WorldWideScience

Sample records for radioactive materials norms

  1. Naturally Occurring Radioactive Materials (NORM)

    International Nuclear Information System (INIS)

    Gray, P.

    1997-01-01

    This paper discusses the broad problems presented by Naturally Occuring Radioactive Materials (NORM). Technologically Enhanced naturally occuring radioactive material includes any radionuclides whose physical, chemical, radiological properties or radionuclide concentration have been altered from their natural state. With regard to NORM in particular, radioactive contamination is radioactive material in an undesired location. This is a concern in a range of industries: petroleum; uranium mining; phosphorus and phosphates; fertilizers; fossil fuels; forestry products; water treatment; metal mining and processing; geothermal energy. The author discusses in more detail the problem in the petroleum industry, including the isotopes of concern, the hazards they present, the contamination which they cause, ways to dispose of contaminated materials, and regulatory issues. He points out there are three key programs to reduce legal exposure and problems due to these contaminants: waste minimization; NORM assesment (surveys); NORM compliance (training)

  2. Naturally Occurring Radioactive Materials (NORM)

    Energy Technology Data Exchange (ETDEWEB)

    Gray, P. [ed.

    1997-02-01

    This paper discusses the broad problems presented by Naturally Occuring Radioactive Materials (NORM). Technologically Enhanced naturally occuring radioactive material includes any radionuclides whose physical, chemical, radiological properties or radionuclide concentration have been altered from their natural state. With regard to NORM in particular, radioactive contamination is radioactive material in an undesired location. This is a concern in a range of industries: petroleum; uranium mining; phosphorus and phosphates; fertilizers; fossil fuels; forestry products; water treatment; metal mining and processing; geothermal energy. The author discusses in more detail the problem in the petroleum industry, including the isotopes of concern, the hazards they present, the contamination which they cause, ways to dispose of contaminated materials, and regulatory issues. He points out there are three key programs to reduce legal exposure and problems due to these contaminants: waste minimization; NORM assesment (surveys); NORM compliance (training).

  3. Regulation of naturally occurring radioactive materials (NORM) with emphasis on NORM disposal options

    International Nuclear Information System (INIS)

    Gray, P.

    1995-01-01

    Regulation of radioactive material can occur at the Federal, State, and sometimes local level. In addition to regulations at the federal and state level, there are guidelines and standards that do not carry the weight of law, yet are often referenced. Neither the Nuclear Regulatory Commission (NRC) or Environmental Protection Agency (EPA) categorically regulates NORM at this time. However, many of the existing regulations and guidelines for licensed radioactive material can be applied by states and other regulatory agencies to NORM. The primary regulations covering radioactive materials and exposures were promulgated under the Atomic Energy Act (AEA) or 1954, as amended. NRC licenses and regulates civilian use of nuclear materials to protect public health and safety and the environment. NRC makes rules and sets standards for licensees and inspects the activities of licensees to insure that they do not violate safety rules. OSHA regulations for worker protection from exposures to radioactivity are contained in 29CFR1910.96. These standards are designed to protect workers from exposure to radiation in programs other than those regulated by OSHA. The Uranium Mill Tailings Control Act, with implementing regulations found in 40CFR192 were promulgated by the EPA for cleanup of uranium mill tailings. These standards are often used by states and other agencies in regulating cleanup of NORM. EPA is currently considering regulation of NORM on NRC and DOE facilities under 40CFR195

  4. Radiation protection and the naturally occurring radioactive materials (NORM)

    International Nuclear Information System (INIS)

    Paschoa, A.S.; MacDowell, P.

    1996-01-01

    There are many industries dealing with naturally occurring radioactive materials (NORM), some of them without knowing that their industrial processes and/or their regular wastes involve radioactivity. However, an increasing number of industries that produce NORM wastes are being sued, wherever there is a legal framework to do so. In particular, NORM wastes produced for a long time by the oil industry became foci of legal battles in the United States and elsewhere. The ripple effect of these judicial battles will influence the decision making processes of NORM wastes producing industries, mostly because of the costs incurred by remedial and preventive actions concerning NORM contamination. The regulation of NORM will occur sooner or later, and such actions may become mandatory. A foreseeable consequence of such regulation is a change in attitude concerning the sources and materials associated with NORM. Among those industries likely to be affected one can mention: niobium; rare earth processing; oil production; phosphate; uranium mining and milling; zircon; water treatment; and waste water treatment. The paper will briefly review data on exempt concentration activities, as suggested by the basic safety standards based on realistic environmental and dosimetric models. These activity concentrations are compared with those found in a number of extractive industries, and may be used to establish derived limits from a pre-established dose limit. (author)

  5. Naturally Occurring Radioactive Material (NORM) in oil and gas industry

    International Nuclear Information System (INIS)

    Algalhoud, K. A.; AL-Fawaris, B. H.

    2008-01-01

    Oil and gas industry in the Great Jamahiriya is one of those industries that were accompanied with generation of some solid and liquid waste, which associated with risks that might lead to harmful effects to the man and the environment. Among those risks the continuous increase of radioactivity levels above natural radioactive background around operating oil fields, due to accumulation of solid and liquid radioactive scales and sludge as well as contaminated produced water that contain some naturally occurring radioactive materials ( NORM/TE-NORM). Emergence of NORM/TE-NORM in studied area noticed when the natural background radioactivity levels increased around some oil fields during end of 1998, For this study, six field trips and a radiation surveys were conducted within selected oil fields that managed and owned by six operating companies under NOC, in order to determine the effective radiation dose in contrast with dose limits set by International Counsel of Radiation Protection(ICRP),and International Atomic Energy Agency(IAEA) Additionally solid samples in a form of scales and liquid samples were also taken for further investigation and laboratory analysis. Results were tabulated and discussed within the text .However to be more specific results pointed out to the fact that existence of NORM/TE-NORM as 226 Ra, 228 Ra, within some scale samples from surface equipment in some oil and gas fields in Jamahiriya were significant. As a result of that, the workers might receive moderate radiation dose less than the limits set by ICRP,IAEA, and other parts of the world producing oil and gas. Results predicted that within the investigated oil fields if workers receive proper training about handling of NORM/TE-NORM and follow the operating procedure of clean ups, work over and maintenance plane carefully, their committed exposure from NORM/TE-NORM will be less than the set limits by ICRP and IAEA. In a trend to estimate internal radiation dose as a result of possible

  6. 'The NORM Report' : the journal addressing naturally occurring radioactive materials

    International Nuclear Information System (INIS)

    Simmons, C.T.; Tsurikov, N.

    2008-01-01

    Full text: The need for the specific international publication dedicated to the radiation protection and regulatory issues associated with exposures of workers, general public and the environment in situations involving naturally occurring radioactive materials (Norm) has been identified almost ten years ago. In the 1990-s the journal entitled 'the NORM report' was published in the U.S.A. mainly dealt with legislative updates in regard to NORM in different states and at a later stage Canada. The printed journal has a wide following among industries and regulatory authorities concerned with NORM. Unfortunately, the publishing ceased in early 2000-s with the passing of the editor, Dr. Peter Gray. The publication of 'the NORM Report' will re-commence in early 2008 as an internet based publication that is intended to be a resource for: Regulatory authorities exchange information in regards to the 'NORM-specific' regulations and guidelines applicable in their jurisdictions. They are also able to collect details from authorities in other countries/states - to ensure the adoption of the most appropriate regulatory standards to similar levels of radiation exposure and the same industries world-wide (not only within the USA), a) Researches, who will be able to publish the results of their studies in a journal specifically dedicated to naturally occurring radioactive materials and b) Industries that use, process, and generate - to facilitate the information exchange in regards to best practices in controlling radiation exposure and in the disposal or re-use of NORM-containing materials. The intent of the presentation is to obtain the opinion of a wider radiation protection community of the usefulness and the contents of the publication of 'the NORM Report' to ensure the journal meets its state objectives. (author)

  7. Natural occurring radioactivity materials (NORM) in Ecuadorian oil fields

    International Nuclear Information System (INIS)

    Vasquez, R.; Enriquez, F.; Reinoso, T.

    2008-01-01

    Full text: Many natural elements contain radioactive isotopes, and most of them are present in the soil. In the gas and oil industries the most important radio nuclides are Ra-226 from the decay series of U-238, and in lower grade Ra-228 from the decay series of Th-232. Water exit from the perforation and perforation mud in the Oil towers drowns the NORM materials. Changes in temperature and pressure, allows the presence of sulphates and carbonates in pipes and internal areas of equipment. A Ra and Ba similarity leads to the selective co-precipitation in mud and incrustations of radioisotopes. A measure made in the pipe lines show that these industries generate important doses overcoming the levels of exemption and even the limits of established doses. The research was done by finding a pipe at Shushufindi 52 B well of production near by Coca city in the Ecuadorian jungle. The 'Comision Ecuatoriana de Energia Atomica' (CEEA), supervises the pipe line and accessories that are used in PETROPRODUCION fields accomplishing the radiological characterization, identifying the useless pipes and separate them in order of take care the good ones. Meanwhile the identification of the radioactive isotopes the CEEA proceed with the isolation of the radioactive disposals. From 57.830 pipes and accessories there were 1.607 useless ones, 56.223 didn't show radioactivity. Those pipes were monitored from the PETRODUCCION'S warehouses in Coca, Lago Agrio and Guarumo from September 12 th 2005 to September 12 th 2006. The CEEA is interested in NORMS because inadvertent workers may get high levels of radioactivity exposition. The Oil industries should have a manual about the complete handling of these materials. (author)

  8. Potential environmental and regulatory implications of naturally occurring radioactive materials (NORM)

    International Nuclear Information System (INIS)

    Paschoa, A.S.

    1998-01-01

    The immense volume of naturally occurring radioactive materials (NORM) wastes produced annually by extracting industries throughout the world deserves to come to the attention of international and national environmental protection agencies and regulatory bodies. Although a great deal of work has been done in the fields of radiation protection and remedial actions concerning uranium and other mines, the need to dispose of diffuse NORM wastes will have environmental and regulatory implications that thus far are not fully appreciated. NORM wastes constitute, by and large, unwanted byproducts of industrial activities as diverse as thorium and uranium milling, niobium, tin and gold mining extraction, water treatment, and the production of oil, gas, phosphate fertilizer, coal fire and aluminium. The volumes of NORM wastes produced annually could reach levels so high that the existing low level radioactive waste (LLRW) facilities would be readily occupied by NORM if controlled disposal procedures were not adopted. On the other hand, NORM cannot just be ignored as being below radiological concern (BRC) or lower than exempt concentration levels (ECLs), because sometimes NORM concentrations reach levels as high as 1 x 10 3 kBq/kg for 226 Ra, and not much less for 228 Ra. Unfortunately, thus far, there is not enough information available concerning NORM wastes in key industries, though the international scientific community has been concerned, for a long time now, with technologically enhanced natural radiation exposures (TENRE). This article is written with the intention of examining, to the extent possible, the potential environmental and regulatory implications of NORM wastes being produced in selected industries. (Author)

  9. Alternatives for the disposal of NORM [naturally occurring radioactive materials] wastes in Texas

    International Nuclear Information System (INIS)

    Nielson, K.K.; Rogers, V.C.; Pollard, C.G.

    1989-01-01

    Some of the Texas wastes containing naturally occurring radioactive materials (NORM) have been disposed of in a uranium mill tailings impoundment. There is currently no operating disposal facility in Texas to accept these wastes. As a result, some wastes containing extremely small amounts of radioactivity are sent to elaborate disposal sites at extremely high costs. The Texas Low-Level Radioactive Waste Disposal Authority has sponsored a study to investigate lower cost, alternative disposal methods for certain wastes containing small quantities of NORM. This paper presents the results of a multipathway safety analysis of various scenarios for disposing of wastes containing limited quantities of NORM in Texas. The wastes include pipe scales and sludges from oil and gas production, residues from rare-earth mineral processing, and water treatment resins, but exclude large-volume, diffuse wastes (coal fly ash, phosphogypsum). The purpose of the safety analysis is to define concentration and quantity limits for the key nuclides of NORM that will avoid dangerous radiation exposures under different waste disposal scenarios

  10. Regulation of naturally occurring radioactive material (NORM) -- an international perspective

    International Nuclear Information System (INIS)

    Davis, M.W.

    1997-01-01

    Naturally Occurring Radioactive Material (NORM) was first recognized as a potential problem as long ago as 1904 in the oil fields of Canada. NORM later became an issue in the North Sea oil and gas production facilities in the early 1980's and became more widely recognized in the United States in 1986 during a routine well workover in the state of Mississippi. NORM contamination of oil and gas industry production equipment has since been identified world wide. The United States, including Alaska and the Gulf of Mexico region, the North Sea region, the United Kingdom, Canada, Australia and several Middle Eastern countries have all reported NORM contamination. The purpose of this paper is to discuss some of the international regulations or guidelines that have been promulgated concerning NORM in the oil and gas industry. Additionally, the impact of these regulations or guidelines on non-oil and gas industries will also be discussed. A comparison of these regulations or guidelines to those generally found in the United States shall be drawn

  11. Development of simple and rapid radioactivity analysis for thorium series in the products containing naturally occurring radioactive materials (NORM)

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jae Ryong; Park, Se Young; Yoon, Seok Won; Ha, Wi Ho [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Lee, Jae Kook; Kim, Kwang Pyo [Kyung Hee University, Seoul (Korea, Republic of)

    2016-05-15

    It is necessary to analyze radioactivity of naturally occurring radioactive materials (NORM) in products to ensure radiological safety required by Natural Radiation Safety Management Act. The pretreatments for the existing analysis methods require high technology and time. Such destructive pretreatments including grinding and dissolution of samples make impossible to reuse products. We developed a rapid and simple procedure of radioactivity analysis for thorium series in the products containing NORM. The developed method requires non-destructive or minimized pretreatment. Radioactivity of the product without pretreatment is initially measured using gamma spectroscopy and then the measured radioactivity is adjusted by considering material composition, mass density, and geometrical shape of the product. The radioactivity adjustment can be made using scaling factors, which is derived by radiation transport Monte Carlo simulation. Necklace, bracelet, male health care product, and tile for health mat were selected as representative products for this study. The products are commonly used by the public and directly contacted with human body and thus resulting in high radiation exposure to the user. The scaling factors were derived using MCNPX code and the values ranged from 0.31 to 0.47. If radioactivity of the products is measured without pretreatment, the thorium series may be overestimated by up to 2.8 times. If scaling factors are applied, the difference in radioactivity estimates are reduced to 3-24%. The developed procedure in this study can be used for other products with various materials and shapes and thus ensuring radiological safety.

  12. Naturally occurring radioactive materials (NORM) in the oil and gas processing and production facilities

    International Nuclear Information System (INIS)

    Najera F, J.

    1994-01-01

    NORM contamination is produced by concentration in petroleum facilities of naturally occurring radioactive materials. The presence of NORM in petroleum reservoirs and in the oil and gas industry has been widely recognized. It's not a critical technical problem if you proceed timely to solve it. NORM is a great but controllable hazard to the human health and the environment, and represents a severe waste management problem. We suggest to the latino american oil companies to conduct studies to detect NORM contamination in their facilities an use to them to plan the appropriate actions to control the situation. (author). 15 refs

  13. Geochemical signature of radioactive waste: oil NORM

    International Nuclear Information System (INIS)

    Costa, Gilberto T. de Paula; Costa-de-Moura, Jorge; Gomes, Carlos de Almeida; Sampaio, Emidio A. Lopes

    2017-01-01

    The Brazilian Nuclear Agency (CNEN) rules all nuclear activity in Brazil as demanded by the Federal Constitution, articles 21, XXIII, and 177, V, and by the Federal Acts 4.118/62 and 10.308/2001. Therefore, the CNEN is responsible for any radioactive waste disposal in the country. Oil Naturally Occurring Radioactive Materials (Oil NORM) in this paper refers to waste coming from oil exploration. Oil NORM has called much attention during the last decades, mostly because it is not possible to determine its primary source due to the actual absence of regulatory control mechanism. There is no efficient regulatory tool which allows determining the origin of such NORM wastes even among those facilities under regulatory control. This fact may encourage non-authorized radioactive material transportation, smuggling and terrorism. The aim of this project is to provide a geochemical signature for each oil NORM waste using its naturally occurring isotopic composition to identify its origin. The here proposed method is a specific geochemical modeling of oil sludge NORM samples which are analyzed for radioisotopes normally present in oil pipes, such as 228 Ac, 214 Bi and 214 Pb. The activity ratios are plotted in scatter diagrams. This method was successfully tested with data of different sources obtained from analysis reports from the Campos Basin/Brazil and from literature. (author)

  14. Geochemical signature of radioactive waste: oil NORM

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Gilberto T. de Paula; Costa-de-Moura, Jorge; Gomes, Carlos de Almeida; Sampaio, Emidio A. Lopes, E-mail: gilberto.costa@cnen.gov.br, E-mail: jcmoura@cnen.gov.br, E-mail: cgomes@cnen.gov.br [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil). Div. de Controle de Rejeitos e Transporte de Materiais Radioativos

    2017-07-01

    The Brazilian Nuclear Agency (CNEN) rules all nuclear activity in Brazil as demanded by the Federal Constitution, articles 21, XXIII, and 177, V, and by the Federal Acts 4.118/62 and 10.308/2001. Therefore, the CNEN is responsible for any radioactive waste disposal in the country. Oil Naturally Occurring Radioactive Materials (Oil NORM) in this paper refers to waste coming from oil exploration. Oil NORM has called much attention during the last decades, mostly because it is not possible to determine its primary source due to the actual absence of regulatory control mechanism. There is no efficient regulatory tool which allows determining the origin of such NORM wastes even among those facilities under regulatory control. This fact may encourage non-authorized radioactive material transportation, smuggling and terrorism. The aim of this project is to provide a geochemical signature for each oil NORM waste using its naturally occurring isotopic composition to identify its origin. The here proposed method is a specific geochemical modeling of oil sludge NORM samples which are analyzed for radioisotopes normally present in oil pipes, such as {sup 228}Ac, {sup 214}Bi and {sup 214}Pb. The activity ratios are plotted in scatter diagrams. This method was successfully tested with data of different sources obtained from analysis reports from the Campos Basin/Brazil and from literature. (author)

  15. Naturally occurring radioactive materials (NORM IV). Proceedings of an international conference

    International Nuclear Information System (INIS)

    2005-10-01

    Radionuclides of natural origin are ubiquitous in both working and public environments, although their activity concentrations vary considerably. Exposures to natural sources are in most cases not a matter for regulatory concern. However, there are situations where exposures to natural sources may warrant consideration as to whether controls should be applied. One such situation is where the conditions are conducive to the buildup of elevated concentrations of radon in air. Another situation is the mining and/or processing of material where the activity concentrations of radionuclides of natural origin in the material itself, or in any material arising from the process, are significantly elevated - such material has come to be referred to as Naturally Occurring Radioactive Material (NORM). In the past, regulatory attention has been focused mostly on exposures arising from the mining and processing of uranium ores because such activities are part of the nuclear fuel cycle. More recently, attention has been broadened to include exposures from other industrial activities involving NORM, in recognition of the potential for such activities to also give rise to significant exposures of workers and members of the public if not adequately controlled. More and more countries are now including provisions in their national legislation and regulations for the control of exposures to natural sources, and the body of radiological data on such exposures is growing rapidly. This international conference, NORM IV, follows three previous conferences dealing with radon and NORM. The first was held in Amsterdam in 1997, the second in Krefeld, Germany in 1998 (NORM II), and the third in Brussels in 2001 (NORM III). In addition, an International Symposium on Technologically Enhanced Natural Radiation was held in Rio de Janeiro in 1999 - the IAEA was involved in the organization of that symposium, and published the proceedings as IAEA-TECDOC-1271. The main topic addressed at NORM IV was

  16. Transport of radioactive materials

    International Nuclear Information System (INIS)

    2013-01-01

    This ninth chapter presents de CNEN-NE--5.01 norm 'Transport of radioactive material'; the specifications of the radioactive materials for transport; the tests of the packages; the requests for controlling the transport and the responsibilities during the transport of radioactive material

  17. Dating of oilfield contamination by Natural Occurring Radioactive Materials (NORM) using isotopic ratios

    International Nuclear Information System (INIS)

    Al-Masri, M. S.; Othman, I.; Aba, A.

    2008-05-01

    In the present work, the possibility of using radium isotope ratios (226, 224, 228) for dating of NORM contaminated sites in the oilfields due to uncontrolled disposal of produced water into the environmental NORM contaminated soil sample were collected from different locations in Syrian Oilfields and radioactivity analysed. In addition, production water samples were collected and analysed to determine the isotopes ratios of the naturally occurring radioactive materials. The results have shown that the 228 Ra/ 226 Ra can be successfully used to date contaminated soil provided that this ratio is determined in production water. Moreover, the 210 Pb/ 226 Ra activity ratios was used for the first time for dating of contaminated soil where all factors affecting the method application have been evaluated. Furthermore, the obtained results for dating using the three methods were compared with the actual contamination dates provided by the oil companies. (Authors)

  18. Radiation and Radioactivity Levels Survey of Naturally Occurring Radioactive Materials (NORM) at PT Caltex Pacific Indonesia

    International Nuclear Information System (INIS)

    Bakri, Jusuf; Siregar, Roland

    2003-01-01

    PT Caltex Pacific Indonesia (CPI) is the largest oil company sharing contractor with Pertamina, located in Riau Province, Central Sumatera, employs about 6,800 employees and works together with 28,000 business partner employees. Currently CPI produces about 510,000 bbls crude oil. The production process mobilizes the naturally occurring radionuclides from deep reservoir rock that are deposited as Naturally Occurring Radioactive Materials (NORM) in well tubes, surface pipes, vessels and other processing equipment. NORM has a potential to be externally exposed during production process due to the accumulation of gamma emitting radionuclides and internal exposure to employees/business partners particularly during maintenance, sludge processing and decontamination of equipment. Understanding of the possible NORM hazards to human life, CPI initiated a NORM survey in order to obtain a clear picture of the magnitude of NORM in CPI operations. The survey has been conducted in 2001 and 2002 involved experts from Chevron Texaco USA, BATAN and BAPETEN Jakarta. The survey covered the determination of gamma exposure rates and the concentration of 238 U, 232 Th, 226 Ra, 228 Ra, 228 Th and 40 K in several samples taken from scale, sludge, tank bottom and sand. To safely management of NORM, the Industrial Health Team of Corporate Health, Environment and Safety in coordination with Training Center Team and BATAN have conducted a NORM training for Industrial Hygienist and employees exposed to NORM, developed Standard Operating Procedure for NORM Handling and Disposal and continuously performed NORM survey and mapping of all suspected areas. (author)

  19. Transport of radioactive materials

    International Nuclear Information System (INIS)

    1988-07-01

    The norm which establishes the requirements of radiation protection and safety related to the transport of radioactive materials, aiming to keep a suitable control level of eventual exposure of personnels, materials and environment of ionizing radiation, including: specifications on radioactive materials for transport, selection of package type; specification of requirements of the design and assays of acceptance of packages; disposal related to the transport; and liability and administrative requirements, are presented. This norm is applied to: truckage, water carriage and air service; design, fabrication, assays and mantenaince of packages; preparation, despatching, handling, loading storage in transition and reception in the ultimate storage of packages; and transport of void packages which have been contained radioactive materials. (M.C.K.) [pt

  20. The state-of-the-art on worldwide studies in some environments with elevated naturally occurring radioactive materials (NORM)

    International Nuclear Information System (INIS)

    Sohrabi, M.; Atomic Energy Organization of Iran, Tehran

    1998-01-01

    Direct observations and studies of the radiobiological and epidemiological effects of ionising radiation from naturally occurring radioactive materials (NORM) on man, in particular in areas with elevated NORM, are becoming of prime concern in radiation protection. This is due to existing discrepancies in the application of the linear no-threshold theory in obtaining radiation risks at low doses by extrapolation from high dose to low dose using dose and dose-rate effective factors. Many areas in the world have elevated NORM caused either by the geological and geochemical structure of the soil, or by the radioactive content of the water flowing from hot springs and/or due to technologically enhanced radioactivity as well as due to cosmic rays. Such areas, with relatively large cohort sizes, have been the subject of intensive dosimetry, radiobiological and epidemiological studies. It is the purpose of this article to review: sources of NORM and human exposure, needs and problems in study of areas with elevated NORM; the criteria for their classification; some areas with elevated NORM and the results of related studies, and some conclusions and recommendations for unification of an approach in future studies aimed at obtaining better estimates of human radiation risk factors from the effects of ionizing radiation. (Author)

  1. Derivation of the Radioactivity Index for Consumer Goods Containing NORM

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Mee; Chung, Kun Ho; Ji, Young Yong; Kim, Chang Jong; Kang, Mun Ja [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    Some consumer goods to promote health such as anion bracelets, necklace and mats contain naturally occurring radioactive material (NORM). Some of them can cause problems because of high radioactivity. In the regulations, there is an annual effective dose limit of 1mSv for products, but the activity concentration limits and radioactivity index for products is not established yet. Although there are few researches for consumer goods containing NORM in foreign countries, in Japan, for the consumer goods. To regulate the NORM in consumer goods, it is necessary to derive activity concentration limits corresponding to the annual limits of 1mSv. In this research, we calculated the activity concentration limits according to the usage quantities of consumer goods. Using these results, it is possible to suggest several radioactivity indexes to apply to a lot of consumer goods.

  2. Derivation of the Radioactivity Index for Consumer Goods Containing NORM

    International Nuclear Information System (INIS)

    Jang, Mee; Chung, Kun Ho; Ji, Young Yong; Kim, Chang Jong; Kang, Mun Ja

    2016-01-01

    Some consumer goods to promote health such as anion bracelets, necklace and mats contain naturally occurring radioactive material (NORM). Some of them can cause problems because of high radioactivity. In the regulations, there is an annual effective dose limit of 1mSv for products, but the activity concentration limits and radioactivity index for products is not established yet. Although there are few researches for consumer goods containing NORM in foreign countries, in Japan, for the consumer goods. To regulate the NORM in consumer goods, it is necessary to derive activity concentration limits corresponding to the annual limits of 1mSv. In this research, we calculated the activity concentration limits according to the usage quantities of consumer goods. Using these results, it is possible to suggest several radioactivity indexes to apply to a lot of consumer goods

  3. Radioactivity of and exposure by the consumer's goods containing NORM

    International Nuclear Information System (INIS)

    Yoshida, M.; Ohhata, T.; Sato, S.; Ohyama, R.; Furuya, H.

    2005-01-01

    It is so important from the view of point of regulation to know the radioactive concentration or radioactivity in the consumer's goods containing naturally occurring radioactive materials (NORM) and the radiation exposure when they are used in the daily living life. In this study, 20 consumer's goods containing NORM were collected. After chemically processing them, the radioactive concentrations in them were measured by an inductively coupled plasma attached with mass spectrometer (ICP-MS) and a γ-ray spectrometer of Ge(li). In addition, the radiation exposures were calculated in four typical cases where the consumer' goods are generally used in the daily living life. (J.P.N.)

  4. Safety aspects in handling naturally occurring radioactive material (NORM) at geothermal usage; Arbeitssicherheitstechnische Aspekte im Umgang mit NORM bei der Geothermie

    Energy Technology Data Exchange (ETDEWEB)

    Kettler, John; Havenith, Andreas [Aachen Institute for Nuclear Training GmbH (Germany); Hirsch, Marius

    2015-06-01

    This article describes potential radiological hazards, which originate through the mobilization of naturally occurring radioactive material (NORM) from deep geological deposits. The process of geothermal usage requires the artifical lift of injected fluids, which may also transport undesired by-products to the surface. As a result these by-products may precipitate, form residues and require radiation protection measures to cope with this task.

  5. Study of 222Rn emanation levels present in naturally occurring radioactive materials - NORM

    International Nuclear Information System (INIS)

    Miranda, Marcia Valeria F.E. Sa; Crispim, Verginia Reis; Lima, Clara Teresa S.

    2009-01-01

    The presence of Naturally Occurring Radioactive Material (NORM), contaminating oil and gas installations, is usual in the petroleum industry, and can be severe enough to expose the workers to elevated levels of radiation. The segregation of contaminated residues although necessary, is still a problem without a satisfactory solution. Currently, the most practical and economic option for discarding this material is to stock it in areas of the installation with controlled access. Certain equipment used in the petroleum industry has scale and sludge that could be associated to important levels of radioactivity. Typically, the scales are mixtures of carbonate and sulphate minerals, such as barite (BaSO 4 ), that easily incorporate 226 Ra and 228 Ra in their structures. The objective of this work was to measure the emanations of the radon present in NORM samples, via diffusion chambers containing a nuclear track detector (CR-39). The images of α particle tracks emanated by 222 Rn registered on CR-39 were observed with a Nikon E400 optic microscope and captured by a Nikon Coolpix digital camera and then stored in a database, to later count the tracks using the computational program, Image Pro plus. Since the number of those tracks resulted proportional to the emanation rate of 222 Rn this methodology allowed the comparison of contamination levels in analyzed samples. (author)

  6. Geologic considerations for the subsurface injection of naturally occurring radioactive materials (NORM): A case study

    International Nuclear Information System (INIS)

    Ladle, G.H.

    1995-01-01

    NORM waste consists of naturally occurring radioactive material associated with oil and gas operations as scale deposited in tubulars, surface piping, pumps, and other producing and processing equipment. NORM also occurs as sludge and produced sands at wellheads, transport vessels and tank bottoms. For disposal, NORM scale and sludge are separated from the tubulars and tank bottoms and ground to less than 100 microns and mixed into a slurry at the surface facility for disposal into a deep well injection interval below the Underground Sources of Drinking Water zone. This paper addresses two primary considerations: (1) subsurface geologic investigations which identify specific geologic horizons that have sufficient porosity and permeability to accept NORM slurries containing high total suspended solids concentrations, and (2) surface facility requirements. Generic and specific information, criteria, and examples are included in the paper to allow the application of the geologic principles to other areas or regions

  7. Transport of radioactive materials

    International Nuclear Information System (INIS)

    1991-07-01

    The purpose of this Norm is to establish, relating to the TRANSPORT OF RADIOACTIVE MATERIALS, safety and radiological protection requirements to ensure an adequate control level of the eventual exposure of persons, properties and environment to the ionizing radiation comprising: specifications on radioactive materials for transport; package type selection; specification of the package design and acceptance test requirements; arrangements relating to the transport itself; administrative requirements and responsibilities. (author)

  8. Concerns on the health effects of low-dose ionizing radiations from naturally occurring radioactive materials (NORM)

    International Nuclear Information System (INIS)

    Mohankumar, Mary N.

    2005-01-01

    It is a widely known fact that man evolved in a naturally radioactive environment. Even today life exists in an atmosphere of cosmic and terrestrial radiation. Radionuclides are found naturally in air, water and soil. They are even found in us, we being the products of our environment. Every day, we ingest and inhale radionuclides in our air and food and the water. Natural radioactivity is common in the rocks and soil that makes up our planet, in water and oceans, and in our building materials and homes. There is nowhere on earth that one cannot find natural radioactivity. Radioactive materials which occur naturally and expose people to radiation occur widely, and are known by the acronym 'NORM' (Naturally Occurring Radioactive Materials). Besides, around the globe there are some areas with an elevated background radiation. These areas include parts of Brazil, Iran, India and China. The sources of radiation in these areas include monazite containing beach sands and radium from hot springs. On the southwest coast of India, there are large deposits of thorium bearing monazite sands that contribute to an external radiation dose of about 5 - 6 mGy/yr, but in some parts doses up to 32.6 mGy/yr have been reported. Nevertheless, most general public associate ionising radiations only with the nuclear industry. Antinuclear activists often fail to accept the fact that coal-fired power stations and the oil and gas exploration operations may emit more radioactivity than an operating nuclear reactor. Another NORM issue relates to radon exposure in homes, particularly those built on granite grounds. The solid airborne Rn-222 progeny, particularly Po-218, Pb-214 and Bi-214 are of health importance because they can be inspired and retained in the lung causing cancer. Man-made operations like oil and gas production and processing operations result in technologically enhanced naturally occurring radioactive materials (TENORM) to accumulate at elevated concentrations in by

  9. Study of the emanation levels of 222Rn present in Naturally Occurring Radioactive Materials - NORM

    International Nuclear Information System (INIS)

    Miranda, Marcia Valeria de Fatima da Encarnacao Sa

    2009-01-01

    The presence of Naturally Occurring Radioactive Material (NORM), contaminating oil and gas facilities, is a common fact in the petroleum industry, and can be severe enough to expose the workers to elevated levels of radiation. Thus, contaminated residues need to be segregated but, this is still a problem without a satisfactory solution. Currently, the most practical and economic option for discarding this material is to stock it in areas of the facility whose access is controlled. Certain equipment used in the petroleum industry has scale and sludge that could be associated to important levels of radioactivity. Typically, the scale is a mixture of carbonate and sulphate minerals, such as barite (BaSO 4 ), that easily incorporates 226 Ra and 228 Ra in its structures. The objective of this work was to measure the emanations of the radon present in these NORM samples, via diffusion chambers containing a nuclear track detector (CR-39). The images of particle alpha tracks emanated by 222 Rn registered on CR-39 were observed with a Nikon E400 optic microscope and captured by a Nikon Coolpix digital camera and then stored in a database, to later count the tracks using the computational program, Image Pro plus. Being that the emanation rate of 222 Rn was proportional to the number of these tracks the methodology permitted the comparison of contamination levels of the analyzed samples. (author)

  10. Impact modelling of naturally occurring radioactive materials (NORM) in the environment

    International Nuclear Information System (INIS)

    Olyslaegers, G.

    2009-01-01

    Remediation of sites contaminated by Naturally Occurring Radioactive Materials (NORM) is a current issue in many countries world wide. These materials could arise from many types of industries such as mining and milling of uranium, thorium and other metals, phosphate industry, coal mining and combustion, oil and gas industry, abandoned radium and thorium extraction facilities. Waste products originating from these industries need to be managed in a proper way. In recent years, new radiation protection legislation, growing awareness of radiation risks at some sites and public perception have created the necessity to develop remediation strategies for those sites. These strategies can be based on the exploration of hypothetical scenarios, where different exposure pathways are screened. The Belgian Nuclear Research Centre SCK-CEN has been involved in an international comparison exercise under the IAEA EMRAS programme where the radiological impact of a hypothetical NORM waste dump site and the effect of corrective actions had to be assessed. The outcome of different radiological assessment models was compared. The waste dump (surface 1 km 2 , 10 m deep, containing 1 Bq g -1 of 238 U in secular equilibrium with her daughters) is located above an aquifer which can be contaminated by the waste due to percolation of rain water. The waste dump is either uncovered or covered by a 2 m thick layer, with an erosion rate of 0.1 mm y -1 and an effective porosity of 0.2. The dose, resulting from living on top and at 200 m distance from the border of the waste dump was to be calculated

  11. Transport of bundles and equipment which contain radioactive material

    International Nuclear Information System (INIS)

    1987-01-01

    This norm settles down: 1) The requirements that should be completed in relation to safety precautions and protection against ionizing radiations during the transport radioactive material and/or equipment containing it, in order to avoid risks to the collective and the environment. 2) The basic information on procedures that will be completed in the event of happening accidents during the transport or the transit storage of radioactive material and/or equipment that contain it. 3) The measures of security and physical protection during the transport of radioactive material and/or equipment containing it. This norm is applied: 1) To all the ways of transport (by air, by ground and by ship, fluvial and marine) of radioactive material and/or equipment that contain it. 2) To all natural or legal, public or private person, devoted to install, produce, trade, market, import or export radioactive materials and/or equipment containing it, and that needs to transport them as main or secondary activity [es

  12. Treatment and disposal of naturally occurring radioactive material (NORM) in the oil and gas industry. A review

    International Nuclear Information System (INIS)

    Richter, Ruediger B.; Schmuelling, Marcus; Hosemann, Peter

    2014-01-01

    Concerning naturally occurring radioactive material (NORM) from the oil/ and gas industry most of the industrial countries were lacking clear regulatory frameworks in waste legislation for many years. In the meanwhile on several places in Europe, but also in some of the GCC states in the Middle East such as in the United Arab Emirates and in Oman specialized treatment facilities are either in the stage of construction or already in operation. In particular, pilot plants for the decontamination of NORM-contaminated equipment have been tested recently. The paper reflects on the generation and the technical characterization of NORM but also the legislation compared on international level. Particularly an overview was provided by comparing the common practice on disposal in the North American Countries in comparison to Germany, the UK but also Australia. In addition the successful treatment of produced water from crude oil separation in a ''Constructed Wetland'' in the Sultanate Oman is briefly highlighted.

  13. Characteristics of naturally occurring radioactive materials (NORM) in the oil and gas industries: an overview

    International Nuclear Information System (INIS)

    Mohamad Puad Abu; Mohd Noor Mohd Yunus; Sopian, K.; Amran Abd Majid

    1999-01-01

    Activities and work practices in which radiation exposure of workers and members of the public is increased due to the presence of NORM are receiving increased attention from regulatory agencies and, to lesser extent, from the general public. In Malaysia the main sources of NORM are from the technological activities of tin mining, ore and heavy mineral processing, combustion of coal to generate power, and oil and gas extraction. The crude oil sludge that contains NORM arising from the oil and gas extraction activities lately has received special attention by the Malaysian regulatory authorities. These crude oil sludge are considered as Scheduled Waste (contains heavy metals) by Department of Environmental (DOE) and very low level radioactive waste which contains NORM by the Atomic Energy Licensing Board (AELB), and its cannot be disposed without permission and proper control. This paper reviewed the radiological behaviour and characteristic o NORM in the crude oil sludge from the oil and gas production activities in Malaysia. (Author)

  14. Modelling the Transfer of Radionuclides from Naturally Occurring Radioactive Material (NORM). Report of the NORM Working Group of EMRAS Theme 2

    International Nuclear Information System (INIS)

    2012-01-01

    This working group was established to improve the modelling of the transfer of radionuclides from residues containing naturally occurring radioactive material (NORM) for the purposes of radiological assessment. Almost all naturally occurring materials contain radionuclides from the primordial decay chains (for example, uranium-238, uranium-235, thorium-232 and their daughter products radium-226 and radium-228), plus some individual long-lived radionuclides such as potassium-40. Extraction and/or processing of minerals containing these materials results waste containing such radionuclides. Often the processing can enhance the concentration of the NORM in the waste as compared with the original material. The extraction and processing of minerals usually involves large volumes of material and the resulting waste is also present in large volumes which are usually left on the earth's surface. Human exposure to radionuclides from such waste piles can occur as a result of gaseous emanation from the waste (radon-222) or as a result of the leaching by rainfall of radionuclides from the waste into water courses and, possibly, food chains. There are a variety of situations involving NORM that require potential radiation doses to be assessed, they include: (1) surface storage of residues from the extraction and processing of minerals; (2) remediation of NORM-containing waste piles; and (3) the use of NORM-containing waste for backfilling, building materials, road construction etc. In all of these situations there is a need to understand the present and future behaviour of the radionuclides which may be released from NORM so that steps can be taken to ensure that humans are adequately protected from exposure to radiation. Because of the long-lived nature of many of the radionuclides, the assessments must be carried out over long times into the future. This is the first time that the modelling of NORM-containing radionuclides has been examined in this IAEA format and the working

  15. Naturally occurring radioactive material in the oil and gas industry

    International Nuclear Information System (INIS)

    Steingraber, W.A.

    1994-01-01

    Naturally occurring radioactive material (NORM) has been found in the Earth's crust and soil, the water we drink, the food we eat, the air we breathe, and the tissues of every living organism. It is relatively easy to determine open-quotes concentrationsclose quotes, or specific activity levels, in the range of 1 part per trillion for radioactive materials. With radioactive elements so abundant and detection possible at such low levels, the presence of NORM in oil and gas operations shouldn't be surprising. In fact, this presence has been recognized since at least the 1930's, but the phenomenon received only minimal attention in the United States until the mid-1980's. At that time regulatory agencies in several oil- and gas-producing states began to focus on NORM in the exploration and production segment of the industry, expressing concern over potential health and safety implications. The most significant aspects of NORM in oil production operations include original source, transport media, composition/radionuclides present, measurement methods, health/safety issues, waste classification, and waste disposal. In addition, I will summarize industry-sponsored NORM data collection and analysis efforts being conducted to aid in development of sound policies and procedures to address environmental, health, and safety issues. Current activities by state and federal regulatory agencies relevant to NORM in the oil and gas industry will also be reviewed

  16. Treatment and disposal of naturally occurring radioactive material (NORM) in the oil and gas industry. A review; Behandlung und Deponierung natuerlicher radioaktiver Abfaelle (NORM) der Erdoel- und Erdgasindustrie. Ein Ueberblick

    Energy Technology Data Exchange (ETDEWEB)

    Richter, Ruediger B.; Schmuelling, Marcus [Bauer Emirates Environment, Abu Dhabi (United Arab Emirates); Hosemann, Peter [California Univ., Berkeley, CA (United States). Nuclear Engineering

    2014-07-01

    Concerning naturally occurring radioactive material (NORM) from the oil/ and gas industry most of the industrial countries were lacking clear regulatory frameworks in waste legislation for many years. In the meanwhile on several places in Europe, but also in some of the GCC states in the Middle East such as in the United Arab Emirates and in Oman specialized treatment facilities are either in the stage of construction or already in operation. In particular, pilot plants for the decontamination of NORM-contaminated equipment have been tested recently. The paper reflects on the generation and the technical characterization of NORM but also the legislation compared on international level. Particularly an overview was provided by comparing the common practice on disposal in the North American Countries in comparison to Germany, the UK but also Australia. In addition the successful treatment of produced water from crude oil separation in a ''Constructed Wetland'' in the Sultanate Oman is briefly highlighted.

  17. Radioactive material in residues of health services residues

    International Nuclear Information System (INIS)

    Costa R, A. Jr.; Recio, J.C.

    2006-01-01

    The work presents the operational actions developed by the one organ responsible regulator for the control of the material use radioactive in Brazil. Starting from the appearance of coming radioactive material of hospitals and clinical with services of nuclear medicine, material that that is picked up and transported in specific trucks for the gathering of residuals of hospital origin, and guided one it manufactures of treatment of residuals of services of health, where they suffer radiological monitoring before to guide them for final deposition in sanitary embankment, in the city of Sao Paulo, Brazil. The appearance of this radioactive material exposes a possible one violation of the norms that govern the procedures and practices in that sector in the country. (Author)

  18. Safety protection suggestion of naturally occurring radioactive materials in the oil and gas industry

    International Nuclear Information System (INIS)

    Zhou Xiaojian; Zhou Qifu; Wang Xiaotao; Xu Zhongyang; Song Peifeng

    2014-01-01

    It's not enough concern about the naturally occurring radioactive materials (NORM) of oil and gas industry in China. NORM with radium and radon mainly exist in the scale, sludge and production water, and they tend to deposit on the pipe wall, wellhead equipment and so on. These materials are a threat to the health of workers, so it is very important to have the safe disposal of them. This paper introduces the radioactive hazards and puts for-ward the safe disposal measures so as to provide the reference for the safe disposal of radioactive materials. Some management and technical advices are presented too. (authors)

  19. Characterization of the National Petroleum Reserve No. 3 (NPR-3) Site for Naturally Occurring Radioactive Material(NORM)

    Energy Technology Data Exchange (ETDEWEB)

    White, G.J; Rood, A.S.

    1999-01-21

    The National Petroleum Reserve No. 3 site (NPR-3) near Casper, Wyoming is being prepared for transfer to private industry. Remediation of the NPR-3 site has already begun in anticipation of this transfer. This document describes the characterization of the NPR-3 site for Naturally Occurring Radioactive Materials (NORM). Data generated on radionuclide concentrations and radon emanation may be used to determine disposal options and the need for remediation at this site. A preliminary gamma survey of the NPR-3 site was conducted to identify areas of potential NORM contamination. Based on these gamma surveys, two general areas of NORM contamination were found: the North Water Flood area and the BTP-10 produced water discharge steam. A maximum surface exposure rate of 120 {micro}R h{sup -1} was observed in the North Water Flood area, with the highest readings found along the drainage channel from the area. Exposure rates dropped to background quickly with increasing distance from the center of the drainage. The maximum observed exposure rate in the BTP-10 produced water drainage was 40 {micro}R h{sup -1}. Soil and sediment sampling were concentrated in these two areas. All samples were analyzed for concentration of {sup 226}Ra, {sup 228}Ra, and {sup 40}K. Maximum {sup 226}Ra concentrations observed in the samples collected were 46 pCi g{sup -1} for soil and 78 pCi g{sup -1} for sediment. Concentrations in most samples were considerably lower than these values. Radon emanation fraction was also measured for a randomly selected fraction of the samples. The mean Rn emanation fraction measured was 0.10, indicating that on average only 10 percent of the Rn produced is released from the medium. Based on the results of these analyses, NORM contamination at the NPR-3 site is minimal, and appears to be restricted to the two general areas sampled. Concentrations of NORM radionuclides found soils and sediments in these two locations do not justify remedial actions at present

  20. Implementing a corporate-wide policy for dealing with naturally occurring radioactive material

    International Nuclear Information System (INIS)

    Woods, S.E.; Abernathy, S.E.

    1993-01-01

    With the increased environmental awareness about naturally occurring radioactive materials (NORM), many companies are adopting policies to address the exposure and contamination issues associated with this material. In developing and implementing a NORM policy, every aspect of a business must be thoroughly evaluated to determine at what point the material is encountered and what processes tend to concentrate the material. Once all areas having elevated levels of NORM are identified, the interrelationships between these areas must be evaluated. Corporate policy regarding NORM is discussed, including employee exposure, environmental contamination, facility and equipment contamination, logistics of moving between facilities covered by different regulations, existing and proposed regulations, trends of proposed regulations, disposal of NORM, training and survey equipment. 14 refs., 7 figs

  1. Securing radioactive sources into disuse, NORM, management, security assessment, exclusion, exemption and clearance

    International Nuclear Information System (INIS)

    Bastidas Pazmino, Jorge

    2008-01-01

    Full text: The Ecuadorian Atomic Energy Commission, through the unity of Radiation Protection Services, with the area of Radioactive Waste Management, has made the study of disused radioactive sources at the national level and are kept in the Temporary Storage of Radioactive Waste; has been made joint efforts with the Department of Energy of the United States for the repatriation of sources originating in that country; similarly, the use of radioactive materials in medicine, industry and research has had a significant increase in the country in the recent years, resulting in the generation of radioactive wastes requiring proper management, to ensure protection to human health and the environment now and into the future. Ecuador, through the Ecuadorian Atomic Energy Commission ensures that the Radioactive Waste Management is done by ensuring an adequate level of protection to human beings and the environment, seeks to meet the objectives of protection of human health, environmental protection, protection beyond national borders; protection of future generations; charges imposed on future generations; national legal framework; control of the production of radioactive wastes; unit interplay between production and radioactive waste management; security installations; in the same way within this framework are the NORM of which has been carried out preliminary studies in the Ecuador Orient, which is part of the lung that Amazon uses oxygen to the whole world, have been submitted NORM as a result of oil hidden within the operation, which has presented measures of exposure high inlays within hose from the wells operating and currently looking to move to the next stage, which are considering different alternatives for managing radioactive waste as more appropriate. (author)

  2. Naturally occurring radioactive materials in construction integrating radiation protection in Reuse

    CERN Document Server

    Schroeyers, Wouter

    2017-01-01

    Naturally Occurring Radioactive Materials in Construction (COST Action NORM4Building) discusses the depletion of energy resources and raw materials and its huge impact not only on the building market, but also in the development of new synthetic building materials, whereby the reuse of various (waste) residue streams becomes a necessity. It is based on the outcome of COST Action TU 1301, where scientists, regulators, and representatives from industry have come together to present new findings, sharing knowledge, experiences, and technologies to stimulate research on the reuse of residues containing enhanced concentrates of natural radionuclides (NORM) in tailor-made building materials. Chapters address legislative issues, measurement, and assessment of building materials, physical and chemical aspects, from raw materials, to residues with enhanced concentrations of natural radionuclides (NORM), processes, building products containing NORM, and end-of-life and reuse requirements. Presents a holistic app...

  3. Regulation of naturally occurring radioactive materials in Australia

    International Nuclear Information System (INIS)

    Jeffries, C.; Akber, R.; Johnston, A.; Cassels, B.

    2011-01-01

    In order to promote uniformity between jurisdictions, the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA) has developed the National Directory for Radiation Protection, which is a regulatory framework that all Australian governments have agreed to adopt. There is a large and diverse range of industries involved in mining or mineral processing, and the production of fossil fuels in Australia. Enhanced levels of naturally occurring radionuclides can be associated with mineral extraction and processing, other industries (e.g. metal recycling) and some products (e.g. plasterboard). ARPANSA, in conjunction with industry and State regulators, has undertaken a review and assessment of naturally occurring radioactive material (NORM) management in Australian industries. This review has resulted in guidance on the management of NORM that will be included in the National Directory for Radiation Protection. The first NORM safety guide provides the framework for NORM management and addresses specific NORM issues in oil and gas production, bauxite, aluminium and phosphate industries. Over time further guidance material for other NORM-related industries will be developed. This presentation will provide an overview of the regulatory approach to managing NORM industries in Australia. (authors)

  4. Regulation of naturally occurring radioactive materials in Australia.

    Science.gov (United States)

    Jeffries, Cameron; Akber, Riaz; Johnston, Andrew; Cassels, Brad

    2011-07-01

    In order to promote uniformity between jurisdictions, the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA) has developed the National Directory for Radiation Protection, which is a regulatory framework that all Australian governments have agreed to adopt. There is a large and diverse range of industries involved in mining or mineral processing, and the production of fossil fuels in Australia. Enhanced levels of naturally occurring radionuclides can be associated with mineral extraction and processing, other industries (e.g. metal recycling) and some products (e.g. plasterboard). ARPANSA, in conjunction with industry and State regulators, has undertaken a review and assessment of naturally occurring radioactive material (NORM) management in Australian industries. This review has resulted in guidance on the management of NORM that will be included in the National Directory for Radiation Protection. The first NORM safety guide provides the framework for NORM management and addresses specific NORM issues in oil and gas production, bauxite, aluminium and phosphate industries. Over time further guidance material for other NORM-related industries will be developed. This presentation will provide an overview of the regulatory approach to managing NORM industries in Australia.

  5. Overview of NORM and activities by a NORM licensed permanent decontamination and waste processing facility

    Energy Technology Data Exchange (ETDEWEB)

    Mirro, G.A. [Growth Resources, Inc., Lafayette, LA (United States)

    1997-02-01

    This paper presents an overview of issues related to handling NORM materials, and provides a description of a facility designed for the processing of NORM contaminated equipment. With regard to handling NORM materials the author discusses sources of NORM, problems, regulations and disposal options, potential hazards, safety equipment, and issues related to personnel protection. For the facility, the author discusses: description of the permanent facility; the operations of the facility; the license it has for handling specific radioactive material; operating and safety procedures; decontamination facilities on site; NORM waste processing capabilities; and offsite NORM services which are available.

  6. Vitrification of NORM wastes

    International Nuclear Information System (INIS)

    Chapman, C.

    1994-05-01

    Vitrification of wastes is a relatively new application of none of man's oldest manufacturing processes. During the past 25 years it has been developed and accepted internationally for immobilizing the most highly radioactive wastes from spent nuclear fuel. By the year 2005, there will be nine operating high-level radioactive vitrification plants. Many of the technical ''lessons learned'' from this international program can be applied to much less hazardous materials such as naturally occurring radioactive material (NORM). With the deployment of low capital and operating cost systems, vitrification should become a broadly applied process for treating a large variety of wastes. In many situations, the wastes can be transformed into marketable products. This paper will present a general description of waste vitrification, summarize some of its key advantages, provide some test data for a small sample of one NORM, and suggest how this process may be applied to NORM

  7. Quality management in the regulation of radioactive material transport

    International Nuclear Information System (INIS)

    Barenghi, Leonardo; Capadona, Nancy M.; Lopez Vietri, Jorge R.; Panzino, Marina; Ceballos, Jorge

    2006-01-01

    The paper describes the quality management procedure used by the Argentine Nuclear Regulatory Authority to establish the regulations concerning the safe transport of radioactive materials. The quality management system is based on the family of the ISO 9000 norms [es

  8. The Potential of NORM in Non-Nuclear Industry in Indonesia

    International Nuclear Information System (INIS)

    Kunto Wiharto; Syarbaini

    2003-01-01

    Industry with an activity of processing natural resources from crust of earth as raw materials could cause natural radioactivity in crust of earth to be accumulated in waste, by product and or main product of that industry. Natural radioactive elements which are mobilized and then accumulated in end industry process are known as NORM (Naturally Occurring Radioactive Materials). NORM have a potential radiological impact such as external and internal radiation exposure. Therefore, the existence of NORM in these non-nuclear industries should be studied in order to handle properly the radiological impact of those material to the industrial workers, member of the public and the surrounding environment. This paper describes the non nuclear industrial sectors in Indonesia that have potential NORM sources and radiation safety aspects in connecting with NORM. (author)

  9. Monitoring of NORM in the offshore production of oil and gas; Monitoramento de NORM na producao offshore de oleo e gas

    Energy Technology Data Exchange (ETDEWEB)

    Jesus, Joao Mario Fernandes de, E-mail: jmfjesus@petrobras.com.br [Petroleo Brasileiro S. A. (UO-ES/PETROBRAS), Vitoria, ES (Brazil). Unidade de Operacoes de Exploracao e Producao do Espirito Santo

    2013-07-01

    This paper evaluates the levels of radioactivity (dose rates of gamma radiation) in the elements of the production unit FPSO (floating production, storage and offloading) process that show the presence of fouling and / or radioactive waste and its evolution over time, comparing with previous reviews. The radioactivity is detected due to the presence of NORM - Naturally Occurring Radioactive Material, consisting predominantly of BaSO4, containing radio, radioactive natural element, which presents itself as the Ra-226 and Ra-228 isotopes. The detection of radioactivity in equipment/piping indicates the presence of scaling and/or sludge containing naturally radioactive material (NORM), but the absence of radioactivity does not exclude the presence of scale or sludge, as this may consist of non-radioactive material, as CaCO3. Gamma radiation has the property to pass through the construction element (steel) of the lines and equipment, allowing detection of radioactive material within them without the need of opening. This monitoring was implemented due to the history of radioactive inlays in the Espirito Santo basin. These data contribute to decision-making on strategy of dosage of anti-fouling applied in the production system, enable the classification of areas according to the norm CNEN-NN-3.01, as well as guide to the occupational safety and hygiene procedures during interventions (openings, entrances and cleaning) on the elements of process.

  10. Is anyone regulating naturally occurring radioactive material? A state survey

    International Nuclear Information System (INIS)

    Gross, E.M.; Barisas, S.G.

    1993-08-01

    As far as we know, naturally occurring radioactive material (NORM) has surrounded humankind since the beginning of time. However, recent data demonstrating that certain activities concentrate NORM have increased concern regarding its proper handling and disposal and precipitated the development of new NORM-related regulations. The regulation of NORM affects the management of government facilities as well as a broad range of industrial processes. Recognizing that NORM regulation at the federal level is extremely limited, Argonne National Laboratory (ANL) conducted a 50-state survey to determine the extent to which states have assumed the responsibility for regulating NORM as well as the NORM standards that are currently being applied at the state level. Though the survey indicates that NORM regulation comprises a broad spectrum of controls from full licensing requirements to virtually no regulation at afl, a trend is emerging toward recognition of the need for increased regulation of potential NORM hazards, particularly in the absence of federal standards

  11. Natural radioactivity measurements and dosimetric evaluations in soil samples with a high content of NORM

    Science.gov (United States)

    Caridi, F.; Marguccio, S.; Durante, G.; Trozzo, R.; Fullone, F.; Belvedere, A.; D'Agostino, M.; Belmusto, G.

    2017-01-01

    In this article natural radioactivity measurements and dosimetric evaluations in soil samples contaminated by Naturally Occurring Radioactive Materials (NORM) are made, in order to assess any possible radiological hazard for the population and for workers professionally exposed to ionizing radiations. Investigated samples came from the district of Crotone, Calabria region, South of Italy. The natural radioactivity investigation was performed by high-resolution gamma-ray spectrometry. From the measured gamma spectra, activity concentrations were determined for 226Ra , 234-mPa , 224Ra , 228Ac and 40K and compared with their clearance levels for NORM. The total effective dose was calculated for each sample as due to the committed effective dose for inhalation and to the effective dose from external irradiation. The sum of the total effective doses estimated for all investigated samples was compared to the action levels provided by the Italian legislation (D.Lgs.230/95 and subsequent modifications) for the population members (0.3mSv/y) and for professionally exposed workers (1mSv/y). It was found to be less than the limit of no radiological significance (10μSv/y).

  12. Safe Management of natural Occurring radionuclides Materials (NORM) from Petroleum Industry in Egypt

    International Nuclear Information System (INIS)

    El-Hussany, B.S.

    2015-01-01

    The isolation of radioactive waste from the environment becomes a real problem need to solve in the last half century. Waste management system is created for safe isolation of the waste. Radioactive waste management including all activities, administrative and operational, That are involved in the handling, conditioning, transport, storage and disposal of radioactive wastes. In petroleum and gas industries there are many wastes containing natural occurring radioactive waste (NORM). The concentration of NORM is increased during the different processes. Accumulation of NORM in these areas makes hazard effects on the workers and on the environment. In Egypt, there are many oil and gas industries in different areas of the republic. Most of these exploration sites containing large amounts of NORM waste. The management of this waste is remained unclear for many companies. Some companies have storage designs for the waste. Others are stored the waste on the working site on land without barriers. Additionally final destination of these wastes is not decided. The improper management of this waste lead to hazard effects to workers in the present time and to public in the future. The present work studies the NORM waste management, from petroleum industry, in Egypt. Strategy of NORM is proposed. NORM waste management steps (system) is also proposed, Incineration and deoiling processes for the treatment of NORM waste are compered. Also in this study, human intrusion scenarios were studied for two NORM storage designs, A) above-ground and B) under-ground bunkers

  13. Management of NORM Residues

    International Nuclear Information System (INIS)

    2013-06-01

    The IAEA attaches great importance to the dissemination of information that can assist Member States in the development, implementation, maintenance and continuous improvement of systems, programmes and activities that support the nuclear fuel cycle and nuclear applications, and that address the legacy of past practices and accidents. However, radioactive residues are found not only in nuclear fuel cycle activities, but also in a range of other industrial activities, including: - Mining and milling of metalliferous and non-metallic ores; - Production of non-nuclear fuels, including coal, oil and gas; - Extraction and purification of water (e.g. in the generation of geothermal energy, as drinking and industrial process water; in paper and pulp manufacturing processes); - Production of industrial minerals, including phosphate, clay and building materials; - Use of radionuclides, such as thorium, for properties other than their radioactivity. Naturally occurring radioactive material (NORM) may lead to exposures at some stage of these processes and in the use or reuse of products, residues or wastes. Several IAEA publications address NORM issues with a special focus on some of the more relevant industrial operations. This publication attempts to provide guidance on managing residues arising from different NORM type industries, and on pertinent residue management strategies and technologies, to help Member States gain perspectives on the management of NORM residues

  14. Naturally occurring radioactive materials at New South Wales mines

    International Nuclear Information System (INIS)

    McLaughlin, Robert

    2013-01-01

    Until recently mines in New South Wales have been largely exempt from the provisions of the Radiation Control Act with respect to radioactive ore being mined and processed. Legislative changes and the national harmonisation efforts for mine safety regulation have drawn attention to the emerging issue of naturally occurring radioactive material (NORM). While mine operators are already obliged under their duty of care to manage this hazard, specific control measures are increasingly expected by the community and regulators. This applies throughout the whole mine life cycle from exploration right through to rehabilitation.

  15. Managing Naturally Occurring Radioactive Materials In the Petroleum Industry in Egypt

    International Nuclear Information System (INIS)

    Bahsat, H.; Korany, Y.

    1999-01-01

    Naturally Occurring Radioactive Materials (NORM) have been known to be present in varying concentrations in hydrocarbon reservoirs. These NORM under certain reservoir conditions can reach hazardous contamination levels.the recognition of NORM as a potential source of contamination to oil and gas facilities has become widely spread and gained increased momentum from the industry. Some contamination levels may be sufficiently severe that maintenance and other personnel may be sufficiently severe that maintenance and other personnel may be exposed to hazardous concentrations. Health and environmental concerns regarding NORM have become an important safety issue in upstream petroleum industry in Egypt since the early 1990's when NORM have been detected in different gas and oil production facilities. In these facilities, radiation protection measures were taken to realize safe handling and disposal of NORM according to the applicable international standards. This paper describes the extent of the NORM contamination problem in Egypt and presents guidelines for dealing with NORM based on the latest scientific techniques and international experiences

  16. NORM and the Risk of Internal Contamination

    International Nuclear Information System (INIS)

    Syaifudin, Mukh; Iin Kurnia; Yanti Lusiyanti; Siti Nurhayati; Iwiq Indrawati

    2003-01-01

    The earth and its atmosphere contain various natural radioactive materials known as NORM (naturally occurring radioactive materials) as sources of external and internal radiation exposures to human. The main radionuclides of NORM are uranium and thorium chairs and their progenies. In this paper, it will be discussed briefly about effects of internal contamination these elements which could enter into the body through inhalation and ingestion as well as absorption on the skin. The distribution, excretion and decontamination methods of the radionuclide incorporated in the body are also discussed. (author)

  17. Development of a methodology for doss assessment viewing the use of NORM on building materials

    International Nuclear Information System (INIS)

    Souza, Antonio Fernando Costa de

    2009-01-01

    The objective of this study was to develop a methodology for estimating the radiological impact on man of the residues of naturally occurring radioactive materials (NORMs) that potentially can be used for the construction of homes and roads. Residues of this type, which are being produced in great quantities by the Brazilian mining industry, are typically deposited in non-appropriated conditions such that they may have a long-time adverse impact on the environment, and hence on man. A mathematical model was developed to calculate the doses resulting from the use of NORM residues, thus allowing a preliminary analysis of the possibility to recycle the residues. The model was used to evaluate the external dose due gamma radiation, the dose to skin caused by beta radiation, and the internal dose due to inhalation of radon and its decay products. The model was verified by comparisons with results of other studies about doses due to gamma and beta radiation from finite and infinite radioactive sources, with relatively good agreement. In order to validate the proposed methodology, a comparison was made against experimental results for a house constructed in accordance with CNEN regulations using building materials containing NORM residues. Comparisons were made of the dose due to gamma radiation and the radon concentration in the internal environment. Finally, the methodology was used also to estimate the dose caused by gamma radiation from a road constructed in the state of Rondonia, Brazil, which made use of another NORM residue. (author)

  18. Natural occurrence radioactive material in E and P facilities : Brazilian current panorama

    International Nuclear Information System (INIS)

    Matta, Luiz Ernesto S. de C.; Neder, Lucia de Toledo Camara

    2008-01-01

    Full text: Occupational and public exposures due to naturally occurring radioactive materials (NORM) are of concern of international community. A great deal of investigation have being conducted to evaluate the hazards posed by NORM materials to human health and environment and by these means provide a more accurate assessment and protective measures. Although typical NORM from oil and gas operations are represented by diffuse NORM, this type of waste with much lower concentration of radioactivity but higher volumes, poses a different type of problem to regulators and industry and all efforts are being made by to guarantee safe manipulation and disposal of NORM materials to mitigate occupational and public exposure. In previous study, occupational exposure from offshore and onshore operations were determined for one core oil field region in Brazil. Samples of crude oil and hard/soft scale formed inside production equipment of the oil and gas industry onshore and offshore operations were analysed for 226-Ra and 228-Ra. Survey for external gamma ray dose rate (mSv/h) was also performed to establish potential occupational doses. Results obtained for gamma ray dose rates vary from 0.2 to 2.0 μSv/h and mean activity concentrations measured from oily sludge samples resulted 105 Bq/g for 226-Ra and 80 Bq/g for 228-Ra. Results for scale samples shown mean activity concentrations of 33 Bq/g for 226-Ra and 23 Bq/g for 228-Ra. Although most of results obtained fell within the acceptable dose limits for workers, protective measures were introduced to minimise the doses to workers in different operations both onshore and offshore. A more broader investigation on naturally occurring radioactive material was designed and conducted including all regions with oil and gas operations in Brazil. Besides monitoring external gamma ray dose rates (mSv/h) and activity concentrations of 226-Ra and 228-Ra in crude oil and scale samples, a new methodology of assessment for flow lines and

  19. Introduction to naturally occurring radioactive material

    Energy Technology Data Exchange (ETDEWEB)

    Egidi, P.

    1997-08-01

    Naturally occurring radioactive material (NORM) is everywhere; we are exposed to it every day. It is found in our bodies, the food we eat, the places where we live and work, and in products we use. We are also bathed in a sea of natural radiation coming from the sun and deep space. Living systems have adapted to these levels of radiation and radioactivity. But some industrial practices involving natural resources concentrate these radionuclides to a degree that they may pose risk to humans and the environment if they are not controlled. Other activities, such as flying at high altitudes, expose us to elevated levels of NORM. This session will concentrate on diffuse sources of technologically-enhanced (TE) NORM, which are generally large-volume, low-activity waste streams produced by industries such as mineral mining, ore benefication, production of phosphate Fertilizers, water treatment and purification, and oil and gas production. The majority of radionuclides in TENORM are found in the uranium and thorium decay chains. Radium and its subsequent decay products (radon) are the principal radionuclides used in characterizing the redistribution of TENORM in the environment by human activity. We will briefly review other radionuclides occurring in nature (potassium and rubidium) that contribute primarily to background doses. TENORM is found in many waste streams; for example, scrap metal, sludges, slags, fluids, and is being discovered in industries traditionally not thought of as affected by radionuclide contamination. Not only the forms and volumes, but the levels of radioactivity in TENORM vary. Current discussions about the validity of the linear no dose threshold theory are central to the TENORM issue. TENORM is not regulated by the Atomic Energy Act or other Federal regulations. Control and regulation of TENORM is not consistent from industry to industry nor from state to state. Proposed regulations are moving from concentration-based standards to dose

  20. Characterization of naturally occurring radioactive materials and Cobald-60 contaminated ferrous scraps from steel industries

    International Nuclear Information System (INIS)

    Chao, H.E.; Chiu, H.S.; Hunga, J.Y.; His, H.W.; Chen, Y.B.

    2002-01-01

    Since the occurrence of radioactively contaminated rebar incident in 1992, steel industries in Taiwan were encouraged by Atomic Energy Council (AEC) to install portal monitor to detect the abnormal radiation in shipments of metal scrap feed. From 1994 through 1999, there were 53 discoveries of radioactivity in ferrous scraps by steel companies. These include 15 orphan radioactive sources, 16 cobalt-60 contaminated rebars, 20 Naturally Occurring Radioactive Material (NORM) contaminated scraps, and two unknowns. Most NORM-contaminated scraps were from abroad. The NORM and cobalt-60 contaminated scraps were taken from the steel mills and analyzed in laboratory. The analytical results of scales and sludge sampled from NORM-contaminated scraps combining with the circumstantial evidences indicate that five possible industrial processes may be involved. They are oil production and treatment, heavy mineral sand benefication and rare earth processing, copper mining and processing, recovery of ammonium chloride by lime adsorption in Ammonium-soda process, and tailing of uranium enrichment process. The cobalt-60 activity and trace elements concentrations of contaminated rebars confirm that all of them were produced domestically in the period from Oct. 1982 to Jan. 1983, when the cobalt-60 sources were lost and entered the electric arc furnace to produce the contaminated rebars. (author)

  1. NORM regulations

    Energy Technology Data Exchange (ETDEWEB)

    Gray, P. [ed.

    1997-02-01

    The author reviews the question of regulation for naturally occuring radioactive material (NORM), and the factors that have made this a more prominent concern today. Past practices have been very relaxed, and have often involved very poor records, the involvment of contractors, and the disposition of contaminated equipment back into commercial service. The rationale behind the establishment of regulations is to provide worker protection, to exempt low risk materials, to aid in scrap recycling, to provide direction for remediation and to examine disposal options. The author reviews existing regulations at federal and state levels, impending legislation, and touches on the issue of site remediation and potential liabilities affecting the release of sites contaminated by NORM.

  2. In-situ Measurements and Analysis of Naturally Occurring Radioactive Materials

    International Nuclear Information System (INIS)

    Mueller, W.F.; Ilie, G.; Russ, W.R.; Lange, H.J.; Rotty, M.

    2013-06-01

    The measurement and quantification of naturally occurring radioactive materials (NORM) is an important element of workplace radioprotection in key industries such as oil and gas production, heavy metals mining and refining, coal burning waste, and water treatment. Monitoring of NORM content in home building materials is another challenge for human safety in the prevention of chronic dose uptake. Materials are classified NORM in case they contain significant amounts of the decay chains of U-238 (Ra-226 as a long lived daughter), U-235 or Th- 232 or the primordial nuclide K-40. Due to the decay of the radionuclides, gamma rays with a signature in the energy range from 45 keV up to 2615 keV are emitted. The most accurate method to measure NORM in a sample is to use a high resolution spectrometric instrument such as a germanium detector in a well-shielded laboratory environment. The shield is used to prevent background with the same signature from the building material of the laboratory. There are occasions in which one is required to assay samples in the field. These in situ field applications may require performing measurements with reduced (or no) background shielding conditions, or involve the use of medium resolution spectrometric instruments such as LaBr 3 or NaI detectors. In-situ analyses such as these have increased complexity. The reduced shielding enforces the subtraction of NORM events produced from the environment but the sample material and container can also shield the detector against this background thus biasing the measured results if not appropriately accounted. The use of medium resolution detectors has additional complications that the multiplicity of gamma-rays from NORM materials is such that most of the gamma-rays are interfering and thus require a very careful quantitative analysis. In this presentation, we will discuss the details of the NORM source term both in the environment and what could potentially be in the sample. We will also discuss

  3. Approach to NORM/TENORM Problem based on Radiation Protection Principle

    International Nuclear Information System (INIS)

    Kosako, T.; Sugiura, N.

    2004-01-01

    Naturally Occurring Radioactive Material (NORM) and Technologically Enhanced Naturally Occurring Radioactive Material (TENORM) are recent discussion issues in radiation protection. Relating materials are phosphate fertilizer, rare earth material, oil and gas, coal, metal ore, cement, ceramics, mineral sand, titanium pigment, building materials etc. These related industries, workers and public should be protected from radiations by including radioactive materials like uranium, thorium, radium etc. In this article, typical states of these materials and management are briefly reviewed and radiation protection principles how to consider NORM/TENORM based on ICRP recommendations and IAEA standards are discussed. Originally, the natural materials are excluded for its un-amenability of control. But under several conditions, an intervention concept should be applied and some consumer products are to be controlled based on a practice concept. The regulatory management is examined through a classification of NORM/TENORM and development of concepts; practice and intervention, exclusion and exemption, optimization of protection, etc. The optimization of protection is one of the most important discussion points. The origin of radioisotopes is natural. Therefore, the criteria or standard should be different from that of artificial source. Too strict regulation will cause much social and economical confusion. The harmonization of radiation protection system on NORM/TENORM in FNCA (Forum for Nuclear Cooperation in Asia) countries was also tried by information exchange and intercomparison. (Author)

  4. Uncertainties in the dosimetric assessments of NORM management in conventional waste repository; Incertidumbres en las evaluaciones dosimetricas de la gestion de NORM en repositorios de residuos convencionales

    Energy Technology Data Exchange (ETDEWEB)

    Mora, J. C.; Robles, B.

    2012-07-01

    Naturally Occurring Radioactive Materials (NORM) are generated in huge quantities in several industries-NORM industries-and their management has been formerly carried out in most countries under considerations of industrial non radioactive wastes, with varying considerations on their radioactive content. As the concentration of non radioactive tonics in several of those materials is relatively high, they were treated as toxic materials. This implies that the materials must be previously conditioned using conventional methods and that the waste disposal itself must be prepared to isolate the toxic from the environment for long periods of time. Spanish regulation for these conventional toxic waste disposals include conditions that assure adequate isolation, also including considerations on their radioactive content in such a way that their management way guarantee radiological protection on the people and the environment. After the 96/29 European Directive (the European BSS), radiological implications on NORM industries and their residual materials must be considered. One option that can be considered for the disposal of NORM with activity concentrations above the established unconditional clearance level is the use of the same industrial waste disposals, if guarantees for corresponding radiological criteria are accomplished, according to Authorities establishment. This work analyses the radiological implications of the management of NORM under the considerations applicable for their management as conventional waste, emphasising in activity concentrations slightly over unconditional clearance levels specifically from 1 Bq up to 50 Bq.g{sup -}1. Resulting generic dose assessments are usually carried out under highly conservative hypothesis. This study discusses uncertainties that should be considered to include possible variation due to climate factors or other parameters used in the assessment models. (Author)13 refs.

  5. NORM and radon in Austria. Status and strategy; Norm und Radon in Oesterreich. Status und Strategie

    Energy Technology Data Exchange (ETDEWEB)

    Maringer, F.J. [Bundesamt fuer Eich- und Vermessungswesen, Wien (Austria)

    2013-07-01

    The author reviews the actual radiation protection practice in Austria for NORM and radon, including possible strategies and developments. Specific topics are radiation protection technologies, metrological resources for NORM in Austria, civil engineering standards (OeNORM) for radon measurement, radon prevention for new buildings and radon cleansing for existing buildings, future assessment and legal regulation of radioactivity in construction materials. The strategic development in Austria considers the current European standard projects (EU standards) and European and international research programs.

  6. Assessment of radioactivity in building material(granite) in Sudan

    International Nuclear Information System (INIS)

    Osman, Z. A; Salih, I; Albadwai, K. A; Salih, A. M; Salih, S. A.

    2016-01-01

    In the present work radioactivity in building materials (granite) central Sudan was evaluated. In general the building materials used in Sudan are derived either from rocks or soil. These contain trace amounts of naturally occurring radioactive materials(NORMs), so it contains radionuclides from uranium and thorium series and natural potassium. The levels of these radionuclides vary according to the geology of their site of origin. High levels increase the risk of radiation exposure in homes(especially exposure due to radon). Investigation of radioactivity in granite used of the building materials in Sudan is carried out, a total of 18 major samples of granite have been collected and measured using X- ray fluorescence system (30 mci). The activity concentrations have been determined for uranium ("2"3"8U), thorium ('2"3"2Th) and potassium("4"0K) in each sample. The concentrations of uranium have been found to range from 14.81 Bq/kg to 24.572 Bq/kg, thorium between 10.02 Bq/kg and 10.020-84.79 Bq/kg and the potassium concentration varies between 13.33 Bq/kg to 82.13 Bq/kg. Limits of radioactivity in the granite are based on dose criteria for controls. This study can be used as a reference for more extensive studies of the same subject in future. (Author)

  7. National survey of potential scenarios for occupational and public exposure to naturally occurring radioactive materials in the Republic of Cuba

    International Nuclear Information System (INIS)

    Fernandez Gomez, Isis Maria

    2012-01-01

    The naturally occurring radioactive materials (NORMs) unchanged in its natural state has been considered that can pose a problem from the radiological point of view; however, that are monitored by regulators has been rare. Furthermore, exposures to NORMs that have been altered during the exploitation of natural resources can in principle be regulated. The NORMs have found in some waste generated in various industries, e.g. metal scrap, sludge, slag and fluids. These materials, by-products and the end products of processing, can increase the exposure of both workers and members of the public. Besides, can have a significant environmental damage. Two important situations of exploitation of natural resources which may be present NORMs relevant in relation to the potential effects of these materials on human health and the environment, are: (1) when NORMs concentrations have risen above their natural levels in a product, byproduct or waste, (2) when the release of NORMs to the biosphere may increase due to physicochemical changes or the method by which the wastes are managed. This problem is considered and in Cuba has done a survey of all those potential scenarios of occupational and public exposure to naturally occurring radioactive materials. Documents and ongoing work carried out by the European Union and the International Atomic Energy Agency, have been taken as reference, to identify potential scenarios for occupational and public exposure to naturally occurring radioactive materials in Cuba. The availability of information is taken into account, and the level of care that has received this problem within the community of nations. Recommendatory criteria are developed for countries that can serve as an excellent reference for a study of this type. This issue is still in development in other regions, its relevance and importance from the point of view of radiation safety. The handling, storage, transport and use of equipment or contaminated waste with NORMs

  8. Probable Cause for Maritime Interdictions Involving Illicit Radioactive Materials

    Science.gov (United States)

    2008-12-01

    as a load of bananas ,21 the portable monitors need to have not only the ability to detect radiation but also to identify specific sources. Thus...unauthorized acts and physical storage, in order to uncover propensity to mask SNMs. Last, naturally occurring radioactive material (NORM) such as potassium ...40 (40K), which is largely used in agriculture as a fertilizer91 and exists abundantly in a great variety of natural substances, such as bananas , or

  9. Uncertainties in the dosimetric assessments of NORM management in conventional waste repository

    International Nuclear Information System (INIS)

    Mora, J. C.; Robles, B.

    2012-01-01

    Naturally Occurring Radioactive Materials (NORM) are generated in huge quantities in several industries-NORM industries-and their management has been formerly carried out in most countries under considerations of industrial non radioactive wastes, with varying considerations on their radioactive content. As the concentration of non radioactive tonics in several of those materials is relatively high, they were treated as toxic materials. This implies that the materials must be previously conditioned using conventional methods and that the waste disposal itself must be prepared to isolate the toxic from the environment for long periods of time. Spanish regulation for these conventional toxic waste disposals include conditions that assure adequate isolation, also including considerations on their radioactive content in such a way that their management way guarantee radiological protection on the people and the environment. After the 96/29 European Directive (the European BSS), radiological implications on NORM industries and their residual materials must be considered. One option that can be considered for the disposal of NORM with activity concentrations above the established unconditional clearance level is the use of the same industrial waste disposals, if guarantees for corresponding radiological criteria are accomplished, according to Authorities establishment. This work analyses the radiological implications of the management of NORM under the considerations applicable for their management as conventional waste, emphasising in activity concentrations slightly over unconditional clearance levels specifically from 1 Bq up to 50 Bq.g - 1. Resulting generic dose assessments are usually carried out under highly conservative hypothesis. This study discusses uncertainties that should be considered to include possible variation due to climate factors or other parameters used in the assessment models. (Author)13 refs.

  10. Environmental impact of NORM in Israeli dwellings

    International Nuclear Information System (INIS)

    Neeman, E.; Steiner, V.

    2002-01-01

    In the last decade the construction of public dwellings in Israel has been intensified. New construction sites are being created and new construction materials, local or imported, are being used. Since the origin of the building materials is essentially the soil, they inherit the radioactive properties of the environment. The level of Natural Occurring Radioactive Materials (NORM),from the decay chains of the ubiquitous radio nuclides U 238 ,Th 232 ,U 235 and K 40 ,as well as artificial radioisotopes like Cs 137 ,in building materials needs to be controlled, in order to limit the gamma and Radon radiation dose of the general public in dwellings. The Ministry of the Environment collaborates with other institutions to evaluate, document and control the NORM content in our environment, based on international standards. The operation of quarries is controlled to ensure a low NORM content in raw building materials. The use of bottom and fly ash, abundantly produced in electrical power stations, in constructions is also being controlled. A new Israeli standard controls the NORM content in building materials such as to limit the radiation dose in dwellings from this practice to 0.45 mSv /year. Special construction solutions are developed and used in areas with high Radon concentration in the soil. The aim is to maintain the Radon concentration in dwellings below the Action Limit of 200 Bq/m 3

  11. Norm in Some Industries and Its Measurement Method

    International Nuclear Information System (INIS)

    Syarbaini; Wahyudi

    2001-01-01

    NORM as a by product of some industries activity must be monitored and handled in such a way because this product is radioactive material. By using nuclear technology and instrumentation, NORM can be monitored and analyzed its radionuclides content qualitatively and/or quantitatively. This paper describe the measurement method and analysis used for radionuclides in NORM or in the environmental component contaminated by NORM. By monitoring and handling NORM in industries, the radiology impact of NORM to the industrial workers, the member of the public and the surrounding environment could be controlled. (author)

  12. Commentary on guidelines for radiation measurement and treatment of substances including naturally occurring radioactive materials

    International Nuclear Information System (INIS)

    Sakurai, Naoyuki; Ishiguro, Hideharu

    2007-01-01

    Study group on safety regulation on research reactors in Ministry of Education, Culture, Sports, Science and Technology (MEXT) reported the guidelines of 'Guidelines on radiation measurement and treatment of naturally occurring radioactive materials (NORM)' on 6 February 2006. RANDEC made the website contents 'Study on use and safety of the substances including uranium or thorium', based on the contract with MEXT to make theirs contents. This paper describes the outline of the website in MEXT homepage, background and contents of NORM guidelines in order to understand easily and visually the NORM guidelines, adding in some flowcharts and figures. (author)

  13. Characteristics of Airborne Particulates Containing Naturally Occurring Radioactive Materials in Monazite Industry

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Geon; Choi, Cheol Kyu; Park, Il; Kim, Min Jun; Go, A Ra; Ji, Seung Woo; Kim, Kwang Pyo [Kyunghee University, Yongin (Korea, Republic of); Koo, Bon Cheol [KINS, Daejeon (Korea, Republic of)

    2016-05-15

    The objective of this study was to characterize physicochemical properties of airborne particulates at a monazite pulverization industry. The properties included particulate size distribution, concentration, shape, density, and radioactivity concentration. Monazite is one of the minerals containing naturally occurring radioactive material (NORM). Therefore, external and internal exposure can be occurred to the workers in monazite industry. The major exposure pathway of the workers is internal exposure due to inhalation of airborne particulates. According to International Commission on Radiological Protection (ICRP), radiation dose due to inhaled particulates containing NORM depends on particulate properties. Therefore, ICRP recommended the internal dose assessment using measured physicochemical properties of the airborne particulates. In the absence of specific information, ICRP provided default reference values. In this study, we characterized physicochemical properties of airborne particulates at a monazite pulverization industry. The databases of particulate information can be used for accurate internal dose assessment of worker.

  14. Characterisation of NORM Contaminated Objects: Reliable and Efficient

    DEFF Research Database (Denmark)

    Breddam, Kresten; Hou, Xiaolin; Koufakis, Markos

    The predominant contributors to the production of Technologically En-hanced Naturally Occurring Radioactive Material (TENORM) and NORM-waste in the Nordic countries are the on- and offshore oil and gas produc-ers. In oil and gas production processes, host rock formation water con-taining low...... concentrations of NORM is mixed with seawater containing high concentrations of sulphate. This leads to precipitation of NORM (Ra, Pb, Po)SO4, which is deposited as either scale or sludge in the production equipment. NORM contaminated pipes, tubes, pumps and tanks, etc. are therefore subject to radiological...... characterization in order to ensure safe reuse or recycling as well as safe NORM waste handling.The procedures and measurement techniques may significantly affect the amount of mate-rial that is categorized as NORM contaminated equipment and NORM waste. At present, different procedures are used for categorization...

  15. Analysis and radiological assessment of residues containing NORM materials resulting from earlier activities including modelling of typical industrial residues. Pt. 1. Historical investigation of the radiological relevance of NORM residues and concepts for site identification

    International Nuclear Information System (INIS)

    Reichelt, Andreas; Niedermayer, Matthias; Sitte, Beate; Hamel, Peter Michael

    2007-01-01

    Natural radionuclides are part of the human environment and of the raw materials used. Technical processes may cause their accumulation in residues, and the result will be so-called NORM materials (Naturally occurring radioactive material). The amended Radiation Protection Ordinance (StrlSchV 2001) specifies how the public should be protected, but there are also residues dating back before the issuing of the StrlSchV 2001, the so-called NORM residues. The project intended to assess the risks resulting from these residues. It comprises four parts. Part 1 was for clarification of the radiological relevance of NORM residues and for the development of concepts to detect them. The criterion for their radiological relevance was their activity per mass unit and the material volume accumulated through the centuries. The former was calculated from a wide bibliographic search in the relevant literature on radiation protection, while the mass volume was obtained by a detailed historical search of the consumption of materials that may leave NORM residues. These are, in particular, residues from coal and ore mining and processing. To identify concrete sites, relevant data sources were identified, and a concept for identification of concrete NORM residues was developed on this basis. (orig.) [de

  16. Development of a methodology for doss assessment viewing the use of NORM on building materials; Desenvolvimento de uma metodologia para avaliacao de doses visando o uso de NORM em materiais de construcao

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Antonio Fernando Costa de

    2009-07-01

    The objective of this study was to develop a methodology for estimating the radiological impact on man of the residues of naturally occurring radioactive materials (NORMs) that potentially can be used for the construction of homes and roads. Residues of this type, which are being produced in great quantities by the Brazilian mining industry, are typically deposited in non-appropriated conditions such that they may have a long-time adverse impact on the environment, and hence on man. A mathematical model was developed to calculate the doses resulting from the use of NORM residues, thus allowing a preliminary analysis of the possibility to recycle the residues. The model was used to evaluate the external dose due gamma radiation, the dose to skin caused by beta radiation, and the internal dose due to inhalation of radon and its decay products. The model was verified by comparisons with results of other studies about doses due to gamma and beta radiation from finite and infinite radioactive sources, with relatively good agreement. In order to validate the proposed methodology, a comparison was made against experimental results for a house constructed in accordance with CNEN regulations using building materials containing NORM residues. Comparisons were made of the dose due to gamma radiation and the radon concentration in the internal environment. Finally, the methodology was used also to estimate the dose caused by gamma radiation from a road constructed in the state of Rondonia, Brazil, which made use of another NORM residue. (author)

  17. Feasibility of re-melting NORM-contaminated scrap metal

    Energy Technology Data Exchange (ETDEWEB)

    Winters, S. J.; Smith, K. P.

    1999-10-26

    Naturally occurring radioactive materials (NORM) sometimes accumulate inside pieces of equipment associated with oil and gas production and processing activities. Typically, the NORM accumulates when radium that is present in solution in produced water precipitates out in scale and sludge deposits. Scrap equipment containing residual quantities of these NORM-bearing scales and sludges can present a waste management problem if the radium concentrations exceed regulatory limits or activate the alarms on radiation screening devices installed at most scrap metal recycling facilities. Although NORM-contaminated scrap metal currently is not disposed of by re-melting, this form of recycling could present a viable disposition option for this waste stream. Studies indicate that re-melting NORM-contaminated scrap metal is a viable recycling option from a risk-based perspective. However, a myriad of economic, regulatory, and policy issues have caused the recyclers to turn away virtually all radioactive scrap metal. Until these issues can be resolved, re-melting of the petroleum industry's NORM-impacted scrap metal is unlikely to be a widespread practice. This paper summarizes the issues associated with re-melting radioactive scrap so that the petroleum industry and its regulators will understand the obstacles. This paper was prepared as part of a report being prepared by the Interstate Oil and Gas Compact Commission's NORM Subcommittee.

  18. Analysis of radioactivity concentration in naturally occurring radioactive materials used in coal-fired plants in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Geom; Kim, Si Young; Ji, Seung Woo; Park, Il; Kim, Min Jun; Kim, Kwang Pyo [Dept. of Nuclear Engineering, Kyung Hee University, Yongin (Korea, Republic of)

    2017-02-15

    Coals and coal ashes, raw materials and by-products, in coal-fired power plants contain naturally occurring radioactive materials (NORM). They may give rise to internal exposure to workers due to inhalation of airborne particulates containing radioactive materials. It is necessary to characterize radioactivity concentrations of the materials for assessment of radiation dose to the workers. The objective of the present study was to analyze radioactivity concentrations of coals and by-products at four coal-fired plants in Korea. High purity germanium detector was employed for analysis of uranium series, thorium series, and potassium 40 in the materials. Radioactivity concentrations of {sup 226}Ra, {sup 228}Ra, and {sup 40}K were 2⁓53 Bq kg{sup -1}, 3⁓64 Bq kg{sup -1}, and 14⁓431 Bq kg{sup -1} respectively in coal samples. For coal ashes, the radioactivity concentrations were 77⁓133 Bq kg{sup -1}, 77⁓105 Bq kg{sup -1}, and 252⁓372 Bq kg{sup -1} in fly ash samples and 54⁓91 Bq kg{sup -1}, 46⁓83 Bq kg{sup -1}, and 205⁓462 Bq kg{sup -1} in bottom ash samples. For flue gas desulfurization (FGD) gypsum, the radioactivity concentrations were 3⁓5 Bq kg{sup -1}, 2⁓3 Bq kg{sup -1}, and 22⁓47 Bq kg{sup -1}. Radioactivity was enhanced in coal ash compared with coal due to combustion of organic matters in the coal. Radioactivity enhancement factors for {sup 226}Ra, {sup 228}Ra, and {sup 40}K were 2.1⁓11.3, 2.0⁓13.1, and 1.4⁓7.4 for fly ash and 2.0⁓9.2, 2.0⁓10.0, 1.9⁓7.7 for bottom ash. The database established in this study can be used as basic data for internal dose assessment of workers at coal-fred power plants. In addition, the findings can be used as a basic data for development of safety standard and guide of Natural Radiation Safety Management Act.

  19. Characteristics of naturally occurring radioactive materials (NORMs) in the oil and gas industries and their behaviour under thermal treatment: an overview

    International Nuclear Information System (INIS)

    Mohamad Puad Ali; Shamsuddin A H; Muhd Noor Muhd Yunus

    1999-01-01

    Activities and work practices in which radiation exposure of workers and members of the public is increased due to the presence of NORM are receiving increased attention from regulatory agencies and, to lesser extent, from the general public. In Malaysia the main sources of NORM are from the technological activities of tin mining, ore and heavy mineral processing, combustion of coal to generate power, and oil and gas extraction. Sludge that contains NORM arising from the oil and gas extraction activities lately has received special attention by the Malaysian regulatory authorities. These sludge are considered as scheduled waste (contains heavy metals) by Department of Environmental (DOE) and low level radioactive waste (contains NORM) by the Atomic Energy Licensing Board (AELB), and its cannot be disposed freely without proper control. From literature, the present methods of treatment practiced via land farming and storing are not recommended and will have long term impact to the environment. The other possible method can be considered to treat this sludge is by using thermal treatment technology but before this technology can be fully applied, a study has to be carried out to determine the behaviour of the various elements present in the sludge. This paper reviewed the radiological characteristic of NORMs in relation with the oil and gas production activities in Malaysia and also their behaviour when under going thermal treatment at certain temperature and combustion time. (Author)

  20. Uranium Mining and Norm in North America-Some Perspectives on Occupational Radiation Exposure.

    Science.gov (United States)

    Brown, Steven H; Chambers, Douglas B

    2017-07-01

    All soils and rocks contain naturally occurring radioactive materials (NORM). Many ores and raw materials contain relatively elevated levels of natural radionuclides, and processing such materials can further increase the concentrations of naturally occurring radionuclides. In the U.S., these materials are sometimes referred to as technologically-enhanced naturally occurring radioactive materials (TENORM). Examples of NORM minerals include uranium ores, monazite (a source of rare earth minerals), and phosphate rock used to produce phosphate fertilizer. The processing of these materials has the potential to result in above-background radiation exposure to workers. Following a brief review of the sources and potential for worker exposure from NORM in these varied industries, this paper will then present an overview of uranium mining and recovery in North America, including discussion on the mining methods currently being used for both conventional (underground, open pit) and in situ leach (ISL), also referred to as In Situ Recovery (ISR), and the production of NORM materials and wastes associated with these uranium recovery methods. The radiological composition of the NORM products and wastes produced and recent data on radiological exposures received by workers in the North American uranium recovery industry are then described. The paper also identifies the responsible government agencies in the U.S. and Canada assigned the authority to regulate and control occupational exposure from these NORM materials.

  1. Method Validation for the Gamma-ray Spectrometric Determination of Natural Radioactive Nuclides in NORM Samples - Method Validation for the Gamma-ray Spectrometric Determination of Natural Radionuclides in raw materials and by-products

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Young-Yong; Lim, Jong-Myoung; Jang, Mee; Kim, Chang-Jong; Chung, Kun Ho; Kang, Mun Ja; Choi, Geun-Sik [Environmental Radioactivity Assessment Team, Korea Atomic Energy Research Institute, 111, Daedeok-daero 989, Yuseong, Daejeon, 305-353 (Korea, Republic of)

    2014-07-01

    It has established the 'Act on safety control of radioactive rays around living environment' in Korea, since 2011, to protect the public from natural occurring radioactive materials (NORM) and their by-products. The increasing concerns regarding the radioactivity of those materials therefore dictate many demands for the radioactive analysis for them. There are several methods to determine the concentration of natural radionuclides, such as {sup 235}U, {sup 238}U, {sup 226}Ra, {sup 232}Th, and so on, through a radiochemical analysis using an alpha spectrometer, mass spectrometer and liquid scintillation counter. However, gamma-ray spectroscopy still has an effect on the assessment of radioactive concentration for these nuclides and their progenies. To adapt a gamma spectrometer to the determination of natural radionuclides, the feasibility of their analysis methods should be first verified and validated with respect to accuracy and time and cost constraints. In general, one of the well-known processes in analyzing uranium with a gamma spectrometer is an indirect measurement using the secular equilibrium state with their progenies in a sample. This method, however, demands the time elapsed about 3 weeks to reach the equilibrium state between {sup 226}Ra and {sup 222}Rn and the sufficient integrity of a sample bottle to prevent the leakage of radon isotopes which is a form of noble gas. The simple and quick method is to directly measure a full energy absorption peak of 186.2 keV from {sup 226}Ra without the secular equilibrium state between {sup 226}Ra and {sup 222}Rn in the common sample bottle. However, this direct measurement also has difficulties about the interference with a full energy absorption peak of 185.7 keV from {sup 235}U. In this study, direct measurement with the interference correction technique, which uses several reference peaks for gamma-rays from {sup 235}U and {sup 234}Th, and indirect measurement, which means the identification of {sup

  2. Norm

    International Nuclear Information System (INIS)

    Loria Meneses, Luis Guillermo

    2012-01-01

    Related studies with the presence of NORMs in Costa Rica were developed. CICANUM has had equipment and personnel to perform analysis using gamma spectroscopy (for solid and liquid samples), beta spectroscopy (for liquid milk samples and water), alpha spectroscopy (water samples). These techniques are frequently used in the analysis for food purchased from stores, monitoring, export (safety certicates), directly from the farm (research and projects ARCAL), several matrices (meristems, iron, etc..). The CICANUM supported by the Universidad de Costa Rica and the Laboratorio de Espectroscopia Gamma has participated in various projects by the IAEA, in research on food, marine species, quality assurance, development of reference material. The term NORMs is used to distinguish natural radioactive elements of radioactive elements of anthropogenic origin, among which are those produced by: terrestrial, mediums cosmogenic and industrial. One conclusion is that human activity has been responsible for increasing exposure of people to ionizing radiation. This increase has resulted of the production of coal, natural gas, mining and fossil fuels, and the use of fertilizers. Radon trapped in the rocks is released when performing scans or during extraction. (author) [es

  3. Norm waste management in Malaysia

    International Nuclear Information System (INIS)

    Muhamat Omar

    2000-01-01

    There are a number of industries generating NORM wastes in Malaysia. These include oil and gas and minerals/ores processing industries. A safe management of radioactive wastes is required. The existing guidelines are insufficient to help the management of oil and gas wastes. More guidelines are required to deal with NORM wastes from minerals/ores processing industries. To ensure that radioactive wastes are safely managed and disposed of, a National Policy on the Safe Management of Radioactive Waste is being developed which also include NORM waste. This paper describes the current status of NORM waste management in Malaysia. (author)

  4. Introduction to naturally occurring radioactive material

    International Nuclear Information System (INIS)

    Egidi, P.

    1997-01-01

    Naturally occurring radioactive material (NORM) is everywhere; we are exposed to it every day. It is found in our bodies, the food we eat, the places where we live and work, and in products we use. Some industrial practices involving natural resources concentrate these radionuclides to a degree that they may pose risk to humans and the environment if they are not controlled. This session will concentrate on diffuse sources of technologically-enhanced (TE) NORM, which are generally large-volume, low-activity waste streams produced by industries such as mineral mining, ore benefication, production of phosphate Fertilizers, water treatment and purification, and oil and gas production. The majority of radionuclides in TENORM are found in the uranium and thorium decay chains. Radium and its subsequent decay products (radon) are the principal radionuclides used in characterizing the redistribution of TENORM in the environment by human activity. We will briefly review other radionuclides occurring in nature (potassium and rubidium) that contribute primarily to background doses. TENORM is found in many waste streams; for example, scrap metal, sludges, slags, fluids, and is being discovered in industries traditionally not thought of as affected by radionuclide contamination. Not only the forms and volumes, but the levels of radioactivity in TENORM vary. Current discussions about the validity of the linear no dose threshold theory are central to the TENORM issue. TENORM is not regulated by the Atomic Energy Act or other Federal regulations. Control and regulation of TENORM is not consistent from industry to industry nor from state to state. Proposed regulations are moving from concentration-based standards to dose-based standards. So when is TENORM a problem? Where is it a problem? That depends on when, where, and whom you talk to exclamation point We will start by reviewing background radioactivity, then we will proceed to the geology, mobility, and variability of these

  5. Technological options for management of NORM/TENORM from the petroleum exploration

    International Nuclear Information System (INIS)

    Miranda, Marcia Valeria Sa; Gomes, Joana D'Arc L.; Crispim, Verginia R.

    2008-01-01

    Full text: Naturally Occurring Radioactive Material (NORM) is present in many natural resources and the contamination of oil and gas facilities with it can be expected. Some of the contamination may be sufficiently severe that maintenance and other personnel may be exposed to hazardous concentrations, at the production line. Because of this, its management shall be efficient and optimized. The measure adopted to achieve successful management will be in accordance with general environmental and safety objectives and will involve the application of best available techniques and best environmental safety practices. The disposal of NORM contaminated wastes is a problem with no completely satisfactory solution yet. NORM contamination in the oil and gas industry commonly occurs as radioactive scales, films and sludge. The resulting of the decontamination of petroleum production facilities can generate large volumes of NORM wastes. These materials require the same handling as low-level radioactive wastes. The cost of storing or disposing material contaminated with NORM is undoubtedly very expensive. The high cost of disposing of NORM wastes is opening new opportunities for research and development in methods and techniques of reducing waste volumes. The aim of this paper is present some considerations of possible NORM management/disposal options and show some samples analysis. The objective is to find appropriated solutions to the management/disposal of NORM wastes to prevent pollution of the environment and minimize public and occupational radiation exposure. NORM can be dealt with safely, efficiently and with minimized risks to the health of workers and the public while providing optimized environmental protection. Techniques as encapsulation, down hole injection, overboard disposal with produced formation water, landfill disposal including burial, land disposal in abandoned mine and interim storage in a dedicated facility pending ultimate disposal, are discussed from a

  6. Lessons learned from the decommissioning of NORM facility in Malaysia

    International Nuclear Information System (INIS)

    Kontol, Khairuddin M.; Omar, Muhamat; Ahmad, Syed H.S.S.

    2008-01-01

    Full text: Malaysia Decommissioning of Naturally Occurring Radioactive Materials (NORM) facility in Malaysia will run into unforeseeable complications and difficulties if there is no proper planning. The Atomic Energy Licensing Board (AELB) plays important role in guiding and assisting the operator/contractor in this NORM decommissioning project. A local Naturally Occurring Radioactive Materials (NORM) processing plant located in the northern region of peninsular Malaysia had ceased its operations and decided to decommission and remediate its site for the final release of the site. The remediated site is earmarked as an industrial site. During its operations, monazites are processed for rare earth elements such as cerium and lanthanum. It's plant capable of processing monazite to produce rare earth chloride and rare earth carbonate. The main by-product of monazite processing is the radioactive cake containing primarily thorium hydroxide. Operation of the monazite processing plant started in early eighties and terminated in early nineties. The decommissioning of the plant site started in late 2003 and completed its decommissioning and remediation works in early 2006. This paper described the lesson learned by Malaysian Nuclear Agency (Nuclear Malaysia) in conducting third party independent audit for the decommissioning of the NORM contaminated facility. By continuously reviewing the lessons learned, mistakes and/or inefficiencies in this plant decommissioning project, hopefully will result in a smoother, less costly and more productive future decommissioning works on NORM facilities in Malaysia. (author)

  7. Dossier: transport of radioactive materials

    International Nuclear Information System (INIS)

    Mignon, H.; Brachet, Y.; Turquet de Beauregard, G.; Mauny, G.; Robine, F.; Plantet, F.; Pestel Lefevre, O.; Hennenhofer, G.; Bonnemains, J.

    1997-01-01

    This dossier is entirely devoted to the transportation of radioactive and fissile materials of civil use. It comprises 9 papers dealing with: the organization of the control of the radioactive materials transport safety (safety and security aspects, safety regulations, safety analysis and inspection, emergency plans, public information), the technical aspects of the regulation concerning the transport of radioactive materials (elaboration of regulations and IAEA recommendations, risk assessments, defense in depth philosophy and containers, future IAEA recommendations, expertise-research interaction), the qualification of containers (regulations, test facilities), the Transnucleaire company (presentation, activity, containers for spent fuels), the packages of radioactive sources for medical use (flux, qualification, safety and transport), an example of accident during radioactive materials transportation: the Apach train derailment (February 4, 1997), the sea transport of radioactive materials (international maritime organization (OMI), international maritime dangerous goods (IMDG) code, irradiated nuclear fuel (INF) safety rules), the transport of radioactive materials in Germany, and the point of view from an external observer. (J.S.)

  8. Radioactive Waste in Oil Exploration

    International Nuclear Information System (INIS)

    Landsberger, S.; Graham, G.

    2014-01-01

    Naturally occurring radioactive material commonly known as NORM composes the majority of the dose received by a person each year at approximately 80% of the total amount. However, there is a noticeably higher concentration of radioisotopes present in technologically enhanced NORM, often called TENORM, which results directly from human industrial activities. NORM is formed in the process of mineral mining including phosphate production, where the end goal is to concentrate high quantities of metals or elements (e.g. phosphorous). However, NORM has also become a widely recognized problem in the oil and gas industry. It is approximately one hundred and fifty years since oil was discovered in the continental United States and the mention of radioactivity in mineral oils and natural gases occurred in 1904, just eight years after the discovery of radioactivity by Henri Bequerel in 1896. In just over three decades the problems from naturally occurring radioactive material (NORM) wastes arising from the oil and gas industry have been much more scrutinized. In the 1980’s 226Ra began to be noticed when scrap metal dealers would detect unacceptably high levels of radiation from oil-field piping1. In 1991 Raloff2 published an article on the new hot wastes in NORM and in 1992 Wilson et. al3 described the health physics aspects of radioactive petroleum piping scale. NORM will develop in high concentrations in by-product oil and gas waste streams4-7. The NORM will chemically separate from other piped material in the process of the extraction of oil, resulting in high concentrations of 226Ra, 228 Ra and 210Pb and other radioisotopes in a densely caked layer on the inner surfaces of the piping1 . The activity of the 226Ra from NORM ranges from 185 to several tens of thousands Bq/kg of sample. By comparison, the NORM concentrations of radium in rock and soil is, at a natural level, 18.5 - 185 Bq/kg1. Disposal of NORM becomes more problematic as higher concentrations of

  9. Leachability of naturally occurring radioactive materials

    International Nuclear Information System (INIS)

    Desideri, D.; Feduzi, L.; Meli, M.A.; Roselli, C.

    2006-01-01

    Naturally occurring radioactive materials (NORM) are present in the environment and can be concentrated by technical activities, particularly those involving natural resources. These NORM deposits are highly stable and very insoluble under environmental conditions at the earth's surface. However, reducing or oxidant conditions or pH changes may enable a fraction of naturally occurring radionuclides to eventually be released to the environment. Leachability of 210 Pb and 210 Po was determined in three samples coming from a refractories production plant (dust, sludge, finished product), in one dust sample from a steelwork and in one ash sample coming from an electric power station. A sequential extraction method consisting of five operationally-defined fractions was used. The average leaching potential observed in the samples from the refractory industry is very low (mean values: 5.8% for 210 Pb and 1.7% for 210 Po). The 210 Pb and 210 Po leachability increases for the ash sample coming from an electric power plant using carbon (17.8% for 210 Pb and 10.0% for 210 Po); for the dust sample coming from a steelwork, the percent soluble fraction is 41.1% for 210 Pb and 8.5% for 210 Po. For all samples the results obtained show that 210 Pb is slightly more soluble than 210 Po. (author)

  10. Development of internal dose assessment procedure for workers in industries using raw materials containing naturally occurring radioactive materials

    International Nuclear Information System (INIS)

    Choi, Cheol Kyu; KIm, Yong Geon; Ji, Seung Woo; Kim, Kwang Pyo; Koo, Bon Cheol; Chang, Byung Uck

    2016-01-01

    It is necessary to assess radiation dose to workers due to inhalation of airborne particulates containing naturally occurring radioactive materials (NORM) to ensure radiological safety required by the Natural Radiation Safety Management Act. The objective of this study is to develop an internal dose assessment procedure for workers at industries using raw materials containing natural radionuclides. The dose assessment procedure was developed based on harmonization, accuracy, and proportionality. The procedure includes determination of dose assessment necessity, preliminary dose estimation, airborne particulate sampling and characterization, and detailed assessment of radiation dose. The developed dose assessment procedure is as follows. Radioactivity concentration criteria to determine dose assessment necessity are 10 Bq·g-1 for 40K and 1 Bq·g-1 for the other natural radionuclides. The preliminary dose estimation is performed using annual limit on intake (ALI). The estimated doses are classified into 3 groups (<0.1 mSv, 0.1-0.3 mSv, and >0.3 mSv). Air sampling methods are determined based on the dose estimates. Detailed dose assessment is performed using air sampling and particulate characterization. The final dose results are classified into 4 different levels (<0.1 mSv, 0.1-0.3 mSv, 0.3-1 mSv, and >1 mSv). Proper radiation protection measures are suggested according to the dose level. The developed dose assessment procedure was applied for NORM industries in Korea, including coal combustion, phosphate processing, and monazite handing facilities. The developed procedure provides consistent dose assessment results and contributes to the establishment of optimization of radiological protection in NORM industries

  11. Development of internal dose assessment procedure for workers in industries using raw materials containing naturally occurring radioactive materials

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Cheol Kyu; KIm, Yong Geon; Ji, Seung Woo; Kim, Kwang Pyo [College of Engineering, Kyung Hee University, Yongin (Korea, Republic of); Koo, Bon Cheol; Chang, Byung Uck [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2016-09-15

    It is necessary to assess radiation dose to workers due to inhalation of airborne particulates containing naturally occurring radioactive materials (NORM) to ensure radiological safety required by the Natural Radiation Safety Management Act. The objective of this study is to develop an internal dose assessment procedure for workers at industries using raw materials containing natural radionuclides. The dose assessment procedure was developed based on harmonization, accuracy, and proportionality. The procedure includes determination of dose assessment necessity, preliminary dose estimation, airborne particulate sampling and characterization, and detailed assessment of radiation dose. The developed dose assessment procedure is as follows. Radioactivity concentration criteria to determine dose assessment necessity are 10 Bq·g-1 for 40K and 1 Bq·g-1 for the other natural radionuclides. The preliminary dose estimation is performed using annual limit on intake (ALI). The estimated doses are classified into 3 groups (<0.1 mSv, 0.1-0.3 mSv, and >0.3 mSv). Air sampling methods are determined based on the dose estimates. Detailed dose assessment is performed using air sampling and particulate characterization. The final dose results are classified into 4 different levels (<0.1 mSv, 0.1-0.3 mSv, 0.3-1 mSv, and >1 mSv). Proper radiation protection measures are suggested according to the dose level. The developed dose assessment procedure was applied for NORM industries in Korea, including coal combustion, phosphate processing, and monazite handing facilities. The developed procedure provides consistent dose assessment results and contributes to the establishment of optimization of radiological protection in NORM industries.

  12. Securing the Chernobyl exclusion zone against illegal movement of radioactive materials

    International Nuclear Information System (INIS)

    Bondarenko, O. O.; Proskura, M. I.; Duftschmid, K. E.; Kravchencko, N. E.

    2004-01-01

    . Within the framework of the IAEA Nuclear Security Program the technical cooperation project S trengthening Security of Nuclear Materials in Ukraine ( UKR/0/008) is aimed primarily to strengthen protection the entrance/exit checkpoints of the Chernobyl exclusion zone and adjacent State borders of Ukraine against illicit movement of radioactive materials (including nuclear materials). The particular situation of the exclusion zone presents a high risk of uncontrolled movement of radioactive materials from and into the exclusion zone. In view of the future construction of the S helter-2 a nd decommissioning of the three closed reactor blocks it is expected that the traffic through the exclusion zone will considerably increase in the next years and those large amounts of possibly contaminated metal scrap, construction material and equipment will leave the zone. There is also a risk of illegal movement of radioactive waste into the zone, possibly also through the international border, which could make the zone to an illegal dumping ground for radioactive waste. As practice shows theft of nuclear materials cannot be excluded. The general concept of the project is based on modernization of old and deployment of new vehicle (road and railway) and pedestrian monitoring equipment at all checkpoints of the exclusion zone including road checkpoints, train stations and river ports. A central station of data acquisition and management is to be located in Chernobyl. The equipment to be installed has to meet new technical requirements developed by IAEA. This includes, e.g. sensitivity of gamma and neutron detection, identification of innocent alarms caused by NORM materials or medical radioisotopes, accurate indication of the source position in the vehicle, and remote identification of license plate by advanced video systems. The implementation of the project and deployment of the equipment is expected to start in 2003 and should be completed in 2005. (Author)

  13. Combustion of crude oil sludge containing naturally occurring radioactive material

    International Nuclear Information System (INIS)

    Mohamad Puad Abu; Muhd Noor Muhd Yunus; Shamsuddin, A.H.; Sopian, K.

    2000-01-01

    The characteristics of crude oil sludge fi-om the crude oil terminal are very unique because it contains both heavy metals and also Naturally Occurring Radioactive Material (NORM). As a result, the Department of Environmental (DOE) and the Atomic Energy Licensing Board (AELB) considered it as Scheduled Wastes and Low Level Radioactive Waste (LLRW) respectively. As a Scheduled Wastes, there is no problem in dealing with the disposal of it since there already exist a National Center in Bukit Nanas to deal with this type of waste. However, the Center could not manage this waste due to the presence of NORM by which the policy regarding the disposal of this kind of waste has not been well established. This situation is unclear to certain parties, especially with respect to the relevant authorities having final jurisdiction over the issue as well as the best practical method of disposal of this kind of waste. Existing methods of treatment viewed both from literature and current practice include that of land farming, storing in plastic drum, re-injection into abandoned oil well, recovery, etc., found some problems. Due to its organic nature, very low level in radioactivity and the existence of a Scheduled Waste incineration facility in Bukit Nanas, there is a potential to treat this sludge by using thermal treatment technology. However, prior to having this suggestion to be put into practice, there are issues that need to be addressed. This paper attempts to discuss the potentials and the related issues of combusting crude oil sludge based on existing experimental data as well as mathematical modeling

  14. The worldwide NORM production and a fully automated gamma-ray spectrometer for their characterization

    International Nuclear Information System (INIS)

    Xhixha, G.; Callegari, I.; Guastaldi, E.; De Bianchi, S.; Fiorentini, G.; Universita di Ferrara, Ferrara; Istituto Nazionale di Fisica Nucleare; Kaceli Xhixha, M.

    2013-01-01

    Materials containing radionuclides of natural origin and being subject to regulation because of their radioactivity are known as Naturally Occurring Radioactive Material (NORM). By following International Atomic Energy Agency, we include in NORM those materials with an activity concentration, which is modified by human made processes. We present a brief review of the main categories of non-nuclear industries together with the levels of activity concentration in feed raw materials, products and waste, including mechanisms of radioisotope enrichments. The global management of NORM shows a high level of complexity, mainly due to different degrees of radioactivity enhancement and the huge amount of worldwide waste production. The future tendency of guidelines concerning environmental protection will require both a systematic monitoring based on the ever-increasing sampling and high performance of gamma-ray spectroscopy. On the ground of these requirements a new low-background fully automated high-resolution gamma-ray spectrometer MCA R ad has been developed. The design of lead and cooper shielding allowed to reach a background reduction of two order of magnitude with respect to laboratory radioactivity. A severe lowering of manpower cost is obtained through a fully automation system, which enables up to 24 samples to be measured without any human attendance. Two coupled HPGe detectors increase the detection efficiency, performing accurate measurements on small sample volume (180 cm 3 ) with a reduction of sample transport cost of material. Details of the instrument calibration method are presented. MCA R ad system can measure in less than one hour a typical NORM sample enriched in U and Th with some hundreds of Bq kg -1 , with an overall uncertainty less than 5 %. Quality control of this method has been tested. Measurements of three certified reference materials RGK-1, RGU-2 and RGTh-1 containing concentrations of potassium, uranium and thorium comparable to NORM have

  15. NORM management in the oil and gas industry

    International Nuclear Information System (INIS)

    Cowie, Michael; Mously, Khalid; Fageeha, Osama; Nassar, Rafat

    2008-01-01

    It has been established that Naturally Occurring Radioactive Materials (NORM) may accumulate at various locations along the oil/gas production process. Components such as wellheads, separation vessels, pumps, and other processing equipment can become NORM contaminated, and NORM can accumulate in the form of sludge, scale, scrapings and other waste media. This can create a potential radiation hazard to workers, general public and the environment if certain controls are not established. Saudi Aramco has developed NORM management guidelines and is implementing a comprehensive strategy to address all aspects of NORM management which aim towards enhancing: NORM monitoring; Control of NORM contaminated equipment; Control over NORM waste handling and disposal; Workers protection, awareness, and training. The benefits of shared knowledge, best practice and, experience across the oil and gas industry are seen as key to the establishment of common guidance. This paper outlines Saudi Aramco's experience in the development of a NORM management strategy and its goals of establishing common guidance throughout the oil and gas industry. (author)

  16. The safe transport of radioactive materials

    CERN Document Server

    Gibson, R

    1966-01-01

    The Safe Transport of Radioactive Materials is a handbook that details the safety guidelines in transporting radioactive materials. The title covers the various regulations and policies, along with the safety measures and procedures of radioactive material transport. The text first details the 1963 version of the IAEA regulation for the safe transport of radioactive materials; the regulation covers the classification of radionuclides for transport purposes and the control of external radiation hazards during the transport of radioactive materials. The next chapter deals with concerns in the im

  17. Proceedings of a specialist meeting on regulatory approaches for the control of environmental residues containing naturally occurring radioactive material. Working material

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    Naturally occurring radionuclides are present in most material. The most common naturally occurring radionuclides in material are those of the uranium and thorium series and potassium-40. This material is commonly referred to as Naturally Occurring Radioactive Material (NORM). In some material the levels of naturally occurring radionuclides are significantly higher, to the extent that regulatory control may be required for radiation protection purposes. Regulation of NORM presents a range of new challenges for both regulators and operators. Unlike more traditional industries dealing with radionuclides, NORM industries have generally not had any radiological oversight and, for example, are not equipped for radiological monitoring. Some consumer goods containing NORM, which have not traditionally been considered as a radiological problem (such as some fertilizers), may require regulation and this may have social and economic consequences. The transport and disposal of NORM are also a concern, particularly due to the large volumes, which may need to be considered. For the majority of NORM, disposal has been by conventional means in the same way as for non-hazardous waste with no specific attention to radiological aspects. In some cases, there may be a need for intervention into existing NORM disposal sites. The International Commission on Radiological Protection (ICRP) published ICRP No. 82, Protection of the Public in Situations of Prolonged Radiation Exposure in 2000. This document provides guidance on managing residues, such as those arising from NORM industries, with potential impact on the public. However, with NORM residual waste there may be three different situations: residual waste created as the result of a past practice, residual waste created by an ongoing practice and waste which will arise from future activities. Regulation of NORM may therefore be consistent with consideration of a practice, an intervention or a combination of both. Different regulatory

  18. Proceedings of a specialist meeting on regulatory approaches for the control of environmental residues containing naturally occurring radioactive material. Working material

    International Nuclear Information System (INIS)

    2005-01-01

    Naturally occurring radionuclides are present in most material. The most common naturally occurring radionuclides in material are those of the uranium and thorium series and potassium-40. This material is commonly referred to as Naturally Occurring Radioactive Material (NORM). In some material the levels of naturally occurring radionuclides are significantly higher, to the extent that regulatory control may be required for radiation protection purposes. Regulation of NORM presents a range of new challenges for both regulators and operators. Unlike more traditional industries dealing with radionuclides, NORM industries have generally not had any radiological oversight and, for example, are not equipped for radiological monitoring. Some consumer goods containing NORM, which have not traditionally been considered as a radiological problem (such as some fertilizers), may require regulation and this may have social and economic consequences. The transport and disposal of NORM are also a concern, particularly due to the large volumes, which may need to be considered. For the majority of NORM, disposal has been by conventional means in the same way as for non-hazardous waste with no specific attention to radiological aspects. In some cases, there may be a need for intervention into existing NORM disposal sites. The International Commission on Radiological Protection (ICRP) published ICRP No. 82, Protection of the Public in Situations of Prolonged Radiation Exposure in 2000. This document provides guidance on managing residues, such as those arising from NORM industries, with potential impact on the public. However, with NORM residual waste there may be three different situations: residual waste created as the result of a past practice, residual waste created by an ongoing practice and waste which will arise from future activities. Regulation of NORM may therefore be consistent with consideration of a practice, an intervention or a combination of both. Different regulatory

  19. Automation of a gamma spectrometric analysis method for naturally occuring radionuclides in different materials (NORM)

    International Nuclear Information System (INIS)

    Marzocchi, Olaf

    2009-06-01

    This work presents an improvement over the standard analysis routine used in the Physikalisches Messlabor to detect gamma peaks in spectra from naturally occurring radioactive materials (NORM). The new routine introduces the use of custom libraries of known gamma peaks, in order to ease the work of the software than can therefore detect more peaks. As final result, the user performing the analysis has less chances of making errors and can also analyse more spectra in the same amount of time. A new software, with an optimised interface able to further enhance the productivity of the user, is developed and validated. (orig.)

  20. A comparative analysis of managing radioactive waste in the Canadian nuclear and non-nuclear industries

    Energy Technology Data Exchange (ETDEWEB)

    Batters, S.; Benovich, I.; Gerchikov, M. [AMEC NSS Ltd., Toronto, ON (Canada)

    2011-07-01

    Management of radioactive waste in nuclear industries in Canada is tightly regulated. The regulated nuclear industries include nuclear power generation, uranium mining and milling, nuclear medicine, radiation research and education and industrial users of nuclear material (e.g. radiography, thickness gauges, etc). In contrast, management of Naturally Occurring Radioactive Material (NORM) waste is not regulated by the Canadian Nuclear Safety Commission (CNSC), with the exception of transport above specified concentrations. Although these are radioactive materials that have always been present in various concentrations in the environment and in the tissues of every living animal, including humans, the hazards of similar quantities of NORM radionuclides are identical to those of the same or other radionuclides from regulated industries. The concentration of NORM in most natural substances is so low that the associated risk is generally regarded as negligible, however higher concentrations may arise as the result of industrial operations such as: oil and gas production, mineral extraction and processing (e.g. phosphate fertilizer production), metal recycling, thermal electric power generation, water treatment facilities. Health Canada has published the Canadian Guidelines for the Management of Naturally Occurring Radioactive Materials (NORM). This paper presents a comparative analysis of the requirements for management of radioactive waste in the regulated nuclear industries and of the guidelines for management of NORM waste. (author)

  1. A comparative analysis of managing radioactive waste in the Canadian nuclear and non-nuclear industries

    International Nuclear Information System (INIS)

    Batters, S.; Benovich, I.; Gerchikov, M.

    2011-01-01

    Management of radioactive waste in nuclear industries in Canada is tightly regulated. The regulated nuclear industries include nuclear power generation, uranium mining and milling, nuclear medicine, radiation research and education and industrial users of nuclear material (e.g. radiography, thickness gauges, etc). In contrast, management of Naturally Occurring Radioactive Material (NORM) waste is not regulated by the Canadian Nuclear Safety Commission (CNSC), with the exception of transport above specified concentrations. Although these are radioactive materials that have always been present in various concentrations in the environment and in the tissues of every living animal, including humans, the hazards of similar quantities of NORM radionuclides are identical to those of the same or other radionuclides from regulated industries. The concentration of NORM in most natural substances is so low that the associated risk is generally regarded as negligible, however higher concentrations may arise as the result of industrial operations such as: oil and gas production, mineral extraction and processing (e.g. phosphate fertilizer production), metal recycling, thermal electric power generation, water treatment facilities. Health Canada has published the Canadian Guidelines for the Management of Naturally Occurring Radioactive Materials (NORM). This paper presents a comparative analysis of the requirements for management of radioactive waste in the regulated nuclear industries and of the guidelines for management of NORM waste. (author)

  2. Heavy Metals and Radioactive Characterization of the Main Materials Involved in the HC-FeMn Alloy Production Process

    Energy Technology Data Exchange (ETDEWEB)

    Badran, H. [Taif University (Saudi Arabia); Bakr, H.; Elnimr, T. [Tanta University (Egypt); Sharshar, T. [Kafrelsheikh University (Egypt)

    2014-07-01

    Natural occurring radioactive materials (NORM) are always present in association with a variety of elements in the geological formations. The extraction of non-radioactive minerals from the mineral matrices may lead to the buildup of NORM in wastes and/or end product with different concentrations of uranium and thorium daughters, depending on extraction procedures, initial concentrations and chemical forms of the NORM in the mineral matrices. Gamma-ray spectrometry was used for the quantitative assessment of radionuclides and the associated radiation hazards at the high carbon Ferromanganese alloy (HC-FeMn) production plant in Abu Zenima (West Sinai, Egypt). The low grad Mn from Um Bogma is mixed with Norwegian Mn to improve its quality. While the Egyptian raw Mn is richer in {sup 238}U, Cu and Zn, the Norwegian raw Mn is richer in {sup 40}K and Mn. The mixing process leads to increasing concentrations of {sup 226}Ra and Zn. Enhanced concentrations of Mn, Cu and Zn were also found in the waste. The radioactivity concentrations of {sup 226}Ra, {sup 232}Th and {sup 40}K in different raw materials used in the alloy formation process, HC-FeMn alloy, waste and other mining products produced by the same company are also determined. The estimated range of the total activities of wastes produced annually by the extraction process are 8.7-17.3, 0.7-1.3 and 6.7-13.4 GBq for {sup 226}Ra, {sup 232}Th and {sup 40}K, respectively. The calculated absorbed dose rate and the annual effective dose equivalent in waste dumps with these increased fractions of NORM are 225 nGy/h and 276 mSv, respectively. This investigation does not recommend the use of the waste in housing construction or as filling materials in the area where houses may be built on or near the tailing piles. Document available in abstract form only. (authors)

  3. Identification and characterization of NORM industries in Belgium

    International Nuclear Information System (INIS)

    Vanmarcke, Hans; Paridaens, Johan; Froment, Pascal; Van Cauteren, Jef; Timmermans, Cor; Cosemans, Christian; Sassi, Fiore

    2008-01-01

    An overview of the Norm issue in the Belgium industry is given, mainly based on a study on behalf of Offender/Nitras, the Belgian agency for radioactive waste. The phosphate industry, which was identified as the main source of enhanced natural radioactivity, is mainly located in F landers, the northern part of Belgium. The five Flemish phosphate plants handled, from 1920 to 2006, 60 M ton of phosphate ore containing 72 TBq of uranium-238 (radium-226) and 3.5 TBq of thorium-232. This resulted in a vast legacy of 500 ha of contaminated sites. In the non-ferro industry high activity-concentrations of the thorium decay series were identified with careerist (tin ore). Zircon sands with high uranium concentrations are applied for the production of precision casting molds. Almost every industry with a large turnover of materials has some problems with Norm, because of the selective concentration of certain radionuclides in by-products, residues or product streams. Examples of a blast furnace and a coal-fired power plant are given. In these cases the natural radioactivity is concentrated in blast furnace slag or fly ash, both of which are used as input material in the cement industry. The extraction and purification of ground water was also identified as a potential source for generating Norm sludges. Finally, ample remains from past Norm practices exist. A number of historical sites, including a former mining area of alum shale in the valley of the Meuse, several coal mining sites, a col tan processing site in Ghent and a radium facility in Olen were contaminated before present standards of radiological protection were developed. (author)

  4. Storage depot for radioactive material

    International Nuclear Information System (INIS)

    Szulinski, M.J.

    1983-01-01

    Vertical drilling of cylindrical holes in the soil, and the lining of such holes, provides storage vaults called caissons. A guarded depot is provided with a plurality of such caissons covered by shielded closures preventing radiation from penetrating through any linear gap to the atmosphere. The heat generated by the radioactive material is dissipated through the vertical liner of the well into the adjacent soil and thus to the ground surface so that most of the heat from the radioactive material is dissipated into the atmosphere in a manner involving no significant amount of biologically harmful radiation. The passive cooling of the radioactive material without reliance upon pumps, personnel, or other factor which might fail, constitutes one of the most advantageous features of this system. Moreover this system is resistant to damage from tornadoes or earthquakes. Hermetically sealed containers of radioactive material may be positioned in the caissons. Loading vehicles can travel throughout the depot to permit great flexibility of loading and unloading radioactive materials. Radioactive material can be shifted to a more closely spaced caisson after ageing sufficiently to generate much less heat. The quantity of material stored in a caisson is restricted by the average capacity for heat dissipation of the soil adjacent such caisson

  5. Estimation of Exposure Doses for Several Scenarios of the Landfill Disposal of NORM Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jong Tae; Ko, Nak Yul; Baik, Min Hoon [KAERI, Daejeon (Korea, Republic of); Yoon, Ki Hoon [Korea Institude of Nuclear Safety, Daejeon (Korea, Republic of)

    2016-05-15

    The Act on safety control of radioactive materials around living environment was promulgated to protect citizen's health and environment in 2013. According to this Act, the integrated plan for radiation protection and the necessary safety guides for treatment, reuse, and disposal of NORM wastes have to be made. And NORM wastes have to be disposed in landfill sites by reducing the concentration of radionuclide, and they should not be reutilized. In this study, we estimated exposure doses for several scenarios for NORM (Naturally Occurring Radioactive Materials) waste disposal into a reference landfill site to check the radiological safety. Also, we estimated the amount of NORM wastes for different activity levels of important radionuclides in wastes to be disposed into a landfill site based on the exposure dose limits to support the establishment of technical bases for safety guide. We estimated the amount of NORM wastes for different activity levels of wastes containing U series, Th series, and {sup 40}K based on the exposure dose limits. The results of this study can be used as technical bases to support the establishment of a guide for the safe management of NORM waste disposal.

  6. Dossier: transport of radioactive materials; Dossier: le transport des matieres radioactives

    Energy Technology Data Exchange (ETDEWEB)

    Mignon, H. [CEA Centre d`Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France). Direction du Cycle du Combustible; Niel, J.Ch. [CEA Centre d`Etudes Nucleaires de Fontenay-aux-Roses, 92 (France). Inst. de Protection et de Surete Nucleaire; Canton, H. [CEA Cesta, 33 - Bordeaux (France); Brachet, Y. [Transnucleaire, 75 - Paris (France); Turquet de Beauregard, G.; Mauny, G. [CIS bio international, France (France); Robine, F.; Plantet, F. [Prefecture de la Moselle (France); Pestel Lefevre, O. [Ministere de l`Equipement, des transports et du logement, (France); Hennenhofer, G. [BMU, Ministere de l`environnement, de la protection de la nature et de la surete des reacteurs (Germany); Bonnemains, J. [Association Robin des Bois (France)

    1997-12-01

    This dossier is entirely devoted to the transportation of radioactive and fissile materials of civil use. It comprises 9 papers dealing with: the organization of the control of the radioactive materials transport safety (safety and security aspects, safety regulations, safety analysis and inspection, emergency plans, public information), the technical aspects of the regulation concerning the transport of radioactive materials (elaboration of regulations and IAEA recommendations, risk assessments, defense in depth philosophy and containers, future IAEA recommendations, expertise-research interaction), the qualification of containers (regulations, test facilities), the Transnucleaire company (presentation, activity, containers for spent fuels), the packages of radioactive sources for medical use (flux, qualification, safety and transport), an example of accident during radioactive materials transportation: the Apach train derailment (February 4, 1997), the sea transport of radioactive materials (international maritime organization (OMI), international maritime dangerous goods (IMDG) code, irradiated nuclear fuel (INF) safety rules), the transport of radioactive materials in Germany, and the point of view from an external observer. (J.S.)

  7. Treatment And Disposal Options For Oil Field-Norm-Waste

    International Nuclear Information System (INIS)

    Shaaban, Sh.I.

    1999-01-01

    The presentation discusses the origin of NORM in gas and oil industries and the hazards arising from working with Natural Occurring Radioactive Material. This paper illustrates the positive steps taken related to personnel health,environmental impact, the extent of the problem, prevention and controlling, as well as handling and disposal control of radioactive material. The study aims at avoiding the release of contaminated substances into the surrounding environment and at taking radiation protection measures in order to prevent and / or limit the radiological risk involved in routine maintenance operations

  8. Logistics of radioactive materials: optimization of laws and regulations

    International Nuclear Information System (INIS)

    Akakiev, B.V.; Makarevich, I.M.; Nesterov, V.P.

    2009-01-01

    The article considers the problems of the Russian authorization system in the field of radioactive materials (RM) logistics which does not meet the needs of their application in medicine, science and industry. To correct the situation, first of all, it is necessary to revise the licensing system. For optimization of licensing in the field of RM transportation, a radical revision is needed for the Regulations of transportation of dangerous cargoes by automobiles, sanitary regulations, the GOST Dangerous Cargoes, numerous federal codes and norms issued by Rostekhnadzor in recent years. It is also necessary to review and coordinate various sanitary regulations for radiation safety, develop the Agreement on transit transportation of RM between the countries of the CIS [ru

  9. Consumer Products Containing Radioactive Materials

    Science.gov (United States)

    Fact Sheet Adopted: February 2010 Health Physics Society Specialists in Radiation Safety Consumer Products Containing Radioactive Materials Everything we encounter in our daily lives contains some radioactive material, ...

  10. NORM assessment in water treatment systems/ Poços de Caldas –BR case

    International Nuclear Information System (INIS)

    Ferreira, A.M.; Villegas, R.A.S.; Fukuma, H.T.

    2015-01-01

    NORM is the acronym used to refer to naturally occurring radioactive materials. Besides being objects of study and monitoring such materials can be used as raw material or as by-products or waste of industrial activities. Oil and gas, mining and water treatment are examples of facilities that can handle NORM. In such cases, their concentration at significant levels from the perspective of environmental and occupational radiation protection may occur. This study aims to evaluate the presence of the natural radioactive 238 U and 232 Th series in the treatment of city water elements Poços de Caldas - MG (water, materials and waste). The study can serve as an indication of the necessity of a more detailed review in the locally and in the country on this radiological issue. (authors)

  11. Evaluation of NORM concentration in water treatment of Pocos de Caldas municipality, MG, Brazil: preliminary results; Avaliacao da presenca de NORM no tratamento de agua do municipio de Pocos de Caldas: resultados preliminares

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Adriano Mota; Villegas, Raul A.S.; Fukuma, Henrique Takuji, E-mail: htfukuma@cnen.gov.br, E-mail: adrianomotaferreira@gmail.com [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil)

    2014-07-01

    NORM is the acronym used to refer to naturally occurring radioactive materials. Besides being objects of study and monitoring such materials can be used as raw material or as by-products or waste of industrial activities. Oil and gas, mining and water treatment are examples of facilities that can handle NORM. In such cases, their concentration at significant levels from the perspective of environmental and occupational radiation protection may occur. This study aims to evaluate the presence of the natural radioactive {sup 238}U and {sup 232}Th series in the treatment of city water elements Pocos de Caldas - MG (water, materials and waste). The study can serve as an indication of the necessity of a more detailed review in the locally and in the country on this radiological issue. (author)

  12. Transport of Radioactive Materials

    International Nuclear Information System (INIS)

    2001-01-01

    This address overviews the following aspects: concepts on transport of radioactive materials, quantities used to limit the transport, packages, types of packages, labeling, index transport calculation, tags, labeling, vehicle's requirements and documents required to authorize transportation. These requirements are considered in the regulation of transport of radioactive material that is in drafting step

  13. Accidents during transport of radioactive material

    International Nuclear Information System (INIS)

    Agarwal, S.P.

    2008-01-01

    Radioactive materials are a part of modern technology and life. They are used in medicine, industry, agriculture, research and electrical power generation. Tens of millions of packages containing radioactive materials are consigned for transport each year throughout the world. In India, about 80000 packages containing radioactive material are transported every year. The amount of radioactive material in these packages varies from negligible amounts used in consumer products to very large amounts in shipment of irradiator sources and spent nuclear fuel

  14. Radioactive materials transport

    International Nuclear Information System (INIS)

    Talbi, B.

    1996-01-01

    The development of peaceful applications of nuclear energy results in the increase of transport operations of radioactive materials. Therefore strong regulations on transport of radioactive materials turns out to be a necessity in Tunisia. This report presents the different axes of regulations which include the means of transport involved, the radiation protection of the carriers, the technical criteria of security in transport, the emergency measures in case of accidents and penalties in case of infringement. (TEC). 12 refs., 1 fig

  15. Cask for radioactive material and method for preventing release of neutrons from radioactive material

    International Nuclear Information System (INIS)

    Gaffney, M.F.; Shaffer, P.T.

    1981-01-01

    A cask for radioactive material, such as nuclear reactor fuel or spent nuclear reactor fuel, includes a plurality of associated walled internal compartments for containing such radioactive material, with neutron absorbing material present to absorb neutrons emitted by the radioactive material, and a plurality of thermally conductive members, such as longitudinal copper or aluminum castings, about the compartment and in thermal contact with the compartment walls and with other such thermally conductive members and having thermal contact surfaces between such members extending, preferably radially, from the compartment walls to external surfaces of the thermally conductive members, which surfaces are preferably in the form of a cylinder. The ends of the shipping cask also preferably include a neutron absorber and a conductive metal covering to dissipate heat released by decay of the radioactive material. A preferred neutron absorber utilized is boron carbide, preferably as plasma sprayed with metal powder or as particles in a matrix of phenolic polymer, and the compartment walls are preferably of stainless steel, copper or other corrosion resistant and heat conductive metal or alloy. The invention also relates to shipping casks, storage casks and other containers for radioactive materials in which a plurality of internal compartments for such material, e.g., nuclear reactor fuel rods, are joined together, preferably in modular construction with surrounding heat conductive metal members, and the modules are joined together to form a major part of a finished shipping cask, which is preferably of cylindrical shape. Also within the invention are methods of safely storing radioactive materials which emit neutrons, while dissipating the heat thereof, and of manufacturing the present shipping casks

  16. Radioactive waste material melter apparatus

    Science.gov (United States)

    Newman, D.F.; Ross, W.A.

    1990-04-24

    An apparatus for preparing metallic radioactive waste material for storage is disclosed. The radioactive waste material is placed in a radiation shielded enclosure. The waste material is then melted with a plasma torch and cast into a plurality of successive horizontal layers in a mold to form a radioactive ingot in the shape of a spent nuclear fuel rod storage canister. The apparatus comprises a radiation shielded enclosure having an opening adapted for receiving a conventional transfer cask within which radioactive waste material is transferred to the apparatus. A plasma torch is mounted within the enclosure. A mold is also received within the enclosure for receiving the melted waste material and cooling it to form an ingot. The enclosure is preferably constructed in at least two parts to enable easy transport of the apparatus from one nuclear site to another. 8 figs.

  17. Radioactive waste material melter apparatus

    International Nuclear Information System (INIS)

    Newman, D.F.; Ross, W.A.

    1990-01-01

    An apparatus for preparing metallic radioactive waste material for storage is disclosed. The radioactive waste material is placed in a radiation shielded enclosure. The waste material is then melted with a plasma torch and cast into a plurality of successive horizontal layers in a mold to form a radioactive ingot in the shape of a spent nuclear fuel rod storage canister. The apparatus comprises a radiation shielded enclosure having an opening adapted for receiving a conventional transfer cask within which radioactive waste material is transferred to the apparatus. A plasma torch is mounted within the enclosure. A mold is also received within the enclosure for receiving the melted waste material and cooling it to form an ingot. The enclosure is preferably constructed in at least two parts to enable easy transport of the apparatus from one nuclear site to another. 8 figs

  18. Regulatory and management approaches to NORM residues in Malaysia

    International Nuclear Information System (INIS)

    Omar, M.; Teng, I.L.

    2006-01-01

    Naturally Occurring Radioactive Material (NORM) processing industries in Malaysia include oil and gas production and mineral processing plants. These industries are controlled by the Atomic Energy Licensing Board of Malaysia (AELB) through the enforcement of the Atomic Energy Licensing Act 1984 (Act 304). Related regulations have been developed in order to ensure the safety of workers and members of the public. However, more regulations are necessary for the safe handling of NORM. NORM processing generates various types of NORM residues that require proper management. As for low-level NORM residues, landfill disposal can be exempted from regulatory control if the Radiological Impact Assessment (RIA) shows that the additional dose to the members of the public is below the limit set by the authority. This paper outlines the regulatory and management approaches to NORM residues in Malaysia. (author)

  19. Radioactive Materials Packaging (RAMPAC) Radioactive Materials Incident Report (RMIR). RAMTEMP users manual

    International Nuclear Information System (INIS)

    Tyron-Hopko, A.K.; Driscoll, K.L.

    1985-10-01

    The purpose of this document is to familiarize the potential user with RadioActive Materials PACkaging (RAMPAC), Radioactive Materials Incident Report (RMIR), and RAMTEMP databases. RAMTEMP is a minor image of RAMPAC. This reference document will enable the user to access and obtain reports from databases while in an interactive mode. This manual will be revised as necessary to reflect enhancements made to the system

  20. Radioactive material generator

    International Nuclear Information System (INIS)

    Czaplinski, T.V.; Bolter, B.J.; Heyer, R.E.; Bruno, G.A.

    1975-01-01

    A radioactive material generator includes radioactive material in a column, which column is connected to inlet and outlet conduits, the generator being embedded in a lead casing. The inlet and outlet conduits extend through the casing and are topped by pierceable closure caps. A fitting, containing means to connect an eluent supply and an eluate container, is adapted to pierce the closure caps. The lead casing and the fitting are compatibly contoured such that they will fit only if properly aligned with respect to each other

  1. Radioactive waste management / NORM wastes; Gerenciamento de residuos / rejeitos NORM

    Energy Technology Data Exchange (ETDEWEB)

    Schenato, Flavia; Ruperti Junior, Nerbe Jose Ruperti

    2016-07-01

    The chapter 8 presents the waste management of the mineral industries as the main problem pointed out by the inspections, due to the the inadequate deposition with consequences to the human populations and the environment. The concepts about the criteria of exemption and the related legislation are also presented. Several different technical solutions for de NORM waste deposition are mentioned. Finally, the reutilization and recycling of NORM are covered.

  2. Customs control of radioactive materials

    International Nuclear Information System (INIS)

    Causse, B.

    1998-01-01

    Customs officers take part in the combat against illicit traffic od radioactive materials by means of different regulations dealing with nuclear materials, artificial radiation sources or radioactive wastes. The capability of customs officers is frequently incomplete and difficult to apply due to incompatibility of the intervention basis. In case of contaminated materials, it seems that the customs is not authorised directly and can only perform incidental control. In order to fulfil better its mission of fighting against illicit traffic of radioactive materials customs established partnership with CEA which actually includes practical and theoretical training meant to augment the capabilities of customs officers

  3. Regulated Disposal of NORM/TENORM Waste in Colorado: The Deer Trail Landfill

    International Nuclear Information System (INIS)

    Kennedy, W.E. Jr.; Retallick, P.G.; Kehoe, J.H.; Webb, M.M.; Nielsen, D.B.; Spaanstra, J.R.; Kornfeld, L.M.

    2006-01-01

    On January 31, 2005, Clean Harbors Environmental Services submitted a license application to the Colorado Department of Public Health and Environment (CDPHE) for the disposal of naturally occurring radioactive material (NORM) and technologically enhanced radioactive material (TENORM) at Clean Harbor's Deer Trail RCRA Subtitle C landfill. Deer Trail is located 70 miles east of Denver, Colorado. The license application for Deer Trail was submitted under CCR 1007-1, Part 14 [1] the Colorado State equivalent of 10 CFR Part 61 [2] for radioactive waste disposal. A disposal license is required since some of the NORM/TENORM waste in Colorado is licensed by CDPHE. The license application does not extend to byproduct or source material, and thus does not include the broader categories found in Class A radioactive waste. The license application requires the establishment of a radiation protection program, assuring that all NORM/TENORM waste, even non-licensed waste disposed under RCRA, will have appropriate radiological controls for workers, the public, and the environment. Because Deer Trail is a RCRA Subtitle C facility with an active RCRA Permit and because of the overlapping and similar requirements in the process to obtain either a RCRA permit or a radioactive waste disposal license, the license process for Deer Trail was appropriately focused. This focusing was accomplished by working with the Colorado Department of Public Health and Environment (CDPHE) and excluding or waiving selected radioactive materials license requirements from further consideration because they were found to be adequately addressed under the RCRA Permit. Of most significance, these requirements included: - Institutional Information - Federal or State ownership will not be required, since the State's Radiation Control regulations allow for private site ownership, consistent with the same financial assurance and institutional control requirements of RCRA. - Development of Additional Technical

  4. Evaluation of Activity Concentration Values and Doses due to the Transport of Low Level Radioactive Material

    Energy Technology Data Exchange (ETDEWEB)

    Rawl, Richard R [ORNL; Scofield, Patricia A [ORNL; Leggett, Richard Wayne [ORNL; Eckerman, Keith F [ORNL

    2010-04-01

    The International Atomic Energy Agency (IAEA) initiated an international Coordinated Research Project (CRP) to evaluate the safety of transport of naturally occurring radioactive material (NORM). This report presents the United States contribution to that IAEA research program. The focus of this report is on the analysis of the potential doses resulting from the transport of low level radioactive material. Specific areas of research included: (1) an examination of the technical approach used in the derivation of exempt activity concentration values and a comparison of the doses associated with the transport of materials included or not included in the provisions of Paragraph 107(e) of the IAEA Safety Standards, Regulations for the Safe Transport of Radioactive Material, Safety Requirements No. TS-R-1; (2) determination of the doses resulting from different treatment of progeny for exempt values versus the A{sub 1}/A{sub 2} values; and (3) evaluation of the dose justifications for the provisions applicable to exempt materials and low specific activity materials (LSA-I). It was found that the 'previous or intended use' (PIU) provision in Paragraph 107(e) is not risk informed since doses to the most highly exposed persons (e.g., truck drivers) are comparable regardless of intended use of the transported material. The PIU clause can also have important economic implications for co-mined ores and products that are not intended for the fuel cycle but that have uranium extracted as part of their industrial processing. In examination of the footnotes in Table 2 of TS-R-1, which identifies the progeny included in the exempt or A1/A2 values, there is no explanation of how the progeny were selected. It is recommended that the progeny for both the exemption and A{sub 1}/A{sub 2} values should be similar regardless of application, and that the same physical information should be used in deriving the limits. Based on the evaluation of doses due to the transport of low

  5. Radiological dose assessment related to management of naturally occurring radioactive materials generated by the petroleum industry

    International Nuclear Information System (INIS)

    Smith, K.P.; Blunt, D.L.; Williams, G.P.

    1996-09-01

    A preliminary radiological dose assessment of equipment decontamination, subsurface disposal, landspreading, equipment smelting, and equipment burial was conducted to address concerns regarding the presence of naturally occurring radioactive materials (NORM) in production waste streams. The assessment estimated maximum individual dose equivalents for workers and the general public. Sensitivity analyses of certain input parameters also were conducted. On the basis of this assessment, it is concluded that (1) regulations requiring workers to wear respiratory protection during equipment cleaning operations are likely to result in lower worker doses, (2) underground injection and downhole encapsulation of NORM wastes present a negligible risk to the general public, and (3) potential doses to workers and the general public related to smelting NORM-contaminated equipment can be controlled by limiting the contamination level of the initial feed. It is recommended that (1) NORM wastes be further characterized to improve studies of potential radiological doses; (2) states be encouraged to permit subsurface disposal of NORM more readily, provided further assessments support this study; results; (3) further assessment of landspreading NORM wastes be conducted; and (4) the political, economic, sociological, and nonradiological issues related to smelting NORM-contaminated equipment be studied to fully examine the feasibility of this disposal option

  6. Assessment for the management of NORM wastes in conventional hazardous and nonhazardous waste landfills

    Energy Technology Data Exchange (ETDEWEB)

    Mora, Juan C., E-mail: jc.mora@ciemat.es [Unit for Radiation Protection of the Public and the Environment (PRPYMA), CIEMAT, Avda. Complutense, 40, 28040 Madrid (Spain); Energy Engineering Department, Power Engineering, Nuclear Area, ETSII, UNED (Spain); Baeza, Antonio [LARUEX, Dpt. Applied Physics, Faculty of Veterinary Science, University of Extremadura, Avda. Universidad, s/n, 10071 Cáceres (Spain); Robles, Beatriz [Unit for Radiation Protection of the Public and the Environment (PRPYMA), CIEMAT, Avda. Complutense, 40, 28040 Madrid (Spain); Sanz, Javier [Energy Engineering Department, Power Engineering, Nuclear Area, ETSII, UNED (Spain)

    2016-06-05

    Highlights: • Before 2010 NORM waste is managed as non-radioactive, disposed in landfills. • After 2010 radiological impact of the management of NORM wastes must be assessed. • Quantities that can be disposed in hazardous or non-hazardous landfills are given. • Uncertainty analysis is included to provide consistency to the calculations. - Abstract: Naturally Occurring Radioactive Materials (NORM) wastes are generated in huge quantities in several industries and their management has been carried out under considerations of industrial non-radioactive wastes, before the concern on the radioactivity content was included in the legislation. Therefore these wastes were conditioned using conventional methods and the waste disposals were designed to isolate toxic elements from the environment for long periods of time. Spanish regulation for these conventional toxic waste disposals includes conditions that assure adequate isolation to minimize the impact of the wastes to the environment in present and future conditions. After 1996 the radiological impact of the management of NORM wastes is considered and all the aspects related with natural radiations and the radiological control regarding the management of residues from NORM industries were developed in the new regulation. One option to be assessed is the disposal of NORM wastes in hazardous and non-hazardous waste disposals, as was done before this new regulation. This work analyses the management of NORM wastes in these landfills to derive the masses that can be disposed without considerable radiological impact. Generic dose assessments were carried out under highly conservative hypothesis and a discussion on the uncertainty and variability sources was included to provide consistency to the calculations.

  7. Assessment for the management of NORM wastes in conventional hazardous and nonhazardous waste landfills

    International Nuclear Information System (INIS)

    Mora, Juan C.; Baeza, Antonio; Robles, Beatriz; Sanz, Javier

    2016-01-01

    Highlights: • Before 2010 NORM waste is managed as non-radioactive, disposed in landfills. • After 2010 radiological impact of the management of NORM wastes must be assessed. • Quantities that can be disposed in hazardous or non-hazardous landfills are given. • Uncertainty analysis is included to provide consistency to the calculations. - Abstract: Naturally Occurring Radioactive Materials (NORM) wastes are generated in huge quantities in several industries and their management has been carried out under considerations of industrial non-radioactive wastes, before the concern on the radioactivity content was included in the legislation. Therefore these wastes were conditioned using conventional methods and the waste disposals were designed to isolate toxic elements from the environment for long periods of time. Spanish regulation for these conventional toxic waste disposals includes conditions that assure adequate isolation to minimize the impact of the wastes to the environment in present and future conditions. After 1996 the radiological impact of the management of NORM wastes is considered and all the aspects related with natural radiations and the radiological control regarding the management of residues from NORM industries were developed in the new regulation. One option to be assessed is the disposal of NORM wastes in hazardous and non-hazardous waste disposals, as was done before this new regulation. This work analyses the management of NORM wastes in these landfills to derive the masses that can be disposed without considerable radiological impact. Generic dose assessments were carried out under highly conservative hypothesis and a discussion on the uncertainty and variability sources was included to provide consistency to the calculations.

  8. Radioactive material accidents in the transport

    International Nuclear Information System (INIS)

    Rodrigues, D.L.; Magalhaes, M.H.; Sanches, M.P.; Sordi, G.M.A.A.

    2008-01-01

    Transport is an important part of the worldwide nuclear industry and the safety record for nuclear transport across the world is excellent. The increase in the use of radioactive materials in our country requires that these materials be moved from production sites to the end user. Despite the number of packages transported, the number of incidents and accidents in which they are involved is low. In Brazil, do not be records of victims of the radiation as a result of the transport of radioactive materials and either due to the accidents happened during the transports. The absence of victims of the radiation as result of accidents during the transports is a highly significant fact, mainly to consider that annually approximately two hundred a thousand packages containing radioactive material are consigned for transport throughout the country, of which eighty a thousand are for a medical use. This is due to well-founded regulations developed by governmental and intergovernmental organizations and to the professionalism of those in the industry. In this paper, an overview is presented of the activities related to the transport of radioactive material in the state of Sao Paulo. The applicable legislation, the responsibilities and tasks of the competent authorities are discussed. The categories of radioactive materials transported and the packaging requirements for the safe transport of these radioactive materials are also described. It also presents the packages amounts of carried and the accidents occurred during the transport of radioactive materials, in the last five years. The main occurred events are argued, demonstrating that the demanded requirements of security for any transport of radioactive material are enough to guarantee the necessary control of ionizing radiation expositions to transport workers, members of general public and the environment. (author)

  9. Effects of non-radioactive material around radioactive material on PET image quality

    International Nuclear Information System (INIS)

    Toshimitsu, Shinya; Yamane, Azusa; Hirokawa, Yutaka; Kangai, Yoshiharu

    2015-01-01

    Subcutaneous fat is a non-radioactive material surrounding the radioactive material. We developed a phantom, and examined the effect of subcutaneous fat on PET image quality. We created a cylindrical non-radioactive mimic of subcutaneous fat, placed it around a cylindrical phantom in up to three layers with each layer having a thickness of 20 mm to reproduce the obesity caused by subcutaneous fat. In the cylindrical phantom, hot spheres and cold spheres were arranged. The radioactivity concentration ratio between the hot spheres and B.G. was 4:1. The radioactivity concentration of B.G. was changed as follows : 1.33, 2.65, 4.00, and 5.30 kBq/mL. 3D-PET image were collected during 10 minutes. When the thickness of the mimicked subcutaneous fat increased from 0 mm to 60 mm, noise equivalent count decreased by 58.9-60.9% at each radioactivity concentration. On the other hand, the percentage of background variability increased 2.2-5.2 times. Mimic subcutaneous fat did not decrease the percentage contrast of the hot spheres, and did not affect the cold spheres. Subcutaneous fat decreases the noise equivalent count and increases the percentage of background variability, which degrades PET image quality. (author)

  10. Evaluation of NORM concentration in water treatment of Pocos de Caldas municipality, MG, Brazil: preliminary results

    International Nuclear Information System (INIS)

    Ferreira, Adriano Mota; Villegas, Raul A.S.; Fukuma, Henrique Takuji

    2014-01-01

    NORM is the acronym used to refer to naturally occurring radioactive materials. Besides being objects of study and monitoring such materials can be used as raw material or as by-products or waste of industrial activities. Oil and gas, mining and water treatment are examples of facilities that can handle NORM. In such cases, their concentration at significant levels from the perspective of environmental and occupational radiation protection may occur. This study aims to evaluate the presence of the natural radioactive 238 U and 232 Th series in the treatment of city water elements Pocos de Caldas - MG (water, materials and waste). The study can serve as an indication of the necessity of a more detailed review in the locally and in the country on this radiological issue. (author)

  11. Construction of a naturally occurring radioactive material project in the BeAAT hazardous waste facilities.

    Science.gov (United States)

    Abuahmad, H

    2015-06-01

    This paper does not necessarily reflect the views of the International Commission on Radiological Protection. Naturally occurring radioactive material (NORM) is produced during exploration and production operations of subsidiaries of the Abu Dhabi National Oil Company (ADNOC) in the United Arab Emirates, and accumulates in drilling tubulars, plant equipment, and components. These NORM hazardous wastes need to be managed in such a way that they do not damage human health and the environment. The primary radionuclides of concern in the oil and gas industries are radium-226 and radium-228. These radioisotopes are the decay products of uranium and thorium isotopes that are present in subsurface formations from which hydrocarbons are produced. While uranium and thorium are largely immobile, radium is slightly more soluble and may become mobilised in the fluid phases of the formation (International Association of Oil & Gas Producers, 2008). In order to treat and dispose of NORM waste products safely, ADNOC's subsidiary 'TAKREER' is developing a new facility, on behalf of all ADNOC subsidiaries, within the existing Central Environmental Protection Facilities (BeAAT) in Ruwais city. The NORM plant is envisaged to treat, handle, and dispose of NORM waste in the forms of scale, sludge, and contaminated equipment. The NORM treatment facility will cover activities such as decontamination, volume reduction, NORM handling, and concrete immobilisation of NORM waste into packages for designated landfilling. © The International Society for Prosthetics and Orthotics Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  12. Electrodeless light source provided with radioactive material

    International Nuclear Information System (INIS)

    1979-01-01

    Radioactive materials are used to assist in starting a discharge in an electrodeless light source. The radioactive emissions predispose on the inner surface of the lamp envelope loosely bound charges which thereafter assist in initiating discharge. The radioactive material can be enclosed within the lamp envelope in gaseous or non-gaseous form. Preferred materials are krypton 85 and americium 241. In addition, the radioactive material can be dispersed in the lamp envelope material or can be a pellet imbedded in the envelope material. Finally, the radioactive material can be located in the termination fixture. Sources of alpha particles, beta particles, or gamma rays are suitable. Because charges accumulate with time on the inner surface of the lamp envelope, activity levels as low as 10 -8 curie are effective as starting aids. (Auth.)

  13. Characterization of norm sources in petroleum coke calcining processes - 16314

    International Nuclear Information System (INIS)

    Hamilton, Ian S.; Halter, Donald A.; Fruchtnicht, Erich H.; Arno, Matthew G.; Haumann, Donald F

    2009-01-01

    Petroleum coke, or 'petcoke', is a waste by-product of the oil refining industry. The majority of petcoke consumption is in energy applications; catalyst coke is used as refinery fuel, anode coke for electricity conduction, and marketable coke for heating cement kilns. Roskill has predicted that long-term growth in petroleum coke production will be maintained, and may continue to increase slightly through 2012. Petcoke must first be calcined to drive off any undesirable petroleum by-products that would shorten the coke product life cycle. As an example, the calcining process can take place in large, rotary kilns heated to maximum temperatures as high as approximately 1400-1540 deg. C. The kilns and combustion/settling chambers, as well as some cooler units, are insulated with refractory bricks and other, interstitial materials, e.g., castable refractory materials, to improve the efficiency of the calcining process. The bricks are typically made of 70-85-percent bauxite, and are slowly worn away by the calcining process; bricks used to line the combustion chambers wear away, as well, but at a slower rate. It has been recognized that the refractory materials contain slight amounts of naturally occurring radioactive materials (NORM) from the uranium- and thorium-decay series. Similarly, low levels of NORM could be present in the petcoke feed stock given the nature of its origin. Neither the petcoke nor the refractory bricks represent appreciable sources of radiation or radioactive waste. However, some of the demolished bricks that have been removed from service because of the aforementioned wearing process have caused portal alarms to activate at municipal disposal facilities. This has lead to the current investigation into whether there is a NORM concentrating mechanism facilitated by the presence of the slightly radioactive feed stock in the presence of the slightly radioactive refractory materials, at calcining-zone temperatures. Research conducted to date has been

  14. Operational procedure standard for occurrences involving radioactive materials

    International Nuclear Information System (INIS)

    Piekarz, Leonardo; Rezende, Talita C.; Pinheiro, Christiano J.G.

    2017-01-01

    This study has as objective to analyze more deeply the actions of response to emergencies involving radioactive materials, in the intent to establish a pattern to the actions performed by the military fire fighters of the Military Fire Brigade of Minas Gerais. To met these goals, it has been attempted to analyze the procedures utilized and recommended, nowadays, for the military fire fighters of CBMMG, and through directed studies, to suggest new actions possible to be executed in the local of the emergency in a way that will not expose the garrison to doses of ionizing radiation that may prejudice them. It is a study of bibliographic, exploratory, and also descriptive nature, realized through a qualitative approach. The techniques used for the research were the analysis of institutional documents, norms and other literature produced by renamed entities in the radiologic and biosafety areas. It was then concluded that CBMMG, through simple actions of response, can provide higher quality and safety in the operations involving radiologic accidents, standing out that the implemented actions nowadays are very beneath the capacity of the corporation, due to the lack of knowledge of the matter by the fire fighters. It was proposed, then, that new actions be implemented and instituted as operational procedures to be used on those emergencies, with the objective of provide a higher safety and professionalism in the attendance to emergencies involving radioactive materials. (author)

  15. Operational procedure standard for occurrences involving radioactive materials

    Energy Technology Data Exchange (ETDEWEB)

    Piekarz, Leonardo, E-mail: leonardopbm@yahoo.com.br [Academia de Bombeiros Militar de Minas Gerais, Belo Horizonte, MG (Brazil); Rezende, Talita C.; Pinheiro, Christiano J.G., E-mail: talitacolombi@yahoo.com, E-mail: christrieste@yahoo.it [Universidade Federal do Espirito Santo (CCA/UFES), Alegre, ES (Brazil). Programa de Pós-Graduação em Engenharia Química

    2017-07-01

    This study has as objective to analyze more deeply the actions of response to emergencies involving radioactive materials, in the intent to establish a pattern to the actions performed by the military fire fighters of the Military Fire Brigade of Minas Gerais. To met these goals, it has been attempted to analyze the procedures utilized and recommended, nowadays, for the military fire fighters of CBMMG, and through directed studies, to suggest new actions possible to be executed in the local of the emergency in a way that will not expose the garrison to doses of ionizing radiation that may prejudice them. It is a study of bibliographic, exploratory, and also descriptive nature, realized through a qualitative approach. The techniques used for the research were the analysis of institutional documents, norms and other literature produced by renamed entities in the radiologic and biosafety areas. It was then concluded that CBMMG, through simple actions of response, can provide higher quality and safety in the operations involving radiologic accidents, standing out that the implemented actions nowadays are very beneath the capacity of the corporation, due to the lack of knowledge of the matter by the fire fighters. It was proposed, then, that new actions be implemented and instituted as operational procedures to be used on those emergencies, with the objective of provide a higher safety and professionalism in the attendance to emergencies involving radioactive materials. (author)

  16. Method of treating radioactive waste material

    International Nuclear Information System (INIS)

    Allison, W.

    1980-01-01

    A method of treating radioactive waste material, particularly a radioactive sludge, is described comprising separating solid material from liquid material, compressing the solid material and encapsulating the solid material in a hardenable composition such as cement, bitumen or a synthetic resin. The separation and compaction stages are conveniently effected in a tube press. (author)

  17. Radioactive materials in recycled metals.

    Science.gov (United States)

    Lubenau, J O; Yusko, J G

    1995-04-01

    In recent years, the metal recycling industry has become increasingly aware of an unwanted component in metal scrap--radioactive material. Worldwide, there have been 35 instances where radioactive sources were unintentionally smelted in the course of recycling metal scrap. In some cases contaminated metal consumer products were distributed internationally. In at least one case, serious radiation exposures of workers and the public occurred. Radioactive material appearing in metal scrap includes sources subject to licensing under the Atomic Energy Act and also naturally occurring radioactive material. U.S. mills that have smelted a radioactive source face costs resulting from decontamination, waste disposal, and lost profits that range from 7 to 23 million U.S. dollars for each event. To solve the problem, industry and the government have jointly undertaken initiatives to increase awareness of the problem within the metal recycling industry. Radiation monitoring of recycled metal scrap is being performed increasingly by mills and, to a lesser extent, by scrap processors. The monitoring does not, however, provide 100% protection. Improvements in regulatory oversight by the government could stimulate improved accounting and control of licensed sources. However, additional government effort in this area must be reconciled with competing priorities in radiation safety and budgetary constraints. The threat of radioactive material in recycled metal scrap will continue for the foreseeable future and, thus, poses regulatory policy challenges for both developed and developing nations.

  18. Detection of radioactive materials at borders

    International Nuclear Information System (INIS)

    2003-08-01

    By international agreements, the movement of all radioactive materials within and between States should be subject to high standards of regulatory, administrative, safety and engineering controls to ensure that such movements are conducted in a safe and secure manner. In the case of nuclear materials, there are additional requirements for physical protection and accountability to ensure against threats of nuclear proliferation and to safeguard against any attempts at diversion. The results of the terrorist attacks of September 2001 emphasized the requirement for enhanced control and security of nuclear and radioactive materials. In this regard, measures are being taken to increase the global levels of physical protection and security for nuclear materials. Experience in many parts of the world continues to prove that movements of radioactive materials outside of the regulatory and legal frameworks continue to occur. Such movements may be either deliberate or inadvertent. Deliberate, illegal movements of radioactive materials, including nuclear material, for terrorist, political or illegal profit is generally understood to be illicit trafficking. The more common movements outside of regulatory control are inadvertent in nature. An example of an inadvertent movement might be the transport of steel contaminated by a melted radioactive source that was lost from proper controls. Such a shipment may present health and safety threats to the personnel involved as well as to the general public. States have the responsibility for combating illicit trafficking and inadvertent movements of radioactive materials. The IAEA co-operates with Member States and other international organizations in joint efforts to prevent incidents of illicit trafficking and inadvertent movements and to harmonize policies and measures by the provision of relevant advice through technical assistance and documents. As an example, the IAEA and the World Customs Organization (WCO) maintain a Memorandum

  19. Detection of radioactive materials at borders

    International Nuclear Information System (INIS)

    2004-05-01

    By international agreements, the movement of all radioactive materials within and between States should be subject to high standards of regulatory, administrative, safety and engineering controls to ensure that such movements are conducted in a safe and secure manner. In the case of nuclear materials, there are additional requirements for physical protection and accountability to ensure against threats of nuclear proliferation and to safeguard against any attempts at diversion. The results of the terrorist attacks of September 2001 emphasized the requirement for enhanced control and security of nuclear and radioactive materials. In this regard, measures are being taken to increase the global levels of physical protection and security for nuclear materials. Experience in many parts of the world continues to prove that movements of radioactive materials outside of the regulatory and legal frameworks continue to occur. Such movements may be either deliberate or inadvertent. Deliberate, illegal movements of radioactive materials, including nuclear material, for terrorist, political or illegal profit is generally understood to be illicit trafficking. The more common movements outside of regulatory control are inadvertent in nature. An example of an inadvertent movement might be the transport of steel contaminated by a melted radioactive source that was lost from proper controls. Such a shipment may present health and safety threats to the personnel involved as well as to the general public. States have the responsibility for combating illicit trafficking and inadvertent movements of radioactive materials. The IAEA co-operates with Member States and other international organizations in joint efforts to prevent incidents of illicit trafficking and inadvertent movements and to harmonize policies and measures by the provision of relevant advice through technical assistance and documents. As an example, the IAEA and the World Customs Organization (WCO) maintain a Memorandum

  20. Detection of radioactive materials at borders

    International Nuclear Information System (INIS)

    2002-09-01

    By international agreements, the movement of all radioactive materials within and between States should be subject to high standards of regulatory, administrative, safety and engineering controls to ensure that such movements are conducted in a safe and secure manner. In the case of nuclear materials, there are additional requirements for physical protection and accountability to ensure against threats of nuclear proliferation and to safeguard against any attempts at diversion. The results of the terrorist attacks of September 2001 emphasized the requirement for enhanced control and security of nuclear and radioactive materials. In this regard, measures are being taken to increase the global levels of physical protection and security for nuclear materials. Experience in many parts of the world continues to prove that movements of radioactive materials outside of the regulatory and legal frameworks continue to occur. Such movements may be either deliberate or inadvertent. Deliberate, illegal movements of radioactive materials, including nuclear material, for terrorist, political or illegal profit is generally understood to be illicit trafficking. The more common movements outside of regulatory control are inadvertent in nature. An example of an inadvertent movement might be the transport of steel contaminated by a melted radioactive source that was lost from proper controls. Such a shipment may present health and safety threats to the personnel involved as well as to the general public. States have the responsibility for combating illicit trafficking and inadvertent movements of radioactive materials. The IAEA co-operates with Member States and other international organizations in joint efforts to prevent incidents of illicit trafficking and inadvertent movements and to harmonize policies and measures by the provision of relevant advice through technical assistance and documents. As an example, the IAEA and the World Customs Organization (WCO) maintain a Memorandum

  1. Naturally Occurring Radioactive Materials in Uranium-Rich Coals and Associated Coal Combustion Residues from China.

    Science.gov (United States)

    Lauer, Nancy; Vengosh, Avner; Dai, Shifeng

    2017-11-21

    Most coals in China have uranium concentrations up to 3 ppm, yet several coal deposits are known to be enriched in uranium. Naturally occurring radioactive materials (NORM) in these U-rich coals and associated coal combustion residues (CCRs) have not been well characterized. Here we measure NORM (Th, U, 228 Ra, 226 Ra, and 210 Pb) in coals from eight U-rich coal deposits in China and the associated CCRs from one of these deposits. We compared NORM in these U-rich coals and associated CCRs to CCRs collected from the Beijing area and natural loess sediments from northeastern China. We found elevated U concentrations (up to 476 ppm) that correspond to low 232 Th/ 238 U and 228 Ra/ 226 Ra activity ratios (≪1) in the coal samples. 226 Ra and 228 Ra activities correlate with 238 U and 232 Th activities, respectively, and 226 Ra activities correlate well with 210 Pb activities across all coal samples. We used measured NORM activities and ash yields in coals to model the activities of CCRs from all U-rich coals analyzed in this study. The activities of measured and modeled CCRs derived from U-rich coals exceed the standards for radiation in building materials, particularly for CCRs originating from coals with U > 10 ppm. Since beneficial use of high-U Chinese CCRs in building materials is not a suitable option, careful consideration needs to be taken to limit potential air and water contamination upon disposal of U- and Ra-rich CCRs.

  2. Explanations on nomenclature and number of material for steels in accordance with DIN norm - (Deutsch Industrie Norm)

    International Nuclear Information System (INIS)

    Barone, S.D.; Silva, T.C.V. da; Bittencourt, M.S.Q.

    1980-01-01

    The materials specified by DIN norm are identified by its nomenclature and corresponding DIN number. The characters (numbers and letters) aim to classify the material and provide indication on main alloy properties and elements. (M.C.K.) [pt

  3. Radioactive certified reference materials

    International Nuclear Information System (INIS)

    Watanabe, Kazuo

    2010-01-01

    Outline of radioactive certified reference materials (CRM) for the analysis of nuclear materials and radioactive nuclides were described. The nuclear fuel CRMs are supplied by the three institutes: NBL in the US, CETAMA in France and IRMM in Belgium. For the RI CRMs, the Japan Radioisotope Association is engaged in activities concerning supply. The natural-matrix CRMs for the analysis of trace levels of radio-nuclides are prepared and supplied by NIST in the US and the IAEA. (author)

  4. Transport regulation for radioactive materials

    International Nuclear Information System (INIS)

    Ha Vinh Phuong.

    1986-01-01

    Taking into account the specific dangers associated with the transport of radioactive materials (contamination, irradiation, heat, criticality), IAEA regulations concerning technical specifications and administrative procedures to ward off these dangers are presented. The international agreements related to the land transport, maritime transport and air transport of radioactive materials are also briefly reviewed

  5. Accountability of Radioactive Materials in Malaysian Nuclear Agency

    International Nuclear Information System (INIS)

    Noor Fadilla Ismail; Wan Saffiey Wan Abdullah; Khairuddin Mohamad Kontol; Azimawati Ahmad; Suzilawati Muhd Sarowi; Mohd Fazlie Abdul Rashid

    2016-01-01

    Radioactive materials possessed in Malaysian Nuclear Agency have many beneficial applications for research and development, calibration, tracer and irradiation. There are two types of radioactive materials which consist of sealed sourced and unsealed sourced shall be accounted for and secured at all the times by following the security aspect. The Health Physics Group in the Department of Radiation Safety and Health Division is responsible to manage the issues related to any accountability for all radioactive material purchased or received under the radioactive material protocol. The accountability of radioactive materials in Malaysian Nuclear Agency is very important to ensure the security and control the radioactive materials to not to be lost or fall into the hands of people who do not have permission to possess or use it. The accountability of radioactive materials considered as a mandatory to maintaining accountability by complying the requirements of the Atomic Energy Licensing Act 1984 (Act 304) and regulations made thereunder and the conditions of license LPTA / A / 724. In this report describes the important element of accountability of radioactive materials in order to enhances security standard by allowing tracking of the locations of sources and to reduce the risk of radioactive materials falling into the wrong hands. (author)

  6. Radioactive substances in the Danish building materials

    International Nuclear Information System (INIS)

    Ulbak, K.

    1986-01-01

    Building materials as any other materials of natural occurrence contain small concentrations of natural radioactive elements. This natural radioactivity affects people inside buildings. This publiccation refers measurements of the Danish building materials, and radiation doses originating from this source affecting the Danish population are related to the other components of background radioactivity. (EG)

  7. Import/Export Service of Radioactive Material and Radioactive Sources Service

    CERN Multimedia

    2004-01-01

    Please note that the Import/Export Service of radioactive material (http://cern.ch/service-rp-shipping/ - e-mail : service-rp-shipping@cern.ch) and the Radioactive Sources Service (http://cern.ch/service-radioactive-sources - e-mail : service-radioactive-sources@cern.ch) at bldg. 24/E-024 will be closed on FRIDAY 10 SEPTEMBER 2004. Tel. 73171

  8. Estimation of global inventories of radioactive waste and other radioactive materials

    International Nuclear Information System (INIS)

    2008-06-01

    A variety of nuclear activities have been carried out in the second part of the twentieth century for different purposes. Initially the emphasis was on military applications, but with the passage of time the main focus of nuclear activities has shifted to peaceful uses of nuclear energy and to the use of radioactive material in industry, medicine and research. Regardless of the objectives, the nuclear activities generate radioactive waste. It was considered worthwhile to produce a set of worldwide data that could be assessed to evaluate the legacy of the nuclear activities performed up to the transition between the twentieth and the twenty first century. The assessment tries to cover the inventory of all the human produced radioactive material that can be considered to result from both military and civilian applications. This has caused remarkable difficulties since much of the data, particularly relating to military programmes, are not readily available. Consequently the data on the inventory of radioactive material should be considered as order-of-magnitude approximations. This report as a whole should be considered as a first iteration in a continuing process of updating and upgrading. The accumulations of radioactive materials can be considered a burden for human society, both at present and in the future, since they require continuing monitoring and control. Knowing the amounts and types of such radioactive inventories can help in the assessment of the relative burdens. Knowledge of the national or regional radioactive waste inventory is necessary for planning management operations, including the sizing and design of conditioning, storage and disposal facilities. A global inventory, either of radioactive waste or of other environmental accumulations of radioactive material, could be used to provide a perspective on the requirements and burdens associated with their management, by means of comparisons with the burdens caused by other types of waste or other

  9. Regulations for the safe transport of radioactive materials

    International Nuclear Information System (INIS)

    Kgogo, Obonye

    2016-04-01

    The report provides insight and investigates whether Transport Regulations in Botswana follow international standards for transport of radioactive material. Radioactive materials are very useful in most of our activities and are manufactured in different countries, therefore end up traversing from one country to another and being transported in national roads .The IAEA regulation for the Transport of radioactive material is used as the reference guideline in this study. The current Regulations for Transport of radioactive material in Botswana do not cover all factors which need to be considered when transporting radioactive although they refer to IAEA regulations. Basing on an inadequacy of the regulations and category of radioactive materials in the country recommendations were made concerning security, packaging and worker training's. The regulations for the Transport of radioactive material in Botswana need to be reviewed and updated so that they can relate to international standard. (au)

  10. Emergency Response to Radioactive Material Transport Accidents

    International Nuclear Information System (INIS)

    EL-shinawy, R.M.K.

    2009-01-01

    Although transport regulations issued by IAEA is providing a high degree of safety during transport opertions,transport accidents involving packages containing radioactive material have occurred and will occur at any time. Whenever a transport accident involving radioactive material accurs, and many will pose no radiation safety problems, emergency respnose actioms are meeded to ensure that radiation safety is maintained. In case of transport accident that result in a significant relesae of radioactive material , loss of shielding or loss of criticality control , that consequences should be controlled or mitigated by proper emergency response actions safety guide, Emergency Response Plamming and Prepardness for transport accidents involving radioactive material, was published by IAEA. This guide reflected all requirememts of IAEA, regulations for safe transport of radioactive material this guide provide guidance to the publicauthorites and other interested organziation who are responsible for establishing such emergency arrangements

  11. Safe transport of radioactive material

    International Nuclear Information System (INIS)

    1994-01-01

    Delivering radioactive material to where it is needed is a vital service to industry and medicine. Millions of packages are shipped all over the world by all modes of transport. The shipments pass through public places and must meet stringent safety requirements. This video explains how radioactive material is safely transported and describes the rules that carriers and handlers must follow

  12. Geology and genesis of NORM industrial links and depositional processes

    International Nuclear Information System (INIS)

    Wilson, W.F.

    1995-01-01

    NORM (Naturally Occurring Radioactive Material) has now been found to be associated with many industrial activities that extends far beyond oil and gas production. There are approximately 59 naturally occurring radionuclides that might end up in a train of NORM contamination, which could impact at least 13 industries. It is appropriate and indeed necessary to examine the geological roots of NORM and its concentration in various industries. Impacted NORM industries and their associated problems are presented. Some plant and environmental managers may not even suspect they have NORM problems, because one cannot ''sense'' NORM without instrumentation, until it might be too late for the health and safety of the effected employees and surrounding community. Others want to ''see no evil, hear no evil or speak any evil'' until they are forced into ''reactive'' environmental management, rather than ''proactive'' management. It has been the experience of many that reactive management is far more costly than proactive management

  13. Determination of natural radioactivity in beach sediments collected from Kovalam, Chennai

    International Nuclear Information System (INIS)

    Rajalakshmi, A.; Jananee, B.; Thangam, V.; Chandrasekaran, A.

    2018-01-01

    Long lived radioactive elements such as uranium, thorium, potassium and their decay products such as radium and radon are examples of naturally occurring radioactive materials abbreviated as NORM. All living things are exposed to ionizing radiation from NORM contributing to about 90% of human radiation exposure. The interaction of ionizing radiation with human body leads to several biological damages like leukemia, cancer etc due to damage and modification of cells and tissues in the body. Hence, the present work is carried out to determine the natural radioactivity of beach sediments along Kovalam Beach, Chennai. Associated parameters are also calculated

  14. Security of radioactive sources and materials

    International Nuclear Information System (INIS)

    Rodriguez, C.; D'Amato, E.; Fernandez Moreno, S.

    1998-01-01

    The activities involving the use of radiation sources and radioactive materials are subject to the control of the national bodies dedicated to the nuclear regulation. The main objective of this control is to assure an appropriate level of radiological protection and nuclear safety. In Argentina, this function is carried out by the 'Nuclear Regulatory Authority' (ARN) whose regulatory system for radiation sources and radioactive materials comprises a registration, licensing and inspection scheme. The system is designed to keep track of such materials and to allow taking immediate corrective actions in case some incident occurs. Due to the appearance of a considerable number of illicit traffic events involving radiation sources and radioactive materials, the specialized national and international community has begun to evaluate the adoption of supplementary measures to those of 'safety' guided to its prevention and detection (i.e. 'security measures'). This paper presents a view on when the adoption of complementary 'security' measures to those of 'safety' would be advisable and which they would be. This will be done through the analysis of two hypothesis of illicit traffic, the first one with sources and radioactive materials considered as 'registered' and the second, with the same materials designated as 'not registered'. It will also describe succinctly the measures adopted by the ARN or under its analysis regarding the 'security' measures to sources and radioactive materials. (author)

  15. Development of radioactive materials inspection system

    International Nuclear Information System (INIS)

    Yang Lu; Wang Guobao; Chen Yuhua; Li Latu; Zhang Sujing

    2005-01-01

    Radioactive materials inspection system which is applied to inspect the horror activities of radioactive materials and its illegal transfer. The detector sections are made of highly stable and credible material. It has high sensitivity to radioactive materials. The inspect lowest limit of inspection is the 2-3 times to the background, the energy range is 30 keV-2.5 MeV and the response time is 0.5 s. Inspection message can be transmitted through wired or wireless web to implement remote control. The structure of the system is small, light and convenient. It is ideal for protecting society and public from the harm of the radiation. (authors)

  16. Naturally occurring radioactive materials (NORMs) generated from lignite-fired power plants in Kosovo

    International Nuclear Information System (INIS)

    Hasani, F.; Shala, F.; Xhixha, G.; Xhixha, M.K.; Hodolli, G.; Kadiri, S.; Bylyku, E.; Cfarku, F.

    2014-01-01

    The energy production in Kosovo depends primarily on lignite-fired power plants. During coal combustion, huge amounts of fly ash and bottom ash are generated, which may result in enriched natural radionuclides; therefore, these radionuclides need to be investigated to identify the possible processes that may lead to the radiological exposure of workers and the local population. Lignite samples and NORMs of fly ash and bottom ash generated in lignite-fired power plants in Kosovo are analyzed using a gamma-ray spectrometry method for the activity concentration of natural radionuclides. The average activity concentrations of 40 K, 226 Ra and 232 Th in lignite are found to be 36 ± 8 Bq kg −1 , 9 ± 1 Bq kg −1 and 9 ± 3 Bq kg −1 , respectively. Indications on the occurrence and geochemical behavior of uranium in the lignite matrix are suggested. The activity concentrations of natural radionuclides in fly ash and bottom ash samples are found to be concentrated from 3 to 5 times that of the feeding lignite. The external gamma-ray absorbed dose rate and the activity concentration index are calculated to assess the radiological hazard arising from ash disposal and recycling in the cement industry. - Highlights: • NORMs in lignite combustion residues from CFPPs are studied. • Th/U indicates either low U uptake from host rocks and/or high leaching from peat. • The concentration factor of NORMs in fly and bottom ash samples are 3–5 times. • No 226 Ra enrichment is observed in fly ash while a depletion in bottom ash. • The reuse of fly ash in cement industry poses no significant radiological issue

  17. Recovering method for high level radioactive material

    International Nuclear Information System (INIS)

    Fukui, Toshiki

    1998-01-01

    Offgas filters such as of nuclear fuel reprocessing facilities and waste control facilities are burnt, and the burnt ash is melted by heating, and then the molten ashes are brought into contact with a molten metal having a low boiling point to transfer the high level radioactive materials in the molten ash to the molten metal. Then, only the molten metal is evaporated and solidified by drying, and residual high level radioactive materials are recovered. According to this method, the high level radioactive materials in the molten ashes are transferred to the molten metal and separated by the difference of the distribution rate of the molten ash and the molten metal. Subsequently, the molten metal to which the high level radioactive materials are transferred is heated to a temperature higher than the boiling point so that only the molten metal is evaporated and dried to be removed, and residual high level radioactive materials are recovered easily. On the other hand, the molten ash from which the high level radioactive material is removed can be discarded as ordinary industrial wastes as they are. (T.M.)

  18. Packaging and transportation of radioactive materials

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-01-01

    The presentations made at the Symposium on Packaging and Transportation of Radioactive Materials are included. The purpose of the meeting was for the interchange of information on the technology and politics of radioactive material transportation. Separate abstracts were prepared for individual items. (DC)

  19. Packaging and transportation of radioactive materials

    International Nuclear Information System (INIS)

    1978-01-01

    The presentations made at the Symposium on Packaging and Transportation of Radioactive Materials are included. The purpose of the meeting was for the interchange of information on the technology and politics of radioactive material transportation. Separate abstracts were prepared for individual items

  20. International conventions for measuring radioactivity of building materials

    International Nuclear Information System (INIS)

    Tan Chenglong

    2004-01-01

    In buildings, whether civil or industrial, natural radioactivity always occurs at different degrees in the materials (main building materials, decorative materials). Concerns on radioactivity from building materials is unavoidable for human living and developing. As a member of WTO, China's measuring method of radioactivity for building materials, including radionuclides limitation for building materials, hazard evaluation system etc, should keep accordance with the international rules and conventions. (author)

  1. Technologically enhanced naturally occurring radioactive material (TENORM) and its regulation. Aspects at issue

    International Nuclear Information System (INIS)

    Menon, Shankar

    2001-01-01

    It has been known for quite a long time that mankind lives in a naturally radioactive world. However, it is only during the last decade that it has become generally registered that naturally occurring radioactive material (NORM) is artificially concentrated ('technologically enhanced') in many non- nuclear industries. This concentration, termed TENORM, can be in the products, the by- products or the wastes arising from these industries. The emergence of the NORM/TENORM issue has been of great significance for the discussions on clearance regulations in the nuclear industry. A task group of the OECD/NEA Co-operative Programme on Decommissioning has found that TENORM arisings occur in huge quantities; two to three orders of magnitude larger than those used in European studies on release of material from the nuclear industry. The activity levels in TENORM arisings are generally the same as in very low level nuclear waste. Their occurrence in a large number of industries, as well as their activity levels and quantities, have not been generally known, even to regulatory authorities, until fairly recently. Thus the regulation of TENORM is in its early stages. Ra 226 with a half-life of 1,600 years is by far the most important radionuclide. These data are only shown to give an idea of quantities and activity levels. Other industries with significant radioactive waste streams are petroleum processing, geothermal plants and paper mills. Studies by the European Commission have shown that more or less comparable quantities of TENORM arise in Europe, with similar concentrations of radioactivity. Two of the largest source industries of TENORM are the coal and fertiliser industries. According to UNSCEAR, 280 million tons of coal ash arise globally every year. 40 million tons are used in the production of bricks and cement and 'a great deal' is utilised as road stabiliser, road fill, asphalt mix and fertiliser. Annual doses to residents can be up to several mSv. These doses are

  2. Airborne concentrations of radioactive materials in severe accidents

    International Nuclear Information System (INIS)

    Ross, D.F. Jr.; Denning, R.S.

    1989-01-01

    Radioactive materials would be released to the containment building of a commercial nuclear reactor during each of the stages of a severe accident. Results of analyses of two accident sequences are used to illustrate the magnitudes of these sources of radioactive materials, the resulting airborne mass concentrations, the characteristics of the airborne aerosols, the potential for vapor forms of radioactive materials, the effectiveness of engineered safety features in reducing airborne concentrations, and the release of radioactive materials to the environment. Ability to predict transport and deposition of radioactive materials is important to assessing the performance of containment safety features in severe accidents and in the development of accident management procedures to reduce the consequences of severe accidents

  3. Radioactive materials' transportation main routes in Brazil. Radiation protection aspects about radioactive materials transportation

    International Nuclear Information System (INIS)

    Vaz, Solange dos Reis e; Andrade, Fernando de Menezes; Aleixo, Luiz Claudio Martins

    2007-01-01

    The heavy transportation in Brazil is generally done by highways. The radioactive material transportation follow this same rule. Whenever a radioactive material is carried by the road, by the sea or by the air, in some cases, a kind of combination of those transportation ways, the transport manager has to create a Transportation Plan and submit it to CNEN. Only after CNEN's approval, the transportation can be done. The plan must have the main action on Radiation Protection, giving responsibilities and showing all the directing that will be take. Although, the Brazilian's highways are not in good conditions, one could say that some of them are not good enough for any kind of transportation. But we are facing radioactive material use increase but the hospitals and industries, that the reason it's much more common that kind of transportation nowadays. So, because of that, a special attention by the governments must be provide to those activities. This paper goal is to show the real conditions of some important highways in Brazil in a radioactive protection's perspective and give some suggestions to adjust some of those roads to this new reality. (author)

  4. Working safely with radioactive materials

    International Nuclear Information System (INIS)

    Davies, Wynne

    1993-01-01

    In common with exposure to many other laboratory chemicals, exposure to ionising radiations and to radioactive materials carries a small risk of causing harm. Because of this, there are legal limits to the amount of exposure to ionising radiations at work and special rules for working with radioactive materials. Although radiation protection is a complex subject it is possible to simplify to 10 basic things you should do -the Golden Rules. They are: 1) understand the nature of the hazard and get practical training; 2) plan ahead to minimise time spent handling radioactivity; 3) distance yourself appropriately from sources of radiation; 4) use appropriate shielding for the radiation; 5) contain radioactive materials in defined work areas; 6) wear appropriate protective clothing and dosimeters; 7) monitor the work area frequently for contamination control; 8) follow the local rules and safe ways of working; 9) minimise accumulation of waste and dispose of it by appropriate routes, and 10) after completion of work, monitor, wash, and monitor yourself again. These rules are expanded in this article. (author)

  5. Decontamination method for radioactively contaminated material

    International Nuclear Information System (INIS)

    Shoji, Yuichi; Mizuguchi, Hiroshi; Sakai, Hitoshi; Komatsubara, Masaru

    1998-01-01

    Radioactively contaminated materials having surfaces contaminated by radioactive materials are dissolved in molten salts by the effect of chlorine gas. The molten salts are brought into contact with a low melting point metal to reduce only radioactive materials by substitution reaction and recover them into the low melting point metal. Then, a low melting point metal phase and a molten salt phase are separated. The low melting point metal phase is evaporated to separate the radioactive materials from molten metals. On the other hand, other metal ions dissolved in the molten salts are reduced into metals by electrolysis at an anode and separated from the molten salts and served for regeneration. The low melting point metals are reutilized together with contaminated lead, after subjected to decontamination, generated from facilities such as nuclear power plant or lead for disposal. Since almost all materials including the molten salts and the molten metals can be enclosed, the amount of wastes can be reduced. In addition, radiation exposure of operators who handle them can be reduced. (T.M.)

  6. Dose and risk assessment of norm Contaminated waste released from trench disposal facility

    International Nuclear Information System (INIS)

    Abdel Geleel, M.; Ramadan, A.B.; Tawfik, A.A.

    2005-01-01

    Oil and gas extraction and processing operations accumulate naturally occurring radioactive material (NORM) at concentrations above normal in by-product waste streams. The petroleum industry adopted methods for managing of NORM that are more restrictive than past practices and are likely to provide greater isolation of the radioactivity. Trench was used as a disposal facility for NORM contaminated wastes at one site of the petroleum industry in Egypt. The aim of this work is to calculate the risk and dose assessment received from trench disposal facility directly and after closure (1000 year). RESRAD computer code was used. The results indicated that the total effective dose (TED) received after direct closure of trench disposal facility was 7.7E-4 mSv/y while after 1000 years, it will he 3.4E-4. The health cancer risk after direct closure was 3.3E-8 while after 1000 years post closure it was 6E-8. Results of this assessment will help examine policy issues concerning different options and regulation of NORM contaminated waste generated by petroleum industry

  7. Regulatory controls for NORM contamination: Emerging issues and strategies

    International Nuclear Information System (INIS)

    Wennerberg, Linda

    1992-01-01

    Naturally occurring and accelerator-produced radioactive material (NORM) faces the increasing likelihood of federal or state regulatory control. Public concern and limited preliminary survey data fuel the debate over the necessity, approach, and jurisdiction of a NORM regulatory strategy. This debate requires the resolution of technical controversies and potentially competing state and federal agency interests. An additional facet of the debate is the impact of regulation upon traditionally non-nuclear industries, such as oil and gas production. Regulatory response has been initiated in several states, such as Louisiana's controls on equipment used in oil and gas production, to control specific industrial activities which generate NORM. A more comprehensive, generic federal strategy to control NORM contamination is also under review by the Environmental Protection Agency. This paper will detail the emerging technical issues, federal and state regulatory strategies under consideration, and evaluate the efficacy of selected regulatory approaches. (author)

  8. Radioactive material packaging performance testing

    International Nuclear Information System (INIS)

    Romano, T.; Cruse, J.M.

    1991-02-01

    To provide uniform packaging of hazardous materials on an international level, the United Nations has developed packaging recommendations that have been implemented worldwide. The United Nations packaging recommendations are performance oriented, allowing for a wide variety of package materials and systems. As a result of this international standard, efforts in the United States are being directed toward use of performance-oriented packaging and elimination of specification (designed) packaging. This presentation will focus on trends, design evaluation, and performance testing of radioactive material packaging. The impacts of US Department of Transportation Dockets HM-181 and HM-169A on specification and low-specific activity radioactive material packaging requirements are briefly discussed. The US Department of Energy's program for evaluating radioactive material packings per US Department of Transportation Specification 7A Type A requirements, is used as the basis for discussing low-activity packaging performance test requirements. High-activity package testing requirements are presented with examples of testing performed at the Hanford Site that is operated by Westinghouse Hanford Company for the US Department of Energy. 5 refs., 2 tabs

  9. Effective dose evaluation of NORM-added consumer products using Monte Carlo simulations and the ICRP computational human phantoms.

    Science.gov (United States)

    Lee, Hyun Cheol; Yoo, Do Hyeon; Testa, Mauro; Shin, Wook-Geun; Choi, Hyun Joon; Ha, Wi-Ho; Yoo, Jaeryong; Yoon, Seokwon; Min, Chul Hee

    2016-04-01

    The aim of this study is to evaluate the potential hazard of naturally occurring radioactive material (NORM) added consumer products. Using the Monte Carlo method, the radioactive products were simulated with ICRP reference phantom and the organ doses were calculated with the usage scenario. Finally, the annual effective doses were evaluated as lower than the public dose limit of 1mSv y(-1) for 44 products. It was demonstrated that NORM-added consumer products could be quantitatively assessed for the safety regulation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Safe transport of radioactive materials

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-12-31

    The film shows the widespread use of radioactive materials in industry, medicine and research and explains the need for transporting nuclear material from producer to user. It shows the way in which packages containing radioactive materials are handled during transport and explains the most important provisions of the IAEA transport regulations, safety series no. 6, such as packaging design criteria and testing requirements, illustrated by various tests carried out, specimen packages and package and freight container labelling. Also illustrated are practical measures to be taken in case of an accident

  11. Innocuous management of radioactive wastes

    International Nuclear Information System (INIS)

    Vargas, C.

    1997-01-01

    The relations between peaceful uses and bellicose uses of the nuclear energy are complexes in relation to international establishment of norms to control the destiny of the radioactive materials, above all in the context of the existing international legislation of respect to the autonomy of the countries, and in the determination of the institution or institutions upon the ones that would fall on. The nuclear safeguards of materials and the possibilities of performing their function. Important efforts have been done to unify, to help and to impose international measures on the behalf of an environmentally harmless processing of the radioactive wastes [es

  12. Technical considerations for detection of and response to illicit trafficking in radioactive materials

    International Nuclear Information System (INIS)

    Duftschmid, K.E.; Arlt, R.; Cunningham, J.; Gayral, J.P.; Kravchenko, N.; Smith, D.; York, R.

    2001-01-01

    it is illicit or 'innocent'. Innocent materials are typically medical radionuclides administered to patient, legal shipments or naturally occurring radioactive materials (NORM). If the radiological hazard is significant, neutron radiation is observed, indicating the presence of nuclear materials or mechanical damage of the item containing the source raises suspicion of contamination, it will be necessary to adopt a tactical response mechanism. A detailed generic model has been developed for a tactical response plan including incident command structures, cordon control areas, casualty handling at the scene, requirements for seizure and temporary storage of radioactive materials, considerations on liaison with the media and incident investigation techniques. Further important information relates to mitigation of health hazards, casualty management, needs for planning, equipment and training, transport arrangements for radioactive materials, decontamination procedures and hints for working with the media. (author)

  13. A Study of the Relationship of Geological Formation to the NORM

    International Nuclear Information System (INIS)

    Bursh, Talmage P.; Chriss, Derald

    1999-01-01

    Naturally Occurring Radioactive Materials (NORM) is a common and costly contaminant of produced waters associated with natural gas production and exploration. One way of combating this problem is by identifying the problem beforehand. Our approach to this problem involves development of NORM prediction capabilities based on the geological environment. During quarter fifteen of this project, work has continued under the recently approved revisions. We have selected sampling sites and are awaiting samples for analysis. In addition, the QA/QC plans are in the final stages in anticipation of sample acquisition

  14. Transporting radioactive materials: Q ampersand A to your questions

    International Nuclear Information System (INIS)

    1993-04-01

    Over 2 million packages of radioactive materials are shipped each year in the United States. These shipments are carried by trucks, trains, ships, and airplanes every day just like other commodities. Compliance with Federal regulations ensures that radioactive materials are transported safely. Proper packaging is the key to safe shipment. Package designs for radioactive materials must protect the public and the environment even in case of an accident. As the level of radioactivity increases, packaging design requirements become more stringent. Radioactive materials have been shipped in this country for more than 40 years. As with other commodities, vehicles carrying these materials have been involved in accidents. However, no deaths or serious injuries have resulted from exposure to the radioactive contents of these shipments. People are concerned about how radioactive shipments might affect them and the environment. This booklet briefly answers some of the commonly asked questions about the transport of radioactive materials. More detailed information is available from the sources listed at the end of this booklet

  15. Institutional storage and disposal of radioactive materials

    International Nuclear Information System (INIS)

    St Germain, J.

    1986-01-01

    Storage and disposal of radioactive materials from nuclear medicine operations must be considered in the overall program design. The storage of materials from daily operation, materials in transit, and long-term storage represent sources of exposure. The design of storage facilities must include consideration of available space, choice of material, occupancy of surrounding areas, and amount of radioactivity anticipated. Neglect of any of these factors will lead to exposure problems. The ultimate product of any manipulation of radioactive material will be some form of radioactive waste. This waste may be discharged into the environment or placed within a storage area for packaging and transfer to a broker for ultimate disposal. Personnel must be keenly aware of packaging regulations of the burial site as well as applicable federal and local codes. Fire codes should be reviewed if there is to be storage of flammable materials in any area. Radiation protection personnel should be aware of community attitudes when considering the design of the waste program

  16. Techniques and methodologies to identify potential generated industries of NORM in Angola Republic and evaluate its impacts; Técnicas e metodologias para identificar potenciais indústrias geradoras de NORM na República de Angola e estimar seus impactos

    Energy Technology Data Exchange (ETDEWEB)

    Diogo, José Manuel Sucumula

    2017-07-01

    Numerous steps have been taken worldwide to identify and quantify the radiological risks associated with the mining of ores containing Naturally Occurrence Radioactive Material (NORM), often resulting in unnecessary exposures to individuals and high environmental damage, with devastating consequences for the health of workers and damage to the economy of many countries due to a lack of regulations or inadequate regulations. For these and other reasons, the objective of this work was to identify industrial potential generating NORM in the Republic of Angola and to estimate its radiological environmental impacts. To achieve this objective, we studied the theoretical aspects, identified the main internationally recognized industrial companies that as generate by NORM. The Brazilian experience in the regulatory aspect was observed in the evaluation criteria to classify industries that generate NORM, the methods of mining and its radiological environmental impacts, as well as the main techniques applied to evaluate the concentrations of radionuclides in a specific environmental matrix and/or a NORM sample. The study approach allowed the elaboration of a NORM map for the main provinces of Angola, establishing the evaluation criteria for implementing the Radiation Protection Plan in the extractive industry, establishing measures to control ionizing radiation in mining, identifying and quantifying radionuclides present in samples of lees oil. However, in order to assess adequately the radiological environmental impact of the NORM industry, it is not enough to identify them, it is important to know the origin, quantify the radioactive material released as liquid and gaseous effluents, identify the main routes of exposure and examine how this material spreads into the environment until it reaches man. (author)

  17. Transport of radioactive materials

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1960-04-15

    The increasing use of radioactive substances, not only in reactor operations but also in medicine, industry and other fields, is making the movement of these materials progressively wider, more frequent and larger in volume. Although regulations for the safe transport of radioactive materials have been in existence for many years, it has now become necessary to modify or supplement the existing provisions on an international basis. It is essential that the regulations should be applied uniformly by all countries. It is also desirable that the basic regulations should be uniform for all modes of transport so as to simplify the procedures to be complied with by shippers and carriers

  18. Radioactive material packaging performance testing

    International Nuclear Information System (INIS)

    Romano, T.

    1992-06-01

    In an effort to provide uniform packaging of hazardous material on an international level, recommendations for the transport of dangerous goods have been developed by the United Nations. These recommendations are performance oriented and contrast with a large number of packaging specifications in the US Department of Transportation's hazard materials regulations. This dual system presents problems when international shipments enter the US Department of Transportation's system. Faced with the question of continuing a dual system or aligning with the international system, the Research and Special Programs Administration of the US Department of Transportation responded with Docket HM-181. This began the transition toward the international transportation system. Following close behind is Docket HM-169A, which addressed low specific activity radioactive material packaging. This paper will discuss the differences between performance-oriented and specification packaging, the transition toward performance-oriented packaging by the US Department of Transportation, and performance-oriented testing of radioactive material packaging by Westinghouse Hanford Company. Dockets HM-181 and HM-169A will be discussed along with Type A (low activity) and Type B (high activity) radioactive material packaging evaluations

  19. U.S. port commerce in radioactive materials

    International Nuclear Information System (INIS)

    Marti, B.E.

    1987-01-01

    Much attention has focused on the movement of radioactive materials over land transport systems. On the other hand, maritime flow and associated throughput studies of such substances have been neglected. Although several peaks and troughs are evident between 1972 and 1981, radioactive tonnage moving through U.S. port facilities steadily increasing. In the ten-year period assessed, total radioactive materials handled at U.S. ports expanded by over 19,000 tons, which amounts to almost a 173 percent growth rate. The purpose of this exploratory research is threefold. First, it identifies all U.S. ports which were involved in loading or discharging radioactive materials. The major goal of the identification process is to broaden public awareness of these types of movement. Second, it classifies U.S. seaports based on the magnitude of radioactive tonnage handled. The function of the classification is to impose some order on the varied data, while at the same time categorizing large, medium, and small facilities. Finally, it seeks to verify whether or not a long term trend exists. The objective of the verification process is to ascertain if the distribution of radioactive materials handled at individual ports has remained constant. Port safety and contingency planning are clearly within the purview of coastal zone management. The results of this preliminary research should form a foundation for future studies which compare and evaluate local, state, and federal regulatory policy pertaining to port operations involving radioactive materials, including waste

  20. Techniques and methodologies to identify potential generated industries of NORM in Angola Republic and evaluate its impacts

    International Nuclear Information System (INIS)

    Diogo, José Manuel Sucumula

    2017-01-01

    Numerous steps have been taken worldwide to identify and quantify the radiological risks associated with the mining of ores containing Naturally Occurrence Radioactive Material (NORM), often resulting in unnecessary exposures to individuals and high environmental damage, with devastating consequences for the health of workers and damage to the economy of many countries due to a lack of regulations or inadequate regulations. For these and other reasons, the objective of this work was to identify industrial potential generating NORM in the Republic of Angola and to estimate its radiological environmental impacts. To achieve this objective, we studied the theoretical aspects, identified the main internationally recognized industrial companies that as generate by NORM. The Brazilian experience in the regulatory aspect was observed in the evaluation criteria to classify industries that generate NORM, the methods of mining and its radiological environmental impacts, as well as the main techniques applied to evaluate the concentrations of radionuclides in a specific environmental matrix and/or a NORM sample. The study approach allowed the elaboration of a NORM map for the main provinces of Angola, establishing the evaluation criteria for implementing the Radiation Protection Plan in the extractive industry, establishing measures to control ionizing radiation in mining, identifying and quantifying radionuclides present in samples of lees oil. However, in order to assess adequately the radiological environmental impact of the NORM industry, it is not enough to identify them, it is important to know the origin, quantify the radioactive material released as liquid and gaseous effluents, identify the main routes of exposure and examine how this material spreads into the environment until it reaches man. (author)

  1. Comparative assessment of the European and Latin American scenarios for NORM/TENORM exposure

    International Nuclear Information System (INIS)

    Steinhaeusler, F.; Paschoa, A.S.

    2002-01-01

    The geological formation of the areas of high natural radioactivity are usually associated with mineral ores commercially important. As a consequence, extracting industries are installed in or near those areas. Several industrial products and byproducts can be obtained from thorium, uranium and potassium rich mineral ores, for example: niobium concentrate from pyrochlore; monazite, ilmenite, rutile and zirconite concentrates from monazite sands; phosphate fertilizers from apatite; tin and lead from cassiterite; gold and copper form a variety of thorium and uranium rich mineral matrices. Other industries like oil- and natural gas production and processing, production of thoriated tungsten lamps, welding, gas mantles and pigments produce non-negligible amounts of wastes containing technologically enhanced naturally occurring radioactive materials (TENORM). In addition, quite frequently unknown amounts of natural radionuclides end up embedded in a variety of consumer products. Thus, naturally occurring radioactive materials (NORM) as well as TENORM in consumer products and/or industrial wastes may be of importance as far as human exposures are concerned. This work will present a comparative assessment of the radiological significance of different NORM/TENORM exposure scenarios in Europe and Latin America. (author)

  2. Transport of radioactive materials by post

    International Nuclear Information System (INIS)

    1984-11-01

    The objective of the Seminar was to encourage safe and efficient carriage of radioactive material by post. Adequate, up-to-date regulations for international and domestic shipment of radioactive material by all modes of transport, including by mail, have been published by the IAEA. UPU, ICAO, IATA and other international organizations as well as a majority of the countries of the world have adopted most sections of the Agency's Regulations for the Safe Transport of Radioactive Material. Although there is an apparent need for shipping radioactive material by mail, some countries allow only domestic shipments and the postal regulations applied in these countries often differs from the international regulations. Only about 25 countries are known to allow international (as well as domestic) shipments. From the discussions and comments at the Seminar, it appears that the option of shipment by post would be advantageous to enhance both the safety and economy of transporting, as well as to increase availability of, radioactive materials. The Agency's Regulations for transport by post as adopted by the UPU and ICAO are considered to provide a high level of safety and ensure a negligible element of risk. A more uniform application of these regulations within UPU Member States should be encouraged. The competent authority for implementation of the other parts of the Agency's Regulations in each of the Member States should be invited to advise the Postal Administrators and assist in applying the requirements to national as well as international postal shipments

  3. Toward the Framework and Implementation for Clearance of Materials from Regulated Facilities

    International Nuclear Information System (INIS)

    Chen, Shih-Yew; Moeller, Dade W.; Dornsife, William P.; Meyer, H Robert; Lamastra, Anthony; Lubenau, Joel O.; Strom, Daniel J.; Yusko, James G.

    2005-01-01

    The disposition of solid materials from nuclear facilities has been a subject of public debate for several decades. The primary concern has been the potential health effects resulting from exposure to residual radioactive materials to be released for unrestricted use. These debates have intensified in the last decade as many regulated facilities are seeking viable management decisions on the disposition of the large amounts of materials potentially containing very low levels of residual radioactivity. Such facilities include the nuclear weapons complex sites managed by the U.S. Department of Energy (DOE), commercial power plants licensed by the U.S. Nuclear Regulatory Commission (NRC), and other materials licensees regulated by the NRC or the Agreement States. Other facilities that generate radioactive material containing naturally occurring radioactive materials (NORM) or technologically enhanced NORM (TENORM) are also seeking to dispose of similar materials that may be radioactively contaminated. In contrast to the facilities operated by the DOE and the nuclear power plants licensed by the NRC, NORM and TENORM facilities are regulated by the individual states. Current federal laws and regulations do not specify criteria for releasing these materials that may contain residual radioactivity of either man-made or natural origin from regulatory controls. In fact, the current regulatory scheme offers no explicit provision as to permit materials being released as ''non-radioactive'', including those that are essentially free of contamination. The only method used to date with limited success has been case-by-case evaluation and approval. In addition, there is a poorly defined and inconsistent regulatory framework for regulating NORM and TENORM. Some years ago, the International Atomic Energy Agency (IAEA) introduced the concept of clearance, that is, controlling releases of any such materials within the regulatory domain. This paper aims to clarify clearance as an

  4. Toward the framework and implementation for clearance of materials from regulated facilities.

    Science.gov (United States)

    Chen, S Y; Moeller, D W; Dornsife, W P; Meyer, H R; Lamastra, A; Lubenau, J O; Strom, D J; Yusko, J G

    2005-08-01

    The disposition of solid materials from nuclear facilities has been a subject of public debate for several decades. The primary concern has been the potential health effects resulting from exposure to residual radioactive materials to be released for unrestricted use. These debates have intensified in the last decade as many regulated facilities are seeking viable management decisions on the disposition of the large amounts of materials potentially containing very low levels of residual radioactivity. Such facilities include the nuclear weapons complex sites managed by the U.S. Department of Energy, commercial power plants licensed by the U.S. Nuclear Regulatory Commission (NRC), and other materials licensees regulated by the NRC or the Agreement States. Other facilities that generate radioactive material containing naturally occurring radioactive materials (NORM) or technologically enhanced NORM (TENORM) are also seeking to dispose of similar materials that may be radioactively contaminated. In contrast to the facilities operated by the DOE and the nuclear power plants licensed by the U.S. Nuclear Regulatory Commission, NORM and TENORM facilities are regulated by the individual states. Current federal laws and regulations do not specify criteria for releasing these materials that may contain residual radioactivity of either man-made or natural origin from regulatory controls. In fact, the current regulatory scheme offers no explicit provision to permit materials being released as "non-radioactive," including those that are essentially free of contamination. The only method used to date with limited success has been case-by-case evaluation and approval. In addition, there is a poorly defined and inconsistent regulatory framework for regulating NORM and TENORM. Some years ago, the International Atomic Energy Agency introduced the concept of clearance, that is, controlling releases of any such materials within the regulatory domain. This paper aims to clarify

  5. Very low level radioactive material

    International Nuclear Information System (INIS)

    Schaller, K.H.; Linsley, G.; Elert, M.

    1993-01-01

    Man's environment contains naturally occurring radionuclides and doses from exposures to these radionuclides mostly cannot be avoided. Consequently, almost everything may be considered as very low level radioactive material. In practical terms, management and the selection of different routes for low level material is confined to material which was subject to industrial processing or which is under a system of radiological control. Natural radionuclides with concentrations reaching reporting or notification levels will be discussed below; nevertheless, the main body of this paper will be devoted to material, mainly of artificial origin, which is in the system involving notification, registration and licensing of practices and sources. It includes material managed in the nuclear sector and sources containing artificially produced radionuclides used in hospitals, and in industry. Radioactive materials emit ionising radiations which are harmful to man and his environment. National and international regulations provide the frame for the system of radiation protection. Nevertheless, concentrations, quantities or types of radionuclide may be such, that the material presents a very low hazard, and may therefore be removed from regulatory control, as it would be a waste of time and effort to continue supervision. These materials are said to be exempted from regulatory control. Material exempted in a particular country is no longer distinguishable from ''ordinary'' material and may be moved from country to country. Unfortunately, criteria for exempting radioactive materials differ strongly between countries and free trade. Therefore there is a necessity for an international approach to be developed for exemption levels

  6. Response to Illicit Trafficking of Radioactive Materials

    International Nuclear Information System (INIS)

    2010-01-01

    Two response paths are discussed in the presentation. Reactive response follows when an alarm of a border monitor goes off or a notification is received about an incident involving or suspected to involve radioactive materials. The response can also be the result of the finding of a discrepancy between a customs declaration form and the corresponding actual shipment. Proactive response is undertaken upon receipt of intelligence information suggesting the illicit trafficking of radioactive materials, notification about the discovery of non-compliance with transport regulations or if discrepancies are found in an inventory of radioactive materials.

  7. Handbook for Response to Suspect Radioactive Materials

    International Nuclear Information System (INIS)

    Cliff, William C.; Pappas, Richard A.; Arthur, Richard J.

    2005-01-01

    This document provides response actions to be performed following the initial port, airport, or border crossing discovery of material that is suspected of being radioactive. The purpose of this guide is to provide actions appropriate for handling radioactive material

  8. A method for prevention of radioactive material release

    International Nuclear Information System (INIS)

    Uchida, Shunsuke; Sato, Chikara; Kitamura, Masao.

    1975-01-01

    Object: To provide a method for preventing an underwater radioactive material from being released in a simple and highly reliable manner, which can decrease an amount of radioactive materials discharged into open air from reactor water containing a large amount of radioactive materials such as a reactor core pool. Structure: Pure warm water higher in temperature than that of reactor water is poured from the top of a water surface of a water tank which stores reactor water containing radioactive materials such as radioactive iodine, and water is drawn through an outlet located downwardly of the pure warm water inlet to form a layer of pure warm water at the upper part of the water tank while preventing diffusion of the reactor water into the pure warm water by the difference in density between the reactor water and the pure warm water and downward movement of the pure warm water, thereby preventing contact of the reactor water with the atmosphere and diffusion of the radioactive material into the atmosphere. (Kamimura, M.)

  9. Background radioactivity in environmental materials

    International Nuclear Information System (INIS)

    Maul, P.R.; O'Hara, J.P.

    1989-01-01

    This paper presents the results of a literature search to identify information on concentrations of 'background' radioactivity in foodstuffs and other commonly available environmental materials. The review has concentrated on naturally occurring radioactivity in foods and on UK data, although results from other countries have also been considered where appropriate. The data are compared with established definitions of a 'radioactive' substance and radionuclides which do not appear to be adequately covered in the literature are noted. (author)

  10. Radioactive material inventory control at a waste characterization facility

    International Nuclear Information System (INIS)

    Yong, L.K.; Chapman, J.A.; Schultz, F.J.

    1996-01-01

    Due to the recent introduction of more stringent Department of Energy (DOE) regulations and requirements pertaining to nuclear and criticality safety, the control of radioactive material inventory has emerged as an important facet of operations at DOE nuclear facilities. In order to comply with nuclear safety regulations and nuclear criticality requirements, radioactive material inventories at each nuclear facility have to be maintained below limits specified for the facility in its safety authorization basis documentation. Exceeding these radioactive material limits constitutes a breach of the facility's nuclear and criticality safety envelope and could potentially result in an accident, cause a shut-down of the facility, and bring about imminent regulatory repercussions. The practice of maintaining control of radioactive material, especially sealed and unsealed sources, is commonplace and widely implemented; however, the requirement to track the entire radioactivity inventory at each nuclear facility for the purpose of ensuring nuclear safety is a new development. To meet the new requirements, the Applied Radiation Measurements Department at Oak Ridge National Laboratory (ORNL) has developed an information system, called the open-quotes Radioactive Material Inventory Systemclose quotes (RMIS), to track the radioactive material inventory at an ORNL facility, the Waste Examination and Assay Facility (WEAF). The operations at WEAF, which revolve around the nondestructive assay and nondestructive examination of waste and related research and development activities, results in an ever-changing radioactive material inventory. Waste packages and radioactive sources are constantly being brought in or taken out of the facility; hence, use of the RMIS is necessary to ensure that the radioactive material inventory limits are not exceeded

  11. Waste minimization for commercial radioactive materials users generating low-level radioactive waste

    International Nuclear Information System (INIS)

    Fischer, D.K.; Gitt, M.; Williams, G.A.; Branch, S.; Otis, M.D.; McKenzie-Carter, M.A.; Schurman, D.L.

    1991-07-01

    The objective of this document is to provide a resource for all states and compact regions interested in promoting the minimization of low-level radioactive waste (LLW). This project was initiated by the Commonwealth of Massachusetts, and Massachusetts waste streams have been used as examples; however, the methods of analysis presented here are applicable to similar waste streams generated elsewhere. This document is a guide for states/compact regions to use in developing a system to evaluate and prioritize various waste minimization techniques in order to encourage individual radioactive materials users (LLW generators) to consider these techniques in their own independent evaluations. This review discusses the application of specific waste minimization techniques to waste streams characteristic of three categories of radioactive materials users: (1) industrial operations using radioactive materials in the manufacture of commercial products, (2) health care institutions, including hospitals and clinics, and (3) educational and research institutions. Massachusetts waste stream characterization data from key radioactive materials users in each category are used to illustrate the applicability of various minimization techniques. The utility group is not included because extensive information specific to this category of LLW generators is available in the literature

  12. The safe transport of radioactive materials

    International Nuclear Information System (INIS)

    Swindell, G.E.

    1975-01-01

    In the course of transport by road, rail, sea and air, consignments of radioactive material are in close proximity to ordinary members of the public and in most cases they are loaded and unloaded by transport workers who have no special training or experience in the handling of radioactive substances. The materials being transported cover a wide variety - ranging from small batches of short-lived radionuclides used in medical practice which can be transported in small sealed lead pots in cardboard boxes, to large, extremely radioactive consignments of irradiated nuclear fuel in flasks weighing many tons. With the growing development of nuclear power programmes the transport of irradiated fuel is likely to increase markedly. It is clear that unless adequate regulations concerning the design and assembly of the packages containing these materials are precisely set down and strictly carried out, there would be a high probability that some of the radioactive contents would be released, leading to contamination of other transported goods and the general environment, and to the delivery of a radiation dose to the transport workers and the public. An additional requirement is that the transport should proceed smoothly and without delay. This is particularly important for radioactive materials of short half-life, which would lose significant amounts of their total activity in unnecessary delays at international boundaries. Therefore, it is essential that the regulations are also enforced, to ensure that the radioactive material is contained and the surrounding radiation level reduced to a value which poses no threat to other sensitive goods such as photographic film, or to transport workers and other passengers. These regulations should be as uniform as possible on an international basis, so that consignments can move freely from one country to another with as little delay as possible at the frontiers. (author)

  13. Spreadsheet application to classify radioactive material for shipment

    International Nuclear Information System (INIS)

    Brown, A.N.

    1997-12-01

    A spreadsheet application has been developed at the Idaho National Engineering and Environmental Laboratory to aid the shipper when classifying nuclide mixtures of normal form, radioactive materials. The results generated by this spreadsheet are used to confirm the proper US Department of Transportation (DOT) classification when offering radioactive material packages for transport. The user must input to the spreadsheet the mass of the material being classified, the physical form (liquid or not), and the activity of each regulated nuclide. The spreadsheet uses these inputs to calculate two general values: (1) the specific activity of the material, and (2) a summation calculation of the nuclide content. The specific activity is used to determine if the material exceeds the DOT minimal threshold for a radioactive material (Yes or No). If the material is calculated to be radioactive, the specific activity is also used to determine if the material meets the activity requirement for one of the three Low Specific Activity designations (LSA-I, LSA-II, LSA-III, or Not LSA). Again, if the material is calculated to be radioactive, the summation calculation is then used to determine which activity category the material will meet (Limited Quantity, Type A, Type B, or Highway Route Controlled Quantity)

  14. Development of an expert system for radioactive material transportation

    International Nuclear Information System (INIS)

    Tamanoi, K.; Ishitobi, M.; Shinohara, Y.

    1990-01-01

    An expert system to deal with radioactive material transportation was developed. This expert system is based on 'Regulations for the Safe Transport of Radioactive Material' by IAEA issued 1985. IAEA published the regulations under such environments that safety transportation has become increasingly being focused as uses of radioactive materials are more pervasive, not only in nuclear field but also in non-nuclear purposes. Attentions are payed for operators and environment to establish safety in handling radioactive materials. In the 1985 regulations, detailed categorization of radioactive materials and, correspondingly, new classification of packages are introduced. This categorization is more complicated than old regulations, leading us to develop an expert system to evaluate easily the packages categorization. (author)

  15. The management of radioactive materials spills

    International Nuclear Information System (INIS)

    Ryan, M.T.; Ebenhack, D.G.

    1985-01-01

    The management and handling of a radioactive materials spill must be swift and effective to reduce or mitigate any adverse impacts on public health and safety. Spills within nuclear facilities generally pose less of a public health impact than spills in areas of public access. The essential elements of spill management include prior planning by agencies which may be required to respond to a spill. Any plan for the management of radioactive materials spills must be flexible enough to be applied in a variety of situations. The major elements of a radioactive materials spill plan, however, apply in every case. It is essential that communications be clear and effective, that the management of a spill be directed by a responsible party whose authority is recognized by everyone involved and that the actions, according to the principles discussed above, be taken to assure the safety of any injured personnel, containment and stabilization and clean up the spill and to verify through radiological surveys and sample analyses that the clean up is complete. Any spill of radioactive materials, minor or major, should be assessed so that similar spills or accidents can be prevented

  16. Engineering materials for high level radioactive waste repository

    International Nuclear Information System (INIS)

    Wen Zhijian

    2009-01-01

    Radioactive wastes can arise from a wide range of human activities and have different physical and chemical forms with various radioactivity. The high level radioactive wastes (HLW)are characterized by nuclides of very high initial radioactivity, large thermal emissivity and the long life-term. The HLW disposal is highly concerned by the scientists and the public in the world. At present, the deep geological disposal is regarded as the most reasonable and effective way to safely dispose high-level radioactive wastes in the world. The conceptual model of HLW geological disposal in China is based on a multi-barrier system that combines an isolating geological environment with an engineering barrier system(EBS). The engineering materials in EBS include the vitrified HLW, canister, overpack, buffer materials and backfill materials. Referring to progress in the world, this paper presents the function, the requirement for material selection and design, and main scientific projects of R and D of engineering materials in HLW repository. (authors)

  17. State-of-the-art of NORM nuclide determination in samples from oil and gas production : Validation of potential standardization methods through an interlaboratory test programme

    NARCIS (Netherlands)

    Knaepen, WAI; Bergwerf, W; Lancee, PJF; vanDijk, W; Jansen, JFW; Janssen, RGC; Kiezenberg, WHT; vanSluijs, R; Tijsmans, MH; Voors, PI

    1995-01-01

    Gas and oil companies frequently encounter build-up of Naturally Occurring Radioactive Material (NORM) in their production and processing facilities. In the Netherlands NORM is subject to strict national regulations and, consequently, installations have to be screened on a regular basis. The

  18. European cooperation in radiation protection in NORM-industries

    Energy Technology Data Exchange (ETDEWEB)

    Gellermann, Rainer [Nuclear Control and Consulting GmbH, Braunschweig (Germany); Pepin, Stephane [Federal Agency for Nuclear Control, Brussels (Belgium). Section Surveillance of the Territory and Natural Radiation; Wiegers, Rob [IBR Consult BV, Haelen (Netherlands)

    2017-10-01

    Noturally occurring radioactive materials, abbreviated NORM, have been incorporated into the European legislative framework of radiation protection With Directive 96/29/Euratom. Title VII of this directive pointed out that radiation protection has to be applied to ''work activities not covered by Article 2 [1] within which the presence of natural radiation sources leads to a significant increase in the exposure of workers or of members of the public which cannot be disregarded from the radiation protection point of view''. This new legal framework resulted in challenges for non-nuclear industries which process, treat or otherwise handle natural radiation sources. The natural radiation sources in these industries differ from the man-made radiation sources used in technical applications of radioactivity. In the non-nuclear industry, large volumes of raw materials with generally low activity concentration are processed.

  19. Transport of radioactive material in Sudan practice and regulations

    International Nuclear Information System (INIS)

    Abdalla, M. K. E.

    2010-12-01

    In the last couple of decades there has been an impressive increase in applications of radioactive material. Such an extensive and widely spread usage of radioactive materials demands safe transportation of radioactive material from the production site to the application location, as well as quick and effective response in a case of an unexpected transportation event according to Sudan Atomic Energy Commission (SAEC) regulation. The thesis described the local practice for transport of radioactive material as compared to the international standards for radiation protection, and also discussed the emergency procedures that must be follow in case of accident during transport of radioactive material. Furthermore, the objective of this study was also to set proposals for how to cope in the event of a radiological accident. The study methods included survey of current literature on safe transport of radioactive material, survey of national regulations on the subjects in additional to case studies aimed at investigating the practical issues pertinent to transport of radioactive materials in Sudan. A comprehensive review was presented on how to classification of radioactive packages and general requirement for all packaging and packages according to international standard. transport of number of radioactive sources from Khartoum airport to the field was evaluated with regard transport index, category of source, type of package, dose rate around the source, time to destination and means of transport of doses to public, worker are be made. All results were within the limit specified in the national as well as international regulation. The study has addressed for the first time the practice of transport of radioactive material in Sudan. It is anticipated that the results will encourage national organizational and professional bodies to enhance radiation protection and safety of radioactive sources. (Author)

  20. A Study of the Relationship of Geological Formation to the NORM

    International Nuclear Information System (INIS)

    Bursh, Talmage P.; Chriss, Derald

    1999-01-01

    Naturally Occurring Radioactive Materials (NORM) is a common and costly contaminant of produced waters associated with natural gas production and exploration. One way of combating this problem is by identifying the problem beforehand. Our approach to this problem involves development of NORM prediction capabilities based on the geological environment. During the tenth quarter of this project, emphasis again remained on two major tasks; identifying new sampling sites and seeking approval for final project revisions. In light of the delays experienced, the project has been granted a one year extension, and a revision is currently under review

  1. Transport of radioactive material in Bangladesh: a regulatory perspective

    International Nuclear Information System (INIS)

    Mollah, A.S.

    2004-01-01

    Radioactive material is transported in Bangladesh in various types of packages and by different modes of transport. The transport of radioactive materials involves a risk both for the workers and members of the public. The safe transport of radioactive material is ensured in Bangladesh by compliance with Nuclear Safety and Radiation Control (NSRC) Act-93 and NSRC Rules-97. The Bangladesh Atomic Energy Commission (BAEC) is the competent authority for the enforcement of the NSRC act and rules. The competent authority has established regulatory control at each stage to ensure radiation safety to transport workers, members of general public and the environment. An overview is presented of the activities related to the transport of radioactive material in Bangladesh. In particular, the applicable legislation, the scope of authority and the regulatory functions of the competent authority are discussed. The categories of radioactive materials transported and the packaging requirements for the safe transport of these radioactive materials are also described. (author)

  2. Disposal containers for radioactive waste materials and separation systems for radioactive waste materials

    International Nuclear Information System (INIS)

    Rubin, L.S.

    1986-01-01

    A separation system for dewatering radioactive waste materials includes a disposal container, drive structure for receiving the container, and means for releasably attaching the container to the drive structure. The separation structure disposed in the container adjacent the inner surface of the side wall structure retains solids while allowing passage of liquids. The inlet port structure in the container top wall is normally closed by first valve structure that is centrifugally actuated to open the inlet port and the discharge port structure at the container periphery receives liquid that passes through the separation structure and is normally closed by a second valve structure that is centrifugally actuated to open the discharge ports. The container also includes a coupling structure for releasable engagement with the centrifugal drive structure. The centrifugal force produced when the container is driven in rotation by the drive structure opens the valve structures, and radioactive waste material introduced into the container through the open inlet port is dewatered, and the waste is compacted. The ports are automatically closed by the valves when the container drum is not subjected to centrifugal force such that containment effectiveness is enhanced and exposure of personnel to radioactive materials is minimized. (author)

  3. Economic impact of potential NORM regulations

    International Nuclear Information System (INIS)

    Smith, G.E.; Fitzgibbon, T.; Karp, S.

    1995-01-01

    Oil and gas field wastes and sites contaminated with naturally occurring radioactive materials (NORM) have quickly become a focus of substantial attention by regulators both at the state and federal level. Although currently regulated in a number of states, the Environmental Protection Agency (EPA) has indicated a desire to develop federal regulations to address management and disposal of NORM-contaminated wastes. This paper provides a brief overview of current state NORM regulations, currently available technologies for managing and disposing NORM wastes, and the cost of employing these techniques. Based on these characterizations and alternative assumptions about the volume of NORM wastes, four alternative scenarios have been developed to bracket potential future NORM requirements. These scenarios have been used is the basis for an analysis of the potential economic and supply impacts of NORM requirements on the U.S. oil and gas industry. The results illustrate that a reasonable approach to regulation that focuses only on those NORM wastes that pose a risk and allows producers to use safe, low cost disposal methods (downhole or other) would have minimal economic impacts on the oil and gas industry. A very stringent regulatory approach that covered large volumes of wastes, required the use of higher cost disposal techniques, and required extensive site clean-up activities could have a substantial economic impact, resulting in a loss of up to 20 percent of U.S. oil production and 8 percent of U.S. gas production by 2000. The costs of compliance with these alternative approaches could range from $71 million to over $14 billion annually. Between these two cases lies the opportunity for regulators to develop requirements for management and disposal of NORM wastes that will address any environmental and human health risks posed at industry sites without imposing unnecessarily costly regulations on the U.S. oil and gas E ampersand P industry

  4. 49 CFR 173.428 - Empty Class 7 (radioactive) materials packaging.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Empty Class 7 (radioactive) materials packaging... SHIPPERS-GENERAL REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Class 7 (Radioactive) Materials § 173.428 Empty Class 7 (radioactive) materials packaging. A packaging which previously contained Class 7 (radioactive...

  5. The radioactivity of house-building materials

    International Nuclear Information System (INIS)

    Sos, K.

    2007-01-01

    The paper compares the natural radioactivity and radon emission properties of different building materials like bricks, concretes, cements, sands, limes, marmors of different origin. A description of the radioactive model of apartments is also given. (TRA)

  6. Procedures for the Safe Transport of Radioactive Material

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jang Lyul; Chung, K. K.; Lee, J. I.; Chang, S. Y.; Lee, T. Y

    2007-11-15

    This technical report describes the procedure and work responsibility along with the regulation and standard necessary for the safe transport of radioactive or contaminated materials. This report, therefore, can be effectively used to secure the public safety as well as to prevent the disastrous event which might be resulted from the transport process of radioactive materials by establishing a procedure and method on the safe packing, handling and transport of radioactive materials.

  7. Low-cost NORM concentrations measuring technique for building materials of Uzbekistan

    Science.gov (United States)

    Safarov, Akmal; Safarov, Askar; Azimov, Askarali; Darby, Iain G.

    2016-04-01

    Concentrations of natural radionuclides of building materials are important in order to estimate exposure of humans to radiation, who can spend up to 80% of their time indoors. One of the indicators of building materials' safety is the radium equivalent activity, which is regulated by national and international normative documents [1,2,3]. Materials with Ra(eq) =stone, red sand, granite, white marble and concrete cubes was performed both before and after ageing of samples (10, 20, 30 and 40 days). Measurement times of samples were 1, 3, 6 and 12 hours. Samples were measured in 1 liter Marinelli beaker geometry, using NaI(Tl) spectrometers with crystal sizes 2.5 x 2.5 in and 3.1 x 3.1 in. Efficiency calibration of spectrometers was done using certified volumetric (1 liter Marinelli beaker) Ra-226, Th-232 and K-40 sources filled with silica sand and density 1,7 kg/l. Herein we present results indicating that one hour measuring may be sufficient for samples in 1 liter Marinelli beakers offering prospect of significant time and cost improvements. References: 1. NEA-OECD (1979): Exposure to radiation from natural radioactivity in building materials. Report by Group of Experts of the OECD Nuclear Energy Agency (NEA) Paris 2. STUK (Radiation and Nuclear Safety Authority) (2003): The radioactivity of building materials and ash. Regulatory Guides on Radiation Safety (ST Guides) ST 12.2 (Finland) (8 October 2003) 3. GOST 30108-94 (1995): Building materials and elements. Determination of specific activity of natural radioactive nuclei. Interstate Standard. 4. Krisiuk E.M. et al., (1971). A study on Radioactivity in Building Materials (Leningrad: Research Institute for radiation Hygiene) 5. Beretka, J., & Mathew, P. J. (1985). Natural radioactivity of Australian building materials, waste and by-products. Health Physics, 48, 87-95. 6. Uosif M.A.M. (2014). Estimation of Radiological Hazards of Some Egyptian Building Materials Due to Natural Radioactivity. International Journal

  8. Test for radioactive material transport package safety

    International Nuclear Information System (INIS)

    Li Guoqiang; Zhao Bing; Zhang Jiangang; Wang Xuexin; Ma Anping

    2012-01-01

    Regulations on radioactive material transport in China were introduced. Test facilities and data acquiring instruments for radioactive material package in China Institute for Radiation Protection were also introduced in this paper, which were used in drop test and thermal test. Test facilities were constructed according to the requirements of IAEA's 'Regulations for the Safe Transport of Radioactive Material' (TS-R-l) and Chinese 'Regulations for the Safe Transport of Radioactive Material' (GB 11806-2004). Drop test facilities were used in free drop test, penetration test, mechanical test (free drop test Ⅰ, free drop test Ⅱ and free drop test Ⅲ) of type A and type B packages weighing less than thirteen tons. Thermal test of type B packages can be carried out in the thermal test facilities. Certification tests of type FCo70-YQ package, type 30A-HB-01 package, type SY-I package and type XAYT-I package according to regulations were done using these facilities. (authors)

  9. Issues in recycling and disposal of radioactively contaminated materials

    International Nuclear Information System (INIS)

    Kluk, A.F.; Hocking, E.K.; Roberts, R.; Phillips, J.W.

    1993-01-01

    The Department of Energy's present stock of potentially re-usable and minimally radioactively contaminated materials will increase significantly as the Department's remediation activities expand. As part of its effort to minimize wastes, the Department is pursuing several approaches to recover valuable materials such as nickel, copper, and steel, and reduce the high disposal costs associated with contaminated materials. Key approaches are recycling radioactively contaminated materials or disposing of them as non-radioactive waste. These approaches are impeded by a combination of potentially conflicting Federal regulations, State actions, and Departmental policies. Actions to promote or implement these approaches at the Federal, State, or Departmental level involve issues which must be addressed and resolved. The paramount issue is the legal status of radioactively contaminated materials and the roles of the Federal and State governments in regulating those materials. Public involvement is crucial in the debate surrounding the fate of radioactively contaminated materials

  10. Combating illicit trafficking in nuclear and other radioactive material. Reference material

    International Nuclear Information System (INIS)

    2007-01-01

    This publication is intended for individuals and organizations that may be called upon to deal with the detection of and response to criminal or unauthorized acts involving nuclear or other radioactive material. It will also be useful for legislators, law enforcement agencies, government officials, technical experts, lawyers, diplomats and users of nuclear technology. This manual emphasizes the international initiatives for improving the security of nuclear and other radioactive material. However, it is recognized that effective measures for controlling the transfer of equipment, non-nuclear material, technology or information that may assist in the development of nuclear explosive devices, improvised nuclear devices (INDs) or other radiological dispersal devices (RDDs) are important elements of an effective nuclear security system. In addition, issues of personal integrity, inspection and investigative procedures are not discussed in this manual, all of which are essential elements for an effective overall security system. The manual considers a variety of elements that are recognized as being essential for dealing with incidents of criminal or unauthorized acts involving nuclear and other radioactive material. Depending on conditions in a specific State, including its legal and governmental infrastructure, some of the measures discussed will need to be adapted to suit that State's circumstances. However, much of the material can be applied directly in the context of other national programmes. This manual is divided into four main parts. Section 2 discusses the threat posed by criminal or unauthorized acts involving nuclear and other radioactive material, as well as the policy and legal bases underlying the international effort to restrain such activities. Sections 3 and 4 summarize the major international undertakings in the field. Sections 5-8 provide some basic technical information on radiation, radioactive material, the health consequences of radiation

  11. Radioactive Material Containment Bags

    National Research Council Canada - National Science Library

    2000-01-01

    The audit was requested by Senator Joseph I. Lieberman based on allegations made by a contractor, Defense Apparel Services, about the Navy's actions on three contracts for radioactive material containment bags...

  12. Regulation of naturally occurring radioactive materials in non-nuclear industries

    International Nuclear Information System (INIS)

    Scott, L.M.

    1997-01-01

    The volume and concentrations of naturally occurring radioactive material is large across a variety of industries commonly thought not to involve radioactive material. The regulation of naturally occurring radioactive material in the United States is in a state of flux. Inventory of naturally occurring radioactive materials is given, along with a range of concentrations. Current and proposed regulatory limits are presented. (author)

  13. Transportation accidents/incidents involving radioactive materials (1971--1991)

    International Nuclear Information System (INIS)

    Cashwell, C.E.; McClure, J.D.

    1992-01-01

    The Radioactive Materials Incident Report (RMIR) database contains information on transportation-related accidents and incidents involving radioactive materials that have occurred in the United States. The RMIR was developed at Sandia National Laboratories (SNL) to support its research and development program efforts for the US Department of Energy (DOE). This paper will address the following topics: background information on the regulations and process for reporting a hazardous materials transportation incident, overview data of radioactive materials transportation accidents and incidents, and additional information and summary data on how packagings have performed in accident conditions

  14. Norms of radiation protection in uranium and thorium production cycles. Normas de protecao radiologica nos ciclos de producao do uranio e torio

    Energy Technology Data Exchange (ETDEWEB)

    1975-01-01

    A deliberation aiming to complement the basic norms of radiation protection for applying to uranium and thorium production cycle is presented. The activitires of excavation, remotion, storage, and physical and chemical processing of the ores, are included. The transport of radioactive materials into the establishments is governed by these norms. (M.C.K.).

  15. Denials and Delays of Radioactive Material Shipments

    International Nuclear Information System (INIS)

    El-Shinawy, R.M.K.

    2011-01-01

    delays of shipments of radioactive materials forms an important issue today. Radioactive materials need to be transported using all modes of transport for use in different applications such as public health, industry, research and production of nuclear power. The transport of radioactive materials is governed by national and international regulations, which are based on the International Atomic Energy Agency (IAEA) regulations for safe transport of radioactive materials (TS-R-1). These regulations ensure high standards of safety. Recently there were increasing numbers of instances of denials and delays of shipments of radioactive materials even when complying with the regulations. The denials and delays can result in difficulties to patients and others who rely on products sterilized by radiation. Therefore there is an urgent need for a universally accepted approach to solve this problem. In response, the IAEA has formed an International Steering Committee (ISC) on denials and delays of radioactive materials. Also, it designate the National Focal Points (NFP) representative to help the ISC members and the IAEA by informing about denial operations and how they can help. The Steering Committee developed and adopted an action plan which includes the action to be taken. This plan is based on: Awareness, Training, Communication, Lobbying for marketing, Economic and Harmonization among member states. It is important to work within the mandate of the ISC and in the line of action plan on denials and delays. It identified the following network members such as: National Focal Points, Regional Coordinators, National Committee, National Representative for different modes of transport and similar bodies, Carriers, Producers and Suppliers, Different civil societies, NGO's, Ministry of transport and others.

  16. Treating agent for urea containing radioactive materials

    International Nuclear Information System (INIS)

    Ogawa, Hiroshi; Maki, Kentaro.

    1973-01-01

    Object: To add a coagulant into urea containing radioactive material to precipitate and remove the radioactive material in the urea. Structure: Iodosalt is added into urea and next, a mixed reagent in which silver ion or silver acetic ion and iron hydroxide precipitation or ferrite ion coexist is added therein. The urea is treated to have a sufficient alkaline, after which it is introduced into a basket type centrifuge formed with a filter layer in combination of an upper glass fiber layer and a lower active carbon layer. The treating agent can uniformly remove radioactive ion and radioactive chelate within urea containing inorganic salt and various metabolites. (Nakamura, S.)

  17. Safety of transport of radioactive material. Contributed papers

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    Radioactive material has been transported for decades within and between countries as the use of radioactive material to benefit mankind has expanded. The transport can involve many types of materials (radionuclides and radiation sources for applications in agriculture, energy production, industry, and medicine) and all modes of transport (road, rail, sea and waterways, and air). Among the organizations in the United Nations system, the International Atomic Energy Agency (IAEA) has the statutory function to establish or adopt standards of safety for protection of health against exposure to ionizing radiation. Within its statutory mandate and pursuant to this request, in 1961, the IAEA issued Regulations for the Safe Transport of Radioactive Material (the IAEA Transport Regulations). The Transport Regulations were periodically reviewed and, as appropriate, have been amended or revised. The latest version of the Transport Regulations was issued in 2000 by the IAEA as Publication TS-R-1 (ST-1, Revised). In addition, the IAEA is entrusted by its Statute to provide for the application of its standards at the request of States. The objective of the Conference is to foster the exchange of information on issues related to the safety of transport of radioactive material by providing an opportunity for representatives from sponsoring international organizations and their Member States and from other co-operating and participating organizations to discuss critical issues relating to the safety of transport of radioactive material by all modes and to formulate recommendations, as appropriate, regarding further international co-operation in this area. The following topics have been identified by the Technical Programme Committee as the subjects to be covered in the background briefing sessions: History and Status of the IAEA Transport Regulation Development; Experience in adoption of the IAEA Transport Regulations at the international level; Implementation of the IAEA Transport

  18. Alternate Materials In Design Of Radioactive Material Packages

    International Nuclear Information System (INIS)

    Blanton, P.; Eberl, K.

    2010-01-01

    This paper presents a summary of design and testing of material and composites for use in radioactive material packages. These materials provide thermal protection and provide structural integrity and energy absorption to the package during normal and hypothetical accident condition events as required by Title 10 Part 71 of the Code of Federal Regulations. Testing of packages comprising these materials is summarized.

  19. Spread-sheet application to classify radioactive material for shipment

    International Nuclear Information System (INIS)

    Brown, A.N.

    1998-01-01

    A spread-sheet application has been developed at the Idaho National Engineering and Environmental Laboratory to aid the shipper when classifying nuclide mixtures of normal form, radioactive materials. The results generated by this spread-sheet are used to confirm the proper US DOT classification when offering radioactive material packages for transport. The user must input to the spread-sheet the mass of the material being classified, the physical form (liquid or not) and the activity of each regulated nuclide. The spread-sheet uses these inputs to calculate two general values: 1)the specific activity of the material and a summation calculation of the nuclide content. The specific activity is used to determine if the material exceeds the DOT minimal threshold for a radioactive material. If the material is calculated to be radioactive, the specific activity is also used to determine if the material meets the activity requirement for one of the three low specific activity designations (LSA-I, LSA-II, LSA-III, or not LSA). Again, if the material is calculated to be radioactive, the summation calculation is then used to determine which activity category the material will meet (Limited Quantity, Type A, Type B, or Highway Route Controlled Quantity). This spread-sheet has proven to be an invaluable aid for shippers of radioactive materials at the Idaho National Engineering and Environmental Laboratory. (authors)

  20. Norm in soil and sludge samples in Dukhan oil Field, Qatar state

    Energy Technology Data Exchange (ETDEWEB)

    Al-Kinani, A.T.; Hushari, M.; Al-Sulaiti, Huda; Alsadig, I.A., E-mail: mmhushari@moe.gov.qa [Radiation and Chemical Protection Department, Ministry of Environment, Doha (Qatar)

    2015-07-01

    The main objective of this work is to measure the activity concentrations of Naturally Occurring radioactive Materials (NORM) produced as a buy products in oil production. The analyses of NORM give available information for guidelines concerning radiation protection. Recently NORM subjected to restricted regulation issued by high legal authority at Qatar state. Twenty five samples of soil from Dukhan onshore oil field and 10 sludge samples collected from 2 offshore fields at Qatar state. High resolution low-level gamma-ray spectrometry used to measure gamma emitters of NORM. The activity concentrations of natural radionuclide in 22 samples from Dukhan oil field, were with average worldwide values . Only three soil samples have high activity concentration of Ra-226 which is more than 185 Bq/kg the exempted level for NORM in the Quatrain regulation. The natural radionuclide activity concentrations of 10 sludge samples from offshore oil fields was greater than 1100Bq/kg the exempted values of NORM set by Quatrain regulation so the sludge need special treatments. The average hazards indices (H{sub ex} , D , and Ra{sub eq}), for the 22 samples were below the word permissible values .This means that the human exposure to such material not impose any radiation risk. The average hazards indices (H{sub ex} , D , and Ra{sub eq}), for 3 soil samples and sludge samples are higher than the published maximal permissible. Thus human exposure to such material impose radiation risk. (author)

  1. Norm in soil and sludge samples in Dukhan oil Field, Qatar state

    International Nuclear Information System (INIS)

    Al-Kinani, A.T.; Hushari, M.; Al-Sulaiti, Huda; Alsadig, I.A.

    2015-01-01

    The main objective of this work is to measure the activity concentrations of Naturally Occurring radioactive Materials (NORM) produced as a buy products in oil production. The analyses of NORM give available information for guidelines concerning radiation protection. Recently NORM subjected to restricted regulation issued by high legal authority at Qatar state. Twenty five samples of soil from Dukhan onshore oil field and 10 sludge samples collected from 2 offshore fields at Qatar state. High resolution low-level gamma-ray spectrometry used to measure gamma emitters of NORM. The activity concentrations of natural radionuclide in 22 samples from Dukhan oil field, were with average worldwide values . Only three soil samples have high activity concentration of Ra-226 which is more than 185 Bq/kg the exempted level for NORM in the Quatrain regulation. The natural radionuclide activity concentrations of 10 sludge samples from offshore oil fields was greater than 1100Bq/kg the exempted values of NORM set by Quatrain regulation so the sludge need special treatments. The average hazards indices (H ex , D , and Ra eq ), for the 22 samples were below the word permissible values .This means that the human exposure to such material not impose any radiation risk. The average hazards indices (H ex , D , and Ra eq ), for 3 soil samples and sludge samples are higher than the published maximal permissible. Thus human exposure to such material impose radiation risk. (author)

  2. NORM waste management in the oil and gas industry. The Syrian experience

    International Nuclear Information System (INIS)

    Al-Masri, M.S.; Suman, H.

    2003-01-01

    Syrian experience with respect to naturally occurring radioactive materials (NORM) waste produced by the Syrian oil industry is described. Three main categories of NORM waste were identified. First, hard scales from decontamination of contaminated equipment and tubings which are considered to contain the highest levels of radium isotopes ( 226 Ra, 228 Ra, 224 Ra); this type of waste being currently stored in standard barrels in a controlled area. Second, sludge wastes containing low levels of radium isotopes were found in large amounts in each Syrian oilfield; plastic lined disposal pits were constructed in each area for temporary storage. However, disposal criteria for the above two categories of NORM waste are still under discussions. Third, soil contaminated with NORM as a result of uncontrolled disposal of production water was also considered as NORM waste. The Syrian criteria for disposal and clean up of this type of waste has been defined and approved by the Regulatory Office. (author)

  3. The safe transport of radioactive material in South Africa

    International Nuclear Information System (INIS)

    Jutle, K.K.

    1997-01-01

    An overview is presented of the activities related to the transport of radioactive material in South Africa. In particular, the applicable legislation, the scope of authority and regulatory functions of the Competent Authority are discussed. The categories of radioactive materials transported and the packaging requirements for the safe transport of these radioactive materials are also described. (Author)

  4. The safe transport of radioactive material in South Africa

    International Nuclear Information System (INIS)

    Jutle, K.K.

    2000-01-01

    An overview is presented of the activities related to the transport of radioactive material in South Africa. In particular, the applicable legislation, the scope of authority and the regulatory functions of the Competent Authority are discussed. The categories of radioactive materials transported and the packaging requirements for the safe transport of these radioactive materials are also described. (author)

  5. The measurement theory of radioactivity in building materials

    International Nuclear Information System (INIS)

    Qu Jinhui; Wang Renbo; Zhang Xiongjie; Tan Hai; Zhu Zhipu; Man Zaigang

    2010-01-01

    Radioactivity in Building Materials is the main source of natural radiation dose that the individual is received, which has caused serious concern of all Social Sector. The paper completely introduce the measurement theory of the Radioactivity in Building Materials along with the measurement principle of natural radioactivity, design of shielding facility, choosing measurement time, sample prepared and spectrum analyzed. (authors)

  6. Miscellaneous radioactive materials detected during uranium mill tailings surveys

    International Nuclear Information System (INIS)

    Wilson, M.J.

    1993-10-01

    The Department of Energy's (DOE) Office of Environmental Restoration and Waste Management directed the Oak Ridge National Laboratory Pollutant Assessments Group in the conduct of radiological surveys on properties in Monticello, Utah, associated with the Mendaciously millsite National Priority List site. During these surveys, various radioactive materials were detected that were unrelated to the Monticello millsite. The existence and descriptions of these materials were recorded in survey reports and are condensed in this report. The radioactive materials detected are either naturally occurring radioactive material, such as rock and mineral collections, uranium ore, and radioactive coal or manmade radioactive material consisting of tailings from other millsites, mining equipment, radium dials, mill building scraps, building materials, such as brick and cinderblock, and other miscellaneous sources. Awareness of the miscellaneous and naturally occurring material is essential to allow DOE to forecast the additional costs and schedule changes associated with remediation activities. Also, material that may pose a health hazard to the public should be revealed to other regulatory agencies for consideration

  7. Simulation of fire in a deposit of radioactive waste and the radiological risk associated to this scenario

    International Nuclear Information System (INIS)

    Domingos, Érica Nascimento; Lima, Zelmo Rodrigues de; Aguiar, Laís Alencar de

    2017-01-01

    A fire at radioactive waste deposit can result in significant damage as well as serious risks to the environment and the health of the general public. The CNEN (National Commission of Nuclear Energy) norms have fire protection regulations criteria and requirements to prevent the occurrence, neutralize the action and minimize the effects of the fire on the radioactive material present on the plant. These norms it is for to avoid or limit to the lowest possible levels the effects of ionizing radiation or toxic substances on humans and the environment. Before a possible fire containing radioactive material is necessary information that can estimate the dose in which the population will be submitted. In this work the proposal is to simulate a fire scenario containing radioactive material using Hotspot Health Physics simulation code and to identify the radiological risk of cancer in the respiratory system associated with this scenario using the BEIR V model. (author)

  8. Simulation of fire in a deposit of radioactive waste and the radiological risk associated to this scenario

    Energy Technology Data Exchange (ETDEWEB)

    Domingos, Érica Nascimento; Lima, Zelmo Rodrigues de, E-mail: erica.ndomingos@gmail.com, E-mail: zrlima@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Aguiar, Laís Alencar de, E-mail: laguiars@ird.gov.br [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    A fire at radioactive waste deposit can result in significant damage as well as serious risks to the environment and the health of the general public. The CNEN (National Commission of Nuclear Energy) norms have fire protection regulations criteria and requirements to prevent the occurrence, neutralize the action and minimize the effects of the fire on the radioactive material present on the plant. These norms it is for to avoid or limit to the lowest possible levels the effects of ionizing radiation or toxic substances on humans and the environment. Before a possible fire containing radioactive material is necessary information that can estimate the dose in which the population will be submitted. In this work the proposal is to simulate a fire scenario containing radioactive material using Hotspot Health Physics simulation code and to identify the radiological risk of cancer in the respiratory system associated with this scenario using the BEIR V model. (author)

  9. Regulation of NORM industries and NORM residues in Belgium

    Energy Technology Data Exchange (ETDEWEB)

    Biermans, G.; Dehandschutter, B.; Pepin, S.; Sonck, M. [Federal Agency for Nuclear Control - FANC (Belgium)

    2014-07-01

    In the Belgian Royal Decree of 20 July 2001, which transposed the EU Directive 96/26/EURATOM (BSS) into national legislation regarding radiation protection regulations, a list of 'work activities involving natural radiation sources' (i.e. NORM industries) was defined based on the concept described in Article 40 of the Directive. These activities are subject to declaration to the Belgian radiation protection authority (Federal Agency for Nuclear Control - FANC). The initial list was subsequently modified by a FANC decree in 2012 to reflect the increased knowledge about NORM in other industrial sectors, most of which have also been added in the recently published New Basic Safety Standards (Directive 2013/53/EURATOM). In March 2013, an additional decree was published by FANC regulating the acceptance of NORM residues by non-radioactive waste treatment facilities. This regulation was fitted within the framework described above by introducing NORM residue treatment into the existing NORM industry list. It introduces generic exemption levels above which the processing or disposal of NORM residues will be considered as a 'work activity' and submitted to declaration according to the Belgian radiation protection regulations. On basis of this declaration, specific acceptance criteria are assigned to the disposal or processing facility. FANC has published technical and methodological guides for the operators of the concerned facilities and industries to facilitate the declaration process, and has recently organized a round-table gathering both NORM industries and waste processing industries to identify the needs, uncertainties and concerns regarding the regulatory control of NORM in Belgium. Document available in abstract form only. (authors)

  10. Evaluation of NORM residues in the Morro Redondo waterworks, Brazil

    International Nuclear Information System (INIS)

    Pinto, Michele C.F.; Rocha, Zildete

    2007-01-01

    Most mineral resources present naturally occurring radioactive material known by the acronym NORM. Some of them, specially those geological material originated from igneous rock present elevated radionuclides concentration. The exploration of these materials may elevate human exposure to the natural ionizing radiation, by removing them from the natural compartment or by increasing the radionuclides concentration in products, by products and more frequently in the industrial residues, these are referred as TENORM Technologically Enhanced NORM. The residues of the waterworks, especially those of the iron and manganese remotion are expected to contain radioactivity concentration due to geological reasons. The paper evaluates the natural radionuclide concentration in the waste water sludge of the iron removing process carried out by the Water Treatment Plant (WTP) - Morro Redondo waterwork operated by Companhia de Saneamento de Minas Gerais - COPASA. Such waterwork supplies drink water for more than 200.000 people, inhabitants of the south part of Belo Horizonte and Nova Lima. The water is extracted from three rock source formations in the iron quadrangle of Minas Gerais, namely Cercadinho, Fechos and Mutuca. The sludges samples analysed have shown values around 300 Bq kg -1 for 226 Ra, in radiological point of view, the most important radionuclide. Values taken from literature were considered - 10.000 Bq kg -1 are not rare, and the ones around 300 Bq kg -1 are normal. (author)

  11. Deposition of naturally occurring radioactivity in oil and gas production

    International Nuclear Information System (INIS)

    Lysebo, I.; Strand, T.

    1997-01-01

    This booklet contains general information about naturally occurring radioactive materials, NORM, in production of oil and natural gas, occupational doses, radiation protection procedures and measures, and classification methods of contaminated equipment. 6 refs., 1 fig., 1 tab

  12. Nuclear radioactive techniques applied to materials research

    CERN Document Server

    Correia, João Guilherme; Wahl, Ulrich

    2011-01-01

    In this paper we review materials characterization techniques using radioactive isotopes at the ISOLDE/CERN facility. At ISOLDE intense beams of chemically clean radioactive isotopes are provided by selective ion-sources and high-resolution isotope separators, which are coupled on-line with particle accelerators. There, new experiments are performed by an increasing number of materials researchers, which use nuclear spectroscopic techniques such as Mössbauer, Perturbed Angular Correlations (PAC), beta-NMR and Emission Channeling with short-lived isotopes not available elsewhere. Additionally, diffusion studies and traditionally non-radioactive techniques as Deep Level Transient Spectroscopy, Hall effect and Photoluminescence measurements are performed on radioactive doped samples, providing in this way the element signature upon correlation of the time dependence of the signal with the isotope transmutation half-life. Current developments, applications and perspectives of using radioactive ion beams and tech...

  13. Storage of solid and liquid radioactive material

    International Nuclear Information System (INIS)

    Matijasic, A.; Gacinovic, O.

    1961-01-01

    Solid radioactive waste collected during 1961 from the laboratories of the Institute amounted to 22.5 m 3 . This report contains data about activity of the waste collected from january to November 1961. About 70% of the waste are short lived radioactive material. Material was packed in metal barrels and stored in the radioactive storage in the Institute. There was no contamination of the personnel involved in these actions. Liquid radioactive wastes come from the Isotope production laboratory, laboratories using tracer techniques, reactor cooling; decontamination of the equipment. Liquid wastes from isotope production were collected in plastic bottles and stored. Waste water from the RA reactor were collected in special containers. After activity measurements this water was released into the sewage system since no activity was found. Table containing data on quantities and activity of radioactive effluents is included in this report

  14. Deposition of NORM generated by the oil and gas industries in Brazil; Deposicao de NORM gerado pelas industrias de petroleo e gas no Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Schenato, Flavia; Aguiar, Lais A.; Leal, Marco Aurelio; Ruperti Junior, Nerbe, E-mail: schenato@cnen.gov.br [Comissao Nacional de Energia Nuclear (COREJ/CNEN), Rio de Janeiro, RJ (Brazil). Coordenacao de Rejeitos Radioativos

    2013-07-01

    The natural occurring radioactive material (NORM) produced during E and P activities in the petroleum industry presents important implications for the management of solid wastes. The waste management strategy and final disposal policy regarding NORM should meet general radiation protection principles to ensure the long periods during which control may be necessary. The Brazilian Nuclear Energy Commission (CNEN) is responsible for the final destination of the radioactive waste produced in national territory. The Federal Law 10308/2001 establishes standards for the final destination of the radioactive waste providing information to the installation and operation of storage and disposal facilities. The licensee is responsible for the storage facilities, while CNEN is in charge of design, construction and installation of final disposal facilities, being possible to delegate such activities to a third parties, since preserved its full responsibility. The CNEN's Resolution on licensing of radioactive waste deposits, which is in the final approval stage, classifies the wastes generated by the E and P oil and gas industries and suggests two disposal methods to them, near surface and depth repositories, to be defined by safety analysis, but no formal criteria for disposal is really established. The guidelines for the safety analysis set for the licensing process of this class of waste is applied only to the implementation of interim storage facilities but not to repositories. Considering the large volume of NORM generated by the activities of E and P oil and gas industries and the growing demand of production with the exploration of pre-salt oil deposits in Brazil, this paper aims to discuss the development of national guidelines for the disposal of this class of waste to ensure long term safety and acceptability of disposal methods. (author)

  15. Licenses for possessing and applying radioactive sources, materials, etc

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    Commercial and governmental institutions have been licensed by Dutch authorities to possess and apply radioactive sources, materials, etc. A summary is given and the list is subdivided into a number of sections such as radioactive sources, radioactive materials, X-ray equipment and technetium-generators

  16. RADIOACTIVE MATERIALS SENSORS

    International Nuclear Information System (INIS)

    Mayo, Robert M.; Stephens, Daniel L.

    2009-01-01

    Providing technical means to detect, prevent, and reverse the threat of potential illicit use of radiological or nuclear materials is among the greatest challenges facing contemporary science and technology. In this short article, we provide brief description and overview of the state-of-the-art in sensor development for the detection of radioactive materials, as well as an identification of the technical needs and challenges faced by the detection community. We begin with a discussion of gamma-ray and neutron detectors and spectrometers, followed by a description of imaging sensors, active interrogation, and materials development, before closing with a brief discussion of the unique challenges posed in fielding sensor systems.

  17. Regulation of Transportation of Radioactive Material in Indonesia

    International Nuclear Information System (INIS)

    Nirwono, Muttaqin Margo; Choi, Kwang Sik

    2011-01-01

    1.1. Background Indonesia is a biggest archipelago country with 17,508 islands in 33 provinces. In transportation Indonesia has large number of airports, railways, roadways, waterways, and merchant marines. Since nuclear and radiation utilizations are expanding on whole country, the mobilization of these is usually placed outside of controlled facilities, in the public domain, and often entails movement between countries. The Indonesian Nuclear Energy Regulatory Agency (BAPETEN) is responsible for supervision and also authorization of the transport of radioactive material (TRM). TRM is the specific movement of a radioactive material consignment from origin to destination by public transportation (road or rail, water and air). This study aims to determine whether national regulation is harmonized with international practice in ensuring safety and security of TRM. The finding of this study will provide recommendation for enhancement of regulation on TRM. 1.2. Regulation of TRM in Indonesia Government Regulation (GR) No. 26, 2002 on the Safe Transport of Radioactive Material is implemented pursuant to Act 10, 1997 on Nuclear Energy. This GR was repealed GR 13, 1975 on TRM. The GR 26 consist of 16 chapters and 39 articles, included licensing: authority and responsibilities: packaging: radiation protection programme; training: quality assurance programme: type and activity limit of radioactive materials: radioactive materials with other dangerous properties: emergency preparedness: administrative sanction: and penal provisions. Principally, this GR adopted IAEA-TS-R-1, 'Regulations for the Safe Transport of Radioactive Material', 1996's Edition

  18. Protection of environmental contamination by radioactive materials and remediation of environment

    International Nuclear Information System (INIS)

    2003-05-01

    This report consisted of the environmental contamination of radioactive and non-radioactive materials. 38 important accident examples of environmental contamination of radioactive materials in the world from 1944 to 2001 are stated. Heavily polluted areas by accidents are explained, for example, Chernobyl, atomic reactor accidents, development of nuclear weapon in USA and USSR, radioactive waste in the sea. The environmental contamination ability caused by using radioactive materials, medical use, operating reactor, disposal, transferring, crashing of airplane and artificial satellite, release are reported. It contains measurements and monitor technologies, remediation technologies of environmental contamination and separation and transmutation of radioactive materials. On the environmental contamination by non-radioactive materials, transformation of the soil contamination in Japan and its control technologies are explained. Protection and countermeasure of environmental contamination of radioactive and non-radioactive materials in Japan and the international organs are presented. There are summary and proposal in the seventh chapter. (S.Y.)

  19. State statutes and regulations on radioactive materials transportation

    International Nuclear Information System (INIS)

    Foster, B.

    1981-11-01

    The transport of radioactive material is controlled by numerous legislative and regulatory actions at the federal, state, and local levels. This document is a compilation of the state level laws and regulations. The collected material is abstracted and indexed by states. Each state section contains three divisions: (1) abstracts of major statutes, (2) legislative rules, and (3) photocopies of relevant paragraphs from the law or regulation. This document was prepared for use by individuals who are involved in the radioactive material transportation process. This document will not be updated. The legislative rules section contains the name of the state agency primarily responsible for monitoring the transport of radioactive materials

  20. Measurement of liquid radioactive materials for monitoring radioactive emissions

    International Nuclear Information System (INIS)

    1977-10-01

    This draft regulation applies to measuring equipment for liquid radioactive materials for the monitoring of the radioactive discharges from stationary nuclear power plants with LWR and HTR reactors. Demands made on the measuring procedure, methods of concentration determination, balancing, indication of limiting values, and inspections are layed down. The draft regulation deals with: 1) Monitoring liquid radioactive discharges: Water and similar systems; radionuclides and their detection limits, radioactively contaminated water (waste water); secondary cooling water; power house cooling water; primary cooling water; flooding water; 2) Layout of the measuring and sampling equipment and demands made on continuous and discontinuous measuring equipment; demands made on discontinuous α and β measuring equipment; 3) Maintenance and repair work; inspections; repair of defects; 4) Demands made on documentation; reports to authorities; 5) Supplement: List of general and reference regulations. (orig./HP) [de

  1. Security of radioactive materials for medical use

    International Nuclear Information System (INIS)

    Elliott, A.

    2006-01-01

    Both sealed and unsealed radioactive sources are used in hospitals throughout the world for diagnostic and therapeutic purposes. High activity single sealed sources are used in teletherapy units, although these are becoming less common as they are replaced by linear accelerators, and in blood irradiator units, which are in widespread use. Lower activity sealed sources are used in brachytherapy. High activity unsealed sources are used typically for the treatment of thyroid cancer and neuroblastoma in inpatients while diagnostic doses of unsealed radioactive materials have much lower activities. In the case of a central radiopharmacy producing patient doses of radiopharmaceutical for several Nuclear Medicine departments, however, quite large amounts of radioactive materials may be held. Hospitals are, by their nature, less secure than other licensed nuclear sites and the ever-changing patient /visitor (and staff) population is a further complicating factor. Hitherto, security of radioactive materials in hospitals has tended to be considered from the perspective only of radiation safety but this approach is no longer sufficient

  2. Safe Transport of Radioactive Material, Philosophy and Overview

    Energy Technology Data Exchange (ETDEWEB)

    EL-Shinawy, R M.K. [Radiation Protection Dept., Nuclear Rasearch Center, Atomic Energy Authority, Cairo (Egypt)

    2008-07-01

    Safe transport of radioactive material regulations issued by IAEA since 1961, provide standards for insuring a high level of safety of people,transport workers, property and environment against radiation, contamination and criticality hazards as well as thermal effects associated with the transport of the radioactive wastes and material. The history ,development, philosophy and scope of these international and national regulations were mentioned as well as the different supporting documents to the regulations for safe transport of radioactive material were identified.The first supporting document , namely TS - G-1.1(ST-2) ,Advisory material is also issued by the IAEA.It contains both the advisory and explanatory materials previously published in safety series Nos 7and 37 and therefore TS-G-1.1 (ST-2) will supersede safety series Nos 7 and 37. The second supporting document namely TS-G-1.2 (ST-3), planning and preparing for emergency response to transport accidents involving radioactive material ,which will supersede safety series No 87. In addition to quality assurance (SS no.113), compliance assurance (SS no. 112), the training manual and others.

  3. Safe Transport of Radioactive Material, Philosophy and Overview

    International Nuclear Information System (INIS)

    EL-Shinawy, R.M.K.

    2008-01-01

    Safe transport of radioactive material regulations issued by IAEA since 1961, provide standards for insuring a high level of safety of people,transport workers, property and environment against radiation, contamination and criticality hazards as well as thermal effects associated with the transport of the radioactive wastes and material. The history ,development, philosophy and scope of these international and national regulations were mentioned as well as the different supporting documents to the regulations for safe transport of radioactive material were identified.The first supporting document , namely TS - G-1.1(ST-2) ,Advisory material is also issued by the IAEA.It contains both the advisory and explanatory materials previously published in safety series Nos 7and 37 and therefore TS-G-1.1 (ST-2) will supersede safety series Nos 7 and 37. The second supporting document namely TS-G-1.2 (ST-3), planning and preparing for emergency response to transport accidents involving radioactive material ,which will supersede safety series No 87. In addition to quality assurance (SS no.113), compliance assurance (SS no. 112), the training manual and others

  4. Radioactivity of building materials

    International Nuclear Information System (INIS)

    Terpakova, E.

    2000-01-01

    In this paper the gamma-spectrometric determination of natural radioactivity in the different building materials and wares applied in Slovakia was performed. The specific activities for potassium-40, thorium, radium as well as the equivalent specific activities are presented

  5. Statistics of foreign trade in radioactive materials

    International Nuclear Information System (INIS)

    Anon.

    2001-01-01

    The German Federal Office for Industry and Foreign Trade Control (BAFA) keeps annual statistics of the imports and exports of radioactive materials, nuclear fuels included. The entries, some of them with precise details, cover the participating countries and the radionuclides concerned as well as all kinds of radioactive materials. The tables listed in the article represent the overall balance of the development of imports and exports of radioactive materials for the years 1983 to 2000 arranged by activity levels, including the development of nuclear fuel imports and exports. For the year 2000, an additional trade balance for irradiated and unirradiated nuclear fuels and source materials differentiated by enrichment is presented for the countries involved. In 2000, some 2446 t of nuclear fuels and source materials were imported into the Federal Republic, while approx. 2720 t were exported. The chief trading partners are countries of the European Union and Russia, South Korea, and Brazil. (orig.) [de

  6. Qualification testing facility for packages to be used for transport and storage of radioactive materials

    International Nuclear Information System (INIS)

    Vieru, Gheorghe

    2009-01-01

    The radioactive materials (RAM) packaging have to comply to all modes and transport condition, routine or in accident conditions possibly to occur during transportation operations. It is well known that the safety in the transport of RAM is dependent on packaging appropriate for the contents being shipped rather than on operational and/or administrative actions required for the package. The quality of these packages - type A, B or C has to be proved by performing qualification tests in accordance with the ROMANIAN nuclear regulation conditions provided by CNCAN Order no. 357/22.12.2005- 'Norms for a Safe Transport of Radioactive Material', the IAEA Vienna Recommendation stipulated in the Safety standard TS-R-1- Regulation for the Safe Transport of Radioactive Material, 2005 Edition, and other applicable international recommendations. The paper will describe the components of the designed testing facilities, and the qualification testing to be performed for all type A, B and C packages subjected to the testing. In addition, a part of the qualification tests for a package (designed and manufactured in INR Pitesti) used for transport and storage of spent fuel LEU elements of a TRIGA nuclear reactor will be described and analyzed. Quality assurance and quality controls measures taken in order to meet technical specification provided by the design are also presented and commented. The paper concludes that the new Romanian Testing Facilities for RAM packages will comply with the national safe standards as well as with the IAEA applicable recommendation provided by the TS-R-1 safety standard. (author)

  7. Radioactive Substances Act 1960. Keeping and use of radioactive materials; list of registrations in England and Wales issued under the Radioactive Substances Act 1960 for the keeping and use of radioactive materials and mobile

    International Nuclear Information System (INIS)

    1989-05-01

    Through the Radioactive Substances Act 1960 (RSA 60), Her Majesty's Inspectorate of Pollution (Radioactive Substances) (HMIP) exercises control, on behalf of the Secretary of State for the Environment, over the keeping and use of radioactive material and the accumulation and disposal of radioactive waste in England. HMIP also provides technical advice to the Secretary of State for Wales in connection with the enforcement of RSA 60 in Wales. Registrations under RSA 60 for the keeping and use of radioactive materials in England and Wales are issued respectively by the Secretaries of State for the Environment and Wales, following careful assessment of the radiological consequences for members of the public. Registrations impose strict limits and conditions and premises and apparatus are subject to scrutiny by HMIP Inspectors to ensure compliance. A list contains names and addresses of those registered in England and Wales for the keeping and use of radioactive materials and mobile apparatus

  8. Scenarios identified internationally for occupational and public exposure to naturally occurring radioactive materials

    International Nuclear Information System (INIS)

    Fernandez Gomez, Isis Maria

    2012-01-01

    Natural radiation for decades was considered a normal phenomenon that existed in nature, so that man was conditioned to ignore; unlike artificial ionizing radiation. This mindset has changed, in the late seventies of the last century, because it has became aware of the danger that exposure to natural radiation could pose health. Studies on it have been initiated to conduct and publish. All humans are exposed to natural radiation; but, this exposure is not uniform, has depended on where they live and work, whether they have been in areas with rocks or soils particularly radioactive, their way of life, of the use of certain building materials in their homes, the use of natural gas, the use of home heating with coal. Air travel also have increased exposure to natural radiation. Ionizing radiation, whether natural or artificial, have interacted with the human body in the same way, there fore have failed to say that the natural are less or more harmful than artificial. Natural sources are grouped into two major categories. The first are the external sources: from abroad as cosmic radiation (the sun and interstellar spaces of the universe), terrestrial radiation (emitted by rocks and soil), the radiation of some buildings (e.g. granite, which can emit radon gas) and radiation contained in some foods. The second category are the internal resources: due to the presence in the human body from the environment radionuclides that are able to ionize (potassium-40, carbon-14). The naturally occurring radioactive materials (NORM for its acronym in English) have been referred to those naturally occurring radioactive materials on which any human technological activity has increased its exposure potential compared with the situation unchanged. (author) [es

  9. International measures needed to protect metal recycling facilities from radioactive materials

    International Nuclear Information System (INIS)

    Mattia, M.; Wiener, R.

    1999-01-01

    In almost every major city and region of every country, there is a recycling facility that is designed to process or consume scrap metal. These same countries will probably have widespread applications of radioactive materials and radiation generating equipment. This material and equipment will have metal as a primary component of its housing or instrumentation. It is this metal that will cause these sources of radioactivity, when lost, stolen or mishandled, to be taken to a metal recycling facility to be sold for the value of the metal. This is the problem that has faced scrap recycling facilities for many years. The recycling industry has spent millions of dollars for installation of radiation monitors and training in identification of radioactive material. It has expended millions more for the disposal of radioactive material that has mistakenly entered these facilities. Action must be taken to prevent this material from entering the conventional recycling process. There are more than 2,300 known incidents of radioactive material found in recycled metal scrap. Worldwide, more than 50 smeltings of radioactive sources have been confirmed. Seven fatal accidents involving uncontrolled radioactive material have also been documented. Hazardous exposures to radioactive material have plagued not just the workers at metal recycling facilities. The families of these workers, including their children, have been exposed to potentially harmful levels of radioactivity. The threat from this material does not stop there. Radioactive material that is not caught at recycling facilities can be melted and the radioactivity has been found in construction materials used to build homes, as well as shovels, fencing material, and furniture offered for sale to the general public. The time has come for the international community to address the issue of the uncontrolled sources of radioactive material. The following are the key points that must be addressed. (i) Identification of sources

  10. Regulations related to the transport of radioactive material in Brazil

    International Nuclear Information System (INIS)

    Sahyun, Adelia; Sordi, Gian-Maria A.A.; Sanches, Matias P.

    2001-01-01

    The transport of radioactive material has raised great interest on the part of national regulatory authorities, thus resulting in a safety measures improvement for all kinds of transportation. The transport of radioactive material is regulated by safety criteria much more than those applied to conventional hazardous material. All radioactive material transportation run in Brazilian territory must be in accordance with what is established by the CNEN-NE 5.01 - Transport of Radioactive Material. There are other national and international regulations for radioactive material transportation, which have to be accomplished with and adopted during the operation of radioactive material transportation. The aim of this paper is to verify the criteria set up in the existing regulations and propose a consensus for all the intervening organizations in the regulation process for land, air or sea transportation. This kind of transportation can not depend on the efforts of only one person, a group of workers or even any governmental body, but must be instead a shared responsibility among workers, transport firms and all regulative transportation organizations. (author)

  11. Regulations related to the transport of radioactive material in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Sahyun, Adelia; Sordi, Gian-Maria A.A. [ATOMO Radioprotecao e Seguranca Nuclear, Sao Paulo, SP (Brazil)]. E-mail: atomo@atomo.com.br; Sanches, Matias P. [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)]. E-mail: msanches@net.ipen.br

    2001-07-01

    The transport of radioactive material has raised great interest on the part of national regulatory authorities, thus resulting in a safety measures improvement for all kinds of transportation. The transport of radioactive material is regulated by safety criteria much more than those applied to conventional hazardous material. All radioactive material transportation run in Brazilian territory must be in accordance with what is established by the CNEN-NE 5.01 - Transport of Radioactive Material. There are other national and international regulations for radioactive material transportation, which have to be accomplished with and adopted during the operation of radioactive material transportation. The aim of this paper is to verify the criteria set up in the existing regulations and propose a consensus for all the intervening organizations in the regulation process for land, air or sea transportation. This kind of transportation can not depend on the efforts of only one person, a group of workers or even any governmental body, but must be instead a shared responsibility among workers, transport firms and all regulative transportation organizations. (author)

  12. Transport of radioactive materials: the need for radiation protection programmes

    International Nuclear Information System (INIS)

    Masinza, S.A.

    2004-01-01

    The increase in the use of radioactive materials worldwide requires that these materials be moved from production sites to the end user or in the case of radioactive waste, from the waste generator to the repository. Tens of millions of packages containing radioactive material are consigned for transport each year throughout the world. The amount of radioactive material in these packages varies from negligible quantities in shipments of consumer products to very large quantities of shipments of irradiated nuclear fuel. Transport is the main way in which the radioactive materials being moved get into the public domain. The public is generally unaware of the lurking danger when transporting these hazardous goods. Thus radiation protection programmes are important to assure the public of the certainty of their safety during conveyance of these materials. Radioactive material is transported by land (road and rail), inland waterways, sea/ocean and air. These modes of transport are regulated by international 'modal' regulations. The international community has formulated controls to reduce the number of accidents and mitigate their consequences should they happen. When accidents involving the transport of radioactive material occur, it could result in injury, loss of life and pollution of the environment. In order to ensure the safety of people, property and the environment, national and international transport regulations have been developed. The appropriate authorities in each state utilise them to control the transport of radioactive material. Stringent measures are required in these regulations to ensure adequate containment, shielding and the prevention of criticality in all spheres of transport, i.e. routine, minor incidents and accident conditions. Despite the extensive application of these stringent safety controls, transport accidents involving packages containing radioactive material have occurred and will continue to occur. When a transport accident occurs, it

  13. Trasmar: automated vehicle for transport of radioactive materials

    International Nuclear Information System (INIS)

    Segovia R, J.A.; Martinez J, L.

    2001-01-01

    Traditionally robots have been used for industrial applications, even though area in which these devices had a deep impact is in the nuclear industry. The ININ is an Institute that must to manage and to work with radioactive substances. The ININ is also responsible of the storage and supervision of radioactive wastes in the country, therefore the applications of the automated systems in the Institute have as the main objective to reduce the exposure and the contact of personnel with the radioactive material. Here to, it has been proposed the project called Assisted Transportation of Radioactive Material (TRASMAR). (Author)

  14. Ionising radiations, radioactive materials and the fire services

    International Nuclear Information System (INIS)

    Button, J.C.E.

    1981-05-01

    Extensive experience has shown that ionizing radiations and radioactive materials can be used safely in a wide variety of applications, provided a number of precautions are implemented. Transport of radioactive materials is common and regulations designed to ensure safety in such transport have resulted in an excellent safety record. Pre-planning for fire situations in buildings where radioactive materials are known to be present is very desirable. An Australian Standard, AS2243, recommends that Station Officers of the local fire brigade be appraised of the hazards and the need to take particular care in areas marked with ionizing radiation warning signs

  15. Risk analysis and protective measures for occupationally workers with technologically enhanced naturally occurring radioactive materials

    International Nuclear Information System (INIS)

    Hegazy, R.A.M.

    2011-01-01

    Naturally occurring radionuclides are present in many natural resources. Elevated concentrations of these radionuclides are often found in certain geological materials, namely igneous rocks and ores. Human activities that exploit these resources may lead to enhanced concentrations of radionuclides (often referred to as technologically enhanced naturally occurring radioactive material (TE-NORM). Enhanced levels of natural background radiation are encountered in many occupational industrial activities involving a large number of workers. Uncontrolled activities associated with TE-NORM can contaminate the environment and pose a risk to human health. This risk can be alleviated by the adoption of controls to identify where NORM is present; and cleaning the NORM-contaminated equipment and waste management while protecting workers. The main objective of this study is to investigate the natural radioactivity and the hazard parameters in the TE-NORM samples from different industrial activities. Also to describe the models and develop the computer codes that allow one to estimate the risk of cancer resulting from any specified dose of ionizing radiation for occupationally workers in different industrial activities. The present study deals with 50 different samples. This waste generated from petroleum fields, phosphate fertilizers samples, consumer product samples from China, ceramic and zircon samples. The radon exhalation rates calculated using solid state nuclear track detector (CR-39). The value of radon exhalation rate 58.82±5.3 x10 3 , 4.28±0.49 x10 3 and 0.306±0.025 x10 3 Bq/m 2 h for scale, sludge and sand, respectively. The value of radon exhalation rate 82.67±7.98, 62.58 ±5.7, 46.16 ±3.91 and 198.51±18.68 Bq/m 2 h for phosphate fertilizers samples, consumer product samples from China, ceramic and zircon samples, respectively. The 226 Ra activity concentrations were 301.4±771.5, 52.1±438 and 2.56±55.37 kBq/kg for scale, sludge and sand, respectively. The

  16. Radiological survey and assessment of associated activity concentration of the naturally occurring radioactive materials (NORM) in the Migori artisanal gold mining belt of southern Nyanza, Kenya

    Energy Technology Data Exchange (ETDEWEB)

    Odumo, O.B., E-mail: benodumoo@uonbi.ac.k [Department of Physics, University of Nairobi, P.O. Box 30197-00100 Nairobi (Kenya); Mustapha, A.O. [Department of Physics, University of Agriculture, P.M.B. 2240 Abeokuta (Nigeria); Patel, J.P.; Angeyo, H.K. [Department of Physics, University of Nairobi, P.O. Box 30197-00100 Nairobi (Kenya)

    2011-06-15

    A radiological survey and assessment was carried out at selected sites (Osiri, Mikei, Masara and Macalder) in the Migori gold mines of southern Nyanza, Kenya to determine the levels of exposure of the artisanal miners to the naturally occurring radioactive materials (NORM) and dust. The activity concentrations of {sup 40}K and the decay products of {sup 232}Th and {sup 226}Ra were obtained using an innovative method in single channel NaI(Tl) gamma-ray spectrometry. The counts for both the sample and the reference material in a specific window for a particular radionuclide were compared to arrive at the activity concentration of the radionuclide in the sample. Measurement of dust loading at various crushing sites was carried out by trapping the dust particles on a 0.45 {mu}m cellulose acetate filter paper (47 mm diameter) using a vacuum pump. The activity concentration levels range widely 80-413, 12-145 and 21-258 Bq/kg for {sup 40}K, {sup 232}Th and {sup 226}Ra, respectively. The calculated absorbed dose in air range from 16 to 178 nGy/h (with a mean of 42 nGy/h). Dust loading was found to range from 1.3 to 3.7 mg/m{sup 3}. Although the activity concentration of the radionuclides and the calculated annual absorbed dose is below the world's average, the dust level at the mines was relatively high. The results obtained show that the artisanal miners are exposed to various levels of radionuclides and dust and necessary precautions need to be taken.

  17. Storage containers for radioactive material

    International Nuclear Information System (INIS)

    Cassidy, D.A.; Dates, L.R.; Groh, E.F.

    1981-01-01

    A radioactive material storage system is disclosed for use in the laboratory. This system is composed of the following: a flat base plate with a groove in one surface thereof and a hollow pedestal extending perpendicularly away from the other surface thereof; a sealing gasket in the groove, a cover having a filter therein and an outwardly extending flange which fits over the plate; the groove and the gasket, and a clamp for maintaining the cover and the plate are sealed together, whereby the plate and the cover and the clamp cooperate to provide a storage area for radioactive material readily accessible for use or inventory. Wall mounts are provided to prevent accidental formation of critical masses during storage

  18. Method of treatment in a system passing radioactive material

    Energy Technology Data Exchange (ETDEWEB)

    Kamiya, K; Kinoshita, M; Asakura, Y

    1976-05-14

    A method to ensure the safety of the reactor and reduce radiation exposure dose by preventing oxygen hydrogen reaction of the reactor off-gas and accumulation of the radioactive material is described. Substances which are accumulated in an off-gas duct and are likely to capture radioactive material (for instance Pd catalyst falling from a recombiner) is changed into a stable material (for instance, PdI/sub 2/) which is hot likely to capture radioactive material through reaction with a stabilizer (for instance, I/sub 2/, Cl/sub 2/, HCl, etc.). This stabilized material is washed off the atomic power plant system.

  19. Determination of Dose from the Disposal of Radioactive Waste Related with TENORM using Residual Radioactivity (RESRAD) Monte Carlo Code

    International Nuclear Information System (INIS)

    Lwin, Maung Tin Moe; Kassim, Hassan Abu; Amin, Yusoff Mohd.

    2008-01-01

    The working procedures in the RESRAD for specific evaluations of environmental pollutants are briefly mentioned. The risk of human health associated with Naturally Occurring Radioactive Materials (NORM) who are working in the Malaysian oil and gas industry are analyzed. The sources of NORM and Technologically Enhanced NORM (TENORM) in the oil and gas industry are described. Some measurements for the external and internal effective dose equivalent on the workers will be described. These data are entered into the RESRAD software program and the output reports are taken. Long-term effects of TENORM to the industrial workers are also discussed with graphical illustrations. These results are compared with previous research work within the same field to validate and verify

  20. The development of shifting radioactive material

    International Nuclear Information System (INIS)

    Chen Haiteng; Chen Yonghong; Yin Fujun; Che Mingsheng; Hu Xiaodan; Yao Shouzhong

    2010-01-01

    In nuclear field, When the nuclear material shifting from the glove-box,use the technology of plastic welding package in accordance with tradition. There are some defects in this technology because of the plastic character, such as package pierced easily, wrapper not fitted storage for long term, etc. Because of this limit. Plastic shifting technology is only fit for shifting radwaste and nuclear material not need storage from radioactive close area to non-radioactive open area for long term.As the nuclear material exiting leak when shifting in plastic package,and the plastic material don't meet the need of storaging safely for long term.We research into a new technology of nuclear material shifting. When nuclear material is carried out from the glove box. It should be sealed by welding case, then it can be storaged safely for long term. At the same time, nuclear material wouldn't pollute the glove box outside.The study achieved well effect in apply. (authors)

  1. Effective dose evaluation of NORM-added consumer products using Monte Carlo simulations and the ICRP computational human phantoms

    International Nuclear Information System (INIS)

    Lee, Hyun Cheol; Yoo, Do Hyeon; Testa, Mauro; Shin, Wook-Geun; Choi, Hyun Joon; Ha, Wi-Ho; Yoo, Jaeryong; Yoon, Seokwon; Min, Chul Hee

    2016-01-01

    The aim of this study is to evaluate the potential hazard of naturally occurring radioactive material (NORM) added consumer products. Using the Monte Carlo method, the radioactive products were simulated with ICRP reference phantom and the organ doses were calculated with the usage scenario. Finally, the annual effective doses were evaluated as lower than the public dose limit of 1 mSv y"−"1 for 44 products. It was demonstrated that NORM-added consumer products could be quantitatively assessed for the safety regulation. - Highlights: • Consumer products considered that NORM would be included should be regulated. • 44 products were collected and its gamma activities were measured with HPGe detector. • Through Monte Carlo simulation, organ equivalent doses and effective doses on human phantom were calculated. • All annual effective doses for the products were evaluated as lower than dose limit for the public.

  2. Regulations relevant to the transport of radioactive materials in Switzerland

    International Nuclear Information System (INIS)

    Smith, L.

    1996-01-01

    As is the case in many countries, the transport of radioactive materials in Switzerland is primarily regulated by the national regulations for the transport of dangerous goods. Currently these regulations, in the case of radioactive material, incorporate the 1985 IAEA Safety Series 6 Regulations for the Safe Transport of Radioactive Material (As amended 1990). However, as is also the case in some other countries, consignors, shippers and carriers of radioactive materials must also comply with additional laws when shipping radioactive materials. The most important of these other laws and their accompanying regulations are those concerned with radiation protection (import, export and carriers licences) and nuclear power (import, export, inland transport and transit licences). This paper sets out to describe the collective requirements resulting from all three of these sets of regulations. (Author)

  3. A New European COST Network 'NORM4Building' (TU1301) for the Reuse of NORM Containing Residues in Building Materials

    International Nuclear Information System (INIS)

    Schroeyers, W.; Schreurs, S.

    2014-01-01

    The new COST action was initiated on the 1st of January 2014 and runs for four years. COST is supported by the EU RTD Framework Program. In the presentation more information on how to participate in the network will be provided. In the presentation the new approach and new initiatives of the NORM4BUILDING network, that has its first meeting here in the DEAD SEA Hotel on the 12-13/02/2014, will be introduced. The NORM4Building materials network will be an open network of researchers. An Advisory Board consisting mainly from NORM processing and construction industries and relevant associations and regulators are invited to work in collaboration with the scientists that will populate the various working groups and the management committee of the new COST action

  4. Safe transport of radioactive materials in Egypt

    International Nuclear Information System (INIS)

    El-Shinawy, R.M.K.

    1994-01-01

    In Egypt the national regulations for safe transport of radioactive materials (RAM) are based on the International Atomic Energy Agency (IAEA) regulations. In addition, regulations for the safe transport of these materials through the Suez Canal (SC) were laid down by the Egyptian Atomic Energy Authority (EAEA) and the Suez Canal Authority (SCA). They are continuously updated to meet the increased knowledge and the gained experience. The technical and protective measures taken during transport of RAM through SC are mentioned. Assessment of the impact of transporting radioactive materials through the Suez Canal using the INTERTRAN computer code was carried out in cooperation with IAEA. The transported activities and empty containers, the number of vessels carrying RAM through the canal from 1963 and 1991 and their nationalities are also discussed. The protective measures are mentioned. A review of the present situation of the radioactive wastes storage facilities at the Atomic Energy site at Inshas is given along with the regulation for safe transportation and disposal of radioactive wastes. (Author)

  5. Systematic approach to characterisation of NORM in Thailand

    International Nuclear Information System (INIS)

    Chanyotha, S.; Kranrod, C.; Pengvanich, P.

    2015-01-01

    The aim of this article is to provide information on the systematic approach that has been developed for the measurement of natural radiation exposure and the characterisation of naturally occurring radioactive materials (NORM) in terms of occurrence and distribution in various industrial processes, including the produced waste from the mineral industries in Thailand. The approach can be adapted for various types of study areas. The importance of collaboration among research institutions is discussed. Some developments include 25 documents; the redesign of the field equipment, such as the gamma survey meter, for convenient access to conduct measurement in various study areas; the method to collect and analyse radon gas from a natural gas pipeline and the manganese dioxide fibre to adsorb radium on-site for laboratory analysis. The NORM project in Thailand has been carried out for more than 10 y to support the development of NORM regulation in Thailand. In the previous studies as well as current, international standards for action levels have been adopted for safety purpose. (authors)

  6. Atmospheric dispersion of radioactive materials

    International Nuclear Information System (INIS)

    Chino, Masamichi

    1988-01-01

    The report describes currently available techniques for predicting the dispersion of accidentally released radioactive materials and techniques for visualization using computer graphics. A simulation study is also made on the dispersion of radioactive materials released from the Chernobyl plant. The simplest models include the Gauss plume model and the puff model, which cannot serve to analyze the effects of the topography, vertical wind shear, temperature inversion layer, etc. Numerical analysis methods using advection and dispersion equations are widely adopted for detailed evaluation of dispersion in an emergency. An objective analysis model or a hydrodynamical model is often used to calculate the air currents which are required to determine the advection. A small system based on the puff model is widely adopted in Europe, where the topography is considered to have only simple effects. A more sophisticated large-sized system is required in nuclear facilities located in an area with more complex topographic features. An emergency system for dispersion calculation should be equipped with a graphic display to serve for quick understanding of the radioactivity distribution. (Nogami, K.)

  7. Rapid screening of natually occurring radioactive nuclides({sup 2}'3{sup 8}U, {sup 232}Th) in raw materials and by-products samples using XRF

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ji Young; Lim, Chung Sup [Radiation Biotechnology and Applied Radioiostope Science, University of Science and Technology, Daejeon (Korea, Republic of); Lim, Jong Myoung; Ji, Young Yong; Chung, Kun Ho; Lee, Wan No; Kang, Mun Ja [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Jang, Byung Uck [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2016-12-15

    As new legislation has come into force implementing radiation safety management for the use of naturally occurring radioactive materials (NORM), it is necessary to establish a rapid and accurate measurement technique. Measurement of {sup 238}U and {sup 232}Th using conventional methods encounter the most significant difficulties for pretreatment (e.g., purification, speciation, and dilution/enrichment) or require time-consuming processes. Therefore, in this study, the applicability of ED-XRF as a non-destructive and rapid screening method was validated for raw materials and by-product samples. A series of experiments was conducted to test the applicability for rapid screening of XRF measurement to determine activity of {sup 238}U and {sup 23{sup 2}}Th based on certified reference materials (e.g., soil, rock, phosphorus rock, bauxite, zircon, and coal ash) and NORM samples commercially used in Korea. Statistical methods were used to compare the analytical results of ED-XRF to those of certified values of certified reference materials (CRM) and inductively coupled plasma mass spectrometry (ICP-MS). Results of the XRF measurement for {sup 238}U and {sup 232}Th showed under 20% relative error and standard deviation. The results of the U-test were statistically significant except for the case of U in coal fly ash samples. In addition, analytical results of {sup 238}U and {sup 232}Th in the raw material and by-product samples using XRF and the analytical results of those using ICP-MS (R{sup 2}≥0.95) were consistent with each other. Thus, the analytical results rapidly derived using ED-XRF were fairly reliable. Based on the validation results, it can be concluded that the ED-XRF analysis may be applied to rapid screening of radioactivities ({sup 238}U and {sup 232}Th) in NORM samples.

  8. Development of fast measurements of concentration of NORM U-238 by HPGe

    Science.gov (United States)

    Cha, Seokki; Kim, Siu; Kim, Geehyun

    2017-02-01

    Naturally Occureed Radioactive Material (NORM) generated from the origin of earth can be found all around us and even people who are not engaged in the work related to radiation have been exposed to unnecessary radiation. This NORM has a potential risk provided that is concentrated or transformed by artificial activities. Likewise, a development of fast measruement method of NORM is emerging to prevent the radiation exposure of the general public and person engaged in the work related to the type of business related thereto who uses the material in which NORM is concentrated or transfromed. Based on such a background, many of countries have tried to manage NORM and carried out regulatory legislation. To effienctly manage NORM, there is need for developing new measurement to quickly and accurately analyze the nuclide and concentration. In this study, development of the fast and reliable measurement was carried out. In addition to confirming the reliability of the fast measurement, we have obtained results that can suggest the possibility of developing another fast measurement. Therefore, as a follow-up, it is possible to develop another fast analytical measurement afterwards. The results of this study will be very useful for the regulatory system to manage NORM. In this study, a review of two indirect measurement methods of NORM U-238 that has used HPGe on the basis of the equilibrium theory of relationships of mother and daughter nuclide at decay-chain of NORM U-238 has been carried out. For comparative study(in order to know reliabily), direct measurement that makes use of alpha spectrometer with complicated pre-processing process was implemented.

  9. The regulation concerning transportation of radioactive materials by vehicles

    International Nuclear Information System (INIS)

    1978-01-01

    The Regulation is established on the basis of The law for the regulations of nuclear source materials, nuclear fuel materials and reactors'' and the ''Law for the prevention of radiation injuries due to radioisotopes.'' The prescriptions cover the transport of radioactive materials by railway, street rail way, ropeway, trolley buses, motorcars and light vehicles. Terms are explained, such as nuclear fuel materials, radioisotopes, radioactive substances, transported radioactive things, transported fissile things, vehicles, containers, exclusive loading, surrounding inspection area. Four types of transported radioactive things are specified, L and A types being less dangerous and BM and BU being more dangerous. Transported fissile things are classified to three kinds according to the safety to criticality of such things. Transported radioactive things except those of L type and containers with transported fissile things shall not be loaded or unloaded at the places where persons other than those concerned come in usually. Loading and unloading of such things shall be carried out so that the safety of such things is not injured. The maximum dose rate of radiation of the containers with transported radioactive things shall not be more than 200 millirem per hour on the surface and 10 millirem per hour at the distance of 1 meter. Specified transported radioactive things shall be particularly marked by the letter of ''radioactive'' or other signs indicating as such. (Okada, K.)

  10. Safe transport of radioactive material. Second edition

    International Nuclear Information System (INIS)

    1991-01-01

    The transport of radioactive material embraces the carriage of radioisotopes for industrial, medical and research uses, and the movement of waste, in addition to consignments of nuclear fuel cycle material. It has been estimated that between eighteen and thirty-eight million package shipments take place each year. On the recommendation of the Standing Advisory Group on the Safe Transport of Radioactive Material (SAGSTRAM), which enjoys wide representations from the Agency's Member States and international organizations, the Secretariat is preparing a training kit comprising this training manual and complementary visual aids. The kit is intended to be the basis for an extensive course on the subject and can be used in whole or in part for inter-regional, regional and even national training purposes. Member States can thus benefit from the material either through training courses sponsored by the Agency, or, alternatively, organized by themselves. As a step towards achieving that goal, the current training manual was compiled using material from the first Inter-Regional Training Course on the Safe Transport of Radioactive material that was held in co-operation with the Nuclear Power Training Centre of the then Central Electricity Generating Board at Bristol, United Kingdom. This Manual was initially published in 1990. On the recommendation of the Agency's Standing Advisory Group on the Safe Transport of Radioactive Material (SAGSTRAM), the Manual has since been expanded and updated in time for the second Inter-Regional Training Course, that will in 1991 similarly be held in Bristol. Refs, figs, tabs

  11. Illicit trafficking of radioactive material in Hungary

    International Nuclear Information System (INIS)

    Golder, I.

    1996-01-01

    Hungary, due to its geographical location is a convenient region for illegal transit of nuclear material between source and target countries. In recent years nine cases have became known and altogether 21.7 kg depleted, 4.6 kg natural, and 2.5 kg low enriched uranium have been confiscated. A brief summary is given of possible origin of the illicitly transported radioactive material. The most important elements of the security of sources including the national and accounting system of radioactive material and the intervention plans are discussed. (author)

  12. Basic requirements to be established in a norm of radiologic security for operation of measuring equipment

    International Nuclear Information System (INIS)

    Milagros Ruiz, M.; Cateriano, Miguel A.

    2001-01-01

    According to the requirements in Argentina, each user of radioactive material must have a specific Authorization and a person who acts as the responsible for these material. But there is not any specific norm for each one. Dew to what we said before, it is necessary to make a rule to Industrials Uses. That is why this paper tries to establish the basis to do it. (author)

  13. Method of processing radioactive materials

    International Nuclear Information System (INIS)

    Kondo, Susumu; Moriya, Tetsuo; Ishibashi, Tadashi; Kariya, Masahiro.

    1986-01-01

    Purpose: To improve contamination proofness, water proofness, close bondability and stretching performance of strippable paints coated to substrates liable to be contaminated with radioactive materials. Method: Strippable paints are previously coated on substrates which may possibly be contaminated with radioactive materials. After the contamination, the coated membranes are stripped and removed. Alternatively, the strippable paints may be coated on the already contaminated substrates and, after drying, the paints are stripped and removed. The strippable paints used herein have a composition comprising a styrene-butadiene block copolymer containing from 60 to 80 wt% of styrene as a main ingredient and from 0.3 to 5 % by weight of a higher alkyl amine compound having 12 to 18 carbon atoms blended with the copolymer. (Ikeda, J.)

  14. Instructions for safe transport of radioactive materials

    International Nuclear Information System (INIS)

    2005-01-01

    This entrance includes 5 chapters and tables and supplement. Chapter I contains the definitions and general provisions contained 5 materials. Chapter II contains radioactive materials packaging and permissible limits and it contains 8 materials. The provisions of Chapter III contains descriptions Missionaries. Chapter IV describes shipping instructions. As for the separation of V It contains Final provisions. The entrance contains number of tables speaks of the basic values of radioactive isotopes and radiation also limits activity and the requirements of industrial parcels and limits transactions to transport freight containers, as well as the International Classification of hazardous materials. This also includes entrance to the Supplement to some forms and Alohat

  15. Storage of radioactive material - accidents - precipitation - personnel monitoring

    International Nuclear Information System (INIS)

    Matijasic, A.; Gacinovic, O.

    1961-12-01

    This volume covers the reports on four routine tasks concerned with safe handling of radioactive material and influence of nuclear facilities on the environment. The tasks performed were as follows: Storage of solid and liquid radioactive material; actions in case of accidents; radiation monitoring of the fallout, water and ground; personnel dosimetry

  16. The safety of radioactive materials transport; La surete des transports de matieres radioactives

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    The rule of the radioactive materials transport contains two different objectives: the safety, or physical protection, consists in preventing the losses, the disappearances, the thefts and the diversions of the nuclear materials (useful materials for weapons); the high civil servant of defence near the Minister of Economy, Finance and Industry is the responsible authority; the safety consists in mastering the risks of irradiation, contamination and criticality presented by the radioactive and fissile materials transport, in order that man and environment do not undergo the nuisances. The control of the safety is within the competence of the Asn. (N.C.)

  17. Material for radioactive protection

    Science.gov (United States)

    Taylor, R.S.; Boyer, N.W.

    A boron containing burn resistant, low-level radiation protection material useful, for example, as a liner for radioactive waste disposal and storage, a component for neutron absorber, and a shield for a neutron source is described. The material is basically composed of borax in the range of 25 to 50%, coal tar in the range of 25 to 37.5%, with the remainder being an epoxy resin mix. A preferred composition is 50% borax, 25% coal tar and 25% epoxy resin. The material is not susceptible to burning and is about 1/5 the cost of existing radiation protection material utilized in similar applications.

  18. Import/export Service of Radioactive Material

    CERN Multimedia

    2004-01-01

    Please note that the Import/Export service of radioactive material (24/E-024) is open from Monday to Friday, 8:00 to 11:00. No request will be treated the afternoon. Web site: http://cern.ch/service-rp-shipping/ Tel.: 73171 E-mail: service-rp-shipping@cern.ch Radioactive Sources Service Please note that the radioactive sources service (24/E-024) is open from Monday to Friday, 8:00 to 11:00. No request will be treated the afternoon. Moreover, the service being reduced transports between Swiss and French sites (and vice versa) will now be achieved by internal transport. Web site : http://cern.ch/service-radioactive-sources/ Tel.: 73171 E-mail: service-rp-shipping@cern.ch

  19. Radioactive material transport

    International Nuclear Information System (INIS)

    White, M.C.

    1979-10-01

    All movements of radioactive materials in Canada are governed by a comprehensive body of regqlations, both national and international. These regulations are designed to maximize shielding to the public and transport workers, allow for heat dissipation, and to prevent criticality accidents, by prescribing specific packaging arrangements, administrative controls, labelling and storage measures. This report describes in some detail specific requirements and summarizes some incidents that occurred between 1974 and 1978

  20. Radioactive Material (Road Transport) Act 1991

    International Nuclear Information System (INIS)

    1991-01-01

    This Act came into force on 27 August 1991. It replaces earlier legislation dating from 1948 and enables the United Kingdom to give effect to the International Atomic Energy Agency's (IAEA) latest recommended Regulations for the Safe Transport of Radioactive Material. The new Act clarifies and extends the power of the Secretary of State to make regulations regarding, among other things, the design, labelling, handling, transport and delivery of packages containing radioactive material and the placarding of vehicles transporting such packages. The Act gives the Secretary of State the power to appoint inspectors to assist him in enforcing the regulations. (NEA)

  1. Microwave processing of radioactive materials-I

    International Nuclear Information System (INIS)

    White, T.L.; Berry, J.B.

    1989-01-01

    This paper is the first of two papers that reviews the major past and present applications of microwave energy for processing radioactive materials, with particular emphasis on processing radioactive wastes. Microwave heating occurs through the internal friction produced inside a dielectric material when its molecules vibrate in response to an oscillating microwave field. For this presentation, we shall focus on the two FCC-approved microwave frequencies for industrial, scientific, and medical use, 915 and 2450 MHz. Also, because of space limitations, we shall postpone addressing plasma processing of hazardous wastes using microwave energy until a later date. 13 refs., 4 figs

  2. Information from the Import/Export of radioactive material Service

    CERN Multimedia

    DGS Unit

    2010-01-01

    The radiation protection group reminds you that the import/export of all radioactive material must be declared in advance. In the case of exports, an EDH shipping request form must be completed, ticking the box “radioactive material”. In the case of imports, an electronic form must be completed before the material arrives on the CERN site. Any requests which do not comply with the above procedure will be refused. The import of any radioactive material that has not been declared in advance will be systematically refused. For further information, please consult the web site: http://cern.ch/service-rp-shipping Yann Donjoux / Radioactive Shipping Service Tél: +41 22 767.31.71 Fax: +41 22 766.92.00

  3. Qualifications of and acceptance criteria for transporting special form radioactive material

    International Nuclear Information System (INIS)

    Hovingh, J.

    1991-01-01

    A special form radioactive material is a radioactive material that is in an inert, insoluble, indispersible form such that even in the event of an accident, it will not be dispersed into the environment in a way that could have an adverse impact on public health and safety. Methods of qualifying a special form radioactive material are discussed. Interpretation of acceptance criteria are proposed for the transportation of Type B quantities of a special form radioactive material. 11 refs

  4. Computed tomography of radioactive objects and materials

    International Nuclear Information System (INIS)

    Sawicka, B.D.; Murphy, R.V.; Tosello, G.; Reynolds, P.W.; Romaniszyn, T.

    1990-01-01

    Computed tomography (CT) has been performed on a number of radioactive objects and materials. Several unique technical problems are associated with CT of radioactive specimens. These include general safety considerations, techniques to reduce background-radiation effects on CT images and selection criteria for the CT source to permit object penetration and to reveal accurate values of material density. In the present paper, three groups of experiments will be described, for objects with low, medium and high levels of radioactivity. CT studies on radioactive specimens will be presented. They include the following: (1) examination of individual ceramic reactor-fuel (uranium dioxide) pellets, (2) examination of fuel samples from the Three Mile Island reactor, (3) examination of a CANDU (CANada Deuterium Uranium: registered trademark) nuclear-fuel bundle which underwent a simulated loss-of-coolant accident resulting in high-temperature damage and (4) examination of a PWR nuclear-reactor fuel assembly. (orig.)

  5. Determination of detailed standards for transportation of radioactive materials by ships

    International Nuclear Information System (INIS)

    1978-01-01

    These provisions are established on the basis of the ''Regulations on the transport and storage of dangerous things by ships''. The terms used hereinafter are according to those used in the Regulations. Radioactive materials, etc., include uranium 233, uranium 235, plutonium 238, plutonium 239, plutonium 241, the compounds of such materials and the substances containing one or two and more of such materials, excluding such materials of not more than 15 grams. The permissible surface density of radioactive materials is 1/100,000 of one microcurie per cm 2 for the radioactive materials emitting alpha-ray and 1/10,000 of one microcurie per cm 2 for the radioactive materials not emitting alpha-ray. For the radioactive materials which can be transported as L type cargo, their quantity of radioactivity is defined in their solid, liquid and gaseous forms. The limit of quantity of such cargo is described in detail in the lists attached. Transporting conditions of A, BM and BU type cargos are specified respectively in the particular sections. (Okada, K.)

  6. Transport of radioactive materials

    International Nuclear Information System (INIS)

    Lenail, B.

    1984-01-01

    Transport of radioactive materials is dependent of transport regulations. In practice integrated doses for personnel during transport are very low but are more important during loading or unloading a facility (reactor, plant, laboratory, ...). Risks occur also if packagings are used outside specifications. Recommendations to avoid these risks are given [fr

  7. Radiological impact of radioactive materials transport in France

    International Nuclear Information System (INIS)

    Hamard, J.

    1987-01-01

    Radiation doses of personnel and populations are estimated between 1983 and 1985 during road transport of radiopharmaceuticals, spent fuels, wastes and other radioactive materials. Dose equivalent received by air transport and others are difficult to know. Results are summed up in 8 tables. Radioactive materials transport represents less than 1% of exposures related to the fuel cycle [fr

  8. Natural radioactivity for some Egyptian building material

    International Nuclear Information System (INIS)

    Eissa, M. F.; Mostafa, R. M.; Shahin, F.; Hassan, K. F.; Saleh, Z. A.; Yahia, A.

    2007-01-01

    Study of the radiation hazards for the building materials is interested in most international countries. Measurements of natural radioactivity was verified for some egyptian building materials to assess any possible radiological hazard to man by the use of such materials. The measurements for the level of natural radioactivity in the materials was determined by γ-ray spectrum using HP Ge detector. A track detector Cr-39 was used to measure the radon exhalation rate from these materials. The radon exhalation rates were found to vary from 2.83±0.86 to 41.57 ± 8.38 mBqm -2 h -1 for egyptian alabaster. The absorbed dose rate in air is lower than the international recommended value (55 n Gy h -1 ) for all test samples

  9. Licensing of radioactive materials and facilities in the Philippines

    International Nuclear Information System (INIS)

    Mateo, A.J.

    1976-12-01

    The importation, acquisition, possession, use, sale and/ or transfer of radioactive materials need to be regulated and controlled in order to safeguard the importer, possessor, user or seller and the general public as well. The Philippine Atomic Energy Commission pursuant to Republic Act No. 2067, as amended and Republic Act No. 5207, has been charged by the government to control, regulate and license all the radioactive materials and facilities in the Philippines. Licensing and control is accomplished through a system of rules and regulations applicable to all importers, possessors, users or sellers of radioactive materials

  10. Completion of the Radioactive Materials Packaging Handbook

    International Nuclear Information System (INIS)

    Shappert, L.B.

    1998-02-01

    The Radioactive Materials Packaging Handbook: Design, Operation and Maintenance, which will serve as a replacement for the Cask Designers Guide (Shappert, 1970), has now been completed and submitted to the Oak Ridge National Laboratory (ORNL) electronics publishing group for layout and printing; it is scheduled to be printed in late spring 1998. The Handbook, written by experts in their particular fields, is a compilation of technical chapters that address the design aspects of a package intended for transporting radioactive material in normal commerce; it was prepared under the direction of M. E. Wangler of the US Department of Energy (DOE) and is intended to provide a wealth of technical guidance that will give designers a better understanding of the regulatory approval process, preferences of regulators on specific aspects of package design, and the types of analyses that should be considered when designing a package to carry radioactive materials

  11. Ontario hydro radioactive material transportation field guide

    International Nuclear Information System (INIS)

    Howe, W.

    1987-01-01

    The recent introduction of both the AECB Transport Packaging of Radioactive Material Regulations and Transport Canada's Transportation of Dangerous Goods Regulations have significantly altered the requirements for transporting radioactive material in Canada. Extensive additional training as well as certification of several hundred Ontario Hydro employees has been necessary to ensure compliance with the additional and revised regulatory requirements. To assist in the training of personnel, an 'active' corporate Ontario Hydro Field Guide for Radioactive Material Transport document has been developed and published. The contents of this Field Guide identify current Ontario Hydro equipment and procedures as well as the updated relevant regulatory requirements within Canada. In addition, to satisfying Ontario Hydro requirements for this type of information over two thousand of these Field Guides have been provided to key emergency response personnel throughout the province of Ontario to assist in their transportation accident response training

  12. HMPT: Basic Radioactive Material Transportation

    Energy Technology Data Exchange (ETDEWEB)

    Hypes, Philip A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-02-29

    Hazardous Materials and Packaging and Transportation (HMPT): Basic Radioactive Material Transportation Live (#30462, suggested one time) and Test (#30463, required initially and every 36 months) address the Department of Transportation’s (DOT’s) function-specific [required for hazardous material (HAZMAT) handlers, packagers, and shippers] training requirements of the HMPT Los Alamos National Laboratory (LANL) Labwide training. This course meets the requirements of 49 CFR 172, Subpart H, Section 172.704(a)(ii), Function-Specific Training.

  13. Industries processing naturally occurring radioactive materials: twenty years of emission data in the Netherlands

    International Nuclear Information System (INIS)

    Tanzi, C.P.

    2008-01-01

    This paper provides a review of the dose assessment of discharges to air of two industries processing NORM (Naturally Occurring Radioactive Materials) in the Netherlands. An industrial plant producing elemental phosphorus (thermal process, unique within Europe) reports since 1987 its emission data to the Dutch Ministry of the Environment (VROM: Ministry of Housing, Spatial Planning and the Environment). This plant accounts for the highest release of Po-210 to air in the Netherlands, with a yearly average of approximately 500 GBq. Other significant NORM discharges to air arise from an industrial plant with blast-furnaces for steel production. Yearly discharges fall under permit, and are reported, since 1993. RIVM, the National Institute for Public Health and the Environment, is tasked by the Ministry to assess the dose to the general public arising from these discharges to air. Air transport modelling is used to determine both air concentration (for inhalation exposure) and deposition rate of the radionuclides. A (conservative) committed ingestion dose is determined by modelling the uptake of radionuclides from contaminated farmland, and assuming a food basket to be fairly representative for the population of the Netherlands. Discharges to water in the Netherlands have decreased in the past twenty years, due both to the closure of two phosphoric acid plants a decade ago and the improved treatment of waste fluids by other NORM industries. The collective dose assessed from discharges to air since 1987 is presented here. (author)

  14. ESTIMATION OF EXPOSURE DOSES FOR THE SAFE MANAGEMENT OF NORM WASTE DISPOSAL.

    Science.gov (United States)

    Jeong, Jongtae; Ko, Nak Yul; Cho, Dong-Keun; Baik, Min Hoon; Yoon, Ki-Hoon

    2018-03-16

    Naturally occurring radioactive materials (NORM) wastes with different radiological characteristics are generated in several industries. The appropriate options for NORM waste management including disposal options should be discussed and established based on the act and regulation guidelines. Several studies calculated the exposure dose and mass of NORM waste to be disposed in landfill site by considering the activity concentration level and exposure dose. In 2012, the Korean government promulgated an act on the safety control of NORM around living environments to protect human health and the environment. For the successful implementation of this act, we suggest a reference design for a landfill for the disposal of NORM waste. Based on this reference landfill, we estimate the maximum exposure doses and the relative impact of each pathway to exposure dose for three scenarios: a reference scenario, an ingestion pathway exclusion scenario, and a low leach rate scenario. Also, we estimate the possible quantity of NORM waste disposal into a landfill as a function of the activity concentration level of U series, Th series and 40K and two kinds of exposure dose levels, 1 and 0.3 mSv/y. The results of this study can be used to support the establishment of technical bases of the management strategy for the safe disposal of NORM waste.

  15. Radiation environmental impact assessment of radioactive substances of an airport transit storage construction projects

    International Nuclear Information System (INIS)

    Zhang Baozeng; Xia Zitong; Zou Zhaozhuang

    2014-01-01

    Radioactive substances belong to dangerous goods transport aviation. Radioactive substances impoundments construction purpose is to ensure that the radioactive material during transport to transport and the public to achieve full or isolation, the effects of radiation on the human body, property and the environment caused by the control to an acceptable level. According to the relevant national standards and norms, for radiation protection evaluation of project construction of an airport radioactive impoundments, feasibility of the construction project radiation environment. (authors)

  16. Management of radioactive wastes produced by users of radioactive materials

    International Nuclear Information System (INIS)

    1985-01-01

    This report is intended as a document to provide guidance for regulatory, administrative and technical authorities who are responsible for, or are involved in, planning, approving, executing and reviewing national waste management programmes related to the safe use of radioactive materials in hospitals, research laboratories, industrial and agricultural premises and the subsequent disposal of the radioactive wastes produced. It provides information and guidance for waste management including treatment techniques that may be available to establishments and individual users

  17. Advisory material for the IAEA regulations for the safe transport of radioactive material (1985 edition). 3. ed.

    International Nuclear Information System (INIS)

    1990-01-01

    The IAEA Regulations for the Safe Transport of Radioactive Material provide standards for ensuring a high level of safety of people, property and the environment against radiation and criticality hazards as well as thermal effects associated with the transport of radioactive material. The basic requirements to be met are: Effective containment of radioactive material; Effective control of radiation emitted from the package; A subcritical condition for any fissile material; and Adequate dissipation of any heat generated within the package. Effective quality assurance and compliance assurance programmes are required, for example: (a) Appropriate and sound packages are used; (b) The activity of radioactive material in each package does not exceed the regulatory activity limit for that material and that package type; (c) The radiation levels external to, and the contamination levels on, surfaces of packages do not exceed the appropriate limits; (d) Packages are properly marked and labelled and transport documents are completed; (e) the number of packages containing radioactive material in a conveyance is within the regulatory limits; (f) Packages of radioactive material are stowed in conveyances and are stored at a safe distance from persons and photosensitive materials; (g) Only those transport and lifting devices which have been tested are used in loading, conveying and unloading packages of radioactive material; and (h) Packages of radioactive material are properly secured for transport. The control of the transport of radioactive materials may be necessary also for other reasons, e.g. safeguards control and physical protection of nuclear materials and control of a property. For radioactive materials having other dangerous properties, the regulations of Member States, modal conventions and agreements, and other relevant documents of international organizations need to be applied. A Member State may require in its national regulations that an additional approval be

  18. Data about shipping of radioactive material for medical use

    International Nuclear Information System (INIS)

    Sanches, M.P.; Rodrigues, D.L.

    2006-01-01

    The transport of radioactive materials implies a risk for the personnel of the team, those members of the public and the environment. While the safety in the transports is based on the designs of the bulks, the programs of radiological protection are important to assure the radiological control to the workers, the public and the environment during the transport of these materials. Although the biggest interest in the transport of radioactive materials it spreads to be centered in the nuclear industry, the transport in great measure it happens for the materials of medical use. These are mainly transported in bulks of the A Type and excepted bulks. The transport ones are forced, by national regulations, to send to the competent authority, in our case the National Comissao of Nuclear Energy (CNEN), all the data of the transported materials. This work has by objective to aim the efforts made to settle down and to manage the data regarding the transported radioactive materials. The existent data in the Radiopharmaceuticals Center, of the Institute of Energy and Nuclear Investigations 'IPEN/CNEN' it contains the information on all the radioactive materials consigned for the transport during every year. A statistic of the number of deliveries of the radioactive material for the period from 2001 to 2005 is provided. Based on this statistic its are presented the number of bulks, the quantity of activity and the ways of the transport for the period in study. (Author)

  19. Transport of radioactive material in Canada

    International Nuclear Information System (INIS)

    1997-09-01

    In this report, the Advisory Committee on Nuclear Safety (ACNS) presents the results of its study on how the system of the transport of radioactive material (TRM) in Canada is regulated, how it operates, and how it performs. The report deals with the transport of packages, including Type B packages which are used to carry large quantities of radioactive material, but not with the transport of spent nuclear fuel or with the transport of low-level historical waste. The ACNS has examined the Canadian experience in the TRM area, the regulatory framework in Canada with respect to the TRM some relevant aspects of training workers and monitoring compliance with regulatory requirements, the state of the emergency preparedness of organizations involved in the TRM and the process of updating present regulations by the Atomic Energy Control Board (AECB). As a result of this study, the ACNS concludes that the current Canadian regulatory system in the TRM is sound and that the TRM is, for the most part, conducted safely. However, improvements can be made in a number of areas, such as: determining the exposures of workers who transport radioactive material; rewording the proposed Transport Regulations in plain language; training all appropriate personnel regarding the AECB and Transport Canada (TC) Regulations; enforcing compliance with the regulations; and increasing the level of cooperation between the federal agencies and provincial authorities involved in the inspection and emergency preparedness aspects of the TRM. It is also noted that Bill C-23, the Nuclear Safety and Control Act, imposes a new requirement, subject to the Regulations, for a licence for a carrier to transport some types of radioactive material

  20. Transport of radioactive material in Canada

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    In this report, the Advisory Committee on Nuclear Safety (ACNS) presents the results of its study on how the system of the transport of radioactive material (TRM) in Canada is regulated, how it operates, and how it performs. The report deals with the transport of packages, including Type B packages which are used to carry large quantities of radioactive material, but not with the transport of spent nuclear fuel or with the transport of low-level historical waste. The ACNS has examined the Canadian experience in the TRM area, the regulatory framework in Canada with respect to the TRM some relevant aspects of training workers and monitoring compliance with regulatory requirements, the state of the emergency preparedness of organizations involved in the TRM and the process of updating present regulations by the Atomic Energy Control Board (AECB). As a result of this study, the ACNS concludes that the current Canadian regulatory system in the TRM is sound and that the TRM is, for the most part, conducted safely. However, improvements can be made in a number of areas, such as: determining the exposures of workers who transport radioactive material; rewording the proposed Transport Regulations in plain language; training all appropriate personnel regarding the AECB and Transport Canada (TC) Regulations; enforcing compliance with the regulations; and increasing the level of cooperation between the federal agencies and provincial authorities involved in the inspection and emergency preparedness aspects of the TRM. It is also noted that Bill C-23, the Nuclear Safety and Control Act, imposes a new requirement, subject to the Regulations, for a licence for a carrier to transport some types of radioactive material.

  1. Management of NORM/TENORM Waste from Non Nuclear Industries

    International Nuclear Information System (INIS)

    Djarot S Wisnubroto

    2003-01-01

    Management of NORM/TENORM waste is now to be an issue and discussed in many international conferences and seminars. This paper describes the status of the management of NORM/TENORM waste including the origin of the waste, regulations and assessment of waste disposal. Several countries have established the regulation for NORM/TENORM waste; however the IAEA has not yet published guideline for management of NORM/TENORM. There are many options for disposal of NORM/TENORM waste based on standard of the radioactive waste disposal. The decision and policy on management of NORM/TENORM waste must be conducted carefully due to the social and economical impacts. (author)

  2. Development of solid water-equivalent radioactive certified reference materials

    International Nuclear Information System (INIS)

    Finke, E.; Greupner, H.; Groche, K.; Rittwag, R.; Geske, G.

    1991-01-01

    This paper presents a brief description of the development of solid water-equivalent beta volume radioactive certified reference materials. These certified reference materials were prepared for the beta fission nuclides 90 Sr/ 90 Y, 137 Cs, 147 Pm and 204 Tl. Comparative measurements of liquid and solid water-equivalent beta volume radioactive certified reference materials are discussed. (author)

  3. Environmental, health, and safety decision making for naturally occurring radioactive materials in producing operations using pathway exposure analysis

    International Nuclear Information System (INIS)

    Miller, H.T.; Cook, L.M.

    1991-01-01

    A number of health and safety issues have arisen because of the occurrence of NORM, naturally occurring radioactive materials of the 226 radium and 228 radium decay chains, in production operations. Issues such as risk to workers or the general public, disposal of contaminated production fluids, disposal of NORM removed in cleaning equipment and tubing, and procedures to follow in well rework, equipment decontamination and other types of maintenance must be addressed. This paper describes the application of a procedural aid to decision making known as pathway exposure analysis to these issues. The procedure examines the radiation exposure of individuals and population groups by calculating the dose from each exposure route and pathway. The sum of these is used to calculate the overall risk to the individual or the group. This method can be used to examine management and procedural options to identify the option offering the smallest risk. Risk information coupled with cost estimates then permits management maximum utilization of its available resources

  4. Radioactive materials and emergencies at sea

    International Nuclear Information System (INIS)

    Shaw, K.B.

    1988-01-01

    Recent events have heightened awareness of the problems raised by accidents at sea involving radioactive materials. The NEA Committee on Radiation Protection and Public Health (CRPPH) noted that, while the transport of radioactive materials at sea is governed by extensive international regulations, deficiencies remained, particularly concerning mechanisms for early accident reporting and the development of generic safety assessments and accident analysises for various kinds of sea transport. As a contribution towards improving international guidance in this field, the NEA appointed a consultant to review the current status of activities carried out by the principal international organizations concerned with the transport of radioactive materials (the IAEA, IMO and the CEC), to identify the various areas where additional work is required and to suggest appropriate improvements. Only the radiation protection aspects of sea transport have been considered here. After having examined the consultant report, the CRPPH felt that its wide distribution to national regulatory authorities in OECD countries would serve a useful purpose. The report is published under the responsibility of the Secretary-General of the OECD and does not commit Member Governments or the Organization

  5. Transport of radioactive materials

    International Nuclear Information System (INIS)

    Huck, W.

    1992-01-01

    The book presents a systematic survey of the legal provisions governing the transport of radioactive materials, placing emphasis on the nuclear licensing provisions of sections 4, 4b of the Atomic Energy, Act (AtG) and sections 8-10 of the Radiation Protection Ordinance (StrlSchV), also considering the provisions of the traffic law governing the carriage of hazardous goods. The author's goal is to establish a systematic basis by comparative analysis of the licensing regulations under atomic energy law, for the purpose of formulating a proposed amendment to the law, for the sake of clarity. The author furthermore looks for and develops criteria that can be of help in distinguishing the regulations governing the carriage of hazardous goods from the nuclear regulatory provisions. He also examines whether such a differentiation is detectable, particularly in those amendments to the StrlSchV which came after the Act on Carriage of Hazardous Goods. The regulations governing the transport of radioactive materials under the AtG meet with the problem of different classification systems being applied, to radioactive materials in the supervisory regulations on the one hand, and to nuclear materials in Annex 1 to the AtG on the other hand. A classification of natural, non-nuclear grade uranium e.g. by the financial security provisions is difficult as a result of these differences in the laws. The author shows that the transport regulations of the StrlSchV represent an isolated supervisory instrument that has no connecting factor to the sections 28 ff StrlSchV, as radiation protection is provided for by the regulations of the Act on Carriage of Hazardous Goods. The author suggests an amendment of existing law incorporating the legal intent of sections 8-10 StrlSchV and of sections 4, 4b AtG into two sections, and abolishing the supervisory provisions of the StrlSchV altogether. (orig./HP) [de

  6. Determination of detailed regulations concerning transportation of radioactive materials by vehicles

    International Nuclear Information System (INIS)

    1978-01-01

    These provisions are established on the basis of the ''Regulations concerning transportation of radioactive materials by vehicles''. The terms used hereinafter are according to those used in the Regulations. Radioactive materials include uranium 233, uranium 235, plutonium 238, plutonium 239, plutonium 241, the compounds of such materials and the substances containing one or two and more of such materials, excluding the radioactive materials with not more than 15 grams of such uranium and plutonium. The permissible surface density is 1/100,000 microcurie per cm 2 for radioactive materials emitting alpha-ray and 1/10,000 microcurie per cm 2 for such materials which does not emit alpha-ray. For the radioactive materials which can be transported as L type loads, their kinds and quantities are specified in the forms of solid, liquid and gas, respectively. Transporting conditions including the quantity and leakage in A, BM and BU type loads are provided for, respectively, in the lists attached and in the particular sections. (Okada, K.)

  7. Measures Against-Illicit Trafficking of Nuclear Materials and Other Radioactive Sources

    International Nuclear Information System (INIS)

    Barakat, M.B.; Nassef, M.H.; El Mongy, S.A.

    2008-01-01

    Since the early nineties, illicit trafficking (IT) of nuclear materials and radioactive sources appeared as a new trend which raised the concern of the international community due to the grave consequences that would merge if these materials or radioactive sources fell into the hands of terrorist groups. However, by the end of the last century illicit trafficking of nuclear materials and radioactive sources lost its considerable salience, in spite of seizure of considerable amounts of 2 '3'5U (76% enrichment) in Bulgaria (May 1999) and also 235 U (30% enrichment) in Georgia (April 2000). Nevertheless, IT should be always considered as a continued and viable threat to the international community. Awareness of the problem should be developed and maintained among concerned circles as the first step towards combating illicit trafficking of nuclear materials and radioactive sources. Illicit trafficking of nuclear and radioactive materials needs serious consideration and proper attention by the governmental law enforcement authorities. Measures to combat with IT of nuclear material or radioactive sources should be effective in recovery, of stolen, removed or lost nuclear materials or radioactive sources due to the failure of the physical protection system or the State System Accounting and Control (SSAC) system which are normally applied for protecting these materials against illegal actions. Measures such as use of modern and efficient radiation monitoring equipment at the borders inspection points, is an important step in preventing the illicit trafficking of nuclear and radioactive materials across the borders. Also providing radiological training to specific personnel and workers in this field will minimize the consequences of a radiological attack in case of its occurrence. There is a real need to start to enter into cooperative agreements to strengthen borders security under the umbrella of IAEA to faster as an international cooperation in the illicit trafficking

  8. Statistics of foreign trade in radioactive materials 2004

    International Nuclear Information System (INIS)

    Anon.

    2006-01-01

    The German Federal Office for Industry and Foreign Trade Control (BAFA) keeps annual statistics of the imports and exports of radioactive materials, nuclear fuels included. The entries, some of them with precise details, cover the participating countries and the radionuclides concerned as well as all kinds of radioactive materials. The tables listed in the article represent the overall balance of the development of imports and exports of radioactive materials for the years 1986 to 2004 arranged by activity levels, including the development of nuclear fuel imports and exports. For the year 2004, an additional trade balance for irradiated and unirradiated nuclear fuels and source materials differentiated by enrichment is presented for the countries involved. In 2004, some 2,558 t of nuclear fuels and source materials were imported into the Federal Republic, while approx. 1,971 t were exported. The chief trading partners are countries of the European Union, Canada, Russia and the USA. (orig.)

  9. Statistics of foreign trade in radioactive materials 2002

    International Nuclear Information System (INIS)

    Anon.

    2003-01-01

    The German Federal Office for Industry and Foreign Trade Control (BAFA) keeps annual statistics of the imports and exports of radioactive materials, nuclear fuels included. The entries, some of them with precise details, cover the participating countries and the radionuclides concerned as well as all kinds of radioactive materials. The tables listed in the article represent the overall balance of the development of imports and exports of radioactive materials for the years 1983 to 2002 arranged by activity levels, including the development of nuclear fuel imports and exports. For the year 2002, an additional trade balance for irradiated and unirradiated nuclear fuels and source materials differentiated by enrichment is presented for the countries involved. In 2002, some 3 070 t of nuclear fuels and source materials were imported into the Federal Republic, while approx. 3 052 t were exported. The chief trading partners are countries of the European Union, Russia, and the USA. (orig.)

  10. Dispersion of radioactive materials in air and water

    International Nuclear Information System (INIS)

    Tolksdorf, P.; Meurin, G.

    1976-01-01

    A review of current analytical methods for treating the dispersion of radioactive material in air and water is given. It is shown that suitable calculational models, based on experiments, exist for the dispersion in air. By contrast, the analysis of the dispersion of radioactive material in water still depends on the evaluation of experiments with site-specific models. (orig.) [de

  11. Radioactive materials transporting container and vehicles

    International Nuclear Information System (INIS)

    Reese, S.L.

    1980-01-01

    A container and vehicle therefor for transporting radioactive materials is provided. The container utilizes a removable system of heat conducting fins made of a light weight highly heat conductive metal, such as aluminum or aluminum alloys. This permits a substantial reduction in the weight of the container during transport, increases the heat dissipation capability of the container and substantially reduces the scrubbing operation after loading and before unloading the radioactive material from the container. The vehicle utilizes only a pair of horizontal side beams interconnecting a pair of yoke members to support the container and provide the necessary strength and safety with a minimum of weight

  12. Regulations of safe transport of radioactive material

    International Nuclear Information System (INIS)

    Patel, R.J.; Sumathi, E.

    2017-01-01

    BARC is a multi-disciplinary nuclear research organisation with facilities located at various parts of the country. The nuclear and radiological facilities in BARC include fuel fabrication facilities, nuclear research reactors, radiological laboratories, nuclear recycle facilities, waste management facilities and other associated facilities. RAdioactive Material (RAM) such as fresh nuclear fuel, irradiated fuel, radioactive sources, vitrified high level wastes, special nuclear material etc., are transported between these facilities either within the controlled premises or in public domain. In BARC the regulatory approval for the packages used for transport of RAM is issued by BARC Safety Council (BSC). Competent Authority for issuing the design approval for the BARC packages in public domain is Director, BARC. In this aspect BSC is assisted by Safety Review Committee-Transport of Radioactive Material (SRC-TRM) constituted by BSC entrusted with the mandate to ensure the packages are designed, manufactured and transported in accordance with the current regulations. This article summarizes the regulatory requirements for transport of RAM and experience in BARC facilities

  13. The Study for Recycling NORM - Contaminated Steel Scraps from Steel Industry

    International Nuclear Information System (INIS)

    Tsai, K. F.; Lee, Y. S.; Chao, H. E.

    2003-01-01

    Since 1994, most of the major steel industries in Taiwan have installed portal monitor to detect the abnormal radiation in metal scrap feed. As a result, the discovery of NORM (Naturally Occurring Radioactive Material) has increased in recent years. In order to save the natural resources and promote radiation protection, an experimental melting process for the NORM contaminated steel scraps was carried out by the Institute of Nuclear Energy Research (INER) Taiwan, ROC. The experimental melting process has a pretreatment step that includes a series of cutting and removal of scales, sludge, as well as combustible and volatile materials on/in the steel scraps. After pretreatment the surface of the steel scraps are relatively clean. Then the scraps are melted by a pilot-type induction furnace. This experiment finally produced seven ingots with a total weight of 2,849 kg and 96.8% recovery. All of the surface dose rates are of the background values. The activity concentrations of these ingots are also below the regulatory criteria. Thus, these NORM-bearing steel scraps are ready for recycling. This study has been granted by the regulatory authority

  14. 2009 National inventory of radioactive material and wastes. Synthesis report

    International Nuclear Information System (INIS)

    2009-01-01

    Third edition of the ANDRA's national inventory report on radioactive wastes that are present on the French territory (as recorded until december, 2007). After a brief historical review of the national inventory and the way it is constructed, the report gives the basics on radioactive wastes, their classification, origins and management processes, followed by a general presentation and discussion of the inventory results (radioactive wastes and materials). Results are then detailed for the different activity sectors using radioactive materials (nuclear industry, medical domain, scientific research, conventional industry, Defense...). Information is also given concerning radioactive polluted areas (characterization and site management) and radioactive waste inventories in various foreign countries

  15. Technical regulations for road transport of radioactive materials

    International Nuclear Information System (INIS)

    Juul-Jensen, P.; Ulbak, K.

    1990-01-01

    The technical regulations for the transport of radioactive materials in Denmark are set down by the (Danish) National Board of Health in collaboration with the (Danish) National Institute for Radiation Hygiene in accordance with paragraph 3 of the Danish Ministry of Justice's Executive Order no. 2 of 2, January 1985 on the national road transport of dangerous goods by road, as amended by exutive order no. 251 of April 29th 1987 and no. 704 of November 1989. These regulations are presented here. They are almost identical, with only very few exceptions indicated in the publication, with the rules for Class 7 of the European convention on international transport of dangerous goods by road (ADR). In addition to the aforementioned regulations for national road transport of radioactive materials the general rules for the transport of radioactive materials found in the National Board of Health's executive order no. 721 of November 27th 1989 on the transport of radioactive materials are valid. The abovementioned executive orders, with the exception of certain supplements which are not part of the technical regulations, are also contained in this publication. (AB)

  16. Deposition of NORM generated by the oil and gas industries in Brazil

    International Nuclear Information System (INIS)

    Schenato, Flavia; Aguiar, Lais A.; Leal, Marco Aurelio; Ruperti Junior, Nerbe

    2013-01-01

    The natural occurring radioactive material (NORM) produced during E and P activities in the petroleum industry presents important implications for the management of solid wastes. The waste management strategy and final disposal policy regarding NORM should meet general radiation protection principles to ensure the long periods during which control may be necessary. The Brazilian Nuclear Energy Commission (CNEN) is responsible for the final destination of the radioactive waste produced in national territory. The Federal Law 10308/2001 establishes standards for the final destination of the radioactive waste providing information to the installation and operation of storage and disposal facilities. The licensee is responsible for the storage facilities, while CNEN is in charge of design, construction and installation of final disposal facilities, being possible to delegate such activities to a third parties, since preserved its full responsibility. The CNEN's Resolution on licensing of radioactive waste deposits, which is in the final approval stage, classifies the wastes generated by the E and P oil and gas industries and suggests two disposal methods to them, near surface and depth repositories, to be defined by safety analysis, but no formal criteria for disposal is really established. The guidelines for the safety analysis set for the licensing process of this class of waste is applied only to the implementation of interim storage facilities but not to repositories. Considering the large volume of NORM generated by the activities of E and P oil and gas industries and the growing demand of production with the exploration of pre-salt oil deposits in Brazil, this paper aims to discuss the development of national guidelines for the disposal of this class of waste to ensure long term safety and acceptability of disposal methods. (author)

  17. Development of solid water-equivalent radioactive certified reference materials

    Energy Technology Data Exchange (ETDEWEB)

    Finke, E.; Greupner, H.; Groche, K.; Rittwag, R. (Office for Standardization, Metrology and Quality Control (ASMW), Berlin (Germany, F.R.)); Geske, G. (Jena Univ. (Germany, F.R.))

    1991-01-01

    This paper presents a brief description of the development of solid water-equivalent beta volume radioactive certified reference materials. These certified reference materials were prepared for the beta fission nuclides {sup 90}Sr/{sup 90}Y, {sup 137}Cs, {sup 147}Pm and {sup 204}Tl. Comparative measurements of liquid and solid water-equivalent beta volume radioactive certified reference materials are discussed. (author).

  18. Actions of radiation protection in the collection of discarded radioactive material

    International Nuclear Information System (INIS)

    Neri, E.P.M.; Silva, F.C.A. da

    2017-01-01

    Brazil has approximately 2000 radiative facilities that use radiation sources in their processes and are controlled by The Brazilian Nuclear Energy Commission - CNEN through standards, authorizations and inspections. These radioactive materials, whether in the form of waste or radioactive source, used in medical, industrial, research, etc. are sometimes discarded and found in inappropriate places, such as garbage dumps, industrial waste, streets, squares, etc. found by urban cleaning professionals without the proper knowledge of them. The work presents the radiation protection actions required for the safe collection of radioactive material to be performed by these professionals. According to the type of radioactive material the main actions of radiation protection are, among others: recognition of a radioactive material; correct use of personal protective equipment to contain possible radiation contamination; implementation of an area control etc. In order for the actions of recognition and collection of discarded radioactive material to be effective, there is a need to implement a training program in radiation protection for urban cleaning professionals

  19. State summary of radioactive material transport sector in Brazil

    International Nuclear Information System (INIS)

    Heilbron Filho, P.F.L.; Xavier, A.M.

    1991-07-01

    The main aim of this work is the scientific cooperation with the CNEA (Argentina) in the area of safe transport of radioactive materials, intending to find solutions to some rural problems and, also, to standardize the transport of radioactive materials between Brazil and Argentina. (E.O.)

  20. Characterization of NORM material produced in a water treatment plant

    Energy Technology Data Exchange (ETDEWEB)

    Suursoo, S.; Kiisk, M.; Jantsikene, A.; Koch, R.; Isakar, K.; Realo, E. [University of Tartu, Institute of Physics (Estonia); Lumiste, L. [Tallinn University of Technology (Estonia)

    2014-07-01

    contaminated materials generated in the water treatment process, liquid waste from backwash cycles has to be monitored as well. 35 m{sup 3} of treated water is used to backwash each filter. The first stage filters are washed every seven days, the second stage filters every 14 days. In this process, some radium dissolves back to water, and some of it is carried out with suspended residue. The latter is the dominant removal mechanism, which carries out ca 20...30 MBq of Ra-226 and Ra-228 yearly. Activity concentrations of dissolved Ra-226 in the backwash waters of the first and second stage filter have been estimated to be approximately 1.0 Bq/L and 0.3 Bq/L, respectively. This leads to a yearly outflow of about 2 MBq of Ra-226. The paper presents radium accumulation in the filters and its outflow by backwash during plant operation. These measurements are the basis of assessing the amounts and activities of generated NORM materials, which in turn form the basis for risk assessment and management of radioactive residues. Document available in abstract form only. (authors)

  1. 44 years of testing radioactive materials packages at ORNL

    Energy Technology Data Exchange (ETDEWEB)

    Shappert, L.B.; Ludwig, S.B. [Oak Ridge National Lab., Oak Ridge, TN (United States)

    2004-07-01

    This paper briefly reviews the package testing at the Oak Ridge National Laboratory (ORNL) since 1960 and then examines the trends in the testing activities that occurred during the same period. Radioactive material shipments have been made from ORNL since the 1940s. The first fully operating reactor built at the ORNL site was patterned after the graphite pile constructed by Enrico Fermi under Stagg Field in Chicago. After serving as a test bed for future reactors, it became useful as a producer of radioactive isotopes. The Isotopes Division was established at ORNL to furnish radioactive materials used in the medical community. Often these shipments have been transported by aircraft worldwide due to the short half-lives of many of the materials. This paper touches briefly on the lighter and smaller radioisotope packages that were being shipped from ORNL in large numbers and then deals with the testing of packages designed to handle large radioactive sources, such as spent fuel, and other fissile materials.

  2. 44 years of testing radioactive materials packages at ORNL

    International Nuclear Information System (INIS)

    Shappert, L.B.; Ludwig, S.B.

    2004-01-01

    This paper briefly reviews the package testing at the Oak Ridge National Laboratory (ORNL) since 1960 and then examines the trends in the testing activities that occurred during the same period. Radioactive material shipments have been made from ORNL since the 1940s. The first fully operating reactor built at the ORNL site was patterned after the graphite pile constructed by Enrico Fermi under Stagg Field in Chicago. After serving as a test bed for future reactors, it became useful as a producer of radioactive isotopes. The Isotopes Division was established at ORNL to furnish radioactive materials used in the medical community. Often these shipments have been transported by aircraft worldwide due to the short half-lives of many of the materials. This paper touches briefly on the lighter and smaller radioisotope packages that were being shipped from ORNL in large numbers and then deals with the testing of packages designed to handle large radioactive sources, such as spent fuel, and other fissile materials

  3. Management system for regulating transport of radioactive material

    International Nuclear Information System (INIS)

    Lopez Vietri, Jorge; Capadona, Nancy; Barenghi, Leonardo

    2008-01-01

    Full text: The objective of this paper is to describe the main characteristics and fundamentals of the Nuclear regulatory Authority's (Autoridad Regulatoria Nuclear, ARN) management system applied to the regulation of transport of radioactive material, in Argentina. In the frame of ARN's quality policy, 'Protection against ionizing radiation on transport of radioactive materials' was selected as one of the regulatory processes, named TRM process from now on. ARN's quality management system is integrally based on ISO 9000 system addressed to help organizations in designing and implementing their quality management systems. TRM process was split into five sub processes in order to facilitate the implementation of quality system. Such sub processes were defined taking account of the main functions developed by ARN in the branch of safe transport of radioactive materials and are listed below: 1) Development and updating of standards and regulatory guides; 2) Licensing of packages, special radioactive materials and consignments of radioactive materials; 3) Compliance assurance during the transport of radioactive materials, and 4) Training, advising and communications. For each of these sub processes were specified their objectives, inputs, activities and outputs, the clients and stakeholders, responsibilities, supporting documents, control of documents and records, control of non-conformances, monitoring and measurements, audits, feedback and improvement. It was decided to develop a quality plan to organize and manage activities to meet quality requirements, to optimize the use of limited resources of the organization and to be used as a basis for monitoring and assessing compliance with the requirements, both internal and external. Supporting documents for sub processes were issued, validated, reviewed and improved as an essential point to implement continuous improving. Simultaneously, some indexes were defined to monitor and measure the sub processes as a way to show

  4. A development of radioactive material tracking and location control system

    International Nuclear Information System (INIS)

    Joo, Gwang Tae; Jung Seung Yong; Song, Jung Ho

    2005-01-01

    As the whole industry fields such as construction, chemistry, machine, medicine including nuclear-related field have extended the range of radioactive material uses, it is tendency that domestic uses of radioactive material have been increased in quantity and number. In addition, as the transportation, transfer and use of radioactive material have been frequent, its loss, robbery, and carelessness of handling may cause not only employees in charge but the public to worry about damage of explosion and put an obstacle to increase trust in nuclear-related industry. At present, though the transportation, use and storage of radioactive material conform to the institution and standard of the atomic energy law, if we tracking radioactive material in real time, we can take immediate actions to prevent its loss, robbery. As our research institute developed a terminal that control location and tracking real time location for gamma-ray projector used in transporting, transferring, and using nondestructive test, we take a good look at utilities by using GPS-Cell ID bases location control

  5. Experience in the implementation of NORM regulations in Germany

    International Nuclear Information System (INIS)

    Gehrcke, Klaus; Kirchner, Gerald

    2008-01-01

    According to the Directive 96/29/EURATOM the EU Member States are obliged to identify work activities that might lead to a significant increase of exposure due to natural occurring radioactive materials (NORM). In Germany, investigations were carried out that resulted in lists of possibly relevant workplaces on the one hand and residues from industrial processes on the other. These lists are part of the German radiation protection ordinance and form a key element of the regulations on NORM. They reflect the concept of selectivity of radiation protection in this area. Another peculiarity is the fact that the NORM regulations rely to a large extent on self-control of the industries concerned. The responsible authorities play only a limited role, and authorization is generally not required. Since actions are currently in progress to update national and international recommendations and standards we have evaluated and summarized the experience gained from the implementation of the NORM regulations in Germany. Our inquiries allow the conclusion that overall, the concept has proven to work properly. Since most of the industries were confronted with problems of radioactivity and radiation protection for the first time, professional assistance was necessary in the beginning. However, in the long run the concept will help to optimize the efforts on both sides, industry and authorities. Some problems have appeared with regard to the concept of selectivity. For example, certain exposures had been considerably overestimated on the basis of conservative, generic dose assessments that formed the basis of the lists of regulated workplaces and residues. This may not only lead to undue regulatory efforts but also to an unnecessary stigmatization of industries and concerns among workers and the population. Therefore it is necessary to weigh up carefully the conservatism that is to some extent necessary in generic dose assessments and the realism required in on-site assessments

  6. Determination of standards for transportation of radioactive material by aircrafts

    International Nuclear Information System (INIS)

    1978-01-01

    These provisions are established on the basis of the Enforcement Regulation for the Law on Aviation. Terms are explained, such as exclusive loading and containers. Spontaneously ignitable liquid radioactive materials and the radioactive substances required to be contained in special vessels and others particularly operated during the transport, are excluded from the radioactive materials permissible for transport. The radioactive substances required to be transported as radioactive loadings don't include empty vessels used to contain radioactive materials and other things contaminated by such materials, when they conform to the prescriptions. The technical standards on radioactive loadings are defined, such as maximum radiation dose rate of 0.5 millirem per hour on the surface of L type loadings, 200 millirem per hour for A, and 1000 millirem per hour at the distance of 1 m for BM and BU types, respectively. Confirmation of the safeness of radioactive loadings may be made through the written documents prepared by the competent persons acknowledged by the Minister of Transport. The requisite of fissile loadings is that such loadings shall not reach critical state during the transport in the specified cases. Radioactive loadings or the containers with such loadings shall be loaded so that the safeness of such loadings is not injured by movement, overturn and fall during the transport. The maximum radiation dose rate of the containers with radioactive loadings shall not be more than 200 millirem per hour on the surface. The written documents describing the handling method and other matters for attention and the measures to be taken on accidents shall be carried with for the transport of radioactive loadings. (Okada, K.)

  7. Applications of inorganic ion-exchange materials in managing radioactivity wastewater

    International Nuclear Information System (INIS)

    He Jiaheng; Li Xingliang; Li Shoujian

    2007-01-01

    This article introduces the application of abio-ion exchange materials in managing radioactivity wastewater, which would be useful for latter research of new inorganic materials that used in managing radioactivity wastewater. (authors)

  8. Investigation of the possibilities for application of NORM into polymer materials

    OpenAIRE

    Srebrenkoska, Vineta

    2016-01-01

    The main aim of the proposed STSM project is to perform: • Comparison of fly ash characteristics (chemical composition, granulometry and density) from different origins: Slovenia and Macedonia. • Characterization of the polymer materials: thermoset and thermoplastic. • Estimate the possibilities for preparing of the composites based on fly ash as NORM material from different origins and polymers. The analyses of the inorganic fillers and organic polymer matrices will be made in or...

  9. Radioactive waste solidification material

    International Nuclear Information System (INIS)

    Nishihara, Yukio; Wakuta, Kuniharu; Ishizaki, Kanjiro; Koyanagi, Naoaki; Sakamoto, Hiroyuki; Uchida, Ikuo.

    1992-01-01

    The present invention concerns a radioactive waste solidification material containing vermiculite cement used for a vacuum packing type waste processing device, which contains no residue of calcium hydroxide in cement solidification products. No residue of calcium hydroxide means, for example, that peak of Ca(OH) 2 is not recognized in an X ray diffraction device. With such procedures, since calcium sulfoaluminate clinker and Portland cement themselves exhibit water hardening property, and slugs exhibit hydration activity from the early stage, the cement exhibits quick-hardening property, has great extension of long term strength, further, has no shrinking property, less dry- shrinkage, excellent durability, less causing damages such as cracks and peeling as processing products of radioactive wastes, enabling to attain highly safe solidification product. (T.M.)

  10. Systematic approach to characterisation of NORM in Thailand.

    Science.gov (United States)

    Chanyotha, S; Kranrod, C; Pengvanich, P

    2015-11-01

    The aim of this article is to provide information on the systematic approach that has been developed for the measurement of natural radiation exposure and the characterisation of naturally occurring radioactive materials (NORM) in terms of occurrence and distribution in various industrial processes, including the produced waste from the mineral industries in Thailand. The approach can be adapted for various types of study areas. The importance of collaboration among research institutions is discussed. Some developments include 25 documents; the redesign of the field equipment, such as the gamma survey meter, for convenient access to conduct measurement in various study areas; the method to collect and analyse radon gas from a natural gas pipeline and the manganese dioxide fibre to adsorb radium on-site for laboratory analysis. The NORM project in Thailand has been carried out for more than 10 y to support the development of NORM regulation in Thailand. In the previous studies as well as current, international standards for action levels have been adopted for safety purpose. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Method of electrolytic decontamination of contaminated metal materials for radioactivity

    International Nuclear Information System (INIS)

    Harada, Yoshio; Ishibashi, Masaru; Matsumoto, Hiroyo.

    1985-01-01

    Purpose: To electrolytically eliminate radioactive materials from metal materials contaminated with radioactive materials, as well as efficiently remove metal ions leached out in an electrolyte. Method: In the case of anodic dissolution of metal materials contaminated with radioactivity in an electrolyte to eliminate radioactive contaminating materials on the surface of the metal materials, a portion of an electrolytic cell is defined with partition membranes capable of permeating metal ions therethrough. A cathode connected to a different power source is disposed to the inside of the partition membranes and fine particle of metals are suspended and floated in the electrolyte. By supplying an electric current between an insoluble anode disposed outside of the partition membranes and the cathode, metal ions permeating from the outside of the partition membranes are deposited on the fine metal particles. Accordingly, since metal ions in the electrolyte are removed, the electrolyte can always be kept clean. (Yoshihara, H.)

  12. Development and implementation of automated radioactive materials handling systems

    International Nuclear Information System (INIS)

    Jacoboski, D.L.

    1992-12-01

    Material handling of radioactive and hazardous materials has forced the need to pursue remotely operated and robotic systems in light of operational safety concerns. Manual maneuvering, repackaging, overpacking and inspecting of containers which store radioactive and hazardous materials is the present mode of operation at the Department of Energy (DOE) Fernald Environmental Management Project (FEMP) in Fernald Ohio. The manual methods are unacceptable in the eyes of concerned site workers and influential community oversight committees. As an example to respond to the FEMP material handling needs, design efforts have been initiated to provide a remotely operated system to repackage thousands of degradated drums containing radioactive Thorium: Later, the repackaged Thorium will be shipped offsite to a predesignated repository again requiring remote operation

  13. Nuclide-related exemption limits for radioactive materials

    International Nuclear Information System (INIS)

    Przyborowski, S.; Scheler, R.

    1984-01-01

    A procedure has been proposed for setting nuclide-related exemption limits for radioactive materials. It consists in grading the radionuclides into 4 groups of radiotoxicity and assigning only one activity limit to each of them. Examples are given for about 200 radionuclides. The radiation exposures resulting from a continuous steady release of activity fractions or from short-period release of the entire activity were assessed to remain below 0.1 ALI in both of these borderline cases, thus justifying the license-free utilization of radioactive materials below the exemption limits. (author)

  14. Considerations concerning the secure transport of radioactive materials in Romania

    International Nuclear Information System (INIS)

    Vieru, Gheorghe

    2002-01-01

    As UNO member and founding member of the IAEA, Romania has implemented national regulations concerning the transport of radioactive materials in complete safety, complying with recommendations by IAEA and other international organizations. Accordingly, the National Commission for Nuclear Activities Control, CNCAN, issued the Directive no. 374/October 2001 which provides the rules for secure radioactive material transport in Romania on roads, rail ways, sea/fluvial and air ways. The paper presents the main sources of producing radioactive materials focussing the following: mining of natural uranium ore, nuclear fuel fabrication plants, nuclear power plants operation, nuclear research reactors, industrial use of radioactive sources (as gamma radiography), use of radioisotope in scientific, educational or medical units. The paper pays attention to the special routes and containers adopted for most secure transport of radioactive waste. Finally, one presents specific issues relating to identification and evaluation of the risk factors occurring at the transport of radioactive waste, as well as the potential radiological consequences upon population and environment. Estimated are the collective risk doses for different categories of populations from areas adjacent to the routes of radioactive materials transportation. It is stressed that the annual collective dose which the population is exposed to in case of accident is comparable with the dose from the natural (cosmic radiation background)

  15. Meeting the regulatory information needs of users of radioactive materials

    International Nuclear Information System (INIS)

    MacDurmon, G.W.

    1996-01-01

    The use of radioactive materials is one of the most regulated areas of research. Researchers face ever increasing regulatory requirements and issues involving the disposal of radioactive material, while meeting the demands of higher productivity. Radiation safety programs must maximize regulatory compliance, minimize barriers, provide services and solutions, and effectively communicate with users of radioactive materials. This talk will discuss methods by which a radiation safety program can meet the needs of both the research staff and regulatory compliance staff

  16. Meeting the regulatory information needs of users of radioactive materials

    Energy Technology Data Exchange (ETDEWEB)

    MacDurmon, G.W. [American Cyanamid Company, Princeton, NJ (United States)

    1996-10-01

    The use of radioactive materials is one of the most regulated areas of research. Researchers face ever increasing regulatory requirements and issues involving the disposal of radioactive material, while meeting the demands of higher productivity. Radiation safety programs must maximize regulatory compliance, minimize barriers, provide services and solutions, and effectively communicate with users of radioactive materials. This talk will discuss methods by which a radiation safety program can meet the needs of both the research staff and regulatory compliance staff.

  17. The Safe Transportation of Radioactive Materials

    International Nuclear Information System (INIS)

    Megrahi, Abdulhafeed; Abu-Ali, Giuma; Enhaba; Ahmed

    2008-01-01

    In this paper, we present the essential conditions that should be required for transporting the radioactive materials. We demonstrate the procedure for transporting the radioactive iodine-131 from the Centre of Renewable Energies and Desalination of Water in Tajoura, Libya to Tripoli Medical Center. The safe measures were taken during the process of the transportation of the isotope produced in the centre including dosimetry analysis and the thickness of the container. (author)

  18. First response to transportation emergencies involving radioactive materials

    International Nuclear Information System (INIS)

    1994-01-01

    This FEMA/DOE/DOT videocourse describes the basis for procedures to be used by emergency first responders for transportation accidents which involve radioactive materials. Various commercial and government sector radioactive materials shipment programs will be described and will include information about hazards and the elements of safety, proper first response actions, notification procedures, and state or federal assistance during emergencies. Primary audience: fire service and emergency management personnel

  19. Development of a state radioactive materials storage facility

    International Nuclear Information System (INIS)

    Schmidt, P.S.

    1995-01-01

    The paper outlines the site selection and facility development processes of the state of Wisconsin for a radioactive materials facility. The facility was developed for the temporary storage of wastes from abandoned sites. Due to negative public reaction, the military site selected for the facility was removed from consideration. The primary lesson learned during the 3-year campaign was that any project involving radioactive materials is a potential political issue

  20. Radioactive materials in ashes from peat fired plants

    International Nuclear Information System (INIS)

    Erlandsson, B.; Hedvall, R.

    1984-11-01

    Measurements of the gamma radiation have been used for determination of radioactive materials in peat ashes from five Swedish heating plants. The results show that the amount of radioactive materials was almost the same in all samples. The concentration of 125 Sb, 137 Cs, 144 Cs and 155 Eu were in good conformity with the concentrations found in the environment. The 235 U-concentration was hardly possible to measure. (Edv)

  1. Radioactive materials transportation life-cycle cost

    International Nuclear Information System (INIS)

    Gregory, P.C.; Donovan, K.S.; Spooner, O.R.

    1993-01-01

    This paper discusses factors that should be considered when estimating the life-cycle cost of shipping radioactive materials and the development of a working model that has been successfully used. Today's environmental concerns have produced an increased emphasis on cleanup and restoration of production plants and interim storage sites for radioactive materials. The need to transport these radioactive materials to processing facilities or permanent repositories is offset by the reality of limited resources and ever-tightening budgets. Obtaining the true cost of transportation is often difficult because of the many direct and indirect costs involved and the variety of methods used to account for fixed and variable expenses. In order to make valid comparisons between the cost of alternate transportation systems for new and/or existing programs, one should consider more than just the cost of capital equipment or freight cost per mile. Of special interest is the cost of design, fabrication, use, and maintenance of shipping containers in accordance with the requirements of the U.S. Nuclear Regulatory Commission. A spread sheet model was developed to compare the life-cycle costs of alternate fleet configurations of TRUPACT-II, which will be used to ship transuranic waste from U.S. Department of Energy sites to the Waste Isolation Pilot Plant near Carlsbad, New Mexico

  2. Radioactive materials in construction projects

    International Nuclear Information System (INIS)

    Herrmann, Ralf; Ohlendorf, Frank; Kaltz, Andrea Christine

    2014-01-01

    Till 1990 residues often of the former uranium mining were partly used as building material for road construction, terrain compensation and house construction in Saxony. These recommendations for action are addressed to applicants, planners and building constructors in the engineering and construction sector. It provides information for planning, preliminary investigations, applications, construction supervision related to radiation protection measures and documentation of construction projects where radioactive materials are expected.

  3. Truck transportation of radioactive materials

    International Nuclear Information System (INIS)

    Madsen, M.M.; Wilmot, E.L.

    1983-01-01

    Analytical models in RADTRAN II are used to calculate risks to population subgroups such as people along transport routes, people at stops, and crewman. The stops model, which calculates the dose to persons adjacent to the transport vehicle while it is stopped, frequently provides the largest contribution to incident-free radiological impacts. Components such as distances from the vehicle containing radioactive material to nearby people at stops, stop duration, and number of crew members are required for the stops model as well as other incident-free models. To provide supporting data for RADTRAN II based on operational experience, selected truck shipments of radioactive material were observed from origin to destination. Other important aspects of this program were to correlate package size to effective shipment transport index (TI) using radiological surveys and to characterize population distributions and proximities of people to the shipment at a generic truck stop

  4. Raising students and educators awareness of radioactive materials transport through creative classroom materials and exhibits

    International Nuclear Information System (INIS)

    Holm, J.; Sandoz, C.; Dickenson, J.; Lee, J.C.; Smith, A.M.

    1994-01-01

    The public is concerned about how the shipping and handling of radioactive materials affects them and their environment. Through exhibit showings doing professional education conferences and smaller, focussed workshops, the United States Department of Energy (DOE) has found teachers and students to be an especially interested audience for hazardous and radioactive materials transportation information. DOE recognizes the importance of presenting educational opportunities to students about scientific and societal issues associated with planning for and safely transporting these types of materials. Raising students' and educators' awareness of hazardous and radioactive materials transport through creative classroom materials and exhibits may help them make informed decisions as adults about this often controversial and difficult issue

  5. Radioactive waste solidifying material

    International Nuclear Information System (INIS)

    Ono, Keiichi; Sakai, Etsuro.

    1989-01-01

    The solidifying material according to this invention comprises cement material, superfine powder, highly water reducing agent, Al-containing rapid curing material and coagulation controller. As the cement material, various kinds of quickly hardening, super quickly hardening and white portland cement, etc. are usually used. As the superfine powder, those having average grain size smaller by one order than that of the cement material are desirable and silica dusts, etc. by-produced upon preparing silicon, etc. are used. As the highly water reducing agent, surface active agents of high decomposing performance and comprising naphthalene sulfonate, etc. as the main ingredient are used. As the Al-containing rapidly curing material, calcium aluminate, etc. is used in an amount of less than 10 parts by weight based on 100 parts by weight of the powdery body. As the coagulation controller, boric acid etc. usually employed as a retarder is used. This can prevent dissolution or collaption of pellets and reduce the leaching of radioactive material. (T.M.)

  6. Determination of detailed standards for transportation of radioactive materials by ships

    International Nuclear Information System (INIS)

    1979-01-01

    The notification is defined under the regulations concerning marine transport and storage of dangerous things. Radioactive materials include hereunder uranium 233 and 235, plutonium 238, 239 and 241, their compounds and those materials which contain one or more than two of such materials. Materials whose quantities or quantities of components are less than 15 grams, and natural or depleted uranium are excluded. Permissible surface concentrations are 1/100,000 micro-curie per centi-meter 2 for radioactive materials emitting alpha rays, and 1/10,000 micro-curie per centi-meter 2 for radioactive materials not emitting alpha rays. Radioactive materials to be transported as L loads shall be not dispersing solid substances or those tightly enclosed in capsules, one of whose exterior sides at least is more than 0.5 centi-meter, having other several specified features. Other kinds of liquid and gas L loads are stipulated. Limits of radioactivity of L and A loads are provided for with tables attached. Transport conditions of A, BM and BU loads are fixed with bylaws. Leakages of BM and BU loads are also prescribed. Radioactive loads shall be marked by particular signals. Measures shall be taken to control exposures, which involve measurement of doses and exposure doses on board and appointment of exposure controllers. (Okada, K.)

  7. Safe transport of radioactive material

    International Nuclear Information System (INIS)

    1990-01-01

    Recently the Agency redefined its policy for education and training in radiation safety. The emphasis is now on long-term strategic planning of general education and training programmes. In line with this general policy the Agency's Standing Advisory Group for the Safe Transport of Radioactive Material (SAGSTRAM) in its 7th meeting (April 1989) agreed that increased training activity should be deployed in the area of transport. SAGSTRAM specifically recommended the development of a standard training programme on this subject area, including audio-visual aids, in order to assist Member States in the implementation of the Agency's Regulations for the Safe Transport of Radioactive Material. This training programme should be substantiated by a biennial training course which is thought to be held either as an Interregional or a Regional Course depending on demand. This training manual, issued as a first publication in the Training Course Series, represents the basic text material for future training courses in transport safety. The topic areas covered by this training manual and most of the texts have been developed from the course material used for the 1987 Bristol Interregional Course on Transport Safety. The training manual is intended to give guidance to the lecturers of a course and will be provided to the participants for retention. Refs, figs and tabs

  8. Research on the reliability of measurement of natural radioactive nuclide concentration of U-238

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Seok Ki; Kim, Gee Hyun [Dept. of Nuclear engineering, Univ. of SeJong, Seoul (Korea, Republic of); Joo, Sun Dong; Lee, Hoon [KoFONS, Seongnam (Korea, Republic of)

    2016-12-15

    Naturally occurred radioactive materials (NORM) can be found all around us and people are exposed to this no matter what they do or where they live. In this study, two indirect measurement methods of NORM U-238 has been reviewed; one that has used HPGe on the basis of the maintenance, and the other is disequilibrium theory of radioactive equilibrium relationships of mother and daughter nuclide at Decay-chain of NORM U-238. For this review, complicated pre-processing process (Breaking->Fusion->Chromatography->Electron deposit) has been used , and then carried out a comparative research with direct measurement method that makes use of and measures Alpha spectrometer. Through the experiment as above, we could infer the daughter nuclide whose radioactive equilibrium has been maintained with U-238. Therefore, we could find out that the daughter nuclide suitable to be applied to Gamma indirect measurement method was Th-234. Due to Pearson Correlation statistics, we could find out the reliability of the result value that has been analyzed by using Th-234.

  9. Regulatory requirements on management of radioactive material safe transport in China

    International Nuclear Information System (INIS)

    Chu, C.

    2016-01-01

    Since 1980s, the IAEA Regulation for safe transport of radioactive material was introduced into China; the regulatory system of China began with international standards, and walked towards the institutionalized. In 2003 the National People’s Congress (NPC) promulgated “the Act on the Prevention of Radioactive Pollution of the People's Republic of China”. In 2009 “Regulation for the Safe Transport of Radioactive Material” (Referred to “Regulation”) was promulgated by the State Council. Subsequently, the National Nuclear Safety Administration (NNSA) began to formulate executive detailed department rules, regulations guidelines and standards. The present system of acts, regulations and standards on management of safe transport of radioactive material in China and future planning were introduced in this paper. Meanwhile, the paper described the specific administration requirements of the Regulation on classification management of radioactive materials, license management of transport packaging including design, manufacture and use, licensing management of transport activities and the provisions of illegal behaviors arising in safe transport of radioactive material. (author)

  10. Training on NORM: Increasing awareness, reducing occupational dose

    International Nuclear Information System (INIS)

    Hoogstraate, H.; Sonsbeek, R. van

    2002-01-01

    Awareness of a risk is the starting point of protection against it. The best way of creating this awareness is by providing training to the persons that run the risk. This also applies to the risks associated with the presence of Naturally Occurring Radioactive Materials (NORM) in oil and gas production installations. Our experience shows that with relatively little effort, and low cost it is possible to provide training on NORM to operational personnel of oil and gas companies. In this way, a reduction of occupational dose and an increased protection of the environment can be achieved. This applies in particular to the less developed countries, where little regulation is in place. The workers themselves form a group that is motivated and eager to learn about these risks.Training of personnel is a valuable tool to make people more conscious of the risks involved with radiation and to safeguard society, instead of a system of permissions and governmental regulations that often is not functioning properly. (author)

  11. Legislative developments in radioactive materials transportation, September 1993--June 1994

    International Nuclear Information System (INIS)

    Worthley, J.A.; Reed, J.B.; Cummins, J.

    1994-07-01

    This is the eighth report prepared by the National Conference of State Legislatures (NCSL) on developments in radioactive materials transportation. It updates information contained in the September 1993 report on Legislative Developments in Radioactive Materials Transportation and describes activities for the period September 1, 1993--June 30, 1994. NCSL currently is updating an on-line data base that contains abstracts of federal, state and local laws and regulations relating to the transportation of radioactive materials. The data base will be operated by NCSL under a cooperative agreement with the Department of Energy's (DOE) Office of Civilian Radioactive Waste Management. Availability of on-line capability is anticipated by the end of August 1994. Users approved by DOE and NCSL will have access to the data base. This report contains the current status of legislation introduced in the 1993 and 1994 state legislative sessions, not previously reviewed in past reports. Bills that address nuclear materials transportation and the broader area of hazardous materials transportation are grouped by state according to their status--enacted, pending or failed. In addition, bills that deal with emergency preparedness are described. (General nuclear waste legislation with no transportation element is no longer tracked.) Also included are Federal Register notices and changes in federal regulations pertinent to radioactive waste and hazardous materials transportation

  12. Import/export Service of Radioactive Material

    CERN Multimedia

    2004-01-01

    Please note that the Import/Export service of radioactive material (24/E-024) is open from Monday to Friday, 8:00 to 11:00. No request will be treated the afternoon. Web site: http://cern.ch/service-rp-shipping/ Tel.: 73171 E-mail: service-rp-shipping@cern.ch Radioactive Sources Service Please note that the radioactive sources service (24/E-024) is open from Monday to Friday, 8:00 to 11:00. No request will be treated the afternoon. Moreover, the service being reduced, transports between Swiss and French sites (and vice versa) will now be achieved by internal transport. Web site : http://cern.ch/service-rp-sources Tel.: 73171 E-mail: service-rp-sources@cern.ch

  13. Inventory of accidents and losses at sea involving radioactive material

    International Nuclear Information System (INIS)

    2001-09-01

    The present report describes the content of the inventory of accidents and losses at sea involving radioactive material. It covers accidents and losses resulting in the actual release of radioactive materials into the marine environment and also those which have the potential for release. For completeness, records of radioactive materials involved in accidents but which were recovered intact from the sea are also reported. Information on losses of sealed sources resulting in actual or potential release of activity to the marine environment nad of sealed sources that were recovered intact is also presented

  14. Some Experience with Illicit Trafficking of Radioactive Materials in Tanzania

    International Nuclear Information System (INIS)

    Ngaile, J.E.; Banzi, F.P.; Kifanga, L.D.

    2008-01-01

    Illicit trafficking of radioactive materials (orphan sources or disuse sources) is of global concern. Reports on the IAEA Illicit Trafficking Data Base (ITDB) indicates increasing trend of incidents recorded in more than 40 countries on six continents[1]. It is suspected that nuclear trafficking is fueled by nuclear terrorism and is a threat for increasing illegal trade in nuclear and radioactive materials to manufacture Radiological Disposal Devices (RDD)- dirty bombs. As such, the international co-operative efforts are needed to uncover and combat nuclear trafficking in order to minimize its consequences such as external radiation exposure of persons from source to various radiation levels during illicit movement and after seizure; rupture of source leading to internal exposure of persons and environmental contamination. Although accidents with radioactive materials have not occurred in the United Republic of Tanzania (URT), incidents of illicit trafficking and unauthorized possession of radioactive materials has occurred thus prompting the Tanzania Atomic Energy Commission (TAEC) to strengthen its nuclear security of nuclear and radioactive material in the URT. Nuclear faclities and radioactive sources lacks adequate physical protection against theft, fire or different forms of unauthorized access. Tanzaniaia has recorded about thirteen (13) illicit trafficking incidents of radioactive between 1996-2006. Caesium-137, Uranium-238; and Uranium oxide standard and Radium-226 with activity ranging from low to significantly high were among the radiounuclides which were intercepted. Most of these incidents had their original outside Tanzania. The incidents were uncovered by informers in cooperation with the police. Despite the fact that the management of these incidents by the police were adequate, it was observed that there is an inadequate radiation protection arrangements during transport of seized sources; lack of precautions for safety when handling seized

  15. Radiological risk associated with a fire scenario in a radioactive waste deposit

    Energy Technology Data Exchange (ETDEWEB)

    Domingos, E.N.; Lima, Z.R. de, E-mail: erica.ndomingos@gmail.com, E-mail: zelmolima@yahoo.com.br [Instituto de Engenharia Nuclear (PPGIEN/IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Aguiar, L.A., E-mail: aguiar.lais@gmail.com [Instituto de Radioproteção e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro-RJ (Brazil)

    2017-07-01

    A fire at the disposal of radioactive waste can result in significant damage, as well as serious risks to the environment and the health of the general public. The norms of CNEN (Comissão Nacional de Energia Nuclear), CNEN 2.03; CNEN 2.04 and CNEN 8.02 include fire protection regulations and have criteria and requirements that aim to prevent the occurrence, neutralize the action and minimize the effects of the fire on the radioactive and/or toxic mate-rial present in the installations. For decision making due to a fire scenario containing radioactive material, it is fundamental to have information that can allow the estimate of the dose to which the population will be submitted. This work proposes to identify the radiological risk of cancer in the respiratory system using the BEIR V model, associated with a fire scenario containing radioactive material generated in the Hotspot code. (author)

  16. Transportation of radioactive materials: legislative and regulatory information system

    International Nuclear Information System (INIS)

    Fore, C.S.; Heiskell, M.M.

    1980-01-01

    The transportation of radioactive materials, as well as hazardous materials in general, has been an issue of ever-increasing concern and an object of numerous regulations and legislative actions worldwide. The Transportation Technology Center of the US Department of Energy's Sandia Laboratories in Albuquerque, New Mexico, is currently involved in developing a national program to assure the safe shipment of radioactive materials. At Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee, this overall effort is being supported in a specialized manner. As part of the Logistics Modeling program at ORNL, the Ecological Sciences Information Center has developed comprehensive data bases containing legislative and regulatory actions relevant to the transportation of hazardous materials. The data bases are separated according to status level of the legislation. The Current Legislation Data Base includes all new legislative actions introduced during the present year (1980) or those bills carried over from the previous year's sessions. The second data file, Historical Legislation Data Base, consists of all legislative actions since 1976 that have passed and become public laws, as well as those actions that were unsuccessful and were classified as denied by law. Currently the data bases include state-, local-, and federal, level legislation, with emphasis on the transportation of radioactive materials. Because of their relevance to the transportation issues, actions involving related subject areas such as, disposal and storage of radioactive wastes, moratoriums on power plant construction, and remedial actions studies, special agencies to regulate shipment of radioactive materials, and requirements of advanced notification, permits and escorts are also included in the data bases

  17. Emergency preparedness and response in transport of radioactive material

    International Nuclear Information System (INIS)

    Takani, Michio

    2008-01-01

    Nuclear power has been providing clean, affordable electricity in many parts of the world for nearly half a century. The national and international transport of nuclear fuel cycle materials is essential to support this activity. To sustain the nuclear power industry, fuel cycle materials have to be transported safely and efficiently. The nature of the industry is such that most countries with large-scale nuclear power industries cannot provide all the necessary fuel services themselves and consequently nuclear fuel cycle transport activities are international. The radioactive material transport industry has an outstanding safety record spanning over 45 years; however the transport of radioactive materials cannot and most not be taken for granted. Efficient emergency preparedness and response in the transport of radioactive material is an important element to ensure the maximum safety in accident conditions. The World Nuclear Transport Institute (WNTI), founded by International Nuclear Services (INS) of the United Kingdom, AREVA of France an the Federation of Electric Power Companies (FEPC) of Japan, represents the collective interest of the radioactive material transport sector, and those who rely on safe, effective and reliable transport. As part of its activities, WNTI has conducted two surveys through its members on emergency preparedness and response in the transport of radioactive material and emergency exercises. After recalling the International Atomic Energy Agency approach on emergency response, this paper will be discussing the main conclusion of surveys, in particular the national variations in emergency response and preparedness on the national and local levels of regulations, the emergency preparedness in place, the emergency response organisation (who and how), communication and exercises. (author)

  18. Assessing the disposal of wastes containing NORM in nonhazardous waste landfills

    International Nuclear Information System (INIS)

    Smith, K. P.; Blunt, D. L.; Williams, G. P.; Arnish, J. J.; Pfingston, M. R.; Herbert, J.

    1999-01-01

    In the past few years, many states have established specific regulations for the management of petroleum industry wastes containing naturally occurring radioactive material (NORM) above specified thresholds. These regulations have limited the number of disposal options available for NORM-containing wastes, thereby increasing the related waste management costs. In view of the increasing economic burden associated with NORM management, industry and regulators are interested in identifying cost-effective disposal alternatives that still provide adequate protection of human health and the environment. One such alternative being considered is the disposal of NORM-containing wastes in landfills permitted to accept only nonhazardous wastes. The disposal of petroleum industry wastes containing radium-226 and lead-210 above regulated levels in nonhazardous landfills was modeled to evaluate the potential radiological doses and associated health risks to workers and the general public. A variety of scenarios were considered to evaluate the effects associated with the operational phase (i.e., during landfill operations) and future use of the landfill property. Doses were calculated for the maximally exposed receptor for each scenario. This paper presents the results of that study and some conclusions and recommendations drawn from it

  19. Natural Radioactivity in Ceramic Materials

    International Nuclear Information System (INIS)

    Abu Khadra, S.A.; Kamel, N.H.

    2005-01-01

    Ceramics are one of the most important types of the industrial building materials. The raw materials of the ceramic are made of a mixture of clay, feldspar, silica, talc kaolin minerals together with zirconium silicates (ZrSiO4).The ceramic raw materials and the final products contain naturally occurring radionuclide mainly U-238 and, Th-232 series, and the radioactive isotope of potassium K-40. Six raw ceramic samples were obtained from the Aracemco Company at Egypt together with a floor tile sample (final product) for measuring radioactive concentration levels., The activity of the naturally U-238, Th-232, and K-40 were determined as (Bq/kg) using gamma spectroscopy (Hyperactive pure germanium detector). Concentration of U and Th were determined in (ppm) using spectrophotometer technique by Arsenazo 111 and Piridy l-Azo -Resorcinol (PAR) indicators. Sequential extraction tests were carried out in order to determine the quantity of the radionuclide associated with various fractions as exchangeable, carbonate, acid soluble and in the residue. The results evaluated were compared to the associated activity indices (AI) that were defined by former USSR and West Germany

  20. Safe transport of radioactive material. 3. ed

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-12-01

    The IAEA has developed a standardized approach to transport safety training as a means of helping Member States to implement the Transport Regulations. The training manual is an anchor of this standardized approach to training: it contains all the topics presented in the sequential order recommended by the IAEA for the student to gain a thorough understanding of the body of knowledge that is needed to ensure that radioactive material ranked as Class 7 in the United Nations' nomenclature for dangerous goods - is transported safely. The explanations in the text refer, where needed, to the appropriate requirements in the IAEA's Transport Regulations; additional useful information is also provided. Thus, the training manual in addition to the Transport Regulations and their supporting documents is used by the IAEA as the basis for delivering all of its training courses on the safe transport of radioactive material. Enclosed with the training manual is a CD-ROM that contains the text of the manual as well as the visual aids that are used at the IAEA's training courses. The following topics are covered: review of radioactivity and radiation; review of radiation protection principles; regulatory terminology; basic safety concepts: materials and packages; activity limits and material restrictions; selection of optimal package type; test procedures: material and packages; requirements for transport; control of material in transport; fissile material: regulatory requirements and operational aspects; quality assurance; national competent authority; additional regulatory constraints for transport; international liability and insurance; emergency planning and preparedness; training; services provided by the IAEA.

  1. Safe transport of radioactive material. 3. ed

    International Nuclear Information System (INIS)

    2002-01-01

    The IAEA has developed a standardized approach to transport safety training as a means of helping Member States to implement the Transport Regulations. The training manual is an anchor of this standardized approach to training: it contains all the topics presented in the sequential order recommended by the IAEA for the student to gain a thorough understanding of the body of knowledge that is needed to ensure that radioactive material ranked as Class 7 in the United Nations' nomenclature for dangerous goods - is transported safely. The explanations in the text refer, where needed, to the appropriate requirements in the IAEA's Transport Regulations; additional useful information is also provided. Thus, the training manual in addition to the Transport Regulations and their supporting documents is used by the IAEA as the basis for delivering all of its training courses on the safe transport of radioactive material. Enclosed with the training manual is a CD-ROM that contains the text of the manual as well as the visual aids that are used at the IAEA's training courses. The following topics are covered: review of radioactivity and radiation; review of radiation protection principles; regulatory terminology; basic safety concepts: materials and packages; activity limits and material restrictions; selection of optimal package type; test procedures: material and packages; requirements for transport; control of material in transport; fissile material: regulatory requirements and operational aspects; quality assurance; national competent authority; additional regulatory constraints for transport; international liability and insurance; emergency planning and preparedness; training; services provided by the IAEA

  2. Anticipated development in radioactive materials packaging and transport systems

    International Nuclear Information System (INIS)

    Williams, L.D.; Rhoads, R.E.; Hall, R.J.

    1976-07-01

    Closing the light water reactor fuel cycle and the use of mixed oxide fuels will produce materials such as solidified high level waste, cladding hulls and plutonium from Pu recycle fuel that have not been transported extensively in the past. Changes in allowable gaseous emissions from fuel cycle facilities may require the collection and transportation of radioactive noble gases and tritium. Although all of these materials could be transported in existing radioactive material packaging, economic considerations will make it desirable to develop new packaging specifically designed for each material. Conceptual package designs for these materials are reviewed. Special Nuclear Material transportation safeguards are expected to have a significant impact on future fuel cycle transportation. This subject is reviewed briefly. Other factors that could affect fuel cycle transportation are also discussed. Development of new packaging for radioactive materials is not believed to require the development of new technologies. New package designs will be primarily an adaptation of existing technology to fit the changing needs of a growing nuclear power industry. 23 references

  3. Refilling material for underground disposal of radioactive waste

    International Nuclear Information System (INIS)

    Yajima, Tatsuya; Kato, Hiroyasu.

    1995-01-01

    Generally, the underground circumstance where radioactive wastes are to be processed is in high pH and highly ionized state due to ingredients leached out of cement of a concrete pit and solidifying products. A refilling material for underground disposal are demanded to adsorb radioactive nuclides such as 137 Cs even in such a state. As the refilling material, a mixture of bentonite and sintered vermiculite, preferably, comprising 10 to 40wt% of vermiculite is used. The refilling material has a high water hold out barrier performance of bentonite and a high radioactive nuclide adsorbing performance of vermiculite. In a state of highly ionized state when the adsorbing performance of bentonite is reduced, the nuclide-absorbing performance is improved by vermiculite and since the content of the vermiculite is not more than 40wt%, the water hold out barrier performance of the bentonite is not deteriorated. (N.H.)

  4. The contribution of human factors to risks from radioactive material transport

    International Nuclear Information System (INIS)

    Blenkin, J.J.; Ridsdale, E.; Wilkinson, H.L.

    1998-01-01

    The use of probabilistic risk assessment to assess the safety of radioactive material transport operations is well accepted. However, quantitative risk assessment of radioactive material transport operations have generally not explicitly considered human factors in estimating risks. Given the high profile of human factors as the root cause of many serious transport incidents omission of an explicit consideration of human factors in a risk assessment could lead to assessments losing credibility. In addition, scrutiny of radioactive material transport incident databases reveals a large number of operational incidents and minor accidents that would have been avoided if more attention had been paid to human factors aspects, and provides examples of instances where improvements have been achieved. This paper examines the areas of radioactive material transport risk assessments (both qualitative and quantitative) which could be strengthened by further examination of the impact of human errors. It is concluded that a more complete and detailed understanding of the effects of human factors on the risks from radioactive material transport operations has been obtained. Quality assurance has a key part to play in ensuring that packages are correctly manufactured and prepared for transport. Risk assessments of radioactive material transport operations can be strengthened by concentrating on the key human factors effects. (authors)

  5. Status of radioactive material transport

    International Nuclear Information System (INIS)

    Kueny, Laurent

    2012-01-01

    As about 900.000 parcels containing radioactive materials are transported every year in France, the author recalls the main risks and safety principles associated with such transport. He indicates the different types of parcels defined by the regulation: excepted parcels, industrial non fissile parcels (type A), type B and fissile parcels, and highly radioactive type C parcels. He briefly presents the Q-system which is used to classify the parcels. He describes the role of the ASN in the control of transport safety, and indicates the different contracts existing between France or Areva and different countries (Germany, Japan, Netherlands, etc.) for the processing of used fuels in La Hague

  6. Why is the NORM Waste Included in to the Croatian RadWaste Strategy

    International Nuclear Information System (INIS)

    Prlic, I.; Suric Mihic, M.; Hajdinjak, M.

    2016-01-01

    Croatian RADWASTE Strategy uses modern approach according to EC Directive 2013/59/EURATOM and Croatian Act on Radiological and Nuclear Safety (Official Gazette 141/13, 39/15) linking the entire field of, till modern times non regulated industrial NORM wastes to properly regulated RADWastes. This approach has brought some obscurities to a professional radiation protection community because the fact that NORM will be treated together with the 'heavy' concept of nuclear and radioactive waste was not acceptable due to a historical division of those two fields of radioactivity. As NORM is still regarded as a slightly technologically blended radioactivity which is of no concern to be a risk for the population and RADWASTE is a 'murder' of any population in its vicinity, the need for terminology harmonization and scientifically correct public education was recognized. It is barely known that during the recent past some Croatian professionals did included the NORM sites into the state documents and reports to international regulatory bodies as pure RADWASTE sites. This fact produces immense regulatory difficulties even today. The one and only legal way to solve both, regulatory issues providing real radiation protection procedures during existing NORM waste site sanation and exempting sites to be reused for a legal public purpose (industrial or any other) was to incorporate the existing Croatian NORM sites into the RADWASTE Strategy and to solve all legal radioactivity burden issues during the governmental acceptance process. This approach is a new one in Croatian regulatory acquits and first responses from the stake holders and public involved are promising. The experience from the field and first responses to a concept of harmonizing the reuse approach of existing NORM waste sites from stake holders and partly from general public will be discussed.(author).

  7. Environmental effects associated with the transportation of radioactive material

    International Nuclear Information System (INIS)

    McClure, J.D.; Pope, R.B.; Yoshimura, H.R.

    1979-01-01

    The primary aim of this paper has been to describe some of the background information concerning nuclear materials transportation systems, accident statistics, accident severities, and test information - all of which when combined yield an environmental statement of the risks associated with the transportation of radioactive materials. The results of the ultimate risk analysis are expressed in terms of numbers of fatalities and, in that sense at least, tend to be an absolute measure of risk. When these risks are compared with other accepted societal risks, the relative risks associated with radioactive material transportation can be established. This information can be used to make decisions at the governmental level and to inform an interested public about these risks. It can be concluded that the risks associated with the transportation of radioactive material are low relative to the other risks that society has already accepted

  8. Quality assurance for packaging of radioactive and hazardous materials

    International Nuclear Information System (INIS)

    Gustafson, L.D.

    1986-01-01

    The Department of Energy (DOE) has required for many years that quality assurance programs be established and implemented for the packaging of radioactive and hazardous materials. This paper identifies various requirement principles and related actions involved in establishing effective quality assurance for packaging of radioactive and hazardous materials. A primary purpose of these quality assurance program activities is to provide assurance that the packaging and transportation of hazardous materials, which includes radioactive and fissile materials, are in conformance with appropriate governmental regulations. Applicable regulations include those issued by the Nuclear Regulatory Commission (NRC), the Department of Transportation (DOT), and the Environmental Protection Agency (EPA). DOE Order 5700.6A establishes that quality assurance requirements are to be applied in accordance with national consensus standards where suitable ones are available. In the nuclear area, ANSI/ASME NQA-1 is the preferred standard

  9. Radioactive materials

    International Nuclear Information System (INIS)

    Sugiura, Yoshio; Shimizu, Makoto.

    1975-01-01

    The problems of radioactivity in the ocean with marine life are various. Activities in this field, especially the measurements of the radioactivity in sea water and marine life are described. The works first started in Japan concerning nuclear weapon tests. Then the port call to Japan by U.S. nuclear-powered naval ships began. On the other hand, nuclear power generation is advancing with its discharge of warm water. The radioactive pollution of sea water, and hence the contamination of marine life are now major problems. Surveys of the sea areas concerned and study of the radioactivity intake by fishes and others are carried out extensively in Japan. (Mori, K.)

  10. Framework for assessing the effects of radioactive materials transportation

    International Nuclear Information System (INIS)

    Zoller, J.N.

    1996-01-01

    Radioactive materials transport may result in environmental effects during both incident-free and accident conditions. These effects may be caused by radiation exposure, pollutants, or physical trauma. Recent environmental impact analyses involving the transportation of radioactive materials are cited to provide examples of the types of activities which may be involved as well as the environmental effects which can be estimated

  11. Security of material: Preventing criminal activities involving nuclear and other radioactive materials

    International Nuclear Information System (INIS)

    Nilsson, A.

    2001-01-01

    The report emphasizes the need for national regulatory authorities to include in the regulatory systems, measures to control and protect nuclear materials from being used in illegal activities, as well as aspects of relevance for detecting and responding to illegal activities involving nuclear and other radioactive materials. The report will give an overview of the international treaties and agreements that underpin the establishment of a regulatory structure necessary for States to meet their non-proliferation policy and undertakings. Ongoing work to strengthen the protection of nuclear material and to detect and respond to illegal activities involving nuclear and other radioactive material will be included. The focus of the paper is on the need for standards and national regulation in the nuclear security area. (author)

  12. Method of preventing contaminations in radioactive material handling facilities

    International Nuclear Information System (INIS)

    Inoue, Shunji.

    1986-01-01

    Purpose: To prevent the contamination on the floor surface of working places by laying polyvinyl butyral sheets over the floor surface, replacing when the sheets are contaminated, followed by burning. Method: Polyvinyl butyral sheets comprising 50 - 70 mol% of butyral component are laid in a radioactive material handling facility, radioactive materials are handled on the polyvinyl butyral sheets and the sheets are replaced when contaminated. The polyvinyl butyral sheets used contain 62 - 68 mol% of butyral component and has 0.03 - 0.2 mm thickness. The contaminated sheets are subjected to burning processing. This can surely collect radioactive materials and the sheets have favorable burnability, releasing no corrosive or deleterious gases. In addition, they are inexpensive and give no hindrance to the workers walking. (Takahashi, M.)

  13. Radioactive material package seal tests

    International Nuclear Information System (INIS)

    Madsen, M.M.; Humphreys, D.L.; Edwards, K.R.

    1990-01-01

    General design or test performance requirements for radioactive materials (RAM) packages are specified in Title 10 of the US Code of Federal Regulations Part 71 (US Nuclear Regulatory Commission, 1983). The requirements for Type B packages provide a broad range of environments under which the system must contain the RAM without posing a threat to health or property. Seals that provide the containment system interface between the packaging body and the closure must function in both high- and low-temperature environments under dynamic and static conditions. A seal technology program, jointly funded by the US Department of Energy Office of Environmental Restoration and Waste Management (EM) and the Office of Civilian Radioactive Waste Management (OCRWM), was initiated at Sandia National Laboratories. Experiments were performed in this program to characterize the behavior of several static seal materials at low temperatures. Helium leak tests on face seals were used to compare the materials. Materials tested include butyl, neoprene, ethylene propylene, fluorosilicone, silicone, Eypel, Kalrez, Teflon, fluorocarbon, and Teflon/silicone composites. Because most elastomer O-ring applications are for hydraulic systems, manufacturer low-temperature ratings are based on methods that simulate this use. The seal materials tested in this program with a fixture similar to a RAM cask closure, with the exception of silicone S613-60, are not leak tight (1.0 x 10 -7 std cm 3 /s) at manufacturer low-temperature ratings. 8 refs., 3 figs., 1 tab

  14. Using computer technology to identify the appropriate radioactive materials packaging

    International Nuclear Information System (INIS)

    Driscoll, K.L.; Conan, M.R.

    1989-01-01

    The Radioactive Materials Packaging (RAMPAC) database is designed to store and retrieve information on all non-classified packages certified for the transport of radioactive materials within the boundaries of the US. The information in RAMPAC is publicly available, and the database has been designed so that individuals without programming experience can search for and retrieve information using a menu-driven system. RAMPAC currently contains information on over 650 radioactive material shipping packages. Information is gathered from the US Department of Energy (DOE), the US Department of transportation (DOT), and the US Nuclear Regulatory Commission (NRC). RAMPAC is the only tool available to radioactive material shippers that contains and reports packaging information from all three Federal Agencies. The DOT information includes package listings from Canada, France, Germany, Great Britain, and Japan, which have DOT revalidations for their certificates of competent authority and are authorized for use within the US for import and export shipments only. RAMPAC was originally developed in 1981 by DOE as a research and development tool. In recent years, however, RAMPAC has proven to be highly useful to operational personnel. As packages become obsolete or materials to be transported change, shippers of radioactive materials must be able to determine if alternative packages exist before designing new packages. RAMPAC is designed to minimize the time required to make this determination, thus assisting the operational community in meeting their goals

  15. Legislative developments in radioactive materials transportation, April 1993--August 1993

    International Nuclear Information System (INIS)

    Reed, J.B.; Cummins, J.

    1993-09-01

    This is the seventh report prepared by the National Conference of State Legislatures (NCSL) on developments in radioactive materials transportation. It updates information contained in the April 1993 report on Legislative Developments in Radioactive Materials Transportation and describes activities for the period April 1, 1993--August 31, 1993. NCSL currently is updating an on-line data base that contains abstracts of federal, state and local laws and regulations relating to the transportation of radioactive materials. The data base will be operated by NCSL under a cooperative agreement with the Department of Energy's (DOE) Office of Civilian Radioactive Waste Management. Limited availability of on-line capability is anticipated by the end of 1993. Users approved by DOE and NCSL will have access to the data base. A copy of any legislation listed in this report can be obtained by contacting the people listed below. This report contains the current status of legislation introduced in the 1993 state legislative sessions, not previously reviewed in past reports. Bills that address nuclear materials transportation and the broader area of hazardous materials transportation are grouped by state according to their status--enacted, pending or failed. In addition, bills that deal with emergency preparedness are described. (General nuclear waste legislation with no transportation element is no longer tracked.) Also included are Federal Register notices pertinent to radioactive waste and hazardous materials transportation

  16. Legislative developments in radioactive materials transportation, November 1992--March 1993

    International Nuclear Information System (INIS)

    Reed, J.B.; Cummins, J.

    1993-04-01

    This is the sixth report prepared by the National Conference of State Legislatures (NCSL) on developments in radioactive materials transportation. It updates information contained in the November 1992 Legislative and Legal Developments in Radioactive Materials Transportation report and describes activities for the period November 1, 1992--March 31, 1993. NCSL is working to bring on-line a data base that contains abstracts of state laws and regulations relating to the transportation of radioactive materials. The data base will be operated by NCSL under a cooperative agreement with the Department of Energy's (DOE) Office of Civilian Radioactive Waste Management. Limited availability of on-line capability is anticipated by the end of July 1993. Users approved by DOE and NCSL will have access to the data base. Hard copy of any legislation listed in this report can be obtained by contacting the people listed below. This report contains summaries of legislation introduced in the 1993 state legislative sessions. Bills that address nuclear materials transportation and the broader area of hazardous materials transportation are grouped by state according to their status--enacted, pending or failed. In addition, bills that deal with emergency preparedness and general nuclear waste issues are described. Also included are Federal Register notices pertinent to radioactive waste and hazardous materials transportation. A recent court decision is also summarized

  17. The safe transport of radioactive materials

    International Nuclear Information System (INIS)

    Messenger, W. de L.M.

    1979-02-01

    The hazards of radioactive materials in transport are surveyed. The system whereby they are safely transported between nuclear establishments in the United Kingdom and overseas is outlined. Several popular misconceptions are dealt with. (author)

  18. Transportation incidents involving Canadian shipments of radioactive material

    International Nuclear Information System (INIS)

    Jardine, J.M.

    1979-06-01

    This paper gives a brief statement of the legislation governing the transportation of radioactive materials in Canada, reviews the types of shipments made in Canada in 1977, and surveys the transportation incidents that have been reported to the Atomic Energy Control Board over the period 1947-1978. Some of the more significant incidents are described in detail. A totAl of 135 incidents occurred from 1947 to 1978, during which time there were 644750 shipments of radioactive material in Canada

  19. Radiological consequences of radioactive substances in building materials

    International Nuclear Information System (INIS)

    Tschurlovits, M.

    1982-01-01

    A review of radiological consequences of radioactive substances in building materials is given. Where the other contributing papers are dealing with technical problems and measuring techniques, this paper is going beyond the term dose and is considering the risk by radioactive substances in building materials in relation to conventional risks. The present state of international standards is also discussed. If a limit of 1 mSv is adopted, it is shown that this limit is just met at present conditions. (Author) [de

  20. Priorities for technology development and policy to reduce the risk from radioactive materials

    International Nuclear Information System (INIS)

    Duggan, Ruth Ann

    2010-01-01

    The Standing Committee on International Security of Radioactive and Nuclear Materials in the Nonproliferation and Arms Control Division conducted its fourth annual workshop in February 2010 on Reducing the Risk from Radioactive and Nuclear Materials. This workshop examined new technologies in real-time tracking of radioactive materials, new risks and policy issues in transportation security, the best practices and challenges found in addressing illicit radioactive materials trafficking, industry leadership in reducing proliferation risk, and verification of the Nuclear Nonproliferation Treaty, Article VI. Technology gaps, policy gaps, and prioritization for addressing the identified gaps were discussed. Participants included academia, policy makers, radioactive materials users, physical security and safeguards specialists, and vendors of radioactive sources and transportation services. This paper summarizes the results of this workshop with the recommendations and calls to action for the Institute of Nuclear Materials Management (INMM) membership community.

  1. Completion of the radioactive materials packaging handbook

    International Nuclear Information System (INIS)

    Shappert, L.B.

    1998-01-01

    'The Radioactive Materials Packaging Handbook: Design, Operation and Maintenance', which will serve as a replacement for the 'Cask Designers Guide'(1970), has now been completed and submitted to the Oak Ridge National Laboratory (ORNL) electronics publishing group for layout and printing; it is scheduled to be printed in late spring 1998. The Handbook, written by experts in their particular fields, is a compilation of technical chapters that address the design aspects of a package intended for transporting radioactive material in normal commerce; it was prepared under the direction of M. E. Wangler of the US DOE and is intended to provide a wealth of technical guidance that will give designers a better understanding of the regulatory approval process, preferences of regulators on specific aspects of package design, and the types of analyses that should be considered when designing a package to carry radioactive materials. Even though the Handbook is concerned with both small and large packagings, most of the emphasis is placed on large packagings that are capable of transporting fissile, radioactive sources (e.g. spent fuels). The safety analysis reports for packagings (SARPs) must address the widest range of technical topics in order to meet United States and/or international regulations, all of which are covered in the Handbook. One of the primary goals of the Handbook is to provide information which would guide designers of radioactive materials packages to make decisions that would most likely be acceptable to regulatory agencies during the approval process of the packaging. It was therefore important to find those authors who not only were experts in one or more of the areas that are addressed in a SARP, but who also had been exposed to the regulatory process or had operational experience dealing with a wide variety of package types. Twenty-five such people have contributed their time and talents to the development of this document, mostly on a volunteer basis

  2. SOR/89-426, Transport Packaging of Radioactive Materials Regulations, amendment

    International Nuclear Information System (INIS)

    1989-01-01

    These Regulations of 24 August 1989 amend the Transport Packaging of Radioactive Materials Regulations by clarifying the text and specifying certain requirements. In particular certain definitions have been replaced, namely those of ''Fissile Class III package'' and ''Special form radioactive material''. Also, this latter material may not be carried without a certificate attesting that it meets the requirements of the Regulations. (NEA)

  3. Transports of radioactive materials. Legal regulations, safety and security concepts, experience

    International Nuclear Information System (INIS)

    Schwarz, Guenther

    2012-01-01

    In Germany, approximately 650,000 to 750,000 units containing radioactive materials for scientific, medical and technical applications are shipped annually by surface, air and water transports. Legally speaking, radioactive materials are dangerous goods which can cause hazards to life, health, property and the environment as a result of faulty handling or accidents in transit. For protection against these hazards, their shipment therefore is regulated in extensive national and international rules of protection and safety. The article contains a topical review of the international and national transport regulations and codes pertaining to shipments of radioactive materials, and of the protection concepts underlying these codes so as to ensure an adequate standard of safety and security in shipping radioactive materials in national and international goods traffic. (orig.)

  4. Development of a wireless radioactive material sensor network

    Energy Technology Data Exchange (ETDEWEB)

    Katsis, Dimosthenis, E-mail: katsisdc@ieee.org [US Army Research Laboratory, Athena Energy Corporation, Adelphi, Bowie, MD (United States); Burns, David; Henriquez, Stanley; Howell, Steve; Litz, Marc [US Army Research Laboratory, Athena Energy Corporation, Adelphi, Bowie, MD (United States)

    2011-10-01

    Our team at the United States Army Research Laboratory (ARL) has designed and developed a low-power, compact, wireless-networked gamma sensor (WGS) array. The WGS system provides high sensitivity gamma photon detection and remote warning for a broad range of radioactive materials. This sensor identifies the presence of a 1 {mu}Ci Cs137 source at a distance of 1.5 m. The networked array of sensors presently operates as a facility and laboratory sensor for the movement of radioactive check sources. Our goal has been to apply this architecture for field security applications by incorporating low-power design with compact packaging. The performance of this radiation measurement network is demonstrated for both detection and location of radioactive material.

  5. Transport of radioactive materials. 2. rev. ed.

    International Nuclear Information System (INIS)

    Vogt, H.W.; Falkhof, W.; Heibach, K.; Ungermann, N.; Hungenberg, H.

    1991-01-01

    With the last changes in the Ordinance Concerning the Transport of Hazardous Goods two regulations which are important for the carrying trade were introduced: 1. The conveyer must train the driver. He must only employ reliable drivers. 2. The driver must participate in a training course (as of July 1, 1991). These obligations, which already existed in the past in regard to the transport of nuclear fuel, have been extended to include the transport of other radioactive materials. In part I the book deals with basic training courses for parcelled goods, and part II goes into the special knowledge which is required of drivers of radioactive materials. The parts consist of the following sections: 1. General regulations, 2, Responsibility when transporting hazardous goods, 3. General danger features, 4. Information on dangers and their designation, 5. The vehicle's equipment and carrying out the transport, 6. Measures for avoiding accidents. At the end of each section the participant in the course finds a series of questions which pertain to the subject matter just treated so that he can test his own learning performance. So as to make things easier for the trainee, the corect answers are listed in the appendix. As a supplementary section on radioactive materials, part II offers additional detailed explanations by experts in the field on the features of radioactive materials and the dangers they pose. In the margin - next to the instructory text - the key words are given so that the right place in the text of the instruction manual can be readily found. These key words are compiled in the appendix to form an index. (orig./HP) [de

  6. Dangerous quantities of radioactive material (D-values)

    International Nuclear Information System (INIS)

    2010-01-01

    Radioactive material is widely used in industry, medicine, education and agriculture. In addition, it occurs naturally. The health risk posed by these materials vary widely depending on many factors, the most important of which are the amount of the material involved and its physical and chemical form. Therefore, there is a need to identify the quantity and type of radioactive material for which emergency preparedness and other arrangements (e.g. security) are warrant due to the health risk they pose. The aim of this publication is to provide practical guidance for Member States on that quantity of radioactive material that may be considered dangerous. A dangerous quantity is that, which if uncontrolled, could be involved in a reasonable scenario resulting in the death of an exposed individual or a permanent injury, which decreases that person's quality of life. This publication is published as part of the IAEA Emergency Preparedness and Response Series. It supports several publications including: the IAEA Safety Requirements 'Preparedness and Response for a Nuclear or Radiological Emergency', IAEA Safety Standards Series No. GS-R-2. IAEA, Vienna (2002). IAEA Safety Guide 'Categorization of Radioactive Sources', IAEA Safety Standards Series No RS-G-1.9, IAEA, Vienna (2005) and IAEA Safety Guide 'Arrangements for Preparedness for a Nuclear or Radiological Emergency' IAEA Safety Standards Series No. GS-G-2.1, IAEA, Vienna (2006). The procedures and data in this publication have been prepared with due attention to accuracy. However, as part of the review process, they undergo ongoing quality assurance checks. Comments are welcome and, following a period that will allow for a more extensive review, the IAEA may revise this publication as part of the process of continuous improvement. The publication uses a number of exposure scenarios, risk models and dosimetric data, which could be used during the response to nuclear or radiological emergency or other purposes

  7. Procedure for permanently storing radioactive material

    International Nuclear Information System (INIS)

    Canevall, J.

    1987-01-01

    This patent describes a method of storing radioactive material in a hollow construction having an access opening. The construction is located below the surface of the ground within a rock chamber. The chamber has walls, a floor, and a ceiling. The construction is completely spaced from the walls, floor, and ceiling of the rock chamber to form an outer spacing, and the construction is made of material impervious to water. The construction comprises a capsule storage area and a capsule handling passageway adjacent thereto having a track and being connected to a lift-shaft running to the surface. The method includes the steps of: completely filling the outer spacing between the walls, ceiling, and floor of the rock chamber and the construction with material not impervious to water; placing capsules containing the radioactive waste in encapsulated form into the capsule storage area; filling the storage area around the loaded capsule with a sealing material to enclose the capsules; repeating the placing and filling steps until the storage area has been completely filled in with the capsules and sealing material; loading the passageway adjacent the storage area with a removable material different than the sealing material; closing the construction and sealing the lift-shaft at least at the construction level and at ground level; and providing means for collecting any water penetrating into the outer spacing

  8. Measurement of naturally occurring radioactive materials in commonly used building materials in Hyderabad, India

    International Nuclear Information System (INIS)

    Balbudhe, A.Y.; Vishwa Prasad, K.; Vidya Sagar, D.; Jha, S.K.; Tripathi, R.M.

    2018-01-01

    Building materials can cause significant gamma dose indoors, due to their natural radioactivity content. The knowledge of the natural radioactivity level of building materials is important for determination of population exposure, as most people spend 80-90% of their time indoors furthermore, it is useful in setting the standards and national guidelines for the use and management of these materials. The concentrations of natural radionuclides in building materials vary depending on the local geological and geographical conditions as well as geochemical characteristics of those materials. The aim of the study is to determine levels of natural radionuclide in the commonly used building materials in Hyderabad, India

  9. Natural radioactivity in granite stones and their radiological aspects as building material

    International Nuclear Information System (INIS)

    Kumaravel, S.; Sunil, C.N.; Narashimha Nath, V.; Raghunath, T.; Prashanth Kumar, M.; Ramakrishna, V.; Nair, B.S.K.; Purohit, R.G.; Tripati, R.M.

    2014-01-01

    Natural radioactivity in building and building decorating materials comes mainly from natural radioactive series like 238 U, 232 Th and 40 K. India is one of the leading users of granite stones as it is preferred by decorators and architects. The knowledge of presence of natural radioactivity in these materials is required for the assessment of radiation exposure due to them. The objective of this study is to determine the natural radioactivity and radiological aspects of granite stones as building material

  10. Safe transport of radioactive material. 4. ed

    International Nuclear Information System (INIS)

    2006-01-01

    The IAEA has been publishing Regulations for the Safe Transport of Radioactive Material since 1961. Meeting its statutory obligation to foster the exchange and training of scientists and experts in the field of peaceful uses of atomic energy, the IAEA has developed a standardized approach to transport safety training. This training manual is an anchor of the standardized approach to training. It is a compendium of training modules for courses related to the different aspects of safety of transport of radioactive material. Keeping in view the specific needs of the potential users, the manual includes material that can be used for a variety of training programmes of duration ranging from half-a-day to ten days, for specific audiences such as competent authority personnel, public authorities, emergency response personnel and cargo handlers

  11. Processing method for liquid waste containing various kinds of radioactive material

    International Nuclear Information System (INIS)

    Toyabe, Keiji; Nabeshima, Masahiro; Ozeki, Noboru; Muraki, Tsutomu.

    1996-01-01

    Various kind of radioactive materials and heavy metal elements dissolved in liquid wastes are removed from the liquid wastes by adsorbing them on chitin or chitosan. In this case, a hydrogen ion concentration in the liquid wastes is adjusted to a pH value of from 1 to 3 depending on the kinds of the radioactive materials and heavy metal elements to be removed. Since chitin or chitosan has a special ion exchange performance or adsorbing performance, chemical species comprising radioactive materials or heavy metals dissolved in the liquid wastes are adsorbed thereto by ion adsorption or physical adsorption. With such procedures, radioactive materials and heavy metal elements are removed from the liquid wastes, and the concentration thereof can be reduced to such a level that they can be discharged into environments. On the other hand, since chitin or chitosan adsorbing the radioactive materials and heavy metal elements has a structure of polysaccharides, it is easily burnt into gaseous carbon dioxide. Accordingly, the amount of secondary wastes can remarkably be reduced. (T.M.)

  12. Transportation of radioactive materials. Safety and regulation

    International Nuclear Information System (INIS)

    Niel, Jean-Christophe

    2013-01-01

    This engineering-oriented publication first presents fluxes and risks related to the transportation of radioactive materials: fluxes, risks, in-depth defence, and parcel typology. The author then describes the elaboration process for transportation regulations: IAEA recommendations for the transportation of radioactive materials and their review process, IAEA recommendations for modal regulations. He presents the French transportation regulation framework: evolutions of IAEA recommendations, case of aerial transport, and case of maritime transport. The next part addresses the specific case of the transportation of uranium hexafluoride. The last part addresses incidents and accidents occurring during transportation: declarations to be made, brief presentations of several examples of incidents and accidents

  13. Physical protection of radioactive material in transport

    International Nuclear Information System (INIS)

    1975-01-01

    Safety in the transport of radioactive material is ensured by enclosing the material, when necessary, in packaging which prevents its dispersal and which absorbs to any adequate extent any radiation emitted by the material. Transport workers, the general public and the environment are thus protected against the harmful effects of the radioactive material. The packaging also serves the purpose of protecting its contents against the effects of rough handling and mishaps under normal transport conditions, and against the severe stresses and high temperatures that could be encountered in accidents accompanied by fires. If the radioactive material is also fissile, special design features are incorporated to prevent any possibility of criticality under normal transport conditions and in accidents. The safe transport requirements are designed to afford protection against unintentional opening of packages in normal handling and transport conditions and against damage in severe accident conditions; whereas the physical protection requirements are designed to prevent intentional opening of packages and deliberate damage. This clearly illustrates the difference in philosophical approach underlying the requirements for safe transport and for physical protection during transport. This difference in approach is, perhaps, most easily seen in the differing requirements for marking of consignments. While safety considerations dictate that packages be clearly labelled, physical protection considerations urge restraint in the use of special labels. Careful consideration must be given to such differences in approach in any attempt to harmonize the safety and physical protection aspects of transport. (author)

  14. The safety of radioactive materials transport

    International Nuclear Information System (INIS)

    Niel, J.Ch.

    1997-01-01

    Five accidents in radioactive materials transport have been studied; One transport accident by road, one by ship, one by rail, and the two last in handling materials from ships in Cherbourg port and Le Havre port. All these accidents were without any important consequences in term of radiation protection, but they were sources of lessons to improve the safety. (N.C.)

  15. Method of melting and decontaminating radioactive contaminated aluminum material

    International Nuclear Information System (INIS)

    Uda, Tatsuhiko; Miura, Noboru; Kawasaki, Katsuo; Iba, Hajime.

    1986-01-01

    Purpose: To improve the decontaminating efficiency upon melting decontamination of radioactive-contaminated aluminum materials. Method: This invention concerns an improvement for the method of melting decontamination by adding slug agent composed of organic compound to contaminated aluminum material and extracting the radioactive materials into the slug thereby decontaminating the aluminum material. Specifically metals effective for reducing the active amount of aluminum are added such that the content is greater than a predetermined value in the heat melting process. The metal comprises Mg, Cu or a mixture thereof and the content is more than 4 % including those previously contained in the aluminum material. (Ikeda, J.)

  16. Control of radioactive material transport in sodium-cooled reactors

    International Nuclear Information System (INIS)

    Brehm, W.F.

    1980-03-01

    The Radioactivity Control Technology (RCT) program was established by the Department of Energy to develop and demonstrate methods to control radionuclide transport to ex-core regions of sodium-cooled reactors. This radioactive material is contained within the reactor heat transport system with any release to the environment well below limits established by regulations. However, maintenance, repair, decontamination, and disposal operations potentially expose plant workers to radiation fields arising from radionuclides transported to primary system components. This paper deals with radioactive material generated and transported during steady-state operation, which remains after 24 Na decay. Potential release of radioactivity during postulated accident conditions is not discussed. The control methods for radionuclide transport, with emphasis on new information obtained since the last Environmental Control Symposium, are described. Development of control methods is an achievable goal

  17. Analysis on the atmospheric dispersion of radioactive materials

    International Nuclear Information System (INIS)

    Nagai, Haruyasu

    2012-01-01

    JAEA has been developing a new prediction system of comprehensive movement, SPEEDI-MP (SPEEDI Multi-model Package), which can treat continuously and strictly with the migration behavior of radioactive materials at atmosphere, sea, and land region. JAEA has been further promoting the detail analysis of atmospheric migration of radioactive materials dispersed by an accident. Then, using a part of this system, the atmospheric-diversion prediction system, WSPEEDI-II, the atmospheric diversion mass and the atmospheric diffusion analysis were carried out. This issue reports the summary. (M.H.)

  18. Radioactive material handling for radiopharmaceutical production

    International Nuclear Information System (INIS)

    Anwar Abd Rahman; Rosli Darmawan; Mohd Khairi Mohd Said; Mohd Arif Hamzah; Mohd Fadil Ismail; Mohd Nor Atan; Mohd Azam Safawi Omar; Zulkifli Hashim; Wan Anuar Wan Awang

    2005-01-01

    Construction of clean room at Block 21 had changed the flow of radioactive material Moly-99 into the hotcell. The existing flow which use the transport cask cannot be used in order to prevent the clean room from contamination. Therefore, the new technique which consist of robotic, pneumatic and transfer box system had been introduced to transfer the radioactive source into the hotcell without going through the clean room.This technique that has been introduced provides safety where the radiation workers control the transfer process by using remote system. (Author)

  19. Report on current research into organic materials in radioactive waste

    International Nuclear Information System (INIS)

    Norris, G.H.

    1987-11-01

    A preliminary review of relevant recent papers on organic materials in radioactive waste is presented. In particular, the effects of chelating or complexing agents, the influence of bacteria and the role of colloids are assessed. The requirement for further radioactive waste inventory detail is indicated. Potential problem areas associated with the presence of organic materials in radioactive waste are identified and appropriate experimental work to assess their significance is proposed. Recommendations for specific further work are made. A list and diagrams of some of the more important polymer structures likely to be present in radioactive waste and their possible degradation products are appended. (author)

  20. Lessons learned by southern states in transportation of radioactive materials

    International Nuclear Information System (INIS)

    1992-03-01

    This report has been prepared under a cooperative agreement with DOE's Office of Civilian Radioactive Waste Management (OCRWM) and is a summary of the lessons learned by southern states regarding the transportation of radioactive materials including High-Level Radioactive Wastes (HLRW) and Spent Nuclear Fuel (SNF). Sources used in this publication include interviews of state radiological health and public safety officials that are members of the Southern States Energy Board (SSEB) Advisory Committee on Radioactive Materials Transportation, as well as the Board's Transuranic (TRU) Waste Transportation Working Group. Other sources include letters written by the above mentioned committees concerning various aspects of DOE shipment campaigns

  1. Transport of radioactive material

    International Nuclear Information System (INIS)

    Lombard, J.

    1996-01-01

    This work deals with the transport of radioactive materials. The associated hazards and potential hazards are at first described and shows the necessity to define specific safety regulations. The basic principles of radiological protection and of the IAEA regulations are given. The different types of authorized packages and of package labelling are explained. The revision, updating and the monitoring of the regulations effectiveness is the subject of the last part of this conference. (O.M.)

  2. Radioactive material air transportation

    International Nuclear Information System (INIS)

    Pader y Terry, Claudio Cosme

    2002-01-01

    As function of the high aggregated value, safety regulations and the useful life time, the air transportation has been used more regularly because is fast, reliable, and by giving great security to the cargo. Based on the International Atomic Energy Agency (IAEA), the IATA (International Air Transportation Association) has reproduced in his dangerous goods manual (Dangerous Goods Regulations - DGR IATA), the regulation for the radioactive material air transportation. Those documents support this presentation

  3. Over the border - the problems of uncontrolled radioactive materials crossing national borders

    Energy Technology Data Exchange (ETDEWEB)

    Duftschmid, K.E. E-mail: k.duftschmid@aon.at

    2002-03-01

    Cross-border movement of radioactive materials and contaminated items, in particular metallurgical scrap, has become a problem of increasing importance. Radioactive sources out of regulatory control, now often called 'orphan sources', have frequently caused serious, even deadly, radiation exposures and widespread contamination. The United States Nuclear Regulatory Commission reported over 2300 incidents of radioactive materials found in recycled metal scrap and more than 50 accidental smeltings of radioactive sources. A further potentially serious problem is illicit trafficking in nuclear and other radioactive materials. In 1995 the International Atomic Energy Agency (IAEA) started a programme to combat illicit trafficking in nuclear and other radioactive materials, which includes an international database on incidents of illicit trafficking, receiving reports from some 80 member states. For the period 1993-2000 the IAEA database includes 345 confirmed incidents. While from 1994-1996 the frequency declined significantly, this trend has been reversed since 1997, largely due to radioactive sources rather than nuclear material. This paper compares monitoring techniques for radioactive materials in scrap applied at steel plants and scrap yards with monitoring at borders, a completely different situation. It discusses the results of the 'Illicit Trafficking Radiation Detection Assessment Program', a large international pilot study, conducted in cooperation between the IAEA, the Austrian Government and the Austrian Research Centre Seibersdorf. The aim of this exercise was to derive realistic and internationally agreed requirements for border monitoring instrumentation. Finally the present extent of border monitoring installations is discussed. (author)

  4. Transportation of radioactive materials: the legislative and regulatory information system

    International Nuclear Information System (INIS)

    Fore, C.S.

    1982-03-01

    The US Department of Energy is carrying out a national program to assure the safe shipment of radioactive materials. As part of this overall effort, the Hazardous Materials Information Center of Oak Ridge National Laboratory has developed the comprehensive Legislative and Regulatory Information System, which contains information on federal-, state-, and local-level legislative and regulatory actions pertaining primarily to the shipment of radioactive materials. Specific subject areas chosen to highlight particular transportation restrictions include: (1) identification of state agency responsible for regulating transportation, (2) type of escorts required, (3) areas requiring prior notification, (4) areas requiring permits or licenses, and (5) areas totally banning transportation of all radioactive materials. Other legislative information being categorized and of immediate relevance to the transportation issues is covered under the areas of disposal, storage, and management of radioactive materials; establishment of additional regulations; emergency response regulations; moratoriums on power plant construction and siting; radiation safety and control studies; and remedial action studies. The collected information is abstracted, indexed, and input into one of the two data bases developed under this information system - Current Legislation Data Base and Historical Legislation Data Base. An appendix is included which provides a summary of the state and local laws affecting the transportation of radioactive materials throughout the United States. The Legislative and Regulatory Information System is supported by the Transportation Technology Center located at Sandia National Laboratories, Albuquerque, New Mexico

  5. Transportation of radioactive materials: the legislative and regulatory information system

    Energy Technology Data Exchange (ETDEWEB)

    Fore, C.S.

    1982-03-01

    The US Department of Energy is carrying out a national program to assure the safe shipment of radioactive materials. As part of this overall effort, the Hazardous Materials Information Center of Oak Ridge National Laboratory has developed the comprehensive Legislative and Regulatory Information System, which contains information on federal-, state-, and local-level legislative and regulatory actions pertaining primarily to the shipment of radioactive materials. Specific subject areas chosen to highlight particular transportation restrictions include: (1) identification of state agency responsible for regulating transportation, (2) type of escorts required, (3) areas requiring prior notification, (4) areas requiring permits or licenses, and (5) areas totally banning transportation of all radioactive materials. Other legislative information being categorized and of immediate relevance to the transportation issues is covered under the areas of disposal, storage, and management of radioactive materials; establishment of additional regulations; emergency response regulations; moratoriums on power plant construction and siting; radiation safety and control studies; and remedial action studies. The collected information is abstracted, indexed, and input into one of the two data bases developed under this information system - Current Legislation Data Base and Historical Legislation Data Base. An appendix is included which provides a summary of the state and local laws affecting the transportation of radioactive materials throughout the United States. The Legislative and Regulatory Information System is supported by the Transportation Technology Center located at Sandia National Laboratories, Albuquerque, New Mexico.

  6. Relevant documents to IAEA regulations for the safe transport of radioactive materials

    International Nuclear Information System (INIS)

    El-Shinawy, R.M.K.; Sabek, M.G.; Gomma, M.

    1998-01-01

    IAEA regulations for the safe transport of radioactive materials provide standards for insuring a high level of safety of people, property, and environment against radiation, contamination, and criticality hazards as well as thermal effects associated with the transport of radioactive materials. IAEA routinely publishes technical reports which are relevant to radioactive material transportation such as INTERTRAN, directory of transport packaging test facilities, and others. A case study was performed to assess the impact of transporting radioactive materials through the suez canal using the two computer codes namely INTERTRAN and RADTRAN-4 which are part of IAEA technical documents. A comparison of the results of these two codes is given

  7. Properties of Natural Radiation and Radioactivity

    International Nuclear Information System (INIS)

    Strom, Daniel J.

    2009-01-01

    Ubiquitous natural sources of radiation and radioactive material (naturally occurring radioactive material, NORM) have exposed humans throughout history. To these natural sources have been added technologically-enhanced naturally occurring radioactive material (TENORM) sources and human-made (anthropogenic) sources. This chapter describes the ubiquitous radiation sources that we call background, including primordial radionuclides such as 40K, 87Rb, the 232Th series, the 238U series, and the 235U series; cosmogenic radionuclides such as 3H and 14C; anthropogenic radionuclides such as 3H, 14C, 137Cs, 90Sr, and 129I; radiation from space; and radiation from technologically-enhanced concentrations of natural radionuclides, particularly the short-lived decay products of 222Rn ('radon') and 220Rn ('thoron') in indoor air. These sources produce radiation doses to people principally via external irradiation or internal irradiation following intakes by inhalation or ingestion. The effective doses from each are given, with a total of 3.11 mSv y-1 (311 mrem y-1) to the average US resident. Over 2.5 million US residents receive over 20 mSv y-1 (2 rem y-1), primarily due to indoor radon. Exposure to radiation from NORM and TENORM produces the largest fraction of ubiquitous background exposure to US residents, on the order of 2.78 mSv (278 mrem) or about 89%. This is roughly 45% of the average annual effective dose to a US resident of 6.2 mSv y-1 (620 mrem y-1) that includes medical (48%), consumer products and air travel (2%), and occupational and industrial (0.1%). Much of this chapter is based on National Council on Radiation Protection and Measurements (NCRP) Report No. 160, 'Ionizing Radiation Exposure of the Population of the United States,' for which the author chaired the subcommittee that wrote Chapter 3 on 'Ubiquitous Background Radiation.'

  8. Domestic smoke detectors using radioactive material

    International Nuclear Information System (INIS)

    Anon.

    1979-02-01

    Increasing numbers of technical and consumer products incorporating radioactive material are becoming available to the Australian public. One consumer device of this type coming into common use is the domestic smoke detector that uses Americium 241 in detecting smoke. This device has obvious life-saving and property-saving advantages and is attractive in that it is attractive in that it is self-contained, battery powered and needs little maintenance. The National Health and Medical Research Council in October 1978 recommended conditions, which are listed, are intended to ensure that radiation safety is preserved. They provide for the testing and approval of all models of domestic smoke detectors using radioactive material. The National Health and Medical Research Council stated that provided these conditions are applied it had no objection to the sale of these detectors by retailers

  9. Radioactive Materials in Medical Institutions as a Potential Threat

    International Nuclear Information System (INIS)

    Radalj, Z.

    2007-01-01

    In numerous health institutions ionizing sources are used in everyday practice. Most of these sources are Roentgen machines and accelerators which produce radiation only when in use. However, there are many institutions, e.g., Nuclear medicine units, where radioactive materials are used for diagnostic and therapeutic purposes. This institutions store a significant amount of radioactive materials in form of open and closed sources of radiation. Overall activity of open radiation sources can reach over a few hundred GBq. Open sources of radiation are usually so called short-living isotopes. Since they are used on daily basis, a need for a continuous supply of the radioactive materials exists (on weekly basis). Transportation phase is probably the most sensitive phase because of possible accidents or sabotage. Radiological terrorism is a new term. Legislation in the area of radiological safety is considered complete and well defined, and based on the present regulatory mechanism, work safety with radiation sources is considered relatively high. However, from time to time smaller accidents do happen due to mishandling, loose of material (possible stealing), etc. Lately, the safety issue of ionizing sources is becoming more important. In this matter we can expect activities in two directions, one which is going towards stealing and 'smuggling' of radioactive materials, and the other which would work or provoke accidents at the location where the radiation sources are.(author)

  10. Behaviour norms for nuclear energy peaceful uses

    International Nuclear Information System (INIS)

    Strohl, P.

    1996-01-01

    After making a brief history on the nuclear law, the author shows that ethical aspects got involved in nuclear matters at three levels: security of nuclear supplies, radioactive waste management, and potential human failures. Then a list of ''good conduct norms'' which should be the link between law and ethics is given. They correspond to different issues of nuclear development: technological quality, radiation protection, radioactive waste management, public information, international cooperation, non-proliferation. (TEC)

  11. Infrastructure development for radioactive materials at the NSLS-II

    Energy Technology Data Exchange (ETDEWEB)

    Sprouster, D. J.; Weidner, R.; Ghose, S. K.; Dooryhee, E.; Novakowski, T. J.; Stan, T.; Wells, P.; Almirall, N.; Odette, G. R.; Ecker, L. E.

    2018-02-01

    The X-ray Powder Diffraction (XPD) Beamline at the National Synchrotron Light Source-II is a multipurpose instrument designed for high-resolution, high-energy X-ray scattering techniques. In this article, the capabilities, opportunities and recent developments in the characterization of radioactive materials at XPD are described. The overarching goal of this work is to provide researchers access to advanced synchrotron techniques suited to the structural characterization of materials for advanced nuclear energy systems. XPD is a new beamline providing high photon flux for X-ray Diffraction, Pair Distribution Function analysis and Small Angle X-ray Scattering. The infrastructure and software described here extend the existing capabilities at XPD to accommodate radioactive materials. Such techniques will contribute crucial information to the characterization and quantification of advanced materials for nuclear energy applications. We describe the automated radioactive sample collection capabilities and recent X-ray Diffraction and Small Angle X-ray Scattering results from neutron irradiated reactor pressure vessel steels and oxide dispersion strengthened steels.

  12. Transportation accidents/incidents involving radioactive materials (1971-1991)

    International Nuclear Information System (INIS)

    Cashwell, C.E.; McClure, J.D.

    1993-01-01

    In 1981, Sandia National Laboratories developed the Radioactive Materials Incident Report (RMIR) database to support its research and development activities for the U.S. Department of Energy (DOE). The RMIR database contains information on transportation accidents/incidents with radioactive materials that have occurred since 1971. The RMIR classifies a transportation accident/incident in one of six ways: as a transportation accident, a handling accident, a reported incident, missing or stolen, cask weeping, or other. This paper will define these terms and provide detailed examples of each. (J.P.N.)

  13. Security in the transport of radioactive material: Implementing guide. Spanish edition

    International Nuclear Information System (INIS)

    2013-01-01

    This guide provides States with guidance in implementing, maintaining or enhancing a nuclear security regime to protect radioactive material (including nuclear material) in transport against theft, sabotage or other malicious acts that could, if successful, have unacceptable radiological consequences. From a security point of view, a threshold is defined for determining which packages or types of radioactive material need to be protected beyond prudent management practice. Minimizing the likelihood of theft or sabotage of radioactive material in transport is accomplished by a combination of measures to deter, detect, delay and respond to such acts. These measures are complemented by other measures to recover stolen material and to mitigate possible consequences, in order to further reduce the risks

  14. Security in the Transport of Radioactive Material. Implementing Guide (French Edition)

    International Nuclear Information System (INIS)

    2012-01-01

    This guide provides States with guidance in implementing, maintaining or enhancing a nuclear security regime to protect radioactive material (including nuclear material) in transport against theft, sabotage or other malicious acts that could, if successful, have unacceptable radiological consequences. From a security point of view, a threshold is defined for determining which packages or types of radioactive material need to be protected beyond prudent management practice. Minimizing the likelihood of theft or sabotage of radioactive material in transport is accomplished by a combination of measures to deter, detect, delay and respond to such acts. These measures are complemented by other measures to recover stolen material and to mitigate possible consequences, in order to further reduce the risks.

  15. Security in the Transport of Radioactive Material. Implementing Guide (Chinese Edition)

    International Nuclear Information System (INIS)

    2012-01-01

    This guide provides States with guidance in implementing, maintaining or enhancing a nuclear security regime to protect radioactive material (including nuclear material) in transport against theft, sabotage or other malicious acts that could, if successful, have unacceptable radiological consequences. From a security point of view, a threshold is defined for determining which packages or types of radioactive material need to be protected beyond prudent management practice. Minimizing the likelihood of theft or sabotage of radioactive material in transport is accomplished by a combination of measures to deter, detect, delay and respond to such acts. These measures are complemented by other measures to recover stolen material and to mitigate possible consequences, in order to further reduce the risks.

  16. Emergency response planning and preparedness for transport accidents involving radioactive material

    International Nuclear Information System (INIS)

    1988-01-01

    The purpose of this Guide is to provide assistance to public authorities and others (including consignors and carriers of radioactive materials) who are responsible for ensuring safety in establishing and developing emergency response arrangements for responding effectively to transport accidents involving radioactive materials. This Guide is concerned mainly with the preparation of emergency response plans. It provides information which will assist those countries whose involvement with radioactive materials is just beginning and those which have already developed their industries involving radioactive materials and attendant emergency plans, but may need to review and improve these plans. The need for emergency response plans and the ways in which they are implemented vary from country to country. In each country, the responsible authorities must decide how best to apply this Guide, taking into account the actual shipments and associated hazards. In this Guide the emergency response planning and response philosophy are outlined, including identification of emergency response organizations and emergency services that would be required during a transport accident. General consequences which could prevail during an accident are described taking into account the IAEA Regulations for the Safe Transport of Radioactive Material. 43 refs, figs and tabs

  17. Security in the transport of radioactive material - interim guidance for comment

    International Nuclear Information System (INIS)

    Legoux, P.; Wangler, M.

    2004-01-01

    While the IAEA has provided specific guidance for physical protection in the transport of nuclear material, its previous publications have only provided some general guidelines for security of non-nuclear radioactive material in transport. Some basic practical advice has been provided in the requirements of the International Basic Safety Standards for Protection against Ionising Radiation and for the Safety of Radiation Sources (BSS) [1]. These guidelines were primarily directed toward such issues as unintentional exposure to radiation, negligence and inadvertent loss. Recently, the IAEA published a document on the security of sources, which included some general guidance on providing security during transport of the sources. However, it is clear that more guidance is needed for security during the transport of radioactive material in addition to those already existing for nuclear material. Member States have requested guidance on the type and nature of security measures that might be put in place for radioactive material in general during its transport and on the methodology to be used in choosing and implementing such measures. The purpose of the TECDOC on Security in the Transport of Radioactive Material being developed by the IAEA is to provide an initial response to that request. This interim guidance is being developed with a view to harmonizing the security guidance - as much as possible - with existing guidance from the IAEA for the transport of radioactive sources and nuclear material. It is also intended to harmonize with model requirements developed in 2002-2003 by the United Nations Economic and Social Council's Committee of Experts on the Transport of Dangerous Goods and on the Globally Harmonised System of Classification and Labelling of Chemicals which was issued as general security guidelines for all dangerous goods, including radioactive material, and that will shortly be implemented as binding regulations by the international modal authorities

  18. Security in the transport of radioactive material - interim guidance for comment

    Energy Technology Data Exchange (ETDEWEB)

    Legoux, P.; Wangler, M. [International Atomic Energy Agency, Vienna (Austria)

    2004-07-01

    While the IAEA has provided specific guidance for physical protection in the transport of nuclear material, its previous publications have only provided some general guidelines for security of non-nuclear radioactive material in transport. Some basic practical advice has been provided in the requirements of the International Basic Safety Standards for Protection against Ionising Radiation and for the Safety of Radiation Sources (BSS) [1]. These guidelines were primarily directed toward such issues as unintentional exposure to radiation, negligence and inadvertent loss. Recently, the IAEA published a document on the security of sources, which included some general guidance on providing security during transport of the sources. However, it is clear that more guidance is needed for security during the transport of radioactive material in addition to those already existing for nuclear material. Member States have requested guidance on the type and nature of security measures that might be put in place for radioactive material in general during its transport and on the methodology to be used in choosing and implementing such measures. The purpose of the TECDOC on Security in the Transport of Radioactive Material being developed by the IAEA is to provide an initial response to that request. This interim guidance is being developed with a view to harmonizing the security guidance - as much as possible - with existing guidance from the IAEA for the transport of radioactive sources and nuclear material. It is also intended to harmonize with model requirements developed in 2002-2003 by the United Nations Economic and Social Council's Committee of Experts on the Transport of Dangerous Goods and on the Globally Harmonised System of Classification and Labelling of Chemicals which was issued as general security guidelines for all dangerous goods, including radioactive material, and that will shortly be implemented as binding regulations by the international modal

  19. The IAEA inventory databases related to radioactive material entering the marine environment

    International Nuclear Information System (INIS)

    Rastogi, R.C.; Sjoeblom, K.L.

    1999-01-01

    Contracting Parties to the Convention on the Prevention of Marine Pollution by Dumping of Wastes and other Matter (LC 1972) have requested the IAEA to develop an inventory of radioactive material entering the marine environment from all sources. The rationale for developing and maintaining the inventory is related to its use as an information base with which the impact of radionuclides entering the marine environment from different sources can be assessed and compared. Five anthropogenic sources of radionuclides entering the marine environment can be identified. These sources are: radioactive waste disposal at sea; accidents and losses at sea involving radioactive material; discharge of low level liquid effluents from land-based nuclear facilities; the fallout from nuclear weapons testing; and accidental releases from land-based nuclear facilities. The first two of these sources are most closely related to the objective of the LC 1972 and its request to the IAEA. This paper deals with the Agency's work on developing a database on radioactive material entering the marine environment from these two sources. The database has the acronym RAMEM (RAdioactive Material Entering the Marine Environment). It includes two modules: inventory of radioactive waste disposal at sea and inventory of accidents and losses at sea involving radioactive material

  20. Safe and Secure Transportation of Radioactive Materials in Pakistan and Future Challenges

    International Nuclear Information System (INIS)

    Muneer, Muhammad; Ejaz, Asad

    2016-01-01

    PNRA is the sole organization in the country responsible to regulate all matters pertaining to ionizing radiations. For the safety of transport of radioactive material in the country, PNRA has adopted IAEA TS-R-1 as a national regulation. To cover the security aspects and emergency situations, if any, during the transportation of radioactive material, PNRA has issued the regulatory guide on ‘Transportation of Radioactive Material by Road in Pakistan’. In Pakistan, low to medium activity radioactive sources are transported from one place to another by road for the purpose of industrial radiography, well logging, medical application, etc. According to national policy, sealed radioactive sources of half life greater than 1 year and with initial activity of 100 GBq or more imported in the country are required to be returned to country of origin (exported) after its use. Although the activities related to transport of radioactive material remained safe and secure and no major accident/incident has been reported so far, however, the improvement/enhancement in the regulatory infrastructure is a continuous process. In future, more challenges are expected to be faced in the safety of transport packages. This paper will describe the steps taken by PNRA for the safety and security of transport of radioactive material in the country and future challenges. (author)

  1. Device for encapsulating radioactive materials

    International Nuclear Information System (INIS)

    Suthanthiran, K.

    1994-01-01

    A capsule for encapsulating radioactive material for radiation treatment comprising two or more interfitting sleeves, wherein each sleeve comprises a closed bottom portion having a circumferential wall extending therefrom, and an open end located opposite the bottom portion. The sleeves are constructed to fit over one another to thereby establish an effectively sealed capsule container. 3 figs

  2. Natural radioactivity of building materials used in Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Omar, M. [Malaysian Inst. for Nuclear Technology Research (MINT), Bangi, Kajang, Selangor D.E. (Malaysia)

    2002-03-01

    A study has been carried out to determine the natural radioactive content of building materials used in Malaysia. The materials analysed include both old and new clay bricks, cement bricks, mortar, cement, sands, ceramic tiles and gypsum. Samples of the first three materials were collected from the 12 states of the Malay Peninsula. Radium-226 (from the U-238 series) and Ra-228 (from the Th-232 series), these both representing naturally occurring radionuclides, were analysed using high-resolution HpGe gamma spectrometers. The results of our investigations showed that some old clay bricks contain high levels (at more than 5 times the normal soil concentration) of natural radionuclides, with maximum concentrations of 590 Bq/kg and 480 Bq/kg for respectively Ra-226 and Ra-228. The reasons behind this finding were not clearly understood. As there are people living in old buildings, i.e. built using old clay bricks, there is a possibility that they are being exposed to significant radiation doses. However, there proved to be no significant overall difference between old and new clay bricks in terms of the natural radioactivity levels determined, at a 95% confidence level. The overall mean concentrations of Ra-226 and Ra-228 observed in Malaysian clay bricks were respectively 118 {+-} 58 Bq/kg and 120 {+-} 42 Bq/kg. The radioactive content of other materials was found to be not much different from that to be determined in normal soil from Malaysia. The data obtained can be used as a basis for reaching decisions on the regulatory limits for radioactivity levels in building materials in Malaysia. (orig.)

  3. The physical protection of radiation sources and radioactive materials in Tanzania

    International Nuclear Information System (INIS)

    Sungita, Y.Y.; Massalu, I.

    2002-01-01

    Full text: In recognition of the legal deficiency and the awareness of radiation safety, the parliament of the United Republic of Tanzania enacted the protection from radiation act no. 5 of 1983, which established the national radiation commission (NRC) as a regulatory authority. The main objective of the act was to provide for a legal framework and guidance of the control of the use of radiation sources and radioactive materials with the view to achieve an assurance for acceptance level of radiation protection and safety standard. Due to trade liberalization that is currently experienced in the country, the increase in the number of radiation practices is observed yearly. medical diagnostic x-ray facilities constitute 72 % of all radiation installations in the country. Radioactive materials used in research, teaching and industrial application constitute 24 % and those used in therapy and nuclear medicine is 4 %. About seven radioactive materials incidents occurred in Tanzania during 1996-2000. Among these cases, some were illegal possession and across-boarder trafficking of radioactive materials. Theft and losses radioactive equipments or sources were also experienced. This presentation discusses the experienced incidents of illegal possession, theft and loss of radioactive materials and the lesson learnt from those events in connection with our operational laws. The needs for improvement of the whole system of notification, authorization, registration and licensing to cope up with increase in radiation practices and cross-border illegal trafficking of radioactive materials. The importance of involving immigration officers, police and custom officer with proper training in radiation safety aspect is emphasized. The recommendation are given in an attempt to rescue the situation. (author)

  4. Technically enhanced naturally occurring radioactive materials; identification, characterization and treatment

    International Nuclear Information System (INIS)

    Aly, H.F.

    2001-01-01

    Radioactive materials (TENORM) is produced in a relatively large amount with relatively small radioactivity, however in many instances the radioactivity levels exceeds that permissible. In this presentation, the different industries where enhanced levels of natural radioactivity is identified and characterized will be given. The different approaches for treatment of this enhanced radioactivity will be addressed. Finally, our research and development activities in characterization and treatment of TENORM produced from the oil fields in Egypt will be presented. (authors)

  5. Prevention of the inadvertent movement and illicit trafficking of radioactive materials

    International Nuclear Information System (INIS)

    2004-05-01

    By international agreements, the movement of all radioactive materials within and between States should be subject to high standards of regulatory, administrative, safety and engineering controls to ensure that such movements are conducted in a safe and secure manner. In the case of nuclear materials, there are additional requirements for physical protection and accountability to ensure against threats of nuclear proliferation and to safeguard against any attempts at diversion. The results of the terrorist attacks of September 2001 emphasized the requirement for enhanced control and security of nuclear and radioactive materials. In this regard, measures are being taken to increase the global levels of physical protection and security for nuclear materials. Experience in many parts of the world continues to prove that movements of radioactive materials outside of the regulatory and legal frameworks continue to occur. Such movements may be either deliberate or inadvertent. Deliberate, illegal movements of radioactive materials, including nuclear material, for terrorist, political or illegal profit is generally understood to be illicit trafficking. The more common movements outside of regulatory control are inadvertent in nature. An example of an inadvertent movement might be the transport of steel contaminated by a melted radioactive source that was lost from proper controls. Such a shipment may present health and safety threats to the personnel involved as well as to the general public. States have the responsibility for combating illicit trafficking and inadvertent movements of radioactive materials. The IAEA co-operates with Member States and other international organizations in joint efforts to prevent incidents of illicit trafficking and inadvertent movements and to harmonize policies and measures by the provision of relevant advice through technical assistance and documents. As an example, the IAEA and the World Customs Organization (WCO) maintain a Memorandum

  6. Prevention of the inadvertent movement and illicit trafficking of radioactive materials

    International Nuclear Information System (INIS)

    2004-12-01

    By international agreements, the movement of all radioactive materials within and between States should be subject to high standards of regulatory, administrative, safety and engineering controls to ensure that such movements are conducted in a safe and secure manner. In the case of nuclear materials, there are additional requirements for physical protection and accountability to ensure against threats of nuclear proliferation and to safeguard against any attempts at diversion. The results of the terrorist attacks of September 2001 emphasized the requirement for enhanced control and security of nuclear and radioactive materials. In this regard, measures are being taken to increase the global levels of physical protection and security for nuclear materials. Experience in many parts of the world continues to prove that movements of radioactive materials outside of the regulatory and legal frameworks continue to occur. Such movements may be either deliberate or inadvertent. Deliberate, illegal movements of radioactive materials, including nuclear material, for terrorist, political or illegal profit is generally understood to be illicit trafficking. The more common movements outside of regulatory control are inadvertent in nature. An example of an inadvertent movement might be the transport of steel contaminated by a melted radioactive source that was lost from proper controls. Such a shipment may present health and safety threats to the personnel involved as well as to the general public. States have the responsibility for combating illicit trafficking and inadvertent movements of radioactive materials. The IAEA co-operates with Member States and other international organizations in joint efforts to prevent incidents of illicit trafficking and inadvertent movements and to harmonize policies and measures by the provision of relevant advice through technical assistance and documents. As an example, the IAEA and the World Customs Organization (WCO) maintain a Memorandum

  7. Prevention of the inadvertent movement and illicit trafficking of radioactive materials

    International Nuclear Information System (INIS)

    2003-08-01

    By international agreements, the movement of all radioactive materials within and between States should be subject to high standards of regulatory, administrative, safety and engineering controls to ensure that such movements are conducted in a safe and secure manner. In the case of nuclear materials, there are additional requirements for physical protection and accountability to ensure against threats of nuclear proliferation and to safeguard against any attempts at diversion. The results of the terrorist attacks of September 2001 emphasized the requirement for enhanced control and security of nuclear and radioactive materials. In this regard, measures are being taken to increase the global levels of physical protection and security for nuclear materials. Experience in many parts of the world continues to prove that movements of radioactive materials outside of the regulatory and legal frameworks continue to occur. Such movements may be either deliberate or inadvertent. Deliberate, illegal movements of radioactive materials, including nuclear material, for terrorist, political or illegal profit is generally understood to be illicit trafficking. The more common movements outside of regulatory control are inadvertent in nature. An example of an inadvertent movement might be the transport of steel contaminated by a melted radioactive source that was lost from proper controls. Such a shipment may present health and safety threats to the personnel involved as well as to the general public. States have the responsibility for combating illicit trafficking and inadvertent movements of radioactive materials. The IAEA co-operates with Member States and other international organizations in joint efforts to prevent incidents of illicit trafficking and inadvertent movements and to harmonize policies and measures by the provision of relevant advice through technical assistance and documents. As an example, the IAEA and the World Customs Organization (WCO) maintain a Memorandum

  8. Prevention of the inadvertent movement and illicit trafficking of radioactive materials

    International Nuclear Information System (INIS)

    2003-05-01

    By international agreements, the movement of all radioactive materials within and between States should be subject to high standards of regulatory, administrative, safety and engineering controls to ensure that such movements are conducted in a safe and secure manner. In the case of nuclear materials, there are additional requirements for physical protection and accountability to ensure against threats of nuclear proliferation and to safeguard against any attempts at diversion. The results of the terrorist attacks of September 2001 emphasized the requirement for enhanced control and security of nuclear and radioactive materials. In this regard, measures are being taken to increase the global levels of physical protection and security for nuclear materials. Experience in many parts of the world continues to prove that movements of radioactive materials outside of the regulatory and legal frameworks continue to occur. Such movements may be either deliberate or inadvertent. Deliberate, illegal movements of radioactive materials, including nuclear material, for terrorist, political or illegal profit is generally understood to be illicit trafficking. The more common movements outside of regulatory control are inadvertent in nature. An example of an inadvertent movement might be the transport of steel contaminated by a melted radioactive source that was lost from proper controls. Such a shipment may present health and safety threats to the personnel involved as well as to the general public. States have the responsibility for combating illicit trafficking and inadvertent movements of radioactive materials. The IAEA co-operates with Member States and other international organizations in joint efforts to prevent incidents of illicit trafficking and inadvertent movements and to harmonize policies and measures by the provision of relevant advice through technical assistance and documents. As an example, the IAEA and the World Customs Organization (WCO) maintain a Memorandum

  9. Prevention of the inadvertent movement and illicit trafficking of radioactive materials

    International Nuclear Information System (INIS)

    2002-09-01

    By international agreements, the movement of all radioactive materials within and between States should be subject to high standards of regulatory, administrative, safety and engineering controls to ensure that such movements are conducted in a safe and secure manner. In the case of nuclear materials, there are additional requirements for physical protection and accountability to ensure against threats of nuclear proliferation and to safeguard against any attempts at diversion. The results of the terrorist attacks of September 2001 emphasized the requirement for enhanced control and security of nuclear and radioactive materials. In this regard, measures are being taken to increase the global levels of physical protection and security for nuclear materials. Experience in many parts of the world continues to prove that movements of radioactive materials outside of the regulatory and legal frameworks continue to occur. Such movements may be either deliberate or inadvertent. Deliberate, illegal movements of radioactive materials, including nuclear material, for terrorist, political or illegal profit is generally understood to be illicit trafficking. The more common movements outside of regulatory control are inadvertent in nature. An example of an inadvertent movement might be the transport of steel contaminated by a melted radioactive source that was lost from proper controls. Such a shipment may present health and safety threats to the personnel involved as well as to the general public. States have the responsibility for combating illicit trafficking and inadvertent movements of radioactive materials. The IAEA co-operates with Member States and other international organizations in joint efforts to prevent incidents of illicit trafficking and inadvertent movements and to harmonize policies and measures by the provision of relevant advice through technical assistance and documents. As an example, the IAEA and the World Customs Organization (WCO) maintain a Memorandum

  10. Radiation safety in sea transport of radioactive material in Japan

    International Nuclear Information System (INIS)

    Odano, N.; Yanagi, H.

    2004-01-01

    Radiation safety for sea transport of radioactive material in Japan has been discussed based on records of the exposed dose of sea transport workers and measured data of dose rate equivalents distribution inboard exclusive radioactive material shipping vessels. Recent surveyed records of the exposed doses of workers who engaged in sea transport operation indicate that exposed doses of transport workers are significantly low. Measured distribution of the exposed dose equivalents inboard those vessels indicates that dose rate equivalents inside those vessels are lower than levels regulated by the transport regulations of Japan. These facts clarify that radiation safety of inboard environment and handling of transport casks in sea transport of radioactive material in Japan are assured

  11. The preventing of illicit trafficking of radioactive materials in Estonia

    International Nuclear Information System (INIS)

    Velbri, T.; Aasmann, L.

    1998-01-01

    This paper explains the situation of legislation, practical border-control and equipment of different relevant authorities dealing with the control of radioactive materials in Estonia. The overview of legislation concerning radiation and radiation protection is given. The roles of Estonian Customs Authority, Estonian border Guard, National Rescue Board and Police Authority in the preventing of illicit trafficking of radioactive materials are shown. The incidents of illicit trafficking of radioactive materials are listed. Also the most important border-crossing points and the types of equipment used there are shown. Finally the problems of controlling the borders in Estonia and the future plans in order to make the controlling system more efficient are discussed. (author)

  12. Radiation safety in sea transport of radioactive material in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Odano, N. [National Maritime Research Inst., Tokyo (Japan); Yanagi, H. [Nuclear Fuel Transport Co., Ltd., Tokyo (Japan)

    2004-07-01

    Radiation safety for sea transport of radioactive material in Japan has been discussed based on records of the exposed dose of sea transport workers and measured data of dose rate equivalents distribution inboard exclusive radioactive material shipping vessels. Recent surveyed records of the exposed doses of workers who engaged in sea transport operation indicate that exposed doses of transport workers are significantly low. Measured distribution of the exposed dose equivalents inboard those vessels indicates that dose rate equivalents inside those vessels are lower than levels regulated by the transport regulations of Japan. These facts clarify that radiation safety of inboard environment and handling of transport casks in sea transport of radioactive material in Japan are assured.

  13. Transportation of radioactive materials - a utility view

    International Nuclear Information System (INIS)

    Futter, J.L.

    1979-01-01

    Local restrictions to transportation of radioactive materials have proliferated, and the reasons for this are described. Some of the measures which could be undertaken to counteract this trend are discussed. People should speak out on the need for nuclear power in general and for transportation of nuclear materials in particular

  14. Safe Transport of Radioactive Material, International Regulations and its Supporting Documents

    International Nuclear Information System (INIS)

    El-Shinawy, R.M.K.

    2005-01-01

    Safe transport of radioactive material regulations issued by IAEA since 1961, provide standards for insuring a high level of safety of people,transport workers, property and environment against radiation, contamination and criticality hazards as well as thermal effects associated with the transport of the radioactive wastes and material. The history ,development, philosophy and scope of these international regulations were mentioned as well as the different supporting documents to the regulations for safe transport of radioactive material were identified.The first supporting document , namely TS - G-1.1 ( ST-2) ,Advisory material is also issued by the IAEA.It contains both the advisory and explanatory materials previously published in safety series No 7 and 37 and therefore TS-G-1.1 (ST-2) will supersede safety series No 7 and 37. The second supporting document namely TS-G-1.2 (ST-3), planning and preparing for emergency response to transport accidents involving radioactive material ,which will supersede safety series No 87. In addition to quality assurance (SS=113), compliance assurance (SS=112), the training manual and other

  15. Safe Transport of Radioactive Material, International Regulations and its Supporting Documents

    Energy Technology Data Exchange (ETDEWEB)

    El-Shinawy, R M.K. [Radiation Protection Dept., NRC, Atomic Energy Authority, Cairo (Egypt)

    2005-04-01

    Safe transport of radioactive material regulations issued by IAEA since 1961, provide standards for insuring a high level of safety of people,transport workers, property and environment against radiation, contamination and criticality hazards as well as thermal effects associated with the transport of the radioactive wastes and material. The history ,development, philosophy and scope of these international regulations were mentioned as well as the different supporting documents to the regulations for safe transport of radioactive material were identified.The first supporting document , namely TS - G-1.1 ( ST-2) ,Advisory material is also issued by the IAEA.It contains both the advisory and explanatory materials previously published in safety series No 7 and 37 and therefore TS-G-1.1 (ST-2) will supersede safety series No 7 and 37. The second supporting document namely TS-G-1.2 (ST-3), planning and preparing for emergency response to transport accidents involving radioactive material ,which will supersede safety series No 87. In addition to quality assurance (SS=113), compliance assurance (SS=112), the training manual and other.

  16. Illegal handling of radioactive and nuclear materials. Threats and suggestions for measures

    International Nuclear Information System (INIS)

    Oliver, Lena; Melin, Lena; Prawitz, Jan; Ringbom, Anders; Sandstroem, Bjoern; Wigg, Lars; Wirstam, Jens

    2004-01-01

    This project deals with threats from smuggling or other illegal transportation of radioactive or nuclear materials across the borders to Sweden, and with the security of handling such materials in Sweden. The project has included studies of relevant documentation; visits and interviews at industries, hospitals, research institutes and military institutions in Sweden that handle radioactive materials; a pilot study at the Stockholm freeport, where equipment for detection of radioactive materials has been tested for six months; an analysis of incidents reported to the IAEA database; and an analysis of Swedish incidents. The following conclusions are drawn: Stricter rules regarding the physical protection of radiation sources and radioactive materials should be implemented in Sweden. The recommendations recently issued by IAEA should serve as a point of departure for working out such rules

  17. International Regulations for Transport of Radioactive Materials, History and Security

    International Nuclear Information System (INIS)

    EL-Shinawy, R.M.K.

    2013-01-01

    International Regulations for the transport of radioactive materials have been published by International Atomic Energy Agency (IAEA) since 1961. These Regulations have been widely adopted into national Regulations. Also adopted into different modal Regulations such as International Air Transport Association (IATA) and International Martime Organization (IMO). These Regulations provide standards for insuring a high level of safety of general public, transport workers, property and environment against radiation, contamination, criticality hazard and thermal effects associated with the transport of radioactive wastes and materials. Several reviews conducted in consultation with Member States (MS) and concerned international organizations, resulted in comprehensive revisions till now. Radioactive materials are generally transported by specialized transport companies and experts. Shippers and carriers have designed their transport operations to comply with these international Regulations. About 20 million consignments of radioactive materials take place around the world each year. These materials were used in different fields such as medicine, industry, agriculture, research, consumer product and electric power generation. After September 11,2001, the IAEA and MS have worked together to develop a new guidance document concerning the security in the transport of radioactive materials. IAEA have initiated activities to assist MS in addressing the need for transport security in a comprehensive manner. The security guidance and measures were mentioned and discussed. The transport security becomes more developed and integrated into national Regulations of many countries beside the safety Regulations. IAEA and other International organizations are working with MS to implement transport security programs such as guidance, training, security assessments and upgrade assistance in these fields.

  18. RADIOACTIVE MATERIALS IN BIOSOLIDS: DOSE MODELING

    Science.gov (United States)

    The Interagency Steering Committee on Radiation Standards (ISCORS) has recently completed a study of the occurrence within the United States of radioactive materials in sewage sludge and sewage incineration ash. One component of that effort was an examination of the possible tra...

  19. Multimedia instructions for carriers of radioactive material

    International Nuclear Information System (INIS)

    Sahyun, A.; Sordi, G. M.; Simpson, J.; Ghobril, C. N.; Perez, C. F.

    2014-08-01

    For some operators the transport regulations for transporting radioactive material are considered to be complicated and not user friendly and as a result for some operators it is difficult to identify all the transport regulatory requirements they must comply with for each type of package or radioactive material. These difficulties can result in self-checking being ineffective and as a consequence the first and important step in the safety chain is lost. This paper describes a transport compliance guide for operators that is currently under development for the South American market. This paper describes the scope and structure of the guide and examples of the information provided is given, which will be available in English, Portuguese and Spanish. It is intended that when the guide is launched before the end of 2013 it will be accessed using a bespoke software program that can run on Pc platform to provide a checklist for the operator before the shipment begins By identifying the regulatory requirements the guide is also intended to provide operators with an understanding of the structure of the transport regulations and an appreciation of the logic behind the regulatory requirements for each Un numbered package and material type listed in the transport regulations for radioactive material. It is foreseen that the interactive program can be used both operationally on a day-to-day basis and as a training tool, including refresher training, as the guide will be updated when the transport regulations are periodically changed. (Author)

  20. Multimedia instructions for carriers of radioactive material

    Energy Technology Data Exchange (ETDEWEB)

    Sahyun, A.; Sordi, G. M. [Instituto de Pesquisas Energeticas e Nucleares, Av. Prof. Lineu Prestes 2242, Cidade Universitaria, 05508-000 Sao Paulo (Brazil); Simpson, J. [Class 7 Limited, 9 Irk Vale Drive, Chadderton, Oldham OL1 2TW (United Kingdom); Ghobril, C. N. [Governo de Sao Paulo, Instituto de Economia Agricola, 04301-903 Sao Paulo (Brazil); Perez, C. F., E-mail: adelia@atomo.com.br [Centro Tecnologico da Marinha em Sao Paulo, Av. Prof. Lineu Prestes 2468, Cidade Universitaria, 05508-000 Sau Paulo (Brazil)

    2014-08-15

    For some operators the transport regulations for transporting radioactive material are considered to be complicated and not user friendly and as a result for some operators it is difficult to identify all the transport regulatory requirements they must comply with for each type of package or radioactive material. These difficulties can result in self-checking being ineffective and as a consequence the first and important step in the safety chain is lost. This paper describes a transport compliance guide for operators that is currently under development for the South American market. This paper describes the scope and structure of the guide and examples of the information provided is given, which will be available in English, Portuguese and Spanish. It is intended that when the guide is launched before the end of 2013 it will be accessed using a bespoke software program that can run on Pc platform to provide a checklist for the operator before the shipment begins By identifying the regulatory requirements the guide is also intended to provide operators with an understanding of the structure of the transport regulations and an appreciation of the logic behind the regulatory requirements for each Un numbered package and material type listed in the transport regulations for radioactive material. It is foreseen that the interactive program can be used both operationally on a day-to-day basis and as a training tool, including refresher training, as the guide will be updated when the transport regulations are periodically changed. (Author)

  1. Radioactivity in consumer products : radiation safety and regulatory appraisal

    International Nuclear Information System (INIS)

    Murthy, B.K.S.; Venkataraman, G.; Subrahmanym, P.

    1993-01-01

    Use of radioactive materials in consumer products is in vogue almost since the discovery of radioactivity. There has been a rapid growth in the use of radioactive material in various consumer products such as Ionization Chamber Smoke Detectors (ICSD), Static eliminators, etc. In addition, there are certain manufacturing processes wherein the Naturally Occurring Radioactive Material (NORM) get incorporated in the consumer products. Certain phosphatic fertilizers, titanium dioxide pigments, phospho gypsum plaster boards are some examples in this category. The manufacture and use of these products result in radiation dose to the public apart from radiation exposure to the personnel involved in the manufacturing process. Appropriate radiation control measures have to be taken in the design, manufacture and use of consumer products to ensure that the radiation doses to the public and the population at large do not exceed the relevant limits. While appropriate regulatory controls and surveillance are established for manufacture and use of certain products, these are still to be recognised and established in respect of certain other processes and products. The current status of radiation safety and regulatory control and the lack of these in respect of some products are discussed in this paper. (author). 5 refs

  2. Incidents of illicit trafficking and other unauthorized activities involving nuclear and other radioactive materials (1993-2005)

    International Nuclear Information System (INIS)

    2010-01-01

    The confirmed incidents of illicit trafficking and other unauthorized activities involving nuclear and other radioactive materials between 1993-2005 shows that, 27% involved nuclear materials, 62% radioactive materials,7% involved both nuclear and other radioactive materials while the remainder involved other radioactive and non radioactive materials.Also 80% of nuclear material which was recovered during the same period was not reported as stolen or lost.

  3. Safety in transport and storage of radioactive materials

    International Nuclear Information System (INIS)

    Mezrahi, A.; Xavier, A.M.

    1987-01-01

    The increasing utilization of radioisotopes in Industrial, Medical and Research Facilities as well as the processing of Nuclear Materials involve transport activities in a routine basis. The present work has the following main objectives: I) the identification of the safety aspects related to handling, transport and storage of radioactive materials; II) the orientation of the personnel responsible for the radiological safety of Radioactive Installations viewing the elaboration and implementation of procedures to minimize accidents; III) the report of case-examples of accidents that have occured in Brazil due to non-compliance with Transport Regulations. (author) [pt

  4. Radiation doses from the transport of radioactive materials

    International Nuclear Information System (INIS)

    Shaw, K.B.; Holyoak, B.

    1983-01-01

    A summary is given of a study on radiation exposure resulting from the transport of radioactive materials within the United Kingdom. It was concluded that the transport of technetium generators for hospital use accounts for about 49% of the occupational exposure for the normal transport of radioactive materials. Other isotopes for medical and industrial use contribute about 38% of the occupational exposure and the remainder can be attributed to transportation as a result of the nuclear fuel cycle including the transport of irradiated nuclear fuel. The occupational collective dose for all modes of transport is estimated at 1 man Sv y -1 . (UK)

  5. Manual of respiratory protection against airborne radioactive materials

    International Nuclear Information System (INIS)

    Caplin, J.L.; Held, B.J.; Catlin, R.J.

    1976-10-01

    The manual supplements Regulatory Guide 8.15, ''Acceptable Programs for Respiratory Protection''. It provides broad guidance for the planned use of respirators to protect individuals from airborne radioactive materials that might be encountered during certain operations. The guidance is intended for use by management in establishing and supervising programs and by operating personnel in implementing programs. Guidance is primarily directed to the use of respirators to prevent the inhalation of airborne radioactive materials. Protection against other modes of intake (e.g., absorption, swallowing, wound injection) is, in general, not covered nor is the use of protective equipment for head, eye, or skin protection

  6. Regulatory Framework and Current Practices of the Radioactive Material Safe and Secure Transport in Albania

    International Nuclear Information System (INIS)

    Dollani, K.; Grillo, B.; Telhaj, E.

    2016-01-01

    Attempts for the establishing of a safe and secure radioactive material transport in Albania began a decade ago with formulation of the different regulation in the field of safe and secure handling of the radioactive materials. In 2004 a special regulation for the safe transport of radioactive material was prepared and approved by the National Radiation Protection Commission). This regulation has been based in the IAEA standards for the radioactive material transport and was reviewed periodically. The last regulation of the radioactive material transport was approved by Albanian government through a governmental ordinance. The transport of the radioactive material in Albania is performed by licensed subjects, which fulfill all requirements of the mentioned governmental ordinance. Based in the existing regulation, for each transport of radioactive material, a special permission is issued by NRPC. The issuing of permission allows competent authority to provide necessary information on transport regularity and to have under survey all transports of the radioactive material carried out inside the country. Last year were issued more than 80 permissions for the transport of the different types and categories of the radioactive sources. (author)

  7. Measures to prevent, intercept and respond to illicit uses of nuclear material and radioactive sources. Proceedings

    International Nuclear Information System (INIS)

    2002-01-01

    As nuclear programmes have evolved, the quantities of nuclear material in use or storage, and the number of facilities operating or shut down has increased. In particular, the dismantling of nuclear weapons has resulted in greatly increased stockpiles of weapons usable plutonium and highly enriched uranium. Concern over the security of these and related materials has been further raised by the continued occurrence of cases of illicit trafficking. The risks are theft, leading to trafficking and possible illicit use, and sabotage which could lead to the creation of radiological hazards. The challenge is threefold: prevention, detection and interception, and response. Prevention starts with effective national systems for accountancy, control and protection. Detection and interception involves effective measures to combat illicit trafficking, and response requires planning for the consequences of theft and sabotage. Responsibilities in these fields are national, but nuclear security also has a powerful international dimension. The consequences of failures in national measures reach beyond national boundaries. The effectiveness of national nuclear security can be enhanced through international measures: through agreed international norms, standards and guides, through training and advice, through information exchange and the sharing of experience, and through developing common understandings and perceptions. The Stockholm Conference contributed by focusing on the threats, including terrorist, to nuclear and other radioactive materials; on how to assess them and on how to develop the appropriate security measures. National measures to protect nuclear material and facilities and the continuing development of international standards and obligations were described. The conference discussed the patterns and trends in the illicit trafficking of nuclear and other radioactive materials and national and international measures to combat such trafficking. Finally, it considered

  8. Measures to prevent, intercept and respond to illicit uses of nuclear material and radioactive sources. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-08-01

    As nuclear programmes have evolved, the quantities of nuclear material in use or storage, and the number of facilities operating or shut down has increased. In particular, the dismantling of nuclear weapons has resulted in greatly increased stockpiles of weapons usable plutonium and highly enriched uranium. Concern over the security of these and related materials has been further raised by the continued occurrence of cases of illicit trafficking. The risks are theft, leading to trafficking and possible illicit use, and sabotage which could lead to the creation of radiological hazards. The challenge is threefold: prevention, detection and interception, and response. Prevention starts with effective national systems for accountancy, control and protection. Detection and interception involves effective measures to combat illicit trafficking, and response requires planning for the consequences of theft and sabotage. Responsibilities in these fields are national, but nuclear security also has a powerful international dimension. The consequences of failures in national measures reach beyond national boundaries. The effectiveness of national nuclear security can be enhanced through international measures: through agreed international norms, standards and guides, through training and advice, through information exchange and the sharing of experience, and through developing common understandings and perceptions. The Stockholm Conference contributed by focusing on the threats, including terrorist, to nuclear and other radioactive materials; on how to assess them and on how to develop the appropriate security measures. National measures to protect nuclear material and facilities and the continuing development of international standards and obligations were described. The conference discussed the patterns and trends in the illicit trafficking of nuclear and other radioactive materials and national and international measures to combat such trafficking. Finally, it considered

  9. Estimation of radioactivity in structural materials of ETRR-1 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Imam, M [National Center for Nuclear Safety and Radiation Control Atomic Energy Authority, Cairo (Egypt)

    1997-12-31

    Precise knowledge of the thermal neutron flux in the different structural materials of a reactor is necessary to estimate the radioactive inventory in these materials that are needed in any decommissioning study of the reactor. ETRR-1 is a research reactor that went critical on 2/1691. In spite of this long age of the reactor, the effective operation time of this reactor is very short since the reactor was shutdown for long periods. Because of this long age one may think of reactor decommissioning. For this purpose, the radioactivity of the reactor structural materials was estimated. Apart from the reactor core, the important structural materials in the ETRR-1 are the reactor tank, shielding concrete, and the graphite thermal column. The thermal neutron flux was determined by the monte Carlo method in these materials and the isotope inventory and the radioactivity were calculated by the international code ORIGEN-JR. 1 fig.

  10. Fuzzy rule-based modelling for human health risk from naturally occurring radioactive materials in produced water

    International Nuclear Information System (INIS)

    Shakhawat, Chowdhury; Tahir, Husain; Neil, Bose

    2006-01-01

    Produced water, discharged from offshore oil and gas operations, contains chemicals from formation water, condensed water, and any chemical added down hole or during the oil/water separation process. Although, most of the contaminants fall below the detection limits within a short distance from the discharge port, a few of the remaining contaminants including naturally occurring radioactive materials (NORM) are of concern due to their bioavailability in the media and bioaccumulation characteristics in finfish and shellfish species used for human consumption. In the past, several initiatives have been taken to model human health risk from NORM in produced water. The parameters of the available risk assessment models are imprecise and sparse in nature. In this study, a fuzzy possibilistic evaluation using fuzzy rule based modeling has been presented. Being conservative in nature, the possibilistic approach considers possible input parameter values; thus provides better environmental prediction than the Monte Carlo (MC) calculation. The uncertainties of the input parameters were captured with fuzzy triangular membership functions (TFNs). Fuzzy if-then rules were applied for input concentrations of two isotopes of radium, namely 226 Ra, and 228 Ra, available in produced water and bulk dilution to evaluate the radium concentration in fish tissue used for human consumption. The bulk dilution was predicted using four input parameters: produced water discharge rate, ambient seawater velocity, depth of discharge port and density gradient. The evaluated cancer risk shows compliance with the regulatory guidelines; thus minimum risk to human health is expected from NORM components in produced water

  11. Ontario Hydro's transportation of radioactive material and emergency response plan

    International Nuclear Information System (INIS)

    Karmali, N.

    1993-01-01

    Ontario Hydro has been transporting radioactive material for almost 30 years without any exposure to the public or release to the environment. However, there have been three accidents involving Hydro's shipments of radioactive material. In addition to the quality packaging and shipping program, Ontario Hydro has an Emergency Response Plan and capability to deal with an accident involving a shipment of radioactive material. The Corporation's ability to respond, to effectively control and contain the situation, site remediation, and to provide emergency public information in the event of a road accident minimizes the risk to the public and the environment. This emphasizes their commitment to worker safety, public safety and impact to the environment. Response capability is mandated under various legislation and regulations in Canada

  12. Safe transport of radioactive material. Second edition

    International Nuclear Information System (INIS)

    1996-01-01

    In 1991, the International Atomic Energy Agency published Training Course Series No. 1 (TCS-1), a training manual that provides in 20 chapters a detailed discussion of the background, philosophy, technical bases and requirements and implementation aspects of the Regulations for the Safe Transport of Radioactive Material. The Transport Regulations are widely implemented by the IAEA's Member States and are also used as the bases for radioactive material transport requirements of modal organisations such as the International Maritime Organization and the International Civil Aviation Organization. This document is a supplement of TCS-1 to provide additional material in the form of learning aids and new exercises, that have been developed with the use of TCS-1 at succeeding IAEA training courses. The learning aids in the first part of the supplement are hitherto unpublished material that provide detailed guidance useful in solving the exercises presented in the second part. Solutions to the exercises are on field at the IAEA Secretariat and are available by arrangement to lectures presenting IAEA training courses. 4 refs, 1 fig., 6 tabs

  13. RADTRAN3, Risk of Radioactive Material Transport

    International Nuclear Information System (INIS)

    Madsen, M.M.; Taylor, J.M.; Ostmeyer, R.M.; Reardon, P.C.

    2001-01-01

    1 - Description of program or function: RADTRAN3 is a flexible analytical tool for calculating both the incident-free and accident impacts of transporting radioactive materials. The consequences from incident-free shipments are apportioned among eight population sub- groups and can be calculated for several transport modes. The radiological accident risk (probability times consequence summed over all postulated accidents) is calculated in terms of early fatalities, early morbidities, latent cancer fatalities, genetic effects, and economic impacts. Ground-shine, ingestion, inhalation, direct exposure, resuspension, and cloud-shine dose pathways are modeled to calculate the radiological health risks from accidents. Economic impacts are evaluated based on costs for emergency response, cleanup, evacuation, income loss, and land use. RADTRAN3 can be applied to specific scenario evaluations (individual transport modes or specified combinations), to compare alternative modes or to evaluate generic radioactive material shipments. Unit-risk factors can easily be evaluated to aid in performing generic analyses when several options must be compared with the amount of travel as the only variable. RADTRAN4 offers advances in the handling of route-related data and in the treatment of multiple-isotope materials. 2 - Method of solution: There are several modes used in the transporting of radioactive material such as trucks, passenger vans, passenger airplanes, rail and others. With these modes of transport come several shipment scenarios. The RADTRAN4 methodology uses material, transportation, population distribution, and health effects models to treat the incident-free case. To handle the vehicle accident impacts, accident severity and package release, meteorological dispersion, and economic models are also employed. 3 - Restrictions on the complexity of the problem: There are no apparent limitations due to programming dimensions

  14. Discrimination of Naturally Occurring Radioactive Material in Plastic Scintillator Material

    International Nuclear Information System (INIS)

    Ely, James H.; Kouzes, Richard T.; Geelhood, Bruce D.; Schweppe, John E.; Warner, Ray A.

    2003-01-01

    Plastic scintillator material is used in many applications for the detection of gamma-rays from radioactive material, primarily due to the sensitivity per unit cost compared to other detection materials. However, the resolution and lack of full-energy peaks in the plastic scintillator material prohibits detailed spectroscopy. Therefore, other materials such as doped sodium iodide are used for spectroscopic applications. The limited spectroscopic information can however be exploited in plastic scintillator materials to provide some discrimination. The discrimination between man-made and naturally occurring sources would be useful in reducing alarm screening for radiation detection applications which target man-made sources. The results of applying the limited energy information from plastic scintillator material for radiation portal monitors are discussed.

  15. The transport of radioactive materials - Future challenges

    International Nuclear Information System (INIS)

    Wilkinson, W.L.

    2008-01-01

    The International Atomic Energy Agency (IAEA) Regulations for the Safe Transport of Radioactive Materials, TS-R-1, set the standards for the packages used in the transport of radioactive materials under both normal and accident conditions. Transport organisations are also required to implement Radiation Protection Programmes to control radiation dose exposure to both workers and the public. The industry has now operated under this regulatory regime safely and efficiently for nearly 50 years. It is vital that this record be maintained in the future when the demands on the transport industry are increasing. Nuclear power is being called upon more and more to satisfy the world's growing need for sustainable, clean and affordable electricity and there will be a corresponding demand for nuclear fuel cycle services. There will also be a growing need for other radioactive materials, notably large sources such as Cobalt 60 sources for a range of important medical and industrial uses, as well as radio-pharmaceuticals. A reliable transport infrastructure is essential to support all these industry sectors and the challenge will be to ensure that this can be maintained safely and securely in a changing world where public and political concerns are increasing. This paper will discuss the main issues which need to be addressed. The demand for uranium has led to increased exploration and the development of mines in new locations far removed from the demand centres. This inevitably leads to more transport, sometimes from areas potentially lacking in transport infrastructure, service providers, and experience. The demand for sources for medical applications will also increase, particularly from the rapidly developing regions and this will also involve new transport routes and increased traffic. This raises a variety of issues concerning the ability of the transport infrastructure to meet the future challenge, particularly in an environment where there already exists reluctance on

  16. Performance assessment for proposed disposal of NORM at an existing landfill in New South Wales, Australia

    Energy Technology Data Exchange (ETDEWEB)

    Fountain, S., E-mail: sfountain@geosyntec.com [Geosyntec Consultants, Inc., Kennesaw, Georgia (United States); Jones, J., E-mail: john.jones@sita.com.au [SITA Australia, Chullora, New South Wales (Australia); Christopherson, J.; Drummond, C., E-mail: jchristopherson@geosyntec.com, E-mail: cdrummond@geosyntec.com [Geosyntec Consultants, Inc., Orlando, FL (United States); Bruce, R.; Duffy, D., E-mail: rbruce@geosyntec.com, E-mail: dduffy@geosyntec.com [Geosyntec Consultants, Sdn. Bhd., Kuala Lumpur (Malaysia); Beech, J., E-mail: jbeech@geosyntec.com [Geosyntec Consultants, Inc., Kennesaw, Georgia (United States)

    2014-07-01

    Approximately 5,000 tonnes of soil containing naturally occurring radioactive materials (NORM), primarily consisting of the uranium and thorium series, were proposed to be removed from properties undergoing remedial action in New South Wales (NSW), Australia. These 'NORM soils' were proposed to be excavated and transported for disposal at an existing landfill facility in NSW. Once at the landfill facility and confirmed to meet appropriate acceptance criteria, the NORM soils were proposed to be disposed of in an encapsulated waste cell (EWC) within a previously permitted and constructed restricted solid waste (RSW) cell at the landfill. The characteristics of the NORM soils require that they be disposed of and managed in an appropriate manner, both near-term as well as beyond the time when the EWC liner system can be assumed to have degraded. A Performance Assessment (PA) was conducted to help assess the potential long-term incremental dose received by a target receptor group related to the disposal of the NORM soils at the landfill facility. The PA consisted of computing the doses to a designated receptor group associated with the planned disposal of the soils within the licensed RSW cell at the landfill facility. Primary tasks performed for this PA included conceptual site model (CSM) development, infiltration (Hydrologic Evaluation of Landfill Performance [HELP]) modeling, and radionuclide fate and transport and dose (RESidual RADioactivity-OFFSITE [RESRAD-OFFSITE]) modeling. The results of the PA indicated that the computed doses to the receptors associated with the disposal of NORM soils in the EWC within the RSW at the landfill facility was in compliance with both the current NSW Radiation Control Regulation 2013 and International Commission on Radiological Protection (ICRP) dose limits for the designated potential receptor group. (author)

  17. Status of the Regulation for safe and secure transport of radioactive materials in Madagascar

    International Nuclear Information System (INIS)

    Raoelina Andriambololona; Zafimanjato, J.L.R.; Solofoarisina, W.C.; Randriantseheno, H.F.

    2011-01-01

    Radioactive sources are widely used in medicine, in industrial exploration and development, as well as in basic scientific research and education in Madagascar. The ability to use such radioactive materials in these sectors depends on their safe and secure transport both within and between countries. Transport safety of radioactive materials within the country is regulated. The law No. 97-041 on radiation protection and radioactive waste management in Madagascar promulgated in January 1998 and the decree No.2735/94 dealing the transport of radioactive materials promulgated in June 1994 govern all activities related to the transport of radioactive material. This law was established to meet the requirements of the International Basic Safety Standards (BSS, IAEA Safety Series 115). It is not fully consistent with current international standards (GS-R-1). Indeed, in order to enhance the security of radioactive sources, Madagascar has implemented the Code of Conduct and the Guidance on the Import and Export of Radioactive Sources. Faced with delays and denials of shipment of radioactive materials issues, the National Focal Point has been appointed to work with ISC members and the regional networks on the global basis.

  18. Status of the regulation for safe and secure transport of radioactive materials in Madagascar

    International Nuclear Information System (INIS)

    Andriambololona, Raoelina; Zafimanjato, J.L.R.; Solofoarisina, W.C.; Randriantseheno, H.F.

    2016-01-01

    Radioactive sources are widely used in medicine, in industrial exploration and development, as well as in basic scientific research and education in Madagascar. The ability to use such radioactive materials in these sectors depends on their safe and secure transport both within and between countries. Transport safety of radioactive materials within the country is regulated. The law n° 97-041 on radiation protection and radioactive waste management in Madagascar promulgated in January 1998 and the decree n° 2735/94 dealing the transport of radioactive materials promulgated in June 1994 govern all activities related to the transport of radioactive material. This law was established to meet the requirements of the International Basic Safety Standards (BSS, IAEA Safety Series 115). It is not fully consistent with current international standards (GS-R-1). Indeed, in order to enhance the security of radioactive sources, Madagascar has implemented the Code of Conduct and the Guidance on the Import and Export of Radioactive Sources. Faced with delays and denials of shipment of radioactive materials issues, the National Focal Point has been appointed to work with ISC members and the regional networks on the global basis. (author)

  19. The problems and suggestions on supervision of the radioactive material transport

    International Nuclear Information System (INIS)

    Cao Fangfang; Que Ji; Zhang Min; Pan Yuting

    2012-01-01

    The developing background and importance of the rules on supervision of the radioactive material transport are discussed in the paper. Based on the existing problems found in the process of implementing the rule 'Regulations for the safe transport of Radioactive Material', some countermeasures are proposed. (authors)

  20. Transport of radioactive materials

    International Nuclear Information System (INIS)

    Hamel, P.E.

    In Canada, large numbers of packages containing radioactive materials are shipped for industrial, medical and commercial purposes. The nature of the hazards and the associated risks are examined; the protection measures and regulatory requirements are indicated. The result of a survey on the number of packages being shipped is presented; a number of incidents are analyzed as a function of their consequences. Measures to be applied in the event of an emergency and the responsibility for the preparation of contingency plans are considered. (author) [fr

  1. Radiation surveys of radioactive material shipments

    International Nuclear Information System (INIS)

    Howell, W.P.

    1986-07-01

    Although contractors function under the guidance of the Department of Energy, there is often substantial variation in the methods and techniques utilized in making radiation measurements. When radioactive materials are shipped from one contractor to another, the measurements recorded on the shipping papers may vary significantly from those measured by the receiver and has been a frequent cause of controversy between contractors. Although significant variances occur in both measurements of radiation fields emanating from shipment containers and measurements of residual radioactivity on the surfaces of the containers, the latter have been the most troublesome. This report describes the measurement of contamination on the exterior surfaces of shipment containers

  2. Quality assurance for the safe transport of radioactive material

    International Nuclear Information System (INIS)

    1994-01-01

    All activities related to the safe transport of radioactive material should be covered by a quality assurance programme. This publication recognizes that a single transport operation often involves several different organizations, each having specific responsibilities. Hence, it is unlikely that the operation will be covered by a single quality assurance programme. Each quality assurance programme should be tailored to the specific organizational structure for which the programme is prepared, with account taken of the particular transport activities of that organization and the interfaces with other organizations. The aim of this publication is to give a detailed interpretation of what must be done by whom to produce a quality assurance programme for radioactive material transport. This publication provides guidance on methods and practical examples to develop QA programmes for the safe transport of radioactive material. It provides information on how to develop the programme, the standards and the common features of a QA programme

  3. Need to increase public awareness of the safety of radioactive materials transport

    International Nuclear Information System (INIS)

    Bishop, R.W.

    1983-01-01

    There are two aspects to the problem of the public perception of radioactive materials transport: the first is a lack of knowledge on the part of the public about the facts, and the second is the distorted presentation by the media. These two problems are obviously interrelated - the more unaware the public is of the actual safety of radioactive materials transport, the more it is likely to be influenced, and frightened, by inaccurate reporting. The obvious question is, what can we as an industry do to educate the public and to facilitate more neutral reporting about the facts involving radioactive materials transport. This question is answered by describing an excellent example of a situation where the industry acted cohesively and effectively to respond to fallacious allegations concerning the safety of the transportation of radioactive materials

  4. US perspective of transporting radioactive materials by sea

    International Nuclear Information System (INIS)

    Chitwood, R.B.

    1978-01-01

    The reason for the US interest in transportation of radioactive materials by sea is discussed. The national and international institutional considerations related to this subject are covered. Some economic aspects in transporting these materials, particularly spent fuels, by sea are also presented

  5. Natural radioactivity in building materials in Iran

    International Nuclear Information System (INIS)

    Mehdizadeh, S.; Faghihi, R.; Sina, S.

    2011-01-01

    This work presents a comprehensive study of natural radioactivity in building materials used in Iran. For this purpose, 177 samples of five types of building material, i.e. cement, gypsum, cement blocks, gravel and brick, were gathered from different regions of the country and analyzed by gamma spectroscopy to quantify radioactivity concentrations using a high purity germanium (HPGe) detector and a spectroscopy system. According to the results of this investigation, cement samples had maximum values of the mean Ra-226 and Th-232 concentrations, 39.6 and 28.9 Bq/kg, respectively, while the lowest value for mean concentration of these two radionuclides were found in gypsum samples 8.1 and 2.2 Bq/kg, respectively. The highest (851.4 Bq/kg) and lowest (116.2 Bq/kg) value of K-40 mean concentration were found in brick and gypsum samples, respectively. The absorbed dose rate and the annual effective dose were also calculated from the radioactivity content of the radionuclides. The results show that the maximum values of dose rate and annual effective dose equivalent were 53.72 nGy/h and 0.37 mSv/y in brick samples. The radium equivalent activities R eq calculated were below the permissible level of 370 Bq/kg for all building materials. The values of hazard indexes were below the recommended levels, therefore, it is concluded that the buildings constructed from such materials are safe for the inhabitants. The results of this study are consistent with the results of other investigations in different parts of the world. (authors)

  6. Monitoring of the release of gaseous and aerosol-bound radioactive materials. Pt. 2

    International Nuclear Information System (INIS)

    1992-01-01

    KTA 1503 contains requirements on technical installations and supplementary organizational measures considered necessary in order to monitor the release of gaseous and aerosol-bound radioactive materials. It consists of part 1: Monitoring of the release of radioactive materials together with stack gas during normal operation; part 2: Monitoring of the release of radioactive materials together with stack gas in the event of incidents; part 3: Monitoring of radioactive materials not released together with stack gas. The concept on which this rule is based is to ensure that in the case of incidents during which the result of effluent monitoring remains meaningful, such monitoring can be reliably performed. (orig./HSCH) [de

  7. National inventory of radioactive wastes and valorizable materials. Synthesis report

    International Nuclear Information System (INIS)

    2004-01-01

    This national inventory of radioactive wastes is a reference document for professionals and scientists of the nuclear domain and also for any citizen interested in the management of radioactive wastes. It contains: 1 - general introduction; 2 - the radioactive wastes: definition, classification, origin and management; 3 - methodology of the inventory: organization, accounting, prospective, production forecasting, recording of valorizable materials, exhaustiveness, verification tools; 4 - general results: radioactive waste stocks recorded until December 31, 2002, forecasts for the 2003-2020 era, post-2020 prospects: dismantling operations, recording of valorizable materials; 5 - inventory per producer or owner: front-end fuel cycle facilities, power generation nuclear centers, back-end fuel cycle facilities, waste processing or maintenance facilities, civil CEA research centers, non-CEA research centers, medical activities (diagnostics, therapeutics, analyses), various industrial activities (sources fabrication, control, particular devices), military research and experiment centers, storage and disposal facilities; 6 - elements about radioactive polluted sites; 7 - examples of foreign inventories; 8 - conclusion and appendixes. (J.S.)

  8. Advisory Material for the IAEA Regulations for the Safe Transport of Radioactive Material. Safety Guide (Spanish Edition)

    International Nuclear Information System (INIS)

    2010-01-01

    This Safety Guide provides recommendations on achieving and demonstrating compliance with IAEA Safety Standards Series No. TS-R-1, Regulations for the Safe Transport of Radioactive Material, 2005 Edition, establishing safety requirements to be applied to the national and international transport of radioactive material. Transport is deemed to comprise all operations and conditions associated with and involved in the movement of radioactive material; these include the design, fabrication and maintenance of packaging, and the preparation, consigning, handling, carriage, storage in transit and receipt at the final destination of packages. This publication supersedes IAEA Safety Series No. TS-G-1.1, 2002 Edition

  9. Radioactive material in the West Lake Landfill: Summary report

    International Nuclear Information System (INIS)

    1988-06-01

    The West Lake Landfill is located near the city of St. Louis in Bridgeton, St. Louis County, Missouri. The site has been used since 1962 for disposing of municipal refuse, industrial solid and liquid wastes, and construction demolition debris. This report summarizes the circumstances of the radioactive material in the West Lake Landfill. The radioactive material resulted from the processing of uranium ores and the subsequent by the AEC of processing residues. Primary emphasis is on the radiological environmental aspects as they relate to potential disposition of the material. It is concluded that remedial action is called for. 8 refs., 2 figs., 1 tab

  10. Radiation protection programmes for the transport of radioactive material. Safety guide

    International Nuclear Information System (INIS)

    2007-01-01

    This Safety Guide provides guidance on meeting the requirements for the establishment of radiation protection programmes (RPPs) for the transport of radioactive material, to optimize radiation protection in order to meet the requirements for radiation protection that underlie the Regulations for the Safe Transport of Radioactive Material. This Guide covers general aspects of meeting the requirements for radiation protection, but does not cover criticality safety or other possible hazardous properties of radioactive material. The annexes of this Guide include examples of RPPs, relevant excerpts from the Transport Regulations, examples of total dose per transport index handled, a checklist for road transport, specific segregation distances and emergency instructions for vehicle operators

  11. International dimension of illicit trafficking in nuclear and other radioactive material

    International Nuclear Information System (INIS)

    Zaitseva, L.; Bunn, G.; Steinhaeusler, F.

    2002-01-01

    Full text: Illicit trafficking in nuclear and other radioactive material is primarily associated with Russia and other former Soviet republics. Indeed, with the collapse of the former Soviet Union (FSU) in 1991, hundreds of tons of weapons-usable nuclear material and thousands of radiation sources were left without adequate control and protection, thus posing a risk for sabotage, theft and diversion. Out of 700 illicit trafficking incidents recorded in the Stanford's database on nuclear smuggling, theft and orphan radiation sources (DSTO), over 450 either took place in the former Soviet Union or involved material that had reportedly originated from the FSU. In the period 1992-1994, Western and Eastern Europe were heavily affected by the inflow of nuclear material smuggled from the FSU. Since then, various measures were taken by the European countries and former Soviet republics to prevent the trafficking of radioactive substances ranging from the improvement of physical security at nuclear facilities to the installation of detection equipment at international borders. However, although the number of illicit trafficking incidents in Western Europe has decreased dramatically since 1994 and the overall annual number of such cases has been lower than in 1994, evidence suggests that diverted nuclear material is still being smuggled out of the FSU. An increased number of interceptions of nuclear and other radioactive material in the Caucasus, Turkey and Central Asia, well-known for their drugs and arms smuggling routes, over the past three years demonstrates that the material may now be moving south rather than west. This is particularly alarming considering the proximity of three countries to the potential end-users of nuclear and other radioactive material, such as AI Qaida terrorist network and aspiring nuclear weapon states in the Middle East. Although the FSU remains the major potential source of nuclear and other radioactive material, it is not the only one. Thefts

  12. Manual of respiratory protection against airborne radioactive materials

    Energy Technology Data Exchange (ETDEWEB)

    Caplin, J.L.; Held, B.J.; Catlin, R.J.

    1976-10-01

    The manual supplements Regulatory Guide 8.15, ''Acceptable Programs for Respiratory Protection''. It provides broad guidance for the planned use of respirators to protect individuals from airborne radioactive materials that might be encountered during certain operations. The guidance is intended for use by management in establishing and supervising programs and by operating personnel in implementing programs. Guidance is primarily directed to the use of respirators to prevent the inhalation of airborne radioactive materials. Protection against other modes of intake (e.g., absorption, swallowing, wound injection) is, in general, not covered nor is the use of protective equipment for head, eye, or skin protection.

  13. Natural radioactivity in mining and hydrocarbon extraction industry. Vol. 1

    Energy Technology Data Exchange (ETDEWEB)

    Testa, C; Desideri, D; Meli, M A; Roselli, C [General Chemistry Institute, Urbino University, 61029 Urbino, (Italy)

    1996-03-01

    Water and soil natural radioactivity is a well known phenomenon which can produced by variable concentrations of uranium and thorium series radionuclides. Generally, the relevant radiological hazard is not important; however, some radiation protection problems can occur in particular industrial processes involving the treatment of large quantities of materials. In this case a high concentration of radioactive substance (NORM: nationally occurring radioactive materials) can be found at special points of the plant, in the manufacture by-products and in the waters. Sometimes the national radioactivity concentration can be so high to raise radiation protection problems which can be assimilated in a sense to the ones faced in the presence, handling, and disposal of non-sealed radioactive sources. In this paper the following mining and hydrocarbon extraction plants were particularly taken into account: (a) industries using zircon sands to produce refractory and ceramic materials; (b) phosphorites manufacture to prepare phosphoric acids, plasters and fertilizers (c) hydrocarbon extraction and treatment processes where formations of low specific activity (L.S.A.) scales and sludges are produced. The relevant results and the possible radiation protection risks for the professional exposed staff will be reported. A special emphasis will be given to some african phosphorites (boucraa, togo, morocco), and L.S.A. scales (tunisia, congo, Egypt). 4 figs., 5 tabs.

  14. Natural radioactivity in mining and hydrocarbon extraction industry. Vol. 1

    International Nuclear Information System (INIS)

    Testa, C.; Desideri, D.; Meli, M.A.; Roselli, C.

    1996-01-01

    Water and soil natural radioactivity is a well known phenomenon which can produced by variable concentrations of uranium and thorium series radionuclides. Generally, the relevant radiological hazard is not important; however, some radiation protection problems can occur in particular industrial processes involving the treatment of large quantities of materials. In this case a high concentration of radioactive substance (NORM: nationally occurring radioactive materials) can be found at special points of the plant, in the manufacture by-products and in the waters. Sometimes the national radioactivity concentration can be so high to raise radiation protection problems which can be assimilated in a sense to the ones faced in the presence, handling, and disposal of non-sealed radioactive sources. In this paper the following mining and hydrocarbon extraction plants were particularly taken into account: a) industries using zircon sands to produce refractory and ceramic materials; b) phosphorites manufacture to prepare phosphoric acids, plasters and fertilizers c) hydrocarbon extraction and treatment processes where formations of low specific activity (L.S.A.) scales and sludges are produced. The relevant results and the possible radiation protection risks for the professional exposed staff will be reported. A special emphasis will be given to some african phosphorites (boucraa, togo, morocco), and L.S.A. scales (tunisia, congo, Egypt). 4 figs., 5 tabs

  15. Radioactive materials system of the ININ (SMATRAD)

    International Nuclear Information System (INIS)

    Rivero G, E.; Ledezma F, L.E.; Valdivia R, D.

    2007-01-01

    The radioactive iodine (I-131) it is an isotope created starting from the iodine with the purpose of emitting radiation for medicinal use. When a small dose of I-131 is ingested, this is absorbed in the sanguine torrent in the gastrointestinal tract (Gl) and it is concentrated by the blood on the thyroid gland, where it begins to destroy the cells. This treatment makes that the activity of the thyroid decreases in great measure and in some cases it can transform an hyperactive thyroid in a hypoactive thyroid which requires additional treatments. The sodium iodide I-131 is one of the products elaborated and marketed by the ININ in the Radiopharmaceuticals and Radioisotopes production plant, dependent of the Radioactive Material Department of the Nuclear Applications in the Health Management. The Plant is the only one in its type that exists in the country, it has Sanitary License and Good Practice of Production Certificate, emitted by the Secretary of Health, and licenses for the handling and the transportation of radioactive material, sent by the National Commission of Nuclear Safety and Safeguards. Also, the quality system of the plant is certified under the ISO 9001:2000 standard. (Author)

  16. Scientific capabilities of the advanced light source for radioactive materials

    International Nuclear Information System (INIS)

    Shuh, D.K.

    2007-01-01

    The Advanced Light Source (ALS) of Lawrence Berkeley National Laboratory (LBNL) is a third-generation synchrotron radiation light source and is a U.S. Department of Energy (DOE) national user facility. Currently, the ALS has approximately forty-five operational beamlines spanning a spectrum of scientific disciplines, and provides scientific opportunities for more than 2 000 users a year. Access to the resources of the ALS is through a competitive proposal mechanism within the general user program. Several ALS beamlines are currently being employed for a range of radioactive materials investigations. These experiments are reviewed individually relying on a graded hazard approach implemented by the ALS in conjunction with the LBNL Environmental, Health, and Safety (EH and S) Radiation Protection Program. The ALS provides radiological work authorization and radiological control technician support and assistance for accepted user experimental programs. LBNL has several radioactive laboratory facilities located near the ALS that provide support for ALS users performing experiments with radioactive materials. The capabilities of the ALS beamlines for investigating radioactive materials are given and examples of several past studies are summarised. (author)

  17. IAEA regulatory initiatives for the air transport of large quantities of radioactive materials

    International Nuclear Information System (INIS)

    Luna, R.E.; Wangler, M.W.; Selling, H.A.

    1992-01-01

    The International Atomic Energy Agency (IAEA) has been laboring since 1988 over a far reaching change to its model regulations (IAEA, 1990) for the transport of radioactive materials (RAM). This change could impact the manner in which certain classes of radioactive materials are shipped by air and change some of the basic tenets of radioactive material transport regulations around the world. This report discusses issues associated with air transport regulations

  18. Regulations for the safe transport of radioactive material. 1996 ed.

    International Nuclear Information System (INIS)

    1996-01-01

    This publication is the revised version of the IAEA's Regulations for the Safe Transport of Radioactive Materials as approved by the Board of Governors in September 1996. It establishes standards of safety which provide an acceptable level of control of the radiation, criticality and thermal hazards to persons, property and the environment that are associated with the transport of radioactive material. After an introductory section, the publication is structured as follows: Section 2 defines the terms that are required for the purposes of the Regulations; Section 3 provides general provisions; Section 4 gives the activity limits and material restrictions used throughout these Regulations; Section 5 provides requirements and controls for transport; Section 6 provides requirements for radioactive materials and for packagings and packages; Section 7 provides requirements for test procedures; Section 8 provides approval and administrative requirements. The requirements for the transport of specified types of consignments are included in an abbreviated form as Schedules. Refs, figs, tabs

  19. Specialized equipment needs for the transportation of radioactive material

    International Nuclear Information System (INIS)

    Condrey, D.; Lambert, M.

    1998-01-01

    To ensure the safe and reliable transportation of radioactive materials and components, from both the front and back-end of the nuclear fuel cycle, a transport management company needs three key elements: specialized knowledge, training and specialized equipment. These three elements result, in part, from national and international regulations which require specialized handling of all radioactive shipments. While the reasons behind the first two elements are readily apparent, the role of specialized equipment is often not considered until too late shipment process even though it plays an integral part of any radioactive material transport. This paper will describe the specialized equipment needed to transport three of the major commodities comprising the bulk of international nuclear transports: natural uranium (UF6), low enriched uranium (UF6) and fresh nuclear fuel. (authors)

  20. Planning and Preparing for Emergency Response to Transport Accidents Involving Radioactive Material. Safety Guide

    International Nuclear Information System (INIS)

    2009-01-01

    This Safety Guide provides guidance on various aspects of emergency planning and preparedness for dealing effectively and safely with transport accidents involving radioactive material, including the assignment of responsibilities. It reflects the requirements specified in Safety Standards Series No. TS-R-1, Regulations for the