.3 μm feature to ∼3σ, suggesting that fluorescence does not need to be invoked to explain HD 209458b's L-band measurements. The validity of our observation and reduction techniques, which decrease the flux variance by up to 2.8 orders of magnitude, is reinforced by 1σ agreement with existent Hubble/NICMOS and Spitzer/IRAC1 observations that overlap the H, K, and L bands, suggesting that both IRTF/SpeX and Palomar/TripleSpec can measure an exoplanet's emission with high precision.

  16. RFI Mitigation in Microwave Radiometry Using Wavelets

    Directory of Open Access Journals (Sweden)

    José Miguel Tarongí

    2009-09-01

    Full Text Available The performance of microwave radiometers can be seriously degraded by the presence of radio-frequency interference (RFI. Spurious signals and harmonics from lower frequency bands, spread-spectrum signals overlapping the “protected” band of operation, or out-of-band emissions not properly rejected by the pre-detection filters due to the finite rejection modify the detected power and the estimated antenna temperature from which the geophysical parameters will be retrieved. In recent years, techniques to detect the presence of RFI have been developed. They include time- and/or frequency domain analyses, or statistical analysis of the received signal which, in the absence of RFI, must be a zero-mean Gaussian process. Current mitigation techniques are mostly based on blanking in the time and/or frequency domains where RFI has been detected. However, in some geographical areas, RFI is so persistent in time that is not possible to acquire RFI-free radiometric data. In other applications such as sea surface salinity retrieval, where the sensitivity of the brightness temperature to salinity is weak, small amounts of RFI are also very difficult to detect and mitigate. In this work a wavelet-based technique is proposed to mitigate RFI (cancel RFI as much as possible. The interfering signal is estimated by using the powerful denoising capabilities of the wavelet transform. The estimated RFI signal is then subtracted from the received signal and a “cleaned” noise signal is obtained, from which the power is estimated later. The algorithm performance as a function of the threshold type, and the threshold selection method, the decomposition level, the wavelet type and the interferenceto-noise ratio is presented. Computational requirements are evaluated in terms of quantization levels, number of operations, memory requirements (sequence length. Even though they are high for today’s technology, the algorithms presented can be applied to recorded data

  17. L-Band SAR Backscatter Related to Forest Cover, Height and Aboveground Biomass at Multiple Spatial Scales across Denmark

    Directory of Open Access Journals (Sweden)

    Neha P. Joshi

    2015-04-01

    Full Text Available Mapping forest aboveground biomass (AGB using satellite data is an important task, particularly for reporting of carbon stocks and changes under climate change legislation. It is known that AGB can be mapped using synthetic aperture radar (SAR, but relationships between AGB and radar backscatter may be confounded by variations in biophysical forest structure (density, height or cover fraction and differences in the resolution of satellite and ground data. Here, we attempt to quantify the effect of these factors by relating L-band ALOS PALSAR HV backscatter and unique country-wide LiDAR-derived maps of vegetation penetrability, height and AGB over Denmark at different spatial scales (50 m to 500 m. Trends in the relations indicate that, first, AGB retrieval accuracy from SAR improves most in mapping at 100-m scale instead of 50 m, and improvements are negligible beyond 250 m. Relative errors (bias and root mean squared error decrease particularly for high AGB values (\\(>\\110 Mg ha\\(^{-1}\\ at coarse scales, and hence, coarse-scale mapping (\\(\\ge\\150 m may be most suited for areas with high AGB. Second, SAR backscatter and a LiDAR-derived measure of fractional forest cover were found to have a strong linear relation (R\\(^2\\ = 0.79 at 250-m scale. In areas of high fractional forest cover, there is a slight decline in backscatter as AGB increases, indicating signal attenuation. The two results demonstrate that accounting for spatial scale and variations in forest structure, such as cover fraction, will greatly benefit establishing adequate plot-sizes for SAR calibration and the accuracy of derived AGB maps.

  18. Passive L-Band H Polarized Microwave Emission During the Corn Growth Cycle

    Science.gov (United States)

    Joseph, A. T.; van der Velde, R.; O'Neill, P. E.; Kim, E. J.; Lang, R. H.; Gish, T. J.

    2012-12-01

    Hourly L-band (1.4 GHz) horizontally (H) polarized brightness temperatures (TB's) measured during five episodes (more than two days of continuous measurements) of the 2002 corn growth cycle are analyzed. These TB measurements were acquired as a part of a combined active/passive microwave field campaign, and were obtained at five incidence and three azimuth angles relative to the row direction. In support of this microwave data collection, intensive ground sampling took place once a week. Moreover, the interpretation of the hourly TB's could also rely on the data obtained using the various automated instruments installed in the same field. In this paper, the soil moisture and temperature measured at fixed time intervals have been employed as input for the tau-omega model to reproduce the hourly TB. Through the calibration of the vegetation and surface roughness parameterizations, the impact of the vegetation morphological changes on the microwave emission and the dependence of the soil surface roughness parameter, hr, on soil moisture are investigated. This analysis demonstrates that the b parameter, appearing in the representation of the canopy opacity, has an angular dependence that varies throughout the growing period and also that the parameter hr increases as the soil dries in a portion of the dry-down cycle. The angular dependence of the b parameter imposes the largest uncertainty on TB simulations near senescence as the response of b to the incidence is also affected by the crop row orientation. On the other hand, the incorporation of a soil moisture dependent hr parameterization was responsible for the largest error reduction of TB simulations in the early growth cycle. A.T. Joseph, R. Van der Velde, P.E. O'Neill, R.H. Lang, and T. Gish, "Soil moisture retrieval during a corn growth cycle using L-band (1.6 GHz) radar observations", IEEE Transactions on Geoscience and Remote Sensing, vol. 46, DOI:10.1109/TGRS.2008.917214, Aug. 2008. M.C. Dobson, F.T. Ulaby, M

  19. Common References for Inter Comparison of L-Band Brightness Temperatures Satellite Acquisitions.

    Science.gov (United States)

    Cabot, F.; Anterrieu, E.; Kerr, Y. H.; Khazaal, A.

    2014-12-01

    The SMOS mission, in orbit since November 2009, has been the first spatial instrument observing the earth at L-Band since the Skylab experiment in 1977. Since then, it has been joined by Aquarius in June 2011, and will be joined by SMAP in October 2014.Within these 4 years, earth observation at L-band has gone from historical curiosity to highly repetitive constellation.Still, since all these instruments do not share the same technology and even principle of acquisitions, direct comparison and synergistic use of their measurements is not straightforward.The objective of this paper is to propose a method to make them inter-comparable, down to a common reference. The proposed method uses SMOS as a transfer radiometer.This method can be applied over different types of surfaces: making use of a stable target to assess the consistency and stability of both data sets. This is done over the area surrounding Dome Concordia in Antarctica. After careful selection and filtering, statistics of the comparison are retrieved along with long term trends in both data sets. Once every so often, satellites overpass the same area within a very short time period. Due to different inclinations these alignments occur essentially along the equator, but over different surfaces, giving access to wide dynamic range in brightness temperature. These collocation will be happening at about the same frequency for Aquarius and SMAP. After careful selection, SMOS measurements is used in an innovative way - taking advantage of it accessibility to wide areas with a large range of incidence angles - to make it directly comparable to other instruments. Accounting for instrument characteristics such as real antenna patterns is also done at this step. This presentation will completely describe the method, along with examples of results when applied to compare SMOS and Aquarius measurement. Although these methods have already been presented and demonstrated, this presentation will include demonstration of

  20. Repetitive operation of an L-band magnetically insulated transmission line oscillator with metal array cathode

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Fen [Graduate School, China Academy of Engineering Physics, Beijing 100088 (China); Key Laboratory on High Power Microwave Technology, Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang 621900 (China); Wang, Dong, E-mail: mr20001@sina.com; Xu, Sha; Zhang, Yong [Key Laboratory on High Power Microwave Technology, Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang 621900 (China); Fan, Zhi-kai [Graduate School, China Academy of Engineering Physics, Beijing 100088 (China)

    2016-04-15

    We present the repetitive operation research results of an L-band magnetically insulated transmission line oscillator with metal array cathode (MAC-MILO) in this paper. To ensure a more uniform emission of electrons emitted from the cathode, metal plates with different outer radii and thicknesses are periodically arranged in longitudinal direction on the cathode substrate to act as emitters. The higher order mode depressed MILO (HDMILO) structure is applied to ensure stability of the tube. Comparison experiments are carried out between velvet cathode and MAC MILO driven by a 20 GW/40 Ω/40 ns/20 Hz pulse power system. Experimental results reveal that the MAC has much lower outgassing rate, much longer life time, and higher repetitive stability. The MAC-MILO could work stably with a rep-rate up to 20 Hz at a power level of 550 MW when employing a 350 kV/35 kA electric pulse. The TE{sub 11} mode radiation pattern in the farfield region reveals the tube works steadily on the dominant mode. More than 2000 shots have been tested in repetitive mode without any obvious degradation of the detected microwave parameters.

  1. UAVSAR - A New Airborne L-Band Radar for Repeat Pass Interferometry

    Science.gov (United States)

    Mace, Thomas H.; Lou, Yunling

    2009-01-01

    NASA/JPL has developed a new airborne Synthetic Aperture Radar (SAR) which has become available for use by the scientific community in January, 2009. Pod mounted, the UAVSAR was designed to be portable among a variety of aircraft, including unmanned aerial systems (UAS). The instrument operates in the L-Band, has a resolution under 2m from a GPS altitude of 12Km and a swath width of approximately 20Km. UAVSAR currently flies on a modified Gulfstream-III aircraft, operated by NASA s Dryden Flight Research Center at Edwards, California. The G-III platform enables repeat-pass interferometric measurements, by using a modified autopilot and precise kinematic differential GPS to repeatedly fly the aircraft within a specified 10m tube. The antenna is electronically steered along track to assure that the antenna beam can be directed independently, regardless of speed and wind direction. The instrument can be controlled remotely, AS AN OPTION, using the Research Environment for Vehicle Embedded Analysis on Linux (REVEAL). This allows simulation of the telepresence environment necessary for flight on UAS. Potential earth science research and applications include surface deformation, volcano studies, ice sheet dynamics, and vegetation structure.

  2. UAV-Based L-Band SAR with Precision Flight Path Control

    Science.gov (United States)

    Madsen, Soren N.; Hensley, Scott; Wheeler, Kevin; Sadowy, Greg; Miller, Tim; Muellerschoen, Ron; Lou, Yunling; Rosen, Paul

    2004-01-01

    NASA's Jet Propulsion Laboratory is currently implementing a reconfigurable polarimetric L-band synthetic aperture radar (SAR), specifically designed to acquire airborne repeat track interferometric (RTI) SAR data, also know as differential interferometric measurements. Differential interferometry can provide key displacement measurements, important for the scientific studies of Earthquakes and volcanoes. Using precision real-time GPS and a sensor controlled flight management system, the system will be able to fly predefined paths with great precision. The radar will be designed to operate on a UAV (Unmanned Arial Vehicle) but will initially be demonstrated on a minimally piloted vehicle (MPV), such as the Proteus build by Scaled Composites. The application requires control of the flight path to within a 10 meter tube to support repeat track and formation flying measurements. The design is fully polarimetric with an 80 MHz bandwidth (2 meter range resolution) and 16 kilometer range swath. The antenna is an electronically steered array to assure that the actual antenna pointing can be controlled independent of the wind direction and speed. The system will nominally operate at 45,000 ft. The program started out as a Instrument Incubator Project (IIP) funded by NASA Earth Science and Technology Office (ESTO).

  3. High-efficiency L-band T/R Module: Development Results

    Science.gov (United States)

    Edelstein, Wendy N.; Andricos, Constantine; Wang, Feiyu; Rutled, David B.

    2005-01-01

    Future interferometric synthetic aperture radar (InSAR) systems require electronically scanned phased-array antennas, where the transmit/receive (T/R) module is a key component. The T/R module efficiency is a critical figure of merit and has direct implications on the power dissipation and power generation requirements of the system. Significant improvements in the efficiency of the T/R module will make SAR missions more feasible and affordable. The results of two high-efficiency T/R modules are presented, each based on different power amplifier technologies. One module uses a 30W GaAs Class-AlB power amplifier and the second module uses a 70W LD-MOS Class-ElF power amplifier, where both modules use a common low power section. Each module operates over an 80MHz bandwidth at L-band (1.2GHz) with an overall module efficiency greater than 58%. We will present the results of these two T/R modules that have been designed, built and tested.

  4. False-color L-band image of Manaus region of Brazil

    Science.gov (United States)

    1994-01-01

    This false-color L-band image of the Manaus region of Brazil was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperature Radar (SIR-C/X-SAR) flying on the Space Shuttle Endeavour on its 46th orbit. The area shown is approximately 8 kilometers by 40 kilometers (5 by 25 miles). At the top of the image are the Solimoes and Rio Negro River. The image is centered at about 3 degrees south latitude, and 61 degrees west longitude. Blue areas show low returns at VV poloarization; hence the bright blue colors of the smooth river surfaces. Green areas in the image are heavily forested, while blue areas are either cleared forest or open water. The yellow and red areas are flooded forest. Between Rio Solimoes and Rio Negro, a road can be seen running from some cleared areas (visible as blue rectangles north of Rio Solimoes) north toward a tributary or Rio Negro. The Jet Propulsion Laboratory alternative photo number is P-43895.

  5. L-Band Digital Aeronautical Communications System Engineering - Concepts of Use, Systems Performance, Requirements, and Architectures

    Science.gov (United States)

    Zelkin, Natalie; Henriksen, Stephen

    2010-01-01

    This NASA Contractor Report summarizes and documents the work performed to develop concepts of use (ConUse) and high-level system requirements and architecture for the proposed L-band (960 to 1164 MHz) terrestrial en route communications system. This work was completed as a follow-on to the technology assessment conducted by NASA Glenn Research Center and ITT for the Future Communications Study (FCS). ITT assessed air-to-ground (A/G) communications concepts of use and operations presented in relevant NAS-level, international, and NAS-system-level documents to derive the appropriate ConUse relevant to potential A/G communications applications and services for domestic continental airspace. ITT also leveraged prior concepts of use developed during the earlier phases of the FCS. A middle-out functional architecture was adopted by merging the functional system requirements identified in the bottom-up assessment of existing requirements with those derived as a result of the top-down analysis of ConUse and higher level functional requirements. Initial end-to-end system performance requirements were derived to define system capabilities based on the functional requirements and on NAS-SR-1000 and the Operational Performance Assessment conducted as part of the COCR. A high-level notional architecture of the L-DACS supporting A/G communication was derived from the functional architecture and requirements.

  6. Monitoring of Forest Structure Dynamics by Means of L-Band SAR Tomography

    Directory of Open Access Journals (Sweden)

    Victor Cazcarra-Bes

    2017-11-01

    Full Text Available Synthetic Aperture Radar Tomography (TomoSAR allows the reconstruction of the 3D reflectivity of natural volume scatterers such as forests, thus providing an opportunity to infer structure information in 3D. In this paper, the potential of TomoSAR data at L-band to monitor temporal variations of forest structure is addressed using simulated and experimental datasets. First, 3D reflectivity profiles were extracted by means of TomoSAR reconstruction based on a Compressive Sensing (CS approach. Next, two complementary indices for the description of horizontal and vertical forest structure were defined and estimated by means of the distribution of local maxima of the reconstructed reflectivity profiles. To assess the sensitivity and consistency of the proposed methodology, variations of these indices for different types of forest changes in simulated as well as in real scenarios were analyzed and assessed against different sources of reference data: airborne Lidar measurements, high resolution optical images, and forest inventory data. The forest structure maps obtained indicated the potential to distinguish between different forest stages and the identification of different types of forest structure changes induced by logging, natural disturbance, or forest management.

  7. Microwave Radiometry for Oil Pollution Monitoring, Measurements, and Systems

    DEFF Research Database (Denmark)

    Skou, Niels

    1986-01-01

    in airborne microwave radiometry, is heavily involved in this process. The TUD multichannel imaging radiometer system has been flown in several large-scale oil-pollution experiments, the collected data have been analyzed, and they have revealed that care must be exercised to obtain accurate oil volume......Work is presently carried out in Europe to change the Status of the microwave radiometer, namely, to develop it from a research instrument to an operational instrument-especially for measuring oil pollution on the sea surface. The Technical University of Denmark (TUD), with its long experience...

  8. In-harbor and at-sea electromagnetic compatibility survey for maritime satellite L-band shipboard terminal

    Science.gov (United States)

    1974-01-01

    Geostationary maritime satellites, one over the Pacific and one over the Atlantic Ocean, are planned to make available high-speed communications and navigation (position determination) services to ships at sea. A shipboard satellite terminal, operating within the authorized maritime L-band, 1636.5 to 1645.0 MHz, will allow ships to pass voice, teletype, facsimile, and data messages to shore communication facilities with a high degree of reliability. The shore-to-ship link will also operate in the maritime L-band from 1535.0 to 1543.5 MHz. A significant number or maritime/commercial ships are expected to be equipped with an L-band satellite terminal by the year 1980, and so consequently, there is an interest in determining electromagnetic compatibility between the proposed L-band shipboard terminal and existing, on-board, shipboard communications/electronics and electrical systems, as well as determining the influence of shore-based interference sources. The shipboard electromagnetic interference survey described was conducted on-board the United States Line's American Leader class (15,690 tons) commercial container ship, the "American Alliance" from June 16 to 20, 1974. Details of the test plan and measurements are given.

  9. Crop Classification by Multitemporal C- and L-Band Single- and Dual-Polarization and Fully Polarimetric SAR

    DEFF Research Database (Denmark)

    Skriver, Henning

    2012-01-01

    data set from the Danish airborne polarimetric EMISAR has been used to assess the performance of different polarization modes for crop classification. Both C- and L-band SAR data were acquired simultaneously over the Foulum agricultural test site in Denmark on a monthly basis during the growing season....... Single- and dual-polarization and fully polarimetric data have been used in the analysis. The best result for a single-frequency system was a 20%–22% classification error, and the results for C-band and for L-band were very similar. The best result was obtained at C-band using the VVXP polarization...... combination (the dual-polarization mode, where the VV-channel and the cross-polarized channel have been combined) and at L-band using the fully polarimetric mode with the Hoekman and Vissers classifier. The best result for the combination of the C- and L-bands was 16%. In this case also, the VVXP polarization...

  10. An L-Band, Circularly Polarized, Dual-Feed, Cavity-Backed Annular Slot Antenna with Wide-Angle Coverage

    DEFF Research Database (Denmark)

    Larsen, Niels Vesterdal; Breinbjerg, Olav

    2006-01-01

    An L-band, circularly polarized, dual-feed, cavity-backed annular slot antenna has been investigated. The investigations comprise parametric studies of design parameters and measurements with different ground planes. The antenna has an impedance bandwidth of 6% around 1.59 GHz and a maximum...... directivity of about 7 dBi....

  11. Analysis of measured L-band airborne land clutter from the Western Cape region of South Africa

    CSIR Research Space (South Africa)

    De Witt, JJ

    2014-10-01

    Full Text Available This paper presents backscatter analysis of L-band land clutter data, measured from an airborne platform, over various terrain types encountered in the Western Cape region of South Africa. The data processing steps are described and the backscatter...

  12. Uncertainty quantification of GEOS-5 L-band radiative transfer model parameters using Bayesian inference and SMOS observations

    NARCIS (Netherlands)

    De Lannoy, G.J.M.; Reichle, R.H.; Vrugt, J.A.

    2014-01-01

    Uncertainties in L-band (1.4 GHz) microwave radiative transfer modeling (RTM) affect the simulation of brightness temperatures (Tb) over land and the inversion of satellite-observed Tb into soil moisture retrievals. In particular, accurate estimates of the microwave soil roughness, vegetation

  13. An Airborne Campaign Measuring Wind Signatures from the Sea Surface using an L-band Polarimetric Radiometer

    DEFF Research Database (Denmark)

    Søbjærg, Sten Schmidl; Skou, Niels

    2003-01-01

    A series of circle flights have been carried out over the sea surface, using the EMIRAD L-band polarimetric radiometer. Motion compensation is applied, and polarimetric azimuth signatures are generated. Single tracks show geophysical noise, typically about 2 K, but averaging decreases the noise...

  14. Wavelength conversion from C- to L-band at 10 Gbit/s including transmission over 80 km of SSMF

    DEFF Research Database (Denmark)

    Poulsen, Henrik Nørskov; Buxens Azcoaga, Alvaro Juan; Clausen, Anders

    2000-01-01

    As the need for capacity increases, means to accommodate the growth is getting increasingly important. Hence, higher bit rates and an ever increasing number of WDM channels is being employed. This has led to the introduction of the L-band (ranging from 1570 to 1610 nm) as the new transmission win...

  15. Nonintrusive noncontacting frequency-domain photothermal radiometry of caries

    Science.gov (United States)

    El-Sharkawy, Yasser H.; Abd-Elwahab, Bassam

    2010-04-01

    Among diffusion methods, photothermal radiometry (PTR) has the ability to penetrate and yield information about an opaque medium well beyond the range of conventional optical imaging. Owing to this ability, pulsed-laser PTR has been extensively used in turbid media such as biological tissues to study the sub-surface deposition of laser radiation, a task that may be difficult or impossible for many optical methods due to excessive scattering and absorption. In this paper considers the achievements of Pulsed Photothermal Radiometry using IR camera in the investigation of physical properties of biological materials and the diagnostics of the interaction of laser radiation with biological materials. A three-dimensional heat conduction formulation with the use of three-dimensional optical diffusion is developed to derive a turbid frequency-domain PTR model. The present photo-thermal model for frequency-domain PTR may prove useful for non-contact; non-invasive, in situ evaluate the depth profilometric imaging capabilities of FDPTR in monitoring carious and artificial subsurface lesions in human teeth.

  16. Ultra-low-noise transition edge sensors for the SAFARI L-band on SPICA

    Science.gov (United States)

    Goldie, D. J.; Gao, J. R.; Glowacka, D. M.; Griffin, D. K.; Hijmering, R.; Khosropanah, P.; Jackson, B. D.; Mauskopf, P. D.; Morozov, D.; Murphy, J. A.; Ridder, M.; Trappe, N.; O'Sullivan, C.; Withington, S.

    2012-09-01

    The Far-Infrared Fourier transform spectrometer instrument SAFARI-SPICA which will operate with cooled optics in a low-background space environment requires ultra-sensitive detector arrays with high optical coupling efficiencies over extremely wide bandwidths. In earlier papers we described the design, fabrication and performance of ultra-low-noise Transition Edge Sensors (TESs) operated close to 100mk having dark Noise Equivalent Powers (NEPs) of order 4 × 10-19W/√Hz close to the phonon noise limit and an improvement of two orders of magnitude over TESs for ground-based applications. Here we describe the design, fabrication and testing of 388-element arrays of MoAu TESs integrated with far-infrared absorbers and optical coupling structures in a geometry appropriate for the SAFARI L-band (110 - 210 μm). The measured performance shows intrinsic response time τ ~ 11ms and saturation powers of order 10 fW, and a dark noise equivalent powers of order 7 × 10-19W/√Hz. The 100 × 100μm2 MoAu TESs have transition temperatures of order 110mK and are coupled to 320×320μm2 thin-film β-phase Ta absorbers to provide impedance matching to the incoming fields. We describe results of dark tests (i.e without optical power) to determine intrinsic pixel characteristics and their uniformity, and measurements of the optical performance of representative pixels operated with flat back-shorts coupled to pyramidal horn arrays. The measured and modeled optical efficiency is dominated by the 95Ω sheet resistance of the Ta absorbers, indicating a clear route to achieve the required performance in these ultra-sensitive detectors.

  17. L-Band H Polarized Microwave Emission During the Corn Growth Cycle

    Science.gov (United States)

    Joseph, A. T.; va der Velde, R.; O'Neill, P. E.; Kim, E.; Lang, R. H.; Gish, T.

    2012-01-01

    Hourly L-band (1.4 GHz) horizontally (H) polarized brightness temperatures (T(sub B))'s measured during five episodes (more than two days of continuous measurements) of the 2002 corn growth cycle are analyzed. These T(sub B)'s measurements were acquired as a part of a combined active/passive microwave field campaign, and were obtained at five incidence and three azimuth angles relative to the row direction. In support of this microwave data collection, intensive ground sampling took place once a week. Moreover, the interpretation of the hourly T(sub B)'s could also rely on the data obtained using the various automated instruments installed in the same field. In this paper, the soil moisture and temperature measured at fixed time intervals have been employed as input for the tau-omega model to reproduce the hourly T(sub B). Through the calibration of the vegetation and surface roughness parameterizations, the impact of the vegetation morphological changes on the microwave emission and the dependence of the soil surface roughness parameter, h(sub r), on soil moisture are investigated. This analysis demonstrates that the b parameter, appearing in the representation of the canopy opacity, has an angular dependence that varies throughout the growing period and also that the parameter hr increases as the soil dries in a portion of the dry-down cycle. The angular dependence of the b parameter imposes the largest uncertainty on T(sub B) simulations near senescence as the response of b to the incidence is also affected by the crop row orientation. On the other hand, the incorporation of a soil moisture dependent h(sub r) parameterization was responsible for the largest error reduction of T(sub B) simulations in the early growth cycle.

  18. Tropical Cyclones Wind Measurements with the SMAP L-Band Radiometer

    Science.gov (United States)

    Ricciardulli, L.; Meissner, T.; Wentz, F. J.

    2016-12-01

    The Soil Moisture Active Passive Mission SMAP was launched in January 2015 and has been providing science data since April 2015. Though designed to measure soil moisture, the SMAP radiometer has an excellent capability to measure ocean winds in tropical cyclones at a resolution of 40 km, with a swath width of 1000 km. The L-band radiometer V-pol and H-pol channels keep very good sensitivity to ocean surface wind speed even at very high wind speeds and they are only little impacted by rain. We briefly discuss the major features of the SMAP sensor, the geophysical model function that is used in the ocean vector wind retrieval and the basic steps of the retrieval algorithm. We will then illustrate the capability of this instrument to observe very high surface winds by comparing them to other validation datasets. The most important validation source is NOAA's airborne Step Frequency Microwave Radiometer SFMR, whose wind speeds were collocated with SMAP in space and time and resampled to the SMAP resolution. A comparison between SMAP and SFMR winds in hurricanes of the 2015 season, including Patricia, shows excellent correlation over a wide wind speed range (15 - 70 m/s) and no degradation in rain. This agreement is unique and gives SMAP a distinct advantage over many other space-borne sensors such as C-band or Ku-band scatterometers or radiometers, which either lose sensitivity at very high winds or degrade in rainy conditions. We will analyze the SMAP surface winds during the full evolution of the storms in recent intense tropical cyclones (Patricia, Winston, Fantala, and Nepartak) and compare them with wind measurements from ASCAT, RapidScat, and WindSat, with the NCEP wind fields, and with the best track data from the Joint Typhoon Warning Center.The SMAP wind data are available as twice-daily 0.25 deg gridded maps at www.remss.com.

  19. A super-compact metamaterial absorber cell in L-band

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Z. X. [State Key Laboratory of Millimeter Waves, Southeast University, Nanjing 210096 (China); Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); National Institute of Aerospace, Hampton, Virginia 23666 (United States); Yuan, F. G. [Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); National Institute of Aerospace, Hampton, Virginia 23666 (United States); Li, L. H. [State Key Laboratory of Millimeter Waves, Southeast University, Nanjing 210096 (China)

    2014-05-14

    A super-compact metamaterial absorber (SMA) unit cell in L band (1–2 GHz) is proposed, which is composed of a pair of electric ring resonator (ERR) and its complementary ERR (CERR) with a high dielectric substrate sandwiched in between. The CERR has a cross sectional area where approximately the etched copper foil in ERR is now retained, and the remaining region is now etched. In contract with quarter-wavelength (λ/4) thickness which is required for conventional absorbers, the largest in-plane dimension and thickness of the SMA cell are only λ/33 and λ/250, respectively, leading to a super compact cell volume. While traditionally the long straight wire is introduced in electric-LC resonators for increasing inductance, the CERR achieves similar inductance with much shorter lengths. Thus, its cell dimensions can be drastically reduced without compromising its performance. In addition, simulations together with an automated phase correction algorithm show that the SMA is a type of metamaterial possessing simultaneous negative electric permittivity (NEP) and negative magnetic permeability (NMP). Further the SMA has a very large imaginary part of the NEP and NMP, resulting in significantly large imaginary part of the refractive index at resonant frequency. These properties are well suited to design excellent absorbers. In addition, numerical results demonstrate that the maximum absorption coefficient of the SMA can reach greater than 99% at resonant frequency, and the full-width half-maximum is roughly 1% of the operating frequency, and a wide incident angle of ±49° over 90% absorption. Meanwhile, it is pointed out that this type of absorber is rather sensitive to polarization characteristic of the incident electromagnetic wave.

  20. Dental diagnostic clinical instrument ("Canary") development using photothermal radiometry and modulated luminescence

    Science.gov (United States)

    Jeon, R. J.; Sivagurunathan, K.; Garcia, J.; Matvienko, A.; Mandelis, A.; Abrams, S.

    2010-03-01

    Since 1999, our group at the CADIFT, University of Toronto, has developed the application of Frequency Domain Photothermal Radiometry (PTR) and Luminescence (LUM) to dental caries detection. Various cases including artificial caries detection have been studied and some of the inherent advantages of the adaptation of this technique to dental diagnostics in conjunction with modulated luminescence as a dual-probe technique have been reported. Based on these studies, a portable, compact diagnostic instrument for dental clinic use has been designed, assembled and tested. A semiconductor laser, optical fibers, a thermoelectric cooled mid-IR detector, and a USB connected data acquisition card were used. Software lock-in amplifier techniques were developed to compute amplitude and phase of PTR and LUM signals. In order to achieve fast measurement and acceptable signal-to-noise ratio (SNR) for clinical application, swept sine waveforms were used. As a result sampling and stabilization time for each measurement point was reduced to a few seconds. A sophisticated software interface was designed to simultaneously record intra-oral camera images with PTR and LUM responses. Preliminary results using this instrument during clinical trials in a dental clinic showed this instrument could detect early caries both from PTR and LUM signals.

  1. Dental diagnostic clinical instrument ('Canary') development using photothermal radiometry and modulated luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, R J; Sivagurunathan, K; Garcia, J; Matvienko, A; Mandelis, A [Center for Advanced Diffusion Wave Technologies (CADIFT), Department of Mechanical and Industrial Engineering, University of Toronto, 5 King' s College Road, Toronto, Ontario, M5S 3G8 (Canada); Abrams, S, E-mail: mandelis@mie.utoronto.c [Quantum Dental Technologies, 748 Briar Hill Avenue, Toronto, Ontario, M6B 1L3 (Canada)

    2010-03-01

    Since 1999, our group at the CADIFT, University of Toronto, has developed the application of Frequency Domain Photothermal Radiometry (PTR) and Luminescence (LUM) to dental caries detection. Various cases including artificial caries detection have been studied and some of the inherent advantages of the adaptation of this technique to dental diagnostics in conjunction with modulated luminescence as a dual-probe technique have been reported. Based on these studies, a portable, compact diagnostic instrument for dental clinic use has been designed, assembled and tested. A semiconductor laser, optical fibers, a thermoelectric cooled mid-IR detector, and a USB connected data acquisition card were used. Software lock-in amplifier techniques were developed to compute amplitude and phase of PTR and LUM signals. In order to achieve fast measurement and acceptable signal-to-noise ratio (SNR) for clinical application, swept sine waveforms were used. As a result sampling and stabilization time for each measurement point was reduced to a few seconds. A sophisticated software interface was designed to simultaneously record intra-oral camera images with PTR and LUM responses. Preliminary results using this instrument during clinical trials in a dental clinic showed this instrument could detect early caries both from PTR and LUM signals.

  2. Interproximal dental caries detection using Photothermal Radiometry (PTR) and Modulated Luminescence (LUM)

    Science.gov (United States)

    Jeon, R. J.; Matvienko, A.; Mandelis, A.; Abrams, S. H.; Amaechi, B. T.; Kulkarni, G.

    2008-01-01

    Frequency-domain photothermal radiometry (FD-PTR or PTR) has been used to detect mechanical holes and demineralized enamel in the interproximal contact area of extracted human teeth. Thirty four teeth were used in a series of experiments. Preliminary tests to detect mechanical holes created by dental burs and 37% phosphoric acid etching for 20 s on the interproximal contact points showed distinct differences in the signal. Interproximal contact areas were demineralized by using a partially saturated acidic buffer system. Each sample pair was examined with PTR before and after micro-machining or treating at sequential treatment periods spanning 6 hours to 30 days. Dental bitewing radio graphs showed no sign of demineralized lesion even for samples treated for 30 days. μ -CT, TMR and SEM analyses were performed. Although μ -CT and TMR measured mineral losses and lesion depths, only SEM surface images showed visible signs of treatment because of the minimal extent of the demineralization. However, the PTR amplitude increased by more than 300% after 80 hours of treatment. Therefore, PTR has been shown to have sufficient contrast for the detection of very early interproximal demineralized lesions. The technique further exhibited excellent signal reproducibility and consistent signal changes in the presence of interproximal demineralized lesions, attributes which render PTR a reliable probe to detect early interproximal demineralization lesions. Modulated luminescence was also measured simultaneously, but it showed a lower ability to detect these interproximal demineralized lesions than PTR.

  3. Typhoon 9707 observations with the MU radar and L-band boundary layer radar

    Directory of Open Access Journals (Sweden)

    M. Teshiba

    2001-08-01

    Full Text Available Typhoon 9707 (Opal was observed with the VHF-band Middle and Upper atmosphere (MU radar, an L-band boundary layer radar (BLR, and a vertical-pointing C-band meteorological radar at the Shigaraki MU Observatory in Shiga prefecture, Japan on 20 June 1997. The typhoon center passed about 80 km southeast from the radar site. Mesoscale precipitating clouds developed due to warm-moist airmass transport from the typhoon, and passed over the MU radar site with easterly or southeasterly winds. We primarily present the wind behaviour including the vertical component which a conventional meteorological Doppler radar cannot directly observe, and discuss the relationship between the wind behaviour of the typhoon and the precipitating system. To investigate the dynamic structure of the typhoon, the observed wind was divided into radial and tangential wind components under the assumption that the typhoon had an axi-symmetric structure. Altitude range of outflow ascended from 1–3 km to 2–10 km with increasing distance (within 80–260 km range from the typhoon center, and in-flow was observed above and below the outflow. Outflow and inflow were associated with updraft and downdraft, respectively. In the tangential wind, the maximum speed of counterclockwise winds was confirmed at 1–2 km altitudes. Based on the vertical velocity and the reflectivity obtained with the MU radar and the C-band meteorological radar, respectively, precipitating clouds, accompanied by the wind behaviour of the typhoon, were classified into stratiform and convective precipitating clouds. In the stratiform precipitating clouds, a vertical shear of radial wind and the maximum speed of counterclockwise wind were observed. There was a strong reflectivity layer called a ‘bright band’ around the 4.2 km altitude. We confirmed strong updrafts and down-drafts below and above it, respectively, and the existence of a relatively dry layer around the bright band level from radiosonde

  4. Typhoon 9707 observations with the MU radar and L-band boundary layer radar

    Directory of Open Access Journals (Sweden)

    M. Teshiba

    Full Text Available Typhoon 9707 (Opal was observed with the VHF-band Middle and Upper atmosphere (MU radar, an L-band boundary layer radar (BLR, and a vertical-pointing C-band meteorological radar at the Shigaraki MU Observatory in Shiga prefecture, Japan on 20 June 1997. The typhoon center passed about 80 km southeast from the radar site. Mesoscale precipitating clouds developed due to warm-moist airmass transport from the typhoon, and passed over the MU radar site with easterly or southeasterly winds. We primarily present the wind behaviour including the vertical component which a conventional meteorological Doppler radar cannot directly observe, and discuss the relationship between the wind behaviour of the typhoon and the precipitating system. To investigate the dynamic structure of the typhoon, the observed wind was divided into radial and tangential wind components under the assumption that the typhoon had an axi-symmetric structure. Altitude range of outflow ascended from 1–3 km to 2–10 km with increasing distance (within 80–260 km range from the typhoon center, and in-flow was observed above and below the outflow. Outflow and inflow were associated with updraft and downdraft, respectively. In the tangential wind, the maximum speed of counterclockwise winds was confirmed at 1–2 km altitudes. Based on the vertical velocity and the reflectivity obtained with the MU radar and the C-band meteorological radar, respectively, precipitating clouds, accompanied by the wind behaviour of the typhoon, were classified into stratiform and convective precipitating clouds. In the stratiform precipitating clouds, a vertical shear of radial wind and the maximum speed of counterclockwise wind were observed. There was a strong reflectivity layer called a ‘bright band’ around the 4.2 km altitude. We confirmed strong updrafts and down-drafts below and above it, respectively, and the existence of a relatively dry layer around the bright band level from radiosonde

  5. High power test results of the first SRRC/ANL high current L-band RF gun.

    Energy Technology Data Exchange (ETDEWEB)

    Ho, C. H.

    1998-09-11

    A joint program is underway between the SRRC (Synchrotrons Radiation Research Center, Taiwan) and ANL (Argonne National Laboratory, USA) for developing a high current L-band photocathode rf guns. We have constructed an L-Band (1.3 Ghz), single cell rf photocathode gun and conducted low power tests at SRRC. High power rf conditioning of the cavity has been completed at ANL. In this paper we report on the construction and high power test results. So far we have been able to achieve > 120 MV/m axial electric field with minimal dark current. This gun will be used to replace the AWA (Argonne Wakefield Accelerator)[l] high current gun.

  6. Simulation of L-band and HH microwave backscattering from coniferous forest stands - A comparison with SIR-B data

    Science.gov (United States)

    Sun, Guo-Qing; Simonett, David S.

    1988-01-01

    SIR-B images of the Mt. Shasta region of northern California are used to evaluate a composite L-band HH backscattering model of coniferous forest stands. It is found that both SIR-B and simulated backscattering coefficients for eight stands studied have similar trends and relations to average tree height and average number of trees per pixel. Also, the dispersion and distribution of simulated backscattering coefficients from each stand broadly match SIR-B data from the same stand. Although the limited quality and quantity of experimental data makes it difficult to draw any strong conclusions, the comparisons indicate that a stand-based L-band HH composite model seems promising for explaining backscattering features.

  7. Design of short length and C+L-band mismatched optical coupler with waveguide weighted by the Blackman function

    Science.gov (United States)

    Chen, Chi-Feng; Ku, Yun-Sheng; Kung, Tsu-Te

    2009-01-01

    A mismatched optical coupler with waveguide weighted by the Blackman function is numerically investigated in the demand of short length, C+L-band, and low crosstalk. Utilizing the full factorial design, the structure parameters of coupling waveguide are obtained by beam propagation method. In the condition of crosstalk of -35 dB, the mismatched optical coupler with proper selected waveguide structure parameters is found to have a coupling length of 3.60 mm in the transmission wavelength ranges of C+L-band (1.53-1.61 μm). Obviously, the selection and design of waveguide structure are very important to satisfy the qualities of a mismatched optical coupler for the demand of short length, broad bandwidth, and low crosstalk.

  8. Design and First Results of an UAV-Borne L-Band Radiometer for Multiple Monitoring Purposes

    Directory of Open Access Journals (Sweden)

    Rene Acevo-Herrera

    2010-06-01

    Full Text Available UAV (unmanned Aerial Vehicle platforms represent a challenging opportunity for the deployment of a number of remote sensors. These vehicles are a cost-effective option in front of manned aerial vehicles (planes and helicopters, are easy to deploy due to the short runways needed, and they allow users to meet the critical requirements of the spatial and temporal resolutions imposed by the instruments. L-band radiometers are an interesting option for obtaining soil moisture maps over local areas with relatively high spatial resolution for precision agriculture, coastal monitoring, estimation of the risk of fires, flood prevention, etc. This paper presents the design of a light-weight, airborne L-band radiometer for deployment in a small UAV, including the hardware and specific software developed for calibration, geo-referencing, and soil moisture retrieval. First results and soil moisture retrievals from different field experiments are presented.

  9. Coherence Effects in L-Band Active and Passive Remote Sensing of Quasi-Periodic Corn Canopies

    Science.gov (United States)

    Utku, Cuneyt; Lang, Roger H.

    2011-01-01

    Due to their highly random nature, vegetation canopies can be modeled using the incoherent transport theory for active and passive remote sensing applications. Agricultural vegetation canopies however are generally more structured than natural vegetation. The inherent row structure in agricultural canopies induces coherence effects disregarded by the transport theory. The objective of this study is to demonstrate, via Monte-Carlo simulations, these coherence effects on L-band scattering and thermal emission from corn canopies consisting of only stalks.

  10. A Dual Polarization, Active, Microstrip Antenna for an Orbital Imaging Radar System Operating at L-Band

    Science.gov (United States)

    Kelly, Kenneth C.; Huang, John

    2000-01-01

    A highly successful Earth orbiting synthetic antenna aperture radar (SAR) system, known as the SIR-C mission, was carried into orbit in 1994 on a U.S. Shuttle (Space Transportation System) mission. The radar system was mounted in the cargo bay with no need to fold, or in any other way reduce the size of the antennas for launch. Weight and size were not limited for the L-Band, C-Band, and X-Band radar systems of the SIR-C radar imaging mission; the set of antennas weighed 10,500 kg, the L-Band antenna having the major share of the weight. This paper treats designing an L-Band antenna functionally similar to that used for SIR-C, but at a fraction of the cost and at a weight in the order of 250 kg. Further, the antenna must be folded to fit into the small payload shroud of low cost booster rocket systems. Over 31 square meters of antenna area is required. This low weight, foldable, electronic scanning antenna is for the proposed LightSAR radar system which is to be placed in Earth orbit on a small, dedicated space craft at the lowest possible cost for an efficient L- Band radar imaging system. This LightSAR spacecraft radar is to be continuously available for at least five operational years, and have the ability to map or repeat-map any area on earth within a few days of any request. A microstrip patch array, with microstrip transmission lines heavily employed in the aperture and in the corporate feed network, was chosen as the low cost approach for this active dual-polarization, 80 MHz (6.4%) bandwidth antenna design.

  11. Feasibility Study of Radiometry for Airborne Detection of Aviation Hazards

    Science.gov (United States)

    Gimmestad, Gary G.; Papanicolopoulos, Chris D.; Richards, Mark A.; Sherman, Donald L.; West, Leanne L.; Johnson, James W. (Technical Monitor)

    2001-01-01

    Radiometric sensors for aviation hazards have the potential for widespread and inexpensive deployment on aircraft. This report contains discussions of three aviation hazards - icing, turbulence, and volcanic ash - as well as candidate radiometric detection techniques for each hazard. Dual-polarization microwave radiometry is the only viable radiometric technique for detection of icing conditions, but more research will be required to assess its usefulness to the aviation community. Passive infrared techniques are being developed for detection of turbulence and volcanic ash by researchers in this country and also in Australia. Further investigation of the infrared airborne radiometric hazard detection approaches will also be required in order to develop reliable detection/discrimination techniques. This report includes a description of a commercial hyperspectral imager for investigating the infrared detection techniques for turbulence and volcanic ash.

  12. Applied photometry, radiometry, and measurements of optical losses

    CERN Document Server

    Bukshtab, Michael

    2012-01-01

    Applied Photometry, Radiometry, and Measurements of Optical Losses reviews and analyzes physical concepts of radiation transfer, providing quantitative foundation for the means of measurements of optical losses, which affect propagation and distribution of light waves in various media and in diverse optical systems and components. The comprehensive analysis of advanced methodologies for low-loss detection is outlined in comparison with the classic photometric and radiometric observations, having a broad range of techniques examined and summarized: from interferometric and calorimetric, resonator and polarization, phase-shift and ring-down decay, wavelength and frequency modulation to pulse separation and resonant, acousto-optic and emissive - subsequently compared to direct and balancing methods for studying free-space and polarization optics, fibers and waveguides. The material is focused on applying optical methods and procedures for evaluation of transparent, reflecting, scattering, absorbing, and aggregat...

  13. Directional radiometry and radiative transfer: The convoluted path from centuries-old phenomenology to physical optics

    Science.gov (United States)

    Mishchenko, Michael I.

    2014-10-01

    This Essay traces the centuries-long history of the phenomenological disciplines of directional radiometry and radiative transfer in turbid media, discusses their fundamental weaknesses, and outlines the convoluted process of their conversion into legitimate branches of physical optics.

  14. Directional Radiometry and Radiative Transfer: the Convoluted Path From Centuries-old Phenomenology to Physical Optics

    Science.gov (United States)

    Mishchenko, Michael I.

    2014-01-01

    This Essay traces the centuries-long history of the phenomenological disciplines of directional radiometry and radiative transfer in turbid media, discusses their fundamental weaknesses, and outlines the convoluted process of their conversion into legitimate branches of physical optics.

  15. Development of a L-band ocean emissivity electromagnetic model using observations from the Aquarius Radiometer

    Science.gov (United States)

    Hejazin, Y.; Jones, W.; El-Nimri, S.

    2012-12-01

    The Aquarius/SAC-D ocean salinity measurement mission was launched into polar orbit during the summer of 2011. The prime sensor is an L-band radiometer/scatterometer developed jointly by NASA Goddard Space Flight Center and the Jet Propulsion Laboratory. This paper deals with the development of an ocean emissivity model using AQ radiometer brightness temperature (Tb) observations. This model calculates the ocean surface emissivity as a function of ocean salinity, sea surface temperature, surface wind speed and direction. One unique aspect of this model is that it calculates ocean emissivity over wide ranges of Earth incidence angles (EIAs) from nadir to > 60°and ocean wind speeds from 0 m/s to > 70 m/s. This physical electromagnetic model with empirical coefficients follows the form of Stogryn [1967] that treats the ocean as a mixture of foam and clean rough water. The CFRSL ocean surface emissivity (ɛocean) is modeled as a linear sum of foam (ɛfoam) and foam-free seawater (ɛrough) emissivities, according to ɛocean = FF * ɛfoam + (1 - FF) * ɛrough (1) where FF is the fractional area coverage by foam. The foam emissivity is modeled as ɛfoam = Q(freq, U10, EIA) (2) where Q( ) is the empirical dependence of foam emissivity on radiometer frequency, the 10-m neutral stability wind speed and EIA according to El-Nimri [2010]. Following Stogryn, the foam-free seawater emissivity (ɛrough) is modeled ɛrough = ɛsmooth +Δɛexcess (3) where ɛsmooth = (1 - Γ) is the smooth surface emissivity, Γ is the Fresnel power reflection coefficient, and Δɛexcess is the wind-induced excess emissivity, given by Δɛexcess = G(freq, U10, WDir, EIA) (4) Where G( ) is the empirical signature of foam-free rough ocean, which depends upon the surface wind speed and wind direction. This function is determined empirically from measured AQ radiometer Tb's associated with surface wind vector from collocated NOAA GDAS numerical weather model. Ocean emissivity calculations are compared

  16. Biomass Retrieval from L-Band Polarimetric UAVSAR Backscatter and PRISM Stereo Imagery

    Science.gov (United States)

    Zhang, Zhiyu; Ni, Wenjian; Sun, Guoqing; Huang, Wenli; Ranson, Kenneth J.; Cook, Bruce D.; Guo, Zhifeng

    2017-01-01

    The forest above-ground biomass (AGB) and spatial distribution of vegetation elements have profound effects on the productivity and biodiversity of terrestrial ecosystems. In this paper, we evaluated biomass estimation from L-band Synthetic Aperture Radar (SAR) data acquired by National Aeronautics and Space Administration (NASA) Uninhabited Aerial Vehicle SAR (UAVSAR) and the improvement of accuracy by adding canopy height information derived from stereo imagery acquired by Japan Aerospace Exploration Agency (JAXA) Panchromatic Remote Sensing Instrument for Stereo Mapping (PRISM) on-board the Advanced Land Observing Satellite (ALOS). Various models for prediction of forest biomass from UAVSAR data were investigated at pixel sizes of 1/4 ha (50 m x 50 m) and 1 ha. The variance inflation factor (VIF) was calculated for each of the explanatory variables in multivariable regression models to assess the multi-collinearity between explanatory variables. In addition, the t-and p-values were used to interpret the significance of the coefficients of each explanatory variables. The R(exp. 2), Root Mean Square Error (RMSE), bias and Akaike information criterion (AIC), and leave-one-out cross-validation (LOOCV) and bootstrapping were used to validate models. At 1/4-ha scale, the R(exp. 2) and RMSE of biomass estimation from a model using a single track of polarimetric UAVSAR data were 0.59 and 52.08 Mg/ha. With canopy height from PRISM as additional independent variable, R(exp. 2) increased to 0.76 and RMSE decreased to 39.74 Mg/ha (28.24%). At 1-ha scale, the RMSE of biomass estimation based on UAVSAR data of a single track was 39.42 Mg/ha with a R(exp. 2) of 0.77. With the canopy height from PRISM, R(exp. 2) increased to 0.86 and RMSE decreased to 29.47 Mg/ha (20.18%). The models using UAVSAR data alone underestimated biomass at levels above approximately 150 Mg/ha showing the saturation phenomenon. Adding canopy height from PRISM stereo imagery significantly improved the

  17. Demonstration of L-band DP-QPSK transmission over FSO and fiber channels employing InAs/InP quantum-dash laser source

    KAUST Repository

    Shemis, M.A.

    2017-11-23

    The next generation of optical access communication networks that support 100 Gbps and beyond, require advances in modulation schemes, spectrum utilization, new transmission bands, and efficient devices, particularly laser diodes. In this paper, we investigated the viability of new-class of InAs/InP Quantum-dash laser diode (Qdash-LD) exhibiting multiple longitudinal light modes in the L-band to carry high-speed data rate for access network applications. We exploited external and self injection-locking techniques on Qdash-LD to generate large number of stable and tunable locked modes, and compared them. To stem the capability of each locked mode as a potential subcarrier, data transmission is carried out over two mediums; single mode fiber (SMF) and free space optics (FSO) to emulate real deployment scenarios of optical networks. The results showed that with external-injection locking (EIL), an error-free transmission of 100 Gbps dual polarization quadrature phase shift keying (DP-QPSK) signal is demonstrated over 10 km SMF and 4 m indoor FSO channels, with capability of reaching up to 128 Gbps, demonstrated under back-to-back (BTB) configuration. On the other hand, using self-injection locking (SIL) scheme, a successful data transmission of 64 Gbps and 128 Gbps DP-QPSK signal over 20 km SMF and 10 m indoor FSO links, respectively, is achieved.

  18. GPS Jammer Detection and Gelocation using CoNNeCT L-Band SDR Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Under this proposed effort, we plan to test the feasibility of adapting our terrestrial jammer locator system (JLOC) to locating jamming signals in space by adapting...

  19. Investigation of Thermal Properties of High-Density Polyethylene/Aluminum Nanocomposites by Photothermal Infrared Radiometry

    Science.gov (United States)

    Koca, H. D.; Evgin, T.; Horny, N.; Chirtoc, M.; Turgut, A.; Tavman, I. H.

    2017-12-01

    In this study, thermal properties of high-density polyethylene (HDPE) filled with nanosized Al particles (80 nm) were investigated. Samples were prepared using melt mixing method up to filler volume fraction of 29 %, followed by compression molding. By using modulated photothermal radiometry (PTR) technique, thermal diffusivity and thermal effusivity were obtained. The effective thermal conductivity of nanocomposites was calculated directly from PTR measurements and from the measurements of density, specific heat capacity (by differential scanning calorimetry) and thermal diffusivity (obtained from PTR signal amplitude and phase). It is concluded that the thermal conductivity of HDPE composites increases with increasing Al fraction and the highest effective thermal conductivity enhancement of 205 % is achieved at a filler volume fraction of 29 %. The obtained results were compared with the theoretical models and experimental data given in the literature. The results demonstrate that Agari and Uno, and Cheng and Vachon models can predict well the thermal conductivity of HDPE/Al nanocomposites in the whole range of Al fractions.

  20. An absolute calibration method of an ethyl alcohol biosensor based on wavelength-modulated differential photothermal radiometry.

    Science.gov (United States)

    Liu, Yi Jun; Mandelis, Andreas; Guo, Xinxin

    2015-11-01

    In this work, laser-based wavelength-modulated differential photothermal radiometry (WM-DPTR) is applied to develop a non-invasive in-vehicle alcohol biosensor. WM-DPTR features unprecedented ethanol-specificity and sensitivity by suppressing baseline variations through a differential measurement near the peak and baseline of the mid-infrared ethanol absorption spectrum. Biosensor signal calibration curves are obtained from WM-DPTR theory and from measurements in human blood serum and ethanol solutions diffused from skin. The results demonstrate that the WM-DPTR-based calibrated alcohol biosensor can achieve high precision and accuracy for the ethanol concentration range of 0-100 mg/dl. The high-performance alcohol biosensor can be incorporated into ignition interlocks that could be fitted as a universal accessory in vehicles in an effort to reduce incidents of drinking and driving.

  1. Trap State Effects in PbS Colloidal Quantum Dot Exciton Kinetics Using Photocarrier Radiometry Intensity and Temperature Measurements

    Science.gov (United States)

    Wang, Jing; Mandelis, Andreas; Melnikov, Alexander; Sun, Qiming

    2016-06-01

    Colloidal quantum dots (CQDs) have attracted significant interest for applications in electronic and optoelectronic devices such as photodetectors, light-emitting diodes, and solar cells. However, a poor understanding of charge transport in these nanocrystalline films hinders their practical applications. The photocarrier radiometry (PCR) technique, a frequency-domain photoluminescence method spectrally gated for monitoring radiative recombination photon emissions while excluding thermal infrared photons due to non-radiative recombination, has been applied to PbS CQD thin films for the analysis of charge transport properties. Linear excitation intensity responses of PCR signals were found in the reported experimental conditions. The type and influence of trap states in the coupled PbS CQD thin film were analyzed with PCR temperature- and time-dependent results.

  2. ALOHA @3,39 μm: implementation of the up-conversion interferometer in the L band

    Science.gov (United States)

    Szemendera, Ludovic; Darré, Pascaline; Grossard, Ludovic; Delage, Laurent; Herrmann, Harald; Silberhorn, Christine; Reynaud, François

    2016-08-01

    In the aim of access the high angular resolution for mid infrared observations, our team propose to include non linear processes on each arm of an interferometer. This project called ALOHA is now adapted for the L band detection, specially at 3.39 μm. Our team has previously published the first contrast measured in laboratory with such an up-conversion interferometer. The fringe contrast we measured was closed to the theoretical maximum at 100%. In a second step, we investigated the stability of the instrument over several months. The residual drifts are mainly due to the non real-time photometry monitoring.

  3. Operation of an ungated diamond field-emission array cathode in a L-band radiofrequency electron source

    Energy Technology Data Exchange (ETDEWEB)

    Piot, P. [Northern Illinois Center for Accelerator and Detector Development and Department of Physics, Northern Illinois University, DeKalb, Illinois 60115, USA; Accelerator Physics Center, Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA; Brau, C. A. [Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235, USA; Choi, B. K. [Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, Tennessee 37235, USA; Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA; Blomberg, B. [Northern Illinois Center for Accelerator and Detector Development and Department of Physics, Northern Illinois University, DeKalb, Illinois 60115, USA; Gabella, W. E. [Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235, USA; Ivanov, B. [Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235, USA; Jarvis, J. [Advanced Energy Systems, Inc., Medford, New York 11763, USA; Mendenhall, M. H. [Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235, USA; Mihalcea, D. [Northern Illinois Center for Accelerator and Detector Development and Department of Physics, Northern Illinois University, DeKalb, Illinois 60115, USA; Panuganti, H. [Northern Illinois Center for Accelerator and Detector Development and Department of Physics, Northern Illinois University, DeKalb, Illinois 60115, USA; Prieto, P. [Accelerator Division, Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA; Reid, J. [Accelerator Division, Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA

    2014-06-30

    We report on the first successful operation of a field-emitter-array cathode in a conventional L-band radio-frequency electron source. The cathode consisted of an array of $\\sim 10^6$ diamond diamond tips on pyramids. Maximum current on the order of 15~mA were reached and the cathode did not show appreciable signs of fatigue after weeks of operation. The measured Fowler-Nordheim characteristics, transverse beam density, and current stability are discussed. Numerical simulations of the beam dynamics are also presented.

  4. MAPSAR Image Simulation Based on L-band Polarimetric Data from the SAR-R99B Airborne Sensor (SIVAM System

    Directory of Open Access Journals (Sweden)

    Wagner Fernando da Silva

    2009-01-01

    Full Text Available This paper describes the methodology applied to generate simulated multipolarized L-band SAR images of the MAPSAR (Multi-Application Purpose SAR satellite from the airborne SAR R99B sensor (SIVAM System. MAPSAR is a feasibility study conducted by INPE (National Institute for Space Research and DLR (German Aerospace Center targeting a satellite L-band SAR innovative mission for assessment, management and monitoring of natural resources. Examples of simulated products and their applications are briefly discussed.

  5. MAPSAR Image Simulation Based on L-band Polarimetric Data from the SAR-R99B Airborne Sensor (SIVAM System)

    OpenAIRE

    Wagner Fernando da Silva; Mario Marcos Quintino da Silva; Fernando Pellon de Miranda; Bernardo Friedrich Theodor Rudorff; João Roberto dos Santos; Luciano Vieira Dutra; Waldir Renato Paradella; José Claudio Mura

    2009-01-01

    This paper describes the methodology applied to generate simulated multipolarized L-band SAR images of the MAPSAR (Multi-Application Purpose SAR) satellite from the airborne SAR R99B sensor (SIVAM System). MAPSAR is a feasibility study conducted by INPE (National Institute for Space Research) and DLR (German Aerospace Center) targeting a satellite L-band SAR innovative mission for assessment, management and monitoring of natural resources. Examples of simulated products and their applications...

  6. MAPSAR Image Simulation Based on L-band Polarimetric Data from the SAR-R99B Airborne Sensor (SIVAM System).

    Science.gov (United States)

    Mura, José Claudio; Paradella, Waldir Renato; Dutra, Luciano Vieira; Dos Santos, João Roberto; Rudorff, Bernardo Friedrich Theodor; de Miranda, Fernando Pellon; da Silva, Mario Marcos Quintino; da Silva, Wagner Fernando

    2009-01-01

    This paper describes the methodology applied to generate simulated multipolarized L-band SAR images of the MAPSAR (Multi-Application Purpose SAR) satellite from the airborne SAR R99B sensor (SIVAM System). MAPSAR is a feasibility study conducted by INPE (National Institute for Space Research) and DLR (German Aerospace Center) targeting a satellite L-band SAR innovative mission for assessment, management and monitoring of natural resources. Examples of simulated products and their applications are briefly discussed.

  7. GPS Multipath Fade Measurements to Determine L-Band Ground Reflectivity Properties

    Science.gov (United States)

    Kavak, Adnan; Xu, Guang-Han; Vogel, Wolfhard J.

    1996-01-01

    In personal satellite communications, especially when the line-of-sight is clear, ground specular reflected signals along with direct signals are received by low gain, almost omni-directional subscriber antennas. A six-channel, C/A code processing, GPS receiver with an almost omni-directional patch antenna was used to take measurements over three types of ground to characterize 1.575 GHz specular ground reflections and ground dielectric properties. Fade measurements were taken over grass, asphalt, and lake water surfaces by placing the antenna in a vertical position at a fixed height from the ground. Electrical characteristics (conductivity and dielectric constant) of these surfaces (grass, asphalt, lake water) were obtained by matching computer simulations to the experimental results.

  8. Day and nighttime L-Band amplitude scintillations during low solar activity at a low latitude station in the South Pacific region

    Science.gov (United States)

    Prasad, Ramendra; Kumar, Sushil

    2017-12-01

    A morphological study of GPS L-band amplitude scintillations observed at a low latitude station, Suva (18.1°S, 178.4°E), Fiji, during low solar activity year 2010 of solar cycle 24, has been presented. Out of a total of 480 scintillation events recorded during 2010, 84.4% were weak (0.2 ≤ S4 lightning activity around the observing station. Annual percentage occurrence shows that scintillations occurred mostly in the daytime with peak occurrence at around 05:00-09:00 LT. The daytime strong scintillation events were not associated with vTEC depletions and phase scintillations, but the signal to noise ratio during the scintillation events decreased with increase in scintillation index (S4). However, the post-midnight strong amplitude scintillations were associated with vTEC depletions and phase scintillations indicative of large scale irregularities (spread-F). The geomagnetic activity effect showed enhanced occurrence on geomagnetically disturbed days as compared to quite conditions. The geomagnetic storm effect on scintillations for 17 storms of different strengths (Dst ≤ 50 nT) during 2010-2011 showed an increase in the occurrence of post-storm scintillations, on the days following the storm.

  9. Photothermal radiometry monitoring of light curing in resins

    Energy Technology Data Exchange (ETDEWEB)

    Zambrano-Arjona, M A [Applied Physics Department, Cinvestav-Unidad Merida, A.P. 73 Cordemex, Merida, 97310 (Mexico); Medina-Esquivel, R [Cinvestav-Unidad Queretaro, Libramiento Norponiente 2000 Fracc. Real de Juriquilla, CP 76230, Queretaro (Mexico); Alvarado-Gil, J J [Applied Physics Department, Cinvestav-Unidad Merida, A.P. 73 Cordemex, Merida, 97310 (Mexico)

    2007-10-07

    Real time measurement of thermal diffusivity during the evolution of the light curing process in dental resins is reported using photothermal radiometry. The curing is induced by a non-modulated blue light beam, and at the same time, a modulated red laser beam is sent onto the sample, generating a train of thermal waves that produce modulated infrared radiation. The monitoring of this radiation permits to follow the time evolution of the process. The methodology is applied to two different commercially available light curing resin-based composites. In all cases thermal diffusivity follows a first order kinetics with similar stabilization characteristic times. Analysis of this kinetics permits to exhibit the close relationship of increase in thermal diffusivity with the decrease in monomer concentration and extension of the polymerization in the resin, induced by the curing light. It is also shown that the configuration in which the resin is illuminated by the modulated laser can be the basis for the development of an in situ technique for the determination of the degree of curing.

  10. Further refinements to the spatiotemporal forecast model for L-band scintillation based on comparison with C/NOFS observations

    Science.gov (United States)

    Yadav, Sneha; Sridharan, R.; Sunda, Surendra; Pant, Tarun K.

    2017-05-01

    The model-generated spatiotemporal maps to forecast the occurrence pattern of plasma density irregularities in the nightside equatorial F region that are responsible for the L-band scintillations have been put to test, in both space and time, by comparing it with actual observations by the Communication/Navigation Outage Forecasting System satellite. The forecast model is based on (i) the temporal variations of the density perturbations during daytime in the Nmax region and (ii) the a priori knowledge of zonal velocity of the perturbations in the postsunset hours. The present study not only substantiates the hypothesis used for the generation of the scintillation forecast but also suggests that the equatorial plasma bubbles remain tied-up with the initial perturbations which trigger the primary Rayleigh-Taylor instability. The outcome highlights the need to take into account the altitudinal profile of the topside F region electron density as it could modify the zonal extent of the plasma bubbles that support the generation of the density irregularities and the consequent L-band scintillations. The present study takes us one more step closer toward the realization of an operational forecast system for satellite-based navigation.

  11. Coastal flood inundation monitoring with Satellite C-band and L-band Synthetic Aperture Radar data

    Science.gov (United States)

    Ramsey, Elijah W.; Rangoonwala, Amina; Bannister, Terri

    2013-01-01

    Satellite Synthetic Aperture Radar (SAR) was evaluated as a method to operationally monitor the occurrence and distribution of storm- and tidal-related flooding of spatially extensive coastal marshes within the north-central Gulf of Mexico. Maps representing the occurrence of marsh surface inundation were created from available Advanced Land Observation Satellite (ALOS) Phased Array type L-Band SAR (PALSAR) (L-band) (21 scenes with HH polarizations in Wide Beam [100 m]) data and Environmental Satellite (ENVISAT) Advanced SAR (ASAR) (C-band) data (24 scenes with VV and HH polarizations in Wide Swath [150 m]) during 2006-2009 covering 500 km of the Louisiana coastal zone. Mapping was primarily based on a decrease in backscatter between reference and target scenes, and as an extension of previous studies, the flood inundation mapping performance was assessed by the degree of correspondence between inundation mapping and inland water levels. Both PALSAR- and ASAR-based mapping at times were based on suboptimal reference scenes; however, ASAR performance seemed more sensitive to reference-scene quality and other types of scene variability. Related to water depth, PALSAR and ASAR mapping accuracies tended to be lower when water depths were shallow and increased as water levels decreased below or increased above the ground surface, but this pattern was more pronounced with ASAR. Overall, PALSAR-based inundation accuracies averaged 84% (n = 160), while ASAR-based mapping accuracies averaged 62% (n = 245).

  12. Effective roughness modelling as a tool for soil moisture retrieval from C- and L-band SAR

    Directory of Open Access Journals (Sweden)

    H. Lievens

    2011-01-01

    Full Text Available Soil moisture retrieval from Synthetic Aperture Radar (SAR using state-of-the-art back-scatter models is not fully operational at present, mainly due to difficulties involved in the parameterisation of soil surface roughness. Recently, increasing interest has been drawn to the use of calibrated or effective roughness parameters, as they circumvent issues known to the parameterisation of field-measured roughness. This paper analyses effective roughness parameters derived from C- and L-band SAR observations over a large number of agricultural seedbed sites in Europe. It shows that param-eters may largely differ between SAR acquisitions, as they are related to the observed backscatter coefficients and variations in the local incidence angle. Therefore, a statistical model is developed that allows for estimating effective roughness parameters from microwave backscatter observations. Subsequently, these parameters can be propagated through the Integral Equation Model (IEM for soil moisture retrieval. It is shown that fairly accurate soil moisture results are obtained both at C- and L-band, with an RMSE ranging between 4 vol% and 6.5 vol%.

  13. Sea Surface Salinity and Wind Retrieval Algorithm Using Combined Passive-Active L-Band Microwave Data

    Science.gov (United States)

    Yueh, Simon H.; Chaubell, Mario J.

    2011-01-01

    Aquarius is a combined passive/active L-band microwave instrument developed to map the salinity field at the surface of the ocean from space. The data will support studies of the coupling between ocean circulation, the global water cycle, and climate. The primary science objective of this mission is to monitor the seasonal and interannual variation of the large scale features of the surface salinity field in the open ocean with a spatial resolution of 150 kilometers and a retrieval accuracy of 0.2 practical salinity units globally on a monthly basis. The measurement principle is based on the response of the L-band (1.413 gigahertz) sea surface brightness temperatures (T (sub B)) to sea surface salinity. To achieve the required 0.2 practical salinity units accuracy, the impact of sea surface roughness (e.g. wind-generated ripples and waves) along with several factors on the observed brightness temperature has to be corrected to better than a few tenths of a degree Kelvin. To the end, Aquarius includes a scatterometer to help correct for this surface roughness effect.

  14. Towards an improved soil moisture retrieval for organic-rich soils from SMOS passive microwave L-band observations

    Science.gov (United States)

    Bircher, Simone; Richaume, Philippe; Mahmoodi, Ali; Mialon, Arnaud; Fernandez-Moran, Roberto; Wigneron, Jean-Pierre; Demontoux, François; Jonard, François; Weihermüller, Lutz; Andreasen, Mie; Rautiainen, Kimmo; Ikonen, Jaakko; Schwank, Mike; Drusch, Mattias; Kerr, Yann H.

    2017-04-01

    From the passive L-band microwave radiometer onboard the Soil Moisture and Ocean Salinity (SMOS) space mission global surface soil moisture data is retrieved every 2 - 3 days. Thus far, the empirical L-band Microwave Emission of the Biosphere (L-MEB) radiative transfer model applied in the SMOS soil moisture retrieval algorithm is exclusively calibrated over test sites in dry and temperate climate zones. Furthermore, the included dielectric mixing model relating soil moisture to relative permittivity accounts only for mineral soils. However, soil moisture monitoring over the higher Northern latitudes is crucial since these regions are especially sensitive to climate change. A considerable positive feedback is expected if thawing of these extremely organic soils supports carbon decomposition and release to the atmosphere. Due to differing structural characteristics and thus varying bound water fractions, the relative permittivity of organic material is lower than that of the most mineral soils at a given water content. This assumption was verified by means of L-band relative permittivity laboratory measurements of organic and mineral substrates from various sites in Denmark, Finland, Scotland and Siberia using a resonant cavity. Based on these data, a simple empirical dielectric model for organic soils was derived and implemented in the SMOS Soil Moisture Level 2 Prototype Processor (SML2PP). Unfortunately, the current SMOS retrieved soil moisture product seems to show unrealistically low values compared to in situ soil moisture data collected from organic surface layers in North America, Europe and the Tibetan Plateau so that the impact of the dielectric model for organic soils cannot really be tested. A simplified SMOS processing scheme yielding higher soil moisture levels has recently been proposed and is presently under investigation. Furthermore, recalibration of the model parameters accounting for vegetation and roughness effects that were thus far only

  15. Mapping Inundation and Changes in Wetland Extent with L-band SAR: A Combined Data and Modeling Approach

    Science.gov (United States)

    Galantowicz, J. F.; Samanta, A.

    2011-12-01

    Accurate mapping of seasonal and inter-annual changes in inundation and wetland extent is a key requisite for the estimation of greenhouse gas (GHG, e.g., methane) emissions from land surfaces to the atmosphere. This task would benefit from the 1- to 3-km spatial resolution L-band synthetic aperture radar (SAR) and 3-day revisit time of NASA's Soil Moisture Active Passive (SMAP) mission, planned for launch in 2014. With a view to utilizing this unique capability, we propose a method for mapping the fraction of area inundated using a combination of semi-empirical models of radar backscatter and L-band SAR data. Inundation exhibits a characteristic radar backscatter that is affected by a set of factors, including roughness of soil and water surfaces, and presence of vegetation cover. Further, the impact of vegetation cover on radar backscatter from underlying soil and/or water surface will depend on biome type. The effects of these factors on both the like-polarized (HH, VV) and cross-polarized (HV) radar backscatter was investigated using semi-empirical models. A key step in devising an inundation fraction retrieval algorithm is to benchmark and calibrate the backscatter simulated with semi-empirical models against SAR data. This task was undertaken using data from the Phased Array L-Band Synthetic Aperture Radar (PALSAR) instrument onboard Japan's Earth Resources Satellite's (JERS, e.g., Fig. 1). This calibration was performed in the following way. First, using a Monte-Carlo type of approach, a large set of random backscatter samples was extracted from different landcover classes, including dry forests and clear-cut areas, inundated forests (wetlands), and open water. Second, mean backscatter was calculated at varying spatial resolutions: 100 m, 500 m, 1 km, 2 km, 3 km and 10 km. Third, the mean model backscatter was set to the mean PALSAR backscatter for each landcover class, but the model dispersion was retained. Finally, using these calibrated values

  16. A Compact L-band Radiometer for High Resolution sUAS-based Imaging of Soil Moisture and Surface Salinity Variations

    Science.gov (United States)

    Gasiewski, A. J.; Stachura, M.; Dai, E.; Elston, J.; McIntyre, E.; Leuski, V.

    2014-12-01

    Due to the long electrical wavelengths required along with practical aperture size limitations the scaling of passive microwave remote sensing of soil moisture and salinity from spaceborne low-resolution (~10-100 km) applications to high resolution (~10-1000 m) applications requires use of low flying aerial vehicles. This presentation summarizes the status of a project to develop a commercial small Unmanned Aerial System (sUAS) hosting a microwave radiometer for mapping of soil moisture in precision agriculture and sea surface salinity studies. The project is based on the Tempest electric-powered UAS and a compact L-band (1400-1427 MHz) radiometer developed specifically for extremely small and lightweight aerial platforms or man-portable, tractor, or tower-based applications. Notable in this combination are a highly integrated sUAS/radiometer antenna design and use of both the upwelling emitted signal from the surface and downwelling cold space signal for precise calibration using a unique lobe-differencing correlating radiometer architecture. The system achieves a spatial resolution comparable to the altitude of the UAS above the surface while referencing upwelling measurements to the constant and well-known background temperature of cold space. The radiometer has been tested using analog correlation detection, although future builds will include infrared, near-infrared, and visible (red) sensors for surface temperature and vegetation biomass correction and digital sampling for radio frequency interference mitigation. This NASA-sponsored project is being developed for commercial application in cropland water management (for example, high-value shallow root-zone crops), landslide risk assessment, NASA SMAP satellite validation, and NASA Aquarius salinity stratification studies. The system will ultimately be capable of observing salinity events caused by coastal glacier and estuary fresh water outflow plumes and open ocean rainfall events.

  17. In-vitro detection of artificial caries on vertical dental cavity walls using infrared photothermal radiometry and modulated luminescence

    Science.gov (United States)

    Kim, Jungho; Mandelis, Andreas; Abrams, Stephen H.; Vu, Jaclyn T.; Amaechi, Bennett T.

    2012-12-01

    The main objective of the study was to investigate the ability of frequency-domain photothermal radiometry (PTR) and modulated luminescence (LUM) to detect secondary caries lesions on the walls of restorations (wall lesions). Changes in experimental PTR-LUM signals due to sequential demineralization on entire vertical walls of sectioned tooth samples were investigated. In addition, transverse micro-radiography (TMR) analysis (used as a gold standard) was conducted to measure the degree of demineralization that occurred in each sample. Statistical correlation between TMR results and PTR-LUM signals was determined using Pearson's correlation coefficient. LUM signals were found to be dominated by the scattered component of the incident laser beam. The more clinically relevant cases of localized demineralization and remineralization on vertical walls were also investigated to examine whether PTR-LUM signals are sensitive to demineralization and remineralization of much smaller areas. The overall results demonstrated that PTR-LUM is sensitive to progressive demineralization and remineralization on vertical walls of sectioned tooth samples.

  18. Design of an L-band normally conducting RF gun cavity for high peak and average RF power

    Energy Technology Data Exchange (ETDEWEB)

    Paramonov, V., E-mail: paramono@inr.ru [Institute for Nuclear Research of Russian Academy of Sciences, 60-th October Anniversary prospect 7a, 117312 Moscow (Russian Federation); Philipp, S. [Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, D-15738 Zeuthen (Germany); Rybakov, I.; Skassyrskaya, A. [Institute for Nuclear Research of Russian Academy of Sciences, 60-th October Anniversary prospect 7a, 117312 Moscow (Russian Federation); Stephan, F. [Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, D-15738 Zeuthen (Germany)

    2017-05-11

    To provide high quality electron bunches for linear accelerators used in free electron lasers and particle colliders, RF gun cavities operate with extreme electric fields, resulting in a high pulsed RF power. The main L-band superconducting linacs of such facilities also require a long RF pulse length, resulting in a high average dissipated RF power in the gun cavity. The newly developed cavity based on the proven advantages of the existing DESY RF gun cavities, underwent significant changes. The shape of the cells is optimized to reduce the maximal surface electric field and RF loss power. Furthermore, the cavity is equipped with an RF probe to measure the field amplitude and phase. The elaborated cooling circuit design results in a lower temperature rise on the cavity RF surface and permits higher dissipated RF power. The paper presents the main solutions and results of the cavity design.

  19. Design of an L-band normally conducting RF gun cavity for high peak and average RF power

    Science.gov (United States)

    Paramonov, V.; Philipp, S.; Rybakov, I.; Skassyrskaya, A.; Stephan, F.

    2017-05-01

    To provide high quality electron bunches for linear accelerators used in free electron lasers and particle colliders, RF gun cavities operate with extreme electric fields, resulting in a high pulsed RF power. The main L-band superconducting linacs of such facilities also require a long RF pulse length, resulting in a high average dissipated RF power in the gun cavity. The newly developed cavity based on the proven advantages of the existing DESY RF gun cavities, underwent significant changes. The shape of the cells is optimized to reduce the maximal surface electric field and RF loss power. Furthermore, the cavity is equipped with an RF probe to measure the field amplitude and phase. The elaborated cooling circuit design results in a lower temperature rise on the cavity RF surface and permits higher dissipated RF power. The paper presents the main solutions and results of the cavity design.

  20. Biomass Retrieval Using Multibaseline PolInSAR Data of a Boreal Forest at L-Band

    Science.gov (United States)

    Yang, Xinwei; Liao, Mingsheng; Tebaldini, Stefano; Zhang, Lu

    2016-08-01

    Forest height plays an important role in characterizing forest stand parameters, which can be related to above ground biomass (AGB) through allometric relations. In this work, the forest height and biomass parameters estimation performance using PolInSAR technique is evaluated on real airborne L-band SAR data acquired by E-SAR sensor in multibaseline configuration over Krycklan test site. The inversion method will be enhanced by considering the impact of decorrelation sources such as slope variation. The main purposes of our work are to propose improved multibaseline PolInSAR height inversion approach and establish revised model when evaluating AGB over boreal forest by using PolInSAR height results. Finally, the validity of the proposed methods will be analyzed.

  1. Savannah woody structure modelling and mapping using multi-frequency (X-, C- and L-band) Synthetic Aperture Radar data

    Science.gov (United States)

    Naidoo, Laven; Mathieu, Renaud; Main, Russell; Kleynhans, Waldo; Wessels, Konrad; Asner, Gregory; Leblon, Brigitte

    2015-07-01

    Structural parameters of the woody component in African savannahs provide estimates of carbon stocks that are vital to the understanding of fuelwood reserves, which is the primary source of energy for 90% of households in South Africa (80% in Sub-Saharan Africa) and are at risk of over utilisation. The woody component can be characterised by various quantifiable woody structural parameters, such as tree cover, tree height, above ground biomass (AGB) or canopy volume, each been useful for different purposes. In contrast to the limited spatial coverage of ground-based approaches, remote sensing has the ability to sense the high spatio-temporal variability of e.g. woody canopy height, cover and biomass, as well as species diversity and phenological status - a defining but challenging set of characteristics typical of African savannahs. Active remote sensing systems (e.g. Light Detection and Ranging - LiDAR; Synthetic Aperture Radar - SAR), on the other hand, may be more effective in quantifying the savannah woody component because of their ability to sense within-canopy properties of the vegetation and its insensitivity to atmosphere and clouds and shadows. Additionally, the various components of a particular target's structure can be sensed differently with SAR depending on the frequency or wavelength of the sensor being utilised. This study sought to test and compare the accuracy of modelling, in a Random Forest machine learning environment, woody above ground biomass (AGB), canopy cover (CC) and total canopy volume (TCV) in South African savannahs using a combination of X-band (TerraSAR-X), C-band (RADARSAT-2) and L-band (ALOS PALSAR) radar datasets. Training and validation data were derived from airborne LiDAR data to evaluate the SAR modelling accuracies. It was concluded that the L-band SAR frequency was more effective in the modelling of the CC (coefficient of determination or R2 of 0.77), TCV (R2 of 0.79) and AGB (R2 of 0.78) metrics in Southern African

  2. Measuring GNSS ionospheric total electron content at Concordia, and application to L-band radiometers

    Directory of Open Access Journals (Sweden)

    Vincenzo Romano

    2013-06-01

    Full Text Available In the framework of the project BIS - Bipolar Ionospheric Scintillation and Total Electron Content Monitoring, the ISACCO-DMC0 and ISACCO-DMC1 permanent monitoring stations were installed in 2008. The principal scope of the stations is to measure the ionospheric total electron content (TEC and to monitor the ionospheric scintillations, using high-sampling-frequency global positioning system (GPS ionospheric scintillation and TEC monitor (GISTM receivers. The disturbances that the ionosphere can induce on the electromagnetic signals emitted by the Global Navigation Satellite System constellations are due to the presence of electron density anomalies in the ionosphere, which are particularly frequent at high latitudes, where the upper atmosphere is highly sensitive to perturbations coming from outer space. With the development of present and future low-frequency space-borne microwave missions (e.g., Soil Moisture and Ocean Salinity [SMOS], Aquarius, and Soil Moisture Active Passive missions, there is an increasing need to estimate the effects of the ionosphere on the propagation of electromagnetic waves that affects satellite measurements. As an example, how the TEC data collected at Concordia station are useful for the calibration of the European Space Agency SMOS data within the framework of an experiment promoted by the European Space Agency (known as DOMEX will be discussed. The present report shows the ability of the GISTM station to monitor ionospheric scintillation and TEC, which indicates that only the use of continuous GPS measurements can provide accurate information on TEC variability, which is necessary for continuous calibration of satellite data.

  3. Gain flattened L-band EDFA based on upgraded C-band EDFA using forward ASE pumping in an EDF section

    DEFF Research Database (Denmark)

    Buxens Azcoaga, Alvaro Juan; Poulsen, Henrik Nørskov; Clausen, Anders

    2000-01-01

    A novel method is presented for implementing an L-band erbium doped fibre amplifier (EDFA) making use of forward amplified spontaneous emission pumping, from a commercially available c-band EDFA, in an erbium doped fibre. Tuning of the length of erbium doped fibre enables a flat gain characterist...... to be obtained with a low noise figure over the entire L-band window.......A novel method is presented for implementing an L-band erbium doped fibre amplifier (EDFA) making use of forward amplified spontaneous emission pumping, from a commercially available c-band EDFA, in an erbium doped fibre. Tuning of the length of erbium doped fibre enables a flat gain characteristic...

  4. Modeling the detectability of vesicoureteral reflux using microwave radiometry

    Energy Technology Data Exchange (ETDEWEB)

    Arunachalam, Kavitha [Department of Engineering Design, Indian Institute of Technology Madras, Chennai (India); Maccarini, Paolo F; Stauffer, Paul R [Department of Radiation Oncology, Duke University Medical Center, Durham, NC (United States); De Luca, Valeria [Department of Information Tech and Electrical Eng., ETH Zurich (Switzerland); Bardati, Fernando [Department of Computer Science, Systems and Production, University of Rome, Tor Vergata, Roma (Italy); Snow, Brent W, E-mail: akavitha@iitm.ac.i [University of Utah and Primary Children' s Medical Center, Salt Lake City, UT (United States)

    2010-09-21

    We present the modeling efforts on antenna design, frequency selection and receiver sensitivity estimation to detect vesicoureteral reflux (VUR) using microwave (MW) radiometry as warm urine from the bladder maintained at fever range temperature using a MW hyperthermia device reflows into the kidneys. The radiometer center frequency (f{sub c}), frequency band ({Delta}f) and aperture radius (r{sub a}) of the physical antenna for kidney temperature monitoring are determined using a simplified universal antenna model with a circular aperture. Anatomical information extracted from the computed tomography (CT) images of children aged 4-6 years is used to construct a layered 3D tissue model. Radiometric antenna efficiency is evaluated in terms of the ratio of the power collected from the target at depth to the total power received by the antenna ({eta}). The power ratio of the theoretical antenna is used to design a microstrip log spiral antenna with directional radiation pattern over f{sub c} {+-} {Delta}f/2. Power received by the log spiral from the deep target is enhanced using a thin low-loss dielectric matching layer. A cylindrical metal cup is proposed to shield the antenna from electromagnetic interference (EMI). Transient thermal simulations are carried out to determine the minimum detectable change in the antenna brightness temperature ({delta}T{sub B}) for 15-25 mL urine refluxes at 40-42 {sup 0}C located 35 mm from the skin surface. Theoretical antenna simulations indicate maximum {eta} over 1.1-1.6 GHz for r{sub a} = 30-40 mm. Simulations of the 35 mm radius tapered log spiral yielded a higher power ratio over f{sub c} {+-} {Delta}f/2 for the 35-40 mm deep targets in the presence of an optimal matching layer. Radiometric temperature calculations indicate {delta}T{sub B} {>=} 0.1 K for the 15 mL urine at 40 {sup 0}C and 35 mm depth. Higher {eta} and {delta}T{sub B} were observed for the antenna and matching layer inside the metal cup. Reflection measurements

  5. Modeling the Detectability of Vesicoureteral Reflux using Microwave Radiometry

    Science.gov (United States)

    Arunachalam, Kavitha; Maccarini, Paolo F.; De Luca, Valeria; Bardati, Fernando; Snow, Brent W.; Stauffer, Paul R

    2010-01-01

    We present the modeling efforts on antenna design, frequency selection and receiver sensitivity estimation to detect vesicoureteral reflux (VUR) using microwave (MW) radiometry as the warm urine from the bladder maintained at fever range temperature using a MW hyperthermia device reflows into the kidneys. Radiometer center frequency (fc), frequency band (Δf), and aperture radius (ra) of the physical antenna for kidney temperature monitoring are determined using a simplified universal antenna model with circular aperture. Anatomical information extracted from computed tomography (CT) images of children age 4–6 years is used to construct a layered 3D tissue model. Radiometric antenna efficiency is evaluated in terms of the ratio between the power collected from the target at depth and the total power received by the antenna (η). Power ratio of the theoretical antenna is used to design a microstrip log spiral antenna with directional radiation pattern over fc ± Δf/2. Power received by the log spiral from the deep target is enhanced using a thin low-loss dielectric matching layer. A cylindrical metal cup is proposed to shield the antenna from electromagnetic interference (EMI). Transient thermal simulations are carried out to determine the minimum detectable change in antenna brightness temperature (δTB) for 15–25 mL urine refluxes at 40–42°C located 35 mm from the skin surface. Theoretical antenna simulations indicate maximum η over 1.1–1.6 GHz for ra = 30–40 mm. Simulations of the 35 mm radius tapered log spiral yielded higher power ratio over fc ± Δf/2 for the 35–40 mm deep targets in the presence of an optimal matching layer. Radiometric temperature calculations indicate δTB ≥ 0.1 K for the 15 mL urine at 40°C and 35 mm depth. Higher η and δTB were observed for the antenna and matching layer inside the metal cup. Reflection measurements of the log spiral in saline phantom are in agreement with the simulation data. Numerical study suggests

  6. VHF and L-band scintillation characteristics over an Indian low latitude station, Waltair (17.7° N, 83.3° E

    Directory of Open Access Journals (Sweden)

    P. V. S. Rama Rao

    2005-10-01

    Full Text Available Characteristics of simultaneous VHF (244 MHz and L-band (1.5 GHz scintillations recorded at a low-latitude station, Waltair (17.7° N, 83.3° E, during the low sunspot activity year of March 2004 to March 2005, suggest that the occurrence of scintillations is mainly due to two types, namely the Plasma Bubble Induced (PBI, which maximizes during the post sunset hours of winter and equinoctial months, and the Bottom Side Sinusoidal (BSS type, which maximizes during the post-midnight hours of the summer solstice months. A detailed study on the spectral characteristics of the scintillations at both the frequencies show that the post-sunset scintillations are strong with fast fading (≈40 fad/min and are multiple in nature in scattering, giving rise to steep spectral slopes, whereas the post-midnight scintillations, which occur mostly on the VHF signal with low fading rate (≈4 fad/min, are of the BSS type, often showing typical Fresnel oscillations with reduced roll off spectral slopes, indicating that the type of irregularity resembles a thin screen structure giving rise to weak scattering. Using the onset times of several similar scintillation patches across the two satellite (FLEETSAT 73° E, INMARSAT 65° E ray paths (sub-ionospheric points are separated by 82 km, the East ward movement of the irregularity patches is found to vary from 150 to 250 m/s during the post sunset hours and decrease slowly during the post midnight hours. Further, the east-west extent of the PBI type of irregularities is found to vary from 100 to 500 km, while that of the BSS type extend up to a few thousand kilometers. Keywords. Ionosphere (Ionospheric irregularities; Auroral ionosphere; Electric fields and currents

  7. Titan's surface from the Cassini RADAR radiometry data during SAR mode

    Science.gov (United States)

    Paganelli, F.; Janssen, M.A.; Lopes, R.M.; Stofan, E.; Wall, S.D.; Lorenz, R.D.; Lunine, J.I.; Kirk, R.L.; Roth, L.; Elachi, C.

    2008-01-01

    We present initial results on the calibration and interpretation of the high-resolution radiometry data acquired during the Synthetic Aperture Radar (SAR) mode (SAR-radiometry) of the Cassini Radar Mapper during its first five flybys of Saturn's moon Titan. We construct maps of the brightness temperature at the 2-cm wavelength coincident with SAR swath imaging. A preliminary radiometry calibration shows that brightness temperature in these maps varies from 64 to 89 K. Surface features and physical properties derived from the SAR-radiometry maps and SAR imaging are strongly correlated; in general, we find that surface features with high radar reflectivity are associated with radiometrically cold regions, while surface features with low radar reflectivity correlate with radiometrically warm regions. We examined scatterplots of the normalized radar cross-section ??0 versus brightness temperature, outlining signatures that characterize various terrains and surface features. The results indicate that volume scattering is important in many areas of Titan's surface, particularly Xanadu, while other areas exhibit complex brightness temperature variations consistent with variable slopes or surface material and compositional properties. ?? 2007.

  8. Efficient and robust regenerative all-optical wavelength converter for C- and L-band (80 nm span) and for data rates up to 40 Gbit/s

    DEFF Research Database (Denmark)

    Dülk, M.; Fischer, St.; Gamper, E.

    2000-01-01

    We present a monolithically integrated Mach_Zehnder interferometer module for efficient regenerative (2R and 3R) wavelength conversion at bit rates up to 40 Gbit/s covering the 80 nm wavelength span of the C- and L-band.......We present a monolithically integrated Mach_Zehnder interferometer module for efficient regenerative (2R and 3R) wavelength conversion at bit rates up to 40 Gbit/s covering the 80 nm wavelength span of the C- and L-band....

  9. Quad 14Gbps L-Band VCSEL-based System for WDM Migration of 4-lanes 56 Gbps Optical Data Links

    DEFF Research Database (Denmark)

    Estaran Tolosa, Jose Manuel; Rodes Lopez, Roberto; Pham, Tien Thang

    2012-01-01

    We report on migrating multiple lane link into a single WDM L-band VCSEL-based system. Experimental validation successfully achieves 10 km of SMF reach with 4x14Gbps and less than 0.5dB inter-channel crosstalk penalty.......We report on migrating multiple lane link into a single WDM L-band VCSEL-based system. Experimental validation successfully achieves 10 km of SMF reach with 4x14Gbps and less than 0.5dB inter-channel crosstalk penalty....

  10. On the use of L-band microwave and multi-mission EO data for high resolution soil moisture

    Science.gov (United States)

    Bitar, Ahmad Al; Merlin, Olivier; Malbeteau, Yoann; Molero-Rodenas, Beatriz; Zribi, Mehrez; Sekhar, Muddu; Tomer, Sat Kumar; José Escorihuela, Maria; Stefan, Vivien; Suere, Christophe; Mialon, Arnaud; Kerr, Yann

    2017-04-01

    Sub-kilometric soil moisture maps have been increasingly mentioned as a need in the scientific community for many applications ranging from agronomical and hydrological (Wood et al. 2011). For example, this type of dataset will become essential to support the current evolution of the land surface and hydrologic modelling communities towards high resolution global modelling. But the ability of the different sensors to monitor soil moisture is different. The L-Band microwave EO provides, at a coarse resolution, the most sensitive information to surface soil moisture when compared to C-Band microwave, optical or C-band SAR. On the other hand the optical and radar sensors provide the spatial distribution of associated variables like surface soil moisture,surface temperature or vegetation leaf area index. This paper describes two complementary fusion approaches to obtain such data from optical or SAR in combination to microwave EO, and more precisely L-Band microwave from the SMOS mission. The first approach, called MAPSM, is based on the use of high resolution soil moisture from SAR and microwave. The two types of sensors have all weather capabilities. The approach uses the new concept of water change capacity (Tomer et al. 2015, 2016). It has been applied to the Berambadi watershed in South-India which is characterised by high cloud coverage. The second approach, called Dispatch, is based on the use of optical sensors in a physical disaggregation approach. It is a well-established approach (Merlin et al. 2012, Malbeteau et al. 2015) that has been implemented operationally in the CATDS (Centre Aval de Traitement des Données SMOS) processing centre (Molero et al. 2016). An analysis on the complementarity of the approaches is discussed. The results show the performances of the methods when compared to existing soil moisture monitoring networks in arid, sub-tropical and humid environments. They emphasis on the need for large inter-comparison studied for the qualification

  11. Pendugaan Potensi Cadangan Karbon Hutan di Atas Permukaan pada Ekosistem Mangrove Berbasis Synthetic Aperture Radar L-BAND

    Directory of Open Access Journals (Sweden)

    Yudi Fatwa Hudaya

    2016-10-01

    ABSTRACT The government policy to reduce the GHG (Green House Gas emision from forestry sector, the need for sufficient forest carbon stock measurement system which encompass a faster measurement and covering broader geographic area to estimate the potential of forest carbon stock is now growing, one of which is the use of synthetic aperture radar (SAR in radar remote sensing systems. The objectives of this study are to demonstrate the strong relationship between the L-band backscatter of ALOS PALSAR and the aboveground carbon stock in mangrove forest; and its sensitivity level. The information resulted from this study can be useful in reducing strategies of GHG (Green House Gases emision, due to the climate change mitigation efforts in Indonesia. The study site was located at the area of mangrove forest, in Kubu Raya regency, West Kalimantan. The estimation models for aboveground biomass carbon stock was obtained from a quantitative analysis using regression method; i.e. by correlating the values of ALOS PALSAR 50m Res. backscatters at HH and HV polarization with the actual biomass total amount resulted from field -based allometric plots measurements. The estimation models were subsequently use for forest carbon stocks quantification in mangroves, and its distribution geographically. Strong relationship was found with coefficient of determination (R2 62 % on HH polarization based on the equation model of Y=1647e0,358BS_HH  and , 98.6 % on HV polarization based on the equation model of Y = 6,828BS_HV2 + 279,4BS_HV + 2870; two models of carbon density classification maps i.e. model-1 (HH and model-2 (HV are also resulted from the two equation models. The quantity of AGB (aboveground biomass of  mangrove forest in Kubu Raya district found as 178.43 Mg/ ha, while the aboveground biomass carbon is 5,334,454.9 Mg (Mega grams or 5,3 Mt (Mega tons of carbon, and the capacity of carbon dioxide (CO2 sequestration is 19.451 Mt (megatons CO2 equivalent. The Sensitivity of L-band

  12. Critical assessment of the forecasting capability of L-band scintillation over the magnetic equatorial region - Campaign results

    Science.gov (United States)

    Bagiya, Mala S.; Sridharan, R.; Sunda, Surendra; Jose, Lijo; Pant, Tarun K.; Choudhary, Rajkumar

    2014-04-01

    A critical evaluation of the novel method suggested by Sridharan et al. (2012) to forecast L-band scintillation is made using the results from a special campaign conducted from Trivandrum (8.5°N, 76.91°E, dip latitude 0.5°N), India, during April 2012. The significance of the campaign lies in the fact that, (1) efforts are made to minimise the uncertainties due to the movement of the satellite platform (TEC and S4 observations from GNSS satellites) by choosing a recently launched GSAT-8 geostationary satellite for ionospheric scintillation in L1 band, (2) unlike the previous study (Sridharan et al., 2012) wherein the GPS derived TEC fluctuations were treated as representative of ionospheric perturbations, in the present exercise, the fluctuating component of the foF2 data from the ground based digital Ionosonde have been taken as a measure of the perturbations and (3) though both the GSAT and Ionosonde are stationary, still the ionospheric regions they represent are physically separated and in order to correlate the scintillation over the GSAT location to the forecast perturbations over the ionosonde location, the required zonal velocity of the perturbations/irregularities is estimated using GSAT and GPS scintillation data during one of the close-by GPS passes and this is taken to represent the particular solar epoch and season. Following the earlier method of Sridharan et al. (2012) the relative amplitudes and phase integrity of the perturbations have been maintained and extended throughout night. By adopting the above changes, it has been noted that the forecasting capability of L band scintillation has remarkably improved vindicating the role of perturbations in the evolution of the scintillation, thus making it more useful for practical applications. The nonoccurrence of scintillation on occasions in the prescribed time windows has also been understood based on the changes in the background conditions. A threshold upward velocity for the evening F-region as

  13. Monitoring of Three Case Studies of Creeping Landslides in Ecuador using L-band SAR Interferometry (InSAR)

    Science.gov (United States)

    Mayorga Torres, T. M.; Mohseni Aref, M.

    2015-12-01

    Tannia Mayorga Torres1,21 Universidad Central del Ecuador. Faculty of Geology, Mining, Oil, and Environment 2 Hubert H. Humphrey Fellowship 2015-16 IntroductionLandslides lead to human and economic losses across the country, mainly in the winter season. On the other hand, satellite radar data has cost-effective benefits due to open-source software and free availability of data. With the purpose of establishing an early warning system of landslide-related surface deformation, three case studies were designed in the Coast, Sierra (Andean), and Oriente (jungle) regions. The objective of this work was to assess the capability of L-band InSAR to get phase information. For the calculation of the interferograms in Repeat Orbit Interferometry PACkage, the displacement was detected as the error and was corrected. The coherence images (Figure 1) determined that L-band is suitable for InSAR processing. Under this frame, as a first approach, the stacking DInSAR technique [1] was applied in the case studies [2]; however, due to lush vegetation and steep topography, it is necessary to apply advanced InSAR techniques [3]. The purpose of the research is to determine a pattern of data acquisition and successful results to understand the spatial and temporal ground movements associated with landslides. The further work consists of establishing landslide inventories to combine phases of SAR images to generate maps of surface deformation in Tumba-San Francisco and Guarumales to compare the results with ground-based measurements to determine the maps' accuracy. References[1] Sandwell D., Price E. (1998). Phase gradient approach to stacking interferograms. Journal of Geophysical Research, Vol. 103, N. B12, pp. 30,183-30,204. [2] Mayorga T., Platzeck G. (2014). Using DInSAR as a tool to detect unstable terrain areas in an Andes region in Ecuador. NH3.5-Blue Poster B298, Vol. 16, EGU2014-16203. Austria. [3] Wasowski J., Bovenga F. (2014). Investigating landslides and unstable slopes with

  14. Impacts of Spatial Variability on Aboveground Biomass Estimation from L-Band Radar in a Temperate Forest

    Directory of Open Access Journals (Sweden)

    Thomas Gillespie

    2013-02-01

    Full Text Available Estimation of forest aboveground biomass (AGB has become one of the main challenges of remote sensing science for global observation of carbon storage and changes in the past few decades. We examine the impact of plot size at different spatial resolutions, incidence angles, and polarizations on the forest biomass estimation using L-band polarimetric Synthetic Aperture Radar data acquired by NASA’s Unmanned Aerial Vehicle Synthetic Aperture Radar (UAVSAR airborne system. Field inventory data from 32 1.0 ha plots (AGB 0.5 ha, suggesting a stability of field-estimated biomass at scales of about 1.0 ha. UAVSAR backscatter was linked to the field estimates of aboveground biomass to develop parametric equations based on polarized returns to accurately map biomass over the entire radar image. Radar backscatter values at all three polarizations (HH, VV, HV were positively correlated with field aboveground biomass at all four spatial scales, with the highest correlation at the 1.0 ha scale. Among polarizations, the cross-polarized HV had the highest sensitivity to field estimated aboveground biomass (R2 = 0.68. Algorithms were developed that combined three radar backscatter polarizations (HH, HV, and VV to estimate aboveground biomass at the four spatial scales. The predicted aboveground biomass from these algorithms resulted in decreasing estimation error as the pixel size increased, with the best results at the 1 ha scale with an R2 of 0.67 (p < 0.0001, and an overall RMSE of 44 Mg·ha−1. For AGB < 150 Mg·ha−1, the error reduced to 23 Mg·ha−1 (±15%, suggesting an improved AGB prediction below the L-band sensitivity range to biomass. Results also showed larger bias in aboveground biomass estimation from radar at smaller scales that improved at larger spatial scales of 1.0 ha with underestimation of −3.62 Mg·ha−1 over the entire biomass range.

  15. Simultaneous measurement of thermal diffusivity and effective infrared absorption coefficient in IR semitransparent and semiconducting n-CdMgSe crystals using photothermal radiometry

    Energy Technology Data Exchange (ETDEWEB)

    Pawlak, M., E-mail: mpawlak@fizyka.umk.pl [Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziądzka 5/7, Toruń (Poland); Maliński, M. [Department of Electronics and Computer Science, Koszalin University of Technology, 2 Śniadeckich St., Koszalin 75-453 (Poland)

    2015-01-10

    Highlights: • The new method of determination of the effective infrared absorption coefficient is presented. • The method can be used for transparent samples for the excitation radiation. • The effect of aluminum foil on the PTR signal in a transmission configuration is discussed. - Abstract: In this paper we propose a new procedure of simultaneous estimation of the effective infrared optical absorption coefficient and the thermal diffusivity of solid state samples using the photothermal infrared radiometry method in the transmission configuration. The proposed procedure relies on the analysis of the frequency dependent signal obtained from the samples covered with thin aluminum foil. This method can be applied for both optically opaque and transparent samples. The proposed method is illustrated with the results of the thermal diffusivity and the effective IR absorption coefficient obtained for several Cd{sub 1−x}Mg{sub x}Se crystals.

  16. Determination of the carrier concentration in CdSe crystals from the effective infrared absorption coefficient measured by means of the photothermal infrared radiometry

    Energy Technology Data Exchange (ETDEWEB)

    Pawlak, M. [Nicolaus Copernicus University, Faculty of Physics, Astronomy and Informatics, Institute of Physics, Torun (Poland)

    2014-11-11

    In this paper, a non-contact method that allows to determine the carrier concentration in CdSe crystals is presented. The method relies on the measurement of the effective infrared absorption coefficient by means of the photothermal infrared radiometry (PTR). In order to obtain the effective infrared absorption coefficient and thermal diffusivity, the frequency characteristics of the PTR signal were analyzed in the frame of a one-dimensional heat transport model for infrared semitransparent crystals. The carrier concentrations were estimated using a theory introduced by Ruda and a recently proposed normalization procedure for the PTR signal. The deduced carrier concentrations of the investigated CdSe crystals are in reasonable agreement with those obtained using Hall measurements and infrared spectroscopy. The method presented in this paper can also be applied to other semiconductors with the carrier concentration in the range of 10{sup 14}-10{sup 17} cm{sup -3}. (orig.)

  17. Clustering of Multi-Temporal Fully Polarimetric L-Band SAR Data for Agricultural Land Cover Mapping

    Science.gov (United States)

    Tamiminia, H.; Homayouni, S.; Safari, A.

    2015-12-01

    Recently, the unique capabilities of Polarimetric Synthetic Aperture Radar (PolSAR) sensors make them an important and efficient tool for natural resources and environmental applications, such as land cover and crop classification. The aim of this paper is to classify multi-temporal full polarimetric SAR data using kernel-based fuzzy C-means clustering method, over an agricultural region. This method starts with transforming input data into the higher dimensional space using kernel functions and then clustering them in the feature space. Feature space, due to its inherent properties, has the ability to take in account the nonlinear and complex nature of polarimetric data. Several SAR polarimetric features extracted using target decomposition algorithms. Features from Cloude-Pottier, Freeman-Durden and Yamaguchi algorithms used as inputs for the clustering. This method was applied to multi-temporal UAVSAR L-band images acquired over an agricultural area near Winnipeg, Canada, during June and July in 2012. The results demonstrate the efficiency of this approach with respect to the classical methods. In addition, using multi-temporal data in the clustering process helped to investigate the phenological cycle of plants and significantly improved the performance of agricultural land cover mapping.

  18. Forest type classification with combination of advanced polarimetric decompositions and textures of L-band synthetic aperture radar data

    Science.gov (United States)

    Middinti, Suresh; Jha, Chandra Shekhar; Reddy, Thatiparthi Byragi

    2017-01-01

    Information on distribution of forest types and land cover classes is essential for decision making and significant in climate regulation, biodiversity conservation, and societal issues. An approach for the combination of advanced polarimetric decompositions and textures of Advanced Land Observing Satellite Phased Array L-band Synthetic Aperture Radar full polarimetric data for the purpose of forest type classification is proposed. Using a support vector machine (SVM) classifier, we classified forest types over a selected Indian region. Further, we tested the classification performance of the Wishart method for the same forest types. The classified results were assessed with confusion matrix-based statistics. The results suggest that incorporation of various polarimetric decompositions features into gray-level co-occurrence matrix textures refines the SVM classification overall accuracy (OA) from 73.82% (k=0.69) to 76.34% (k=0.72). The Wishart supervised classification algorithm has the OA of 73.38% (kappa=0.68). We observed that integration of polarimetric information with textures can give complimentary information in forest type discrimination and produce high accuracy maps. Further, this approach overcomes the limitations of optical remote sensing data in continuous cloud coverage areas.

  19. L-band scintillations and calibrated total electron content gradients over Brazil during the last solar maximum

    Directory of Open Access Journals (Sweden)

    Cesaroni Claudio

    2015-01-01

    Full Text Available This work presents a contribution to the understanding of the ionospheric triggering of L-band scintillation in the region over São Paulo state in Brazil, under high solar activity. In particular, a climatological analysis of Global Navigation Satellite Systems (GNSS data acquired in 2012 is presented to highlight the relationship between intensity and variability of the total electron content (TEC gradients and the occurrence of ionospheric scintillation. The analysis is based on the GNSS data acquired by a dense distribution of receivers and exploits the integration of a dedicated TEC calibration technique into the Ground Based Scintillation Climatology (GBSC, previously developed at the Istituto Nazionale di Geofisica e Vulcanologia. Such integration enables representing the local ionospheric features through climatological maps of calibrated TEC and TEC gradients and of amplitude scintillation occurrence. The disentanglement of the contribution to the TEC variations due to zonal and meridional gradients conveys insight into the relation between the scintillation occurrence and the morphology of the TEC variability. The importance of the information provided by the TEC gradients variability and the role of the meridional TEC gradients in driving scintillation are critically described.

  20. Riding Quality Model for Asphalt Pavement Monitoring Using Phase Array Type L-band Synthetic Aperture Radar (PALSAR

    Directory of Open Access Journals (Sweden)

    Kamiya Yoshikazu

    2010-11-01

    Full Text Available There are difficulties associated with near-real time or frequent pavement monitoring, because it is time consuming and costly. This study aimed to develop a binary logit model for the evaluation of highway riding quality, which could be used to monitor pavement conditions. The model was applied to investigate the influence of backscattering values of Phase Array type L-band Synthetic Aperture Radar (PALSAR. Training data obtained during 3–7 May 2007 was used in the development process, together with actual international roughness index (IRI values collected along a highway in Ayutthaya province, Thailand. The analysis showed that an increase in the backscattering value in the HH or the VV polarization indicated the poor condition of the pavement surface and, of the two, the HH polarization is more suitable for developing riding quality evaluation. The model developed was applied to analyze highway number 3467, to demonstrate its capability. It was found that the assessment accuracy of the prediction of the highway level of service was 97.00%. This is a preliminary study of the proposed technique and more intensive investigation must be carried out using ALOS/PALSAR images in various seasons.

  1. CLUSTERING OF MULTI-TEMPORAL FULLY POLARIMETRIC L-BAND SAR DATA FOR AGRICULTURAL LAND COVER MAPPING

    Directory of Open Access Journals (Sweden)

    H. Tamiminia

    2015-12-01

    Full Text Available Recently, the unique capabilities of Polarimetric Synthetic Aperture Radar (PolSAR sensors make them an important and efficient tool for natural resources and environmental applications, such as land cover and crop classification. The aim of this paper is to classify multi-temporal full polarimetric SAR data using kernel-based fuzzy C-means clustering method, over an agricultural region. This method starts with transforming input data into the higher dimensional space using kernel functions and then clustering them in the feature space. Feature space, due to its inherent properties, has the ability to take in account the nonlinear and complex nature of polarimetric data. Several SAR polarimetric features extracted using target decomposition algorithms. Features from Cloude-Pottier, Freeman-Durden and Yamaguchi algorithms used as inputs for the clustering. This method was applied to multi-temporal UAVSAR L-band images acquired over an agricultural area near Winnipeg, Canada, during June and July in 2012. The results demonstrate the efficiency of this approach with respect to the classical methods. In addition, using multi-temporal data in the clustering process helped to investigate the phenological cycle of plants and significantly improved the performance of agricultural land cover mapping.

  2. Characterization and discrimination of evolving mineral and plant oil slicks based on L-band synthetic aperture radar (SAR)

    Science.gov (United States)

    Jones, Cathleen E.; Espeseth, Martine M.; Holt, Benjamin; Brekke, Camilla; Skrunes, Stine

    2016-10-01

    Evolution of the damping ratio for Bragg wavenumbers in the range 32-43 rad/m is evaluated for oil slicks of different composition released in the open ocean and allowed to develop naturally. The study uses quad-polarimetric L-band airborne synthetic aperture radar data acquired over three mineral oil emulsion releases of different, known oil-to-water ratio, and a near-coincident release of 2-ethylhexyl oleate that served as a biogenic look-alike. The experiment occurred during the 2015 Norwegian oil-on-water exercise in the North Sea during a period of relatively high winds ( 12 m/s). NASA's Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) was used to repeatedly image the slicks over a period of eight hours, capturing the slicks' early development and providing a time series from which to track the evolution of the slicks' size, position, and radiometric characteristics. Particular emphasis is given in this analysis to identification of zones of higher damping ratio within the slicks (zoning) as potential indicators of thicker oil, and to comparison of the evolution of emulsion and plant oil damping ratios. It was found that all mineral oil slicks initially exhibited zoning apparent in VV, HH, and HV intensities, and that the areas of higher damping ratio persisted the longest for the highest oil content emulsion (80% oil by volume). In contrast, zoning was not unambiguously evident for plant oil at any time from 44 minutes to 8.5 hours after release.

  3. Emissivity Measurements of Foam-Covered Water Surface at L-Band for Low Water Temperatures

    Directory of Open Access Journals (Sweden)

    En-Bo Wei

    2014-11-01

    Full Text Available For a foam-covered sea surface, it is difficult to retrieve sea surface salinity (SSS with L-band brightness temperature (1.4 GHz because of the effect of a foam layer with wind speeds stronger than 7 m/s, especially at low sea surface temperature (SST. With foam-controlled experiments, emissivities of a foam-covered water surface at low SST (−1.4 °C to 1.7 °C are measured for varying SSS, foam thickness, incidence angle, and polarization. Furthermore, a theoretical model of emissivity is introduced by combining wave approach theory with the effective medium approximation method. Good agreement is obtained upon comparing theoretical emissivities with those of experiments. The results indicate that foam parameters have a strong influence on increasing emissivity of a foam-covered water surface. Increments of experimental emissivities caused by foam thickness of 1 cm increase from about 0.014 to 0.131 for horizontal polarization and 0.022 to 0.150 for vertical polarization with SSS increase and SST decrease. Contributions of the interface between the foam layer and water surface to the foam layer emissivity increments are discussed for frequencies between 1 and 37 GHz.

  4. A C- and L-band dual-wavelength erbium-doped fibre laser for assisting four-wave mixing self-stability

    Science.gov (United States)

    Liu, Xueming; Zhao, Wei; Liu, Hongjun; Zou, Kuaisheng; Zhang, Tongyi; Lu, Keqing; Sun, Chuandong; Wang, Yishan; Ouyang, Xian; Chen, Guofu; Hou, Xun

    2006-06-01

    A kind of photonic 'Robin Hood' based on four-wave mixing is proposed and proved to be effective, theoretically and experimentally, in detail. Its applications for L-band dual-wavelength erbium-doped fibre (EDF) laser use are experimentally demonstrated at room temperature. The experimental results show that the conventional EDF cavity only induces a very unstable L-band laser, but the novel Robin Hood can effectively suppress the homogeneous gain in the erbium laser. By using suitable fibre Bragg gratings and stretching them, the proposed EDF laser can operate from ~1520 to ~1635 nm, so our dual-wavelength EDF laser can be used in lasing operation not only for the L band but also for the C band. The outstanding merits of our dual-wavelength laser are the flexible tuning and the ultrabroad spectral range of more than 115 nm. The experimental results show that the stability and uniformity of the proposed dual-wavelength laser in C-band operation are better than those for the same laser in L-band operation.

  5. The assessment of data mining algorithms for modelling Savannah woody cover using multi-frequency (X-, C- and L-band) synthetic aperture radar (SAR) datasets

    CSIR Research Space (South Africa)

    Naidoo, L

    2014-07-01

    Full Text Available Neural Network and Random Forest) with the use of X-band (TerraSAR-X), C-band (RADARSAT-2) and L-band (ALOS PALSAR) datasets. This study illustrated that the ANN, REPTree and RF non-parametric modelling algorithms were the most ideal with high CC...

  6. Quad 14 Gbps L-band VCSEL-based system for WDM migration of 4-lanes 56 Gbps optical data links

    DEFF Research Database (Denmark)

    Estaran Tolosa, Jose Manuel; Rodes Lopez, Roberto; Pham, Tien Thang

    2012-01-01

    We report on migrating multiple-lane link into an L-band VCSEL-based WDM system. Experimental validation achieves successful transmission over 10 km of SMF at 4x14Gbps. Inter-channel crosstalk penalty is observed to be less than 0.5 dB and a transmission penalty around 1 dB. The power budget margin...

  7. Weekly Gridded Aquarius L-band Radiometer-Scatterometer Observations and Salinity Retrievals over the Polar Regions - Part 2: Initial Product Analysis

    Science.gov (United States)

    Brucker, L.; Dinnat, E. P.; Koenig, L. S.

    2014-01-01

    Following the development and availability of Aquarius weekly polar-gridded products, this study presents the spatial and temporal radiometer and scatterometer observations at L band (frequency1.4 GHz) over the cryosphere including the Greenland and Antarctic ice sheets, sea ice in both hemispheres, and over sub-Arctic land for monitoring the soil freeze-thaw state. We provide multiple examples of scientific applications for the L-band data over the cryosphere. For example, we show that over the Greenland Ice Sheet, the unusual 2012 melt event lead to an L-band brightness temperature (TB) sustained decrease of 5 K at horizontal polarization. Over the Antarctic ice sheet, normalized radar cross section (NRCS) observations recorded during ascending and descending orbits are significantly different, highlighting the anisotropy of the ice cover. Over sub-Arctic land, both passive and active observations show distinct values depending on the soil physical state (freeze-thaw). Aquarius sea surface salinity (SSS) retrievals in the polar waters are also presented. SSS variations could serve as an indicator of fresh water input to the ocean from the cryosphere, however the presence of sea ice often contaminates the SSS retrievals, hindering the analysis. The weekly grided Aquarius L-band products used a redistributed by the US Snow and Ice Data Center at http:nsidc.orgdataaquariusindex.html, and show potential for cryospheric studies.

  8. Inferring Land Surface Model Parameters for the Assimilation of Satellite-Based L-Band Brightness Temperature Observations into a Soil Moisture Analysis System

    Science.gov (United States)

    Reichle, Rolf H.; De Lannoy, Gabrielle J. M.

    2012-01-01

    The Soil Moisture and Ocean Salinity (SMOS) satellite mission provides global measurements of L-band brightness temperatures at horizontal and vertical polarization and a variety of incidence angles that are sensitive to moisture and temperature conditions in the top few centimeters of the soil. These L-band observations can therefore be assimilated into a land surface model to obtain surface and root zone soil moisture estimates. As part of the observation operator, such an assimilation system requires a radiative transfer model (RTM) that converts geophysical fields (including soil moisture and soil temperature) into modeled L-band brightness temperatures. At the global scale, the RTM parameters and the climatological soil moisture conditions are still poorly known. Using look-up tables from the literature to estimate the RTM parameters usually results in modeled L-band brightness temperatures that are strongly biased against the SMOS observations, with biases varying regionally and seasonally. Such biases must be addressed within the land data assimilation system. In this presentation, the estimation of the RTM parameters is discussed for the NASA GEOS-5 land data assimilation system, which is based on the ensemble Kalman filter (EnKF) and the Catchment land surface model. In the GEOS-5 land data assimilation system, soil moisture and brightness temperature biases are addressed in three stages. First, the global soil properties and soil hydraulic parameters that are used in the Catchment model were revised to minimize the bias in the modeled soil moisture, as verified against available in situ soil moisture measurements. Second, key parameters of the "tau-omega" RTM were calibrated prior to data assimilation using an objective function that minimizes the climatological differences between the modeled L-band brightness temperatures and the corresponding SMOS observations. Calibrated parameters include soil roughness parameters, vegetation structure parameters

  9. L-band Synthetic Aperture Radar imagery performs better than optical datasets at retrieving woody fractional cover in deciduous, dry savannahs

    Science.gov (United States)

    Naidoo, Laven; Mathieu, Renaud; Main, Russell; Wessels, Konrad; Asner, Gregory P.

    2016-10-01

    Woody canopy cover (CC) is the simplest two dimensional metric for assessing the presence of the woody component in savannahs, but detailed validated maps are not currently available in southern African savannahs. A number of international EO programs (including in savannah landscapes) advocate and use optical LandSAT imagery for regional to country-wide mapping of woody canopy cover. However, previous research has shown that L-band Synthetic Aperture Radar (SAR) provides good performance at retrieving woody canopy cover in southern African savannahs. This study's objective was to evaluate, compare and use in combination L-band ALOS PALSAR and LandSAT-5 TM, in a Random Forest environment, to assess the benefits of using LandSAT compared to ALOS PALSAR. Additional objectives saw the testing of LandSAT-5 image seasonality, spectral vegetation indices and image textures for improved CC modelling. Results showed that LandSAT-5 imagery acquired in the summer and autumn seasons yielded the highest single season modelling accuracies (R2 between 0.47 and 0.65), depending on the year but the combination of multi-seasonal images yielded higher accuracies (R2 between 0.57 and 0.72). The derivation of spectral vegetation indices and image textures and their combinations with optical reflectance bands provided minimal improvement with no optical-only result exceeding the winter SAR L-band backscatter alone results (R2 of ∼0.8). The integration of seasonally appropriate LandSAT-5 image reflectance and L-band HH and HV backscatter data does provide a significant improvement for CC modelling at the higher end of the model performance (R2 between 0.83 and 0.88), but we conclude that L-band only based CC modelling be recommended for South African regions.

  10. Ocean Surface Emissivity at L-band (1.4 GHz): The Dependence on Salinity and Roughness

    Science.gov (United States)

    LeVine, D. M.; Lang, R.; Wentz, F.; Messiner, T.

    2012-01-01

    A characterization of the emissivity of sea water at L-band is important for the remote sensing of sea surface salinity. Measurements of salinity are currently being made in the radio astronomy band at 1.413 GHz by ESA's Soil Moisture and Ocean Salinity (SMOS) mission and NASA's Aquarius instrument aboard the Aquarius/SAC-D observatory. The goal of both missions is accuracy on the order of 0.1 psu. This requires accurate knowledge of the dielectric constant of sea water as a function of salinity and temperature and also the effect of waves (roughness). The former determines the emissivity of an ideal (i.e. flat) surface and the later is the major source of error from predictions based on a flat surface. These two aspects of the problem of characterizing the emissivity are being addressed in the context of the Aquarius mission. First, laboratory measurements are being made of the dielectric constant of sea water. This is being done at the George Washington University using a resonant cavity. In this technique, sea water of known salinity and temperature is fed into the cavity along its axis through a narrow tube. The sea water changes the resonant frequency and Q of the cavity which, if the sample is small enough, can be related to the dielectric constant of the sample. An extensive set of measurements have been conducted at 1.413 GHz to develop a model for the real and imaginary part of the dielectric constant as a function of salinity and temperature. The results are compared to the predictions of models based on parameterization of the Debye resonance of the water molecule. The models and measurements are close; however, the differences are significant for remote sensing of salinity. This is especially true at low temperatures where the sensitivity to salinity is lowest.

  11. Mapping Tropical Forest Mosaics with C- and L-band SAR: First Results from Osa Peninsula, Costa Rica

    Science.gov (United States)

    Pinto, N.; Hensley, S.; Aguilar-Amuchastegui, N.; Broadbent, E. N.; Ahmed, R.

    2016-12-01

    In tropical countries, economic incentives and improved infrastructure are creating forest mosaics where small-scale farming and industrial plantations are embedded within and potentially replacing native ecosystems. Practices such as agroforestry, slash-and-burn cultivation, and oil palm monocultures bring widely different impacts on carbon stocks. Characterizing these production systems is not only critical to ascribe deforestation to particular drivers, but also essential to understand the impact of macroeconomic scenarios, national policies, and land tenure schemes on carbon fluxes. The last decade has experienced a dramatic improvement in the extent and consistency of tree cover and gross deforestation products from optical imagery. At the same time, recent work shows that Synthetic Aperture Radar (SAR) can complement optical data and reveal structural types that cannot be easily resolved with reflectance measurements alone. While these results demonstrate the validity of sensor fusion methodologies, they typically rely on local classifications or even manual delineation and as such they cannot support large-scale investigations. Furthermore, there have been few attempts to exploit PolInSAR or multiple wavelengths that can provide critical information to resolve natural and anthropogenic land cover types. We report results from our research at Costa Rica's Osa Peninsula. This site is ideal for algorithm development as it includes a highly diverse tropical forest within Corcovado National Park, as well as agroforestry zones, mangroves, and palm plantations. We first integrate SAR backscatter and coherence data from NASA's L-band UAVSAR, JAXA's ALOS/PALSAR, and ESA's Sentinel to produce a map of structural types. Second, we assess whether coherence measurements and PolInSAR retrievals can be used to resolve forest stand differences at 30m resolution and disitinguish between primary and secondary forest sites.

  12. Systematic retrieval of ejecta velocities and gas fluxes at Etna volcano using L-Band Doppler radar

    Science.gov (United States)

    Gouhier, Mathieu; Donnadieu, Franck

    2011-11-01

    Strombolian-type volcanic activity is characterized by a series of gas bubbles bursting at the top of a magma column and leading to the ejection of lava clots and gas emission at the surface. The quantitative analysis of physical parameters (e.g., velocity, size, and mass fluxes) controlling the emission dynamics of these volcanic products is very important for the understanding of eruption source mechanisms but remains difficult to obtain in a systematic fashion. Ground-based Doppler radar is found to be a very effective tool for measuring ejecta velocities at a high acquisition rate and close to the emission source. We present here a series of measurements carried out at Mt. Etna's Southeast crater, using an L-band volcanological Doppler radar, during the 4 July 2001 Strombolian eruptions. Doppler radar data are supplemented by the analysis of video snapshots recorded simultaneously. We provide here a set of physical parameters systematically retrieved from 247 Strombolian explosions spanning 15 min and occurring during the paroxysm of the eruption from 21:30 to 21:45 UT. The time-average values give a maximum particle velocity of V_{{}}^p = {94}.{7}± {24} {{m/s}} , a bulk lava jet velocity of {V_{{{{PW - rad}}}}} = {37}.{6}± {1}.{9} {{m/s}} , and an initial gas velocity at the source vent of V_0^g = {118}.{4}± {36} {{m/s}} . The time-averaged particle diameter is found to be about {D_{{{{PW - rad}}}}} = {4}.{2}± {2}.{1} {{cm}} . The volume and mass gas fluxes are estimated from time-averaged source gas velocities over the sequence duration at Q_v^g = {3} - {11} × {1}{0^{{3}}}{{{m}}^{{3}}}{{/s}} and Q_m^g = 0.{5} - {2} × {1}{0^{{3}}}{{kg/s}} , respectively.

  13. Terra and Aqua MODIS Design, Radiometry, and Geometry in Support of Land Remote Sensing

    Science.gov (United States)

    Xiong, Xiaoxiong; Wolfe, Robert; Barnes, William; Guenther, Bruce; Vermote, Eric; Saleous, Nazmi; Salomonson, Vincent

    2011-01-01

    The NASA Earth Observing System (EOS) mission includes the construction and launch of two nearly identical Moderate Resolution Imaging Spectroradiometer (MODIS) instruments. The MODIS proto-flight model (PFM) is onboard the EOS Terra satellite (formerly EOS AM-1) launched on December 18, 1999 and hereafter referred to as Terra MODIS. Flight model-1 (FM1) is onboard the EOS Aqua satellite (formerly EOS PM-1) launched on May 04, 2002 and referred to as Aqua MODIS. MODIS was developed based on the science community s desire to collect multiyear continuous datasets for monitoring changes in the Earth s land, oceans and atmosphere, and the human contributions to these changes. It was designed to measure discrete spectral bands, which includes many used by a number of heritage sensors, and thus extends the heritage datasets to better understand both long- and short-term changes in the global environment (Barnes and Salomonson 1993; Salomonson et al. 2002; Barnes et al. 2002). The MODIS development, launch, and operation were managed by NASA/Goddard Space Flight Center (GSFC), Greenbelt, Maryland. The sensors were designed, built, and tested by Raytheon/ Santa Barbara Remote Sensing (SBRS), Goleta, California. Each MODIS instrument offers 36 spectral bands, which span the spectral region from the visible (0.41 m) to long-wave infrared (14.4 m). MODIS collects data at three different nadir spatial resolutions: 0.25, 0.5, and 1 km. Key design specifications, such as spectral bandwidths, typical scene radiances, required signal-to-noise ratios (SNR) or noise equivalent temperature differences (NEDT), and primary applications of each MODIS spectral band are summarized in Table 7.1. These parameters were the basis for the MODIS design. More details on the evolution of the NASA EOS and development of the MODIS instruments are provided in Chap. 1. This chapter focuses on the MODIS sensor design, radiometry, and geometry as they apply to land remote sensing. With near

  14. Titan's surface from Cassini RADAR SAR and high resolution radiometry data of the first five flybys

    Science.gov (United States)

    Paganelli, F.; Janssen, M.A.; Stiles, B.; West, R.; Lorenz, R.D.; Lunine, J.I.; Wall, S.D.; Callahan, P.; Lopes, R.M.; Stofan, E.; Kirk, R.L.; Johnson, W.T.K.; Roth, L.; Elachi, C.; ,

    2007-01-01

    The first five Titan flybys with Cassini's Synthetic Aperture RADAR (SAR) and radiometer are examined with emphasis on the calibration and interpretation of the high-resolution radiometry data acquired during the SAR mode (SAR-radiometry). Maps of the 2-cm wavelength brightness temperature are obtained coincident with the SAR swath imaging, with spatial resolution approaching 6 km. A preliminary calibration shows that brightness temperature in these maps varies from 64 to 89 K. Surface features and physical properties derived from the SAR-radiometry maps and SAR imaging are strongly correlated; in general, we find that surface features with high radar reflectivity are associated with radiometrically cold regions, while surface features with low radar reflectivity correlate with radiometrically warm regions. We examined scatterplots of the normalized radar cross-section ??0 versus brightness temperature, finding differing signatures that characterize various terrains and surface features. Implications for the physical and compositional properties of these features are discussed. The results indicate that volume scattering is important in many areas of Titan's surface, particularly Xanadu, while other areas exhibit complex brightness temperature variations consistent with variable slopes or surface material and compositional properties. ?? 2007 Elsevier Inc.

  15. Rapid, non-destructive and non-contact inspection of solid foods by means of photothermal radiometry; thermal effusivity and initial heating coefficient

    Science.gov (United States)

    Gijsbertsen, A.; Bicanic, D.; Gielen, J. L. W.; Chirtoc, M.

    2004-03-01

    CO 2-laser photothermal radiometry (PTR) was demonstrated to be suitable for the non-destructive and non-contact characterization (both optical and thermal) of solid phase agricultural commodities (fresh vegetables, fruits) and confectionery products (candy). Proper interpretation of PTR signals enable one to calculate two parameters, i.e. the well known thermal effusivity e ( e= λρc p, where λ and ρcp are the thermal conductivity and the volume specific heat, respectively) and a newly introduced physical quantity termed 'initial heating coefficient' chi ( χ= β/( ρcp), β is the absorption coefficient). Obtained values for e are in a good agreement with data reported in the literature. PTR enables one to rapidly determine e via a single measurement. As opposed to this, the knowledge of two out of three thermophysical parameters (thermal diffusivity, thermal conductivity and volume specific heat) is a condition sine qua non for determining effusivity in the conventional manner.

  16. Quad 14 Gbps L-band VCSEL-based system for WDM migration of 4-lanes 56 Gbps optical data links.

    Science.gov (United States)

    Estaran, Jose; Rodes, Roberto; Pham, Tien Thang; Ortsiefer, Markus; Neumeyr, Christian; Rosskopf, Jürgen; Monroy, Idelfonso Tafur

    2012-12-17

    We report on migrating multiple-lane link into an L-band VCSEL-based WDM system. Experimental validation achieves successful transmission over 10 km of SMF at 4x14Gbps. Inter-channel crosstalk penalty is observed to be less than 0.5 dB and a transmission penalty around 1 dB. The power budget margin ranges within 6 dB and 7 dB.

  17. The Latest Results from the Focal L-Band Array for the Green Bank Telescope (FLAG), the World's (Current) Most Sensitive Phased Array Feed

    Science.gov (United States)

    Pingel, Nickolas; Pisano, D. J.

    2018-01-01

    Phased Array Feeds (PAFs) represent the next revolution in radio astronomy instrumentation. I will present results from the latest commissioning run from the Focal L-Band Array for the Green Bank telescope (FLAG), which holds the current world record for PAF sensitivity. Since we are able to operate at system temperatures comparable with the traditional GBT single pixel L-Band feed, the increase in the field-of-view provided by the beamforming capabilities of PAFs results in a dramatic (a factor of 5) increase in survey speeds. In particular, FLAG can probe similar neutral hydrogen column density regimes over a 4 sq. deg region in 24.6 minutes as opposed to 4.1 hours in an equivalent single pixel map (excluding observing overhead). In addition to comparisons between data taken with FLAG and the single-pixel L-Band feed, I will also discuss the technical aspects of the observing procedure, data reduction, and the transition path for FLAG from an instrument that is principle-investigator run to one that is general use. These FLAG results provide a very encouraging outlook on how the GBT will continue to compete with current and planned radio telescope facilities.

  18. Ocean Surface Emissivity at L-band (1.4 GHz): The Dependence on Salinity and Roughness

    Science.gov (United States)

    Le Vine, D. M.; Lang, R. H.; Wentz, F. J.; Meissner, T.

    2012-12-01

    A characterization of the emissivity of sea water at L-band is important for the remote sensing of sea surface salinity. Measurements of salinity are currently being made in the radio astronomy band at 1.413 GHz by ESA's Soil Moisture and Ocean Salinity (SMOS) mission and NASA's Aquarius instrument aboard the Aquarius/SAC-D observatory. The goal of both missions is accuracy on the order of 0.2 psu. This requires accurate knowledge of the dielectric constant of sea water as a function of salinity and temperature and also the effect of waves (roughness). The former determines the emissivity of an ideal (i.e. flat) surface and the later is the major source of error from predictions based on a flat surface. These two aspects of the problem of characterizing the emissivity are being addressed in the context of the Aquarius mission. First, laboratory measurements are being made of the dielectric constant of sea water. This is being done at the George Washington University using a resonant cavity. In this technique, sea water of known salinity and temperature is fed into the cavity along its axis through a narrow tube. The sea water changes the resonant frequency and Q of the cavity which, if the sample is small enough, can be related to the dielectric constant of the sample. An extensive set of measurements have been conducted at 1.413 GHz to develop a model for the real and imaginary part of the dielectric constant as a function of salinity and temperature. The results are compared to the predictions of models based on parameterization of the Debye resonance of the water molecule. The models and measurements are close; however, the differences are significant for remote sensing of salinity. This is especially true at low temperatures where the sensitivity to salinity is lowest. Second, observations from Aquarius are being used to develop a model for the effect of wind-driven roughness (waves) on the emissivity in the open ocean. This is done by comparing the measured

  19. Land cover classification accuracy from electro-optical, X, C, and L-band Synthetic Aperture Radar data fusion

    Science.gov (United States)

    Hammann, Mark Gregory

    The fusion of electro-optical (EO) multi-spectral satellite imagery with Synthetic Aperture Radar (SAR) data was explored with the working hypothesis that the addition of multi-band SAR will increase the land-cover (LC) classification accuracy compared to EO alone. Three satellite sources for SAR imagery were used: X-band from TerraSAR-X, C-band from RADARSAT-2, and L-band from PALSAR. Images from the RapidEye satellites were the source of the EO imagery. Imagery from the GeoEye-1 and WorldView-2 satellites aided the selection of ground truth. Three study areas were chosen: Wad Medani, Sudan; Campinas, Brazil; and Fresno- Kings Counties, USA. EO imagery were radiometrically calibrated, atmospherically compensated, orthorectifed, co-registered, and clipped to a common area of interest (AOI). SAR imagery were radiometrically calibrated, and geometrically corrected for terrain and incidence angle by converting to ground range and Sigma Naught (?0). The original SAR HH data were included in the fused image stack after despeckling with a 3x3 Enhanced Lee filter. The variance and Gray-Level-Co-occurrence Matrix (GLCM) texture measures of contrast, entropy, and correlation were derived from the non-despeckled SAR HH bands. Data fusion was done with layer stacking and all data were resampled to a common spatial resolution. The Support Vector Machine (SVM) decision rule was used for the supervised classifications. Similar LC classes were identified and tested for each study area. For Wad Medani, nine classes were tested: low and medium intensity urban, sparse forest, water, barren ground, and four agriculture classes (fallow, bare agricultural ground, green crops, and orchards). For Campinas, Brazil, five generic classes were tested: urban, agriculture, forest, water, and barren ground. For the Fresno-Kings Counties location 11 classes were studied: three generic classes (urban, water, barren land), and eight specific crops. In all cases the addition of SAR to EO resulted

  20. Modelling the Passive Microwave Signature from Land Surfaces: A Review of Recent Results and Application to the L-Band SMOS SMAP Soil Moisture Retrieval Algorithms

    Science.gov (United States)

    Wigneron, J.-P.; Jackson, T. J.; O'Neill, P.; De Lannoy, G.; De Rosnay, P.; Walker, J. P.; Ferrazzoli, P.; Mironov, V.; Bircher, S.; Grant, J. P.; hide

    2017-01-01

    Two passive microwave missions are currently operating at L-band to monitor surface soil moisture (SM) over continental surfaces. The SMOS sensor, based on an innovative interferometric technology enabling multi-angular signatures of surfaces to be measured, was launched in November 2009. The SMAP sensor, based on a large mesh reflector 6 m in diameter providing a conically scanning antenna beam with a surface incidence angle of 40deg, was launched in January of 2015. Over the last decade, an intense scientific activity has focused on the development of the SM retrieval algorithms for the two missions. This activity has relied on many field (mainly tower-based) and airborne experimental campaigns, and since 2010-2011, on the SMOS and Aquarius space-borne L-band observations. It has relied too on the use of numerical, physical and semi-empirical models to simulate the microwave brightness temperature of natural scenes for a variety of scenarios in terms of system configurations (polarization, incidence angle) and soil, vegetation and climate conditions. Key components of the inversion models have been evaluated and new parameterizations of the effects of the surface temperature, soil roughness, soil permittivity, and vegetation extinction and scattering have been developed. Among others, global maps of select radiative transfer parameters have been estimated very recently. Based on this intense activity, improvements of the SMOS and SMAP SM inversion algorithms have been proposed. Some of them have already been implemented, whereas others are currently being investigated. In this paper, we present a review of the significant progress which has been made over the last decade in this field of research with a focus on L-band, and a discussion on possible applications to the SMOS and SMAP soil moisture retrieval approaches.

  1. Weekly Gridded Aquarius L-band Radiometer-scatterometer Observations and Salinity Retrievals over the Polar Regions - Part 1: Product Description

    Science.gov (United States)

    Brucker, Ludovic; Dinnat, Emmanuel Phillippe; Koenig, Lora S.

    2014-01-01

    Passive and active observations at L band (frequency (is) approximately 1.4 GHz) from the Aquarius/SAC-D mission offer new capabilities to study the polar regions. Due to the lack of polar-gridded products, however, applications over the cryosphere have been limited. We present three weekly polar-gridded products of Aquarius data to improve our understanding of L-band observations of ice sheets, sea ice, permafrost, and the polar oceans. Additionally, these products intend to facilitate access to L-band data, and can be used to assist in algorithm developments. Aquarius data at latitudes higher than 50 degrees are averaged and gridded into weekly products of brightness temperature (TB), normalized radar cross section (NRCS), and sea surface salinity (SSS). Each grid cell also contains sea ice fraction, the standard deviation of TB, NRCS, and SSS, and the number of footprint observations collected during the seven-day cycle. The largest 3 dB footprint dimensions are 97 km×156 km and 74 km×122 km (along × across track) for the radiometers and scatterometer, respectively. The data is gridded to the Equal-Area Scalable Earth version 2.0 (EASE2.0) grid, with a grid cell resolution of 36 km. The data sets start in August 2011, with the first Aquarius observations and will be updated on a monthly basis following the release schedule of the Aquarius Level 2 data sets. The weekly gridded products are distributed by the US National Snow and Ice Data Center at http://nsidc.org/data/aquarius/index.html

  2. Passive Microwave Soil Moisture Retrieval Using a Ground-Based L-Band (1.26 GHz) Radiometer Acquired During the Corn Growing Season in 2002

    Science.gov (United States)

    Joseph, A. T.; van der Velde, R.; O'Neill, P. E.; Su, Z.; Liang, S.; Jackson, T. J.; Lang, R. H.; Kim, E. J.; Gish, T.

    2006-05-01

    In the corn growing season of 2002, a tower-based L-band (1.26 GHz) microwave radiometer (Lrad) and a truck-mounted C- and L-band (5.3 and 1.4 GHz) radar were installed and operated along the side of the corn grown OPE3* experimental site managed by the USDA-ARS** Hydrology and Remote Sensing Laboratory (HRSL) in Beltsville, Maryland. The radiometer was programmed to acquire data automatically every hour, while the radar observations were collected once a week at four different times during the day. The radiometer as well as the radar collected several individual observations within an azimuth of 120 degrees at various incidence angles (25, 35, 45, 55 and 60 for the radiometer and 15, 35 and 55 degrees for the radar). Simultaneous to the microwave observations, an extensive ground truth data set was collected, which includes soil moisture, soil surface roughness, vegetation moisture and vegetation geometry. In this investigation, soil moisture retrieval results are presented primarily based on the passive microwave OPE3 data set. The soil moisture retrieval algorithm is employed targeting the direct retrieval of the H (horizontal) - and V (vertical) - polarized optical depth from H- and V-polarized L-band brightness temperatures (TB). The methodology can be directly applied to observations that will be acquired by the Soil Moisture and Ocean Salinity (SMOS) sensor and requires only input of the temperature of the emitting layer, surface roughness and single scattering albedo. *Optimizing Production Inputs for Economic and Environmental Enhancement (OPE3) **United States Department of Agriculture (USDA) Agricultural Research Service (ARS)

  3. Scattering Characteristics of X-, C- and L-Band PolSAR Data Examined for the Tundra Environment of the Tuktoyaktuk Peninsula, Canada

    Directory of Open Access Journals (Sweden)

    Tobias Ullmann Sarah N. Banks

    2017-06-01

    Full Text Available In this study, polarimetric Synthetic Aperture Radar (PolSAR data at X-, C- and L-Bands, acquired by the satellites: TerraSAR-X (2011, Radarsat-2 (2011, ALOS (2010 and ALOS-2 (2016, were used to characterize the tundra land cover of a test site located close to the town of Tuktoyaktuk, NWT, Canada. Using available in situ ground data collected in 2010 and 2012, we investigate PolSAR scattering characteristics of common tundra land cover classes at X-, C- and L-Bands. Several decomposition features of quad-, co-, and cross-polarized data were compared, the correlation between them was investigated, and the class separability offered by their different feature spaces was analyzed. Certain PolSAR features at each wavelength were sensitive to the land cover and exhibited distinct scattering characteristics. Use of shorter wavelength imagery (X and C was beneficial for the characterization of wetland and tundra vegetation, while L-Band data highlighted differences of the bare ground classes better. The Kennaugh Matrix decomposition applied in this study provided a unified framework to store, process, and analyze all data consistently, and the matrix offered a favorable feature space for class separation. Of all elements of the quad-polarized Kennaugh Matrix, the intensity based elements K0, K1, K2, K3 and K4 were found to be most valuable for class discrimination. These elements contributed to better class separation as indicated by an increase of the separability metrics squared Jefferys Matusita Distance and Transformed Divergence. The increase in separability was up to 57% for Radarsat-2 and up to 18% for ALOS-2 data.

  4. Ionospheric errors at L-band for satellite and re-entry object tracking in the new equatorial-anomaly region

    Energy Technology Data Exchange (ETDEWEB)

    Pakula, W.A.; Klobuchar, J.A.; Anderson, D.N.; Doherty, P.H.

    1990-05-03

    The ionosphere can significantly limit the accuracy of precise tracking of satellites and re-entry objects, especially in the equatorial anomaly region of the world where the electron density is the highest. The determine typical changes induced by the ionosphere, the Fully Analytic Ionospheric Model, (FAIM), was used to model range and range-rate errors over Kwajalein Island, located near the equatorial anomaly region in the Pacific. Model results show that range-rate errors of up to one foot per second can occur at L-band for certain, near-vertical re-entry object trajectories during high solar activity daytime conditions.

  5. Ground-based L-band active and passive observations of growing corn and soybean during SMAPVEX16-MicroWEX

    Science.gov (United States)

    Judge, Jasmeet; Liu, Pang-Wei; Chakrabarti, Subit; Steele-Dunne, Susan; Monsivais-Huertero, Alejandro; Bongiovanni, Tara; DeRoo, Roger; England, Anthony

    2017-04-01

    The NASA Soil Moisture Active/Passive (SMAP) and the ESA Soil Moisture and Ocean Salinity (SMOS) missions include microwave radiometers at L-band that provides global observations of SM at 36 and 25km, respectively, with a repeat coverage of every 2-3 days. Agricultural regions, with their highly dynamic vegetation and spatial heterogeneity are particularly challenging for soil moisture retrieval algorithms. The Microwave Water and Energy Balance Experiment was conducted as part of the SMAP Validation Experiment (SMAPVEX16-MicroWEX) during the summer of 2016 in a predominantly agricultural region in Iowa, USA. During SMAPVEX16-MicroWEX, ground-based observations of active and passive signatures were obtained every 15-30 minutes during a growing season of corn and soybean from May 23 through September 2, 2016. The field site was within the South Fork Watershed at the Sweeney Farms, near the city of Buckeye. The University of Florida L-band Automated Radar System (UF-LARS) observed the backscatter from corn. The brightness temperatures (TB) at the corn site were observed by the University of Michigan L-Band Radiometer (UMLMR), while those at the soybean site were observed by the University of Florida L-band Microwave Radiometer (UFLMR). Concurrent and co-located observations of soil, vegetation, and micro-meteorological conditions were also conducted at both the sites. The passive signatures from both the corn and the soybean sites were found to be similar during the early season, as both the fields were nearly bare terrains. As expected, the TB diverge during the mid-season, when the vegetation water content (VWC) of the corn is about 2 kg/m2. Interestingly, the TB of the two crops are similar again toward the end of the season, when VWC of the soybean crop reaches about 2 kg/m2. Preliminary modeling results show that physically-based emission models significantly underestimate vegetation opacity for a mature soybean canopy. These findings provide insights into

  6. In vivo characterization of structural and optical properties of human skin by combined photothermal radiometry and diffuse reflectance spectroscopy

    Science.gov (United States)

    Verdel, Nina; Marin, Ana; Vidovič, Luka; Milanič, Matija; Majaron, Boris

    2017-02-01

    We have combined two optical techniques to enable simultaneous assessment of structure and composition of human skin in vivo: Pulsed photothermal radiometry (PPTR), which involves measurements of transient dynamics in midinfrared emission from sample surface after exposure to a light pulse, and diffuse reflectance spectroscopy (DRS) in visible part of the spectrum. Namely, while PPTR is highly sensitive to depth distribution of selected absorbers, DRS provides spectral information and thus enables differentiation between various chromophores. The accuracy and robustness of the inverse analysis is thus considerably improved compared to use of either technique on its own. Our analysis approach is simultaneous multi-dimensional fitting of the measured PPTR signals and DRS with predictions from a numerical model of light-tissue interaction (a.k.a. inverse Monte Carlo). By using a three-layer skin model (epidermis, dermis, and subcutis), we obtain a good match between the experimental and modeling data. However, dividing the dermis into two separate layers (i.e., papillary and reticular dermis) helps to bring all assessed parameter values within anatomically and physiologically plausible intervals. Both the quality of the fit and the assessed parameter values depend somewhat on the assumed scattering properties for skin, which vary in literature and likely depend on subject's age and gender, anatomical site, etc. In our preliminary experience, simultaneous fitting of the scattering properties is possible and leads to considerable improvement of the fit. The described approach may thus have a potential for simultaneous determination of absorption and scattering properties of human skin in vivo.

  7. Infrared radiometry of dental enamel during Er:YAG and Er:YSGG laser irradiation

    Science.gov (United States)

    Fried, Daniel; Visuri, Steven R.; Featherstone, John D.; Walsh, Joseph T.; Seka, Wolf D.; Glena, Richard E.; McCormack, Sandra M.; Wigdor, Harvey A.

    1996-10-01

    Time-resolved infrared radiometry was used to measure surface temperatures during pulsed Er:YSGG and Er:YAG laser irradiation of dental enamel. Scanning electron microscopy (SEM) was used to determine the melting and vaporization thresholds and to characterize other changes in the surface morphology. The magnitude and temporal evolution of the surface temperature during multiple-pulse irradiation of the tissue was dependant on the wavelength, fluence, and pre- exposure to laser pulses. Radiometry and SEM micrographs indicate that ablation is initiated at temperatures well below the melting and vaporization temperatures of the carbonated hydroxyapatite mineral component. Ablation occurred at lower surface temperatures and at a lower fluences for Er:YAG than for Er:YSGG laser irradiation: 400 degrees C versus 800 degrees C and above 7 J/cm2 versus 18/Jcm2, respectively. However, the measured surface temperatures were higher at (lambda) equals 2.79 (Mu) m than at (lambda) equals 2.94 during low fluence irradiation. Spatially dependent absorption in the enamel matrix is proposed to explain this apparent contradiction.

  8. A laboratory module on radiometry, photometry and colorimetry for an undergraduate optics course

    Science.gov (United States)

    Polak, Robert D.

    2014-07-01

    The bachelor's degree in Physics at Loyola University Chicago requires both an upper-division course in Optics as well as a companion Optics Laboratory course. Recently, the laboratory course has undergone dramatic changes. Traditional weekly laboratories have been replaced with three laboratory modules, where students focus on a single topic over several weeks after which the students submit a laboratory report written in the style of a journal article following American Institute of Physics style manual. With this method, students are able to gain a deeper understanding of the specific topic areas of radiometry, photometry and colorimetry, lens design and aberrations, and polarization and interference while using industry-standard equipment and simulation software. In particular, this work will provide the details of the laboratory module on radiometry, photometry and colorimetry where students use a photoradiometer and integrating sphere to characterize the optical properties of an LCD monitor, light bulb and a fiber optic light source calculating properties such as luminous flux, luminous intensity, luminance, CIE color coordinates, NTSC ratio, color temperature and luminous efficacy.

  9. An approach to effective UHF (S/L band) data communications for satellite Personal Communication Service (PCS)

    Science.gov (United States)

    Hayase, Joshua Y.

    1995-01-01

    Reliable signaling information transfer is fundamental in supporting the needs of data communication PCS via LMS (Land Mobile Service) SSs (satellite systems). The needs of the system designer can be satisfied only through the collection of media information that can be brought to bear on the pertinent design issues. We at ISI hope to continue our dialogue with fading media experts to address the unique data communications needs of PCS via LMS SSs.

  10. Oil spill analysis by means of full polarimetric UAVSAR (L-band) and Radarsat-2 (C-band) products acquired during Deepwater Horizon Disaster

    Science.gov (United States)

    Latini, Daniele; Del Frate, Fabio; Jones, Cathleen E.

    2014-10-01

    SAR instruments with polarimetric capabilities, high resolution and short revisit time can provide powerful support in oil spill monitoring and different techniques of analysis have been developed for this purpose [1][2]. An oil film on the sea surface results in darker areas in SAR images, but careful interpretation is required because dark spots can also be caused by natural phenomena. In view of the very low backscatter from slicks, the Noise Equivalent Sigma Zero (NESZ) is a primary sensor parameter to be considered when using a sensor for slick analysis. Among the existing full polarimetric sensors, the high resolution and very low NESZ values of UAVSAR (L-band) and RADARSAT-2 (C-band) make them preferable for oil spill analysis compared to the last generation SAR instruments. The Deepwater Horizon disaster that occurred in the Gulf of Mexico in 2010 represents a unique and extensive test site where large amounts of SAR imagery and ground validation data are available. By applying the Cloude-Pottier decomposition method to full polarimetric UAVSAR (L-band) and RADARSAT-2 (C-band), it is possible to extract parameters that describe the scattering mechanism of the target. By comparing quasi-simultaneous acquisitions and exploiting the different penetration capabilities of the sensors, we investigate the potential of full polarimetric SAR to discriminate oil on the sea surface from look-alike phenomena covering the full range of backscattering values down to those at the instrument noise floor.

  11. Regional Mapping of Permafrost Active Layer Properties Using P-Band AirMOSS and L-Band UAVSAR Time-Series Observations in Alaska

    Science.gov (United States)

    Chen, R. H.; Tabatabaeenejad, A.; Moghaddam, M.

    2016-12-01

    Monitoring the active layer atop permafrost is critical to enhancing our knowledge about the cryopedogenic processes, carbon dynamics, and the extent of permafrost degradation due to climate change. Ground-based measurements of active layer soils have provided high quality in-situ data in recent decades, but are limited by spatial coverage due to the remoteness and inaccessibility of most high-latitude regions. Since August 2014, P-band AirMOSS has flown time-series SAR observations over Northern Alaska to enable regional mapping of active layer properties. In October 2015, L-band UAVSAR also flew with AirMOSS to provide nearly concurrent dual-band SAR data. To retrieve active layer properties, we use a scattering model for layered soils, along with assumptions made from field measurements. This presentation will discuss the assumed soil structures used for different active layer soil conditions (maximum thawed or partially frozen) and the subsurface features which can be observed by low-frequency radars. A physics-based active layer retrieval algorithm is developed to incorporate different vertical resolutions of P- and L-band radars to obtain better characterization of active layer soil profile. The retrieved maps of active layer properties such as active layer thickness (ALT) and soil dielectric profiles will be presented and validated against the ALT measurements conducted at Circumpolar Active Layer Monitoring (CALM) sites in Alaska. Field activities and measurements for further model improvements and validations will also be discussed.

  12. Morphological Characteristics of L-Band Scintillations and Their Impact on GPS Signals - A Quantitative Study on the Precursors for the Occurrence of Scintillations

    Science.gov (United States)

    2006-06-01

    and in phase levels which are the highest during solar maximum ( Klobuchar et al., 1991). In the present study, the scintillations observed with the...1.575 GHz (Warnant, 1997; Klobuchar et al., 1993), and thus in the present case the depletion amplitudes of 5 to 15 TEC units introduce range errors...appearing on equatorial ionograms, J. Geophys. Res., 66, 3125,1961 [9] DasGupta, A., Aarons, Basu, S., J., Klobuchar , J. A., Basu, Su., and Bushby, A

  13. L-Band SAR Backscatter Related to Forest Cover, Height and Aboveground Biomass at Multiple Spatial Scales across Denmark

    DEFF Research Database (Denmark)

    Joshi, Neha P.; Mitchard, Edward T A; Schumacher, Johannes

    2015-01-01

    DAR-derived maps of vegetation penetrability, height and AGB over Denmark at different spatial scales (50 m to 500 m). Trends in the relations indicate that, first, AGB retrieval accuracy from SAR improves most in mapping at 100-m scale instead of 50 m, and improvements are negligible beyond 250 m. Relative errors...... a strong linear relation (R2 = 0.79 at 250-m scale). In areas of high fractional forest cover, there is a slight decline in backscatter as AGB increases, indicating signal attenuation. The two results demonstrate that accounting for spatial scale and variations in forest structure, such as cover...

  14. Cassini SAR, radiometry, scatterometry and altimetry observations of Titan's dune fields

    Science.gov (United States)

    Le, Gall A.; Janssen, M.A.; Wye, L.C.; Hayes, A.G.; Radebaugh, J.; Savage, C.; Zebker, H.; Lorenz, R.D.; Lunine, J.I.; Kirk, R.L.; Lopes, R.M.C.; Wall, S.; Callahan, P.; Stofan, E.R.; Farr, Tom

    2011-01-01

    Large expanses of linear dunes cover Titan's equatorial regions. As the Cassini mission continues, more dune fields are becoming unveiled and examined by the microwave radar in all its modes of operation (SAR, radiometry, scatterometry, altimetry) and with an increasing variety of observational geometries. In this paper, we report on Cassini's radar instrument observations of the dune fields mapped through May 2009 and present our key findings in terms of Titan's geology and climate. We estimate that dune fields cover ???12.5% of Titan's surface, which corresponds to an area of ???10millionkm2, roughly the area of the United States. If dune sand-sized particles are mainly composed of solid organics as suggested by VIMS observations (Cassini Visual and Infrared Mapping Spectrometer) and atmospheric modeling and supported by radiometry data, dune fields are the largest known organic reservoir on Titan. Dune regions are, with the exception of the polar lakes and seas, the least reflective and most emissive features on this moon. Interestingly, we also find a latitudinal dependence in the dune field microwave properties: up to a latitude of ???11??, dune fields tend to become less emissive and brighter as one moves northward. Above ???11?? this trend is reversed. The microwave signatures of the dune regions are thought to be primarily controlled by the interdune proportion (relative to that of the dune), roughness and degree of sand cover. In agreement with radiometry and scatterometry observations, SAR images suggest that the fraction of interdunes increases northward up to a latitude of ???14??. In general, scattering from the subsurface (volume scattering and surface scattering from buried interfaces) makes interdunal regions brighter than the dunes. The observed latitudinal trend may therefore also be partially caused by a gradual thinning of the interdunal sand cover or surrounding sand sheets to the north, thus allowing wave penetration in the underlying

  15. REVIEW ARTICLE: Photometry, radiometry and 'the candela': evolution in the classical and quantum world

    Science.gov (United States)

    Zwinkels, Joanne C.; Ikonen, Erkki; Fox, Nigel P.; Ulm, Gerhard; Rastello, Maria Luisa

    2010-10-01

    The metrological fields of photometry and radiometry and their associated units are closely linked through the current definition of the base unit of luminous intensity—the candela. These fields are important to a wide range of applications requiring precise and accurate measurements of electromagnetic radiation and, in particular, the amount of radiant energy (light) that is perceived by the human eye. The candela has been one of the base units since the inception of the International System of Units (SI) and is the only base unit that quantifies a fundamental biological process—human vision. This photobiological process spans an enormous dynamic range of light levels from a few-photon interaction involved in triggering the vision mechanism to a level of more than 1015 photons per second that is accommodated by the visual response under bright daylight conditions. This position paper, prepared by members of the Task Group on the SI of the Consultative Committee for Photometry and Radiometry Strategic Planning Working Group (CCPR WG-SP), reviews the evolution of these fields of optical radiation measurements and their consequent impact on definitions and realization of the candela. Over the past several decades, there have been significant developments in sources, detectors, measuring instruments and techniques, that have improved the measurement of photometric and radiometric quantities for classical applications in lighting design, manufacturing and quality control processes involving optical sources, detectors and materials. These improved realizations largely underpin the present (1979) definition of the candela. There is no consensus on whether this radiant-based definition fully satisfies the current and projected needs of the optical radiation community. There is also no consensus on whether a reformulation of the definition of the candela in terms of photon flux will be applicable to the lighting community. However, there have been significant recent

  16. Characteristics and performance of L-band radar-based soil moisture retrievals using Soil Moisture Active Passive (SMAP) synthetic aperture radar observations

    Science.gov (United States)

    Kim, S.; Johnson, J. T.; Moghaddam, M.; Tsang, L.; Colliander, A.

    2016-12-01

    Surface soil moisture of the top 5-cm was estimated at 3-km spatial resolution using L-band dual-copolarized Soil Moisture Active Passive (SMAP) synthetic aperture radar (SAR) data that mapped the globe every three days from mid-April to early July, 2015. Radar observations of soil moisture offer the advantage of high spatial resolution, but have been challenging in the past due to the complicating factors of surface roughness and vegetation scattering. In this work, physically-based forward models of radar scattering for individual vegetation types are inverted using a time-series approach to retrieve soil moisture while correcting for the effects of roughness and dynamic vegetation. The predictions of the forward models used agree with SMAP measurements to within 0.5 dB unbiased-RMSE (root mean square error, ubRMSE) and -0.05 dB (bias). The forward models further allow the mechanisms of radar scattering to be examined to identify the sensitivity of radar scattering to soil moisture. Global patterns of the soil moistures retrieved by the algorithm generally match well with those from other satellite sensors. However biases exist in dry regions, and discrepancies are found in thick vegetation areas. The retrievals are compared with in situ measurements of soil moisture in locations characterized as cropland, grassland, and woody vegetation. Terrain slopes, subpixel heterogeneity, tillage practices, and vegetation growth influence the retrievals, but are largely corrected by the retrieval processes. Soil moisture retrievals agree with the in-situ measurements at 0.052 m3/m3 ubRMSE, -0.015 m3/m3 bias, and a correlation of 0.50. These encouraging retrieval results demonstrate the feasibility of a physically-based time-series retrieval with L-band SAR data for characterizing soil moisture over diverse conditions of soil moisture, surface roughness, and vegetation types. The findings are important for future L-band radar missions with frequent revisits that permit time

  17. Depth determination of chromophores in human skin by pulsed photothermal radiometry

    Energy Technology Data Exchange (ETDEWEB)

    Milner, T.E. [Beckman Laser Institute and Medical Clinic (United States)]|[Department of Physics, Harvey Mudd College, Claremont, California 91711 (United States); Smithies, D.J. [Beckman Laser Institute and Medical Clinic (United States); Goodman, D.M. [Lawrence Livermore National Laboratory, Livermore, California 94550. (United States); Nelson, J.S. [Beckman Laser Institute and Medical Clinic (United States)]|[Departments of Dermatology and Surgery, University of California, Irvine, Irvine, California 92715 (United States); Goodman, D.M. [Lawrence Livermore National Laboratory, Livermore, California 94550. (United States); Lau, A. [Finch University of Health Sciences/The Chicago Medical School, North Chicago, Illinois 60637 (United States)

    1996-07-01

    We report on the application of pulsed photothermal radiometry (PPTR) to determine the depth of {ital in}-{ital vitro} and {ital in}-{ital vivo} subsurface chromophores in biological materials. Measurements provided by PPTR in combination with a nonnegative constrained conjugate-gradient algorithm are used to determine the initial temperature distribution in a biological material immediately following pulsed laser irradiation. Within the experimental error, chromophore depths (50{endash}450 {mu}m) in 55 {ital in}-{ital vitro} collagen phantoms determined by PPTR and optical low-coherence reflectometry are equivalent. The depths of port-wine-stain blood vessels determined by PPTR correlate very well with their locations found by computer-assisted microscopic observation of histologic sections. The mean blood-vessel depth deduced from PPTR and histologic observation is statistically indistinguishable ({ital p}{lt}0.94). {copyright} {ital 1996 Optical Society of America.}

  18. Study of the heat transfer in solids using infrared photothermal radiometry and simulation by COMSOL Multiphysics.

    Science.gov (United States)

    Suarez, V; Hernández Wong, J; Nogal, U; Calderón, A; Rojas-Trigos, J B; Juárez, A G; Marín, E

    2014-01-01

    It is reported the study of the heat transfer through a homogeneous and isotropic solid exited by square periodic light beam on its front surface. For this, we use the Infrared Photothermal Radiometry in order to obtain the evolution of the temperature difference on the rear surface of three samples, silicon, copper and wood, as a function of the exposure time. Also, we solved the heat transport equation for this problem with the boundary conditions congruent with the physical situation, by means of numerical simulation based in finite element analysis. Our results show a good agreement between the experimental and numerical simulated results, which demonstrate the utility of this methodology for the study of the thermal response of solids. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Photothermal radiometry and modulated luminescence examination of demineralized and remineralized dental lesions

    Energy Technology Data Exchange (ETDEWEB)

    Hellen, A; Mandelis, A [Center for Advanced Diffusion-Wave Technologies, University of Toronto, 5 King' s College Road, Toronto, Ontario, M5S 3G8 (Canada); Finer, Y, E-mail: mandelis@mie.utoronto.c [Faculty of Dentistry, University of Toronto, 124 Edward Street, Toronto, Ontario, M5G 1G6 (Canada)

    2010-03-01

    Dental caries involves continuous challenges of acid-induced mineral loss and a counteracting process of mineral recovery. As an emerging non-destructive methodology, photothermal radiometry and modulated luminescence (PTR-LUM) has shown promise in measuring changes in tooth mineral content. Human molars (n=37) were subjected to demineralization in acid gel (pH 4.5, 10 days), followed by incubation in remineralisation solutions (pH 6.7, 4 weeks) without or with fluoride (1 or 1000 ppm). PTR-LUM frequency scans (1 Hz - 1 kHz) were performed prior to and during demineralization and remineralization treatments. Transverse Micro-Radiography (TMR) analysis followed at treatment conclusion. The non-fluoridated group exhibited opposite amplitude and phase trends to those of the highly fluoridated group: smaller phase lag and larger amplitude. These results point to a complex interplay between surface and subsurface processes during remineralization, confining the thermal-wave centroid toward the dominating layer.

  20. Heat transfer in solids using infrared photothermal radiometry and simulation by Com sol multi physics

    Energy Technology Data Exchange (ETDEWEB)

    Suarez, V.; Hernandez W, J.; Calderon, A.; Rojas T, J. B.; Juarez, A. G.; Marin, E.; Castaneda, A., E-mail: victorm_suarez@hotmail.com [IPN, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Calz. Legaria No. 694, Col. Irrigacion, 11500 Mexico D. F. (Mexico)

    2012-10-15

    We investigate the heat transfer through a homogeneous and isotropic solid exited by periodic light beam on its front surface. For this, we use the infrared photothermal radiometry in order to obtain the evolution of the temperature difference on the rear surface of the silicon sample as a function of the exposure time. Also, we solved the heat conduction equation for this problem with the boundary conditions congruent with the physical situation, by means of application the Com sol multi physics software and the heat transfer module. Our results show a good agree between the experimental and simulated results, which demonstrate the utility of this methodology in the study of the thermal response in solids. (Author)

  1. Ka-band to L-band frequency down-conversion based on III-V-on-silicon photonic integrated circuits

    Science.gov (United States)

    Van Gasse, K.; Wang, Z.; Uvin, S.; De Deckere, B.; Mariën, J.; Thomassen, L.; Roelkens, G.

    2017-12-01

    In this work, we present the design, simulation and characterization of a frequency down-converter based on III-V-on-silicon photonic integrated circuit technology. We first demonstrate the concept using commercial discrete components, after which we demonstrate frequency conversion using an integrated mode-locked laser and integrated modulator. In our experiments, five channels in the Ka-band (27.5-30 GHz) with 500 MHz bandwidth are down-converted to the L-band (1.5 GHz). The breadboard demonstration shows a conversion efficiency of - 20 dB and a flat response over the 500 MHz bandwidth. The simulation of a fully integrated circuit indicates that a positive conversion gain can be obtained on a millimeter-sized photonic integrated circuit.

  2. Fivefold Symmetric Photonic Quasi-Crystal Fiber for Dispersion Compensation from S- to L-Band and Optimized at 1.55 μm

    Directory of Open Access Journals (Sweden)

    Sivacoumar Rajalingam

    2015-01-01

    Full Text Available A highly dispersive dual core quasi-periodic photonic crystal fiber is proposed for chromatic dispersion compensation. The dispersion for the dual concentric core fiber is optimized to compensate the chromatic dispersion with a high negative dispersion, accomplishing the communication bandwidth from S-band (1460 nm to L-band (1625 nm. By precise control of structural parameter we have achieved a maximum dispersion of −18,838 ps/nm-km with the phase matching wavelength centred around 1.55 μm. We also numerically investigate the influence of structural parameter and doping effects and its response on peak dispersion parameter.

  3. Ka-band to L-band frequency down-conversion based on III-V-on-silicon photonic integrated circuits

    Science.gov (United States)

    Van Gasse, K.; Wang, Z.; Uvin, S.; De Deckere, B.; Mariën, J.; Thomassen, L.; Roelkens, G.

    2017-11-01

    In this work, we present the design, simulation and characterization of a frequency down-converter based on III-V-on-silicon photonic integrated circuit technology. We first demonstrate the concept using commercial discrete components, after which we demonstrate frequency conversion using an integrated mode-locked laser and integrated modulator. In our experiments, five channels in the Ka-band (27.5-30 GHz) with 500 MHz bandwidth are down-converted to the L-band (1.5 GHz). The breadboard demonstration shows a conversion efficiency of - 20 dB and a flat response over the 500 MHz bandwidth. The simulation of a fully integrated circuit indicates that a positive conversion gain can be obtained on a millimeter-sized photonic integrated circuit.

  4. Rapid, non-destructive and non-contact inspection of solid foods by means of photothermal radiometry; thermal effusivity and initial heating coefficient

    NARCIS (Netherlands)

    Gijsbertsen, A.; Bicanic, D.D.; Gielen, J.L.W.; Chirtoc, M.

    2004-01-01

    CO2-laser photothermal radiometry (PTR) was demonstrated to be suitable for the nondestructive and non-contact characterization (both optical and thermal) of solid phase agricultural commodities (fres vegetables, fruits) and confectionery products (candy).

  5. Soil hydraulic parameters and surface soil moisture of a tilled bare soil plot inversely derived from l-band brightness temperatures

    KAUST Repository

    Dimitrov, Marin

    2014-01-01

    We coupled a radiative transfer model and a soil hydrologic model (HYDRUS 1D) with an optimization routine to derive soil hydraulic parameters, surface roughness, and soil moisture of a tilled bare soil plot using measured brightness temperatures at 1.4 GHz (L-band), rainfall, and potential soil evaporation. The robustness of the approach was evaluated using five 28-d data sets representing different meteorological conditions. We considered two soil hydraulic property models: the unimodal Mualem-van Genuchten and the bimodal model of Durner. Microwave radiative transfer was modeled by three different approaches: the Fresnel equation with depth-averaged dielectric permittivity of either 2-or 5-cm-thick surface layers and a coherent radiative transfer model (CRTM) that accounts for vertical gradients in dielectric permittivity. Brightness temperatures simulated by the CRTM and the 2-cm-layer Fresnel model fitted well to the measured ones. L-band brightness temperatures are therefore related to the dielectric permittivity and soil moisture in a 2-cm-thick surface layer. The surface roughness parameter that was derived from brightness temperatures using inverse modeling was similar to direct estimates from laser profiler measurements. The laboratory-derived water retention curve was bimodal and could be retrieved consistently for the different periods from brightness temperatures using inverse modeling. A unimodal soil hydraulic property function underestimated the hydraulic conductivity near saturation. Surface soil moisture contents simulated using retrieved soil hydraulic parameters were compared with in situ measurements. Depth-specific calibration relations were essential to derive soil moisture from near-surface installed sensors. © Soil Science Society of America 5585 Guilford Rd., Madison, WI 53711 USA.

  6. Extending ALFALFA in the Direction of the Pisces-Perseus Supercluster with the Arecibo L-Band Wide Receiver

    Science.gov (United States)

    O'Donoghue, Aileen A.; Haynes, Martha P.; Koopmann, Rebecca A.; Jones, Michael G.; Hallenbeck, Gregory L.; Giovanelli, Riccardo; Hoffman, Lyle; Craig, David W.; Undergraduate ALFALFA Team

    2017-01-01

    We have completed three “Harvesting ALFALFA” Arecibo observing programs in the direction of the Pisces-Perseus Supercluster (PPS) since ALFALFA observations were finished in 2012. The first was to perform follow-up observations on high signal-to-noise (S/N > 6.5) ALFALFA detections needing confirmation and low S/N sources lacking optical counterparts. A few more high S/N objects were observed in the second program along with targets visually selected from the Sloan Digital Sky Survey (SDSS). The third program included low S/N ALFALFA sources having optical counterparts with redshifts that were unknown or differed from the ALFALFA observations. It also included more galaxies selected from SDSS by eye and by Structured Query Language (SQL) searches with parameters intended to select galaxies at the distance of the PPS (~6,000 km/s). We used pointed basic Total-Power Position-Switched Observations in the 1340 - 1430 MHz ALFALFA frequency range. For sources of known redshift, we used the Wideband Arecibo Pulsar Processors (WAPP’s) , while for sources of unknown redshift we utilized a hybrid/dual bandwidth Doppler tracking mode using the Arecibo Interim 50-MHz Correlator with 9-level sampling.Results confirmed that a few high S/N ALFALFA sources are spurious as expected from the work of Saintonge (2007), low S/N ALFALA sources lacking an optical counterpart are all likely to be spurious, but low S/N sources with optical counterparts are generally reliable. Of the optically selected sources, about 80% were detected and tended to be near the distance of the PPS.This work has been supported by NSF grant AST-1211005.

  7. Uncertainty of Passive Imager Cloud Optical Property Retrievals to Instrument Radiometry and Model Assumptions: Examples from MODIS

    Science.gov (United States)

    Platnick, Steven; Wind, Galina; Meyer, Kerry; Amarasinghe, Nandana; Arnold, G. Thomas; Zhang, Zhibo; King, Michael D.

    2013-01-01

    The optical and microphysical structure of clouds is of fundamental importance for understanding a variety of cloud radiation and precipitation processes. With the advent of MODIS on the NASA EOS Terra and Aqua platforms, simultaneous global-daily 1 km retrievals of cloud optical thickness (COT) and effective particle radius (CER) are provided, as well as the derived water path (WP). The cloud product (MOD06/MYD06 for MODIS Terra and Aqua, respectively) provides separate retrieval datasets for various two-channel retrievals, typically a VISNIR channel paired with a 1.6, 2.1, and 3.7 m spectral channel. The MOD06 forward model is derived from on a homogeneous plane-parallel cloud. In Collection 5 processing (completed in 2007 with a modified Collection 5.1 completed in 2010), pixel-level retrieval uncertainties were calculated for the following non-3-D error sources: radiometry, surface spectral albedo, and atmospheric corrections associated with model analysis uncertainties (water vapor only). The latter error source includes error correlation across the retrieval spectral channels. Estimates of uncertainty in 1 aggregated (Level-3) means were also provided assuming unity correlation between error sources for all pixels in a grid for a single day, and zero correlation of error sources from one day to the next. I n Collection 6 (expected to begin in late summer 2013) we expanded the uncertainty analysis to include: (a) scene-dependent calibration uncertainty that depends on new band and detector-specific Level 1B uncertainties, (b) new model error sources derived from the look-up tables which includes sensitivities associated with wind direction over the ocean and uncertainties in liquid water and ice effective variance, (c) thermal emission uncertainties in the 3.7 m band associated with cloud and surface temperatures that are needed to extract reflected solar radiation from the total radiance signal, (d) uncertainty in the solar spectral irradiance at 3.7 m, and

  8. Remote detection and ecological monitoring of the industrial and natural nuclei activity of radioactive elements based on passive microwave radiometry

    Science.gov (United States)

    Chistyakova, Liliya K.; Chistyakov, Vyacheslav Y.; Losev, Dmitry V.; Penin, Sergei T.; Tarabrin, Yurij K.; Yakubov, Vladimir P.; Yurjev, Igor A.

    1998-12-01

    The passive remote method of microwave radiometry and its instrumental realization for express diagnostics of radioactive elements in the atmosphere have been discussed. Analysis of the microwave radiation due to ionization and dissociation of atmospheric components interacting with radioactive elements is carried out. The photochemical processes resulting in background microwave radiation power have been discussed. As an example, the results of natural experiment of detecting the atomic hydrogen radiation in the plume of emissions of nuclear cycle processing plants have been presented.

  9. Photocarrier radiometry for predicting the degradation of electrical parameters of monocrystalline silicon (c-Si) solar cell irradiated by 100 KeV proton beams

    Energy Technology Data Exchange (ETDEWEB)

    Song, P. [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China); Liu, J.Y., E-mail: ljywlj@hit.edu.cn [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China); State Key Laboratory of Robotics and System (HIT), Harbin 150001 (China); Yuan, H.M.; Oliullah, Md.; Wang, F. [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China); Wang, Y., E-mail: songpengkevin@126.com [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China); State Key Laboratory of Robotics and System (HIT), Harbin 150001 (China)

    2016-09-15

    In this study, the monocrystalline silicon (c-Si) solar cell irradiated by 100 KeV proton beams at various fluences is investigated. A one-dimensional two-layer carrier density wave model has been developed to estimate the minority carrier lifetime of n-region and p-region of the non-irradiated c-Si solar cell by best fitting with the experimental photocarrier radiometry (PCR) signal (the amplitude and the phase). Furthermore, the lifetime is used to determine the initial defect density of the quasi-neutral region (QNR) of the solar cell to predict its I–V characteristics. The theoretically predicted short-circuit current density (J{sub sc}), and open-circuit voltage (V{sub oc}) of the non-irradiated samples are in good agreement with experiment. Then a three-region defect distribution model for the c-Si solar cell irradiated by proton beams is carried out to describe the defect density distribution according to Monte Carlo simulation results and the initial defect density of the non-irradiated sample. Finally, we find that the electrical measurements of J{sub sc} and V{sub oc} of the solar cells irradiated at different fluences using 100 KeV proton beams are consistent with the PCR predicting results.

  10. The NASA Soil Moisture Active Passive (SMAP) Mission - Algorithm and Cal/Val Activities and Synergies with SMOS and Other L-Band Missions

    Science.gov (United States)

    Njoku, Eni; Entekhabi, Dara; O'Neill, Peggy; Jackson, Tom; Kellogg, Kent; Entin, Jared

    2011-01-01

    NASA's Soil Moisture Active Passive (SMAP) mission, planned for launch in late 2014, has as its key measurement objective the frequent, global mapping of near-surface soil moisture and its freeze-thaw state. SMAP soil moisture and freeze/thaw measurements at 10 km and 3 km resolutions respectively, would enable significantly improved estimates of water, energy and carbon transfers between the land and atmosphere. Soil moisture control of these fluxes is a key factor in the performance of atmospheric models used for weather forecasts and climate projections Soil moisture measurements are also of great importance in assessing floods and for monitoring drought. In addition, observations of soil moisture and freeze/thaw timing over the boreal latitudes can help reduce uncertainties in quantifying the global carbon balance. The SMAP measurement concept utilizes an L-band radar and radiometer sharing a rotating 6-meter mesh reflector antenna. The SMAP radiometer and radar flight hardware and ground processing designs are incorporating approaches to identify and mitigate potential terrestrial radio frequency interference (RFI). The radar and radiometer instruments are planned to operate in a 680 km polar orbit, viewing the surface at a constant 40-degree incidence angle with a 1000-km swath width, providing 3-day global coverage. Data from the instruments would yield global maps of soil moisture and freeze/thaw state to be provided at 10 km and 3 km resolutions respectively, every two to three days. Plans are to provide also a radiometer-only soil moisture product at 40-km spatial resolution. This product and the underlying brightness temperatures have characteristics similar to those provided by the Soil Moisture and Ocean Salinity (SMOS) mission. As a result, there are unique opportunities for common data product development and continuity between the two missions. SMAP also has commonalities with other satellite missions having L-band radiometer and/or radar sensors

  11. Assessment of Aboveground Woody Biomass Dynamics Using Terrestrial Laser Scanner and L-Band ALOS PALSAR Data in South African Savanna

    Directory of Open Access Journals (Sweden)

    Victor Onyango Odipo

    2016-11-01

    Full Text Available The use of optical remote sensing data for savanna vegetation structure mapping is hindered by sparse and heterogeneous distribution of vegetation canopy, leading to near-similar spectral signatures among lifeforms. An additional challenge to optical sensors is the high cloud cover and unpredictable weather conditions. Longwave microwave data, with its low sensitivity to clouds addresses some of these problems, but many space borne studies are still limited by low quality structural reference data. Terrestrial laser scanning (TLS derived canopy cover and height metrics can improve aboveground biomass (AGB prediction at both plot and landscape level. To date, few studies have explored the strength of TLS for vegetation structural mapping, and particularly few focusing on savannas. In this study, we evaluate the potential of high resolution TLS-derived canopy cover and height metrics to estimate plot-level aboveground biomass, and to extrapolate to a landscape-wide biomass estimation using multi-temporal L-band Synthetic Aperture Radar (SAR within a 9 km2 area savanna in Kruger National Park (KNP. We inventoried 42 field plots in the wet season and computed AGB for each plot using site-specific allometry. Canopy cover, canopy height, and their product were regressed with plot-level AGB over the TLS-footprint, while SAR backscatter was used to model dry season biomass for the years 2007, 2008, 2009, and 2010 for the study area. The results from model validation showed a significant linear relationship between TLS-derived predictors with field biomass, p < 0.05 and adjusted R2 ranging between 0.56 for SAR to 0.93 for the TLS-derived canopy cover and height. Log-transformed AGB yielded lower errors with TLS metrics compared with non-transformed AGB. An assessment of the backscatter based on root mean square error (RMSE showed better AGB prediction with cross-polarized (RMSE = 6.6 t/ha as opposed to co-polarized data (RMSE = 6.7 t/ha, attributed to

  12. Using multi-polarization C- and L-band synthetic aperture radar to estimate biomass and soil moisture of wheat fields

    Science.gov (United States)

    Hosseini, Mehdi; McNairn, Heather

    2017-06-01

    Biomass and soil moisture are two important parameters for agricultural crop monitoring and yield estimation. In this study, the Water Cloud Model (WCM) was coupled with the Ulaby soil moisture model to estimate both biomass and soil moisture for spring wheat fields in a test site in western Canada. This study exploited both C-band (RADARSAT-2) and L-band (UAVSAR) Synthetic Aperture Radars (SARs) for this purpose. The WCM-Ulaby model was calibrated for three polarizations (HH, VV and HV). Subsequently two of these three polarizations were used as inputs to an inversion procedure, to retrieve either soil moisture or biomass without the need for any ancillary data. The model was calibrated for total canopy biomass, the biomass of only the wheat heads, as well as for different wheat growth stages. This resulted in a calibrated WCM-Ulaby model for each sensor-polarization-phenology-biomass combination. Validation of model retrievals led to promising results. RADARSAT-2 (HH-HV) estimated total wheat biomass with root mean square (RMSE) and mean average (MAE) errors of 78.834 g/m2 and 58.438 g/m2; soil moisture with errors of 0.078 m3/m3 (RMSE) and 0.065 m3/m3 (MAE) are reported. During the period of crop ripening, L-band estimates of soil moisture had accuracies of 0.064 m3/m3 (RMSE) and 0.057 m3/m3 (MAE). RADARSAT-2 (VV-HV) produced interesting results for retrieval of the biomass of the wheat heads. In this particular case, the biomass of the heads was estimated with accuracies of 38.757 g/m2 (RSME) and 33.152 g/m2 (MAE). For wider implementation this model will require additional data to strengthen the model accuracy and confirm estimation performance. Nevertheless this study encourages further research given the importance of wheat as a global commodity, the challenge of cloud cover in optical monitoring and the potential of direct estimation of the weight of heads where wheat production lies.

  13. Novel Raman Parametric Hybrid L-Band Amplifier with Four-Wave Mixing Suppressed Pump for Terabits Dense Wavelength Division Multiplexed Systems

    Directory of Open Access Journals (Sweden)

    Gaganpreet Kaur

    2016-01-01

    Full Text Available We demonstrate improved performance of parametric amplifier cascaded with Raman amplifier for gain of 54.79 dB. We report amplification of L-band using 100 × 10 Gbps Dense Wavelength Division Multiplexed (DWDM system with 25 GHz channel spacing. The gain achieved is the highest reported so far with gain flatness of 3.38 dB without using any gain flattening technique. Hybrid modulated parametric pump is used for suppressing four-wave mixing (FWM around pump region, resulting in improvement of gain flatness by 2.42 dB. The peak to peak variation of gain is achieved less than 1.6 dB. DWDM system with 16-channel, 25 GHz spaced system has been analyzed thoroughly with hybrid modulated parametric pump amplified Raman-FOPA amplifier for gain flatness and improved performance in terms of BER and Q-factor.

  14. Detection of urban environments using advanced land observing satellite phased array type L-band synthetic aperture radar data through different classification techniques

    Science.gov (United States)

    Pradhan, Biswajeet; Abdullahi, Saleh; Seddighi, Younes

    2016-07-01

    Urban environments are very dynamic phenomena, and it is essential to update urban-related information for various applications. In this regard, remotely sensed data have been utilized widely to extract and monitor urban land use and land cover changes. Particularly, synthetic aperture radar (SAR) data, due to several advantages of this technology in comparison to passive sensors, provides better performance especially in tropical regions. However, the methodological approaches for extraction of information from SAR images are another important task that needs to be considered appropriately. This paper attempts to investigate and compare the performance of different image classification techniques for extracting urban areas using advanced land observing satellite phased array type L-band synthetic aperture radar imagery. Several object- [such as rule based (RB), support vector machine (SVM) and K-nearest neighbor (K-NN)] and pixel-based [decision tree (DT)] classification techniques were implemented, and their results were compared in detail. The overall results indicated RB classification performed better than other techniques. Furthermore, DT method, due to its predefined rules, distinguished the land cover classes better than SVM and K-NN, which were based on training datasets. Nevertheless, this study confirms the potential of SAR data and object-based classification techniques in urban detection and land cover mapping.

  15. On the use of L-band multipolarization airborne SAR for surveys of crops, vineyards, and orchards in a California irrigated agricultural region

    Science.gov (United States)

    Paris, J. F.

    1985-01-01

    The airborne L-band synthetic aperture radar (SAR) collected multipolarization calibrated image data over an irrigated agricultural test site near Fresno, CA, on March 6, 1984. The conclusions of the study are as follows: (1) the effects of incidence angle on the measured backscattering coefficients could be removed by using a correction factor equal to the secant of the angle raised to the 1.4 power, (2) for this scene and time of year, the various polarization channels were highly correlated such that the use of more than one polarization added little to the ability of the radar to discriminate vegetation type or condition; the exception was barley which separated from vineyards only when a combination of like and cross polarization data were used (polarization was very useful for corn identification in fall crops), (3) an excellent separation between herbaceous vegetation (alfalfa, barley, and oats) or bare fields and trees in orchards existed in brightness was well correlated to alfalfa height or biomass, especially for the HH polarization combination, (5) vineyards exhibited a narrow range of brightnesses with no systematic effects of type or number of stakes nor of number of wires in the trellises nor of the size of the vines, (6) within the orchard classes, areal biomass characterized by basal area differences caused radar image brightness differences for small to medium trees but not for medium to large trees.

  16. Estimation of supraglacial debris thickness using a novel target decomposition on L-band polarimetric SAR images in the Tianshan Mountains

    Science.gov (United States)

    Huang, L.; Li, Zh.; Tian, B. S.; Han, H. D.; Liu, Y. Q.; Zhou, J. M.; Chen, Q.

    2017-04-01

    Debris is widely distributed in the ablation zones of mountain glaciers in the Tianshan Mountains. Supraglacial debris can accelerate or hamper glacier ablation, depending on its thickness. Thus, it plays an important role in the mass balance of debris-covered glaciers. This paper proposes a novel method to estimate supraglacial debris thickness by using L-band polarimetric synthetic aperture radar. A new model-based target decomposition is used to extract the surface scattering, double bounce, and volume scattering components. The surface scatter model uses the extended Bragg scatter, which considers the depolarization effect for rough surfaces. The volume scatter model uses elliptical scatterers, which approximate the shape of the solids in the debris. The volume scattering power is related to the dielectric properties of the debris, the radar wavelength, the incidence angle, and the elliptical scatter shape. Once the target decomposition is performed, the debris thickness can be inverted from the volume scattering power and other known parameters. Through comparison with a large number of field measurements, the inversion is shown to be reasonable, and the accuracy is validated to be ±0.12 m. Based on the inversion map in the study area, the debris thicknesses of the Koxkar glacier and its neighboring glaciers are presented and analyzed.

  17. Monitoring of Landslide Activity by Synergic Use of X-Band and L-Band InSAR in the Ceske Stredohori Mts., Czech Republic

    Science.gov (United States)

    Kadlecik, Pavel; Lazecky, Milan; Nico, Giovanni; Mascholo, Luigi; Balek, Jan; Marek, Tomas

    2016-08-01

    Neovolcanic range of the České Středohoří Mts. in northwestern Czech Republic represents the region with susceptibility to various types of landslides. Evaluation of landslide activity using InSAR can reveal valuable information both in spatial and temporal scale. On the other hand, we cannot obtain full spatial information in hilly terrain of České Středohoří Mts., another limit is the presence of dense vegetation.Two approaches are applied in our research. Firstly, we would like to delimit an area of few hundreds of square kilometers and to process as much as possible of SAR images using multitemporal InSAR techniques (PSI, Quasi-PS, SBAS) to acquire of spatiotemporal distribution of possible active landslides. Secondly, for selected localities we want to process only SAR images with suitable dates of their origin (following the dates of known landslide activity, dates of in-situ monitoring etc.) using X-band, C-band and L-band SAR data.

  18. Multiple Baseline SAR Tomography's Performance Analysis in Forest 3-D Structure Mapping with long term ALOS L band repeat pass InSAR data

    Science.gov (United States)

    Lin, Q.; Zebker, H. A.

    2013-12-01

    Acquiring accurate measurement of three-dimensional structure of forest globally , is key to improve quantitative understanding of the state and dynamics of ecosystems, particularly global carbon cycle. Moreover, forest contains a large portion of Earth's renewable natural resources. All these require an accurate, timely and cost-effective global forest vertical structure mapping. Synthetic Aperture Radar Interferometry (InSAR) remote sensing is widely acknowledged as a powerful tool to accomplish this task. Within the last decade, a number of experimental demonstrations of 3-D InSAR techniques have suggested the possibility of remotely sensing global 3-D vegetation structure. Among all the 3-D InSAR techniques, Multiple Baseline SAR Tomography( MB Tomo-SAR) is a very promising one. Multiple baseline SAR tomography exploits InSAR images acquired from different baselines and form a synthetic aperture in the vertical direction in order to retrieval vertical structure. Though theoretical predictions and several laboratory experiments show great reconstruction results, applying the method in real world condition still face a lot of challenges, including low acquisition number, irregular sample distribution, atmospheric phase noise and time decorrelation effect. In this article, we use L band ALOS spaceborne SAR data in Hawaii area to test the performance of MB TomoSAR . In the process, advanced Fourier beamforming method, atmospheric phase screen removal algorithm and time decorrelation effect are all applied. In addition, we also utilize the Landsat vegetation index and the result with other 3-D reconstruction methods as comparison to validate its performance.

  19. Large Area Mapping of Boreal Growing Stock Volume on an Annual and Multi-Temporal Level Using PALSAR L-Band Backscatter Mosaics

    Directory of Open Access Journals (Sweden)

    Sebastian Wilhelm

    2014-08-01

    Full Text Available The forests of the Russian Taiga can be described as an enormous biomass and carbon reservoir. Therefore, they are of utmost importance for the global carbon cycle. Large-area forest inventories in these mostly remote regions are associated with logistical problems and high financial efforts. Remotely-sensed data from satellite platforms may have the capability to provide such huge amounts of information. This study presents an application-oriented approach to derive aboveground growing stock volume (GSV maps using the annual large-area L-band backscatter mosaics provided by the Japan Aerospace Exploration Agency (JAXA. Furthermore, a multi-temporal map has been created to improve GSV estimation accuracy. Based on information from Russian forest inventory data, the maps were generated using the machine learning algorithm, RandomForest. The results showed the high potential of this method for an operational, large-scale and high-resolution biomass estimation over boreal forests. An RMSE from 55.2 to 63.3 m3/ha could be obtained for the annual maps. Using the multi-temporal approach, the error could be slightly reduced to 54.4 m3/ha.

  20. The Effect of Underwater Imagery Radiometry on 3d Reconstruction and Orthoimagery

    Science.gov (United States)

    Agrafiotis, P.; Drakonakis, G. I.; Georgopoulos, A.; Skarlatos, D.

    2017-02-01

    The work presented in this paper investigates the effect of the radiometry of the underwater imagery on automating the 3D reconstruction and the produced orthoimagery. Main aim is to investigate whether pre-processing of the underwater imagery improves the 3D reconstruction using automated SfM - MVS software or not. Since the processing of images either separately or in batch is a time-consuming procedure, it is critical to determine the necessity of implementing colour correction and enhancement before the SfM - MVS procedure or directly to the final orthoimage when the orthoimagery is the deliverable. Two different test sites were used to capture imagery ensuring different environmental conditions, depth and complexity. Three different image correction methods are applied: A very simple automated method using Adobe Photoshop, a developed colour correction algorithm using the CLAHE (Zuiderveld, 1994) method and an implementation of the algorithm described in Bianco et al., (2015). The produced point clouds using the initial and the corrected imagery are then being compared and evaluated.

  1. Spectro radiometry Applied to Soil Science; Espectrorradiometria Aplicada a la Ciencia del Suelo

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, T.; Chabrillat, S.; Guerrero, C.; Jimenez, M.; Lopez, F.; Palacios, A.; Pelayo, M.; Rodriguez, M.

    2012-07-01

    This work is the result of an internal course that was held in CIEMAT under the framework of activities within the ''Itinerario Formativo: Tecnicas experimentales de apoyo a la Investigacion I+D+I'', as part of the Programa de Acciones Conjuntas de OPIs (CIEMAT, INTA and IGME) financed by the Instituto Nacional de Administracion Publica (INAP). The course was aimed at researchers, technical staff and students associated to the different OPIs introducing them to spectroradiometric techniques for determining soil properties and processes and obtain a thorough insight into the compilation and applications of spectral libraries. This course was directed and organized by CIEMAT with experts specialized in the field of spectro radiometry presenting the corresponding theory and application as well as practical work carried out in the laboratory and in the field. The course is within the research lines carried out by the group Unidad de Conservacion y Recuperacion de Suelos of the Departamento de Medio Ambiente in CIEMAT. (Author)

  2. SURF III: A flexible synchrotron radiation source for radiometry and research

    Energy Technology Data Exchange (ETDEWEB)

    Arp, U., E-mail: uwe.arp@nist.gov [Synchrotron Ultraviolet Radiation Facility SURF III, National Institute of Standards and Technology, Gaithersburg, 100 Bureau Dr, MD 20899-8410 (United States); Clark, C.; Deng, L.; Faradzhev, N.; Farrell, A.; Furst, M.; Grantham, S.; Hagley, E.; Hill, S.; Lucatorto, T.; Shaw, P.-S.; Tarrio, C.; Vest, R. [Synchrotron Ultraviolet Radiation Facility SURF III, National Institute of Standards and Technology, Gaithersburg, 100 Bureau Dr, MD 20899-8410 (United States)

    2011-09-01

    The calculability of synchrotron radiation (SR) makes electron storage rings wonderful light sources for radiometry. The broadband nature of SR allows coverage of the entire spectral region from the X-ray to the far-infrared. Compact low-energy storage rings like the Synchrotron Ultraviolet Radiation Facility SURF III are perfect sources for radiometric applications, because the output spectrum can be custom-tailored to the user's needs: low current operations can simulate the solar spectrum, changes to the electron energy can address higher-order contributions of spectrometers and monochromators, and manipulation of the source size can increase the lifetime or change the radiation density. At large multi-user facilities these special operational conditions are generally not possible, since many users have to be satisfied simultaneously. At SURF III, NIST maintains one of the best SR-based infrared to soft X-ray calibration programs in the world: standard lamp calibrations, detector calibrations, and measurements of optical properties are routinely performed at SURF with great reliability and accuracy.

  3. Assessment of Satellite Ocean Colour Radiometry and Derived Geophysical Products. Chapter 6.1

    Science.gov (United States)

    Melin, Frederic; Franz, Bryan A.

    2014-01-01

    Standardization of methods to assess and assign quality metrics to satellite ocean color radiometry and derived geophysical products has become paramount with the inclusion of the marine reflectance and chlorophyll-a concentration (Chla) as essential climate variables (ECV; [1]) and the recognition that optical remote sensing of the oceans can only contribute to climate research if and when a continuous succession of satellite missions can be shown to collectively provide a consistent, long-term record with known uncertainties. In 20 years, the community has made significant advancements toward that objective, but providing a complete uncertainty budget for all products and for all conditions remains a daunting task. In the retrieval of marine water-leaving radiance from observed top-of-atmosphere radiance, the sources of uncertainties include those associated with propagation of sensor noise and radiometric calibration and characterization errors, as well as a multitude of uncertainties associated with the modeling and removal of effects from the atmosphere and sea surface. This chapter describes some common approaches used to assess quality and consistency of ocean color satellite products and reviews the current status of uncertainty quantification in the field. Its focus is on the primary ocean color product, the spectrum of marine reflectance Rrs, but uncertainties in some derived products such as the Chla or inherent optical properties (IOPs) will also be considered.

  4. Results in coastal waters with high resolution in situ spectral radiometry: The Marine Optical System ROV

    Science.gov (United States)

    Yarbrough, Mark; Feinholz, Michael; Flora, Stephanie; Houlihan, Terrance; Johnson, B. Carol; Kim, Yong S.; Murphy, Marilyn Y.; Ondrusek, Michael; Clark, Dennis

    2007-09-01

    The water-leaving spectral radiance is a basic ocean color remote sensing parameters required for the vicarious calibration. Determination of water-leaving spectral radiance using in-water radiometry requires measurements of the upwelling spectral radiance at several depths. The Marine Optical System (MOS) Remotely Operated Vehicle (ROV) is a portable, fiber-coupled, high-resolution spectroradiometer system with spectral coverage from 340 nm to 960 nm. MOS was developed at the same time as the Marine Optical Buoy (MOBY) spectrometer system and is optically identical except that it is configured as a profiling instrument. Concerns with instrument self-shadowing because of the large exterior dimensions of the MOS underwater housing led to adapting MOS and ROV technology. This system provides for measurement of the near-surface upwelled spectral radiance while minimizing the effects of shadowing. A major advantage of this configuration is that the ROV provides the capability to acquire measurements 5 cm to 10 cm below the water surface and is capable of very accurate depth control (1 cm) allowing for high vertical resolution observations within the very near-surface. We describe the integrated system and its characterization and calibration. Initial measurements and results from observations of coral reefs in Kaneohe Bay, Oahu, extremely turbid waters in the Chesapeake Bay, Maryland, and in Case 1 waters off Southern Oahu, Hawaii are presented.

  5. A particle swarm optimized kernel-based clustering method for crop mapping from multi-temporal polarimetric L-band SAR observations

    Science.gov (United States)

    Tamiminia, Haifa; Homayouni, Saeid; McNairn, Heather; Safari, Abdoreza

    2017-06-01

    Polarimetric Synthetic Aperture Radar (PolSAR) data, thanks to their specific characteristics such as high resolution, weather and daylight independence, have become a valuable source of information for environment monitoring and management. The discrimination capability of observations acquired by these sensors can be used for land cover classification and mapping. The aim of this paper is to propose an optimized kernel-based C-means clustering algorithm for agriculture crop mapping from multi-temporal PolSAR data. Firstly, several polarimetric features are extracted from preprocessed data. These features are linear polarization intensities, and several statistical and physical based decompositions such as Cloude-Pottier, Freeman-Durden and Yamaguchi techniques. Then, the kernelized version of hard and fuzzy C-means clustering algorithms are applied to these polarimetric features in order to identify crop types. The kernel function, unlike the conventional partitioning clustering algorithms, simplifies the non-spherical and non-linearly patterns of data structure, to be clustered easily. In addition, in order to enhance the results, Particle Swarm Optimization (PSO) algorithm is used to tune the kernel parameters, cluster centers and to optimize features selection. The efficiency of this method was evaluated by using multi-temporal UAVSAR L-band images acquired over an agricultural area near Winnipeg, Manitoba, Canada, during June and July in 2012. The results demonstrate more accurate crop maps using the proposed method when compared to the classical approaches, (e.g. 12% improvement in general). In addition, when the optimization technique is used, greater improvement is observed in crop classification, e.g. 5% in overall. Furthermore, a strong relationship between Freeman-Durden volume scattering component, which is related to canopy structure, and phenological growth stages is observed.

  6. GOLD MINERAL PROSPECTING USING PHASED ARRAY TYPE L-BAND SYNTHETIC APERTURE RADAR (PALSAR SATELLITE REMOTE SENSING DATA, CENTRAL GOLD BELT, MALAYSIA

    Directory of Open Access Journals (Sweden)

    A. Beiranvand Pour

    2016-06-01

    Full Text Available The Bentong-Raub Suture Zone (BRSZ of Peninsular Malaysia is one of the significant structural zones in Sundaland, Southeast Asia. It forms the boundary between the Gondwana-derived Sibumasu terrane in the west and Sukhothai arc in the east. The BRSZ is also genetically related to the sediment-hosted/orogenic gold deposits associated with the major lineaments and form-lines in the central gold belt Central Gold Belt of Peninsular Malaysia. In tropical environments, heavy tropical rainforest and intense weathering makes it impossible to map geological structures over long distances. Advances in remote sensing technology allow the application of Synthetic Aperture Radar (SAR data in geological structural analysis for tropical environments. In this investigation, the Phased Array type L-band Synthetic Aperture Radar (PALSAR satellite remote sensing data were used to analyse major geological structures in Peninsular Malaysia and provide detailed characterization of lineaments and form-lines in the BRSZ, as well as its implication for sediment-hosted/orogenic gold exploration in tropical environments. The major geological structure directions of the BRSZ are N-S, NNE-SSW, NE-SW and NW-SE, which derived from directional filtering analysis to PALSAR data. The pervasive array of N-S faults in the study area and surrounding terrain is mainly linked to the N-S trending of the Suture Zone. N-S striking lineaments are often cut by younger NE-SW and NW-SE-trending lineaments. Gold mineralized trends lineaments are associated with the intersection of N-S, NE-SW, NNW-SSE and ESE-WNW faults and curvilinear features in shearing and alteration zones. Lineament analysis on PALSAR satellite remote sensing data is a useful tool for detecting the boundary between the Gondwana-derived terranes and major geological features associated with suture zone especially for large inaccessible regions in tropical environments.

  7. Estimation of Forest Height Using Spaceborne Repeat-Pass L-Band InSAR Correlation Magnitude over the US State of Maine

    Directory of Open Access Journals (Sweden)

    Yang Lei

    2014-10-01

    Full Text Available This paper describes a novel, simple and efficient approach to estimate forest height over a wide region utilizing spaceborne repeat-pass InSAR correlation magnitude data at L-band. We start from a semi-empirical modification of the RVoG model that characterizes repeat-pass InSAR correlation with large temporal baselines (e.g., 46 days for ALOS by taking account of the temporal change effect of dielectric fluctuation and random motion of scatterers. By assuming (1 the temporal change parameters and forest backscatter profile/extinction coefficient follow some mean behavior across each inteferogram; (2 there is minimal ground scattering contribution for HV-polarization; and (3 the vertical wavenumber is small, a simplified inversion approach is developed to link the observed HV-polarized InSAR correlation magnitude to forest height and validated using ALOS/PALSAR repeat-pass observations against LVIS lidar heights over the Howland Research Forest in central Maine, US (with RMSE < 4 m at a resolution of 32 hectares. The model parameters derived from this supervised regression are used as the basis for propagating the estimates of forest height to available interferometric pairs for the entire state of Maine, thus creating a state-mosaic map of forest height. The present approach described here serves as an alternative and complementary tool for other PolInSAR inversion techniques when full-polarization data may not be available. This work is also meant to be an observational prototype for NASA’s DESDynI-R (now called NISAR and JAXA’s ALOS-2 satellite missions.

  8. Gold Mineral Prospecting Using Phased Array Type L-Band Synthetic Aperture Radar (palsar) Satellite Remote Sensing Data, Central Gold Belt, Malaysia

    Science.gov (United States)

    Beiranvand Pour, Amin; Hashim, Mazlan

    2016-06-01

    The Bentong-Raub Suture Zone (BRSZ) of Peninsular Malaysia is one of the significant structural zones in Sundaland, Southeast Asia. It forms the boundary between the Gondwana-derived Sibumasu terrane in the west and Sukhothai arc in the east. The BRSZ is also genetically related to the sediment-hosted/orogenic gold deposits associated with the major lineaments and form-lines in the central gold belt Central Gold Belt of Peninsular Malaysia. In tropical environments, heavy tropical rainforest and intense weathering makes it impossible to map geological structures over long distances. Advances in remote sensing technology allow the application of Synthetic Aperture Radar (SAR) data in geological structural analysis for tropical environments. In this investigation, the Phased Array type L-band Synthetic Aperture Radar (PALSAR) satellite remote sensing data were used to analyse major geological structures in Peninsular Malaysia and provide detailed characterization of lineaments and form-lines in the BRSZ, as well as its implication for sediment-hosted/orogenic gold exploration in tropical environments. The major geological structure directions of the BRSZ are N-S, NNE-SSW, NE-SW and NW-SE, which derived from directional filtering analysis to PALSAR data. The pervasive array of N-S faults in the study area and surrounding terrain is mainly linked to the N-S trending of the Suture Zone. N-S striking lineaments are often cut by younger NE-SW and NW-SE-trending lineaments. Gold mineralized trends lineaments are associated with the intersection of N-S, NE-SW, NNW-SSE and ESE-WNW faults and curvilinear features in shearing and alteration zones. Lineament analysis on PALSAR satellite remote sensing data is a useful tool for detecting the boundary between the Gondwana-derived terranes and major geological features associated with suture zone especially for large inaccessible regions in tropical environments.

  9. High-Resolution Soil Moisture Retrieval using SMAP-L Band Radiometer and RISAT-C band Radar Data for the Indian Subcontinent

    Science.gov (United States)

    Singh, G.; Das, N. N.; Panda, R. K.; Mohanty, B.; Entekhabi, D.; Bhattacharya, B. K.

    2016-12-01

    Soil moisture status at high resolution (1-10 km) is vital for hydrological, agricultural and hydro-metrological applications. The NASA Soil Moisture Active Passive (SMAP) mission had potential to provide reliable soil moisture estimate at finer spatial resolutions (3 km and 9 km) at the global extent, but suffered a malfunction of its radar, consequently making the SMAP mission observations only from radiometer that are of coarse spatial resolution. At present, the availability of high-resolution soil moisture product is limited, especially in developing countries like India, which greatly depends on agriculture for sustaining a huge population. Therefore, an attempt has been made in the reported study to combine the C-band synthetic aperture radar (SAR) data from Radar Imaging Satellite (RISAT) of the Indian Space Research Organization (ISRO) with the SMAP mission L-band radiometer data to obtain high-resolution (1 km and 3 km) soil moisture estimates. In this study, a downscaling approach (Active-Passive Algorithm) implemented for the SMAP mission was used to disaggregate the SMAP radiometer brightness temperature (Tb) using the fine resolution SAR backscatter (σ0) from RISAT. The downscaled high-resolution Tb was then subjected to tau-omega model in conjunction with high-resolution ancillary data to retrieve soil moisture at 1 and 3 km scale. The retrieved high-resolution soil moisture estimates were then validated with ground based soil moisture measurement under different hydro-climatic regions of India. Initial results show tremendous potential and reasonable accuracy for the retrieved soil moisture at 1 km and 3 km. It is expected that ISRO will implement this approach to produce high-resolution soil moisture estimates for the Indian subcontinent.

  10. Classifying Complex Mountainous Forests with L-Band SAR and Landsat Data Integration: A Comparison among Different Machine Learning Methods in the Hyrcanian Forest

    Directory of Open Access Journals (Sweden)

    Sara Attarchi

    2014-04-01

    Full Text Available Forest environment classification in mountain regions based on single-sensor remote sensing approaches is hindered by forest complexity and topographic effects. Temperate broadleaf forests in western Asia such as the Hyrcanian forest in northern Iran have already suffered from intense anthropogenic activities. In those regions, forests mainly extend in rough terrain and comprise different stand structures, which are difficult to discriminate. This paper explores the joint analysis of Landsat7/ETM+, L-band SAR and their derived parameters and the effect of terrain corrections to overcome the challenges of discriminating forest stand age classes in mountain regions. We also verified the performances of three machine learning methods which have recently shown promising results using multisource data; support vector machines (SVM, neural networks (NN, random forest (RF and one traditional classifier (i.e., maximum likelihood classification (MLC as a benchmark. The non-topographically corrected ETM+ data failed to differentiate among different forest stand age classes (average classification accuracy (OA = 65%. This confirms the need to reduce relief effects prior data classification in mountain regions. SAR backscattering alone cannot properly differentiate among different forest stand age classes (OA = 62%. However, textures and PolSAR features are very efficient for the separation of forest classes (OA = 82%. The highest classification accuracy was achieved by the joint usage of SAR and ETM+ (OA = 86%. However, this shows a slight improvement compared to the ETM+ classification (OA = 84%. The machine learning classifiers proved t o be more robust and accurate compared to MLC. SVM and RF statistically produced better classification results than NN in the exploitation of the considered multi-source data.

  11. Study of spatial and temporal characteristics of L-band scintillations over the Indian low-latitude region and their possible effects on GPS navigation

    Directory of Open Access Journals (Sweden)

    P. V. S. Rama Rao

    2006-07-01

    Full Text Available The scintillation data (S4-index at the L-band frequency of 1.575GHz, recorded from a total of 18 GPS receivers installed at different locations in India under the GAGAN project, have provided us with a unique opportunity, for the first time in the Indian region, to make a simultaneous study of spatio-temporal and intensity characteristics of the trans-ionospheric scintillations during the 18-month, low sunspot activity (LSSA period from January 2004 to July 2005. During this period, the occurrence of scintillations is found to be maximum around the pre-midnight hours of equinox months, with very little activity during the post-midnight hours. No significant scintillation activity is observed during the summer and winter months of the period of observation. The intensity (S4 index of the scintillation activity is stronger around the equatorial ionization anomaly (EIA region in the geographic latitude range of 15° to 25° N in the Indian region. These scintillations are often accompanied by the TEC depletions with durations ranging from 5 to 25 min and magnitudes from 5 to 15 TEC units which affect the positional accuracy of the GPS by 1 to 3 m. Further, during the intense scintillation events (S4>0.45≈10 dB, the GPS receiver is found to lose its lock for a short duration of 1 to 4 min, increasing the error bounds effecting the integrity of the SBAS operation. During the present period of study, a total of 395 loss of lock events are observed in the Indian EIA region; this number is likely to increase during the high sunspot activity (HSSA period, creating more adverse conditions for the trans-ionospheric communications and the GPS-based navigation systems.

  12. Estimating the Above-Ground Biomass in Miombo Savanna Woodlands (Mozambique, East Africa Using L-Band Synthetic Aperture Radar Data

    Directory of Open Access Journals (Sweden)

    Maria J. Vasconcelos

    2013-03-01

    Full Text Available The quantification of forest above-ground biomass (AGB is important for such broader applications as decision making, forest management, carbon (C stock change assessment and scientific applications, such as C cycle modeling. However, there is a great uncertainty related to the estimation of forest AGB, especially in the tropics. The main goal of this study was to test a combination of field data and Advanced Land Observing Satellite (ALOS Phased Array L-band Synthetic Aperture Radar (PALSAR backscatter intensity data to reduce the uncertainty in the estimation of forest AGB in the Miombo savanna woodlands of Mozambique (East Africa. A machine learning algorithm, based on bagging stochastic gradient boosting (BagSGB, was used to model forest AGB as a function of ALOS PALSAR Fine Beam Dual (FBD backscatter intensity metrics. The application of this method resulted in a coefficient of correlation (R between observed and predicted (10-fold cross-validation forest AGB values of 0.95 and a root mean square error of 5.03 Mg·ha−1. However, as a consequence of using bootstrap samples in combination with a cross validation procedure, some bias may have been introduced, and the reported cross validation statistics could be overoptimistic. Therefore and as a consequence of the BagSGB model, a measure of prediction variability (coefficient of variation on a pixel-by-pixel basis was also produced, with values ranging from 10 to 119% (mean = 25% across the study area. It provides additional and complementary information regarding the spatial distribution of the error resulting from the application of the fitted model to new observations.

  13. FOREWORD: The 11th International Conference on New Developments and Applications in Optical Radiometry (NEWRAD 2011) The 11th International Conference on New Developments and Applications in Optical Radiometry (NEWRAD 2011)

    Science.gov (United States)

    Ikonen, Erkki

    2012-04-01

    The NEWRAD Conferences bring together people from the National Metrology Institutes and the principal user communities of advanced radiometry, including Earth observation and climate communities. The eleventh NEWRAD Conference was held in Hawaii, USA, between 18 and 23 September 2011. The Conference was organized by the Moss Landing Marine Laboratories, Maui, at the Grand Wailea resort. The organization was a joint Pacific effort, where handling of the submitted abstracts and website administration were taken care of by KRISS (Korea Research Institute of Standards and Science) and NIST (National Institute of Standards and Technology), respectively. As satellite activities, the working groups of CCPR (Consultative Committee for Photometry and Radiometry) and the MOBY project arranged meetings at the Grand Wailea before and after the Conference. The Conference was attended by more than a hundred registered participants from five continents, which matches the number of foreign participants of NEWRAD 2008 at KRISS. A total of 153 papers were presented at NEWRAD 2011, of which 10 were invited talks and 100 posters. The poster sessions during the extended lunch breaks created a stimulating atmosphere for lively discussions and exchange of ideas. A technical visit was arranged to the astronomical observatory at the summit of Haleakala volcano, where some of the world's most advanced telescope systems are operated. The relaxed Hawaiian life, nearby ocean and excellent weather conditions gave an unprecedented flavour to this NEWRAD Conference. The abstract classification system was renewed for NEWRAD 2011, consisting of the following categories: EAO: Earth observation SSR: Solar/stellar radiometry SBR: Source-based radiometry OPM: Optical properties of materials/components DBR: Detector-based radiometry SFR: Single/few-photon radiometry. The new system worked well for refereeing and program purposes. Conference proceedings containing two-page extended abstracts were

  14. Estimation of the Tropospheric Wet Delay of Radio waves Based on a Model and Microwave Radiometry Data

    Science.gov (United States)

    Gotyur, I. A.; Karavaev, D. M.; Krasnov, V. M.; Kuleshov, Y. V.; Lebedev, A. B.; Meshkov, A. N.; Shchukin, G. G.

    2017-08-01

    By combining the global atmospheric model NRLMSISE-00 and the humidity model of the Northern hemisphere (GOST 26352-84), we developed a model for calculation of the dielectric permittivity of the atmosphere along the radio-wave propagation path. Microwave radiometry data were used to test the model. The difference between the model and measured values of the zenith wet delay of radio waves in the troposphere averaged 1-3 cm for a r.m.s. deviation of 4.7-5.3 cm.

  15. Monitoring Wetlands Ecosystems Using ALOS PALSAR (L-Band, HV Supplemented by Optical Data: A Case Study of Biebrza Wetlands in Northeast Poland

    Directory of Open Access Journals (Sweden)

    Katarzyna Dabrowska-Zielinska

    2014-02-01

    Full Text Available The aim of the study was to elaborate the remote sensing methods for monitoring wetlands ecosystems. The investigation was carried out during the years 2002–2010 in the Biebrza Wetlands. The meteorological conditions at the test site varied from extremely dry to very wet. The authors propose applying satellite remote sensing data acquired in the optical and microwave spectrums to classify wetlands vegetation habitats for the assessment of vegetation changes and estimation of wetlands’ biophysical properties to improve monitoring of these unique, very often physically impenetrable, areas. The backscattering coefficients (σ° calculated from ALOS PALSAR FBD (Advanced Land Observing Satellite, Phased Array type L-band Synthetic Aperture Radar, Fine Beam Dual Mode images registered at cross polarization HV on 12 May 2008 were used to classify the main wetland communities using ground truth observations and the visual interpretation method. As a result, the σ° values were distributed among the six wetlands’ vegetation classes: scrubs, sedges-scrubs, sedges, reeds, sedges-reeds, rushes, and the areas of each community and changes were assessed. Also, the change in the biophysical variable as Leaf Area Index (LAI is described using the information from PALSAR data. Strong linear relationships have been found between LAI and σ° derived for particular wetland classes, which then were applied to elaborate the maps of LAI distribution. The other variables used to characterize the changing environmental conditions are: surface temperature (Ts calculated from NOAA AVHRR (National Oceanic and Atmospheric Administration Advanced Very High Resolution Radiometer and Normalized Difference Vegetation Index (NDVI from ENVISAT MERIS (ENVIronmental SATellite MEdium Resolution Imaging Spectrometer. Differences of almost double Ts between “dry” and “wet” years were noticed that reflect observed weather conditions. The highest values of NDVI occurred

  16. Random forest wetland classification using ALOS-2 L-band, RADARSAT-2 C-band, and TerraSAR-X imagery

    Science.gov (United States)

    Mahdianpari, Masoud; Salehi, Bahram; Mohammadimanesh, Fariba; Motagh, Mahdi

    2017-08-01

    Wetlands are important ecosystems around the world, although they are degraded due both to anthropogenic and natural process. Newfoundland is among the richest Canadian province in terms of different wetland classes. Herbaceous wetlands cover extensive areas of the Avalon Peninsula, which are the habitat of a number of animal and plant species. In this study, a novel hierarchical object-based Random Forest (RF) classification approach is proposed for discriminating between different wetland classes in a sub-region located in the north eastern portion of the Avalon Peninsula. Particularly, multi-polarization and multi-frequency SAR data, including X-band TerraSAR-X single polarized (HH), L-band ALOS-2 dual polarized (HH/HV), and C-band RADARSAT-2 fully polarized images, were applied in different classification levels. First, a SAR backscatter analysis of different land cover types was performed by training data and used in Level-I classification to separate water from non-water classes. This was followed by Level-II classification, wherein the water class was further divided into shallow- and deep-water classes, and the non-water class was partitioned into herbaceous and non-herbaceous classes. In Level-III classification, the herbaceous class was further divided into bog, fen, and marsh classes, while the non-herbaceous class was subsequently partitioned into urban, upland, and swamp classes. In Level-II and -III classifications, different polarimetric decomposition approaches, including Cloude-Pottier, Freeman-Durden, Yamaguchi decompositions, and Kennaugh matrix elements were extracted to aid the RF classifier. The overall accuracy and kappa coefficient were determined in each classification level for evaluating the classification results. The importance of input features was also determined using the variable importance obtained by RF. It was found that the Kennaugh matrix elements, Yamaguchi, and Freeman-Durden decompositions were the most important parameters

  17. Spectrally resolved modulated infrared radiometry of photothermal, photocarrier, and photoluminescence response of CdSe crystals: Determination of optical, thermal, and electronic transport parameters

    Energy Technology Data Exchange (ETDEWEB)

    Pawlak, M., E-mail: mpawlak@fizyka.umk.pl [Institute of Physics, Nicolaus Copernicus University, Grudziadzka, 87-100 Torun (Poland); Chirtoc, M.; Horny, N. [Multiscale Thermophysics Lab. GRESPI, Université de Reims Champagne Ardenne URCA, Moulin de la Housse BP 1039, 51687 Reims (France); Pelzl, J. [Institut für Experimentalphysik VI, Ruhr-Universität Bochum, 44801 Bochum (Germany)

    2016-03-28

    Spectrally resolved modulated infrared radiometry (SR-MIRR) with super-band gap photoexcitation is introduced as a self-consistent method for semiconductor characterization (CdSe crystals grown under different conditions). Starting from a theoretical model combining the contributions of the photothermal (PT) and photocarrier (PC) signal components, an expression is derived for the thermal-to-plasma wave transition frequency f{sub tc} which is found to be wavelength-independent. The deviation of the PC component from the model at high frequency is quantitatively explained by a quasi-continuous distribution of carrier recombination lifetimes. The integral, broad frequency band (0.1 Hz–1 MHz) MIRR measurements simultaneously yielded the thermal diffusivity a, the effective IR optical absorption coefficient β{sub eff}, and the bulk carrier lifetime τ{sub c}. Spectrally resolved frequency scans were conducted with interchangeable IR bandpass filters (2.2–11.3 μm) in front of the detector. The perfect spectral match of the PT and PC components is the direct experimental evidence of the key assumption in MIRR that de-exciting carriers are equivalent to blackbody (Planck) radiators. The exploitation of the β spectrum measured by MIRR allowed determining the background (equilibrium) free carrier concentration n{sub 0}. At the shortest wavelength (3.3 μm), the photoluminescence (PL) component supersedes the PC one and has distinct features. The average sample temperature influences the PC component but not the PT one.

  18. FOREWORD: The 9th International Conference on New Developments and Applications in Optical Radiometry (NEWRAD 2005)

    Science.gov (United States)

    Gröbner, Julian; Ikonen, Erkki

    2006-04-01

    The ninth NEWRAD Conference was held in Davos, Switzerland, between 16 and 19 October 2005. The Conference was organized by the Physikalisch- Meteorologisches Observatorium Davos, World Radiation Center (PMOD/WRC). The Conference was attended by 169 participants from five continents, which makes it the largest NEWRAD conference to date. The NEWRAD Conference followed the 10th international pyrheliometer comparison IPC-X, which is held every five years at PMOD/WRC. In addition, the 6th UVnet Workshop was held in connection with the NEWRAD Conference on 20 and 21 October. The NEWRAD Conference brings together people from the national metrology institutes and the principal user communities of advanced radiometry, including meteorological and remote-sensing communities. A total of 153 papers were presented, of which eight were keynote or invited talks, and there were 105 posters. Coffee breaks and extended lunch breaks created a stimulating atmosphere for lively discussions and exchange of ideas. Notwithstanding the excellent weather and the tantalizing surroundings of Davos, most participants managed to attend the poster sessions, which were organized during the noon lunch breaks. The conference proceedings can be downloaded from the NEWRAD 2005 website at www.pmodwrc.ch/newrad2005/pdfabstracts/Newrad_Proceedings_2005_A7.pdf. For this and future conferences, a new policy was adopted to publish a selected number of contributions in a special issue of Metrologia. The purpose of the change is to increase the overall impact of this journal. The NEWRAD Scientific Committee invited the contributions to this special issue on the basis of the quality of the extended abstracts, and later the submitted manuscripts were reviewed by the Committee members. On behalf of the Scientific Committee and all the participants, one of us (EI) wishes to thank Werner Schmutz and his colleagues from the Local Organizing Committee for arranging an excellent conference in the beautiful city of

  19. Remote Sensing of Tropical Cyclones: Applications from Microwave Radiometry and Global Navigation Satellite System Reflectometry

    Science.gov (United States)

    Morris, Mary

    Tropical cyclones (TCs) are important to observe, especially over the course of their lifetimes, most of which is spent over the ocean. Very few in situ observations are available. Remote sensing has afforded researchers and forecasters the ability to observe and understand TCs better. Every remote sensing platform used to observe TCs has benefits and disadvantages. Some remote sensing instruments are more sensitive to clouds, precipitation, and other atmospheric constituents. Some remote sensing instruments are insensitive to the atmosphere, which allows for unobstructed observations of the ocean surface. Observations of the ocean surface, either of surface roughness or emission can be used to estimate ocean surface wind speed. Estimates of surface wind speed can help determine the intensity, structure, and destructive potential of TCs. While there are many methods by which TCs are observed, this thesis focuses on two main types of remote sensing techniques: passive microwave radiometry and Global Navigation Satellite System reflectometry (GNSS-R). First, we develop and apply a rain rate and ocean surface wind speed retrieval algorithm for the Hurricane Imaging Radiometer (HIRAD). HIRAD, an airborne passive microwave radiometer, operates at C-band frequencies, and is sensitive to rain absorption and emission, as well as ocean surface emission. Motivated by the unique observing geometry and high gradient rain scenes that HIRAD typically observes, a more robust rain rate and wind speed retrieval algorithm is developed. HIRAD's observing geometry must be accounted for in the forward model and retrieval algorithm, if high rain gradients are to be estimated from HIRAD's observations, with the ultimate goal of improving surface wind speed estimation. Lastly, TC science data products are developed for the Cyclone Global Navigation Satellite System (CYGNSS). The CYGNSS constellation employs GNSS-R techniques to estimate ocean surface wind speed in all precipitating

  20. Foreword to the Special Issue on the 11th Specialist Meeting on Microwave Radiometry and Remote Sensing Applications (MicroRad 2010)

    Science.gov (United States)

    Le Vine, David M; Jackson, Thomas J.; Kim, Edward J.; Lang, Roger H.

    2011-01-01

    The Specialist Meeting on Microwave Radiometry and Remote Sensing of the Environment (MicroRad 2010) was held in Washington, DC from March 1 to 4, 2010. The objective of MicroRad 2010 was to provide an open forum to report and discuss recent advances in the field of microwave radiometry, particularly with application to remote sensing of the environment. The meeting was highly successful, with more than 200 registrations representing 48 countries. There were 80 oral presentations and more than 100 posters. MicroRad has become a venue for the microwave radiometry community to present new research results, instrument designs, and applications to an audience that is conversant in these issues. The meeting was divided into 16 sessions (listed in order of presentation): 1) SMOS Mission; 2) Future Passive Microwave Remote Sensing Missions; 3) Theory and Physical Principles of Electromagnetic Models; 4) Field Experiment Results; 5) Soil Moisture and Vegetation; 6) Snow and Cryosphere; 7) Passive/Active Microwave Remote Sensing Synergy; 8) Oceans; 9) Atmospheric Sounding and Assimilation; 10) Clouds and Precipitation; 11) Instruments and Advanced Techniques I; 12) Instruments and Advanced Techniques II; 13) Cross Calibration of Satellite Radiometers; 14) Calibration Theory and Methodology; 15) New Technologies for Microwave Radiometry; 16) Radio Frequency Interference.

  1. Opto-thermal transient emission radiometry for rapid, non-destructive and non-contact determination of hydration and hydration depth profile in the skin of a grape

    NARCIS (Netherlands)

    Guo, X.; Bicanic, D.D.; Keijser, K.; Imhof, R.

    2003-01-01

    .The concept of optothermal transient emission radiometry at a wavelength of 2.94 µm was applied to non-destructively determine the level of hydration and the profile of hydration in the skin of intact fresh grapes taken from top and bottom sections of the same bunch.

  2. Forest above ground biomass estimation and forest/non-forest classification for Odisha, India, using L-band Synthetic Aperture Radar (SAR) data

    Science.gov (United States)

    Suresh, M.; Kiran Chand, T. R.; Fararoda, R.; Jha, C. S.; Dadhwal, V. K.

    2014-11-01

    Tropical forests contribute to approximately 40 % of the total carbon found in terrestrial biomass. In this context, forest/non-forest classification and estimation of forest above ground biomass over tropical regions are very important and relevant in understanding the contribution of tropical forests in global biogeochemical cycles, especially in terms of carbon pools and fluxes. Information on the spatio-temporal biomass distribution acts as a key input to Reducing Emissions from Deforestation and forest Degradation Plus (REDD+) action plans. This necessitates precise and reliable methods to estimate forest biomass and to reduce uncertainties in existing biomass quantification scenarios. The use of backscatter information from a host of allweather capable Synthetic Aperture Radar (SAR) systems during the recent past has demonstrated the potential of SAR data in forest above ground biomass estimation and forest / nonforest classification. In the present study, Advanced Land Observing Satellite (ALOS) / Phased Array L-band Synthetic Aperture Radar (PALSAR) data along with field inventory data have been used in forest above ground biomass estimation and forest / non-forest classification over Odisha state, India. The ALOSPALSAR 50 m spatial resolution orthorectified and radiometrically corrected HH/HV dual polarization data (digital numbers) for the year 2010 were converted to backscattering coefficient images (Schimada et al., 2009). The tree level measurements collected during field inventory (2009-'10) on Girth at Breast Height (GBH at 1.3 m above ground) and height of all individual trees at plot (plot size 0.1 ha) level were converted to biomass density using species specific allometric equations and wood densities. The field inventory based biomass estimations were empirically integrated with ALOS-PALSAR backscatter coefficients to derive spatial forest above ground biomass estimates for the study area. Further, The Support Vector Machines (SVM) based Radial

  3. Combined observations of Arctic sea ice with near-coincident colocated X-band, C-band, and L-band SAR satellite remote sensing and helicopter-borne measurements

    Science.gov (United States)

    Johansson, A. M.; King, J. A.; Doulgeris, A. P.; Gerland, S.; Singha, S.; Spreen, G.; Busche, T.

    2017-01-01

    In this study, we compare colocated near-coincident X-, C-, and L-band fully polarimetry SAR satellite images with helicopter-borne ice thickness measurements acquired during the Norwegian Young sea ICE 2015 (N-ICE2015) expedition in the region of the Arctic Ocean north of Svalbard in April 2015. The air-borne surveys provide near-coincident snow plus ice thickness, surface roughness data, and photographs. This unique data set allows us to investigate how the different frequencies can complement one another for sea ice studies, but also to raise awareness of limitations. X-band and L-band satellite scenes were shown to be a useful complement to the standard SAR frequency for sea ice monitoring (C-band) for lead ice and newly formed sea ice identification. This may be in part be due to the frequency but also the high spatial resolution of these sensors. We found a relatively low correlation between snow plus ice thickness and surface roughness. Therefore, in our dataset ice thickness cannot directly be observed by SAR which has important implications for operational ice charting based on automatic segmentation.

  4. Simultaneous measurement of temperature and emissivity of lunar regolith simulant using dual-channel millimeter-wave radiometry

    Energy Technology Data Exchange (ETDEWEB)

    McCloy, J. S.; Sundaram, S. K.; Matyas, J.; Woskov, P. P.

    2011-01-01

    Millimeter wave (MMW) radiometry can be used for simultaneous measurement of emissivity and temperature of materials under extreme environments (high temperature, pressure, and corrosive environments). The state-of-the-art dual channel MMW passive radiometer with active interferometric capabilities at 137 GHz described here allows for radiometric measurements of sample temperature and emissivity up to at least 1600 °C with simultaneous measurement of sample surface dynamics. These capabilities have been used to demonstrate dynamic measurement of melting of powders of simulated lunar regolith and static measurement of emissivity of solid samples. The paper presents the theoretical background and basis for the dual-receiver system, describes the hardware in detail, and demonstrates the data analysis. Post-experiment analysis of emissivity versus temperature allows further extraction from the radiometric data of millimeter wave viewing beam coupling factors, which provide corroboratory evidence to the interferometric data of the process dynamics observed. Finally, these results show the promise of the MMW system for extracting quantitative and qualitative process parameters for industrial processes and access to real-time dynamics of materials behavior in extreme environments.

  5. An L-band interferometric synthetic aperture radar study on the Ganos section of the north Anatolian fault zone between 2007 and 2011: Evidence for along strike segmentation and creep in a shallow fault patch.

    Science.gov (United States)

    de Michele, Marcello; Ergintav, Semih; Aochi, Hideo; Raucoules, Daniel

    2017-01-01

    We utilize L-band interferometric synthetic aperture radar (InSAR) data in this study to retrieve a ground velocity map for the near field of the Ganos section of the north Anatolian fault (NAF) zone. The segmentation and creep distribution of this section, which last ruptured in 1912 to generate a moment magnitude (Mw)7.3 earthquake, remains incompletely understood. Because InSAR processing removes the mean orbital plane, we do not investigate large scale displacements due to regional tectonics in this study as these can be determined using global positioning system (GPS) data, instead concentrating on the close-to-the-fault displacement field. Our aim is to determine whether, or not, it is possible to retrieve robust near field velocity maps from stacking L-band interferograms, combining both single and dual polarization SAR data. In addition, we discuss whether a crustal velocity map can be used to complement GPS observations in an attempt to discriminate the present-day surface displacement of the Ganos fault (GF) across multiple segments. Finally, we characterize the spatial distribution of creep on shallow patches along multiple along-strike segments at shallow depths. Our results suggest the presence of fault segmentation along strike as well as creep on the shallow part of the fault (i.e. the existence of a shallow creeping patch) or the presence of a smoother section on the fault plane. Data imply a heterogeneous fault plane with more complex mechanics than previously thought. Because this study improves our knowledge of the mechanisms underlying the GF, our results have implications for local seismic hazard assessment.

  6. Analyse du potentiel de la radiometrie infrarouge thermique pour la caracterisation des nuages de glace en Arctique

    Science.gov (United States)

    Blanchard, Yann

    An important goal, within the context of improving climate change modelling, is to enhance our understanding of aerosols and their radiative effects (notably their indirect impact as cloud condensation nuclei). The cloud optical depth (COD) and average ice particle size of thin ice clouds (TICs) are two key parameters whose variations could strongly influence radiative effects and climate in the Arctic environment. Our objective was to assess the potential of using multi-band thermal radiance measurements of zenith sky radiance for retrieving COD and effective particle diameter (Deff) of TICs in the Arctic. We analyzed and quantified the sensitivity of thermal radiance on many parameters, such as COD, Deff, water vapor content, cloud bottom altitude and thickness, size distribution and shape. Using the sensitivity of IRT to COD and Deff, the developed retrieval technique is validated in comparison with retrievals from LIDAR and RADAR. Retrievals were applied to ground-based thermal infrared data acquired for 100 TICs at the high-Arctic PEARL observatory in Eureka, Nunavut, Canada and were validated using AHSRL LIDAR and MMCR RADAR data. The results of the retrieval method were used to successfully extract COD up to values of 3 and to separate TICs into two types : TIC1 characterized by small crystals (Deff TIC2 by large ice crystals (Deff > 30 mum, up to 300 mum). Inversions were performed across two polar winters. At the end of this research, we proposed different alternatives to apply our methodology in the Arctic. Keywords : Remote sensing ; ice clouds ; thermal infrared multi-band radiometry ; Arctic.

  7. IceCube: CubeSat 883-GHz Radiometry for Future Ice Cloud Remote Sensing

    Science.gov (United States)

    Wu, Dongliang; Esper, Jaime; Ehsan, Negar; Johnson, Thomas; Mast, William; Piepmeier, Jeffery R.; Racette, Paul E.

    2015-01-01

    Ice clouds play a key role in the Earth's radiation budget, mostly through their strong regulation of infrared radiation exchange. Accurate observations of global cloud ice and its distribution have been a challenge from space, and require good instrument sensitivities to both cloud mass and microphysical properties. Despite great advances from recent spaceborne radar and passive sensors, uncertainty of current ice water path (IWP) measurements is still not better than a factor of 2. Submillimeter (submm) wave remote sensing offers great potential for improving cloud ice measurements, with simultaneous retrievals of cloud ice and its microphysical properties. The IceCube project is to enable this cloud ice remote sensing capability in future missions, by raising 874-GHz receiver technology TRL from 5 to 7 in a spaceflight demonstration on 3-U CubeSat in a low Earth orbit (LEO) environment. The NASAs Goddard Space Flight Center (GSFC) is partnering with Virginia Diodes Inc (VDI) on the 874-GHz receiver through its Vector Network Analyzer (VNA) extender module product line, to develop an instrument with precision of 0.2 K over 1-second integration and accuracy of 2.0 K or better. IceCube is scheduled to launch to and subsequent release from the International Space Station (ISS) in mid-2016 for nominal operation of 28 plus days. We will present the updated design of the payload and spacecraft systems, as well as the operation concept. We will also show the simulated 874-GHz radiances from the ISS orbits and cloud scattering signals as expected for the IceCube cloud radiometer.

  8. Slope Superficial Displacement Monitoring by Small Baseline SAR Interferometry Using Data from L-band ALOS PALSAR and X-band TerraSAR: A Case Study of Hong Kong, China

    Directory of Open Access Journals (Sweden)

    Fulong Chen

    2014-02-01

    Full Text Available Owing to the development of spaceborne synthetic aperture radar (SAR platforms, and in particular the increase in the availability of multi-source (multi-band and multi-resolution data, it is now feasible to design a surface displacement monitoring application using multi-temporal SAR interferometry (MT-InSAR. Landslides have high socio-economic impacts in many countries because of potential geo-hazards and heavy casualties. In this study, taking into account the merits of ALOS PALSAR (L-band, good coherence preservation and TerraSAR (X-band, high resolution and short revisit times data, we applied an improved small baseline InSAR (SB-InSAR with 3-D phase unwrapping approach, to monitor slope superficial displacement in Hong Kong, China, a mountainous subtropical zone city influenced by over-urbanization and heavy monsoonal rains. Results revealed that the synergistic use of PALSAR and TerraSAR data produces different outcomes in relation to data reliability and spatial-temporal resolution, and hence could be of significant value for a comprehensive understanding and monitoring of unstable slopes.

  9. Study and evaluation of radiometry in photo therapeutic treatment of the neonatal hyperbilirubinaemia; Estudo e avaliacao da radiometria no tratamento fototerapico da hiperbilirrubinemia neonatal

    Energy Technology Data Exchange (ETDEWEB)

    Caly, Jose Pucci

    2009-07-01

    Phototherapy is a procedure established more than 50 years ago in the treatment of the newborn jaundice. However there is no a standard method to quantify the photo therapeutic dose in published clinical studies, hindering the comparison of previous studies on photo therapeutic effectiveness, as well as the establishment of safe and predictable doses. The photo therapeutic dose depends, among other factors, on the effective mean irradiance produced by the photo therapeutic unit. There are no standard procedures, however, neither to quantify the effective irradiance, nor to estimate the mean effective irradiance. As a consequence, large measurement variations in a same photo therapeutic unit are observed using different commercially available radiometers, as a consequence of the vast diversity of spectral responsivities of the instruments. An objective of this work was to adapt and to apply the bases of the wideband ultraviolet radiometry to quantify the available irradiance from photo therapeutic units, establishing procedures that allow us to compare measured irradiances from different sources, using radiometers presenting different spectral responsivities. Another objective was to characterize samples of photo therapeutic units commonly used, focusing the problem of the estimation of the effective mean irradiance from photo therapeutic units, proposing a method to estimate of the effective irradiance from focused sources. The experimental results allow us to conclude that it is not only necessary to standardize the photo therapeutic radiometry, but also the method of estimation of the effective mean irradiance. (author)

  10. Development and application of cryogenic radiometry with hard X-rays; Entwicklung und Anwendung der Kryoradiometrie mit harter Roentgenstrahlung

    Energy Technology Data Exchange (ETDEWEB)

    Gerlach, Martin

    2008-06-06

    To establish cryogenic radiometry with hard X-ray radiation for photon energies of up to 60 keV, a novel type of cavity absorber had to be developed for the cryogenic radiometer SYRES I, which is deployed by the Physikalisch-Technische Bundesanstalt (PTB) as primary standard detector at the electron storage ring BESSY II. This new type of cavity absorber allows for the complete absorption of hard X-ray radiation in combination with an appropriate sensitivity and an adequate time constant for the measurement of synchrotron radiation at BESSY II. As the process of fabrication of different types of absorbers is very time-consuming, the interaction of hard X-ray radiation with different absorber materials and geometries was studied intensively by using the Monte Carlo simulation code Geant4. The accuracy of the simulations was verified comparing them to scattering experiments performed at a wavelength shifter beamline at BESSY II with a calibrated energy dispersive detector. It was shown that Geant4 describes the photo-effect, including fluorescence as well as Compton- and Rayleigh scattering, with high accuracy. The simulations and experiments resulted in a cavity absorber with a gold base 550 {mu}m in thickness and a cylindrical shell made of copper 90 {mu}m in thickness to reduce losses caused by fluorescence and scattered radiation. Monochromatized synchrotron radiation of high spectral purity was then used to calibrate semiconductor photodiodes, which can be used as compact and inexpensive secondary standard detectors, against a cryogenic radiometer, covering the entire photon energy range of three beamlines from 50 eV to 60 keV with relative uncertainties of less than 0.5 %. Furthermore the spatial homogeneity of the spectral responsivity, the transmittance and the linearity of the photodiodes was investigated. Through a direct comparison of the free-air ionization chamber PK100, a primary detector standard of PTB used in dosimetry, and the cryogenic radiometer

  11. Radiometry - The data

    Science.gov (United States)

    Bahm, R. J.

    The types of solar radiation monitoring programs, equipment, data dissemination networks, and archival storage in the U.S. are described. Measurements have been taken since the 19th century, and data are now gathered at ground stations using pyrheliometers and pyranometers, as well as beam trackers. The data are employed in testing and designing flat plate collectors, photovoltaics, and buildings which will have a solar gain component. Numerical models are being used and are under development to transpose the measurements for a horizontal surface to nonhorizontal surfaces, to account for the direct, diffuse, and reflected components of the radiation, and to assay the spectral components' strengths. Several laboratories, schools, and data centers have been established and handbooks on interpreting the solar data have been published. The U.S. presently has a 38-station solar radiation measuring network and the SOLMET data base contains computerized 23 years of solar radiation data for a number of sites. Satellite global radiation data are now available, together with daily solar radiation forecasts.

  12. Field Guide to Radiometry

    CERN Document Server

    Grant, Barbara

    2011-01-01

    Written from a systems engineering perspective, this SPIE Field Guide covers topics in optical radiation propagation, material properties, sources, detectors, system components, measurement, calibration, and photometry. The book's organization and extensive collection of diagrams, tables, and graphs will enable the reader to efficiently identify and apply relevant information to radiometric problems arising amid the demands of today's fast-paced technical environment.

  13. Variable- and fixed-point blackbody sources developed at VNIIOFI for precision measurements in radiometry and thermometry within 100K-3500K temperature range

    Science.gov (United States)

    Sapritsky, V. I.; Khlevnoy, B. B.; Ogarev, S. A.; Privalsky, V. E.; Samoylov, M. L.; Sakharov, M. K.; Bourdakin, A. A.; Panfilov, A. S.

    2006-09-01

    The demands of modern radiation thermometry and radiometry are being satisfied by a large variety of high-precision unique BB sources (both fixed-point and variable temperature) designed for a wide range of temperature from 100 K to 3500 K. The paper contains a detailed review of low-, medium- and high-temperature precision blackbodies developed at VNIIOFI as the basis of the spectral radiance and irradiance calibration devices in the rank of National standards. The blackbodies include: 1) variable-temperature (100K..1000K) research-grade extended-area (up to 100 mm) models intended to perform radiometric calibrations by comparison with a primary standard source, as well as can be used as the sources for high-accuracy IR calibration of space-borne and other systems not requiring a vacuum environment; 2) low-temperature fixed-point blackbodies on the basis of phase transitions of pure metals such as In and Ga sources, and the metal-metal eutectics operating within the medium-temperature range (300K to 400K); these are used for pyrometric measurements, IR-radiometry, preflight and (future aspects) in-flight calibration of space borne IR instruments; 3) high-temperature wide aperture variable-temperature blackbodies (1800K to 3500K) such as BB3500MP, BB3500YY designed and fabricated, along with fixed-point cells working above the ITS-90 temperatures on the basis of phase transitions of metal-carbon eutectic alloys (Re-C, TiC-C, ZrC-C, HfC-C), which possess unique reproducibility of 0.1% or less.

  14. Novel dental dynamic depth profilometric imaging using simultaneous frequency-domain infrared photothermal radiometry and laser luminescence

    Science.gov (United States)

    Nicolaides, Lena; Mandelis, Andreas

    2000-01-01

    A high-spatial-resolution dynamic experimental imaging setup, which can provide simultaneous measurements of laser- induced frequency-domain infrared photothermal radiometric and luminescence signals from defects in teeth, has been developed for the first time. The major findings of this work are: (1) radiometric images are complementary to (anticorrelated with) luminescence images, as a result of the nature of the two physical signal generation processes; (2) the radiometric amplitude exhibits much superior dynamic (signal resolution) range to luminescence in distinguishing between intact and cracked sub-surface structures in the enamel; (3) the radiometric signal (amplitude and phase) produces dental images with much better defect localization, delineation, and resolution; (4) radiometric images (amplitude and phase) at a fixed modulation frequency are depth profilometric, whereas luminescence images are not; and (5) luminescence frequency responses from enamel and hydroxyapatite exhibit two relaxation lifetimes, the longer of which (approximately ms) is common to all and is not sensitive to the defect state and overall quality of the enamel. Simultaneous radiometric and luminescence frequency scans for the purpose of depth profiling were performed and a quantitative theoretical two-lifetime rate model of dental luminescence was advanced.

  15. High Temperature Fixed-Point Blackbodies Based on Metal-Carbon Eutectics for Precision Measurements in Radiometry, Photometry and Radiation Thermometry

    Science.gov (United States)

    Sapritsky, V. I.; Khlevnoy, B. B.; Khromchenko, V. B.; Ogarev, S. A.; Samoylov, M. L.; Pikalev, Yu. A.

    2003-09-01

    Re-C, TiC-C and ZrC-C metal-carbon eutectics cells were developed and investigated at VNIIOFI (Russia) for use as high-temperature fixed-point blackbodies for precise measurements in radiometry, photometry and radiation thermometry. Two types of cells containing cavities with 4 mm and 10 mm diameters were designed that allow using them in radiance and irradiance modes, respectively. The melting temperatures of Re-C, TiC-C and ZrC-C were found to be 2747.5 K, 3033.8 and 3154.1 K respectively. The reproducibility of the Re-C fixed points was found to be 0.04 to 0.09 K, depending on the cell. The reproducibility of TiC-C and ZrC-C melting temperatures was 0.05 K and 0.09 K respectively. The pyrolitic-graphite blackbody BB3200pg was used as a furnace for heating eutectics. The new TiC-C and ZrC-C fixed-point cells with 16 mm cavity diameter and a new furnace BB3500MP are under development now.

  16. Dissemination of ultraprecise measurements in radiometry and remote sensing within 100-3500K temperature range based on blackbody sources developed in VNIIOFI

    Science.gov (United States)

    Sapritsky, Victor I.; Ogarev, Sergey A.; Khlevnoy, Boris B.; Samoylov, Mikhail L.; Khromchenko, Vladimir B.; Morozova, Svetlana P.

    2002-12-01

    The large variety of high-precision unique blackbody sources: those operating at fixed temperatures provided by phase transitions of metals and metal-carbon eutectics, and variable-temperature ones had been designed in VNIIOFI for high-precision radiometry, radiation thermometry and spaceborne remote sensing within a 100 to 3500K temperature range. Paper reviews the blackbodies (BBs) ranged to low, middle and high temperatures, and describes spectral radiance and irradiance calibration facilities on the base of these BBs in IR and V-UV spectral ranges. The latest investigations of high-temperature fix-points based on metal-carbon eutectics Re-C (2748K) demonstrated an excellent reproducibility of freezing plateau (up to 0.01% in terms of radiation temperature) between series of measurements/crucibles, and about 0.003% within a sample measurement session, i.e. better than 100mK. Further Re-C (spectral irradiance measurements) and TiC-C (3057° C) eutectics are being investigated for use as high-stable radiance/irradiance sources above the conventionally assigned values of temperatures of ITS-90.

  17. Signal Words

    Science.gov (United States)

    SIGNAL WORDS TOPIC FACT SHEET NPIC fact sheets are designed to answer questions that are commonly asked by the ... making decisions about pesticide use. What are Signal Words? Signal words are found on pesticide product labels, ...

  18. On the infrared absorption coefficient measurement of thick heavily Zn doped GaAs using spectrally resolved modulated photothermal infrared radiometry

    Science.gov (United States)

    Pawlak, M.; Pal, S.; Ludwig, A.; Wieck, A. D.

    2017-10-01

    In this paper, we report on measurements of the infrared absorption coefficient in the mid-infrared range of a heavily Zn-doped GaAs wafer using spectrally resolved modulated photothermal infrared radiometry (PTR). The method allows us to measure the infrared absorption coefficient of (i) much thicker samples as compared to the one used in Fourier Transform Infrared (FTIR) spectroscopy in transmission configuration and (ii) with non-mirror-like surfaces as would be required for measurements in the reflection configuration. From the best fits of the theoretical model to the PTR results, the values of the infrared absorption coefficient and thermal diffusivity of GaAs wafer are obtained. These values of infrared absorption coefficients are compared both with the literature values on very thin, similarly doped GaAs:Be sample and with infrared absorption coefficients calculated from FTIR specular reflectance measurements on the same sample. FTIR reflectance measurements demand additional assumptions for the evaluation of absorption coefficient and mirror-like surfaces. The results obtained from both experimental methods yield the same order of the infrared absorption coefficients. It is observed that the infrared absorption coefficient decreases with increasing wavelength because of inter-valence band transitions. However, only the infrared spectrum estimated using PTR exhibits free carrier absorption effect at a shorter wavelength as observed in previous works on very thin Be-doped GaAs samples. It is worth mentioning that the presented method is not limited to semiconductors, but can be used for other highly infrared absorbing samples. In addition, the spectrally resolved PTR measurements simultaneously provide the same values of thermal diffusivity of the GaAs wafer within estimation uncertainties thus demonstrating the reliability of the PTR method in the measurement of thermal diffusivity of such samples.

  19. In vitro Detection of Occlusal Caries on Permanent Teeth by a Visual, Light-Induced Fluorescence and Photothermal Radiometry and Modulated Luminescence Methods.

    Science.gov (United States)

    Jallad, Mahmoud; Zero, Domenick; Eckert, George; Ferreira Zandona, Andrea

    2015-01-01

    The paradigm shift towards the nonsurgical management of dental caries relies on the early detection of the disease. Detection of caries at an early stage is of unequivocal importance for early preventive intervention. The aim of this in vitro study is to evaluate the performance of a visual examination using the International Caries Detection and Assessment System (ICDAS) criteria, two quantitative light-induced fluorescence (QLF) systems--Inspektor™ Pro and QLF-D Biluminator™ 2 (Inspektor Research Systems B.V., Amsterdam, The Netherlands)--and a photothermal radiometry and modulated luminescence, The Canary System® (Quantum Dental Technologies, Toronto, Ont., Canada) on the detection of primary occlusal caries on permanent teeth. A total of 60 teeth with occlusal surface sites ranging from sound to noncavitated lesions (ICDAS 0-4) were assessed with each detection method twice in a random order. Histological validation was used to compare methods for sensitivity, specificity, percent correct, and the area under the receiver operating characteristic curve (AUC), at standard and optimum sound thresholds. Interexaminer agreement and intraexaminer repeatability were measured using intraclass correlation coefficients. Interexaminer agreement ranged between 0.48 (The Canary System®) and 0.96 (QLF-D Biluminator™ 2). Intraexaminer repeatability ranges were 0.33-0.63 (The Canary System®) and 0.96-0.99 (QLF-D Biluminator™ 2). The sensitivity range was 0.75-0.96 while that of specificity was 0.43-0.89. The AUC were 0.79 (The Canary System®), 0.87 (ICDAS), 0.90 (Inspektor™ Pro), and 0.94 (QLF-D Biluminator™ 2). ICDAS had the best combination of sensitivity and specificity followed by QLF-D Biluminator™ 2 at optimum threshold. © 2015 S. Karger AG, Basel.

  20. Signaling aggression.

    Science.gov (United States)

    van Staaden, Moira J; Searcy, William A; Hanlon, Roger T

    2011-01-01

    From psychological and sociological standpoints, aggression is regarded as intentional behavior aimed at inflicting pain and manifested by hostility and attacking behaviors. In contrast, biologists define aggression as behavior associated with attack or escalation toward attack, omitting any stipulation about intentions and goals. Certain animal signals are strongly associated with escalation toward attack and have the same function as physical attack in intimidating opponents and winning contests, and ethologists therefore consider them an integral part of aggressive behavior. Aggressive signals have been molded by evolution to make them ever more effective in mediating interactions between the contestants. Early theoretical analyses of aggressive signaling suggested that signals could never be honest about fighting ability or aggressive intentions because weak individuals would exaggerate such signals whenever they were effective in influencing the behavior of opponents. More recent game theory models, however, demonstrate that given the right costs and constraints, aggressive signals are both reliable about strength and intentions and effective in influencing contest outcomes. Here, we review the role of signaling in lieu of physical violence, considering threat displays from an ethological perspective as an adaptive outcome of evolutionary selection pressures. Fighting prowess is conveyed by performance signals whose production is constrained by physical ability and thus limited to just some individuals, whereas aggressive intent is encoded in strategic signals that all signalers are able to produce. We illustrate recent advances in the study of aggressive signaling with case studies of charismatic taxa that employ a range of sensory modalities, viz. visual and chemical signaling in cephalopod behavior, and indicators of aggressive intent in the territorial calls of songbirds. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Impact of interferometer optical path difference speed profile on the Fourier-transform-spectrometry-derived spectrum of a telecommunications signal.

    Science.gov (United States)

    Krause, Katie M; Genest, Jerome

    2006-07-01

    The impact of the interferometer optical path difference (OPD) speed profile on the spectrum, derived through the use of Fourier-transform spectrometry (FTS), of a synchronous optical network (SONET) signal is found. The SONET signal carries high-speed data traffic. It also may be modulated by low-frequency intensity or frequency modulation. It is found that the SONET header, high-speed data traffic and low-frequency modulation all manifest themselves as artifacts in the FTS-derived spectrum of the SONET signal. It is shown that a nonconstant OPD speed profile can smooth out these artifacts, making it unlikely that they will be mistaken for carrier signal peaks. However, it is found that smoothing out these artifacts lessens the achievable dynamic range of the FTS instrument in the frequency range of interest, the International Telecommunications Union common (C) and long (L) bands.

  2. Microwave Radiometry in Remote Sensing

    DEFF Research Database (Denmark)

    Gudmandsen, Preben

    1982-01-01

    an international workshop was organized in June 1982 with the object of reviewing the state-o-the-art in applications and techniques and to suggest future development work in data processing and application, systems principles and performance and in component development including the antenna system....... proves useful for measurement of atmospheric parameters. Examples are detection of rain cells and frontal systems, temperature and humidity profiles and content of minor constituents in the atmosphere foremost above the troposphere. The above examples have been demonstrated from radiometer measurements...... from ballon, aircraft and spacecraft and it is expected that the next generation of spacecraft may encompass microwave radiometers in the frequency range from perhaps 1.4 GHz to 700 GHz taking advantage of a number of new developments. With the purpose of identifying the necessary developments...

  3. Integration of SMAP and SMOS L-Band Observations

    Science.gov (United States)

    Bindlish, Rajat; Jackson, Thomas J.; Chan, Steven; Colliander, Andreas; Kerr, Yaan

    2017-01-01

    Soil Moisture Active Passive (SMAP) mission and the ESA Soil Moisture and Ocean Salinity (SMOS) missions provide brightness temperature and soil moisture estimates every 2-3 days. SMAP brightness temperature observations were compared with SMOS observations at 40 Degrees incidence angle. The brightness temperatures from the two missions are not consistent and have a bias of about 2.7K over land with respect to each other. SMAP and SMOS missions use different retrieval algorithms and ancillary datasets which result in further inconsistencies between the soil moisture products. The reprocessed constant-angle SMOS brightness temperatures were used in the SMAP soil moisture retrieval algorithm to develop a consistent multi-satellite product. The integrated product will have an increased global revisit frequency (1 day) and period of record that would be unattainable by either one of the satellites alone. Results from the development and validation of the integrated product will be presented.

  4. Calibrated L-Band Terrain Measurements and Analysis Program.

    Science.gov (United States)

    1986-02-01

    space of these three parameters, points corresponding to samples from different terrain types will be well separated. And not only will points for...different terrain types be quite distinct, but also dif- ferent regions of the three-parameter space will characterize differ- ent surface types. The...planned to examine goodness of fit of both the IG and log- 4-4 normal distributions to histograms based on various samples, using 86 the Kolmogoroff -Smirnov

  5. CLIC 50 MW L-Band Multi-Beam Klystron

    CERN Document Server

    Jensen, E

    2006-01-01

    50 MW power sources at 937 MHz will be needed to accelerate the CLIC drive beams. We present a novel MBK concept with very many beamlets; this allows for small single beam perveance and high efficiency. The MBK features disc-shaped RF circuits operated in a whispering-gallery mode - a configuration permitting both high interaction impedance and easy spurious mode damping.

  6. Experimentally minimized beam emittance from an L-band photoinjector

    Directory of Open Access Journals (Sweden)

    M. Krasilnikov

    2012-10-01

    Full Text Available High brightness electron sources for linac based free-electron lasers (FELs are being developed at the Photo Injector Test facility at DESY, Zeuthen site (PITZ. Production of electron bunches with extremely small transverse emittance is the focus of the PITZ scientific program. The photoinjector optimization in 2008–2009 for a bunch charge of 1, 0.5, 0.25, and 0.1 nC resulted in measured emittance values which are beyond the requirements of the European XFEL [S. Rimjaem et al., Nucl. Instrum. Methods Phys. Res., Sect. A 671, 62 (2012NIMAER0168-900210.1016/j.nima.2011.12.101]. Several essential modifications were commissioned in 2010–2011 at PITZ, resulting in further improvement of the photoinjector performance. Significant improvement of the rf gun phase stability is a major contribution in the reduction of the measured transverse emittance. The old TESLA prototype booster was replaced by a new cut disk structure cavity. This allows acceleration of the electron beam to higher energies and supports much higher flexibility for stable booster operation as well as for longer rf pulses which is of vital importance especially for the emittance optimization of low charge bunches. The transverse phase space of the electron beam was optimized at PITZ for bunch charges in the range between 0.02 and 2 nC, where the quality of the beam measurements was preserved by utilizing long pulse train operation. The experimental optimization yielded worldwide unprecedented low normalized emittance beams in the whole charge range studied.

  7. UAVSAR: Airborne L-Band Radar for Repeat Pass Interferometry

    Science.gov (United States)

    Moes, Tim

    2011-01-01

    The Costa Rican National Center for Advanced Technology (CeNAT) is sponsoring NASA's G-III(C-20) UAVSAR science deployment to San Jose, Costa Rica April 25-28, 2011. NASA is very thankful for their support and has offered to provide a Top-Level presentation on the G-III UAVSAR program with specific emphasis on the science conducted in Costa Rica. The presentation will overview the G-III capabilities and the various science applications of UAVSAR. Only technical and scientific data that is already in the open literature will be presented.

  8. 10 MW, L-Band Klystron for Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Read, Michael [Calabazas Creek Research, Inc., San Mateo, CA (United States); Ives, Robert L. [Calabazas Creek Research, Inc., San Mateo, CA (United States); Ferguson, Patrick [Calabazas Creek Research, Inc., San Mateo, CA (United States)

    2016-03-07

    This program developed a 10 MW, pulsed, Annular Beam Klystron (ABK) for accelerator applications. This is an alternative RF source to multiple beam klystrons MBKs), which are more complex and considerably more expensive. The ABK uses a single, annular cathode and a single beam tunnel with fundamental mode cavities. The operating specifications (voltage, efficiency, power, bndwidth, duty, etc.) are the same as for comparable MBKs.

  9. Precipitation estimates from L-Band Radiometer Sea Surface Salinity

    Science.gov (United States)

    Supply, Alexandre; Boutin, Jacqueline; Vergely, Jean-Luc; Reverdin, Gilles; Hasson, Audrey; Viltard, Nicolas; Mallet, Cécile

    2017-04-01

    The Soil Moisture and Ocean Salinity (SMOS) satellite mission measures sea surface salinity (SSS) since 2010 with a spatial resolution of about 50 km. Since 2015, Soil Moisture Active and Passive (SMAP) mission also provides SSS with a similar resolution. In rainy regions, at local and short time scales, the spatio-temporal variability of SSS is dominated by rainfall. The relationship between sea surface freshening and rain rate (RR) has been highlighted in the Pacific intertropical convergence zone (Boutin et al., JGR, 2014). This study investigates the rainfall characteristics that may be inferred from SMOS and SMAP SSS based on a statistical approach, and to which extent this information is complementary to IMERG (Integrated Multi-satellite Retrievals for Global Precipitation Measurement mission) interpolated product. The IMERG algorithm intercalibrates, merges and interpolates "all" satellite passive microwave precipitation estimates (RPMW), together with microwave-calibrated infrared (IR) satellite estimates (RIR) (Huffman et al., 2015) . The product contains the merged RR (RmPMW) as well as the RPMWand RIR individual estimates used by the algorithm. Salinity anomalies (ΔS) associated with rainfall events are first estimated. A reference salinity (i.e. an estimate of the salinity preceding the rainfall event) is inferred from the SSS statistical distribution within 3˚ x3˚ region. It is derived from a Gaussian distribution fitted onto the highest part of the distribution (quantile>0.8) taking advantage on the fact that rainfall creates an asymmetrical SSS distribution towards low values. A RR retrieval algorithm is then developed that combines SMOS ΔS and IR information. In case of IR detects rain, SMOS rain rate, RSMOS is derived from SMOS ΔS. We infer the relationship between RSMOS and SMOS ΔS using colocations within 30mn between SMOS ΔS and RPMW contained in IMERG product during the 2015 year. Correlation coefficient (r) between RSMOS and RPMW is equal to 0.75 (0.78 when the colocation radii is decreased to 3mn). In case there is no RPMW at less than 1h20mn from RSMOS, r is decreased to 0.62. We then compare the RSMOS with the IMERG merged product (RmPMW). In case there are RPMW at less than 30mn (3mn) from SMOS pass, correlation coefficients remain about the same as previously. In case there is no RPMW at less than 1h20mn from RSMOS, r between RSMOS and RmPMW becomes equal to 0.72. This demonstrates that the merging of RPMW with IR information by IMERG improves the rain detection with respect to taking into account only RPMW but remains poorer than RPMW measurements. This is confirmed by triple collocations between RSMOS, RIR and RPMW. We then evaluate the quality of the retrieval at monthly time scales from August 2014 to July 2016. Hovmöller diagrams show a very good consistency between IMERG and SMOS monthly rain estimates during this period (correlation of 0.92). The SMOS RR retrieval algorithm is also applied to SMAP SSS measurements from January 2016 to July 2016. SMAP rain estimates (RSMAP) are compared with RSMOS. At monthly time scales, correlation between RSMAPand RSMOSis 0.96.

  10. Metric Calibration of the Millstone Hill L-Band Radar.

    Science.gov (United States)

    1985-08-19

    92, (U. S. Government Printing Office 1 March 1966), p. 435. (6). J. A. Klobuchar ; M. J. Buonsanto; M. J. Mendillo; & J. M. Johnson, The Contribution...Printing Office, 1978), pp. 486-489. (7). J. A. Klobuchar & R. S. Allen; "A First-Order Prediction Model of Total-Electron-Content Group Path Delay for

  11. Fast Ferroelectric L-Band Tuner for Superconducting Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Jay L. Hirshfield

    2011-03-01

    Analysis and modeling is presented for a fast microwave tuner to operate at 700 MHz which incorporates ferroelectric elements whose dielectric permittivity can be rapidly altered by application of an external voltage. This tuner could be used to correct unavoidable fluctuations in the resonant frequency of superconducting cavities in accelerator structures, thereby greatly reducing the RF power needed to drive the cavities. A planar test version of the tuner has been tested at low levels of RF power, but at 1300 MHz to minimize the physical size of the test structure. This test version comprises one-third of the final version. The tests show performance in good agreement with simulations, but with losses in the ferroelectric elements that are too large for practical use, and with issues in bonding of ferroelectric elements to the metal walls of the tuner structure.

  12. Status of the Signals of Opportunity Airborne Demonstrator (SoOp-AD)

    Science.gov (United States)

    Garrison, Jim; Lin, Yao-Cheng; Piepmeier, Jeff; Knuble, Joe; Hersey, Ken; Du Toit, Cornelus; Joseph, Alicia; Deshpande, Manohar; Alikakos, George; O'Brien, Steve; hide

    2016-01-01

    Root zone soil moisture (RZSM) is not directly measured by any current satellite instrument, despite its importance as a key link between surface hydrology and deeper processes. Presently, model assimilation of surface measurements or indirect estimates using other methods must be used to estimate this value. Signals of Opportunity (SoOp) methods, exploiting reflected P- and S-band communication satellite signals, have many of the benefits of both active and passive microwave remote sensing. Reutilization of active transmitters, with forward-scattering geometry, presents a strong reflected signal even at orbital altitudes. Microwave radiometry is advantageous as it measures emissivity, which is directly related to dielectric constant and sensitive to water content of soil. Synthetic aperture radar (SAR) is used in P-band (400 MHz) for soil moisture and biomass, but faces issues in obtaining permission to transmit due to spectrum regulations, particularly over North America and Europe. A primary advantage of SAR is excellent spatial resolution. Signals-of-opportunity (SoOp) reflectometry provides a good compromise between radiometry and SAR by providing decent sensitivity and special resolution for RZSM measurements without issues of spectrum access. Further, a SoOp instrument would not be limited to operating in only a few protected frequencies and is also expected to have less susceptibility to radio-frequency interference (RFI). Although advantageous if available, SoOp techniques do not require the ability to demodulate or decode the communication signals. The SoOp instrument is receive only and therefore requires much less electrical power than a SAR and is more similar to a radiometer in receiver architecture. These unique features of SoOp circumvent past obstacles to a spaceborne P-band remote sensing mission and have the potential to enable new RZSM measurements that are not possible with present technology. We will present the latest development status of a

  13. Gibberellin signaling.

    Science.gov (United States)

    Hartweck, Lynn M

    2008-12-01

    This review covers recent advances in gibberellin (GA) signaling. GA signaling is now understood to hinge on DELLA proteins. DELLAs negatively regulate GA response by activating the promoters of several genes including Xerico, which upregulates the abscisic acid pathway which is antagonistic to GA. DELLAs also promote transcription of the GA receptor, GIBBERELLIN INSENSITIVE DWARF 1 (GID1) and indirectly regulate GA biosynthesis genes enhancing GA responsiveness and feedback control. A structural analysis of GID1 provides a model for understanding GA signaling. GA binds within a pocket of GID1, changes GID1 conformation and increases the affinity of GID1 for DELLA proteins. GA/GID1/DELLA has increased affinity for an F-Box protein and DELLAs are subsequently degraded via the proteasome. Therefore, GA induces growth through degradation of the DELLAs. The binding of DELLA proteins to three of the PHYTOCHROME INTERACTING FACTOR (PIF) proteins integrates light and GA signaling pathways. This binding prevents PIFs 3, 4, and 5 from functioning as positive transcriptional regulators of growth in the dark. Since PIFs are degraded in light, these PIFs can only function in the combined absence of light and presence of GA. New analyses suggest that GA signaling evolved at the same time or just after the plant vascular system and before plants acquired the capacity for seed reproduction. An analysis of sequences cloned from Physcomitrella suggests that GID1 and DELLAs were the first to evolve but did not initially interact. The more recently diverging spike moss Selaginella has all the genes required for GA biosynthesis and signaling, but the role of GA response in Selaginella physiology remains a mystery.

  14. Prosocial Signalling

    DEFF Research Database (Denmark)

    Kahsay, Goytom Abraha

    In contrast to the standard economic theory predictions, it seems clear that people do spend their time and resource to benefit others. Many lab and field experiment studies show that people display prosocial preferences such as altruism, reciprocity and conditional cooperation, fairness, etc...... signalling can cause reverse price reactions resembling the crowding-out of pre-existing motives for prosocial behavior seen in situations of volunteering and charitable giving. Using a unique combination of questionnaire and purchase panel data, it presents evidence of such reputation-driven reverse price...

  15. Discriminação de fitofisionomias de floresta de várzea a partir do algoritmo Iterated Conditional Modes aplicado aos dados SAR/R99 (QUAD-POL/Banda L Discrimination among flooded forest phytophysiognomies from Iterated Conditional Modes algorithm applied to SAR Data R99 (QUAD POL/L-Band

    Directory of Open Access Journals (Sweden)

    Gustavo Manzon Nunes

    2011-01-01

    Full Text Available Utilizando-se dados do sensor aerotransportado SAR R99, adquiridos na banda L (1,28 GHz em amplitude e com quatro polarizações (HH, VV, HV e VH, avaliou-se a distinção de fitofisionomias de floresta de várzea existentes nas Reservas de Desenvolvimento Sustentável Amanã e Mamirauá e áreas adjacentes, com a aplicação do algoritmo Iterated Conditional Modes (ICM de classificação polarimétrica pontual/contextual. Os resultados mostraram que o uso das distribuições multivariadas em amplitude, conjuntamente com uma banda de textura, produziu classificações de qualidade superior àquelas obtidas com dados polarimétricos uni/bivariados. Esta abordagem permitiu a obtenção de um índice Kappa de 0,8963, discriminando as três classes vegetacionais de interesse, comprovando assim o potencial dos dados do SAR R99 e do algoritmo ICM no mapeamento de florestas de várzea da Amazônia.This study seeks to evaluate the capability of data generated by the synthetic aperture radar SAR R99 sensor to map phytophysiognomies found in the Amanã and Mamirauá Sustainable Development Reserves (RDSA and RDSM. By means of L-band (1.28 GHz, full polarimetric (HH, VV, VH, HV, amplitude data acquired with the SAR R99 sensor, distinctions among flooded forest phytophysiognomies in the RDSA and RDSM and around were achieved. The Iterated Conditional Modes (ICM algorithm was employed to perform the local/contextual polarimetric classification of the data. Results showed that the use of multivariate distributions in amplitude with a band of texture produced classifications of superior quality in relation to those obtained with the uni/bivariate polarimetric data. This approach allowed to obtain a Kappa index of 0,8963 and the distinction of three vegetation classes of interest, demonstrating the potential of SAR R99 and the ICM algorithm to map flooded vegetation of the Amazon.

  16. RFI Detection and Mitigation using Independent Component Analysis as a Pre-Processor

    Science.gov (United States)

    Schoenwald, Adam J.; Gholian, Armen; Bradley, Damon C.; Wong, Mark; Mohammed, Priscilla N.; Piepmeier, Jeffrey R.

    2016-01-01

    Radio-frequency interference (RFI) has negatively impacted scientific measurements of passive remote sensing satellites. This has been observed in the L-band radiometers Soil Moisture and Ocean Salinity (SMOS), Aquarius and more recently, Soil Moisture Active Passive (SMAP). RFI has also been observed at higher frequencies such as K band. Improvements in technology have allowed wider bandwidth digital back ends for passive microwave radiometry. A complex signal kurtosis radio frequency interference detector was developed to help identify corrupted measurements. This work explores the use of Independent Component Analysis (ICA) as a blind source separation (BSS) technique to pre-process radiometric signals for use with the previously developed real and complex signal kurtosis detectors.

  17. Relating polarization phase difference of SAR signals to scene properties

    Science.gov (United States)

    Ulaby, Fawwaz T.; Dobson, Myron C.; Mcdonald, Kyle C.; Senior, Thomas B. A.; Held, Daniel

    1987-01-01

    This paper examines the statistical behavior of the phase difference Delta-phi between the HH-polarized and VV-polarized backscattered signals recorded by an L-band SAR over an agricultural test site in Illinois. Polarization-phase difference distributions were generated for about 200 agricultural fields for which ground information had been acquired in conjunction with the SAR mission. For the overwhelming majority of cases, the Delta-phi distribution is symmetric and has a single major lobe centered at the mean value of the distribution Delta-phi. Whereas the mean Delta-phi was found to be close to zero degrees for bare soil, cut vegetation, alfalfa, soybeans, and clover, a different pattern was observed for the corn fields; the mean Delta-phi increased with increasing incidence angle Theta = 35 deg. The explanation proposed for this variation is that the corn canopy, most of whose mass is contained in its vertical stalks, acts like a uniaxial crystal characterized by different velocities of propagation for waves with horizontal and vertical polarization. Thus, it is hypothesized that the observed backscatter is contributed by a combination of propagation delay, forward scatter by the soil surface, and specular bistatic reflection by the stalks. Model calculations based on this assumption were found to be in general agreement with the phase observations.

  18. A Flexible Modulation Scheme Design for C-Band GNSS Signals

    Directory of Open Access Journals (Sweden)

    Rui Xue

    2015-01-01

    Full Text Available Due to the spectrum congestion of current navigation signals in L-band, C-band has been taken into consideration as a candidate frequency band for global navigation satellite system (GNSS. As is known, modulation scheme is the core part of signal structure, and how to design a modulation waveform that could make full use of narrow bandwidth 20 MHz and satisfy the constraint condition of frequency compatibility in C-band is the main research content of this paper. In view of transmission characteristics and constraint condition of compatibility in C-band, multi-h continuous phase modulation (CPM is proposed as a candidate modulation scheme. Then the classical channel capacity estimation and a comprehensive evaluation criterion for GNSS modulation signals are employed to assess the proposed scheme in the aspects of the capacity over additive white Gaussian noise (AWGN, tracking accuracy, multipath mitigation, antijamming, and so on. Simulation results reveal that, through optimizing the number and size of modulation indexes, the flexible scheme could offer better performance in terms of code tracking, multipath mitigation, and antijamming compared with other candidates such as MSK and GMSK while maintaining high band efficiency and moderate implementation complexity of receiver. Moreover, this paper also provides a reference for next generation modulation signals in C-band.

  19. Preliminary Study on the Use of Radionuclides 137{sup C}s and 210{sup P}b and Spectro radiometry Techniques as Tools to Determine Soil Erosion State; Estudio Preliminar sobre el Uso de los Radionucleidos 137{sup C}s y 210{sup P}b y las Tecnicas de Espectrorradiometria como Herramientas para Determinar el Estado de Erosion de Suelos

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Vegas, E.; Gasco Leonarte, C.; Schmid, T.; Suarez, J. A.; Rodriguez Rastrero, M.; Almorox Alonso, J.

    2013-07-01

    Radionuclides are largely used as tools for studying and quantifying soil erosion. The global fallout of artificial radionuclides derived from weapons testing (1945-1970) was rapidly and firmly fixed in soil surface horizons. This allowed determining soil erosion by comparing 137{sup C}s inventories at individual sampling points with a reference inventory. This procedure is complemented with the 210{sup P}buns inventory calculation as an indicator of the local average of radionuclides deposition. Spectro radiometry is implemented to associate soil reflectance measurements to physical and chemical soil properties related to soil erosion processes obtained from laboratory analyses. The methodology applies both instrumental techniques in soil samples from a semiarid agricultural area near to Camarena (Toledo). The resulting inventories obtained for 137{sup C}s and 210{sup P}bexc are similar to the Spanish reference allowing comparation. Spectro radiometry results correlate well with soil properties measured in the laboratory and can be applied to determine these properties more quickly and easily, as well as for integration with gamma spectrometry results. This is a preliminary study to identify soils affected by erosion that is presented as a Master thesis of the Official Master Degree: {sup A}gro- Environmental Technology for a Sustainable Agriculture{sup ,} of the Technical University of Madrid - School of Agricultural Engineers (UPM-ETSI). Coherent and complimentary results are obtained applying both instrumental techniques within this agricultural area.. (Author)

  20. Continuous-time signals

    CERN Document Server

    Shmaliy, Yuriy

    2006-01-01

    Gives a modern description of continuous-time deterministic signals Signal formation techniquesTime vs. frequency and frequency vs. time analysisCorrelation and energy analysisNarrowband signals and sampling.

  1. VHF SoOp (Signal of Opportunity) Technology Demonstration for Soil Moisture Measurement Using Microwave Hydraulic Boom Truck Platform

    Science.gov (United States)

    Joseph, A. T.; Deshpande, M.; O'Neill, P. E.; Miles, L.

    2017-01-01

    A goal of this research is to test deployable VHF antennas for 6U Cubesat platforms to enable validation of root zone soil moisture (RZSM) estimation algorithms for signal of opportunity (SoOp) remote sensing over the 240-270 MHz frequency band. The proposed work provides a strong foundation for establishing a technology development path for maturing a global direct surface soil moisture (SM) and RZSM measurement system over a variety of land covers. Knowledge of RZSM up to a depth of 1 meter and surface SM up to a depth of 0.05 meter on a global scale, at a spatial resolution of 1-10 km through moderate-to-heavy vegetation, is critical to understanding global water resources and the vertical moisture gradient in the Earths surface layer which controls moisture interactions between the soil, vegetation, and atmosphere. Current observations of surface SM from space by L-band radiometers (1.4 GHz) and radars (1.26 GHz) are limited to measurements of surface SM up to a depth of 0.05 meter through moderate amounts of vegetation. This limitation is mainly due to the inability of L-band signals to penetrate through dense vegetation and deep into the soil column. Satellite observations of the surface moisture conditions are coupled to sophisticated models which extrapolate the surface SM into the root zone, thus providing an indirect estimate rather than a direct measurement of RZSM. To overcome this limitation, low-frequency airborne radars operating at 435 MHz and 118 MHz have been investigated, since these lower frequencies should penetrate denser vegetation and respond to conditions deeper in the soil.

  2. Basic digital signal processing

    CERN Document Server

    Lockhart, Gordon B

    1985-01-01

    Basic Digital Signal Processing describes the principles of digital signal processing and experiments with BASIC programs involving the fast Fourier theorem (FFT). The book reviews the fundamentals of the BASIC program, continuous and discrete time signals including analog signals, Fourier analysis, discrete Fourier transform, signal energy, power. The text also explains digital signal processing involving digital filters, linear time-variant systems, discrete time unit impulse, discrete-time convolution, and the alternative structure for second order infinite impulse response (IIR) sections.

  3. Digital signal processing laboratory

    CERN Document Server

    Kumar, B Preetham

    2011-01-01

    INTRODUCTION TO DIGITAL SIGNAL PROCESSING Brief Theory of DSP ConceptsProblem SolvingComputer Laboratory: Introduction to MATLAB®/SIMULINK®Hardware Laboratory: Working with Oscilloscopes, Spectrum Analyzers, Signal SourcesDigital Signal Processors (DSPs)ReferencesDISCRETE-TIME LTI SIGNALS AND SYSTEMS Brief Theory of Discrete-Time Signals and SystemsProblem SolvingComputer Laboratory: Simulation of Continuous Time and Discrete-Time Signals and Systems ReferencesTIME AND FREQUENCY ANALYSIS OF COMMUNICATION SIGNALS Brief Theory of Discrete-Time Fourier Transform (DTFT), Discrete Fourier Transform

  4. Wideband, Low-power Multi-mode MMIC Radar Transceivers with Phase Control and Integrated Baseband Signal Processing Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA has numerous missions that involve radar and radiometry. In the past, the practice has been to build each system as a one-off program, which makes MMIC design...

  5. Analysis of RFI Identification and Mitigation in CAROLS Radiometer Data Using a Hardware Spectrum Analyser

    Directory of Open Access Journals (Sweden)

    Christophe Caudoux

    2011-03-01

    Full Text Available A method to identify and mitigate radio frequency interference (RFI in microwave radiometry based on the use of a spectrum analyzer has been developed. This method has been tested with CAROLS L-band airborne radiometer data that are strongly corrupted by RFI. RFI is a major limiting factor in passive microwave remote sensing interpretation. Although the 1.400–1.427 GHz bandwidth is protected, RFI sources close to these frequencies are still capable of corrupting radiometric measurements. In order to reduce the detrimental effects of RFI on brightness temperature measurements, a new spectrum analyzer has been added to the CAROLS radiometer system. A post processing algorithm is proposed, based on selective filters within the useful bandwidth divided into sub-bands. Two discriminant analyses based on the computation of kurtosis and Euclidian distances have been compared evaluated and validated in order to accurately separate the RF interference from natural signals.

  6. VHF SoOp (Signal of Opportunity) Technology Demonstration for Soil Moisture Measurement Using Microwave Hydraulic Boom Truck Platform

    Science.gov (United States)

    Joseph, Alicia; Deshpande, Manohar; O'Neill, Peggy; Miles, Lynn

    2017-04-01

    A goal of this research is to test deployable VHF antennas for 6U Cubesat platforms to enable validation of root zone soil moisture (RZSM) estimation algorithms for signal of opportunity (SoOp) remote sensing over the 240-270 MHz frequency band. The proposed work provides a strong foundation for establishing a technology development path for maturing a global direct surface soil moisture (SM) and RZSM measurement system over a variety of land covers. Knowledge of RZSM up to a depth of 1 meter and surface SM up to a depth of 0.05 meter on a global scale, at a spatial resolution of 1-10 km through moderate-to-heavy vegetation, is critical to understanding global water resources and the vertical moisture gradient in the Earth's surface layer which controls moisture interactions between the soil, vegetation, and atmosphere. Current observations of surface SM from space by L-band radiometers (1.4 GHz) and radars (1.26 GHz) are limited to measurements of surface SM up to a depth of 0.05 meter through moderate amounts of vegetation. This limitation is mainly due to the inability of L-band signals to penetrate through dense vegetation and deep into the soil column. Satellite observations of the surface moisture conditions are coupled to sophisticated models which extrapolate the surface SM into the root zone, thus providing an indirect estimate rather than a direct measurement of RZSM. To overcome this limitation, low-frequency airborne radars operating at 435 MHz and 118 MHz have been investigated, since these lower frequencies should penetrate denser vegetation and respond to conditions deeper in the soil. This presentation describes a new and less expensive technique for SM as well as RZSM direct measurement using Signal of Opportunity transmitters. Being less expensive and needing only passive simple RF receiver, the SoOp concept has the potential for being used for space borne applications, thus providing global SM and RZSM measurements. This study will describe

  7. Assessment of GPS Multifrequency Signal Characteristics During Periods of Ionospheric Scintillations from an Anomaly Crest Location

    Science.gov (United States)

    Goswami, S.; Paul, K. S.; Paul, A.

    2017-09-01

    Multifrequency GPS transmissions have provided the opportunity for testing the applicability of the principle of frequency diversity for scintillation mitigation. Published results addressing this issue with quantified estimates are not available in literature, at least from the anomaly crest location of the Indian longitude sector. Multifrequency scattering within the same L band is often the attributed cause behind simultaneous decorrelated signal fluctuations. The present paper aims to provide proportion of time during scintillation patches that decorrelations are found across GPS L1, L2, and L5 frequencies associated with high S4, corresponding high values of scattering coefficients, and large receiver position deviations thereby seriously compromising the performance of satellite-based navigation system. Results from the anomaly crest station at Calcutta indicate maximum 40% of scintillation time during February-April 2014 and 33% during August-October 2014 that the signals are decorrelated. It is important to note that it is only during these time intervals that the principle of frequency diversity could be applied for scintillation mitigation.

  8. Fast Gravitational Wave Radiometry using Data Folding

    CERN Document Server

    Ain, Anirban; Mitra, Sanjit

    2015-01-01

    Gravitational Waves (GWs) from the early universe and unresolved astrophysical sources are expected to create a stochastic GW background (SGWB). The GW radiometer algorithm is well suited to probe such a background using data from ground based laser interferometric detectors. Radiometer analysis can be performed in different bases, e.g., isotropic, pixel or spherical harmonic. Each of these analyses possesses a common temporal symmetry which we exploit here to fold the whole dataset for every detector pair, typically a few hundred to a thousand days of data, to only one sidereal day, without any compromise in precision. We develop the algebra and a software pipeline needed to fold data, accounting for the effect of overlapping windows and non-stationary noise. We implement this on LIGO's fifth science run data and validate it by performing a standard anisotropic SGWB search on both folded and unfolded data. Folded data not only leads to orders of magnitude reduction in computation cost, but it results in a co...

  9. Fast gravitational wave radiometry using data folding

    Science.gov (United States)

    Ain, Anirban; Dalvi, Prathamesh; Mitra, Sanjit

    2015-07-01

    Gravitational waves (GWs) from the early universe and unresolved astrophysical sources are expected to create a stochastic GW background (SGWB). The GW radiometer algorithm is well suited to probe such a background using data from ground-based laser interferometric detectors. Radiometer analysis can be performed in different bases, e.g., isotropic, pixel or spherical harmonic. Each of these analyses possesses a common temporal symmetry which we exploit here to fold the whole data set for every detector pair, typically a few hundred to a thousand days of data, to only one sidereal day, without any compromise in precision. We develop the algebra and a software pipeline needed to fold data, accounting for the effect of overlapping windows and nonstationary noise. We implement this on LIGO's fifth science run data and validate it by performing a standard anisotropic SGWB search on both folded and unfolded data. Folded data not only leads to orders of magnitude reduction in computation cost, but it results in a conveniently small data volume of few gigabytes, making it possible to perform an actual analysis on a personal computer, as well as easy movement of data. A few important analyses, yet unaccomplished due to computational limitations, will now become feasible. Folded data, being independent of the radiometer basis, will also be useful in reducing processing redundancies in multiple searches and provide a common ground for mutual consistency checks. Most importantly, folded data will allow vast amount of experimentation with existing searches and provide substantial help in developing new strategies to find unknown sources.

  10. Signal sciences workshop proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Candy, J.V.

    1997-05-01

    This meeting is aimed primarily at signal processing and controls. The technical program for the 1997 Workshop includes a variety of efforts in the Signal Sciences with applications in the Microtechnology Area a new program at LLNL and a future area of application for both Signal/Image Sciences. Special sessions organized by various individuals in Seismic and Optical Signal Processing as well as Micro-Impulse Radar Processing highlight the program, while the speakers at the Signal Processing Applications session discuss various applications of signal processing/control to real world problems. For the more theoretical, a session on Signal Processing Algorithms was organized as well as for the more pragmatic, featuring a session on Real-Time Signal Processing.

  11. Retinoid signalling during embryogenesis

    NARCIS (Netherlands)

    Pijnappel, W.W.M.; Hendriks, H.F.J.; Durston, A.J.

    1996-01-01

    Conclusion: Retinoids are suspected to have multiple functions during embryogenesis, which are carried out via various different signal transduction pathways involving active retinoids and nuclear retinoid receptors. Research focuses on the identification of the retinoid signal transduction

  12. Biomedical signal processing

    CERN Document Server

    Akay, Metin

    1994-01-01

    Sophisticated techniques for signal processing are now available to the biomedical specialist! Written in an easy-to-read, straightforward style, Biomedical Signal Processing presents techniques to eliminate background noise, enhance signal detection, and analyze computer data, making results easy to comprehend and apply. In addition to examining techniques for electrical signal analysis, filtering, and transforms, the author supplies an extensive appendix with several computer programs that demonstrate techniques presented in the text.

  13. Tetrapyrrole Signaling in Plants

    Directory of Open Access Journals (Sweden)

    Robert M. Larkin

    2016-10-01

    Full Text Available Tetrapyrroles make critical contributions to a number of important processes in diverse organisms. In plants, tetrapyrroles are essential for light signaling, the detoxification of reactive oxygen species, the assimilation of nitrate and sulfate, respiration, photosynthesis, and programed cell death. Thus, it is not surprising that tetrapyrrole metabolism is strictly regulated and that tetrapyrrole metabolism affects signaling mechanisms that regulate gene expression. In plants and algae, tetrapyrroles are synthesized in plastids and were some of the first plastid signals demonstrated to regulate nuclear gene expression. In plants, the mechanism of tetrapyrrole-dependent plastid-to-nucleus signaling remains poorly understood. Additionally, some of experiments that tested ideas for possible signaling mechanisms appeared to produce conflicting data. In some instances, these conflicts are potentially explained by different experimental conditions. Although the biological function of tetrapyrrole signaling is poorly understood, there is compelling evidence that this signaling is significant. Specifically, this signaling appears to affect the accumulation of starch and may promote abiotic stress tolerance. Tetrapyrrole-dependent plastid-to-nucleus signaling interacts with a distinct plastid-to-nucleus signaling mechanism that depends on GENOMES UNCUOPLED1 (GUN1. GUN1 contributes to a variety of processes, such as chloroplast biogenesis, the circadian rhythm, abiotic stress tolerance, and development. Thus, the contribution of tetrapyrrole signaling to plant function is potentially broader than we currently appreciate. In this review, I discuss these aspects of tetrapyrrole signaling.

  14. Growth factor signalling

    NARCIS (Netherlands)

    De Laat, SW; Boonstra, J; Defize, LHK; Kruijer, W; Van der Saag, PT; Tertoolen, LGJ; Van Zoelen, JJ; Den Hertog, J

    1999-01-01

    Signalling between cells in the developing vertebrate embryo is essential for nomal embryonic development. In the mid 1970's, signal transduction research started at the Hubrecht Laboratory with special emphasis on analysis of the signalling mechanisms that direct cell proliferation and

  15. The Signal Distribution System

    CERN Document Server

    Belohrad, D; CERN. Geneva. AB Department

    2005-01-01

    For the purpose of LHC signal observation and high frequency signal distribution, the Signal Distribution System (SDS) was built. The SDS can contain up to 5 switching elements, where each element allows the user to switch between one of the maximum 8 bi-directional signals. The coaxial relays are used to switch the signals. Depending of the coaxial relay type used, the transfer bandwidth can go up to 18GHz. The SDS is controllable via TCP/IP, parallel port, or locally by rotary switch.

  16. Hyperspectral Analysis of Space Objects: Signal to Noise Evaluation

    Science.gov (United States)

    1993-12-01

    4-1 4.2 Recommendations for Further Research ............. 4-2 Appendix A. Mathcad Models ............................ A-1 A.1 Model Configuration...mathematical simula- tion using Mathcad 3.1 (6). This radiometry model is applied to four case studies: two involve hyperspectral imaging, and two...study, the key results, corolhary issues, and recommendations for further re- search. "* Appendix A. Contains the Mathcad code used to develop the

  17. Superluminal Signal Velocity

    OpenAIRE

    Nimtz, Guenter

    1998-01-01

    It recently has been demonstrated that signals conveyed by evanescent modes can travel faster than light. In this report some special features of signals are introduced and investigated, for instance the fundamental property that signals are frequency band limited. Evanescent modes are characterized by extraordinary properties: Their energy is {\\it negative}, they are not directly measurable, and the evanescent region is not causal since the modes traverse this region instantaneously. The stu...

  18. Noncausal Superluminal Nonlocal Signalling

    OpenAIRE

    Srikanth, R.

    1999-01-01

    We propose a thought experiment for classical superluminal signal transmission based on the quantum nonlocal influence of photons on their momentum entangled EPR twins. The signal sender measures either position or momentum of particles in a pure ensemble of the entangled pairs, leaving their twins as localized particles or plane waves. The signal receiver distinguishes these outcomes interferometrically using a double slit interferometer modified by a system of optical filters. Since the col...

  19. Digital signal processing

    CERN Document Server

    O'Shea, Peter; Hussain, Zahir M

    2011-01-01

    In three parts, this book contributes to the advancement of engineering education and that serves as a general reference on digital signal processing. Part I presents the basics of analog and digital signals and systems in the time and frequency domain. It covers the core topics: convolution, transforms, filters, and random signal analysis. It also treats important applications including signal detection in noise, radar range estimation for airborne targets, binary communication systems, channel estimation, banking and financial applications, and audio effects production. Part II considers sel

  20. Biomedical signals and systems

    CERN Document Server

    Tranquillo, Joseph V

    2013-01-01

    Biomedical Signals and Systems is meant to accompany a one-semester undergraduate signals and systems course. It may also serve as a quick-start for graduate students or faculty interested in how signals and systems techniques can be applied to living systems. The biological nature of the examples allows for systems thinking to be applied to electrical, mechanical, fluid, chemical, thermal and even optical systems. Each chapter focuses on a topic from classic signals and systems theory: System block diagrams, mathematical models, transforms, stability, feedback, system response, control, time

  1. See-and-Avoid Collision Avoidance Using ADS-B Signal and Radar Sensing Project

    Data.gov (United States)

    National Aeronautics and Space Administration — IAI proposes an innovative solution to enable unrestricted flight in low-altitude airspace for small aircrafts This solution includes an L-band RF transceiver-sensor...

  2. Signal sampling circuit

    NARCIS (Netherlands)

    Louwsma, S.M.; Vertregt, Maarten

    2011-01-01

    A sampling circuit for sampling a signal is disclosed. The sampling circuit comprises a plurality of sampling channels adapted to sample the signal in time-multiplexed fashion, each sampling channel comprising a respective track-and-hold circuit connected to a respective analogue to digital

  3. Signal sampling circuit

    NARCIS (Netherlands)

    Louwsma, S.M.; Vertregt, Maarten

    2010-01-01

    A sampling circuit for sampling a signal is disclosed. The sampling circuit comprises a plurality of sampling channels adapted to sample the signal in time-multiplexed fashion, each sampling channel comprising a respective track-and-hold circuit connected to a respective analogue to digital

  4. Ubiquitination in apoptosis signaling

    NARCIS (Netherlands)

    van de Kooij, L.W.

    2014-01-01

    The work described in this thesis focuses on ubiquitination and protein degradation, with an emphasis on how these processes regulate apoptosis signaling. More specifically, our aims were: 1. To increase the understanding of ubiquitin-mediated regulation of apoptosis signaling. 2. To identify the E3

  5. SignalR blueprints

    CERN Document Server

    Ingebrigtsen, Einar

    2015-01-01

    This book is designed for software developers, primarily those with knowledge of C#, .NET, and JavaScript. Good knowledge and understanding of SignalR is assumed to allow efficient programming of core elements and applications in SignalR.

  6. Optimal fault signal estimation

    NARCIS (Netherlands)

    Stoorvogel, Antonie Arij; Niemann, H.H.; Saberi, A.; Sannuti, P.

    2002-01-01

    We consider here both fault identification and fault signal estimation. Regarding fault identification, we seek either exact or almost fault identification. On the other hand, regarding fault signal estimation, we seek either $H_2$ optimal, $H_2$ suboptimal or Hinfinity suboptimal estimation. By

  7. Multiresolution signal decomposition schemes

    NARCIS (Netherlands)

    J. Goutsias (John); H.J.A.M. Heijmans (Henk)

    1998-01-01

    textabstract[PNA-R9810] Interest in multiresolution techniques for signal processing and analysis is increasing steadily. An important instance of such a technique is the so-called pyramid decomposition scheme. This report proposes a general axiomatic pyramid decomposition scheme for signal analysis

  8. Neutron signal transfer analysis

    CERN Document Server

    Pleinert, H; Lehmann, E

    1999-01-01

    A new method called neutron signal transfer analysis has been developed for quantitative determination of hydrogenous distributions from neutron radiographic measurements. The technique is based on a model which describes the detector signal obtained in the measurement as a result of the action of three different mechanisms expressed by signal transfer functions. The explicit forms of the signal transfer functions are determined by Monte Carlo computer simulations and contain only the distribution as a variable. Therefore an unknown distribution can be determined from the detector signal by recursive iteration. This technique provides a simple and efficient tool for analysis of this type while also taking into account complex effects due to the energy dependency of neutron interaction and single and multiple scattering. Therefore this method provides an efficient tool for precise quantitative analysis using neutron radiography, as for example quantitative determination of moisture distributions in porous buil...

  9. Acoustic Signals and Systems

    DEFF Research Database (Denmark)

    2008-01-01

    The Handbook of Signal Processing in Acoustics will compile the techniques and applications of signal processing as they are used in the many varied areas of Acoustics. The Handbook will emphasize the interdisciplinary nature of signal processing in acoustics. Each Section of the Handbook...... will present topics on signal processing which are important in a specific area of acoustics. These will be of interest to specialists in these areas because they will be presented from their technical perspective, rather than a generic engineering approach to signal processing. Non-specialists, or specialists...... from different areas, will find the self-contained chapters accessible and will be interested in the similarities and differences between the approaches and techniques used in different areas of acoustics....

  10. Molecular and Cellular Signaling

    CERN Document Server

    Beckerman, Martin

    2005-01-01

    A small number of signaling pathways, no more than a dozen or so, form a control layer that is responsible for all signaling in and between cells of the human body. The signaling proteins belonging to the control layer determine what kinds of cells are made during development and how they function during adult life. Malfunctions in the proteins belonging to the control layer are responsible for a host of human diseases ranging from neurological disorders to cancers. Most drugs target components in the control layer, and difficulties in drug design are intimately related to the architecture of the control layer. Molecular and Cellular Signaling provides an introduction to molecular and cellular signaling in biological systems with an emphasis on the underlying physical principles. The text is aimed at upper-level undergraduates, graduate students and individuals in medicine and pharmacology interested in broadening their understanding of how cells regulate and coordinate their core activities and how diseases ...

  11. Plant cytokinin signalling.

    Science.gov (United States)

    Keshishian, Erika A; Rashotte, Aaron M

    2015-01-01

    Cytokinin is an essential plant hormone that is involved in a wide range of plant growth and developmental processes which are controlled through its signalling pathway. Cytokinins are a class of molecules that are N(6)-substituted adenine derivatives, such as isopentenyl adenine, and trans- and cis-zeatin, which are common in most plants. The ability to perceive and respond to cytokinin occurs through a modified bacterial two-component pathway that functions via a multi-step phosphorelay. This cytokinin signalling process is a crucial part of almost all stages of plant life, from embryo patterning to apical meristem regulation, organ development and eventually senescence. The cytokinin signalling pathway involves the co-ordination of three types of proteins: histidine kinase receptors to perceive the signal, histidine phosphotransfer proteins to relay the signal, and response regulators to provide signal output. This pathway contains both positive and negative elements that function in a complex co-ordinated manner to control cytokinin-regulated plant responses. Although much is known about how this cytokinin signal is perceived and initially regulated, there are still many avenues that need to be explored before the role of cytokinin in the control of plant processes is fully understood. © 2015 Authors; published by Portland Press Limited.

  12. Signal flow analysis

    CERN Document Server

    Abrahams, J R; Hiller, N

    1965-01-01

    Signal Flow Analysis provides information pertinent to the fundamental aspects of signal flow analysis. This book discusses the basic theory of signal flow graphs and shows their relation to the usual algebraic equations.Organized into seven chapters, this book begins with an overview of properties of a flow graph. This text then demonstrates how flow graphs can be applied to a wide range of electrical circuits that do not involve amplification. Other chapters deal with the parameters as well as circuit applications of transistors. This book discusses as well the variety of circuits using ther

  13. PAU/GNSS-R: Implementation, Performance and First Results of a Real-Time Delay-Doppler Map Reflectometer Using Global Navigation Satellite System Signals.

    Science.gov (United States)

    Marchan-Hernandez, Juan Fernando; Camps, Adriano; Rodriguez-Alvarez, Nereida; Bosch-Lluis, Xavier; Ramos-Perez, Isaac; Valencia, Enric

    2008-05-06

    Signals from Global Navigation Satellite Systems (GNSS) were originally conceived for position and speed determination, but they can be used as signals of opportunity as well. The reflection process over a given surface modifies the properties of the scattered signal, and therefore, by processing the reflected signal, relevant geophysical data regarding the surface under study (land, sea, ice…) can be retrieved. In essence, a GNSS-R receiver is a multi-channel GNSS receiver that computes the received power from a given satellite at a number of different delay and Doppler bins of the incoming signal. The first approaches to build such a receiver consisted of sampling and storing the scattered signal for later post-processing. However, a real-time approach to the problem is desirable to obtain immediately useful geophysical variables and reduce the amount of data. The use of FPGA technology makes this possible, while at the same time the system can be easily reconfigured. The signal tracking and processing constraints made necessary to fully design several new blocks. The uniqueness of the implemented system described in this work is the capability to compute in real-time Delay-Doppler maps (DDMs) either for four simultaneous satellites or just one, but with a larger number of bins. The first tests have been conducted from a cliff over the sea and demonstrate the successful performance of the instrument to compute DDMs in real-time from the measured reflected GNSS/R signals. The processing of these measurements shall yield quantitative relationships between the sea state (mainly driven by the surface wind and the swell) and the overall DDM shape. The ultimate goal is to use the DDM shape to correct the sea state influence on the L-band brightness temperature to improve the retrieval of the sea surface salinity (SSS).

  14. PAU/GNSS-R: Implementation, Performance and First Results of a Real-Time Delay-Doppler Map Reflectometer Using Global Navigation Satellite System Signals

    Directory of Open Access Journals (Sweden)

    Enric Valencia

    2008-05-01

    Full Text Available Signals from Global Navigation Satellite Systems (GNSS were originally conceived for position and speed determination, but they can be used as signals of opportunity as well. The reflection process over a given surface modifies the properties of the scattered signal, and therefore, by processing the reflected signal, relevant geophysical data regarding the surface under study (land, sea, ice… can be retrieved. In essence, a GNSS-R receiver is a multi-channel GNSS receiver that computes the received power from a given satellite at a number of different delay and Doppler bins of the incoming signal. The first approaches to build such a receiver consisted of sampling and storing the scattered signal for later post-processing. However, a real-time approach to the problem is desirable to obtain immediately useful geophysical variables and reduce the amount of data. The use of FPGA technology makes this possible, while at the same time the system can be easily reconfigured. The signal tracking and processing constraints made necessary to fully design several new blocks. The uniqueness of the implemented system described in this work is the capability to compute in real-time Delay-Doppler maps (DDMs either for four simultaneous satellites or just one, but with a larger number of bins. The first tests have been conducted from a cliff over the sea and demonstrate the successful performance of the instrument to compute DDMs in real-time from the measured reflected GNSS/R signals. The processing of these measurements shall yield quantitative relationships between the sea state (mainly driven by the surface wind and the swell and the overall DDM shape. The ultimate goal is to use the DDM shape to correct the sea state influence on the L-band brightness temperature to improve the retrieval of the sea surface salinity (SSS.

  15. Signal Station Inspection Reports

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Handwritten reports resulting from detailed inspections of US Army Signal Service Stations, 1871-1889. Features reported included instrument exposure and condition,...

  16. Transmembrane Signalling: Membrane messengers

    Science.gov (United States)

    Cockroft, Scott L.

    2017-05-01

    Life has evolved elaborate means of communicating essential chemical information across cell membranes. Inspired by biology, two new artificial mechanisms have now been developed that use synthetic messenger molecules to relay chemical signals into or across lipid membranes.

  17. Topological signal processing

    CERN Document Server

    Robinson, Michael

    2014-01-01

    Signal processing is the discipline of extracting information from collections of measurements. To be effective, the measurements must be organized and then filtered, detected, or transformed to expose the desired information.  Distortions caused by uncertainty, noise, and clutter degrade the performance of practical signal processing systems. In aggressively uncertain situations, the full truth about an underlying signal cannot be known.  This book develops the theory and practice of signal processing systems for these situations that extract useful, qualitative information using the mathematics of topology -- the study of spaces under continuous transformations.  Since the collection of continuous transformations is large and varied, tools which are topologically-motivated are automatically insensitive to substantial distortion. The target audience comprises practitioners as well as researchers, but the book may also be beneficial for graduate students.

  18. Foundations of signal processing

    CERN Document Server

    Vetterli, Martin; Goyal, Vivek K

    2014-01-01

    This comprehensive and engaging textbook introduces the basic principles and techniques of signal processing, from the fundamental ideas of signals and systems theory to real-world applications. Students are introduced to the powerful foundations of modern signal processing, including the basic geometry of Hilbert space, the mathematics of Fourier transforms, and essentials of sampling, interpolation, approximation and compression. The authors discuss real-world issues and hurdles to using these tools, and ways of adapting them to overcome problems of finiteness and localisation, the limitations of uncertainty and computational costs. Standard engineering notation is used throughout, making mathematical examples easy for students to follow, understand and apply. It includes over 150 homework problems and over 180 worked examples, specifically designed to test and expand students' understanding of the fundamentals of signal processing, and is accompanied by extensive online materials designed to aid learning, ...

  19. Acoustic MIMO signal processing

    CERN Document Server

    Huang, Yiteng; Chen, Jingdong

    2006-01-01

    A timely and important book addressing a variety of acoustic signal processing problems under multiple-input multiple-output (MIMO) scenarios. It uniquely investigates these problems within a unified framework offering a novel and penetrating analysis.

  20. Traffic Signal Cycle Lengths

    Data.gov (United States)

    Town of Chapel Hill, North Carolina — Traffic signal location list for the town of Chapel Hill. This data set includes light cycle information as well as as intersection information.The Town of Chapel...

  1. Ultrahigh bandwidth signal processing

    DEFF Research Database (Denmark)

    Oxenløwe, Leif Katsuo

    2016-01-01

    Optical time lenses have proven to be very versatile for advanced optical signal processing. Based on a controlled interplay between dispersion and phase-modulation by e.g. four-wave mixing, the processing is phase-preserving, an hence useful for all types of data signals including coherent multi......-level modulation founats. This has enabled processing of phase-modulated spectrally efficient data signals, such as orthogonal frequency division multiplexed (OFDM) signa In that case, a spectral telescope system was used, using two time lenses with different focal lengths (chirp rates), yielding a spectral...... regeneratio These operations require a broad bandwidth nonlinear platform, and novel photonic integrated nonlinear platform like aluminum gallium arsenide nano-waveguides used for 1.28 Tbaud optical signal processing will be described....

  2. Modest Advertising Signals Strength.

    OpenAIRE

    Ram Orzach; Per Baltzer Overgaard; Yair Tauman

    2001-01-01

    This paper presents a signaling model where both price and advertising expenditures are used as signals of the initially unobservable quality of a newly introduced experience good. Consumers can be either "fastidious" or "indifferent". Fastidious individuals place a greater value on a high-quality product and a lesser value on the low-quality product than do indifferent individuals. It is shown that a sensible separating equilibrium exists where both firms set their full information prices. H...

  3. Lipid Signaling in Tumorigenesis

    OpenAIRE

    Liu, Renyan; Huang, Ying

    2014-01-01

    Lipids are important cellular building blocks and components of signaling cascades. Deregulation of lipid metabolism or signaling is frequently linked to a variety of human diseases such as diabetes, cardiovascular diseases, and cancer. It is widely believed that lipid molecules or their metabolic products are involved in tumorigenic inflammation and thus, lipids are implicated as significant contributors or even primary triggers of tumorigenesis. Lipids are believed to directly or indirectly...

  4. Optical Signal Processing.

    Science.gov (United States)

    1983-11-30

    that the readaptation phenomena is minimized as signal components leave the tap weight plane (the accumulator). In principle, the performance could be...accumulators so that the readaptation phenomena caused by large values pleaving the accumulator are minimized. Several examples of the performance...the jammer signal. The system then goes into a " readaptation " phase where the new contributions to the tap weights must offset the older cont

  5. Radiometry for the EUV lithography; Radiometrie fuer die EUV-Lithographie

    Energy Technology Data Exchange (ETDEWEB)

    Scholze, Frank [Physikalisch-Technische Bundesanstalt (PTB), Berlin (Germany). Arbeitsgruppe ' EUV-Radiometrie' ; Laubis, Christian; Barboutis, Annett; Buchholz, Christian; Fischer, Andreas; Puls, Jana; Stadelhoff, Christian

    2014-12-15

    The EUV reflectrometry at the PTB storage BESSY I and BESSY II is described. Results on the reflectivities of some EUV mirrors are presented. Finally the spectral sensitivities of different photodiodes used as EUV detectors are presented. (HSI)

  6. Digital Signal Processing applied to Physical Signals

    CERN Document Server

    Alberto, Diego; Musa, L

    2011-01-01

    It is well known that many of the scientific and technological discoveries of the XXI century will depend on the capability of processing and understanding a huge quantity of data. With the advent of the digital era, a fully digital and automated treatment can be designed and performed. From data mining to data compression, from signal elaboration to noise reduction, a processing is essential to manage and enhance features of interest after every data acquisition (DAQ) session. In the near future, science will go towards interdisciplinary research. In this work there will be given an example of the application of signal processing to different fields of Physics from nuclear particle detectors to biomedical examinations. In Chapter 1 a brief description of the collaborations that allowed this thesis is given, together with a list of the publications co-produced by the author in these three years. The most important notations, definitions and acronyms used in the work are also provided. In Chapter 2, the last r...

  7. Respiration signals from photoplethysmography.

    Science.gov (United States)

    Nilsson, Lena M

    2013-10-01

    Pulse oximetry is based on the technique of photoplethysmography (PPG) wherein light transmitted through tissues is modulated by the pulse. In addition to variations in light modulation by the cardiac cycle, the PPG signal contains a respiratory modulation and variations associated with changing tissue blood volume of other origins. Cardiovascular, respiratory, and neural fluctuations in the PPG signal are of different frequencies and can all be characterized according to their sinusoidal components. PPG was described in 1937 to measure blood volume changes. The technique is today increasingly used, in part because of developments in semiconductor technology during recent decades that have resulted in considerable advances in PPG probe design. Artificial neural networks help to detect complex nonlinear relationships and are extensively used in electronic signal analysis, including PPG. Patient and/or probe-tissue movement artifacts are sources of signal interference. Physiologic variations such as vasoconstriction, a deep gasp, or yawn also affect the signal. Monitoring respiratory rates from PPG are often based on respiratory-induced intensity variations (RIIVs) contained in the baseline of the PPG signal. Qualitative RIIV signals may be used for monitoring purposes regardless of age, gender, anesthesia, and mode of ventilation. Detection of breaths in adult volunteers had a maximal error of 8%, and in infants the rates of overdetected and missed breaths using PPG were 1.5% and 2.7%, respectively. During central apnea, the rhythmic RIIV signals caused by variations in intrathoracic pressure disappear. PPG has been evaluated for detecting airway obstruction with a sensitivity of 75% and a specificity of 85%. The RIIV and the pulse synchronous PPG waveform are sensitive for detecting hypovolemia. The respiratory synchronous variation of the PPG pulse amplitude is an accurate predictor of fluid responsiveness. Pleth variability index is a continuous measure of the

  8. VLSI signal processing technology

    CERN Document Server

    Swartzlander, Earl

    1994-01-01

    This book is the first in a set of forthcoming books focussed on state-of-the-art development in the VLSI Signal Processing area. It is a response to the tremendous research activities taking place in that field. These activities have been driven by two factors: the dramatic increase in demand for high speed signal processing, especially in consumer elec­ tronics, and the evolving microelectronic technologies. The available technology has always been one of the main factors in determining al­ gorithms, architectures, and design strategies to be followed. With every new technology, signal processing systems go through many changes in concepts, design methods, and implementation. The goal of this book is to introduce the reader to the main features of VLSI Signal Processing and the ongoing developments in this area. The focus of this book is on: • Current developments in Digital Signal Processing (DSP) pro­ cessors and architectures - several examples and case studies of existing DSP chips are discussed in...

  9. Signal integrity characterization techniques

    CERN Document Server

    Bogatin, Eric

    2009-01-01

    "Signal Integrity Characterization Techniques" addresses the gap between traditional digital and microwave curricula all while focusing on a practical and intuitive understanding of signal integrity effects within the data transmission channel. High-speed interconnects such as connectors, PCBs, cables, IC packages, and backplanes are critical elements of differential channels that must be designed using today's most powerful analysis and characterization tools.Both measurements and simulation must be done on the device under test, and both activities must yield data that correlates with each other. Most of this book focuses on real-world applications of signal integrity measurements - from backplane for design challenges to error correction techniques to jitter measurement technologies. The authors' approach wisely addresses some of these new high-speed technologies, and it also provides valuable insight into its future direction and will teach the reader valuable lessons on the industry.

  10. Integrin signaling in atherosclerosis.

    Science.gov (United States)

    Finney, Alexandra C; Stokes, Karen Y; Pattillo, Christopher B; Orr, A Wayne

    2017-06-01

    Atherosclerosis, a chronic lipid-driven inflammatory disease affecting large arteries, represents the primary cause of cardiovascular disease in the world. The local remodeling of the vessel intima during atherosclerosis involves the modulation of vascular cell phenotype, alteration of cell migration and proliferation, and propagation of local extracellular matrix remodeling. All of these responses represent targets of the integrin family of cell adhesion receptors. As such, alterations in integrin signaling affect multiple aspects of atherosclerosis, from the earliest induction of inflammation to the development of advanced fibrotic plaques. Integrin signaling has been shown to regulate endothelial phenotype, facilitate leukocyte homing, affect leukocyte function, and drive smooth muscle fibroproliferative remodeling. In addition, integrin signaling in platelets contributes to the thrombotic complications that typically drive the clinical manifestation of cardiovascular disease. In this review, we examine the current literature on integrin regulation of atherosclerotic plaque development and the suitability of integrins as potential therapeutic targets to limit cardiovascular disease and its complications.

  11. Separation of Climate Signals

    Energy Technology Data Exchange (ETDEWEB)

    Kamath, C; Fodor, I

    2002-11-13

    Understanding changes in global climate is a challenging scientific problem. Simulated and observed data include signals from many sources, and untangling their respective effects is difficult. In order to make meaningful comparisons between different models, and to understand human effects on global climate, we need to isolate the effects of different sources. Recent eruptions of the El Chichon and Mt. Pinatubo volcanoes coincided with large El Nino and Southern Oscillation (ENSO) events, which complicates the separation of their contributions on global temperatures. Current approaches for separating volcano and ENSO signals in global mean data involve parametric models and iterative techniques [3]. We investigate alternative methods based on principal component analysis (PCA) [2] and independent component analysis (ICA) [1]. Our goal is to determine if such techniques can automatically identify the signals corresponding to the different sources, without relying on parametric models.

  12. Purinergic signalling and diabetes

    DEFF Research Database (Denmark)

    Burnstock, Geoffrey; Novak, Ivana

    2013-01-01

    signalling, we will focus on the role of purinergic signalling and its changes associated with diabetes in the pancreas and selected tissues/organ systems affected by hyperglycaemia and other stress molecules of diabetes. Since this is the first review of this kind, a comprehensive historical angle is taken......The pancreas is an organ with a central role in nutrient breakdown, nutrient sensing and release of hormones regulating whole body nutrient homeostasis. In diabetes mellitus, the balance is broken-cells can be starving in the midst of plenty. There are indications that the incidence of diabetes...... type 1 and 2, and possibly pancreatogenic diabetes, is rising globally. Events leading to insulin secretion and action are complex, but there is emerging evidence that intracellular nucleotides and nucleotides are not only important as intracellular energy molecules but also as extracellular signalling...

  13. PKD signaling and pancreatitis.

    Science.gov (United States)

    Yuan, Jingzhen; Pandol, Stephen J

    2016-07-01

    Acute pancreatitis is a serious medical disorder with no current therapies directed to the molecular pathogenesis of the disorder. Inflammation, inappropriate intracellular activation of digestive enzymes, and parenchymal acinar cell death by necrosis are the critical pathophysiologic processes of acute pancreatitis. Thus, it is necessary to elucidate the key molecular signals that mediate these pathobiologic processes and develop new therapeutic strategies to attenuate the appropriate signaling pathways in order to improve outcomes for this disease. A novel serine/threonine protein kinase D (PKD) family has emerged as key participants in signal transduction, and this family is increasingly being implicated in the regulation of multiple cellular functions and diseases. This review summarizes recent findings of our group and others regarding the signaling pathway and the biological roles of the PKD family in pancreatic acinar cells. In particular, we highlight our studies of the functions of PKD in several key pathobiologic processes associated with acute pancreatitis in experimental models. Our findings reveal that PKD signaling is required for NF-κB activation/inflammation, intracellular zymogen activation, and acinar cell necrosis in rodent experimental pancreatitis. Novel small-molecule PKD inhibitors attenuate the severity of pancreatitis in both in vitro and in vivo experimental models. Further, this review emphasizes our latest advances in the therapeutic application of PKD inhibitors to experimental pancreatitis after the initiation of pancreatitis. These novel findings suggest that PKD signaling is a necessary modulator in key initiating pathobiologic processes of pancreatitis, and that it constitutes a novel therapeutic target for treatments of this disorder.

  14. Notch signaling and ageing.

    Science.gov (United States)

    Polychronidou, Eleftheria; Vlachakis, Dimitrios; Vlamos, Panayiotis; Baumann, Marc; Kossida, Sophia

    2015-01-01

    Notch signaling is a master controller of the neural stem cell and neural development maintaining a significant role in the normal brain function. Notch genes are involved in embryogenesis, nervous system, and cardiovascular and endocrine function. On the other side, there are studies representing the involvement of Notch mutations in sporadic Alzheimer disease, other neurodegenerative diseases such as Down syndrome, Pick's and Prion's disease, and CADASIL. This manuscript attempts to present a holistic view of the positive or negative contribution of Notch signaling in the adult brain, and at the same time to present and promote the promising research fields of study.

  15. Understanding signal integrity

    CERN Document Server

    Thierauf, Stephen C

    2010-01-01

    This unique book provides you with practical guidance on understanding and interpreting signal integrity (SI) performance to help you with your challenging circuit board design projects. You find high-level discussions of important SI concepts presented in a clear and easily accessible format, including question and answer sections and bulleted lists.This valuable resource features rules of thumb and simple equations to help you make estimates of critical signal integrity parameters without using circuit simulators of CAD (computer-aided design). The book is supported with over 120 illustratio

  16. Electronic signal conditioning

    CERN Document Server

    NEWBY, BRUCE

    1994-01-01

    At technician level, brief references to signal conditioning crop up in a fragmented way in various textbooks, but there has been no single textbook, until now!More advanced texts do exist but they are more mathematical and presuppose a higher level of understanding of electronics and statistics. Electronic Signal Conditioning is designed for HNC/D students and City & Guilds Electronics Servicing 2240 Parts 2 & 3. It will also be useful for BTEC National, Advanced GNVQ, A-level electronics and introductory courses at degree level.

  17. Genomic signal processing

    CERN Document Server

    Shmulevich, Ilya

    2007-01-01

    Genomic signal processing (GSP) can be defined as the analysis, processing, and use of genomic signals to gain biological knowledge, and the translation of that knowledge into systems-based applications that can be used to diagnose and treat genetic diseases. Situated at the crossroads of engineering, biology, mathematics, statistics, and computer science, GSP requires the development of both nonlinear dynamical models that adequately represent genomic regulation, and diagnostic and therapeutic tools based on these models. This book facilitates these developments by providing rigorous mathema

  18. A Family of L-band SRF Cavities for High Power Proton Driver Applications

    Energy Technology Data Exchange (ETDEWEB)

    Robert Rimmer, Frank Marhauser

    2009-05-01

    Recent global interest in high duty factor or CW superconducting linacs with high average beam power highlights the need for robust and reliable SRF structures capable of delivering high average RF power to the beam with moderate HOM damping, low interception of halo and good efficiency. Potential applications include proton or H- drivers for spallation neutron sources, neutrino physics, waste transmutation, subcritical reactors, and high-intensity high-energy physics experiments. We describe a family of SRF cavities with a range of Betas capable of transporting beam currents in excess of 10 mA CW with large irises for minimal interception of halo and HOM and power couplers capable of supporting high average power operation. Goals include an efficient cell shape, high packing factor for efficient real-estate gradient and strong HOM damping to ensure stable beam operation,

  19. C- and L-band multi-temporal polarimetric signatures of crops

    DEFF Research Database (Denmark)

    Skriver, Henning; Nielsen, Flemming; Thomsen, Anton

    1996-01-01

    the beginning of 1995. The SAR system is installed on a Danish Air Force Gulfstream aircraft, and a significant amount of polarimetric SAR data have been acquired on various missions. Polarimetric parameters for a number of different agricultural crops are shown, and the advantage of having polarimetric, multi...

  20. UAVASAR L-Band Polarimetric Data to Analyze BP Oil Spill

    Science.gov (United States)

    Migliacciio, M.; Nunziata, F.; Holt, B.

    2011-03-01

    Two polarimetric approaches are presented to observe oil spills in polarimetric SAR data gathered during UAVSAR flights over the polluted area of Gulf of Mexico. The approaches, based on the co-polarized pedestal height and on the co-polarized phase difference (CPD), are able to work on full-polarized and dual-polarized Synthetic Aperture Radar (SAR) data, respectively.The approaches have been shown to be both able to distinguish the oil for the surrounding sea surface and to classify it according to its damping properties. Results, compared with ancillary data provided by independent aircraft surveys, witness the very heterogeneous damping properties of the oil spilled after the BP oil platform accident.

  1. Development of a Miniature L-band Radiometer for Education Outreach in Remote Sensing

    Science.gov (United States)

    King, Lyon B.

    2004-01-01

    Work performed under this grant developed a 1.4-Mhz radiometer for use in soil moisture remote sensing from space. The resulting instrument was integrated onto HuskySat. HuskySat is a 30-kg nanosatellite built under sponsorship from the Air Force Research Laboratory and NASA. This report consists of the interface document for the radiometer (the Science Payload of HuskySat) as detailed in the vehicle design report.

  2. Latitudinal variation in the occurrence of GPS L-band scintillations ...

    Indian Academy of Sciences (India)

    -band scintillations from equator to the anomaly crest location associated with the changes in TEC, h′F and E×B drift velocities. The GPS–TEC and S4 index data from an equatorial station, Trivandrum (8.47°N, 76.91°E), a low latitude station, ...

  3. Accurate Measurements of the Dielectric Constant of Seawater at L Band

    Science.gov (United States)

    Lang, Roger; Zhou, Yiwen; Utku, Cuneyt; Le Vine, David

    2016-01-01

    This paper describes measurements of the dielectric constant of seawater at a frequency of 1.413 GHz, the center of the protected band (i.e., passive use only) used in the measurement of sea surface salinity from space. The objective of the measurements is to accurately determine the complex dielectric constant of seawater as a function of salinity and temperature. A resonant cylindrical microwave cavity in transmission mode has been employed to make the measurements. The measurements are made using standard seawater at salinities of 30, 33, 35, and 38 practical salinity units over a range of temperatures from 0 degree C to 35 degree C in 5 degree C intervals. Repeated measurements have been made at each temperature and salinity. Mean values and standard deviations are then computed. The total error budget indicates that the real and imaginary parts of the dielectric constant have a combined standard uncertainty of about 0.3 over the range of salinities and temperatures considered. The measurements are compared with the dielectric constants obtained from the model functions of Klein and Swift and those of Meissner and Wentz. The biggest differences occur at low and high temperatures.

  4. Studi Perancangan Jaringan Komunikasi Serat Optik Dwdm L Band dengan Penguat Optikal Edfa

    Directory of Open Access Journals (Sweden)

    Sri Danaryani

    2016-03-01

    Full Text Available Perkembangan teknologi telekomunikasi juga disertai dengan teknik transmisi yang dapat membawa bandwidth yang besar, seperti SONET / SDH yang memiliki bit rate hingga 40 Gb / s. Serat optik adalah media yang paling tepat digunakan untuk transmisi, yang untuk komunikasi jarak jauh jenis single mode step index adalah yang paling sesuai. Maju multiplexing WDM (Wavelength Division Multiplexing memungkinkan SONET, ATM dan saluran lainnya dapat menyebarkan dalam serat optik tunggal. Bandwidth tumbuh membuat WDM berkembang menjadi DWDM .. Berbagai masukan membuat perangkat yang dipilih untuk menjadi beragam, yang pada gilirannya dapat masuk ke dalam DWDM dengan kapasitas 10 Gbps. Kapasitas DWDM harus dipilih, misalnya dengan menggunakan 4 nilai panjang gelombang sesuai dengan grid ITU-T 1568.77nm, 1569.59nm, 1571,23 nm n 1.572,05 nm. Hasilnya dapat meminimalkan efek dari FWM mana harmonik yang dihasilkan tidak termasuk dalam panjang gelombang fundamental. Penggunaan EDFA dalam transmisi serat optik di DWDM shut sedang mempertimbangkan OSNR. Perhitungan OSNR tergantung pada jumlah panjang gelombang, bit rate, dispersi serat dan jumlah amplifier yang digunakan. Secara umum, semakin amplifier digunakan OSNR akan lebih kecil. bandwidth yang besar juga menurun OSNR. Jadi OSNR lebih kecil menunjukkan suara lebih dominan dibandingkan dengan sinyal.

  5. Gain clamping in double-pass L-band EDFA using a broadband FBG

    Indian Academy of Sciences (India)

    Dense wavelength division multiplexing (DWDM) transmission systems are being deployed by service providers to meet the rapidly growing data traffic demands. Wide band fiber amplifiers are important subsystems for the next generation terabit. DWDM transmission networks operating in the third window at 1550 nm. An.

  6. Contribution of L-band SAR to systematic global mangrove monitoring

    Science.gov (United States)

    Richard Lucas; Lias-Maria Rebelo; Lola Fatoyinbo; Ake Rosenqvist; Takuya Itoh; Masanobu Shimada; Marc Simard; Pedro Walfir Souza-Filho; Nathan Thomas; Carl Trettin; Arnon Accad; Joao Carreiras; Lammert. Hilarides

    2014-01-01

    Information on the status of and changes in mangroves is required for national and international policy development, implementation and evaluation. To support these requirements, a component of the Japan Aerospace Exploration Agency’s (JAXA) Kyoto and Carbon (K&C) initiative has been to design and develop capability for a Global Mangrove Watch (GMW) that routinely...

  7. Measurement and Mitigation of the Ionosphere in L-Band Interferometric SAR Data

    Science.gov (United States)

    Rosen, Paul A.; Hensley, Scott; Chen, Curtis

    2010-01-01

    Satellite-based repeat-pass Interferometric Synthetic Aperture Radar (InSAR) provides a synoptic high spatial resolution perspective of Earth's changing surface, permitting one to view large areas quickly and efficiently. By measuring relative phase change from one observation to the next on a pixel-by-pixel basis, maps of deformation and change can be derived. Variability of the atmosphere and the ionosphere leads to phase/time delays that are present in the data that can mask many of the subtle deformation signatures of interest, so methods for mitigation of these effects are important. Many of these effects have been observed in existing ALOS PALSAR data, and studies are underway to characterize and mitigate the ionosphere using these data. Since the ionosphere is a dispersive medium, it is possible in principle distinguish the ionospheric signatures from the non-dispersive effects of deformation and the atmosphere. In this paper, we describe a method for mapping the ionosphere in InSAR data based on a multi-frequency split-spectrum processing technique.

  8. High Power L-band T/R Module for Spaceborne SAR

    NARCIS (Netherlands)

    Knight, A.; Head, A.; Graaf, M.W. van der; Ludwig, L.; Vogel, P.; Gallou, N. le

    2006-01-01

    Within the framework of the pre-development for a TerraSAR-L space-borne mission a high power Transmit/Receive module was required to meet stringent requirements. The module is to be capable of delivering more than 40 watts of output power, in pulsed transmit mode, while having a Noise Figure of 2.8

  9. Land Subsidence Monitoring Using PS-InSAR Technique for L-Band SAR Data

    Science.gov (United States)

    Thapa, S.; Chatterjee, R. S.; Singh, K. B.; Kumar, D.

    2016-10-01

    Differential SAR-Interferometry (D-InSAR) is one of the potential source to measure land surface motion induced due to underground coal mining. However, this technique has many limitation such as atmospheric in homogeneities, spatial de-correlation, and temporal decorrelation. Persistent Scatterer Interferometry synthetic aperture radar (PS-InSAR) belongs to a family of time series InSAR technique, which utilizes the properties of some of the stable natural and anthropogenic targets which remain coherent over long time period. In this study PS-InSAR technique has been used to monitor land subsidence over selected location of Jharia Coal field which has been correlated with the ground levelling measurement. This time series deformation observed using PS InSAR helped us to understand the nature of the ground surface deformation due to underground mining activity.

  10. An L-Band Radio Frequency Interference (RFI) Detection and Mitigation Testbed Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Radio Frequency Interference (RFI) can render microwave radiometer measurements useless. We have proposed a method and an architecture that can be used to identify...

  11. L-band AlGaN/GaN Power Amplifier with Protection Against Load Mismatch

    NARCIS (Netherlands)

    Heijningen, M. van; Bent, G. van der; Houwen, E.H. van der; Chowdhary, A.; Vliet, F.E. van

    2013-01-01

    Solid-state power amplifiers need protection at the output to handle high reflections due to mismatch. Normally this is implemented by using a ferrite-based isolator. These are however large and bulky components. This paper presents a Gallium-Nitride power amplifier module with automatic protection

  12. Optimizing Performance of a Microwave Salinity Mapper: STARRS L-Band Radiometer Enhancements

    National Research Council Canada - National Science Library

    Burrage, Derek M; Wesson, Joel C; Goodberlet, Mark A; Miller, Jerry L

    2007-01-01

    Airborne microwave radiometers for salinity remote sensing have advanced to a point where operational surveys can be conducted over the inner continental shelf to observe the evolution of freshwater...

  13. Latitudinal variation in the occurrence of GPS L-band scintillations ...

    Indian Academy of Sciences (India)

    drift velocity observed around 19:00 hr LT is higher (20 m/s) during scintillation days, whereas during no scintillation days, it is found to be much less (7 m/s). Further, it is observed that the GPS receivers lose their locks whenever the S4 index exceeds 0.5 (>10 dB power level) and these loss of lock events are observed to be ...

  14. The SMOS Mediterranean Ecosystem L-Band characterisation EXperiment (MELBEX-I) over natural shrubs

    DEFF Research Database (Denmark)

    Cano, Aurelio; Saleh, Kauzar; Wigneron, Jean-Pierre

    2010-01-01

    land, and L-MEB parameters for shrub land were obtained. In addition, the study highlights the need for calibrating microwave soil roughness, which was found to be constant at the site. Depending on the number of retrieved parameters, soil moisture (SM) near the surface could be estimated with errors...

  15. High gain L-band erbium-doped fiber amplifier with two-stage ...

    Indian Academy of Sciences (India)

    The explosive growth of Internet traffic has placed huge demands on our communication networks. One of the key technologies to increase the bandwidth of optical ... reflector to feedback a fraction of the backward C-band ASE into the EDF as an ASE seed to suppress the backward C-band ASE [5]. In our earlier work, the ...

  16. The L-band klystron-modulator RF power system for CLIC

    CERN Document Server

    Pearce, P

    2000-01-01

    The long-pulse, high-power klystron-modulators are an important part of the CLIC drive-beam scheme and a number of design variations are being studied in order to improve their overall power efficiency, reliability and cost effectiveness. Because of the number needed (364 at 50 MW for the 3 TeV scheme) and their size, they will have a large impact on the capital cost of the pulsed RF power to be delivered to the beam and to the resistive losses in the drive-beam accelerating structures. Overall RF system efficiency is an important parameter for long linear colliders, and to a large extent, will be determined by the performance and efficiency of the klystron-modulators. The input AC power to output RF power efficiency of one CLIC klystron- modulator, including the klystron, power conversion, pulse transformer, auxiliary power and switching losses at 100 Hz and 100 mu s pulse width, is estimated as 52The RF to beam efficiency is estimated at 24, and after taking into account other RF power transmission losses w...

  17. Design and Operation of a High Power L-Band Multiple Beam Klystron

    CERN Document Server

    Balkcum, Adam; Cattelino, Mark; Cox, Lydia; Cusick, Mike; Eppley, Kenneth; Forrest, Scott; Friedlander, Fred; Staprans, Armand; Wright, Edward L; Zitelli, Lou

    2005-01-01

    A 1.3 GHz, 10 MW, higher-order-mode multiple beam klystron (MBK) has been developed for the TESLA program. The relative advantages of such a device are many-fold. Multiple beams generate higher beam currents and thereby require much lower operating voltages which allows for the use of smaller, less expensive modulators. A lower perveance per cathode can also be used which leads to higher operating efficiencies. Higher-order-mode cavities allow for the use of much larger cathodes which leads to lower cathode current density loadings and subsequently longer cathode lifetimes. This requires that the cathodes be located far off the geometric axis of the device. The compromise is an increase in the complexity of the magnetic focusing circuit required to transport the off-axis electron beams. Such a device has been successfully built and tested. Excellent beam transmission has been achieved (99.5% DC and 98% at RF saturation). A peak power of 10 MW with 150 kW of average power and 60% efficiency, 49 dB gain have al...

  18. Effects of Faraday Rotation on Microwave Remote Sensing From Space at L-Band

    Science.gov (United States)

    LeVine, D. M.; Kao, M.

    1997-01-01

    The effect of Faraday rotation on the remote sensing of soil moisture from space is investigated using the International Reference Ionosphere (IRI) to obtain electron density profiles and the International Geomagnetic Reference Field (IGRF) to model the magnetic field. With a judicious choice of satellite orbit (6 am, sunsynchronous) the errors caused by ignoring Faraday rotation are less than 1 K at incidence angles less than 40 degrees.

  19. Analog signal isolation techniques

    Energy Technology Data Exchange (ETDEWEB)

    Beadle, E.R.

    1992-12-31

    This paper discusses several techniques for isolating analog signals in an accelerator environment. The techniques presented here encompass isolation amplifiers, voltage-to-frequency converters (VIFCs), transformers, optocouplers, discrete fiber optics, and commercial fiber optic links. Included within the presentation of each method are the design issues that must be considered when selecting the isolation method for a specific application.

  20. Analog signal isolation techniques

    Energy Technology Data Exchange (ETDEWEB)

    Beadle, E.R.

    1992-01-01

    This paper discusses several techniques for isolating analog signals in an accelerator environment. The techniques presented here encompass isolation amplifiers, voltage-to-frequency converters (VIFCs), transformers, optocouplers, discrete fiber optics, and commercial fiber optic links. Included within the presentation of each method are the design issues that must be considered when selecting the isolation method for a specific application.

  1. Drought Signaling in Plants

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 6. Drought Signaling in Plants. G Sivakumar Swamy. General Article Volume 4 Issue 6 June 1999 pp 34-44. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/004/06/0034-0044. Author Affiliations.

  2. Symposium: Unveiling Affective Signals

    NARCIS (Netherlands)

    van den Broek, Egon; Nijholt, Antinus; Westerink, J.H.D.M.; Spink, A.J.; Grieco, F; Krips, O.E.; Loijens, L.W.S.; Noldus, L.P.J.J.; Zimmerman, P.H.

    2010-01-01

    The ability to process and, subsequently, understand affective signals is the core of emotional intelligence and empathy. However, more than a decade of research in affective computing has shown that it is hard to develop computational models of this process. We pose that the solution for this

  3. Unveiling Affective Signals

    NARCIS (Netherlands)

    van den Broek, Egon; Nijholt, Antinus; Westerink, J.H.D.M.; Barakova, E.; de Ruyter, B.; Spink, A

    2010-01-01

    The ability to process and, subsequently, understand affective signals is the core of emotional intelligence and empathy. However, more than a decade of research in affective computing has shown that it is hard to develop computational models of this process. We pose that the solution for this

  4. Selenium and redox signaling.

    Science.gov (United States)

    Brigelius-Flohé, Regina; Flohé, Leopold

    2017-03-01

    Selenium compounds that contain selenol functions or can be metabolized to selenols are toxic via superoxide and H2O2 generation, when ingested at dosages beyond requirement. At supra-nutritional dosages various forms of programmed cell death are observed. At physiological intakes, selenium exerts its function as constituent of selenoproteins, which overwhelmingly are oxidoreductases. Out of those, the glutathione peroxidases counteract hydroperoxide-stimulated signaling cascades comprising inflammation triggered by cytokines or lipid mediators, insulin signaling and different forms of programmed cell death. Similar events are exerted by peroxiredoxins, which functionally depend on the selenoproteins of the thioredoxin reductase family. The thiol peroxidases of both families can, however, also act as sensors for hydroperoxides, thereby initiating signaling cascades. Although the interaction of selenoproteins with signaling events has been established by genetic techniques, the in vivo relevance of these findings is still hard to delineate for several reasons: The biosynthesis of individual selenoproteins responds differently to variations of selenium intakes; selenium is preferentially delivered to privileged tissues via inter-organ trafficking and receptor-mediated uptake, and only half of the selenoproteins known by sequence have been functionally characterized. The fragmentary insights do not allow any uncritical use of selenium for optimizing human health. Copyright © 2016. Published by Elsevier Inc.

  5. Satiety signals and obesity.

    Science.gov (United States)

    Hellström, Per M

    2013-03-01

    The obesity epidemic over the world has called to attention different ways to manage this development. As bariatric surgery today is the only manner by which rapid and sustained weight control can be achieved, new ways of treating obesity are under investigation. This review focuses on today's knowledge on satiety signaling as a means to combat obesity. The combined knowledge achieved from obesity surgery with gastric bypass and duodenal switch together with the pharmacological treatment of type 2 diabetes have given us some clues of how to manage obesity. The basis for our understanding is the present research focusing on the gut peptide hormones that are released in response to food intake, and the paucity of satiety signaling seems to prevail in obesity. This means that obese patients experience less activation of higher brain centers in association with a meal and therefore compensate with increased meal size or frequent food intake. Altered satiety signaling primarily emanating from the gastrointestinal tract seems to lead to the development of obesity and type 2 diabetes. Pharmacological tools that enhance the gut hormone signaling are in focus for the upcoming venues of treatment.

  6. Signalling Nouns in Discourse.

    Science.gov (United States)

    Flowerdew, John

    2003-01-01

    Presents a description of a major class of vocabulary, signalling nouns, that have important discourse functions in establishing links across and within clauses. The description provides a framework useful to materials writers, teachers, and learners of English for academic purposes. (Author/VWL)

  7. Small Turing universal signal machines

    Directory of Open Access Journals (Sweden)

    Jérôme Durand-Lose

    2009-06-01

    Full Text Available This article aims at providing signal machines as small as possible able to perform any computation (in the classical understanding. After presenting signal machines, it is shown how to get universal ones from Turing machines, cellular-automata and cyclic tag systems. Finally a halting universal signal machine with 13 meta-signals and 21 collision rules is presented.

  8. Critical nodes in signalling pathways

    DEFF Research Database (Denmark)

    Taniguchi, Cullen M; Emanuelli, Brice; Kahn, C Ronald

    2006-01-01

    Physiologically important cell-signalling networks are complex, and contain several points of regulation, signal divergence and crosstalk with other signalling cascades. Here, we use the concept of 'critical nodes' to define the important junctions in these pathways and illustrate their unique role...... using insulin signalling as a model system....

  9. Multiresolution Analysis of EEG Signals

    OpenAIRE

    Borowska Marta; Białobłocka Natalia

    2016-01-01

    This paper reports on a multiresolution analysis of EEG signals. The dominant frequency components of signals with and without observed epileptic discharges were compared. The study showed that there were significant differences in dominant frequency between the signals with epileptic discharges and the signals without discharges. This gives the ability to identify epilepsy during EEG examination. The frequency of the signals coming from the frontal, central, parietal and occipital channels a...

  10. Signals and Responses

    Science.gov (United States)

    Lee, Angie

    2006-01-01

    The nitrogen-fixing symbiosis between bacteria in the family Rhizobiaceae and members of the legume family (Fabaceae) has been well studied, particularly from the perspective of the early signaling and recognition events. Recent studies of non-nodulating legume mutants have resulted in the identification of a number of genes that are responsive to signal molecules from the bacteria. However, a second group of nodule-forming bacteria, completely unrelated to the Rhizobiaceae, which are α-Proteobacteria, has been discovered. These bacteria belong to the β-Proteobacteria and have been designated β-rhizobia to distinguish them from the better-known α-rhizobia. Here, we review what is known in this economically important symbiosis about the interaction between legumes and α-rhizobia, and we incorporate information, where known, about the β-rhizobia. PMID:19521481

  11. Biomedical signal analysis

    CERN Document Server

    Rangayyan, Rangaraj M

    2015-01-01

    The book will help assist a reader in the development of techniques for analysis of biomedical signals and computer aided diagnoses with a pedagogical examination of basic and advanced topics accompanied by over 350 figures and illustrations. Wide range of filtering techniques presented to address various applications. 800 mathematical expressions and equations. Practical questions, problems and laboratory exercises. Includes fractals and chaos theory with biomedical applications.

  12. Multimodal signalling in estrildid finches

    DEFF Research Database (Denmark)

    Gomes, A. C. R.; Funghi, C.; Soma, M.

    2017-01-01

    Sexual traits (e.g. visual ornaments, acoustic signals, courtship behaviour) are often displayed together as multimodal signals. Some hypotheses predict joint evolution of different sexual signals (e.g. to increase the efficiency of communication) or that different signals trade off with each other...... in reproduction, dance with commonness and habitat type, whereas colour ornamentation was shown previously to correlate mostly with gregariousness. We conclude that multimodal signals evolve in response to various socio-ecological traits, suggesting the accumulation of distinct signalling functions....

  13. Biomedical signal and image processing

    CERN Document Server

    Najarian, Kayvan

    2012-01-01

    INTRODUCTION TO DIGITAL SIGNAL AND IMAGE PROCESSINGSignals and Biomedical Signal ProcessingIntroduction and OverviewWhat is a ""Signal""?Analog, Discrete, and Digital SignalsProcessing and Transformation of SignalsSignal Processing for Feature ExtractionSome Characteristics of Digital ImagesSummaryProblemsFourier TransformIntroduction and OverviewOne-Dimensional Continuous Fourier TransformSampling and NYQUIST RateOne-Dimensional Discrete Fourier TransformTwo-Dimensional Discrete Fourier TransformFilter DesignSummaryProblemsImage Filtering, Enhancement, and RestorationIntroduction and Overview

  14. Signal analyser, the software support for education of signal processing

    Directory of Open Access Journals (Sweden)

    Tùma Jiøí

    2003-12-01

    Full Text Available The paper deals with the software that is supporting signal-processing lectures given for students of mechanical engineering. An application, named Signal Analyser is written in Visual Basic 6.0 language so it is working under Windows operating systems. The main idea is to demonstrate spectral analysis of signals that are taken from measurements in industry or synthesised by an incorporate signal generator.

  15. New Passive Instruments Developed for Ocean Monitoring at the Remote Sensing Lab—Universitat Politècnica de Catalunya

    Directory of Open Access Journals (Sweden)

    René Acevo

    2009-12-01

    Full Text Available Lack of frequent and global observations from space is currently a limiting factor in many Earth Observation (EO missions. Two potential techniques that have been proposed nowadays are: (1 the use of satellite constellations, and (2 the use of Global Navigation Satellite Signals (GNSS as signals of opportunity (no transmitter required. Reflectometry using GNSS opportunity signals (GNSS-R was originally proposed in 1993 by Martin-Neira (ESA-ESTEC for altimetry applications, but later its use for wind speed determination has been proposed, and more recently to perform the sea state correction required in sea surface salinity retrievals by means of L-band microwave radiometry (TB. At present, two EO space-borne missions are currently planned to be launched in the near future: (1 ESA’s SMOS mission, using a Y-shaped synthetic aperture radiometer, launch date November 2nd, 2009, and (2 NASA-CONAE AQUARIUS/SAC-D mission, using a three beam push-broom radiometer. In the SMOS mission, the multi-angle observation capabilities allow to simultaneously retrieve not only the surface salinity, but also the surface temperature and an “effective” wind speed that minimizes the differences between observations and models. In AQUARIUS, an L-band scatterometer measuring the radar backscatter (σ0 will be used to perform the necessary sea state corrections. However, none of these approaches are fully satisfactory, since the effective wind speed captures some sea surface roughness effects, at the expense of introducing another variable to be retrieved, and on the other hand the plots (TB-σ0 present a large scattering. In 2003, the Passive Advance Unit for ocean monitoring (PAU project was proposed to the European Science Foundation in the frame of the EUropean Young Investigator Awards (EURYI to test the feasibility of GNSS-R over the sea surface to make sea state measurements and perform the correction of the L-band brightness temperature. This paper: (1

  16. Purinergic Signalling: Therapeutic Developments

    Directory of Open Access Journals (Sweden)

    Geoffrey Burnstock

    2017-09-01

    Full Text Available Purinergic signalling, i.e., the role of nucleotides as extracellular signalling molecules, was proposed in 1972. However, this concept was not well accepted until the early 1990’s when receptor subtypes for purines and pyrimidines were cloned and characterised, which includes four subtypes of the P1 (adenosine receptor, seven subtypes of P2X ion channel receptors and 8 subtypes of the P2Y G protein-coupled receptor. Early studies were largely concerned with the physiology, pharmacology and biochemistry of purinergic signalling. More recently, the focus has been on the pathophysiology and therapeutic potential. There was early recognition of the use of P1 receptor agonists for the treatment of supraventricular tachycardia and A2A receptor antagonists are promising for the treatment of Parkinson’s disease. Clopidogrel, a P2Y12 antagonist, is widely used for the treatment of thrombosis and stroke, blocking P2Y12 receptor-mediated platelet aggregation. Diquafosol, a long acting P2Y2 receptor agonist, is being used for the treatment of dry eye. P2X3 receptor antagonists have been developed that are orally bioavailable and stable in vivo and are currently in clinical trials for the treatment of chronic cough, bladder incontinence, visceral pain and hypertension. Antagonists to P2X7 receptors are being investigated for the treatment of inflammatory disorders, including neurodegenerative diseases. Other investigations are in progress for the use of purinergic agents for the treatment of osteoporosis, myocardial infarction, irritable bowel syndrome, epilepsy, atherosclerosis, depression, autism, diabetes, and cancer.

  17. Automatic Seismic Signal Processing

    Science.gov (United States)

    1982-02-04

    81-04 4 February 1982 AUTOMATIC SEISMIC SIGNAL PROCESSING FINAL TECHNICAL REPORT i j Contract F08606-80.C-0021" PREPARED BY ILKKA NOPONEN, ROBERT SAX...PERFORMING ORG. REPORT NUMBER SAS-FR-81-04 7. AUTHOR(e) a. CONTRACT OR GRANT NUMBER(e) F08606- 80-C-0021 ILKKA NOPONEN, ROBERT SAX AND F 6 C0 STEVEN...observed, as also Swindell and Snell (1977), that the distribu- tion of x was slightly skewed, we used the median of x instead of aver- age of x for U(x

  18. Phonocardiography Signal Processing

    CERN Document Server

    Abbas, Abbas K

    2009-01-01

    The auscultation method is an important diagnostic indicator for hemodynamic anomalies. Heart sound classification and analysis play an important role in the auscultative diagnosis. The term phonocardiography refers to the tracing technique of heart sounds and the recording of cardiac acoustics vibration by means of a microphone-transducer. Therefore, understanding the nature and source of this signal is important to give us a tendency for developing a competent tool for further analysis and processing, in order to enhance and optimize cardiac clinical diagnostic approach. This book gives the

  19. Micromechanical Signal Processors

    Science.gov (United States)

    Nguyen, Clark Tu-Cuong

    Completely monolithic high-Q micromechanical signal processors constructed of polycrystalline silicon and integrated with CMOS electronics are described. The signal processors implemented include an oscillator, a bandpass filter, and a mixer + filter--all of which are components commonly required for up- and down-conversion in communication transmitters and receivers, and all of which take full advantage of the high Q of micromechanical resonators. Each signal processor is designed, fabricated, then studied with particular attention to the performance consequences associated with miniaturization of the high-Q element. The fabrication technology which realizes these components merges planar integrated circuit CMOS technologies with those of polysilicon surface micromachining. The technologies are merged in a modular fashion, where the CMOS is processed in the first module, the microstructures in a following separate module, and at no point in the process sequence are steps from each module intermixed. Although the advantages of such modularity include flexibility in accommodating new module technologies, the developed process constrained the CMOS metallization to a high temperature refractory metal (tungsten metallization with TiSi _2 contact barriers) and constrained the micromachining process to long-term temperatures below 835^circC. Rapid-thermal annealing (RTA) was used to relieve residual stress in the mechanical structures. To reduce the complexity involved with developing this merged process, capacitively transduced resonators are utilized. High-Q single resonator and spring-coupled micromechanical resonator filters are also investigated, with particular attention to noise performance, bandwidth control, and termination design. The noise in micromechanical filters is found to be fairly high due to poor electromechanical coupling on the micro-scale with present-day technologies. Solutions to this high series resistance problem are suggested, including smaller

  20. Neural Membrane Signaling Platforms

    Directory of Open Access Journals (Sweden)

    Ron Wallace

    2010-06-01

    Full Text Available Throughout much of the history of biology, the cell membrane was functionally defined as a semi-permeable barrier separating aqueous compartments, and an anchoring site for proteins. Little attention was devoted to its possible regulatory role in intracellular molecular processes and neuron electrical signaling. This article reviews the history of membrane studies and the current state of the art. Emphasis is placed on natural and artificial membrane studies of electric field effects on molecular organization, especially as these may relate to impulse propagation in neurons. Implications of these studies for new designs in artificial intelligence are briefly examined.

  1. Neural membrane signaling platforms.

    Science.gov (United States)

    Wallace, Ron

    2010-06-10

    Throughout much of the history of biology, the cell membrane was functionally defined as a semi-permeable barrier separating aqueous compartments, and an anchoring site for proteins. Little attention was devoted to its possible regulatory role in intracellular molecular processes and neuron electrical signaling. This article reviews the history of membrane studies and the current state of the art. Emphasis is placed on natural and artificial membrane studies of electric field effects on molecular organization, especially as these may relate to impulse propagation in neurons. Implications of these studies for new designs in artificial intelligence are briefly examined.

  2. Strigolactone Signaling and Evolution.

    Science.gov (United States)

    Waters, Mark T; Gutjahr, Caroline; Bennett, Tom; Nelson, David C

    2017-04-28

    Strigolactones are a structurally diverse class of plant hormones that control many aspects of shoot and root growth. Strigolactones are also exuded by plants into the rhizosphere, where they promote symbiotic interactions with arbuscular mycorrhizal fungi and germination of root parasitic plants in the Orobanchaceae family. Therefore, understanding how strigolactones are made, transported, and perceived may lead to agricultural innovations as well as a deeper knowledge of how plants function. Substantial progress has been made in these areas over the past decade. In this review, we focus on the molecular mechanisms, core developmental roles, and evolutionary history of strigolactone signaling. We also propose potential translational applications of strigolactone research to agriculture.

  3. A photonic integrated signal processor

    Science.gov (United States)

    Yao, Jianping

    2017-02-01

    A photonic integrated signal processor based on the InP-InGaAsP material system consisting of a bypass waveguide and three mutually-coupled micro rings with each ring having two semiconductor optical amplifiers (SOAs) and a current-injection phase modulator (PM) for ultra-wideband signal processing and microwave signal generation is discussed. The signal processor can be reconfigured to perform signal processing functions including temporal differentiation, and temporal integration. The reconfigurability is achieved by controlling the coupling between the rings and the bypass waveguide by a multi-mode interference (MMI) Mach-Zehnder interferometer (MZI) coupler and the injection currents to the SOAs. The current injection PM in a ring is used for wavelength tuning. In addition to signal processing, the signal processor can also be reconfigured to operate as a microwave signal generator. The generation a linearly chirped microwave waveform is discussed.

  4. Biological signals classification and analysis

    CERN Document Server

    Kiasaleh, Kamran

    2015-01-01

    This authored monograph presents key aspects of signal processing analysis in the biomedical arena. Unlike wireless communication systems, biological entities produce signals with underlying nonlinear, chaotic nature that elude classification using the standard signal processing techniques, which have been developed over the past several decades for dealing primarily with standard communication systems. This book separates what is random from that which appears to be random, and yet is truly deterministic with random appearance. At its core, this work gives the reader a perspective on biomedical signals and the means to classify and process such signals. In particular, a review of random processes along with means to assess the behavior of random signals is also provided. The book also includes a general discussion of biological signals in order to demonstrate the inefficacy of the well-known techniques to correctly extract meaningful information from such signals. Finally, a thorough discussion of recently ...

  5. Operational semantics for signal handling

    Directory of Open Access Journals (Sweden)

    Maxim Strygin

    2012-08-01

    Full Text Available Signals are a lightweight form of interprocess communication in Unix. When a process receives a signal, the control flow is interrupted and a previously installed signal handler is run. Signal handling is reminiscent both of exception handling and concurrent interleaving of processes. In this paper, we investigate different approaches to formalizing signal handling in operational semantics, and compare them in a series of examples. We find the big-step style of operational semantics to be well suited to modelling signal handling. We integrate exception handling with our big-step semantics of signal handling, by adopting the exception convention as defined in the Definition of Standard ML. The semantics needs to capture the complex interactions between signal handling and exception handling.

  6. Recurrent Infections May Signal Immunodeficiencies

    Science.gov (United States)

    ... Recurrent Infections May Signal Immunodeficiencies Share | Recurrent Infections May Signal Immunodeficiencies This article has been reviewed by ... common bacterial infections? If so, these recurrent infections may be a sign of an immunodeficiency disorder. The ...

  7. Insulin receptor signaling in cones

    National Research Council Canada - National Science Library

    Rajala, Ammaji; Dighe, Radhika; Agbaga, Martin-Paul; Anderson, Robert E; Rajala, Raju V S

    2013-01-01

    .... To date there are no studies on the insulin receptor signaling in cones; however, mRNA levels of IR signaling proteins are significantly higher in cone-dominant neural retina leucine zipper (Nrl...

  8. Multiscale Signal Analysis and Modeling

    CERN Document Server

    Zayed, Ahmed

    2013-01-01

    Multiscale Signal Analysis and Modeling presents recent advances in multiscale analysis and modeling using wavelets and other systems. This book also presents applications in digital signal processing using sampling theory and techniques from various function spaces, filter design, feature extraction and classification, signal and image representation/transmission, coding, nonparametric statistical signal processing, and statistical learning theory. This book also: Discusses recently developed signal modeling techniques, such as the multiscale method for complex time series modeling, multiscale positive density estimations, Bayesian Shrinkage Strategies, and algorithms for data adaptive statistics Introduces new sampling algorithms for multidimensional signal processing Provides comprehensive coverage of wavelets with presentations on waveform design and modeling, wavelet analysis of ECG signals and wavelet filters Reviews features extraction and classification algorithms for multiscale signal and image proce...

  9. Digital Signal Processing (Second Edition)

    OpenAIRE

    Blackledge, Jonathan

    2006-01-01

    This book provides an account of the mathematical background, computational methods and software engineering associated with digital signal processing. The aim has been to provide the reader with the mathematical methods required for signal analysis which are then used to develop models and algorithms for processing digital signals and finally to encourage the reader to design software solutions for Digital Signal Processing (DSP). In this way, the reader is invited to develop a small DSP lib...

  10. Wireless data signal transmission system

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to a method for providing a radio frequency signal for transmission, a system for providing a radio frequency signal for transmission and a method for wireless data transmission between a transmitter and a receiver.......The present invention relates to a method for providing a radio frequency signal for transmission, a system for providing a radio frequency signal for transmission and a method for wireless data transmission between a transmitter and a receiver....

  11. Thermal Resonance in Signal Transmission

    OpenAIRE

    Reigada Sanz, Ramon; Sarmiento, Antonio; Lindenberg, Katja

    2001-01-01

    We use temperature tuning to control signal propagation in simple one-dimensional arrays of masses connected by hard anharmonic springs and with no local potentials. In our numerical model a sustained signal is applied at one site of a chain immersed in a thermal environment and the signal-to-noise ratio is measured at each oscillator. We show that raising the temperature can lead to enhanced signal propagation along the chain, resulting in thermal resonance effects akin to the resonance obse...

  12. Two-dimensional signal analysis

    CERN Document Server

    Garello, René

    2010-01-01

    This title sets out to show that 2-D signal analysis has its own role to play alongside signal processing and image processing.Concentrating its coverage on those 2-D signals coming from physical sensors (such as radars and sonars), the discussion explores a 2-D spectral approach but develops the modeling of 2-D signals and proposes several data-oriented analysis techniques for dealing with them. Coverage is also given to potential future developments in this area.

  13. Asymmetry In Biphase Data Signals

    Science.gov (United States)

    Nguyen, Tien M.

    1992-01-01

    Report presents analysis of some effects of asymmetry in Manchester (biphase) binary data signal transmitted by phase modulation of sinusoidal carrier signal. Report extends analysis described in article, "Effects of Asymmetry of NRZ Data Signals on Performance" (NPO-18261), to include case where data biphase-modulated directly on residual carrier.

  14. Cellular signalling properties in microcircuits

    DEFF Research Database (Denmark)

    Toledo-Rodriguez, Maria; El Manira, Abdeljabbar; Wallén, Peter

    2005-01-01

    Molecules and cells are the signalling elements in microcircuits. Recent studies have uncovered bewildering diversity in postsynaptic signalling properties in all areas of the vertebrate nervous system. Major effort is now being invested in establishing the specialized signalling properties at th...

  15. Advances in abscission signaling.

    Science.gov (United States)

    Patharkar, O Rahul; Walker, John C

    2018-02-12

    Abscission is a process in plants for shedding unwanted organs such as leaves, flowers, fruits, or floral organs. Shedding of leaves in the fall is the most visually obvious display of abscission in nature. The very shape plants take is forged by the processes of growth and abscission. Mankind manipulates abscission in modern agriculture to do things such as prevent pre-harvest fruit drop prior to mechanical harvesting in orchards. Abscission occurs specifically at abscission zones that are laid down as the organ that will one day abscise is developed. A sophisticated signaling network initiates abscission when it is time to shed the unwanted organ. In this article, we review recent advances in understanding the signaling mechanisms that activate abscission. Physiological advances and roles for hormones in abscission are also addressed. Finally, we discuss current avenues for basic abscission research and potentially lucrative future directions for its application to modern agriculture. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  16. Advances in TRH signaling.

    Science.gov (United States)

    Joseph-Bravo, Patricia; Jaimes-Hoy, Lorraine; Charli, Jean-Louis

    2016-12-01

    The activity of the hypothalamus-pituitary-thyroid axis (HPT) is coordinated by hypophysiotropic thyrotropin releasing hormone (TRH) neurons present in the paraventricular nucleus of the hypothalamus. Hypophysiotropic TRH neurons act as energy sensors. TRH controls the synthesis and release of thyrotropin, which activates the synthesis and secretion of thyroid hormones; in target tissues, transporters and deiodinases control their local availability. Thyroid hormones regulate many functions, including energy homeostasis. This review discusses recent evidence that covers several aspects of TRH role in HPT axis regulation. Knowledge about the mechanisms of TRH signaling has steadily increased. New transcription factors engaged in TRH gene expression have been identified, and advances made on how they interact with signaling pathways and define the dynamics of TRH neurons response to acute and/or long-term influences. Albeit yet incomplete, the relationship of TRH neurons activity with positive energy balance has emerged. The importance of tanycytes as a central relay for the feedback control of the axis, as well as for HPT responses to alterations in energy balance, and other stimuli has been reinforced. Finally, some studies have started to shed light on the interference of prenatal and postnatal stress and nutrition on HPT axis programing, which have confirmed the axis susceptibility to early insults.

  17. Signals and systems for dummies

    CERN Document Server

    Wickert, Mark

    2013-01-01

    Getting mixed signals in your signals and systems course? The concepts covered in a typical signals and systems course are often considered by engineering students to be some of the most difficult to master. Thankfully, Signals & Systems For Dummies is your intuitive guide to this tricky course, walking you step-by-step through some of the more complex theories and mathematical formulas in a way that is easy to understand. From Laplace Transforms to Fourier Analyses, Signals & Systems For Dummies explains in plain English the difficult concepts that can trip you up

  18. Multiresolution Analysis of EEG Signals

    Directory of Open Access Journals (Sweden)

    Borowska Marta

    2016-12-01

    Full Text Available This paper reports on a multiresolution analysis of EEG signals. The dominant frequency components of signals with and without observed epileptic discharges were compared. The study showed that there were significant differences in dominant frequency between the signals with epileptic discharges and the signals without discharges. This gives the ability to identify epilepsy during EEG examination. The frequency of the signals coming from the frontal, central, parietal and occipital channels are similar. Multiresolution analysis can be used to describe the activity of brain waves and to try to predict epileptic seizures, thereby contributing to precise medical diagnoses.

  19. Detection of signals in noise

    CERN Document Server

    Whalen, Anthony D; Declaris, Nicholas

    1971-01-01

    Detection of Signals in Noise serves as an introduction to the principles and applications of the statistical theory of signal detection. The book discusses probability and random processes; narrowband signals, their complex representation, and their properties described with the aid of the Hilbert transform; and Gaussian-derived processes. The text also describes the application of hypothesis testing for the detection of signals and the fundamentals required for statistical detection of signals in noise. Problem exercises, references, and a supplementary bibliography are included after each c

  20. Machine intelligence and signal processing

    CERN Document Server

    Vatsa, Mayank; Majumdar, Angshul; Kumar, Ajay

    2016-01-01

    This book comprises chapters on key problems in machine learning and signal processing arenas. The contents of the book are a result of a 2014 Workshop on Machine Intelligence and Signal Processing held at the Indraprastha Institute of Information Technology. Traditionally, signal processing and machine learning were considered to be separate areas of research. However in recent times the two communities are getting closer. In a very abstract fashion, signal processing is the study of operator design. The contributions of signal processing had been to device operators for restoration, compression, etc. Applied Mathematicians were more interested in operator analysis. Nowadays signal processing research is gravitating towards operator learning – instead of designing operators based on heuristics (for example wavelets), the trend is to learn these operators (for example dictionary learning). And thus, the gap between signal processing and machine learning is fast converging. The 2014 Workshop on Machine Intel...

  1. Systemic signaling during plant defense.

    Science.gov (United States)

    Kachroo, Aardra; Robin, Guillaume P

    2013-08-01

    Systemic acquired resistance (SAR) is a type of pathogen-induced broad-spectrum resistance in plants. During SAR, primary infection-induced rapid generation and transportation of mobile signal(s) 'prepare' the rest of the plant for subsequent infections. Several, seemingly unrelated, mobile chemical inducers of SAR have been identified, at least two of which function in a feed-back regulatory loop with a lipid transfer-like protein. Signal(s) perception in the systemic tissues relies on the presence of an intact cuticle, the waxy layer covering all aerial parts of the plant. SAR results in chromatin modifications, which prime systemic tissues for enhanced and rapid signaling derived from salicylic acid, which along with its signaling components is key for SAR induction. This review summarizes recent findings related to SAR signal generation, movement, and perception. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Measuring signal generators theory & design

    CERN Document Server

    Rybin, Yuriy K

    2014-01-01

    The book brings together the following issues: Theory of deterministic, random and discrete signals reproducible in oscillatory systems of generators; Generation of periodic signals with a specified spectrum, harmonic distortion factor and random signals with specified probability density function and spectral density; Synthesis of oscillatory system structures; Analysis of oscillatory systems with non-linear elements and oscillation amplitude stabilization systems; It considers the conditions and criteria of steady-state modes in signal generators on active four-pole elements with unidirectional and bidirectional transmission of signals and on two-pole elements; analogues of Barkhausen criteria; Optimization of oscillatory system structures by harmonic distortion level, minimization of a frequency error and set-up time of the steady state mode; Theory of construction of random signal generators; Construction of discrete and digital signal generators; Practical design of main units of generators; Practical bl...

  3. [Signal Processing Suite Design

    Science.gov (United States)

    Sahr, John D.; Mir, Hasan; Morabito, Andrew; Grossman, Matthew

    2003-01-01

    Our role in this project was to participate in the design of the signal processing suite to analyze plasma density measurements on board a small constellation (3 or 4) satellites in Low Earth Orbit. As we are new to space craft experiments, one of the challenges was to simply gain understanding of the quantity of data which would flow from the satellites, and possibly to interact with the design teams in generating optimal sampling patterns. For example, as the fleet of satellites were intended to fly through the same volume of space (displaced slightly in time and space), the bulk plasma structure should be common among the spacecraft. Therefore, an optimal, limited bandwidth data downlink would take advantage of this commonality. Also, motivated by techniques in ionospheric radar, we hoped to investigate the possibility of employing aperiodic sampling in order to gain access to a wider spatial spectrum without suffering aliasing in k-space.

  4. Signaling dynamics and peroxisomes.

    Science.gov (United States)

    Mast, Fred D; Rachubinski, Richard A; Aitchison, John D

    2015-08-01

    Peroxisomes are remarkably responsive organelles. Their composition, abundance and even their mechanism of biogenesis are influenced strongly by cell type and the environment. This plasticity underlies peroxisomal functions in metabolism and the detoxification of dangerous reactive oxygen species. However, peroxisomes are integrated into the cellular system as a whole such that they communicate intimately with other organelles, control signaling dynamics as in the case of innate immune responses to infectious disease, and contribute to processes as fundamental as longevity. The increasing evidence for peroxisomes having roles in various cellular and organismal functions, combined with their malleability, suggests complex mechanisms operate to control cellular dynamics and the specificity of cellular responses and functions extending well beyond the peroxisome itself. A deeper understanding of the functions of peroxisomes and the mechanisms that control their plasticity could offer opportunities for exploiting changes in peroxisome abundance to control cellular function. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. HVEM signalling promotes colitis.

    Directory of Open Access Journals (Sweden)

    Corinne Schaer

    Full Text Available BACKGROUND: Tumor necrosis factor super family (TNFSF members regulate important processes involved in cell proliferation, survival and differentiation and are therefore crucial for the balance between homeostasis and inflammatory responses. Several members of the TNFSF are closely associated with inflammatory bowel disease (IBD. Thus, they represent interesting new targets for therapeutic treatment of IBD. METHODOLOGY/PRINCIPAL FINDINGS: We have used mice deficient in TNFSF member HVEM in experimental models of IBD to investigate its role in the disease process. Two models of IBD were employed: i chemical-induced colitis primarily mediated by innate immune cells; and ii colitis initiated by CD4(+CD45RB(high T cells following their transfer into immuno-deficient RAG1(-/- hosts. In both models of disease the absence of HVEM resulted in a significant reduction in colitis and inflammatory cytokine production. CONCLUSIONS: These data show that HVEM stimulatory signals promote experimental colitis driven by innate or adaptive immune cells.

  6. PKC signaling in glioblastoma

    Science.gov (United States)

    do Carmo, Anália; Balça-Silva, Joana; Matias, Diana; Lopes, Maria Celeste

    2013-01-01

    Glioblastoma Multiforme (GBM) is the most aggressive brain tumor characterized by intratumoral heterogeneity at cytopathological, genomic and transcriptional levels. Despite the efforts to develop new therapeutic strategies the median survival of GBM patients is 12−14 months. Results from large-scale gene expression profile studies confirmed that the genetic alterations in GBM affect pathways controlling cell cycle progression, cellular proliferation and survival and invasion ability, which may explain the difficulty to treat GBM patients. One of the signaling pathways that contribute to the aggressive behavior of glioma cells is the protein kinase C (PKC) pathway. PKC is a family of serine/threonine-specific protein kinases organized into three groups according the activating domains. Due to the variability of actions controlled by PKC isoforms, its contribution to the development of GBM is poorly understood. This review intends to highlight the contribution of PKC isoforms to proliferation, survival and invasive ability of glioma cells. PMID:23358475

  7. Regulation of Hippo signalling by p38 signalling.

    Science.gov (United States)

    Huang, Dashun; Li, Xiaojiao; Sun, Li; Huang, Ping; Ying, Hao; Wang, Hui; Wu, Jiarui; Song, Haiyun

    2016-08-01

    The Hippo signalling pathway has a crucial role in growth control during development, and its dysregulation contributes to tumorigenesis. Recent studies uncover multiple upstream regulatory inputs into Hippo signalling, which affects phosphorylation of the transcriptional coactivator Yki/YAP/TAZ by Wts/Lats. Here we identify the p38 mitogen-activated protein kinase (MAPK) pathway as a new upstream branch of the Hippo pathway. In Drosophila, overexpression of MAPKK gene licorne (lic), or MAPKKK gene Mekk1, promotes Yki activity and induces Hippo target gene expression. Loss-of-function studies show that lic regulates Hippo signalling in ovary follicle cells and in the wing disc. Epistasis analysis indicates that Mekk1 and lic affect Hippo signalling via p38b and wts We further demonstrate that the Mekk1-Lic-p38b cascade inhibits Hippo signalling by promoting F-actin accumulation and Jub phosphorylation. In addition, p38 signalling modulates actin filaments and Hippo signalling in parallel to small GTPases Ras, Rac1, and Rho1. Lastly, we show that p38 signalling regulates Hippo signalling in mammalian cell lines. The Lic homologue MKK3 promotes nuclear localization of YAP via the actin cytoskeleton. Upregulation or downregulation of the p38 pathway regulates YAP-mediated transcription. Our work thus reveals a conserved crosstalk between the p38 MAPK pathway and the Hippo pathway in growth regulation. © The Author (2016). Published by Oxford University Press on behalf of Journal of Molecular Cell Biology, IBCB, SIBS, CAS.

  8. Ultrasound imaging using coded signals

    DEFF Research Database (Denmark)

    Misaridis, Athanasios

    Modulated (or coded) excitation signals can potentially improve the quality and increase the frame rate in medical ultrasound scanners. The aim of this dissertation is to investigate systematically the applicability of modulated signals in medical ultrasound imaging and to suggest appropriate...... of the excitation signal. Although a gain in signal-to-noise ratio of about 20 dB is theoretically possible for the time-bandwidth product available in ultrasound, it is shown that the effects of transducer weighting and tissue attenuation reduce the maximum gain at 10 dB for robust compression with low sidelobes...... is described. Application of coded excitation in array imaging is evaluated through simulations in Field II. The low degree of the orthogonality among coded signals for ultrasound systems is first discussed, and the effect of mismatched filtering in the cross-correlation properties of the signals is evaluated...

  9. Volcanic signals in oceans

    KAUST Repository

    Stenchikov, Georgiy L.

    2009-08-22

    Sulfate aerosols resulting from strong volcanic explosions last for 2–3 years in the lower stratosphere. Therefore it was traditionally believed that volcanic impacts produce mainly short-term, transient climate perturbations. However, the ocean integrates volcanic radiative cooling and responds over a wide range of time scales. The associated processes, especially ocean heat uptake, play a key role in ongoing climate change. However, they are not well constrained by observations, and attempts to simulate them in current climate models used for climate predictions yield a range of uncertainty. Volcanic impacts on the ocean provide an independent means of assessing these processes. This study focuses on quantification of the seasonal to multidecadal time scale response of the ocean to explosive volcanism. It employs the coupled climate model CM2.1, developed recently at the National Oceanic and Atmospheric Administration\\'s Geophysical Fluid Dynamics Laboratory, to simulate the response to the 1991 Pinatubo and the 1815 Tambora eruptions, which were the largest in the 20th and 19th centuries, respectively. The simulated climate perturbations compare well with available observations for the Pinatubo period. The stronger Tambora forcing produces responses with higher signal-to-noise ratio. Volcanic cooling tends to strengthen the Atlantic meridional overturning circulation. Sea ice extent appears to be sensitive to volcanic forcing, especially during the warm season. Because of the extremely long relaxation time of ocean subsurface temperature and sea level, the perturbations caused by the Tambora eruption could have lasted well into the 20th century.

  10. High resolution signal processing

    Science.gov (United States)

    Tufts, Donald W.

    1993-08-01

    Motivated by the goal of efficient, effective, high-speed integrated-circuit realization, we have discovered an algorithm for high speed Fourier analysis called the Arithmetic Fourier Transform (AFT). It is based on the number-theoretic method of Mobius inversion, a method that is well suited for integrated-circuit realization. The computation of the AFT can be carried out in parallel, pipelined channels, and the individual operations are very simple to execute and control. Except for a single scaling in each channel, all the operations are additions or subtractions. Thus, it can reduce the required power, volume, and cost. Also, analog switched-capacitor realizations of the AFT have been studied. We have also analyzed the performance of a broad and useful class of data adaptive signal estimation algorithms. This in turn has led to our proposed improvements in the methods. We have used perturbation analysis of the rank-reduced data matrix to calculate its statistical properties. The improvements made have been demonstrated by computer simulation as well as by comparison with the Cramer-Rao Bound.

  11. Unmixing binocular signals

    Directory of Open Access Journals (Sweden)

    Sidney R Lehky

    2011-08-01

    Full Text Available Incompatible images presented to the two eyes lead to perceptual oscillations in which one image at a time is visible. Early models portrayed this binocular rivalry as involving reciprocal inhibition between monocular representations of images, occurring at an early visual stage prior to binocular mixing. However, psychophysical experiments found conditions where rivalry could also occur at a higher, more abstract level of representation. In those cases, the rivalry was between image representations dissociated from eye-of-origin information, rather than between monocular representations from the two eyes. Moreover, neurophysiological recordings found the strongest rivalry correlate in inferotemporal cortex, a high-level, predominantly binocular visual area involved in object recognition, rather than early visual structures. An unresolved issue is how can the separate identities of the two images be maintained after binocular mixing in order for rivalry to be possible at higher levels? Here we demonstrate that after the two images are mixed, they can be unmixed at any subsequent stage using a physiologically plausible nonlinear signal-processing algorithm, non-negative matrix factorization, previously proposed for parsing object parts during object recognition. The possibility that unmixed left and right images can be regenerated at late stages within the visual system provides a mechanism for creating various binocular representations and interactions de novo in different cortical areas for different purposes, rather than inheriting then from early areas. This is a clear example how nonlinear algorithms can lead to highly non-intuitive behavior in neural information processing.

  12. An algebra for signal processing

    OpenAIRE

    Thielemann, Henning

    2011-01-01

    Our paper presents an attempt to axiomatise signal processing. Our long-term goal is to formulate signal processing algorithms for an ideal world of exact computation and prove properties about them, then interpret these ideal formulations and apply them without change to real world discrete data. We give models of the axioms that are based on Gaussian functions, that allow for exact computations and automated tests of signal algorithm properties.

  13. Traffic Signals in School Zones

    OpenAIRE

    Kevin S Lee; Bullock, Darcy M.

    2003-01-01

    Traffic signals are used to control the right of way at intersections. Strict engineering guidelines are published in the Manual on Uniform Traffic Control Devices (MUTCD) that engineers use to determine if a traffic signal is “warranted”. The warrants provide consistent national balance between mobility, safety, efficiency, and costs. However, signalized intersections are often viewed by the general public as safer then unsignalized intersections. This belief is often heightened when there a...

  14. Semi-classical signal analysis

    KAUST Repository

    Laleg-Kirati, Taous-Meriem

    2012-09-30

    This study introduces a new signal analysis method, based on a semi-classical approach. The main idea in this method is to interpret a pulse-shaped signal as a potential of a Schrödinger operator and then to use the discrete spectrum of this operator for the analysis of the signal. We present some numerical examples and the first results obtained with this method on the analysis of arterial blood pressure waveforms. © 2012 Springer-Verlag London Limited.

  15. Synchronous Photodiode-Signal Sampler

    Science.gov (United States)

    Primus, Howard K.

    1988-01-01

    Synchronous sampling circuit increases signal-to-noise ratio of measurements of chopped signal of known phase and frequency in presence of low-frequency or dc background noise. Used with linear array of photoelectric sensors for locating edge of metal plate. Multiplexing circuit cycles through 16 light-emitting-diode/photodiode pairs, under computer control. Synchronized with multiplexer so edge detector makes one background-subtracted signal measurement per emitter/detector pair in turn.

  16. Postsynaptic Signaling and Plasticity Mechanisms

    Science.gov (United States)

    Sheng, Morgan; Jong Kim, Myung

    2002-10-01

    In excitatory synapses of the brain, specific receptors in the postsynaptic membrane lie ready to respond to the release of the neurotransmitter glutamate from the presynaptic terminal. Upon stimulation, these glutamate receptors activate multiple biochemical pathways that transduce signals into the postsynaptic neuron. Different kinds of synaptic activity elicit different patterns of postsynaptic signals that lead to short- or long-lasting strengthening or weakening of synaptic transmission. The complex molecular mechanisms that underlie postsynaptic signaling and plasticity are beginning to emerge.

  17. Virtual Vertical Aircraft Signal Training

    National Research Council Canada - National Science Library

    Norling, William

    1998-01-01

    .... Advances in virtual environments may provide a cost effective solution to the current live helicopter operations method of training, provided technical issues associated with hand and wand signal...

  18. Pragmatic circuits signals and filters

    CERN Document Server

    Eccles, William

    2006-01-01

    Pragmatic Circuits: Signals and Filters is built around the processing of signals. Topics include spectra, a short introduction to the Fourier series, design of filters, and the properties of the Fourier transform. The focus is on signals rather than power. But the treatment is still pragmatic. For example, the author accepts the work of Butterworth and uses his results to design filters in a fairly methodical fashion. This third of three volumes finishes with a look at spectra by showing how to get a spectrum even if a signal is not periodic. The Fourier transform provides a way of dealing wi

  19. Signal transduction by growth factor receptors: signaling in an instant

    DEFF Research Database (Denmark)

    Dengjel, Joern; Akimov, Vyacheslav; Blagoev, Blagoy

    2007-01-01

    -out by mass spectrometry-based proteomics has allowed exciting views on the very early events in signal transduction. Activation profiles of regulated phosphorylation sites on epidermal growth factor receptor and downstream signal transducers showed different kinetics within the first ten seconds...

  20. Introduction to Random Signals and Noise

    NARCIS (Netherlands)

    van Etten, Wim

    Random signals and noise are present in many engineering systems and networks. Signal processing techniques allow engineers to distinguish between useful signals in audio, video or communication equipment, and interference, which disturbs the desired signal. With a strong mathematical grounding,