WorldWideScience

Sample records for radiochromic film response

  1. A universal dose–response curve for radiochromic films

    Energy Technology Data Exchange (ETDEWEB)

    Martín-Viera Cueto, J. A., E-mail: josea.martinviera.sspa@juntadeandalucia.es; Parra Osorio, V.; Moreno Sáiz, C.; Navarro Guirado, F.; Casado Villalón, F. J.; Galán Montenegro, P. [Radiofísica Hospitalaria, Hospital Regional Universitario, Málaga 29010 (Spain)

    2015-01-15

    Purpose: This paper presents a model for dose–response curves of radiochromic films. It is based on a modified version of single-hit model to take into account the growth experienced by lithium salt of pentacosa-10,12-diynoic acid polymers after irradiation. Methods: Polymer growth in radiochromic films is a critical phenomenon that can be properly described by means of percolation theory to provide an appropriate distribution function for polymer sizes. Resulting functional form is a power function featuring a critical exponent and two adjustable parameters. Moreover, these parameters act as scaling factors setting a natural scale for sensitometric curves where the dependence on channel sensitivity is removed. A unique reduced response curve is then obtained from all the color channels describing film behavior independently of film dosimetry system. Results: Resulting functional form has been successfully tested in several sensitometric curves from different Gafchromic EBT models, providing excellent agreement with experimental data in a wide dose range up to about 40 Gy and low dose uncertainty. Conclusions: The model presented in this paper describes accurately the sensitometric curves of radiochromic films in wide dose ranges covering all typical ranges used in external radiotherapy. Resulting dose uncertainty is low enough to render a reasonably good performance in clinical applications. Due to cross-correlation, only one of the adjustable parameters is totally independent and characterizes film batches.

  2. Monte-Carlo based prediction of radiochromic film response for hadrontherapy dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Frisson, T. [Universite de Lyon, F-69622 Lyon (France); CREATIS-LRMN, INSA, Batiment Blaise Pascal, 7 avenue Jean Capelle, 69621 Villeurbanne Cedex (France); Centre Leon Berrard - 28 rue Laennec, F-69373 Lyon Cedex 08 (France)], E-mail: frisson@creatis.insa-lyon.fr; Zahra, N. [Universite de Lyon, F-69622 Lyon (France); IPNL - CNRS/IN2P3 UMR 5822, Universite Lyon 1, Batiment Paul Dirac, 4 rue Enrico Fermi, F-69622 Villeurbanne Cedex (France); Centre Leon Berrard - 28 rue Laennec, F-69373 Lyon Cedex 08 (France); Lautesse, P. [Universite de Lyon, F-69622 Lyon (France); IPNL - CNRS/IN2P3 UMR 5822, Universite Lyon 1, Batiment Paul Dirac, 4 rue Enrico Fermi, F-69622 Villeurbanne Cedex (France); Sarrut, D. [Universite de Lyon, F-69622 Lyon (France); CREATIS-LRMN, INSA, Batiment Blaise Pascal, 7 avenue Jean Capelle, 69621 Villeurbanne Cedex (France); Centre Leon Berrard - 28 rue Laennec, F-69373 Lyon Cedex 08 (France)

    2009-07-21

    A model has been developed to calculate MD-55-V2 radiochromic film response to ion irradiation. This model is based on photon film response and film saturation by high local energy deposition computed by Monte-Carlo simulation. We have studied the response of the film to photon irradiation and we proposed a calculation method for hadron beams.

  3. Monte-Carlo based prediction of radiochromic film response for hadrontherapy dosimetry

    Science.gov (United States)

    Frisson, T.; Zahra, N.; Lautesse, P.; Sarrut, D.

    2009-07-01

    A model has been developed to calculate MD-55-V2 radiochromic film response to ion irradiation. This model is based on photon film response and film saturation by high local energy deposition computed by Monte-Carlo simulation. We have studied the response of the film to photon irradiation and we proposed a calculation method for hadron beams.

  4. Linearization of dose-response curve of the radiochromic film dosimetry system

    Energy Technology Data Exchange (ETDEWEB)

    Devic, Slobodan; Tomic, Nada; Aldelaijan, Saad; DeBlois, Francois; Seuntjens, Jan; Chan, Maria F.; Lewis, Dave [Medical Physics Unit, McGill University, Montreal, Quebec H3G 1A4 (Canada) and Department of Radiation Oncology, SMBD Jewish General Hospital, McGill University, Montreal, Quebec H3T 1E2 (Canada); Executive Administration for Radiation Protection and Safety Medical Devices Sector, Saudi Food and Drug Authority, Riyadh, Kingdom of Saudi Arabia 13312 (Saudi Arabia); Medical Physics Unit, McGill University, Montreal, Quebec H3G 1A4 (Canada) and Department of Radiation Oncology, SMBD Jewish General Hospital, McGill University, Montreal, Quebec H3T 1E2 (Canada); Medical Physics Unit, McGill University, Montreal, Quebec H3G 1A4 (Canada); Department of Medical Physics, Memorial Sloan-Kettering Cancer Center Basking Ridge, New Jersey 07920 (United States); Ashland Inc., Wayne, New Jersey 07470 (United States)

    2012-08-15

    Purpose: Despite numerous advantages of radiochromic film dosimeter (high spatial resolution, near tissue equivalence, low energy dependence) to measure a relative dose distribution with film, one needs to first measure an absolute dose (following previously established reference dosimetry protocol) and then convert measured absolute dose values into relative doses. In this work, we present result of our efforts to obtain a functional form that would linearize the inherently nonlinear dose-response curve of the radiochromic film dosimetry system. Methods: Functional form [{zeta}= (-1){center_dot}netOD{sup (2/3)}/ln(netOD)] was derived from calibration curves of various previously established radiochromic film dosimetry systems. In order to test the invariance of the proposed functional form with respect to the film model used we tested it with three different GAFCHROMIC Trade-Mark-Sign film models (EBT, EBT2, and EBT3) irradiated to various doses and scanned on a same scanner. For one of the film models (EBT2), we tested the invariance of the functional form to the scanner model used by scanning irradiated film pieces with three different flatbed scanner models (Epson V700, 1680, and 10000XL). To test our hypothesis that the proposed functional argument linearizes the response of the radiochromic film dosimetry system, verification tests have been performed in clinical applications: percent depth dose measurements, IMRT quality assurance (QA), and brachytherapy QA. Results: Obtained R{sup 2} values indicate that the choice of the functional form of the new argument appropriately linearizes the dose response of the radiochromic film dosimetry system we used. The linear behavior was insensitive to both film model and flatbed scanner model used. Measured PDD values using the green channel response of the GAFCHROMIC Trade-Mark-Sign EBT3 film model are well within {+-}2% window of the local relative dose value when compared to the tabulated Cobalt-60 data. It was also

  5. Solar ultraviolet radiation response of EBT2 Gafchromic, radiochromic film.

    Science.gov (United States)

    Butson, Ethan T; Yu, Peter K N; Butson, Martin J

    2013-11-07

    Measurement of solar ultraviolet (UV) radiation is an important aspect of dosimetry for the improved knowledge of UV exposure and its associated health related issues. EBT2 Gafchromic film has been designed by its manufacturers as an improved tool for ionizing radiation dosimetry. The film is stated as exhibiting a significant reduction in UV response. However, results have shown that when exposed to UV from the 'bottom side' i.e. from the thick laminate side, the film exhibits a sensitivity to solar UV radiation which is both measurable and accurate for UV dosimetry. Films were irradiated in this position to known solar UV exposures and results are quantified showing a reproducibility of measurement to within ±7% (1 SD) when compared to calibrated UV meters. With an exposure of 20 J cm(-2) broad spectrum solar UV, the films net OD change was found to be 0.248 OD ± 0.021 OD when analysing the results using the red channel region of an Epson V700 desktop scanner. This was compared to 0.0294 OD ± 0.0053 OD change with exposure to the same UV exposure from the top side. This means that solar UV dosimetry can be performed using EBT2 Gafchromic film utilizing the underside of the film for dosimetry. The main advantages of this film type for measurement of UV exposure is the visible colour change and thus easy analysis using a desktop scanner as well as its uniformity in response and its robust physical strength for use in outside exposure situations.

  6. Response of radiochromic film dosimeters to gamma rays in different atmospheres

    Science.gov (United States)

    McLaughlin, W. L.; Humphreys, J. C.; Wenxiu, Chen

    The high-dose gamma ray response (10 3 - 5×10 5 Gy) of radiochromic film dosimeters, with ten kinds of plastic matrices (polychlorostyrene containing 1 or 25% C ?, polybromostyrene containing 2 or 43% Br, nylon, polyvinyl chloride, cellulose triacetate, and an aromatic polymide) were investigated when irradiated under certain conditions in vacuum and in different atmospheres (air, oxygen, nitrogen, and nitrous oxide). In addition, the stability of the films was studied for storage periods up to one month after irradiation under these conditions. The responses and stabilities of the polyhalostyrene and nylon films were only slightly affected by the different atmospheres of irradiation, but there were marked differences of response for the other film types. The dyed cellulose triacetate films and polyvinylchloride films are generally more sensitive in N 2O and O 2-deprived atmospheres than in air or in O 2, but the opposite is true for the dyed polyvinyl butyral and aromatic nylon films. The dyed cellulose triacetate and dyed polychlorostryrene with 1% C ? are the most stable films for all conditions or irradiation. For accurate routine radiation processing dosimetry, it is important to know the conditions of irradiation so that appropriate dosimetry systems and procedures may be used and so that suitable correction factors can be applied. Emphasis must be given to differences in atmospheric conditions encountered by dosimeters in practical industrial situations, which may cause marked differences in ultimate response factors.

  7. Comparison of the responses of TLD-100 and radiochromic films exposed to X-rays of low energy in a radiodiagnostic clinical treatment

    Energy Technology Data Exchange (ETDEWEB)

    Castro, M.; Mesa, F.; Sosa, M. [Physics Institute, University of Guanajuato, Loma del Bosque 103, Lomas del Campestre, 37150 Leon, Guanajuato (Mexico)

    2007-07-01

    Full text: In this work a comparison of the responses of a TLD-100 and a radiochromic film exposed to a low energy X-ray beam is presented. X-rays in the range of 20 to 120 KV from a clinical machine at the radiodiagnostic unit of the IMSS-Tl hospital in Leon were used. The processes of calibration of both the TLD-100 and the radiochromic films are also discussed. (Author)

  8. Response of radiochromic dye films to low energy heavy charged particles

    CERN Document Server

    Buenfil, A E; Gamboa-Debuen, I; Aviles, P; Avila, O; Olvera, C; Robledo, R; Rodriguez-Ponce, M; Mercado-Uribe, H; Rodriguez-Villafuerte, M; Brandan, M E

    2002-01-01

    We have studied the possible use of radiochromic dye films (RCF) as heavy charged particle dosemeters. We present the results of irradiating two commercial RCF (GafChromic HD-810 and MD-55-1) with 1.5, 2.9 and 4.4 MeV protons, 1.4, 2.8, 4.7, 5.9, 6.8 MeV sup 4 He ions and 8.5 and 12.4 MeV sup 1 sup 2 C ions, at proton doses from about 1 Gy up to 3 kGy, helium ions doses from 3 Gy to 5 kGy and carbon ion doses from 30 Gy to 20 kGy. The films were scanned and digitized using commercial equipment. For a given particle, the response per unit dose at different energies indicates an energy dependence of the sensitivity, which is discussed. Comparison was made for the use of a standard spectrophotometer to obtain optical density readings versus a white light scanner.

  9. Temperature and relative humidity dependence of radiochromic film dosimeter response to gamma electron radiation

    DEFF Research Database (Denmark)

    McLaughlin, W.L.; Puhl, J.M.; Miller, A.

    1995-01-01

    on some earlier studies, their response functions have been reported to be dependent on the temperature and relative humidity during irradiation. The present study investigates differences in response over practical ranges of temperature, relative humidity, dose, and for different recent batches of films...... of both types. It is observed that for each new batch of film to be used for radiation processing, the effects of such parameters on response to both gamma rays and electrons should be investigated. It is also suggested that the films should be packaged under controlled atmospheric conditions (relative...

  10. Dose-response of EBT3 radiochromic films to proton and carbon ion clinical beams

    Science.gov (United States)

    Castriconi, Roberta; Ciocca, Mario; Mirandola, Alfredo; Sini, Carla; Broggi, Sara; Schwarz, Marco; Fracchiolla, Francesco; Martišíková, Mária; Aricò, Giulia; Mettivier, Giovanni; Russo, Paolo

    2017-01-01

    We investigated the dose-response of the external beam therapy 3 (EBT3) films for proton and carbon ion clinical beams, in comparison with conventional radiotherapy beams; we also measured the film response along the energy deposition-curve in water. We performed measurements at three hadrontherapy centres by delivering monoenergetic pencil beams (protons: 63-230 MeV; carbon ions: 115-400 MeV/u), at 0.4-20 Gy dose to water, in the plateau of the depth-dose curve. We also irradiated the films to clinical MV-photon and electron beams. We placed the EBT3 films in water along the whole depth-dose curve for 148.8 MeV protons and 398.9 MeV/u carbon ions, in comparison with measurements provided by a plane-parallel ionization chamber. For protons, the response of EBT3 in the plateau of the depth-dose curve is not different from that of photons, within experimental uncertainties. For carbon ions, we observed an energy dependent under-response of EBT3 film, from 16% to 29% with respect to photon beams. Moreover, we observed an under-response in the Bragg peak region of about 10% for 148.8 MeV protons and of about 42% for 398.9 MeV/u carbon ions. For proton and carbon ion clinical beams, an under-response occurs at the Bragg peak. For carbon ions, we also observed an under-response of the EBT3 in the plateau of the depth-dose curve. This effect is the highest at the lowest initial energy of the clinical beams, a phenomenon related to the corresponding higher LET in the film sensitive layer. This behavior should be properly modeled when using EBT3 films for accurate 3D dosimetry.

  11. Dosimetric response of radiochromic films to protons of low energies in the Bragg peak region

    Science.gov (United States)

    Battaglia, M. C.; Schardt, D.; Espino, J. M.; Gallardo, M. I.; Cortés-Giraldo, M. A.; Quesada, J. M.; Lallena, A. M.; Miras, H.; Guirado, D.

    2016-06-01

    One of the major advantages of proton or ion beams, applied in cancer treatment, is their excellent depth-dose profile exhibiting a low dose in the entrance channel and a distinct dose maximum (Bragg peak) near the end of range in tissue. In the region of the Bragg peak, where the protons or ions are almost stopped, experimental studies with low-energy particle beams and thin biological samples may contribute valuable information on the biological effectiveness in the stopping region. Such experiments, however, require beam optimization and special dosimetry techniques for determining the absolute dose and dose homogeneity for very thin biological samples. At the National Centre of Accelerators in Seville, one of the beam lines at the 3 MV Tandem Accelerator was equipped with a scattering device, a special parallel-plate ionization chamber with very thin electrode foils and target holders for cell cultures. In this work, we present the calibration in absolute dose of EBT3 films [Gafchromic radiotherapy films, http://www.ashland.com/products/gafchromic-radiotherapy-films] for proton energies in the region of the Bragg peak, where the linear energy transfer increases and becomes more significant for radiobiology studies, as well as the response of the EBT3 films for different proton energy values. To irradiate the films in the Bragg peak region, the energy of the beam was degraded passively, by interposing Mylar foils of variable thickness to place the Bragg peak inside the active layer of the film. The results obtained for the beam degraded in Mylar foils are compared with the dose calculated by means of the measurement of the beam fluence with an ionization chamber and the energy loss predicted by srim2008 code.

  12. Thin plastic radiochromic dye films as ionizing radiation dosimeters

    Science.gov (United States)

    Buenfil-Burgos, A. E.; Uribe, R. M.; de la Piedad, A.; McLaughlin, W. L.; Miller, A.

    Radiochromic dye films were fabricated by casting polyvinyl butyral (PVB) in weakly acidic solution with the leucocyanide of pararosaniline. Calibrated films of 10-25 μm thickness were useful over a response range of about 10 3-10 5 Gy, by applying spectrophotometric analysis at the wavelength of the maximum of the radiation-induced absorption band (550 nm). The effects of temperature, pressure, and humidity during curing of the films pointed to the need for carefully controlling these parameters. For casting films at the high altitude of Mexico City (≈ 2500 meters), the optimum conditions are 45-75% r.h. and 20-25° C for a drying period of 72 to 92 hours, when the solvent is a mixture of ethanol and 2-methoxyethanol. The response of films fabricated in this way were compared with those of commercially available PVB and Nylon films. The effects of temperature, humidity, and period of storage on the response of these films were studied in the range from -5 to 60° C and from 11.8 to 96.6% r.h. for up to four months between irradiation and spectral analysis, and within nominal experimental uncertainty (≈ 10%), we found that all the radiochromic films studied can be stored for extended periods under steady-state conditions in the temperature range from -5 to 30° C and from 11.8-75.6% r.h. without correction factors for instability, but under extreme conditions of moisture at elevated temperatures the radiochromic image showed a fading effect on storage.

  13. Model selection for radiochromic film dosimetry

    CERN Document Server

    Méndez, Ignasi

    2015-01-01

    The purpose of this study was to find the most accurate model for radiochromic film dosimetry by comparing different channel independent perturbation models. A model selection approach based on (algorithmic) information theory was followed, and the results were validated using gamma-index analysis on a set of benchmark test cases. Several questions were addressed: (a) whether incorporating the information of the non-irradiated film, by scanning prior to irradiation, improves the results; (b) whether lateral corrections are necessary when using multichannel models; (c) whether multichannel dosimetry produces better results than single-channel dosimetry; (d) which multichannel perturbation model provides more accurate film doses. It was found that scanning prior to irradiation and applying lateral corrections improved the accuracy of the results. For some perturbation models, increasing the number of color channels did not result in more accurate film doses. Employing Truncated Normal perturbations was found to...

  14. Radiochromic film dosimetry for UV-C treatments of apple fruit

    Science.gov (United States)

    Radiochromic films were evaluated for their suitability to estimate UV-C doses and dose uniformity on apple fruit surface. Parameters investigated included film type, color changes of the films in response to different UV-C doses, color stability of films, UV-C light intensity, and temperature. In...

  15. Measuring solar UV radiation with EBT radiochromic film.

    Science.gov (United States)

    Butson, Ethan T; Cheung, Tsang; Yu, Peter K N; Butson, Martin J

    2010-10-21

    Ultraviolet radiation dosimetry has been performed with the use of a radiochromic film dosimeter called Gafchromic EBT for solar radiation exposure. The film changes from a clear colour to blue colour when exposed to ultraviolet radiation and results have shown that the colour change is reproducible within ±10% at 5 kJ m(-2) UV exposure under various conditions of solar radiation. Parameters tested included changes in season (summer versus winter exposure), time of day, as well as sky conditions such as cloudy skies versus clear skies. As the radiochromic films' permanent colour change occurs in the visible wavelengths the film can be analysed with a desktop scanner with the most sensitive channel for analysis being the red component of the signal. Results showed that an exposure of 5 kJ m(-2) (approximately 1 h exposure in full sun during summer) produced an approximate 0.28 change in the net OD when analysed in reflection mode on the desktop scanner which is significant darkening. The main advantages of this film type, and thus the new EBT2 film which has replaced EBT for measurement of UV exposure, is the visible colour change and thus easy analysis using a desktop scanner, its uniformity in response and its robust physical strength for use in outside exposure situations.

  16. Dose-response curve of EBT, EBT2, and EBT3 radiochromic films to synchrotron-produced monochromatic x-ray beams

    CERN Document Server

    Brown, Thomas A D; Alvarez, Diane; Matthews, Kenneth L; Ham, Kyungmin; Dugas, Joseph P; 10.1118/1.4767770

    2012-01-01

    This work investigates the dose-response curves of GAFCHROMIC EBT, EBT2, and EBT3 radiochromic films using synchrotron-produced monochromatic x-ray beams. EBT2 film is being utilized for dose verification in photoactivated Auger electron therapy at the Louisiana State University CAMD synchrotron facility. Monochromatic beams of 25, 30, and 35 keV were generated on the tomography beamline at CAMD. Ion chamber depth-dose measurements were used to determine the dose delivered to films irradiated at depths from 0.7 to 8.5 cm in a 10x10x10-cm3 PMMA phantom. AAPM TG-61 protocol was applied to convert measured ionization into dose. Films were digitized using an Epson 1680 Professional flatbed scanner and analyzed using the net optical density (NOD) derived from the red channel. A dose-response curve was obtained at 35 keV for EBT film, and at 25, 30, and 35 keV for EBT2 and EBT3 films. Calibrations of films for 4 MV x-rays were obtained for comparison using a radiotherapy accelerator at Mary Bird Perkins Cancer Cent...

  17. SU-E-T-462: Impact of the Radiochromic Film Energy Response On Dose Measurements of Low Energy Electronic Brachytherapy Sources

    Energy Technology Data Exchange (ETDEWEB)

    Liang, L; Bekerat, H; Tomic, N; DeBlois, F; Devic, S [Jewish General Hospital, Medical Physics Unit, McGill University, Montreal, QC (Canada); Morcos, M [Vantage Oncology, Corona, CA (United States); Popovic, M; Watson, P; Seuntjens, J [Montreal General Hospital, Medical Physics Unit, McGill University, Montreal, QC (Canada)

    2015-06-15

    Purpose: We investigated the effect of the EBT3 GafChromicTM film model absorbed dose energy response when used for percent depth dose (PDD) measurements in low-energy photon beams. Methods: We measured PDDs in water from a Xoft 50 kVp source using EBT3 film, and compared them to PDD measurements acquired with a PTW-TN34013 parallel-plate ionization chamber. For the x-ray source, we simulated spectra using the EGSnrc (BEAMnrc) Monte Carlo code, and calculated Half Value Layer (HVL) at different distances from the source in water. Pieces of EBT3 film were irradiated in air and calibration curves were created in terms of air-kerma in air ((Kair)air) for different beam qualities. Pieces of EBT3 film were positioned at distances of 2–6 cm from the Xoft source in a water phantom using a custom-made holder, and irradiated at the same time. As scatter is incorporated in the measured film signal in water, measured (Kair)wat was subsequently converted into absorbed dose to water by the ratio of mass energy absorption coefficients following the AAPM TG-61 dosimetry protocol. Results: Our results show that film calibration curves obtained at beam qualities near the effective energy of the Xoft 50 kVp source in water lead to variation in absorbed dose energy dependence of the response of around 3%. However, if the calibration curve was established at MV beam quality, the error in absorbed dose could be as large as 15%. We observed agreement within 1% between PDD measurements using EBT3 film model (using a calibration curve obtained at 80 kVp, HVL=2.18 mm Al, Eeff=29.5 keV) and the parallel-plate ionization chamber. Conclusion: Accurate dose measurements using radiochromic films at low photon energies require that the radiochromic film dosimetry system be calibrated at corresponding low energies, as large absorbed dose errors are expected for calibrations performed at MV beam qualities.

  18. Measurement of gold nanofilm dose enhancement using unlaminated radiochromic film

    Energy Technology Data Exchange (ETDEWEB)

    Rakowski, Joseph T., E-mail: rakowski@karmanos.org; Snyder, Michael G.; Hillman, Yair [Department of Radiation Oncology, School of Medicine, Wayne State University, Detroit, Michigan 48201 (United States); Laha, Suvra S.; Lawes, Gavin [Department of Physics, Wayne State University, Detroit, Michigan 48201 (United States); Buczek, Matthew G. [Department of Radiation Oncology, School of Medicine, Wayne State University, Detroit, Michigan 48201 and MidMichigan Health, Midland, Michigan 48670 (United States); Tucker, Mark A. [Department of Radiation Oncology, School of Medicine, Wayne State University, Detroit, Michigan 48201 and Missouri Cancer Associates, Columbia, Missouri 65202 (United States); Liu, Fangchao; Mao, Guangzhao [Department of Chemical Engineering and Materials Science, College of Engineering, Wayne State University, Detroit, Michigan 48201 (United States)

    2015-10-15

    Purpose: Bombarding high-Z material with x-ray radiation releases Auger electrons and Coster–Kronig electrons, along with deeper penetrating fluorescent x-rays and photoelectrons. The Auger and Coster–Kronig electron penetration distance is on the order of nanometers to micrometers in water or tissue, creating a large dose enhancement accompanied by a RBE greater than 1 at the cellular level. The authors’ aim is to measure the gold nanofilm dose enhancement factor (DEF) at the cellular level with unlaminated radiochromic film via primary 50 kVp tungsten x-ray spectrum interaction, similar to an electronic brachytherapy spectrum. Methods: Unlaminated Gafchromic{sup ®} EBT2 film and Monte Carlo modeling were combined to derive DEF models. Gold film of thickness 23.1 ±  4.3 nm and surface roughness of 1.2 ± 0.2 nm was placed in contact with unlaminated radiochromic film in a downstream orientation and exposed to a 50 kVp tungsten bremsstrahlung, mean energy 19.2 keV. Film response correction factors were derived by Monte Carlo modeling of electron energy deposition in the film’s active layer, and by measuring film energy dependence from 4.5 keV to 50 kVp. Results: The measured DEF within a 13.6 μm thick water layer was 0.29 with a mean dose of 94 ± 9.4 cGy from Au emissions and 324 ± 32.4 cGy from the 50 kVp primary beam. Monte Carlo derived correction factors allowed determination of Au contributed dose in shallower depths at 0.25 μm intervals. Maximum DEF of 18.31 was found in the first 0.25 μm water depth. Conclusions: Dose enhancement from Au nanofilm can be measured at the cellular level using unlaminated radiochromic film. Complementing the measured dose value with Monte Carlo calculations allows estimation of dose enhancement at depth increments within the cellular range.

  19. A feasibility study using radiochromic films for fast neutron 2D passive dosimetry

    Science.gov (United States)

    Brady, Samuel L.; Gunasingha, Rathnayaka; Yoshizumi, Terry T.; Howell, Calvin R.; Crowell, Alexander S.; Fallin, Brent; Tonchev, Anton P.; Dewhirst, Mark W.

    2010-09-01

    The objective of this paper is threefold: (1) to establish sensitivity of XRQA and EBT radiochromic films to fast neutron exposure; (2) to develop a film response to radiation dose calibration curve and (3) to investigate a two-dimensional (2D) film dosimetry technique for use in establishing an experimental setup for a radiobiological irradiation of mice and to assess the dose to the mice in this setup. The films were exposed to a 10 MeV neutron beam via the 2H(d,n)3He reaction. The XRQA film response was a factor of 1.39 greater than EBT film response to the 10 MeV neutron beam when exposed to a neutron dose of 165 cGy. A film response-to-soft tissue dose calibration function was established over a range of 0-10 Gy and had a goodness of fit of 0.9926 with the calibration data. The 2D film dosimetry technique estimated the neutron dose to the mice by measuring the dose using a mouse phantom and by placing a piece of film on the exterior of the experimental mouse setup. The film results were benchmarked using Monte Carlo and aluminum (Al) foil activation measurements. The radiochromic film, Monte Carlo and Al foil dose measurements were strongly correlated, and the film within the mouse phantom agreed to better than 7% of the externally mounted films. These results demonstrated the potential application of radiochromic films for passive 2D neutron dosimetry.

  20. Analysis of the response dependence of Ebt3 radiochromic film with energy, dose rate, wavelength, scanning mode and humidity; Analisis de la dependencia de la respuesta de la pelicula radiocromica EBT3 con la energia, tasa de dosis, longitud de onda, modo de escaneo y con la humedad

    Energy Technology Data Exchange (ETDEWEB)

    Leon M, E. Y.; Camacho L, M. A. [Universidad Autonoma del Estado de Mexico, Facultad de Medicina, Laboratorio de Fotomedicina, Biofotonica y Espectroscopia Laser de Pulsos Ultracortos, Jesus Carranza y Paseo Tollocan s/n, 50120 Toluca, Estado de Mexico (Mexico); Herrera G, J. A.; Garcia G, O. A. [Instituto Nacional de Neurologia y Neurocirugia, Laboratorio de Fisica Medica y Unidad de Radiocirugia, 14269 Ciudad de Mexico (Mexico); Villarreal B, J. E., E-mail: yaz_3333@hotmail.com [University of Calgary, Department of Oncology, Tom Baker Cancer Centre, 1331 29th street NW Calgary, Alberta T2N 4N2 (Canada)

    2016-10-15

    With the development of new modalities in radiotherapy treatments, the use of radiochromic films has increased considerably. Because the characteristics that presented, they are suitable for quality control and dose measurement. In this work and analysis of the dependence of the response of Ebt3 radiochromic films with energy, dose rate, wavelength, scan mode and humidity, for a dose range of 0-70 Gy is presented. According to the results, the response of Ebt3 radiochromic films has low dependence on energy, dose rate, scan mode and humidity. However, the sensitivity of the response Ebt3 radiochromic films has a high dependence on the wavelength of the optical system used for reading. (Author)

  1. Dose-response curve of EBT, EBT2, and EBT3 radiochromic films to synchrotron-produced monochromatic x-ray beams

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Thomas A. D.; Hogstrom, Kenneth R.; Alvarez, Diane; Matthews, Kenneth L. II; Ham, Kyungmin; Dugas, Joseph P. [Mary Bird Perkins Cancer Center, 4950 Essen Lane, Baton Rouge, Louisiana 70809 and Department of Physics and Astronomy, Louisiana State University and A and M College, 202 Nicholson Hall, Baton Rouge, Louisiana 70803 (United States); Department of Physics and Astronomy, Louisiana State University and A and M College, 202 Nicholson Hall, Baton Rouge, Louisiana 70803 (United States); Center for Advanced Microstructures and Devices, Louisiana State University and A and M College, 6980 Jefferson Highway, Baton Rouge, Louisiana 70806 (United States); Mary Bird Perkins Cancer Center, 4950 Essen Lane, Baton Rouge, Louisiana 70809 and Department of Physics and Astronomy, Louisiana State University and A and M College, 202 Nicholson Hall, Baton Rouge, Louisiana 70803 (United States)

    2012-12-15

    Purpose: This work investigates the dose-response curves of GAFCHROMIC{sup Registered-Sign} EBT, EBT2, and EBT3 radiochromic films using synchrotron-produced monochromatic x-ray beams. EBT2 film is being utilized for dose verification in photoactivated Auger electron therapy at the Louisiana State University Center for Advanced Microstructures and Devices (CAMD) synchrotron facility. Methods: Monochromatic beams of 25, 30, and 35 keV were generated on the tomography beamline at CAMD. Ion chamber depth-dose measurements were used to determine the dose delivered to films irradiated at depths from 0.7 to 8.5 cm in a 10 Multiplication-Sign 10 Multiplication-Sign 10-cm{sup 3} polymethylmethacrylate phantom. AAPM TG-61 protocol was applied to convert measured ionization into dose. Films were digitized using an Epson 1680 Professional flatbed scanner and analyzed using the net optical density (NOD) derived from the red channel. A dose-response curve was obtained at 35 keV for EBT film, and at 25, 30, and 35 keV for EBT2 and EBT3 films. Calibrations of films for 4 MV x-rays were obtained for comparison using a radiotherapy accelerator at Mary Bird Perkins Cancer Center. Results: The sensitivity (NOD per unit dose) of EBT film at 35 keV relative to that for 4-MV x-rays was 0.73 and 0.76 for doses 50 and 100 cGy, respectively. The sensitivity of EBT2 film at 25, 30, and 35 keV relative to that for 4-MV x-rays varied from 1.09-1.07, 1.23-1.17, and 1.27-1.19 for doses 50-200 cGy, respectively. For EBT3 film the relative sensitivity was within 3% of unity for all three monochromatic x-ray beams. Conclusions: EBT and EBT2 film sensitivity showed strong energy dependence over an energy range of 25 keV-4 MV, although this dependence becomes weaker for larger doses. EBT3 film shows weak energy dependence, indicating that it would be a better dosimeter for kV x-ray beams where beam hardening effects can result in large changes in the effective energy.

  2. Use of XR-QA2 radiochromic films for quantitative imaging of a synchrotron radiation beam

    Science.gov (United States)

    Di Lillo, F.; Dreossi, D.; Emiro, F.; Fedon, C.; Longo, R.; Mettivier, G.; Rigon, L.; Russo, P.; Tromba, G.

    2015-05-01

    In the framework of an ongoing project, promoted by INFN, at the SYRMEP beamline of the ELETTRA synchrotron radiation facility (Trieste, Italy) for phase-contrast breast X-ray computed tomography, the assessment of the dose to the breast is one of the issues, requiring the determination of the distribution of X-ray incident photon fluence. This work investigates the use of XR-QA2 radiochromic films for quantitative imaging of the synchrotron radiation (SR) beam. XR-QA2 films were irradiated in a plane transverse to the beam axis, with a monochromatic beam of energy of 28, 35, 38 or 40 keV. The response of the radiochromic film was calibrated in terms of average air kerma measured with an ionization chamber. The net reflectance of the exposed film was then converted to photon fluence per unit air kerma (mm-2mGy-1). The SR beam profile was acquired also with a scintillator (GOS) based, fiber optic coupled CCD camera as well as with a scintillator based flat panel detector. Horizontal and vertical line profiles acquired with the radiochromic films show the 2D distribution of the beam intensity, with variations in the order of 15-20% in the horizontal direction. The response of the radiochromic film is comparable to that of the other imaging detectors, within less than 5% variation.

  3. Angular dependence on the records of dose in radiochromic films strips

    Energy Technology Data Exchange (ETDEWEB)

    Costa, K. C.; Prata M, A. [Centro Federal de Educacao Tecnologica de Minas Gerais, Centro de Engenharia Biomedica, Av. Amazonas 5253, 30421-169 Nova Suica, Belo Horizonte, Minas Gerais (Brazil); Alonso, T. C. [Centro de Desenvolvimento da Tecnologia Nuclear - CNEN, Av. Pte. Antonio Carlos 6627, 31270-901 Pampulha, Belo Horizonte, Minas Gerais (Brazil); Campo de O, P. M., E-mail: kamilacosta1995@gmail.com [Universidade Federal de Minas Gerais, Departamento de Anatomia e Imagen, Av. Prof. Alfredo Balena 190, 30130-100 Belo Horizonte, Minas Gerais (Brazil)

    2016-10-15

    Radiological images have relevant information both the diagnostic results as to treatment decisions. Then, the diagnostic quality of image that allows a proper analysis should be achieved with the lowest possible deposition of dose in a patient. CT scans produce sectional images that allow the observation of internal structures of the human body without overlap. As in conventional radiology, the contrast which allows obtaining CT images results from the difference in X-ray beam absorption, according to the characteristics of each tissue. The increased of the beam absorption by a tissue means that it appears brighter in the image. In CT scanners, X-ray tube rotates around the patient, and this rotation results in a cross-sectional image of the body. From a sectional image series is possible to obtain a 3-dimensional image that can be viewed from different angles. Among the methods of dose measurement is the use of radiochromic films, which record the energy deposition by darkening its emulsion. The radiochromic films show little sensitivity to visible light and respond better to exposure to ionizing radiation. In this work, strips of the radiochromic film GAFCHROMIC XR-QA2 were irradiated at different angular positions for radiation quality RQT8, defining a beam of X-rays generated from a voltage of 100 kV. The response of radiochromic films depending on the doses was assessed through digital images obtained by H P Scan jet G-4050 scanner. Digital images were analyzed using Image-J software, which allowed obtaining numerical values corresponding to the intensity of darkening for each film. The aim of this study is to evaluate the dose deposition in radiochromic film according to the angular variation in order how is affected the record. So, to examine the use of film strips to record doses in Computed Tomography tests. (Author)

  4. A feasibility study using radiochromic films for fast neutron 2D passive dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Brady, Samuel L; Fallin, Brent [Medical Physics Graduate Program, Duke University, Durham, NC 27705 (United States); Gunasingha, Rathnayaka; Yoshizumi, Terry T [Radiation Safety Division, Duke University, Durham, NC 27705 (United States); Howell, Calvin R; Crowell, Alexander S; Tonchev, Anton P [Department of Physics, Duke University, Durham, NC 27706 (United States); Dewhirst, Mark W, E-mail: yoshi003@mc.duke.ed [Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710 (United States)

    2010-09-07

    The objective of this paper is threefold: (1) to establish sensitivity of XRQA and EBT radiochromic films to fast neutron exposure; (2) to develop a film response to radiation dose calibration curve and (3) to investigate a two-dimensional (2D) film dosimetry technique for use in establishing an experimental setup for a radiobiological irradiation of mice and to assess the dose to the mice in this setup. The films were exposed to a 10 MeV neutron beam via the {sup 2}H(d,n){sup 3}He reaction. The XRQA film response was a factor of 1.39 greater than EBT film response to the 10 MeV neutron beam when exposed to a neutron dose of 165 cGy. A film response-to-soft tissue dose calibration function was established over a range of 0-10 Gy and had a goodness of fit of 0.9926 with the calibration data. The 2D film dosimetry technique estimated the neutron dose to the mice by measuring the dose using a mouse phantom and by placing a piece of film on the exterior of the experimental mouse setup. The film results were benchmarked using Monte Carlo and aluminum (Al) foil activation measurements. The radiochromic film, Monte Carlo and Al foil dose measurements were strongly correlated, and the film within the mouse phantom agreed to better than 7% of the externally mounted films. These results demonstrated the potential application of radiochromic films for passive 2D neutron dosimetry.

  5. Verification of cell irradiation dose deposition using a radiochromic film

    Energy Technology Data Exchange (ETDEWEB)

    Tomic, N [Department of Radiation Oncology, Jewish General Hospital, McGill University, Montreal, Quebec (Canada); Gosselin, M [Department of Radiation Oncology, Jewish General Hospital, McGill University, Montreal, Quebec (Canada); Wan, Jonathan F [Radiation Oncology Department, McGill University Health Centre, Montreal, Quebec (Canada); Saragovi, Uri [Department of Pharmacology, McGill University, Montreal, Quebec (Canada); Podgorsak, E B [Medical Physics Department, McGill University Health Center, Montreal, Quebec (Canada); Evans, M [Medical Physics Department, McGill University Health Center, Montreal, Quebec (Canada); Devic, S [Medical Physics Department, McGill University Health Center, Montreal, Quebec (Canada)

    2007-06-07

    We describe a technique for the MTT assay that irradiates all cells at once by a combination of couch movement and a step-and-shoot irradiation technique on a linear accelerator with 6 MV and 18 MV photon beams. In two experimental setups, we obtained maximum to minimum dose ranges of 10 for the constant MU/bin (monitor units per bin) setup and 20 for the variable MU/bin technique. The irradiation technique described is dose rate independent and it can be used on any teletherapy irradiation machine. We also employed radiochromic film dosimetry to verify dose delivered in each of the wells within the dish. It is shown that for the lowest doses, relative dose variation within wells reaches a value of 6%. We also demonstrated that the radiochromic film positioned below the 96-well plate does not underestimate dose deposited within each compartment by more than 2% due to the vertical dose gradient.

  6. Verification of cell irradiation dose deposition using a radiochromic film

    Science.gov (United States)

    Tomic, N.; Gosselin, M.; Wan, Jonathan F.; Saragovi, Uri; Podgorsak, E. B.; Evans, M.; Devic, S.

    2007-06-01

    We describe a technique for the MTT assay that irradiates all cells at once by a combination of couch movement and a step-and-shoot irradiation technique on a linear accelerator with 6 MV and 18 MV photon beams. In two experimental setups, we obtained maximum to minimum dose ranges of 10 for the constant MU/bin (monitor units per bin) setup and 20 for the variable MU/bin technique. The irradiation technique described is dose rate independent and it can be used on any teletherapy irradiation machine. We also employed radiochromic film dosimetry to verify dose delivered in each of the wells within the dish. It is shown that for the lowest doses, relative dose variation within wells reaches a value of 6%. We also demonstrated that the radiochromic film positioned below the 96-well plate does not underestimate dose deposited within each compartment by more than 2% due to the vertical dose gradient.

  7. Characterization of beta radiation fields using radiochromic films; Caracterizacao de campos de radiacao beta utilizando filmes radiocromicos

    Energy Technology Data Exchange (ETDEWEB)

    Benavente, Jhonny A.; Silva, Teogenes A. da, E-mail: jabc@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil). Programa de Pos-Graduacao em Ciencia e Tecnologia das Radiacoes, Minerais e Materiais; Meira-Belo, Luiz C.; Reynaldo, Sibele R. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    The objective of this work was to study the response of radiochromic films for beta radiation fields in terms of absorbed dose. The reliability of the EBT model Gafchromic radiochromic film was studied. A 9800 XL model Microtek, transmission scanner, a 369 model X-Rite optical densitometer and a Mini 1240 Shimadzu UV spectrophotometer were used for measurement comparisons. Calibration of the three systems was done with irradiated samples of radiochromic films with 0.1; 0.3; 0.5; 0.8; 1.0; 1.5; 2.0; 2.5; 3.0; 3.5; 4.5 e 5.0 Gy in beta radiation field from a Sr-90/Y-90 source. Calibration was performed by establishing a correlation between the absorbed dose values and the corresponding radiochromic responses. Results showed significant differences in the absorbed dose values obtained with the three methods. Absorbed dose values showed errors from 0.6 to 4.4%, 0.3 to 31.8% and 0.2 to 47.3% for the Microtek scanner, the X-Rite Densitometer and the Shimadzu spectrophotometer, respectively. Due to the easy acquisition and use for absorbed dose measurements, the densitometer and the spectrophotometer showed to be suitable techniques to evaluate radiation dose in relatively homogeneous fields. In the case of inhomogeneous fields or for a two dimension mapping of radiation fields to identify anisotropies, the scanner technique is the most recommended. (author)

  8. Proposed linear energy transfer areal detector for protons using radiochromic film

    Science.gov (United States)

    Mayer, Rulon; Lin, Liyong; Fager, Marcus; Douglas, Dan; McDonough, James; Carabe, Alejandro

    2015-04-01

    Radiation therapy depends on predictably and reliably delivering dose to tumors and sparing normal tissues. Protons with kinetic energy of a few hundred MeV can selectively deposit dose to deep seated tumors without an exit dose, unlike x-rays. The better dose distribution is attributed to a phenomenon known as the Bragg peak. The Bragg peak is due to relatively high energy deposition within a given distance or high Linear Energy Transfer (LET). In addition, biological response to radiation depends on the dose, dose rate, and localized energy deposition patterns or LET. At present, the LET can only be measured at a given fixed point and the LET spatial distribution can only be inferred from calculations. The goal of this study is to develop and test a method to measure LET over extended areas. Traditionally, radiochromic films are used to measure dose distribution but not for LET distribution. We report the first use of these films for measuring the spatial distribution of the LET deposited by protons. The radiochromic film sensitivity diminishes for large LET. A mathematical model correlating the film sensitivity and LET is presented to justify relating LET and radiochromic film relative sensitivity. Protons were directed parallel to radiochromic film sandwiched between solid water slabs. This study proposes the scaled-normalized difference (SND) between the Treatment Planning system (TPS) and measured dose as the metric describing the LET. The SND is correlated with a Monte Carlo (MC) calculation of the LET spatial distribution for a large range of SNDs. A polynomial fit between the SND and MC LET is generated for protons having a single range of 20 cm with narrow Bragg peak. Coefficients from these fitted polynomial fits were applied to measured proton dose distributions with a variety of ranges. An identical procedure was applied to the protons deposited from Spread Out Bragg Peak and modulated by 5 cm. Gamma analysis is a method for comparing the calculated

  9. TU-F-201-00: Radiochromic Film Dosimetry Update

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-06-15

    Since the introduction of radiochromic films (RCF) for radiation dosimetry, the scope of RCF dosimetry has expanded steadily to include many medical applications, such as radiation therapy and diagnostic radiology. The AAPM Task Group (TG) 55 published a report on the recommendations for RCF dosimetry in 1998. As the technology is advancing rapidly, and its routine clinical use is expanding, TG 235 has been formed to provide an update to TG-55 on radiochromic film dosimetry. RCF dosimetry applications in clinical radiotherapy have become even more widespread, expanding from primarily brachytherapy and radiosurgery applications, and gravitating towards (but not limited to) external beam therapy (photon, electron and protons), such as quality assurance for IMRT, VMAT, Tomotherapy, SRS/SRT, and SBRT. In addition, RCF applications now extend to measurements of radiation dose in particle beams and patients undergoing medical exams, especially fluoroscopically guided interventional procedures and CT. The densitometers/scanners used for RCF dosimetry have also evolved from the He-Ne laser scanner to CCD-based scanners, including roller-based scanner, light box-based digital camera, and flatbed color scanner. More recently, multichannel RCF dosimetry introduced a new paradigm for external beam dose QA for its high accuracy and efficiency. This course covers in detail the recent advancements in RCF dosimetry. Learning Objectives: Introduce the paradigm shift on multichannel film dosimetry Outline the procedures to achieve accurate dosimetry with a RCF dosimetry system Provide comprehensive guidelines on RCF dosimetry for various clinical applications One of the speakers has a research agreement from Ashland Inc., the manufacturer of Gafchromic film.

  10. Dose profile study in head CT scans using radiochromic films

    Energy Technology Data Exchange (ETDEWEB)

    Ladino G, A. M.; Prata M, A., E-mail: amlgphys@gmail.com [Universidade Federal de Minas Gerais, Departamento de Engenharia Nuclear, Av. Pte. Antonio Carlos 6627, 31270-901 Belo Horizonte, Minas Gerais (Brazil)

    2016-10-15

    Diagnostic images of computed tomography generate higher doses than other methods of diagnostic radiology using X-ray beam attenuation. Clinical applications of CT have been increased by technological advances, what leads to a wide variety of scanner in the Brazilian technological pool. It has been difficult to implement dose reduction strategies because of the lack of proper guidance on computed tomography examinations. However, CT scanners allow adjusting acquisition parameter according to the patients physical profile and diagnostic application for which the scan is intended. The knowledge of the dose distribution is important because changes in image acquisition parameters may provide dose reduction. In this study, it was used a cylindrical head phantom in PMMA with 5 openings, what allows dose measurement in 5 regions. In a GE CT scanner, Discovery model of 64 channels, the central slice of the head phantom was irradiated and the absorbed doses were measured using a pencil ionization chamber. Radiochromic film strips were placed in the peripheral and in the central region of the head phantom and was performed a scan of 10 cm in the phantom central region. The scan was performed using the head scanning protocol of the radiobiology service, with a voltage of 120 kV. After scanning, the radiochromic film strips were digitalized and their digital images were used to have the dose longitudinal profiles. The dose values recorded have variation in a range of 18.66 to 23.57 mGy. In the results it was compared the dose index values obtained by the pencil chamber measurement to the dose longitudinal profiles recorded by the film strips. (Author)

  11. SU-E-T-165: Protocol for Simplified Radiochromic Film Dosimetry.

    Science.gov (United States)

    Lewis, D; Chan, M; Micke, A; Yu, X

    2012-06-01

    Radiochromic film provides dose measurement at high spatial resolution, but often is not selected for routine evaluation of patient-specific IMRT plans owing to ease-of-use factors. We have developed a simplified protocol that avoids complications encountered in commonly used methods. We evaluated the simplified protocol by collecting dose-response data from six production lots of EBT3 film at doses up to 480 cGy. In this work, we used eight different scanners of two different models - Epson 10000XL and V700; post-exposure times before scanning from 30 minutes to 9 days; ambient temperatures for scanning spanning 23°F and two film orientations. Scanning was in 48-bit rgb format at 72 dpi resolution. Dose evaluation was conducted using a triple-channel dosimetry method. To validate the simplified protocol, patient specific IMRT QA was performed using a Varian Trilogy Linac to expose EBT3 films. Scanning and film analysis was done following the protocol. The results indicated that the dose-response data could be fit by a set of related rational functions leading to the description of a universal calibration curve. A simplified protocol was established where dose-response data for a specific film lot, scanner, and scanning conditions could be derived from no more than two films exposed to known doses. In most cases only one calibrated exposure was required. Using the Gamma test criterion of 2%/2mm to evaluate the measurements, passing rates ranged between 95% and 99%. We have demonstrated a simplified protocol to measure doses delivered by an IMRT treatment plan using only the patient film, one calibration film, one unexposed film, and applying a single scan to acquire a digital image for calculation and analysis. The simplification and time-savings provide a practical solution for using radiochromic film for routine IMRT QA without sacrificing spatial resolution for convenience. David Lewis, Andre Micke and Xiang Yu are all employed by Ashland Specialty Ingredients

  12. Radiochromic film for dosimetric measurements in radiation shielding composites synthesized for applied in radiology procedures of high dose

    Energy Technology Data Exchange (ETDEWEB)

    Fontainha, C. C. P. [Universidade Federal de Minas Gerais, Departamento de Engenharia Nuclear, Av. Pte. Antonio Carlos 6627, 31270-901 Belo Horizonte, Minas Gerais (Brazil); Baptista N, A. T.; Faria, L. O., E-mail: crissia@gmail.com [Centro de Desenvolvimento da Tecnologia Nuclear / CNEN, Av. Pte. Antonio Carlos 6627, 31270-901 Belo Horizonte, Minas Gerais (Brazil)

    2015-10-15

    Full text: Medical radiology offers great benefit to patients. However, although specifics procedures of high dose, as fluoroscopy, Interventional Radiology, Computed Tomography (CT) make up a small percent of the imaging procedures, they contribute to significantly increase dose to population. The patients may suffer tissue damage. The probability of deterministic effects incidence depends on the type of procedure performed, exposure time, and the amount of applied dose at the irradiated area. Calibrated radiochromic films can identify size and distribution of the radiated fields and measure intensities of doses. Radiochromic films are sensitive for doses ranging from 0.1 to 20 c Gy and they have the same response for X-rays effective energies ranging from 20 to 100 keV. New radiation attenuators materials have been widely investigated resulting in dose reduction entrance skin dose. In this work, Bi{sub 2}O{sub 3} and ZrO{sub 2}:8 % Y{sub 2}O{sub 3} composites were obtained by mixing them with P(VDF-Tr Fe) copolymers matrix from casting method and then characterized by Ftir. Dosimetric measurements were obtained with Xr-Q A2 Gafchromic radiochromic films. In this setup, one radiochromic film is directly exposed to the X-rays beam and another one measures the attenuated beam were exposed to an absorbed dose of 10 mGy of RQR5 beam quality (70 kV X-ray beam). Under the same conditions, irradiated Xr-Q A2 films were stored and scanned measurement in order to obtain a more reliable result. The attenuation factors, evaluated by Xr-Q A2 radiochromic films, indicate that both composites are good candidates for use as patient radiation shielding in high dose medical procedures. (Author)

  13. Radiochromic film dosimetry. Considerations on precision and accuracy for EBT2 and EBT3 type films

    Energy Technology Data Exchange (ETDEWEB)

    Dreindl, Ralf [Medical Univ. of Vienna/Vienna General Hospital (Austria). Dept. of Radiooncology; EBG MedAustron GmbH, Wiener Neustadt (Austria); Georg, Dietmar; Stock, Markus [Medical Univ. of Vienna/Vienna General Hospital (Austria). Dept. of Radiooncology; Medical Univ. of Vienna (Austria). Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology

    2014-09-01

    Gafchromic {sup registered} EBT2 film is a widely used dosimetric tool for quality assurance in radiation therapy. In 2012 EBT3 was presented as a replacement for EBT2 films. The symmetric structure of EBT3 films to reduce face-up/down dependency as well as the inclusion of a matte film surface to frustrate Newton Ring artifacts present the most prominent improvements of EBT3 films. The aim of this study was to investigate the characteristics of EBT3 films, to benchmark the films against the known EBT2-features and to evaluate the dosimetric behavior over a time period greater than 6 months. All films were irradiated to clinical photon beams (6MV, 10MV and 18MV) on an Elekta Synergy Linac equipped with a Beam Modulator MLC in solid water phantom slabs. Film digitalization was done with a flatbed transparency scanner (Type Epson Expression 1680 Pro). MATLAB {sup registered} was used for further statistical calculations and image processing. The investigations on post-irradiation darkening, film orientation, film uniformity and energy dependency resulted in negligible differences between EBT2 and EBT3 film. A minimal improvement in face-up/down dependence was found for EBT3. The matte film surface of EBT3 films turned out to be a practical feature as Newton rings could be eliminated completely. Considering long-term behavior (> 6 months) a shift of the calibration curve for EBT2 and EBT3 films due to changes in the dynamic response of the active component was observed. In conclusion, the new EBT3 film yields comparable results to its predecessor EBT2. The general advantages of radiochromic film dosimeters are completed by high film homogeneity, low energy dependence for the observed energy range and a minimized face-up/down dependence. EBT2 dosimetry-protocols can also be used for EBT3 films, but the inclusion of periodical recalibration-interval (e.g. once a quarter) is recommended for protocols of both film generations. (orig.)

  14. 辐射变色膜片对质子剂量响应的实验标定%Calibration of dose response of radiochromic film to protons

    Institute of Scientific and Technical Information of China (English)

    洪伟; 刘东晓; 滕建; 焦春晔; 伍波; 谷渝秋

    2011-01-01

    利用串列静电加速器产生的5~9 MeV的质子束对HD-810型辐射变色膜片(RCF)进行了标定.用分光光度计和普通的商用平板扫描仪对辐照后的RCF透过率进行了测量,得到了光学密度变化随RCF灵敏层吸收剂量的变化曲线.标定实验结果表明:在一定的吸收剂量范围内,RCF的光学密度变化与RCF灵敏层中吸收剂量成线性关系,并且与质子能量无关.测量光学密度所用光源的波长对线性范围的大小有较大影响,绿光(532 nm)比红光(670 nm)有更大的剂量探测范围.%The calibration of radiochromic films (HD-810) irradiated by protons with different energies has been carried out on the tandem electrostatic accelerator. The optical densities of the irradiated films were obtained using spectrophotometer and commercial flatbed scanner, and the curves of the net optical densities versus dose were acquired. The results of calibration cor roborate that, in a certain range of absorbed dose, the net optical densities vary linearly with absorbed doses of the sensitive layer and are independent on the energy of protons. The wavelength of light used to measure the optical density has great effect on the linear range, and the linear range of green light (532 nm) is obviously larger than that of red light (670 nm).

  15. Accurate skin dose measurements using radiochromic film in clinical applications.

    Science.gov (United States)

    Devic, S; Seuntjens, J; Abdel-Rahman, W; Evans, M; Olivares, M; Podgorsak, E B; Vuong, Té; Soares, Christopher G

    2006-04-01

    Megavoltage x-ray beams exhibit the well-known phenomena of dose buildup within the first few millimeters of the incident phantom surface, or the skin. Results of the surface dose measurements, however, depend vastly on the measurement technique employed. Our goal in this study was to determine a correction procedure in order to obtain an accurate skin dose estimate at the clinically relevant depth based on radiochromic film measurements. To illustrate this correction, we have used as a reference point a depth of 70 micron. We used the new GAFCHROMIC dosimetry films (HS, XR-T, and EBT) that have effective points of measurement at depths slightly larger than 70 micron. In addition to films, we also used an Attix parallel-plate chamber and a home-built extrapolation chamber to cover tissue-equivalent depths in the range from 4 micron to 1 mm of water-equivalent depth. Our measurements suggest that within the first millimeter of the skin region, the PDD for a 6 MV photon beam and field size of 10 x 10 cm2 increases from 14% to 43%. For the three GAFCHROMIC dosimetry film models, the 6 MV beam entrance skin dose measurement corrections due to their effective point of measurement are as follows: 15% for the EBT, 15% for the HS, and 16% for the XR-T model GAFCHROMIC films. The correction factors for the exit skin dose due to the build-down region are negligible. There is a small field size dependence for the entrance skin dose correction factor when using the EBT GAFCHROMIC film model. Finally, a procedure that uses EBT model GAFCHROMIC film for an accurate measurement of the skin dose in a parallel-opposed pair 6 MV photon beam arrangement is described.

  16. Changes of the optical characteristics of radiochromic films in the transition from EBT3 to EBT-XD films

    Science.gov (United States)

    Schoenfeld, Andreas A.; Wieker, Soeren; Harder, Dietrich; Poppe, Bjoern

    2016-07-01

    A new type of radiochromic film, the EBT-XD film, has been introduced with the aim to reduce the orientation effect and the lateral response artifact occurring in the use of radiochromic films together with flatbed scanners. The task of the present study is to quantify the changes of optical characteristics involved with the transition from the well-known EBT3 films to the new EBT-XD films, using the optical bench arrangement already applied by Schoenfeld et al (2014 Phys. Med. Biol. 59 3575-97). Largely reduced polarization effects and the almost complete loss of the anisotropy of the scattered light produced in a radiation-exposed film have been observed. The Rayleigh-Debye-Gans theory is used to understand these optical changes as arising from the reduced length-to-width ratio of the LiPCDA polymer crystals in the active layer of the EBT-XD film. The effect of these changes on the flatbed scanning artifacts will be shortly addressed, but treated in more detail in a further paper.

  17. High dose-rate brachytherapy source position quality assurance using radiochromic film.

    Science.gov (United States)

    Evans, M D C; Devic, S; Podgorsak, E B

    2007-01-01

    Traditionally, radiographic film has been used to verify high-dose-rate brachytherapy source position accuracy by co-registering autoradiographic and diagnostic images of the associated applicator. Filmless PACS-based clinics that do not have access to radiographic film and wet developers may have trouble performing this quality assurance test in a simple and practical manner. We describe an alternative method for quality assurance using radiochromic-type film. In addition to being easy and practical to use, radiochromic film has some advantages in comparison with traditional radiographic film when used for HDR brachytherapy quality assurance.

  18. Optimizing the dynamic range extension of a radiochromic film dosimetry system.

    Science.gov (United States)

    Devic, Slobodan; Tomic, Nada; Soares, Christopher G; Podgorsak, Ervin B

    2009-02-01

    The authors present a radiochromic film dosimetry protocol for a multicolor channel radiochromic film dosimetry system consisting of the external beam therapy (EBT) model GAFCHROMIC film and the Epson Expression 1680 flat-bed document scanner. Instead of extracting only the red color channel, the authors are using all three color channels in the absorption spectrum of the EBT film to extend the dynamic dose range of the radiochromic film dosimetry system. By optimizing the dose range for each color channel, they obtained a system that has both precision and accuracy below 1.5%, and the optimized ranges are 0-4 Gy for the red channel, 4-50 Gy for the green channel, and above 50 Gy for the blue channel.

  19. Optimizing the dynamic range extension of a radiochromic film dosimetry system

    Energy Technology Data Exchange (ETDEWEB)

    Devic, Slobodan; Tomic, Nada; Soares, Christopher G.; Podgorsak, Ervin B. [Medical Physics Department, McGill University Health Centre, Montreal, Quebec H3G 1A4 (Canada); Department of Radiation Oncology, Jewish General Hospital, McGill University, Montreal, Quebec H3T 1E2 (Canada); Ionizing Radiation Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Medical Physics Department, McGill University Health Centre, Montreal, Quebec H3G 1A4 (Canada)

    2009-02-15

    The authors present a radiochromic film dosimetry protocol for a multicolor channel radiochromic film dosimetry system consisting of the external beam therapy (EBT) model GAFCHROMIC film and the Epson Expression 1680 flat-bed document scanner. Instead of extracting only the red color channel, the authors are using all three color channels in the absorption spectrum of the EBT film to extend the dynamic dose range of the radiochromic film dosimetry system. By optimizing the dose range for each color channel, they obtained a system that has both precision and accuracy below 1.5%, and the optimized ranges are 0-4 Gy for the red channel, 4-50 Gy for the green channel, and above 50 Gy for the blue channel.

  20. Validation of the entire 2D array Octavius by radiochromic films; Validacion del conjunto Octavius 2D array mediante peliculas radiocromicas

    Energy Technology Data Exchange (ETDEWEB)

    Iriondo Igerabide, U.; Former Forner, A.; Otal Palacin, A.; Martin Albina, M. L.; Lozares Cordero, S.; Maneru Camara, F.; Pellejero Pellejero, S.; Miquelez Alonso, S.; Soto Prados, P. M.; Rubio Arroniz, A.

    2011-07-01

    We have validated the 2D-array Octavius set for verification of IMRT plans complete, radiating with the same angles of incidence in the patient's actual plan. This has been taken as reference measurements with radiochromic films, since they are almost isotropic response, higher resolution and we already have experience with them.

  1. In vivo dosimetry with radiochromic films in low-voltage intraoperative radiotherapy of the breast

    Energy Technology Data Exchange (ETDEWEB)

    Avanzo, M.; Rink, A.; Dassie, A.; Massarut, S.; Roncadin, M.; Borsatti, E.; Capra, E. [Department of Medical Physics, Centro di Riferimento Oncologico, 33081 Aviano (Italy); Department of Radiation Physics, Princess Margaret Hospital, Ontario M5G 2M9 (Canada); Department of Medical Physics, Centro di Riferimento Oncologico, 33081 Aviano (Italy); Department of Surgery, Centro di Riferimento Oncologico, 33081 Aviano (Italy); Department of Radiation Oncology, Centro di Riferimento Oncologico, 33081 Aviano (Italy); Department of Nuclear Medicine, Centro di Riferimento Oncologico, 33081 Aviano (Italy); Department of Medical Physics, Centro di Riferimento Oncologico, 33081 Aviano (Italy)

    2012-05-15

    Purpose: EBT2 radiochromic films were studied and used for in vivo dosimetry in targeted intraoperative radiotherapy (TARGIT), a technique in which the Intrabeam system (Carl Zeiss, Oberkochen, Germany) is used to perform intraoperative partial breast irradiation with x-rays of 50 kV{sub p}. Methods: The energy of the radiation emitted by the Intrabeam with the different spherical applicators, under 1 and 2 cm of solid water, and under the tungsten impregnated rubber used for shielding of the heart in TARGIT of the breast, was characterized with measurements of half-value layer (HVL). The stability of response of EBT2 was verified inside this range of energies. EBT2 films were calibrated using the red and green channels of the absorption spectrum in the 0-20 Gy dose range delivered by the Intrabeam x-rays. The dependence of film response on temperature during irradiation was measured. For in vivo dosimetry, pieces of radiochromic films wrapped in sterile envelopes were inserted after breast conserving surgery and before TARGIT into the excision cavity, on the skin and on the shielded pectoralis fascia for treatments of the left breast. Results: HVLs of the Intrabeam in TARGIT of the breast correspond to effective energies of 20.7-36.3 keV. The response of EBT2 was constant inside this range of energies. We measured the dose to the target tissue and to organs at risk in 23 patients and obtained an average dose of 13.52 {+-} 1.21 Gy to the target tissue. Dose to the skin in close proximity to the applicator was 2.22 {+-} 0.97 Gy, 0.29 {+-} 0.17 Gy at 5-10 cm from the applicator, and 0.08 {+-} 0.07 Gy at more than 10 cm from the applicator. Dose to the pectoral muscle for left breast treatment was 0.57 {+-} 0.23 Gy. Conclusions: Our results show that EBT2 films are accurate at the beam energies, dose range, and irradiation temperature found in TARGIT and that in vivo dosimetry in TARGIT with EBT2 films wrapped in sterile envelopes is a feasible procedure. Measured

  2. Radiochromic film containing methyl viologen for radiation dosimetry

    DEFF Research Database (Denmark)

    Lavalle, M.; Corda, U.; Fuochi, P.G.;

    2007-01-01

    , humidity and temperature on the response of the PVA-MV2+ dosimeter film have been studied under laboratory conditions. We conclude that the PVA film containing MV2+ is a promising tool for the absorbed dose measurements in several industrial applications of ionizing radiations. (C) 2007 Elsevier Ltd. All...

  3. Characterization of the proton beam from an IBA Cyclone 18/9 with radiochromic film EBT2

    Energy Technology Data Exchange (ETDEWEB)

    Sansaloni, F.; Lagares, J. I.; Arce, P.; Llop, J.; Perez, J. M. [Medical Applications Unit, Technology Department, CIEMAT, Madrid (Spain); Radiochemistry Department, Molecular Imaging unit, CIC-biomaGUNE, San Sebastian (Spain); Technology Department, CIEMAT (Spain)

    2012-12-19

    The use of radiochromic films is widespread in different areas of medical physics like radiotherapy and hadrontherapy; however, radiochromic films have been scarcely used in the characterization of proton or deuteron beams generated in biomedical cyclotrons. In this paper the radiochromic film EBT2 was used to study the beam size and the proton beam energy of an IBA Cyclone 18/9 cyclotron. The results indicate that the beam size can be easily measured at a very low expense; however, an accurate determination of the beam energy might require the implementation of certain experimental improvements.

  4. Characterization of the proton beam from an IBA Cyclone 18/9 with radiochromic film EBT2

    Science.gov (United States)

    Sansaloni, F.; Lagares, J. I.; Arce, P.; Llop, J.; Perez, J. M.

    2012-12-01

    The use of radiochromic films is widespread in different areas of medical physics like radiotherapy and hadrontherapy; however, radiochromic films have been scarcely used in the characterization of proton or deuteron beams generated in biomedical cyclotrons. In this paper the radiochromic film EBT2 was used to study the beam size and the proton beam energy of an IBA Cyclone 18/9 cyclotron. The results indicate that the beam size can be easily measured at a very low expense; however, an accurate determination of the beam energy might require the implementation of certain experimental improvements.

  5. Radiochromic film containing methyl viologen for radiation dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Lavalle, M. [ISOF-CNR, Via P. Gobetti 101, 40129 Bologna (Italy)]. E-mail: lavalle@isof.cnr.it; Corda, U. [ISOF-CNR, Via P. Gobetti 101, 40129 Bologna (Italy); Fuochi, P.G. [ISOF-CNR, Via P. Gobetti 101, 40129 Bologna (Italy); Caminati, S. [ISOF-CNR, Via P. Gobetti 101, 40129 Bologna (Italy); Venturi, M. [Dipartimento di Chimica ' G. Ciamician' , Universita di Bologna, Via Selmi 2, 40126 Bologna (Italy); Kovacs, A. [Institute of Isotopes, HAS, P.O. Box 77, 1525 Budapest (Hungary); Baranyai, M. [Institute of Isotopes, HAS, P.O. Box 77, 1525 Budapest (Hungary); Safrany, A. [Institute of Isotopes, HAS, P.O. Box 77, 1525 Budapest (Hungary); Miller, A. [High Dose Reference Laboratory, Riso National Laboratory, DK-4000, Roskilde (Denmark)

    2007-08-15

    Poly(vinyl alcohol) (PVA) films containing methyl viologen (MV{sup 2+}) that colours blue upon exposure to ionizing radiation were investigated as possible dosimeters for use in radiation processing applications. In order to find the most suitable composition of the PVA-MV{sup 2+} film, different concentrations of the dye have been studied. The absorbance values at selected wavelengths, obtained from irradiation of the PVA film containing the most suitable MV{sup 2+} concentration, can be satisfactorily related to the absorbed dose over a wide range, from 50 Gy up to 40 kGy. The effects of dose, dose rate, humidity and temperature on the response of the PVA-MV{sup 2+} dosimeter film have been studied under laboratory conditions. We conclude that the PVA film containing MV{sup 2+} is a promising tool for the absorbed dose measurements in several industrial applications of ionizing radiations.

  6. Advanced radiochromic film methodologies for quantitative dosimetry of small and nonstandard fields

    Science.gov (United States)

    Rosen, Benjamin S.

    Radiotherapy treatments with small and nonstandard fields are increasing in use as collimation and targeting become more advanced, which spare normal tissues while increasing tumor dose. However, dosimetry of small and nonstandard fields is more difficult than that of conventional fields due to loss of lateral charged-particle equilibrium, tight measurement setup requirements, source occlusion, and the volume-averaging effect of conventional dosimeters. This work aims to create new small and nonstandard field dosimetry protocols using radiochromic film (RCF) in conjunction with novel readout and analysis methodologies. It also is the intent of this work to develop an improved understanding of RCF structure and mechanics for its quantitative use in general applications. Conventional digitization techniques employ white-light, flatbed document scanners or scanning-laser densitometers which are not optimized for RCF dosimetry. A point-by-point precision laser densitometry system (LDS) was developed for this work to overcome the film-scanning artifacts associated with the use of conventional digitizers, such as positional scan dependence, off-axis light scatter, glass bed interference, and low signal-to-noise ratios. The LDS was shown to be optically traceable to national standards and to provide highly reproducible density measurements. Use of the LDS resulted in increased agreement between RCF dose measurements and the single-hit detector model of film response, facilitating traceable RCF calibrations based on calibrated physical quantities. GafchromicRTM EBT3 energy response to a variety of reference x-ray and gamma-ray beam qualities was also investigated. Conventional Monte Carlo methods are not capable of predicting film intrinsic energy response to arbitrary particle spectra. Therefore, a microdosimetric model was developed to simulate the underlying physics of the radiochromic mechanism and was shown to correctly predict the intrinsic response relative to a

  7. Computed tomography dose measurements with radiochromic films and a flatbed scanner.

    Science.gov (United States)

    Rampado, O; Garelli, E; Ropolo, R

    2010-01-01

    Gafchromic XR-QA films were developed for patient dosimetry in diagnostic radiology. A possible application of these films is the measurement of doses in computed tomography. In this study a method to evaluate the CTDI using Gafchromic XR-QA film and a flatbed scanner was developed and tested. Film samples were cut to dimensions of 6 x 170 mm2 in order to have an integration area similar to that of a pencil ionization chamber, with the possibility of changing the integration length. Prior to exposing these films to a computed tomography beam, the angular dependence of the film dose response was investigated by exposing film strips to a static x-ray beam at different angles in the range 0 degrees-180 degrees. A difference of 49% was found between the response with the axis beam parallel to the film surface (90 degrees) and with the axis beam perpendicular (0 degrees and 180 degrees). Integrating over a 360 degrees exposure like the one in computed tomography, a difference of less than 2% was estimated, which is comparable with the measurement error obtainable with XR-QA film. A calibration with a CT beam in the scout mode was performed and film strips were then exposed to single axial scans and to helical scans both in air and in phantoms. Two different types of flatbed scanners were used to read the film samples, a Microtek ScanMaker 9800XL scanner and an Epson Expression 10000 XL scanner, and the accuracy of the results were compared. For beam collimations above 10 mm differences between CTDI measured by film and CTDI measured by ionization chamber below 9% were found for the Epson scanner, with an average estimated error at 1 sigma level of 5%. For the Microtek scanner and for the same film samples, differences below 11% with an average error at 1 sigma level of 8% were founded. The 1 sigma uncertainty of the measured CTDI was provided by the method for each measurement, and it was shown that about the 95% of the differences between the CTDI measurements with

  8. A new radiochromic thin-film dosimeter system

    Science.gov (United States)

    Miller, A.; Batsberg, W.; Karman, W.

    A film dosimeter based on pararosaniline cyanide dissolved in polyvinyl butyral (PVB) has been developed and its properties are described. The dosimeter is made in 3 versions: 1) a clear, thin film that requires a thickness measurement for evaluation, 2) a film with a relatively high absorbance for automatic thickness correction, 3) a UV-protected pressure-sensitive adhesive tape. The response of the dosimeter is independent on the dose rate, and it may be used for routine dose measurement of both gamma and electron irradiation. Its high spatial resolution makes it particularly useful for dose distribution measurements.

  9. Evaluation of triple channel correction acquisition method for radiochromic film dosimetry

    OpenAIRE

    2012-01-01

    The purpose of this study was to evaluate the triple channel correction acquisition (TCCA) method for radiochromic film dosimetry performed with a flatbed scanner. The study had two parts: a fundamental and a clinical examination. In the fundamental examination, we evaluated the accuracy of calibration curves for Gafchromic EBT2 (EBT2). The films were calibrated using a field-by-field method with 13 dose steps. Seven calibration curves obtained by TCCA were compared with those produced by a s...

  10. Estimation of MSAD values in computed tomography scans using radiochromic films

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Bruno Beraldo; Teogenes Augusto da, E-mail: bbo@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Mourao, Arnaldo Prata [Centro Federal de Educacao Tecnologica de Minas Gerais (CEFET-MG), Belo Horizonte, MG (Brazil)

    2013-03-15

    Objective: To evaluate the feasibility of using radiochromic films as an alternative dosimeter to estimate the multiple scan average dose on the basis on kerma profiles. Materials and Methods: The radiochromic films were distributed in cylinders positioned in the center and in four peripheral bores of a standard abdominal phantom utilized for computed tomography dosimetry. Results: Values for multiple scan average dose values corresponded to 13.6 {+-} 0.7, 13.5 {+-} 0.7 and 18.7 {+-} 1.0 mGy for pitch of 0.75, 1.00 and 1.50, respectively. Conclusion: In spite of results showing lower values than the reference level for radiodiagnosis (25 mGy) established by the Brazilian regulations for abdominal studies, it is suggested that there is room to optimize procedures and review the reference level for radiodiagnosis in Brazil. (author)

  11. A unified approach to deconvolution radiation spectra measured by radiochromic films

    Directory of Open Access Journals (Sweden)

    Stančić Velimir A.

    2002-01-01

    Full Text Available A method for the evaluation of energy distribution of a radiation source on the basis of measured space distribution of deposited energy is proposed. The measured data were obtained by using radiochromic films. Mathematical modeling is defined as a Fredholm integral equation inversion problem. Negative solutions were treated as an additional condition expressed through undefined energy group boundaries, caused by virtue of the physical phenomenon of statistical uncertainty. Examples are given of the electron source and neutron radiation field.

  12. Three-dimensional radiochromic film dosimetry for volumetric modulated arc therapy using a spiral water phantom.

    Science.gov (United States)

    Tanooka, Masao; Doi, Hiroshi; Miura, Hideharu; Inoue, Hiroyuki; Niwa, Yasue; Takada, Yasuhiro; Fujiwara, Masayuki; Sakai, Toshiyuki; Sakamoto, Kiyoshi; Kamikonya, Norihiko; Hirota, Shozo

    2013-11-01

    We validated 3D radiochromic film dosimetry for volumetric modulated arc therapy (VMAT) using a newly developed spiral water phantom. The phantom consists of a main body and an insert box, each of which has an acrylic wall thickness of 3 mm and is filled with water. The insert box includes a spiral film box used for dose-distribution measurement, and a film holder for positioning a radiochromic film. The film holder has two parallel walls whose facing inner surfaces are equipped with spiral grooves in a mirrored configuration. The film is inserted into the spiral grooves by its side edges and runs along them to be positioned on a spiral plane. Dose calculation was performed by applying clinical VMAT plans to the spiral water phantom using a commercial Monte Carlo-based treatment-planning system, Monaco, whereas dose was measured by delivering the VMAT beams to the phantom. The calculated dose distributions were resampled on the spiral plane, and the dose distributions recorded on the film were scanned. Comparisons between the calculated and measured dose distributions yielded an average gamma-index pass rate of 87.0% (range, 91.2-84.6%) in nine prostate VMAT plans under 3 mm/3% criteria with a dose-calculation grid size of 2 mm. The pass rates were increased beyond 90% (average, 91.1%; range, 90.1-92.0%) when the dose-calculation grid size was decreased to 1 mm. We have confirmed that 3D radiochromic film dosimetry using the spiral water phantom is a simple and cost-effective approach to VMAT dose verification.

  13. Grid patterns, spatial inter-scan variations and scanning reading repeatability in radiochromic film dosimetry

    CERN Document Server

    Méndez, I; Hudej, R; Jenko, A; Casar, B

    2016-01-01

    Purpose: When comparing different scans of the same radiochromic film, several patterns can be observed. These patterns are caused by different sources of uncertainty, which affect the repeatability of the scanner. The purpose of this work was to study these uncertainties. Methods: The variance of the scanner noise, as a function of the pixel position, was studied for different resolutions. The inter-scan variability of the scanner response was analyzed taking into account spatial discrepancies. Finally, the distance between the position of the same point in different scans was examined. Results: The variance of noise follows periodical patterns in both axes, causing the grid patterns. These patterns were identified for resolutions of 50, 72 and 96 dpi, but not for 150 dpi. Specially recognizable is the sinusoidal shape with a period of 8.5 mm that is produced with 72 dpi. Inter-scan variations of the response caused systematic relative dose deviations larger than 1% in 5% of the red channel images, 9% of the...

  14. Radiochromic 3D Detectors

    Science.gov (United States)

    Oldham, Mark

    2015-01-01

    Radiochromic materials exhibit a colour change when exposed to ionising radiation. Radiochromic film has been used for clinical dosimetry for many years and increasingly so recently, as films of higher sensitivities have become available. The two principle advantages of radiochromic dosimetry include greater tissue equivalence (radiologically) and the lack of requirement for development of the colour change. In a radiochromic material, the colour change arises direct from ionising interactions affecting dye molecules, without requiring any latent chemical, optical or thermal development, with important implications for increased accuracy and convenience. It is only relatively recently however, that 3D radiochromic dosimetry has become possible. In this article we review recent developments and the current state-of-the-art of 3D radiochromic dosimetry, and the potential for a more comprehensive solution for the verification of complex radiation therapy treatments, and 3D dose measurement in general.

  15. The use of radiochromic films to measure and analyze the beam profile of charged particle accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Avila-Rodriguez, M.A. [Edmonton PET Centre, Cross Cancer Institute, 11560 University Ave, Edmonton, AB T6G 1Z2 (Canada); Unidad PET/CT-Ciclotron, Facultad de Medicina, Universidad Nacional Autonoma de Mexico (Mexico)], E-mail: avilarod@uwalumni.com; Wilson, J.S.; McQuarrie, S.A. [Edmonton PET Centre, Cross Cancer Institute, 11560 University Ave, Edmonton, AB T6G 1Z2 (Canada)

    2009-11-15

    The use of radiochromic films as a simple and inexpensive tool to accurately measure and analyze the beam profile of charged particle accelerators is described. In this study, metallic foils of different materials and thicknesses were irradiated with 17.8 MeV protons and autoradiographic images of the beam strike were acquired by exposing pieces of RCF in direct contact with the irradiated foils. The films were digitalized using a conventional scanner and images were analyzed using DoseLab. Beam intensity distributions, isodose curves and linear beam profiles of the digitalized images were acquired.

  16. The use of radiochromic films to measure and analyze the beam profile of charged particle accelerators.

    Science.gov (United States)

    Avila-Rodriguez, M A; Wilson, J S; McQuarrie, S A

    2009-11-01

    The use of radiochromic films as a simple and inexpensive tool to accurately measure and analyze the beam profile of charged particle accelerators is described. In this study, metallic foils of different materials and thicknesses were irradiated with 17.8MeV protons and autoradiographic images of the beam strike were acquired by exposing pieces of RCF in direct contact with the irradiated foils. The films were digitalized using a conventional scanner and images were analyzed using DoseLab. Beam intensity distributions, isodose curves and linear beam profiles of the digitalized images were acquired.

  17. Comparison of Electron-Beam Dose Distributions in a Heterogeneous Phantom Obtained Using Radiochromic Film Dosimetry and Monte Carlo Simulation

    Directory of Open Access Journals (Sweden)

    Zahra Anjomani

    2011-03-01

    Full Text Available Introduction: Nowadays new radiochromic films have an essential role in radiotherapy dosimetry. Properties such as high sensitivity, good reproducibility, high spatial resolution, easy readout and portability have made them attractive for dosimetry, especially in high-dose-gradient regions. Material and Methods: In this study, electron-beam dose distributions in homogenous and heterogeneous phantoms were calculated using the MCNPX Monte Carlo code and compared with experimental measurements obtained by GAFCHROMIC® EBT film and p-type silicon diode dosimetry. Irradiation was carried out using an Elekta linear accelerator at two different electron energies (8 and 15 MeV, with a 10×10 cm2 applicator and at 100 cm source-to-surface distance. Results: The results show good agreement (within 2% between radiochromic film measurements and MCNP results. Conclusions: The results show that the new radiochromic films can be used in electron dosimetry and that they are also reliable in presence of heterogeneous media.

  18. Dose determination with nitro blue tetrazolium containing radiochromic dye films by measuring absorbed and reflected light

    DEFF Research Database (Denmark)

    Kovács, A.; Baranyai, M.; Wojnárovits, L.

    2000-01-01

    Tetrazolium salts as heterocyclic organic compounds are known to form highly coloured, water insoluble formazans by reduction, which can be utilized in radiation processing dosimetry. Radiochromic films containing nitro blue tetrazolium dissolved in a polymer matrix were found suitable for dose...... determination in a wide dose range both by absorbance and reflectance measurements. The concept of measuring reflected light from dose labels has been discussed earlier and emerged recently due to the requirement of introducing semiquantitative label dose indicators for quarantine control. The usefulness...

  19. Effective energy measurement using radiochromic film: application of a mobile scanner

    Science.gov (United States)

    Gotanda, Tatsuhiro; Katsuda, Toshizo; Gotanda, Rumi; Kuwano, Tadao; Akagawa, Takuya; Tanki, Nobuyoshi; Tabuchi, Akihiko; Shimono, Tetsunori; Kawaji, Yasuyuki; Takeda, Yoshihiro

    2016-12-01

    The effective energy calculated using the half-value layer (HVL) is an important parameter for quality assurance (QA) and quality control (QC). However constant monitoring has not been performed because measurements using an ionization chamber (IC) are time-consuming and complicated. To solve these problems, a method using radiochromic film (GAFCHROMIC EBT2 dosimetry film (GAF-EBT2) with slight energy dependency errors), a mobile scanner and step-shaped aluminum (SSAl) filter is developed. The results of the method using a mobile scanner were compared with those of the recommended method using an IC in order to evaluate its applicability. The difference ratios of the effective energies by each method using a mobile scanner with GAF-EBT2 were less than 5% compared with results of an IC. It is considered that this method offers a simple means of determining HVL for QA and QC consistently and quickly without the need for an IC dosimeter.

  20. TU-F-201-01: General Aspects of Radiochromic Film Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Niroomand-Rad, A.

    2015-06-15

    Since the introduction of radiochromic films (RCF) for radiation dosimetry, the scope of RCF dosimetry has expanded steadily to include many medical applications, such as radiation therapy and diagnostic radiology. The AAPM Task Group (TG) 55 published a report on the recommendations for RCF dosimetry in 1998. As the technology is advancing rapidly, and its routine clinical use is expanding, TG 235 has been formed to provide an update to TG-55 on radiochromic film dosimetry. RCF dosimetry applications in clinical radiotherapy have become even more widespread, expanding from primarily brachytherapy and radiosurgery applications, and gravitating towards (but not limited to) external beam therapy (photon, electron and protons), such as quality assurance for IMRT, VMAT, Tomotherapy, SRS/SRT, and SBRT. In addition, RCF applications now extend to measurements of radiation dose in particle beams and patients undergoing medical exams, especially fluoroscopically guided interventional procedures and CT. The densitometers/scanners used for RCF dosimetry have also evolved from the He-Ne laser scanner to CCD-based scanners, including roller-based scanner, light box-based digital camera, and flatbed color scanner. More recently, multichannel RCF dosimetry introduced a new paradigm for external beam dose QA for its high accuracy and efficiency. This course covers in detail the recent advancements in RCF dosimetry. Learning Objectives: Introduce the paradigm shift on multichannel film dosimetry Outline the procedures to achieve accurate dosimetry with a RCF dosimetry system Provide comprehensive guidelines on RCF dosimetry for various clinical applications One of the speakers has a research agreement from Ashland Inc., the manufacturer of Gafchromic film.

  1. SU-E-T-485: In Vivo Dosimetry with EBT3 Radiochromic Films for TBI Treatments

    Energy Technology Data Exchange (ETDEWEB)

    Lozares, S; Gracia, M; Olasolo, J; Gallardo, N; Fuentemilla, N; Pellejero, S; Miquelez, S; Maneru, F; Martin, M; Bragado, L; Rubio, A [Complejo Hospitalario de Navarra, Pamplona, Navarra (Spain)

    2015-06-15

    Purpose: Total body irradiation (TBI) is a technique that requires special equipment to control “in vivo” the dose to the patient because it is a complex technique performed in extraordinary conditions. There are several devices to perform this task (diodes, TLDs, ionization chambers, MOSFET). In this paper we study the possibility of performing these measurements with radiochromic films EBT3 properly calibrated. This method has been compared to the PTW diodes system for TBI. Methods: Once made the TC to the patients, we measured different thicknesses of the relevant areas of the body (head, neck, chest with or without arms, umbilicus area, knees and ankles); for each of these thicknesses we measured dose rate (cGy / UM) in RW3 phantom, in TBI conditions, with ionization chamber in the center; in turn, the input diode and the output of each configuration is placed to assign dose to each set of diodes. Movie calibration is performed according to manufacturer’s recommendations but TBI conditions. The dose at the center of each thickness compared to a linear interpolation of the dose at the entrance and exit, resulting in an adequate approximation. Finally in each session for each patient put a piece of film (2×2 cm2) at the entrance and another at the exit in each area, obtaining these readings and interpolating the estimated center dose, as with the diodes. Results: These results show a greater homogeneity in the distribution for use with film and validate the use of the same for this task and, if necessary, to avoid purchasing diode group if they have not. Conclusion: By using radiochromic films for this technique gives us a proper calculation of the dose received by the patient in the absence of other methods, or gives us a second additional track that already used normally.

  2. Visible absorption properties of radiation exposed XR type-T radiochromic film.

    Science.gov (United States)

    Butson, Martin J; Cheung, Tsang; Yu, Peter K N

    2004-10-01

    The visible absorption spectra of Gafchromic XR type-T radiochromic film have been investigated to analyse the dosimetry characteristics of the film with visible light densitometers. Common densitometers can use photospectrometry, fluorescent light (broad-band visible), helium neon (632 nm), light emitting diode (LED) or other specific bandwidth spectra. The visible absorption spectra of this film when exposed to photon radiation show peaks at 676 nm and 618 nm at 2 Gy absorbed doses which shift to slightly lower wavelengths (662 nm and 612 nm at 8 Gy absorbed dose) at higher doses. This is similar to previous models of Gafchromic film such as MD-55-2 and HS but XR type-T also includes a large absorption at lower visible wavelengths due to 'yellow' dyes placed within the film to aid with visible recognition of the film exposure level. The yellow dye band pass is produced at approximately 520 nm to 550 nm and absorbs wavelengths lower than this value within the visible spectrum. This accounts for the colour change from yellow to brown through the added absorption in the red wavelengths with radiation exposure. The film produces a relatively high dose sensitivity with up to 0.25 OD units per Gy change at 672 nm at 100 kVp x-ray energy. Variations in dose sensitivity can be achieved by varying wavelength analysis.

  3. SU-E-T-533: LET Dependence Correction of Radiochromic Films for Application in Low Energy Proton Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Reinhardt, S; Wuerl, M; Assmann, W; Parodi, K [Department of Medical Physics, Ludwig-Maximilians University Munich, Garching, DE (Germany); Greubel, C [Institut fuer Angewandte Physik und Messtechnik (LRT2), Universitaet der Bundeswehr, Neubiberg, DE (United States); Wilkens, J [Department of Radiation Oncology, Technical University Munich, Klinikum rechts der Isar, Munich, DE (Germany); Hillbrand, M [Rinecker Proton Therapy Center, Munich, DE (Germany); Mairani, A [Medical Physics Unit CNAO Foundation, Pavia (Italy)

    2015-06-15

    Purpose: Many cell irradiation experiments with low-energy laser-driven ions rely on radiochromic films (RCF), because of their dose-rate independent response and superior spatial resolution. RCF dosimetry in low-energy ion beams requires a correction of the LET dependent film response. The relative efficiency (RE), the ratio of photon to proton dose that yields the same film darkening, is a measure for the film’s LET dependence. A direct way of RE determination is RCF irradiation with low-energy mono-energetic protons and hence, well-defined LET. However, RE is usually determined using high energy proton depth dose measurements where RE corrections require knowledge of the average LET in each depth, which can be either track (tLET) or dose (dLET) averaged. The appropriate LET concept has to be applied to allow a proper film response correction. Methods: Radiochromic EBT2 and EBT3 films were irradiated in clinical photon and proton beams. For each depth of the 200 MeV proton depth dose curve, tLET and dLET were calculated by special user routines from the Monte Carlo code FLUKA. Additional irradiations with mono-energetic low energy protons (4–20 MeV) serve as reference for the RE determination. Results: The difference of dLET and tLET increases with depth, with the dLET being almost twice as large as the tLET for the maximum depth. The comparison with mono-energetic measurements shows a good agreement of the RE for the dLET concept, while a considerably steeper drop in RE is observed when applying the tLET. Conclusion: RCF can be used as reference dosimeter for biomedical experiments with low-energy proton beams if appropriate LET corrections are applied. When using depth dose measurements from clinical proton accelerators for these corrections, the concept of dLET has to be applied. Acknowledgement: This work was funded by the DFG Cluster of Excellence ‘Munich-Centre for Advanced Photonics’ (MAP). This work was funded by the DFG Cluster of Excellence

  4. Evaluation of the RtDosePlan Treatment Planning System using Radiochromic Film and Monte Carlo Simulation

    Directory of Open Access Journals (Sweden)

    Micaeil Mollazadeh

    2010-06-01

    Full Text Available Introduction: GafChromic EBT films are one of the self-developing and modern films commercially available for dosimetric verification of treatment planning systems (TPSs. Their high spatial resolution, low energy dependence and near-tissue equivalence make them suitable for verification of dose distributions in radiation therapy. This study was designed to evaluate the dosimetric parameters of the RtDosePlan TPS such as PDD curves, lateral beam profiles, and isodose curves measured in a water phantom using EBT Radiochromic film and EGSnrc Monte Carlo (MC simulation. Methods and Materials: A Microtek color scanner was used as the film scanning system, where the response in the red color channel was extracted and used for the analyses. A calibration curve was measured using pieces of irradiated films to specific doses. The film was mounted inside the phantom parallel to the beam's central axis and was irradiated in a standard setup (SSD = 80 cm, FS = 10×10 cm2 with a 60Co machine. The BEAMnrc and the DOSXYZnrc codes were used to simulate the Co-60 machine and extracting the voxel-based phantom. The phantom's acquired CT data were transferred to the TPS using DICOM files. Results: Distance-To-Agreement (DTA and Dose Difference (DD among the TPS predictions, measurements and MC calculations were all within the acceptance criteria (DD=3%, DTA=3 mm. Conclusion: This study shows that EBT film is an appropriate tool for verification of 2D dose distribution predicted by a TPS system. In addition, it is concluded that MC simulation with the BEAMnrc code has a suitable potential for verifying dose distributions.

  5. Model changes EBT2 radiochromic film from its predecessor EBT; Cambios del modelo EBT2 de peliculas radiocromicas respecto a su predecesora EBT

    Energy Technology Data Exchange (ETDEWEB)

    Carrasco Herrera, M. A.; Perucha Ortega, M.; Baeza Trujillo, M.; Luis Simon, F. J.; Herrador Cordoba, M.

    2011-07-01

    The model EBT2 Gafchromic radiochromic film is significantly different from its predecessor EBT. The presence of a yellow pigment in the active layer results in a reduced sensitivity to ambient light, on the other hand, this pigment can apply a correction to the measured signal to compensate for changes due to differences in the thickness of the active layer, there by improving a priori, the homogeneity of the response of the film. Another new feature they present is the lack of symmetry of the layers that make up the film, leading to the emergence of a new unit of the pixel value obtained with the orientation of the film to scan: heads or tails. (Author)

  6. SU-E-T-123: Dosimetric Comparison Between Portrait and Landscape Orientations in Radiochromic Film Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Kakinohana, Y [University of the Ryukyus, Okinawa (Japan); Toita, T; Kasuya, G; Ariga, T; Heianna, J; Murayama, S [University of the Ryukyus, Nishihara-cho, Okinawa (Japan)

    2014-06-01

    Purpose: To compare the dosimetric properties of radiochromic films with different orientation. Methods: A sheet of EBT3 film was cut into eight pieces with the following sizes: 15×15 cm2 (one piece), 5x15 cm{sup 2} (two) and 4×5 cm{sup 2} (five). A set of two EBT3 sheets was used at each dose level. Two sets were used changing the delivered doses (1 and 2 Gy). The 5×15 cm{sup 2} pieces were rotated by 90 degrees in relation to each other, such that one had landscape orientation and the other had portrait orientation. All 5×15 cm2 pieces were irradiated with their long side aligned with the x-axis of the radiation field. The 15×15 cm{sup 2} pieces were irradiated rotated at 90 degrees to each other. Five pieces, (a total of ten from two sheets) were used to obtain a calibration curve. The irradiated films were scanned using an Epson ES-2200 scanner and were analyzed using ImageJ software. In this study, no correction was applied for the nonuniform scanner signal that is evident in the direction of the scanner lamp. Each film piece was scanned both in portrait and landscape orientations. Dosimetric comparisons of the beam profiles were made in terms of the film orientations (portrait and landscape) and scanner bed directions (perpendicular and parallel to the scanner movement). Results: In general, portrait orientation exhibited higher noise than landscape and was adversely affected to a great extent by the nonuniformity in the direction of the scanner lamp. A significant difference in the measured field widths between the perpendicular and parallel directions was found for both orientations. Conclusion: Without correction for the nonuniform scanner signal in the direction of the scanner lamp, a landscape orientation is preferable. A more detailed investigation is planned to evaluate quantitatively the effect of orientation on the dosimetric properties of a film.

  7. A comparison of HDR near source dosimetry using a treatment planning system, Monte Carlo simulation, and radiochromic film.

    Science.gov (United States)

    Amoush, Ahmad; Luckstead, Marcus; Lamba, Michael; Elson, Howard; Kassing, William

    2013-01-01

    This study aimed to investigate the high-dose rate Iridium-192 brachytherapy, including near source dosimetry, of a catheter-based applicator from 0.5mm to 1cm along the transverse axis. Radiochromic film and Monte Carlo (MC) simulation were used to generate absolute dose for the catheter-based applicator. Results from radiochromic film and MC simulation were compared directly to the treatment planning system (TPS) based on the American Association of Physicists in Medicine Updated Task Group 43 (TG-43U1) dose calculation formalism. The difference between dose measured using radiochromic film along the transverse plane at 0.5mm from the surface and the predicted dose by the TPS was 24%±13%. The dose difference between the MC simulation along the transverse plane at 0.5mm from the surface and the predicted dose by the TPS was 22.1%±3%. For distances from 1.5mm to 1cm from the surface, radiochromic film and MC simulation agreed with TPS within an uncertainty of 3%. The TPS under-predicts the dose at the surface of the applicator, i.e., 0.5mm from the catheter surface, as compared to the measured and MC simulation predicted dose. MC simulation results demonstrated that 15% of this error is due to neglecting the beta particles and discrete electrons emanating from the sources and not considered by the TPS, and 7% of the difference was due to the photon alone, potentially due to the differences in MC dose modeling, photon spectrum, scoring techniques, and effect of the presence of the catheter and the air gap. Beyond 1mm from the surface, the TPS dose algorithm agrees with the experimental and MC data within 3%.

  8. Characterization of radiochromic films EBT3 by means of the scanner Vidar dosimetry Pro Red and Epson 10000-XL use; Caracterizacion de films radiocromicos EBT3 mediante el uso de scanner Vidar dosimetry Pro Red y Epson 10000-XL

    Energy Technology Data Exchange (ETDEWEB)

    Medina, L.; Garrigo, E.; Venencia, D.; Adrada, A.; Filipuzzi, M., E-mail: fisicamedina11@gmail.com [Instituto Privado de Radioterapia, Obispo Oro 423, X5000BFI Cordoba (Argentina)

    2014-08-15

    The Radiochromic film have become an attractive tool for verification of dose distributions in IMRT because these have high spatial resolution film, are near water equivalent and not require revealed, A critical aspect of the use of these film is used for digitizing scanner The purpose of this paper is to characterize EBT3 using two types of scanner. Were employed The Radiochromic film EBT3, was used photon beam 6 MV generated by a linear accelerator Siemens Primus, he films were irradiated at a dose range between 0 Gy a 9 Gy. The stabilization time after irradiation was 24 hours. The films were digitized with a scanner Epson 10000-XL y el VIDAR Dosimetry Pro Red. We used the software for construction of the calibration curve. The resolution of each dosimetry system was analyzed through the results of the spatial response function by analyzing a step pattern. The Epson scanner is most sensitive to the red channel. This is less than that obtained with the Vidar. The Vidar scanner spatial response profiles disturbs not opposed to Epson analyzed. The calibration curves for both dosimetry systems can be employed. However, the sensitivity and repeatability of the system is better than Red Vidar Epson 10000-XL. (author)

  9. The origin of the flatbed scanner artifacts in radiochromic film dosimetry-key experiments and theoretical descriptions.

    Science.gov (United States)

    Schoenfeld, Andreas A; Wieker, Soeren; Harder, Dietrich; Poppe, Bjoern

    2016-11-07

    The optical origin of the lateral response and orientation artifacts, which occur when using EBT3 and EBT-XD radiochromic films together with flatbed scanners, has been reinvestigated by experimental and theoretical means. The common feature of these artifacts is the well-known parabolic increase in the optical density OD(x)  =  -log10 I(x)/I 0(x) versus offset x from the scanner midline (Poppinga et al 2014 Med. Phys. 41 021707). This holds for landscape and portrait orientations as well as for the three color channels. Dose-independent optical subjects, such as neutral density filters, linear polarizers, the EBT polyester foil and diffusive glass, also present the parabolic lateral artifact when scanned with a flatbed scanner. The curvature parameter c of the parabola function OD(x)  =  c 0  +  cx (2) is found to be a linear function of the dose, the parameters of which are influenced by the film orientation and film type, EBT3 or EBT-XD. The ubiquitous parabolic shape of function OD(x) is attributed (a) to the optical path-length effect (van Battum et al 2016 Phys. Med. Biol. 61 625-49), due to the increasing obliquity of the optical scanner light associated with increasing offset x from the scanner midline, and (b) and (c) to the partial polarization and scattering of the light leaving the film, which affect the ratio [Formula: see text], thus making OD(x) increase with x (2). The orientation effect results from the changes of effects (b) and (c) associated with turning the film position, and thereby the orientation of the polymer structure of the sensitive film layer. In a comparison of experimental results obtained with selected optical subjects, the relative weights of the contributions of the optical path-length effect and the polarization and scattering of light leaving the films to the lateral response artifact have been estimated to be of the same order of magnitude. Mathematical models of these causes for the parabolic shape of

  10. The origin of the flatbed scanner artifacts in radiochromic film dosimetry—key experiments and theoretical descriptions

    Science.gov (United States)

    Schoenfeld, Andreas A.; Wieker, Soeren; Harder, Dietrich; Poppe, Bjoern

    2016-11-01

    The optical origin of the lateral response and orientation artifacts, which occur when using EBT3 and EBT-XD radiochromic films together with flatbed scanners, has been reinvestigated by experimental and theoretical means. The common feature of these artifacts is the well-known parabolic increase in the optical density OD(x)  =  -log10 I(x)/I 0(x) versus offset x from the scanner midline (Poppinga et al 2014 Med. Phys. 41 021707). This holds for landscape and portrait orientations as well as for the three color channels. Dose-independent optical subjects, such as neutral density filters, linear polarizers, the EBT polyester foil and diffusive glass, also present the parabolic lateral artifact when scanned with a flatbed scanner. The curvature parameter c of the parabola function OD(x)  =  c 0  +  cx 2 is found to be a linear function of the dose, the parameters of which are influenced by the film orientation and film type, EBT3 or EBT-XD. The ubiquitous parabolic shape of function OD(x) is attributed (a) to the optical path-length effect (van Battum et al 2016 Phys. Med. Biol. 61 625-49), due to the increasing obliquity of the optical scanner light associated with increasing offset x from the scanner midline, and (b) and (c) to the partial polarization and scattering of the light leaving the film, which affect the ratio ~I(x)/{{I}0}(x) , thus making OD(x) increase with x 2. The orientation effect results from the changes of effects (b) and (c) associated with turning the film position, and thereby the orientation of the polymer structure of the sensitive film layer. In a comparison of experimental results obtained with selected optical subjects, the relative weights of the contributions of the optical path-length effect and the polarization and scattering of light leaving the films to the lateral response artifact have been estimated to be of the same order of magnitude. Mathematical models of these causes for the parabolic shape of function

  11. Evaluation of triple channel correction acquisition method for radiochromic film dosimetry.

    Science.gov (United States)

    Hayashi, Naoki; Watanabe, Yoichi; Malmin, Ryan; Kato, Hideki

    2012-11-01

    The purpose of this study was to evaluate the triple channel correction acquisition (TCCA) method for radiochromic film dosimetry performed with a flatbed scanner. The study had two parts: a fundamental and a clinical examination. In the fundamental examination, we evaluated the accuracy of calibration curves for Gafchromic EBT2 (EBT2). The films were calibrated using a field-by-field method with 13 dose steps. Seven calibration curves obtained by TCCA were compared with those produced by a single channel acquisition (SCA) method. For the clinical examination, we compared relative dose distributions obtained by TCCA and SCA for four cases of intensity-modulated radiation therapy (IMRT) and intensity-modulated arc therapy (IMAT). The fundamental examination showed that the consistency of the calibration curves was better for TCCA than for SCA, particularly for the dose range between 0.25 Gy and 1.00 Gy. The clinical examination showed that the dose differences between the measured and calculated doses in high-gradient regions were smaller with TCCA than with SCA. The average pass rates in gamma analysis for the TCCA and SCA methods were 97.2 ± 0.8% (n = 20) and 93.0 ± 1.2% (n = 20), respectively. In conclusion, TCCA can acquire accurate average dose values when creating the calibration curve. The potential advantage of TCCA for EBT2 film dosimetry was seen in high-gradient regions in clinically relevant IMRT and IMAT cases. TCCA is useful to verify dose distribution.

  12. Isodose curves recorded in radiochromic film of an iodine seed array

    Energy Technology Data Exchange (ETDEWEB)

    Mourao, Arnaldo Prata; Tomaz, Lucas Crusoe; Grynberg, Suely Epzstein, E-mail: seg@cdtn.br, E-mail: aprata@des.cefetmg.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    Brachytherapy seeds are frequently used in cancer treatment. Iodine seeds are ranked among the top choices when it comes to the treatment of prostate cancer. Iodine-125 emits X and gamma photons with an average energy of 28 keV and a half-life of 59.4 days. A set of four iodine-125 seeds, model 6711 produced by Amersham Health, were used in this work. The dosimetric characteristics for a seed were obtained taking into account the recommendations of TG-43 protocol, developed by the AAPM (American Association of Physicists in Medicine). To realize the experiment three plates of Standard Grade Solid Water, model 457 ® Gammex were used. One solid water plate was machined for accommodate the seed set. The set of seeds was placed in a symmetrical configuration trying to simulate an arrangement which may occur in vivo during treatment. A radiochromic film sheet was placed on the plate machined after the seed charge. The machined plate charged and with the film sheet was placed between two others solid water plate to recorder the radiation dose. The machined plate was placed between the other two plates for better reliability in measurements. The radio chromic film was irradiated by an equivalent X-ray beam using the reference radiation RQR 3 IEC (International Electrotechnical Commission) with different doses (0.5 to 1.0 Gy) to obtain the calibration curve in the dose region measured. After validation of the methodology, the study of the interaction between the radiation fields of the set of seeds became possible and the survey of isodose curves of these setting was conducted. (author)

  13. Radiochromic film calibration for low-energy seed brachytherapy dose measurement

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, Hali, E-mail: hamorris@ualberta.ca; Menon, Geetha; Sloboda, Ron S. [Department of Medical Physics, Cross Cancer Institute, Edmonton, Alberta T6G 1Z2, Canada and Department of Oncology, University of Alberta, Edmonton, Alberta T6G 2R3 (Canada)

    2014-07-15

    Purpose: Radiochromic film dosimetry is typically performed for high energy photons and moderate doses characterizing external beam radiotherapy (XRT). The purpose of this study was to investigate the accuracy of previously established film calibration procedures used in XRT when applied to low-energy, seed-based brachytherapy at higher doses, and to determine necessary modifications to achieve similar accuracy in absolute dose measurements. Methods: Gafchromic EBT3 film was used to measure radiation doses upwards of 35 Gy from 75 kVp, 200 kVp, 6 MV, and (∼28 keV) I-125 photon sources. For the latter irradiations a custom phantom was built to hold a single I-125 seed. Film pieces were scanned with an Epson 10000XL flatbed scanner and the resulting 48-bit RGB TIFF images were analyzed using both FilmQA Pro software andMATLAB. Calibration curves relating dose and optical density via a rational functional form for all three color channels at each irradiation energy were determined with and without the inclusion of uncertainties in the measured optical densities and dose values. The accuracy of calibration curve variations obtained using piecewise fitting, a reduced film measurement area for I-125 irradiation, and a reduced number of dose levels was also investigated. The energy dependence of the film lot used was also analyzed by calculating normalized optical density values. Results: Slight differences were found in the resulting calibration curves for the various fitting methods used. The accuracy of the calibration curves was found to improve at low doses and worsen at high doses when including uncertainties in optical densities and doses, which may better represent the variability that could be seen in film optical density measurements. When exposing the films to doses > 8 Gy, two-segment piecewise fitting was found to be necessary to achieve similar accuracies in absolute dose measurements as when using smaller dose ranges. When reducing the film measurement

  14. A study of four radiochromic films currently used for (2D) radiation dosimetry

    Science.gov (United States)

    Yao, Tiantian; Luthjens, Leonard H.; Gasparini, Alessia; Warman, John M.

    2017-04-01

    We have measured the dose, D, and dose rate, D', dependences of the radiation-induced change in optical absorption of four radiochromic films currently used for (2D) dosimetry: GafChromic® types EBT3, MD-V3, HD-V2 and HD-810. We have irradiated the films using two 60Co γ-ray sources with dose rates of 2 and 30 Gy/min and a 200 kVp X-ray source with dose rates from 0.2 to 1.0 Gy/min. The 48-bit RGB image files of the films, obtained using an Epson V700 flatbed scanner, were color-channel separated and the red, green and blue pixel levels, P(D), were determined using ImageJ software. The relationship P(D)/P(0)=[1+hD/m]/[1+D/m] is found to provide a good description of the dose dependence for all four films at all dose rates. The parameter h is the "plateau level" of P(D)/P(0) approached at high doses, i.e. P(∞)/P(0). The parameter m is the "median-dose" for which P(D)/P(0)(1+h)/2 which is the half point in the dynamic range of the particular film. The best-fit values of m over the dose rate range from 0.2 to 25 Gy/min using the red pixels were 1.42±0.03, 11.1±0.4, 63.6±0.9 and 60.6±1.6 Gy for EBT3, MD-V3, HD-V2 and HD-810 respectively. Using the green pixels the median dose is 1.8 times larger for the first 3 films and 2.5 times larger for HD-810. The blue pixels are considered unsuitable for dosimetry because of the large value of h (>0.4) and the resulting small dynamic range.

  15. A new implementation of multichannel radiochromic film dosimetry; Una nueva implementacion del analisis multicanal para la dosimetria mediante peliculas radiocromicas

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Rodriguez, C.; Martin Martin, G.; Bermudez Luna, R.; Lopez Fernandez, A.; Tores Olombrada, M. V. de

    2014-07-01

    The aims of this paper are to carry out a new implementation of the multichannel radiochromic film dosimetry (Micke A, Lewis D, Yu X. Multichannel film dosimetry with nonuniformity correction. Med Phys 2011;38:2523-34), to quantify the variation in gamma index as compared to the single channel film dosimetry, and to determine if the procedure achieves similar results by means of a different scanner that the one used by Micke et al. Radiochromic EBT2 films and a Microtek 9000 XL scanner were used. Our procedure simplifies the system calibration splitting it into two factors, manufactured batch and digitalization specific. Absorbed dose spatial distributions from an open radiotherapy beam without any modulation and 20 IMRT treatments were determined. Their gamma index maps were calculated and a comparison of the results from single channel and multichannel dosimetry was performed. A 5% mean increase in concordance was obtained by using the multichannel film dosimetry. Our results are similar to those reported by Micke et al. even though we are using a different scanner. (Author)

  16. Analysis of effect Tongue and Grove of three multi leaf collimators different using radiochromic film EBT-2; Analisis del efecto Tongue and Groove de tres colimadores multilaminas diferentes utilizando pelicula radiocromica EBT-2

    Energy Technology Data Exchange (ETDEWEB)

    Adaimi Hernandez, P.; Cabello Murillo, E.; Clemente Gutierrez, F.; Diaz Fuentes, R.; Fernandez Bedoya, V.; Ferrando Sanchez, A.; Milanes Gaillet, A.; Eugi Martinez, R.

    2013-07-01

    Shows a measurement procedure of the Tongue and Groove effect with film radiochromic, using the measurements given by a semiconductor detector in a complementary manner. In this work presents the results obtained with film radiochromic in the MLC from three different manufacturers accelerators. (Author)

  17. Characterization of calibration curves and energy dependence GafChromic{sup TM} XR-QA2 model based radiochromic film dosimetry system

    Energy Technology Data Exchange (ETDEWEB)

    Tomic, Nada, E-mail: ntomic@roc.jgh.mcgill.ca; Quintero, Chrystian; Aldelaijan, Saad; Bekerat, Hamed; Liang, LiHeng; DeBlois, François; Devic, Slobodan [Medical Physics Unit, McGill University, Montréal, Québec H3G 1A4, Canada and Department of Radiation Oncology, SMBD Jewish General Hospital, McGill University, Montréal, Québec H3T 1E2 (Canada); Whiting, Bruce R. [Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213 (United States); Seuntjens, Jan [Medical Physics Unit, McGill University, Montréal, Québec H3G 1A4 (Canada)

    2014-06-15

    Purpose: The authors investigated the energy response of XR-QA2 GafChromic{sup TM} film over a broad energy range used in diagnostic radiology examinations. The authors also made an assessment of the most suitable functions for both reference and relative dose measurements. Methods: Pieces of XR-QA2 film were irradiated to nine different values of air kerma in air, following reference calibration of a number of beam qualities ranging in HVLs from 0.16 to 8.25 mm Al, which corresponds to effective energy range from 12.7 keV to 56.3 keV. For each beam quality, the authors tested three functional forms (rational, linear exponential, and power) to assess the most suitable function by fitting the delivered air kerma in air as a function of film response in terms of reflectance change. The authors also introduced and tested a new parameterχ = netΔR·e{sup m} {sup netΔR} that linearizes the inherently nonlinear response of the film. Results: The authors have found that in the energy range investigated, the response of the XR-QA2 based radiochromic film dosimetry system ranges from 0.222 to 0.420 in terms of netΔR at K{sub air}{sup air} = 8 cGy. For beam qualities commonly used in CT scanners (4.03–8.25 mm Al), the variation in film response (netΔR at K{sub air}{sup air} = 8 cGy) amounts to ± 5%, while variation in K{sub air}{sup air} amounts to ± 14%. Conclusions: Results of our investigation revealed that the use of XR-QA2 GafChromic{sup TM} film is accompanied by a rather pronounced energy dependent response for beam qualities used for x-ray based diagnostic imaging purposes. The authors also found that the most appropriate function for the reference radiochromic film dosimetry would be the power function, while for the relative dosimetry one may use the exponential response function that can be easily linearized.

  18. OPTICAL RADIO-CHROMIC PROPERTIES OF POLYANILINE FILM IRRADIATED WITH GAMMA RADIATION

    Directory of Open Access Journals (Sweden)

    MOHAMMED AHMED ALI

    2010-06-01

    Full Text Available Aniline hydrochloride monomer has been polymerized to polyaniline salt (emeraldine salt and the characterization reveal that it is an electro-chromic material after direct -radiation exposure to high dose up to 50 kGy. The electro-chromic material which deduced by direct step wise appearance of light green color to dark green color following the radiation doses rather than colorless. The Radio-chromic and polymerization confirmed by using UV-visible spectroscopy, which gave rise to absorbance band at 790 nm, the absorbance band in turn increased following the dose exponentially. The band gap energy of PANI was obtained and showed to be decreases by increase of radiation dose down to 1 eV at 50 kGy. Raman spectroscopy showed a new bond C=N as a part of polaron conducting species is created by irradiation, which has Raman shift of 1637 cm-1. The double bond at C=N which is responsible for the appearance of the green color has been increases exponentially following the radiation dose.

  19. Verification of absorbed dose rates in reference beta radiation fields: Measurements with an extrapolation chamber and radiochromic film.

    Science.gov (United States)

    Reynaldo, S R; Benavente, J A; Da Silva, T A

    2016-11-01

    Beta Secondary Standard 2 (BSS 2) provides beta radiation fields with certified values of absorbed dose to tissue and the derived operational radiation protection quantities. As part of the quality assurance, the reliability of the CDTN BSS2 system was verified through measurements in the (90)Sr/(90)Y and (85)Kr beta radiation fields. Absorbed dose rates and their angular variation were measured with a 23392 model PTW extrapolation chamber and with Gafchromic radiochromic films on a PMMA slab phantom. The feasibility of using both methods was analyzed.

  20. Evolution, present state and future of the radiochromic dyeing films; Evolucion, estado actual y futuro de las peliculas de tinte radiocromico

    Energy Technology Data Exchange (ETDEWEB)

    Villarreal B, J.E. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    2000-07-01

    The evolution of radiochromic films, their present state and their developing future are the object of this work. For this purpose a review of the evolution was realized and also of the present state of using the radiochromic dyeing films as tools to determine the absorbed doses distribution produces by beta emissor sources, beta-gamma, electrons and X-rays. In particular it is presented the development of radiochromic films type GafChromic that by their quality in terms of reproducibility, sensibility and high spatial resolution they have been converted in those films of greatest use so dominating market. Since one of the application fields more important of this type of films is clinical dosimetry, the more eminent applications in this area are presented, which the high resolution dosimetry that use GafChromic has been converted in a basic tool. On the other hand the scopes of this type of dosimetry and the possible development lines of dosimetry with radiochromic dyeing films are discussed. (Author)

  1. Verification of absorbed dose rates in reference beta radiation fields: measurements with an extrapolation chamber and radiochromic film

    Energy Technology Data Exchange (ETDEWEB)

    Reynaldo, S. R. [Development Centre of Nuclear Technology, Posgraduate Course in Science and Technology of Radiations, Minerals and Materials / CNEN, Av. Pte. Antonio Carlos 6627, 31270-901 Belo Horizonte, Minas Gerais (Brazil); Benavente C, J. A.; Da Silva, T. A., E-mail: sirr@cdtn.br [Development Centre of Nuclear Technology / CNEN, Av. Pte. Antonio Carlos 6627, 31270-901 Belo Horizonte, Minas Gerais (Brazil)

    2015-10-15

    Beta Secondary Standard 2 (Bss 2) provides beta radiation fields with certified values of absorbed dose to tissue and the derived operational radiation protection quantities. As part of the quality assurance, metrology laboratories are required to verify the reliability of the Bss-2 system by performing additional verification measurements. In the CDTN Calibration Laboratory, the absorbed dose rates and their angular variation in the {sup 90}Sr/{sup 90}Y and {sup 85}Kr beta radiation fields were studied. Measurements were done with a 23392 model PTW extrapolation chamber and with Gafchromic radiochromic films on a PMMA slab phantom. In comparison to the certificate values provided by the Bss-2, absorbed dose rates measured with the extrapolation chamber differed from -1.4 to 2.9% for the {sup 90}Sr/{sup 90}Y and -0.3% for the {sup 85}Kr fields; their angular variation showed differences lower than 2% for incidence angles up to 40-degrees and it reached 11% for higher angles, when compared to ISO values. Measurements with the radiochromic film showed an asymmetry of the radiation field that is caused by a misalignment. Differences between the angular variations of absorbed dose rates determined by both dosimetry systems suggested that some correction factors for the extrapolation chamber that were not considered should be determined. (Author)

  2. Comparison of calibration curve of radiochromic films EBT2 and EBT; Comparacion de la curva de calibracion de las peliculas radiocromica EBT2 y EBT

    Energy Technology Data Exchange (ETDEWEB)

    Parra Osorio, V.; Martin-Viera Cueto, J. A.; Galan Montenegro, P.; Benitez Villegas, E. M.; Casado Villalon, F. F.; Bodineau Gil, C.

    2013-07-01

    The aim is to compare the quality of the fit to calibrate two radiochromic films batches, one model and another of EBT3 EBT2, using both experimental settings as phenomenological expression as of the calibration curve depends on the precision and accuracy of the estimate of absorbed dose. (Author)

  3. Development and clinical implementation of a global software use and analysis of radiochromic s films; Desarrollo e implementacion clinica de un software global de uso y analisis de peliculas radiocromicas

    Energy Technology Data Exchange (ETDEWEB)

    Gimeno Olmos, J.; Martinez Fernandez, J. M.; Pastor Sanchis, V.; Gonzalez Perez, V.; Guardino de la Flor, C.; Dolores Alemany, V. de los; Crispin Contreras, V.

    2011-07-01

    The aim of this study was to gather information in one solution the different processes that occur with the use of radiochromic films: calibration, reading, corrections, step-absorbed dose, dose distribution analysis and comparison with reference distributions.

  4. Problems Associated with the Use of the Radiochromic Dye Film as a Radiation Dose Meter

    DEFF Research Database (Denmark)

    Hansen, Johnny; Wille, Mads; Olsen, Kjeld J.

    1984-01-01

    A thorough investigation has been made of the problems involved in using a dye film dose meter for precision dosimetry at high doses, using both low- and high-LET radiation. The study includes: time course of coloration following irradiation at various dose levels; dose response after irradiation...

  5. Analysis of energy dependence of the film radiochromic XRQA2 for seven spectra of X-ray standard in diagnostic radiology; Analisis de la dependencia energetica de la pelicula radiogromica XRQA2 para siete espectros de rayos X habituales en radiodiagnostico

    Energy Technology Data Exchange (ETDEWEB)

    Vicent Granado, D.; Gutierrez Ramos, S. M.; Sanchez Carmona, G.; Santos Rubio, A. J.; Herrador Cordoba, M.

    2013-07-01

    The response of the radiochromic film XRQA2 depends on the peak voltage, as well as filtration and measurement with or without backscatter. The common method of using a calibration from the kerma in air to measure the dose at the entrance of patients is not the most advisable for this film in this dose range. Whenever possible should be the calibration with the spectrum of X rays for which will be the measurement of absorbed dose. (Author)

  6. The use of radiochromic EBT2 film for the quality assurance and dosimetric verification of 3D conformal radiotherapy using Microtek ScanMaker 9800XL flatbed scanner.

    Science.gov (United States)

    Sim, G S; Wong, J H D; Ng, K H

    2013-07-08

    Radiochromic and radiographic films are widely used for radiation dosimetry due to the advantage of high spatial resolution and two-dimensional dose measurement. Different types of scanners, including various models of flatbed scanners, have been used as part of the dosimetry readout procedure. This paper focuses on the characterization of the EBT2 film response in combination with a Microtek ScanMaker 9800XL scanner and the subsequent use in the dosimetric verification of a 3D conformal radiotherapy treatment. The film reproducibility and scanner uniformity of the Microtek ScanMaker 9800XL was studied. A three-field 3D conformal radiotherapy treatment was planned on an anthropomorphic phantom and EBT2 film measurements were carried out to verify the treatment. The interfilm reproducibility was found to be 0.25%. Over a period of three months, the films darkened by 1%. The scanner reproducibility was ± 2% and a nonuniformity was ±1.9% along the direction perpendicular to the scan direction. EBT2 measurements showed an underdose of 6.2% at high-dose region compared to TPS predicted dose. This may be due to the inability of the treatment planning system to predict the correct dose distribution in the presence of tissue inhomogeneities and the uncertainty of the scanner reproducibility and uniformity. The use of EBT2 film in conjunction with the axial CT image of the anthropomorphic phantom allows the evaluation of the anatomical location of dose discrepancies between the EBT2 measured dose distribution and TPS predicted dose distribution.

  7. Calibration in water films GAFCHROMIC EBT radiochromic-2. Effects of Drying; Calibracion en agua de las peliculas radiocromicas Gafchromic EBT-2. Efectos de Secado

    Energy Technology Data Exchange (ETDEWEB)

    Herrero, C.; Perez-Alija, J.; Alaman, C.; Almansa, J.; Vilches, M.

    2011-07-01

    Recent studies [1] show that immersion in water GAFCHROMIC EBT radiochromic film-2 has on these two effects: a progressive diffusion of water across its borders (fact which tells us the manufacturer and the effect of which we can avoid choosing a proper analysis region) and a uniform moisture through the polyester film, producing a variation in the measurement of optical density (OD) of the film. The latter effect is negligible for immersion times of less than 30 minutes. We study the effect of hydration and drying in these films when they have been submerged for 24 hours.

  8. Radiochromic Plastic Films for Accurate Measurement of Radiation Absorbed Dose and Dose Distributions

    DEFF Research Database (Denmark)

    McLaughlin, W. L.; Miller, Arne; Fidan, S.

    1977-01-01

    in polymeric solutions can be cast into flexible free-standing thin films of uniform thickness and reproducible response to ultraviolet and ionizing radiation. The increase in optical density versus energy deposited by radiation is linear over a wide range of doses and is for practical purposes independent...... of many polymeric systems in industrial radiation processing. The result is that errors due to energy dependence of response of the radiation sensor are effectively reduced, since the spectral sensitivity of the dose meter matches that of the polymer of interest, over a wide range of photon and electron...

  9. Q A IMRT comparison specific patient by means of radiochromic films, radiographic films and ionization chambers arrangement; Comparacion de QA IMRT paciente especifico mediante films radiocromicos, films radiograficos y arreglo de camaras de ionizacion

    Energy Technology Data Exchange (ETDEWEB)

    Medina, L.; Venencia, D.; Garrigo, E., E-mail: fisicamedina11@gmail.com [Instituto Privado de Radioterapia, Obispo Oro 423, X5000BFI Cordoba (Argentina)

    2014-08-15

    IMRT uses radiation beams of nonuniform intensity. Quality assurance (Q A) specific patient is mandatory in this treatment modality. The purpose of this study is to compare results of patient specific Q A IMRT dose distributions of the total plan and individual fields using different dosimetric systems. We used a photon beam 6 MV generated for linear accelerator PRIMUS, were used planning systems iPLAN and Konrad for IMRT inverse planning with modality Step and Shoot. For plans total dose distributions were measured with radiographic films EDR2 and Radiochromic Film EBT3. For individual fields the dose distributions were measured with radiographic films X-Omat-V, Radiochromic Film EBT3 and PTW 2D-Array. We used a scanner VIDAR Dosimetry Pro Red and software Rit v6.1 for analysis, was used Gamma index [Γ] for comparison of measured and calculated dose recording the number of pixels with Γ> 1. We analyzed 50 plan dose distributions total 50 individual fields. For the total plan the number of pixels with Γ>1 (3%-3m m) was 0.7%±1.2 [0.1%; 2.82%] for EBT3 y 1%±1.8 [0.2%; 3%] for EDR2. For individual fields (5%-3m m) was obtained 0.97%±1,7 [0%, 3%] for X-Omat-V, 0.84%±1.1[0.3%,3.1%] for EBT3 and 2.6%±1.9 [0.01%,6.8%] PTW 2D-Array. All three methods can be used. Radiochromic Films revealed the advantage and disadvantage of the cost. Both systems are slightly better film to PTW 2D-Array. (author)

  10. Characteristics of the radiochromic film Gafchromictm EBT3 model for use in brachytherapy; Caracterizacao do filme radiocromico Gafchromictm modelo EBT3 para uso em braquiterapia

    Energy Technology Data Exchange (ETDEWEB)

    Luvizotto, Jessica

    2015-07-01

    Brachytherapy is a radiotherapy treatment modality using radioactive sealed sources within walking distance of the tumor, reducing the risk of applying an unwanted dose to adjacent healthy tissues. For brachytherapy is reliable, it is necessary to establish a dosimetric practices program aimed at determining the optimal dose of radiation for this radiotherapy practice. This paper presents the application of two methodologies for the dosimetry using radiochromic films. Experimental measurements were performed with EBT3 films in phantoms consisting of homogeneous and heterogeneous material (lung, bone and soft tissue) built especially for dose measurements in brachytherapy. The processing and analysis of the resulting images of the experimental procedure were performed with ImageJ software and MATLAB. The results were evaluated from comparisons dose of experimental measurements and simulations obtained by the Monte Carlo method. (author)

  11. In vivo dosimetry in intraoperative electron radiotherapy. microMOSFETs, radiochromic films and a general-purpose linac

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Tarjuelo, Juan; Marco-Blancas, Noelia de; Santos-Serra, Agustin; Quiros-Higueras, Juan David [Consorcio Hospitalario Provincial de Castellon, Servicio de Radiofisica y Proteccion Radiologica, Castellon de la Plana (Spain); Bouche-Babiloni, Ana; Morillo-Macias, Virginia; Ferrer-Albiach, Carlos [Consorcio Hospitalario Provincial de Castellon, Servicio de Oncologia Radioterapica, Castellon de la Plana (Spain)

    2014-11-15

    In vivo dosimetry is desirable for the verification, recording, and eventual correction of treatment in intraoperative electron radiotherapy (IOERT). Our aim is to share our experience of metal oxide semiconductor field-effect transistors (MOSFETs) and radiochromic films with patients undergoing IOERT using a general-purpose linac. We used MOSFETs inserted into sterile bronchus catheters and radiochromic films that were cut, digitized, and sterilized by means of gas plasma. In all, 59 measurements were taken from 27 patients involving 15 primary tumors (seven breast and eight non-breast tumors) and 12 relapses. Data were subjected to an outliers' analysis and classified according to their compatibility with the relevant doses. Associations were sought regarding the type of detector, breast and non-breast irradiation, and the radiation oncologist's assessment of the difficulty of detector placement. At the same time, 19 measurements were carried out at the tumor bed with both detectors. MOSFET measurements (D = 93.5 %, s{sub D} = 6.5 %) were not significantly shifted from film measurements (D = 96.0 %, s{sub D} = 5.5 %; p = 0.109), and no associations were found (p = 0.526, p = 0.295, and p = 0.501, respectively). As regards measurements performed at the tumor bed with both detectors, MOSFET measurements (D = 95.0 %, s{sub D} = 5.4 %) were not significantly shifted from film measurements (D = 96.4 %, s{sub D} = 5.0 %; p = 0.363). In vivo dosimetry can produce satisfactory results at every studied location with a general-purpose linac. Detector choice should depend on user factors, not on the detector performance itself. Surgical team collaboration is crucial to success. (orig.) [German] Die In-vivo-Dosimetrie ist wuenschenswert fuer die Ueberpruefung, Registrierung und die eventuelle Korrektur der Behandlungen in der IOERT (''Intraoperative Electron Radiation Therapy''). Unser Ziel ist die Veroeffentlichung unserer Erfahrungen beim

  12. The annealing effect of radiochromic film dosimeter%辐射变色薄膜剂量计的退火效应

    Institute of Scientific and Technical Information of China (English)

    王硕; 陈家胜; 何捷; 孙鹏

    2013-01-01

    In this study, a batch of radiochromic films were prepared. The cdor of the film became blue after irradiating by low energy density of ultraviolet radiation using CL-1000UV cross-linking instrument. An absorption peak appeared at 670nm. The absorption peak absorbance has a good linear response relationship of radiation dose. The annealing experiments of the film were conducted after the irradiation. When the temperature was raised to 45 ℃ , a new absorption peak appeared at 545nm. Along with the further elevation of the temperature, 670nm peak gradually disappeared and 545nm peak rose gradually. When the temperature reached 110℃ , 670nm peak completely disappeared, 545nm peak was stabilized, and the color of the film was also correspondingly changed from blue to pink. The change of radiochromic film after irradiation could be expounded by infrared spectroscopy which showed that carbon-carbon triple bond conjugated (colorless) changed into a carbon-carbon triple bond and carbon-carbon double bond conjugate in different planes (blue) ,finally into the carbon-carbon triple bond and carbon-carbon double bond conjugate in a same plane (red).%制备了一批辐射变色薄膜,利用紫外线辐照该薄膜,辐照后薄膜由无色变为蓝色,并在670nm处出现一吸收峰,吸收峰的吸光度对辐照剂量有良好的线性响应关系.对辐照后的薄膜进行了退火实验,当温度升高到45℃后,出现一新的吸收峰(545nm),随着温度进一步升高670nm峰逐渐消失,545nm峰逐渐升高.当温度达到110℃时,670nm峰完全消失,545nm峰达到稳定,薄膜也相应地由蓝色变为粉红色.薄膜颜色的变化主要是由于其内部分子结构发生了变化:由碳碳三键共轭(无色)变为辐照后的碳碳三键和碳碳双键不在一个平面内的共轭(蓝),最后变为退火后的碳碳三键和碳碳双键在一个平面内的共轭(粉红).进一步的红外光谱分析也证实了对薄膜结构变化的解释.

  13. Alternate calibration method of radiochromic EBT3 film for quality assurance verification of clinical radiotherapy treatments

    Science.gov (United States)

    Park, Soah; Kang, Sei-Kwon; Cheong, Kwang-Ho; Hwang, Taejin; Yoon, Jai-Woong; Koo, Taeryool; Han, Tae Jin; Kim, Haeyoung; Lee, Me Yeon; Bae, Hoonsik; Kim, Kyoung Ju

    2016-07-01

    EBT3 film is utilized as a dosimetry quality assurance tool for the verification of clinical radiotherapy treatments. In this work, we suggest a percentage-depth-dose (PDD) calibration method that can calibrate several EBT3 film pieces together at different dose levels because photon beams provide different dose levels at different depths along the axis of the beam. We investigated the feasibility of the film PDD calibration method based on PDD data and compared the results those from the traditional film calibration method. Photon beams at 6 MV were delivered to EBT3 film pieces for both calibration methods. For the PDD-based calibration, the film pieces were placed on solid phantoms at the depth of maximum dose (dmax) and at depths of 3, 5, 8, 12, 17, and 22 cm, and a photon beam was delivered twice, at 100 cGy and 400 cGy, to extend the calibration dose range under the same conditions. Fourteen film pieces, to maintain their consistency, were irradiated at doses ranging from approximately 30 to 400 cGy for both film calibrations. The film pieces were located at the center position on the scan bed of an Epson 1680 flatbed scanner in the parallel direction. Intensity-modulated radiation therapy (IMRT) plans were created, and their dose distributions were delivered to the film. The dose distributions for the traditional method and those for the PDD-based calibration method were evaluated using a Gamma analysis. The PDD dose values using a CC13 ion chamber and those obtained by using a FC65-G Farmer chamber and measured at the depth of interest produced very similar results. With the objective test criterion of a 1% dosage agreement at 1 mm, the passing rates for the four cases of the three IMRT plans were essentially identical. The traditional and the PDD-based calibrations provided similar plan verification results. We also describe another alternative for calibrating EBT3 films, i.e., a PDD-based calibration method that provides an easy and time-saving approach

  14. Using Radiochromic Films to Characterize the Dispersion of ZrO{sub 2} Nano-sized Grain Clusters in Protective Polymer Composites

    Energy Technology Data Exchange (ETDEWEB)

    Fontainha, C.C.P.; Nolasco, A.V. [Depto. de Engenharia Nuclear - DEN / UFMG - MG, Av. Antonio Carlos 6627, 31270-970 Belo Horizonte, MG (Brazil); Santos, A.P.; Faria, L.O. [Centro de Desenvolvimento da Tecnologia Nuclear, Av. Antonio Carlos 6627, C.P. 941, 30270-901, Belo Horizonte, MG (Brazil)

    2015-07-01

    Radiation dosimetry is commonly used to prevent deterministic radiation effects in high dose medical procedures. Radiochromic films find nowadays widely application in radiotherapy, interventional procedures and CT exams for isodose and maximum skin dose measurements. Moreover the size of the irradiated area and its distribution can be performed through the reading of the individual components in the RGB-spectrum. Particularly, radiochromic film has multiple advantages over alternative dosimeters for low-kV X-rays dosimetry. Concerned to spatial resolution it is far superior to that of ionization chambers and thermoluminescent dosimeters. For high energy photon fields (keV to MeV) the most used radiochromic film commercially available belongs to the EBT Gafchromic{sup R} series. On the other hand, for low energy photon fields in the x-ray range (20 kVp to 200 kVp) the best choice belongs to the XR-QA Gafchromic{sup R} film series. In this work we demonstrate the possibility of generating 2D images of thin polymeric composites films using EBT3 and XR-QA2 Gafchromic{sup R} films exposed to 6 MeV and 40 keV x-ray photons, respectively, using the digital filtering tools of the ImageJ{sup R} free software. In this context, EBT3 films were placed on the surface of a rigid anthropomorphic phantom. Then, they were covered with a thermoplastic mask made of PCL polymer. This setup was then exposed to 2.0 Gy absorbed dose in the Linear Accelerator beam. The EBT3 films were then scanned in the high resolution mode in a commercial scanner and the images subsequently treated with digital filters. It is somehow possible to see the image of the thermoplastic mask in the scanned image. However, in the treated image it is easy to observe the mask arrangement. The unexpected phenomenon here is the EB3 film ability to detect the attenuation of high energy photons by a plastic material, which in turn has a very low mass-energy attenuation coefficient, producing a very clear 2D image

  15. SU-E-T-44: Angular Dependence of Surface Dose Enhancement Measured On Several Inhomogeneities Using Radiochromic EBT3 Films

    Energy Technology Data Exchange (ETDEWEB)

    Jansen, A; Schoenfeld, A; Poppinga, D; Chofor, N; Poppe, B [University of Oldenburg, Oldenburg (Germany); Pius Hospital Oldenburg, Oldenburg (Germany)

    2014-06-01

    Purpose: The quantification of the relative surface dose enhancement in dependence on the angle of incidence and the atomic number Z of the surface material. Methods: Experiments were performed with slabs made of aluminum, titanium, copper, silver, dental gold and lead. The metal slabs with equal sizes of 1.0×8.0×8.8mm{sup 3} were embedded in an Octavius 4D phantom (PTW Freiburg, Germany). Radiochromic EBT3 films were used to measure the surface dose for angles of incidence ranging from 0° to 90°. The setup with the metals slabs at the isocenter was irradiated with acceleration voltages of 6MV and 10MV. Water reference measurements were taken under equal conditions. Results: The surface dose enhancement is highest for angles of incidence below 30° and drops significantly for higher. The surface dose enhancement produced by lead and dental gold at 6MV showed a peak of 65%. At 90°, the surface dose enhancement dropped to 15% for both materials. The surface dose enhancements for silver, copper, titanium and aluminum were 45%, 32%, 22% and 12% at 0°, respectively. At an angle of incidence of 80°, the values dropped to 22%, 18%, 12% und 6%. The values for 10MV were very similar. Lead and dental gold showed peaks of 65% und 60%. Their values dropped to 18% at an angle of 90°. The surface dose enhancements for silver, copper, titanium and aluminum were 45%, 30%, 20% and 8% at 0°. At 80° the values dropped to 30%, 20%, 12% and 5%. A dependence of the magnitude of the surface dose enhancement on the atomic number of the surface material can be seen, which is in consistence with literature. Conclusion: The results show that the surface dose enhancements near implant materials with high Z-values should be taken into consideration in radio therapy, even when the angle of incidence is flat.

  16. Quality assurance in RapidArc with Alderson anthropomorphic phantom using radiochromic film in comparison to MATLAB; Controle de qualidade em RapidArc com simulador de corpo humano antropomorfico Alderson utilizando filme radiocromico em comparacao ao MATLAB

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Paulo L.; Silva, Leonardo P.; Santos, Maira R.; Trindade, Cassia; Martins, Lais P.; Batista, Delano V.S., E-mail: Paulo8_lgarcia@hotmail.com [Instituto Nacional de Cancer (INCA), Rio de Janeiro, RJ (Brazil); Alves, Victor G. [Instituto Nacional de Cancer (SQRIS/INCA), Rio de Janeiro, RJ (Brazil). Servico de Qualidade em Radiacoes Ionizantes

    2012-12-15

    This paper presented the quality control for RapidArc using an Alderson human body phantom and radiochromic film as an alternative system to approve the treatment plan for brain tumor. Thus, it was comprised the dose distributions provided by the treatment planning system with those measured by the film radiochromic. The gamma index (Γ) analysis, to verify the acceptability of the dose distribution, was 95% of approved points, with the mostly non-compliance points in regions near the PTV’s edges. These non-compliance points may be associated to transmission blades aspects, because the regions near the edges present significant losses compared to the central areas. Also, MATLAB has proved an effective tool for that measurements and it can be used in quality assurance programs. (author)

  17. Precise radiochromic film dosimetry using a flat-bed document scanner.

    Science.gov (United States)

    Devic, Slobodan; Seuntjens, Jan; Sham, Edwin; Podgorsak, Ervin B; Schmidtlein, C Ross; Kirov, Assen S; Soares, Christopher G

    2005-07-01

    In this study, a measurement protocol is presented that improves the precision of dose measurements using a flat-bed document scanner in conjunction with two new GafChromic film models, HS and Prototype A EBT exposed to 6 MV photon beams. We established two sources of uncertainties in dose measurements, governed by measurement and calibration curve fit parameters contributions. We have quantitatively assessed the influence of different steps in the protocol on the overall dose measurement uncertainty. Applying the protocol described in this paper on the Agfa Arcus II flat-bed document scanner, the overall one-sigma dose measurement uncertainty for an uniform field amounts to 2% or less for doses above around 0.4 Gy in the case of the EBT (Prototype A), and for doses above 5 Gy in the case of the HS model GafChromic film using a region of interest 2 X 2 mm2 in size.

  18. SU-E-T-206: Comparison of EBT and EBT3 RadioChromic Films in Radiation Field of Parotid Cancer Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Toosi, T Bahreyni; Mianaei, F Khorshidi; Ghorbani, M; Khabbaz Kazemi, N Mohammadian; Mohammadi, M [Mashhad University of Medical Sciences, Mashhad (Iran, Islamic Republic of); Meigooni, A Soleimani [Comprehensive Cancer Center of Nevada, Las Vegas, NV (United States)

    2015-06-15

    Purpose: The aim of the current study is to compare EBT and EBT3 RadioChromic films in dosimetry of radiotherapy fields for treatment of parotid cancer. Methods: The calibrations of EBT and EBT3 films were performed with the same setups for doses ranging from 0.2 Gy to 5 Gy using 6 MV photon beam of a Siemens Primus linac. These films were scanned in color mode (RGB) by a Microtek (1000XL) scanner and the red color channel data was extracted. Treatment planning for parotid cancer radiation therapy was performed on a RANDO phantom. Skin dose was measured at different points in the right anterior oblique (RAO) and right posterior oblique (RPO) fields by EBT and EBT3 films. Results: Dosimetry was performed with the same conditions for the two film types for calibration and in-phantom in parotid cancer radiotherapy. The measured net optical density (NOD) in EBT film was in some extent higher than that from EBT3 film. The minimum difference between these two films under calibration conditions was about 2.9% (for 0.2 Gy). However, the maximum difference was 35.5% (for 0.5 Gy). In the therapeutic fields of parotid cancer radiotherapy at different points, the measured dose from EBT film was higher than the EBT3 film. In these fields the minimum and maximum measured dose differences were 16.0% and 25.5%, respectively. Conclusion: With the same irradiation and reading conditions, EBT film demonstrates higher NOD than the EBT3 film. This effect may be related to the higher sensitivity of EBT film over EBT3 film. However, the obtained dose differences between these two films in low dose range can be due to the differences in fitting functions applied following the calibration process.

  19. Dosimetric comparison between a planning system and Radiochromic-EBT2 films in surface brachytherapy treatments of high rate; Comparacion dosimetrica entre un sistema de planificacion y peliculas radiocromicas EBT2 en tratamientos de braquiterapia superficial de alta tasa

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez Ramos, S. M.; Carrasco Herrera, M. a.; Vicent, D.; Rodriguez, C.; Herrador, M.

    2013-07-01

    The objective of this work is to study a situation in which, the accuracy of the calculation of the planner may be limited, superficial brachytherapy treatment. It has relative to the dose obtained with the planner with that obtained with film radiochromic EBT2. (Author)

  20. Verification of an algorithm of cono collapsed through the IAEA TECDOC 1583 protocol and dosimetry with radiochromic films; Verificacion de un algoritmo de cono colapso mediante en protocolo IAEA TECDOC 1583 y dosimetria con peliculas radiocromicas

    Energy Technology Data Exchange (ETDEWEB)

    Martin-Viera Cueto, J. A.; Benitez Villegas, E. M.; Bodineau Gil, C.; Parra Osorio, V.; Garcia Pareja, S.; Casado Villalon, F. J.

    2013-07-01

    The objective of this study is to verify the characterization of the collapsed cone algorithm of an SP using this Protocol. In addition, given that it only offers details of dose values measured at discrete points, measures are complemented by a gamma test distributions 2D of doses in different cases using film radiochromic. (Author)

  1. Assessment of the factors field for fields small of a throttle lineal multienergetic by diodes and radiochromic film; Evaluacion de los factores campo pra campos pequalos de un acelerador lineal multienergetico mediante diodos y pelicul radiocromica

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez-Ros, J.; Garcia-Marcos, R.; Huertas Martinez, M. c.; Hurtado Sanchez, A.

    2015-07-01

    We discuss the field factors obtained for a linear accelerator electron multi energetic with irradiation standard modes and flatter unfiltered. We compared the values obtained with several diodes, two chambers of ionization and film radiochromic We obtain correction factors for diodes and. Finally, we evaluate the Daisy-Chain method, depending on the detector and the field of step. (Author)

  2. Note: Calibration of EBT3 radiochromic film for measuring solar ultraviolet radiation.

    Science.gov (United States)

    Chun, S L; Yu, P K N

    2014-10-01

    Solar (UVA + UVB) exposure was assessed using the Gafchromic EBT3 film. The coloration change was represented by the net reflective optical density (Net ROD). Through calibrations against a UV-tube lamp, operational relationships were obtained between Net ROD and the (UVA + UVB) exposures (in J cm(-2) or J m(-2)). The useful range was from ∼0.2 to ∼30 J cm(-2). The uniformity of UV irradiation was crucial for an accurate calibration. For solar exposures ranging from 2 to 11 J cm(-2), the predicted Net ROD agreed with the recorded values within 9%, while the predicted exposures agreed with the recorded values within 15%.

  3. Note: Calibration of EBT3 radiochromic film for measuring solar ultraviolet radiation

    Energy Technology Data Exchange (ETDEWEB)

    Chun, S. L. [Department of Physics and Materials Science, City University of Hong Kong, Kowloon Tong (Hong Kong); Yu, P. K. N., E-mail: peter.yu@cityu.edu.hk [Department of Physics and Materials Science, City University of Hong Kong, Kowloon Tong (Hong Kong); State Key Laboratory in Marine Pollution, City University of Hong Kong, Kowloon Tong (Hong Kong)

    2014-10-01

    Solar (UVA + UVB) exposure was assessed using the Gafchromic EBT3 film. The coloration change was represented by the net reflective optical density (Net ROD). Through calibrations against a UV-tube lamp, operational relationships were obtained between Net ROD and the (UVA + UVB) exposures (in J cm⁻²p or J m⁻²). The useful range was from ~0.2 to ~30 J cm⁻². The uniformity of UV irradiation was crucial for an accurate calibration. For solar exposures ranging from 2 to 11 J cm⁻², the predicted Net ROD agreed with the recorded values within 9%, while the predicted exposures agreed with the recorded values within 15%.

  4. Dosimetry of Strontium eye applicator: Comparison of Monte Carlo calculations and radiochromic film measurements

    Science.gov (United States)

    Laoues, M.; Khelifi, R.; Moussa, A. S.

    2015-01-01

    Strontium-90 eye applicators are a beta-ray emitter with a relatively high-energy (maximum energy about 2.28 MeV and average energy about 0.9 MeV). These applicators come in different shapes and dimensions; they are used for the treatment of eye diseases. Whenever, radiation is used in treatment, dosimetry is essential. However, knowledge of the exact dose distribution is a critical decision-making to the outcome of the treatment. The main aim of our study is to simulate the dosimetry of the SIA.20 eye applicator with Monte Carlo GATE 6.1 platform and to compare the calculated results with those measured with EBT2 films. This means that GATE and EBT2 were used to quantify the surface and depths dose- rate, the relative dose profile and the dosimetric parameters in according to international recommendations. Calculated and measured results are in good agreement and they are consistent with the ICRU and NCS recommendations.

  5. Characterization of an extrapolation chamber and radiochromic films for verifying the metrological coherence among beta radiation fields; Caracterizacao de uma camara de extrapolacao e filmes radiocromicos para verificacao da coerencia metrologica entre campos padroes de radiacao beta

    Energy Technology Data Exchange (ETDEWEB)

    Castillo, Jhonny Antonio Benavente

    2011-07-01

    The metrological coherence among standard systems is a requirement for assuring the reliability of dosimetric quantities measurements in ionizing radiation field. Scientific and technologic improvements happened in beta radiation metrology with the installment of the new beta secondary standard BSS2 in Brazil and with the adoption of the internationally recommended beta reference radiations. The Dosimeter Calibration Laboratory of the Development Center for Nuclear Technology (LCD/CDTN), in Belo Horizonte, implemented the BSS2 and methodologies are investigated for characterizing the beta radiation fields by determining the field homogeneity, the accuracy and uncertainties in the absorbed dose in air measurements. In this work, a methodology to be used for verifying the metrological coherence among beta radiation fields in standard systems was investigated; an extrapolation chamber and radiochromic films were used and measurements were done in terms of absorbed dose in air. The reliability of both the extrapolation chamber and the radiochromic film was confirmed and their calibrations were done in the LCD/CDTN in {sup 90}Sr/{sup 90}Y, {sup 85}Kr and {sup 147}Pm beta radiation fields. The angular coefficients of the extrapolation curves were determined with the chamber; the field mapping and homogeneity were obtained from dose profiles and isodose with the radiochromic films. A preliminary comparison between the LCD/CDTN and the Instrument Calibration Laboratory of the Nuclear and Energy Research Institute / Sao Paulo (LCI/IPEN) was carried out. Results with the extrapolation chamber measurements showed in terms of absorbed dose in air rates showed differences between both laboratories up to de -I % e 3%, for {sup 90}Sr/{sup 90}Y, {sup 85}Kr and {sup 147}Pm beta radiation fields, respectively. Results with the EBT radiochromic films for 0.1, 0.3 and 0.15 Gy absorbed dose in air, for the same beta radiation fields, showed differences up to 3%, -9% and -53%. The beta

  6. Evaluation of the use of radiochromic films alongside of the ionization chamber and TLDs in measuring peripheral doses; Avaliacao do uso de filmes radiocromicos ao lado de camara de ionizacao e TLDs na mensuracao de doses perifericas

    Energy Technology Data Exchange (ETDEWEB)

    Soboll, Danyel S.; Wolter, Brenda Von; Nascimento, Josiane Q., E-mail: soboll@utfpr.edu.br [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil); Viamonte, Alfredo; Alves, Victor G.L., E-mail: aviamonte@inca.gov.br [Instituto Nacional de Cancer (PQRT/INCA), Rio de Janeiro, RJ (Brazil). Programa de Qualidade em Radioterapia

    2014-07-01

    The objective of this work is to submit radiochromic films, thermoluminescent dosimeters and ionization chamber to identical situations irradiation, in order to assess their capabilities in measuring peripheral doses. The growing number of survivors of childhood cancer has created the need to investigate the cause of the sequelae of treatment. Measurements of peripheral radiation to the radiotherapy target region increment the knowledge of the subject and assist in the development of protection methods. As the periphery of the radiation spectrum is different from that in the beam, the energy independence supposedly provided in radiochromic films can overcome the energy dependence found of ionization and TLD chambers, in order to discard the necessity of correction of the values if films are used. In this work the three dosimeters were exposed to doses arising from the issuance of 6 MV beams, field 10 cm x 10 cm and 500 UM. The dosimeters were placed at 0, 10, 17.5 and 30 cm from the central ray, always under 5 cm of water. The results showed that the figures reported by the films have high average standard deviation and for more conclusive results is necessary to proceed with the radiations, employing more intense beams.

  7. 多层放射性铬胶片剂量验证系统的研制%Development of multi-layer radiochromic film dose verification system

    Institute of Scientific and Technical Information of China (English)

    张可; 谢玲灵; 张中柱; 戴建荣

    2014-01-01

    目的:采用放射性铬胶片(RCF)快速准确地验证调强放射治疗(IMRT)形成的复杂剂量分布,研制多层RCF剂量验证系统。方法:以RCF为载体,利用测量模体、RCF、胶片扫描仪及验证软件的剂量验证系统实施测量及分析;模体模拟人体外形,包含多种专用模块,软件包含二维、三维无标记点配准及验证分析功能。结果:模体凸凹槽结构结合软件无标记点自动定位功能,可快速完成胶片的固定及其与计划数据的配准以及RCF的免冲洗自动显影,减少了调强放射治疗测量和分析的不确定因素,减少物理师工作量。患者调强验证以剂量偏差3%和3 mm距离偏差为控制标准,6个临床病例的伽马分析通过率均>90%。结论:多层RCF剂量验证系统是调强适形放射治疗剂量验证和常规质量保证的多用途工具,具有方便、准确、真实、海量信息及多用途等特点,可用于对直线加速器、伽玛刀、射波刀、后装机及粒子植入等放射治疗设备质量验证和调强治疗患者剂量的二维、三维验证。%Objective: Multifilm QA(Quality Assurance) system is developed to guarantee the quality of radiotherapy, and verify the dose distribution of IMRT more accurately. Methods:Radiochromic film is used as carrier and the dose analysis system is composed of phantom, radiochromic film, film scanner and analysis software. The phantom is shaped as human body, and it consists of appropriative modules for ionization chamber, film and MOSFET dosimeters and inhomogeneous module containing lung and bone density inserts. Software provides unique functions in 2D and 3D registering and analyzing, facilitates plan verifications and routine quality assurance programs. Results:The tongue and groove joint and the automatic register function make the film fixing and register convenient. Combined with the self-developed radiochromic film, the uncertainties in measurement

  8. Radiochromic film use to record dose profile variations in chest CT scan; Utilizacao do filme radiocromico para registro da variacao do perfil de dose em varredura de TC de torax

    Energy Technology Data Exchange (ETDEWEB)

    Mourao, Arnaldo P.; Santana, Priscila C., E-mail: aprata@des.cefetmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear; Silva, Teogenes A. da; Alonso, Thessa C. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2015-12-15

    The CT scans generate higher doses in patients than those caused by other types of diagnostic radiology using the attenuation of X-ray beams. Technological advances have increased the clinical applications of computed tomography (CT) and consequently the demand for these exams. Dose reduction strategies are difficult to implement because of a lack of proper guidance on the CT scanning. However, CT offers the possibility of adjusting the image acquisition parameters according to the patient physical profile and the diagnostic application for which it is intended to scan. Knowledge of the dose distribution is important when thinking about varying the acquisition parameters to reduce the dose. In this work was used a PMMA chest phantom to observe the dose deposition in 5 areas. Radiochromic film strips were placed inside the chest phantom, in peripheral and in the central region. The phantom was placed in the scanner isocenter and it was performed the irradiation of its central region using a chest acquisition protocol. After the phantom CT scan the radiochromic film strips were processed for obtaining digital images. Digital images were reworked to obtain the dose variation profiles for each position. The results showed a wide variation in absorbed dose by the phantom, either within a same position along the length of the film strip, as in the comparison among the five regions which the strips are placed. In this second case the dose variations were even greater. (author)

  9. Radiochromic film calibration wedge EBT2 using virtual fields; Calibracion de peliculas radiocromicos EBT2 mediante campos con cunas virtuales

    Energy Technology Data Exchange (ETDEWEB)

    Perez, M. A.; Macias, J.; Merchan, M. A.; Campo, J. L.; Moreno, J. C.; Terron, J. A.; Miras, H.; Ortiz, M.; Arrans, R.; Ortiz, A.; Fernandez, D.

    2011-07-01

    EBT2 film dosimetry after exposure to a gradient of these wedge dosimetry. In our case a virtual wedge 600. The primary objective is to automate the process, reduce the time spent in obtaining the calibration curve (color-dose). Time negligible due to the limited availability of accelerators. This method of obtaining the calibration curve provides similar results to the commonly accepted either with irradiation uniform of a single film with different dose levels (multiband ladder) or with irradiation uniform of small rectangular piece of film , decreasing by a factor about 20, the time spent. (Author)

  10. Comparison of methods for the measurement of radiation dose distributions in high dose rate (HDR) brachytherapy: Ge-doped optical fiber, EBT3 Gafchromic film, and PRESAGE{sup Registered-Sign} radiochromic plastic

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, A. L. [Department of Physics, Faculty of Engineering and Physical Science, University of Surrey, Surrey GU2 7JP (United Kingdom); Department of Medical Physics, F-Level, Queen Alexandra Hospital, Portsmouth Hospitals NHS Trust, Portsmouth, Hampshire PO6 3LY (United Kingdom); Di Pietro, P.; Alobaidli, S.; Issa, F.; Doran, S.; Bradley, D. [Department of Physics, Faculty of Engineering and Physical Science, University of Surrey, Surrey GU2 7JP (United Kingdom); Nisbet, A. [Department of Physics, Faculty of Engineering and Physical Science, University of Surrey, Surrey GU2 7JP (United Kingdom); Department of Medical Physics, Royal Surrey County Hospital NHS Foundation Trust, Guildford, Surrey GU2 7XX (United Kingdom)

    2013-06-15

    Purpose: Dose distribution measurement in clinical high dose rate (HDR) brachytherapy is challenging, because of the high dose gradients, large dose variations, and small scale, but it is essential to verify accurate treatment planning and treatment equipment performance. The authors compare and evaluate three dosimetry systems for potential use in brachytherapy dose distribution measurement: Ge-doped optical fibers, EBT3 Gafchromic film with multichannel analysis, and the radiochromic material PRESAGE{sup Registered-Sign} with optical-CT readout. Methods: Ge-doped SiO{sub 2} fibers with 6 {mu}m active core and 5.0 mm length were sensitivity-batched and their thermoluminescent properties used via conventional heating and annealing cycles. EBT3 Gafchromic film of 30 {mu}m active thickness was calibrated in three color channels using a nominal 6 MV linear accelerator. A 48-bit transmission scanner and advanced multichannel analysis method were utilized to derive dose measurements. Samples of the solid radiochromic polymer PRESAGE{sup Registered-Sign }, 60 mm diameter and 100 mm height, were analyzed with a parallel beam optical CT scanner. Each dosimetry system was used to measure the dose as a function of radial distance from a Co-60 HDR source, with results compared to Monte Carlo TG-43 model data. Each system was then used to measure the dose distribution along one or more lines through typical clinical dose distributions for cervix brachytherapy, with results compared to treatment planning system (TPS) calculations. Purpose-designed test objects constructed of Solid Water and held within a full-scatter water tank were utilized. Results: All three dosimetry systems reproduced the general shape of the isolated source radial dose function and the TPS dose distribution. However, the dynamic range of EBT3 exceeded those of doped optical fibers and PRESAGE{sup Registered-Sign }, and the latter two suffered from unacceptable noise and artifact. For the experimental

  11. Radiochromic film calibration EBT2 Gafchromic-R for the evaluation of skin dose in interventional radiology; Calibracion de la pelicula radiocromica Gafchromic EBT2 para la evaluacion de la dosis en piel en radiologia intevencionista

    Energy Technology Data Exchange (ETDEWEB)

    Manano Herrera, J. A.; Roldan Arjona, J. M.; Martinez-Luna, R. J.; Soler Cantos, M. M.

    2011-07-01

    The estimate of the dose in the entrance surface (DSE) in interventional radiology procedures is of interest to identify those which by their nature may lead to skin lesions. The purpose of this paper is to analyze the possibility of use of radiochromic film GAFCHROMICrEBT2 in the estimation of the DSE in these procedures. This is a calibration curve obtained in the dose range of this type of scans proving its validity in relation to the dose given in Perspex phantom exposed to similar values ??of fluoroscopy time and number of acquisitions of employees in the above proceedings.

  12. A new correction method serving to eliminate the parabola effect of flatbed scanners used in radiochromic film dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Poppinga, D., E-mail: daniela.poppinga@uni-oldenburg.de; Schoenfeld, A. A.; Poppe, B. [Medical Radiation Physics, Carl v. Ossietzky University, Oldenburg 26127, Germany and Department for Radiation Oncology, Pius Hospital, Oldenburg 26121 (Germany); Doerner, K. J. [Radiotherapy Department, General Hospital, Celle 29223 (Germany); Blanck, O. [CyberKnife Center Northern Germany, Güstrow 18273, Germany and Department for Radiation Oncology, University Clinic Schleswig-Holstein, Lübeck 23562 (Germany); Harder, D. [Medical Physics and Biophysics, Georg-August-University, Göttingen 37073 (Germany)

    2014-02-15

    Purpose: The purpose of this study is the correction of the lateral scanner artifact, i.e., the effect that, on a large homogeneously exposed EBT3 film, a flatbed scanner measures different optical densities at different positions along thex axis, the axis parallel to the elongated light source. At constant dose, the measured optical densitiy profiles along this axis have a parabolic shape with significant dose dependent curvature. Therefore, the effect is shortly called the parabola effect. The objective of the algorithm developed in this study is to correct for the parabola effect. Any optical density measured at given position x is transformed into the equivalent optical density c at the apex of the parabola and then converted into the corresponding dose via the calibration of c versus dose. Methods: For the present study EBT3 films and an Epson 10000XL scanner including transparency unit were used for the analysis of the parabola effect. The films were irradiated with 6 MV photons from an Elekta Synergy accelerator in a RW3 slab phantom. In order to quantify the effect, ten film pieces with doses graded from 0 to 20.9 Gy were sequentially scanned at eight positions along thex axis and at six positions along the z axis (the movement direction of the light source) both for the portrait and landscape film orientations. In order to test the effectiveness of the new correction algorithm, the dose profiles of an open square field and an IMRT plan were measured by EBT3 films and compared with ionization chamber and ionization chamber array measurement. Results: The parabola effect has been numerically studied over the whole measuring field of the Epson 10000XL scanner for doses up to 20.9 Gy and for both film orientations. The presented algorithm transforms any optical density at positionx into the equivalent optical density that would be measured at the same dose at the apex of the parabola. This correction method has been validated up to doses of 5.2 Gy all over the

  13. A new correction method serving to eliminate the parabola effect of flatbed scanners used in radiochromic film dosimetry.

    Science.gov (United States)

    Poppinga, D; Schoenfeld, A A; Doerner, K J; Blanck, O; Harder, D; Poppe, B

    2014-02-01

    The purpose of this study is the correction of the lateral scanner artifact, i.e., the effect that, on a large homogeneously exposed EBT3 film, a flatbed scanner measures different optical densities at different positions along the x axis, the axis parallel to the elongated light source. At constant dose, the measured optical density profiles along this axis have a parabolic shape with significant dose dependent curvature. Therefore, the effect is shortly called the parabola effect. The objective of the algorithm developed in this study is to correct for the parabola effect. Any optical density measured at given position x is transformed into the equivalent optical density c at the apex of the parabola and then converted into the corresponding dose via the calibration of c versus dose. For the present study EBT3 films and an Epson 10000XL scanner including transparency unit were used for the analysis of the parabola effect. The films were irradiated with 6 MV photons from an Elekta Synergy accelerator in a RW3 slab phantom. In order to quantify the effect, ten film pieces with doses graded from 0 to 20.9 Gy were sequentially scanned at eight positions along the x axis and at six positions along the z axis (the movement direction of the light source) both for the portrait and landscape film orientations. In order to test the effectiveness of the new correction algorithm, the dose profiles of an open square field and an IMRT plan were measured by EBT3 films and compared with ionization chamber and ionization chamber array measurement. The parabola effect has been numerically studied over the whole measuring field of the Epson 10000XL scanner for doses up to 20.9 Gy and for both film orientations. The presented algorithm transforms any optical density at position x into the equivalent optical density that would be measured at the same dose at the apex of the parabola. This correction method has been validated up to doses of 5.2 Gy all over the scanner bed with 2D dose

  14. SU-E-T-231: Measurements of Gold Nanoparticle-Mediated Proton Dose Enhancement Due to Particle-Induced X-Ray Emission and Activation Products Using Radiochromic Films and CdTe Detector

    Energy Technology Data Exchange (ETDEWEB)

    Cho, J; Cho, S [Dept. of Radiation Physics, UT MD Anderson Cancer Center, Houston, TX (United States); Manohar, N [Dept. of Radiation Physics, UT MD Anderson Cancer Center, Houston, TX (United States); Medical Physics Program, Georgia Institute of Technology, Atlanta, GA (Georgia); Krishnan, S [Dept. of Radiation Oncology, UT MD Anderson Cancer Center, Houston, TX (United States)

    2014-06-01

    Purpose: There have been several reports of enhanced cell-killing and tumor regression when tumor cells and mouse tumors were loaded with gold nanoparticles (GNPs) prior to proton irradiation. While particle-induced xray emission (PIXE), Auger electrons, secondary electrons, free radicals, and biological effects have been suggested as potential mechanisms responsible for the observed GNP-mediated dose enhancement/radiosensitization, there is a lack of quantitative analysis regarding the contribution from each mechanism. Here, we report our experimental effort to quantify some of these effects. Methods: 5-cm-long cylindrical plastic vials were filled with 1.8 mL of either water or water mixed with cylindrical GNPs at the same gold concentration (0.3 mg Au/g) as used in previous animal studies. A piece of EBT2 radiochromic film (30-µm active-layer sandwiched between 80/175-µm outer-layers) was inserted along the long axis of each vial and used to measure dose enhancement due to PIXE from GNPs. Vials were placed at center-of-modulation (COM) and 3-cm up-/down-stream from COM and irradiated with 5 different doses (2–10 Gy) using 10-cm-SOBP 160-MeV protons. After irradiation, films were cleaned and read to determine the delivered dose. A vial containing spherical GNPs (20 mg Au/g) was also irradiated, and gamma-rays from activation products were measured using a cadmium-telluride (CdTe) detector. Results: Film measurements showed no significant dose enhancement beyond the experimental uncertainty (∼2%). There was a detectable activation product from GNPs, but it appeared to contribute to dose enhancement minimally (<0.01%). Conclusion: Considering the composition of EBT2 film, it can be inferred that gold characteristic x-rays from PIXE and their secondary electrons make insignificant contribution to dose enhancement. The current investigation also suggests negligible dose enhancement due to activation products. Thus, previously-reported GNP-mediated proton dose

  15. A new method for dosimetry with films radiochromic; Un nuevo metodo para la dosimetria con peliculas radiocromica

    Energy Technology Data Exchange (ETDEWEB)

    Mendez Carot, I.

    2013-07-01

    in this paper a new method is presented and the results of the comparison between the calibration is summarized based on a planning reference and calibration obtained from the irradiated fragments measure different dose levels multichannel compare dosimetry based on the weighted average dosimetry described by Micke et al.(present in the FilmQAPro software) and, finally, show different results obtained with the method proposed in several applications clinics. (Author)

  16. Experimental comparison of profiles of acquired small fields with ionization chambers, diodes, radiochromic s and TLD films; Comparacion experimental de perfiles de campos pequenos adquiridos con camaras de ionizacion, diodos, peliculas radiocromicas y TLD

    Energy Technology Data Exchange (ETDEWEB)

    Venencia, D.; Garrigo, E. [Instituto Privado de Radioterapia, Obispo Oro 423, X5000BFI Cordoba (Argentina); Filipuzzi, M. [Instituto Balseiro, Centro Atomico Bariloche, Av. Bustillo 9500, 8400 Bariloche - Rio Negro (Argentina); Germanier, A., E-mail: devenencia@radioncologia-zunino.org [Centro de Excelencia en Productos y Procesos, Santa Maria de Punilla, 5164 Cordoba (Argentina)

    2014-08-15

    The use of radiation small fields, introduced by new techniques, can bring a considerable uncertainty in the precision of the acquired profiles, due to the conditions of lateral electronic non-equilibrium and the perturbations introduced by the detectors (volume effect and alteration of the charged particles flowing) [Das et al., 2007]. The development of new miniature detectors looks to diminish the uncertainty created by the material and the size of the sensitive volume of the dosimeter. For this reason, comparative measurements for three sizes of square field were carried out (20 mm, 10 mm and 5 mm, of side) using a detectors series: 3 ionization chambers (PTW-31003, IBA-CC04, PTW-31016), 2 diodes (PTW-60012, IBA-Sfd), thermoluminescent detectors micro-cubes of 1 mm of edge (TLD-700) and radiochromic s films EBT-3. These last two were used as reference detectors, due to their spatial high resolution and similar performance with Monte Carlo simulations [Francescon et al., 1998]. So much the thermoluminescent detectors as the radiochromic films resolved the profiles in a similar way. Both diodes responded correctly, but the rest of the detectors overestimated the gloom of the fields, which allows conclude that the used TLD (and both diodes) can resolve field sizes correctly, usually utilized in radio-surgery, without producing significant alterations in the acquired data. (author)

  17. Sensitivity of linear CCD array based film scanners used for film dosimetry.

    Science.gov (United States)

    Devic, Slobodan; Wang, Yi-Zhen; Tomic, Nada; Podgorsak, Ervin B

    2006-11-01

    Film dosimetry is commonly performed by using linear CCD array transmission optical densitometers. However, these devices suffer from a variation in response along the detector array. If not properly corrected for, this nonuniformity may lead to significant overestimations of the measured dose as one approaches regions close to the edges of the scanning region. In this note, we present measurements of the spatial response of an AGFA Arcus II document scanner used for radiochromic film dosimetry. Results and methods presented in this work can be generalized to other CCD based transmission scanners used for film dosimetry employing either radiochromic or radiographic films.

  18. Patient Dose During Carotid Artery Stenting With Embolic-Protection Devices: Evaluation With Radiochromic Films and Related Diagnostic Reference Levels According to Factors Influencing the Procedure

    Energy Technology Data Exchange (ETDEWEB)

    D' Ercole, Loredana, E-mail: l.dercole@smatteo.pv.it [Fondazione IRCCS Policlinico San Matteo, Department of Medical Physics (Italy); Quaretti, Pietro; Cionfoli, Nicola [Fondazione IRCCS Policlinico San Matteo, Department of Radiology (Italy); Klersy, Catherine [Fondazione IRCCS Policlinico San Matteo, Biometry and Clinical Epidemiology Service, Research Department, (Italy); Bocchiola, Milena [Fondazione IRCCS Policlinico San Matteo, Department of Medical Physics (Italy); Rodolico, Giuseppe; Azzaretti, Andrea [Fondazione IRCCS Policlinico San Matteo, Department of Radiology (Italy); Lisciandro, Francesco [Fondazione IRCCS Policlinico San Matteo, Department of Medical Physics (Italy); Cascella, Tommaso; Zappoli Thyrion, Federico [Fondazione IRCCS Policlinico San Matteo, Department of Radiology (Italy)

    2013-04-15

    To measure the maximum entrance skin dose (MESD) on patients undergoing carotid artery stenting (CAS) using embolic-protection devices, to analyze the dependence of dose and exposure parameters on anatomical, clinical, and technical factors affecting the procedure complexity, to obtain some local diagnostic reference levels (DRLs), and to evaluate whether overcoming DRLs is related to procedure complexity. MESD were evaluated with radiochromic films in 31 patients (mean age 72 {+-} 7 years). Five of 33 (15 %) procedures used proximal EPD, and 28 of 33 (85 %) procedures used distal EPD. Local DRLs were derived from the recorded exposure parameters in 93 patients (65 men and 28 women, mean age 73 {+-} 9 years) undergoing 96 CAS with proximal (33 %) or distal (67 %) EPD. Four bilateral lesions were included. MESD values (mean 0.96 {+-} 0.42 Gy) were <2 Gy without relevant dependence on procedure complexity. Local DRL values for kerma area product (KAP), fluoroscopy time (FT), and number of frames (N{sub FR}) were 269 Gy cm{sup 2}, 28 minutes, and 251, respectively. Only simultaneous bilateral treatment was associated with KAP (odds ratio [OR] 10.14, 95 % confidence interval [CI] 1-102.7, p < 0.05) and N{sub FR} overexposures (OR 10.8, 95 % CI 1.1-109.5, p < 0.05). Type I aortic arch decreased the risk of FT overexposure (OR 0.4, 95 % CI 0.1-0.9, p = 0.042), and stenosis {>=} 90 % increased the risk of N{sub FR} overexposure (OR 2.8, 95 % CI 1.1-7.4, p = 0.040). At multivariable analysis, stenosis {>=} 90 % (OR 2.8, 95 % CI 1.1-7.4, p = 0.040) and bilateral treatment (OR 10.8, 95 % CI 1.1-109.5, p = 0.027) were associated with overexposure for two or more parameters. Skin doses are not problematic in CAS with EPD because these procedures rarely lead to doses >2 Gy.

  19. Dosimetric characteristics of a radiochromic polyvinyl butyral film containing 2,4-hexadiyn-1,6-bis(n-butyl urethane).

    Science.gov (United States)

    Abdel-Fattah, A A; Soliman, Y S; Bayomi, A M M; Abdel-Khalek, A A

    2014-04-01

    A radiation-sensitive compound 2,4-hexadiyn-1,6-bis(n-butyl urethane) (HDDBU) was synthesized, characterized by FTIR spectroscopy, and introduced into a thin polyvinyl butyral film to form a radiation dosimeter for industrial irradiation facilities. The monomer polymerizes under gamma radiation, inducing change in the film spectrum in the range of 200-400 nm. According to XRD spectroscopy, the film contains monomeric HDDBU in a non-crystalline state. The dose response function, radiation sensitivity, and dependences of the response on environmental factors were studied. Uncertainty of dose measurements with the proposed dosimetry system was analyzed in detail.

  20. Evaluation of different calibration curves QA of IMRT plans with radiochromic films; Evaluacion de diversas curvas de calibracion QA de planes de IMRT con peliculas radiocromicas

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez Rodriguez, J.; Martin Rincon, C.; Garcia Repiso, S.; Ramos Paheo, J. A.; Verde Velasco, J. M.; Sena Espinel, E. de

    2013-07-01

    The non-linear relationship between dose and the optical density, characteristic plates radiochromic Gafchromic EBT and EBT2, has been studied by various authors, whose publications are proposed different functional forms that fit the specific values measured curves that allow the full range of useful dose calibration. The objective of the work focuses on evaluating the influence of the use of different calibration curves in the dose measurement for quality control of IMRT treatments. (Author)

  1. Experimental validation of Monte Carlo depth-dose calculations using radiochromic dye film dosimetry for a beta-gamma {sup 153}Sm radionuclide applied to the treatment of rheumatoid arthritis

    Energy Technology Data Exchange (ETDEWEB)

    Villarreal-Barajas, J.E.; Ferro-Flores, G.; Hernandez-Oviedo, O

    2002-07-01

    In this work we compare the Monte Carlo (MCNP4B) calculated beta-gamma depth-dose profile for a liquid {sup 153}Sm beta-gamma source used in radiation synovectomy with the experimental depth-dose distribution obtained using radiochromic dye film dosimetry. The calculated and experimental depth-dose distribution shows a very good agreement (within 5%) in the region where the dose deposition is dominated by the beta particle component (first 800 {mu}m depth on tissue-equivalent material). The agreement worsens, reaching a maximum deviation of 15%, at depths close to the maximum range of the beta particles. Finally the agreement improves for the region where the gamma component accounts for one-third of the total absorbed dose (depths >1 mm ). The possible contributions to these differences are discussed, as well as their relevance for the application of {sup 153}Sm in the treatment of rheumatoid arthritis. (author)

  2. Characterization of a team intraoperative Radiation therapy and measurement of dose in skin with film radiochromic; Caracterizacion de un equipo de radioterapia intraoperatoria y medida de la dosis en piel con pelicula radiocromica

    Energy Technology Data Exchange (ETDEWEB)

    Onses Segarra, A.; Sancho Kolster, I.; Eraso Urien, A.; Pla Farnos, M. J.; Picon Olmos, C.

    2015-07-01

    This paper presents the results of the initial reference state of intraoperative radiotherapy equipment lntraBeam, for performing breast treatments are analyzed. To the initial reference team was established for the following dosimetric and geometric beam parameters: percentage depth dose, beam quality, isotropy, linearity and mechanical and geometric integrity for both the source RX as for different spherical applicators of the team. Based on these checks, a program of periodic quality control was established. One of the exclusion criteria for this treatment is that the tumor is less than l cm of the skin, yaque give doses received in this organ can be high. For this reason it is important to know exactly the absorbed dose in skin during these treatments. In this regard we have implemented a system for measuring the skin dose during treatment with Radiochromic film, placing 4 film segments in fixed positions of the skin around the surgical incision. It .ha obtained calibration curve of sterilized films and compared the results with a calibration beam megavoltage. The results of the skin dose measurements are compared with theoretical estimates given by the planning system equipment. The results indicate the need to measure individually the skin dose for these treatments. (Author)

  3. Evaluation of patients skin dose undergoing interventional cardiology procedure using radiochromic films; Avaliacao da dose na pele de pacientes submetidos a procedimentos de cardiologia intervencionista usando filmes radiocromicos

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Mauro W. Oliveira da; Canevaro, Lucia V. [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Servico de Fisica Medica; Rodrigues, Barbara B. Dias [Universidade Federal do Rio de Janeiro (PEN/COPPE/UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-Graduacao de Engenharia. Programa de Engenharia Nuclear

    2011-07-01

    In interventional cardiology (IC), coronary angiography (CA) and percutaneous transluminal coronary angioplasty (PTCA) procedures are the most frequent ones. Since the 1990s, the number of IC procedures has increased rapidly. It is also known that these procedures are associated with high radiation doses due to long fluoroscopy time (FT) and large number of cine-frames (CF) acquired to document the procedure. Mapping skin doses in IC is useful to find the probability of skin injuries, to detect areas of overlapping field, and to get a permanent record of the most exposed areas of skin. The purpose of this study was to estimate the maximum skin dose (MSD) in patients undergoing CA and PTCA, and to compare these values with the reference levels proposed in the literature. Patients' dose measurements were carried out on a sample of 38 patients at the hemodynamic department, in four local hospitals in Rio de Janeiro, Brazil, using Gafchromic XR-RV2 films. In PTCA procedures, the median and third quartile values of MSD were estimated at 2.5 and 5.3 Gy, respectively. For the CA procedures, the median and third quartile values of MSD were estimated at 0.5 and 0.7 Gy, respectively. In this paper, we used the Pearson's correlation coefficient (r), and we found a fairly strong correlation between FT and MSD (r=0.8334, p<0.0001), for CA procedures. The 1 Gy threshold for deterministic effects was exceeded in nine patients. The use of Gafchromic XR-RV2 films was shown to be an effective method to measure MSD and the dose distribution map. The method is effective to identify the distribution of radiation fields, thus allowing the follow-up of the patient to investigate the appearance of skin injuries. (author)

  4. Sensitivity of film measured off-axis ratios to film calibration curve using radiochromic film; Sensibilidade das razoes fora do eixo central medidas para a curva de calibracao de filmes usando filme radiocromico

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Hernandez, Diana [Universidad Nacional Autnoma de Mexico (UNAM), Mexico City (Mexico). Inst. de Fisica; Larraga-Gutierrez, Jose M. [Instituto Nacional de Neurologia y Neurocirugia, Mexico City (Mexico). Unidad de Radioneurocirugia. Lab. de Fisica Medica

    2011-07-01

    Off-axis ratios of conical beams generated with a stereotactic radiosurgery-dedicated Linac were measured with EBT2 film and stereotactic diode. The sensitivity of both full width at half maximum (FWHM) and penumbras (80-20% and 90-10%, respectively), with respect to the characteristics of the film calibration curve fit, was investigated. In all cases, penumbras resulted to be more sensitive than FWHM. However, these differences were, in general, smaller than the ones found between EBT2 reference values and the stereotactic diode measurements. The larger variation in OAR parameters was found to depend on whether the fit intersected or not the origin. A 1D gamma-index analysis showed this difference can be important in all measured conical beams. (author)

  5. Evaluation of radiochromic films EBT3 for in-vivo dosimetry in radiotherapy treatments with photons; Evaluacion de peliculas radiocromicas EBT3 para dosimetria in vivo en tratamientos de radioterapia con fotones

    Energy Technology Data Exchange (ETDEWEB)

    Galvan de la C, O. O.; Rivera M, T. [IPN, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Av. Legaria No. 694, Col. Irrigacion, 11500 Mexico D. F. (Mexico); Garcia G, O. A.; Larraga G, J. M., E-mail: olinca@ciencias.unam.mx [Instituto Nacional de Neurologia y Neurocirugia, Laboratorio de Fisica Medica, Insurgentes Sur 3877, Col. La Fama, 14269 Mexico D. F. (Mexico)

    2015-10-15

    Full text: In-vivo dosimetry is a challenge in radiotherapy due to the measures are carried out in reference conditions outside; there is no balance of charged particle and beam consists of photons own and contamination electrons. Detectors that are useful for such measures should be sufficiently small and thin so they do not disturb the beam and do not alter the dose on target. In this paper the radiochromic films Gafchromic model EBT3 are evaluated as potential detectors for in-vivo dosimetry; measurements were carried out in solid water phantom on the surface, with films of dimensions 3 x 3 cm{sup 2}. Irradiations were performed with a linear accelerator Novalis of 6 MV. Comparison between dose values found with a diode type Sfd detector (IBA dosimetry, Germany) and a diamond detector CVD (PTW-Freiburg) for 2 different sized of field (5 x 5 cm{sup 2} and 10 x 10 cm{sup 2}) on the surface of a water phantom scanning was realized. The total spreading factor (Tsf) measured on surface was of 0.831 ± 4.6%; which is greater 12.9% than Tsf measured at a depth of maximum dose. This difference may be due to the contribution of scattered electrons to the beam exit. The measures must be corroborated with Monte Carlo simulations, which they will be validated on surface by the Abdel-Rahman [et al.] method; this mechanism will determine if the films are useful detectors for in-vivo dosimetry clinically. (Author)

  6. Enhancement of the optical properties of a new radiochromic dosimeter based on aliphatic-aromatic biodegradable polymers

    Energy Technology Data Exchange (ETDEWEB)

    Schimitberger, Thiago, E-mail: tschimitberger@ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Escola de Engenharia. Departamento de Engenharia Nuclear; Faria, Luiz O., E-mail: farialo@cdtn.br [Centro de desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    The development of a dosimeter that is of low cost, easy to process without dependence on expensive complex instruments and environment friendly is a challenging in irradiation quality control. Recently, an aliphatic-aromatic biodegradable polymer has been proposed as radiochromic dosimeter. The dosimeter is based on biodegradable poly(butylene adipate-co-terephthalate) copolymers (PBAT). In order to improve the photoluminescence (PL) properties of PBAT, increasing its range of applicability (50 kGy to 1000 kGy), this work investigates the influence of solution concentration in the dose response. Films with thickness of c.a. 80 μm were produce by wirebar coating, a simple deposition method for preparing large areas of organic films at low cost. The irradiation of samples was performed at room temperature using a Co-60 source at dose rate of 20 kGy/h. The films were exposed to doses ranging from 501 kGy to 1000 kGy. A 405 nm LED light source was used to excite the films. The USB2000 spectrometer made by Ocean Optics was used to collect the emission spectra of the luminescent films. The photoluminescent intensity captured by the spectrometer present linear radiation dose dependence. The maximum PL for the film sample made from a 0.05 g.mL{sup -1} solution is 1.5 (a.u.) while it is about 3.5 (a.u.) for a film sample made from a 0.2 mg.mL{sup -1} solution, when irradiated with 1000 kGy. These results indicate that PBAT films have great potential to be used as a high gamma dose radiochromic dosimeter over a wide dose range, expanding its applicability for different radiations process. (author)

  7. SU-E-T-475: Improvements to Total Body Irradiation Dosimetry Efficiency with EBT3 Radiochromic Film and a Template System

    Energy Technology Data Exchange (ETDEWEB)

    Butson, M; Pope, D; Whitaker, M [Chris O’Brien LifeHouse, Sydney, NSW (Australia)

    2015-06-15

    Purpose: Total Body Irradiation (TBI) treatments are mainly used in a preparative regimen for haematopoietic stem cell (or bone marrow) transplantation. Our standard regimen is a 12 Gy / 6 fraction bi-daily technique. To evaluate the delivered dose homogeneity to the patient, EBT3 Gafchromic film is positioned at the head, neck, chest, pelvis and groin for all fractions. A system has been developed to simply and accurately prepare and readout the films for patient dose assessment. Methods: A process involving easy preparation and analysis has been produced to minimise the time requirements for TBI dosimetry. One sheet of EBT3 film is used to prepare treatment dosimeters for all fractions, including calibration films, and an automated dose analysis system for easy evaluation and calculation of estimated in-vivo doses was developed. A desktop scanner is used with a dedicated TBI film template to accurately position the films for Image J analysis and extraction. Dental wax bolus and zip-lock bag holders are used to hold the EBT3 film in place during irradiation. Results: To adequately provide dosimetry information for a 6 fraction, TBI patient, only one sheet of Gafchromic EBT3 film is required. The dosimeters are cut, using a template, into 19 mm squares which are then placed between two 30 mm x 30 mm x 4.5 mm wax blocks for bolus. All packages are prepared before the first treatment fraction. The scanning and analysis process can be completed in less than 10 minutes after a 240 min development period. Results have shown that a high level of accuracy and reproducibility can be achieved using the template system provided. Conclusion: Gafchromic EBT3 film provides an adequate in-vivo dosimetry measure for TBI patients. Using a template based system on a dedicated desktop scanner, in-vivo results can be ascertained quickly and accurately.

  8. SU-E-T-71: A Radiochromic Film Based Quantitative Assessment of Thermoplastic Mask Bolus Effect in Head and Neck IMRT/VMAT

    Energy Technology Data Exchange (ETDEWEB)

    Kalavagunta, C; Lin, M; Snider, J; Xu, H; Schrum, A; Vadnais, P; Marter, K; Suntharalingam, M; Prado, K [University of Maryland School of Medicine, Baltimore, MD (United States)

    2015-06-15

    Purpose: To quantify the factors leading to thermoplastic mask bolus-associated-increased skin dose in head and neck IMRT/VMAT using EBT2 film. Methods: EBT2 film placed beneath a dual layer 3-point ORFIT head, neck and shoulder mask was used to test the effect of mask thickness, beam modulation, air gap, and beam obliquity on bolus effect. Mask thickness was varied based on the distribution of 1.6mm Orfilight layer on top of 2 mm Efficast layer. Beam modulation was varied by irradiating the film with an open field (no beam modulation) and a step and shoot field (beam modulation). Air gap between mask and film was varied from 0 to 5mm. Beam obliquity was varied by irradiating the film at gantry angles of 0°, 35°, and 70°.Finally, film strips placed on a Rando phantom under an Orfit mask, in regions of expected high dose, were irradiated using 5 IMRT and 5 VMAT plans with various modulation levels (modulation factor 2 to 5) and the results were compared with those obtained placing OSLDs at the same locations. Results: An 18–34% increase in mask bolus effect was observed for three factors where the effect of beam obliquity ≥ beam modulation > mask thickness. No increase in mask bolus effect was observed for change in air gap. A 6–13% increase in dose due to mask bolus effect was observed on film strips. Conclusion: This work underlines the role of beam obliquity and beam modulation combined with thermoplastic mask thickness in increasing mask bolus-associated skin dose in head and neck IMRT/VMAT. One possible method of dose reduction, based on knowledge gained from this work, is inclusion of skin as an avoidance structure in treatment planning. Another approach is to design a mask with the least amount of thermoplastic material necessary for immobilization.

  9. Technical Note: On GAFChromic EBT-XD film and the lateral response artifact.

    Science.gov (United States)

    Lewis, David F; Chan, Maria F

    2016-02-01

    The new radiochromic film, GAFChromic EBT-XD, contains the same active material, lithium-10,12-pentacosadiynoate, as GAFChromic EBT3, but the crystalline form is different. This work investigates the effect of this change on the well-known lateral response artifact when EBT-XD film is digitized on a flatbed scanner. The dose response of a single production lot of EBT-XD was characterized by scanning an unexposed film plus a set of films exposed to doses between 2.5 and 50 Gy using 6 MV photons. To characterize the lateral response artifact, the authors used the unexposed film plus a subset of samples exposed to doses between 20 and 50 Gy. Digital images of these films were acquired at seven discrete lateral locations perpendicular to the scan direction on three Epson 10000XL scanners. Using measurements at the discrete lateral positions, the scanner responses were determined as a function of the lateral position of the film. From the data for each scanner, a set of coefficients were derived whereby measured response values could be corrected to remove the effects of the lateral response artifact. The EBT-XD data were analyzed as in their previous work and compared to results reported for EBT3 in that paper. For films scanned in the same orientation and having equal responses, the authors found that the lateral response artifact for EBT-XD and EBT3 films was remarkably similar. For both films, the artifact increases with increased net response. However, as EBT-XD is less sensitive than EBT3, a greater exposure dose is required to reach the same net response. On this basis, the lower sensitivity of EBT-XD relative to EBT3 results in less net response change for equal exposure and a reduction in the impact of the lateral response artifact. The shape of the crystalline active component in EBT-XD and EBT3 does not affect the fundamental existence of the lateral response artifact when the films are digitized on flatbed scanners. Owing its lower sensitivity, EBT-XD film

  10. SU-E-T-644: QuAArC: A 3D VMAT QA System Based On Radiochromic Film and Monte Carlo Simulation of Log Files

    Energy Technology Data Exchange (ETDEWEB)

    Barbeiro, A.R.; Ureba, A.; Baeza, J.A.; Jimenez-Ortega, E.; Plaza, A. Leal [Universidad de Sevilla, Departamento de Fisiologia Medica y Biofisica, Seville (Spain); Linares, R. [Hospital Infanta Luisa, Servicio de Radiofisica, Seville (Spain); Mateos, J.C.; Velazquez, S. [Hospital Universitario Virgen del Rocio, Servicio de Radiofisica, Seville (Spain)

    2015-06-15

    Purpose: VMAT involves two main sources of uncertainty: one related to the dose calculation accuracy, and the other linked to the continuous delivery of a discrete calculation. The purpose of this work is to present QuAArC, an alternative VMAT QA system to control and potentially reduce these uncertainties. Methods: An automated MC simulation of log files, recorded during VMAT treatment plans delivery, was implemented in order to simulate the actual treatment parameters. The linac head models and the phase-space data of each Control Point (CP) were simulated using the EGSnrc/BEAMnrc MC code, and the corresponding dose calculation was carried out by means of BEAMDOSE, a DOSXYZnrc code modification. A cylindrical phantom was specifically designed to host films rolled up at different radial distances from the isocenter, for a 3D and continuous dosimetric verification. It also allows axial and/or coronal films and point measurements with several types of ion chambers at different locations. Specific software was developed in MATLAB in order to process and evaluate the dosimetric measurements, which incorporates the analysis of dose distributions, profiles, dose difference maps, and 2D/3D gamma index. It is also possible to obtain the experimental DVH reconstructed on the patient CT, by an optimization method to find the individual contribution corresponding to each CP on the film, taking into account the total measured dose, and the corresponding CP dose calculated by MC. Results: The QuAArC system showed high reproducibility of measurements, and consistency with the results obtained with the commercial system implemented in the verification of the evaluated treatment plans. Conclusion: A VMAT QA system based on MC simulation and high resolution dosimetry with film has been developed for treatment verification. It shows to be useful for the study of the real VMAT capabilities, and also for linac commissioning and evaluation of other verification devices.

  11. SU-E-T-112: Dose Distribution of Praseodymium-142 Microspheres in Microcapillary Using Radiochromic Film Dosimetry and Applications in Hepatocellular Carcinoma Microsphere Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, M; Rasmussen, K; Jung, J [East Carolina Univ, Greenville, NC (United States)

    2014-06-01

    Purpose: This work verified simulations of beta-minus emitter Praseodymium-142 (Pr-142) for microsphere brachytherapy by performing absolute dose measurements for Pr 142 microspheres in a microcapillary as a simplified model for a single blood vessel for the treatment of Hepatocellular Carcinoma (HCC). Methods: Pr-142 microspheres (mass: 0.169g, average diameter: 29.7±3.9μm) were activated by thermal neutron activation at the University of Missouri Research Reactor. Experimental setup consisted of a microsphere solution (initial activity 36.6mCi in 0.1ml of sterile water) within a glass microcapillary (internal and external diameter: 305μm and 453μm, respectively) placed for 51h in a custom made Gammex Solid Water™ phantom. GAFCHROMIC™ EBT2 film calibrated with a 6MeV electron beam was used to access the dose fall-off of microspheres. The microcapillary was modeled in MCNPX2.6 in order to compare with experiments. Results: The radial dose fall-off on the transverse plane due to scatter and attenuation in the solid water phantom was analyzed using ImageJ for both film and MCNPX2.6 simulations. Isodose analysis showed close agreement among the methods used, i.e. measurements and simulations agree within 3.9% for doses below 1600cGy. Experimental and simulated doses obtained at 0.5 cm radially from the source were 1547cGy and 1610cGy respectively. Discrepancies for points close to the microcapillary surface were observed between MCNPX2.6 and measurements due to film saturation for high doses. Dose due to Pr-142 3.7% gamma emission was below the threshold of detection for the film. Conclusion: A detailed dosimetric study was performed for Pr-142 glass microspheres within a single microcapillary. MCNPX2.6 simulations were verified by means of direct measurement. Based on these results, Pr-142 appears to be a viable choice of radionuclide for treating HCC.

  12. Experimental and Calculated Effectiveness of a Radiochromic Dye Film to Stopping 21 MeV 7Li- and 64 MeV 16O Ions

    DEFF Research Database (Denmark)

    Olsen, Kjeld J; Hansen, Johnny

    1984-01-01

    particles developed by Katz et al. The experiment was designed to test calculations particularly in the Bragg-peak region of the slowing down particles where significant deviation between theory and experiment was found. Fitting of the characteristic D37 dose and the size of the radiation sensitive element......Relative radiation effectiveness, RE, of 21 MeV 7Li and 64 MeV 16O ions being completely stopped in a tissue equivalent film dose meter has been measured as a function of penetration depth and energy, and the results have been compared with calculations based on a δ-ray theory for heavy charged...... in the detector, which are important parameters in the theoretical model, does not improve the overall correlation between theory and experiment. It is concluded that disagreement between theoretical and experimental RE-values below 1.5 MeV/amu is partly due to lack of equivalence between the δ-ray spectrum...

  13. Radiation-induced color bleaching of methyl red in polyvinyl butyral film dosimeter

    Energy Technology Data Exchange (ETDEWEB)

    Al Zahrany, Awad A., E-mail: azahrany@kacst.edu.sa [Atomic Energy Research Institute, King Abdulaziz City for Science and Technology, (KACST), P.O. BOX 6086, Riyadh 11442 (Saudi Arabia); Rabaeh, Khalid A. [Atomic Energy Research Institute, King Abdulaziz City for Science and Technology, (KACST), P.O. BOX 6086, Riyadh 11442 (Saudi Arabia); Radiography Department, Faculty of Allied Health Sciences, Hashemite University, Zarqa (Jordan); Basfar, Ahmed A. [Atomic Energy Research Institute, King Abdulaziz City for Science and Technology, (KACST), P.O. BOX 6086, Riyadh 11442 (Saudi Arabia)

    2011-11-15

    Radio-chromic film based on polyvinyl butyral (PVB) containing different concentrations of methyl red (MR) dye for 0.125, 0.25 and 0.5 mM has been introduced as high dose dosimeter. The dosimeters were irradiated with gamma ray from {sup 60}Co source at doses from 5 to 150 kGy. UV/vis spectrophotometry was used to investigate the optical density of unirradiated and irradiated films in terms of absorbance at 497 nm. The dose sensitivity of MR-PVB film dosimeter increases strongly with increase of absorbed dose as well as increase of concentrations of MR dye. The effects of irradiation temperature, relative humidity, dose rate and the stability of the response of the films after irradiation were investigated and found that these films could be used as routine dosimeter in industrial radiation processing. The useful dose range of developed MR-PVB film dosimeters is in the range of 5-100 kGy. - Highlights: > This manuscript relates to radio-chromic dosimeter for used in high dose radiation processing. > Methyl red MR contains azo group which breaking due to gamma radiation, resulting in color bleaching. > Radio-chromic film PVB containing different concentrations of MR dye has been introduced. > The color bleaching of MR-PVB film dosimeter increases gradually with increasing absorbed dose. > Response of MR-PVB films was slightly affected by irradiation temperature and relative humidity.

  14. Non-diffusing radiochromic micelle gel

    Science.gov (United States)

    Jordan, Kevin; Sekimoto, Masaya

    2010-11-01

    The addition of Laponite, a synthetic clay nanoparticle material to radiochromic leuco Malachite Green micelle hydrogel eliminates diffusion of the cationic dye by electrostatic binding. The clay nanoparticles also increased dose sensitivity ten-fold relative to the parent gel formulation. This material is a suitable 3D water equivalent dosimeter with optical CT readout.

  15. Alcohol solutions of triphenyl-tetrazolium chloride as high-dose radiochromic dosimeters

    Energy Technology Data Exchange (ETDEWEB)

    Kovacs, A.; Wojnarovits, L.; El-Assy, N.B.; Afeefy, H.Y.; Al-Sheikhly, M.; Walker, M.L.; McLaughlin, W.L. [National Inst. of Standards and Technology (NML), Gaithersburg, MD (United States). Ionizing Radiation Div.

    1995-10-01

    The radiolytic reduction of colorless tetrazolium salts in aqueous solution to the highly colored formazan dye is a well-known acid-forming radiation chemical reaction. Radiochromic thin films and three-dimensional hydrocolloid gels have been used for imaging and mapping absorbed dose distributions. The high solubility of 2,3,5-triphenyl-tetrazolium chloride (TTC) in alcohols provides a useful liquid dosimeter (45 mM TTC in aerated ethanol) and shows a linear response of absorbance increase ({lambda}{sub max} = 480 nm) with dose over the range 1-16 kGy. The linear molar absorption coefficient ({epsilon}{sub m}) for the formazan at the absorption peak is 1.5 x 10{sup 3} m{sup 2} mol{sup -1}, and the radiation chemical yield for the above solution is G (formazan) 0.014 {mu}mol J{sup -1}. The irradiation temperature coefficient is about 0.8 percent per degree Celsius rise in temperature over the temperature range 0-30 {sup o}C but is much larger between 30{sup o} and 60 {sup o}C. The unirradiated and irradiated solutions are stable over at least five days storage at normal laboratory temperature in the dark, but when stored in daylight at elevated temperature, the unirradiated solution in sealed amber glass ampoules undergoes slow photolytic dye formation, and the irradiated solution experiences initial fading and subsequent reversal (photochromism) when exposed to direct sunlight. (author).

  16. EDR-2 film response to charged particles.

    Science.gov (United States)

    Moyers, M F

    2008-05-21

    A useful tool for verifying segmental or dynamic treatments with multiple multi-leaf collimator positions, spinning range modulator propellors or magnetically scanned beams would be a film with a linear dose response up to several hundred centiGray, as typical for delivered treatments. Kodak has released an extended range film (EDR-2) that may satisfy this desire. In this study, dose response curves were obtained for several electron, proton, carbon ion and iron ion beams of different energies to determine the utility of this film.

  17. Fast infrared response of YBCO thin films

    Science.gov (United States)

    Ballentine, P. H.; Kadin, A. M.; Donaldson, W. R.; Scofield, J. H.; Bajuk, L.

    1990-01-01

    The response to short infrared pulses of some epitaxial YBCO films prepared by sputter deposition and by electron-beam evaporation is reported. The response is found to be essentially bolometric on the ns timescale, with some indirect hints of nonequilibrium electron transport on the ps scale. Fast switching could be obtained either by biasing the switch close to the critical current or by cooling the film below about 20 K. These results are encouraging for potential application to a high-current optically-triggered opening switch.

  18. Evaluation of the uncertainty in an EBT3 film dosimetry system utilizing net optical density.

    Science.gov (United States)

    León Marroquin, Elsa Y; Herrera González, José A; Camacho López, Miguel A; Villarreal Barajas, José E; García-Garduño, Olivia A

    2016-01-01

    Radiochromic film has become an important tool to verify dose distributions for intensity-modulated radiotherapy (IMRT) and quality assurance (QA) procedures. A new radiochromic film model, EBT3, has recently become available, whose composition and thickness of the sensitive layer are the same as those of previous EBT2 films. However, a matte polyester layer was added to EBT3 to prevent the formation of Newton's rings. Furthermore, the symmetrical design of EBT3 allows the user to eliminate side-orientation dependence. This film and the flatbed scanner, Epson Perfection V750, form a dosimetry system whose intrinsic characteristics were studied in this work. In addition, uncertainties associated with these intrinsic characteristics and the total uncertainty of the dosimetry system were determined. The analysis of the response of the radiochromic film (net optical density) and the fitting of the experimental data to a potential function yielded an uncertainty of 2.6%, 4.3%, and 4.1% for the red, green, and blue channels, respectively. In this work, the dosimetry system presents an uncertainty in resolving the dose of 1.8% for doses greater than 0.8 Gy and less than 6 Gy for red channel. The films irradiated between 0 and 120 Gy show differences in the response when scanned in portrait or landscape mode; less uncertainty was found when using the portrait mode. The response of the film depended on the position on the bed of the scanner, contributing an uncertainty of 2% for the red, 3% for the green, and 4.5% for the blue when placing the film around the center of the bed of scanner. Furthermore, the uniformity and reproducibility radiochromic film and reproducibility of the response of the scanner contribute less than 1% to the overall uncertainty in dose. Finally, the total dose uncertainty was 3.2%, 4.9%, and 5.2% for red, green, and blue channels, respectively. The above uncertainty values were obtained by mini-mizing the contribution to the total dose uncertainty

  19. Review of recent advances in radiochromic materials for 3D dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, Kevin, E-mail: Kevin.jordan@lhsc.on.c [London Regional Cancer Program, London Health Sciences Centre (United Kingdom); Department of Medical Biophysics, University of Western Ontario, London, ON (Canada)

    2010-11-01

    Recent papers concerning radiochromic films, plastics and hydrogels for 3D dosimetry are summarized. The utility of Presage, a radiochromic plastic, with optical CT readout was demonstrated for the following applications: motion and gated treatment delivery, commissioning of small fields for radiosurgery, {sup 192}Ir high dose rate brachytherapy source commissioning and as a 3D insert for IMRT credentialing tests with Radiological Physics Centre (RPC) phantoms. Preliminary performance for characterizing microbeams from a synchrotron with optic projection tomography readout demonstrated resolution of an 83 micron diameter beam. Hydrogel chemistries based on nonionic micelles for leuco malachite green and leuco crystal violet demonstrated that low diffusion gels can be designed by choosing product dyes that are poorly soluble and water and tend to remain in the micelles. Turnbull blue chemistry has been successfully adapted to form a non-diffusing gel as well. The performance of ferrous xylenol orange hydrogel layers doped with boron to form neutron dosimeters demonstrated another practical application. Polymerization hydrogels are alternate materials that can be read with optical CT scanners. High dose gradient applications in brachytherapy with 90Sr/90Y sources and proton dosimetry are presented for comparison.

  20. Review of recent advances in radiochromic materials for 3D dosimetry

    Science.gov (United States)

    Jordan, Kevin

    2010-11-01

    Recent papers concerning radiochromic films, plastics and hydrogels for 3D dosimetry are summarized. The utility of Presage", a radiochromic plastic, with optical CT readout was demonstrated for the following applications: motion and gated treatment delivery, commissioning of small fields for radiosurgery, 192Ir high dose rate brachytherapy source commissioning and as a 3D insert for IMRT credentialing tests with Radiological Physics Centre (RPC) phantoms. Preliminary performance for characterizing microbeams from a synchrotron with optic projection tomography readout demonstrated resolution of an 83 micron diameter beam. Hydrogel chemistries based on nonionic micelles for leuco malachite green and leuco crystal violet demonstrated that low diffusion gels can be designed by choosing product dyes that are poorly soluble and water and tend to remain in the micelles. Turnbull blue chemistry has been successfully adapted to form a non-difffusing gel as well. The performance of ferrous xylenol orange hydrogel layers doped with boron to form neutron dosimeters demonstrated another practical application. Polymerization hydrogels are alternate materials that can be read with optical CT scanners. High dose gradient applications in brachytherapy with 90Sr/90Y sources and proton dosimetry are presented for comparison.

  1. Development and implementation of own software for dosimetry multichannel film; Desarrollo e implementacion de un software propio para la dosimetria multicanal con pelicula radiocromica EBT2

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez Feltstrom, D.; Reyes Garcia, R.; Luis Simon, F. J.; Carrasco Herrera, M.; Sanchez Carmona, G.; Herrador Cordoba, M.

    2013-07-01

    The objective of this work is to develop its own software for multichannel film dosimetry Radiochromic EBT2. Compare the results obtained with its use in multichannel and single-channel dosimetry. Check that the multi-channel dosimetry eliminates much of the artifacts caused by dirt, fingerprints, scratches, etc. Radiochromic in film and scanner devices. (Author)

  2. TSC response of irradiated CVD diamond films

    CERN Document Server

    Borchi, E; Bucciolini, M; Guasti, A; Mazzocchi, S; Pirollo, S; Sciortino, S

    1999-01-01

    CVD diamond films have been irradiated with electrons, sup 6 sup 0 Co photons and protons in order to study the dose response to exposure to different particles and energies and to investigate linearity with dose. The Thermally Stimulated Current (TSC) has been studied as a function of the dose delivered to polymethilmetacrilate (PMMA) in the range from 1 to 12 Gy with 20 MeV electrons from a linear accelerator. The TSC spectrum has revealed the presence of two components with peak temperatures of about 470 and 520 K, corresponding to levels lying in the diamond band gap with activation energies of the order of 0.7 - 1 eV. After the subtraction of the exponential background the charge emitted during the heating scan has been evaluated and has been found to depend linearly on the dose. The thermally emitted charge of the CVD diamond films has also been studied using different particles. The samples have been irradiated with the same PMMA dose of about 2 Gy with 6 and 20 MeV electrons from a Linac, sup 6 sup 0 ...

  3. Responsive copolymer films obtained by ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Burillo, G.; Bucio, E. [Departamento de Quimica de Radiaciones y Radioquimica, Instituto de Ciencias Nucleares, UNAM, Circuito Exterior, Ciudad Universitaria, Mexico 04510, D. F. (Mexico)], e-mail: burillo@nucleares.unam.mx

    2009-07-01

    The graft copolymerization of ph and/or thermo sensitive monomers onto polymeric films can be achieved by different radiation methods which have great advantages compared to conventional methods. Their ph and thermal sensitivity properties, as well as LCST and critical ph point, have been studied by DSC, UV, FTIR, water contact angle and swelling. Graft copolymerization can be carried out by pre-irradiation oxidative and direct methods, using {sup 6}0Co gamma radiation or a Van de Graaff electron beam accelerator. The influence of synthesis conditions, such as pre-irradiation or radiation doses, dose rate, reaction time, monomer concentration, and reaction temperature are being studied. Advances in the field of responsive polymeric systems synthesized by ionizing radiation, their applications and promising future research on radiation graft polymerization and crosslinking will be discussed. (Author)

  4. Neuroticism modifies psychophysiological responses to fearful films.

    Directory of Open Access Journals (Sweden)

    Emmanuelle Reynaud

    Full Text Available BACKGROUND: Neuroticism is a personality component frequently found in anxious and depressive psychiatric disorders. The influence of neuroticism on negative emotions could be due to its action on stimuli related to fear and sadness, but this remains debated. Our goal was thus to better understand the impact of neuroticism through verbal and physiological assessment in response to stimuli inducing fear and sadness as compared to another negative emotion (disgust. METHODS: Fifteen low neurotic and 18 high neurotic subjects were assessed on an emotional attending task by using film excerpts inducing fear, disgust, and sadness. We recorded skin conductance response (SCR and corrugator muscle activity (frowning as indices of emotional expression. RESULTS: SCR was larger in high neurotic subjects than in low neurotics for fear relative to sadness and disgust. Moreover, corrugator activity and SCR were larger in high than in low neurotic subjects when fear was induced. CONCLUSION: After decades of evidence that individuals higher in neuroticism experience more intense emotional reactions to even minor stressors, our results indicate that they show greater SCR and expressive reactivity specifically to stimuli evoking fear rather than to those inducing sadness or disgust. Fear processing seems mainly under the influence of neuroticism. This modulation of autonomic activity by neurotics in response to threat/fear may explain their increased vulnerability to anxious psychopathologies such as PTSD (post traumatic stress disorder.

  5. Worlds of Possibilities in Response to Literature, Film, and Life.

    Science.gov (United States)

    Cox, Carole; Many, Joyce E.

    1989-01-01

    Examines the interrelationships between cinematic and literary works in terms of possible responses, or the possible worlds created when children encounter and create literary discourse. Notes that these responses reflect previous encounters with literature, film, and life. (MM)

  6. Psychophysiological response patterns to affective film stimuli.

    Directory of Open Access Journals (Sweden)

    Marieke G N Bos

    Full Text Available Psychophysiological research on emotion utilizes various physiological response measures to index activation of the defense system. Here we tested 1 whether acoustic startle reflex (ASR, skin conductance response (SCR and heart rate (HR elicited by highly arousing stimuli specifically reflect a defensive state and 2 the relation between resting heart rate variability (HRV and affective responding. In a within-subject design, participants viewed film clips with a positive, negative and neutral content. In contrast to SCR and HR, we show that ASR differentiated between negative, neutral and positive states and can therefore be considered as a reliable index of activation of the defense system. Furthermore, resting HRV was associated with affect-modulated characteristics of ASR, but not with SCR or HR. Interestingly, individuals with low-HRV showed less differentiation in ASR between affective states. We discuss the important value of ASR in psychophysiological research on emotion and speculate on HRV as a potential biological marker for demarcating adaptive from maladaptive responding.

  7. Improved Response of ZnO Films for Pyroelectric Devices

    Directory of Open Access Journals (Sweden)

    Shih-Yuan Yu

    2012-12-01

    Full Text Available Increasing the temperature variation rate is a useful method for enhancing the response of pyroelectric devices. A three-dimensional ZnO film was fabricated by the aerosol deposition (AD rapid process using the shadow mask method, which induces lateral temperature gradients on the sidewalls of the responsive element, thereby increasing the temperature variation rate. To enhance the quality of the film and reduce the concentration of defects, the film was further treated by laser annealing, and the integration of a comb-like top electrode enhanced the voltage response and reduced the response time of the resulting ZnO pyroelectric devices.

  8. 3D dose distribution measurements in brachytherapy using radiochromic gel dosimeters

    Energy Technology Data Exchange (ETDEWEB)

    Solc, J., E-mail: jsolc@cmi.c [Czech Metrology Institute-Inspectorate for Ionizing Radiation, Radiova 1, CZ 102 00 Prague 10 (Czech Republic); Sochor, V.; Kacur, M.; Smoldasova, J. [Czech Metrology Institute-Inspectorate for Ionizing Radiation, Radiova 1, CZ 102 00 Prague 10 (Czech Republic)

    2010-07-21

    The paper informs about the joint research project 'Increasing cancer treatment efficacy using 3D brachytherapy' which is a three-year project carried out in cooperation with European national metrology institutes and co-funded by the European Community's Seventh Framework Program for research and technological development. The goal of the project is to improve the measurement and standardization of dose-to-water rate by brachytherapy (BT) sources. The paper gives a summary of the individual parts of the whole project and describes in more detail the task of the Czech Metrology Institute: the determination of spatial distribution of dose-to-water by BT sources using radiochromic gel dosimeters, including a new gel with suppressed diffusion. The response of irradiated gels is evaluated using the optical cone beam computed tomography (CT) technique. The characteristics of the optical CT scanner are discussed with respect to CCD camera performance and light source. The optimized composition of the new gel and its dosimetric properties are highlighted. The results show that the radiochromic gels are convenient for measuring the 3D distribution of dose-to-water and could be an alternative to current methods of dose distribution measurements.

  9. 3D dose distribution measurements in brachytherapy using radiochromic gel dosimeters

    Science.gov (United States)

    Šolc, J.; Sochor, V.; Kačur, M.; Šmoldasová, J.

    2010-07-01

    The paper informs about the joint research project "Increasing cancer treatment efficacy using 3D brachytherapy" which is a three-year project carried out in cooperation with European national metrology institutes and co-funded by the European Community's Seventh Framework Program for research and technological development. The goal of the project is to improve the measurement and standardization of dose-to-water rate by brachytherapy (BT) sources. The paper gives a summary of the individual parts of the whole project and describes in more detail the task of the Czech Metrology Institute: the determination of spatial distribution of dose-to-water by BT sources using radiochromic gel dosimeters, including a new gel with suppressed diffusion. The response of irradiated gels is evaluated using the optical cone beam computed tomography (CT) technique. The characteristics of the optical CT scanner are discussed with respect to CCD camera performance and light source. The optimized composition of the new gel and its dosimetric properties are highlighted. The results show that the radiochromic gels are convenient for measuring the 3D distribution of dose-to-water and could be an alternative to current methods of dose distribution measurements.

  10. EDR-2 (registered) film response to charged particles

    Energy Technology Data Exchange (ETDEWEB)

    Moyers, M F [Department of Radiation Medicine, Loma Linda University Medical Center, Loma Linda, CA 92354 (United States)], E-mail: MFMoyers@roadrunner.com

    2008-05-21

    A useful tool for verifying segmental or dynamic treatments with multiple multi-leaf collimator positions, spinning range modulator propellors or magnetically scanned beams would be a film with a linear dose response up to several hundred centiGray, as typical for delivered treatments. Kodak has released an extended range film (EDR-2) that may satisfy this desire. In this study, dose response curves were obtained for several electron, proton, carbon ion and iron ion beams of different energies to determine the utility of this film. (note)

  11. Optical and Nonlinear Optical Response of Light Sensor Thin Films

    Directory of Open Access Journals (Sweden)

    S. Z. Weisz

    2005-04-01

    Full Text Available For potential ultrafast optical sensor application, both VO2 thin films andnanocomposite crystal-Si enriched SiO2 thin films grown on fused quartz substrates weresuccessfully prepared using pulsed laser deposition (PLD and RF co-sputteringtechniques. In photoluminescence (PL measurement c-Si/SiO2 film containsnanoparticles of crystal Si exhibits strong red emission with the band maximum rangingfrom 580 to 750 nm. With ultrashort pulsed laser excitation all films show extremelyintense and ultrafast nonlinear optical (NLO response. The recorded holography fromall these thin films in a degenerate-four-wave-mixing configuration shows extremelylarge third-order response. For VO2 thin films, an optically induced semiconductor-tometalphase transition (PT immediately occurred upon laser excitation. it accompanied.It turns out that the fast excited state dynamics was responsible to the induced PT. For c-Si/SiO2 film, its NLO response comes from the contribution of charge carriers created bylaser excitation in conduction band of the c-Si nanoparticles. It was verified byintroducing Eu3+ which is often used as a probe sensing the environment variations. Itturns out that the entire excited state dynamical process associated with the creation,movement and trapping of the charge carriers has a characteristic 500 ps duration.

  12. Investigation of nanoscale structures by small-angle X-ray scattering in a radiochromic dosimeter

    DEFF Research Database (Denmark)

    Skyt, Peter Sandegaard; Jensen, Grethe Vestergaard; Wahlstedt, Isak Hannes

    2014-01-01

    This study examines the nanoscale structures in a radiochromic dosimeter that was based on leuco-malachite-green dye and the surfactant sodium dodecyl sulfate (SDS) suspended in a gelatin matrix. Small-angle X-ray scattering was used to investigate the structures of a range of compositions...... of the dosimeter. When omitting gelatin, ellipsoidal micelles of SDS were formed with a core radius near 15 Å, an eccentricity of 1.6, and a head-group shell thickness near 7 Å. Gelatin significantly changed the micelles to a cylindrical shape with around three times lower core radius and four times larger shell...... thickness, which shows that the gelatin is present in the shell and the outer part of the core. Insight into the detailed structure might help to improve the dosimeter performance and increase the dose response to clinically relevant dose levels....

  13. PHOTOELECTRIC AND PHOTOMAGNETIC RESPONSE OF INDIUM-TIN OXIDE FILMS

    Directory of Open Access Journals (Sweden)

    I. K. Meshkovsky

    2015-11-01

    Full Text Available Subject of Research. The goal of the present research is investigation of photoelectric and photomagnetic response of ITO (indium-tin oxide films under UV laser irradiation. Method. The ITO films were prepared by magnetron sputtering with the thickness equal to 300nm. The films were irradiated by UV laser light with 248 nm wavelength in laser pulse energy range from 10 mJ to 150 mJ by KrF excimer laser. Metallic electrodes were deposited on the films. Information about the films surface topography was obtained by atomic force microscopy and scanning electron microscopy. The film structure was investigated by X-ray diffraction. Main Results. It was shown that voltage appears between metallic contacts under the UV light effect. The electric current was observed through resistive load. The anisotropy of electric field producing photoelectric response was demonstrated for the first time. The appearance of magnetic field under the laser light irradiation was observed for the first time. The dependence of the response voltage on the laser pulse energy was linear over the whole measured energy range. The following physical mechanism was proposed for description of the observed phenomenon: electric voltage is associated with non-uniform distribution of the average crystallite size along the film surface, and, therefore, with mean free path of the charge carriers along the film surface. Photomagnetic response could be associated with collective behavior of the large number of charged particles, created due to high intensity laser irradiation. Practical Relevance. The phenomenon being studied could be applied for creation of new optoelectronic devices, for example, modulators, optical detectors, etc. Particularly, due to linear dependence of photoelectric response on the laser pulse energy, this phenomenon is attractive for manufacturing of simple and cheap excimer laser pulse energy detectors.

  14. Photoacoustic response of thin films: Thermal memory influence

    Directory of Open Access Journals (Sweden)

    Nešić Mioljub

    2013-01-01

    Full Text Available On the basis of the generalized photoacoustic response model, which includes the influence of thermal memory on both thermoconducting and thermoelastic components, photoacoustic response of thin films is analyzed. It is demonstrated that the influence of thermal memory is manifested at frequencies above certain boundary frequency, which depends on thermal memory properties of the sample and its depth. A linear relation, linking heat propagation velocity and measured signal, is derived. Taking into account the confinement of the frequency range imposed by the measuring system, it is indicated that thermal memory properties of non-cristaline thin films can be determined in a photoacoustic experiment.

  15. Responsive Plasma Polymerized Ultrathin Nanocomposite Films

    Science.gov (United States)

    2012-01-01

    al. Soft Matter 2008;4:1796e8. [2] Schmidt S, Motschman H, Hellweg T, von Klitzing R. Polymer 2008;49:749e56. [3] Julthongpiput D, Lin Y-H, Teng J...et al. Nat Mater 2010;9:101e13. [7] Xu W, Yin X, He G, Zhao J, Wang H. Soft Matter 2012;8:3105e11. [8] Luzinov I, Minko S, Tsukruk VV. Prog Polym Sci...Films 2006;515:2618e24. [35] Yagüe JL, Gleason KK. Soft Matter 2012;8:2890e4. [36] Cheng X, Canavan HE, Stein MJ, Hull JR, Kweskin SJ, Wagner MS, et al

  16. Hydrogen response of porous palladium nano-films

    Science.gov (United States)

    Gupta, D.; Barman, P. B.; Hazra, S. K.

    2015-08-01

    Palladium nanoparticles were synthesized by reducing sodium tetrachloropalladate at 100°C using Ethylene Glycol as reducing agent. The nanoparticles were characterized by TEM (Transmission Electron Microscopy), and optical absorption spectroscopy. The average particle size (cleaned glass substrates. The high porosity of these films, as revealed by Atomic Force Microscopy (AFM) studies, made these films suitable for hydrogen sensor applications. The resistance of the films, measured by making silver paste contacts on the porous surface, changed upon exposure to 1000 ppm hydrogen in nitrogen. Optimum sensor response was obtained at 50°C, beyond which it deteriorated. The total response comprising of initial rise and subsequent fall in resistance, is due to the formation of Pd-hydrides (whose resistivity is higher relative to Pd), and closure of interparticle gaps due to lattice expansion of palladium, respectively. A detailed analysis of the results based on the sensing mechanism has been discussed in the paper.

  17. Transient hot-film sensor response in a shock tube

    Science.gov (United States)

    Roberts, A. S., Jr.; Ortgies, K. R.; Gartenberg, E.

    1989-01-01

    Shock tube experiments were performed to determine the response of a hot-film sensor, mounted flush on the side wall of a shock tube, to unsteady flow behind a normal shock wave. The present experiments attempt to isolate the response of the anemometer due only to the change in convective heat transfer at the hot-film surface. The experiments, performed at low supersonic shock speeds in air, are described along with the data acquisition procedure. The change in convective heat transfer is deduced from the data and the results are compared with those from transient boundary layer theory and another set of experimental results. Finally, a transient local heat transfer coefficient is formulated for use as the forcing function in a hot-film sensor instrument model simulation.

  18. Far infrared and Raman response in tetragonal PZT ceramic films

    Energy Technology Data Exchange (ETDEWEB)

    Buixaderas, E.; Kadlec, C.; Vanek, P.; Drnovsek, S.; Ursic, H.; Malic, B.

    2015-07-01

    PbZr{sub 0}.38Ti{sub 0}.62O{sub 3} and PbZr{sub 0}.36Ti{sub 0}.64{sub O}3 thick films deposited by screen printing on (0 0 0 1) single crystal sapphire substrates and prepared at two different sintering temperatures, were studied by Fourier-transform infrared reflectivity, time-domain TH{sub z} transmission spectroscopy and micro-Raman spectroscopy. The dielectric response is discussed using the Lichtenecker model to account for the porosity of the films and to obtain the dense bulk dielectric functions. Results are compared with bulk tetragonal PZT 42/58 ceramics. The dynamic response in the films is dominated by an overdamped lead-based vibration in the TH{sub z} range, as known in PZT, but its evaluated dielectric contribution is affected by the porosity and roughness of the surface. (Author)

  19. Josephson effects and microwave response of hts thin films

    Energy Technology Data Exchange (ETDEWEB)

    Gallop, J.C.; Radcliffe, W.J.; Langham, C.D. (National Physical Lab., Teddington (UK)); Sobolewski, R.; Kula, W.; Gierlowski, P. (Inst. of Physics, Polish Academy of Sciences, Warszawa (Poland))

    1989-12-01

    The response of thin films YBCO and BSCCO to microwave fields has been investigated. Some unexpected features have been observed and an explanation is given in terms of a robust fluxon lattice whose motion is correlated with the applied microwave field. (orig.).

  20. Dosimetric characterization and use of GAFCHROMIC EBT3 film for IMRT dose verification.

    Science.gov (United States)

    Casanova Borca, Valeria; Pasquino, Massimo; Russo, Giuliana; Grosso, Pierangelo; Cante, Domenico; Sciacero, Piera; Girelli, Giuseppe; La Porta, Maria Rosa; Tofani, Santi

    2013-03-04

    Radiochromic film has become an important tool to verify dose distributions in highly conformal radiation therapy such as IMRT. Recently, a new generation of these films, EBT3, has become available. EBT3 has the same composition and thickness of the sensitive layer of the previous EBT2 films, but its symmetric layer configuration allows the user to eliminate side orientation dependence, which is reported for EBT2 films. The most important EBT3 characteristics have been investigated, such as response at high-dose levels, sensitivity to scanner orientation and postirradiation coloration, energy and dose rate dependence, and orientation dependence with respect to film side. Additionally, different IMRT fields were measured with both EBT3 and EBT2 films and evaluated using gamma index analysis. The results obtained show that most of the characteristics of EBT3 film are similar to the EBT2 film, but the orientation dependence with respect to film side is completely eliminated in EBT3 films. The study confirms that EBT3 film can be used for clinical practice in the same way as the previous EBT2 film.

  1. Proton response of alanine based pellets and films

    Energy Technology Data Exchange (ETDEWEB)

    Onori, S.; De Angelis, C.; Fattibene, P. [Istituto Superiore di Sanita, Rome (Italy). Lab. di Fisica]|[Istituto Nazionale di Fisica Nucleare, Rome (Italy). Sezione Sanita; D`Errico, F. [DCMN, Universita degli Studi di Pisa (Italy); Egger, E. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Janovsky, I. [Nuclear Research Institute, Rez (Czech Republic)

    1997-01-01

    The performance of two different alanine-ESR systems (1 mm ISS pellets and NRI films) in therapy proton beams was checked against reference dosimetry provided by a Markus parallel plate ionization chamber. Irradiations were performed at the OPTIS facility of the PSI with a 62 MeV proton beam. The energy dependence of the response was derived from the analysis of film stacks irradiated with pristine beams. In fact, 250 {mu}m films allowed for a high resolution sampling of the proton slowing down mechanisms. Moreover pellets were irradiated in unmodulated and modulated beams. Alanine dose distributions were always in good agreement with the PSI Markus chamber results. Simple density scaling allowed for the conversion of the results to the dose distributions in water, consistently with the good tissue equivalence properties of these detectors. (Author).

  2. Absolute dose calibration of EBT3 Gafchromic films

    Science.gov (United States)

    Campajola, L.; Casolaro, P.; Di Capua, F.

    2017-08-01

    Radiochromic films are a commercial product available in a large number of different types. They can be used in a wide range of doses and fluence for different radiation types. The application in different fields such as photon and ion radiotherapy, industrial irradiations for modification of materials, sterilization and radiation hardness, makes very interesting to study the response of the films to more radiation types and energies. The aim of this work is to define the characteristics and dynamic range of EBT3 Gafchromic films for some specific applications. To this end the behaviour of EBT3 Gafchromic films has been studied in depth by comparing the films response to different radiation types. In particular, this work has been carried out to establish a useful procedure to monitor the electronic device's irradiations for radiation hardness applications. The dynamic range of EBT3 films has been found to be compatible with the typically demanded fluences and the calibration has been found to be absolute, namely independent of the incident radiation type. The easy handling, the possibility of replacement of the films and high resolution power allow the monitoring of irradiations with a high range of doses.

  3. The radiation response of mesoporous nanocrystalline zirconia thin films

    Science.gov (United States)

    Manzini, Ayelén M.; Alurralde, Martin A.; Giménez, Gustavo; Luca, Vittorio

    2016-12-01

    The next generation of nuclear systems will require materials capable of withstanding hostile chemical, physical and radiation environments over long time-frames. Aside from its chemical and physical stability, crystalline zirconia is one of the most radiation tolerant materials known. Here we report the first ever study of the radiation response of nanocrystalline and mesoporous zirconia and Ce3+-stabilized nanocrystalline zirconia (Ce0.1Zr0.9O2) thin films supported on silicon wafers. Zirconia films prepared using the block copolymer Brij-58 as the template had a thickness of around 60-80 nm. In the absence of a stabilizing trivalent cation they consisted of monoclinic and tetragonal zirconia nanocrystals with diameters in the range 8-10 nm. Films stabilized with Ce3+ contained only the tetragonal phase. The thin films were irradiated with iodine ions of energies of 70 MeV and 132 keV at low fluences (1013 - 1014 cm-2) corresponding to doses of 0.002 and 1.73 dpa respectively, and at 180 keV and high fluences (2 × 1016 cm-2) corresponding to 82.4 dpa. The influence of heavy ion irradiation on the nanocrystalline structure was monitored through Rietveld analysis of grazing incidence X-ray diffraction (GIXRD) patterns recorded at angles close to the critical angle to ensure minimum contribution to the diffraction pattern from the substrate. Irradiation of the mesoporous nanocrystalline zirconia thin films with 70 MeV iodine ions, for which electronic energy loss is dominant, resulted in slight changes in phase composition and virtually no change in crystallographic parameters as determined by Rietveld analysis. Iodine ion bombardment in the nuclear energy loss regime (132-180 keV) at low fluences did not provoke significant changes in phase composition or crystallographic parameters. However, at 180 keV and high fluences the monoclinic phase was totally eliminated from the GIXRD pattern of films prepared at both 350 and 500 °C implying either a monoclinic

  4. Linearization of EBT3 film dose response and virtual film dosimetry for SBRT quality assurance

    Science.gov (United States)

    Cai, M.; Archibald-Heeren, B.; Wang, Y.; Metcalfe, P.

    2017-01-01

    EBT3 film offers high spatial resolution and low energy dependence, making it a suitable choice for quality assurance where high dose gradients are present, such as the case for SBRT. This work presents a simple method to adjust scanner settings so that dose response becomes linear. This linearity eliminates the need to obtain a calibration curve and associated uncertainties in curve fitting. Relative dosimetry can be performed after dose normalization to a reference point. Linearity is also a more robust condition than calibration curve with respect to scanner warm-up conditions, resulting in reduced uncertainty in dose measurement. An in-house developed program reads the film scan and a 2D dose map then constructs both to virtual films using grayscale values. Film intensity value was normalized to dose at reference point. Relative dosimetry was performed by comparing the two resulting images. Patient specific quality assurance was conducted for two SBRT cases. In both plans more than 95% gamma function points passed the gamma criteria of 2%/3mm.

  5. Fast-response humidity-sensing films based on methylene blue aggregates formed on nanoporous semiconductor films

    Science.gov (United States)

    Ishizaki, Ryota; Katoh, Ryuzi

    2016-05-01

    We prepared fast-response colorimetric humidity-sensing (vapochromic) films based on methylene blue adsorption onto nanoporous semiconductor (TiO2, Al2O3) films. Color changes caused by changes of humidity could be easily identified visually. A characteristic feature of the vapochromic films was their fast response to changes of humidity. We found that the response began to occur within 10 ms. The response was rapid because all the methylene blue molecules attached to the nanoporous semiconductor surface were directly exposed to the environment. We also deduced that the color changes were caused by structural changes of the methylene blue aggregates on the surface.

  6. The elastic mechanical response of supported thin polymer films.

    Science.gov (United States)

    Chung, Peter C; Glynos, Emmanouil; Green, Peter F

    2014-12-23

    Nanoindentation studies of the mechanical properties of sufficiently thin polymer films, supported by stiff substrates, indicate that the mechanical moduli are generally higher than those of the bulk. This enhancement of the effective modulus, in the thickness range of few hundred nanometers, is indicated to be associated with the propagation and impingement of the indentation tip induced stress field with the rigid underlying substrate; this is the so-called "substrate effect". This behavior has been rationalized completely in terms of the moduli and Poisson's ratios of the individual components, for the systems investigated thus far. Here we show that for thin supported polymer films, in general, information regarding the local chain stiffness and local vibrational constants of the polymers provides an appropriate rationalization of the overall mechanical response of polymers of differing chemical structures and polymer-substrate interactions. Our study should provide impetus for atomistic simulations that carefully account for the role of intermolecular interactions on the mechanical response of supported polymer thin films.

  7. Radiochromic dye dosimeter solutions as reference measurement systems

    Science.gov (United States)

    Farahani, Mahnaz; McLaughlin, William L.

    Solutions of leucocyanides of triphenylmethane dyes in organic solvents are designed as stable reference dosimeters for large radiation doses, with useful characteristics, both for steady-state and pulsed radiation fields. These radiochromic solutions may be used in conventional glass ampoules to cover the absorbed dose range 10 2-10 4kGy, when analyzed spectrophotometrically at visible wavelengths at the maxima of radiation-induced absorption bands. The radiation chemical yields of dye formation ( G-values) and molar linear absorption coefficients (ɛ m) of the dyes in several formulations, with and without dissolved polymer and weak oxidizing agents, are established. The most stable formulation before and after irradiation consists of new fuchsin cyanide in a mixture of dimethyl sulfoxide and triethyl phosphate containing small amounts of acetic acid, p-nitrobenzoic acid and polyvinyl butyral. The useful range of doses for this solution is 10 2-4 x 10 3 Gy when measured at 557 nm wavelength. The radiation chemical yield, G-value for dye production, is 3.35 x 10 15 molec J -1 (0.0055 μmol J -1) and the value of ɛ m at this wavelength is 1.32 x 10 5 M -1 cm -1.

  8. A dual-stimuli-responsive fluorescent switch ultrathin film

    Science.gov (United States)

    Li, Zhixiong; Liang, Ruizheng; Liu, Wendi; Yan, Dongpeng; Wei, Min

    2015-10-01

    Stimuli-responsive fluorescent switches have shown broad applications in optical devices, biological materials and intelligent responses. Herein, we describe the design and fabrication of a dual-stimuli-responsive fluorescent switch ultrathin film (UTF) via a three-step layer-by-layer (LBL) technique: (i) encapsulation of spiropyran (SP) within an amphiphilic block copolymer (PTBEM) to give the (SP@PTBEM) micelle; (ii) the mixture of riboflavin (Rf) and poly(styrene 4-sulfonate) (PSS) to enhance the adhesion ability of small molecules; (iii) assembly of negatively charged SP@PTBEM and Rf-PSS with cationic layered double hydroxide (LDH) nanoplatelets to obtain the (Rf-PSS/LDH/SP@PTBEM)n UTFs (n: bilayer number). The assembly process of the UTFs and their luminescence properties, as monitored by fluorescence spectroscopy and scanning electron microscopy (SEM), present a uniform and ordered layered structure with stepwise growth. The resulting Rf-PSS/LDH/SP@PTBEM UTF serves as a three-state switchable multicolor (green, yellow, and red) luminescent system based on stimulation from UV/Vis light and pH, with an acceptable reversibility. Therefore, this work provides a facile way to fabricate stimuli-responsive solid-state film switches with tunable-color luminescence, which have potential applications in the areas of displays, sensors, and rewritable optical memory and fluorescent logic devices.Stimuli-responsive fluorescent switches have shown broad applications in optical devices, biological materials and intelligent responses. Herein, we describe the design and fabrication of a dual-stimuli-responsive fluorescent switch ultrathin film (UTF) via a three-step layer-by-layer (LBL) technique: (i) encapsulation of spiropyran (SP) within an amphiphilic block copolymer (PTBEM) to give the (SP@PTBEM) micelle; (ii) the mixture of riboflavin (Rf) and poly(styrene 4-sulfonate) (PSS) to enhance the adhesion ability of small molecules; (iii) assembly of negatively charged SP

  9. Picosecond Photovoltaic Response in Tilted Lanthanum Doped Manganite Films

    Directory of Open Access Journals (Sweden)

    Zhiqing Lu

    2013-01-01

    Full Text Available Anisotropic picosecond photovoltaic responses were observed in lanthanum doped manganite LaxCa1-xMnO3 (x=0.67 and 0.4 thin films, which were deposited on miscut LaSrAlO4 substrates under ultraviolet pulsed laser irradiation without external bias. The 10%–90% rise time and the full width at half maximum of La0.67Ca0.33MnO3 were 470 and 585 ps, respectively, and those of La0.4Ca0.6MnO3 were 220 and 515 ps. The photovoltage sensitivities of La0.67Ca0.33MnO3 and La0.4Ca0.6MnO3, which are sensitive to the concentrations of lanthanum of the samples, are 0.28 V/mJ and 3.47 V/mJ, respectively. The photosensitivity in the films deposited on MgO is higher than that in those deposited on LaSrAlO4 substrates, for it has a big lattice mismatch. These results should open a route for the application of lanthanum doped manganite as an ultrafast photodetector material.

  10. SU-E-T-386: Evaluation of EBT3 Film Response in Different Batches

    Energy Technology Data Exchange (ETDEWEB)

    Escarcia, F [Universidad Nacional Autonoma de Mexico, Mexico Df, DF (Mexico); Herrera, J; Garcia, O [Instituto Nacional de Neurologia y Neurocirugia, Mexico Df, DF (Mexico)

    2015-06-15

    Purpose: To investigate the uniformity of film response of EBT3 film of two different film batches. It has been reported that the response of the EBT film family is not homogenous between film batches. The later may have an impact in the dosimetry of small radiotherapy beams. Methods: A solid water phantom was used for dosimetric measurements. EBT3 film irradiation was performed with a 6 MV photon beam at 5 cm depth with a SAD of 100 cm. All irradiations were performed perpendicularly to the film plane covering the dose range 1 to 10 Gy. Three square field sizes were used to analyze the film response energy dependence: 10, 5 and 1 cm{sup 2}. Two batches of film EBT3 were used #A03181302 (B1) and #03031403 (B2). Film read out was carrying out with an Epson Perfection V750-Pro flatbed scanner in transmission mode with a spatial resolution of 72 dpi, with all post-processing and colour management options turned off, using 48 bits RGB colour depth. The scans were analyzed with the red channel. Results: The results shown that there were differences between the film response for each batch. The differences between batches for 1 Gy were 2%, 6% and 12% for 10, 5 and 1 cm2 square field sizes, respectively. The differences found for 10 Gy were 13%, 14% and 13% for 10, 5 and 1 cm{sup 2} square field sizes, respectively. It can be observed that the dependence with field size dismissed for higher doses. The later may be due to film response saturation at 10 Gy. Conclusion: The EBT3 film -as its predecessors-, it suffer for inter-batch variability in the film response. Further research is required to assess the possible impact in small beam dosimetry.

  11. Fluorescent diazapyrenium films and their response to dopamine.

    Science.gov (United States)

    Cejas, Mabel A; Raymo, Françisco M

    2005-06-21

    Experimental protocols for the preparation of 2,7-diazapyrenium films on glass, quartz, and silica in one or two steps have been developed. The one-step procedures involve the adsorption of preformed 2,7-diazapyrenium dications with trimethoxysilane appendages to the hydroxylated substrates. The two-step procedures consist in the formation of interfacial polysiloxanes with pendent chloromethyl groups and their subsequent coupling to monoalkylated 2,7-diazapyrene derivatives. For the modification of the glass slides, the silane building blocks have been copolymerized with Si(OEt)4. The transmission absorption spectra of the coated glass and quartz slides all reveal the characteristic bands of the 2,7-diazapyrenium chromophores. Combustion analyses confirm the adsorption of the 2,7-diazapyrenium dications on the silica particles. A comparison of the surface coverages of all films indicates that the one-step procedures are significantly more efficient than their two-step counterparts. Furthermore, the copolymerization of the silane building blocks with Si(OEt)4 translates into an increase in 2,7-diazapyrenium surface coverage of approximately 1 order of magnitude. The emission and excitation spectra of all modified substrates reveal the characteristic bands of the 2,7-diazapyrenium fluorophores. The fluorescence quantum yield, however, decreases as the surface coverage increases. Presumably, interactions between adjacent fluorophores encourage nonradiative deactivation pathways. With the exception of the glass slides modified in two steps, all films respond to the presence of dopamine, in aqueous environments at neutral pH, with pronounced decreases in emission intensity. The association of the 2,7-diazapyrenium acceptors and dopamine donors at the solid/liquid interface is responsible for fluorescence quenching. The glass slides and silica particles modified in one step are the most sensitive substrates and respond to sub-millimolar concentrations of dopamine with

  12. Absolute dosimetric characterization of Gafchromic EBT3 and HDv2 films using commercial flat-bed scanners and evaluation of the scanner response function variability

    Energy Technology Data Exchange (ETDEWEB)

    Chen, S. N.; Revet, G.; Fuchs, J. [LULI-CNRS, Ecole Polytechnique, CEA: Universite Paris-Saclay, UPMC Univ Paris 06, Sorbonne Universities, F-91128 Palaiseau Cedex (France); Institute of Applied Physics, 46 Ulyanov Street, 603950 Nizhny Novgorod (Russian Federation); Gauthier, M.; Glenzer, S.; Propp, A. [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Bazalova-Carter, M. [Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia V8P 5C2 (Canada); Bolanos, S. [LULI-CNRS, Ecole Polytechnique, CEA: Universite Paris-Saclay, UPMC Univ Paris 06, Sorbonne Universities, F-91128 Palaiseau Cedex (France); Riquier, R. [LULI-CNRS, Ecole Polytechnique, CEA: Universite Paris-Saclay, UPMC Univ Paris 06, Sorbonne Universities, F-91128 Palaiseau Cedex (France); CEA, DAM, DIF, F-91297 Arpajon (France); Antici, P. [INRS-EMT, Varennes, J3X1S2 Québec (Canada); Morabito, A. [ELI-ALPS, ELI-HU non profit kft, Dugonics ter 13, H-6720, Szeged (Hungary); Starodubtsev, M. [Institute of Applied Physics, 46 Ulyanov Street, 603950 Nizhny Novgorod (Russian Federation)

    2016-07-15

    Radiochromic films (RCF) are commonly used in dosimetry for a wide range of radiation sources (electrons, protons, and photons) for medical, industrial, and scientific applications. They are multi-layered, which includes plastic substrate layers and sensitive layers that incorporate a radiation-sensitive dye. Quantitative dose can be retrieved by digitizing the film, provided that a prior calibration exists. Here, to calibrate the newly developed EBT3 and HDv2 RCFs from Gafchromic™, we used the Stanford Medical LINAC to deposit in the films various doses of 10 MeV photons, and by scanning the films using three independent EPSON Precision 2450 scanners, three independent EPSON V750 scanners, and two independent EPSON 11000XL scanners. The films were scanned in separate RGB channels, as well as in black and white, and film orientation was varied. We found that the green channel of the RGB scan and the grayscale channel are in fact quite consistent over the different models of the scanner, although this comes at the cost of a reduction in sensitivity (by a factor ∼2.5 compared to the red channel). To allow any user to extend the absolute calibration reported here to any other scanner, we furthermore provide a calibration curve of the EPSON 2450 scanner based on absolutely calibrated, commercially available, optical density filters.

  13. Energy Response and Physical Reoperties of NTA* Personnel NeutronDosimeter Nuclear Track Film

    Energy Technology Data Exchange (ETDEWEB)

    Lehman, Richard L

    1961-03-13

    This paper reports the chemical and physical properties of the NTA film packet. It correlates with these properties the response of this packet to neutrons of various energies. In this correlation the concept of the track unit is introduced as a basic unit for reporting film-packet response.

  14. Numerical Analysis of Transient Temperature Response of Soap Film

    Science.gov (United States)

    Tanaka, Seiichi; Tatesaku, Akihiro; Dantsuka, Yuki; Fujiwara, Seiji; Kunimine, Kanji

    2015-11-01

    Measurements of thermophysical properties of thin liquid films are important to understand interfacial phenomena due to film structures composed of amphiphilic molecules in soap film, phospholipid bilayer of biological cell and emulsion. A transient hot-wire technique for liquid films less than 1 \\upmu m thick such as soap film has been proposed to measure the thermal conductivity and diffusivity simultaneously. Two-dimensional heat conduction equations for a solid cylinder with a liquid film have been solved numerically. The temperature of a thin wire with liquid film increases steeply with its own heat generation. The feasibility of this technique is verified through numerical experiments for various thermal conductivities, diffusivities, and film thicknesses. Calculated results indicate that the increase in the volumetric average temperature of the thin wire sufficiently varies with the change of thermal conductivity and diffusivity of the soap film. Therefore, the temperature characteristics could be utilized to evaluate both the thermal conductivity and diffusivity using the Gauss-Newton method.

  15. A quantum size effect in infrared optical response of aliminum thin films

    Science.gov (United States)

    Xiao, Mufei; Villagómez, Ricardo

    1998-03-01

    We present a quantum mechanical calculation for diamagnetic optical response of metallic thin films. The study shows that in the optical response of the thin films, such as the reflectance, there exists an oscillatory dependence on the film thickness when the film contents less than about 100 monolayers, and the period of the oscillation corresponds to one or few monolayers. We show that the oscillation can be attributed to the intraband fluctuations of the valence electrons at discrete energy states as well as at continuum energy states. For comparison, we present some experimental results for Aluminum thin films of thickness 5 ~112ÅInfrared (λ=9.2μ m) optical reflectance of the films was measured, which demonstrates experimentally the predicted oscillating fine structures.

  16. A stimuli-responsive and bioactive film based on blended polyvinyl alcohol and cashew gum polysaccharide.

    Science.gov (United States)

    Silva, Fábio E F; Batista, Karla A; Di-Medeiros, Maria C B; Silva, Cassio N S; Moreira, Bruna R; Fernandes, Kátia F

    2016-01-01

    In this study, a stimuli-responsive, biodegradable and bioactive film was produced by blending cashew gum polysaccharide (CGP) and polyvinyl alcohol (PVA). The film presented malleability and mechanical properties enabling an easy handling. Wetting the film changed the optical property from opacity to levels of transparency higher than 70% and resulted in up to 2-fold increase in its superficial area. Different swelling indexes were obtained varying the pH of solvent, which allows classifying the CGP/PVA film as pH sensitive stimuli-responsive material. The bioactivity was achieved through covalent immobilization of papain, which remained active after storage of CGP/PVA-papain film for 24h in the presence of buffer or in a dry form. These results evidenced that CGP/PVA-papain film is a very promising material for biomedical applications.

  17. Influence of films thickness and structure on the photo-response of ZnO films

    Science.gov (United States)

    Ali Yıldırım, M.; Ateş, Aytunç

    2010-04-01

    ZnO thin films were grown using Successive Ionic Layer Adsorption and Reaction (SILAR) method on glass substrates at room temperature. Annealing temperatures and film thickness effect on the structural, morphological, optical and electrical properties of the films were studied. For this as-deposited films were annealed at 200, 300, 400 and 500 °C for 30 min in oxygen atmosphere. The X-ray diffraction (XRD) and scanning electron microscopy (SEM) studies showed that the films are covered well with glass substrates and have good polycrystalline structure and crystalline levels. The film thickness effect on band gap values was investigated and band gap values were found to be within the range of 3.49-3.19 eV. The annealing temperature and light effect on electrical properties of the films were investigated and it was found that the current increased with increasing light intensity. The resistivity values were found as 10 5 Ω-cm for as-deposited films from electrical measurements. The resistivity decreased decuple with annealing temperature and decreased centuple with light emission for annealed films.

  18. Local Electrical Response in Alkaline-Doped Electrodeposited CuInSe2/Cu Films

    Directory of Open Access Journals (Sweden)

    Javier A. Barón-Miranda

    2016-12-01

    Full Text Available The local electrical response in alkaline-doped CuInSe2 films prepared by single-step electrodeposition onto Cu substrates was studied by current-sensing atomic force microscopy. The CuInSe2 (CIS films were prepared from single baths containing the dopant ions (Li, Na, K or Cs and were studied by X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy and photocurrent response. Increased crystallinity and surface texturing as the ion size increased were observed, as well as an enhanced photocurrent response in Cs-doped CIS. Li- and Na-doped films had larger conductivity than the undoped film while the K- and Cs-doped samples displayed shorter currents and the current images indicated strong charge accumulation in the K- and Cs-doped films, forming surface capacitors. Corrected current-sensing AFM IV curves were adjusted with the Shockley equation.

  19. Luminescent metal-organic framework films as highly sensitive and fast-response oxygen sensors.

    Science.gov (United States)

    Dou, Zhongshang; Yu, Jiancan; Cui, Yuanjing; Yang, Yu; Wang, Zhiyu; Yang, Deren; Qian, Guodong

    2014-04-16

    Luminescent metal-organic framework films, CPM-5⊃Tb(3+) and MIL-100(In)⊃Tb(3+), have been constructed by postfunctionalization of two porous indium-organic frameworks with different structures, respectively. The MIL-100(In)⊃Tb(3+) film shows high oxygen sensitivity (KSV = 7.59) and short response/recovery time (6 s/53 s).

  20. Combining the Converse Humidity/Resistance Response Behaviors of RGO Films for Flexible Logic Devices

    KAUST Repository

    Tai, Yanlong

    2017-03-23

    Carbon nanomaterials have excellent humidity sensing performance. Here, we demonstrate that reduced-graphene-oxide- (rGO) based conductive films with different thermal reduction times have gradient and invertible humidity/electrical resistance responses: rGO films (< 11 h, negative response, regarded as a signal of “0”), rGO films (around 11-13 h, balance point) and rGO films (> 13 h, negative response, regarded as a signal of “1”). We propose a new mechanism that describes a “scale”-like model for rGO films to explain these behaviors based on contributions from Ohm-contact resistance and capacitive reactance at interplate junctions, and intrinsic resistances of the nanoplates, respectively. This mechanism is accordingly validated via a series of experiments and electrical impedance spectroscopies, which complement more classical models based on proton conductivity. To explore the practical applications of the converse humidity/resistance responses, three simple flexible logic devices were developed, i) a rGO pattern for humidity-insensitive conductive film, which has the potential to greatly improve the stability of carbon-based electrical device to humidity; ii) a Janus pattern of rGO films for gesture recognition, which is very useful to human/machine interactions; iii) a sandwich pattern of rGO films for 3-dimensional (3D) noncontact sensing, which will be complementary to existing 3D touch technique.

  1. Radiation-induced color bleaching of methyl red in polyvinyl butyral film dosimeter

    Science.gov (United States)

    Al Zahrany, Awad A.; Rabaeh, Khalid A.; Basfar, Ahmed A.

    2011-11-01

    Radio-chromic film based on polyvinyl butyral (PVB) containing different concentrations of methyl red (MR) dye for 0.125, 0.25 and 0.5 mM has been introduced as high dose dosimeter. The dosimeters were irradiated with gamma ray from 60Co source at doses from 5 to 150 kGy. UV/vis spectrophotometry was used to investigate the optical density of unirradiated and irradiated films in terms of absorbance at 497 nm. The dose sensitivity of MR-PVB film dosimeter increases strongly with increase of absorbed dose as well as increase of concentrations of MR dye. The effects of irradiation temperature, relative humidity, dose rate and the stability of the response of the films after irradiation were investigated and found that these films could be used as routine dosimeter in industrial radiation processing. The useful dose range of developed MR-PVB film dosimeters is in the range of 5-100 kGy.

  2. TTC-Pluronic 3D radiochromic gel dosimetry of ionizing radiation

    Science.gov (United States)

    Kozicki, Marek; Kwiatos, Klaudia; Kadlubowski, Slawomir; Dudek, Mariusz

    2017-07-01

    This work reports the first results obtained using a new 3D radiochromic gel dosimeter. The dosimeter is an aqueous physical gel matrix made of poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) (Pluronic F-127, PEO-PPO-PEO) doped with a representative of tetrazolium salts, 2, 3, 5-triphenyltetrazolium chloride (TTC). There were several reasons for the choice of Pluronic as a gel forming substrate: (i) the high degree of transparency and colourlessness; (ii) the possibility of gel dosimeter preparation at both high and low temperatures due to the phase behaviour of Pluronic; (iii) the broad temperature range over which the TTC-Pluronic dosimeter is stable; and (iv) the non-toxicity of Pluronic. A reason for the choice of TTC was its ionising radiation-induced transformation to water-insoluble formazan, which was assumed to impact beneficially on the spatial stability of the dose distribution. If irradiated, the TTC-Pluronic gels become red but transparent in the irradiated part, while the non-irradiated part remains crystal clear. The best obtained composition is characterised by  dose threshold, a dose sensitivity of 0.002 31 (Gy  ×  cm)-1, a large linear dose range of  >500 Gy and a dynamic dose response much greater than 500 Gy (7.5% TTC, 25% Pluronic F-127, 50 mmol dm-3 tetrakis). Temporal and spatial stability studies revealed that the TTC-Pluronic gels (7.5% TTC, 25% Pluronic F-127) were stable for more than one week. The addition of compounds boosting the gels’ dose performance caused deterioration of the gels’ temporal stability but did not impact the stability of the 3D dose distribution. The proposed method of preparation allows for the repeatable manufacture of the gels. There were no differences observed between gels irradiated fractionally and non-fractionally. The TTC-Pluronic dose response might be affected by the radiation source dose rate—this, however, requires further examination.

  3. A study on the microwave responses of YBCO and TBCCO thin films by coplanar resonator technique

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    YBa2CuaO7(YBCO) thin films have been prepped by thermal coevaporation on LaAlO3 (LAO) substrates, and Tl2Ba2CaCu2O8(TBCCO) thin films are synthesized by magnetron sputtering method on LAO substrates. The transition temperature Tc is 90 K for YBCO/LAO and 104K for TBCCO/LAO. Microwave responses of the films are studied systematically by coplanar resonator technique. Energu gaps of the films obtained are △0 = 1.04kBTc for YBCO films and △0 = 0.84kBTc for TBCCO films by analysing the temperature dependence of resonant frequencies of coplanar resonator. Penetration depth at 0K λ0 = 198 nm for YBCO films and λ0 = 200 nm for TBCCO films could also be obtained by using the weak coupling theory and two fluid theory. Results of penetration depth and energy gap confirm the weak coupling properties of the films. In addition, microwave surface resistances Rs of YBCO/LAO and TBCCO/LAO are also investigated by analysing the quality factor and insert loss of the coplanar resonator. Surface resistance of TBCCO/LAO is less than that of YBCO/LAO, so that TBCCO/LAO films may have more potential applications.

  4. Terahertz response of GaN thin films.

    Science.gov (United States)

    Tsai, Tsong-Ru; Chen, Shi-Jie; Chang, Chih-Fu; Hsu, Sheng-Hsien; Lin, Tai-Yuan; Chi, Cheng-Chung

    2006-05-29

    The indices of refraction, extinction constants and complex conductivities of the GaN film for frequencies ranging from 0.2 to 2.5 THz are obtained using THz time-domain spectroscopy. The results correspond well with the Kohlrausch stretched exponential model. Using the Kohlrausch model fit not only provides the mobility of the free carriers in the GaN film, but also estimates the relaxation time distribution function and average relaxation time.

  5. Predicting Emotional Responses to Horror Films from Cue-Specific Affect.

    Science.gov (United States)

    Neuendorf, Kimberly A.; Sparks, Glenn G.

    1988-01-01

    Assesses individuals' fear and enjoyment reactions to horror films, applying theories of cognition and affect that predict emotional responses to a stimulus on the basis of prior affect toward specific cues included in that stimulus. (MM)

  6. Characterization of Al2O3 optically stimulated luminescence films for 2D dosimetry using a 6 MV photon beam

    Science.gov (United States)

    Ahmed, M. F.; Shrestha, N.; Schnell, E.; Ahmad, S.; Akselrod, M. S.; Yukihara, E. G.

    2016-11-01

    This work evaluates the dosimetric properties of newly developed optically stimulated luminescence (OSL) films, fabricated with either Al2O3:C or Al2O3:C,Mg, using a prototype laser scanning reader, a developed image reconstruction algorithm, and a 6 MV therapeutic photon beam. Packages containing OSL films (Al2O3:C and Al2O3:C,Mg) and a radiochromic film (Gafchromic EBT3) were irradiated using a 6 MV photon beam using different doses, field sizes, with and without wedge filter. Dependence on film orientation of the OSL system was also tested. Diode-array (MapCHECK) and ionization chamber measurements were performed for comparison. The OSLD film doses agreed with the MapCHECK and ionization chamber data within the experimental uncertainties (response was approximately linear from the MDD up to a few grays (the linearity correction was  response, resolution and dosimetric properties. The negligible background and potential simple calibration make these OSLD films suitable for remote audits. The characterization presented here may motivate further commercial development of a 2D dosimetry system based on the OSL from Al2O3:C or Al2O3:C,Mg.

  7. Optical response and activity of ultrathin films of topological insulators

    Science.gov (United States)

    Parhizgar, Fariborz; Moghaddam, Ali G.; Asgari, Reza

    2015-07-01

    We investigate the optical properties of ultrathin film of a topological insulator in the presence of an in-plane magnetic field. We show that due to the combination of the overlap between the surface states of the two layers and the magnetic field, the optical conductivity can show strong anisotropy. This leads to the effective optical activity of the ultrathin film by influencing the circularly polarized incident light. Intriguingly, for a range of magnetic fields, the reflected and transmitted lights exhibit elliptic character. Even for certain values almost linear polarizations are obtained, indicating that the thin film can act as a polaroid in reflection. All these features are discussed in the context of the time-reversal symmetry breaking as one of the key ingredients for the optical activity.

  8. Some spectral response characteristics of ZnTe thin films

    Indian Academy of Sciences (India)

    R Sarma; N Mazumdar; H L Das

    2006-02-01

    Zinc telluride thin films have been grown at room temperature and higher temperature substrates by thermal evaporation technique in a vacuum of 10-6 torr. A main peak in the photocurrent is observed at 781 nm (1.58 eV) with two lower amplitude peaks on the lower wavelength side and one on higher wavelength side. The evaluated thermal activation energy is found to correspond well with the main spectral peak. From these studies it can be inferred that temperatures up to 453 K is still in the extrinsic conductivity region of the studied ZnTe thin films.

  9. NOTE: Study of Gafchromic® EBT film response over a large dose range

    Science.gov (United States)

    Martišíková, Mária; Jäkel, Oliver

    2010-05-01

    Presently Gafchromic EBT films are widely used for relative dose verification in standard radiation therapy using high-energy photons, inclusive IMRT. The use of films for dosimetry in medical ion beams is more complicated due to the strongly inhomogeneous dose deposition by ions on microscopic level. Track structure models, presently used to describe dosimeter response as a function of the ion field properties, are based on input information which can be obtained from the film response in photon beams. We therefore studied the performance of Gafchromic EBT films, ancestors of currently available EBT2 films, in 60Co photon beams. The dose-response curve was measured from 7.5 × 10-2 Gy to 3 × 104 Gy. The dynamic range, linearity and dose rate dependence of this calibration curve were studied. A high saturation dose of 3 × 103 Gy, and thus a large dynamic range, was observed. No signs of supralinearity and bleaching due to radiation were found. No dependence of the response on the dose rate at high dose rates and high doses was found. All those properties justify the use of simplified models of the film response to ions. Furthermore, fits of the calibration data by predictions of different models for signal creation mechanism of dosimetric materials were performed. The best description was found for the recently published gamma-distributed single-hit model which takes into account different sizes of the active centres.

  10. Poly(acrylic acid surface grafted polypropylene films: Near surface and bulk mechanical response

    Directory of Open Access Journals (Sweden)

    2008-11-01

    Full Text Available Radical photo-grafting polymerization constitutes a promising technique for introducing functional groups onto surfaces of polypropylene films. According to their final use, surface grafting should be done without affecting overall mechanical properties. In this work the tensile drawing, fracture and biaxial impact response of biaxially oriented polypropylene commercial films grafted with poly(acrylic acid (PAA were investigated in terms of film orientation and surface modification. The variations of surface roughness, elastic modulus, hardness and resistance to permanent deformation induced by the chemical treatment were assessed by depth sensing indentation. As a consequence of chemical modification the optical, transport and wettability properties of the films were successfully varied. The introduced chains generated a PAA-grafted layer, which is stiffer and harder than the neat polypropylene surface. Regardless of the surface changes, it was proven that this kind of grafting procedure does not detriment bulk mechanical properties of the PP film.

  11. Irreversible thermochromic response of RF sputtered nanocrystalline BaWO4 films for smart window applications

    Directory of Open Access Journals (Sweden)

    C. Anil Kumar

    2015-10-01

    of oxygen vacancies and the formation of pure BWO phase. The obtained optical responses of BWO films are promising for solar cell and smart window applications.

  12. Irreversible thermochromic response of RF sputtered nanocrystalline BaWO4 films for smart window applications

    Science.gov (United States)

    Anil Kumar, C.; Santhosh Kumar, T.; Pamu, D.

    2015-10-01

    formation of pure BWO phase. The obtained optical responses of BWO films are promising for solar cell and smart window applications.

  13. Thermoluminescent response of aluminium oxide thin films subject to gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Arrieta, A.; Escobar A, L.; Camps, E.; Villagran, E.; Gonzalez, P.R

    2006-07-01

    The thermoluminescent (TL) properties of amorphous aluminium oxide thin films (thicknesses as low as 0.3 {mu}m) subjected to gamma (Co-60) irradiation are reported. Aluminium oxide thin films were prepared by laser ablation from an Al{sub 2}O{sub 3} target using a Nd: YAG laser with emission at the fundamental line. The films were exposed to gamma radiation (Co-60) in order to study their TL response. Thermoluminescence glow curves exhibited two peaks at 110 and 176 C. The high temperature peak shows good stability and 30% fading in the first 5 days after irradiation. A linear relationship between absorbed dose and the thermoluminescent response for doses span from 150 mGy to 100 Gy was observed. These results suggest that aluminium oxide thin films are suitable for detection and monitoring of gamma radiation. (Author)

  14. Frictional Response of Molecularly Thin Liquid Polymer Films Subject to Constant Shear Stress

    Science.gov (United States)

    Tschirhart, Charles; Troian, Sandra

    2014-03-01

    Measurements of the frictional response of nanoscale viscous films are typically obtained using the surface force apparatus in which a fluid layer is confined between smooth solid substrates approaching at constant speed or force. The squeezing pressure causes lateral flow from which the shear viscosity can be deduced. Under these conditions however, molecularly thin films tend to solidify wholly or partially and estimates of the shear viscosity can exceed those in macroscale films by many orders of magnitude. This problem can be avoided altogether by examining the response of an initially flat, supported, free surface film subject to comparable values of surface shear stress by application of an external inert gas stream. This method was first conceived by Derjaguin in 1944; more recent studies by Mate et al. at IBM Almaden on complex polymeric systems have uncovered fluid layering and other interesting behaviors. The only drawback is that this alternative technique requires an accurate model for interface distortion. We report on ellipsometric measurements of ultrathin polymeric films in efforts to determine whether the usual interface equations for free surface films based purely on continuum models can be properly extended to nanoscale films. Supported by a Fred and Jean Felberg Fellowship and G. W. Housner Student Discovery Fund.

  15. Cylindrical PVF2 film based fiber optic phase modulator - Phase shift nonlinearity and frequency response

    Science.gov (United States)

    Sudarshanam, V. S.; Claus, Richard O.

    1993-03-01

    A new cylindrical coil configuration for polyvinylidene flouride (PVF2) film based fiber optic phase modulator is studied for the frequency response and nonlinearity of phase shift at the resonance frequency. This configuration, hitherto unapproached for PVF2 film modulators, offers resonance at well defined, controllable and higher frequencies than possible for the flat-strip configuration. Two versions of this configuration are presented that differ strongly in both the resonance frequency and the phase shift nonlinearity coefficient.

  16. Few layer graphene to graphitic films: infrared photoconductive versus bolometric response

    Science.gov (United States)

    Kurra, Narendra; Bhadram, Venkata Srinu; Narayana, Chandrabhas; Kulkarni, Giridhar U.

    2012-12-01

    incandescent bulb is shown in Fig. S4. Fig. S5 shows the fall and rise of resistance of the FLG with respect to the IR beam turning on and off respectively. The temporal IR photoresponse of the FLG films on the quartz and sapphire substrates is shown in Fig. S6. Rise and fall curves for the resistance of the bulk graphitic samples are shown in Fig. S7. The band level diagram in Fig. S8 explains the photoconductive and bolometric responses of the graphitic samples. See DOI: 10.1039/c2nr32861e

  17. Convective response of a wall-mounted hot-film sensor in a shock tube

    Science.gov (United States)

    Roberts, A. Sidney, Jr.; Ortgies, Kelly R.; Gartenberg, Ehud; Carraway, Debra L.

    1991-01-01

    Shock tube experiments were performed in order to determine the response of a single hot-film element of a sensor array to transiently induced flow behind weak normal shock waves. The experiments attempt to isolate the response due only to the change in convective heat transfer at the hot-film surface mounted on the wall of the shock tube. The experiments are described, the results being correlated with transient boundary layer theory and compared with an independent set of experimental results. One of the findings indicates that the change in the air properties (temperature and pressure) precedes the air mass transport, causing an ambiguity in the sensor response to the development of the velocity boundary layer. Also, a transient, local heat transfer coefficient is formulated to be used as a forcing function in an hot-film instrument model and simulation which remains under investigation.

  18. Research on the piezoelectric response of cubic and hexagonal boron nitride films

    Institute of Scientific and Technical Information of China (English)

    CHEN Xi-ming; SUN Lian-jie; YANG Bao-he; GUO Yan; WU Xiao-guo

    2012-01-01

    Boron nitride (BN) films for high-frequency surface acoustic wave (SAW) devices are deposited on Ti/A(l)/Si(111) wafers byradio frequency (RF) magnetron sputtering.The structure of BN films is investigated by Fourier transform infrared (FTIR)spectroscopy and X-ray diffraction (XRD) spectra,and the surface morphology and piezoelectric properties of BN films are characterized by atomic force microscopy (AFM).The results show that when the flow ratio of nitrogen and argon is 2∶18,the cubic BN (c-BN) film is deposited with high purity and c-axis orientation,and when the flow ratio of nitrogen and argon is 4∶20,the hexagonal BN (h-BN) film is deposited with high c-axis orientation.Both particles are uniform and compact,and the roughnesses are 1.5 nm and 2.29 nm,respectively.The h-BN films have better piezoelectric response and distribution than the c-BN films.

  19. Highly Magneto-Responsive Elastomeric Films Created by a Two-Step Fabrication Process

    KAUST Repository

    Marchi, Sophie

    2015-08-24

    An innovative method for the preparation of elastomeric magnetic films with increased magneto-responsivity is presented. Polymeric films containing aligned magnetic microchains throughout their thickness are formed upon the magnetophoretic transport and assembly of microparticles during polymer curing. The obtained films are subsequently magnetized at a high magnetic field of 3 T directed parallel to the orientation of the microchains. We prove that the combination of both alignment of the particles along a favorable direction during curing and the subsequent magnetization of the solid films induces an impressive increase of the films’ deflection. Specifically, the displacements reach few millimeters, up to 85 times higher than those of the nontreated films with the same particle concentration. Such a process can improve the performance of the magnetic films without increasing the amount of magnetic fillers and, thus, without compromising the mechanical properties of the resulting composites. The proposed method can be used for the fabrication of magnetic films suitable as components in systems in which large displacements at relatively low magnetic fields are required, such as sensors and drug delivery or microfluidic systems, especially where remote control of valves is requested to achieve appropriate flow and mixing of liquids.

  20. Gafchromic EBT-XD film: Dosimetry characterization in high-dose, volumetric-modulated arc therapy.

    Science.gov (United States)

    Miura, Hideharu; Ozawa, Shuichi; Hosono, Fumika; Sumida, Naoki; Okazue, Toshiya; Yamada, Kiyoshi; Nagata, Yasushi

    2016-11-08

    Radiochromic films are important tools for assessing complex dose distributions. Gafchromic EBT-XD films have been designed for optimal performance in the 40-4,000 cGy dose range. We investigated the dosimetric characteristics of these films, including their dose-response, postexposure density growth, and dependence on scanner orientation, beam energy, and dose rate with applications to high-dose volumetric-modulated arc therapy (VMAT) verification. A 10 MV beam from a TrueBeam STx linear accelerator was used to irradiate the films with doses in the 0-4,000 cGy range. Postexposure coloration was analyzed at postirradiation times ranging from several minutes to 48 h. The films were also irradiated with 6 MV (dose rate (DR): 600 MU/min), 6 MV flattening filter-free (FFF) (DR: 1,400 MU/ min), and 10 MV FFF (DR: 2,400 MU/min) beams to determine the energy and dose-rate dependence. For clinical examinations, we compared the dose distribu-tion measured with EBT-XD films and calculated by the planning system for four VMAT cases. The red channel of the EBT-XD film exhibited a wider dynamic range than the green and blue channels. Scanner orientation yielded a variation of ~ 3% in the net optical density (OD). The difference between the film front and back scan orientations was negligible, with variation of ~ 1.3% in the net OD. The net OD increased sharply within the first 6 hrs after irradiation and gradually afterwards. No significant difference was observed for the beam energy and dose rate, with a variation of ~ 1.5% in the net OD. The gamma passing rates (at 3%, 3 mm) between the film- measured and treatment planning system (TPS)-calculated dose distributions under a high dose VMAT plan in the absolute dose mode were more than 98.9%. © 2016 The Authors.

  1. New Fast Response Thin Film-Based Superconducting Quench Detectors

    CERN Document Server

    Dudarev, A; van de Camp, W; Ravaioli, E; Teixeira, A; ten Kate, H H J

    2014-01-01

    Quench detection on superconducting bus bars and other devices with a low normal zone propagation velocity and low voltage build-up is quite difficult with conventional quench detection techniques. Currently, on ATLAS superconducting bus bar sections, superconducting quench detectors (SQD) are mounted to detect quench events. A first version of the SQD essentially consists of an insulated superconducting wire glued to a superconducting bus line or windings, which in the case of a quench rapidly builds up a relatively high resistance that can be easily and quietly detected. We now introduce a new generation of drastically improved SQDs. The new version makes the detection of quenches simpler, more reliable, and much faster. Instead of a superconducting wire, now a superconducting thin film is used. The layout of the sensor shows a meander like pattern that is etched out of a copper coated 25 mu m thick film of Nb-Ti glued in between layers of Kapton. Since the sensor is now much smaller and thinner, it is easi...

  2. Spin-Casting Polymer Brush Films for Stimuli-Responsive and Anti-Fouling Surfaces.

    Science.gov (United States)

    Xu, Binbin; Feng, Chun; Hu, Jianhua; Shi, Ping; Gu, Guangxin; Wang, Lei; Huang, Xiaoyu

    2016-03-01

    Surfaces modified with amphiphilic polymers can dynamically alter their physicochemical properties in response to changes of their environmental conditions; meanwhile, amphiphilic polymer coatings with molecular hydrophilic and hydrophobic patches, which can mitigate biofouling effectively, are being actively explored as advanced coatings for antifouling materials. Herein, a series of well-defined amphiphilic asymmetric polymer brushes containing hetero side chains, hydrophobic polystyrene (PS) and hydrophilic poly(ethylene glycol) (PEG), was employed to prepare uniform thin films by spin-casting. The properties of these films were investigated by water contact angle, X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and quartz crystal microbalance (QCM). AFM showed smooth surfaces for all films with the roughness less than 2 nm. The changes in water contact angle and C/O ratio (XPS) evidenced the enrichment of PEG or PS chains at film surface after exposed to selective solvents, indicative of stimuli- responsiveness. The adsorption of proteins on PEG functionalized surface was quantified by QCM and the results verified that amphiphilic polymer brush films bearing PEG chains could lower or eliminate protein-material interactions and resist to protein adsorption. Cell adhesion experiments were performed by using HaCaT cells and it was found that polymer brush films possess good antifouling ability.

  3. CO Responses of Sensors Based on Cerium Oxide Thick Films Prepared from Clustered Spherical Nanoparticles

    OpenAIRE

    Woosuck Shin; Takafumi Akamatsu; Toshio Itoh; Ichiro Matsubara; Noriya Izu

    2013-01-01

    Various types of CO sensors based on cerium oxide (ceria) have been reported recently. It has also been reported that the response speed of CO sensors fabricated from porous ceria thick films comprising nanoparticles is extremely high. However, the response value of such sensors is not suitably high. In this study, we investigated methods of improving the response values of CO sensors based on ceria and prepared gas sensors from core-shell ceria polymer hybrid nanoparticles. These hybrid nano...

  4. Thin-film scintillators for extended ultraviolet /UV/ response silicon detectors

    Science.gov (United States)

    Viehmann, W.

    1979-01-01

    The preparation and radiometric properties of silicon detectors coated with fluorescent thin films are described. The films are deposited from solutions of clear plastics, such as acrylic resins, polyvinyl toluene or polystyrene, and of organic laser dyes in a common solvent. They are optically clear, mechanically and chemically stable, yet easily applied and removed. Multiple doped films of a few microns thickness exhibit broad-band absorption from less than 250 nm to about 450 nm and narrow band emissions with peaks ranging from 380 nm to 600 nm. Internal quantum efficiencies are close to 100 percent and fluorescence decay times are in the nanosecond range. When deposited on optically denser media, a large fraction of the fluorescent emission is trapped in the substrate. Silicon photodiodes coated with multiple doped films exhibit high external quantum efficiencies and virtually flat photon response in the near UV.

  5. Thin-film scintillators for extended ultraviolet /UV/ response silicon detectors

    Science.gov (United States)

    Viehmann, W.

    1979-01-01

    The preparation and radiometric properties of silicon detectors coated with fluorescent thin films are described. The films are deposited from solutions of clear plastics, such as acrylic resins, polyvinyl toluene or polystyrene, and of organic laser dyes in a common solvent. They are optically clear, mechanically and chemically stable, yet easily applied and removed. Multiple doped films of a few microns thickness exhibit broad-band absorption from less than 250 nm to about 450 nm and narrow band emissions with peaks ranging from 380 nm to 600 nm. Internal quantum efficiencies are close to 100 percent and fluorescence decay times are in the nanosecond range. When deposited on optically denser media, a large fraction of the fluorescent emission is trapped in the substrate. Silicon photodiodes coated with multiple doped films exhibit high external quantum efficiencies and virtually flat photon response in the near UV.

  6. Bioelectrochemical Response and Kinetics of Choline Oxidase Entrapped in Polyaniline-Polyacrylonitrile Composite Film

    Institute of Scientific and Technical Information of China (English)

    XUE,Huai-Guo(薛怀国); SHEN,Zhi-Quan(沈之荃)

    2002-01-01

    A novel choline oxidase electrode was constructed by entrapping choline oxidase into polyaniline-polyacrylonitrile composite film. The enzyme film was prepared by in situ electropolymerization of aniline into porous polyacrylonitrile-coated platinum electrode in the presence of choline oxidase. The enzyme electrode exhibited sensitive and stable electrochemical response to choline. The kinetics analysis showed that the mass transport is partially rate-limiting. The influences of pH, applied potential and temperature on the response of the enzyme electrode were also described.

  7. Achievement of controlled resistive response of nanogapped palladium film to hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, M. [Research Center for Solid State Physics and Materials, School of Mathematics and Physics, Suzhou University of Science and Technology, Suzhou 215009 (China); Wong, M. H.; Ong, C. W., E-mail: c.w.ong@polyu.edu.hk [Department of Applied Physics and Materials Research Center, The Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong)

    2015-07-20

    Palladium (Pd) film containing nanogaps of well controlled dimension was fabricated on a Si wafer having a high-aspect-ratio micropillar. The Pd film was arranged to experience hydrogen (H{sub 2})-induced volume expansion. (i) If the nanogap is kept open, its width is narrowed down. A discharge current was generated to give a strong, fast, and repeatable on-off type resistive switching response. (ii) If the nanogap is closed, the cross section of the conduction path varies to give continuous H{sub 2}-concentration dependent resistive response. The influence of stresses and related physical mechanisms are discussed.

  8. Dose response of thin-film dosimeters irradiated with 80-120 keV electrons

    DEFF Research Database (Denmark)

    Helt-Hansen, J.; Miller, A.; Sharpe, P.

    2005-01-01

    Thin-film dosimeters (Riso B3 and alanine films) were irradiated at 10 MeV and 80-120 keV electron accelerators, and it has been shown that the radiation response of the dosimeter materials (the radiation chemical yields) are constant at these irradiation energies. However, dose gradients within...... the dosimeters mean that calibration functions at the lower electron energies will be dependent on both irradiation energy and the required effective point of measurement of the dosimeter. These are general effects that apply to any dosimeters that have non-linear response functions and where dose gradients...

  9. Absorption spectroscopy of EBT model GAFCHROMIC film.

    Science.gov (United States)

    Devic, Slobodan; Tomic, Nada; Pang, Zhiyu; Seuntjens, Jan; Podgorsak, Ervin B; Soares, Christopher G

    2007-01-01

    The introduction of radiochromic films has solved some of the problems associated with conventional 2D radiation detectors. Their high spatial resolution, low energy dependence, and near-tissue equivalence make them ideal for measurement of dose distributions in radiation fields with high dose gradients. Precise knowledge of the absorption spectra of these detectors can help to develop more suitable optical densitometers and potentially extend the use of these films to other areas such as the measurement of the radiation beam spectral information. The goal of this study is to present results of absorption spectra measurements for the new GAFCHROMIC film, EBT type, exposed to 6 MV photon beam in the dose range from 0 to 6 Gy. Spectroscopic analysis reveals that in addition to the two main absorption peaks, centered at around 583 and 635 nm, the absorption spectrum in the spectral range from 350 to 800 nm contains six more absorption bands. Comparison of the absorption spectra reveals that previous HD-810, MD-55, as well as HS GAFCHROMIC film models, have nearly the same sensitive layer base material, whereas the new EBT model, GAFCHROMIC film has a different composition of its sensitive layer. We have found that the two most prominent absorption bands in EBT model radiochromic film do not change their central wavelength position with change in a dose deposited to the film samples.

  10. Verification of Caregraph (trademark) Peak Skin Dose Data Using Radiochromic Film

    Science.gov (United States)

    2005-06-15

    during the experimental exposures. The phantom is 155 cm (5 ft. 1 in.) tall and weighs 55 kg (110 lb).34 It is transected horizontally into 2.5 cm...Techniques to estimate radiation dose to skin during fluoroscopically guided procedures, Phelps, B. (ed), AAPM Summer School Proceedings, Madison

  11. Validation of fast Monte Carlo dose calculation in small animal radiotherapy with EBT3 radiochromic films

    Science.gov (United States)

    Noblet, C.; Chiavassa, S.; Smekens, F.; Sarrut, D.; Passal, V.; Suhard, J.; Lisbona, A.; Paris, F.; Delpon, G.

    2016-05-01

    In preclinical studies, the absorbed dose calculation accuracy in small animals is fundamental to reliably investigate and understand observed biological effects. This work investigated the use of the split exponential track length estimator (seTLE), a new kerma based Monte Carlo dose calculation method for preclinical radiotherapy using a small animal precision micro irradiator, the X-RAD 225Cx. Monte Carlo modelling of the irradiator with GATE/GEANT4 was extensively evaluated by comparing measurements and simulations for half-value layer, percent depth dose, off-axis profiles and output factors in water and water-equivalent material for seven circular fields, from 20 mm down to 1 mm in diameter. Simulated and measured dose distributions in cylinders of water obtained for a 360° arc were also compared using dose, distance-to-agreement and gamma-index maps. Simulations and measurements agreed within 3% for all static beam configurations, with uncertainties estimated to 1% for the simulation and 3% for the measurements. Distance-to-agreement accuracy was better to 0.14 mm. For the arc irradiations, gamma-index maps of 2D dose distributions showed that the success rate was higher than 98%, except for the 0.1 cm collimator (92%). Using the seTLE method, MC simulations compute 3D dose distributions within minutes for realistic beam configurations with a clinically acceptable accuracy for beam diameter as small as 1 mm.

  12. Pilot study: relative dose of the TLD, OSL and Radiochromic film applied in CT exams dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Kikuti, C.F. [Universidade Federal do Mato Grosso do Sul (UFMS), Campo Grande, MS (Brazil). Hospital Universitario Maria Aparecida Pedrossian; Maia, R.S.I.; Romano, R.F.T.; Daros, K. A.C., E-mail: daros.kellen@unifesp.br [Universidade Federal de Sao Paulo (UNIFESP), Sao Paulo, SP (Brazil). Escola Paulista de Medicina. Departamento de Diagnostico por Imagem

    2015-07-01

    At DDI/UNIFESP, the abdomen and chest CT exams correspond to 38% of the exams, becoming the focus of studies. The aim of this study is to assess the relative dose using TLDs, OSLs and RF for the evaluation of the dose distribution in the skin in abdomen CT exams. The simulation of the CT exam was performed in an anthropomorphic phantom, using a CT scanner Philips, Brilliance/64 and TLDs, OSLs and RF fixed along the sagittal axis of the phantom. The OSLs showed similar performance to the TLDs and RF shows low accuracy, resulting in an average value (0.927±0.022). (author)

  13. Investigation of the energy response of EBT-2 GAFCHROMIC(TM) film model

    Science.gov (United States)

    Singh, Khushdeep

    The aim of this project is to quantify the energy response of the existing EBT-2 model GAFCHROMIC™ film and investigate for the eventual possible chemical compositions with improved energy response. In this work, the overall energy dependence of the EBT-2 model GAFCHROMIC™ film is quantized through intrinsic and absorbed dose energy response. Absorbed dose energy response is studied by calculating dose to film sensitive layer and dose to water using DOSRZnrc of EGSnrcMP Monte Carlo user-code. The film was simulated inside a large body of solid water for megavoltage beams, while at kilovoltage energies the film was modeled in air. The simulations were repeated to score the dose to water for megavoltage and air kerma for kilo-voltage beams, respectively. The intrinsic energy response is quantified through a measurement of total energy response divided by the Monte Carlo calculated absorbed dose energy response. The measurements consisted of delivering an exact dose of 2 Gy to the sensitive layer of the film at orthovoltage energies (50 kVp, 120 kVp, and 180 kVp), 192Ir and 60Co beam. AAPM TG-51 and TG-61 reports were used to determine the dose-to-water and air-kerma in air in megavoltage and orthovoltage beams, respectively, while Monte Carlo simulated corrections were used to convert these results to the desired dose to the sensitive layer of the film. For EBT-2 model GAFCHROMIC™ film, the overall energy dependence was found to vary by 39 % in the effective energy range from 24 keV to 1.25 MeV (for 60Co beam). It was determined that intrinsic (LET-dependent) energy dependence also plays an important role in the total energy dependence of EBT-2 model GAFCHROMIC™ film and cannot be ignored. The absorbed dose energy dependence was also studied for a wide variety of film active layer compositions in a 10 keV-100 keV energy range as well as at 60Co using Monte Carlo simulations. The composition of the film active layer was varied according to physical limits set

  14. Dynamic and temperature dependent response of physical vapor deposited Se in freely standing nanometric thin films

    Science.gov (United States)

    Yoon, Heedong; McKenna, Gregory B.

    2016-05-01

    Here, we report results from an investigation of nano-scale size or confinement effects on the glass transition and viscoelastic properties of physical vapor deposited selenium films. The viscoelastic response of freely standing Se films was determined using a biaxial membrane inflation or bubble inflation method [P. A. O'Connell and G. B. McKenna, Science 307, 1760-1763 (2005)] on films having thicknesses from 60 to 267 nm and over temperatures ranging from Tg, macroscopic - 15 °C to Tg, macroscopic + 21 °C. Time-temperature superposition and time-thickness superposition were found to hold for the films in the segmental dispersion. The responses are compared with macroscopic creep and recoverable creep compliance data for selenium [K. M. Bernatz et al., J. Non-Cryst. Solids 307, 790-801 (2002)]. The time-temperature shift factors for the thin films show weaker temperature dependence than seen in the macroscopic behavior, being near to Arrhenius-like in their temperature dependence. Furthermore, the Se films exhibit a "rubbery-like" stiffening that increases as film thickness decreases similar to prior observations [P. A. O'Connell et al., Macromolecules 45(5), 2453-2459 (2012)] for organic polymers. In spite of the differences from the macroscopic behavior in the temperature dependence of the viscoelastic response, virtually no change in Tg as determined from the thickness dependence of the retardation time defining Tg was observed in the bubble inflation creep experiments to thicknesses as small as 60 nm. We also find that the observed rubbery stiffening is consistent with the postulate of K. L. Ngai et al. [J. Polym. Sci., Part B: Polym. Phys. 51(3), 214-224 (2013)] that it should correlate with the change of the macroscopic segmental relaxation.

  15. CO responses of sensors based on cerium oxide thick films prepared from clustered spherical nanoparticles.

    Science.gov (United States)

    Izu, Noriya; Matsubara, Ichiro; Itoh, Toshio; Akamatsu, Takafumi; Shin, Woosuck

    2013-03-08

    Various types of CO sensors based on cerium oxide (ceria) have been reported recently. It has also been reported that the response speed of CO sensors fabricated from porous ceria thick films comprising nanoparticles is extremely high. However, the response value of such sensors is not suitably high. In this study, we investigated methods of improving the response values of CO sensors based on ceria and prepared gas sensors from core-shell ceria polymer hybrid nanoparticles. These hybrid nanoparticles have been reported to have a unique structure: The core consists of a cluster of ceria crystallites several nanometers in size. We compared the characteristics of the sensors based on thick films prepared from core-shell nanoparticles with those of sensors based on thick films prepared from conventionally used precipitated nanoparticles. The sensors prepared from the core-shell nanoparticles exhibited a resistance that was ten times greater than that of the sensors prepared from the precipitated nanoparticles. The response values of the gas sensors based on the core-shell nanoparticles also was higher than that of the sensors based on the precipitated nanoparticles. Finally, improvements in sensor response were also noticed after the addition of Au nanoparticles to the thick films used to fabricate the two types of sensors.

  16. LET dependence of the response of EBT2 films in proton dosimetry modeled as a bimolecular chemical reaction

    Science.gov (United States)

    Perles, L. A.; Mirkovic, D.; Anand, A.; Titt, U.; Mohan, R.

    2013-12-01

    The dose response for films exposed to clinical x-ray beams is not linear and a calibration curve based on absorbed dose can be used to account for this effect. However for proton dosimetry the dose response of films exhibits an additional dependence because of the variation of the linear energy transfer (LET) as the protons penetrate matter. In the present study, we hypothesized that the dose response for EBT2 films can be mathematically described as a bimolecular chemical reaction. Furthermore, we have shown that the LET effect can be incorporated in the dose-response curve. A set of EBT2 films was exposed to pristine 161.6 MeV proton beams. The films were exposed to doses ranging from 0.93 to 14.82 Gy at a depth of 2 cm in water. The procedure was repeated with one film exposed to a lower energy beam (85.6 MeV). We also computed the LET and dose to water in the sensitive layer of the films with a validated Monte Carlo system, taking into account the film construction (polyester, adhesive and sensitive layers). The bimolecular model was able to accurately fit the experimental data with a correlation factor of 0.9998, and the LET correction factor was determined and incorporated into the dose-response function. We also concluded that the film orientation is important when determining the LET correction factor because of the asymmetric construction of the film.

  17. Thermal response of transparent silver nanowire/PEDOT:PSS film heaters.

    Science.gov (United States)

    Ji, Shulin; He, Weiwei; Wang, Ke; Ran, Yunxia; Ye, Changhui

    2014-12-10

    Thermal response behavior of transparent silver nanowire/PEDOT:PSS film heaters are intensively studied for manipulating heating temperature, response time, and power consumption. Influences of substrate heat capacity, heat transfer coefficient between air and heater, sheet resistance and dimension of Ag nanowire film, on the thermal response are investigated from thermodynamic analysis. Suggestion is given for practical applications that if other parameters are fixed, Ag nanowire coverage can be utilized as an effective parameter to adjust the thermal response. The heat transfer coefficient plays opposite roles on thermal response speed and achievable steady temperature. A value of ≈32 W m(-2) K(-1) is obtained from transient process analysis after correcting it by considering heater resistance variation during heating tests. Guidance of designing heaters with a given response time is provided by forming Ag nanowire film with a suitable sheet resistance on substrate of appropriate material and a certain thickness. Thermal response tests of designed Ag heaters are performed to show higher heating temperature, shorter response time, and lower power consumption (179 °C cm(2) W(-1)) than ITO/FTO heaters, as well as homogeneous temperature distribution and stability for repeated use. Potential applications of the Ag heaters in window defogging, sensing and thermochromism are manifested.

  18. Multi-Stimuli-Responsive Polymer Materials: Particles, Films, and Bulk Gels.

    Science.gov (United States)

    Cao, Zi-Quan; Wang, Guo-Jie

    2016-06-01

    Stimuli-responsive polymers have received tremendous attention from scientists and engineers for several decades due to the wide applications of these smart materials in biotechnology and nanotechnology. Driven by the complex functions of living systems, multi-stimuli-responsive polymer materials have been designed and developed in recent years. Compared with conventional single- or dual-stimuli-based polymer materials, multi-stimuli-responsive polymer materials would be more intriguing since more functions and finer modulations can be achieved through more parameters. This critical review highlights the recent advances in this area and focuses on three types of multi-stimuli-responsive polymer materials, namely, multi-stimuli-responsive particles (micelles, micro/nanogels, vesicles, and hybrid particles), multi-stimuli-responsive films (polymer brushes, layer-by-layer polymer films, and porous membranes), and multi-stimuli-responsive bulk gels (hydrogels, organogels, and metallogels) from recent publications. Various stimuli, such as light, temperature, pH, reduction/oxidation, enzymes, ions, glucose, ultrasound, magnetic fields, mechanical stress, solvent, voltage, and electrochemistry, have been combined to switch the functions of polymers. The polymer design, preparation, and function of multi-stimuli-responsive particles, films, and bulk gels are comprehensively discussed here.

  19. Atomistic modeling of electron relaxation effect on femtosecond laser-induced thermoelastic response of gold films

    Science.gov (United States)

    Xiong, Q. L.; Tian, X. G.; Lu, T. J.

    2012-07-01

    The thermoelastic response of thin gold films induced by femtosecond laser irradiation is numerically simulated using a modified combined two-temperature model (TTM) and molecular dynamics (MD) method, with focus placed upon the influence of the electron relaxation effect. The validity of the numerical approach is checked against existing experimental results. While the electron relaxation effect is found negligible when the laser duration is much longer than the electron thermal relaxation time, it becomes significant if the laser duration matches the electron relaxation time, especially when the former is much shorter than the latter. The characteristics of thermo-mechanical interaction in the thin film are analyzed, and the influence of temperature-dependent material properties upon the thermoelastic response of the film quantified.

  20. Multiscale numerical study on ferroelectric nonlinear response of PZT thin films (Conference Presentation)

    Science.gov (United States)

    Wakabayashi, Hiroki; Uetsuji, Yasutomo; Tsuchiya, Kazuyoshi

    2017-06-01

    PZT thin films have excellent performance in deformation precision and response speed, so it is used widely for actuators and sensors of Micro Electro Mechanical System (MEMS). Although PZT thin films outputs large piezoelectricity at morphotropic phase bounfary (MPB), it shows a complicated hysteresis behavior caused by domain switching and structural phase transition between tetragonal and rhombohedral. In general, PZT thin films have some characteristic crystal morphologies. Additionally mechanical strains occur by lattice mismatch with substrate. Therefore it is important for fabrication and performance improvement of PZT thin films to understand the relation between macroscopic hysteresis response and microstructural changes. In this study, a multiscale nonlinear finite element simulation was proposed for PZT thin films at morphotropic phase boundary (MPB) on the substrate. The homogenization theory was employed for scale-bridging between macrostructure and microstructure. Figure 1 shows the proposed multiscale nonlinear simulation [1-3] based on the homogenization theory. Macrostructure is a homogeneous structure to catch the whole behaviors of actuators and sensors. And microstructure is a periodic inhomogeneous structure consisting of domains and grains. Macrostructure and microstructure are connected perfectly by homogenization theory and are analyzed by finite element method. We utilized an incremental form of fundamental constitutive law in consideration with physical property change caused by domain switching and structural phase transition. The developed multiscale finite element method was applied to PZT thin films with lattice mismatch strain on the substrate, and the relation between the macroscopic hysteresis response and microscopic domain switching and structural phase transition were investigated. Especially, we discuss about the effect of crystal morphologies and lattice mismatch strain on hysteresis response.

  1. Use of a Gafchromic film HD-V2 for the profile measurement of energetic ion beams

    Science.gov (United States)

    Yuri, Yosuke; Ishizaka, Tomohisa; Agematsu, Takashi; Yuyama, Takahiro; Seito, Hajime; Okumura, Susumu

    2017-09-01

    The coloration response of a radiochromic film, Gafchromic HD-V2, to ion beams was investigated to apply the film to measuring the transverse intensity distribution of large-area ion beams. HD-V2 films were, therefore, irradiated with proton (10 MeV) and several heavy-ion (4.1-27 MeV/u) beams in a wide fluence range at the azimuthally-varying-field cyclotron facility in National Institutes for Quantum and Radiological Science and Technology, and read with an image scanner to analyze changes in the optical density. It was shown that the available fluence range (106-1011 ions/cm2) of HD-V2 depends strongly on ion species, i.e., linear energy transfer (LET). In addition, the reduction of the sensitivity to dose was shown over a wide LET range. The transverse intensity distribution of a large-area ion beam was measured using a response function determined from the measured data. We have demonstrated that the Gafchromic film HD-V2 is useful for measuring the intensity distribution at a low fluence and thus evaluating the characteristics of various ion beams.

  2. Cortisol response and psychological distress predict susceptibility to false memories for a trauma film.

    Science.gov (United States)

    Monds, Lauren A; Paterson, Helen M; Ali, Sinan; Kemp, Richard I; Bryant, Richard A; McGregor, Iain S

    2016-10-01

    For eyewitness testimony to be considered reliable, it is important to ensure memory remains accurate following the event. As many testimonies involve traumatic, as opposed to neutral, events, it is important to consider the role of distress in susceptibility to false memories. The aim of this study was to investigate whether cortisol response following a stressor would be associated with susceptibility to false memories. Psychological distress responses were also investigated, specifically, dissociation, intrusions, and avoidance. Participants were allocated to one of three conditions: those who viewed a neutral film (N = 35), those who viewed a real trauma film (N = 35), and a trauma "reappraisal" group where participants were told the film was not real (N = 35). All received misinformation about the film in the form of a narrative. Participants provided saliva samples (to assess cortisol) and completed distress and memory questionnaires. Cortisol response was a significant predictor of the misinformation effect. Dissociation and avoidance were related to confabulations. In conclusion, following a stressor an individual may differ with regard to their psychological response to the event, and also whether they experience a cortisol increase. This may affect whether they are more distressed later on, and also whether they remember the event accurately.

  3. Thinning identification technique using stainless steel film heater and response surface method

    Science.gov (United States)

    Ogasawara, Nagahisa; Yamada, Hiroyuki

    2011-05-01

    The infrared thermography has not been widely applied to nondestructive inspection for metals. It is because the metal emissivity is too low to be measured the temperature. To make up for this disadvantage, a new heating technique using a stainless steel film was proposed and a nondestructive inspection system with the response surface method was developed. The stainless film has a high electric resistance and generates large Joule heat. Its response is quick and the quantity of heat is easily controlled. Moreover, the film has a high enough thermal conductivity, therefore a black painted film can be a blackbody surface of metal structures. Consequently IR camera can easily measure the metal temperature accurately. The nondestructive inspection system that can quantitatively identify geometrical parameters of a local thinning was developed. The system consists of a forward analysis and an inverse analysis. In the forward analysis, the response surface that shows a relationship between geometrical parameters and characteristic values is built by experimental design method. In the inverse analysis, substituting the characteristic values into the response surface, the geometrical parameters are finally identified. The inspection system can identify the local thinning shape robustly by selecting the attribute for the shape parameters.

  4. Reduced graphene oxide film based highly responsive infrared detector

    Science.gov (United States)

    Khan, Mustaque A.; Nanda, Karuna K.; Krupanidhi, Saluru B.

    2017-08-01

    Due to the unique optical properties, graphene can effectively be used for the detection of infrared light. In this regard, reduced graphene oxide (RGO) has drawn considerable attention in scientific society because of simplicity of preparation and tunable properties. Here, we report the synthesis of RGO by solvothermal reduction of graphene oxide (GO) in ethanol and the detection of infrared light (1064 and 1550 nm) with metal—RGO—metal configuration. We have observed that photocurrent, responsivity as well as the external quantum efficiency increase with C/O ratio. The responsivity value in near-infrared region can be as high as 1.34 A · W-1 and the external quantum efficiency is more than 100%. Response times of these devices are in the order of few seconds. Overall, the responsivity of our device is found to be better than many of the already reported values where graphene or reduced graphene oxide is the only active material. The high value of quantum efficiency is due to strong light absorption and the presence of mid-gap states band in RGOs.

  5. pH-responsive layer-by-layer films of zwitterionic block copolymer micelles

    OpenAIRE

    Demirel, Adem Levent; Yusan, Pelin; Tuncel, İrem; Bütün, Vural; Erel-Goktepe, İrem

    2014-01-01

    We report a strategy to incorporate micelles of poly[3-dimethyl (methacryloyloxyethyl) ammonium propane sulfonate]-block-poly[2-(diisopropylamino) ethyl methacrylate] (beta PDMA-b-PDPA) into electrostatic layer-by-layer (LbL) films. We obtained micelles with pH-responsive PDPA-cores and zwitterionic bPDMA-coronae at pH 8.5 through pH-induced self-assembly of bPDMA-b-PDPA in aqueous solution. To incorporate bPDMA-b-PDPA micelles into LbL films, we first obtained a net electrical charge on bPDM...

  6. Dielectric response and novel electromagnetic modes in three-dimensional Dirac semimetal films

    Science.gov (United States)

    Kotov, O. V.; Lozovik, Yu. E.

    2016-06-01

    Using the Kubo formalism we have calculated the local dynamic conductivity of a bulk, i.e., three-dimensional (3D), Dirac semimetal (BDS). We obtain that at frequencies lower than Fermi energy the metallic response in a BDS film manifests in the existence of surface-plasmon polaritons, but at higher frequencies the dielectric response is dominated and it occurs that a BDS film behaves as a dielectric waveguide. At this dielectric regime we predict the existence inside a BDS film of novel electromagnetic modes, a 3D analog of the transverse electric waves in graphene. We also find that the dielectric response manifests as the wide-angle passband in the mid-infrared (IR) transmission spectrum of light incident on a BDS film, which can be used for the interferenceless omnidirectional mid-IR filtering. The tuning of the Fermi level of the system allows us to switch between the metallic and the dielectric regimes and to change the frequency range of the predicted modes. This makes BDSs promising materials for photonics and plasmonics.

  7. Charged vacancy induced enhanced piezoelectric response of reactive assistive IBSD grown AlN thin films

    Science.gov (United States)

    Sharma, Neha; Rath, Martando; Ilango, S.; Ravindran, T. R.; Ramachandra Rao, M. S.; Dash, S.; Tyagi, A. K.

    2017-01-01

    Piezoelectric response of AlN thin films was investigated in a AlN/Ti/Si(1 0 0) layer structure prepared by ion beam sputter deposition (IBSD) in reactive assistance of N+/\\text{N}2+ ions. The samples were characterized for their microstructure, piezoelectric response and charged defects using high resolution x-ray diffraction (HR-XRD), piezo force microscopy (PFM) and photoluminescence (PL) spectroscopy respectively. Our results show that the films are highly textured along the a-axis and charged native point defects are present in the microstructure. Phase images of these samples obtained from PFM show that the films are predominantly N-polar. The measured values of piezoelectric coefficient d 33(eff) for these samples are as high as 206  ±  20 pm V-1 and 668  ±  60 pm V-1 calculated by piezo response loop for AlN films of a thickness of 235 nm and 294 nm respectively. A mechanism for high d 33(eff) values is proposed with a suitable model based on the charged defects induced enhanced polarization in the dielectric continuum of AlN.

  8. Maximizing the dielectric response of molecular thin films via quantum chemical design.

    Science.gov (United States)

    Heitzer, Henry M; Marks, Tobin J; Ratner, Mark A

    2014-12-23

    Developing high-capacitance organic gate dielectrics is critical for advances in electronic circuitry based on unconventional semiconductors. While high-dielectric constant molecular substances are known, the mechanism of dielectric response and the fundamental chemical design principles are not well understood. Using a plane-wave density functional theory formalism, we show that it is possible to map the atomic-scale dielectric profiles of molecule-based materials while capturing important bulk characteristics. For molecular films, this approach reveals how basic materials properties such as surface coverage density, molecular tilt angle, and π-system planarity can dramatically influence dielectric response. Additionally, relatively modest molecular backbone and substituent variations can be employed to substantially enhance film dielectric response. For dense surface coverages and proper molecular alignment, conjugated hydrocarbon chains can achieve dielectric constants of >8.0, more than 3 times that of analogous saturated chains, ∼2.5. However, this conjugation-related dielectric enhancement depends on proper molecular orientation and planarization, with enhancements up to 60% for proper molecular alignment with the applied field and an additional 30% for conformations such as coplanarity in extended π-systems. Conjugation length is not the only determinant of dielectric response, and appended polarizable high-Z substituents can increase molecular film response more than 2-fold, affording estimated capacitances of >9.0 μF/cm2. However, in large π-systems, polar substituent effects are substantially attenuated.

  9. Polyurethane Dispersions with Peptide Corona: Facile Synthesis of Stimuli-Responsive Dispersions and Films.

    Science.gov (United States)

    Breucker, Laura; Schöttler, Susanne; Landfester, Katharina; Taden, Andreas

    2015-08-10

    Peptide-polymer hybrid particles of submicron size yielding stimuli-responsive macroscopic films are presented. A thermoplastic polyurethane (PU) carrying polysiloxane and polyester soft segments serves as core material to obtain flexible, yet semicrystalline films with temperature-sensitivity. The synthesis is based on the high-sheer emulsification of isocyanate-terminated PU prepolymers, which in our model system purposefully lack any ability of colloidal self-stabilization. While emulsification in water leads to immediate coagulation, stable dispersions of polyurethane nanoparticles were formed in aqueous solutions of a hydrolyzed protein from wool. A comparison of dispersion and film properties to nonreactive, otherwise identical dispersions suggests covalent attachment of the peptide to the PU backbone. We show that the colloidal stability of the hybrid particles is completely governed by the peptide corona, and hence pH-triggered coagulation can be employed to induce particle deposition and film formation. Differential scanning calorimetry confirms partial crystallinity in the film and reveals strongly modified crystallization behavior due to the peptide.

  10. Enhanced optical and nonlinear optical responses in a polyelectrolyte templated Langmuir-Blodgett film.

    Science.gov (United States)

    Rajesh, K; Balaswamy, B; Yamamoto, K; Yamaki, H; Kawamata, J; Radhakrishnan, T P

    2011-02-01

    Optical and nonlinear optical properties like fluorescence and second harmonic generation (SHG) of molecular materials can be strongly influenced by the mode of assembly of the molecules. The Langmuir-Blodgett (LB) technique is an elegant route to the controlled assembly of molecules in ultrathin films, and complexation of ionic amphiphiles in the Langmuir film by polyions introduced in the aqueous subphase provides a simple and efficient access to further control, stabilization, and optimization. The monolayer LB film of the hemicyanine-based amphiphile, N-n-octadecyl-4-[2-(4-(N,N-ethyloctadecylamino)phenyl)ethenyl]pyridinium possessing a "tail-head-tail" structure, shows fluorescence as well as SHG response. The concomitant enhancement of both of these linear and nonlinear optical attributes is achieved through templating with the polyanion of carboxymethylcellulose. Brewster angle and atomic force microscopy reveal the influence of polyelectrolyte templating on the morphology of the Langmuir and LB films. Polarized absorption and fluorescence spectroscopy provide insight into the impact of complexation with the polyelectrolyte on the orientation and deaggregation of the hemicyanine headgroup leading to fluorescence and SHG enhancement in the LB film.

  11. Theory for source-responsive and free-surface film modeling of unsaturated flow

    Science.gov (United States)

    Nimmo, J.R.

    2010-01-01

    A new model explicitly incorporates the possibility of rapid response, across significant distance, to substantial water input. It is useful for unsaturated flow processes that are not inherently diffusive, or that do not progress through a series of equilibrium states. The term source-responsive is used to mean that flow responds sensitively to changing conditions at the source of water input (e.g., rainfall, irrigation, or ponded infiltration). The domain of preferential flow can be conceptualized as laminar flow in free-surface films along the walls of pores. These films may be considered to have uniform thickness, as suggested by field evidence that preferential flow moves at an approximately uniform rate when generated by a continuous and ample water supply. An effective facial area per unit volume quantitatively characterizes the medium with respect to source-responsive flow. A flow-intensity factor dependent on conditions within the medium represents the amount of source-responsive flow at a given time and position. Laminar flow theory provides relations for the velocity and thickness of flowing source-responsive films. Combination with the Darcy-Buckingham law and the continuity equation leads to expressions for both fluxes and dynamic water contents. Where preferential flow is sometimes or always significant, the interactive combination of source-responsive and diffuse flow has the potential to improve prediction of unsaturated-zone fluxes in response to hydraulic inputs and the evolving distribution of soil moisture. Examples for which this approach is efficient and physically plausible include (i) rainstorm-generated rapid fluctuations of a deep water table and (ii) space- and time-dependent soil water content response to infiltration in a macroporous soil. ?? Soil Science Society of America.

  12. Pyroelectric and piezoelectric responses of thin AlN films epitaxy-grown on a SiC/Si substrate

    Science.gov (United States)

    Kukushkin, S. A.; Osipov, A. V.; Sergeeva, O. N.; Kiselev, D. A.; Bogomolov, A. A.; Solnyshkin, A. V.; Kaptelov, E. Yu.; Senkevich, S. V.; Pronin, I. P.

    2016-05-01

    This paper presents the results of pyroelectric and piezoelectric studies of AlN films formed by chloride-hydride epitaxy (CHE) and molecular beam epitaxy (MBE) on epitaxial SiC nanolayers grown on Si by the atom substitution method. The surface topography and piezoelectric and pyroelecrtric responses of AlN films have been analyzed. The results of the study have shown that the vertical component of the piezoresponse in CHE-grown AlN films is more homogeneous over the film area than that in MBE-grown AlN films. However, the signal from the MBE-synthesized AlN films proved to be stronger. The inversion of the polar axis (polarization vector) on passage from MBE-grown AlN films to CHE-grown AlN films has been found experimentally. It has been shown that the polar axis in MBE-grown films is directed from the free surface of the film toward the Si substrate while, in CHE-grown films, the polarization vector is directed toward the free surface.

  13. Gender differences in sexual arousal and affective responses to erotica: the effects of type of film and fantasy instructions.

    Science.gov (United States)

    Carvalho, Joana; Gomes, Ana Quinta; Laja, Pedro; Oliveira, Cátia; Vilarinho, Sandra; Janssen, Erick; Nobre, Pedro

    2013-08-01

    The present study examined men and women's sexual and affective responses to erotic film clips that were combined with different fantasy instructions. Men (n = 29) and women (n = 28) were presented with two types of erotic films (explicit vs. romantic) and two fantasy instructions (fantasizing about one's real-life partner vs. fantasizing about someone else). Genital response, subjective sexual arousal, and affective responses were assessed. Sexually explicit stimuli resulted in larger genital responses; women reported higher subjective sexual arousal than men; and fantasizing about one's partner resulted, overall, in higher subjective sexual arousal and higher levels of positive affect. Moreover, in women, the instruction to fantasize about one's partner resulted in stronger subjective sexual arousal to the explicit film than the instruction to fantasize about someone else. Results suggested that physiological, subjective, and affective responses to erotic film stimuli are impacted not only by stimulus characteristics but also by the viewer's interpretation of the depicted relationship.

  14. pH-responsiveness of multilayered films and membranes made of polysaccharides

    Science.gov (United States)

    Silva, Joana M.; Caridade, Sofia G.; Costa, Rui R.; Alves, Natália M.; Groth, Thomas; Picart, Catherine; Reis, Rui L.; Mano, João F.

    2016-01-01

    We investigated the pH-dependent properties of multilayered films made of chitosan (CHI) and alginate (ALG) and focused on their post-assembly response to different pH environments using quartz crystal microbalance with dissipation monitoring (QCM-D), swelling studies, zeta potential measurements and dynamic mechanical analysis (DMA). In an acidic environment, the multilayers presented lower dissipation values and, consequently, higher moduli when compared with the values obtained for the pH used during the assembly (5.5). When the multilayers were exposed to alkaline environments the opposite behavior occurred. These results were further corroborated with the ability of this multilayered system to exhibit a reversible swelling-deswelling behavior within the pH range from 3 to 9. The changes of the physicochemical properties of the multilayer system were gradual and different from the ones of individual solubilized polyelectrolytes. This behavior is related to electrostatic interactions between the ionizable groups combined with hydrogen-bonding and hydrophobic interactions. Beyond the pH range of 3-9 the multilayers were stabilized by genipin cross-linking. The multilayered films also became more rigid while preserving the pH-responsiveness conferred by the ionizable moieties of the polyelectrolytes. This work demonstrates the versatility and feasibility of LbL methodology to generate inherently pH stimuli-responsive nanostructured films. Surface functionalization using pH-repsonsiveness endows abilities for several biomedical applications such as drug delivery, diagnostics, microfluidics, biosensing or biomimetic implantable membranes. PMID:26421873

  15. Characterization of hydrogen responsive nanoporous palladium films synthesized via a spontaneous galvanic displacement reaction

    Science.gov (United States)

    Patton, J. F.; Lavrik, N. V.; Joy, D. C.; Hunter, S. R.; Datskos, P. G.; Smith, D. B.; Sepaniak, M. J.

    2012-11-01

    A model is presented regarding the mechanistic properties associated with the interaction of hydrogen with nanoporous palladium (np-Pd) films prepared using a spontaneous galvanic displacement reaction (SGDR), which involves PdCl2 reduction by atomic Ag. Characterization of these films shows both chemical and morphological factors, which influence the performance characteristics of np-Pd microcantilever (MC) nanomechanical sensing devices. Raman spectroscopy, uniquely complemented with MC response profiles, is used to explore the chemical influence of palladium oxide (PdO). These combined techniques support a reaction mechanism that provides for rapid response to H2 and recovery in the presence of O2. Post-SGDR processing via reduction of PdCl2(s) in a H2 environment results in a segregated nanoparticle three-dimensional matrix dispersed in a silver layer. The porous nature of the reduced material is shown by high resolution scanning electron microscopy. Extended grain boundaries, typical of these materials, result in a greater surface area conducive to fast sorption/desorption of hydrogen, encouraged by the presence of PdO. X-ray diffraction and inductively coupled plasma-optical emission spectroscopy are employed to study changes in morphology and chemistry occurring in these nanoporous films under different processing conditions. The unique nature of chemical/morphological effects, as demonstrated by the above characterization methods, provides evidence in support of observed nanomechanical response/recovery profiles offering insight for catalysis, H2 storage and improved sensing applications.

  16. Cardiovascular, electrodermal, and respiratory response patterns to fear- and sadness-inducing films.

    Science.gov (United States)

    Kreibig, Sylvia D; Wilhelm, Frank H; Roth, Walton T; Gross, James J

    2007-09-01

    Responses to fear- and sadness-inducing films were assessed using a broad range of cardiovascular (heart rate, T-wave amplitude, low- and high-frequency heart rate variability, stroke volume, preejection period, left-ventricular ejection time, Heather index, blood pressure, pulse amplitude and transit time, and finger temperature), electrodermal (level, response rate, and response amplitude), and respiratory (rate, tidal volume and its variability, inspiratory flow rate, duty cycle, and end-tidal pCO(2)) measures. Subjective emotional experience and facial behavior (Corrugator Supercilii and Zygomaticus Major EMG) served as control measures. Results indicated robust differential physiological response patterns for fear, sadness, and neutral (mean classification accuracy 85%). Findings are discussed in terms of the fight-flight and conservation-withdrawal responses and possible limitations of a valence-arousal categorization of emotion in affective space.

  17. Sub-nanometer expansions of redox responsive polymer films monitored by imaging ellipsometry.

    Science.gov (United States)

    Cumurcu, Aysegul; Feng, Xueling; Ramos, Lionel Dos; Hempenius, Mark A; Schön, Peter; Vancso, G Julius

    2014-10-21

    We describe a novel approach to quantitatively visualize sub nm height changes occurring in thin films of redox active polymers upon reversible electrochemical oxidation/reduction in situ and in real-time with electrochemical imaging ellipsometry (EC-IE). Our approach is based on the utilization of a micro-patterned substrate containing circular patterns of passive (non-redox active) 11-mercapto-1-undecanol (MCU) within a redox-responsive oligoethylene sulfide end-functionalized poly(ferrocenyldimethylsilane) (ES-PFS) film on a gold substrate. The non-redox responsive MCU layer was used as a molecular reference layer for the direct visualization of the minute thickness variations of the ES-PFS film. The ellipsometric microscopy images were recorded in aqueous electrolyte solutions at potentials of -0.1 V and 0.6 V vs. Ag/AgCl corresponding to the reduced and oxidized redox states of ES-PFS, respectively. The ellipsometric contrast images showed a 37 (±2)% intensity increase in the ES-PFS layer upon oxidation. The thickness of the ES-PFS layer reversibly changed between 4.0 (±0.1) nm and 3.4 (±0.1) nm upon oxidation and reduction, respectively, as determined by IE. Additionally, electrochemical atomic force microscopy (EC-AFM) was used to verify the redox controlled thickness variations. The proposed method opens novel avenues to optically visualize minute and rapid height changes occurring e.g. in redox active (and other stimulus responsive) polymer films in a fast and non-invasive manner.

  18. Negligible substrate clamping effect on piezoelectric response in (111)-epitaxial tetragonal Pb(Zr, Ti)O{sub 3} films

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Tomoaki, E-mail: t-yamada@nucl.nagoya-u.ac.jp [Department of Materials, Physics and Energy Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan); Yasumoto, Jun; Ito, Daisuke; Yoshino, Masahito; Nagasaki, Takanori [Department of Materials, Physics and Energy Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Sakata, Osami [Synchrotron X-ray Station at SPring-8 and Synchrotron X-ray Group, National Institute for Materials Science, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Department of Innovative and Engineered Material, Tokyo Institute of Technology, Yokohama 226-8503 (Japan); Imai, Yasuhiko [Japan Synchrotron Radiation Research Institute, SPring-8, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Kiguchi, Takanori [Institute for Materials Research, Tohoku University, Sendai, Miyagi 980-8577 (Japan); Shiraishi, Takahisa; Shimizu, Takao; Funakubo, Hiroshi [Department of Innovative and Engineered Material, Tokyo Institute of Technology, Yokohama 226-8503 (Japan)

    2015-08-21

    The converse piezoelectric responses of (111)- and (001)-epitaxial tetragonal Pb(Zr{sub 0.35}Ti{sub 0.65})O{sub 3} [PZT] films were compared to investigate the orientation dependence of the substrate clamping effect. Synchrotron X-ray diffraction (XRD) and piezoelectric force microscopy revealed that the as-grown (111)-PZT film has a polydomain structure with normal twin boundaries that are changed by the poling process to inclined boundaries, as predicted by Romanov et al. [Phys. Status Solidi A 172, 225 (1999)]. Time-resolved synchrotron XRD under bias voltage showed the negligible impact of substrate clamping on the piezoelectric response in the (111)-PZT film, unlike the case for (001)-PZT film. The origin of the negligible clamping effect in the (111)-PZT film is discussed from the viewpoint of the elastic properties and the compensation of lattice distortion between neighboring domains.

  19. Thermal stimulated current response in cupric oxide single crystal thin films over a wide temperature range

    Science.gov (United States)

    Yang, Kungan; Wu, Shuxiang; Yu, Fengmei; Zhou, Wenqi; Wang, Yunjia; Meng, Meng; Wang, Gaili; Zhang, Yueli; Li, Shuwei

    2017-01-01

    Cupric oxide single crystal thin films (~26 nm) were grown by plasma-assisted molecular beam epitaxy. X-ray diffraction, Raman spectra and in situ reflection high-energy electron diffraction show that the thin films are 2  ×  2 reconstructed with an in-plane compression and out-of-plane stretching. A thermal stimulated current measurement indicates that the electric polarization response is shown in the special 2D cupric oxide single crystal thin film over a wide temperature range from 130 K to near-room temperature. We infer that the abnormal electric response involves the changing of phase transition temperature induced by structure distortion, the spin frustration and the magnetic fluctuation effect of a short-range magnetic order, or the combined action of both of the two factors mentioned above. This work suggests a promising clue for finding new room temperature single phase multiferroics or tuning phase transition temperatures.

  20. Pyroelectric response of lead zirconate titanate thin films on silicon: Effect of thermal stresses

    Energy Technology Data Exchange (ETDEWEB)

    Kesim, M. T.; Zhang, J.; Alpay, S. P. [Department of Materials Science and Engineering and Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269 (United States); Trolier-McKinstry, S. [Department of Materials Science and Engineering and Materials Research Institute, Pennsylvania State University, Pennsylvania 16802 (United States); Mantese, J. V. [United Technologies Research Center, East Hartford, Connecticut 06118 (United States); Whatmore, R. W. [Tyndall National Institute, Lee Maltings, Dyke Parade, Cork City, County Cork (Ireland)

    2013-11-28

    Ferroelectric lead zirconate titanate [Pb(Zr{sub x}Ti{sub 1-x}O){sub 3}, (PZT x:1-x)] has received considerable interest for applications related to uncooled infrared devices due to its large pyroelectric figures of merit near room temperature, and the fact that such devices are inherently ac coupled, allowing for simplified image post processing. For ferroelectric films made by industry-standard deposition techniques, stresses develop in the PZT layer upon cooling from the processing/growth temperature due to thermal mismatch between the film and the substrate. In this study, we use a non-linear thermodynamic model to investigate the pyroelectric properties of polycrystalline PZT thin films for five different compositions (PZT 40:60, PZT 30:70, PZT 20:80, PZT 10:90, PZT 0:100) on silicon as a function of processing temperature (25–800 °C). It is shown that the in-plane thermal stresses in PZT thin films alter the out-of-plane polarization and the ferroelectric phase transformation temperature, with profound effect on the pyroelectric properties. PZT 30:70 is found to have the largest pyroelectric coefficient (0.042 μC cm{sup −2} °C{sup −1}, comparable to bulk values) at a growth temperature of 550 °C; typical to what is currently used for many deposition processes. Our results indicate that it is possible to optimize the pyroelectric response of PZT thin films by adjusting the Ti composition and the processing temperature, thereby, enabling the tailoring of material properties for optimization relative to a specific deposition process.

  1. A Stimuli-Responsive Biosensor of Glucose on Layer-by-Layer Films Assembled through Specific Lectin-Glycoenzyme Recognition

    Directory of Open Access Journals (Sweden)

    Huiqin Yao

    2016-04-01

    Full Text Available The research on intelligent bioelectrocatalysis based on stimuli-responsive materials or interfaces is of great significance for biosensors and other bioelectronic devices. In the present work, lectin protein concanavalin A (Con A and glycoenzyme glucose oxidase (GOD were assembled into {Con A/GOD}n layer-by-layer (LbL films by taking advantage of the biospecific lectin-glycoenzyme affinity between them. These film electrodes possess stimuli-responsive properties toward electroactive probes such as ferrocenedicarboxylic acid (Fc(COOH2 by modulating the surrounding pH. The CV peak currents of Fc(COOH2 were quite large at pH 4.0 but significantly suppressed at pH 8.0, demonstrating reversible stimuli-responsive on-off behavior. The mechanism of stimuli-responsive property of the films was explored by comparative experiments and attributed to the different electrostatic interaction between the films and the probes at different pH. This stimuli-responsive films could be used to realize active/inactive electrocatalytic oxidation of glucose by GOD in the films and mediated by Fc(COOH2 in solution, which may establish a foundation for fabricating novel stimuli-responsive electrochemical biosensors based on bioelectrocatalysis with immobilized enzymes.

  2. Development of 3D Slicer based film dosimetry analysis

    Science.gov (United States)

    Alexander, K. M.; Robinson, A.; Pinter, C.; Fichtinger, G.; Schreiner, L. J.

    2017-05-01

    Radiochromic film dosimetry has been widely adopted in the clinic as it is a convenient option for dose measurement and verification. Film dosimetry analysis is typically performed using expensive commercial software, or custom made scripts in Matlab. However, common clinical film analysis software is not transparent regarding what corrections/optimizations are running behind the scenes. In this work, an extension to the open-source medical imaging platform 3D Slicer was developed and implemented in our centre for film dosimetry analysis. This extension streamlines importing treatment planning system dose and film imaging data, film calibration, registration, and comparison of 2D dose distributions, enabling greater accessibility to film analysis and higher reliability.

  3. Thin-Film Magnetic-Field-Response Fluid-Level Sensor for Non-Viscous Fluids

    Science.gov (United States)

    Woodard, Stanley E.; Shams, Qamar A.; Fox, Robert L.; Taylor, Bryant D.

    2008-01-01

    An innovative method has been developed for acquiring fluid-level measurements. This method eliminates the need for the fluid-level sensor to have a physical connection to a power source or to data acquisition equipment. The complete system consists of a lightweight, thin-film magnetic-field-response fluid-level sensor (see Figure 1) and a magnetic field response recorder that was described in Magnetic-Field-Response Measurement-Acquisition System (LAR-16908-1), NASA Tech Briefs, Vol. 30, No. 6 (June 2006), page 28. The sensor circuit is a capacitor connected to an inductor. The response recorder powers the sensor using a series of oscillating magnetic fields. Once electrically active, the sensor responds with its own harmonic magnetic field. The sensor will oscillate at its resonant electrical frequency, which is dependent upon the capacitance and inductance values of the circuit.

  4. SU-E-T-516: Investigation of a Novel Radiochromic Radiation Reporting System Utilizing the Reduction of Ferric Ion

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H; Alqathami, M; Wang, J; Ibbott, G [UT MD Anderson Cancer Center, Houston, TX (United States); Blencowe, A [The University of South Australia, South Australia, SA (Australia)

    2015-06-15

    Purpose To introduce and characterize a new “reverse-Fricke” radiation reporting system utilizing the reduction of ferric ions (Fe{sup 3+}) to ferrous ions (Fe{sup 2+}). Methods Two formulations of the radiochromic reporting system, referred to as A and B, were prepared for investigation. Formulation-A consisted of 14 mM 1,10-phenanthroline, 42 mM ethanol, and 57 mM ammonium ferric oxalate in water. Formulation-B consisted of 27 mM 1,10-phenanthroline, 42 mM ethanol, and 28 mM ammonium ferric oxalate in water. Solutions were prepared immediately prior to irradiation with a Cobalt-60 unit with radiation doses of 0, 1, 5, 10, 15, 20, and 25 Gy. The change in optical density over the visible range of 450–650 nm was measured using a spectrophotometer immediately after irradiation. The effective atomic numbers of the formulations were calculated using Mayneord’s formula. Results Ionizing radiation energy absorbed in the solutions causes the reduction of ferric ions (Fe{sup 3+}) into ferrous ions (Fe{sup 2+}), which then forms a 1:3 red colored complex with 1,10-phenanthroline ([(C{sub 1} {sub 2}H{sub 8}N{sup 2}){sub 3}Fe]{sup 2+}) that can be measured spectrophotometrically. The absorbance spectra of the resulting complex displayed a peak maximum at 512 nm with a greater change in absorbance for Formulation-B after receiving comparable radiation doses. The change in absorbance relative to dose exhibited a linear response up to 25 Gy for both Formulation-A (R{sup 2} = 0.98) and Formulation-B (R{sup 2} = 0.97). The novel formulations were also nearly water equivalent (Zeff = 7.42) with effective atomic numbers of 7.65 and 7.52 and mass densities within 0.2% of water. Conclusion Both formulations displayed visible Fe{sup 2+} complex formation with 1,10-phenanthroline after irradiation using a Cobalt-60 source. The higher sensitivity measured for Formulation-B is attributed to the increase in 1,10-phenanthroline concentration and the increase in the 1

  5. Effect of metal coordination on photocurrent response properties of a tetrathiafulvalene organogel film.

    Science.gov (United States)

    Ji, Shu-Fang; Sun, Yong-Gang; Huo, Peng; Shen, Wei-Chun; Huang, Yu-De; Zhu, Qin-Yu; Dai, Jie

    2014-04-07

    Organic low molecular weight gelators with a tetrathiafulvalene (TTF) unit have received considerable attention because the formed gels usually exhibit redox active response and conducting or semiconducting properties. However, to our knowledge, metal coordination systems have not been reported for TTF-derived gels up to date. We have designed and synthesized a series of TTF derivatives with a diamide-diamino moiety that can coordinate to specific metal ions with square coordination geometry. Gelation properties and morphologies of the films prepared by the gelators in different hydrophobic solvents are characterized. The TTF derivative with a dodecyl group shows effective gelation properties, and electrodes with the organogel films are prepared. The effect of the Ni(II) and Cu(II) coordination on the photocurrent response property of the electrodes is examined. The metal square coordination significantly increases the photocurrent response. This gel system is the first metal coordination related TTF-gel-based photoelectric material. The mechanism of the metal coordination-improved photocurrent response property is discussed based on the crystal structural analysis and theoretical calculations.

  6. Enhanced UV-sensitivity of vis-responsive anatase thin films fabricated by using precursor solutions involving Ti complexes

    Energy Technology Data Exchange (ETDEWEB)

    Nagai, Hiroki; Mochizuki, Chihiro; Hara, Hiroki; Sato, Mitsunobu [Coordination Engineering Laboratory, Faculty of Engineering, Kogakuin University, 2665-1 Nakano, Hachioji City, Tokyo 192-0015 (Japan); Takano, Ichiro [Department of Electrical Engineering, Kogakuin University, 2665-1 Nakano, Hachioji City, Tokyo 192-0015 (Japan)

    2008-09-15

    Fabrication of vis-responsive anatase thin films with enhanced UV-sensitivity was attained on an ITO pre-coated glass substrate by applying two precursor solutions involving Ti complexes of oxalic acid and EDTA. The transparent and crack-free thin films were characterized by XRD, XPS, UV-vis and FE-SEM observation. The highest sensitivity to UV light of the vis-responsive film, whose photocatalytic activity was measured by the decomposition rate of methylene blue, was four times as compared with that formed by a sol-gel method under the same conditions. The vis-responsive films showed a characteristic absorption band at around 480 nm. (author)

  7. Bifurcations in the response of a flexible rotor in squeeze-film dampers with retainer springs

    Energy Technology Data Exchange (ETDEWEB)

    Inayat-Hussain, Jawaid I. [School of Engineering, Monash University Malaysia, No. 2, Jalan Kolej, Bandar Sunway, 46150 Petaling Jaya, Selangor Darul Ehsan (Malaysia)], E-mail: jawaid.inayat-hussain@eng.monash.edu.my

    2009-01-30

    Squeeze-film dampers are commonly used in conjunction with rolling-element or hydrodynamic bearings in rotating machinery. Although these dampers serve to provide additional damping to the rotor-bearing system, there have however been some cases of rotors mounted in these dampers exhibiting non-linear behaviour. In this paper a numerical study is undertaken to determine the effects of design parameters, i.e., gravity parameter, W, mass ratio, {alpha}, and stiffness ratio, K, on the bifurcations in the response of a flexible rotor mounted in squeeze-film dampers with retainer springs. The numerical simulations were undertaken for a range of speed parameter, {omega}, between 0.1 and 5.0. Numerical results showed that increasing K causes the onset speed of bifurcation to increase, whilst an increase of {alpha} reduces the onset speed of bifurcation. For a specific combination of K and {alpha} values, the onset speed of bifurcation appeared to be independent of W. The instability of the rotor response at this onset speed was due to a saddle-node bifurcation for all the parameter values investigated in this work with the exception of the combination of {alpha} = 0.1 and K = 0.5, where a secondary Hopf bifurcation was observed. The speed range of non-synchronous response was seen to decrease with the increase of {alpha}; in fact non-synchronous rotor response was totally absent for {alpha}=0.4. With the exception of the case {alpha} = 0.1, the speed range of non-synchronous response was also seen to decrease with the increase of K. Multiple responses of the rotor were observed at certain values of {omega} for various combinations of parameters W, {alpha} and K, where, depending on the values of the initial conditions the rotor response could be either synchronous or quasi-periodic. The numerical results presented in this work were obtained for an unbalance parameter, U, value of 0.1, which is considered as the upper end of the normal unbalance range of most practical

  8. Bifurcations of a flexible rotor response in squeeze-film dampers without centering springs

    Energy Technology Data Exchange (ETDEWEB)

    Inayat-Hussain, Jawaid I. [School of Engineering, Monash University Malaysia, No. 2, Jalan Kolej, Bandar Sunway, Petaling Jaya 46150, Selangor Darul Ehsan (Malaysia)]. E-mail: jawaid.inayat-hussain@eng.monash.edu.my

    2005-04-01

    Squeeze-film dampers are often utilized in high-speed rotating machinery to provide additional external damping to the rotor-bearing system for the purpose of reducing the synchronous response of the rotor especially while traversing critical speeds, or to eliminate rotor instability problems. The application of these dampers are widely found in aircraft gas turbine engines that are usually mounted on rolling element bearings, which are known to provide almost negligible damping to the system. Although the squeeze-film damper is an inherently stable machine element, its operation at certain parameters may give rise to undesirable non-synchronous vibration. The effects of the design and operating parameters, namely the bearing parameter, B, gravity parameter, W, and mass ratio, {alpha}, on the bifurcations in the response of a flexible rotor supported by squeeze-film dampers without centering springs were examined using direct numerical integration. Specifically, the effects of these parameters on the onset speed of bifurcation and the extent of non-synchronous response of the rotor within the range of speed parameter, {omega}, between 0.5 and 5.0 were determined. Numerical simulation results showed the occurrence of period-2, period-4 and quasi-periodic vibrations in the response of the rotor as the speed parameter, {omega}, was varied from 0.5 to 5. The results further showed that increasing B resulted in the increase of the onset speed of bifurcation, and a decrease in the range of {omega} where non-synchronous response was observed. With the exception of the case of W = 0.0, the increase of W was found to increase the onset speed of bifurcation and also the range of {omega} where non-synchronous response was observed. The effect of increasing {alpha} resulted in a decrease in the range of {omega} where non-synchronous response existed. The increase of {alpha} also caused the onset speed of bifurcation to increase, except for the case of B = 0.05, W = 0.0, where

  9. Response of Ag Thick Film Microstripline due to Superstrate Strontium Substituted Bismuth Manganites

    Directory of Open Access Journals (Sweden)

    S.N. Mathad

    2014-06-01

    Full Text Available The purpose of this paper is to describe the use of strontium-substituted bismuth manganites bulk ceramic superstrate on Ag thick film microstripline, to modify its response and measure complex permittivity as a function of strontium. Bismuth strontium manganites (Bi1 − xSrxMnO3 have been synthesized by solid state sintering technique. The perturbation obtained in the transmittance and reflectance of thick film microstripline due to the Bi1 − xSrxMnO3 (0.20  x  0.50 overlay has been used to obtain the permittivity at microwave frequencies in X and Ku band range. Due to the overlay of Bismuth strontium manganites (BSM pellets a substantial increase in the effective dielectric constant was observed in X band more compared to Ku band. The in-touch overlay method provides ease loading and unloading. The perturbation obtained in the transmittance and reflectance of thick film microstripline due to the bismuth strontium manganites overlay has been used to obtain the permittivity.

  10. Dopamine and norepinephrine responses to film-induced sexual arousal in sexually functional and sexually dysfunctional women.

    Science.gov (United States)

    Meston, C M; McCall, K M

    2005-01-01

    This study was designed to assess potential differences between sexually functional and dysfunctional women in dopamine (DA) and norepinephrine (NE) responses to erotic stimuli. Blood levels of homovanillic acid (HVA; the major metabolite of DA) and NE were taken during the showing of a nonsexual and a sexual film from 9 women with female sexual arousal disorder and hypoactive sexual desire disorder and from 13 sexually functional women. We assessed sexual arousal subjectively using a self-report scale and physiologically using a vaginal photoplethysmograph. HVA levels significantly decreased in sexually functional and dysfunctional women during the erotic versus during the neutral film. NE levels were not significantly different for either group of women during the neutral and erotic films. Sexually dysfunctional women had significantly higher levels of NE during both the neutral and erotic films compared with functional women. Subjective or physiological arousal differences between neutral and erotic films were not significantly different between functional and dysfunctional women.

  11. AC Response to Humidity and Propane of Sprayed Fe-Zn Oxide Films

    Directory of Open Access Journals (Sweden)

    Alejandro AVILA-GARCÍA

    2009-09-01

    Full Text Available Iron-zinc oxide films with different Zn contents were ultrasonically sprayed on glass substrates and inter-digital gold electrodes were evaporated upon them. Films were deposited from solutions containing 2, 10 and 30 at. % Zn. Hematite, amorphous and Franklinite structures turned out, respectively. They were assessed as humidity and propane detectors under alternating-current conditions for frequencies from 1 to 105 Hz and temperatures 30 and 250 oC. Their impedances in dry air, humid air and humid air plus propane were determined from voltage measurements with a Lock-In amplifier. Sensitivities to humidity (53 % RH. and 189, 500 and 786 ppm of propane from the response of the resistance, reactance and also the total impedance were determined as functions of frequency. The maximum sensitivity to humidity ranges from 24 % up to 308 %. For propane, the maximum sensitivity ranges from 45 % up to 711 %. The largest sensitivity values correspond in all cases to reactance. From the dynamical response, the response and recovery times are determined, along with the concentration-dependence of the sensitivity. The sensing mechanisms are commented.

  12. Irreversible thermochromic response of RF sputtered nanocrystalline BaWO{sub 4} films for smart window applications

    Energy Technology Data Exchange (ETDEWEB)

    Anil Kumar, C.; Santhosh Kumar, T.; Pamu, D., E-mail: pamu@iitg.ernet.in [Department of Physics, Indian Institute of Technology Guwahati, Guwahati -781039 (India)

    2015-10-15

    quantify the presence of oxygen vacancies and the formation of pure BWO phase. The obtained optical responses of BWO films are promising for solar cell and smart window applications.

  13. Frustrated magnetic response of a superconducting Nb film with a square lattice of columnar defects

    Energy Technology Data Exchange (ETDEWEB)

    Zadorosny, R; Ortiz, W A [Grupo de Supercondutividade e Magnetismo, Departamento de Fisica, Universidade Federal de Sao Carlos, Sao Carlos, SP (Brazil); Lepienski, C M [Universidade Federal do Parana, Departamento de Fisica, Curitiba, PR (Brazil); Patino, E; Blamire, M G [Department of Materials Science, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ (United Kingdom)], E-mail: rafazad@df.ufscar.br

    2008-02-01

    The magnetic response of a superconducting system presenting a frustrated state is investigated. The system is a superconducting film with mechanically pierced columns, cooled in a field which is then removed. Frustration originates from the competition between return flux of a dipole - created by flux trapped in the empty columns - and flux exclusion by the surrounding superconductor in the Meissner state. The system resolves the incompatibility among conflicting constraints, leading to frustration, by eliminating return flux, which is possibly assimilated by nearby columns, as manifested by a sudden reduction of the magnetic moment on the decreasing field branch of the hysteresis loop.

  14. Synthesis of environmentally responsive organic materials by application of ion track holes in polymer films

    Energy Technology Data Exchange (ETDEWEB)

    Omichi, Hideki; Yoshida, Masaru; Asano, Masaharu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Katakai, Ryoichi; Spohr, R.; Vetter, J.

    1997-03-01

    Polymer films were irradiated by heavy ion beams and etched by a concentrated alkali solution to produce particle track membranes (PTMs). Then the PTMs were chemically modified by grafting such monomers as amino acid group containing methacryloyl and N-isopropylacrylamide the polymers of which are known as environmentally responsive hydrogels. The size of pores of the modified PTMs under different temperatures in water was followed by electron microscopy. The pore was controlled from an open state to a completely closed state by changing temperature. The conductivity through the membrane was measured by changing the temperature of the cell. (author)

  15. Effect of bath concentration on the growth and photovoltaic response of SILAR-deposited CuO thin films

    Science.gov (United States)

    Visalakshi, S.; Kannan, R.; Valanarasu, S.; Kim, Hyun-Seok; Kathalingam, A.; Chandramohan, R.

    2015-09-01

    Solar cell property of p-CuO/n-Si heterojunction was investigated using SILAR-deposited CuO thin films. The effects of copper salt concentration on the growth of CuO films and its effect on the efficiency in solar cell conversion were investigated. Structural, morphological, optical and electrical studies of the CuO thin films deposited at 90 °C with different copper sulphate concentrations are reported. Crystallinity of the film is found to increase with the increase in copper sulphate concentration. The measured Raman spectrum of the deposited film showed peaks corresponding to CuO phase. It is observed by the SEM that the film is homogeneous fully covering the substrate. The optical band gap of the deposited film has exhibited a decrease in band gap from 1.76 to 1.57 eV with the increase in copper sulphate concentration. Solar cell device was constructed using the p-CuO film deposited on n-silicon substrate, and its photovoltaic response was measured. It showed increasing photoresponse with increasing concentration of copper sulphate.

  16. Hemicyanine LB film—Silver nanoparticle composite: contrasting fluorescence responses sensitive to the ultrathin film assembly sequence

    Science.gov (United States)

    Maganti, Lasya; Dwivedi, Itisha; Jose, Anju; Radhakrishnan, T. P.

    2017-07-01

    Fluorescence emission of molecules is strongly influenced by the plasmonic field of metal nanoparticles, with significant enhancement induced under optimal conditions. Nanocomposite ultrathin films fabricated with citrate-stabilized Ag nanoparticles and LB film of a cationic hemicyanine amphiphile, are shown to produce opposing fluorescence emission trends upon subtle variation in the assembly sequence. Monolayer LB films of the pure amphiphile show aggregation-induced quenching with increasing deposition pressure. Composite films formed by adsorption of Ag nanoparticles on the Langmuir film (self-assembly together with steered assembly) followed by LB transfer, show further quenching. However, adsorption of Ag nanoparticles on the pre-formed amphiphile LB film (self-assembly following steered assembly), causes the fluorescence to increase with the extent of adsorption. Spectroscopy and microscopy provide insight into the contrasting, tunable emission. Formation of Ag nanoparticle chains on the Langmuir film and their direct contact with the monolayer cause the fluorescence quenching; adsorption of isolated Ag nanoparticles on the LB film along with multilayer formation leads to the enhancement. The study illustrates the versatility of LB film—metal nanoparticle composites in producing distinct materials responses through subtle changes in the mode of assembly.

  17. Atmospheric effects on the photosensitive response of poly(methylphenylsilane) thin films.

    Energy Technology Data Exchange (ETDEWEB)

    Potter, Barrett George, Jr. (University of Arizona, Tucson, AZ); Chandra, Haripin (University of Arizona, Tucson, AZ); Simmons-Potter, Kelly (University of Arizona, Tucson, AZ); Thomes, William Joseph, Jr.; Jamison, Gregory Marks

    2004-06-01

    Agile ready-when-needed patterning of refractive index structures in photosensitive materials requires an understanding of the impact of local application environment on mechanisms contributing to the desired photoinduced index change. The present work examines the impact of atmosphere on the photosensitive response of poly(methylphenylsilane) (PMPS) thin films whose high photoinduced index change under low incident optical fluence make them attractive candidates for such applications. Changes in optical absorption and refractive index are investigated after exposure to ultraviolet (UV) light resonant with the lowest energy transition exhibited by the Si-Si backbone structure in the material. A comparison between photoinduced absorption changes for thin films exposed in an air atmosphere versus those observed for samples subjected to a nitrogen environment during photoexposure is made for the first time. The study reveals that the anaerobic conditions of the nitrogen atmosphere significantly reduce the photosensitive response of the material to light. These results are discussed in terms of photooxidation processes within the polysilane structure and in the context of the need for predictable photosensitive refractive index change in varied photoimprinting environments.

  18. Photoluminescence response of colloidal quantum dots on VO2 film across metal to insulator transition.

    Science.gov (United States)

    Kuznetsov, Sergey N; Cheremisin, Alexander B; Stefanovich, Genrikh B

    2014-01-01

    We have proposed a method to probe metal to insulator transition in VO2 measuring photoluminescence response of colloidal quantum dots deposited on the VO2 film. In addition to linear luminescence intensity decrease with temperature that is well known for quantum dots, temperature ranges with enhanced photoluminescence changes have been found during phase transition in the oxide. Corresponding temperature derived from luminescence dependence on temperature closely correlates with that from resistance measurement during heating. The supporting reflectance data point out that photoluminescence response mimics a reflectance change in VO2 across metal to insulator transition. Time-resolved photoluminescence study did not reveal any significant change of luminescence lifetime of deposited quantum dots under metal to insulator transition. It is a strong argument in favor of the proposed explanation based on the reflectance data. 71.30. + h; 73.21.La; 78.47.jd.

  19. Pyroelectric response in crystalline hafnium zirconium oxide (Hf1-xZrxO2) thin films

    Science.gov (United States)

    Smith, S. W.; Kitahara, A. R.; Rodriguez, M. A.; Henry, M. D.; Brumbach, M. T.; Ihlefeld, J. F.

    2017-02-01

    Pyroelectric coefficients were measured for 20 nm thick crystalline hafnium zirconium oxide (Hf1-xZrxO2) thin films across a composition range of 0 ≤ x ≤ 1. Pyroelectric currents were collected near room temperature under zero applied bias and a sinusoidal oscillating temperature profile to separate the influence of non-pyroelectric currents. The pyroelectric coefficient was observed to correlate with zirconium content, increased orthorhombic/tetragonal phase content, and maximum polarization response. The largest measured absolute value was 48 μCm-2 K-1 for a composition with x = 0.64, while no pyroelectric response was measured for compositions which displayed no remanent polarization (x = 0, 0.91, and 1).

  20. Effects of temperature and humidity during irradiation on the response of a film dosimeter

    Science.gov (United States)

    Khan, Hasan M.; Wahid, Mian S.

    1995-09-01

    A commercially available leuco dye containing polyvinyl butyral based film (FWT-63-02) has been investigated ctrophotometrically for its dosimetric characteristic and for its use as routine dosimeter in radiation processing for the absorbed dose range 0.1 to 10 kGy. The present study was carried out to evaluate the performance of dosimeter under different environmental conditions (i.e. effects of temperature and relative humidity during irradiation). The response was measured at peak wavelength of 600 nm as well as at a number of other wavelengths (550, 625, 640 and 650 nm). The dosimeter was found to show quite stable response up to a radiation chamber temperature of 40°C. The dosimeter also showed stable behavior at low or moderate relative humidity conditions (<76%) in the radiation chamber. The characteristics of the dosimeter are suitable for its possible application in radiation processing, food irradiation and sterilization applications.

  1. Quick pH-responsive Films Prepared from Urethane Acrylate Anionomers Under UV Radiation and Their Responsive Performances

    Institute of Scientific and Technical Information of China (English)

    TANG Li-ming; DAI Yu; Fang Yu

    2004-01-01

    Urethane acrylate anionomers(UAA) were prepared in various compositions by three steps. Under UV radiation, UAA formed pH-sensitive films with drying film thicknesses of 60, 200 and 330μm. The equilibrium swelling ratios(SR) of the films in various pH buffer solutions increased with the increase of the molecule weight of UAA. The influence of the film thicknesses on the swelling performances of the films was investigated. The film with a thickness of 60 μm could reach the equilibrium state in 2.5-3.5 min. A high SR was obtained for a thick film due to its low average network density. The cured film could swell reversibly and rapidly with the change of pH, which is important for a controlled release system.

  2. Optimization of synthesis conditions of PbS thin films grown by chemical bath deposition using response surface methodology

    Energy Technology Data Exchange (ETDEWEB)

    Yücel, Ersin, E-mail: dr.ersinyucel@gmail.com [Department of Physics, Faculty of Arts and Sciences, Mustafa Kemal University, 31034 Hatay (Turkey); Yücel, Yasin; Beleli, Buse [Department of Chemistry, Faculty of Arts and Sciences, Mustafa Kemal University, 31034 Hatay (Turkey)

    2015-09-05

    Highlights: • For the first time, RSM and CCD used for optimization of PbS thin film. • Tri-sodium citrate, deposition time and temperature were independent variables. • PbS thin film band gap value was 2.20 eV under the optimum conditions. • Quality of the film was improved after chemometrics optimization. - Abstract: In this study, PbS thin films were synthesized by chemical bath deposition (CBD) under different deposition parameters. Response surface methodology (RSM) was used to optimize synthesis parameters including amount of tri-sodium citrate (0.2–0.8 mL), deposition time (14–34 h) and deposition temperature (26.6–43.4 °C) for deposition of the films. 5-level-3-factor central composite design (CCD) was employed to evaluate effects of the deposition parameters on the response (optical band gap of the films). The significant level of both the main effects and the interaction are investigated by analysis of variance (ANOVA). The film structures were characterized by X-ray diffractometer (XRD). Morphological properties of the films were studied with a scanning electron microscopy (SEM). The optical properties of the films were investigated using a UV–visible spectrophotometer. The optimum amount of tri-sodium citrate, deposition time and deposition temperature were found to be 0.7 mL, 18.07 h and 30 °C respectively. Under these conditions, the experimental band gap of PbS was 2.20 eV, which is quite good correlation with value (1.98 eV) predicted by the model.

  3. Feasibility of radiochromic gels for 3D dosimetry of brachytherapy sources

    Science.gov (United States)

    Šolc, Jaroslav; Sochor, Vladimír

    2012-10-01

    Two radiochromic gel dosimeters, Fricke-xylenol orange (FXO) gel and Turnbull Blue (TB) gel, were studied in the scope of the iMERA+ project ‘Increasing cancer treatment efficacy using 3D brachytherapy’ for their feasibility for the determination of relative 3D dose distribution of brachytherapy (BT) sources. Initially, the dose, dose rate and energy dependence of the gels were investigated. Subsequently, the gels were irradiated by a point low-dose-rate source IsoSeed I25.S16 (125I) and a high-dose-rate source GammaMed+ (192Ir) and scanned using optical computed tomography. Optical transmission images of irradiated gels were processed to obtain detailed 3D optical density maps inside the gels with voxel dimensions of 0.25 × 0.25 × 0.25 mm3. The radial dose function between 1.5 mm and 35 mm from the source and the anisotropy function at 10 mm radius were determined and compared with Monte Carlo calculations and TG-43 data, showing agreement mostly within the measurement uncertainty. Results revealed that the TB gel is feasible for measurements of the relative 3D dose distributions very close to the point BT source because it conserves sharp dose gradients as this gel does not suffer diffusion of dye created upon irradiation. On the other hand, FXO gel underestimates doses closer than 5 mm from the source due to diffusion effects, but it has a significantly higher sensitivity which enables convenient measurement of relative doses up to 35 mm from the source. Further development, especially on gel composition and corrections to optical CT images, is desirable.

  4. High-responsivity UV-Vis Photodetector Based on Transferable WS2 Film Deposited by Magnetron Sputtering.

    Science.gov (United States)

    Zeng, Longhui; Tao, Lili; Tang, Chunyin; Zhou, Bo; Long, Hui; Chai, Yang; Lau, Shu Ping; Tsang, Yuen Hong

    2016-01-29

    The two-dimensional layered semiconducting tungsten disulfide (WS2) film exhibits great promising prospects in the photoelectrical applications because of its unique photoelectrical conversion property. Herein, in this paper, we report the simple and scalable fabrication of homogeneous, large-size and transferable WS2 films with tens-of-nanometers thickness through magnetron sputtering and post annealing process. The produced WS2 films with low resistance (4.2 kΩ) are used to fabricate broadband sensitive photodetectors in the ultraviolet to visible region. The photodetectors exhibit excellent photoresponse properties, with a high responsivity of 53.3 A/W and a high detectivity of 1.22 × 10(11) Jones at 365 nm. The strategy reported paves new way towards the large scale growth of transferable high quality, uniform WS2 films for various important applications including high performance photodetectors, solar cell, photoelectrochemical cell and so on.

  5. Microwave Response of MgB2/Al2O3 Superconducting Thin Films by Microstrip Resonator Technique

    Institute of Scientific and Technical Information of China (English)

    SHI Li-Bin; ZHENG Yan; REN Jun-Yuan; LI Ming-Biao; ZHANG Feng-Yun; LI Bo-Xin; DONG Hai-Kuan

    2007-01-01

    Double-sided superconducting MgB2 thin films are deposited onto c-Al2O3 substrates by the hybrid physical chemical vapour deposition method. The microwave response of MgBz/Al2O3 is investigated by microstrip resonator technique. A grain-size model is introduced to the theory of microstrip resonators to analyse microwave properties of the films. We obtain effective penetration depth of the films at 0K (λe0 = 463 nm) and surface resistance (R3 = 1.52mΩ at 11 K and 8.73 GHz) by analysing the resonant frequency and unload quality factor of the microstrip resonator, which suggests that the impurities and disorders of grain boundaries of MgB2/Al2O3 result in increasing penetration depth and surface resistance of the films.

  6. OPTICAL PHASE CONJUGATION RESPONSE OF PHOTOINDUCED POLYMER FILMS CONTAINING AZOBENZENE MOIETIES WITH CHIRAL GROUP

    Institute of Scientific and Technical Information of China (English)

    Ze-da Xu; Yong Zhang; Xing-he Fan; Xin-hua Wan; Qi-feng Zhou

    2002-01-01

    An optically active monomer containing azobenzene moieties with chiral group (s-2-methyl-butyl), 4-[2-(methacryloyloxy)ethyloxy]-4'-(s-2-methyl-1-butyloxycarbonyl) azobenzene (M1) was synthesized. Polymer (PM1) possessing optical phase conjugated response was obtained by homopolymerization of the optically active monomer (M1) using free radical polymerization. The polymer was very soluble in common solvents and good optical quality films could be easily fabricated by spin coating. The optical phase conjugated responses of the polymer PM1 were measured by degenerate four-wave mixing (DFWM). In comparison with polymer containing no chiral group, it was found from the preliminary measurement of photoisomeric change that optical phase conjugated response of the PM1 in the long-range order hexagonal symmetry microstructure could be easily controlled by choosing the appropriate polarization direction of the irradiating beams (514.5 nm) and the irradiating number, presumably due to the chiral group in the PM1 molecular structure. For the case of the polymer investigated here, a chiral group side chain was introduced to increase optical phase conjugated response intensity with different polarization directions of the irradiating beams, which aims originally at searching for a new photoactive material.

  7. Spatial dose distributions in solid tumors from {sup 186}Re transported by liposomes using HS radiochromic media

    Energy Technology Data Exchange (ETDEWEB)

    Medina, Luis A.; Rodriguez-Villafuerte, Mercedes; Martinez-Davalos, Arnulfo; Galvan, Olga O.; Brandan, Maria-Ester [Instituto de Fisica, UNAM, A.P. 20-364, Mexico (Mexico); Goins, Beth; Awasthi, Vibhudutta; Santoyo, Cristina; Phillips, William T. [University of Texas Health Science Center at San Antonio, Department of Radiology, San Antonio, TX (United States); Bao, Ande [University of Texas Health Science Center at San Antonio, Department of Radiology, San Antonio, TX (United States); University of Texas Health Science Center at San Antonio, Department of Otolaryngology-Head and Neck Surgery, San Antonio, TX (United States)

    2007-07-15

    A procedure for the measurement of spatial dose rate distribution of beta particles emitted by {sup 186}Re-liposomes in tumoral tissue, using HS GafChromic films, is presented. HNSCC xenografts were intratumorally injected with 3.7 or 11.1 MBq of {sup 186}Re-liposomes, and planar gamma camera images were acquired to determine the liposome retention in the tumor. After imaging, rats were sacrificed and tumors were excised and processed in slices; HS film sections were placed between slices and the tumor lobe was reassembled. Tumors and films were kept in the dark at 4 C for 18 h. After irradiation, films were removed and response was read using a transmission scanner. Films were analyzed to determine two-dimensional spatial dose rate distributions and cumulative dose volume histograms. Dose rate distributions were quantified using a {sup 60}Co calibration curve, the {sup 186}Re physical half-life, and a perturbation factor that takes into account the effect of the film protective layer. Dose rate distributions are highly heterogeneous with maximal dose rates about 0.4 Gy h{sup -1} in tumors injected with 3.7 MBq and 1.3 Gy h{sup -1} in tumors injected with 11.1 MBq. Dose volume histograms showed dose distributed in more than 95% and 80% of the tumor when injected with the lower and the higher activity, respectively. The described procedures and techniques have shown the potential and utility of HS GafChromic film for determination of dose rate distributions in solid tumors injected intratumorally with {sup 186}Re-liposomes. The film's structure and the liposomes' biodistribution must be taken into account to obtain quantitative dose measurements. (orig.)

  8. The response of quartz crystals coated with thin fatty acid film to organic gases

    CERN Document Server

    Jin, C N; Kim, K H; Kwon, Y S

    1999-01-01

    We tried to apply a quartz crystal as a sensor by using the resonant frequency and the resistance properties of quartz crystals. Four kinds of fatty acids that have the same head groups were coated on the surfaces of the quartz crystals, and the shift of the resonant frequency and the resistance were observed based on the lengths of the tail groups. Myristic acid (C sub 1 sub 4), palmitic acid (C sub 1 sub 6), stearic acid (C sub 1 sub 8), and arachidic acid (C sub 2 sub 0) were deposited on the surfaces of quartz crystals by using the Langmuir-Blodgett (LB) method. As a result, the resonant frequency change was more sensitive to high molecular-weight fatty acids than to low molecular-weight ones. We also observed the effect of temperature on stearic acid LB films, and the response properties of quartz crystals coated with stearic-acid LB films to organic gases were investigated. As a result, the sensitivity of quartz crystals to organic gases was higher for higher molecular-weight gas, and we found that quar...

  9. Cosmopolitan communication online: YouTube responses to the anti-Islam film Fitna.

    Science.gov (United States)

    Mihelj, Sabina; van Zoonen, Liesbet; Vis, Farida

    2011-12-01

    In 2008, a Dutch member of parliament released a short anti-Islamic film entitled Fitna, which stirred a huge public controversy and provoked public condemnations around the world. In response to the film, hundreds of videos were uploaded on YouTube, mostly with the aim to provide a more positive representation of Islam, express support for the author and his views, or defend his freedom of speech. Drawing on interviews with YouTube users who posted the videos, this paper reflects on the capacity of the Internet to sustain cosmopolitan communication and examines how cosmopolitan attitudes and practices on-line differ depending on the participants' cultural and social background, especially their religious affiliations. Particular attention is paid to how the opportunities for cosmopolitan communication are shaped by the unequal distribution of cosmopolitan attitudes and practices among groups, and by global inequalities of power. In addressing these issues, the paper also engages with broader debates about cosmopolitanism, and argues for an understanding of cosmopolitanism as a quest for universalism, which remains anchored in the particular, but involves communication across difference, and requires openness to the possibility that the other is right.

  10. A computational study of the piezoelectric response due to the material effect in periodic, single island thin films and the geometric effect in periodic, bi-island thin films

    Energy Technology Data Exchange (ETDEWEB)

    Liu, B. [Department of Applied Science, University of Arkansas at Little Rock, 2801 South University, ETAS 575, Little Rock, AR 72204-1099 (United States); Bhattacharyya, A., E-mail: axbhattachar@ualr.ed [Department of Applied Science, University of Arkansas at Little Rock, 2801 South University, ETAS 575, Little Rock, AR 72204-1099 (United States)

    2010-05-03

    The electromechanical response of a square-periodic array of circular piezoelectric (PE) thin films alternating with non-piezoelectric (NPE) films is studied in this paper. The material effects are studied for four film/substrate combinations in absence of NPE films for which it is found that if d{sub zxx} << d{sub zzz} (z-axis being normal to the interfacial plane between the film and the substrate), it results in reduced substrate bending leading to reduced degradation in the electromechanical response of the thin film. The bi-island structure is studied for zinc oxide on strontium titanate, and, in general, it is seen that the NPE films not only reduce degradation of the electromechanical response of the PE films but also increase their internal stresses; the effect on the former is less than the latter. These effects are most prominent when the circular NPE thin films fill the space between the PE thin films and are elastically very stiff compared to the substrate.

  11. A sensitive YBaCuO thin film bolometer with ultrawide wavelength response

    Science.gov (United States)

    Dwir, B.; Pavuna, D.

    1992-11-01

    We have constructed two types of high-temperature superconducting bolometers, whose performance is essentially wavelength independent from 0.6 to 450 microns: the first is a microbridge, of dimensions 20 x 20 microns, and the second is a meander, covering a region of about 1 sq mm. Both were fabricated by photolithography of a superconducting YBaCuO thin film on SrTiO3. The bolometers are current biased, and the ac voltage induced by the chopped radiation is measured using lock-in detection. Operating optimally in the vicinity of the transition temperature (90 K), the first bolometer shows responsivity S about 1 mV/(W/sq cm), while the second gives S about 800 V/W. The response of the first bolometer for various chopping frequencies is basically S about 1/sq rt f, which makes it usuable at frequencies up to over 50 kHz, while the second bolometer has a chopping-frequency response that is basically S about 1/f, with a cutoff frequency near 0.01 Hz.

  12. Epitaxial Growth of Large-Grain NiSe Films by Solid-State Reaction for High-Responsivity Photodetector Arrays.

    Science.gov (United States)

    Cai, Caoyuan; Ma, Yang; Jeon, Jaeho; Huang, Fan; Jia, Feixiang; Lai, Shen; Xu, Zhihao; Wu, Congjun; Zhao, Ruiqi; Hao, Yufeng; Chen, Yiqing; Lee, Sungjoo; Wang, Min

    2017-05-01

    Film-based photodetectors have shown superiority for the fabrication of photodetector arrays, which are desired for integrating photodetectors into sensing and imaging systems, such as image sensors. But they usually possess a low responsivity due to low carrier mobility of the film consisting of nanocrystals. Large-grain semiconductor films are expected to fabricate superior-responsivity photodetector arrays. However, the growth of large-grain semiconductor films, normally with a nonlayer structure, is still challenging. Herein, this study introduces a solid-state reaction method, in which the growth rate is supposed to be limited by diffusion and reaction rate, for interface-confined epitaxial growth of nonlayer structured NiSe films with grain size up to micrometer scale on Ni foil. Meanwhile, patterned growth of NiSe films allows the fabrication of NiSe film based photodetector arrays. More importantly, the fabricated photodetector based on as-grown high-quality NiSe films shows a responsivity of 150 A W(-1) in contrast to the value of 0.009 A W(-1) from the photodetector based on as-deposited NiSe film consisting of nanocrystals, indicating a huge responsivity-enhancement up to four orders of magnitude. It is ascribed to the enhanced charge carrier mobility in as-grown NiSe films by dramatically decreasing the amount of grain boundary leading to scattering of charge carrier. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. FILM TOURISM RESPONSES TO THE TOURIST’S EXPECTATIONS - NEW CHALLENGES

    Directory of Open Access Journals (Sweden)

    Anna POLIANSKAIA

    2016-05-01

    Full Text Available This paper sheds light on the world of film tourism, the connection between the film as an image-making tool and the attractiveness of tourism destinations. In this context the present research analyses the phenomenon of film-induced tourism. Even though the phenomenon of the film tourism has been recognized, there are still few profound studies and a lack of the statistical data. However, the evidence of existence of such a phenomenon as film-induced tourism is incontrovertible. Thus, the little statistical data available on this topic indicates that such countries as UK, Australia, and New Zealand lead the way from the point of view of the film tourism. Existence of this type of tourism and its potentially significant economic value make understanding the drivers of film-induced tourism extremely important to know.

  14. Co-sputtered metal and polymer nanocomposite films and their electrical responses for gas sensing application

    Energy Technology Data Exchange (ETDEWEB)

    Rujisamphan, Nopporn [Department of Physics, Faculty of Science, King Mongkut' s University of Technology Thonburi, Bangkok 10140 (Thailand); Murray, Roy E. [Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Deng, Fei [Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716 (United States); Supasai, Thidarat, E-mail: fscitrs@ku.ac.th [Department of Materials Science, Faculty of Science, Kasetsart University, Bangkok 10900 (Thailand)

    2016-04-15

    Graphical abstract: - Highlights: • The well-controlled Ti–PTFE composite films were prepared by co-sputtering. • Ti clusters showed particle sizes varied between 10 and 30 nm in the PTFE matrix. • The swelling of polymer is the driving force to change interparticle distance and therefore a change in resistance. • The sensitivities of the Ti–PTFE devices were found to be in a range of 1.01–1.04. - Abstract: Titanium and polytetrafluoroethylene (Ti–PTFE) nanocomposite thin films were successfully fabricated on glass substrates using a combination of dc and rf magnetron sputtering. When the Ti–PTFE composites were prepared at below the percolation threshold i.e. 27% metal volume filling (F), Ti clusters with the average sizes of 7 ± 2 nm were found. As the Ti content was increased above the percolation threshold (F = 62%), the connecting regions of Ti were formed within the polymer matrix and the electrical property changed rapidly from insulator-like to metal-like properties. The Ti–PTFE composites prepared near the percolation threshold showed the electrical response to different volatile organic compounds (VOCs). The sensitivity significantly depended upon the VOCs concentrations. These composites devices showed the presence of distinct chemical bonds of C−C, C−CF, C−F and CF{sub 2} and TiF in TiO{sub 2} on the surface as investigated by X-ray photoelectron spectroscopy (XPS) while the surface morphology, characterized by atomic force microscopy (AFM) presented the root mean square (RMS) surface roughness of 13.3 nm. Cross-section transmission electron microscopy (TEM) images of the device revealed Ti clusters dispersed in PTFE matrix with particle sizes varied between 10 nm and 30 nm.

  15. A Rapid Response Thin-Film Plasmonic-Thermoelectric Light Detector

    Science.gov (United States)

    Pan, Ying; Tagliabue, Giulia; Eghlidi, Hadi; Höller, Christian; Dröscher, Susanne; Hong, Guo; Poulikakos, Dimos

    2016-11-01

    Light detection and quantification is fundamental to the functioning of a broad palette of technologies. While expensive avalanche photodiodes and superconducting bolometers are examples of detectors achieving single-photon sensitivity and time resolutions down to the picosecond range, thermoelectric-based photodetectors are much more affordable alternatives that can be used to measure substantially higher levels of light power (few kW/cm2). However, in thermoelectric detectors, achieving broadband or wavelength-selective performance with high sensitivity and good temporal resolution requires careful design of the absorbing element. Here, combining the high absorptivity and low heat capacity of a nanoengineered plasmonic thin-film absorber with the robustness and linear response of a thermoelectric sensor, we present a hybrid detector for visible and near-infrared light achieving response times of the order of 100 milliseconds, almost four times shorter than the same thermoelectric device covered with a conventional absorber. Furthermore, we show an almost two times higher light-to-electricity efficiency upon replacing the conventional absorber with a plasmonic absorber. With these improvements, which are direct results of the efficiency and ultra-small thickness of the plasmonic absorber, this hybrid detector constitutes an ideal component for various medium-intensity light sensing applications requiring spectrally tailored absorption coatings with either broadband or narrowband characteristics.

  16. Application of Response Surface Methodology in Development of Sirolimus Liposomes Prepared by Thin Film Hydration Technique

    Directory of Open Access Journals (Sweden)

    Saeed Ghanbarzadeh

    2013-04-01

    Full Text Available Introduction: The present investigation was aimed to optimize the formulating process of sirolimus liposomes by thin film hydration method. Methods: In this study, a 32 factorial design method was used to investigate the influence of two independent variables in the preparation of sirolimus liposomes. The dipalmitoylphosphatidylcholine (DPPC /Cholesterol (Chol and dioleoyl phosphoethanolamine(DOPE /DPPC molar ratios were selected as the independent variables. Particle size (PS and Encapsulation Efficiency (EE % were selected as the dependent variables. To separate the un-encapsulated drug, dialysis method was used. Drug analysis was performed with a validated RP-HPLC method. Results: Using response surface methodology and based on the coefficient values obtained for independent variables in the regression equations, it was clear that the DPPC/Chol molar ratio was the major contributing variable in particle size and EE %. The use of a statistical approach allowed us to see individual and/or interaction effects of influencing parameters in order to obtain liposomes with desired properties and to determine the optimum experimental conditions that lead to the enhancement of characteristics. In the prediction of PS and EE % values, the average percent errors are found to be as 3.59 and 4.09%. This value is sufficiently low to confirm the high predictive power of model. Conclusion: Experimental results show that the observed responses were in close agreement with the predicted values and this demonstrates the reliability of the optimization procedure in prediction of PS and EE % in sirolimus liposomes preparation.

  17. Free-carrier contribution to the optical response of N-rich Cu{sub 3}N thin films

    Energy Technology Data Exchange (ETDEWEB)

    Gordillo, N; Agullo-Lopez, F [Centro de Microanalisis de Materiales, Universidad Autonoma de Madrid 28049-Madrid (Spain); Gonzalez-Arrabal, R [Instituto de Microelectronica de Madrid CSIC C/ Isaac Newton, 8. Tres Cantos, 28760-Madrid (Spain); Alvarez-Herrero, A, E-mail: nuria.gordillo@uam.e [Laboratorio de Instrumentacion Espacial, INTA, Torrejon de Ardoz, 28850-Madrid (Spain)

    2009-08-21

    The influence of nitrogen excess on the optical response of N-rich Cu{sub 3}N films is reported. The optical spectra measured in the wavelength range from 0.30 to 20.00 {mu}m have been correlated with the elemental film composition which can be adjusted in the nitrogen atomic percentage (at%) range from 27 {+-} 2 up to 33 {+-} 2. The absorption spectra for the N-rich films are consistent with direct optical transitions corresponding to the stoichiometric semiconductor Cu{sub 3}N plus a free-carrier contribution that can be tuned in accordance with the N-excess. The data are consistent with the incorporation of the excess N in the lattice as an electron acceptor that generates free holes.

  18. Evaluation of the Gafchromic{sup Registered-Sign} EBT2 film for the dosimetry of radiosurgical beams

    Energy Technology Data Exchange (ETDEWEB)

    Larraga-Gutierrez, Jose M. [Laboratorio de Fisica Medica, Instituto Nacional de Neurologia y Neurocirugia, Insurgentes Sur 3877, Mexico D.F. 14269 (Mexico) and Unidad de Radioneurocirugia, Instituto Nacional de Neurologia y Neurocirugia, Insurgentes Sur 3877, C.P. 14269, Mexico D.F. 14269 (Mexico); Garcia-Hernandez, Diana [Laboratorio de Fisica Medica, Instituto Nacional de Neurologia y Neurocirugia, Insurgentes Sur 3877, Mexico D.F. 14269 (Mexico); Garcia-Garduno, Olivia A. [Laboratorio de Fisica Medica, Instituto Nacional de Neurologia y Neurocirugia, Insurgentes Sur 3877, Mexico D.F. 14269 (Mexico) and Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Unidad Legaria, Instituto Politecnico Nacional, Legaria 694, Mexico D.F. 11500 (Mexico); Galvan de la Cruz, Olga O. [Unidad de Radioneurocirugia, Instituto Nacional de Neurologia y Neurocirugia, Insurgentes Sur 3877, Mexico D.F. 14269 (Mexico); Ballesteros-Zebadua, Paola [Laboratorio de Fisica Medica, Instituto Nacional de Neurologia y Neurocirugia, Insurgentes Sur 3877, Mexico D.F. 14269 (Mexico) and Unidad de Radioneurocirugia, Instituto Nacional de Neurologia y Neurocirugia, Insurgentes Sur 3877, Mexico D.F. 14269 (Mexico); Esparza-Moreno, Karina P. [Facultad de Medicina, Universidad Autonoma del Estado de Mexico, Paseo Tollocan, Toluca, Estado De Mexico 50180 (Mexico)

    2012-10-15

    Purpose: Radiosurgery uses small fields and high-radiation doses to treat intra- and extracranial lesions in a single session. The lack of a lateral electronic equilibrium and the presence of high-dose gradients in these fields are challenges for adequate measurements. The availability of radiation detectors with the high spatial resolution required is restricted to only a few. Stereotactic diodes and EBT radiochromic films have been demonstrated to be good detectors for small-beam dosimetry. Because the stereotactic diode is the standard measurement for the dosimetry of radiosurgical beams, the goal of this work was to perform measurements with the radiochromic film Gafchromic{sup Registered-Sign} EBT2 and compare its results with a stereotactic diode. Methods: Total scatter factors, tissue maximum, and off-axis ratios from a 6 MV small photon beams were measured using EBT2 radiochromic film in a water phantom. The film-measured data were evaluated by comparing it with the data measured with a stereotactic field diode (IBA-Dosimetry). Results: The film and diode measurements had excellent agreement. The differences between the detectors were less than or equal to 2.0% for the tissue maximum and the off-axis ratios. However, for the total scatter factors, there were significant differences, up to 4.9% (relative to the reference field), for field sizes less than 1.0 cm. Conclusions: This work found that the Gafchromic{sup Registered-Sign} EBT2 film is adequate for small photon beam measurements, particularly for tissue maximum and off-axis ratios. However, careful attention must be taken when measuring output factors of small beams below 1.0 cm due to the film's energy dependence. The measurement differences may be attributable to the film's active layer composition because EBT2 incorporates higher Z elements (i.e., bromide and potassium), hence revealing a potential energy dependence for the dosimetry of small photon beams.

  19. Voltage-Responsive Controlled Release Film with Cargo Release Self-Monitoring Property Based on Hydrophobicity Switching.

    Science.gov (United States)

    Jiao, Xiangyu; Li, Yanan; Li, Fengyu; Sun, Ruijuan; Wang, Wenqian; Wen, Yongqiang; Song, Yanlin; Zhang, Xueji

    2017-03-16

    Herein, voltage-responsive controlled release film was constructed by grafting ferrocene on the mesoporous inverse opal photonic crystal (mIOPC). The film achieved free-blockage controlled release and realized the monitoring of cargo release without external indicator. Free-blockage was attributed to the voltage switchable nanovalves which undergo hydrophobic-to-hydrophilic transition when applying voltage. Monitoring of cargo release was attributed to the optical property of mIOPC, the bandgap of mIOPC had a red shift when the solution invaded in. The film was hydrophobic enough to stop solution intrusion. Once the voltage was applied, the film became hydrophilic, leading to invasion of the solution. As a result, the cargos were released and the bandgap of mIOPC was red-shifted. Therefore, in this paper both a free-blockage controlled release film and a release sensing system was prepared. The study provides new insights into highly effective controlled release and release sensing without indicator.

  20. Fast-response, sensitivitive and low-powered chemosensors by fusing nanostructured porous thin film and IDEs-microheater chip.

    Science.gov (United States)

    Dai, Zhengfei; Xu, Lei; Duan, Guotao; Li, Tie; Zhang, Hongwen; Li, Yue; Wang, Yi; Wang, Yuelin; Cai, Weiping

    2013-01-01

    The chemiresistive thin film gas sensors with fast response, high sensitivity, low power consumption and mass-produced potency, have been expected for practical application. It requires both sensitive materials, especially exquisite nanomaterials, and efficient substrate chip for heating and electrical addressing. However, it is challenging to achieve repeatable microstructures across the films and low power consumption of substrate chip. Here we presented a new sensor structure via the fusion of metal-oxide nanoporous films and micro-electro-mechanical systems (MEMS)-based sensing chip. An interdigital-electrodes (IDEs) and microheater integrated MEMS structure is designed and employed as substrate chip to in-situ fabricate colloidal monolayer template-induced metal-oxide (egg. SnO2) nanoporous sensing films. This fused sensor demonstrates mW-level low power, ultrafast response (~1 s), and parts-per-billion lever detection for ethanol gas. Due to the controllable template strategy and mass-production potential, such micro/nano fused high-performance gas sensors will be next-generation key miniaturized/integrated devices for advanced practical applications.

  1. Temperature-dependent stoichiometric alteration in ZnO:Mn nanostructured thin films for enhanced ferromagnetic response

    Science.gov (United States)

    Ilyas, Usman; Lee, P.; Tan, T. L.; Chen, R.; Anwar, Abdul Waheed; Zhang, Sam; Sun, H. D.; Rawat, R. S.

    2016-11-01

    The study investigates the effect of in-situ substrate temperature and argon-oxygen ambient gas pressure of pulsed laser deposition facility on material composition, optical quality and magnetic response of ZnO:Mn thin films. Structural and optical analyses revealed the existence of an optimal in-situ substrate temperature (450 °C) at which thin films showed relatively better texture and optical quality with minimum concentration of structural defects. The detailed analysis of Zn 2p3/2 and O 1s core level XPS spectra revealed that the structural disorder was considerably reduced in thin films after being annealed (in-situ) at substrate temperature of 450 °C. Magnetic measurements revealed the stronger p-d hybridization between oxygen 2p and Mn 3d orbitals in ZnO:Mn thin films being annealed in-situ at 450 °C under Ar:O2 admixture of 2.5 mbar subsequently leading to improved ferromagnetic response.

  2. Thin-film silica sol-gels doped with ion responsive fluorescent lipid bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, D.Y.; Shea, L.E.; Sinclair, M.B.

    1999-01-12

    A metal ion sensitive, fluorescent lipid-b i layer material (5oA PSIDA/DSPC) was successfully immobilized in a silica matrix using a tetramethoxysilane (TMOS) sol-gel procedure. The sol-gel immobilization method was quantitative in the entrapment of seif-assembled Iipid-bilayers and yielded thin films for facile configuration to optical fiber piatforms. The silica matrix was compatible with the solvent sensitive lipid bilayers and provided physical stabilization as well as biological protection. Immobilization in the silica sol-gel produced an added benefit of improving the bilayer's metal ion sensitivity by up to two orders of magnitude. This enhanced performance was attributed to a preconcentrator effect from the anionic surface of the silica matrix. Thin gels (193 micron thickness) were coupled to a bifurcated fiber optic bundle to produce a metal ion sensor probe. Response times of 10 - 15 minutes to 0.1 M CUCIZ were realized with complete regeneration of the sensor using an ethylenediarninetetraacetic acid (EDTA) solution.

  3. Kinetic Inductance Photodetectors Based on Nonequilibrium Response in Superconducting Thin-Film Structures

    Science.gov (United States)

    Sergeev, A. V.; Karasik, B. S.; Gogidze, I. G.; Mitin, V. V.

    2001-01-01

    While experimental studies of kinetic-inductance sensors have been limited so far by the temperature range near the superconducting transition, these detectors can be very sensitivity at temperatures well below the transition, where the number of equilibrium quasiparticles is exponentially small. In this regime, a shift of the quasiparticle chemical potential under radiation results in the change of the kinetic inductance, which can be measured by a sensitive SQUID readout. We modeled the kinetic inductance response of detectors made from disordered superconducting Nb, NbC, and MoRe films. Low phonon transparency of the interface between the superconductor and the substrate causes substantial re-trapping of phonons providing high quantum efficiency and the operating time of approximately 1 ms at 1 K. Due to the small number of quasiparticles, the noise equivalent power of the detector determined by the quasiparticle generation-recombination noise can be as small as approximately 10(exp -19) W/Hz(exp 1/2) at He4 temperatures.

  4. Co-sputtered metal and polymer nanocomposite films and their electrical responses for gas sensing application

    Science.gov (United States)

    Rujisamphan, Nopporn; Murray, Roy E.; Deng, Fei; Supasai, Thidarat

    2016-04-01

    Titanium and polytetrafluoroethylene (Ti-PTFE) nanocomposite thin films were successfully fabricated on glass substrates using a combination of dc and rf magnetron sputtering. When the Ti-PTFE composites were prepared at below the percolation threshold i.e. 27% metal volume filling (F), Ti clusters with the average sizes of 7 ± 2 nm were found. As the Ti content was increased above the percolation threshold (F = 62%), the connecting regions of Ti were formed within the polymer matrix and the electrical property changed rapidly from insulator-like to metal-like properties. The Ti-PTFE composites prepared near the percolation threshold showed the electrical response to different volatile organic compounds (VOCs). The sensitivity significantly depended upon the VOCs concentrations. These composites devices showed the presence of distinct chemical bonds of Csbnd C, Csbnd CF, Csbnd F and CF2 and TiF in TiO2 on the surface as investigated by X-ray photoelectron spectroscopy (XPS) while the surface morphology, characterized by atomic force microscopy (AFM) presented the root mean square (RMS) surface roughness of 13.3 nm. Cross-section transmission electron microscopy (TEM) images of the device revealed Ti clusters dispersed in PTFE matrix with particle sizes varied between 10 nm and 30 nm.

  5. Layer-by-Layer Assembly of a pH-Responsive and Electrochromic Thin Film

    Science.gov (United States)

    Schmidt, Daniel J.; Pridgen, Eric M.; Hammond, Paula T.; Love, J. Christopher

    2010-01-01

    This article summarizes an experiment on thin-film fabrication with layer-by-layer assembly that is appropriate for undergraduate laboratory courses. The purpose of this experiment is to teach students about self-assembly in the context of thin films and to expose students to the concepts of functional polymeric coatings. Students dip coat…

  6. Mechanical and Ferroelectric Response of Highly Textured PZT Films for Low Power MEMS

    Science.gov (United States)

    2012-10-01

    titanate films", Journal of Applied Physics , 89 (2), pp. 1336-1348, 2001. 4. Zavala, G., Fendler, J., Mckinstry, S. “Characterization of ferroelectric lead...zirconate titanate films by scanning force microscopy, Journal of Applied Physics , 81 (11), pp. 7480-7491, 1997. 5. Hidaka, T., et al

  7. Spectral response of solvent-cast polyvinyl chloride (PVC) thin film used as a long-term UV dosimeter.

    Science.gov (United States)

    Amar, Abdurazaq; Parisi, Alfio V

    2013-08-01

    The spectral response of solvent-cast polyvinyl chloride (PVC) thin film suitable for use as a long-term UV dosimeter has been determined by measuring the UV induced change in the 1064 cm(-1) peak intensity of the PVC's infrared (IR) spectra as a function of the wavelength of the incident radiation. Measurements using cut-off filters, narrow band-pass filters and monochromatic radiation showed that the 16 μm PVC film responds mainly to the UVB band. The maximum response was at 290 nm and decreasing exponentially with wavelength up to about 340 nm independent of temperature and exposure dose. The most suitable concentration (W/V%) of PVC/Tetrahydrofuran solution was found to be 10% and the best thickness for the dosimeter was determined as 16 μm.

  8. Thin film synthesis of SbSI micro-crystals for self-powered photodetectors with rapid time response.

    Science.gov (United States)

    Gödel, Karl C; Steiner, Ullrich

    2016-09-21

    We describe a new thin film deposition method for the growth of crystalline SbSI micro-needles via the conversion of Sb2S3 using SbI3 vapour, in a facile process that takes less than 15 minutes. These films were used to construct photodetectors in a sandwich-type architecture, which are superior to previously reported SbSI photodetectors. The devices exhibit a detectivity of D* = 10(9) Jones, a signal-to-noise ratio greater than SNR = 10(3) and a responsivity of R = 10(-5) A W(-1). In time response measurements, raise and fall times of less than 8 ms and 34 ms were determined. This manufacturing method greatly simplifies the creation of fast photodetectors.

  9. Visible light responsive photocatalytic ZnO:Al films decorated with Ag nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Bizarro, M., E-mail: monserrat@iim.unam.mx; Martínez-Padilla, E.

    2014-02-28

    The spray pyrolysis technique was used to grow ZnO:Al films decorated with silver nanoparticles in their surface, in order to increase and stabilize the photocatalytic activity of ZnO. The appropriate amount of Ag nanoparticles was determined varying the concentration of an AgNO{sub 3} solution and the spraying time. The films were characterized by X-ray diffraction, scanning electron microscopy and energy dispersed spectroscopy. The photocatalytic activity of the films was evaluated by the degradation of a methyl orange dye solution. The stability of the photocatalytic activity was studied along five degradation cycles while exposed to simulated sunlight, white light and UV light. We found that a spraying time of 8 min of the AgNO{sub 3} solution gives nearly 3 at% of Ag in the ZnO:Al films. This amount of Ag nanoparticles stabilized the photoactivity under UV and sunlight along five degradation cycles, showing a synergistic effect between Al and Ag that greatly improved the photocatalytic performance of ZnO films. - Highlights: • ZnO:Al/Ag films were produced in a two step process by spray pyrolysis. • ZnO:Al/Ag films presented a high photocatalytic activity under visible light. • Ag nanoparticles stabilized the photocatalytic efficiency after several reuses. • Al and Ag impurities gave a synergistic effect that improved ZnO photocatalytic performance.

  10. Impact of stoichiometry on the linear and nonlinear optical response of SnOx thin films

    Science.gov (United States)

    Li, Zhong-guo; Liang, Ling-yan; Cao, Hong-tao; Song, Ying-lin

    2017-06-01

    SnO is a promising p-type oxide semiconductor materials for applications such as transparent electronics and solar cells. However, further improvement of its performance is hindered by its diverse stoichiometry. We investigated the nonlinear and saturable absorption characteristics of pristine SnO and O-rich SnOx films by femtosecond degenerate pump-probe measurements at 515 nm. UV-Vis absorption data indicate bandgap blueshift with increasing oxygen concentration. Pristine SnO film exhibit saturable absorption while nonlinear absorption is observed in O-rich SnOx films. Our results shed light on the utilization of SnO in future device applications.

  11. A spectroscopic study of the chromatic properties of GafChromic™EBT3 films

    Energy Technology Data Exchange (ETDEWEB)

    Callens, M., E-mail: maarten.callens@kuleuven-kulak.be; Van Den Abeele, K. [Wave Propagation and Signal Processing, KU Leuven–KULAK, Kortrijk 8500 (Belgium); Crijns, W.; Depuydt, T.; Haustermans, K. [Department of Radiation Oncology, University Hospitals Leuven, Leuven 3000 (Belgium); Simons, V. [imec, Kapeldreef 75, Leuven 3001 (Belgium); De Wolf, I. [imec, Kapeldreef 75, Leuven 3001, Belgium and Department of Materials Engineering, KU Leuven, Leuven 3001 (Belgium); Maes, F. [Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven 3001 (Belgium); D’hooge, J. [Department of Cardiovascular Sciences, KU Leuven, Leuven 3000 (Belgium); D’Agostino, E. [DoseVue NV, Hasselt 3500 (Belgium); Wevers, M.; Pfeiffer, H. [Department of Materials Engineering, KU Leuven, Leuven 3001 (Belgium)

    2016-03-15

    Purpose: This work provides an interpretation of the chromatic properties of GafChromic™EBT3 films based on the chemical nature of the polydiacetylene (PDA) molecules formed upon interaction with ionizing radiation. The EBT3 films become optically less transparent with increasing radiation dose as a result of the radiation-induced polymerization of diacetylene monomers. In contrast to empirical quantification of the chromatic properties, less attention has been given to the underlying molecular mechanism that induces the strong decrease in transparency. Methods: Unlaminated GafChromic™EBT3 films were irradiated with a 6 MV photon beam to dose levels up to 20 Gy. The optical absorption properties of the films were investigated using visible (vis) spectroscopy. The presence of PDA molecules in the active layer of the EBT3 films was investigated using Raman spectroscopy, which probes the vibrational modes of the molecules in the layer. The vibrational modes assigned to PDA’s were used in a theoretical vis-absorption model to fit our experimental vis-absorption spectra. From the fit parameters, one can assess the relative contribution of different PDA conformations and the length distribution of PDA’s in the film. Results: Vis-spectroscopy shows that the optical density increases with dose in the full region of the visible spectrum. The Raman spectrum is dominated by two vibrational modes, most notably by the ν(C≡C) and the ν(C=C) stretching modes of the PDA backbone. By fitting the vis-absorption model to experimental spectra, it is found that the active layer contains two distinct PDA conformations with different absorption properties and reaction kinetics. Furthermore, the mean PDA conjugation length is found to be 2–3 orders of magnitude smaller than the crystals PDA’s are embedded in. Conclusions: Vis- and Raman spectroscopy provided more insight into the molecular nature of the radiochromic properties of EBT3 films through the identification of

  12. Process optimization of deposition conditions of PbS thin films grown by a successive ionic layer adsorption and reaction (SILAR) method using response surface methodology

    Science.gov (United States)

    Yücel, Ersin; Yücel, Yasin; Beleli, Buse

    2015-07-01

    In this study, lead sulfide (PbS) thin films were synthesized by a successive ionic layer adsorption and reaction (SILAR) method with different pH, dipping time and dipping cycles. Response surface methodology (RSM) and central composite design (CCD) were successfully used to optimize the PbS films deposition parameters and understand the significance and interaction of the factors affecting the film quality. 5-level-3-factor central composite design was employed to evaluate the effects of the deposition parameters (pH, dipping time and dipping cycles) on the response (the optical band gap of the films). Data obtained from RSM were subjected to the analysis of variance (ANOVA) and analyzed using a second order polynomial equation. The optimal conditions for the PbS films deposition have been found to be: pH of 9.1, dipping time of 10 s and dipping cycles of 10 cycles. The predicted band gap of PbS film was 2.13 eV under the optimal conditions. Verification experiment (2.24 eV) confirmed the validity of the predicted model. The film structures were characterized by X-ray diffractometer (XRD). Morphological properties of the films were studied with a scanning electron microscopy (SEM). The optical properties of the films were investigated using a UV-visible spectrophotometer.

  13. Synthesis and biological response of casein-based silica nano-composite film for drug delivery system.

    Science.gov (United States)

    Ma, Jianzhong; Xu, Qunna; Zhou, Jianhua; Zhang, Jing; Zhang, Limin; Tang, Huiru; Chen, Lihong

    2013-11-01

    Casein possesses many interesting properties that make it a good candidate for conventional and novel drug delivery systems. In this study, casein-based silica nano-composite was prepared via double in situ method, and the as-prepared latex particles were evaluated in terms of their morphology and size through transmission electron microscopy (TEM). The film morphology was investigated by scanning electron microscopy (SEM) and energy dispersive X-ray (EDX), and the mechanical property and response behavior of the films as a function of silica content were discussed. Ibuprofen was used as the model drug. The drug load and release properties were studied by solid-state nuclear magnetic resonance (solid-state NMR), Fourier transform infrared (FT-IR), SEM and in vitro test. The composite latex particle showed a stable core-shell structure, and the film exhibited a regular surface with even SiO2 distribution. The drug load efficiency of the composite films increased with adding silica because of the adsorption of the drugs on the silica. In an acidic release medium, the ibuprofen-loaded composite showed a slower drug release dependent on the silica content. These behaviors were most likely due to the reduced diffusion rate of the drug through the composite microsphere, which resulted from the interaction between the silica and the drug.

  14. Ultrafast lattice response of photoexcited thin films studied by X-ray diffraction

    Directory of Open Access Journals (Sweden)

    Daniel Schick

    2014-11-01

    Full Text Available Using ultrafast X-ray diffraction, we study the coherent picosecond lattice dynamics of photoexcited thin films in the two limiting cases, where the photoinduced stress profile decays on a length scale larger and smaller than the film thickness. We solve a unifying analytical model of the strain propagation for acoustic impedance-matched opaque films on a semi-infinite transparent substrate, showing that the lattice dynamics essentially depend on two parameters: One for the spatial profile and one for the amplitude of the strain. We illustrate the results by comparison with high-quality ultrafast X-ray diffraction data of SrRuO3 films on SrTiO3 substrates.

  15. Enhanced high temperature thermoelectric response of sulphuric acid treated conducting polymer thin films

    KAUST Repository

    Sarath Kumar, S. R.

    2015-11-24

    We report the high temperature thermoelectric properties of solution processed pristine and sulphuric acid treated poly(3, 4-ethylenedioxythiophene):poly(4-styrenesulfonate) (or PEDOT:PSS) films. The acid treatment is shown to simultaneously enhance the electrical conductivity and Seebeck coefficient of the metal-like films, resulting in a five-fold increase in thermoelectric power factor (0.052 W/m. K ) at 460 K, compared to the pristine film. By using atomic force micrographs, Raman and impedance spectra and using a series heterogeneous model for electrical conductivity, we demonstrate that acid treatment results in the removal of PSS from the films, leading to the quenching of accumulated charge-induced energy barriers that prevent hopping conduction. The continuous removal of PSS with duration of acid treatment also alters the local band structure of PEDOT:PSS, resulting in simultaneous enhancement in Seebeck coefficient.

  16. Calcium phosphate thin films enhance the response of human mesenchymal stem cells to nanostructured titanium surfaces

    Directory of Open Access Journals (Sweden)

    Mura M McCafferty

    2014-05-01

    Full Text Available The development of biomaterial surfaces possessing the topographical cues that can promote mesenchymal stem cell recruitment and, in particular, those capable of subsequently directing osteogenic differentiation is of increasing importance for the advancement of tissue engineering. While it is accepted that it is the interaction with specific nanoscale topography that induces mesenchymal stem cell differentiation, the potential for an attendant bioactive chemistry working in tandem with such nanoscale features to enhance this effect has not been considered to any great extent. This article presents a study of mesenchymal stem cell response to conformal bioactive calcium phosphate thin films sputter deposited onto a polycrystalline titanium nanostructured surface with proven capability to directly induce osteogenic differentiation in human bone marrow–derived mesenchymal stem cells. The sputter deposited surfaces supported high levels of human bone marrow–derived mesenchymal stem cell adherence and proliferation, as determined by DNA quantification. Furthermore, they were also found to be capable of directly promoting significant levels of osteogenic differentiation. Specifically, alkaline phosphatase activity, gene expression and immunocytochemical localisation of key osteogenic markers revealed that the nanostructured titanium surfaces and the bioactive calcium phosphate coatings could direct the differentiation towards an osteogenic lineage. Moreover, the addition of the calcium phosphate chemistry to the topographical profile of the titanium was found to induce increased human bone marrow–derived mesenchymal stem cell differentiation compared to that observed for either the titanium or calcium phosphate coating without an underlying nanostructure. Hence, the results presented here highlight that a clear benefit can be achieved from a surface engineering strategy that combines a defined surface topography with an attendant, conformal

  17. Predictors of men's sexual response to erotic film stimuli: the role of affect and self-reported thoughts.

    Science.gov (United States)

    Oliveira, Cátia; Laja, Pedro; Carvalho, Joana; Quinta Gomes, Ana; Vilarinho, Sandra; Janssen, Erick; Nobre, Pedro J

    2014-11-01

    Both emotions and cognitions seem to play a role in determining sexual arousal. However, no studies to date have tested the effects of self-reported thoughts on subjective sexual arousal and genital response using psychophysiological methods. The aim of the present study was to evaluate the role of self-reported thoughts and affect during exposure to erotic material in predicting subjective and genital responses in sexually healthy men. Twenty-seven men were presented with two explicit films, and genital responses, subjective sexual arousal, self-reported thoughts, and positive and negative affect were assessed. Men's genital responses, subjective sexual arousal, affective responses, and self-reported thoughts during exposure to sexual stimulus were measured. Regression analyses revealed that genital responses were predicted by self-reported thoughts (explaining 20% of the variance) but not by affect during exposure to erotic films. On the other hand, subjective sexual arousal was significantly predicted by both positive and negative affect (explaining 18% of the variance) and self-reported thoughts (explaining 37% of the variance). Follow-up analyses using the single predictors showed that "sexual arousal thoughts" were the only significant predictor of subjective response (β = 0.64; P < 0.01) and that "distracting/disengaging thoughts" were the best predictor of genital response (β = -0.51; P < 0.05). The findings of this study suggest that both affect and sexual arousal thoughts play an important role in men's subjective sexual response, whereas genital response seems to be better predicted by distracting thoughts. © 2014 International Society for Sexual Medicine.

  18. Photocatalytic Activity of Vis-Responsive Ag-Nanoparticles/TiO2 Composite Thin Films Fabricated by Molecular Precursor Method (MPM

    Directory of Open Access Journals (Sweden)

    Mitsunobu Sato

    2013-07-01

    Full Text Available The Ag-nanoparticles (Ag-NP/TiO2 composite thin films with various amounts of Ag (10 mol% ≤ n ≤ 80 mol% were examined as a potential photocatalyst by decoloration reaction of methylene blue (MB in an aqueous solution. These composite thin films of ca. 100 nm thickness were fabricated by the MPM at 600 °C in air. The decoloration rates monitored by the absorption intensity of the MB solution indicated that the composite thin films of Ag with an amount less than 40 mol% are not effective under vis-irradiation, though they can work as a photocatalyst under UV-irradiation. Further, the UV-sensitivity of the composite thin films gradually decreased to almost half the level of that of the TiO2 thin film fabricated under the identical conditions when the Ag amount increased from 10 to 40 mol%. Contrarily, the composite thin films of Ag content larger than 50 mol% showed the vis-responsive activity, whose level was slightly lower than the decreased UV-sensitivity. Diffuse reflectance spectra suggested that the vis-responsive activity of the composite thin films is due to the conductivity, localized surface plasmon resonance and surface plasmon resonance of Ag-NP. It was also elucidated that the vis-responsive level of the composite thin films corresponds to their electrical conductivity that depends on the Ag content.

  19. Effect of Mixed Solvents Consisting of Water and Organic Solvent on Preparation of Medium-Responsive Grafted Cellulose Film by Means of Photografting

    Directory of Open Access Journals (Sweden)

    Irwan Ginting-Suka

    2006-11-01

    Full Text Available Cellulose having a medium-responsive function were synthesized by photografting of methacrylic acid (MAA on regenerated cellulose film (thickness = 20 µm at 60°C using mixed solvent consisting of water and organic solvents such as acetone and methanol. Xanthone was used as photoinitiator by coating on the film surfaces. A maximum percentage of grafting was observed at a certain concentration of organic solvent. MAA-grafted cellulose films produced showing homogeneous distribution of grafted chains, which was examined by scanning electron microscopy. The modified films also exhibit medium responsive character, it shrinks in acidic and swells in basic solution. Moreover, the grafted film exhibited the ability to absorb copper ion, which was not influenced by the solvent used in grafting processes.

  20. The influence of asymmetry in centralizing spring of squeeze film damper on stability and bifurcation of rigid rotor response

    Directory of Open Access Journals (Sweden)

    Hamidreza Heidari

    2016-12-01

    Full Text Available One of the main challenges in the design of rotating machinery is the occurrence of undesirable vibration. In this paper, stability and bifurcation of the unbalance response of a rigid rotor supported by squeeze film damper with asymmetry in centralizing spring are investigated. The unbalanced rotor response is determined by the shooting method and the stability of these solutions is examined by using the Floquet theorem. Numerical examples are given for both symmetric (Kx=Ky and asymmetry (Kx≠Ky centralizing springs in x or y direction. Jump phenomenon and subharmonic and quasi-periodic vibrations are predicted for a range of design and operating parameters such as the unbalancing (U, gravity (W, bearing (B and spring (K. The results show that increasing the spring stiffness asymmetry parameter in y direction has no influence on the nature of system response and occurrence of bifurcation. But, examining the effect of increase in stiffness parameter in x direction leads to occurrence instability and period-doubling bifurcation in response to the system. Our findings show that this phenomena are due to the weight force in the y direction. Finally, it is shown that the unsymmetrical stiffness of squeeze film dampers in the presence of cavitation promoting the chance of undesirable nonsynchronous vibrations.

  1. Thin film AlSb carrier transport properties and room temperature radiation response

    Science.gov (United States)

    Vaughan, Erin Ivey

    Theoretical predictions for AlSb material properties have not been realized using bulk growth methods. This research was motivated by advances in molecular beam epitaxial (MBE) growth technology to produce high-quality thin-film AlSb for the purpose of evaluating transport properties and suitability for radiation detection. Simulations using MCNP5 were performed to benchmark an existing silicon surface barrier detector and to predict ideal AlSb detector behavior, with the finding that AlSb should have improved detection efficiency due to the larger atomic number of Sb compared with Si. GaSb diodes were fabricated by both homoepitaxial MBE and ion implantation methods in order to determine the effect on the radiation detection performance. It was found that the radiation response for the MBE grown GaSb diodes was very uniform, whereas the ion-implanted GaSb diodes exhibited highly variable spectral behavior. Two sets of AlSb heterostructures were fabricated by MBE methods; one for a Hall doping study and the other for a radiation response study. The samples were characterized for material quality using transmission electron microscopy (TEM), Nomarski imaging, atomic force microscopy (AFM), x-ray diffraction (XRD), I-V curve analysis, and Hall effect measurements. The Hall study samples were grown on semi-insulating (SI) GaAs substrates and contained a thin GaAs layer on top to protect the AlSb from oxygen. Doping for the AlSb layer was achieved using GaTe and Be for n- and p-type conductivity, respectively, with intended doping densities ranging from 1015 to 1017 cm -3. Results for net carrier concentration ranged 2x10 9 to 1x1017 cm-3, 60 to 3000 cm 2/Vs for mobility, and 2 to 106 Ω-cm for resistivity, with the undoped AlSb samples presenting the best values. The radiation detector samples were designed to be PIN diodes, with undoped AlSb sandwiched between n-type GaAs substrate and p-type GaSb as a conductive oxygen-protective layer. Energy spectra were measured

  2. Pyroelectric response of spray-deposited BaTiO3 thin film

    Science.gov (United States)

    Peale, Robert E.; Oladeji, Isaiah O.; Smith, Evan M.; Vasilyev, Vladimir; Alhasan, Sarmad Fawzi Hamza; Abouelkhair, Hussain; Todorovski, Dalibor; Kimani, Martin; Cleary, Justin W.

    2016-09-01

    Pyroelectric photoresponse of aqueous spray deposited thin films containing BaTiO3 nano-crystals is reported. X-ray diffraction data indicate the presence of hexagonal BaTiO3 nano-crystals with 20 nm crystalline domains in a matrix of some as yet unidentified nano-crystalline material. When the film is annealed at 600 C, the X-ray pattern changes significantly and indicates a conversion to one of the non-hexagonal phases of BaTiO3 as well as a complete change in the matrix. With suitable amplifier, the measured photoresponse was 40V/W. Ferroelectric hysteresis on a film with significant presence of hexagonal BaTiO3 shows saturated polarization which is about 5-times smaller than for the bulk tetragonal phase. A potential application is a patternable infrared detector for photonic and plasmonic devices, such as chip-scale spectral sensors.

  3. Nonlinear response and two stable electroconducting states in transparent plasticized PVC films

    Science.gov (United States)

    Vlasov, D. V.; Apresyan, L. A.; Vlasova, T. V.; Kryshtob, V. I.

    2010-10-01

    The electric conductivity of transparent plasticized poly(vinyl chloride) (PVC) films with thicknesses about 30-50 μm has been studied in electric fields with strengths significantly below the breakdown level. It is established that the PVC films exhibit spontaneous reversible transitions between two stable states—with high and relatively low conductivities, in which the bulk resistivity amounts to ˜103 and 106 Ω m, respectively. Relaxation current-voltage characteristics have been measured in a continuous regime, which allowed the Debye relaxation processes to be taken into consideration and effects related to the nonlinearity and transitions between indicated states to be separated. A regime with deterministic switching between the two conducting states has been observed. A simple qualitative model that describes the anomalous character of conductivity in polymer films is proposed.

  4. Cathodoluminescence and green-thermoluminescence response of CaSO{sub 4}:Dy,P films

    Energy Technology Data Exchange (ETDEWEB)

    Roman-Lopez, J., E-mail: holand_jeos@hotmail.com [CICATA-IPN, Legaria 694, D.F. 11500, Mexico, CIEMAT, Av., Complutense 22, Madrid 28040 (Spain); Correcher, V. [CIEMAT, Av., Complutense 22, Madrid 28040 (Spain); Garcia-Guinea, J. [Museo Nacional de Ciencias Naturales (CSIC), Jose Gutierrez Abascal 2, Madrid 28006 (Spain); Rivera, T.; Lozano, I.B. [CICATA-IPN, Legaria 694, D.F. 11500 (Mexico)

    2013-03-15

    We herein report on the cathodoluminescence (CL) and green-thermoluminescence (TL) emission of CaSO{sub 4}:Dy,P films deposited by the spray pyrolysis method at different temperatures. The samples have been previously structurally and chemically characterized by means of Raman spectroscopy and energy dispersive spectroscopy (EDS). The CL spectra show (i) a broad emission band centered at 374 nm that corresponds to the intrinsic emission of (SO{sub 4}){sup 2-} and (ii) emission bands centered on 486, 574, 668, 758 nm assigned to the electronic transitions of the Dy{sup 3+} ions. The TL glow curves of the films showed three groups of components peaked at around of 98, 152 and 300 Degree-Sign C that exhibit a gradual and progressively linear shifting of the T{sub max} as function of T{sub stop}. This TL behavior is related to a continuum in the trap distribution associated with general or multi-order kinetics and involving continuous processes of trapping-detrapping. The activation energy in the range of 0.97-1.53 eV has been estimated using the initial rise method. - Highlights: Black-Right-Pointing-Pointer The CaSO{sup 4}:Dy,P films were prepared by using the ultrasonic spray pyrolysis method. Black-Right-Pointing-Pointer Luminescence spectra of the CaSO{sub 4}:Dy,P films display the emission bands of the ions (SO{sub 4}){sup 2-} and Dy{sup 3+}. Black-Right-Pointing-Pointer The CaSO{sub 4}:Dy,P films were irradiated with a {sup 90}Sr/{sup 90}Y beta source. Black-Right-Pointing-Pointer The TL intensity of the films depends on the temperature of deposit.

  5. Application of beam irradiation in preparation of visible light responsive TiO2 Films

    Institute of Scientific and Technical Information of China (English)

    HOU Xinggang; LIU Andong

    2007-01-01

    TiO2 films were prepared by sol-gel method.In order to improve the utilization of light, the technologiesof implantation of transition metal ions (V+ and Cr+) and electron beam irradiation to deposit noble metal particles (Ag and Pt) were used. A red shift was found in the spectrum of modified TiO2 films. The photocatalytic experiments showed that the photocatalytic ability under visible light irradiation could be improved dramatically by both the implantation of transition metal and the electron beam irradiation.

  6. On the GHz frequency response in nanocrystalline FeXN ultra-soft magnetic films

    NARCIS (Netherlands)

    Chechenin, NG; Craus, CB; Chezan, AR; Vystavel, T; Boerma, DO; De Hosson, JTM; Niesen, L; Tidrow, SC; Horwitz, JS; Xi, XX; Levy, J

    2002-01-01

    The periodicity and angular spread of the in-plane magnetization for ultrasoft nanocrystalline FeZrN films were estimated from an analysis of the ripple structure, observed in Lorentz transmission electron microscopy (LTEM) images. The influence of the micromagnetic ripple on the ferromagnetic reson

  7. On the GHz frequency response in nanocrystalline FeXN ultra-soft magnetic films

    NARCIS (Netherlands)

    Chechenin, NG; Craus, CB; Chezan, AR; Vystavel, T; Boerma, DO; De Hosson, JTM; Niesen, L; Tidrow, SC; Horwitz, JS; Xi, XX; Levy, J

    2002-01-01

    The periodicity and angular spread of the in-plane magnetization for ultrasoft nanocrystalline FeZrN films were estimated from an analysis of the ripple structure, observed in Lorentz transmission electron microscopy (LTEM) images. The influence of the micromagnetic ripple on the ferromagnetic reson

  8. Sub-nanometer expansions of redox responsive polymer films monitored by imaging ellipsometry

    NARCIS (Netherlands)

    Cumurcu, Aysegul; Feng, X.; Dos Ramos, L.; Hempenius, M.A.; Schon, P.M.; Vancso, G.J.

    2014-01-01

    We describe a novel approach to quantitatively visualize sub nm height changes occurring in thin films of redox active polymers upon reversible electrochemical oxidation/reduction in situ and in real-time with electrochemical imaging ellipsometry (EC-IE). Our approach is based on the utilization of

  9. Piezoelectric response of a PZT thin film to magnetic fields from permanent magnet and coil combination

    Science.gov (United States)

    Guiffard, B.; Seveno, R.

    2015-01-01

    In this study, we report the magnetically induced electric field E 3 in Pb(Zr0.57Ti0.43)O3 (PZT) thin films, when they are subjected to both dynamic magnetic induction (magnitude B ac at 45 kHz) and static magnetic induction ( B dc) generated by a coil and a single permanent magnet, respectively. It is found that highest sensitivity to B dc——is achieved for the thin film with largest effective electrode. This magnetoelectric (ME) effect is interpreted in terms of coupling between eddy current-induced Lorentz forces (stress) in the electrodes of PZT and piezoelectricity. Such coupling was evidenced by convenient modelling of experimental variations of electric field magnitude with both B ac and B dc induction magnitudes, providing imperfect open circuit condition was considered. Phase angle of E 3 versus B dc could also be modelled. At last, the results show that similar to multilayered piezoelectric-magnetostrictive composite film, a PZT thin film made with a simple manufacturing process can behave as a static or dynamic magnetic field sensor. In this latter case, a large ME voltage coefficient of under B dc = 0.3 T was found. All these results may provide promising low-cost magnetic energy harvesting applications with microsized systems.

  10. Interpretation of muscle spindle afferent nerve response to passive muscle stretch recorded with thin-film longitudinal intrafascicular electrodes.

    Science.gov (United States)

    Djilas, Milan; Azevedo-Coste, Christine; Guiraud, David; Yoshida, Ken

    2009-10-01

    In this study, we explored the feasibility of estimating muscle length in passive conditions by interpreting nerve responses from muscle spindle afferents recorded with thin-film longitudinal intrafascicular electrodes. Afferent muscle spindle response to passive stretch was recorded in ten acute rabbit experiments. A newly proposed first-order model of muscle spindle response to passive sinusoidal muscle stretch manages to capture the relationship between afferent neural firing rate and muscle length. We demonstrate that the model can be used to track random motion trajectories with bandwidth from 0.1 to 1 Hz over a range of 4 mm with a muscle length estimation error of 0.3 mm (1.4 degrees of joint angle). When estimation is performed using four-channel ENG there is a 50% reduction in estimate variation, compared to using single-channel recordings.

  11. Efficient Solar-Induced Photoelectrochemical Response Using Coupling Semiconductor TiO2-ZnO Nanorod Film

    Directory of Open Access Journals (Sweden)

    Nur Azimah Abd Samad

    2016-11-01

    Full Text Available Efficient solar driven photoelectrochemical (PEC response by enhancing charge separation has attracted great interest in the hydrogen generation application. The formation of one-dimensional ZnO nanorod structure without bundling is essential for high efficiency in PEC response. In this present research work, ZnO nanorod with an average 500 nm in length and average diameter of about 75 nm was successfully formed via electrodeposition method in 0.05 mM ZnCl2 and 0.1 M KCl electrolyte at 1 V for 60 min under 70 °C condition. Continuous efforts have been exerted to further improve the solar driven PEC response by incorporating an optimum content of TiO2 into ZnO nanorod using dip-coating technique. It was found that 0.25 at % of TiO2 loaded on ZnO nanorod film demonstrated a maximum photocurrent density of 19.78 mA/cm2 (with V vs. Ag/AgCl under UV illumination and 14.75 mA/cm2 (with V vs. Ag/AgCl under solar illumination with photoconversion efficiency ~2.9% (UV illumination and ~4.3% (solar illumination. This performance was approximately 3–4 times higher than ZnO film itself. An enhancement of photocurrent density and photoconversion efficiency occurred due to the sufficient Ti element within TiO2-ZnO nanorod film, which acted as an effective mediator to trap the photo-induced electrons and minimize the recombination of charge carriers. Besides, phenomenon of charge-separation effect at type-II band alignment of Zn and Ti could further enhance the charge carrier transportation during illumination.

  12. Preparation and characterization of Kraft lignin-based moisture-responsive films with reversible shape-change capability.

    Science.gov (United States)

    Dallmeyer, Ian; Chowdhury, Sudip; Kadla, John F

    2013-07-08

    Preparation of moisture-responsive Kraft lignin-based materials by electrospinning blends of Kraft lignin fractions with different physical properties is presented. The differences in thermal mobility between lignin fractions are shown to influence the degree of interfiber fusion occurring during oxidative thermostabilization of electrospun nonwoven fabrics, resulting in different material morphologies including submicrometer fibers, bonded nonwovens, porous films, and smooth films. The relative amount of different lignin fractions and degree of fiber flow and fiber fusion is shown to influence the tendency for the electrospun materials to be transformed into moisture-responsive materials capable of reversible changes in shape. Material characterization by scanning electron microscopy and atomic force microscopy as well characterization of the chemical and physical properties of Kraft lignin fractions by dynamic rheology, 1H and 13C NMR, and gel permeation chromatography combined with multiangle laser light scattering are presented. A proposed mechanism underlying moisture-responsiveness, shape change, and shape recovery is discussed based on the differences in chemical structure and physical properties of Kraft lignin fractions.

  13. Acoustoelectric Effect on the Responses of SAW Sensors Coated with Electrospun ZnO Nanostructured Thin Film

    Science.gov (United States)

    Tasaltin, Cihat; Ebeoglu, Mehmet Ali; Ozturk, Zafer Ziya

    2012-01-01

    In this study, zinc oxide (ZnO) was a very good candidate for improving the sensitivity of gas sensor technology. The preparation of an electrospun ZnO nanostructured thin film on a 433 MHz Rayleigh wave based Surface Acoustic Wave (SAW) sensor and the investigation of the acoustoelectric effect on the responses of the SAW sensor are reported. We prepared an electrospun ZnO nanostructured thin film on the SAW devices by using an electrospray technique. To investigate the dependency of the sensor response on the structure and the number of the ZnO nanoparticles, SAW sensors were prepared with different coating loads. The coating frequency shifts were adjusted to fall between 100 kHz and 2.4 MHz. The sensor measurements were performed against VOCs such as acetone, trichloroethylene, chloroform, ethanol, n-propanol and methanol vapor. The sensor responses of n-propanol have opposite characteristics to the other VOCs, and we attributed these characteristics to the elastic effect/acoustoelectric effect.

  14. Acoustoelectric Effect on the Responses of SAW Sensors Coated with Electrospun ZnO Nanostructured Thin Film

    Directory of Open Access Journals (Sweden)

    Zafer Ziya Ozturk

    2012-08-01

    Full Text Available In this study, zinc oxide (ZnO was a very good candidate for improving the sensitivity of gas sensor technology. The preparation of an electrospun ZnO nanostructured thin film on a 433 MHz Rayleigh wave based Surface Acoustic Wave (SAW sensor and the investigation of the acoustoelectric effect on the responses of the SAW sensor are reported. We prepared an electrospun ZnO nanostructured thin film on the SAW devices by using an electrospray technique. To investigate the dependency of the sensor response on the structure and the number of the ZnO nanoparticles, SAW sensors were prepared with different coating loads. The coating frequency shifts were adjusted to fall between 100 kHz and 2.4 MHz. The sensor measurements were performed against VOCs such as acetone, trichloroethylene, chloroform, ethanol, n-propanol and methanol vapor. The sensor responses of n-propanol have opposite characteristics to the other VOCs, and we attributed these characteristics to the elastic effect/acoustoelectric effect.

  15. Room-temperature magneto-dielectric response in multiferroic ZnFe2O4/PMN-PT bilayer thin films

    Science.gov (United States)

    Garg, T.; Kulkarni, A. R.; Venkataramani, N.

    2016-08-01

    The magneto-dielectric response in multiferroic ZnFe2O4/PMN-PT bilayer thin films prepared on a glass substrate using RF magnetron sputtering has been investigated in this work. PMN-PT thin films (i.e. PMN-PT/LCMO/Pt/Ti/glass) deposited on glass were used as a substrate for deposition of ZnFe2O4 thin films. ZnFe2O4 thin films were annealed ex situ at different temperatures. Structural, magnetic, ferroelectric, dielectric and magneto-dielectric studies were carried out on these multiferroic bilayer thin films. Structural studies revealed the presence of each layer in its respective single phase. Magnetic and ferroelectric studies revealed the ferromagnetic and ferroelectric behaviors of these bilayers. To quantify the magnetoelectric coupling, the dielectric constant of the bilayer was measured at room temperature as a function of frequency with and without the applied magnetic field. The magneto-dielectric response MD(%) was calculated by finding the relative change in dielectric constant at 1 kHz as a percentage. The observed MD response was correlated with magnetization of the ferrite layer. An MD response of 2.60% was found for a bilayer film annealed at 350 °C. At this particular annealing temperature, the ZnFe2O4 layer also has the highest saturation magnetization of 1900 G.

  16. Fabrication and high visible-light-driven photocurrent response of g-C3N4 film: The role of thiourea

    Science.gov (United States)

    Ye, Lijuan; Chen, Shijian

    2016-12-01

    We report on a convenient CVD fabrication of the uniform, compact and reproducible g-C3N4 solid films on indium-tin oxide substrates. It is found that mixing quantitative thiourea into melamine as co-precursor prompts the deposition of greenish-yellow, transparent and smooth g-C3N4 thin films. The thiourea apparently affects the crystalline, the surface morphologies and the energy band structures of g-C3N4 films by modulating the polymerization process of the precursors, and simultaneously introduces S dopants into the g-C3N4 films. Due to these roles of thiourea, the obtained S-doped g-C3N4 films as a photoelectrode show a high and stable visible-light-driven photocurrent response. To further improve the photocurrent, the construction of three heterojunction structure types based on g-C3N4 films is proposed and the corresponding charge transfer mechanisms are well discussed. The successful fabrication of high quality g-C3N4 films in this work provides a footstone to construct the heterojunction film structures based on the carbon nitrides for the photoelectrochemical overall water splitting.

  17. Influence of voltage waveform on anodic film of AZ91 Mg alloy via plasma electrolytic oxidation: Microstructural characteristics and electrochemical responses

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Young Gun [School of Materials Science and Engineering, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Lee, Eung Seok [Department of Metallurgy and Materials Engineering, Hanyang University, Ansan 426-791 (Korea, Republic of); Shin, Dong Hyuk, E-mail: dhshin@hanyang.ac.kr [Department of Metallurgy and Materials Engineering, Hanyang University, Ansan 426-791 (Korea, Republic of)

    2014-02-15

    Highlights: • The effect of voltage waveform on the anodic film structure is significant. • The anodic film by asymmetric-sine wave is denser than that by half-sine wave. • Asymmetric-sine wave results in excellent electrochemical properties. -- Abstract: The present study investigated how the voltage waveform influenced the microstructural characteristics and electrochemical responses of the anodic film on AZ91 Mg alloy coated by plasma electrolytic oxidation (PEO). PEO coatings of AZ91 Mg alloy were performed for 600 s in an alkaline silicate electrolyte with respect to the voltage waveform such as half-sine and asymmetric-sine waveforms. Microstructural observations on cross section of the anodic film utilizing scanning electron microscope revealed that the anodic film formed via asymmetric-sine wave was much denser in structure than that via half-sine counterpart since the occurrence of the cathodic breakdown between the anodic pulses could effectively suppress the formation of the micro-pores and discharge channels in the anodic films. Thereby, the hardness and corrosion properties of the anodic film formed by asymmetric-sine wave were found to be superior to those by half-sine wave. In addition, electrochemical responses were interpreted in relation to the equivalent circuit model consisting of resistor and capacitor elements within an electrical cell.

  18. Experimental determination of the lateral dose response functions of detectors to be applied in the measurement of narrow photon-beam dose profiles

    Science.gov (United States)

    Poppinga, D.; Meyners, J.; Delfs, B.; Muru, A.; Harder, D.; Poppe, B.; Looe, HK

    2015-12-01

    This study aims at the experimental determination of the detector-specific 1D lateral dose response function K(x) and of its associated rotational symmetric counterpart K(r) for a set of high-resolution detectors presently used in narrow-beam photon dosimetry. A combination of slit-beam, radiochromic film, and deconvolution techniques served to accomplish this task for four detectors with diameters of their sensitive volumes ranging from 1 to 2.2 mm. The particular aim of the experiment was to examine the existence of significant negative portions of some of these response functions predicted by a recent Monte-Carlo-simulation (Looe et al 2015 Phys. Med. Biol. 60 6585-607). In a 6 MV photon slit beam formed by the Siemens Artiste collimation system and a 0.5 mm wide slit between 10 cm thick lead blocks serving as the tertiary collimator, the true cross-beam dose profile D(x) at 3 cm depth in a large water phantom was measured with radiochromic film EBT3, and the detector-affected cross-beam signal profiles M(x) were recorded with a silicon diode, a synthetic diamond detector, a miniaturized scintillation detector, and a small ionization chamber. For each detector, the deconvolution of the convolution integral M(x)  =  K(x)  ∗  D(x) served to obtain its specific 1D lateral dose response function K(x), and K(r) was calculated from it. Fourier transformations and back transformations were performed using function approximations by weighted sums of Gaussian functions and their analytical transformation. The 1D lateral dose response functions K(x) of the four types of detectors and their associated rotational symmetric counterparts K(r) were obtained. Significant negative curve portions of K(x) and K(r) were observed in the case of the silicon diode and the diamond detector, confirming the Monte-Carlo-based prediction (Looe et al 2015 Phys. Med. Biol. 60 6585-607). They are typical for the perturbation of the secondary electron field by a detector with

  19. Improvement of tribological responses of sputtered MoSx films by indium ion implantation

    Institute of Scientific and Technical Information of China (English)

    YasuhideNAWATA; HideoFUJIURA; MakotoNISHIMURA

    2001-01-01

    Molybdenum disulfide (MoS2) has been applied to various space mechanisms as solidlubricant. The tribological characteristics of sputtered MoSx films have been improved by inert gasion implantation. We tried to extend the wear life and reduce friction coefficient by high energyimplantation of indium ions. In friction tests, a pin-on-disk tester was used to measure friction coeffi-cient and wear life in a vacuum, dry air and air of 30%, 50% and 80% RH. Indium ions implanted the filmat a dose of 1×1016 ions/cm2 exhibited friction coefficient of 0.008 and 5.0 times longer wear life thanthe unimplanted ones did. However, the wear life of this film tested in high humid air presented no im-provement.

  20. MOLECULAR DYNAMICS INVESTIGATION OF DEFORMATION RESPONSE OF THIN-FILM METALLIC NANOSTRUCTURES UNDER HEATING

    OpenAIRE

    KONOVALENKO IVAN; ZOLNIKOV KONSTANTIN; PSAKHIE SERGEY

    2011-01-01

    Molecular dynamics simulation of nanostructure behavior under impulse heating is carried out. These structures are formed by self-rolling of nano-thickness bilayer crystal films. The interatomic interactions are described by potentials obtained by the embedded atom method. The calculation data are shown that simulated nanostructures can transform the supplied thermal energy into the mechanical oscillations of its free edges. The influence of heating rate and its duration, medium viscosity pro...

  1. Novel High-Activity Organic Piezoelectric Materials - From Single-Molecule Response to Energy Harvesting Films

    Science.gov (United States)

    2015-08-24

    Mirman, B.; Karapetian, E. “Relationship between Direct and Converse Piezoelectric Effect in a Nanoscale Electromechanical Contact,” Physical Review B...response of organic hydrogen-bonded crystals and single-molecule electromechanical response. Using the known piezoelectric response of crystalline 2...Using computational exploration of the electromechanical response other molecular scaffolds, we explored single-molecule ferroelectrics based on

  2. Small- and strong-signal dielectric response in a single-crystal film of partially deuterated betaine phosphite

    Science.gov (United States)

    Balashova, E. V.; Krichevtsov, B. B.; Lemanov, V. V.

    2011-06-01

    Poly- and single-crystal films of betaine phosphite deuterated to ˜20% have been grown by evaporation on NdGaO3 (001) substrates with a preliminarily deposited planar interdigital structure of electrodes. The small-signal dielectric response in the 0.1-100.0-kHz frequency range has revealed a strong anomaly in capacitance upon the transition of the films to the ferroelectric state. Application of a bias field brings about suppression and a slight shift of the dielectric anomaly toward higher temperatures. The strong-signal dielectric response has been studied by the Sawyer-Tower method over the frequency range 0.06-3.00 kHz both in the para- and ferroelectric phases. In contrast to the case of a plane-parallel capacitor, in the planar structure studied, the dielectric hysteresis loops exhibit a very small coercivity at low frequencies, which grows with increasing frequency. This difference should be assigned to different domain structures formed in a planeparallel capacitor and in a planar structure in a saturating field. The growth of hysteresis with increasing frequency in a planar structure is considered to be associated with the domain wall motion.

  3. Categorizing moving objects into film genres: the effect of animacy attribution, emotional response, and the deviation from non-fiction.

    Science.gov (United States)

    Visch, Valentijn T; Tan, Ed S

    2009-02-01

    The reported study follows the footsteps of Heider, and Simmel (1944) [Heider, F., & Simmel, M. (1944). An experimental study of apparent behavior. American Journal of Psychology, 57, 243-249] and Michotte (1946/1963) [Michotte, A. (1963). The perception of causality (T.R. Miles & E. Miles, Trans.). London: Methuen (Original work published 1946)] who demonstrated the role of object movement in attributions of life-likeness to figures. It goes one step further in studying the categorization of film scenes as to genre as a function of object movements. In an animated film scene portraying a chase, movements of the chasing object were systematically varied as to parameters: velocity, efficiency, fluency, detail, and deformation. The object movements were categorized by viewers into genres: non-fiction, comedy, drama, and action. Besides this categorization, viewers rated their animacy attribution and emotional response. Results showed that non-expert viewers were consistent in categorizing the genres according to object movement parameters. The size of its deviation from the unmanipulated movement scene determined the assignment of any target scene to one of the fiction genres: small and moderate deviations resulted in categorization as drama and action, and large deviations as comedy. The results suggest that genre classification is achieved by, at least, three distinct cognitive processes: (a) animacy attribution, which influences the fiction versus non-fiction classification; (b) emotional responses, which influences the classification of a specific fiction genre; and (c) the amount of deviation from reality, at least with regard to movements.

  4. Stable dielectric response of low-loss aromatic polythiourea thin films on Pt/SiO2 substrate

    Science.gov (United States)

    Eršte, A.; Fulanović, L.; Čoga, L.; Lin, M.; Thakur, Y.; Zhang, Q. M.; Bobnar, V.

    2016-03-01

    We have investigated dielectric properties of aromatic polythiourea (ArPTU, a polar polymer containing high dipolar moments with very low defect levels) thin films that were developed on Pt/SiO2 substrate. The detected response is compared to the response of commercially available polymers, such as high density polyethylene (HDPE) and polypropylene (PP), which are at present used in foil capacitors. Stable values of the dielectric constant ɛ‧≈5 (being twice higher than in HDPE and PP) over broad temperature and frequency ranges and dielectric losses as low as in commercial systems suggest ArPTU as a promising candidate for future use in a variety of applications.

  5. Ultrafast sub-threshold photo-induced response in crystalline and amorphous GeSbTe thin films

    Science.gov (United States)

    Shu, M. J.; Chatzakis, I.; Kuo, Y.; Zalden, P.; Lindenberg, A. M.

    2013-05-01

    Pump-probe optical reflectivity and terahertz transmission measurements have been used to investigate time resolved sub-threshold photo-induced effects in crystalline and amorphous GeSbTe films at MHz repetition rates. The reflectivity in both phases exhibits long-lived modulations consistent with the sign of the changes that occur upon switching but of smaller magnitude. These can be understood by the generation of acoustic strains with the crystalline phase response dominated by thermal effects and the amorphous phase response associated with electronically induced changes. Evidence for a photo-induced distortion is observed in the amorphous phase which develops homogeneously within the excited region on few-picosecond time scales.

  6. Use of the nutrient film technique as a method for assessment of plant response to salt stress in the cereals

    Directory of Open Access Journals (Sweden)

    P. K. Martin

    2014-01-01

    Full Text Available The nutrient film technique (NFT/rockwool system was adapted for use as a method for assessing the response of wheat and barley to saline stress. Wheat plants grown by the NFT/rockwool system in 200 mmol NaCl were vegetatively more vigorous and were more fertile than when suspended over bowls containing the same saline nutrient solution. Signifcant intervarietal differential responses were observed in both wheat and barley for vegetative vigour under saline stress. By increasing the concentration of NaCI to 260 mM and growing seedlings in miniaturized rockwool plugs, a screening system for salt tolerance in wheat, which allowed substantial plant numbers to be tested, was made possible. Seedlings which survived 4 weeks of this treatment could be successfully rescued into soil, where they developed normally.

  7. A complicated biocomputing system based on multi-responsive P(NIPAM-co-APBA) copolymer film electrodes and electrocatalysis of NADH.

    Science.gov (United States)

    Liang, Jiying; Yu, Xue; Yang, Tiangang; Li, Menglu; Shen, Li; Jin, Yue; Liu, Hongyun

    2017-08-23

    In this paper, poly(N-isopropylacrylamide-co-3-aminophenylboronic acid) (P(NIPAM-co-APBA)) copolymer films were successfully electropolymerized on the Au electrode surface. The electroactive probe ferrocene carboxylic acid (FCA) in solution showed reversible thermal-, glucose- and pH-responsive on-off cyclic voltammetric (CV) behaviors at the film electrodes. The comparative experiments demonstrated that the thermo-responsive property of the film electrode was ascribed to the PNIPAM component of the films, whereas the glucose- and pH-sensitive behaviors came from the PAPBA constituent. The reduced form of nicotinamide adenine dinucleotide (NADH) could be electrocatalytically oxidized by FCA at the film electrodes, which would greatly amplify the multi-responsive CV signal difference between the on and off states. On the basis of these results, a binary 4-input/4-output logic circuit was fabricated with temperature, glucose, pH and NADH as inputs and the CV responses at 4 different levels as outputs. Moreover, a ternary CONSENSUS logic circuit was established on the same platform, which was the first report on the combination of ternary logic gate and bioelectrocatalysis without using enzymes. This work provided a novel idea for constructing complicated biocomputing systems by increasing the number of inputs/outputs with multi-sensitive interfaces and by designing new types of multi-valued logic gates on the basis of bioelectrocatalysis.

  8. Automatic analysis of intrinsic positional verification films brachytherapy using MATLAB; Analisis automatico de peliculas de verificacion posicional intrinsica en braqueterapia mediante MATLAB

    Energy Technology Data Exchange (ETDEWEB)

    Quiros Higueras, J. D.; Marco Blancas, N. de; Ruiz Rodriguez, J. C.

    2011-07-01

    One of the essential tests in quality control of brachytherapy equipment is verification auto load intrinsic positional radioactive source. A classic method for evaluation is the use of x-ray film and measuring the distance between the marks left by autoradiography of the source with respect to a reference. In our center has developed an automated method of measurement by the radiochromic film scanning and implementation of a macro developed in Matlab, in order to optimize time and reduce uncertainty in the measurement. The purpose of this paper is to describe the method developed, assess their uncertainty and quantify their advantages over the manual method. (Author)

  9. Near-Field Birefringence Response of Liquid Crystal Molecules in Thickness Direction of Liquid Crystal Thin Film Orientated by Shear Force

    Institute of Scientific and Technical Information of China (English)

    Jing QIN; Norihiro UMEDA

    2007-01-01

    Information of molecular orientation in nematic liquid crystal (LC) is attractive and important for applications in the field of display devices. We demonstrate a novel method using a birefringence scanning near-field optical microscope (Bi-SNOM) with a probe which is inserted into the LC thin film to detect the molecular orientation from its birefringence responses in the thickness direction of the LC thin film. The probe is laterally vibrated when going forward into the LC thin film, and the retardation and azimuth angle are recorded as the probe going down. Firstly, the thickness of the LC thin film is measured by the shear force detection. Since the shear force acts as a stimulation to reorientate the LC molecules above the substrate surface, we can detect the molecular orientation caused by a polyimide alignment substrate and the effect to molecular orientation caused by vibration of fibre probe. As a result, the orientation profiling of the LC film in depth direction is obtained in both the cases that the direction of probe vibrating is vertical/parallel to the rubbing direction of the alignment film.Furthermore, the thickness of completely orientated layers just above the substrate surface can also be obtained by either vibrating probe or no-vibrating probe. Ultimately, the LC thin film can be modelled in thickness direction from all the results using this method.

  10. Electrochromic response of WO3 and WO3-TiO2 thin films prepared from water-soluble precursors and a block copolymer template

    Directory of Open Access Journals (Sweden)

    Takashi Kuroki

    2016-12-01

    Full Text Available Electrochromic tungsten trioxide (WO3 thin films are attracting renewed attention as transmittance-controllable windows for use in automobile, aircraft, and building applications. In order to achieve high electrochromic performance, high cycle stability, and high reliability, the microstructure and compositional homogeneity of WO3 thin films have to be optimized. In this study, non-doped WO3 and TiO2-doped WO3 thin films were fabricated from water-soluble precursors of tungsten and titanium, and their electrochromic response was investigated. Amorphous WO3 and TiO2-doped WO3 thin films were fabricated by calcining the spin-coated films at 573 K. The use of a PEO-PPO-PEO block copolymer as a porogen facilitated the redox reactions occurring on the thin film/electrolyte interface. Although the effect of TiO2-doping on the cycle stability of WO3 thin films has not been fully elucidated, this study demonstrated that TiO2 doping up to 15 mol% effectively enhanced the cycle stability.

  11. Broadband microwave response of superconducting NbN and TaN thin films

    Energy Technology Data Exchange (ETDEWEB)

    Felger, M. Maximilian; Pracht, Uwe S.; Dressel, Martin; Scheffler, Marc [1. Physikalisches Institut, Universitaet Stuttgart, D-70669 Stuttgart (Germany); Ilin, Konstantin; Siegel, Michael [Institut fuer Mikro- und Nanoelektronische Systeme, Karlsruher Institut fuer Technologie, D-76187 Karlsruhe (Germany)

    2015-07-01

    Ultrathin NbN and TaN films with their peculiar superconducting behavior are of interest both for fundamental physics (e.g. concerning the superconductor-insulator transition) and novel applications (e.g. for single-photon detectors). Here microwave spectroscopy is a powerful tool to characterize essential superconducting properties and to investigate the charge dynamics (Cooper pairs and quasiparticles). We have prepared by sputtering thin films of NbN (thickness between 3 nm and 20 nm; T{sub c} between 5 K and 13 K) and TaN (thickness 5 nm; T{sub c} between 8.5 K and 9.5 K) on sapphire substrates. We performed broadband microwave spectroscopy on these samples using a Corbino spectrometer at temperatures down to 1.1 K and at frequencies up to 50 GHz. From these data we determine the superconducting penetration depth and we evaluate the frequency-dependent conductivity. While many of the observed features can be described within expectations of conventional BCS theory, we also find deviations that are caused by fluctuations near the superconducting transition.

  12. Vagotonicity of Violence: Biochemical and Cardiac Responses to Violent Films and Television Programmes

    Science.gov (United States)

    Carruthers, Malcolm; Taggart, Peter

    1973-01-01

    In a search for a reproducible means of evoking different types of emotional stress it was found that in spite of increased adrenaline secretion slowing of the heart occurred when watching violent television programmes. Further evidence of increased vagal tone was provided by the “sinus arrhythmia” effect, a widening of the gap between the maximum and minimum heart rates during the respiratory cycle in parts of the humour, violence, and suspense sections of the television programme. Groups of people taken to see two particularly violent films showed similar evidence suggesting vagal overactivity, together with increases in plasma free fatty acids and decreases in triglycerides. As these changes occurred even with β-blockade it is suggested that they might be caused by non-sympathetically mediated changes in the levels of hormones, such as growth hormone, producing lipolysis. The ability to assess objectively an individual's reaction to viewing violence might make it possible to judge the likely social impact of violent films and television programmes. PMID:4730188

  13. In situ X-ray diffraction studies on the piezoelectric response of PZT thin films

    Energy Technology Data Exchange (ETDEWEB)

    Davydok, A., E-mail: davydok@mpie.de [Aix Marseille Université, CNRS, Université de Toulon, IM2NP UMR 7334, 13397 Marseille (France); Max-Planck-Institut für Eisenforschung, Department Structure and Nano-/Micromechanics of Materials, D-40237 Düsseldorf (Germany); Cornelius, T.W. [Aix Marseille Université, CNRS, Université de Toulon, IM2NP UMR 7334, 13397 Marseille (France); Mocuta, C. [SOLEIL Synchrotron, DiffAbs beamline, L' Orme des Merisiers, Saint-Aubin - BP 48, 91192 Gif-sur-Yvette Cedex (France); Lima, E.C. [Universidade Federal do Tocantins, 77500-000 Porto Nacional, TO (Brazil); Araujo, E.B. [Departamento de Fisica e Quimica, Universidade Estadual Paulista, Av. Brasil, 56 Centro, 15385-000 Ilha Solteira, SP (Brazil); Thomas, O. [Aix Marseille Université, CNRS, Université de Toulon, IM2NP UMR 7334, 13397 Marseille (France)

    2016-03-31

    Piezoelectric properties of randomly oriented self-polarized PbZr{sub 0.50}Ti{sub 0.50}O{sub 3} (PZT) thin films were investigated using in situ synchrotron X-ray diffraction. Possibilities for investigating the piezoelectric effect using micro-sized hard X-ray beams are demonstrated and perspectives for future dynamical measurements on PZT samples with variety of compositions and thicknesses are given. Studies performed on the crystalline [100, 110] directions evidenced piezoelectric anisotropy. The piezoelectric coefficient d{sub 33} was calculated in terms of the lab reference frame (d{sub perp}) and found to be two times larger along the [100] direction than along the [110] direction. The absolute values for the d{sub perp} amount to 120 and 230 pm/V being in good agreement with experimental and theoretical values found in literature for bulk PZT ceramics. - Highlights: • We performed in situ synchrotron X-ray diffraction studies on (PZT) thin films. • We discuss anisotropy of piezo effect in different crystallographic directions. • Perpendicular component Piezo coefficient of thin PZT layer is defined.

  14. Multi-input and -output logic circuits based on bioelectrocatalysis with horseradish peroxidase and glucose oxidase immobilized in multi-responsive copolymer films on electrodes.

    Science.gov (United States)

    Yu, Xue; Lian, Wenjing; Zhang, Jiannan; Liu, Hongyun

    2016-06-15

    Herein, poly(N-isopropylacrylamide-co-N,N'-dimethylaminoethylmethacrylate) copolymer films were polymerized on electrode surface with a simple one-step method, and the enzyme horseradish peroxidase (HRP) was embedded in the films simultaneously, which were designated as P(NiPAAm-co-DMEM)-HRP. The films exhibited a reversible structure change with the external stimuli, such as pH, CO2, temperature and SO4(2-), causing the cyclic voltammetric (CV) response of electroactive K3Fe(CN)6 at the film electrodes to display the corresponding multi-stimuli sensitive ON-OFF behavior. Based on the switchable CV property of the system and the electrochemical reduction of H2O2 catalyzed by HRP in the films and mediated by Fe(CN)6(3-) in solution, a 5-input/3-output logic gate was established. To further increase the complexity of the logic system, another enzyme glucose oxidase (GOD) was added into the films, designated as P(NiPAAm-co-DMEM)-HRP-GOD. In the presence of oxygen, the oxidation of glucose in the solution was catalyzed by GOD in the films, and the produced H2O2 in situ was recognized and electrocatalytically reduced by HRP and mediated by Fe(CN)6(3-). Based on the bienzyme films, a cascaded or concatenated 4-input/3-output logic gate system was proposed. The present work combined the multi-responsive interface with bioelectrocatalysis to construct cascaded logic circuits, which might open a new avenue to develop biocomputing elements with more sophisticated functions and design novel glucose biosensors.

  15. Theoretical and experimental investigations on linear and nonlinear optical response of metal complexes doped PMMA films

    Science.gov (United States)

    Praveen, P. A.; Babu, R. Ramesh; Ramamurthi, K.

    2017-02-01

    Metal organic complexes, diaceto bis benzimidazole cobalt(II) and diaceto bis benzimidazole copper(II), are synthesized by a simple chemical route. The synthesized powders are doped in PMMA with 1, 3, 5 wt% and deposited as free standing films of thickness  ∼1 μm. For theoretical simulation, metal organic complex (MOC) embedded into the PMMA matrix is subjected to polarizability and hyperpolarizability calculations using the PM6 algorithm in MOPAC2012 package. It is found that the minimum interaction distance between PMMA and MOC is about 34 nm and does not vary with respect to the dopant. The copper complex shows higher interaction energy with the polymer matrix than the cobalt complex. Time dependent Hartree Fock approach is used to calculate the α, β and γ values for static, 0.25 and 0.5 eV energies; the cobalt complex shows higher polarizability and hyperpolarizability than the copper complex. Experimentally, the optical absorption, thermo-optic coefficient, nonlinear absorption coefficient and nonlinear refractive index of the samples are determined. The thermo-optic coefficients of the samples are seen to increase with increasing dopant concentration. From open aperture Z-scan studies the films are found to exhibit reverse saturable absorption behaviour, and from the closed aperture Z-scan all samples are found to exhibit self-focusing effects. The calculated third order susceptibility is in the order of 10‑5 esu. The optical limiting properties are studied at 650 nm using a 20 mW laser and all the samples are found to exhibit good optical limiting in the operating wavelength.

  16. Multiple-stimuli responsive bioelectrocatalysis based on reduced graphene oxide/poly(N-isopropylacrylamide) composite films and its application in the fabrication of logic gates.

    Science.gov (United States)

    Wang, Lei; Lian, Wenjing; Yao, Huiqin; Liu, Hongyun

    2015-03-11

    In the present work, reduced graphene oxide (rGO)/poly(N-isopropylacrylamide) (PNIPAA) composite films were electrodeposited onto the surface of Au electrodes in a fast and one-step manner from an aqueous mixture of a graphene oxide (GO) dispersion and N-isopropylacrylamide (NIPAA) monomer solutions. Reflection-absorption infrared (IR) and Raman spectroscopies were employed to characterize the successful construction of the rGO/PNIPAA composite films. The rGO/PNIPAA composite films exhibited reversible potential-, pH-, temperature-, and sulfate-sensitive cyclic voltammetric (CV) on-off behavior to the electroactive probe ferrocenedicarboxylic acid (Fc(COOH)2). For instance, after the composite films were treated at -0.7 V for 7 min, the CV responses of Fc(COOH)2 at the rGO/PNIPAA electrodes were quite large at pH 8.0, exhibiting the on state. However, after the films were treated at 0 V for 30 min, the CV peak currents became much smaller, demonstrating the off state. The mechanism of the multiple-stimuli switchable behaviors for the system was investigated not only by electrochemical methods but also by scanning electron microscopy and X-ray photoelectron spectroscopy. The potential-responsive behavior for this system was mainly attributed to the transformation between rGO and GO in the films at different potentials. The film system was further used to realize multiple-stimuli responsive bioelectrocatalysis of glucose catalyzed by the enzyme of glucose oxidase and mediated by the electroactive probe of Fc(COOH)2 in solution. On the basis of this, a four-input enabled OR (EnOR) logic gate network was established.

  17. All-Printed Thin-Film Transistor Based on Purified Single-Walled Carbon Nanotubes with Linear Response

    Directory of Open Access Journals (Sweden)

    Guiru Gu

    2011-01-01

    Full Text Available We report an all-printed thin-film transistor (TFT on a polyimide substrate with linear transconductance response. The TFT is based on our purified single-walled carbon nanotube (SWCNT solution that is primarily consists of semiconducting carbon nanotubes (CNTs with low metal impurities. The all-printed TFT exhibits a high ON/OFF ratio of around 103 and bias-independent transconductance over a certain gate bias range. Such bias-independent transconductance property is different from that of conventional metal-oxide-semiconductor field-effect transistors (MOSFETs due to the special band structure and the one-dimensional (1D quantum confined density of state (DOS of CNTs. The bias-independent transconductance promises modulation linearity for analog electronics.

  18. Grain size effect on the electrical response of SnO2 thin and thick film gas sensors

    Directory of Open Access Journals (Sweden)

    Raluca Savu

    2009-03-01

    Full Text Available Porous nano and micro crystalline tin oxide films were deposited by RF Magnetron Sputtering and doctor blade techniques, respectively. Electrical resistance and impedance spectroscopy measurements, as a function of temperature and atmosphere, were performed in order to determine the influence of the microstructure and working conditions over the electrical response of the sensors. The conductivity of all samples increases with the temperature and decreases in oxygen, as expected for an n-type semiconducting material. The impedance plots indicated the existence of two time constants related to the grains and the grain boundaries. The Nyquist diagrams at low frequencies revealed the changes that took place in the grain boundary region, with the contribution of the grains being indicated by the formation of a second semicircle at high frequencies. The better sensing performance of the doctor bladed samples can be explained by their lower initial resistance values, bigger grain sizes and higher porosity.

  19. Chemically tuned linear energy transfer dependent quenching in a deformable, radiochromic 3D dosimeter

    DEFF Research Database (Denmark)

    Høye, Ellen Marie; Skyt, Peter Sandegaard; Balling, Peter

    2017-01-01

    the observed quenching in proton beams. The dependency of dose response on linear energy transfer, as calculated through Monte Carlo simulations of the dosimeter, was investigated in 60 MeV proton beams. We found that the amount of quenching varied with the chemical composition: peak-to-plateau ratios (1cm...... chemical compositions of the dosimeter showed dose-rate dependency; however this was not dependent on the linear energy transfer. Track-structure theory was used to explain the observed quenching effects. In conclusion, this study shows that the silicone-based dosimeter has potential for use in measuring 3...

  20. Magnetically tunable dielectric, impedance and magnetoelectric response in MnFe2O4/(Pb1-xSrx)TiO3 composites thin films

    Science.gov (United States)

    Bala, Kanchan; Kotnala, R. K.; Negi, N. S.

    2017-02-01

    We have synthesized piezomagnetic-piezoelectric composites thin films MnFe2O4/(Pb1-xSrx)TiO3, where x=0.1, 0.2, and 0.3, using the metalorganic deposition (MOD) reaction method. The structural and microstructural analysis using the X-ray diffraction (XRD), AFM, and SEM reveals the presence of homogenous growth of both pervoskite and spinel phases in the composite films. Our results show that all the composites films exhibit good multiferroic as well as considerable magnetoelectric coupling. The impedance (Z‧ and Z″) and electrical modulus (M‧ and M″) Nyquist plots show distinct electrical responses with the magnetic field. Our analyses suggest that this electrical response arises due to the coexistence of the high resistive phase and the comparatively conductive phase in the MFO/PST composite films. The maximum magnetoelectric coefficient (α) is found to be 4.29 V Oe-1 cm-1 and 2.82 V Oe-1 cm-1 for compositions x=0.1 and 0.2. These values are substantially larger than those reported for bilayer composites thin films in literature and make them interesting for room temperature device applications.

  1. SU-F-BRF-13: Investigating the Feasibility of Accurate Dose Measurement in a Deforming Radiochromic Dosimeter

    Energy Technology Data Exchange (ETDEWEB)

    Juang, T [Medical Physics Graduate Program, Duke University Medical Center, Durham, NC (United States); Adamovics, J [Rider University, Skillman, NJ (United States); Oldham, M [Duke University Medical Center, Durham, NC (United States)

    2014-06-15

    Purpose: Presage-Def, a deformable radiochromic 3D dosimeter, has been previously shown to have potential for validating deformable image registration algorithms. This work extends this effort to investigate the feasibility of using Presage-Def to validate dose-accumulation algorithms in deforming structures. Methods: Two cylindrical Presage-Def dosimeters (8cm diameter, 4.5cm length) were irradiated in a water-bath with a simple 4-field box treatment. Isocentric dose was 20Gy. One dosimeter served as control (no deformation) while the other was laterally compressed during irradiation by 21%. Both dosimeters were imaged before and after irradiation with a fast (∼10 minutes for 1mm isotropic resolution), broad beam, high resolution optical-CT scanner. Measured dose distributions were compared to corresponding distributions calculated by a commissioned Eclipse planning system. Accuracy in the control was evaluated with 3D gamma (3%/3mm). The dose distribution calculated for the compressed dosimeter in the irradiation geometry cannot be directly compared via profiles or 3D gamma to the measured distribution, which deforms with release from compression. Thus, accuracy under deformation was determined by comparing integral dose within the high dose region of the deformed dosimeter distribution versus calculated dose. Dose profiles were used to study temporal stability of measured dose distributions. Results: Good dose agreement was demonstrated in the control with a 3D gamma passing rate of 96.6%. For the dosimeter irradiated under compression, the measured integral dose in the high dose region (518.0Gy*cm3) was within 6% of the Eclipse-calculated integral dose (549.4Gy*cm3). Elevated signal was noted on the dosimeter edge in the direction of compression. Change in dosimeter signal over 1.5 hours was ≤2.7%, and the relative dose distribution remained stable over this period of time. Conclusion: Presage-Def is promising as a 3D dosimeter capable of accurately

  2. Nonlocal response in thin-film waveguides: loss versus nonlocality and breaking of complementarity

    CERN Document Server

    Raza, Søren; Wubs, Martijn; Bozhevolnyi, Sergey I; Mortensen, N Asger

    2013-01-01

    We investigate the effects of nonlocal response on the surface-plasmon polariton guiding properties of the metal-insulator (MI), metal-insulator-metal (MIM), and insulator-metal-insulator (IMI) waveguides. The nonlocal effects are described by a linearized hydrodynamic model, which includes the Thomas-Fermi internal kinetic energy of the free electrons in the metal. We derive the nonlocal dispersion relations of the three waveguide structures taking into account also retardation and interband effects, and examine the delicate interplay between nonlocal response and absorption losses in the metal. We also show that nonlocality breaks the complementarity of the MIM and IMI waveguides found in the non-retarded limit.

  3. Dielectric response and electric properties of organic semiconducting phthalocyanine thin films

    Institute of Scientific and Technical Information of China (English)

    A.M.Saleh; S.M.Hraibat; R.M-L.Kitaneh; M.M.Abu-Samreh; S.M.Musameh

    2012-01-01

    The dielectric function of some phthalocyanine compounds (ZnPc,H2Pc,CuPc,and FePc) were investigated by analyzing the measured capacitance and loss tangent data.The real part of the dielectric constant,ε1,varies strongly with frequency and temperature.The frequency dependence was expressed as:ε1 =Aωn,where the index,n,assumes negative values (n < 0).In addition,the imaginary part of the dielectric constant,ε2,is also frequency and temperature dependent.Data analysis confirmed that ε2 =Bωm with values of m less than zero.At low frequencies and all temperatures,a strong dependence is observed,while at higher frequencies,a moderate dependence is obvious especially for the Au-electrode sample.Qualitatively,the type of electrode material had little effect on the behavior of the dielectric constant but did affect its value.Analysis of the AC conductivity dependence on frequency at different temperatures indicated that the correlated barrier hopping (CBH) model is the most suitable mechanism for the AC conduction behavior.Maximum barrier height,W,has been estimated for ZnPc with different electrode materials (Au and Al),and had values between 0.10 and 0.9 eV.For both electrode types,the maximum barrier height has strong frequency dependence at high frequency and low temperatures.The relaxation time,τ,for ZnPc and FePc films increases with decreasing frequency.The activation energy was derived from the slopes of τ versus 1/T curves.At low temperatures,an activation energy value of about 0.01 eV and 0.04 eV was estimated for ZnPc and FePc,respectively.The low values of activation energy suggest that the hopping of charge carriers between localized states is the dominant mechanism.

  4. The similiarity of facial expressions in response to emotion-inducing films in reared-apart twins.

    Science.gov (United States)

    Kendler, K S; Halberstadt, L J; Butera, F; Myers, J; Bouchard, T; Ekman, P

    2008-10-01

    While the role of genetic factors in self-report measures of emotion has been frequently studied, we know little about the degree to which genetic factors influence emotional facial expressions. Twenty-eight pairs of monozygotic (MZ) and dizygotic (DZ) twins from the Minnesota Study of Twins Reared Apart were shown three emotion-inducing films and their facial responses recorded. These recordings were blindly scored by trained raters. Ranked correlations between twins were calculated controlling for age and sex. Twin pairs were significantly correlated for facial expressions of general positive emotions, happiness, surprise and anger, but not for general negative emotions, sadness, or disgust or average emotional intensity. MZ pairs (n=18) were more correlated than DZ pairs (n=10) for most but not all emotional expressions. Since these twin pairs had minimal contact with each other prior to testing, these results support significant genetic effects on the facial display of at least some human emotions in response to standardized stimuli. The small sample size resulted in estimated twin correlations with very wide confidence intervals.

  5. The Effects of Social Class, Gender, and Personality on Physiological Responses to Filmed Violence.

    Science.gov (United States)

    Frost, Richard; Stauffer, John

    1987-01-01

    Examines the possible factors affecting emotional arousal in response to media violence. Indicates that inner-city subjects were significantly more aroused than was a college sample by viewing 10 types of violence. Suggests that gender was not a mediating factor in arousal to violence. (NKA)

  6. Light induced diffusion driven self assembly of Ag nanoparticles in a-Se/Ag bi-layer thin film with ultrafast optical response

    Science.gov (United States)

    Bapna, Mukund; Sharma, Rituraj; Barik, A. R.; Khan, Pritam; Ranjan Kumar, Rakesh; Adarsh, K. V.

    2013-05-01

    In this Letter, we demonstrate that femtosecond light-induced interdiffusion of Ag driven by the electrostatic attraction between photo-excited Ag+ ions and negatively charged amorphous layer can act as an efficient single step method for hybrid integration of spatially ordered and interconnected nanoparticles on the surface of amorphous films. Such self assembled complex hybrid structures of silver nanoparticles via bottom-up nano-construction method on a-Se thin film show an ultrafast optical response over an unusually broad wavelength range that can be used to construct optical modulators operating at switching speed of ˜5 ps.

  7. Slow-rise and fast-drop current feature of ultraviolet response spectra for ZnO-nanowire film modulated by water molecules

    Institute of Scientific and Technical Information of China (English)

    Ren Shou-Tian; Wang Qiang; Zhao Feng; Qu Shi-Liang

    2012-01-01

    This study describes the fabrication of ZnO-nanowire films by electro-chemical anodization of Zn foil.The ZnO films are characterized by field emission scanning electron microscopy,X-ray diffraction patterns,and transmission electron microscopy,respectively.The ultraviolet (UV) photo-response properties of the surface-contacted ZnO film are studied through the current evolution processes under different relative humidities.Unlike the usually observed current spectra of the ZnO films,the drop time is shorter than the rise time.The photo-conductivity gain G and the response time γ are both increased with the increase of the applied bias.The photo-conductivity gain G is lowered with the increase of the environmental humidity,while the response time γ is increased.These results can be explained by considering three different surface processes:1) the electron-hole (e-p) pair generation by the UV light illumination,2)the following surface (O-2) species desorption,and 3) the photo-catalytic hydrolysis of water molecules adsorbed on the ZnO surface.The slow-rise and fast-drop current feature is suggested to originate from the sponge-like structure of the ZnO nanowires.

  8. Nonlocal response in thin-film waveguides: Loss versus nonlocality and breaking of complementarity

    DEFF Research Database (Denmark)

    Raza, Søren; Christensen, Thomas; Wubs, Martijn

    2013-01-01

    We investigate the effects of nonlocal response on the surface-plasmon polariton guiding properties of the metal-insulator (MI), metal-insulator-metal (MIM), and insulator-metal-insulator (IMI) waveguides. The nonlocal effects are described by a linearized hydrodynamic model, which includes...... in the metal. We also show that nonlocality breaks the complementarity of the MIM and IMI waveguides found in the nonretarded limit....

  9. Femtosecond optical response of Y-Ba-Cu-O thin films: The dependence on optical frequency, excitation intensity, and electric current

    Energy Technology Data Exchange (ETDEWEB)

    Gong, T.; Zheng, L.X.; Xiong, W.; Kula, W.; Kostoulas, Y.; Sobolewski, R.; Fauchet, P.M. (Laboratory for Laser Energetics and Department of Electrical Engineering, University of Rochester, Rochester, New York 14627 (United States))

    1993-06-01

    We have performed a series of femtosecond reflectivity experiments on various Y-Ba-Cu-O thin films at temperatures ranging from 12 to 300 K. In particular, the dependence of the optical response on probing laser frequency, pumping laser intensity, and bias electric current has been measured. Results obtained at room temperature provide quantitative information on the position of the Fermi level in films with different oxygen content. Systematic analysis of the measurements performed in the superconducting state indicates that the optical response associated with nonequilibrium properties of Y-Ba-Cu-O depends strongly on excitation intensity, sample thickness, and bias current. The results cannot be satisfactorily interpreted as the relaxation dynamics of quasiparticles, and a simple two-fluid model is shown to fail to explain data obtained under low laser excitation. Several tentative explanations are proposed, which provide a more comprehensive understanding of the transient optical response of Y-Ba-Cu-O.

  10. Fast response time alcohol gas sensor using nanocrystalline F-doped SnO2 films derived via sol–gel method

    Indian Academy of Sciences (India)

    Sarbani Basu; Yeong-Her Wang; C Ghanshyam; Pawan Kapur

    2013-08-01

    Pure and fluorine-modified tin oxide (SnO2) thin films (250–300 nm) were uniformly deposited on corning glass substrate using sol–gel technique to fabricate SnO2-based resistive sensors for ethanol detection. The characteristic properties of the multicoatings have been investigated, including their electrical conductivity and optical transparency in visible IR range. Pure SnO2 films exhibited a visible transmission of 90% compared with Fdoped films (80% for low doping and 60% for high doping). F-doped SnO2 films exhibited lower resistivity (0.12 × 10-4 cm) compared with the pure (14.16 × 10-4 cm) one. X-ray diffraction and scanning electron microscopy techniques were used to analyse the structure and surface morphology of the prepared films. Resistance change was studied at different temperatures (523–623 K) with metallic contacts of silver in air and in presence of different ethanol vapour concentrations. Comparative gas-sensing results revealed that the prepared F-doped SnO2 sensor exhibited the lowest response and recovery times of 10 and 13 s, respectively whereas that of pure SnO2 gas sensor, 32 and 65 s, respectively. The maximum sensitivities of both gas sensors were obtained at 623 K.

  11. The dynamic response of a hot-wire anemometer: IV. Sine-wave voltage perturbation testing for near-wall hot-wire/film probes and the presence of low-high frequency response characteristics

    Science.gov (United States)

    Teo, C. J.; Khoo, B. C.; Teo, C. J.; Chew, Y. T.

    2001-01-01

    Experiments were performed using the electronic sine-wave voltage-perturbation test to systematically study the frequency responses of near-wall hot-wire probes subjected in turn to varying magnitudes of convective velocity and different effects of wall influence. In addition, quartz-substrate hot-film gauges with various thicknesses of quartz coating were also investigated. Results of the high cut-off frequency obtained using the sine-wave test (fsine) were found to be in fair agreement with those obtained using the square-wave test (fS) both for hot-wire and for hot-film sensors. The sine-wave test response curve exhibited a distinct bulging effect for the hot-film gauges. For the hot-wire sensors, a much weaker bulging effect was also observed. In contrast to fS and fsine, the low frequency response characteristic corresponding to the location of the bulging effect (fbulge) compared much more favourably with the dynamic frequency response (fD) obtained by Khoo et al and Chew et al using a known near-wall fluctuating flow field. Freymuth's theory for non-cylindrical hot-film sensors incorporating the Bellhouse-Schultz model was applied to predict the responses of the hot-film wall gauges when they were subjected to electronic sine-wave testing and dynamic perturbation testing under different parametric conditions. Although it is one-dimensional in nature, the model is capable of predicting most of the trends observed in the present study and previous works by Khoo et al (1998a) and Chew et al (1998a).

  12. MO-F-CAMPUS-T-02: Dosimetric Accuracy of the CrystalBallâ„¢: New Reusable Radiochromic Polymer Gel Dosimeter for Patient QA in Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Avery, S; Kraus, J; Lin, L; Kassaee, A [University of Pennsylvania, Philadelphia, PA (United States); Maryanski, M [MGS Research, Inc., Madison, CT (United States)

    2015-06-15

    Purpose: To evaluate the accuracy of monoexponential normalization in a new class of commercial, reusable, human-soft-tissue-equivalent, radiochromic polymer gel dosimeters for patient-specific QA in proton therapy. Methods: Eight formulations of the dosimeter (sealed in glass spheres of 166 mm OD), were exposed to a 150 MeV proton beam (5 cm x 5 cm square field, range 15 cm, modulation10 cm), with max dose ranging from 2.5 Gy to 20 Gy, depending on formulation. Exposed dosimeters were promptly placed in the commercial OCTOPUS™ laser CT scanner which was programmed to scan the central slice every 5 minutes for 20 hours (15 seconds per slice scan). This procedure was repeated several times. Reconstructed data were analyzed using the log-lin scale to determine the time range over which a monoexponential relaxation model could be applied. Next, a simple test plan was devised and delivered to each dosimeter. The OCTOPUS™ was programmed to rescan the central slice at the end of each volume scan, for signal relaxation reference. Monoexponential normalization was applied to sinograms before FBP reconstruction. Dose calibration was based on a volume-lookup table built within the central spherical volume of 12 cm diameter. 3D gamma and sigma passing rates were measured at 3%/3mm criteria down to 50% isodose. Results: Approximately monoexponential signal relaxation time ranges from 25 minutes to 3.5 hours, depending on formulation, followed by a slower-relaxation component. Noise in reconstructed OD/cm images is less than 0.5%. Dose calibration accuracy is better than 99%. Measured proton PDDs demonstrate absence of Bragg-peak quenching. Estimated number of useful cycles is at least 20, with a theoretical limit above 100. 3D gamma and sigma passing rates exceed 95%. Conclusion: Monoexponential normalization was found to yield adequate dosimetric accuracy in the new class of commercial radiochromic polymer gel dosimeters for patient QA in proton therapy.

  13. Photoluminescence Response in Carbon Films Deposited by Pulsed Laser Deposition onto GaAs Substrates at Low Vacuum

    Directory of Open Access Journals (Sweden)

    F. Caballero-Briones

    2016-01-01

    Full Text Available Carbon films were deposited onto GaAs substrates by pulsed laser deposition at low vacuum (10–15 mTorr from a graphite target. Films were prepared at different number of pulses (1500 to 6000 with fixed fluence (32 J/cm2, target-to-substrate distance, and pulse frequency using a Q:Switched Nd:YAG laser at 1064 nm operating at a frequency of 10 Hz and producing burst-mode pulses with total duration per shot of 49 ns. Films were characterized by optical microscopy, atomic force microscopy, laser induced breakdown spectroscopy, X-ray diffraction, and photoluminescence spectroscopy. Deposited films were visually smooth and adherent but on the other hand evidence of splashing was observed in all the films. Thickness varied linearly with the number of pulses from 8 to 42 μm with maximum height differences around 700 nm. Hexagonal and orthorhombic carbon was found in all the films and there was no evidence of nitrogen or oxygen incorporation during ablation process. Broad photoluminescence bands were observed and, particularly, emission peaks at 475–480 nm, 540–550 nm, 590 nm, and 625 nm. Bands tend to shift to lower wavelength with film thickness, suggesting that luminescence comes from splashed nanostructures influenced by the semiconducting substrate. This particular substrate effect is vanished as thickness of the films increases.

  14. Temperature-responsive polymer/carbon nanotube hybrids: smart conductive nanocomposite films for modulating the bioelectrocatalysis of NADH.

    Science.gov (United States)

    Zhao, Xin; Liu, Yang; Lu, Jin; Zhou, Jianhua; Li, Jinghong

    2012-03-19

    A temperature-sensitive polymer/carbon nanotube interface with switchable bioelectrocatalytic capability was fabricated by self-assembly of poly(N-isopropylacrylamide)-grafted multiwalled carbon nanotubes (MWNT-g-PNIPAm) onto the PNIPAm-modified substrate. Electron microscopy and electrochemical measurements revealed that these fairly thick (>6 μm) and highly porous nanocomposite films exhibited high conductivity and electrocatalytic activity. The morphological transitions in both the tethered PNIPAm chains on a substrate and those polymers wrapping around the MWNT surface resulted in the opening, closing, or tuning of its permeability, and simultaneously an electron-transfer process took place through the channels formed in the nanostructure in response to temperature change. By combining the good electron-transfer and electrochemical catalysis capabilities, the large surface area, and good biocompatibility of MWNTs with the responsive features of PNIPAm, reversible temperature-controlled bioelectrocatalysis of 1,4-dihydro-β-nicotinamide adenine dinucleotide with improved sensitivity has been demonstrated by cyclic voltammetry and electrochemical impedance spectroscopy measurements. The mechanism behind this approach was studied by Raman spectroscopy, in situ attenuated total reflection FTIR spectroscopy, and contact angle measurements. The results also suggested that the synergetic or cooperative interactions of PNIPAm with MWNTs gave rise not only to an increase in surface wettability, but also to the enhancement of the interfacial thermoresponsive behavior. This bioelectrocatalytic "smart" system has potential applications in the design of biosensors and biofuel cells with externally controlled activity. Furthermore, this concept might be proposed for biomimetics, interfacial engineering, bioelectronic devices, and so forth.

  15. Investigations of Different Phases Responsible for Changes in Optical Properties of Organic Semiconducting Device Material Thin Films

    Directory of Open Access Journals (Sweden)

    Vivek Kumar Shukla

    2013-01-01

    Full Text Available The environment sensitivity of organic semiconductors may change their molecular structure and hence optical properties. Exploiting this concept, experiments were performed on a green light emitting material bis(8-hydroxy quinolineZinc, (Znq2 used in organic light emitting diodes (OLEDs. Thin films were deposited at varying deposition parameters, and their properties were compared. We investigated that as deposited films have a significant component of Znq2 tetramer out of two known forms, that is, dihydrate and anhydrous tetramer (Znq24, the films deposited at lower deposition rates have higher anhydrous content. The degradation of thin film is shown, that changes the optical properties of film from green emission to blue which may be due to water adsorption and crystallization.

  16. Evaluation of Gafchromic EBT-XD film, with comparison to EBT3 film, and application in high dose radiotherapy verification

    Science.gov (United States)

    Palmer, Antony L.; Dimitriadis, Alexis; Nisbet, Andrew; Clark, Catharine H.

    2015-11-01

    There is renewed interest in film dosimetry for the verification of dose delivery of complex treatments, particularly small fields, compared to treatment planning system calculations. A new radiochromic film, Gafchromic EBT-XD, is available for high-dose treatment verification and we present the first published evaluation of its use. We evaluate the new film for MV photon dosimetry, including calibration curves, performance with single- and triple-channel dosimetry, and comparison to existing EBT3 film. In the verification of a typical 25 Gy stereotactic radiotherapy (SRS) treatment, compared to TPS planned dose distribution, excellent agreement was seen with EBT-XD using triple-channel dosimetry, in isodose overlay, maximum 1.0 mm difference over 200-2400 cGy, and gamma evaluation, mean passing rate 97% at 3% locally-normalised, 1.5 mm criteria. In comparison to EBT3, EBT-XD gave improved evaluation results for the SRS-plan, had improved calibration curve gradients at high doses, and had reduced lateral scanner effect. The dimensions of the two films are identical. The optical density of EBT-XD is lower than EBT3 for the same dose. The effective atomic number for both may be considered water-equivalent in MV radiotherapy. We have validated the use of EBT-XD for high-dose, small-field radiotherapy, for routine QC and a forthcoming multi-centre SRS dosimetry intercomparison.

  17. Brachytherapy model with sodium pertechnetate-{sup 99m}Tc balloon (Na{sup 99m}TcO{sub 4}{sup -}) for breast cancer: evaluation of dosimetry and cell response; Modelo de braquiterapia com balao de pertecnetato de sodio-{sup 99m}Tc (Na{sup 99m}TcO{sub 4}{sup -}) para cancer de mama: avaliacao da dosimetria e resposta celular

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Carla Flavia de

    2016-07-01

    Breast cancer is the most common type of cancer that affects more women worldwide. Among various treatment options, radiotherapy which is often used as a treatment for locoregional recurrences control or to decrease tumor size. In patients with breast cancer at an early stage, a booster dose (boost) in the primary tumor area can be applied after conventional radiation therapy. There are several drawbacks to applying this technique. In this work we aimed to perform a dosimetric analysis in a breast model, where it put a balloon filled with sodium pertechnetate-{sup 99m}Tc (Na{sup 99m}TcO{sub 4}{sup -}) which in future could be used in preference to other possible therapies. The methodology involved the development of dosimetry in water based on radiochromic films and in a computational voxel thorax model. Calibration protocol achieved a mathematical relation between absorbed dose versus optical density (OD) measured at a set of radiochromic sample films placed at the surface of the balloon plus 1 cm up to 10 cm far, in which theoretical dose values were provided by MCNP modeling, reproducing the water equivalent physical simulator. A voxel model of a female thorax, developed at the SISCODES/MCNP codes, received a filled balloon inside. Spatial dose distribution was generated, illustrating the dose received in the chest wall, glandular tissue, breast skin and lung. The dosimetric findings contribute to present the Na{sup 99m}TcO{sub 4}{sup -} balloon modality which provides a suitable spatial dose distribution in the tumor bed preserving adjacent health tissues. We also studied the radiobiological response radio resistant mammary adenocarcinoma cells (MDAMB231) by exposure of these cells to Na{sup 99m}TcO{sub 4}{sup -} balloon. The findings include the presence of apoptotic cells in the balloon around point out a favorable response. In conclusion, the balloon may represent a viable option in the supplementary therapy of breast cancer in patients who have appropriate

  18. Anger and Sadness in Response to an Emotionally-Neutral Film: Evidence for Age-Specific Associations with Well-Being

    OpenAIRE

    Haase, Claudia M.; Seider, Benjamin H.; Shiota, Michelle N.; Levenson, Robert W.

    2011-01-01

    When the association between emotion and well-being is being considered, positive emotions usually come to mind. However, negative emotions serve important adaptive functions and particular negative emotions may be especially adaptive at different stages of adult development. We examined the associations between self-reported negative emotions in response to an emotionally-neutral, thematically-ambiguous film and subjective well-being among 76 young (age 20–29), 73 middle-aged (age 40–49), an...

  19. Ferromagnetic response of multiferroic TbMnO{sub 3} films mediated by epitaxial strain and chemical pressure

    Energy Technology Data Exchange (ETDEWEB)

    Izquierdo, J.; Morán, O., E-mail: omoranc@unal.edu.co [Universidad Nacional de Colombia, Campus Medellín, Departamento de Física, Laboratorio de Materiales Cerámicos y Vítreos, A.A. 568, Medellín Colombia (Colombia); Astudillo, A.; Bolaños, G. [Low Temperature Laboratory, Department of Physics, University of Cauca, Calle 5 No. 4-70, Popayán (Colombia); Arnache, O. [Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Calle 70 No. 52-21, A.A. 1226, Medellín (Colombia)

    2014-05-07

    High quality Tb{sub 1−x}Al{sub x}MnO{sub 3} (x = 0, 0.3) films have been grown under different values of compressive/tensile strain using (001)-oriented SrTiO{sub 3} and MgO substrates. The films were grown by means of rf sputtering at substrate temperature of 800  °C. X-ray diffraction analysis shows that films are single phase, preferentially oriented in the (111) and (122) directions for films deposited on SrTiO{sub 3} and MgO substrates, respectively. Although the TbMnO{sub 3} target shows antiferromagnetic order, the films deposited on both substrates show weak ferromagnetic phase at low temperature coexisting with the antiferromagnetic phase. The introduction of Al in the films clearly enhances their ferromagnetic behavior, improving the magnetic performance of this material. Indeed, M(H) measurements at 5 K show a well-defined hysteresis for films grown on both substrates. However, a stronger magnetic signal (larger values of remanence and coercive field) is observed for films deposited on MgO substrates. The chemical pressure generated by Al doping together with the substrate-induced strain seem to modify the subtle competition between magnetic interactions in the system. It is speculated that such modification could lead to a non-collinear magnetic state that may be tuned by strain modifications. This may be performed by varying the thickness of the films and/or considering other substrate materials.

  20. Gas-Sensing Devices Based on Zn-Doped NiO Two-Dimensional Grainy Films with Fast Response and Recovery for Ammonia Molecule Detection.

    Science.gov (United States)

    Wang, Jian; Wei, Xiaowei; Wangyang, Peihua

    2015-12-01

    Zn-doped NiO two-dimensional grainy films on glass substrates are shown to be an ammonia-sensing material with excellent comprehensive performance, which could real-time detect and monitor ammonia (NH3) in the surrounding environment. The morphology and structure analysis indicated that the as-fabricated semiconductor films were composed of particles with diameters ranging from 80 to 160 nm, and each particle was composed of small crystalline grain with a narrow size about 20 nm, which was the face-centered cubic single crystal structure. X-ray diffraction peaks shifted toward lower angle, and the size of the lattice increased compared with undoped NiO, which demonstrated that zinc ions have been successfully doped into the NiO host structure. Simultaneously, we systematically investigated the gas-sensing properties of the Zn-doped NiO sensors for NH3 detection at room temperature. The sensor based on doped NiO sensing films gave four to nine times faster response and four to six times faster recovery speeds than those of sensor with undoped NiO films, which is important for the NiO sensor practical applications. Moreover, we found that the doped NiO sensors owned outstanding selectivity toward ammonia.

  1. Antireflection and downconversion response of Nd3+ doped Y2O3/Si thin film deposited by AACVD process

    Science.gov (United States)

    Elleuch, R.; Salhi, R.; Deschanvres, J.-L.; Maalej, R.

    2014-09-01

    Nd3+:Y2O3 nanograins-like structure films with various Nd concentrations, were deposited on Si (1 0 0) substrates by aerosol assisted chemical vapor deposition (AACVD) process. The intense 900 nm emission of Nd3+ corresponding to the 4F3/2 → 4I9/2 transition was investigated as a function of the annealing temperature. The reflectance percentage of the optimized 5 mol.% Nd:Y2O3 film was recorded at about 16% in 400-1000 nm range. The refractive index (n = 1.94) and the low porosity (P = 2.74%) showed the high transparency of this film. The obtained results demonstrate that this film can enhance the Si solar cell efficiency by light trapping and spectrum shifting.

  2. Responsive polymer/gold nanoparticle composite thin films fabricated by solvent-induced self-assembly and spin-coating.

    Science.gov (United States)

    Li, Dongxiang; Lee, Ji Yong; Kim, Dong Ha

    2011-02-15

    Self-assembled poly(4-vinylpyridine)-grafted gold (Au) nanoparticles (NPs) and polystyrene-b-poly(4-vinylpyridine) block copolymers were fabricated by the introduction of a selective solvent to a common solution. The assembled mixtures were spin-coated onto solid substrates to fabricate composite gold/polymer thin films composed of copolymer-hybridized Au NPs and independent copolymer micelles. The obtained composite Au thin films had variable localized surface plasmon resonance (LSPR) bands and microscopic morphologies upon vapor annealing with selective solvents because the adsorption and dissolving of solvent molecules into the films could rearrange the copolymer block. The hybrid nanostructured Au thin films may have potential in vapor sensing and organic assays. Copyright © 2010 Elsevier Inc. All rights reserved.

  3. FS laser processing of bio-polymer thin films for studying cell-to-substrate specific response

    Science.gov (United States)

    Daskalova, A.; Nathala, Chandra S. R.; Kavatzikidou, P.; Ranella, A.; Szoszkiewicz, R.; Husinsky, W.; Fotakis, C.

    2016-09-01

    The use of ultra-short pulses for nanoengineering of biomaterials opens up possibilities for biological, medical and tissue engineering applications. Structuring the surface of a biomaterial into arrays with micro- and nanoscale features and architectures, defines new roadmaps to innovative engineering of materials. Thin films of novel collagen/elastin composite and gelatin were irradiated by Ti:sapphire fs laser in air at central wavelength 800 nm, with pulse durations in the range of 30 fs. The size and shape as well as morphological forms occurring in the resulted areas of interaction were analyzed as a function of irradiation fluence and number of pulses by atomic force microscopy (AFM). The fs interaction regime allows generation of well defined micro porous surface arrays. In this study we examined a novel composite consisting of collagen and elastin in order to create a biodegradable matrix to serve as a biomimetic surface for cell attachment. Confocal microscopy images of modified zones reveal formation of surface fringe patterns with orientation direction alongside the area of interaction. Outside the crater rim a wave-like topography pattern is observed. Structured, on a nanometer scale, surface array is employed for cell-culture experiments for testing cell's responses to substrate morphology. Mice fibroblasts migration was monitored after 3 days cultivation period using FESEM. We found that fibroblasts cells tend to migrate and adhere along the laser modified zones. The performed study proved that the immobilized collagen based biofilms suite as a template for successful fibroblasts cell guidance and orientation. Fs laser induced morphological modification of biomimetic materials exhibit direct control over fibroblasts behaviour due to induced change in their wettability state.

  4. Temperature responsive functional polymeric thin films obtained by matrix assisted pulsed laser evaporation for cells attachment–detachment study

    Energy Technology Data Exchange (ETDEWEB)

    Rusen, L. [NILPRP, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, PO Box MG-16, RO-077125 Magurele, Bucharest (Romania); Dinca, V., E-mail: dinali@nipne.ro [NILPRP, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, PO Box MG-16, RO-077125 Magurele, Bucharest (Romania); Mitu, B. [NILPRP, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, PO Box MG-16, RO-077125 Magurele, Bucharest (Romania); Mustaciosu, C. [Horia Hulubei National Institute of Physics and Nuclear Engineering, IFIN HH, Magurele, Bucharest (Romania); Dinescu, M. [NILPRP, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, PO Box MG-16, RO-077125 Magurele, Bucharest (Romania)

    2014-05-01

    Multifunctional thin films used as thermoresponsive substrate for engineering cell sheets represent an important area in tissue engineering. As the morphology and the chemical characteristics of the thin films directly control their interaction with cells, it is important to correlate these characteristics with the biological answer. In this study, thermally sensitive poly(N-isopropylacrylamide), (pNIPAAm) thin films were prepared by matrix assisted pulsed laser evaporation and utilized in L929 cell adhesion and detachment studies. Fourier transform infrared spectroscopy (FTIR) and atomic force microscopy (AFM) were used to determine the pNIPAAm thin films chemical and morphological characteristics. The FTIR data demonstrated that the functional groups in the MAPLE-deposited films remained intact for fluences in the range of 200–600 mJ cm{sup −2}. Within this fluence range, the AFM topographical studies showed that the roughness of the coatings was dependent on laser fluence and the obtained surfaces were characterized by a granular aspect. L929 cell viability studies onto the pNIPAAm coatings showed little or no toxic effect for fluences below 600 mJ cm{sup −2}, while for higher fluences, viability was decreased with more than 50%. The adhesion and detachment of the cell was found to be mainly dependent on the film surface morphology.

  5. Temperature responsive functional polymeric thin films obtained by matrix assisted pulsed laser evaporation for cells attachment-detachment study

    Science.gov (United States)

    Rusen, L.; Dinca, V.; Mitu, B.; Mustaciosu, C.; Dinescu, M.

    2014-05-01

    Multifunctional thin films used as thermoresponsive substrate for engineering cell sheets represent an important area in tissue engineering. As the morphology and the chemical characteristics of the thin films directly control their interaction with cells, it is important to correlate these characteristics with the biological answer. In this study, thermally sensitive poly(N-isopropylacrylamide), (pNIPAAm) thin films were prepared by matrix assisted pulsed laser evaporation and utilized in L929 cell adhesion and detachment studies. Fourier transform infrared spectroscopy (FTIR) and atomic force microscopy (AFM) were used to determine the pNIPAAm thin films chemical and morphological characteristics. The FTIR data demonstrated that the functional groups in the MAPLE-deposited films remained intact for fluences in the range of 200-600 mJ cm-2. Within this fluence range, the AFM topographical studies showed that the roughness of the coatings was dependent on laser fluence and the obtained surfaces were characterized by a granular aspect. L929 cell viability studies onto the pNIPAAm coatings showed little or no toxic effect for fluences below 600 mJ cm-2, while for higher fluences, viability was decreased with more than 50%. The adhesion and detachment of the cell was found to be mainly dependent on the film surface morphology.

  6. Film Reviews.

    Science.gov (United States)

    Lance, Larry M.; Atwater, Lynn

    1987-01-01

    Reviews four Human Sexuality films and videos. These are: "Personal Decisions" (Planned Parenthood Federation of America, 1985); "The Touch Film" (Sterling Production, 1986); "Rethinking Rape" (Film Distribution Center, 1985); "Not A Love Story" (National Film Board of Canada, 1981). (AEM)

  7. Self-Powered Solar-Blind Photodetector with Fast Response Based on Au/β-Ga2O3 Nanowires Array Film Schottky Junction.

    Science.gov (United States)

    Chen, Xing; Liu, Kewei; Zhang, Zhenzhong; Wang, Chunrui; Li, Binghui; Zhao, Haifeng; Zhao, Dongxu; Shen, Dezhen

    2016-02-17

    Because of the direct band gap of 4.9 eV, β-Ga2O3 has been considered as an ideal material for solar-blind photodetection without any bandgap tuning. Practical applications of the photodetectors require fast response speed, high signal-to-noise ratio, low energy consumption and low fabrication cost. Unfortunately, most reported β-Ga2O3-based photodetectors usually possess a relatively long response time. In addition, the β-Ga2O3 photodetectors based on bulk, the individual 1D nanostructure, and the film often suffer from the high cost, the low repeatability, and the relatively large dark current, respectively. In this paper, a Au/β-Ga2O3 nanowires array film vertical Schottky photodiode is successfully fabricated by a simple thermal partial oxidation process. The device exhibits a very low dark current of 10 pA at -30 V with a sharp cutoff at 270 nm. More interestingly, the 90-10% decay time of our device is only around 64 μs, which is much quicker than any other previously reported β-Ga2O3-based photodetectors. Besides, the self-powering, the excellent stability and the good reproducibility of Au/β-Ga2O3 nanowires array film photodetector are helpful to its commercialization and practical applications.

  8. Biomimetic three-dimensional anisotropic geometries by uniaxial stretching of poly(ε-caprolactone) films: degradation and mesenchymal stem cell responses.

    Science.gov (United States)

    Wang, Zu-Yong; Lim, Jing; Ho, Yeow Siong; Zhang, Qin-Yuan; Chong, Mark S K; Tang, Min; Hong, Ming-Hui; Chan, Jerry K Y; Teoh, Swee Hin; Thian, Eng San

    2014-07-01

    Geometric cues have been used for a variety of cell regulation and tissue regenerative applications. While the function of geometric cues is being recognized, their stability and degradation behaviors are not well known. Here, we studied the influence of degradation on uniaxial-stretch-induced poly(ε-caprolactone) (UX-PCL) ridge/groove arrays and further cellular responses. Results from accelerated hydrolysis in vitro showed that UX-PCL ridge/groove arrays followed a surface-controlled erosion, with an overall geometry remained even at ∼45% film weight loss. Compared to unstretched PCL flat surfaces and/or ridge/groove arrays, UX-PCL ridge/groove arrays achieved an enhanced morphological stability against degradation. Over the degradation period, UX-PCL ridge/groove arrays exhibited an "S-shape" behavior of film weight loss, and retained more stable surface hydrophilicity and higher film mechanical properties than those of unstretched PCL surfaces. Human mesenchymal stem cells (MSCs) aligned better toward UX-PCL ridge/groove arrays when the geometries were remained intact, and became sensitive with gradually declined nucleus alignment and elongation to the geometric degradation of ridges. We speculate that uniaxial stretching confers UX-PCL ridge/groove arrays with enhanced stability against degradation in erosive environment. This study provides insights of how degradation influences geometric cues and further cell responses, and has implications for the design of biomaterials with stability-enhanced geometric cues for long-term tissue regeneration.

  9. Atomic force microscopy investigation of the interaction of low-level laser irradiation of collagen thin films in correlation with fibroblast response.

    Science.gov (United States)

    Stylianou, Andreas; Yova, Dido

    2015-12-01

    Low-level red laser (LLRL)-tissue interactions have a wide range of medical applications and are garnering increased attention. Although the positive effects of low-level laser therapy (LLLT) have frequently been reported and enhanced collagen accumulation has been identified as one of the most important mechanisms involved, little is known about LLRL-collagen interactions. In this study, we aimed to investigate the influence of LLRL irradiation on collagen, in correlation with fibroblast response. Atomic force microscopy (AFM) and fluorescence spectroscopy were used to characterize surfaces and identify conformational changes in collagen before and after LLRL irradiation. Irradiated and non-irradiated collagen thin films were used as culturing substrates to investigate fibroblast response with fluorescence microscopy. The results demonstrated that LLRL induced small alterations in fluorescence emission and had a negligible effect on the topography of collagen thin films. However, fibroblasts cultured on LLRL-irradiated collagen thin films responded to LRLL. The results of this study show for the first time the effect of LLRL irradiation on pure collagen. Although irradiation did not affect the nanotopography of collagen, it influenced cell behavior. The role of collagen appears to be crucial in the LLLT mechanism, and our results demonstrated that LLRL directly affects collagen and indirectly affects cell behavior.

  10. Optimization of process conditions for the production of TiO2–N film by sol–gel process using response surface methodology

    Indian Academy of Sciences (India)

    Rui Liu; Ching-Shieh Hsieh; Wein-Duo Yang; Hui-Yi Tsai

    2014-10-01

    TiO2–N film has been synthesized successfully through the sol–gel method. It is found that the anatase phase is formed at 400 °C and converted to rutile phase at 600 °C. The response surface methodology (RSM) and Box–Behnken design were employed to optimize the process conditions of sol–gel process. Based on the results in preliminary experiments, we selected molar ratio of surfactant to Ti, molar ratio of acetylacetone to Ti, molar ratio of water to Ti and calcination temperature as the key process factors affecting the roughness of TiO2–N film. The adjusted determination coefficient ($R^{2}_{\\text{Adj}}$) of the regression model was 0.9651, which indicated that the regression model is significant. By analysing the contour plots of response surface as well as solving the regression model, the optimized conditions were obtained as: 0.19 for molar ratio of surfactant to Ti, 2.01 for molar ratio of acetylacetone to Ti, 1.38 for molar ratio of water to Ti and 500 °C for calcination temperature. The predicted roughness of TiO2–N film for the optimized condition was calculated to be 41 nm. Confirmation experiments using the optimized conditions were performed, and a value about 43 nm was obtained. The experimental results are in good agreement with the predicted results.

  11. Theoretical study of optical dielectric response of ZnO nanostructure film deposited on silica substrate using Maxwell-Garnett effective medium theory

    Energy Technology Data Exchange (ETDEWEB)

    Bissa, Shivangi; Naruka, Preeti; Bishnoi, Nidhi [Dept. of Physics, Engineering College Bikaner-334004, Rajasthan, India shiwangi-bissa2005@yahoo.co.in (India)

    2016-05-06

    In the present study the dielectric optical response of various nanostructures of ZnO deposited on silica substrate has been studied using Maxwell-Garnett Effective Medium Theory. Using the volume filling factors for different nanostructures of ZnO the effective dielectric constant has been evaluated. The variation of this effective dielectric constant with the frequency of applied signal has been investigated. Moreover, the reflectance of the film, power absorption and variation of refractive index with frequency has been studied. The results obtained show that the quantum confinement effects in ZnO nano-structural films deposited on silica substrate give rise to distinct optical properties making it an ideal choice for high power THz generation.

  12. Terahertz dielectric response of ferroelectric Ba(x)Sr(1-x)TiO3 thin films.

    Science.gov (United States)

    Kang, Seung Beom; Kwak, Min Hwan; Choi, Muhan; Kim, Sungil; Kim, Taeyong; Cha, Eun Jong; Kang, Kwang Yong

    2011-11-01

    Terahertz time-domain spectroscopy has been used to investigate the dielectric and optical properties of ferroelectric Ba(x)Sr(1-x)TiO(3) thin films for nominal x-values of 0.4, 0.6, and 0.8 in the frequency range of 0.3 to 2.5 THz. The ferroelectric thin films were deposited at approximately 700 nm thickness on [001] MgO substrate by pulsed laser deposition. The measured complex dielectric and optical constants were compared with the Cole-Cole relaxation model. The results show that the Cole-Cole relaxation model fits well with the data throughout the frequency range and the dielectric relaxation behavior of ferroelectric Ba(x)Sr(1-x)TiO(3) thin films varies with the films compositions. Among the compositions of Ba(x)Sr(1-x)TiO(3) films with different Ba/Sr ratios, Ba(0.6)Sr(0.4)TiO(3) has the highest dielectric constants and the shortest dielectric relaxation time.

  13. Photo-responsivity characterizations of CdTe films for direct-conversion X-ray detectors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ryun Kyung; Cha, Bo Kyung; Jeon, Sung Chae; Seo, Chang Woo [Korea Electrotechnology Research Institute, Ansan (Korea, Republic of); Yun, Seung Man [Pusan National University, Busan (Korea, Republic of)

    2014-08-15

    We have fabricated and investigated thin, polycrystalline, cadmium-telluride (CdTe) films in order to utilize them for optical switching readout layers in direct-conversion X-ray detectors. The polycrystalline CdTe films are fabricated on ITO glasses by using the physical vapor deposition (PVD) method at a slow deposition rate and a pressure of 10{sup -6} torr. CdTe films with thicknesses of 5 and 20 μm are grown. The electrical and the optical characteristics of the CdTe films are investigated by measuring the dark-current and the photo-current as functions of the applied field under different wavelengths of light. Higher photo-currents are generated at the longer wavelengths of light for the same applied voltage. When a higher electrical field is applied to the 20 μm-thick CdTe film, a higher dark-current, a higher photo-current, a larger number of charges, and a higher quantum efficiency are generated.

  14. Electrical Response of CdS Thin Film and CdS/Si Heterojunction to Gamma Radiation

    Directory of Open Access Journals (Sweden)

    M. R. Balboul

    2016-01-01

    Full Text Available Gamma irradiation method has been used to change the electrical properties of CdS thin film. A specific dose of γ-irradiation increases the activation energy of CdS thin film. In addition, γ-irradiation was used to change the sign of Hall coefficient, RH, of CdS thin film from negative to positive irrespective of temperature. The Hall mobility mechanism shows noticeable change after γ-irradiation from decreasing to increasing with raising the temperature. In depth, analysis was done using capacitance-voltage measurement in order to realize the modification in the CdS/Si junction band gap after γ-irradiation. Several parameters were also studied such as charge carrier concentration, ND, and flat band potential, Vfb. The γ-irradiation was found to increase the concentration of the deep traps within the band gap of the CdS/Si heterojunction.

  15. FS laser processing of bio-polymer thin films for studying cell-to-substrate specific response

    Energy Technology Data Exchange (ETDEWEB)

    Daskalova, A., E-mail: a_daskalova@code.bg [Institute of Electronics, Bulgarian Academy of Sciences, 72, Tsarigradsko Chaussee Blvd., 1784 Sofia (Bulgaria); Nathala, Chandra S.R. [Institute of General Physics, Vienna University of Technology, Wiedner Hauptstr. 8-10/134, A-1040 Wien (Austria); Spectra-Physics Vienna, Fernkorngasse 10, 1100 Wien (Austria); Kavatzikidou, P.; Ranella, A. [Institute for Electronic Structure and Lasers-FORTH, P.O. Box 1385, Vassilika Vouton, 711 10 Heraklion, Crete (Greece); Szoszkiewicz, R. [Faculty of Materials Science and Engineering, Warsaw University of Technology, 141 Woloska Str., 02-507 Warsaw, Poland (Poland); Husinsky, W. [Institute of General Physics, Vienna University of Technology, Wiedner Hauptstr. 8-10/134, A-1040 Wien (Austria); Fotakis, C. [Institute for Electronic Structure and Lasers-FORTH, P.O. Box 1385, Vassilika Vouton, 711 10 Heraklion, Crete (Greece)

    2016-09-30

    Highlights: • Systematic research in the field of fs laser interaction with biopolymers for application in tissue engineering. • Utilizing a new biopolymer blend of collagen/elastin material for studying the interaction process in the fs domain. • Obtaining of improved, circularly shaped, interconnected nanopores, with high reproducibility from collagen/elastin layer. • Observation of randomly arranged pattern outside modification zone due to formation of an impact wave over biofilm surface. • NIH/3T3 cell-interface interaction reveal a preferable cell migration on fs laser-modified surface array. - Abstract: The use of ultra-short pulses for nanoengineering of biomaterials opens up possibilities for biological, medical and tissue engineering applications. Structuring the surface of a biomaterial into arrays with micro- and nanoscale features and architectures, defines new roadmaps to innovative engineering of materials. Thin films of novel collagen/elastin composite and gelatin were irradiated by Ti:sapphire fs laser in air at central wavelength 800 nm, with pulse durations in the range of 30 fs. The size and shape as well as morphological forms occurring in the resulted areas of interaction were analyzed as a function of irradiation fluence and number of pulses by atomic force microscopy (AFM). The fs interaction regime allows generation of well defined micro porous surface arrays. In this study we examined a novel composite consisting of collagen and elastin in order to create a biodegradable matrix to serve as a biomimetic surface for cell attachment. Confocal microscopy images of modified zones reveal formation of surface fringe patterns with orientation direction alongside the area of interaction. Outside the crater rim a wave-like topography pattern is observed. Structured, on a nanometer scale, surface array is employed for cell-culture experiments for testing cell’s responses to substrate morphology. Mice fibroblasts migration was monitored

  16. Evaluation of various strategies to formation of pH responsive hydroquinone-terminated films on carbon electrodes

    DEFF Research Database (Denmark)

    Holm, A.H.; Vase, K.H.; Winther-Jensen, Bjørn

    2007-01-01

    potential separation going from 0.02 V for n = 1 to 0.21 V for n = 12. The films were very robust and could withstand prolonged sonication and relatively large potential excursions. While the films followed the expected kinetic distance dependence for up to 4 methylene units the electrode kinetics...... ordering on carbon were adapted; immobilizing a thin layer of benzoic acid by oxidative deposition of 4-aminobenzoic acid or employing a plasma deposition process to tether an acid analogue. Analysis of the various electrodes was accomplished by electrochemical methods, atomic force microscopy, and X...

  17. A new Implementation of the multi-channel analysis in the dosimetry through radiochromic films; Una nueva implementacion del analisis multicanal en la dosimetria mediante peliculas radiocromicas

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Rodriguez, C.; Martin Martin, G.; Bermudez Luna, R.; Lopez Fernandez, A.; Torres Olombrada, M. V. de; Garcia Canibano, T.; Caballero Guerra, P.

    2013-07-01

    The objectives of this study are to implement multi-channel analysis algorithm using open source tools, extend the application of the same to a scanner other than the supported by Micke, generate maps of dose absorbed in compatible format with the PTW Verisoft quality control program and to quantify the improvement in the results of the gamma index as to what would be obtained by applying a conventional single-channel analysis. (Author)

  18. Calibration of film radiochromic EBT2 for sources of I-125 encapsulated; Calibracion de pelicula radiocromica EBT2 para fuentes de I-125 encapsulado

    Energy Technology Data Exchange (ETDEWEB)

    Huerga Cabrerizo, C.; Luquero Llopis, N.; Torre Hernandez, I. de la; Ferrer Garcia, C.; Corredoira silva, E.; Serrada Hierro, A.

    2013-07-01

    This paper determines the calibration curve in absolute dose for sources of I-125 encapsulated to estimate its uncertainty. In order to assess energy dependence is compared with the obtained for an accelerator of 6MV calibration curve. (Author)

  19. Location Matters: Investigation of Responses to Intercultural Differences and Tensions as Represented in Fictional Short Stories and Films

    Science.gov (United States)

    Shim, Jenna Min

    2009-01-01

    In this dissertation I investigated how teachers interpreted intercultural differences and tensions embodied in fictional short stories and films. Participants in the study were 14 English teachers from China, South Korea, and the United States. My key research questions were: How are cultural differences understood and articulated by teachers…

  20. Enhanced off-resonance magnetoelectric response in laser annealed PZT thick film grown on magnetostrictive amorphous metal substrate

    Energy Technology Data Exchange (ETDEWEB)

    Palneedi, Haribabu [Materials Interface Laboratory, Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701 (Korea, Republic of); Functional Ceramics Group, Korea Institute of Materials Science (KIMS), Changwon 641-831 (Korea, Republic of); Maurya, Deepam; Priya, Shashank [Bio-inspired Materials and Devices Laboratory (BMDL), Center for Energy Harvesting Materials and Systems (CEHMS), Virginia Tech, Blacksburg, Virginia 24061 (United States); Kim, Gi-Yeop; Choi, Si-Young, E-mail: youngchoi@kims.re.kr [Materials Modeling and Characterization Department, Korea Institute of Materials Science (KIMS), Changwon 641-831 (Korea, Republic of); Kang, Suk-Joong L. [Materials Interface Laboratory, Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701 (Korea, Republic of); Kim, Kwang-Ho [School of Materials Science and Engineering, Pusan National University, Busan 609-735 (Korea, Republic of); Ryu, Jungho, E-mail: jhryu@kims.re.kr [Functional Ceramics Group, Korea Institute of Materials Science (KIMS), Changwon 641-831 (Korea, Republic of)

    2015-07-06

    A highly dense, 4 μm-thick Pb(Zr,Ti)O{sub 3} (PZT) film is deposited on amorphous magnetostrictive Metglas foil (FeBSi) by granule spray in vacuum process at room temperature, followed by its localized annealing with a continuous-wave 560 nm ytterbium fiber laser radiation. This longer-wavelength laser radiation is able to anneal the whole of thick PZT film layer without any deteriorative effects, such as chemical reaction and/or atomic diffusion, at the interface and crystallization of amorphous Metglas substrate. Greatly enhanced dielectric and ferroelectric properties of the annealed PZT are attributed to its better crystallinity and grain growth induced by laser irradiation. As a result, a colossal off-resonance magnetoelectric (ME) voltage coefficient that is two orders of magnitude larger than previously reported output from PZT/Metglas film-composites is achieved. The present work addresses the problems involved in the fabrication of PZT/Metglas film-composites and opens up emerging possibilities in employing piezoelectric materials with low thermal budget substrates (suitable for integrated electronics) and designing laminate composites for ME based devices.

  1. Racetrack Effect on the Dissimilar Sensing Response of ZnO Thin Film-An Anisotropy of Isotropy.

    Science.gov (United States)

    Shankar, Prabakaran; Rayappan, John Bosco Balaguru

    2016-09-21

    The isotropic nature of the sensing elements decides the overall sensing performance of metal oxide gas/chemical sensors. Even a minimum deviation in the morphological and electrical characteristics of the sensing surface will lead to a nonuniform sensing performance, which in turn results in undesired figure of merits. With this background, the inhomogeneity of plasma discharge due to the racetrack effect of the magnetic field orbit in the planar magnetron and its significant influence on the formation of nanostructured ZnO thin films with desired uniformity has been investigated. The effect of the intensity of plasma discharges on the structural studies was a change in crystallite size from 11 to 35 nm. Anisotropic characteristics of the film influenced the mobility of carriers (10 and 220 cm(2) V(-1) s(-1)) by populating the carrier concentration (2.13 × 10(11) and 3.87 × 10(7) cm(-2)) in the nanostructures. Furthermore, the influence of this anisotropic surface of the obtained film on the room-temperature ethanol-sensing behavior is reported. The first observation of the racetrack effect on the sensing gradient of the sputter-deposited ZnO thin film has brought out the challenge in preparing an isotropic sensing element without anisotropy.

  2. Enhanced off-resonance magnetoelectric response in laser annealed PZT thick film grown on magnetostrictive amorphous metal substrate

    Science.gov (United States)

    Palneedi, Haribabu; Maurya, Deepam; Kim, Gi-Yeop; Priya, Shashank; Kang, Suk-Joong L.; Kim, Kwang-Ho; Choi, Si-Young; Ryu, Jungho

    2015-07-01

    A highly dense, 4 μm-thick Pb(Zr,Ti)O3 (PZT) film is deposited on amorphous magnetostrictive Metglas foil (FeBSi) by granule spray in vacuum process at room temperature, followed by its localized annealing with a continuous-wave 560 nm ytterbium fiber laser radiation. This longer-wavelength laser radiation is able to anneal the whole of thick PZT film layer without any deteriorative effects, such as chemical reaction and/or atomic diffusion, at the interface and crystallization of amorphous Metglas substrate. Greatly enhanced dielectric and ferroelectric properties of the annealed PZT are attributed to its better crystallinity and grain growth induced by laser irradiation. As a result, a colossal off-resonance magnetoelectric (ME) voltage coefficient that is two orders of magnitude larger than previously reported output from PZT/Metglas film-composites is achieved. The present work addresses the problems involved in the fabrication of PZT/Metglas film-composites and opens up emerging possibilities in employing piezoelectric materials with low thermal budget substrates (suitable for integrated electronics) and designing laminate composites for ME based devices.

  3. Development of computational models for the simulation of isodose curves on dosimetry films generated by iodine-125 brachytherapy seeds

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Adriano M.; Meira-Belo, Luiz C.; Reis, Sergio C.; Grynberg, Suely E., E-mail: amsantos@cdtn.b [Center for Development of Nuclear Technology (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    The interstitial brachytherapy is one modality of radiotherapy in which radioactive sources are placed directly in the region to be treated or close to it. The seeds that are used in the treatment of prostate cancer are generally cylindrical radioactive sources, consisting of a ceramic or metal matrix, which acts as the carrier of the radionuclide and as the X-ray marker, encapsulated in a sealed titanium tube. This study aimed to develop a computational model to reproduce the film-seed geometry, in order to obtain the spatial regions of the isodose curves produced by the seed when it is put over the film surface. The seed modeled in this work was the OncoSeed 6711, a sealed source of iodine-125, which its isodose curves were obtained experimentally in previous work with the use of dosimetric films. For the films modeling, compositions and densities of the two types of dosimetric films were used: Agfa Personal Monitoring photographic film 2/10, manufactured by Agfa-Geavaert; and the model EBT radiochromic film, by International Specialty Products. The film-seed models were coupled to the Monte Carlo code MCNP5. The results obtained by simulations showed to be in good agreement with experimental results performed in a previous work. This indicates that the computational model can be used in future studies for other seeds models. (author)

  4. An artificial photosynthesis anode electrode composed of a nanoparticulate photocatalyst film in a visible light responsive GaN-ZnO solid solution system

    Science.gov (United States)

    Imanaka, Yoshihiko; Anazawa, Toshihisa; Manabe, Toshio; Amada, Hideyuki; Ido, Sachio; Kumasaka, Fumiaki; Awaji, Naoki; Sánchez-Santolino, Gabriel; Ishikawa, Ryo; Ikuhara, Yuichi

    2016-01-01

    The artificial photosynthesis technology known as the Honda-Fujishima effect, which produces oxygen and hydrogen or organic energy from sunlight, water, and carbon dioxide, is an effective energy and environmental technology. The key component for the higher efficiency of this reaction system is the anode electrode, generally composed of a photocatalyst formed on a glass substrate from electrically conductive fluorine-doped tin oxide (FTO). To obtain a highly efficient electrode, a dense film composed of a nanoparticulate visible light responsive photocatalyst that usually has a complicated multi-element composition needs to be deposited and adhered onto the FTO. In this study, we discovered a method for controlling the electronic structure of a film by controlling the aerosol-type nanoparticle deposition (NPD) condition and thereby forming films of materials with a band gap smaller than that of the prepared raw material powder, and we succeeded in extracting a higher current from the anode electrode. As a result, we confirmed that a current approximately 100 times larger than those produced by conventional processes could be obtained using the same material. This effect can be expected not only from the materials discussed (GaN-ZnO) in this paper but also from any photocatalyst, particularly materials of solid solution compositions. PMID:27759108

  5. An artificial photosynthesis anode electrode composed of a nanoparticulate photocatalyst film in a visible light responsive GaN-ZnO solid solution system

    Science.gov (United States)

    Imanaka, Yoshihiko; Anazawa, Toshihisa; Manabe, Toshio; Amada, Hideyuki; Ido, Sachio; Kumasaka, Fumiaki; Awaji, Naoki; Sánchez-Santolino, Gabriel; Ishikawa, Ryo; Ikuhara, Yuichi

    2016-10-01

    The artificial photosynthesis technology known as the Honda-Fujishima effect, which produces oxygen and hydrogen or organic energy from sunlight, water, and carbon dioxide, is an effective energy and environmental technology. The key component for the higher efficiency of this reaction system is the anode electrode, generally composed of a photocatalyst formed on a glass substrate from electrically conductive fluorine-doped tin oxide (FTO). To obtain a highly efficient electrode, a dense film composed of a nanoparticulate visible light responsive photocatalyst that usually has a complicated multi-element composition needs to be deposited and adhered onto the FTO. In this study, we discovered a method for controlling the electronic structure of a film by controlling the aerosol-type nanoparticle deposition (NPD) condition and thereby forming films of materials with a band gap smaller than that of the prepared raw material powder, and we succeeded in extracting a higher current from the anode electrode. As a result, we confirmed that a current approximately 100 times larger than those produced by conventional processes could be obtained using the same material. This effect can be expected not only from the materials discussed (GaN-ZnO) in this paper but also from any photocatalyst, particularly materials of solid solution compositions.

  6. Film/NotFilm

    OpenAIRE

    Willems, Gertjan

    2016-01-01

    Although Samuel Beckett (1906-1989) showed a genuine interest in audio-visual media in his fascinating and innovative radio plays and television works, and in 1936 even wrote a letter to Sergei Eisenstein to be accepted to the famous Soviet film school VGIK, the 22-minute Film (1965) was his only venture into cinema. Beckett conceived the film, wrote the screenplay, supervised the production and, as one of the film’s crew members recalled and as the director Alan Schneider himself acknowledge...

  7. The Effect of Ormosil Matrix Composition and Alkaline Earth Metal Doping on the Photochromic Response of Ormosil-Phosphotungstate Films

    OpenAIRE

    Ferreira Neto,Elias P.; Simões,Mateus B.; Noveletto,Julia C.; Yabarrena,Jean M. S. C.; Ullah,Sajjad; Ubirajara P. Rodrigues Filho

    2015-01-01

    In this study, polyoxometallate based hybrid photochromic materials were prepared by incorporating phosphotungstate anion, PW12O403−, (PW) in hybrid tetraethyl orthosilicate and (3-glycidyloxypropyl)trimethoxysilane TEOS-GPTMS derived organomodified silicates (Ormosil) matrices by sol-gel method and the resulting materials were used to prepare multilayer films by dip-coating method. The effect of alkaline earth metal cations doping and matrix composition (%GPTMS) on the photochromic res...

  8. Thin Films

    Directory of Open Access Journals (Sweden)

    M. Benmouss

    2003-01-01

    the optical absorption are consistent with the film color changes. Finally, the optical and electrochromic properties of the films prepared by this method are compared with those of our sputtered films already studied and with other works.

  9. A computational method for determination of a frequency response characteristic of flexibly supported rigid rotors attenuated by short magnetorheological squeeze film dampers

    Directory of Open Access Journals (Sweden)

    Zapoměl J.

    2011-06-01

    Full Text Available Lateral vibration of rotors can be significantly reduced by inserting the damping elements between the shaft and the casing. The theoretical analysis, confirmed by computational simulations, shows that to achieve the optimum compromise between attenuation of the oscillation amplitude and magnitude of the forces transmitted through the coupling elements between the rotor and the stationary part, the damping effect must be controllable. For this purpose, the squeeze film dampers lubricated by magnetorheological fluid can be applied. The damping effect is controlled by the change of intensity of the magnetic field in the lubricating film. This article presents a procedure developed for investigation of the steady state response of rigid rotors coupled with the casing by flexible elements and short magnetorheological dampers. Their lateral vibration is governed by nonlinear (due to the damping forces equations of motion. The steady state solution is obtained by application of a collocation method, which arrives at solving a set of nonlinear algebraic equations. The pressure distribution in the oil film is described by a Reynolds equation modified for the case of short dampers and Bingham fluid. Components of the damping force are calculated by integration of the pressure distribution around the circumference and along the length of the damper. The developed procedure makes possible to determine the steady state response of rotors excited by their unbalance, to determine magnitude of the forces transmitted through the coupling elements in the supports into the stationary part and is intended for proposing the control of the damping effect to achieve optimum performance of the dampers.

  10. Optimization of μc-Si1−xGex:H Single-Junction Solar Cells with Enhanced Spectral Response and Improved Film Quality

    Directory of Open Access Journals (Sweden)

    Yen-Tang Huang

    2015-01-01

    Full Text Available Effects of RF power on optical, electrical, and structural properties of μc-Si1−xGex:H films was reported. Raman and FTIR spectra from μc-Si1−xGex:H films reflected the variation in microstructure and bonding configuration. Unlike increasing the germane concentration for Ge incorporation, low RF power enhanced Ge incorporation efficiency in μc-Si1−xGex:H alloy. By decreasing RF power from 100 to 50 W at a fixed reactant gas ratio, the optical bandgap of μc-Si1−xGex:H was reduced owing to the increase in Ge content from 11.2 to 23.8 at.%, while Ge-related defects and amorphous phase were increased. Consequently, photo conductivity of 1.62 × 10−5 S/cm was obtained for the μc-Si1−xGex:H film deposited at 60 W. By applying 0.9 μm thick μc-Si1−xGex:H absorber with XC of 48% and [Ge] of 16.4 at.% in the single-junction cell, efficiency of 6.18% was obtained. The long-wavelength response of μc-Si1−xGex:H cell was significantly enhanced compared with the μc-Si:H cell. In the case of tandem cells, 0.24 μm a-Si:H/0.9 μm μc-Si1−xGex:H tandem cell exhibited a comparable spectral response as 0.24 μm a-Si:H/1.4 μm μc-Si:H tandem cell and achieved an efficiency of 9.44%.

  11. Experimental Investigation of the Dynamic Response of Squeeze Film Dampers Made of Steel and Glass/Epoxy

    Directory of Open Access Journals (Sweden)

    Waleed F. Faris

    2008-01-01

    Full Text Available This work is devoted to the fabrication and investigation of the Squeeze Film Dampers (SFDs which are widely used in many applications. This include the fabrication of a test rig and several dampers with different sizes and two different materials which composite and non-composite. Composite dampers (Glass/epoxy, each consists of 30 layers, were fabricated by hand lay-up method. Outer and inner diameters of all the fabricated dampers were maintained as 60 and 40 mm respectively. Non-composite dampers (Steel were fabricated and tested using turning machine. Three dampers of different lengths were examined for both materials. A rotor-bearing system for the analysis has been designed and fabricated. The test rig consists of mild steel shaft, two supports, oil pressure system, and two self-alignment ball bearings were fixed on each end support. Two squeeze film dampers were used for the two support ends. Vibration amplitude has been examined for all the fabricated dampers at different shaft rotational speeds. The first resonance speed was examined for all the dampers tested. Results show that the vibration amplitude of the steel damper was lower than Glass/epoxy dampers with the same L/D ratio. On the other hand, a considerable weight saving has been achieved by using Glass/epoxy composite dampers. It has been found that the performance of squeeze film damper improved with increasing length/diameter ratio (L/D within the range tested.

  12. Critical State Flux Penetration and Linear Microwave Vortex Response in $YBa_{2}Cu_{3}O_{7-x}$ Films

    CERN Document Server

    Willemsen, B A; Sridhar, S; Willemsen, Balam A.

    1996-01-01

    The vortex contribution to the dc field (H) dependent microwave surface impedance Z_s = R_s+iX_s of YBa_2Cu_3O_{7-x} thin films was measured using suspended patterned resonators. Z_s(H) is shown to be a direct measure of the flux density B(H) enabling a very precise test of models of flux penetration. Three regimes of field-dependent behavior were observed: (1) Initial flux penetration occurs on very low field scales H_i(4.2K) 100Oe, (2) At moderate fields the flux penetration into the virgin state is in excellent agreement with calculations based upon the field-induced Bean critical state for thin film geometry, parametrized by a field scale H_s(4.2K) J_c*d 0.5T, (3) for very high fields H >>H_s, the flux density is uniform and the measurements enable direct determination of vortex parameters such as pinning force constants disagreement with the thin film Bean model, and instead are governed by the low field scale H_i, rather than by H_s. Geometric barriers are insufficient to account for the observed result...

  13. The impact of ultrathin Al2O3 films on the electrical response of p-Ge/Al2O3/HfO2/Au MOS structures

    Science.gov (United States)

    Botzakaki, M. A.; Skoulatakis, G.; Kennou, S.; Ladas, S.; Tsamis, C.; Georga, S. N.; Krontiras, C. A.

    2016-09-01

    It is well known that the most critical issue in Ge CMOS technology is the successful growth of high-k gate dielectrics on Ge substrates. The high interface quality of Ge/high-k dielectric is connected with advanced electrical responses of Ge based MOS devices. Following this trend, atomic layer deposition deposited ultrathin Al2O3 and HfO2 films were grown on p-Ge. Al2O3 acts as a passivation layer between p-Ge and high-k HfO2 films. An extensive set of p-Ge/Al2O3/HfO2 structures were fabricated with Al2O3 thickness ranging from 0.5 nm to 1.5 nm and HfO2 thickness varying from 2.0 nm to 3.0 nm. All structures were characterized by x-ray photoelectron spectroscopy (XPS) and AFM. XPS analysis revealed the stoichiometric growth of both films in the absence of Ge sub-oxides between p-Ge and Al2O3 films. AFM analysis revealed the growth of smooth and cohesive films, which exhibited minimal roughness (~0.2 nm) comparable to that of clean bare p-Ge surfaces. The electrical response of all structures was analyzed by C-V, G-V, C-f, G-f and J-V characteristics, from 80 K to 300 K. It is found that the incorporation of ultrathin Al2O3 passivation layers between p-Ge and HfO2 films leads to superior electrical responses of the structures. All structures exhibit well defined C-V curves with parasitic effects, gradually diminishing and becoming absent below 170 K. D it values were calculated at each temperature, using both Hill-Coleman and Conductance methods. Structures of p-Ge/0.5 nm Al2O3/2.0 nm HfO2/Au, with an equivalent oxide thickness (EOT) equal to 1.3 nm, exhibit D it values as low as ~7.4  ×  1010 eV-1 cm-2. To our knowledge, these values are among the lowest reported. J-V measurements reveal leakage currents in the order of 10-1 A cm-2, which are comparable to previously published results for structures with the same EOT. A complete mapping of the energy distribution of D its into the energy bandgap of p-Ge, from the valence band

  14. Characterization of acid-treated carbon nanotube thin films by means of Raman spectroscopy and field-effect response

    Science.gov (United States)

    Zhang, Zhi-Bin; Li, Jiantong; Cabezas, Ana López; Zhang, Shi-Li

    2009-07-01

    By combining Raman spectroscopy with transistor transfer characteristics, acid treatment of single-walled carbon nanotubes (SWCNTs) in a mixture of concentrated HNO 3/H 2SO 4 has been characterized. The acid treatment results in a sharp decrease in the Raman resonant signals of the metallic SWCNTs but no observable change in those of the semiconducting SWCNTs. However, the acid treatment causes disappearing gate modulation of the thin-film transistors made of the SWCNTs, contrary to what would be expected referring to the Raman results. These experimental results suggest that the energy band of the semiconducting SWCNTs is significantly affected by absorbates induced by the acid treatment.

  15. Self-assembly method for controlling spatial frequency response of plasmonic back reflectors in organic thin-film solar cells

    Science.gov (United States)

    Okamoto, Takayuki; Shinotsuka, Kei; Kawamukai, Etsuko; Ishibashi, Koji

    2017-01-01

    We propose a novel colloidal lithography technique that uses a mixture of colloidal particles with a few different diameters. This technique can be used for fabricating quasi-random nanostructures whose k-space spectra can be easily controlled by using an appropriate combination of particles. We introduced such nanostructures into the back reflectors of organic thin-film solar cells, where they serve as plasmonic back reflectors for recycling the nonabsorbed transmitted light into surface plasmons. The obtained photon-to-current efficiency was enhanced by 14-20% compared with that of a flat cell.

  16. Effects of Palladium Loading on the Response of Thick Film Flame-made ZnO Gas Sensor for Detection of Ethanol Vapor

    Directory of Open Access Journals (Sweden)

    Sukon Phanichphant

    2007-07-01

    Full Text Available ZnO nanoparticles doped with 0-5 mol% Pd were successfully produced in asingle step by flame spray pyrolysis (FSP using zinc naphthenate and palladium (IIacetylacetonate dissolved in toluene-acetonitrile (80:20 vol% as precursors. The effect ofPd loading on the ethanol gas sensing performance of the ZnO nanoparticles and thecrystalline sizes were investigated. The particle properties were analyzed by XRD, BET,AFM, SEM (EDS line scan mode, TEM, STEM, EDS, and CO-pulse chemisorptionmeasurements. A trend of an increase in specific surface area of samples and a decrease inthe dBET with increasing Pd concentrations was noted. ZnO nanoparticles were observed asparticles presenting clear spheroidal, hexagonal and rod-like morphologies. The sizes ofZnO spheroidal and hexagonal particle crystallites were in the 10-20 nm range. ZnOnanorods were in the range of 10-20 nm in width and 20-50 nm in length. The size of Pdnanoparticles increased and Pd-dispersion% decreased with increasing Pd concentrations.The sensing films were produced by mixing the particles into an organic paste composedof terpineol and ethyl cellulose as a vehicle binder. The paste was doctor-bladed ontoAl2O3 substrates interdigitated with Au electrodes. The film morphology was analyzed bySEM and EDS analyses. The gas sensing of ethanol (25-250 ppm was studied in dry air at400°C. The oxidation of ethanol on the sensing surface of the semiconductor wasconfirmed by MS. A well-dispersed of 1 mol%Pd/ZnO films showed the highest sensitivityand the fastest response time (within seconds.

  17. Calcium phosphate thin films synthesized by pulsed laser deposition: Physico-chemical characterization and in vitro cell response

    Energy Technology Data Exchange (ETDEWEB)

    Mihailescu, I.N. [National Institute for Lasers, Plasma and Radiation Physics, 77125 Bucharest-Magurele (Romania)]. E-mail: mihailes@ifin.nipne.ro; Torricelli, P. [Servizio di Chirurgia Sperimentale-Istituto di Ricerca Codivilla PuttiIOR, Bologna (Italy); Bigi, A. [Department of Chemistry ' G. Ciamician' , University of Bologna, 40126 Bologna (Italy); Mayer, I. [Department of Inorganic and Analytical Chemistry, Hebrew University of Jerusalem, 91904 Jerusalem (Israel); Iliescu, M. [Institute of Physics and Chemistry of Materials, 67037 Strasbourg (France); Werckmann, J. [Institute of Physics and Chemistry of Materials, 67037 Strasbourg (France); Socol, G. [National Institute for Lasers, Plasma and Radiation Physics, 77125 Bucharest-Magurele (Romania); Miroiu, F. [National Institute for Lasers, Plasma and Radiation Physics, 77125 Bucharest-Magurele (Romania); Cuisinier, F. [Institut National de la Sante et de la Recherche Medicale, 67085 Strasbourg (France); Elkaim, R. [Institut National de la Sante et de la Recherche Medicale, 67085 Strasbourg (France); Hildebrand, G. [IBA e.V., Department of Biomaterials, Rosenhof, D-37308 Heilbad Heiligenstadt (Germany)

    2005-07-30

    We review the progress made by us using pulsed laser deposition (PLD) of two bioactive calcium phosphates: octacalcium phosphate (OCP) and Mn doped carbonated hydroxyapatite (Mn-CHA). Coatings of these materials well suited for biomimetic medical prostheses and pivots were synthesized on titanium substrates with a pulsed KrF* UV laser source. The best deposition conditions for Mn-CHA thin films were 13 Pa O{sub 2}, 400 deg. C with post heat treatment of 6 h in air enriched with water vapours. The coatings are stoichiometric and crystalline. For OCP, deposition at 150 deg. C in 50 Pa water vapor atmosphere, post treated by 6 h annealing in hot flux of water vapours, resulted in stoichiometric, but poorly-crystallized films. Degradation tests show different behavior for the OCP and Mn-CHA coatings. In vitro cell growth shows excellent adherence and biocompatibility of osteoblasts and fibroblasts in both OCP and Mn-CHA coatings. Human osteoblasts display normal proliferation and viability, and good differentiation behaviour.

  18. Large nonlinear optical response of a Bi{sub 1.5}Zn{sub 1.0}Nb{sub 1.5}O{sub 7} thin film fabricated by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Ning Tingyin [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Zhou Yueliang, E-mail: ylzhou@aphy.iphy.ac.c [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Lu Heng; Zhang Dongxiang; Yang Guozhen [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Wang Hong [Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, Xi' an Jiaotong University, Xi' an 710049 (China)

    2009-06-30

    The Bi{sub 1.5}Zn{sub 1.0}Nb{sub 1.5}O{sub 7} (BZN) thin film has been fabricated on MgO (001) substrate by pulsed laser deposition. The nonlinear optical properties of the BZN film were investigated using Z-scan technique at a wavelength of 532 nm with 25 ps pulse duration. The two-photon absorption coefficient and the nonlinear refractive index of the BZN film were obtained to be 4.2 x 10{sup -6} cm/W and 1.6 x 10{sup -10} cm{sup 2}/W respectively, which are comparable with those of some representative nonlinear optical materials. The large and fast response optical nonlinearities indicated that the BZN film is a promising candidate for future photonics devices.

  19. CdS/TiO{sub 2} nanocomposite film and its enhanced photoelectric responses to dry air and formaldehyde induced by visible light at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Zhijun, E-mail: zjzou@xynu.edu.cn [Key Laboratory of Advanced Micro/Nano Functional Materials, Department of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000 (China); State Key Laboratory of Material Processing and Die & Mould Technology, Nanomaterials and Smart Sensors Research Laboratory, Department of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Qiu, Yang [Key Laboratory of Advanced Micro/Nano Functional Materials, Department of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000 (China); Xie, Changsheng [State Key Laboratory of Material Processing and Die & Mould Technology, Nanomaterials and Smart Sensors Research Laboratory, Department of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Xu, Jingjing; Luo, Yongsong; Wang, Chunlei; Yan, Hailong [Key Laboratory of Advanced Micro/Nano Functional Materials, Department of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000 (China)

    2015-10-05

    Highlights: • Photoelectric responses of TiO{sub 2} and CdS/TiO{sub 2} to dry air and formaldehyde were tested. • In contrary to TiO{sub 2}, photoelectric response of CdS/TiO{sub 2} obviously increased. • CdS/TiO{sub 2} nanocomposite device exhibits excellent stability to formaldehyde. • CdS/TiO{sub 2} may be a promising material for developing high performance sensor. - Abstract: Photoelectric responses of pure TiO{sub 2} and CdS/TiO{sub 2} nanocomposite devices to dry air and formaldehyde under visible light irradiation at room temperature were investigated in this work. The pure TiO{sub 2} film was firstly prepared by screen printing and CdS/TiO{sub 2} nanocomposite film by the subsequent SILAR process. XRD, FE-SEM, HR-TEM and UV–vis DRS analysis were employed to examine the fundamental characteristics of as-prepared samples. Photoelectric responses of pure TiO{sub 2} device displayed that no obvious photocurrent was observed upon turning the visible light on either in dry air or in formaldehyde. But in contrary to pure TiO{sub 2} device, the photoelectric response of CdS/TiO{sub 2} nanocomposite device has been obviously enhanced. It is the adding of CdS, which works as a sensitizer, that accounts for the enhanced response and makes the CdS/TiO{sub 2} device sensitive to the visible light. Moreover, the CdS/TiO{sub 2} nanocomposite device exhibits excellent stability to formaldehyde. The present work does not only shed light on the photoelectric gas sensing properties of TiO{sub 2} and CdS/TiO{sub 2}, but also suggests that the CdS/TiO{sub 2} nanocomposite may be a promising material for fabricating visible-light-induced photoelectric gas sensors working at room temperature.

  20. Freestanding single crystal chemical vapor deposited diamond films produced using a lift-off method: Response to {alpha}-particles from {sup 241}Am and crystallinity

    Energy Technology Data Exchange (ETDEWEB)

    Tsubouchi, Nobuteru, E-mail: nobu-tsubouchi@aist.go.jp [Diamond Research Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577 (Japan); Mokuno, Y. [Diamond Research Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577 (Japan); Kakimoto, A.; Fujita, F.; Kaneko, J.H. [Graduate School of Engineering, Hokkaido University, Sapporo 060-8628 (Japan); Yamada, H.; Chayahara, A.; Shikata, S. [Diamond Research Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577 (Japan)

    2012-09-01

    Thick ({approx}100 {mu}m) undoped diamond films were grown homoepitaxially on single crystal (SC) diamond substrates by microwave plasma chemical vapor deposition (CVD). To form a freestanding SC diamond film (plate), the substrate was pre-ion-implanted with high-energy ion beams before the film growth, and after the thick-film deposition, the substrate was eliminated using a lift-off method, resulting in fabrication of a SC CVD diamond plate. Two samples were prepared; sample 1 was grown on a (0 0 1) oriented, nitrogen doped CVD SC diamond at {approx}900 Degree-Sign C with the input microwave power of 1.7 kW, while sample 2 was grown on a (0 0 1) oriented, high-pressure high-temperature synthesized type-Ib SC diamond at {approx}900 Degree-Sign C with the input microwave power of 1.25 kW. The formed SC plates have high optical transparencies, indicating no remarkable optical absorptions seen in the wavelength from ultraviolet to near infrared. The photoluminescence (PL) spectra of both samples show strong free exciton FE peaks, while in sample 2 relatively strong optical emissions corresponding to nitrogen related centers were observed in the visible region. After the metal electrodes were formed on both faces of the SC diamond plate to fabricate a sandwich-type diamond particle detector, the energy spectra of 5.486 MeV {alpha}-particles from {sup 241}Am were measured. The charge collection efficiencies (CCEs) of sample 1 were CCE = 98% for a hole transport and CCE = 89% for an electron transport, respectively, while CCEs of sample 2 were CCE = 80% for a hole transport and CCE = 78% for an electron transport, respectively. These results indicate that both holes and electrons in sample 2 were trapped much more than those in sample 1. Possible candidates of carrier capture centers are nitrogen and/or nitrogen-vacancy centers observed in PL, nonradiative defect (complex) centers, extended defects such as threading dislocations observed in micrographs taken with

  1. Dosimetric properties of improved GafChromic films for seven different digitizers.

    Science.gov (United States)

    Devic, Slobodan; Seuntjens, Jan; Hegyi, Gyorgy; Podgorsak, Ervin B; Soares, Christopher G; Kirov, Assen S; Ali, Imad; Williamson, Jeffrey F; Elizondo, Angel

    2004-09-01

    Two recently introduced GafChromic film models, HS and XR-T, have been developed as more sensitive and uniform alternatives to GafChromic MD-55-2 film. The HS model has been specifically designed for measurement of absorbed dose in high-energy photon beams (above 1 MeV), while the XR-T model has been introduced for dose measurements of low energy (0.1 MeV) photons. The goal of this study is to compare the sensitometric curves and estimated dosimetric uncertainties associated with seven different GafChromic film dosimetry systems for the two new film models. The densitometers tested are: LKB Pharmacia UltroScan XL, Molecular Dynamics Personal Densitometer, Nuclear Associates Radiochromic Densitometer Model 37-443, Photoelectron Corporation CMR-604, Laser Pro 16, Vidar VXR-16, and AGFA Arcus II document scanner. Pieces of film were exposed to different doses in a dose range from 0.5 to 50 Gy using 6 MV photon beam. Functional forms for dose vs net optical density have been determined for each of the GafChromic film-dosimetry systems used in this comparison. Two sources of uncertainties in dose measurements, governed by the experimental measurement and calibration curve fit procedure, have been compared for the densitometers used. Among the densitometers tested, it is found that for the HS film type the uncertainty caused by the experimental measurement varies from 1% to 3% while the calibration fit uncertainty ranges from 2% to 4% for doses above 5 Gy. Corresponding uncertainties for XR-T film model are somewhat higher and range from 1% to 5% for experimental and from 2% to 7% for the fit uncertainty estimates. Notwithstanding the significant variations in sensitivity, the studied densitometers exhibit very similar precision for GafChromic film based dose measurements above 5 Gy.

  2. Radiological response and dosimetry in physical phantom of head and neck for 3D conformational radiotherapy; Resposta radiologica e dosimetria em phantom fisico de cabeca e pescoco para radioterapia conformacional 3D

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Larissa

    2013-07-01

    Phantoms are tools for simulation of organs and tissues of the human body in radiology and radiotherapy. This thesis describes the development, validation and, most importantly, the use of a physical head and neck phantom in radiology and radiotherapy, with the purpose of evaluating dose distribution using Gafchromic EBT2 film in 15 MV 3D conformal radiotherapy. The work was divided in two stages, (1) development of new equivalent tissues and improvement of the physical phantom, and (2) use of the physical phantom in experimental dosimetry studies. In phase (1) parameters such as mass density, chemical composition of tissues, anatomical and biometric measurements were considered, as well as aspects of imaging by computed tomography (CT) and radiological response representation in Hounsfield Units (HU), which were compared with human data. Radiological experiments of in-phantom simulated brain pathologies were also conducted. All those results matched human-sourced data, therefore the physical phantom is a suitable simulator that may be used to enhance radiological protocols and education in medical imaging. The main objective in phase (2) was to evaluate the spatial dose distribution in a brain tumor simulator inserted inside the head and neck phantom developed by the Ionizing Radiation Research Group (NRI), exposed to 15 MV 3D conformal radiotherapy, for internal dose assessment. Radiation planning was based on CT images of the physical phantom with a brain tumor simulator made with equivalent material. The treatment planning system (TPS), CAT3D software, used CT images and prescribed a dose of 200 cGy, distributed in three fields of radiation, in a T-shaped pattern. The TPS covered the planning treatment volume (PTV) with 97% of the prescribed dose. A solid water phantom and radiochromic Gafchromic EBT2 film were used for calibration procedures, generating a dose response curve as a function of optical density (OD). After calibration and irradiation, the film

  3. Improving Osteoblast Response In Vitro by a Nanostructured Thin Film with Titanium Carbide and Titanium Oxides Clustered around Graphitic Carbon.

    Directory of Open Access Journals (Sweden)

    Giovanni Longo

    Full Text Available Recently, we introduced a new deposition method, based on Ion Plating Plasma Assisted technology, to coat titanium implants with a thin but hard nanostructured layer composed of titanium carbide and titanium oxides, clustered around graphitic carbon. The nanostructured layer has a double effect: protects the bulk titanium against the harsh conditions of biological tissues and in the same time has a stimulating action on osteoblasts.The aim of this work is to describe the biological effects of this layer on osteoblasts cultured in vitro. We demonstrate that the nanostructured layer causes an overexpression of many early genes correlated to proteins involved in bone turnover and an increase in the number of surface receptors for α3β1 integrin, talin, paxillin. Analyses at single-cell level, by scanning electron microscopy, atomic force microscopy, and single cell force spectroscopy, show how the proliferation, adhesion and spreading of cells cultured on coated titanium samples are higher than on uncoated titanium ones. Finally, the chemistry of the layer induces a better formation of blood clots and a higher number of adhered platelets, compared to the uncoated cases, and these are useful features to improve the speed of implant osseointegration.In summary, the nanostructured TiC film, due to its physical and chemical properties, can be used to protect the implants and to improve their acceptance by the bone.

  4. Separation and concentration effect of f-MWCNTs on electrocatalytic responses of ascorbic acid, dopamine and uric acid at f-MWCNTs incorporated with poly (neutral red) composite films

    Energy Technology Data Exchange (ETDEWEB)

    Yogeswaran, Umasankar [Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan (China); Chen, Shen-Ming [Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan (China)]. E-mail: smchen78@ms15.hinet.net

    2007-05-25

    A novel conductive composite film containing functionalized multi-walled carbon nanotubes (f-MWCNTs) with poly (neutral red) (PNR) was synthesized on glassy carbon electrodes (GC) by potentiostatic method. The composite film exhibited promising electrocatalytic oxidation of mixture of biochemical compounds such as ascorbic acid (AA), dopamine (DA) and uric acid (UA) in pH 4.0 aqueous solutions. It was also produced on gold electrodes by using electrochemical quartz crystal microbalance technique, which revealed that the functional properties of composite film were enhanced because of the presence of both f-MWCNTs and PNR. The surface morphology of the polymer and composite film deposited on transparent semiconductor tin oxide electrodes were studied using scanning electron microscopy and atomic force microscopy. These two techniques showed that the PNR was fibrous and incorporated on f-MWCNTs. The electrocatalytic responses of neurotransmitters at composite films were measured using both cyclic voltammetry (CV) and differential pulse voltammetry (DPV). These experiments revealed that the difference in f-MWCNTs loading present in the composite film affected the electrocatalysis in such a way, that higher the loading showed an enhanced electrocatalytic activity. From further electrocatalysis studies, well separated voltammetric peaks were obtained at the composite film modified GC for AA, DA and UA with the peak separation of 0.17 V between AA-DA and 0.15 V between DA-UA. The sensitivity of the composite film towards AA, DA and UA in DPV technique was found to be 0.028, 0.146 and 0.084 {mu}A {mu}M{sup -1}, respectively.

  5. WO3薄膜的电致变色与响应时间机理研究%Response Time and Electrochromic Mechanism of WO3 Films

    Institute of Scientific and Technical Information of China (English)

    杨海刚; 宋桂林; 张基东; 王天兴; 常方高

    2011-01-01

    Nanoscaled tungsten oxide films were fabricated by reactive DC magnetron sputtering. The influence of deposition gas pressure on surface morphology and microstructure of tungsten oxides was studied. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were utilized to characterize the micro-structural of the prepared thin films. Electrochromic and response time properties were researched by simultaneous spectrophotometric and cyclic voltametric measurements of tungsten oxides. The investigation results showed that micro-porous nanostructure has strong effects on the electrochemical and chromogenic properties, which depending on the specific surface area. For deposition gas pressure being 4 Pa, the modulating range of the visible optical transmittance can reach 71. 6% , the colored response time is 5 s, and the bleached response time is 16 s.%采用直流反应磁控溅射方法制备了纳米WO3薄膜,研究了溅射气压对WO3薄膜的表面形貌和微结构的影响.利用X射线衍射仪和扫描电子显微镜对WO3的微结构进行了表征.采用紫外-可见分光光度计和循环伏安测试系统对样品的电致变色及响应时间性能进行了研究.结果表明,纳米WO3薄膜的微孔结构特征具有较大的比表面积,有利于改善其电致变色性能.当溅射气压为4Pa时,WO3薄膜在可见光区的电致变色平均调色范围达到了71.6%,并且其着色响应时间为5 s,漂白响应时间为16 s.

  6. Micrometer-resolved film dosimetry using a microscope in microbeam radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Bartzsch, Stefan, E-mail: stefan.bartzsch@icr.ac.uk; Oelfke, Uwe [The Institute of Cancer Research, 15 Cotswold Road, Sutton SM2 5NG (United Kingdom); Lott, Johanna; Welsch, Katrin [Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, D-69120 Heidelberg (Germany); Bräuer-Krisch, Elke [European Synchrotron Radiation Facility, 6 rue Jules Horowitz, Grenoble Cedex 9 38043 (France)

    2015-07-15

    Purpose: Microbeam radiation therapy (MRT) is a still preclinical tumor therapy approach that uses arrays of a few tens of micrometer wide parallel beams separated by a few 100 μm. The production, measurement, and planning of such radiation fields are a challenge up to now. Here, the authors investigate the feasibility of radiochromic film dosimetry in combination with a microscopic readout as a tool to validate peak and valley doses in MRT, which is an important requirement for a future clinical application of the therapy. Methods: Gafchromic{sup ®} HD-810 and HD-V2 films are exposed to MRT fields at the biomedical beamline ID17 of the European Synchrotron Radiation Facility (ESRF) and are afterward scanned with a microscope. The measured dose is compared with Monte Carlo calculations. Image analysis tools and film handling protocols are developed that allow accurate and reproducible dosimetry. The performance of HD-810 and HD-V2 films is compared and a detailed analysis of the resolution, noise, and energy dependence is carried out. Measurement uncertainties are identified and analyzed. Results: The dose was measured with a resolution of 5 × 1000 μm{sup 2} and an accuracy of 5% in the peak and between 10% and 15% in the valley region. As main causes for dosimetry uncertainties, statistical noise, film inhomogeneities, and calibration errors were identified. Calibration errors strongly increase at low doses and exceeded 3% for doses below 50 and 70 Gy for HD-V2 and HD-810 films, respectively. While the grain size of both film types is approximately 2 μm, the statistical noise in HD-V2 is much higher than in HD-810 films. However, HD-810 films show a higher energy dependence at low photon energies. Conclusions: Both film types are appropriate for dosimetry in MRT and the microscope is superior to the microdensitometer used before at the ESRF with respect to resolution and reproducibility. However, a very careful analysis of the image data is required

  7. Frequency mixer having ferromagnetic film

    Energy Technology Data Exchange (ETDEWEB)

    Khitun, Alexander; Roshchin, Igor V.; Galatsis, Kosmas; Bao, Mingqiang; Wang, Kang L.

    2016-03-29

    A frequency conversion device, which may include a radiofrequency (RF) mixer device, includes a substrate and a ferromagnetic film disposed over a surface of the substrate. An insulator is disposed over the ferromagnetic film and at least one microstrip antenna is disposed over the insulator. The ferromagnetic film provides a non-linear response to the frequency conversion device. The frequency conversion device may be used for signal mixing and amplification. The frequency conversion device may also be used in data encryption applications.

  8. LAYER-BY-LAYER ASSEMBLED POLYMERIC FILMS WITH STIMULUS-RESPONSIVE AND SELF-HEALING ABILITY%智能响应与自修复的层层组装聚合物膜

    Institute of Scientific and Technical Information of China (English)

    陈栋栋; 马莹; 孙俊奇

    2012-01-01

    Composite films with stimulus-responsive property and self-healing ability represent a group of important biomimetic film materials. The layer-by-layer (LbL) assembly, which involves multiple dipping and rinsing steps for the fabrication of composite films, enables precise control of film composition and structure. LbL assembled films with micrometer thickness can be designed to respond quickly and effectively to various external stimuli, and are therefore promising for use as biomimetic films. We demonstrate herein that the LbL assembled polyelectrolyte multilayer films with micrometer thickness can be utilized for the fabrication of humido- and thermo-responsive bilayer free-standing films capable of bending/unbending movements, which are useful as highly efficient actuators and walking-devices. The LbL is assembly also promising in the fabrication of self-healing superhydrophobie coatings and water-enabled self-healing polyelectrolyte films capable of repairing severe damage of cuts.%具有刺激响应性和自修复功能的复合膜是重要的仿生功能膜材料.层层组装是一种基于物质交替沉积而制备复合膜的方法,可以实现膜的结构和组成的精确调控.通过结构与组成的精确调控,基于层层组装制备的微米厚度的聚电解质厚膜可以对外界刺激产生快速有效的响应,因而在制备智能仿生膜材料方面具有重要的价值.本文以作者的研究结果为基础,阐明了基于层层组装的聚电解质膜可以成功用于制备湿度和温度响应的双结构自支持膜和高效的促动器及行走机器,以及自修复超疏水和划痕修复聚电解质膜.

  9. Origin of colossal dielectric response of CaCu3Ti4O12 studied by using CaTiO3/CaCu3Ti4O12/CaTiO3 multilayer thin films

    Science.gov (United States)

    Mitsugi, Masakazu; Asanuma, Shutaro; Uesu, Yoshiaki; Fukunaga, Mamoru; Kobayashi, Wataru; Terasaki, Ichiro

    2007-06-01

    To elucidate the origin of the colossal dielectric response (CDR) of CaCu3Ti4O12 (CCTO), multilayer thin films of CCTO interposed in insulating CaTiO3 (CTO) were synthesized using a pulsed laser deposition technique. The capacitance C of CTO/CCTO/CTO films with different layer thicknesses is measured. After removing the capacitance of CTO by extrapolating C to zero CTO thickness, the real part of dielectric constant of CCTO is estimated to be 329-435, which is much smaller than the reported value for CCTO thin films. This fact indicates that the CDR of CCTO is extrinsic and originates from an internal barrier layer capacitor.

  10. Large nonlinear optical response of polycrystalline Bi3.25La0.75Ti3O12 ferroelectric thin films on quartz substrates.

    Science.gov (United States)

    Shin, Heedeuk; Chang, Hye Jeong; Boyd, Robert W; Choi, M R; Jo, W

    2007-08-15

    We measure the nonlinear susceptibility of Bi(3.25)La(0.75)Ti(3)O(12) (BLT) thin films grown on quartz substrates using the Z-scan technique with picosecond laser pulses at a wavelength of 532 nm. The third-order nonlinear refractive index coefficient gamma and absorption coefficient beta of the BLT thin film are 3.1 x 10(-10) cm(2)/W and 3 x 10(-5) cm/W, respectively, which are much larger than those of most ferroelectric films. The results show that the BLT thin films on quartz substrates are good candidate materials for applications in nonlinear optical devices.

  11. Host thin films incorporating nanoparticles

    Science.gov (United States)

    Qureshi, Uzma

    The focus of this research project was the investigation of the functional properties of thin films that incorporate a secondary nanoparticulate phase. In particular to assess if the secondary nanoparticulate material enhanced a functional property of the coating on glass. In order to achieve this, new thin film deposition methods were developed, namely use of nanopowder precursors, an aerosol assisted transport technique and an aerosol into atmospheric pressure chemical vapour deposition system. Aerosol assisted chemical vapour deposition (AACVD) was used to deposit 8 series of thin films on glass. Five different nanoparticles silver, gold, ceria, tungsten oxide and zinc oxide were tested and shown to successfully deposit thin films incorporating nanoparticles within a host matrix. Silver nanoparticles were synthesised and doped within a titania film by AACVD. This improved solar control properties. A unique aerosol assisted chemical vapour deposition (AACVD) into atmospheric pressure chemical vapour deposition (APCVD) system was used to deposit films of Au nanoparticles and thin films of gold nanoparticles incorporated within a host titania matrix. Incorporation of high refractive index contrast metal oxide particles within a host film altered the film colour. The key goal was to test the potential of nanopowder forms and transfer the suspended nanopowder via an aerosol to a substrate in order to deposit a thin film. Discrete tungsten oxide nanoparticles or ceria nanoparticles within a titanium dioxide thin film enhanced the self-cleaning and photo-induced super-hydrophilicity. The nanopowder precursor study was extended by deposition of zinc oxide thin films incorporating Au nanoparticles and also ZnO films deposited from a ZnO nanopowder precursor. Incorporation of Au nanoparticles within a VO: host matrix improved the thermochromic response, optical and colour properties. Composite VC/TiC and Au nanoparticle/V02/Ti02 thin films displayed three useful

  12. Synthesis by anodic-spark deposition of Ca- and P-containing films on pure titanium and their biological response

    Energy Technology Data Exchange (ETDEWEB)

    Banakh, Oksana, E-mail: oksana.banakh@he-arc.ch [Haute Ecole Arc Ingénierie (HES-SO), Eplatures-Grise 17, CH-2300 La Chaux-de-Fonds (Switzerland); Journot, Tony; Gay, Pierre-Antoine; Matthey, Joël; Csefalvay, Catherine [Haute Ecole Arc Ingénierie (HES-SO), Eplatures-Grise 17, CH-2300 La Chaux-de-Fonds (Switzerland); Kalinichenko, Oleg [Ukrainian State University of Chemical Technology (SHEI), Gagarin av. 8, Dnepropetrovsk, UA-49005 (Ukraine); Sereda, Olha [Centre Suisse d’Electronique et de Microtechnique (CSEM), Rue Jaquet-Droz 1, CH-2000 Neuchâtel (Switzerland); Moussa, Mira; Durual, Stéphane [Laboratory of Biomaterials, University of Geneva, rue Barthelemy Menn 19, CH-1205 Geneva (Switzerland); Snizhko, Lyubov [Ukrainian State University of Chemical Technology (SHEI), Gagarin av. 8, Dnepropetrovsk, UA-49005 (Ukraine)

    2016-08-15

    Highlights: • ​CP-4 Ti was treated by anodic spark oxidation in the electrolyte containing Ca and P ions by varying process time and electrolyte concentration. • Ca/P ratio in layers is 0.23–0.47, much lower than in hydroxyapatites (1.67). It means coatings should be resorbable in a biological medium • After immersion in SBF, Ca and P content in layers decrease. Ca and P loss occurs faster in thin layers than in thicker coatings. • The biological response of the samples suggests their excellent biocompatibility and even stimulating effects on osteoblasts proliferation. - Abstract: The purpose of this work is to characterize the anodized layers formed on titanium by anodic-spark deposition in an electrolyte containing Ca and P ions, Ca{sub 3}(PO{sub 4}){sub 2}, studied for the first time. The oxidation experiments were performed at different periods of time and using different concentrations of electrolyte. The influence of the process parameters (time of electrolysis and electrolyte concentration) on the surface morphology and chemical composition of the anodized layers was studied. It has been found that it is possible to incorporate Ca and P into the growing layer. A response of the anodized layers in a biological medium was evaluated by their immersion in a simulated body fluid. An enrichment of titanium and a simultaneous loss of calcium and phosphorus in the layer after immersion tests indicate that these coatings should be bioresorbable in a biological medium. Preliminary biological assays were performed on some anodized layers in order to assess their biocompatibility with osteoblast cells. The cell proliferation on one selected anodized sample was assessed up to 21 days after seeding. The preliminary results suggest excellent biocompatibility properties of anodized coatings.

  13. Response to simulated typical daily outdoor irradiation conditions of thin-film silicon-based triple-band-gap, triple-junction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, P.; Schuettauf, J.W.A.; van der Werf, C.H.M.; Schropp, R.E.I. [Nanophotonics - Physics of Devices, Department of Physics and Astronomy, Debye Institute for Nanomaterials Science, Faculty of Science, Utrecht University, P.O. Box 80000, 3508 TA Utrecht (Netherlands); Houshyani Hassanzadeh, B.; van Sark, W.G.J.H.M. [Department of Chemistry, Science, Technology and Society, Faculty of Science, Utrecht University, Heidelberglaan 2, 3584 CS Utrecht (Netherlands)

    2009-06-15

    We studied the response to various realistic outdoor conditions of thin-film silicon-based triple-band-gap, triple-junction cells that were made in house. The triple-junction cells consist of a stack of proto-Si:H/proto-SiGe:H/nanocrystalline (nc)-Si:H cells in an n-i-p configuration, fabricated using hot-wire chemical vapour deposition (CVD). Current matching was determined for modeled spectra of four different days of the year that are typical for the northwestern European climate. Spectral modeling was based on measured irradiation data. The results showed that on a clear day in June, when the actual spectrum was closest to the reference AM1.5 spectrum, the matching was ideal. As the spectral shape varied during the course of the day with respect to the AM1.5 reference the matching became progressively worse. We found that the top cell (1.8 eV) and bottom cell (1.1 eV) are most sensitive to spectral changes, whereas the middle cell (1.5 eV) is less sensitive. Overall, it was evident that either cloudiness or seasonal variations led to an increase in current mismatch between the cells. If the sub-cells are closely matched, it may even occur that a cell designed to be current limiting no longer fulfills that role. (author)

  14. Unusually Stable Hysteresis in the pH-Response of Poly(Acrylic Acid) Brushes Confined within Nanoporous Block Polymer Thin Films.

    Science.gov (United States)

    Weidman, Jacob L; Mulvenna, Ryan A; Boudouris, Bryan W; Phillip, William A

    2016-06-01

    Stimuli-responsive soft materials are a highly studied field due to their wide-ranging applications; however, only a small group of these materials display hysteretic responses to stimuli. Moreover, previous reports of this behavior have typically shown it to be short-lived. In this work, poly(acrylic acid) (PAA) chains at extremely high grafting densities and confined in nanoscale pores displayed a unique long-lived hysteretic behavior caused by their ability to form a metastable hydrogen bond network. Hydraulic permeability measurements demonstrated that the conformation of the PAA chains exhibited a hysteretic dependence on pH, where different effective pore diameters arose in a pH range of 3 to 8, as determined by the pH of the previous environment. Further studies using Fourier transform infrared (FTIR) spectroscopy demonstrated that the fraction of ionized PAA moieties depended on the thin film history; this was corroborated by metal adsorption capacity, which demonstrated the same pH dependence. This hysteresis was shown to be persistent, enduring for days, in a manner unlike most other systems. The hypothesis that hydrogen bonding among PAA units contributed to the hysteretic behavior was supported by experiments with a urea solution, which disrupted the metastable hydrogen bonded state of PAA toward its ionized state. The ability of PAA to hydrogen bond within these confined pores results in a stable and tunable hysteresis not previously observed in homopolymer materials. An enhanced understanding of the polymer chemistry and physics governing this hysteresis gives insight into the design and manipulation of next-generation sensors and gating materials in nanoscale applications.

  15. Film dosimetry in conformal radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Danciu, C.; Proimos, B.S. [Patras Univ. (Greece). Dept. of Medical Physics

    1995-12-01

    Dosimetry, through a film sandwiched in a transverse cross-section of a solid phantom, is a method of choice in Conformal Radiotherapy because: (a) the blackness (density) of the film at each point offers a measure of the total dose received at that point, and (b) the film is easily calibrated by exposing a film strip in the same cross-section, through a stationary field. The film must therefore have the following properties: (a) it must be slow, in order not to be overexposed, even at a therapeutic dose of 200 cGy, and (b) the response of the film (density versus dose curve) must be independent of the photon energy spectrum. A few slow films were compared. It was found that the Kodak X-Omat V for therapy verification was the best choice. To investigate whether the film response was independent of the photon energy, response curves for six depths, starting from the depth of maximum dose to the depth of 25 cm, in solid phantom were derived. The vertical beam was perpendicular to the anterior surface of the phantom, which was at the distance of 100 cm from the source and the field was 15x15 cm at that distance. This procedure was repeated for photon beams emitted by a Cobalt-60 unit, two 6 MV and 15 MV Linear Accelerators, as well as a 45 MV Betatron. For each of those four different beams the film response was the same for all six depths. The results, as shown in the diagrams, are very satisfactory. The response curve under a geometry similar to that actually applied, when the film is irradiated in a transverse cross-section of the phantom, was derived. The horizontal beam was almost parallel (angle of 85) to the plane of the film. The same was repeated with the central ray parallel to the film (angle 90) and at a distance of 1.5 cm from the horizontal film. The field size was again 15x15 at the lateral entrance surface of the beam. The response curves remained the same, as when the beam was perpendicular to the films.

  16. Enhancement of the optical response in a biodegradable polymer/azo-dye film by the addition of carbon nanotubes

    Science.gov (United States)

    Díaz Costanzo, Guadalupe; Ribba, Laura; Goyanes, Silvia; Ledesma, Silvia

    2014-04-01

    A new biodegradable photoresponsive material was developed using poly(lactic acid) (PLA) as the matrix material and Disperse Orange 3 (DO3) as photoisomerizable azo-dye. It was observed that the addition of multi-walled carbon nanotubes (MWCNTs) leads to a new phenomenon consisting of an enhancement of the optical anisotropy in a wide range of temperatures. In particular, the optical anisotropy increases 100% at room temperature. Moreover, the material containing MWCNTs shows a faster optical response that is evidenced as an increase in the growth rate of optical anisotropy. Spectroscopic data is provided to study the interaction among DO3, MWCNTs and PLA. The enhancement of optical anisotropy obtained with the addition of MWCNTs was related to the glass transition temperature (Tg) of each material. Maximum optical anisotropy was obtained 15 °C below the Tg for both materials. Results are interpreted in terms of the interactions among DO3, MWCNTs and PLA and the packing density of the dye into the polymer chains. In memory of Professor Iñaki Mondragon.

  17. Multiresonant layered plasmonic films

    Energy Technology Data Exchange (ETDEWEB)

    DeVetter, Brent M. [Pacific Northwest National Laboratory, Richland, Washington, United States; Bernacki, Bruce E. [Pacific Northwest National Laboratory, Richland, Washington, United States; Bennett, Wendy D. [Pacific Northwest National Laboratory, Richland, Washington, United States; Schemer-Kohrn, Alan [Pacific Northwest National Laboratory, Richland, Washington, United States; Alvine, Kyle J. [Pacific Northwest National Laboratory, Richland, Washington, United States

    2017-01-01

    Multi-resonant nanoplasmonic films have numerous applications in areas such as nonlinear optics, sensing, and tamper indication. While techniques such as focused ion beam milling and electron beam lithography can produce high-quality multi-resonant films, these techniques are expensive, serial processes that are difficult to scale at the manufacturing level. Here, we present the fabrication of multi-resonant nanoplasmonic films using a layered stacking technique. Periodically-spaced gold nanocup substrates were fabricated using self-assembled polystyrene nanospheres followed by oxygen plasma etching and metal deposition via magnetron sputter coating. By adjusting etch parameters and initial nanosphere size, it was possible to achieve an optical response ranging from the visible to the near-infrared. Singly resonant, flexible films were first made by performing peel-off using an adhesive-coated polyolefin film. Through stacking layers of the nanofilm, we demonstrate fabrication of multi-resonant films at a fraction of the cost and effort as compared to top-down lithographic techniques.

  18. Surrealism and Film.

    Science.gov (United States)

    Matthews, J. H.

    This book is a critical, genre study of surrealist films including a general discussion of the backgrounds, influences, and overall traits of surrealism as a mode of artistic response to an absurdist world. Citing the impetus of Jacques Vache and Andre Breton as the originators of surrealism, the work expands upon the themes of fractured realism…

  19. On the response of semitransparent nanoparticulated films of LuPO{sub 4}:Eu in poly-energetic X-ray imaging applications

    Energy Technology Data Exchange (ETDEWEB)

    Seferis, I.E.; Zeler, J.; Zych, E. [University of Wroclaw, Faculty of Chemistry, Wroclaw (Poland); Michail, C.; Valais, I.; Fountos, G.; Kalyvas, N.; Kandarakis, I. [Technological Educational Institute of Athens, Radiation Physics, Materials Technology and Biomedical Imaging Laboratory, Department of Biomedical Engineering, Athens (Greece); Bakas, A. [Technological Educational Institute of Athens, Department of Medical Radiological Technology, Athens (Greece)

    2016-05-15

    In the present work, we demonstrate the fabrication technique of highly translucent layers of nanoparticulated (∝50 nm) LuPO{sub 4}:Eu phosphor, present their basic luminescent properties and give results of their performance in a planar imaging system coupled to a CMOS photodetector. For comparison, the imaging performance of an opaque Gd{sub 2}O{sub 2}S:Eu phosphor screen prepared by sedimentation is also shown. The X-ray detection parameters as well as the luminescence efficiency of the investigated films were discussed. Results show that the in-line transmittance at ∝600-700 nm, in the range of the phosphor luminescence, varies with respect to the thickness of the films from 40 to 50 % for a film of 67 μm thick to 4-12 % when the thickness increases to 460 μm. Yet, X-ray detection parameters get enhanced as the thickness of the films increases. Those results affect the luminescence efficiency curves of the films under poly-energetic X-ray radiation of various tube energies. The normalized noise power spectrum values were found similar for LuPO{sub 4}:Eu films and a phosphor screen made using commercial Gd{sub 2}O{sub 2}S:Eu powder. The detective quantum efficiency of our films is clearly lower compared to the Gd{sub 2}O{sub 2}S:Eu screen from 2 to 10 cycles mm{sup -1} frequency range while the modulation transfer function is lower from 0 to 5.5 cycles mm{sup -1} frequency range. The acquired data allow to predict that high-temperature sintering of our films under pressure may help to improve their imaging quality, since such a processing should increase the luminescence efficiency without significant growth of the grains and thus without sacrificing their translucent character. (orig.)

  20. Bone Marrow Stem Cells Response to Collagen/Single-Wall Carbon Nanotubes-COOHs Nanocomposite Films with Transforming Growth Factor Beta 1.

    Science.gov (United States)

    Wang, Jianhua; He, Chaolong; Cheng, Niangmei; Yang, Qiu; Chen, Mingmao; You, Lijun; Zhang, Qiqing

    2015-07-01

    Single-wall carbon nanotubes (SWNTs) have attractive biochemical properties such as strong cell adhesion and protein absorption, which are very useful for a cell cultivation scaffold. In this study, collagen/SWNT-COOHs nanocomposite films composed of regenerated fish collagen and SWNT-COOHs (0, 0.5, 1.0 and 2.0 weight percent) were prepared by mixing solubilized pepsin-soluble collagen with solutions of SWNT-COOHs. Morphological observation by SEM indicated the homogenous dispersion of SWNT-COOHs in the collagen matrix. The application of FTIR confirmed that the process we applied to prepare the composites did not destroy the native structures of collagen and composites were crosslinked by D-ribose. The biocompatibility was evaluated in vitro using SD rat bone marrow stem cells (BMSCs). Compared with films without transforming growth factor beta 1 (TGF-β1), films with TGF-β1 had superior performance on promotion of cell growth. Compared with pure collagen film with TGF-β1, SWNT-containing films might promote cellular functions by adsorbing more growth factors. In conclusion, the study suggested that the collagen/SWNT-COOHs nanocomposite films with TGF-β1 were expected to be useful scaffolds in cartilage tissue engineering.

  1. Demens Film

    DEFF Research Database (Denmark)

    Ridder, Hanne Mette Ochsner

    2012-01-01

    I forbindelse med opstarten af Demens Film projektet har der været nedsat en ekspertgruppe, som er kommet med en række anbefalinger omkring film til mennesker med demens. Anbefalingerne skal bruges i de næste faser af projektet. Deltagerne i ekspertgruppen var sammensat af en bred gruppe...... fagpersoner inde for forskellige fagområder. Læs mere om gruppens anbefalinger og sammensætning af ekspertgruppen i den kort rapport som er offentlig tilgængelig. Læs Ekspertgruppe anbefalingerne til Demens Film projekt....

  2. Electrostatic thin film chemical and biological sensor

    Science.gov (United States)

    Prelas, Mark A.; Ghosh, Tushar K.; Tompson, Jr., Robert V.; Viswanath, Dabir; Loyalka, Sudarshan K.

    2010-01-19

    A chemical and biological agent sensor includes an electrostatic thin film supported by a substrate. The film includes an electrostatic charged surface to attract predetermined biological and chemical agents of interest. A charge collector associated with said electrostatic thin film collects charge associated with surface defects in the electrostatic film induced by the predetermined biological and chemical agents of interest. A preferred sensing system includes a charge based deep level transient spectroscopy system to read out charges from the film and match responses to data sets regarding the agents of interest. A method for sensing biological and chemical agents includes providing a thin sensing film having a predetermined electrostatic charge. The film is exposed to an environment suspected of containing the biological and chemical agents. Quantum surface effects on the film are measured. Biological and/or chemical agents can be detected, identified and quantified based on the measured quantum surface effects.

  3. SU-E-T-299: Small Fields Profiles Correction Through Detectors Spatial Response Functions and Field Size Dependence Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Filipuzzi, M; Garrigo, E; Venencia, C [Instituto de Radioterapia - Fundacion Marie Curie, Cordoba, Cordoba (Spain); Germanier, A [CEPROCOR, Cordoba, Cordoba (Spain)

    2014-06-01

    Purpose: To calculate the spatial response function of various radiation detectors, to evaluate the dependence on the field size and to analyze the small fields profiles corrections by deconvolution techniques. Methods: Crossline profiles were measured on a Novalis Tx 6MV beam with a HDMLC. The configuration setup was SSD=100cm and depth=5cm. Five fields were studied (200×200mm2,100×100mm2, 20×20mm2, 10×10mm2and 5×5mm2) and measured were made with passive detectors (EBT3 radiochromic films and TLD700 thermoluminescent detectors), ionization chambers (PTW30013, PTW31003, CC04 and PTW31016) and diodes (PTW60012 and IBA SFD). The results of passive detectors were adopted as the actual beam profile. To calculate the detectors kernels, modeled by Gaussian functions, an iterative process based on a least squares criterion was used. The deconvolutions of the measured profiles were calculated with the Richardson-Lucy method. Results: The profiles of the passive detectors corresponded with a difference in the penumbra less than 0.1mm. Both diodes resolve the profiles with an overestimation of the penumbra smaller than 0.2mm. For the other detectors, response functions were calculated and resulted in Gaussian functions with a standard deviation approximate to the radius of the detector in study (with a variation less than 3%). The corrected profiles resolve the penumbra with less than 1% error. Major discrepancies were observed for cases in extreme conditions (PTW31003 and 5×5mm2 field size). Conclusion: This work concludes that the response function of a radiation detector is independent on the field size, even for small radiation beams. The profiles correction, using deconvolution techniques and response functions of standard deviation equal to the radius of the detector, gives penumbra values with less than 1% difference to the real profile. The implementation of this technique allows estimating the real profile, freeing from the effects of the detector used for the

  4. Piezoelectric Film.

    Science.gov (United States)

    Garrison, Steve

    1992-01-01

    Presents activities that utilize piezoelectric film to familiarize students with fundamental principles of electricity. Describes classroom projects involving chemical sensors, microbalances, microphones, switches, infrared sensors, and power generation. (MDH)

  5. Polymer films

    Science.gov (United States)

    Granick, Steve; Sukhishvili, Svetlana A.

    2004-05-25

    A film contains a first polymer having a plurality of hydrogen bond donating moieties, and a second polymer having a plurality of hydrogen bond accepting moieties. The second polymer is hydrogen bonded to the first polymer.

  6. Polymer films

    Science.gov (United States)

    Granick, Steve; Sukhishvili, Svetlana A.

    2008-12-30

    A film contains a first polymer having a plurality of hydrogen bond donating moieties, and a second polymer having a plurality of hydrogen bond accepting moieties. The second polymer is hydrogen bonded to the first polymer.

  7. Thickness dependence of magnetoelectric response for composites of Pb(Zr0.52Ti0.48O3 films on CoFe2O4 ceramic substrates

    Directory of Open Access Journals (Sweden)

    Jing Wang

    2014-08-01

    Full Text Available Using chemical solution spin-coating we grew Pb(Zr0.52Ti0.48O3 films of different thicknesses on highly dense CoFe2O4 ceramics. X-ray diffraction revealed no other phases except Pb(Zr0.52Ti0.48O3 and CoFe2O4. In many of these samples we observed typical ferroelectric hysteresis loops, butterfly-shaped piezoelectric strains, and the magnetic-field-dependent magnetostriction. These behaviors caused appreciable magnetoelectric responses based on magnetic-mechanical-electric coupling. Our results indicated that the thickness of the Pb(Zr0.52Ti0.48O3 film was important in obtaining strong magnetoelectric coupling.

  8. Thickness dependence of magnetoelectric response for composites of Pb(Zr{sub 0.52}Ti{sub 0.48})O{sub 3} films on CoFe{sub 2}O{sub 4} ceramic substrates

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jing, E-mail: wang-jing@nuaa.edu.cn; Zhu, Kongjun [State Key Laboratory of Mechanics and Control of Mechanical Structures, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Wu, Xia; Deng, Chaoyong [School of Electronics and Information Engineering, Guizhou University, Guiyang 550025 (China); Peng, Renci; Wang, Jianjun [School of Materials Science and Engineering, and State Key Lab of New Ceramics and Fine Processing, Tsinghua University, Beijing 100084 (China)

    2014-08-15

    Using chemical solution spin-coating we grew Pb(Zr{sub 0.52}Ti{sub 0.48})O{sub 3} films of different thicknesses on highly dense CoFe{sub 2}O{sub 4} ceramics. X-ray diffraction revealed no other phases except Pb(Zr{sub 0.52}Ti{sub 0.48})O{sub 3} and CoFe{sub 2}O{sub 4}. In many of these samples we observed typical ferroelectric hysteresis loops, butterfly-shaped piezoelectric strains, and the magnetic-field-dependent magnetostriction. These behaviors caused appreciable magnetoelectric responses based on magnetic-mechanical-electric coupling. Our results indicated that the thickness of the Pb(Zr{sub 0.52}Ti{sub 0.48})O{sub 3} film was important in obtaining strong magnetoelectric coupling.

  9. Investigation on the dielectric response of NdMnO3/LSAT thin films: Effect of 200 MeV Ag+15 ion irradiation

    Science.gov (United States)

    Udeshi, Malay; Vyas, Brinda; Trivedi, Priyanka; Katba, Savan; Ravalia, Ashish; Solanki, P. S.; Shah, N. A.; Asokan, K.; Ojha, S.; Kuberkar, D. G.

    2015-12-01

    We report the results of the modifications in structural and dielectric behaviour of pulsed laser deposited NdMnO3 manganite thin films grown on (1 0 0) single crystalline (LaAlO3)0.3 (Sr2AlTaO6)0.7 substrate irradiated with the 200 MeV Ag+15 ion irradiation having different fluences, ∼5 × 1010, ∼5 × 1011, ∼5 × 1012 ions/cm2. Structural strain was quantified using analysis of X-ray Diffraction data while Rutherford Backscattering measurements were performed on pristine NdMnO3 film to confirm the elemental composition, thickness and oxygen content. Dielectric measurements performed on all the irradiated films show that, the dielectric constant decreases with increase in ion fluence which has been correlated with the irradiation induced increase in strain at the film-substrate interface. The dielectric relaxation behaviour of pristine and irradiated NdMnO3 films have been understood by fitting the dielectric data using the Cole-Cole plots.

  10. Comparative Study of Two Different TiO2 Film Sensors on Response to H2 under UV Light and Room Temperature

    Directory of Open Access Journals (Sweden)

    Xiaoying Peng

    2016-08-01

    Full Text Available An anatase TiO2 film sensor was prepared by a facile in-situ method on the interdigitated Au electrode deposited on the alumina substrate. The structure, morphology and the optical properties of the in-situ TiO2 film sensor were characterized by X-ray diffraction, Scanning Electron Microscopy, and UV-vis diffuse reflectance spectra. The photo-assisted gas sensitivities of the prepared film towards H2 gas were evaluated at room temperature in N2 and synthetic air atmospheres. As compared to TiO2 film sensor prepared by drop-coating method, this in-situ TiO2 film sensor exhibited a more compact structure composed of uniform TiO2 microspheres as well as a better gas sensitivity towards H2 under UV irradiation, especially in synthetic air. The photo-electrochemical measurements suggest that these improvements may be associated with the efficient charge transfer in the TiO2 interface induced by the TiO2 microsphere structure. This study might offer a feasible approach to develop photo-assisted gas sensors at ambient temperature.

  11. Comparative Study of Two Different TiO2 Film Sensors on Response to H2 under UV Light and Room Temperature

    Science.gov (United States)

    Peng, Xiaoying; Wang, Zhongming; Huang, Pan; Chen, Xun; Fu, Xianzhi; Dai, Wenxin

    2016-01-01

    An anatase TiO2 film sensor was prepared by a facile in-situ method on the interdigitated Au electrode deposited on the alumina substrate. The structure, morphology and the optical properties of the in-situ TiO2 film sensor were characterized by X-ray diffraction, Scanning Electron Microscopy, and UV-vis diffuse reflectance spectra. The photo-assisted gas sensitivities of the prepared film towards H2 gas were evaluated at room temperature in N2 and synthetic air atmospheres. As compared to TiO2 film sensor prepared by drop-coating method, this in-situ TiO2 film sensor exhibited a more compact structure composed of uniform TiO2 microspheres as well as a better gas sensitivity towards H2 under UV irradiation, especially in synthetic air. The photo-electrochemical measurements suggest that these improvements may be associated with the efficient charge transfer in the TiO2 interface induced by the TiO2 microsphere structure. This study might offer a feasible approach to develop photo-assisted gas sensors at ambient temperature. PMID:27509502

  12. Exploring a new phenomenon in the bactericidal response of TiO2 thin films by Fe doping: Exerting the antimicrobial activity even after stoppage of illumination

    Science.gov (United States)

    Naghibi, Sanaz; Vahed, Shohreh; Torabi, Omid; Jamshidi, Amin; Golabgir, Mohammad Hossein

    2015-02-01

    Antibacterial properties of Fe-doped TiO2 thin films prepared on glass by the sol-gel hot-dipping technique were studied. The films were characterized by X-ray diffraction, field emission scanning electron microscopy, scanning probe microscopy and X-ray photoelectron spectroscopy. The photocatalytic activities were evaluated by measuring the decomposition rate of methylene blue under ultra violet and visible light. The antibacterial properties of the coatings were investigated against Escherichia coli, Staphylococcus aureus, Saccharomyces cerevisia and Aspergillus niger. The principle of incubation methods was also discussed. The results indicated that Fe doping of thin films eventuated in high antibacterial properties under visible light and this performance remained even after stoppage of illumination. This article tries to provide some explanation for this fact.

  13. The output factor correction as function of the photon beam field size - direct measurement and calculation from the lateral dose response functions of gas-filled and solid detectors.

    Science.gov (United States)

    Poppinga, Daniela; Delfs, Björn; Meyners, Jutta; Harder, Dietrich; Poppe, Björn; Looe, Hui Khee

    2017-08-28

    The first aim of this study has been to extend the systematic experimental study of the field size dependence of the output factor correction for three micro-ionization chambers (PTW 31014, PTW 31022 and IBA Razor chamber), two silicon diodes (PTW 60017 and IBA Razor Diode) and the synthetic diamond detector microDiamond (PTW 60019) in a 6 MV photon beam down to an effective field side length of 2.6mm, and to summarize the present knowledge of this factor by treating it as a function of the dosimetric field size. In order to vary the dosimetric field size over this large range, output factors measurements were performed at source-to-surface distances of 60cm and 90cm. Since the output factors obtained with the organic scintillation detector Exradin W1 (Standard Imaging, Middleton, USA) at all field sizes closely agreed with those measured by EBT3 radiochromic films (ISP Corp, Wayne, USA), the scintillation detector served as the reference detector. The measured output correction factors reflect the influences of the volume averaging and density effects upon the uncorrected output factor values. In case of the microDiamond detector these opposing influences result in output factor correction values less than 1 for moderately small field sizes and larger than 1 for very small field sizes. Our results agree with most of the published experimental as well as Monte-Carlo simulated data within detector-specific limits of uncertainty. The dosimetric field side length has been identified as a reliable determinant of the output factor correction, and typical functional curve shapes of the field-size dependent output factor correction vs. dosimetric field side length have been associated with gas-filled, silicon diode and synthetic diamond detectors. The second aim of this study has been a novel, semi-empirical approach to calculate the field-size dependent output correction factors of small photon detectors by convolving film measured true dose profile data with measured

  14. Exploring a new phenomenon in the bactericidal response of TiO{sub 2} thin films by Fe doping: Exerting the antimicrobial activity even after stoppage of illumination

    Energy Technology Data Exchange (ETDEWEB)

    Naghibi, Sanaz, E-mail: naghibi@iaush.ac.ir [Department of Metallurgy and Materials Engineering, Shahreza Branch, Islamic Azad University, Isfahan (Iran, Islamic Republic of); Vahed, Shohreh, E-mail: sh_vahed@iaush.ac.ir [Department of Food Science, Shahreza Branch, Islamic Azad University, Isfahan (Iran, Islamic Republic of); Torabi, Omid, E-mail: omid_trb@yahoo.com [Department of Materials Engineering, Najafabad Branch, Advanced Materials Research Center, Islamic Azad University, Isfahan (Iran, Islamic Republic of); Jamshidi, Amin, E-mail: amin_jam_g@yahoo.com [Department of Materials Engineering, Najafabad Branch, Advanced Materials Research Center, Islamic Azad University, Isfahan (Iran, Islamic Republic of); Golabgir, Mohammad Hossein, E-mail: m.hosseingolabgir@yahoo.com [Department of Materials Engineering, Najafabad Branch, Advanced Materials Research Center, Islamic Azad University, Isfahan (Iran, Islamic Republic of)

    2015-02-01

    Graphical abstract: - Highlights: • Highly uniform Fe–TiO{sub 2} thin films were deposited on glass using sol–gel hot-dipping technique. • The photocatalytic properties were studied upon UV and visible irradiation. • By Fe doping into TiO{sub 2} structure, its microbial performance was prolonged even after stopping the illumination. • Due to Fe doping, the significant improvement in bactericidal coating was evident. - Abstract: Antibacterial properties of Fe-doped TiO{sub 2} thin films prepared on glass by the sol–gel hot-dipping technique were studied. The films were characterized by X-ray diffraction, field emission scanning electron microscopy, scanning probe microscopy and X-ray photoelectron spectroscopy. The photocatalytic activities were evaluated by measuring the decomposition rate of methylene blue under ultra violet and visible light. The antibacterial properties of the coatings were investigated against Escherichia coli, Staphylococcus aureus, Saccharomyces cerevisia and Aspergillus niger. The principle of incubation methods was also discussed. The results indicated that Fe doping of thin films eventuated in high antibacterial properties under visible light and this performance remained even after stoppage of illumination. This article tries to provide some explanation for this fact.

  15. Extended short-wavelength spectral response of organic/(silver nanoparticles/Si nanoholes nanocomposite films) hybrid solar cells due to localized surface plasmon resonance

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhixin [National Laboratory of Solid State Microstructures and Jiangsu Provincial Key Laboratory of Photonic and Electronic Materials Sciences and Technology, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China); Xu, Ling, E-mail: xuling@nju.edu.cn [National Laboratory of Solid State Microstructures and Jiangsu Provincial Key Laboratory of Photonic and Electronic Materials Sciences and Technology, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China); Zhang, Wengping; Ge, Zhaoyun; Xu, Jun [National Laboratory of Solid State Microstructures and Jiangsu Provincial Key Laboratory of Photonic and Electronic Materials Sciences and Technology, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China); Su, Weining; Yu, Yao [National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093 (China); Ma, Zhongyuan; Chen, Kunji [National Laboratory of Solid State Microstructures and Jiangsu Provincial Key Laboratory of Photonic and Electronic Materials Sciences and Technology, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China)

    2015-04-15

    Highlights: • The silver nanoparticles (AgNPs)/Si nanoholes (SiNHs) nanocomposite films were fabricated. • An enhancement of total absorption in the AgNPs/SiNHs nanocomposite films at the short wavelength was exhibited. • Prototype solar cell device with AgNPs exhibits an increase of the power conversion efficiency by a factor of 2–3. - Abstract: In this letter, we investigated spectral and opto-electronic conversion properties of the inorganic/organic hybrid cells by using silver nanoparticles (AgNPs)/Si nanoholes (SiNHs) nanocomposite films, which were fabricated by the modified metal-assisted electroless etching (EE) method. It was found that the optical absorption spectra of the films with AgNPs demonstrate a clear peak and show the enhancement of total absorption at the short wavelength. The results of current–voltage (I–V) measurements show that solar cells with AgNPs exhibit an increase of the power conversion efficiency by a factor of 2–3, in comparison with those of the samples without AgNPs. Moreover, higher external quantum efficiency (EQE) values in AgNPs-decorated solar cells were confirmed in the short-wavelength spectral region (400–700 nm), which were essential to achieve high-performance photovoltaic cells. We thought these were mainly attributed to the localized surface plasmon resonance (LSPR) effects and increased light scattering of AgNPs.

  16. Highly sensitive response to dopamine at a modified electrode involving a composite film with Au nanoparticles dispersed in a fluorocarbon polymer

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A new approach for the highly sensitive detection of dopamine by a novel composite film involving gold nanoparticles trapped in a negatively-charged fluorocarbon polymer (Nafion) on a glassy carbon (GC) electrode fabricated by a simple method is described. Gold nanoparticles with an average diameter of 2.3 nm ± 0.2 nm are dispersed throughout the whole Nafion film. The introduction of gold nanoparticles into the Nafion film not only gives a highly active electrode surface area but also increases the conductivity of the Nafion film and the resulting Au/Nafion/GC electrode combines the advantages of the properties of gold nanoparticles and the selective pre-concentration ability of Nafion. For positively charged dopamine, the results show a decrease in the redox peak separation and a high sensitivity. The oxidation peak current of dopamine was shown to vary linearly with dopamine concentration over a wide range from 0.4 to 50.0 μmol/L with a detection limit of 0.3 μmol/L. Negatively charged ascorbic acid shows no redox waves at concentrations up to 1.0 ×10-4 mol/L.

  17. Tamper indicating gold nanocup plasmonic films

    Energy Technology Data Exchange (ETDEWEB)

    DeVetter, Brent M.; Bernacki, Bruce E.; Bennett, Wendy D.; Schemer-Kohrn, Alan; Alvine, Kyle J.

    2017-02-13

    The spectral signature of nanoplasmonic films are both robust and tailorable with optical responses ranging from the visible to the near-infrared. We present the development of flexible, elastomeric nanoplasmonic films consisting of periodic arrays of gold nanocups as tamper indicating films. Gold nanocups have polarization-sensitive optical properties that may be manufactured into films that offer unique advantages for tamper indication. These flexible films can be made quickly and at low-cost using commercially available monodisperse polystyrene nanospheres through self-assembly followed by plasma etching, metal deposition, and lift-off from a sacrificial substrate. Polarization- and angle-dependent optical spectroscopic measurements were performed to characterize the fabricated films. Using polarization-sensitive hyperspectral imaging, we demonstrate how these films can be applied to tamper indication and counterfeit resistance applications.

  18. Tamper indicating gold nanocup plasmonic films

    Science.gov (United States)

    DeVetter, Brent M.; Bernacki, Bruce E.; Bennett, Wendy D.; Schemer-Kohrn, Alan; Alvine, Kyle J.

    2017-02-01

    The spectral signatures of nanoplasmonic films are both robust and tailorable with optical responses ranging from the visible to the near-infrared. We present the development of flexible, elastomeric nanoplasmonic films consisting of periodic arrays of gold nanocups as tamper indicating films. Gold nanocups have polarization-sensitive optical properties that may be manufactured into films that offer unique advantages for tamper indication. These flexible films can be made quickly and at low-cost using the commercially available monodisperse polystyrene nanospheres through self-assembly followed by plasma etching, metal deposition, and lift-off from a sacrificial substrate. The polarization- and angle-dependent optical spectroscopic measurements were performed to characterize the fabricated films. Using polarization-sensitive hyperspectral imaging, we demonstrate how these films can be applied to tamper indication and counterfeit resistance applications.

  19. 革命历史题材影视作品中编辑的文化责任%Culture Responsibility of Editor in Historical Revolutionary Film and TV Works

    Institute of Scientific and Technical Information of China (English)

    李瑞

    2012-01-01

    影视语言文化的最大优势在于能够以最简单的表达方式迅速达到超越国籍和种族的传播效果,有效地降低文化折扣,实现跨文化传播,对于构建国家形象起着不可估量的作用。编辑工作贯穿影视作品的创作始末,无论是前期编剧对剧情提纲挈领式的艺术化编排,还是后期剪辑对影像素材的技术化处理和镜头组接、意义合成等工作,都凝结了影视工作者的智慧。尤其是对于重大革命历史题材的影视作品来说,编辑的选择和把关又直接关乎到具体历史史实和历史人物形象的构建,肩负着巨大的文化传播责任。%The greatest advantage of film and television language lies in its simple expression and quick dissem- ination of information. Editing runs throughout the whole process of the creation of film and television works, and both the prophase work and later work show the wisdom of the film and television workers. The editors of historical revolutionary film and TV works have great responsibility for cultural communication.

  20. Wide-Range Enhancement of Spectral Response by Highly Conductive and Transparent μc-SiOx:H Doped Layers in μc-Si:H and a-Si:H/μc-Si:H Thin-Film Solar Cells

    Directory of Open Access Journals (Sweden)

    Pei-Ling Chen

    2016-01-01

    Full Text Available The enhancement of optical absorption of silicon thin-film solar cells by the p- and n-type μc-SiOx:H as doped and functional layers was presented. The effects of deposition conditions and oxygen content on optical, electrical, and structural properties of μc-SiOx:H films were also discussed. Regarding the doped μc-SiOx:H films, the wide optical band gap (E04 of 2.33 eV while maintaining a high conductivity of 0.2 S/cm could be obtained with oxygen incorporation of 20 at.%. Compared to the conventional μc-Si:H(p as window layer in μc-Si:H single-junction solar cells, the application of μc-SiOx:H(p increased the VOC and led to a significant enhancement in the short-wavelength spectral response. Meanwhile, the employment of μc-SiOx:H(n instead of conventional ITO as back reflecting layer (BRL enhanced the external quantum efficiency (EQE of μc-Si:H single-junction cell in the long-wavelength region, leading to a relative efficiency gain of 10%. Compared to the reference cell, the optimized a-Si:H/μc-Si:H tandem cell by applying p- and n-type μc-SiOx:H films achieved a VOC of 1.37 V, JSC of 10.55 mA/cm2, FF of 73.67%, and efficiency of 10.51%, which was a relative enhancement of 16%.

  1. Developing new extension of GafChromic RTQA2 film to patient quality assurance field using a plan-based calibration method.

    Science.gov (United States)

    Peng, Jiayuan; Zhang, Zhen; Wang, Jiazhou; Xie, Jiang; Chen, Junchao; Hu, Weigang

    2015-10-07

    GafChromic RTQA2 film is a type of radiochromic film designed for light field and radiation field alignment. The aim of this study is to extend the application of RTQA2 film to the measurement of patient specific quality assurance (QA) fields as a 2D relative dosimeter.Pre-irradiated and post-irradiated RTQA2 films were scanned in reflection mode using a flatbed scanner. A plan-based calibration (PBC) method utilized the mapping information of the calculated dose image and film grayscale image to create a dose versus pixel value calibration model. This model was used to calibrate the film grayscale image to the film relative dose image. The dose agreement between calculated and film dose images were analyzed by gamma analysis. To evaluate the feasibility of this method, eight clinically approved RapidArc cases (one abdomen cancer and seven head-and-neck cancer patients) were tested using this method. Moreover, three MLC gap errors and two MLC transmission errors were introduced to eight Rapidarc cases respectively to test the robustness of this method.The PBC method could overcome the film lot and post-exposure time variations of RTQA2 film to get a good 2D relative dose calibration result. The mean gamma passing rate of eight patients was 97.90%  ±  1.7%, which showed good dose consistency between calculated and film dose images. In the error test, the PBC method could over-calibrate the film, which means some dose error in the film would be falsely corrected to keep the dose in film consistent with the dose in the calculated dose image. This would then lead to a false negative result in the gamma analysis. In these cases, the derivative curve of the dose calibration curve would be non-monotonic which would expose the dose abnormality.By using the PBC method, we extended the application of more economical RTQA2 film to patient specific QA. The robustness of the PBC method has been improved by analyzing the monotonicity of the derivative of the calibration

  2. Ultraviolet photoluminescence of porous anodic alumina films

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Photoluminescence (PL) properties of porous anodic alumina (PAA) films prepared by using electrochemical anodization technique in a mixed solution of oxalic and sulfuric acid have been investigated. The PAA films have an intensive ultraviolet PL emission around 350 nm, of which a possible PL mechanism has been proposed. It was found that the incorporated oxalic ions, which could transform into PL centers and exist in the PAA films, are responsible for this ultraviolet PL emission.

  3. Comparison of dosimeter response: ionization chamber, TLD, and Gafchromic EBT2 film in 3D-CRT, IMRT, and SBRT techniques for lung cancer

    Science.gov (United States)

    Fitriandini, A.; Wibowo, W. E.; Pawiro, S. A.

    2016-03-01

    This research was conducted by measuring point dose in the target area (lungs), heart, and spine using four dosimeters (PTW N30013, Exradin A16, TLD, and the Gafchromic EBT2 film). The measurement was performed in CIRS 002LFC thorax phantom. The main objective of this study was to compare the dosimetry of those different systems. Dose measurements performed only in a single fraction of irradiation. The measurements result shown that TLD has the least accuracy and precision. As the effect of volume averaging, ionization chamber reaches the discrepancy value up to -13.30% in the target area. EBT2 film has discrepancy value of <1% in the 3D-CRT and IMRT techniques. This dosimeter is proposed to be an appropriate alternative dosimeter to be used at point dose verification.

  4. Film Credits

    Science.gov (United States)

    Borja, Rhea R.

    2006-01-01

    With the advent of easy-to-use digital technology, schools are responding to the interests of their media-savvy students by offering more courses in filmmaking. In this article, the author features different films produced by students. Among other things, she discusses the students' growing interest in filmmaking.

  5. YBCO thin films in ac and dc films

    CERN Document Server

    Shahzada, S

    2001-01-01

    We report studies on the dc magnetization of YBCO thin films in simultaneously applied dc and ac fields. The effect of the ac fields is to decrease the irreversible magnetization drastically leading to complete collapse of the hysteresis loops for relatively small ac fields (250e). The magnitude of the decrease depends on the component of the ac field parallel to the c-axis. The decrease is non-linear with ac amplitude and is explained in the framework of the critical state response of ultra thin films in perpendicular geometry. The ac fields increase the relaxation rapidly at short times while the long time response appears unaffected. (author)

  6. Effects of oxygen partial pressure, deposition temperature, and annealing on the optical response of CdS:O thin films as studied by spectroscopic ellipsometry

    Science.gov (United States)

    Junda, Maxwell M.; Grice, Corey R.; Subedi, Indra; Yan, Yanfa; Podraza, Nikolas J.

    2016-07-01

    Ex-situ spectroscopic ellipsometry measurements are made on radio frequency magnetron sputtered oxygenated cadmium sulfide (CdS:O) thin films. Films are deposited onto glass substrates at room temperature and at 270 °C with varying oxygen to total gas flow ratios in the sputtering ambient. Ellipsometric spectra from 0.74 to 5.89 eV are collected before and after annealing at 607 °C to simulate the thermal processes during close-space sublimation of overlying cadmium telluride in that solar cell configuration. Complex dielectric function (ɛ = ɛ1 + iɛ2) spectra are extracted for films as a function of oxygen gas flow ratio, deposition temperature, and post-deposition annealing using a parametric model accounting for critical point transitions and an Urbach tail for sub-band gap absorption. The results suggest an inverse relationship between degree of crystallinity and oxygen gas flow ratio, whereas annealing is shown to increase crystallinity in all samples. Direct band gap energies are determined from the parametric modeling of ɛ and linear extrapolations of the square of the absorption coefficient. As-deposited samples feature a range of band gap energies whereas annealing is shown to result in gap energies ranging only from 2.40 to 2.45 eV, which is close to typical band gaps for pure cadmium sulfide.

  7. Biomimetic thin film deposition

    Energy Technology Data Exchange (ETDEWEB)

    Rieke, P.R.; Graff, G.E.; Campbell, A.A.; Bunker, B.C.; Baskaran, S.; Song, L.; Tarasevich, B.J.; Fryxell, G.E.

    1995-09-01

    Biological mineral deposition for the formation of bone, mollusk shell and other hard tissues provides materials scientists with illustrative materials processing strategies. This presentation will review the key features of biomineralization and how these features can be of technical importance. We have adapted existing knowledge of biomineralization to develop a unique method of depositing inorganic thin films and coating. Our approach to thin film deposition is to modify substrate surfaces to imitate the proteins found in nature that are responsible for controlling mineral deposition. These biomimetic surfaces control the nucleation and growth of the mineral from a supersaturated aqueous solution. This has many processing advantages including simple processing equipment, environmentally benign reagents, uniform coating of highly complex shapes, and enhanced adherence of coating. Many different types of metal oxide, hydroxide, sulfide and phosphate materials with useful mechanical, optical, electronic and biomedical properties can be deposited.

  8. Enhanced photochromism in nanostructured molybdenum trioxide films

    Science.gov (United States)

    Beydaghyan, Gisia; Doiron, Serge; Haché, Alain; Ashrit, P. V.

    2009-08-01

    We present evidence of enhancement of photochromism in nanostructured thin films of molybdenum oxide fabricated by glancing angle deposition. The strong correlation of coloration response with the internal surface area of the films provides evidence of the importance of nanostructuring on the photochromic effect and the vital role played by the availability of water in the photochromic mechanism.

  9. Comparison of vidar dosimetry advantage pro and epson perfection V700 scanner in densitometry of radiochomic EBT2 film in measurement of high dose gradient

    Science.gov (United States)

    Bura, W.; Tangboonduangjit, P.; Damrongkijudom, N.

    2016-03-01

    Nowadays the radiochromic film is widely used to obtain dose distribution in two dimensions with high spatial resolution, less energy dependence and near tissue equivalent. It can be a commissioning tool to verify high dose gradient of dose distribution for IMRT and VMAT techniques. However, the film scanner could affect the accuracy of dose distribution if lack of precaution. In this study, the comparison between Epson perfection V700 and Vidar Dosimetry Pro Advantage (RED) is evaluated in terms of the capability to verify the 2D dose distribution for conventional and VMAT techniques. The Gafchromic® EBT2 films were read from two types of scanners (Epson perfection V700 and Vidar Dosimetry Pro Advantage) for volumetric modulated radiation therapy (VMAT) dosimetry. The software for analyzing the results of Epson perfection V700 and Vidar Dosimetry Pro Advantage are SNC Patient software and Omnipro’ IMRT software, respectively. Comparisons between measured and calculated dose distributions are reported as %passing rate and the gamma index for tolerance parameters of 3% and 3mm. The study found that the %passing rate obtained from Vidar scanner and Epson V700 scanner compared with Eclipse treatment planning system is more than 98% with the criteria of (3%/3mm).

  10. Evaluation of Multiple-Sampling Function used with a Microtek flatbed scanner for Radiation Dosimetry Calibration of EBT2 Film

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Liyun [Department of Medical Imaging and Radiological Sciences, I-Shou University, Kaohsiung 82445, Taiwan (China); Ho, Sheng-Yow [Department of Nursing, Chang Jung Christian University, Tainan 71101, Taiwan (China); Department of Radiation Oncology, Chi Mei Medical Center, Liouying, Tainan 73657, Taiwan (China); Ding, Hueisch-Jy [Department of Medical Imaging and Radiological Sciences, I-Shou University, Kaohsiung 82445, Taiwan (China); Hwang, Ing-Ming [Department of Medical Imaging and Radiology, Shu Zen College of Medicine and Management, Kaohsiung 82144, Taiwan (China); Chen, Pang-Yu, E-mail: pangyuchen@yahoo.com.tw [Department of Radiation Oncology, Sinlau Christian Hospital, Tainan 70142, Taiwan (China); Lee, Tsair-Fwu, E-mail: tflee@kuas.edu.tw [Medical Physics and Informatics Laboratory, Department of Electronics Engineering, National Kaohsiung University of Applied Sciences, Kaohsiung 80778, Taiwan (China)

    2016-10-01

    The radiochromic EBT2 film is a widely used quality assurance device for radiation therapy. This study evaluated the film calibration performance of the multiple-sampling function, a function of the ScanWizard Pro scanning software provided by the manufacturer, when used with Microtek 9800XL plus (9800XL{sup +}) flatbed scanner. By using the PDD method, each one of the eight EBT2 films, four delivered by 290 monitor unit (MU) and four by 88 MU via 6-MV photon beams, was tightly sandwiched in a 30{sup 3}-cm{sup 3} water equivalent polystyrene phantom prior to irradiation. Before and after irradiation, all films were scanned using the Microtek 9800XL{sup +} scanner with five different modes of the multiple-sampling function, which could generate the image with the averaged result of multiple-sampling. The net optical densities (netOD) on the beam central axis of film were assigned to corresponding depth doses for calibration. For each sampling mode with either delivered MU, the depth-dose uncertainty of a single film from repeated scans and that of a single scan of the four films were analyzed. Finally, the calibration error and the combined calibration uncertainty between film determined depth-doses and delivered depth-doses were calculated and evaluated for each sampling mode. All standard deviations and the calibration error were demonstrated to be unrelated to the number of sampling lines. The calibration error of the 2-line and 16-line mode was within 3 cGy and better than that of the other modes. The combined uncertainty of the 2-line mode was the lowest, which was generally less than 6 cGy except for the delivered dose around 100 cGy. The evaluation described herein revealed that the EBT2 film calibrated with the 2-line mode has relatively lower error, scanning time and combined uncertianty. Therefore, it is recommended for routine EBT2 film calibration and verification of treatment plans.

  11. Research on Gas Response Characteristics of Polyanilineand Polystyrene Sulfonate Composite Assembled Film%聚苯胺和聚苯乙烯磺酸复合组装薄膜的气体响应特性研究

    Institute of Scientific and Technical Information of China (English)

    任清; 陈向东; 李宁

    2016-01-01

    聚苯胺是一种制备简单、性质稳定、有着各种不同结构以及具有可掺杂特性的高分子材料。利用聚苯胺的可掺杂特性以及复合组装方法,在实验室条件下制得聚苯胺水溶液,利用聚苯乙烯磺酸作为聚电解质材料,在叉指电极上组装了不同层数的复合膜。利用薄膜在氨气环境中导电能力的变化,得到了复合组装薄膜氨气气体传感器,并研究了传感器对氨气的响应特性。%Polyaniline is high polymer material of preparing simple and stable,and have diverse different structures and the properties can be doped.Using the characteristic of polyaniline can be doped and the composite assembly method,the polyaniline-solution under the laboratory conditions was gotten.The complex film with different layers was assembled on the interdigital elec-trodesby using the polystyrene sulfonic acid as the polyelectrolyte materials.Based on the changes of the conductive ability of the thin film in the ammonia,a composite assembled film ammonia gas sensor was gotten,and the response characteristics of the sen-sor on ammonia was studied.

  12. Cross-calibration of Fuji TR image plate and RAR 2492 x-ray film to determine the response of a DITABIS Super Micron image plate scanner

    Science.gov (United States)

    Dunham, G.; Harding, E. C.; Loisel, G. P.; Lake, P. W.; Nielsen-Weber, L. B.

    2016-11-01

    Fuji TR image plate is frequently used as a replacement detector medium for x-ray imaging and spectroscopy diagnostics at NIF, Omega, and Z facilities. However, the familiar Fuji BAS line of image plate scanners is no longer supported by the industry, and so a replacement scanning system is needed. While the General Electric Typhoon line of scanners could replace the Fuji systems, the shift away from photo stimulated luminescence units to 16-bit grayscale Tag Image File Format (TIFF) leaves a discontinuity when comparing data collected from both systems. For the purposes of quantitative spectroscopy, a known unit of intensity applied to the grayscale values of the TIFF is needed. The DITABIS Super Micron image plate scanning system was tested and shown to potentially rival the resolution and dynamic range of Kodak RAR 2492 x-ray film. However, the absolute sensitivity of the scanner is unknown. In this work, a methodology to cross calibrate Fuji TR image plate and the absolutely calibrated Kodak RAR 2492 x-ray film is presented. Details of the experimental configurations used are included. An energy dependent scale factor to convert Fuji TR IP scanned on a DITABIS Super Micron scanner from 16-bit grayscale TIFF to intensity units (i.e., photons per square micron) is discussed.

  13. Cross-calibration of Fuji TR image plate and RAR 2492 x-ray film to determine the response of a DITABIS Super Micron image plate scanner

    Energy Technology Data Exchange (ETDEWEB)

    Dunham, G., E-mail: gsdunha@sandia.gov; Harding, E. C.; Loisel, G. P.; Lake, P. W.; Nielsen-Weber, L. B. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)

    2016-11-15

    Fuji TR image plate is frequently used as a replacement detector medium for x-ray imaging and spectroscopy diagnostics at NIF, Omega, and Z facilities. However, the familiar Fuji BAS line of image plate scanners is no longer supported by the industry, and so a replacement scanning system is needed. While the General Electric Typhoon line of scanners could replace the Fuji systems, the shift away from photo stimulated luminescence units to 16-bit grayscale Tag Image File Format (TIFF) leaves a discontinuity when comparing data collected from both systems. For the purposes of quantitative spectroscopy, a known unit of intensity applied to the grayscale values of the TIFF is needed. The DITABIS Super Micron image plate scanning system was tested and shown to potentially rival the resolution and dynamic range of Kodak RAR 2492 x-ray film. However, the absolute sensitivity of the scanner is unknown. In this work, a methodology to cross calibrate Fuji TR image plate and the absolutely calibrated Kodak RAR 2492 x-ray film is presented. Details of the experimental configurations used are included. An energy dependent scale factor to convert Fuji TR IP scanned on a DITABIS Super Micron scanner from 16-bit grayscale TIFF to intensity units (i.e., photons per square micron) is discussed.

  14. Cross-calibration of Fuji TR image plate and RAR 2492 x-ray film to determine the response of a DITABIS Super Micron image plate scanner.

    Science.gov (United States)

    Dunham, G; Harding, E C; Loisel, G P; Lake, P W; Nielsen-Weber, L B

    2016-11-01

    Fuji TR image plate is frequently used as a replacement detector medium for x-ray imaging and spectroscopy diagnostics at NIF, Omega, and Z facilities. However, the familiar Fuji BAS line of image plate scanners is no longer supported by the industry, and so a replacement scanning system is needed. While the General Electric Typhoon line of scanners could replace the Fuji systems, the shift away from photo stimulated luminescence units to 16-bit grayscale Tag Image File Format (TIFF) leaves a discontinuity when comparing data collected from both systems. For the purposes of quantitative spectroscopy, a known unit of intensity applied to the grayscale values of the TIFF is needed. The DITABIS Super Micron image plate scanning system was tested and shown to potentially rival the resolution and dynamic range of Kodak RAR 2492 x-ray film. However, the absolute sensitivity of the scanner is unknown. In this work, a methodology to cross calibrate Fuji TR image plate and the absolutely calibrated Kodak RAR 2492 x-ray film is presented. Details of the experimental configurations used are included. An energy dependent scale factor to convert Fuji TR IP scanned on a DITABIS Super Micron scanner from 16-bit grayscale TIFF to intensity units (i.e., photons per square micron) is discussed.

  15. Plasmonic modes in thin films: quo vadis?

    Directory of Open Access Journals (Sweden)

    Antonio ePolitano

    2014-07-01

    Full Text Available Herein, we discuss the status and the prospect of plasmonic modes in thin films. Plasmons are collective longitudinal modes of charge fluctuation in metal samples excited by an external electric field. Surface plasmons (SPs are waves that propagate along the surface of a conductor with applications in magneto-optic data storage, optics, microscopy, and catalysis. In thin films the electronic response is influenced by electron quantum confinement. Confined electrons modify the dynamical screening processes at the film/substrate interface by introducing novel properties with potential applications and, moreover, they affect both the dispersion relation of SP frequency and the damping processes of the SP.Recent calculations indicate the emergence of acoustic surface plasmons (ASP in Ag thin films exhibiting quantum well states and in graphene films. The slope of the dispersion of ASP decreases with film thickness. We also discuss open issues in research on plasmonic modes in graphene/metal interfaes.

  16. Comparison of build-up dose between Elekta and Varian linear accelerators for high-energy photon beams using radiochromic film and clinical implications for IMRT head and neck treatments.

    Science.gov (United States)

    Paelinck, L; De Wagter, C; Van Esch, A; Duthoy, W; Depuydt, T; De Neve, W

    2005-02-07

    Skin toxicity has been reported for IMRT of head and neck cancer. The purpose of this study was to investigate the dose in the build-up region delivered by a 6 MV treatment plan for which important skin toxicity was observed. We also investigated if the different designs of the treatment head of an Elekta and a Varian linear accelerator, especially the lower position of the Varian multi-leaf collimator, give rise to different build-up doses. For regular square open beams, the build-up dose along the central beam axis is higher for the Varian machine than for the Elekta machine, both for 6 MV and 18 MV. At the Elekta machine at 18 MV, the superficial dose of a diamond shaped 10 x 10 cm2 field is 3.6% lower than the superficial dose of a regular 10 x 10 cm2 field. This effect is not seen at 6 MV. At the Varian machine, the superficial dose of the diamond shaped field is respectively 3.5 and 14.2% higher than the superficial dose of the regular 10 x 10 cm2 field for 6 MV and 18 MV. Despite the differences measured in build-up dose for single beams between the Elekta and the Varian linear accelerator, there were no measurable differences in superficial dose when a typical IMRT dose plan of 6 MV for a head and neck tumour is executed at the two machines.

  17. Ferroelectric ultrathin perovskite films

    Science.gov (United States)

    Rappe, Andrew M; Kolpak, Alexie Michelle

    2013-12-10

    Disclosed herein are perovskite ferroelectric thin-film. Also disclosed are methods of controlling the properties of ferroelectric thin films. These films can be used in a variety materials and devices, such as catalysts and storage media, respectively.

  18. Sensing of volatile organic compounds by copper phthalocyanine thin films

    Science.gov (United States)

    Ridhi, R.; Saini, G. S. S.; Tripathi, S. K.

    2017-02-01

    Thin films of copper phthalocyanine have been deposited by thermal evaporation technique. We have subsequently exposed these films to the vapours of methanol, ethanol and propanol. Optical absorption, infrared spectra and electrical conductivities of these films before and after exposure to chemical vapours have been recorded in order to study their sensing mechanisms towards organic vapours. These films exhibit maximum sensing response to methanol while low sensitivities of the films towards ethanol and propanol have been observed. The changes in sensitivities have been correlated with presence of carbon groups in the chemical vapours. The effect of different types of electrodes on response-recovery times of the thin film with organic vapours has been studied and compared. The electrodes gap distance affects the sensitivity as well as response-recovery time values of the thin films.

  19. Effect of Deposition Rate and Annealing on Physical Properties of In2O3 Thin Films Prepared by Spray Pyrolysis: Ultraviolet (UV) Photoconductivity Response

    Science.gov (United States)

    Shamsoddini, Khadijeh; Eshghi, Hosein

    2017-07-01

    As-grown and annealed indium oxide thin films deposited by spray pyrolysis at various rates (2 mL/min, 3.5 mL/min, and 5 mL/min) on glass substrate have been studied. Field-emission scanning electron microscopy images and x-ray diffraction analysis of the samples revealed that the deposition spray rate and annealing process affected both the surface morphology and preferred orientation of the polycrystalline cubic phase of the layers. Electrical investigations confirmed presence of oxygen vacancy ( V O) defects related to band tail, having minimum width in the sample deposited at the highest spray rate (5 mL/min). Ultraviolet photoconductivity results indicated that, although this sample had the highest light sensitivity, its sensitivity decreased after annealing due to increased V O defects.

  20. Silicon nanomembranes as a means to evaluate stress evolution in deposited thin films

    Science.gov (United States)

    Anna M. Clausen; Deborah M. Paskiewicz; Alireza Sadeghirad; Joseph Jakes; Donald E. Savage; Donald S. Stone; Feng Liu; Max G. Lagally

    2014-01-01

    Thin-film deposition on ultra-thin substrates poses unique challenges because of the potential for a dynamic response to the film stress during deposition. While theoretical studies have investigated film stress related changes in bulk substrates, little has been done to learn how stress might evolve in a film growing on a compliant substrate. We use silicon...

  1. The Evolution of Film: Rethinking Film Studies

    OpenAIRE

    Harbord, Janet P.

    2007-01-01

    How is film changing? What does it do, and what do we do with it? This book examines the reasons why we should be studying film in the twenty-first century, connecting debates from philosophy, anthropology and new media with historical concerns of film studies.

  2. Pd thin films on flexible substrate for hydrogen sensor

    Energy Technology Data Exchange (ETDEWEB)

    Öztürk, Sadullah [Fatih Sultan Mehmet Vakıf University, Engineering Faculty, Istanbul (Turkey); Kılınç, Necmettin, E-mail: nkilinc@nigde.edu.tr [Nigde University, Mechatronics Engineering Department, 51245 Nigde (Turkey); Nigde University, Nanotechnology Application and Research Center, 51245 Nigde (Turkey)

    2016-07-25

    In this work, palladium (Pd) thin films were prepared via RF sputtering method with various thicknesses (6 nm, 20 nm and 60 nm) on both a flexible substrate and a hard substrate. Hydrogen (H{sub 2}) sensing properties of Pd films on flexible substrate have been investigated depending on temperatures (25–100 °C) and H{sub 2} concentrations (600 ppm – 10%). The effect of H{sub 2} on structural properties of the films was also studied. The films were characterized by Scanning Electron Microscopy (SEM) and X-ray diffraction. It is found that whole Pd films on hard substrate show permanent structural deformation after exposed to 10% H{sub 2} for 30 min. But, this H{sub 2} exposure does not causes any structural deformation for 6 nm Pd film on flexible substrate and 6 nm Pd film on flexible substrate shows reversible sensor response up to 10% H{sub 2} concentration without any structural deformation. On the other hand, Pd film sensors that have the thicknesses 20 nm and 60 nm on flexible substrate are irreversible for higher H{sub 2} concentration (>2%) with film deformation. The sensor response of 6 nm Pd film on flexible substrate increased with increasing H{sub 2} concentration up 4% and then saturated. The sensitivity of the film decreased with increasing operation temperature. - Highlights: • Pd thin films fabricated by RF sputtering on both flexible and hard substrates. • Structural deformation observed for films on hard substrate after exposing 10% H{sub 2}. • 6 nm Pd film on flexible substrate shows reversible sensor response up to 10% H{sub 2}. • H{sub 2} sensing properties of film on flexible substrate investigated depending on temperature and concentration. • The sensitivity of the film decreased with increasing operation temperature.

  3. Modeling Tear Film Evaporation and Breakup with Duplex Films

    Science.gov (United States)

    Stapf, Michael; Braun, Richard; Begley, Carolyn; Driscoll, Tobin; King-Smith, Peter Ewen

    2015-11-01

    Tear film thinning, hyperosmolarity, and breakup can irritate and damage the ocular surface. Recent research hypothesizes deficiencies in the lipid layer may cause locally increased evaporation, inducing conditions for breakup. We consider a model for team film evolution incorporating two mobile fluid layers, the aqueous and lipid layers. In addition, we include the effects of salt concentration, osmosis, evaporation as modified by the lipid layer, and the polar portion of the lipid layer. Numerically solving the resulting model, we explore the conditions for tear film breakup and analyze the response of the system to changes in our parameters. Our studies indicate sufficiently fast peak values or sufficiently wide areas of evaporation promote TBU, as does diffusion of solutes. In addition, the Marangoni effect representing polar lipids dominates viscous dissipation from the non-polar lipid layer in the model. This work was supported in part by NSF grant 1412085 and NIH grant 1R01EY021794.

  4. Ferroelectric and piezoelectric responses of (110) and (001)-oriented epitaxial Pb(Zr{sub 0.52}Ti{sub 0.48})O{sub 3} thin films on all-oxide layers buffered silicon

    Energy Technology Data Exchange (ETDEWEB)

    Vu, Hien Thu [International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology, No.1 Dai Co Viet Road, Hanoi 10000 (Viet Nam); Nguyen, Minh Duc, E-mail: minh.nguyen@itims.edu.vn [International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology, No.1 Dai Co Viet Road, Hanoi 10000 (Viet Nam); Inorganic Materials Science (IMS), MESA + Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands); SolMateS B.V., Drienerlolaan 5, Building 6, 7522 NB Enschede (Netherlands); Houwman, Evert; Boota, Muhammad [Inorganic Materials Science (IMS), MESA + Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands); Dekkers, Matthijn [SolMateS B.V., Drienerlolaan 5, Building 6, 7522 NB Enschede (Netherlands); Vu, Hung Ngoc [International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology, No.1 Dai Co Viet Road, Hanoi 10000 (Viet Nam); Rijnders, Guus [Inorganic Materials Science (IMS), MESA + Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands)

    2015-12-15

    Graphical abstract: The cross sections show a very dense structure in the (001)-oriented films (c,d), while an open columnar growth structure is observed in the case of the (110)-oriented films (a,b). The (110)-oriented PZT films show a significantly larger longitudinal piezoelectric coefficient (d33{sub ,f}), but smaller transverse piezoelectric coefficient (d31{sub ,f}) than the (001) oriented films. - Highlights: • We fabricate all-oxide, epitaxial piezoelectric PZT thin films on Si. • The orientation of the films can be controlled by changing the buffer layer stack. • The coherence of the in-plane orientation of the grains and grain boundaries affects the ferroelectric properties. • Good cycling stability of the ferroelectric properties of (001)-oriented PZT thin films. The (110)-oriented PZT thin films show a larger d33{sub ,f} but smaller d31{sub ,f} than the (001)-oriented films. - Abstract: Epitaxial ferroelectric Pb(Zr{sub 0.52}Ti{sub 0.48})O{sub 3} (PZT) thin films were fabricated on silicon substrates using pulsed laser deposition. Depending on the buffer layers and perovskite oxide electrodes, epitaxial films with different orientations were grown. (110)-oriented PZT/SrRuO{sub 3} (and PZT/LaNiO{sub 3}) films were obtained on YSZ-buffered Si substrates, while (001)-oriented PZT/SrRuO{sub 3} (and PZT/LaNiO{sub 3}) were fabricated with an extra CeO{sub 2} buffer layer (CeO{sub 2}/YSZ/Si). There is no effect of the electrode material on the properties of the films. The initial remnant polarizations in the (001)-oriented films are higher than those of (110)-oriented films, but it increases to the value of the (001) films upon cycling. The longitudinal piezoelectric d33{sub ,f} coefficients of the (110) films are larger than those of the (001) films, whereas the transverse piezoelectric d31{sub ,f} coefficients in the (110)-films are less than those in the (001)-oriented films. The difference is ascribed to the lower density (connectivity between

  5. Absorption spectrum of monomeric pseudoisocyanine: A new perspective and its implications for formation and spectral response of J-aggregates in solution and in thin films

    Energy Technology Data Exchange (ETDEWEB)

    Guelen, Demet [Physics Department, Middle East Technical University (METU), 06531 Ankara (Turkey)], E-mail: dgul@metu.edu.tr; Ozcelik, Serdar [Chemistry Department, Izmir Institute of Technology, Urla 35430, Izmir (Turkey)

    2008-05-15

    We argued against the current spectral assignment for absorption spectrum of monomeric PIC which is widely accepted since the pioneering works of Scheibe and Jelley [G. Scheibe, Angew. Chem. 49 (1936) 563; E.E. Jelly, Nature 138 (1936) 1009]. A new spectrum is presented along with its conceptual basis. The hypothesized spectrum attributes the previous 0-0 ({approx}525 nm) and 0-1 ({approx}490 nm) assignments, respectively, to intermediates acting as the precursor of J-aggregates and to the 0-0 transition of monomeric PIC and brings the spectrum in accord with the seemingly universal spectral fingerprint of cyanines. The hypothesis is used to analyze and interpret the temperature dependence of the UV-vis absorption of PIC aggregates in saline aqueous solution by incorporating the J-band simulations within frenkel exciton formalism. Its implications for aggregate formation kinetics are given on the basis of current spectroscopic evidence. The hypothesis readily answers several long-standing questions: Why compared to many other cyanines at least an order of magnitude higher dye concentration is needed to form J-aggregates of PIC? Why are there no precursors, since aggregation is expected to be a consecutive process? A large number of observations on steady-state and time-resolved spectral properties, and aggregation kinetics in solution/thin films are likely to find reasonable explanations within this hypothesis.

  6. Effect of pH value of poly(ethylenimine)-H 2SO 4 electrolyte on electrochromic response of polyaniline thin films

    Science.gov (United States)

    Hu, Hailin; Ortíz-Aguilar, Blanca E.; Hechavarría, Liliana

    2007-02-01

    Electrochromic devices (ECDs) are electrochemical cells with one or two electrochemically active coatings that change color during the reduction-oxidation process. In this work an electrochromic polyaniline (PANI) thin film and a viscous electrolyte, formed by mixing a basic aqueous solution of polyethylenimine (PEI) and concentrated sulfuric acid (H 2SO 4), have been used as the main components of an ECD. The pH value of the electrolyte is a function of the relative proportion between PEI and H 2SO 4. Fourier transform infrared spectroscopy (FT-IR) results show that for those PEI-H 2SO 4 complexes of pH value varied from 2 to 9 sulfate ions of the inorganic acid are associated to the imine groups of PEI. If the pH value of the same system is lower than or equal to 1, HSO4- anions appear in the electrolyte together with a notable reduction of the free water content. Electrochemical impedance spectroscopy study of these electrolytes show that the protonic conductivity of the PEI-H 2SO 4 complex with pH 1 is almost three orders of magnitude lower than that of the same electrolytes but with a pH value between 2 and 6. Optical switch speed of a PANI/PEI-H 2SO 4 based ECD at 550 nm under a square potential application of +1.2 V and -1.2 V is proportional to the ionic conductivity of the electrolyte of the device.

  7. Film Festivals and Migration

    NARCIS (Netherlands)

    de Valck, M.; Ness, I.

    2013-01-01

    Film festivals have become a widespread phenomenon since their inception at the Venice Film Festival in 1932, the first festival to be organized on a regular basis. Film festivals proliferated in particular from the late 1960s onward. Today a film festival takes place every day somewhere: the

  8. The Film Spectator

    NARCIS (Netherlands)

    Buckland, Warren

    1995-01-01

    This is the first collection of essays in English to give prominence to the work of European film scholars whose aim is 'to understand how film is understood'. The Film Spectator raises fundamental issues that have confronted film theory for the past thirty years, but which have never been adequatel

  9. Current-induced surface roughness reduction in conducting thin films

    Science.gov (United States)

    Du, Lin; Maroudas, Dimitrios

    2017-03-01

    Thin film surface roughness is responsible for various materials reliability problems in microelectronics and nanofabrication technologies, which requires the development of surface roughness reduction strategies. Toward this end, we report modeling results that establish the electrical surface treatment of conducting thin films as a physical processing strategy for surface roughness reduction. We develop a continuum model of surface morphological evolution that accounts for the residual stress in the film, surface diffusional anisotropy and film texture, film's wetting of the layer that is deposited on, and surface electromigration. Supported by linear stability theory, self-consistent dynamical simulations based on the model demonstrate that the action over several hours of a sufficiently strong and properly directed electric field on a conducting thin film can reduce its surface roughness and lead to a smooth planar film surface. The modeling predictions are in agreement with experimental measurements on copper thin films deposited on silicon nitride layers.

  10. Emotional reactivity to film material in Alzheimer's disease.

    Science.gov (United States)

    Mograbi, Daniel C; Brown, Richard G; Morris, Robin G

    2012-01-01

    To explore emotional reactivity in mild to moderate Alzheimer's disease (AD) using film material, investigating the influence of dementia-related material and awareness of condition. Twenty-two patients with AD and 21 healthy older adults viewed films with positive, neutral or negative content, including a film about dementia. Reactivity was measured through a self-report questionnaire and filming of facial expressions. Awareness of condition was assessed contrasting patients' versus informants' versions of an anosognosia questionnaire. The AD patients showed reduced self-reported reactivity to negative films, but exhibited a pattern of facial responses similar to controls for all films. Awareness was associated with frequency of negative facial expressions during the dementia film. AD patients may have impairments in self-reported reactivity to negative stimuli. Awareness may mediate responses to dementia-related material. Copyright © 2012 S. Karger AG, Basel.

  11. Deposition of ZnO Films on Freestanding CVD Thick Diamond Films

    Institute of Scientific and Technical Information of China (English)

    SUN Jian; BAI Yi-Zhen; YANG Tian-Peng; XU Yi-Bin; WANG Xin-Sheng; DU Guo-Tong; WU Han-Hua

    2006-01-01

    @@ For ZnO/diamond structured surface acoustic wave (SAW) filters, performance is sensitively dependent on the quality of the ZnO films. In this paper, we prepare highly-oriented and fine grained polycrystalline ZnO thin films with excellent surface smoothness on the smooth nucleation surfaces of freestanding CVD diamond films by metal organic chemical vapour deposition (MOCVD). The properties of the ZnO films are characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), and photoluminescence (PL) spectrum. The influences of the deposition conditions on the quality of ZnO films are discussed briefly. ZnO/freestanding thick-diamond-film layered SAW devices with high response frequencies are expected to be developed.

  12. Physics in Films: An Assessment

    CERN Document Server

    Efthimiou, C J; Maronde, D; Winningham, T

    2006-01-01

    Physics in Films is an alternative version of the physical science course offered to non-science majors at the University of Central Florida. The course uses the popularity of Hollywood films to generate interest in science and to engage students that have traditionally been resistant to taking science courses. Scenes that lead to teachable science moments are identified in films and then used in class to concretize abstract physical concepts. With the wide variety of movies available, different "flavors" of the course, each specializing in a certain genre of film, have been created. This creates an audience of students with a high level of interest in the teaching tool and helps enhance their learning experience. In addition to the films, the course uses electronic student response systems to increase class participation. Although the course was first developed during the academic year 2002-2003, we continue to develop and assess it. After a brief outline of the motivation for the development of the course, ...

  13. Durable solar mirror films

    Energy Technology Data Exchange (ETDEWEB)

    O' Neill, Mark B.; Henderson, Andrew J.; Hebrink, Timothy J.; Katare, Rajesh K.; Jing, Naiyong; North, Diane; Peterson, Eric M.

    2017-02-14

    The present disclosure generally relates to durable solar mirror films, methods of making durable solar mirror films, and constructions including durable solar mirror films. In one embodiment, the present disclosure relates to a solar mirror film comprising: a multilayer optical film layer including having a coefficient of hygroscopic expansion of less than about 30 ppm per percent relative humidity; and a reflective layer having a coefficient of hygroscopic expansion.

  14. Joining Chemical Pressure and Epitaxial Strain to Yield Y-doped BiFeO3 Thin Films with High Dielectric Response

    Science.gov (United States)

    Scarisoreanu, N. D.; Craciun, F.; Birjega, R.; Ion, V.; Teodorescu, V. S.; Ghica, C.; Negrea, R.; Dinescu, M.

    2016-05-01

    BiFeO3 is one of the most promising multiferroic materials but undergoes two major drawbacks: low dielectric susceptibility and high dielectric loss. Here we report high in-plane dielectric permittivity (ε’ ∼2500) and low dielectric loss (tan δ chemical pressure and epitaxial strain on the appearance of nanoscale stripe structure which creates conditions for easy reorientation and high dielectric response, and could be of more general relevance for the field of materials science where engineered materials with huge response to external stimuli are a highly priced target.

  15. A unified theory of instabilities in viscoelastic thin films: from wetting to confined films, from viscous to elastic films, and from short to long waves.

    Science.gov (United States)

    Sarkar, Jayati; Sharma, Ashutosh

    2010-06-01

    A general unified theory of field (van der Waals, electric, etc.)-induced surface instabilities in thin viscoelastic films that accounts for a destabilizing field and stabilizing effects of elastic strain and surface energy is presented. The present theory seamlessly covers the instability and its different regimes in films ranging from elastic to viscous, from adhesive (confined) to wetting (free surface), and from short- to long-wave instabilities. The critical conditions for the onset of instability are found to be strongly dependent on elastic properties such as the shear modulus of the film, but the dominant wavelength is strikingly independent of the film rheology. Different regimes based on a nondimensional parameter (gamma/mu h) are uncovered, where gamma is the surface energy, mu is the elastic shear modulus, and h is the film thickness. A short-wave, elasticlike response with wavelength lambda approximately = 2.96 h is obtained for gamma/mu h 1. Owing to their small critical thickness, wetting films destabilized by intermolecular forces always display long-wave instability regardless of their viscoelasticity. Furthermore, our numerical simulations based on energy minimization for unstable wetting elastic films show the formation of islands for ultrathin films and a morphological phase transition