WorldWideScience

Sample records for radioactive decontamination waste

  1. Chemical decontamination method for radioactive metal waste

    International Nuclear Information System (INIS)

    Onuma, Tsutomu; Akimoto, Hidetoshi

    1991-01-01

    The invention relates to a decontamination method for radioactive metal waste products derived from equipment that handles radioactive materials whose surfaces have been contaminated; in particular it concerns a decontamination method that reduces the amount of radioactive waste by decontaminating radioactive waste substances to a level of radioactivity in line with normal waste products. In order to apply chemical decontamination to metal waste products whose surfaces are divided into carbon steel waste and stainless steel waste; the carbon steel waste is treated using only a primary process in which the waste is immersed in a sulfuric acid solution, while the stainless steel waste must be treated with both the primary process and then electrolytically reduces it for a specific length of time and a secondary process that uses a solution of sulfuric acid mixed with oxidizing metal salts. The method used to categorize metal waste into carbon steel waste and stainless steel waste involves determining the presence, or absence, of magnetism. Voltage is applied for a fixed duration; once that has stopped, electrolytic reduction repeats the operative cycle of applying, then stopping voltage until the potential of the radioactive metal waste is retained in the active region. 1 fig. 2 tabs

  2. Chemical decontamination of radioactive waste

    International Nuclear Information System (INIS)

    Mohamed, H.I.

    2006-01-01

    Radioactive wastes are generated in a number of different kinds of facilities and arise in a wide range of concentrations of radioactive materials and in a variety of physical and chemical forms. There is also a variety of alternatives for treatment and conditioning of the wastes prior disposal. The importance of treatment of radioactive waste for protection of human and environment has long been recognized and considerable experience has gained in this field. Generally, the methods used for treatment of radioactive wastes can be classified into three type's biological, physical and chemical treatment this physical treatment it gives good result than biological treatment. Chemical treatment is fewer hazards and gives good result compared with biological and physical treatments. Chemical treatment is fewer hazards and gives good result compared with biological and physical treatments. In chemical treatment there are different procedures, solvent extraction, ion exchange, electro dialysis but solvent extraction is best one because high purity can be optioned on the other hand the disadvantage that it is expensive. Beside the solvent extraction technique one can be used is ion exchange which gives reasonable result, but requires pretreatment that to avoid in closing of column by colloidal and large species. Electro dialysis technique gives quite result but less than solvent extraction and ion exchange technique the advantage is a cheep.(Author)

  3. Dry blasting decontaminating method for radioactive waste

    International Nuclear Information System (INIS)

    Nishiwaki, Hitoshi.

    1993-01-01

    In the present invention, when abrasives are dry blasted on the surface of radioactive wastes and the recovered abrasives are classified for re-use, abrasives having a microvicker's hardness (HMV) of greater than 600 and a grain size of greater than 1mm are used in a case where the radioactive wastes to be abraded are stainless steels. This enables dry blasting decontamination for stainless steels which has been considered to be impossible. In addition since the amount of secondary wastes are reduced, it is extremely effective. (T.M.)

  4. Chemical decontamination method for radioactive metal waste

    International Nuclear Information System (INIS)

    Tanaka, Akio; Onuma, Tsutomu; Yamazaki, Sei; Miura, Haruki.

    1993-01-01

    The present invention provides a chemical decontamination method for radioactive metal wastes, which are generated from radioactive material handling facilities and the surfaces of which are contaminated by radioactive materials. That is, it has a feature of applying acid dissolution simultaneously with mechanical grinding. The radioactive metal wastes are contained in a vessel such as a barrel together with abrasives in a sulfuric acid solution and rotated at several tens rotation per minute. By such procedures for the radioactive metal wastes, (1) cruds and passive membranes are mechanically removed, (2) exposed mother metal materials are uniformly brought into contact with sulfuric acid and further (3) the mother metal materials dissolve the cruds and the passive membranes also chemically by a reducing dissolution (so-called local cell effect). According to the method of the present invention, stainless steel metal wastes having cruds and passive membranes can rapidly and efficiently be decontaminated to a radiation level equal with that of ordinary wastes. (I.S.)

  5. Chemical decontamination method for radioactive metal waste

    International Nuclear Information System (INIS)

    Onuma, Tsutomu; Tanaka, Akio; Shibuya, Sadao.

    1991-01-01

    When contaminants mainly composed of copper remained on the surface of stainless steel wastes sent from an electrolytic reduction as a first step are chemically decontaminated, metal wastes are discriminated to carbon steel wastes and stainless steel wastes. Then, the carbon steel wastes are applied only with the first step of immersing in a sulfuric acid solution, and stainless steel wastes are applied with a first step of immersing into a sulfuric acid solution for electrolytic reduction for a predetermined period of time and a second step of immersing into a liquid in which an oxidative metal salt is added to sulfuric acid. The decontamination liquid which is used for immersing the stainless steel wastes in the second step and the oxidation force of which is lowered is used as the sulfuric acid solution in the first step for the carbon steel wastes. In view of the above, the decontamination liquid of the second step can be utilized most effectively, enabling to greatly decrease the secondary wastes and to improve decontamination efficiency. (T.M.)

  6. Method of decontaminating radioactive metal wastes

    International Nuclear Information System (INIS)

    Miyaji, Nobuyoshi.

    1985-01-01

    Purpose: To completely prevent the surface contamination of an equipment and decrease the amount of radioactive wastes to be resulted. Method: The surfaces of vessels, pipeways or the likes of nuclear reactor facilities to be contaminated with radioactive materials are appended with thin plates of metals identical or different from the constituents of the surfaces so as to be releasable after use. The material and the thickness of the plates and the method of appending then are determined depending on the state of use of the appended portions. Since only the stripped plates have to be processed as radioactive wastes, the amount of wastes can be decreased and, since the scrap materials can be reused, it is advantageous in view of the resource-saving. (Sekiya, K.)

  7. Low level radioactive liquid waste decontamination by electrochemical way

    International Nuclear Information System (INIS)

    Tronche, E.

    1994-10-01

    As part of the work on decontamination treatments for low level radioactive aqueous liquid wastes, the study of an electro-chemical process has been chosen by the C.E.A. at the Cadarache research centre. The first part of this report describes the main methods used for the decontamination of aqueous solutions. Then an electro-deposition process and an electro-dissolution process are compared on the basis of the decontamination results using genuine radioactive aqueous liquid waste. For ruthenium decontamination, the former process led to very high yields (99.9 percent eliminated). But the elimination of all the other radionuclides (antimony, strontium, cesium, alpha emitters) was only favoured by the latter process (90 percent eliminated). In order to decrease the total radioactivity level of the waste to be treated, we have optimized the electro-dissolution process. That is why the chemical composition of the dissolved anode has been investigated by a mixture experimental design. The radionuclides have been adsorbed on the precipitating products. The separation of the precipitates from the aqueous liquid enabled us to remove the major part of the initial activity. On the overall process some operations have been investigated to minimize waste embedding. Finally, a pilot device (laboratory scale) has been built and tested with genuine radioactive liquid waste. (author). 77 refs., 41 tabs., 55 figs., 4 appendixes

  8. Decontamination processes for low level radioactive waste metal objects

    International Nuclear Information System (INIS)

    Longnecker, E.F.; Ichikawa, Sekigo; Kanamori, Osamu

    1996-01-01

    Disposal and safe storage of contaminated nuclear waste is a problem of international scope. Although the greatest volume of such waste is concentrated in the USA and former Soviet Union, Western Europe and Japan have contaminated nuclear waste requiring attention. Japan's radioactive nuclear waste is principally generated at nuclear power plants since it has no nuclear weapons production. However, their waste reduction, storage and disposal problems may be comparable to that of the USA on an inhabited area basis when consideration is given to population density where Japan's population, half that of the USA, lives in an area slightly smaller than that of California's. If everyone's backyard was in California, the USA might have insoluble radioactive waste reduction, storage and disposal problems. Viewing Japan's contaminated nuclear waste as a national problem requiring solutions, as well as an economic opportunity, Morikawa began research and development for decontaminating low level radioactive nuclear waste seven years ago. As engineers and manufacturers of special machinery for many years Morikawa brings special electro/mechanical/pneumatic Skills and knowledge to solving these unique problems. Genden Engineering Services and Construction Company (GESC), an affiliate of Japan Atomic Power Company, recently joined with Morikawa in this R ampersand D effort to decontaminate low level radioactive nuclear waste (LLW) and to substantially reduce the volume of such nuclear waste requiring long term storage. This paper will present equipment with both mechanical and chemical processes developed over these several years by Morikawa and most recently in cooperation with GESC

  9. Development of chemical decontamination for low level radioactive wastes

    International Nuclear Information System (INIS)

    Ichikawa, Seigo; Omata, Kazuo; Obinata, Hiroshi; Nakajima, Yoshihiko; Kanamori, Osamu.

    1995-01-01

    During routine intermittent inspection and maintenance at nuclear power plants, a considerable quantity of low level radioactive waste is generated requiring release from the nuclear site or treating additionally. To decontaminate this waste for safe release from the nuclear power plant, the first step could be washing the waste in Methylene chloride, CH 2 Cl 2 , to remove most of the paint coating. However, CH 2 Cl 2 washing does not completely remove the paint coating from the waste, which in the next step is shot blasted with plastic bead media to loose and remove the remaining paint coating. Following in succession, in the third step, the waste is washed in a chelate solution, after which most waste is decontaminated and suitable to be released for recycling. The residual chelate solution may be decomposed into nontoxic carbon dioxide and water by an electrolysis process and then safely discharged into the environment. (author)

  10. Method and device of decontaminating radioactive solid wastes

    International Nuclear Information System (INIS)

    Hasegawa, Hiroshi; Tamada, Masami.

    1983-01-01

    Purpose: To surely enable grinding for the inner surface of hollow radioactive solid wastes such as pipeways or valves, as well as enable to decontaminate these solid wastes to such a level as being capable of processing in the same manner for the ordinary wastes. Method: A grinding piece abutting resiliently against the inner surface of a hollow radioactive solid wastes to be contaminated is attached at the top end of a flexible shaft, and the inner surface of the radioactive solid wastes is ground while rotating and slightly reciprocating, as well as axially moving the flexible shaft. Consequently, since the grinding piece is always abutted against the inner surface of the radioactive solid wastes just following after the profile of the inner surface, and the flexible shaft is resiliently flexed corresponding to the profile of the inner surface of the radioactive solid wastes, even an inner surface of radioactive solid wastes with a complicated configuration can surely be ground entirely. This surely enables to remove radioactive claddings and contaminated layers deposited on the surface. (Yoshihara, H.)

  11. Decontamination factors of ceramic filter in radioactive waste incineration system

    International Nuclear Information System (INIS)

    Kanbe, Hiromi; Mayuzumi, Masami; Ono, Tetsuo; Yoshiki, Shinya; Kouyama, Hiroaki; Nagae, Madoka; Sekiguchi, Ryosaku; Takaoku, Yoshinobu; Hozumi, Masahiro.

    1987-01-01

    A suspension-firing type radioactive waste incineration system is developed and cold demonstration testing of ceramic filters for the system are carried out. The incineration system, which is useful for a wide variety of waste materials, can serve to simplify the facilities and to reduce the costs for waste disposal. The incineration system can be used for drying-processing of concentrated waste liquids and disposal of flame resistant materials including ion exchange resins and rubber, as well as for ordinary combustible solid materials. An on-line backwash system is adopted to allow the ceramic filters to operate stably for a long period of time. For one-step filtering using the ceramic filter, the decontamination factor is greater than 10 5 for the processing of various wastes. In a practical situation, there exist vapor produced by the spray drier and the cladding in used ion exchange resin, which act to increase the decontamination performance of the ceramic filters to ensure safe operation. For the waste incineration system equipped with a waste gas processing apparatus consisting of a ceramic filter and HEPA filter, the overall decontamination factor is expected to be greater than 10 6 at portions down to the outlet of the ceramic filter and greater than 10 8 at portions down to the outlet of the HEPA filter. (Nogami, K.)

  12. Radioactive Waste Decontamination Using Selentec Mag*SepSM Particles

    International Nuclear Information System (INIS)

    Walker, D.D.

    1998-01-01

    A sorbent containing crystalline silicotitanate (CST) tested for cesium removal from simulated Savannah River Site (SRS) soluble high activity waste showed rapid kinetics (1 h contact time) and high distribution coefficients (Kd 4000 mL/g of CST). The sorbent was prepared by Selective Environmental Technologies, Inc., (Selentec) as a MAG*SEP particle containing CST obtained from the Molecular Sieve Department of UOP, LLC, Results of preliminary tests suggest potential applications of the Selentec MAG*SEP particles to radioactive waste decontamination at SRS

  13. Decontamination of liquid radioactive wastes using seeded ultrafiltration

    International Nuclear Information System (INIS)

    Kavanagh, P.; Goldsmith, A.

    1997-01-01

    A number of techniques may be used to treat radioactive wastes. This paper presents a discussion of the relative merits of two of these: ion exchange and membrane filtration, and discusses the overall benefit of using seeded filtration to combine the advantages of each, with selected examples of where these techniques have been used. Evaporation is another technique that can be used, however, because of its high capital and operating costs its use is limited and it is not discussed here. Examples of the decontamination of standard solutions by novel materials tested by the Novel Absorber Evaluation Club are presented, and the advantages of the new PAN-based absorbers discussed

  14. Decontamination of liquid radioactive waste by thorium phosphate

    International Nuclear Information System (INIS)

    Rousselle, J.; Grandjean, S.; Dacheux, N.; Genet, M.

    2004-01-01

    In the field of the complete reexamination of the chemistry of thorium phosphate and of the improvement of the homogeneity of Thorium Phosphate Diphosphate (TPD, Th 4 (PO 4 ) 4 P 2 O 7 ) prepared at high temperature, several crystallized compounds were prepared as initial powdered precursors. Due to the very low solubility products associated to these phases, their use in the field of the efficient decontamination of high-level radioactive liquid waste containing actinides (An) was carefully considered. Two main processes (called 'oxalate' and 'hydrothermal' chemical routes) were developed through a new concept combining the decontamination of liquid waste and the immobilization of the actinides in a ceramic matrix (TPD). In phosphoric media ('hydrothermal route'), the key-precursor was the Thorium Phosphate Hydrogen Phosphate hydrate (Th 2 (PO 4 ) 2 (HPO 4 ). H 2 O, TPHP, solubility product log(K S,0 0 ) ∼ - 67). The replacement of thorium by other tetravalent actinides (U, Np, Pu) in the structure, leading to the preparation of Th 2-x/2 An x/2 (PO 4 ) 2 (HPO 4 ). H 2 O solid solutions, was examined. A second method was also considered in parallel to illustrate this concept using the more well-known precipitation of oxalate as the initial decontamination step. For this method, the final transformation to single phase TPD containing actinides was purchased by heating a mixture of phosphate ions with the oxalate precipitate at high temperature. (authors)

  15. Radioactivity decontamination efficiency of ceramic filter in an incineration volume reduction system of radioactive waste

    International Nuclear Information System (INIS)

    Kanbe, Hiromi; Mayuzumi, Masami; Yoshiki, Sinya; Sema, Toru; Koyama, Hiroaki; Ono, Tetsuo; Nagae, Madoka; Takaoku, Yoshinobu; Hozumi, Masahiro.

    1987-01-01

    The small pilot facility of a cyclone type suspension incineration system of radioactive waste was set up in order to evaluate the decontamination efficiency of a high efficiency ceramic filter. The evaluation was made by use of 54 Mn, 59 Fe, 60 Co, 65 Zn and 137 Cs. 1. The decontamination factor by one line of ceramic filter for every species were over 10 5 . 2. The decontamination factor increased by one oder when water vapor exists in off-gas. The same tendency was also observed when iron dioxide existed at the incineration of cation exchange resin. (author)

  16. Impact of decontamination on LWR radioactive waste treatment systems

    International Nuclear Information System (INIS)

    Hoenes, G.R.; Perrigo, L.D.; Divine, J.R.; Faust, L.G.

    1979-01-01

    Only at N-Reactor is there a means to accommodate radwaste produced during decontamination. The Dresden system is expected to be ready to accommodate such solutions by the summer of 1979. Solidification of the processed decontamination waste may be a significant problem. There is doubt that the materials in current radwaste treatment systems can handle chemicals from a concentrated process. The total storage volume, for concentrated decontamination, is not sufficient in existing radwaste treatment systems. Greater attention should be placed on designing reactors and radwaste treatment systems for decontamination. A means of handling waste material resulting from leaks in the primary system during the decontamination must be developed. On-site storage of solidified decontamination wastes may be a viable option, but license amendments will be necessary

  17. Programs of recovery of radioactive wastes from the trenches and land decontamination of the radioactive waste storage center

    International Nuclear Information System (INIS)

    Jimenez D, J.; Reyes L, J.

    1999-06-01

    In this report there are the decontamination program of the land of the Radioactive Waste Storage Center, the Program of Recovery of the radioactive waste of the trenches, the recovery of polluted bar with cobalt 60, the recovery of minerals and tailings of uranium and of earth with minerals and tailings of uranium, the recovery of worn out sealed sources and the waste recovery with the accustomed corresponding actions are presented. (Author)

  18. Application of a modified electrochemical system for surface decontamination of radioactive metal waste

    International Nuclear Information System (INIS)

    Lee, J.H.; Lim, Y.K.; Yang, H.Y.; Shin, S.W.; Song, M.J.

    2003-01-01

    Conventional and modified electrolytic decontamination experiments were performed in a solution of sodium sulfate for the decontamination of carbon steel as the simulated metal wastes which are generated in large amounts from nuclear power plants. The effect of reaction time, current density and concentration of electrolytes in the modified electrolytic decontamination system were examined to remove the surface contamination of the simulated radioactive metal wastes. As for the results of this research, the modified electrochemical decontamination process can decontaminate more effectively than the conventional decontamination process by applying different anode material which causes higher induced electro-motive forces. When 0.5 M sodium sulfate, 0.4 A/cm 2 current density and 30 minutes reaction time were applied in the modified process, a 16 μm thickness change that is expected to remove most surface contamination in radioactive metal wastes was achieved on carbon steel which is the main material of radioactive metal waste in nuclear power plants. The decontamination efficiency of metal waste showed similar results with the small and large lab-scale modified electrochemical system. The application of this modified electrolytic decontamination system is expected to play a considerable role for decontamination of radioactive metal waste in nuclear power plants in the near future. (author)

  19. Radioactive decontamination

    International Nuclear Information System (INIS)

    1983-07-01

    This Code of Practice covers: (a) the decontamination of plant items, buildings and associated equipment; (b) decontamination of protective clothing; (c) simple personal decontamination; and (d) the basic mechanisms of contamination and their influence on decontaminability. (author)

  20. Behavior of radioactive cesium during incineration of radioactively contaminated wastes from decontamination activities in Fukushima.

    Science.gov (United States)

    Fujiwara, Hiroshi; Kuramochi, Hidetoshi; Nomura, Kazutaka; Maeseto, Tomoharu; Osako, Masahiro

    2017-11-01

    Large volumes of decontamination wastes (DW) generated by off-site decontamination activities in Fukushima Prefecture have been incinerated since 2015. The behavior of radioactive cesium during incineration of DW was investigated at a working incineration plant. The incineration discharged bottom ash (BA) and fly ash (FA) with similar levels of radiocesium, and the leachability of the radiocesium from both types of ash was very low (incineration of contaminated municipal solid waste (CMSW) reported in earlier studies. The source of radiocesium in DW-FA is chiefly small particles derived from DW and DW-BA blown into the flue gas, not the deposition of gaseous synthesized radiocesium compounds on the surfaces of ash particles in the flue gas as observed in CMSW incineration. This source difference causes the behavior of radiocesium during waste incineration to differ between DW and CMSW. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Development of a universal solvent for the decontamination of acidic liquid radioactive wastes

    Science.gov (United States)

    Todd, T. A.; Brewer, K. N.; Law, J. D.; Wood, D. J.; Herbest, R. S.; Romanovskiy, V. N.; Esimantovskiy, V. M.; Smirnov, I. V.; Babain, V. A.

    1999-01-01

    A teritiary solvent containing chlorinated cobalt dicarbollide, polyethylene glycol and diphenylcarbamoylmethylphosphine oxide was evaluated in different non-nitroaromatic diluents for the separation of cesium, strontium, actinides and rare earth elements from acidic liquid radioactive waste. Decontamination factors of >95% for Cs, 99.7% for Sr, and 99.99% for actinides were achieved in four successive batch contacts using actual radioactive waste. Pilot plant testing in centrifugal contactors using simulated wastes, has demonstrated removal of >99% of all targeted ions.

  2. Decontamination and disposal of radioactive wastes from nuclear facilities

    International Nuclear Information System (INIS)

    Dlouhy, Z.

    1978-01-01

    A survey and characteristics are given of the main sources of wastes from the operation of nuclear installations. The amounts are compared of liquid and gaseous wastes from PWR and BWR reactors. The main trends of radioactive waste processing in the world are described. In Czechoslovakia, two methods of waste fixation have been developed: vacuum cementation and bituminization. The demands are summed up on radioactive waste storage sites and it is stated that there are a number of suitable localities, namely abolished granite quarries with a very deep ground water level and a low-permeable overburden and exhausted quarries of kaolinitic clays, which meet all criteria and secure the safe disposal of wastes from Czechoslovak nuclear power plants up to the year 2020. (Z.M.)

  3. Decontaminating method for radioactive contaminant

    International Nuclear Information System (INIS)

    Suzuki, Ken-ichi.

    1994-01-01

    After decontamination of radioactive contaminates with d-limonene, a radioactive material separating agent not compatible with liquid wastes caused by decontamination is added to the liquid wastes. Then after stirring, they are stood still to be separated into two phases, and the radioactive materials in the liquid waste phase caused by decontamination are transferred to the phase of the radioactive material separating agent. With such procedures, they can satisfactorily be separated into two phases of d-limonene and the radioactive material separating agent. Further, d-limonene remaining after the separation can be used again as a decontaminating agent for radioactive contaminates. Therefore, the amount of d-limonene to be used can be reduced, to lower the cost for cleaning, thereby enabling to reduce the amount of radioactive wastes formed. (T.M.)

  4. Analysis of the application of decontamination technologies to radioactive metal waste minimization using expert systems

    Energy Technology Data Exchange (ETDEWEB)

    Bayrakal, Suna [Iowa State Univ., Ames, IA (United States)

    1993-09-30

    Radioactive metal waste makes up a significant portion of the waste currently being sent for disposal. Recovery of this metal as a valuable resource is possible through the use of decontamination technologies. Through the development and use of expert systems a comparison can be made of laser decontamination, a technology currently under development at Ames Laboratory, with currently available decontamination technologies for applicability to the types of metal waste being generated and the effectiveness of these versus simply disposing of the waste. These technologies can be technically and economically evaluated by the use of expert systems techniques to provide a waste management decision making tool that generates, given an identified metal waste, waste management recommendations. The user enters waste characteristic information as input and the system then recommends decontamination technologies, determines residual contamination levels and possible waste management strategies, carries out a cost analysis and then ranks, according to cost, the possibilities for management of the waste. The expert system was developed using information from literature and personnel experienced in the use of decontamination technologies and requires validation by human experts and assignment of confidence factors to the knowledge represented within.

  5. Analysis of the application of decontamination technologies to radioactive metal waste minimization using expert systems

    International Nuclear Information System (INIS)

    Bayrakal, S.

    1993-01-01

    Radioactive metal waste makes up a significant portion of the waste currently being sent for disposal. Recovery of this metal as a valuable resource is possible through the use of decontamination technologies. Through the development and use of expert systems a comparison can be made of laser decontamination, a technology currently under development at Ames Laboratory, with currently available decontamination technologies for applicability to the types of metal waste being generated and the effectiveness of these versus simply disposing of the waste. These technologies can be technically and economically evaluated by the use of expert systems techniques to provide a waste management decision making tool that generates, given an identified metal waste, waste management recommendations. The user enters waste characteristic information as input and the system then recommends decontamination technologies, determines residual contamination levels and possible waste management strategies, carries out a cost analysis and then ranks, according to cost, the possibilities for management of the waste. The expert system was developed using information from literature and personnel experienced in the use of decontamination technologies and requires validation by human experts and assignment of confidence factors to the knowledge represented within

  6. Method of electrolytically decontaminating of radioactive metal wastes

    International Nuclear Information System (INIS)

    Oonuma, Tsutomu; Tanaka, Akio; Yamadera, Toshio.

    1985-01-01

    Purpose: To significantly reduce the volume of secondary wastes by separating from electrolytes metal ions containing radioactive metal ions dissolved therein in the form of elemental metals of a reduced volume with ease, as well as regenerating the electrolytes for re-use. Method: Contaminated portions at the surface of the radioactive metal wastes are dissolved in electrolytes and, when the metal ion concentration in the electrolytes reaches a predetermined level, the electrolytes are introduced to an acid recovery step and an electrodeposition step. The recovered acid is re-used as the electrolytes, while dissolved metal ions containing radioactive metal ions are deposited as elemental metals in the electrodeposition step. The electrolytes usable herein include those acids easily forming stable complex compounds with the metals or those not forming hydroxides of the contaminated metals. Combination of sodium sulfate and sulfuric acid, sodium chloride and hydrochloride or the like is preferred. (Kamimura, M.)

  7. Decontamination of waste radioactive polluted solutions in radiation treatment

    International Nuclear Information System (INIS)

    Simova, G.; Boyadzhiev, A.; Mikhajlov, M.G.; Shopov, N.

    1979-01-01

    The decontamination capacity of solutions of the trivial cleaning Bulgarian preparations ''Mipro'', ''Sana'', ''Synthek'' and ''Univer'' for different surfaces (steel, glass, PVC and linoleum) contaminated with cesium-134, strontium-85 or cerium-144 chlorides, was studied. Concentrations from 5 to 15 g/l of the solutions used in this study displayed a degree of cleaning over 90%. Higher concentration of the solution does not improve its cleaning capacity. For evaluation of foam formation by the solutions, the so called ''foam column stability coefficient'' has been adopted. This coefficient represents the ratio between the height of the foam column and the time of its half life, referred to the time for the foam column formation when blown through with a constant air current. On the basis of this index, solutions of the preparation ''Mipro'' proved to be the best ones for decontamination - in the whole investigated concentration span, the foam column stability coefficient for the solutions of this preparation is with two orders lower than the respective coefficient of the other preparations. It was experimentally established that radiation treatment of radio-contaminated solutions reduces the foam column stability coefficient. Radiation treatment should be carried out in a gamma field, realizing at least one megarad within an acceptable for the liquid wastes time period. (A.B.)

  8. Decontamination of radioactive liquid wastes by hydrophytic vegetal organisms

    International Nuclear Information System (INIS)

    Cecal, Al; Popa, K.; Potoroaca, V.; Melniciuc-Puica, N.

    2001-01-01

    Bioaccumulation of some radioactive ions from contaminated waste solutions, on hydrophytic vegetal organisms is discussed. In order to follow the distribution of radioactive ions 137 Cs + , 60 Co 2+ and 51 Cr 3+ in various cell components extracted from Spirulina platensis, Porphiridium cruentum, Scenedesmus quadricauda, Lemna minor, Elodea canadensis, Pistia stratiotes and Riccia fluitans, the plants were cultivated in radioactive solutions. The resulting complexes were extracted with acetone or acetic acid and separated chromatographically. The results show an intense activity of the polysaccharide and lipoid fractions in the bioaccumulation process. The bioaccumulation varies in the series: Spirulina > Scenedesmus > Porphiridium > Riccia > Pistia > Lemna ≥ Elodea for 137 Cs + and 60 Co 2+ ; Spirulina > Porphiridium > Scenedesmus > Riccia > Pistia > Lemna > Elodea for 51 Cr 3+ . (author)

  9. Technical report on natural evaporation system for radioactive liquid waste treatment arising from TRIGA research reactors' decontamination and decommissioning activities

    International Nuclear Information System (INIS)

    Moon, J. S.; Jung, K. J.; Baek, S. T.; Jung, U. S.; Park, S. K.; Jung, K. H.

    1999-01-01

    This technical report described that radioactive liquid waste treatment for dismantling/decontamination of TRIGA Mark research reactor in Seoul. That is, we try safety treatment of operation radioactive liquid waste during of operating TRIGA Mark research reactor and dismantling radioactive liquid waste during R and D of research reactor hereafter, and by utilizing of new natural evaporation facility with describing design criteria of new natural evaporation facility. Therefore, this technical report described the quantity of present radioactive liquid waste and dismantling radioactive liquid waste hereafter, analysis the status of radial-rays/radioactivity, and also treatment method of this radioactive liquid waste. Also, we derived the method that the safeguard of outskirts environment and the cost down of radioactive liquid waste treatment by minimize of the radioactive liquid waste quantities, through-out design/operation of new natural evaporation facility for treatment of operation radioactive liquid waste and dismantling radioactive liquid waste. (author). 6 refs., 12 tabs., 5 figs

  10. Low-waste technology of prevention, decontamination and localization of radioactive contamination

    International Nuclear Information System (INIS)

    Kizhnerov, L. V.; Konstantinov, Ye. A.; Prokopenko, V. A.; Sorokin, N. M.

    1997-01-01

    The report presents the results of research in developing a low-waste technology of prevention, decontamination and localization of radioactive contamination founded on the of easily removed protective polymeric coating based on water and alcohol latexes and dispersion of polymers with special activating additives. The developed technology provides for the reduction of weakly fixed radioactive contamination of non-painted and painted surfaces to admissible levels (as a rule), it securely prevents and localizes contamination and does not generate secondary liquid radioactive wastes

  11. Decontamination process applied to radioactive solid wastes from nuclear power plants

    International Nuclear Information System (INIS)

    Franco, Milton B.; Kastner, Geraldo F.; Monteiro, Roberto Pellacani G.

    2009-01-01

    The process of decontamination is an important step in the economic operation of nuclear facilities. A large number of protective clothing, metallic parts and equipment get contaminated during the handling of radioactive materials in laboratory, plants and reactors. Safe and economic operation of these nuclear facilities will have a bearing on the extent to which these materials are reclaimed by the process of decontamination. The most common radioactive contaminants are fission products, corrosion products, uranium and thorium. The principles involved in decontamination are the same as those for an industrial cleaning process. However, the main difference is in the degree of cleaning required and at times special techniques have to be employed for removing even trace quantities of radioactive materials. This paper relate decontaminations experiences using acids and acids mixtures (HCl, HF, HNO 3 , KMnO 4 , C 2 H 2 O 4 , HBF 4 ) in several kinds of radioactive solid wastes from nuclear power plants. The result solutions were monitored by nuclear analytical techniques, in order to contribute for radiochemical characterization of these wastes. (author)

  12. A new method for decontamination of radioactive waste using low-pressure arc discharge

    International Nuclear Information System (INIS)

    Fujiwara, Kazutoshi; Furukawa, Shizue; Adachi, Kazuo; Amakawa, Tadashi; Kanbe, Hiromi

    2006-01-01

    In this paper, the decontamination features of the low-pressure arc-discharge method for radioactive waste generated in the operation and maintenance of nuclear power plants were examined. The low-pressure arc-discharge method was applied to type 304 stainless-steel, type 316L stainless-steel, alloy 600 and carbon-steel covered with radioactive corrosion products. Approximately, 80% of the radioactivity build up on stainless-steels could be removed by the low-pressure arc discharge

  13. Development of high-level radioactive waste treatment and conversion technologies 'Dry decontamination technology development for highly radioactive contaminants'

    International Nuclear Information System (INIS)

    Oh, Won Zin; Lee, K. W.; Won, H. J.; Jung, C. J.; Choi, W. K.; Kim, G. N.; Moon, J. K.

    2001-04-01

    The followings were studied through the project entitled 'Dry Decontamination Technology Development for Highly Radioactive Contaminants'. 1.Contaminant Characteristics Analysis of Domestic Nuclear Fuel Cycle Projects(NFCP) and Applicability Study of the Unit Dry-Decontamination Techniques A. Classification of contaminated equipments and characteristics analysis of contaminants B. Applicability study of the unit dry-decontamination techniques 2.Performance Evaluation of Unit Dry Decontamination Technique A. PFC decontamination technique B. CO2 decontamination technique C. Plasma decontamination technique 3.Development of Residual Radiation Assessment Methodology for High Radioactive Facility Decontamination A. Development of radioactive nuclide diffusion model on highly radioactive facility structure B. Obtainment of the procedure for assessment of residual radiation dose 4.Establishment of the Design Concept of Dry Decontamination Process Equipment Applicable to Highly Radioactive Contaminants 5.TRIGA soil unit decontamination technology development A. Development of soil washing and flushing technologies B. Development of electrokinetic soil decontamination technology

  14. Decontamination flowsheet development for a waste oil containing mixed radioactive contaminants

    International Nuclear Information System (INIS)

    Vijayan, S.; Buckley, L.P.

    1993-01-01

    The majority of waste oils contaminated with both radioactive and hazardous components are generated in nuclear power plant, research lab. and uranium-refinery operations. The waste oils are complex, requiring a detailed examination of the waste management strategies and technology options. It may appear that incineration offers a total solution, but this may not be true in all cases. An alternative approach is to decontaminate the waste oils to very low contaminant levels, so that the treated oils can be reused, burned as fuel in boilers, or disposed of by commercial incineration. This paper presents selected experimental data and evaluation results gathered during the development of a decontamination flowsheet for a specific waste oil stores at Chalk River Labs. (CRL). The waste oil contains varying amounts of lube oils, grease, paint, water, particulates, sludge, light chloro- and fluoro-solvents, polychlorinated biphenyls (PCB), complexing chemicals, uranium, chromium, iron, arsenic and manganese. To achieve safe management of this radioactive and hazardous waste, several treatment and disposal methods were screened. Key experiments were performed at the laboratory-scale to confirm and select the most appropriate waste-management scheme based on technical, environmental and economic criteria. The waste-oil-decontamination flowsheet uses a combination of unit operations, including prefiltration, acid scrubbing, and aqueous-leachage treatment by precipitation, microfiltration, filter pressing and carbon adsorption. The decontaminated oil containing open-quotes de minimisclose quotes levels of contaminants will undergo chemical destruction of PCBs and final disposal by incineration. The recovered uranium will be recycled to a uranium milling process

  15. Separation of cobalt from synthetic intermediate and decontamination radioactive wastes using polyurethane foam

    International Nuclear Information System (INIS)

    Rao, S.V.S.; Lal, K.B.; Narasimhan, S.V.; Ahmed, J.

    1997-01-01

    Studies have been carried out on the removal of radioactive cobalt ( 60 Co) from synthetic intermediate level waste (ILW) and decontamination waste using neat polyurethane (PU) foam as well as n-tributyl phosphate-polyurethane (TBP-PU) foam. The radioactive cobalt has been extracted on the PU foam as cobalt thiocyanate from the ILW. Maximum removal of cobalt has been observed when the concentration of thiocyanate in the solution is about 0.4 M. Cobalt can be separated from decontamination waste containing ethylenediaminetetraacetic acid (EDTA) and iron(II). The extent of extraction of cobalt is slow and the separation of iron and cobalt is better with the neat PU foam compared to the TBP-PU foam. The presence of iron in the decontamination waste facilitates the extraction of cobalt thiocyanate on the PU foam. Column studies have been carried out in order to extend these studies to the plant scale. The capacities of the PU foams for cobalt have been determined. The effect of density and the surface area of PU foam have been investigated. Fourier Transform Infrared (FT-IR) spectral studies have been conducted to find out the interaction between PU foam and cobalt thiocyanate species

  16. On-Site Decontamination System for Liquid Low Level Radioactive Waste - 13010

    Energy Technology Data Exchange (ETDEWEB)

    OSMANLIOGLU, Ahmet Erdal [Cekmece Nuclear Research and Training Center, Kucukcekmece Istanbul (Turkey)

    2013-07-01

    This study is based on an evaluation of purification methods for liquid low-level radioactive waste (LLLW) by using natural zeolite. Generally the volume of liquid low-level waste is relatively large and the specific activity is rather low when compared to other radioactive waste types. In this study, a pilot scale column was used with natural zeolite as an ion exchanger media. Decontamination and minimization of LLLW especially at the generation site decrease operational cost in waste management operations. Portable pilot scale column was constructed for decontamination of LLW on site. Effect of temperature on the radionuclide adsorption of the zeolite was determined to optimize the waste solution temperature for the plant scale operations. In addition, effect of pH on the radionuclide uptake of the zeolite column was determined to optimize the waste solution pH for the plant scale operations. The advantages of this method used for the processing of LLLW are discussed in this paper. (authors)

  17. A decontamination technique for decommissioning waste

    International Nuclear Information System (INIS)

    Heki, H.; Hosaka, K.; Kuribayashi, N.; Ishikura, T.

    1993-01-01

    A large amount of radioactive metallic waste is generated from decommissioned commercial nuclear reactors. It is necessary from the point of environmental protection and resource utilization to decontaminate the contaminated metallic waste. A decommissioning waste processing system has been previously proposed considering such decommissioning waste characteristics as its large quantity, large radioactivity range, and various shapes and materials. The decontamination process in this system was carried out by abrasive blasting as pretreatment, electrochemical decontamination as the main process, and ultrasonic cleaning in water as post-treatment. For electrochemical decontamination, electrolytic decontamination for simple shaped waste and REDOX decontamination for complicated shaped waste were used as effective decontamination processing. This time, various kinds of actual radioactive contaminated samples were taken from operating power plants to simulate the decontamination of decommissioning waste. After analyzing the composition, morphogenesis and surface observation, electrolytic decontamination, REDOX decontamination, and ultrasonic cleaning experiments were carried out by using these samples. As a result, all the samples were decontaminated below the assumed exemption level(=4 x 10 -2 Bq/g). A maximum decontamination factor of over 104 was obtained by both electrolytic and REDOX decontamination. The stainless steel sample was easy to decontaminate in both electrochemical decontaminations because of its thin oxidized layer. The ultrasonic cleaning process after electrochemical decontamination worked effectively for removing adhesive sludge and the contaminated liquid. It has been concluded from the results mentioned above that electrolytic decontamination and REDOX decontamination are effective decontamination process for decontaminating decommissioning waste

  18. Study on decontamination of radioactive ruthenium by steel wool in waste solution

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, S; Sakaki, T [Radia Industry Co. Ltd., Takasaki, Gunma (Japan)

    1979-06-01

    Tracer experiments were done in order to establish a decontamination process of /sup 106/Ru in radioactive waste solution by column method paying special attention on the solution of nitrato-nitrosyl complex of Ru which is often encountered as a low level radioactive solution. It turned out that metallic iron was the most effective decontaminating agent among the several tens of materials tested. The decontamination factor (DF) of /sup 106/Ru increased in proportion to the total surface area of iron and it sensitively depended on the oxidation state of the surface as revealed by the batchwise and columnwise tests. Iron samples with high corrosiveness gave a much larger DF than those with low corrosiveness. The decontamination process proceeded as iron was being oxidized via Fe(metal) ..-->.. Fe(II) ..-->.. Fe(III). As the results, the DF initially increased after initiating the passage of water through the column but it then decreased as the oxidation process became inactive. An excellent durability up to 10000 bed volumes was demonstrated by the column method at a high average DF of 150.

  19. Decontamination of radioactive isotopes

    International Nuclear Information System (INIS)

    Despotovic, R.; Music, S.; Subotic, B.; Wolf, R.H.H.

    1979-01-01

    Removal of radioactive isotopes under controlled conditions is determined by a number of physical and chemical properties considered radiocontaminating and by the characteristics of the contaminated object. Determination of quantitative and qualitative factors for equilibrium in a contamination-decontamination system provides the basis for rational and successful decontamination. The decontamination of various ''solid/liquid'' systems is interesting from the scientific and technological point of view. These systems are of great importance in radiation protection (decontamination of various surfaces, liquids, drinking water, fixation or collection of radiocontaminants). Different types of decontamination systems are discussed. The dependence of rate and efficiency of the preparation conditions and on the ageing of the scavenger is described. The influence of coagulating electrolyte on radioactive isotope fixation efficiency was also determined. The fixation of fission radionuclide on oxide scavengers has been studied. The connection between fundamental investigations and practical decontamination of the ''solid/liquid'' systems is discussed. (author)

  20. Decontamination and decommissioning of TAN radioactive liquid-waste-evaporator system (PM-2A). Final report

    International Nuclear Information System (INIS)

    Smith, D.L.

    1983-03-01

    This report describes the decontamination and decommissioning of the Test Area North (TAN) liquid waste evaporator (PM-2A). The PM-2A facility included the aboveground evaporator system, two underground holding tanks and feedlines, an electrical distribution subsystem, and one above ground concrete tank. Much surface soil of the PM-2A area was also radioactively contaminated. Stabilization of the liquid and sludge in the holding tanks, a major task, was achieved by pumping most of the liquid into 55-gal drums and mixing it with cement. The drums were buried in the Radioactive Waste Management Complex (RWMC). The remaining liquid and sludge were dried in place by layers of diatomaceous earth. The most contaminated surface soil was removed, and the area backfilled with clean topsoil and graded, reducing the surface radiation field to background. A 6-ft-high chain link fence now surrounds the area. Most of the area was seeded to crested wheatgrass. 46 figures, 9 tables

  1. Development of Decontamination Technology for Separating Radioactive Constituents from Contaminated Concrete Waste

    International Nuclear Information System (INIS)

    Min, B. Y.; Kim, G. N.; Lee, G. W.; Choi, W. K.; Jung, U. S.

    2010-01-01

    The large amount of contaminated concrete produced during decommissioning procedures and available decontamination. In Korea, more than more than 60 tons of concrete wastes contaminated with uranium compounds have been generated from UCP (Uranium Conversion Plant) by dismantling. A recycling or a volume reduction of the concrete wastes through the application of appropriate treatment technologies have merits from the view point of an increase in a resource recycling as well as a decrease in the amount of wastes to be disposed of resulting in a reduction of a disposal cost and an enhancement of the disposal safety. For unconditional release of building and reduction of radioactive concrete waste, mechanical methods and thermal stress methods have been selected. In the advanced countries, such as France, Japan, Germany, Sweden, and Belgium, techniques for reduction and reuse of the decommissioning concrete wastes have applied to minimize the total radioactive concrete waste volume by thermal and mechanical processes. It was found that volume reduction of contaminated concrete can be achieved by separation of the fine cement stone and coarse gravel. Typically, the contaminated layer is only 1∼10mm thick because cementitious materials are porous media, the penetration of radionuclides may occur up to several centimenters from the surface of a material. Most of the dismantled concrete wastes are slightly contaminated rather than activated. This decontamination can be accomplished during the course of a separation of the concrete wastes contaminated with radioactive materials through a thermal treatment step of the radionuclide (e.g. cesium and strontium), transportation of the radionuclide to fine aggregates through a mechanical treatment step. Concrete is a structural material which generally consists of a binder (cement), water, and aggregate. The interaction between highly charged calcium silicate hydrate (C-S-H) particles in the presence of divalent calcium

  2. Advance in radioactive decontamination

    International Nuclear Information System (INIS)

    Basteris M, J. A.; Farrera V, R.

    2010-09-01

    The objective of the present work was to determine if the application of the Na hypochlorite has some utility in the radioactive decontamination, in comparison with the water, detergent and alcohol. Several methods were compared for decontaminate the iodine 131 and technetium 99, the work table and the skin it was carried out an initial count with the Geiger Muller. Later on, in a single occasion, the areas were washed with abundant water, alcohol, clothes detergent and sodium hypochlorite (used commercially as domestic bleacher) without diluting. Observing that the percentage in the decrease of the counted radioactivity by the Geiger Muller, decreased in the following way: It was demonstrated that the Na hypochlorite presents the highest index of radioactive decontamination with 100% of effectiveness. The Na hypochlorite is an excellent substance that can be used with effectiveness and efficiency like decontamination element in the accident cases of radioactive contamination in the clinical laboratories of nuclear medicine. (Author)

  3. New sorption-reagent materials for decontamination of liquid radioactive waste

    International Nuclear Information System (INIS)

    Avramenko, V.A.; Golikov, A.P.; Zheleznov, V.V.; Kaplun, E.V.; Marinin, D.V.; Sokolnitskaya, T.A.

    2001-01-01

    Full text: Use of selective sorbents in liquid radioactive waste (LRW) management is widely spread in the field of nuclear power objects liquid waste decontamination, since the main objective there is to remove long-lived radionuclides of the nuclear cycle. The latter include, first of all, cesium-137, strontium-90, cobalt-60 and a number of α-irradiators. In this case LRW composition for most of the nuclear power objects is rather simple, except acidic deactivation solutions. At the same time, liquid radioactive wastes of different research centers have a variable chemical and radiochemical composition depending on objectives and tasks of a given center research activities. As a result, application of sorption technologies in such waste decontamination determines special requirements to these sorbents selectivity: a wide spectrum of radionuclides that can be removed and fairly high selectivity enabling to remove radionuclides from solutions of complex chemical composition (containing surfactants, complexing agents etc.). This paper is concerned with studying properties of new materials selective to different radionuclides. These materials are capable to interact with solution components whether already contained in the waste or deliberately added into resulting solution. Such sorption-reagent materials combine universal character of co-precipitation methods with simplicity of sorption methods. In this work we studied sorption-reagent inorganic ion-exchange materials interacting with sulfate-, carbonate-, oxalate-, sulfide-, and permanganate-ions. Insoluble compounds formed as a result of this interaction increase tens- and hundreds-fold the sorption selectivity of different radionuclides - strontium, cobalt, mercury, iron, and manganese as compared to conventional ion-exchange system. By means of X-ray phase analysis, IR-spectroscopy, chemical and radiochemical analysis, we have studied the mechanism of radionuclide sorption on different sorption

  4. Study and modelling of an innovative coprecipitation reactor for radioactive liquid wastes decontamination

    International Nuclear Information System (INIS)

    Flouret, Julie

    2013-01-01

    In order to decontaminate radioactive liquid wastes of low and intermediate levels, the coprecipitation is the process industrially used. The aim of this PhD work is to optimize the continuous process of coprecipitation. To do so, an innovative reactor is designed and modelled: the continuous reactor/classifier. Two model systems are studied: the coprecipitation of strontium by barium sulphate and the sorption of cesium by PPFeNi. The simulated effluent contains sodium nitrate in order to consider the high ionic strength of radioactive liquid wastes. First, each model system is studied on its own, and then a simultaneous treatment is performed. The kinetic laws of nucleation and crystal growth of barium sulphate are determined and incorporated into the coprecipitation model. Kinetic studies and sorption isotherms of cesium by PPFeNi are also performed in order to acquire the necessary data for process modelling. The modelling realised enables accurate prediction of the residual strontium and cesium concentrations according to the process used: it is a valuable tool for the optimization of existing units, but also the design of future units. The continuous reactor/classifier presents many advantages compared to the classical continuous process: the decontamination efficiency of strontium and cesium is highly improved while the volume of sludge generated by the process is reduced. A better liquid/solid separation is observed in the reactor/classifier and the global installation is significantly more compact. Thus, the radioactive liquid wastes treatment processes can be intensified by the continuous reactor/classifier, which represents a very promising technology for future industrial application. (author) [fr

  5. Decontamination factor Improvement and Waste Reduction of Full-scaled Evaporation System for Liquid Radioactive Waste Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki Tae; Ju, Young Jong; Seol, Jeung Gun; Cho, Nam Chan [KNF, Daejeon (Korea, Republic of); Ha, Dong Hwan; Kim, Yun Kwan [Jeontech Co., Suwon (Korea, Republic of)

    2016-05-15

    Liquid radioactive waste is produced from nuclear power plants, nuclear research centers, radiopharmaceuticals and nuclear fuel fabrication plants, etc. Ion-exchange, chemical precipitation, evaporation, filtration, liquid/solid extraction and centrifugal are applied to treat the liquid waste. Chemical precipitation requires low capital and operation cost. However, it produces large amount of secondary waste and has low DF (decontamination factor). Evaporation process removes variety of radionuclides in high DF. But, it also has problems in scaling and foaming [3, 4]. In this study, it is investigated that the effect of switching lime precipitation and centrifugal processes to evaporation system for improvement of removal efficiency and decrease of waste in full-scaled radioactive wastewater treatment plant. By swapping full-scaled wastewater treatment system from the centrifugal and the lime precipitation to the evaporator and the crystallizer in the nuclear fuel fabrication plant, it was possible to increase removal efficiency and to minimize waste productivity. Radioactivity concentration of effluent is decreased from 0.01 Bq/mL to ND level. Besides, waste production was reduced from 15 drums/yr to 2 drums/yr (87%).

  6. Radioactive decontamination of equipment

    International Nuclear Information System (INIS)

    1982-03-01

    After a recall of some definitions relating to decontamination techniques and of the regulation into effect, the principles to be respected to arrange rationally work zones are quoted while insisting more particularly on the types of coatings which facilitate maintenance operations and the dismantling of these installations. Then, the processes and equipments to use in decontamination units for routine or particular operations are described; the list of recommended chemical products to decontaminate the equipment is given. The influence of these treatments on the state and the duration of life of equipments is studied, and some perfectible methods are quoted. In the appendix, are given: the limits of surface contamination accepted in the centers; a standard project which defines the criteria of admissible residual contamination in wastes considered as cold wastes; some remarks on the interest that certain special ventilation and air curtain devices for the protection of operators working on apparatus generating contaminated dusts [fr

  7. Decontamination of radioactive process waste water by foam separation. Vol. 3

    International Nuclear Information System (INIS)

    Shakir, K.; Aziz, M.; Beheir, Sh.G.; Benyamin, K.; Samy, S.; Salama, H.N.

    1996-01-01

    On the basis of new studies and previous work from this laboratory, several foam separation techniques are considered feasible methods to carry out the separation of radioactive nuclides from simulated radioactive process waste water. Anionic or cationic collectors were used depending on the type of charge on the ion or precipitate to be removed. Sodium lauryl sulphate, aerosol-18 potassium oleate, acetyl trimethyl ammonium bromide, dodecyl pyridinium chloride and gelation were examined as the collector. Aluminium hydroxide, iron (III) oxyhydroxide and hydrous manganese dioxide were studied as the adsorbing floc adsorbing colloid flotation and copper ferrocyanide as the co precipitating agent in co precipitate flotation. The effects of varying the collector, the adsorbing colloid floc, co precipitant and metal ion concentrations, the PH, the gas flow rate, the ionic strength, length of the flotation column and multistage separation on the percentage removal, volume reduction and enrichment ratio were investigated. According to experimental results, adsorbing colloid flotation, whenever applicable, is the preferred method for decontamination. Radionuclide removal up to 100% were obtained. 4 figs., 13 tabs

  8. Decontamination of radioactive process waste water by foam separation. Vol. 3

    Energy Technology Data Exchange (ETDEWEB)

    Shakir, K; Aziz, M; Beheir, Sh G; Benyamin, K; Samy, S; Salama, H N [Nuclear Chemistry, and Radiation Protection Departments, Hot Laboratories and Nuclear Research Centers, atomic Energy Authority, P.O. Box 13759, Cairo (Egypt)

    1996-03-01

    On the basis of new studies and previous work from this laboratory, several foam separation techniques are considered feasible methods to carry out the separation of radioactive nuclides from simulated radioactive process waste water. Anionic or cationic collectors were used depending on the type of charge on the ion or precipitate to be removed. Sodium lauryl sulphate, aerosol-18 potassium oleate, acetyl trimethyl ammonium bromide, dodecyl pyridinium chloride and gelation were examined as the collector. Aluminium hydroxide, iron (III) oxyhydroxide and hydrous manganese dioxide were studied as the adsorbing floc adsorbing colloid flotation and copper ferrocyanide as the co precipitating agent in co precipitate flotation. The effects of varying the collector, the adsorbing colloid floc, co precipitant and metal ion concentrations, the PH, the gas flow rate, the ionic strength, length of the flotation column and multistage separation on the percentage removal, volume reduction and enrichment ratio were investigated. According to experimental results, adsorbing colloid flotation, whenever applicable, is the preferred method for decontamination. Radionuclide removal up to 100% were obtained. 4 figs., 13 tabs.

  9. Chemically reducing decontamination method for radioactive metal

    International Nuclear Information System (INIS)

    Tanaka, Akio; Onuma, Tsutomu; Sato, Hitoshi.

    1994-01-01

    The present invention concerns a decontamination method of electrolytically reducing radioactive metal wastes, then chemically dissolving the surface thereof with a strong acid decontaminating solution. This method utilizes dissolving characteristics of stainless steels in the strong acid solution. That is, in the electrolytic reduction operation, a portion of the metal wastes is brought into contact with a strong acid decontaminating solution, and voltage and current are applied to the portion and keep it for a long period of time so as to make the potential of the immersed portion of the metal wastes to an active soluble region. Then, the electrolytic reduction operation is stopped, and the metal wastes are entirely immersed in the decontaminating solution to decontaminate by chemical dissolution. As the decontaminating solution, strong acid such as sulfuric acid, nitric acid is used. Since DC current power source capacity required for causing reaction in the active soluble region can be decreased, the decontamination facility can be minimized and simplified, and necessary electric power can be saved even upon decontamination of radioactive metal wastes made of stainless steels and having a great area. Further, chemical dissolution can be conducted without adding an expensive oxidizing agent. (N.H.)

  10. Development of high-level radioactive waste treatment and conversion technologies 'Dry decontamination technology development for highly radioactive contaminants'

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Won Zin; Lee, K. W.; Won, H. J.; Jung, C. J.; Choi, W. K.; Kim, G. N.; Moon, J. K

    2001-04-01

    The followings were studied through the project entitled 'Dry Decontamination Technology Development for Highly Radioactive Contaminants'. 1.Contaminant Characteristics Analysis of Domestic Nuclear Fuel Cycle Projects(NFCP) and Applicability Study of the Unit Dry-Decontamination Techniques A. Classification of contaminated equipments and characteristics analysis of contaminants B. Applicability study of the unit dry-decontamination techniques 2.Performance Evaluation of Unit Dry Decontamination Technique A. PFC decontamination technique B. CO2 decontamination technique C. Plasma decontamination technique 3.Development of Residual Radiation Assessment Methodology for High Radioactive Facility Decontamination A. Development of radioactive nuclide diffusion model on highly radioactive facility structure B. Obtainment of the procedure for assessment of residual radiation dose 4.Establishment of the Design Concept of Dry Decontamination Process Equipment Applicable to Highly Radioactive Contaminants 5.TRIGA soil unit decontamination technology development A. Development of soil washing and flushing technologies B. Development of electrokinetic soil decontamination technology.

  11. Radioactive decontamination through UV laser

    International Nuclear Information System (INIS)

    Delaporte, Ph.; Gastaud, M.; Sentis, M.; Uteza, O.; Marine, W.; Thouvenot, P.; Alcaraz, J.L.; Le Samedy, J.M.; Blin, D.

    2003-01-01

    A device allowing the radioactive decontamination of metal surfaces through the use of a pulsed UV laser has been designed and tested. This device is composed of a 1 kW excimer laser linked to a bundle of optic fibers and of a system to recover particles and can operate in active zones. Metal surfaces have the peculiarities to trap radio-elements in a superficial layer of oxide that can be eaten away by laser radiation. Different contaminated metals (stainless steels, INCONEL and aluminium) issued from the nuclear industry have been used for the testing. The most important contaminants were 60 Co, 137 Cs, 154-155 Eu and 125 Sb. The ratio of decontamination was generally of 10 and the volume of secondary wastes generating during the process was very low compared with other decontamination techniques. A decontamination speed of 1 m 2 /h has been reached for aluminium. The state of the surface is an important parameter because radio-elements trapped in micro-cracks are very difficult to remove. (A.C.)

  12. Decontamination by ultrafiltration of low radioactivity waste water from fuel element fabrication

    International Nuclear Information System (INIS)

    Muller, H.M.

    1984-01-01

    It could be demonstrated that waste waters which contain uranium in a filterable form, such as laundry and floor-cleaning waste, can be sufficiently decontaminated by means of ultra-filtration. In the case of process waste solutions, which contain uranium in a dissolved form, high decontamination factors could be achieved by means of flocculation or coprecipitation. The following methods were tested: - flocculation with Fe (OH) 3 , - coprecipitation with CaHPO 4 , - precipitation with K 4 (Fe(CN) 6 ). The phosphate precipitation, whereby the uranium is probably coprecipitated as Ca(UO 2 ) 2 (PO 4 ) 2 , was found to be the most reliable method. Difficulties were encountered when complex-forming anions, notably carbonate, oxalate and fluoride were present. These necessitate specific pretreatment steps. Whether ultrafiltration then still remains an economical option must be judged in each individual case. The application of the methods so far developed on combined waste streams remains an object for further research. In combination with a phosphate precipitation, ultrafiltration is a suitable method for the decontamination of low-activity, uranium-contaminated waste waters

  13. Programs of recovery of radioactive wastes from the trenches and land decontamination of the radioactive waste storage center; Programas de recuperacion de los desechos radiactivos de las trincheras y de descontaminacion del predio del centro de almacenamiento de desechos radiactivos

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez D, J.; Reyes L, J. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    1999-06-15

    In this report there are the decontamination program of the land of the Radioactive Waste Storage Center, the Program of Recovery of the radioactive waste of the trenches, the recovery of polluted bar with cobalt 60, the recovery of minerals and tailings of uranium and of earth with minerals and tailings of uranium, the recovery of worn out sealed sources and the waste recovery with the accustomed corresponding actions are presented. (Author)

  14. Method of decontaminating radioactive-contaminated instruments

    International Nuclear Information System (INIS)

    Urata, Megumu; Fujii, Masaaki; Kitaguchi, Hiroshi.

    1982-01-01

    Purpose: To enable safety processing of liquid wastes by recovering radioactive metal ions remaining in the electrolytes after the decontamination procedure thereby decreasing the radioactivity. Method: In a decontamination tank containing electrolytes consisting of diluted hydrochloric acid and diluted sulfuric acid, are provided a radioactive contaminated instrument connected to an anode and a collector electrode made of stainless steel connected to a cathode respectively. Upon applying electrical current, the portion of the mother material to be decontaminated is polished electrolytically into metal ions and they are deposited as metal on the collection electrode. After completion of the decontamination, an ultrasonic wave generator is operated to strip and remove the oxide films. Thereafter, the anode is replaced with the carbon electrode and electrical current is supplied continuously, whereby the remaining metal ions are deposited and recovered as the metal on the collection electrode. (Yoshino, Y.)

  15. Method of decontaminating radioactive-contaminated instruments

    Energy Technology Data Exchange (ETDEWEB)

    Urata, M; Fujii, M; Kitaguchi, H

    1982-03-29

    Purpose: To enable safety processing of liquid wastes by recovering radioactive metal ions remaining in the electrolytes after the decontamination procedure thereby decreasing the radioactivity. Method: In a decontamination tank containing electrolytes consisting of diluted hydrochloric acid and diluted sulfuric acid, are provided a radioactive contaminated instrument connected to an anode and a collector electrode made of stainless steel connected to a cathode respectively. Upon applying electrical current, the portion of the mother material to be decontaminated is polished electrolytically into metal ions and they are deposited as metal on the collection electrode. After completion of the decontamination, an ultrasonic wave generator is operated to strip and remove the oxide films. Thereafter, the anode is replaced with the carbon electrode and electrical current is supplied continuously, whereby the remaining metal ions are deposited and recovered as the metal on the collection electrode.

  16. Decontamination processes for waste glass canisters

    International Nuclear Information System (INIS)

    Rankin, W.N.

    1981-06-01

    The process which will be used to decontaminate waste glass canisters at the Savannah River Plant consists of: decontamination (slurry blasting); rinse (high-pressure water); and spot decontamination (high-pressure water plus slurry). No additional waste will be produced by this process because glass frit used in decontamination will be mixed with the radioactive waste and fed into the glass melter. Decontamination of waste glass canisters with chemical and abrasive blasting techniques was investigated. The ability of a chemical technique with HNO 3 -HF and H 2 C 2 O 4 to remove baked-on contamination was demonstrated. A correlation between oxide removal and decontamination was observed. Oxide removal and, thus, decontamination by abrasive blasting techniques with glass frit as the abrasive was proposed and demonstrated

  17. Decontamination processes for waste glass canisters

    International Nuclear Information System (INIS)

    Rankin, W.N.

    1981-01-01

    The process which will be used to decontaminate waste glass canisters at the Savannah River Plant consists of: decontamination (slurry blasting); rinse (high-pressure water); and spot decontamination (high-pressure water plus slurry). No additional waste will be produced by this process because glass frit used in decontamination will be mixed with the radioactive waste and fed into the glass melter. Decontamination of waste glass canisters with chemical and abrasive blasting techniques was investigated. The ability of a chemical technique with HNO 3 -HF and H 2 C 2 O 4 to remove baked-on contamination was demonstrated. A correlation between oxide removal and decontamination was observed. Oxide removal and, thus, decontamination by abrasive blasting techniques with glass frit as the abrasive was proposed and demonstrated

  18. Survey and decontamination trial of boat wastes contaminated with radioactive cesium

    International Nuclear Information System (INIS)

    Takigami, Hidetaka; Yamamoto, Takashi; Suzuki, Go; Takeuchi, Yukio; Tanosaki, Takao; Takata, Mitsuyasu; Okubo, Takuro

    2013-01-01

    Field survey was conducted to investigate radioactive cesium contamination status of the fiber reinforced plastic (FRP) boats which were damaged by the Great East Japan Earthquake and resulting tsunami, and further affected by nuclear fallout from the accident at the Fukushima No. 1 nuclear power plant. Radiation dose rate was measured targeted at some selected boats and the surrounding environment by using radiation survey meters (i.e., NaI (Tl) scintillation counter and GM counter) and a radiation-sensing camera in order to visualize a dose rate distribution within the area. In addition, FRP parts, sediment deposits and stagnant waters in the boats were sampled and their "1"3"4Cs and "1"3"7Cs radioactivity were measured by gamma-ray spectrometry using NaI (Tl) scintillation or Ge detector. From the monitoring results, materials or sediments in the boats enhanced the radiation levels, however, which can be significantly reduced by decontamination operations such as removal and wash-out of the materials or sediments (i.e., countermeasures for surface-deposited radioactivity). Consequently, the conducted survey and decontamination approaches became a good model and promoted a prompt dismantlement, removal and further disposal/recycle by the local authorities concerned. (author)

  19. Methods for the minimization of radioactive waste from decontamination and decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    2001-01-01

    The objective of this report is to provide Member States and their decision makers (ranging from regulators, strategists, planners and designers, to operators) with relevant information on opportunities for minimizing radioactive wastes arising from the D and D of nuclear facilities. This will allow waste minimization options to be properly planned and assessed as part of national, site and plant waste management policies. This objective will be achieved by: reviewing the sources and characteristics of radioactive materials arising from D and D activities; reviewing waste minimization principles and current practical applications, together with regulatory, technical, financial and political factors influencing waste minimization practices; and reviewing current trends in improving waste minimization practices during D and D

  20. Radiation protection at the RA Reactor in 1993, Part II, Decontamination and actions, collection of liquid effluents and solid radioactive waste

    International Nuclear Information System (INIS)

    Mandic, M.; Vukovic, Z.; Lazic, S.; Plecas, I.; Voko, A.

    1993-01-01

    Certain amount of solid waste results from RA reactor operation, the mean quantity of which depends on the duration of reactor operation and related activities. During repair, when reactor is not operated as well under accidental conditions, the quantity of waste is higher, dependent on the type of repair and comprehensiveness of decontamination of the working surface, contaminated tools and components. The waste is sorted and packed on the spot where they appeared according to the existing regulations and principles of radiation protection with aim to minimize unnecessary exposure of the radiation protection personnel who deals with control, transport, radioactive waste treatment and decontamination. During exceptional operations (decontamination, repair, bigger volume of contaminated material, etc.) professional staff of the Radiation protection department gives recommendations and helps in planning the actions related to repair, sorting and packaging of radioactive waste in special containers, identification of the contaminants, etc. [sr

  1. Radiation protection at the RA Reactor in 1998, Part 2, Annex 2, Decontamination and actions, collection of liquid effluents and solid radioactive waste

    International Nuclear Information System (INIS)

    Mandic, M.; Vukovic, Z.; Bacic, S.; Plecas, I.

    1998-01-01

    Certain amount of solid waste results from RA reactor operation, the mean quantity of which depends on the duration of reactor operation and related activities. During repair, when reactor is not operated as well under accidental conditions, the quantity of waste is higher, dependent on the type of repair and comprehensiveness of decontamination of the working surface, contaminated tools and components. The waste is sorted and packed on the spot where they appeared according to the existing regulations and principles of radiation protection with aim to minimize unnecessary exposure of the radiation protection personnel who deals with control, transport, radioactive waste treatment and decontamination. During exceptional operations (decontamination, repair, bigger volume of contaminated material, etc.) professional staff of the Radiation protection department gives recommendations and helps in planning the actions related to repair, sorting and packaging of radioactive waste in special containers, identification of the contaminants, etc. [sr

  2. Radiation protection at the RA Reactor in 1995, Part -2, Annex 2, Decontamination and actions, collection of liquid effluents and solid radioactive waste

    International Nuclear Information System (INIS)

    Mandic, M.; Vukovic, Z.; Lazic, S.; Plecas, I.; Voko, A.

    1995-01-01

    Certain amount of solid waste results from RA reactor operation, the mean quantity of which depends on the duration of reactor operation and related activities. During repair, when reactor is not operated as well under accidental conditions, the quantity of waste is higher, dependent on the type of repair and comprehensiveness of decontamination of the working surface, contaminated tools and components. The waste is sorted and packed on the spot where they appeared according to the existing regulations and principles of radiation protection with aim to minimize unnecessary exposure of the radiation protection personnel who deals with control, transport, radioactive waste treatment and decontamination. During exceptional operations (decontamination, repair, bigger volume of contaminated material, etc.) professional staff of the Radiation protection department gives recommendations and helps in planning the actions related to repair, sorting and packaging of radioactive waste in special containers, identification of the contaminants, etc. [sr

  3. Radiation protection at the RA Reactor in 1989, Part -2, Decontamination, collection of treatment of fluid and solid radioactive waste, Annex 3

    International Nuclear Information System (INIS)

    Mandic, M.; Vukovic, Z.; Plecas, I.; Knezevic, Lj.; Lazic, S.; Bacic, S.

    1989-01-01

    Certain amount of solid waste results from RA reactor operation, the mean quantity of which depends on the duration of reactor operation and related activities. During repair, when reactor is not operated as well under accidental conditions, the quantity of waste is higher, dependent on the type of repair and comprehensiveness of decontamination of the working surface, contaminated tools and components. The waste is sorted and packed on the spot where they appeared according to the existing regulations and principles of radiation protection with aim to minimize unnecessary exposure of the radiation protection personnel who deals with control, transport, radioactive waste treatment and decontamination. During exceptional operations (decontamination, repair, bigger volume of contaminated material, etc.) professional staff of the Radiation protection department gives recommendations and helps in planning the actions related to repair, sorting and packaging of radioactive waste in special containers, identification of the contaminants, etc. [sr

  4. Method of processing decontaminating liquid waste

    International Nuclear Information System (INIS)

    Kusaka, Ken-ichi

    1989-01-01

    When decontaminating liquid wastes are processed by ion exchange resins, radioactive nuclides, metals, decontaminating agents in the liquid wastes are captured in the ion exchange resins. When the exchange resins are oxidatively deomposed, most of the ingredients are decomposed into water and gaseous carbonic acid and discharged, while sulfur ingredient in the resins is converted into sulfuric acid. In this case, even less oxidizable ingredients in the decontaminating agent made easily decomposable by oxidative decomposition together with the resins. The radioactive nuclides and a great amount of iron dissolved upon decontamination in the liquid wastes are dissolved in sulfuric acid formed. When the sulfuric acid wastes are nuetralized with sodium hydroxide, since they are formed into sodium sulfate, which is most popular as wastes from nuclear facilities, they can be condensated and solidified by existent waste processing systms to thereby facilitate the waste processing. (K.M.)

  5. International trends of radioactive waste management

    International Nuclear Information System (INIS)

    Luo Shanggeng

    1989-01-01

    The new trends of radioactive waste management in the world such as focusing on decreasing the amount of radioactive wastes, developing decontamination and decommissioning technology, conscientious solution for radiactive waste disposal, carrying out social services of waste treatment and quality assurance are reviewed. Besides, comments and suggestions are presented. Key words Radioactive waste management, Radioactive waste treatment, Radioactive waste disposal

  6. Method for decontaminating radiation metal waste

    International Nuclear Information System (INIS)

    Onuma, Tsutomu; Tanaka, Akio; Akimoto, Hidetoshi

    1991-01-01

    This report describes a method for decontaminating radiation metal waste characterized by the following properties: in order to decontaminate radiation metal waste of various shapes produced by facilities involved with radioactive substances, non-complex shapes are decontaminated by electropolishing the materials in a neutral saline solution. Complex shapes are chemically decontaminated by means of an acid solution containing permanganic acid or an alkaline solution and a mineral acid solution. After neutralizing the solutions used for chemical decontamination, the radioactive material is separated and removed. Further, in the decontamination method for radioactive metal waste, a supernatant liquid is reused as the electrolyte in electropolishing decontamination. Permanganic ions (MnO 4 - ) are reduced to manganese dioxide (MnO 2 ) and deposited prior to neutralizing the solution used for chemical decontamination. Once manganese dioxide (MnO 2 ) has been separated and removed, it is re-used as the electrolyte in electropolishing decontamination by means of a process identical to the separation process for radioactive substances. 3 figs

  7. Decontamination of concentrated medium level radioactive wastes by a chromatographic method

    International Nuclear Information System (INIS)

    Faubel, W.; Mehret, R.; Menzler, P.M.

    1990-01-01

    The technical feasibility of partitioning concentrated nitric acid intermediate-level waste (ILWC) solutions from the Purex process into a small volume of high-level waste and a large volume of low-level waste using sorption methods is demonstrated for 1-l and 11-l batches. Cesium-134 and 137 are selectively separated with a decontamination factor (DF) > 1 x 10 5 in a newly developed suspended-bed column filled with the microporous inorganic exchanger ammonium molybdophosphate. The 125 Sb and the actinides and lanthanides (3 +) are retained with DFs between 40 and 1000 on metal oxides of Sb and Mn and on an extraction column containing n-octyl (phenyl)N,N-disobutyl carbamoyl methyl phosphine oxide, respectively. Ruthenium-106 and 60 Co are removed in a column loaded with dimethyl glyoxime and have DFs > 20. The amount of secondary wastes arising from absorber materials was estimated on the basis of 1 l experiments to be 300 kg for a 350 t/yr reprocessing plant with an ILWC volume of about 0.5 m 3 /t of heavy metal. One of the main goals was to check out the influence of a scaling up from laboratory scale to pilot plant operations. The hydraulic behaviour of the apparatus was tested for 1, 20, and 100 liters of solutions. The second important aim was to reach a decontamination of the ILWC, sufficient to meet the requirements of regulations limiting the dose to 2 mSv/h at a 1-m distance, calculations with the PROMAX program, for cementing the LLW effluent into 400-l drums at a 10 wt% loading, lead to a value of about 100 μSv/h; thus, this waste can be handled without any shielding. The secondary waste can be treated individually

  8. Transport of radioactive wastes arising from the decontamination work performed in Goiania-Brazil

    International Nuclear Information System (INIS)

    Mezrahi, A.; Heilbron, P.F.L.; Xavier, A.M.

    1989-01-01

    The present article describes the major aspects related to the packaging and transport operations performed in Goiania, Brazil, following the violation of a Cs-137 teletherapy source, in September 1987, which led to the generation of about 3,500 m 3 of radioactive wastes. The violation of a teletherapy source in the city of Goiania, State of Goias, Brazil, in the month of September 1987, and the subsequent spread of most of its radioactive contents over a large urban area, brought about the need for the establishment of specific provisions to ensure an adequate packaging and transportation of the radioactive wastes to an interim storage. The purpose of this article is to describe the main aspects related to the above mentioned operations, which were performed, as far as possible, according to the IAEA requirements, as well as to discuss the difficulties that were faced by the technical staff of CNEN

  9. Pilot scale study of a chemical treatment process for decontamination of aqueous radioactive waste of pakistan research reactor-1

    International Nuclear Information System (INIS)

    Jan, F.; Hussain, M.; Ahmad, S.S.; Aslam, M.; Haq, E.U.

    2007-12-01

    Chemical treatment process for the low level liquid radioactive waste generated at PINSTECH was previously optimized on lab-scale making use of coprecipitation of hydrous oxides of iron in basic medium. Ferrous sulfate was used as coagulant. Batch wise application of this procedure on pilot scale has been tested on a 1200 L batch volume of typical PINSTECH liquid waste. Different parameters and unit operations have been evaluated. The required data for the construction of a small size treatment plant envisioned can be used for demonstration/teaching purpose as well as for the decontamination of the waste effluents of the Institute. The lab-scale process parameters were verified valid on pilot scale. It was observed that reagent doses can further be economized with out any deterioration of the Decontamination Factors (DF) achieved or of any other aspect of the process. This simple, cost- effective, DF-efficient and time-smart batch wise process could be coupled with an assortment of other treatment operations thus affording universal application. Observations recorded during this study are presented. (author)

  10. Decontamination of radioactively contaminated surfaces

    International Nuclear Information System (INIS)

    1986-10-01

    By this standard objective conditions to evaluate and test the ease of decontamination of surfaces under laboratory conditions are to be laid down. Ease of decontamination in this context denotes the summed-up effect of two material properties: a) the capacity of the material for retaining radioactive substances at its surface; b) the ease with which these substances are given off again in the course of cleaning processes. (orig./HP) [de

  11. Decontamination liquid waste processing method

    International Nuclear Information System (INIS)

    Enda, Masami; Hosaka, Katsumi.

    1992-01-01

    Liquid wastes after electrolytic reduction are caused to flow through an anionic exchange membrane in a diffusion dialysis step, and liquid wastes and dialyzed water are passed in a countercurrent manner. Since acids in the liquid wastes transfer on the side of the dialyzed water due to the difference of concentration between the liquid wastes and the dialyzed water, acids can be easily recovered from the liquid wastes. If the acid-removed liquid wastes are put to electrodeposition in an electrodepositing step, the electrodepositing reactions between radioactive materials such as Co ion, Mn ion and leached metals such as Fe ions and Cr ions are caused preferentially to hydrogen generation reaction on a metal deposition cathode. Accordingly, metal ions can be easily separated from the liquid wastes. Since the separated liquid wastes are an aqueous solution in which cerium ions as a decontaminant and an acid at low concentration are dissolved, the concentration thereof is controlled by mixing them to acid recovering water after the diffusion dialysis and they can be reused as the decontaminant. (T.M.)

  12. Characterization of radionuclide-chelating agent complexes found in low-level radioactive decontamination waste. Literature review

    International Nuclear Information System (INIS)

    Serne, R.J.; Felmy, A.R.; Cantrell, K.J.; Krupka, K.M.; Campbell, J.A.; Bolton, H. Jr.; Fredrickson, J.K.

    1996-03-01

    The US Nuclear Regulatory Commission is responsible for regulating the safe land disposal of low-level radioactive wastes that may contain organic chelating agents. Such agents include ethylenediaminetetraacetic acid (EDTA), diethylenetriaminepentaacetic acid (DTPA), picolinic acid, oxalic acid, and citric acid, and can form radionuclide-chelate complexes that may enhance the migration of radionuclides from disposal sites. Data from the available literature indicate that chelates can leach from solidified decontamination wastes in moderate concentration (1--100 ppm) and can potentially complex certain radionuclides in the leachates. In general it appears that both EDTA and DTPA have the potential to mobilize radionuclides from waste disposal sites because such chelates can leach in moderate concentration, form strong radionuclide-chelate complexes, and can be recalcitrant to biodegradation. It also appears that oxalic acid and citric acid will not greatly enhance the mobility of radionuclides from waste disposal sites because these chelates do not appear to leach in high concentration, tend to form relatively weak radionuclide-chelate complexes, and can be readily biodegraded. In the case of picolinic acid, insufficient data are available on adsorption, complexation of key radionuclides (such as the actinides), and biodegradation to make definitive predictions, although the available data indicate that picolinic acid can chelate certain radionuclides in the leachates

  13. Characterization of radionuclide-chelating agent complexes found in low-level radioactive decontamination waste. Literature review

    Energy Technology Data Exchange (ETDEWEB)

    Serne, R.J.; Felmy, A.R.; Cantrell, K.J.; Krupka, K.M.; Campbell, J.A.; Bolton, H. Jr.; Fredrickson, J.K. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-03-01

    The US Nuclear Regulatory Commission is responsible for regulating the safe land disposal of low-level radioactive wastes that may contain organic chelating agents. Such agents include ethylenediaminetetraacetic acid (EDTA), diethylenetriaminepentaacetic acid (DTPA), picolinic acid, oxalic acid, and citric acid, and can form radionuclide-chelate complexes that may enhance the migration of radionuclides from disposal sites. Data from the available literature indicate that chelates can leach from solidified decontamination wastes in moderate concentration (1--100 ppm) and can potentially complex certain radionuclides in the leachates. In general it appears that both EDTA and DTPA have the potential to mobilize radionuclides from waste disposal sites because such chelates can leach in moderate concentration, form strong radionuclide-chelate complexes, and can be recalcitrant to biodegradation. It also appears that oxalic acid and citric acid will not greatly enhance the mobility of radionuclides from waste disposal sites because these chelates do not appear to leach in high concentration, tend to form relatively weak radionuclide-chelate complexes, and can be readily biodegraded. In the case of picolinic acid, insufficient data are available on adsorption, complexation of key radionuclides (such as the actinides), and biodegradation to make definitive predictions, although the available data indicate that picolinic acid can chelate certain radionuclides in the leachates.

  14. Management of Radioactive Wastes

    International Nuclear Information System (INIS)

    Tchokosa, P.

    2010-01-01

    Management of Radioactive Wastes is to protect workers and the public from the radiological risk associated with radioactive waste for the present and future. It application of the principles to the management of waste generated in a radioisotope uses in the industry. Any material that contains or is contaminated with radionuclides at concentrations or radioactivity levels greater than ‘exempt quantities’ established by the competent regulatory authorities and for which no further use is foreseen or intended. Origin of the Radioactive Waste includes Uranium and Thorium mining and milling, nuclear fuel cycle operations, Operation of Nuclear power station, Decontamination and decommissioning of nuclear facilities and Institutional uses of isotopes. There are types of radioactive waste: Low-level Waste (LLW) and High-level Waste. The Management Options for Radioactive Waste Depends on Form, Activity, Concentration and half-lives of the radioactive waste, Storage and disposal methods will vary according to the following; the radionuclides present, and their concentration, and radio toxicity. The contamination results basically from: Contact between radioactive materials and any surface especially during handling. And it may occur in the solid, liquid or gas state. Decontamination is any process that will either reduce or completely remove the amount of radionuclides from a contaminated surface

  15. Dry decontamination for tritiated wastes

    International Nuclear Information System (INIS)

    Shi Zhengkun; Wu Tao; Dan Guiping; Xie Yun

    2009-01-01

    To aim at decontamination of tritiated wastes, we have developed and fabricated a dry tritium decontamination system, which is designed to reduce tritium surface contamination of various alloy by UV, ozone and heating. The result indicates that the elevation of temperature can obviously improve decontamination effect. With 3 h irradiation by 365 nm UV at 220 degree C, it has a decontamination rate of 99% to stainless steel surface. Ozone can more obviously improve decontamination effect when metal was heated. Ozone has a decontamination effect beyond 95% to stainless steel, aluminum and brass at 220 degree C. Tritium surface concentration of metal has a little increase after decontamination. (authors)

  16. Radioactive wastes

    International Nuclear Information System (INIS)

    Teillac, J.

    1988-01-01

    This study of general interest is an evaluation of the safety of radioactive waste management and consequently the preservation of the environment for the protection of man against ionizing radiations. The following topics were developed: radiation effects on man; radioactive waste inventory; radioactive waste processing, disposal and storage; the present state and future prospects [fr

  17. Determination of vapor-liquid equilibrium data and decontamination factors needed for the development of evaporator technology for use in volume reduction of radioactive waste streams

    International Nuclear Information System (INIS)

    Betts, S.E.

    1993-01-01

    A program is currently in progress at Argonne National Laboratory to evaluate and develop evaporator technology for concentrating radioactive waste streams. By concentrating radioactive waste streams, disposal costs can be significantly reduced. To effectively reduce the volume of waste, the evaporator must achieve high decontamination factors so that the distillate is sufficiently free of radioactive material. One technology that shows a great deal of potential for this application is being developed by LICON, Inc. In this program, Argonne plans to apply LICON's evaporator designs to the processing of radioactive solutions. Concepts that need to be incorporated into the design of the evaporator include, criticality safety, remote operation and maintenance, and materials of construction. To design an effective process for concentrating waste streams, both solubility and vapor-liquid equilibrium data are needed. The key issue, however, is the high decontamination factors that have been demonstrated by this equipment. Two major contributions were made to this project. First, a literature survey was completed to obtain available solubility and vapor-liquid equilibrium data. Some vapor-liquid data necessary for the project but not available in the literature was obtained experimentally. Second, the decontamination factor for the evaporator was determined using neutron activation analysis (NAA)

  18. Radioactive Decontamination by Strippable Paint

    International Nuclear Information System (INIS)

    Chantaraparprachoom, N.; Mishima, K.

    1998-01-01

    The strippable paint, one of the adhesion method, is to decontaminate solid surface of materials or/and a large area. Two kinds of specimen planchet, SUS 304 stainless steel and polycarbonate plastic, contaminated with radioactive 137 Cs were studied under various conditions. It included surface bottom types, the flat and convex concentric circle type, normal condition at room temperature and overheat condition (∼80 degree celsius). This method used coating paints which contains some elements to have a reaction with radioactive materials selectively. ALARA-Decon clear, Rempack-X200 clear, JD-P5-Mrs.Coat and Pro-Blue-color guard were selected to use as the coating paints. The contaminated surface was coated by the strippable paint under the optimum time, followed by peeling the paint seal. The Rempack-X200 showed the best result, the highest decontamination efficiency which are about 99-100% for all conditions of specimens. The JD-P5 and ALARA-Decon showed good results, which are 98-99% decontamination efficiency for the normal condition set of specimens and about 94-97% for the overheat set of specimens. They can decontaminate polycarbonate specimens better than stainless steel specimens. The Pro-Blue-color guard showed the lowest decontamination efficiency of which 60% for polycarbonate specimens at normal condition and 40%, 30% for stainless steel specimens at normal and overheat conditions respectively. There was no effects of surface bottom types significantly

  19. Decontamination processes for waste glass canisters

    International Nuclear Information System (INIS)

    Rankin, W.N.

    1982-01-01

    A Defense Waste Processing Facility (DWPF) is currently being designed to convert Savannah River Plant liquid, high-level radioactive waste into a solid form, such as borosilicate glass. To prevent the spread of radioactivity, the outside of the canisters of waste glass must have very low levels of smearable radioactive contamination before they are removed from the DWPF. Several techniques were considered for canister decontamination: high-pressure water spray, electropolishing, chemical dissolution, and abrasive blasting. An abrasive blasting technique using a glass frit slurry has been selected for use in the DWPF. No additional equipment is needed to process waste generated from decontamination. Frit used as the abrasive will be mixed with the waste and fed to the glass melter. In contrast, chemical and electrochemical techniques require more space in the DWPF, and produce large amounts of contaminated by-products, which are difficult to immobilize by vitrification

  20. Adsorption decontamination of radioactive waste solvent by activated alumina and bauxites

    International Nuclear Information System (INIS)

    Hassan, N.M.; Marra, J.C.; Kyser, E.A.

    1994-01-01

    An adsorption process utilizing activated alumina and activated bauxite adsorbents was evaluated as a function of operating parameters for the removal of low level radioactive contaminants from organic waste solvent generated in the fuel reprocessing facilities and support operations at Savannah River Site. The waste solvent, 30% volume tributyl phosphate in n-paraffin diluent, was degraded due to hydrolysis and radiolysis reactions of tributyl phosphate and n-paraffin diluent, producing fission product binding degradation impurities. The process, which has the potential for removing these activity-binding degradation impurities from the solvent, was operated downflow through glass columns packed with activated alumina and activated bauxite adsorbents. Experimental breakthrough curves were obtained under various operating temperatures and flow rates. The results show that the adsorption capacity of the activated alumina was in the order 10 4 dpm/g and the capacity of the activated bauxite was 10 5 dpm/g. The performance of the adsorption process was evaluated in terms of dynamic parameters (i.e. adsorption capacity, the height and the efficiency of adsorption zone) in such a way as to maximize the adsorption capacity and to minimize the height of the mass transfer or adsorption zone

  1. Radioactive wastes

    International Nuclear Information System (INIS)

    Grass, F.

    1982-01-01

    Following a definition of the term 'radioactive waste', including a discussion of possible criteria allowing a delimitation of low-level radioactive against inactive wastes, present techniques of handling high-level, intermediate-level and low-level wastes are described. The factors relevant for the establishment of definitive disposals for high-level wastes are discussed in some detail. Finally, the waste management organization currently operative in Austria is described. (G.G.)

  2. Radioactive waste management: a series of bibliographies. Decontamination and decommissioning. Supplement 1

    International Nuclear Information System (INIS)

    McLaren, L.H.

    1985-01-01

    This bibliography contains information on decontamination and decommissioning added to the Department of Energy's Energy Data Base from November 1982 through December 1983. The abstracts are grouped by subject category. Entries in the subject index also facilitate access by subject, e.g., Fuel Reprocessing Plants/Decontamination. Within each category the arrangement is by report number for reports, followed by nonreports in reverse chronological order. These citations are to research reports, journal articles, books, patents, these, and conference papers from worldwide sources. Five indexes, each preceded by a brief description, are provided: Corporate Author, Personal Author, Subject, Contract Number, and Report Number

  3. Handling and disposing of radioactive waste

    International Nuclear Information System (INIS)

    Trauger, D.B.

    1983-01-01

    Radioactive waste has been separated by definition into six categories. These are: commercial spent fuel; high-level wastes; transuranium waste; low-level wastes; decommissioning and decontamination wastes; and mill tailings and mine wastes. Handling and disposing of these various types of radioactive wastes are discussed briefly

  4. Radiation resistant and decontaminable coatings for shipping, interim storage and repository storage casks containing radioactive wastes

    International Nuclear Information System (INIS)

    Kunze, S.

    1995-02-01

    All the Corrobesch-DF-Nukelar coatings - black, yellow, blue, red and white - have been excellently decontaminable without and after radiation exposure with 3x10 5 Gy, despite the slightly higher absorbed dose rate applied at KFA Juelich (DIN 55 991 requires ≤1.0 KGy/h). After a further increase to 3x10 6 Gy in the absorbed dose, with an absorbed dose rate up to 1.0 KGy/h conforming to the standard, the coatings black, yellow, blue were still excellent in their decontamination behavior. After exposure to 10 7 Gy all coatings irradiated at Gammaster in their irradiation room (150 m 3 ) with permanent air changes and at absorbed dose rates of 0.9-1.0 KGy/h have been well decontaminable, and the coatings irradiated at KFA Juelich in the 10 l vessel with discontinuous air changes and variable absorbed dose rate (0.22-2.7 KGy/h) have still been fairly well decontaminable only. To be able to evaluate possible changes occurring upon 10 7 Gy radiation exposure, the test specimens were exposed to the action of chemicals according to DIN 55 991 as well as to decontamination cleansing solutions. Different discolorations, very small reductions in brilliancy, and sometimes minor deteriorations in surface hardness occurred. Detrimental visible changes, e.g. bubble and crack formation, swelling, detachment from the base, etc., have not been found for any of the coatings. These results for the test specimens irradiated at Gammaster are identical with the results for the test specimens irradiated at KFA Juelich, except minor deviations. Contrary to expectations, Corrobesch-DF-Nuklear has proved to be a coating material, which, although it consists of organic base material, nevertheless tolerates radiation exposures without visible damage, i.e. conditions under which only electrodeposited nickel coatings have appeared appropriate until now. This means that application of Corrobesch-Nuklear-DF allows the costs of coating of fuel element shipping and storage casks to be reduced

  5. Perspectives concerning radioactive waste management

    International Nuclear Information System (INIS)

    Noynaert, L.

    2013-01-01

    The article presents a general overview of the principles of radioactive waste management as established by the International Atomic Energy Agency. Subsequently, research and development related to radioactive waste management at the Belgian Nuclear Research Center SCK·CEN is discussed. Different topical areas are treated including radioactive waste characterisation, decontamination and the long-term management of radioactive waste. The decommissioning of the BR3 reactor and the construction and the exploitation of the underground research laboratory HADES are cited as examples of the pioneering role that SCK·CEN has played in radioactive waste management.

  6. Characterization of decontamination factors for evaporators used in the treatment of low and intermediate level liquid radioactive wastes

    International Nuclear Information System (INIS)

    Rood, L.B.; Law, C.G. Jr.

    1972-01-01

    Evaporator decontamination factors were studied as functions of boiloff rate, volume reduction, and feed pH. A bench-scale vertical tube evaporator operating on simulated intermediate level nuclear wastes was used. Decontamination factors were not found to be strong functions of volume reduction or boiloff below vapor velocities of 25 lb/ft 2 -hr. At higher vapor fluxes, splashing was encountered. Foaming occurred at a feed pH of 6 but not at higher values. The presence of radioisotopes in the feed had no effect on evaporator performance

  7. Radioactive Waste.

    Science.gov (United States)

    Blaylock, B. G.

    1978-01-01

    Presents a literature review of radioactive waste disposal, covering publications of 1976-77. Some of the studies included are: (1) high-level and long-lived wastes, and (2) release and burial of low-level wastes. A list of 42 references is also presented. (HM)

  8. Decontamination of organic waste

    International Nuclear Information System (INIS)

    Schulz, W.

    1977-01-01

    Decontamination stands for the sack collecting of wc-waste water of nuclear-medical tracts and especially the collecting of primary urine and primary faeces of patients after application of radio-isotopes (e.g. iodine 131). They are tied up in the sacks, treated with antiseptic and decomposition-preventing agents, and finally stored in a decupation depot over the time constant. The decupation depot can, for example, be a deep-freezor with separations and clocks, which is radiation-isolated. After the time constant a chemical and/or physical destruction (e.g. comminution) takes place, with simultaneous disinfection and thawing (vapour heating) and the transfer to the canalization. (DG) [de

  9. Radioactive wastes

    International Nuclear Information System (INIS)

    Devarakonda, M.S.; Melvin, J.M.

    1994-01-01

    This paper is part of the Annual Literature Review issue of Water Environment Research. The review attempts to provide a concise summary of important water-related environmental science and engineering literature of the past year, of which 40 separate topics are discussed. On the topic of radioactive wastes, the present paper deals with the following aspects: national programs; waste repositories; mixed wastes; waste processing and decommissioning; environmental occurrence and transport of radionuclides; and remedial actions and treatment. 178 refs

  10. Aqueous radioactive waste bituminization

    International Nuclear Information System (INIS)

    Williamson, A.S.

    1980-08-01

    The bituminzation of decontamination and ion exchange resin stripping wastes with four grades of asphalt was investigated to determine the effects of asphalt type on the properties of the final products. All waste forms deformed readily under light loads indicating they would flow if not restrained. It was observed in all cases that product leaching rates increased as the hardness of the asphalt used to treat the waste increased. If bituminization is adopted for any Ontario Hydro aqueous radioactive wastes they should be treated with soft asphalt to obtain optimum leaching resistance and mechanical stability during interim storage should be provided by a corrosion resistant container

  11. Radioactive wastes processing device

    International Nuclear Information System (INIS)

    Takamura, Yoshiyuki; Fukujoji, Seiya.

    1986-01-01

    Purpose: To exactly recognize the deposition state of mists into conduits thereby effectively conduct cleaning. Constitution: A drier for performing drying treatment of liquid wastes, a steam decontaminating tower for decontaminating the steams generated from the drier and a condenser for condensating the decontaminating steams are connected with each other by means of conduits to constitute a radioactive wastes processing apparatus. A plurality of pressure detectors are disposed to the conduits, the pressure loss within the conduits is determined based on the detector output and the clogged state in the conduits due to the deposition of mists is detected by the magnitude of the pressure loss. If the clogging exceeds a certain level, cleaning water is supplied to clean-up the conduits thereby keep the operation to continue always under sound conditions. (Sekiya, K.)

  12. Decontamination of radioactive clothing using microemulsion in carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jaeryong; Jang, Jina; Park, Kwangheon; Kim, Hongdoo; Kim, Hakwon [Kyunghee Univ., Seoul (Korea, Republic of); Yim, Sanghak; Yoon, Weonseob [Ulchin Nuclear Power Site, Ulchin (Korea, Republic of)

    2006-07-01

    Nuclear power is intrinsically a clean energy source due to its high energy density and low generation of waste. However, as the nuclear industry grows, a variety of radioactive wastes are increased gradually. Major subjects include contaminated components, tools, equipment, containers and facilities as well as nuclear waste such as uranium scrap and radioactive clothing. The radioactive waste can be classified by its creation. There are Trans-Uranium Nuclides (TRU), Fission Products (FP) and corrosion products. Nuclear decontamination has become an important issue in the nuclear industry. The conventional methods have some problems such as the production of secondary wastes and the use of toxic solvents. We need to develop a new method of decontamination and suggest a use of microemulsion in carbon dioxide to overcome these disadvantages. The microemulsion is the clear solution that contains the water, surfactant and carbon dioxide. The surfactant surrounded the droplet into carbon dioxide and this state is thermodynamically stable. That is, the microemulsion has a structure similar to that of a conventional water-based surfactant system. Generally, the size of droplet is about 5 {approx} 10nm. The microemulsion is able to decontaminate radioactive waste so that the polar substance is removed by water and the non-polar substance is removed by carbon dioxide. After the decontamination process, the microemulsion is separated easily to surfactant and water by decreasing the pressure under the cloud point. This way, only radioactive wastes are left in the system. Cleaned carbon dioxide is then collected and reused. Thus, there are no secondary wastes. Carbon dioxide is considered an alternative process medium. This is because it is non-toxic, non-flammable, inexpensive and easy to handle. Additionally, the tunable properties of carbon dioxide through pressure and temperature control are versatile for use in extracting organic materials. In this paper, we examine the

  13. Decontamination of radioactive clothing using microemulsion in carbon dioxide

    International Nuclear Information System (INIS)

    Yoo, Jaeryong; Jang, Jina; Park, Kwangheon; Kim, Hongdoo; Kim, Hakwon; Yim, Sanghak; Yoon, Weonseob

    2006-01-01

    Nuclear power is intrinsically a clean energy source due to its high energy density and low generation of waste. However, as the nuclear industry grows, a variety of radioactive wastes are increased gradually. Major subjects include contaminated components, tools, equipment, containers and facilities as well as nuclear waste such as uranium scrap and radioactive clothing. The radioactive waste can be classified by its creation. There are Trans-Uranium Nuclides (TRU), Fission Products (FP) and corrosion products. Nuclear decontamination has become an important issue in the nuclear industry. The conventional methods have some problems such as the production of secondary wastes and the use of toxic solvents. We need to develop a new method of decontamination and suggest a use of microemulsion in carbon dioxide to overcome these disadvantages. The microemulsion is the clear solution that contains the water, surfactant and carbon dioxide. The surfactant surrounded the droplet into carbon dioxide and this state is thermodynamically stable. That is, the microemulsion has a structure similar to that of a conventional water-based surfactant system. Generally, the size of droplet is about 5 ∼ 10nm. The microemulsion is able to decontaminate radioactive waste so that the polar substance is removed by water and the non-polar substance is removed by carbon dioxide. After the decontamination process, the microemulsion is separated easily to surfactant and water by decreasing the pressure under the cloud point. This way, only radioactive wastes are left in the system. Cleaned carbon dioxide is then collected and reused. Thus, there are no secondary wastes. Carbon dioxide is considered an alternative process medium. This is because it is non-toxic, non-flammable, inexpensive and easy to handle. Additionally, the tunable properties of carbon dioxide through pressure and temperature control are versatile for use in extracting organic materials. In this paper, we examine the

  14. Radioactive wastes

    International Nuclear Information System (INIS)

    Dupuis, M.C.

    2007-01-01

    Managing radioactive wastes used to be a peripheral activity for the French atomic energy commission (Cea). Over the past 40 years, it has become a full-fledged phase in the fuel cycle of producing electricity from the atom. In 2005, the national radioactive waste management agency (ANDRA) presented to the government a comprehensive overview of the results drawn from 15 years of research. This landmark report has received recognition beyond France's borders. By broadening this agency's powers, an act of 28 June 2006 acknowledges the progress made and the quality of the results. It also sets an objective for the coming years: work out solutions for managing all forms of radioactive wastes. The possibility of recovering wastes packages from the disposal site must be assured as it was asked by the government in 1998. The next step will be the official demand for the creation of a geological disposal site in 2016

  15. Radioactive decontamination apparatus and process

    International Nuclear Information System (INIS)

    Jackson, O.L.

    1983-01-01

    Apparatus for removing radioactive contamination from metal objects is disclosed, consisting of three of three separate pieces. The first is an electro- polishing tank, pump and filter assembly, ventilation duct and filter assembly, and DC power supply. The second is a rinse tank and a pump and filter assembly therefor. The third is a divot crane. The electro-polishing tank assembly and the rinse tank assembly are each separately mounted on pallets to facilitate moving. The filter systems of the electro-polishing tank and the rinse tank are designed to remove the radioactive contamination from the fluids in those tanks. Heavy items or highly contaminated items are handled with the divot crane constructed of stainless steel. The electro- polishing tank and the rinse tank are also made of stainless steel. The ventilation system on the electro- polishing tank exhausts acid fumes resulting from the tank heaters and the electro-polishing process. Inside the electro-polishing tank are two swinging arms that carry two stainless steel probes that hang down in the electrolyte fluid. These negative DC probes and are electrically isolated from the tank and the rest of the system. Across the top center of the tank is a copper pipe, which is also electrically isolated from the tank. This is the positive side of the DC system. To decontaminate a metal object, it is suspended from the positive copper pipe, with good electrical contact, into the electrolyte fluid. The negative probes are then moved on their swinging arms to a close proximity to the object being decontaminated, without making contact

  16. Nuclear fuel cycle waste recycling technology deverlopment - Radioactive metal waste recycling technology development

    International Nuclear Information System (INIS)

    Oh, Won Zin; Moon, Jei Kwon; Jung, Chong Hun; Park, Sang Yoon

    1998-08-01

    With relation to recycling of the radioactive metal wastes which are generated during operation and decommissioning of nuclear facilities, the following were described in this report. 1. Analysis of the state of the art on the radioactive metal waste recycling technologies. 2. Economical assessment on the radioactive metal waste recycling. 3. Process development for radioactive metal waste recycling, A. Decontamination technologies for radioactive metal waste recycling. B. Decontamination waste treatment technologies, C. Residual radioactivity evaluation technologies. (author). 238 refs., 60 tabs., 79 figs

  17. Radioactive waste management

    International Nuclear Information System (INIS)

    1992-01-01

    This book highlights the main issues of public concern related to radioactive waste management and puts them into perspective. It provides an overview of radioactive waste management covering, among other themes, policies, implementation and public communication based on national experiences. Its purpose is to assists in increasing the understanding of radioactive waste management issues by public and national authorities, organizations involved in radioactive waste management and the nuclear industry; it may also serve as a source book for those who communicate with the public. Even in the unlikely event that nuclear power does not further develop around the world, the necessity for dealing with nuclear waste from past usages, from uranium mining and milling, decontamination and decommissioning of existing nuclear facilities and from the uses of radioactive materials in medicine, industry and research would still exist. In many countries, radioactive waste management planning involves making effective institutional arrangements in which responsibilities and liabilities are well established for the technical operation and long term surveillance of disposal systems. Financing mechanisms are part of the arrangements. Continuous quality assurance and quality control, at all levels of radioactive waste management, are essential to ensure the required integrity of the system. As with any other human activity, improvements in technology and economics may be possible and secondary problems avoided. Improvements and confirmation of the efficiency of processes and reduction of uncertainties can only be achieved by continued active research, development and demonstration, which are the goals of many national programmes. International co-operation, also in the form of reviews, can contribute to increasing confidence in the ongoing work. The problem of radioactive wastes is not a unique one; it may be compared with other problems of toxic wastes resulting from many other

  18. Radioactive waste management

    International Nuclear Information System (INIS)

    2013-01-01

    This eighth chapter presents the radioactive wastes and waste disposal; classification of radioactive wastes; basis requests of the radioactive waste management; conditions for a radioactive waste disposal; registers and inventories; transport of radioactive wastes from a facility to another and the radioactive waste management plan

  19. Decontamination method for radioactively contaminated material

    International Nuclear Information System (INIS)

    Shoji, Yuichi; Mizuguchi, Hiroshi; Sakai, Hitoshi; Komatsubara, Masaru

    1998-01-01

    Radioactively contaminated materials having surfaces contaminated by radioactive materials are dissolved in molten salts by the effect of chlorine gas. The molten salts are brought into contact with a low melting point metal to reduce only radioactive materials by substitution reaction and recover them into the low melting point metal. Then, a low melting point metal phase and a molten salt phase are separated. The low melting point metal phase is evaporated to separate the radioactive materials from molten metals. On the other hand, other metal ions dissolved in the molten salts are reduced into metals by electrolysis at an anode and separated from the molten salts and served for regeneration. The low melting point metals are reutilized together with contaminated lead, after subjected to decontamination, generated from facilities such as nuclear power plant or lead for disposal. Since almost all materials including the molten salts and the molten metals can be enclosed, the amount of wastes can be reduced. In addition, radiation exposure of operators who handle them can be reduced. (T.M.)

  20. Chemical and mechanical decontamination processes to minimize secondary waste decommissioning

    International Nuclear Information System (INIS)

    Enda, M.; Ichikawa, N.; Yaita, Y.; Kanasaki, T.; Sakai, H.

    2008-01-01

    In the decommissioning of commercial nuclear reactors in Japan, prior to the dismantling of the nuclear power plants, there are plans to use chemical techniques to decontaminate reactor pressure vessels (RPVs), internal parts, primary loop recirculation systems (PLRs), reactor water clean up systems (RWCUs), etc., so as to minimize radiation sources in the materials to be disposed of. After dismantling the nuclear power plants, chemical and mechanical decontamination techniques will then be used to reduce the amounts of radioactive metallic waste. Toshiba Corporation has developed pre-dismantling and post-dismantling decontamination systems. In order to minimize the amounts of secondary waste, the T-OZON process was chosen for decontamination prior to the dismantling of nuclear power plants. Dismantling a nuclear power plant results in large amounts of metallic waste requiring decontamination; for example, about 20,000 tons of such waste is expected to result from the dismantling of a 110 MWe Boiling Water Reactor (BWR). Various decontamination methods have been used on metallic wastes in preparation for disposal in consideration of the complexity of the shapes of the parts and the type of material. The materials in such nuclear power plants are primarily stainless steel and carbon steel. For stainless steel parts having simple shapes, such as plates and pipes, major sources of radioactivity can be removed from the surface of the parts by bipolar electrolysis (electrolyte: H 2 SO 4 ). For stainless steel parts having complicated shapes, such as valves and pumps, major sources of radioactivity can be removed from the surfaces by redox chemical decontamination treatments (chemical agent: Ce(IV)). For carbon steel parts having simple shapes, decontamination by blasting with zirconia grit is effective in removing major sources of radioactivity at the surface, whereas for carbon steel parts having complicated shapes, major sources of radioactivity can be removed from

  1. Disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Dlouhy, Z.

    1982-01-01

    This book provides information on the origin, characteristics and methods of processing of radioactive wastes, as well as the philosophy and practice of their storage and disposal. Chapters are devoted to the following topics: radioactive wastes, characteristics of radioactive wastes, processing liquid and solid radioactive wastes, processing wastes from spent fuel reprocessing, processing gaseous radioactive wastes, fixation of radioactive concentrates, solidification of high-level radioactive wastes, use of radioactive wastes as raw material, radioactive waste disposal, transport of radioactive wastes and economic problems of radioactive wastes disposal. (C.F.)

  2. NRI's research on radioactive wastes

    International Nuclear Information System (INIS)

    Alexa, J.; Dlouhy, Z.; Kepak, F.; Kourim, V.; Napravnik, J.; Razga, J.; Ralkova, J.; Uher, E.; Vojtech, O.

    1976-01-01

    A survey is given (including 41 references) of work carried out at the Nuclear Research Institute. Discussed are sorption processes (a selective sorbent for 90 Sr based on BaSO 4 , etc.), sorption on inorganic ion exchangers (heteropolyacid salts, ferrocyanides for 137 Cs capture), on organic cation exchangers (separation of lanthanides), electrocoagulation. The process is described of vitrification of highly radioactive wastes, the arrest of emissions, the deposition of radioactive wastes and surface decontamination. (M.K.)

  3. Decontamination of radioactive contaminated protective wear using dry cleaning solvent

    International Nuclear Information System (INIS)

    Muthiah, Pushpa; Chitra, S.; Paul, Biplob

    2013-01-01

    Liquid waste generated by conventional decontamination of radioactive contaminated cotton protective wear using detergent affects the chemical treatment of the plant. To reduce the generation of aqueous detergent waste, dry cleaning of cotton protective wear, highly soiled with oil and grease towards decontamination was tried with organic solvents. Mineral turpentine oil (MTO) among various other organic solvents was identified as a suitable organic solvent. As MTO leaves characteristic odour on the cloth, various commercial fragrances for the removal of the odour were tried. Application of the optimised dry cleaning solvent and commercial fragrance was adopted in plant scale operation. (author)

  4. Radioactive waste

    International Nuclear Information System (INIS)

    Berkhout, F.

    1991-01-01

    Focusing on radioactive waste management and disposal policies in the United Kingdom, Sweden and the Federal Republic of Germany, this book gives a detailed historical account of the policy process in these three countries, and draws out the implications for theory and public policy. This comparative approach underlines how profoundly different the policy process has been in different countries. By comparing the evolution of policy in three countries, fundamental questions about the formation and resolution of technical decisions under uncertainty are clarified. The analysis of nuclear strategy, the politics of nuclear power, and the shifting emphasis of government regulation redefines the issue of radwaste management and sets it at the heat of the current debate about power, the environment and society. The combination of up-to-date technological assessment with an account of the social and political implications of radwaste management makes'Radioactive Waste'particularly useful to students of environmental studies, geography and public administration. (author)

  5. Radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Berkhout, F

    1991-01-01

    Focusing on radioactive waste management and disposal policies in the United Kingdom, Sweden and the Federal Republic of Germany, this book gives a detailed historical account of the policy process in these three countries, and draws out the implications for theory and public policy. This comparative approach underlines how profoundly different the policy process has been in different countries. By comparing the evolution of policy in three countries, fundamental questions about the formation and resolution of technical decisions under uncertainty are clarified. The analysis of nuclear strategy, the politics of nuclear power, and the shifting emphasis of government regulation redefines the issue of radwaste management and sets it at the heat of the current debate about power, the environment and society. The combination of up-to-date technological assessment with an account of the social and political implications of radwaste management makes'Radioactive Waste'particularly useful to students of environmental studies, geography and public administration. (author).

  6. PROCESS OF DECONTAMINATING MATERIAL CONTAMINATED WITH RADIOACTIVITY

    Science.gov (United States)

    Overholt, D.C.; Peterson, M.D.; Acken, M.F.

    1958-09-16

    A process is described for decontaminating metallic objects, such as stainless steel equipment, which consists in contacting such objects with nltric acid in a concentration of 35 to 60% to remove the major portion of the contamination; and thereafter contacting the partially decontaminated object with a second solution containing up to 20% of alkali metal hydroxide and up to 20% sodium tartrate to remove the remaining radioactive contaminats.

  7. Reuse of waste water from high pressure water jet decontamination for reactor decommissioning scrap metal

    International Nuclear Information System (INIS)

    Deng Junxian; Li Xin; Hou Huijuan

    2011-01-01

    For recycle and reuse of reactor decommissioning scrap metal by high pressure water jet decontamination, large quantity of radioactive waste water will be generated. To save the cost of radioactive waste water treatment and to reduce the cost of the scrap decontamination, this part of radioactive waste water should be reused. Most of the radioactivities in the decontamination waste water come from the solid particle in the water. Thus to reuse the waste water, the solid particle in the waster should be removed. Different possible treatment technologies have been investigated. By cost benefit analysis the centrifugal separation technology is selected. (authors)

  8. Chemical hazards from decontamination solutions in low level waste

    International Nuclear Information System (INIS)

    Leventhal, L.; Miller, A.; Turney, J.; Naughton, M.; IMPELL Corp., Walnut Creek, CA; Electric Power Research Inst., Palo Alto, CA)

    1985-01-01

    Recent regulations are focussing more attention on the non-radioactive matrix materials associated with radioactive wastes. Decontamination of operating facilities is becoming a more significant source of low-level waste. This study reviewed the chemical and biological hazards of over 50 decontamination processes. Seventeen of the most prominent hard and soft decontamination processes were examined in detail. The chemical and biological hazards of these seventeen are presented in this paper. These hazards influence the choice of radwaste processing and packaging operations and methods. Federal, state and local regulations further impact on operations and waste disposal. Hazards to personnel, in plant and off-site, resulting from the decontamination cycle are evaluated. 1 fig., 5 tabs

  9. The reuse of scrap and decontamination waste water from decommissioning

    International Nuclear Information System (INIS)

    Deng Junxian; Li Xin; Xie Xiaolong

    2010-01-01

    Huge amount of radioactive scrap with low activity will be generated from reactor decommissioning; the decontamination is concentrated in the surface layer of the scrap. The decontaminated substance can be removed by high pressure water jet to appear the base metal and to reuse the metal. Big amount of radioactive waste water will be generated by this decontamination technology; the radioactive of the waste water is mainly caused by the solid particle from decontamination. To remove the solid particle as clean as possible, the waste water can be reused. Different possible technology to remove the solid particle from the water had been investigated, such as the gravity deposit separation, the filtration and the centrifugal separation etc. The centrifugal separation technology is selected; it includes the hydraulic vortex, the centrifugal filtration and the centrifugal deposit. After the cost benefit analysis at last the centrifugal deposit used butterfly type separator is selected. To reuse the waste water the fresh water consumption and the cost for waste water treatment can be reduced. To reuse the radioactive scrap and the waste water from decommissioning will minimize the radioactive waste. (authors)

  10. Proceedings of the Korean Radioactive Waste Society Spring 2010

    International Nuclear Information System (INIS)

    2010-01-01

    This proceedings contains articles of the Korean Radioactive Waste Society Spring 2010. It was held on May 13-14, 2010 in Yesan, Korea. The main topics are as follows: Radioactive wastes policy and decontamination and decommissioning, Radioactive waste treatment, Radioactive waste disposal and site selection, Spent fuel and fuel cycle and Radiation safety and environment. (Yi, J. H.)

  11. Radioactive wastes

    International Nuclear Information System (INIS)

    Straub, C.P.

    1975-01-01

    A review is presented on the environmental behavior of radioactive wastes. The management of high-level wastes and waste disposal methods were discussed. Some topics included were ore processing, coagulation, absorption and ion exchange, fixation, ground disposal, flotation, evaporation, transmutation and extraterrestrial disposal. Reports were given of the 226 Ra, 224 Ra and tritium activity in hot springs, 90 Sr concentrations in the groundwater and in White Oak Creek, radionuclide content of algae, grasses and plankton, radionuclides in the Danube River, Hudson River, Pacific Ocean, Atlantic Ocean, Lake Michigan, Columbia River and other surface waters. Analysis showed that 239 Pu was scavenged from Lake Michigan water by phytoplankton and algae by a concentration factor of up to 10,000. Benthic invertebrates and fish showed higher 239 Pu concentrations than did their pelagic counterparts. Concentration factors are also given for 234 Th, 60 Co, Fe and Mr in marine organisms. Two models for predicting the impact of radioactivity in the food chain on man were mentioned. In an accidental release from a light-water power reactor to the ocean, the most important radionuclides discharged were found to be 90 Sr, 137 Cs, 239 Pu and activation products 65 Zr, 59 Fe, and 95 Zr

  12. The Auburn Engineering Technical Assistance Program investigation of polyvinyl alcohol film developments pertaining to radioactive particle decontamination and industrial waste minimization

    Science.gov (United States)

    Mole, Tracey Lawrence

    In this work, an effective and systematic model is devised to synthesize the optimal formulation for an explicit engineering application in the nuclear industry, i.e. radioactive decontamination and waste reduction. Identification of an optimal formulation that is suitable for the desired system requires integration of all the interlacing behaviors of the product constituents. This work is unique not only in product design, but also in these design techniques. The common practice of new product development is to design the optimized product for a particular industrial niche and then subsequent research for the production process is conducted, developed and optimized separately from the product formulation. In this proposed optimization design technique, the development process, disposal technique and product formulation is optimized simultaneously to improve production profit, product behavior and disposal emissions. This "cradle to grave" optimization approach allowed a complex product formulation development process to be drastically simplified. The utilization of these modeling techniques took an industrial idea to full scale testing and production in under 18 months by reducing the number of subsequent laboratory trials required to optimize the formula, production and waste treatment aspects of the product simultaneously. This particular development material involves the use of a polymer matrix that is applied to surfaces as part of a decontamination system. The polymer coating serves to initially "fix" the contaminants in place for detection and ultimate elimination. Upon mechanical entrapment and removal, the polymer coating containing the radioactive isotopes can be dissolved in a solvent processor, where separation of the radioactive metallic particles can take place. Ultimately, only the collection of divided solids should be disposed of as nuclear waste. This creates an attractive alternative to direct land filling or incineration. This philosophy also

  13. Electromagnetic mixed waste processing system for asbestos decontamination

    International Nuclear Information System (INIS)

    Kasevich, R.S.; Vaux, W.G.; Nocito, T.

    1995-01-01

    DOE sites contain a broad spectrum of asbestos materials (cloth, pipe lagging, sprayed insulation and other substances) which are contaminated with a combination of hazardous and radioactive wastes due to its use during the development of the U.S. nuclear weapons complex. These wastes consist of cutting oils, lubricants, solvents, PCB's, heavy metals and radioactive contaminants. The radioactive contaminants are the activation, decay and fission products of DOE operations. The asbestos must be converted by removing and separating the hazardous and radioactive materials to prevent the formation of mixed wastes and to allow for both sanitary disposal and effective decontamination. Currently, no technology exists that can meet these sanitary and other objectives

  14. Active Waste Materials Corrosion and Decontamination Tests

    International Nuclear Information System (INIS)

    Danielson, M.J.; Elmore, M.R.; Pitman, S.G.

    2000-01-01

    Stainless steel alloys, 304L and 316L, were corrosion tested in representative radioactive samples of three actual Hanford tank waste solutions (Tanks AW-101, C-104, AN-107). Both the 304L and 316L exhibited good corrosion performance when immersed in boiling waste solutions. The maximum general corrosion rate was 0.015 mm/y (0.60 mils per year). Generally, the 304L had a slightly higher rate than the 316L. No localized attack was observed after 122 days of testing in the liquid phase, liquid/vapor phase, or vapor phase. Radioactive plate-out decontamination tests indicated that a 24-hour exposure to 1 und M HNO 3 could remove about 99% of the radioactive components in the metal film when exposed to the C-104 and AN-107 solutions. The decontamination results are less certain for the AW-101 solution, since the initial contamination readings exceeded the capacity of the meter used for this test

  15. Decontaminating reagents for radioactive systems

    International Nuclear Information System (INIS)

    Seddon, W.A.

    1982-01-01

    A decontaminating reagent composition has been developed comprising EDTA, citric acid, oxalic acid, and formic acid. Formic acid inhibits the decomposition of both EDTA and citric acid, and yields oxalic acid as a result of its own radiolysis. The invention includes the improvement of initially incorporating formic acid in the mixture and maintaining the presence of formic acid by at least one further addition

  16. Radiation protection at the RA Reactor in 1985, Part -4, decontamination and treatment of solid radioactive materials for the needs of RA reactor

    International Nuclear Information System (INIS)

    Plecas, I.; Vukovic, Z.; Blagojevic, R.; Kostadinovic, A.

    1985-01-01

    This report describes the activity of the decontamination and treatment team for the needs of the RA reactor, its equipment, working conditions, methods for decontamination, means of decontamination, type and quantity of decontaminated surfaces, number of decontaminated objects, quantity of collected radioactive solid wastes, their packaging, transport to the storage place and topography od radiation field in the storage during 1985 [sr

  17. Radioactive scrap metal decontamination technology assessment report

    International Nuclear Information System (INIS)

    Buckentin, J.M.; Damkroger, B.K.; Schlienger, M.E.

    1996-04-01

    Within the DOE complex there exists a tremendous quantity of radioactive scrap metal. As an example, it is estimated that within the gaseous diffusion plants there exists in excess of 700,000 tons of contaminated stainless steel. At present, valuable material is being disposed of when it could be converted into a high quality product. Liquid metal processing represents a true recycling opportunity for this material. By applying the primary production processes towards the material's decontamination and re-use, the value of the strategic resource is maintained while drastically reducing the volume of material in need of burial. Potential processes for the liquid metal decontamination of radioactively contaminated metal are discussed and contrasted. Opportunities and technology development issues are identified and discussed. The processes compared are: surface decontamination; size reduction, packaging and burial; melting technologies; electric arc melting; plasma arc centrifugal treatment; air induction melting; vacuum induction melting; and vacuum induction melting and electroslag remelting

  18. Proceedings of the 1st workshop on radioactive waste treatment technologies, October 28, 1997 Taejon, Korea

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    This proceedings describes the volume reduction of radioactive waste, the radioactive waste treatment technology, the decontamination and decommissioning, and the incineration and solidification of radioactive waste. Twenty two papers are submitted.

  19. Proceedings of the 1st workshop on radioactive waste treatment technologies, October 28, 1997 Taejon, Korea

    International Nuclear Information System (INIS)

    1997-01-01

    This proceedings describes the volume reduction of radioactive waste, the radioactive waste treatment technology, the decontamination and decommissioning, and the incineration and solidification of radioactive waste. Twenty two papers are submitted

  20. Decontamination of Savannah River Plant waste glass canisters

    International Nuclear Information System (INIS)

    Rankin, W.N.

    1982-01-01

    A Defense Waste Processing Facility (DWPF) is currently being designed to convert Savannah River Plant (SRP) liquid, high-level radioactive waste into a solid form, such as borosilicate glass. The outside of the canisters of waste glass must have very low levels of smearable radioactive contamination before they are removed from the DWPF to prevent the spread of radioactivity. Several techniques were considered for canister decontamination: high-pressure water spray, electropolishing, chemical dissolution, and abrasive blasting. An abrasive blasting technique using a glass frit slurry has been selected for use in the DWPF. No additional equipment is needed to process waste generated from decontamination. Frit used as the abrasive will be mixed with the waste and fed to the glass melter. In contrast, chemical and electrochemical techniques require more space in the DWPF, and produce large amounts of contaminated byproducts which are difficult to immobilize by vitrification

  1. Disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Blomeke, J.O.

    1979-01-01

    Radioactive waste management and disposal requirements options available are discussed. The possibility of beneficial utilization of radioactive wastes is covered. Methods of interim storage of transuranium wastes are listed. Methods of shipment of low-level and high-level radioactive wastes are presented. Various methods of radioactive waste disposal are discussed

  2. Radioactive Waste Management Strategy

    International Nuclear Information System (INIS)

    2002-01-01

    This strategy defines methods and means how collect, transport and bury radioactive waste safely. It includes low level radiation waste and high level radiation waste. In the strategy are foreseen main principles and ways of storage radioactive waste

  3. Study of decontamination and waste management technologies for contaminated rural and forest environment

    International Nuclear Information System (INIS)

    Grebenkov, A.; Davydchuk, V.; Firsakova, S.; Jouve, A.; Kutlakhmedov, Y.; Rose, K.; Zhouchenko, T.; Antzypaw, G.

    1996-01-01

    Pilot and demonstrative scale in situ trials of several decontamination technologies proposed in the framework of ECP-4 project were carried out in real conditions of Chernobyl Zone. Their results proved that industrial scale decontamination of various types of land is feasible. The management of radioactive waste arising from decontamination techniques can be provided by ecologically sound and efficient technologies

  4. Decontamination of radioactive metal surfaces by plasma arc gouging

    International Nuclear Information System (INIS)

    Osamu, K.; Makoto, K.; Takao, K.

    1983-01-01

    Experiments have been carried out to develop a new decontamination method that applies plasma arc gouging for removal of a thin surface layer from radioactively contaminated metallic wastes. Plasma arc gouging has been carried out on stainless steel and carbon steel pipes. The torch nozzle and gouging angle have been optimized to increase the decontamination rate. A water film is formed on the pipe surface to reduce both dust concentration in the off-gas and prevent slag particles, which are splashed up by the plasma gas, from adhering to the gouged surface. Using chromium-electroplated carbon steel pipes as samples, a decontamination factor of >10 3 is obtained after gouging to a depth of about0.5 mm in combination with ultrasonic cleaning

  5. Dilute chemical decontamination resins and the mixed waste issue

    International Nuclear Information System (INIS)

    Denault, R.P.; Hallman, J.T.

    1988-01-01

    The decontamination of reactor primary systems, sub-systems and components is an important method used to reduce the occupational radiation exposure of nuclear plant personnel. The waste produced by the application of this technology is mainly solid in the form of ion exchange resins. As a result of a recent agreement between the Environmental Protection Agency (EPA) and the Nuclear Regulatory Commission (NRC), all radioactive waste must meet EPA burial criteria. The chemicals used in a decontamination and certain metals dissolved during the process, primarily chromium, could render the waste hazardous as well as radioactive or more commonly called a mixed waste. This paper defines mixed waste as described in the EPA directive 9432.00-2, and examine the criteria by which waste is categorized as hazardous. The decontamination waste resin generated by two processes, the CAN-DEREM and the LOMI process, is described in detail. Waste data obtained from decontaminations performed by LN Technologies Corporation including chemical, metal and radionuclide loadings on resins from both PWR and BWR applications are presented

  6. Safety analysis of the Chernobyl accident origin decontamination waste burials in Belarus

    International Nuclear Information System (INIS)

    Skurat, V.V.; Shiryaeva, N.M.; Myshkina, N.K.; Gvozdev, A.A.; Serebryanyj, G.Z.; Golikova, N.B.

    2002-01-01

    Potential dangerous of the decontamination waste burials was estimated by means of the generalized multicompartmental model. Characteristics of 24 the most large and unfavorable decontamination waste burials are shown and an estimate of their safety is given. The burial effect zones were determined (100-300 m). A reliability of the forecasting estimate of potential dangerous radioactive contamination of ground waters near the burials was checked on example of the Dudichi decontamination waste burial

  7. Properties and solidification of decontamination wastes

    International Nuclear Information System (INIS)

    Davis, M.S.; Piciulo, P.L.; Bowerman, B.S.; Adams, J.W.; Milian, L.

    1983-01-01

    LWRs will require one or more chemical decontaminations to achieve their designed lifetimes. Primary system decontamination is designed to lower radiation fields in areas where plant maintenance personnel must work. Chemical decontamination methods are either hard (concentrated chemicals, approximately 5 to 25 weight percent) or soft (dilute chemicals less than 1 percent by weight). These methods may have different chemical reagents, some tailor-made to the crud composition and many methods are and will be proprietary. One factor common to most commercially available processes is the presence of organic acids and chelates. These types of organic reagents are known to enhance the migration of radionuclides after disposal in a shallow land burial site. The NRC sponsors two programs at Brookhaven National Laboratory that are concerned with the management of decontamination wastes which will be generated by the full system decontamination of LWRs. These two programs focus on potential methods for degrading or converting decontamination wastes to more acceptable forms prior to disposal and the impact of disposing of solidified decontamination wastes. The results of the solidification of simulated decontamination resin wastes will be presented. Recent results on combustion of simulated decontamintion wastes will be described and procedures for evaluating the release of decontamination reagents from solidified wastes will be summarized

  8. Final programmatic environmental impact statement related to decontamination and disposal of radioactive wastes resulting from March 28, 1979 accident, Three Mile Island Nuclear Station, Unit 2, Docket No. 50-320

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1981-03-01

    A Final Programmatic Environmental Impact Statement (PEIS) related to the decontamination and disposal of radioactive wastes resulting from the March 28, 1979, accident at Three Mile Island Nuclear Station, Unit 2 (Docket No. 50-320) has been prepared by the Office of Nuclear Reactor Regulation of the Nuclear Regulatory Commission in response to a directive issued by the Commission on November 21, 1979. This statement is an overall study of the activities necessary for decontamination of the facility, defueling, and disposition of the radioactive wastes. The available alternatives considered ranged from implementation of full cleanup to no action other than continuing to maintain the reactor in a safe shutdown condition. Also included are comments of governmental agencies, other organizations, and the general public on the Draft PEIS on this project, and staff responses to these comments. (author)

  9. Metal decontamination for waste minimization using liquid metal refining technology

    International Nuclear Information System (INIS)

    Joyce, E.L. Jr.; Lally, B.; Ozturk, B.; Fruehan, R.J.

    1993-01-01

    The current Department of Energy Mixed Waste Treatment Project flowsheet indicates that no conventional technology, other than surface decontamination, exists for metal processing. Current Department of Energy guidelines require retrievable storage of all metallic wastes containing transuranic elements above a certain concentration. This project is in support of the National Mixed Low Level Waste Treatment Program. Because of the high cost of disposal, it is important to develop an effective decontamination and volume reduction method for low-level contaminated metals. It is important to be able to decontaminate complex shapes where surfaces are hidden or inaccessible to surface decontamination processes and destruction of organic contamination. These goals can be achieved by adapting commercial metal refining processes to handle radioactive and organic contaminated metal. The radioactive components are concentrated in the slag, which is subsequently vitrified; hazardous organics are destroyed by the intense heat of the bath. The metal, after having been melted and purified, could be recycled for use within the DOE complex. In this project, we evaluated current state-of-the-art technologies for metal refining, with special reference to the removal of radioactive contaminants and the destruction of hazardous organics. This evaluation was based on literature reports, industrial experience, plant visits, thermodynamic calculations, and engineering aspects of the various processes. The key issues addressed included radioactive partitioning between the metal and slag phases, minimization of secondary wastes, operability of the process subject to widely varying feed chemistry, and the ability to seal the candidate process to prevent the release of hazardous species

  10. Immersed radioactive wastes

    International Nuclear Information System (INIS)

    2017-03-01

    This document presents a brief overview of immersed radioactive wastes worldwide: historical aspects, geographical localization, type of wastes (liquid, solid), radiological activity of immersed radioactive wastes in the NE Atlantic Ocean, immersion sites and monitoring

  11. The Radioactive Waste Management at Studsvik

    Energy Technology Data Exchange (ETDEWEB)

    Hedlund, R; Lindskog, A

    1966-04-15

    The report was originally prepared as a contribution to the discussions in an IAEA panel on economics of radioactive waste management held in Vienna from 13 - 17 December 1965. It contains the answers and comments to the questions of a questionnaire for the panel concerning the various operations associated with the management (collection, transport, treatment, discharge, storage, and operational monitoring) of: - radioactive liquid wastes, except high-level effluents from reactor fuel recovering operations; - solid wastes, except those produced from treatment of high level wastes; - gaseous wastes produced from treatment of the foregoing liquid and solid wastes; - equipment decontamination facilities and radioactive laundries.

  12. The Radioactive Waste Management at Studsvik

    International Nuclear Information System (INIS)

    Hedlund, R.; Lindskog, A.

    1966-04-01

    The report was originally prepared as a contribution to the discussions in an IAEA panel on economics of radioactive waste management held in Vienna from 13 - 17 December 1965. It contains the answers and comments to the questions of a questionnaire for the panel concerning the various operations associated with the management (collection, transport, treatment, discharge, storage, and operational monitoring) of: - radioactive liquid wastes, except high-level effluents from reactor fuel recovering operations; - solid wastes, except those produced from treatment of high level wastes; - gaseous wastes produced from treatment of the foregoing liquid and solid wastes; - equipment decontamination facilities and radioactive laundries

  13. Radioactive waste management

    International Nuclear Information System (INIS)

    Kawakami, Yutaka

    2008-01-01

    Radioactive waste generated from utilization of radioisotopes and each step of the nuclear fuel cycle and decommissioning of nuclear facilities are presented. On the safe management of radioactive waste management, international safety standards are established such as ''The Principles of Radioactive Waste Management (IAEA)'' and T he Joint Convention on the Safety of Radioactive Waste Management . Basic steps of radioactive waste management consist of treatment, conditioning and disposal. Disposal is the final step of radioactive waste management and its safety is confirmed by safety assessment in the licensing process. Safety assessment means evaluation of radiation dose rate caused by radioactive materials contained in disposed radioactive waste. The results of the safety assessment are compared with dose limits. The key issues of radioactive waste disposal are establishment of long term national strategies and regulations for safe management of radioactive waste, siting of repository, continuity of management activities and financial bases for long term, and security of human resources. (Author)

  14. Management of radioactive waste

    International Nuclear Information System (INIS)

    Neerdael, B.; Marivoet, J.; Put, M.; Van Iseghem, P.; Volckaert, G.; Wacquier, W.

    1998-09-01

    The document gives an overview of of different aspects of radioactive waste management in Belgium. The document discusses the radioactive waste inventory in Belgium, the treatment and conditioning of radioactive waste as well as activities related to the characterisation of different waste forms. A separate chapter is dedicated to research and development regarding deep geological disposal of radioactive waste. In the Belgian waste management programme, particular emphasis is on studies for disposal in clay. Main results of these studies are highlighted and discussed

  15. Radioactive wastes: the challenge of volumes reduction

    International Nuclear Information System (INIS)

    Lepetit, V.

    2005-01-01

    The reduction of radioactive waste volumes is a priority for the French atomic energy commission (CEA) and for the Areva group. This article gives a rapid overview of the equipments and processes used to separate the valorizable materials from the ultimate wastes: pulsed separation columns and evaporators for the liquid-liquid extraction, compactification of spent fuel hulls, remote handling systems, recoverable colloid for surface decontamination, decontaminating foam, hydrothermal oxidation of organic and aqueous effluents, cold crucible vitrification etc. (J.S.)

  16. Experience gained in the management of radioactive waste from maintenance, decontamination and partial decommissioning of a reprocessing plant and conclusions resulting for the management of radioactive wastes from nuclear power plants

    International Nuclear Information System (INIS)

    Hild, W.

    1983-01-01

    After a short description of the historical background of Eurochemic, its main tasks and the various operational phases, a detailed description of the waste management principles applied is presented. The practical experience in the waste treatment is reported for both the operational phase of the reprocessing plant and its decontamination and partial decommissioning after shutdown. Based on this experience and the presented data, an assessment of the practical operations is made and conclusions are drawn. Finally, recommendations are formulated both for the general waste management policy and the practical waste treatment processes in nuclear power reactors. (author)

  17. Development of surface decontamination technology for radioactive waste using plasma. Dust behaviors in the treatment of oxide films using a low-pressure arc

    International Nuclear Information System (INIS)

    Adachi, Kazuo; Furukawa, Shizue; Amakawa, Tadashi; Fujiwara, Kazutoshi; Kanbe, Hiromu

    2002-01-01

    We are developing the surface treatment technique using low-pressure arc as a new decontamination technology for radioactive wastes from nuclear facilities. For the practical use, effective dust collection methods are necessary, because dust is generated from oxide films on the surface during the treatment. The method using gas stream and filters may be one of them, but the behavior of the dust has not been examined yet. We studied the basic behavior of the dust and the possibilities of dust control by gas stream as follows. 1. Most of the dust attached to the anode in the case of no gas blow. 2. Dust attachment to the anode was reduced to about half using small cross section type anode. It seems to be possible to reduce the dust attachment by proper choice of electrode shape. 3. The dust attachment was reduced to 10 to 40 percent by the gas blow to the side of arc. The dust control by gas stream might be possible. (author)

  18. Final remediation of the provisional storage near Zavratec. Separation of waste, decontamination and radiological measurements

    International Nuclear Information System (INIS)

    Stepisnik, M.; Zeleznik, N.; Mele, I.

    2000-01-01

    This paper presents remedial activities in Zavratec during winter 1999 - 2000. The difficult and slow process of separation radioactive from non-radioactive waste is explained, and the measuring techniques and equipment for separation are presented. The measurements of storage contamination and its decontamination, involving different practical problems, are described in detail. As a result, the initial volume of the waste was reduced to 50%, in spite of the extended decontamination works. The waste has been relocated to the Brinje storage facility. Measurements inside and outside the Zavratec facility after decontamination showed that no radioactivity higher than the natural background was present. The facility was released for unrestricted use. (author)

  19. Melting decontamination and free release of metal waste at Studsvik RadWaste Co. in Sweden

    International Nuclear Information System (INIS)

    Kawatsuma, Shinji; Ishikawa, Keiji; Matsubara, Tatsuo; Donomae, Yasushi; Imagawa, Yasuhiro

    2006-01-01

    The Studsvik RadWaste Co. in Sweden was visited on August 29, 2005 by members of radioactive waste and decommissioning subgroup of central safety task force in old Japan Nuclear Cycle Development Institute as 'Overseas investigation'. The visit afforded us the chance to survey melting and decontaminating of metallic waste in this company and the status of free release. Domestic and foreign radioactive metallic waste is accepted in this company after 1987, and the majority of the decontaminated waste have been released freely. In the background of the big effort of this company and the strong leadership of the regulator (SSI: Swedish radiation protection Authority), prosperous operation was able to have been achieved. This survey was done based on 'Free release of radioactive metallic waste in Europe: the free release experience for 17 years at Studsvik RadWaste Co. in Sweden' by Dr. J. Lorenzen. (author)

  20. Chemical Decontamination of Metallic Waste from Uranium Conversion Plant Dismantling

    International Nuclear Information System (INIS)

    Hwang, D. S.; Choi, Y. D.; Hwang, S. T.; Park, J. H.; Byun, J. I.; Jang, N. S.

    2005-01-01

    Korea Atomic Energy Research Institute (KAERI) started a decommissioning program of the uranium conversion plant. Pre-work was carried as follows; installation of the access control facility, installation of a changing room and shower room, designation of an emergency exit way and indicating signs, installation of a radiation management facility, preparation of a storage area for tools and equipments, inspection and load test of crane, distribution and packaging of existing waste, and pre-decontamination of the equipment surface and the interior. First, decommissioning work was performed in kiln room, which will be used for temporary radioactive waste storage room. Kiln room housed hydro fluorination rotary kiln for production of uranium tetra-fluoride. The kiln is about 0.8 m in diameter and 5.5 m long. The total dismantled waste was 6,690 kg, 73 % of which was metallic waste and 27 % the others such as cable, asbestos, concrete, secondary waste, etc. And effluent treatment room and filtration room were dismantled for installation of decontamination equipment and lagoon sludge treatment equipment. There were tanks and square mixer in these rooms. The total dismantled waste was 17,250 kg, 67% of which was metallic waste and 33% the others. These dismantled metallic wastes consist of stainless and carbon steel. In this paper, the stainless steel plate and pipe were decontaminated by the chemical decontamination with ultrasonic

  1. Methodology development for radioactive waste treatment of CDTN/BR - liquid low-level radioactive wastes

    International Nuclear Information System (INIS)

    Morais, Carlos Antonio de

    1996-01-01

    The radioactive liquid wastes generated in Nuclear Technology Development Centre (CDTN) were initially treated by precipitation/filtration and then the resulting wet solid wastes were incorporated in cement. These wastes were composed of different chemicals and different radioactivities and were generated by different sectors. The objective of the waste treatment method was to obtain minimum wet solid waste volume and decontamination and minimum operational cost. The composition of the solid wastes were taken into consideration for compatible cementation process. Approximately 5,400 litres of liquid radioactive wastes were treated by this process during 1992-1995. The volume reduction was 1/24 th and contained 20% solids. (author)

  2. WIS decontamination factor demonstration test with radioactive nuclides

    International Nuclear Information System (INIS)

    Kanbe, Hiromi; Mayuzumi, Masami; Ono, Tetsuo; Nagae, Madoka; Sekiguchi, Ryosaku; Takaoku, Yoshinobu.

    1987-01-01

    A radioactive Waste Incineration System (WIS) with suspension combustion is noticed as effective volume reduction technology of low level radiactive wastes that are increasing every year. In order to demonstrate the decontamination efficiency of ceramic filter used on WIS, this test has been carried out with the test facilities as joint research of Central Research Institute of Electric Power Industry (CRIEPI) and Sumitomo Heavy Industries, Ltd. Miscellaneous combustible waste and power resin, to which 5 nuclides (Mn-54, Fe-59, Co-60, Zn-65, Cs-137) were added, were used as samples for incineration. As the result of the test, it was verified that Decontamination Factor (DF) of the single stage ceramic filter was usually kept over 10 5 for every nuclide, and from the results of above DF, over 10 8 is expected for real commercial plant as a total system. Therefore, it is realized that the off-gas clean up system of the WIS composed of only single stage of ceramic filter is capable of sufficiently efficient decontamination of exhaust gas to be released to stack. (author)

  3. Aspects of radioactive waste management

    International Nuclear Information System (INIS)

    Cutoiu, Dan

    2003-01-01

    The origin and types of radioactive waste, the objective and the fundamental principles of radioactive waste management and the classification of radioactive waste are presented. Problems of the radioactive waste management are analyzed. (authors)

  4. Transport of radioactive wastes

    International Nuclear Information System (INIS)

    Stuller, C.

    2003-01-01

    In this article author describes the system of transport and processing of radioactive wastes from nuclear power of Slovenske elektrarne, plc. It is realized the assurance of transport of liquid and solid radioactive wastes to processing links from places of their formation, or of preliminary storage and consistent transports of treated radioactive wastes fixed in cement matrix of fibre-concrete container into Rebublic storage of radioactive wastes in Mochovce

  5. Radioactive waste management

    International Nuclear Information System (INIS)

    Balek, V.

    1994-01-01

    This booklet is a publication by International Atomic Energy Agency for general awareness of citizens and policy-makers to clarify their concept of nuclear wastes. In a very simple way it tells what is radioactivity, radiations and radioactive wastes. It further hints on various medial and industrial uses of radiations. It discusses about different types of radioactive wastes and radioactive waste management. Status of nuclear power plants in Central and Eastern European countries are also discussed

  6. The state of the art on the radioactive metal waste recycling technologies

    International Nuclear Information System (INIS)

    Oh, Won Jin; Moon, Jei Kwon; Jung, Chong Hun; Park, Sang Yoon

    1997-09-01

    As the best strategy to manage the radioactive metal wastes which are generated during operation and decommissioning of nuclear facilities, the following recycling technologies are investigated. 1. decontamination technologies for radioactive metal waste recycling 2. decontamination waste treatment technologies. 3. residual radioactivity evaluation technologies. (author). 260 refs., 26 tabs., 31 figs

  7. Radioactive waste management in West Germany

    Energy Technology Data Exchange (ETDEWEB)

    Krause, H [Kernforschungszentrum Karlsruhe G.m.b.H. (Germany, F.R.)

    1978-01-01

    The technologies developed in West Germany for radioactive waste management are widely reviewed. The first topic in this review paper is the disposal of low- and middle-level radioactive liquid wastes. Almost all these liquid wastes are evaporated, and the typical decontamination factor attained is 10/sup 4/ -- 10/sup 6/. The second topic is the solidification of residuals. Short explanation is given to bituminization and some new processes. The third topic is high-level liquid wastes. Degradation of glass quality due to various radiation is discussed. Embedding of small glass particles containing radioactive wastes into metal is also explained. Disposals of low-level solid wastes and the special wastes produced from reprocessing and mixed oxide fuel fabrication are explained. Final disposal of radioactive wastes in halite is discussed as the last topic. Many photographs are used to illustrate the industrial or experimental use of those management methods.

  8. Electromagnetic mixed waste processing system for asbestos decontamination

    Energy Technology Data Exchange (ETDEWEB)

    Kasevich, R.S. [KAI Technologies, Inc., Portsmouth, NH (United States); Vaux, W.G. [Westinghouse Electric Corp., Pittsburgh, PA (United States); Nocito, T. [Ohio DSI Corp., New York (United States)

    1995-10-01

    DOE sites contain a broad spectrum of asbestos materials (cloth, pipe lagging, sprayed insulation and other substances) which are contaminated with a combination of hazardous and radioactive wastes due to its use during the development of the U.S. nuclear weapons complex. These wastes consist of cutting oils, lubricants, solvents, PCB`s, heavy metals and radioactive contaminants. The radioactive contaminants are the activation, decay and fission products of DOE operations. The asbestos must be converted by removing and separating the hazardous and radioactive materials to prevent the formation of mixed wastes and to allow for both sanitary disposal and effective decontamination. Currently, no technology exists that can meet these sanitary and other objectives.

  9. Radioactive waste management, decommissioning, spent fuel storage. V. 1. Waste management principles, decommissioning, dismantling, operations in hot environment

    International Nuclear Information System (INIS)

    1985-01-01

    This book deals mainly with decommissioning problems concerning more particularly dismantling and decontamination techniques, and radioactive waste processing. Radioactive waste management in France and the French regulation are tackled. Equipments developed for works in hostile environment are also presented [fr

  10. Radiation protection at the RA Reactor in 1995, Part -2, Annex 2, Decontamination and actions, collection of liquid effluents and solid radioactive waste; Deo 2 - Prilog 2 - Dekontaminacija i intervencije, skupljanje tecnih efluenata i cvrstih radioaktivnih otpadnih materijala

    Energy Technology Data Exchange (ETDEWEB)

    Mandic, M; Vukovic, Z; Lazic, S; Plecas, I; Voko, A [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1995-12-01

    Certain amount of solid waste results from RA reactor operation, the mean quantity of which depends on the duration of reactor operation and related activities. During repair, when reactor is not operated as well under accidental conditions, the quantity of waste is higher, dependent on the type of repair and comprehensiveness of decontamination of the working surface, contaminated tools and components. The waste is sorted and packed on the spot where they appeared according to the existing regulations and principles of radiation protection with aim to minimize unnecessary exposure of the radiation protection personnel who deals with control, transport, radioactive waste treatment and decontamination. During exceptional operations (decontamination, repair, bigger volume of contaminated material, etc.) professional staff of the Radiation protection department gives recommendations and helps in planning the actions related to repair, sorting and packaging of radioactive waste in special containers, identification of the contaminants, etc. [Serbo-Croat] Tokom rada reaktora RA dolazi do stvaranja odredjenih cvrstih otpadnih materijala cija prosecna kolicina zavisi od vremena rada reaktora i aktivnosti koje se tamo obavljaju. Tokom remonta, kada reaktor ne radi kao i pri akcidentalnim situacijama nastaju vece kolicine otpadnih materijala koje zavise od obima i vrste remontnih operacija i obima dekontaminacije kontaminirane radne povrsine i kontaminiranog alata, predmeta, opreme, itd. Nastali otpadni materijali se razvrstavaju i pakuju na mestu nastanka prema odgovarajucim propisima u skladu sa principima zastite od zracenja i aspekta bezbednosti u cilju minimiziranja nepotrebnog ozracivanja ljudstva za preuzimanje, kontrolu, transport, naknadnu obradu RAO i dekontaminaciju. Pri nerutinskim operacijama (dekontaminacija, remont, kontaminiarni otpadni materijal velike zapremine i sl.), strucna sluzba Institita ZASTITA pruza strucne konsultacije i pomaze pri planiranju

  11. Radioactive wastes and discharges

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    The guide sets out the radiation safety requirements and limits for the treatment of radioactive waste. They shall be observed when discharging radioactive substances into the atmosphere or sewer system, or when delivering solid, low-activity waste to a landfill site without a separate waste treatment plan. The guide does not apply to the radioactive waste resulting from the utilisation of nuclear energy or natural resources.

  12. Radioactive wastes and discharges

    International Nuclear Information System (INIS)

    2000-01-01

    The guide sets out the radiation safety requirements and limits for the treatment of radioactive waste. They shall be observed when discharging radioactive substances into the atmosphere or sewer system, or when delivering solid, low-activity waste to a landfill site without a separate waste treatment plan. The guide does not apply to the radioactive waste resulting from the utilisation of nuclear energy or natural resources

  13. Radioactive waste processing

    International Nuclear Information System (INIS)

    Dejonghe, P.

    1978-01-01

    This article gives an outline of the present situation, from a Belgian standpoint, in the field of the radioactive wastes processing. It estimates the annual quantity of various radioactive waste produced per 1000 MW(e) PWR installed from the ore mining till reprocessing of irradiated fuels. The methods of treatment concentration, fixation, final storable forms for liquid and solid waste of low activity and for high level activity waste. The storage of radioactive waste and the plutonium-bearing waste treatement are also considered. The estimated quantity of wastes produced for 5450 MW(e) in Belgium and their destination are presented. (A.F.)

  14. Road surface washing system for decontaminating radioactive substances. Experiment of radioactive decontamination

    International Nuclear Information System (INIS)

    Endo, Mitsuru; Endo, Mai; Kakizaki, Takao

    2015-01-01

    The Great East Japan Earthquake that occurred on March 11, 2011 resulted in the explosion of the TEPCO Fukushima 1st Nuclear Power Plant and the global dispersion of a large quantity of radioactive substances. A high radiation dose was particularly recorded in Fukushima prefecture several weeks after the accident, although the level is presently sufficiently low. However, considering that the adverse effects of low but extended exposure to radiation are yet to be negated, there is the urgent need for further decontamination. In our study, we focused on the efficient decontamination of radioactive substances in residential areas, for which we propose a high-pressure water jet system for washing road surfaces. The system differs from conventional systems of its type that were initially designed for use in the immediate environment of the nuclear reactors of the TEPCO Fukushima 1st Nuclear Power Plant. The proposed system consists of multiple washing, transporter, and server robots. The washing robots decontaminate the road surface using high-pressure water jets and are transported between washed and unwashed areas by the transporter robots. The server robots supply the water used for washing and absorb the polluted water together with ground dust. In this paper, we describe the concept of the system and present the results of decontamination experiments. Particular attention is given to the washing robot and its mechanism and control method. The results of the integration of the washing robot in an experimental system confirmed the feasibility of the proposed system. (author)

  15. Radioactive waste management solutions

    International Nuclear Information System (INIS)

    Siemann, Michael

    2015-01-01

    One of the more frequent questions that arise when discussing nuclear energy's potential contribution to mitigating climate change concerns that of how to manage radioactive waste. Radioactive waste is produced through nuclear power generation, but also - although to a significantly lesser extent - in a variety of other sectors including medicine, agriculture, research, industry and education. The amount, type and physical form of radioactive waste varies considerably. Some forms of radioactive waste, for example, need only be stored for a relatively short period while their radioactivity naturally decays to safe levels. Others remain radioactive for hundreds or even hundreds of thousands of years. Public concerns surrounding radioactive waste are largely related to long-lived high-level radioactive waste. Countries around the world with existing nuclear programmes are developing longer-term plans for final disposal of such waste, with an international consensus developing that the geological disposal of high-level waste (HLW) is the most technically feasible and safe solution. This article provides a brief overview of the different forms of radioactive waste, examines storage and disposal solutions, and briefly explores fuel recycling and stakeholder involvement in radioactive waste management decision making

  16. Radioactive Waste Management Basis

    International Nuclear Information System (INIS)

    Perkins, B.K.

    2009-01-01

    The purpose of this Radioactive Waste Management Basis is to describe the systematic approach for planning, executing, and evaluating the management of radioactive waste at LLNL. The implementation of this document will ensure that waste management activities at LLNL are conducted in compliance with the requirements of DOE Order 435.1, Radioactive Waste Management, and the Implementation Guide for DOE Manual 435.1-1, Radioactive Waste Management Manual. Technical justification is provided where methods for meeting the requirements of DOE Order 435.1 deviate from the DOE Manual 435.1-1 and Implementation Guide.

  17. Objectives for radioactive waste packaging

    International Nuclear Information System (INIS)

    Flowers, R.H.

    1982-04-01

    The report falls under the headings: introduction; the nature of radioactive wastes; how to manage radioactive wastes; packaging of radioactive wastes (supervised storage; disposal); waste form evaluation and test requirements (supervised storage; disposal); conclusions. (U.K.)

  18. Method of melting and decontaminating radioactive contaminated aluminum material

    International Nuclear Information System (INIS)

    Uda, Tatsuhiko; Miura, Noboru; Kawasaki, Katsuo; Iba, Hajime.

    1986-01-01

    Purpose: To improve the decontaminating efficiency upon melting decontamination of radioactive-contaminated aluminum materials. Method: This invention concerns an improvement for the method of melting decontamination by adding slug agent composed of organic compound to contaminated aluminum material and extracting the radioactive materials into the slug thereby decontaminating the aluminum material. Specifically metals effective for reducing the active amount of aluminum are added such that the content is greater than a predetermined value in the heat melting process. The metal comprises Mg, Cu or a mixture thereof and the content is more than 4 % including those previously contained in the aluminum material. (Ikeda, J.)

  19. Understanding radioactive waste

    International Nuclear Information System (INIS)

    Murray, R.L.

    1981-12-01

    This document contains information on all aspects of radioactive wastes. Facts are presented about radioactive wastes simply, clearly and in an unbiased manner which makes the information readily accessible to the interested public. The contents are as follows: questions and concerns about wastes; atoms and chemistry; radioactivity; kinds of radiation; biological effects of radiation; radiation standards and protection; fission and fission products; the Manhattan Project; defense and development; uses of isotopes and radiation; classification of wastes; spent fuels from nuclear reactors; storage of spent fuel; reprocessing, recycling, and resources; uranium mill tailings; low-level wastes; transportation; methods of handling high-level nuclear wastes; project salt vault; multiple barrier approach; research on waste isolation; legal requiremnts; the national waste management program; societal aspects of radioactive wastes; perspectives; glossary; appendix A (scientific American articles); appendix B (reference material on wastes)

  20. Understanding radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Murray, R.L.

    1981-12-01

    This document contains information on all aspects of radioactive wastes. Facts are presented about radioactive wastes simply, clearly and in an unbiased manner which makes the information readily accessible to the interested public. The contents are as follows: questions and concerns about wastes; atoms and chemistry; radioactivity; kinds of radiation; biological effects of radiation; radiation standards and protection; fission and fission products; the Manhattan Project; defense and development; uses of isotopes and radiation; classification of wastes; spent fuels from nuclear reactors; storage of spent fuel; reprocessing, recycling, and resources; uranium mill tailings; low-level wastes; transportation; methods of handling high-level nuclear wastes; project salt vault; multiple barrier approach; research on waste isolation; legal requiremnts; the national waste management program; societal aspects of radioactive wastes; perspectives; glossary; appendix A (scientific American articles); appendix B (reference material on wastes). (ATT)

  1. Programmatic environmental impact statement related to decontamination and disposal of radioactive wastes resulting from March 28, 1979 accident, Three Mile Island Nuclear Station, Unit 2 (Docket No. 50-320): Draft

    International Nuclear Information System (INIS)

    1986-12-01

    In accordance with the National Environmental Policy Act and the Commission's implementing regulations and its April 27, 1981 Statement of Policy, the Programmatic Environmental Impact Statement related to decontamination and disposal of radioactive wastes resulting from March 28, 1979, accident Three Mile Island Nuclear Station, Unit 2 NUREG-0683 (PEIS) is being supplemented. This draft supplement updates the environmental evaluation of accident-generated water disposal alternatives published in the PEIS, utilizing more complete and current information. Also, the draft supplement includes a specific environmental evaluation of the licensee's recently submitted proposal for water disposition

  2. Radioactive wastes. Management

    International Nuclear Information System (INIS)

    Guillaumont, R.

    2001-01-01

    Many documents (journal articles, book chapters, non-conventional documents..) deal with radioactive wastes but very often this topic is covered in a partial way and sometimes the data presented are contradictory. The aim of this article is to precise the definition of radioactive wastes and the proper terms to describe this topic. It describes the main guidelines of the management of radioactive wastes, in particular in France, and presents the problems raised by this activity: 1 - goal and stakes of the management; 2 - definition of a radioactive waste; 3 - radionuclides encountered; 4 - radio-toxicity and radiation risks; 5 - French actors of waste production and management; 6 - French classification and management principles; 7 - wastes origin and characteristics; 8 - status of radioactive wastes in France per categories; 9 - management practices; 10 - packages conditioning and fabrication; 11 - storage of wastes; 12 - the French law from December 30, 1991 and the opportunities of new ways of management; 13 - international situation. (J.S.)

  3. Processing of waste solutions from electrochemical decontamination

    International Nuclear Information System (INIS)

    Charlot, L.A.; Allen, R.P.; Arrowsmith, H.W.; Hooper, J.L.

    1979-09-01

    The use of electropolishing as a decontamination technique will be effective only if we can minimize the amount of secondary waste requiring disposal and economically recycle part of the decontamination electrolyte. Consequently, a solution purification method is needed to remove the dissolved contamination and metal in the electrolyte. This report describes the selection of a purification method for a phosphoric acid electrolyte from the following possible acid reclamation processes: ion exchange, solvent extraction, precipitation, distillation, electrolysis, and membrane separation

  4. Radioactive Wastes. Revised.

    Science.gov (United States)

    Fox, Charles H.

    This publication is one of a series of information booklets for the general public published by the United States Atomic Energy Commission. This booklet deals with the handling, processing and disposal of radioactive wastes. Among the topics discussed are: The Nature of Radioactive Wastes; Waste Management; and Research and Development. There are…

  5. Radioactive waste management policy

    International Nuclear Information System (INIS)

    Morrison, R.W.

    1983-06-01

    The speaker discusses the development of government policy regarding radioactive waste disposal in Canada, indicates overall policy objectives, and surveys the actual situation with respect to radioactive wastes in Canada. He also looks at the public perceptions of the waste management situation and how they relate to the views of governmental decision makers

  6. Electromagnetic mixed waste processing system for asbestos decontamination

    International Nuclear Information System (INIS)

    Kasevich, R.S.; Nocito, T.; Vaux, W.G.; Snyder, T.

    1994-01-01

    DOE sites contain a broad spectrum of asbestos materials (cloth, pipe lagging, sprayed insulation and other substances) which are contaminated with a combination of hazardous and radioactive wastes due to its use during the development of the US nuclear weapons complex. These wastes consist of cutting oils, lubricants, solvents, PCBs, heavy metals and radioactive contaminants. The radioactive contaminants are the activation, decay, and fission products of DOE operations. To allow disposal, the asbestos must be converted chemically, followed by removing and separating the hazardous and radioactive materials to prevent the formation of mixed wastes and to allow for both sanitary disposal and effective decontamination. Currently, no technology exists that can meet these sanitary and other objectives. An attempt was made to apply techniques that have already proved successful in the mining, oil, and metals processing industries to the development of a multi-stage process to remove and separate hazardous chemical radioactive materials from asbestos. This process uses three methods: ABCOV chemicals which converts the asbestos to a sanitary waste; dielectric heating to volatilize the organic materials; and electrochemical processing for the removal of heavy metals, RCRA wastes and radionuclides. This process will result in the destruction of over 99% of the asbestos; limit radioactive metal contamination to 0.2 Bq alpha per gram and 1 Bq beta and gamma per gram; reduce hazardous organics to levels compatible with current EPA policy for RCRA delisting; and achieve TCLP limits for all solidified waste

  7. Presolidification treatment of decontamination wastes

    International Nuclear Information System (INIS)

    Habayeb, M.A.

    1982-02-01

    Unsatisfactory leaching performance of several solidified decontamination solutions indicated a need for presolidification treatments to reduce the water sensitivity of the active chemicals. Chemical treatments examined in this work include pH adjustment, precipitation and oxidation-reduction reactions. The reactions involved in these treatments are discussed. The most suitable presolidification treatment for each decontamination solution has been identified. Further research is needed to test the effectivenss of these treatments

  8. Predisposal Radioactive Waste Management

    International Nuclear Information System (INIS)

    2014-01-01

    Recognition of the importance of the safe management of radioactive waste means that, over the years, many well-established and effective techniques have been developed, and the nuclear industry and governments have gained considerable experience in this field. Minimization of waste is a fundamental principle underpinning the design and operation of all nuclear operations, together with waste reuse and recycling. For the remaining radioactive waste that will be produced, it is essential that there is a well defined plan (called a waste treatment path) to ensure the safe management and ultimately the safe disposal of radioactive waste so as to guarantee the sustainable long term deployment of nuclear technologies

  9. Radioactive Waste in Perspective

    International Nuclear Information System (INIS)

    2011-01-01

    Large volumes of hazardous wastes are produced each year, however only a small proportion of them are radioactive. While disposal options for hazardous wastes are generally well established, some types of hazardous waste face issues similar to those for radioactive waste and also require long-term disposal arrangements. The objective of this NEA study is to put the management of radioactive waste into perspective, firstly by contrasting features of radioactive and hazardous wastes, together with their management policies and strategies, and secondly by examining the specific case of the wastes resulting from carbon capture and storage of fossil fuels. The study seeks to give policy makers and interested stakeholders a broad overview of the similarities and differences between radioactive and hazardous wastes and their management strategies. Contents: - Foreword; - Key Points for Policy Makers; - Executive Summary; - Introduction; - Theme 1 - Radioactive and Hazardous Wastes in Perspective; - Theme 2 - The Outlook for Wastes Arising from Coal and from Nuclear Power Generation; - Risk, Perceived Risk and Public Attitudes; - Concluding Discussion and Lessons Learnt; - Strategic Issues for Radioactive Waste; - Strategic Issues for Hazardous Waste; - Case Studies - The Management of Coal Ash, CO 2 and Mercury as Wastes; - Risk and Perceived Risk; - List of Participants; - List of Abbreviations. (authors)

  10. Method and equipment of processing radioactive laundry wastes

    International Nuclear Information System (INIS)

    Shirai, Takamori; Suzuki, Takeo; Tabata, Masayuki; Takada, Takao; Yamaguchi, Shin-ichi; Noda, Tetsuya.

    1985-01-01

    Purpose: To effectively process radioactive laundry wastes generated due to water-washing after dry-cleaning of protective clothings which have been put on in nuclear facilities. Method: Dry cleaning soaps and ionic radioactive materials contained in radioactive laundry wastes are selectively adsorbed to decontaminate by adsorbents. Then, the adsorbents having adsorbed dry cleaning soaps and ionic radioactive materials are purified by being removed with these radioactive materials. The purified adsorbents are re-used. (Seki, T.)

  11. 5th International scientific-research conference Radioactive waste management. Collection of abstracts

    International Nuclear Information System (INIS)

    2005-01-01

    Materials of the 5-th International scientific-research conference Radioactive waste management are represented. Reports illustrate such problems as experience of nuclear power plant exploitation connected with radioactive waste management, technologies and actions on decrease of radioactive waste volumes, decontamination of equipment and nuclear power plant units, management with radioactive wastes during nuclear power plant decommission [ru

  12. Radioactive waste management

    International Nuclear Information System (INIS)

    2003-01-01

    Almost all IAEA Member States use radioactive sources in medicine, industry, agriculture and scientific research, and countries remain responsible for the safe handling and storage of all radioactively contaminated waste that result from such activities. In some cases, waste must be specially treated or conditioned before storage and/or disposal. The Department of Technical Co-operation is sponsoring a programme with the support of the Nuclear Energy Department aimed at establishing appropriate technologies and procedures for managing radioactive wastes. (IAEA)

  13. Handling of radioactive waste

    International Nuclear Information System (INIS)

    Sanhueza Mir, Azucena

    1998-01-01

    Based on characteristics and quantities of different types of radioactive waste produced in the country, achievements in infrastructure and the way to solve problems related with radioactive waste handling and management, are presented in this paper. Objectives of maintaining facilities and capacities for controlling, processing and storing radioactive waste in a conditioned form, are attained, within a great range of legal framework, so defined to contribute with safety to people and environment (au)

  14. Controlling radioactive waste

    International Nuclear Information System (INIS)

    Wurtinger, W.

    1992-01-01

    The guideline of the Ministry for Environmental Protection for controlling radioactive waste with a negligible development of heat defines in detail what data are relevant to the control of radioactive waste and should be followed up on and included in a system of documentation. By introducing the AVK (product control system for tracing the course of waste disposal) the operators of German nuclear power plants have taken the requirements of this guideline into account. In particular, possibilities for determining the degree of radioactivity of radioactive waste, which the BMU-guidelines call for, were put into practice by means of the programming technology of the product control system's module MOPRO. (orig.) [de

  15. Method of heat decomposition for chemical decontaminating resin waste

    International Nuclear Information System (INIS)

    Kikuchi, Akira.

    1988-01-01

    Purpose: To make resin wastes into non-deleterious state, discharge them into a resin waste storage tank of existent radioactive waste processing facility and store and dispose them. Constitution: In the processing of chemical decontaminating resin wastes, iron exchange resins adsorbing chemical decontaminating agents comprising a solution of citric acid, oxalic acid, formic acid and EDTA alone or as a mixture of them are heated to dry, thermally decomposed and then separated from the ion exchange resins. That is, the main ingredients of the chemical decontaminating agents are heat-decomposed when heated and dried at about 250 deg C in air and converted into non-toxic gases such as CO, CO 2 , NO, NO 2 or H 2 O. Further, since combustion or carbonization of the basic materials for the resin is not caused at such a level of temperature, the resin wastes removed with organic acid and chelating agents are transferred to an existent resin waste storage tank and stored therein. In this way, facility cost and radiation exposure can remarkably be decreased. (Kamimura, M.)

  16. Radioactive mixed waste disposal

    International Nuclear Information System (INIS)

    Jasen, W.G.; Erpenbeck, E.G.

    1993-02-01

    Various types of waste have been generated during the 50-year history of the Hanford Site. Regulatory changes in the last 20 years have provided the emphasis for better management of these wastes. Interpretations of the Atomic Energy Act of 1954 (AEA), the Resource Conservation and Recovery Act of 1976 (RCRA), and the Hazardous and Solid Waste Amendments (HSWA) have led to the definition of radioactive mixed wastes (RMW). The radioactive and hazardous properties of these wastes have resulted in the initiation of special projects for the management of these wastes. Other solid wastes at the Hanford Site include low-level wastes, transuranic (TRU), and nonradioactive hazardous wastes. This paper describes a system for the treatment, storage, and disposal (TSD) of solid radioactive waste

  17. Radioactive waste management

    International Nuclear Information System (INIS)

    1984-07-01

    The purpose of this document is to set out the Government's current strategy for the long term in the management of radioactive wastes. It takes account of the latest developments, and will be subject to review in the light of future developments and studies. The subject is discussed under the headings: what are radioactive wastes; who is responsible; what monitoring takes place; disposal as the objective; low-level wastes; intermediate-level wastes; discharges from Sellafield; heat generating wastes; how will waste management systems and procedures be assessed; how much more waste is there going to be in future; conclusion. (U.K.)

  18. Radioactivity and nuclear waste

    International Nuclear Information System (INIS)

    Saas, A.

    1996-01-01

    Radioactive wastes generated by nuclear activities must be reprocessed using specific treatments before packaging, storage and disposal. This digest paper gives first a classification of radioactive wastes according to their radionuclides content activity and half-life, and the amount of wastes from the different categories generated each year by the different industries. Then, the radiotoxicity of nuclear wastes is evaluated according to the reprocessing treatments used and to their environmental management (surface storage or burial). (J.S.)

  19. Method for electrolytic decontamination of radioactive contaminated metals

    International Nuclear Information System (INIS)

    Tanaka, Akio; Horita, Masami; Onuma, Tsutomu; Kato, Koji

    1991-01-01

    The invention relates to an electrolytic decontamination method for radioactive contaminated metals. The contaminated sections are eluted by electrolysis after the surface of a piece of equipment used with radioactive substances has been immersed in an electrolyte. Metal contaminated by radioactive substances acts as the anode

  20. The state of the art on the dry decontamination technologies applicable to highly radioactive contaminants and their needs for the national nuclear fuel cycle developent

    International Nuclear Information System (INIS)

    Oh, Won Zin; Lee, K. W.; Won, H. J.; Jung, C. H.; Chol, W. K.; Kim, G. N.; Moon, J. K.

    2000-12-01

    This report is intended to establish their needs to support the dry decontamination activities applicable to highly radioactive contaminants based on the requirement of technologies development suggested from the national nuclear fuel cycle projects, such as DUPIC, advanced spent fuel management and long-lived radionuclides conversion. The technology needs associated with decontamination addressed the requirements associated with the efficiency of decontamination technology, the reduction of secondary wastes, applicabilities and the remote operation. And also, Characterization and decontamination technologies for various contaminants are reviewed and analysed. Based on the assessment, Unit dry decontamination processes are selected and the schematic flow diagram for decontamination of highly radioactive contaminants

  1. The state of the art on the dry decontamination technologies applicable to highly radioactive contaminants and their needs for the national nuclear fuel cycle developent

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Won Zin; Lee, K.W.; Won, H.J.; Jung, C.H.; Chol, W.K.; Kim, G.N.; Moon, J.K

    2000-12-01

    This report is intended to establish their needs to support the dry decontamination activities applicable to highly radioactive contaminants based on the requirement of technologies development suggested from the national nuclear fuel cycle projects, such as DUPIC, advanced spent fuel management and long-lived radionuclides conversion. The technology needs associated with decontamination addressed the requirements associated with the efficiency of decontamination technology, the reduction of secondary wastes, applicabilities and the remote operation. And also, Characterization and decontamination technologies for various contaminants are reviewed and analysed. Based on the assessment, Unit dry decontamination processes are selected and the schematic flow diagram for decontamination of highly radioactive contaminants.

  2. Radioactive waste management

    International Nuclear Information System (INIS)

    Blomek, D.

    1980-01-01

    The prospects of nuclear power development in the USA up to 2000 and the problems of the fuel cycle high-level radioactive waste processing and storage are considered. The problems of liquid and solidified radioactive waste transportation and their disposal in salt deposits and other geologic formations are discussed. It is pointed out that the main part of the high-level radioactive wastes are produced at spent fuel reprocessing plants in the form of complex aqueous mixtures. These mixtures contain the decay products of about 35 isotopes which are the nuclear fuel fission products, about 18 actinides and their daughter products as well as corrosion products of fuel cans and structural materials and chemical reagents added in the process of fuel reprocessing. The high-level radioactive waste management includes the liquid waste cooling which is necessary for the short and middle living isotope decay, separation of some most dangerous components from the waste mixture, waste solidification, their storage and disposal. The conclusion is drawn that the seccessful solution of the high-level radioactive waste management problem will permit to solve the problem of the fuel cycle radioactive waste management as a whole. The salt deposits, shales and clays are the most suitable for radioactive waste disposal [ru

  3. Advance in radioactive decontamination; Avances en descontaminacion radiactiva

    Energy Technology Data Exchange (ETDEWEB)

    Basteris M, J. A. [Universidad Autonoma de Yucatan, Facultad de Medicina, Departamento de Diagnostico por Laboratorio y Gabinete, Av. Cupules No. 232, Col. Garcia Gineres, 97070 Merida, Yucatan (Mexico); Farrera V, R., E-mail: basteris@prodigy.net.m [Hospital de Especialidades de la UMAE, Centro Medico Nacional Ignacio Garcia Tellez, Departamento de Medicina Nuclear, Calle 34 x 41, Exterrenos el Fenix s/n, Col. Industrial, 91750 Merida, Yucatan (Mexico)

    2010-09-15

    The objective of the present work was to determine if the application of the Na hypochlorite has some utility in the radioactive decontamination, in comparison with the water, detergent and alcohol. Several methods were compared for decontaminate the iodine 131 and technetium 99, the work table and the skin it was carried out an initial count with the Geiger Muller. Later on, in a single occasion, the areas were washed with abundant water, alcohol, clothes detergent and sodium hypochlorite (used commercially as domestic bleacher) without diluting. Observing that the percentage in the decrease of the counted radioactivity by the Geiger Muller, decreased in the following way: It was demonstrated that the Na hypochlorite presents the highest index of radioactive decontamination with 100% of effectiveness. The Na hypochlorite is an excellent substance that can be used with effectiveness and efficiency like decontamination element in the accident cases of radioactive contamination in the clinical laboratories of nuclear medicine. (Author)

  4. Radioactive wastes and discharges

    International Nuclear Information System (INIS)

    1993-01-01

    According to the Section 24 of the Finnish Radiation Decree (1512/91), the Finnish Centre for Radiation and Nuclear Safety shall specify the concentration and activity limits and principles for the determination whether a waste can be defined as a radioactive waste or not. The radiation safety requirements and limits for the disposal of radioactive waste are given in the guide. They must be observed when discharging radioactive waste into the atmosphere or sewer system, or when delivering solid low-activity waste to a landfill site without a separate waste disposal plan. The guide does not apply to the radioactive waste resulting from the utilization of nuclear energy of natural resources. (4 refs., 1 tab.)

  5. Assessment of radiological properties of wastes from urban decontamination procedures

    International Nuclear Information System (INIS)

    Da Silva, D.N.G.; Guimarães, J.R.D.; Rochedo, E.R.R.; Rochedo, P.R.R.; De Luca, C.

    2015-01-01

    One important activity associated to urban areas contaminated from accidental releases to the atmosphere of nuclear power plants is the management of radioactive wastes generated from decontamination procedures. This include the collection, conditioning, packing, transport and temporary/final disposition. The final destination is defined usually through a political decision. Thus, transport of packed radioactive wastes shall depend on decisions not just under the scope of radiological protection issues. However, the simulations performed to assess doses for the public and decontamination workers allows the estimate of radiological aspects related to the waste generated and these characteristics may be included in a multi-criteria decision tool aiming to support, under the radiological protection point of view, the decision-making process on post-emergency procedures. Important information to decision makers are the type, amount and activity concentration of wastes. This work describes the procedures to be included in the urban area model to account for the assessment of qualitative and quantitative description of wastes. The results will allow the classification of different procedures according to predefined criteria that shall then feed the multi-criteria assessment tool, currently under development, considering basic radiological protection aspects of wastes generated by the different available cleanup procedures on typical tropical urban environments. (authors)

  6. Radioactive waste disposal package

    Science.gov (United States)

    Lampe, Robert F.

    1986-11-04

    A radioactive waste disposal package comprising a canister for containing vitrified radioactive waste material and a sealed outer shell encapsulating the canister. A solid block of filler material is supported in said shell and convertible into a liquid state for flow into the space between the canister and outer shell and subsequently hardened to form a solid, impervious layer occupying such space.

  7. Forming of information support for estimate of potential danger of storage points of the decontamination wastes

    International Nuclear Information System (INIS)

    Skurat, V.V.; Shiryaeva, N.M.; Myshkina, N.K.; Gvozdev, A.A.; Serebryannyj, G.Z.; Golikova, N.B.

    2002-01-01

    By now 92 storage points of the decontamination wastes that formed in result of decontamination of settlements after the Chernobyl accident is registered on the territory of Belarus. The most of theirs were placed in the unfavorable for storage of radioactive wastes places. It was examine the forming of information support for estimate of potential danger of the storage points of decontamination wastes that base on results of investigations of objects, field and laboratory investigations, theoretical researches, using of literary information about features of radionuclides migration through engineering and natural barriers to water-bearing horizon is examination

  8. Understanding radioactive waste

    International Nuclear Information System (INIS)

    Murray, R.L.

    1989-01-01

    This book discusses the sources and health effects of radioactive wastes. It reveals the techniques to concentrate and immobilize radioactivity and examines the merits of various disposal ideas. The book, which is designed for the lay reader, explains the basic science of atoms,nuclear particles,radioactivity, radiation and health effects

  9. ORNL radioactive waste operations

    International Nuclear Information System (INIS)

    Sease, J.D.; King, E.M.; Coobs, J.H.; Row, T.H.

    1982-01-01

    Since its beginning in 1943, ORNL has generated large amounts of solid, liquid, and gaseous radioactive waste material as a by-product of the basic research and development work carried out at the laboratory. The waste system at ORNL has been continually modified and updated to keep pace with the changing release requirements for radioactive wastes. Major upgrading projects are currently in progress. The operating record of ORNL waste operation has been excellent over many years. Recent surveillance of radioactivity in the Oak Ridge environs indicates that atmospheric concentrations of radioactivity were not significantly different from other areas in East Tennesseee. Concentrations of radioactivity in the Clinch River and in fish collected from the river were less than 4% of the permissible concentration and intake guides for individuals in the offsite environment. While some radioactivity was released to the environment from plant operations, the concentrations in all of the media sampled were well below established standards

  10. Electropolishing decontamination system for high-level waste canisters

    International Nuclear Information System (INIS)

    Larson, D.E.; Berger, D.N.; Allen, R.P.; Bryan, G.H.; Place, B.G.

    1988-10-01

    As part of a US Department of Energy (DOE) project agreement with the Federal Ministry for Research and Technology (BMFT) in the Federal Republic of Germany (FRG). The Nuclear Waste Treatment Program at the Pacific Northwest Laboratory (PNL) is preparing 30 radioactive canisters containing borosilicate glass for use in high-level waste repository related tests at the Asse Salt Mine. After filling, the canisters will be welded closed and decontaminated in preparation for shipping to the FRG. Electropolishing was selected as the primary decontamination approach, and an electropolishing system with associated canister inspection equipment has been designed and fabricated for installation in a large hot cell. This remote electropolishing system, which is currently undergoing preliminary testing, is described in this report. 3 refs., 3 figs., 1 tab

  11. HAZARDOUS WASTE DECONTAMINATION WITH PLASMA REACTORS

    Science.gov (United States)

    The use of electrical energy in the form of plasma has been considered as a potentially efficient means of decontaminating hazardous waste, although to date only a few attempts have been made to do so. There are a number of relative advantages and some potential disadvantages to...

  12. DWTF [decontamination and waste treatment facilities] assessment

    International Nuclear Information System (INIS)

    Maimoni, A.

    1986-01-01

    The purpose of this study has been to evaluate the adequacy of present and proposed decontamination and waste treatment facilities (DWTF) at LLNL, to determine the cost effectiveness for proposed improvements, and possible alternatives for accomplishing these improvements. To the extent possible, we have also looked at some of the proposed environmental compliance and cleanup (ECC) projects

  13. Solid waste handling and decontamination facility

    International Nuclear Information System (INIS)

    Lampton, R.E.

    1979-01-01

    The Title 1 design of the decontamination part of the SWH and D facility is underway. Design criteria are listed. A flowsheet is given of the solid waste reduction. The incinerator scrubber is described. Design features of the Gunite Tank Sludge Removal and a schematic of the sluicer, TV camera, and recirculating system are given. 9 figures

  14. Fusion fuel cycle solid radioactive wastes

    International Nuclear Information System (INIS)

    Gore, B.F.; Kaser, J.D.; Kabele, T.J.

    1978-06-01

    Eight conceptual deuterium-tritium fueled fusion power plant designs have been analyzed to identify waste sources, materials and quantities. All plant designs include the entire D-T fuel cycle within each plant. Wastes identified include radiation-damaged structural, moderating, and fertile materials; getter materials for removing corrosion products and other impurities from coolants; absorbents for removing tritium from ventilation air; getter materials for tritium recovery from fertile materials; vacuum pump oil and mercury sludge; failed equipment; decontamination wastes; and laundry waste. Radioactivity in these materials results primarily from neutron activation and from tritium contamination. For the designs analyzed annual radwaste volume was estimated to be 150 to 600 m 3 /GWe. This may be compared to 500 to 1300 m 3 /GWe estimated for the LMFBR fuel cycle. Major waste sources are replaced reactor structures and decontamination waste

  15. Decontamination and radioactivity measurement on building surfaces related to dismantling of Japan power demonstration reactor (JPDR)

    International Nuclear Information System (INIS)

    Hatakeyama, Mutsuo; Tachibana, Mitsuo; Yanagihara, Satoshi

    1997-12-01

    In the final stage of dismantling activities for decommissioning a nuclear power plant, building structures have to be demolished to release the site for unrestricted use. Since building structures are generally made from massive reinforced concrete materials, it is not a rational way to treat all concrete materials arising from its demolition as radioactive waste. Segregation of radioactive parts from building structures is therefore indispensable. The rational procedures were studied for demolition of building structures by treating arising waste as non-radioactive materials, based on the concept established by Nuclear Safety Commission, then these were implemented in the following way by the JPDR dismantling demonstration project. Areas of the JPDR facilities are categorized into two groups : possibly contaminated areas, and possibly non-contaminated areas, based on the document of the reactor operation. Radioactivity on the building surfaces was then measured to confirm that the qualitative categorization is reasonable. After that, building surfaces were decontaminated in such a way that the contaminated layers were removed with enough margin to separate radioactive parts from non-radioactive building structures. Thought it might be possible to demolish the building structures by treating arising waste as non-radioactive materials, confirmation survey for radioactivity was conducted to show that there is no artificial radioactive nuclides produced by operation in the facility. This report describes the procedures studied on measurement of radioactivity and decontamination, and the results of its implementation in the JPDR dismantling demonstration project. (author)

  16. Decontamination and Waste Management from90Sr Coated Dice

    International Nuclear Information System (INIS)

    Chantaraprachoom, Nanthavan; Komolsuk, Sunthorn; Nuanjan, Panya; Thiangtrongjit Sutat

    2003-06-01

    The US Federal Bureau of Investigation (FBI) investigated the source of several packages containing with dice coated with Sr-90, mini detectors and sensors was sent to USA. The Thai Crime Suppression Division charged three smugglers with illicit trafficking and possessing of radioactive materials. Thai police and OAEP officers sealed off and office where used for storing Sr-90 and making the coated radioactive dice and measure the radiation level and contamination. The radiation level was within the background limit, but the contamination level was around 100 times higher than background, maximum about 150 Bq/cm 2 . Most household appliances including some ceramic tiles were contaminated with Sr-90. Decontamination was performed and those radioactive dice and devices using for gambling including contaminated household appliances were collected and transported to OAEP as radioactive wastes

  17. Radioactive waste treatment

    International Nuclear Information System (INIS)

    Alter, U.

    1988-01-01

    For the Federal Government the safe disposal of waste from nuclear power plants constitutes the precondition for their further operation. The events in the year 1987 about the conditioning and transport of low activity waste and medium activity waste made it clear that it was necessary to intensify state control and to examine the structures in the field of waste disposal. A concept for the control of radioactive waste with negligible heat development (LAW) from nuclear installations is presented. (DG) [de

  18. Decontamination of burns contaminated with radioactive materials

    International Nuclear Information System (INIS)

    Vykouril, L.

    1986-01-01

    The suitability of various solutions for the decontamination of burnt skin and their efficiency were tested by experiments on rats. Tested was the decontamination of undisturbed skin, second degree skin burns and third degree skin burns. Decontamination solutions used included: distilled water, jodonal (an aqueous solution of iodine, ethoxylated nonylphenols, the copolymer of ethylene oxide with propylene oxide, and phosphoric acid) and a decontamination mixture of Sapon, Komplexon (trade names of detergents) and sodium hexametaphosphate. Decontamination efficiency was 68.4% for second degree burns and 47.1% for third degree burns. Most effective was the decontamination solution with an efficiency of 72%; the efficiency of jodonal was 67% and of water - 54%. Jodonal is the most suitable: in addition, it acts as a disinfectant and antiseptic. (M.D.)

  19. The action and problem of the decontamination work of the radioactive contamination soil starting in earnest

    International Nuclear Information System (INIS)

    Omura, Tomomi

    2011-01-01

    At the stage of just eight months after the time when a large amount of radioactivity was discharged by the accident of the Fukushima Daiichi Nuclear Station of Tokyo Electric Power Company associated with the Great East Japan Earthquake, countermeasures for pollution due to radioactive substances have become the biggest challenge. The government made a cabinet decision on basic policy based on 'The Act on Special Measures concerning the Handling of Environmental Pollution by Radioactive Materials Discharged by the Nuclear Power Station Accident Associated with the Tohoku District - Off the Pacific Ocean Earthquake that Occurred on March 11, 2011 (The Act on Special Measures concerning the Handling of Radioactive Pollution).' By this, fiscal measures, regulatory measures, and role-sharing required for promoting the treatment of radioactivity-contaminated disaster waste and the decontamination measures of soil were clarified. At the same time as the enactment of the bill, 'Basic Policy for Emergency Response on Decontamination Work' and 'Guidelines for Municipal Decontamination Work' were issued, which helped a step toward full-scale decontamination activities with the backup of budgetary measures. This paper explains the following efforts of the government in implementing these actions. Installation of temporary storage sites for decontaminated soil, implementation of interim storage facilities, development of final disposal sites, and budgetary support. (O.A.)

  20. Crystallization of sodium nitrate from radioactive waste

    International Nuclear Information System (INIS)

    Krapukhin, V.B.; Krasavina, E.P.; Pikaev, A.K.

    1997-07-01

    From the 1940s to the 1980s, the Institute of Physical Chemistry of the Russian Academy of Sciences (IPC/RAS) conducted research and development on processes to separate acetate and nitrate salts and acetic acid from radioactive wastes by crystallization. The research objective was to decrease waste volumes and produce the separated decontaminated materials for recycle. This report presents an account of the IPC/RAS experience in this field. Details on operating conditions, waste and product compositions, decontamination factors, and process equipment are described. The research and development was generally related to the management of intermediate-level radioactive wastes. The waste solutions resulted from recovery and processing of uranium, plutonium, and other products from irradiated nuclear fuel, neutralization of nuclear process solutions after extractant recovery, regeneration of process nitric acid, equipment decontamination, and other radiochemical processes. Waste components include nitric acid, metal nitrate and acetate salts, organic impurities, and surfactants. Waste management operations generally consist of two stages: volume reduction and processing of the concentrates for storage, solidification, and disposal. Filtration, coprecipitation, coagulation, evaporation, and sorption were used to reduce waste volume. 28 figs., 40 tabs

  1. Radioactive waste management

    International Nuclear Information System (INIS)

    Morley, F.

    1980-01-01

    A summary is given of the report of an Expert Group appointed in 1976 to consider the 1959 White Paper 'The Control of Radioactive Wastes' in the light of the changes that have taken place since it was written and with the extended remit of examining 'waste management' rather than the original 'waste disposal'. The Group undertook to; review the categories and quantities present and future of radioactive wastes, recommend the principles for the proper management of these wastes, advise whether any changes in practice or statutory controls are necessary and make recommendations. (UK)

  2. Final programmatic environmental impact statement related to decontamination and disposal of radioactive wastes resulting from March 28, 1979 accident, Three Mile Island Nuclear Station, Unit 2, Docket No. 50-320

    International Nuclear Information System (INIS)

    1981-03-01

    The appendices included in this report include the following: Comments on the Draft Programmatic Environmental Impact Statement (A-1); Commission's Statement of Policy and Notice of Intent to Prepare a Programmatic Environmental Impact Statement (B-1); 'Final Environmental Assessment for Decontamination of the Three Mile Island Unit 2 Reactor Building Atmosphere, Final NRC Staff Report,' US Nuclear Regulatory Commission, NUREG-0662, May 1980 (C-1); 'Environmental Assessment for Use of EPICOR-Il at Three Mile Island Unit 2,' US Nuclear Regulatory Commission, NUREG-0591, October 3, 1979 (D-1); Fish and Fisheries of York Haven Pond and Conowingo Pond of the Susquehanna River and Upper Chesapeake Bay (E1); Reuse of Accident Water (F-1); Engineering Considerations for Treatment of TMI-2 Accident-Generated Liquid Waste G-1); Engineering Considerations Related to Immobilization of Radioactive Wastes (H-1); Justification for Radiation Fields Used in Section 6 I-1); Economic Cost Basis (K-1); Average Individual Quarterly Dose Limits Used in Determinations of Work Force Estimates (L-1); 'Long-Term Environmental Radiation Surveillance Plan for Three Mile Island,' US Environmental Protection Agency, 1981 (M-1); Occupational Radiation Exposure during Onsite Waste Handling (N-1); Decontamination Status of Auxiliary and Fuel Handling Buildings (0-1); Chemical Systems for Decontamination of Primary System Components (P-1); Onsite Storage Facility (Q-1); Proposed Additions to Technical Specifications for TMI-2 Cleanup Program (R-1); Calculations of Discharge of Processed Accident Water to the Atmosphere (S-1); The Behavior of Sorbable Radionuclides in the Susquehanna River and Chesapeake Bay (T-1); Decommissioning of TMI-2 (U-1); Assessment of Groundwater Liquid Pathway from Leakage of Containment Water at Three Mile Island, Unit 2 (V-1); Calculation Models and Parameters Used in Estimating Doses, and Interpretation of Model Results (W-1); Contributors to the PEIS X-1); Scheduled

  3. Encapsulation of radioactive waste

    International Nuclear Information System (INIS)

    Pordes, O.; Plows, J.P.

    1980-01-01

    A method is described for encapsulating a particular radioactive waste which consists of suspending the waste in a viscous liquid encapsulating material, of synthetic resin monomers or prepolymers, and setting the encapsulating material by addition or condensation polymerization to form a solid material in which the waste is dispersed. (author)

  4. Classification of radioactive waste

    International Nuclear Information System (INIS)

    1994-01-01

    Radioactive wastes are generated in a number of different kinds of facilities and arise in a wide range of concentrations of radioactive materials and in a variety of physical and chemical forms. To simplify their management, a number of schemes have evolved for classifying radioactive waste according to the physical, chemical and radiological properties of significance to those facilities managing this waste. These schemes have led to a variety of terminologies, differing from country to country and even between facilities in the same country. This situation makes it difficult for those concerned to communicate with one another regarding waste management practices. This document revises and updates earlier IAEA references on radioactive waste classification systems given in IAEA Technical Reports Series and Safety Series. Guidance regarding exemption of materials from regulatory control is consistent with IAEA Safety Series and the RADWASS documents published under IAEA Safety Series. 11 refs, 2 figs, 2 tab

  5. Radioactive waste (disposal)

    International Nuclear Information System (INIS)

    Jenkin, P.

    1985-01-01

    The disposal of low- and intermediate-level radioactive wastes was discussed. The following aspects were covered: public consultation on the principles for assessing disposal facilities; procedures for dealing with the possible sites which the Nuclear Industry Radioactive Waste Executive (NIREX) had originally identified; geological investigations to be carried out by NIREX to search for alternative sites; announcement that proposal for a site at Billingham is not to proceed further; NIREX membership; storage of radioactive wastes; public inquiries; social and environmental aspects; safety aspects; interest groups; public relations; government policies. (U.K.)

  6. Radioactive wastes of Nuclear Industry

    International Nuclear Information System (INIS)

    1995-01-01

    This conference studies the radioactive waste of nuclear industry. Nine articles and presentations are exposed here; the action of the direction of nuclear installations safety, the improvement of industrial proceedings to reduce the waste volume, the packaging of radioactive waste, the safety of radioactive waste disposal and environmental impact studies, a presentation of waste coming from nuclear power plants, the new waste management policy, the international panorama of radioactive waste management, the international transport of radioactive waste, finally an economic analysis of the treatment and ultimate storage of radioactive waste. (N.C.)

  7. Management of radioactive wastes

    International Nuclear Information System (INIS)

    Hendee, W.R.

    1984-01-01

    The disposal of radioactive wastes is perhaps the most controversial and least understood aspect of the use of nuclear materials in generating electrical power, the investigation of biochemical processes through tracer kinetics, and the diagnosis and treatment of disease. In the siting of nuclear power facilities, the disposal of radioactive wastes is invariably posed as the ultimate unanswerable question. In the fall of 1979, biochemical and physiologic research employing radioactive tracers was threatened with a slowdown resulting from temporary closure of sites for disposal of low-level radioactive wastes (LLW). Radioactive pharmaceuticals used extensively for diagnosis and treatment of human disease have increased dramatically in price, partly as a result of the escalating cost of disposing of radioactive wastes created during production of the labeled pharmaceuticals. These problems have resulted in identification of the disposal of LLW as the most pressing issue in the entire scheme of management of hazardous wastes. How this issue as well as the separate issue of disposal of high-level radioactive wastes (HLW) are being addressed at both national and state levels is the subject of this chapter

  8. An attemp to use a pulsed CO2 laser for decontamination of radioactive metal surfaces

    OpenAIRE

    MILAN S. TRTICA; SCEPAN S. MILJANIC; NATASA N. STJEPANOVIC

    2000-01-01

    There is a growing interest in laser radioactive decontamination of metal surfaces. It offers advantages over conventional methods: improved safety, reduction of secondary waste, reduced waste volume, acceptable cost. The main mechanism of cleaning by lasers is ablation. A pulsed TEA CO2 laser was used in this work for surface cleaning in order to show that ablation of metal surfaces is possible even at relatively low pulse energies, and to suggest that it could be competitive with other lase...

  9. Radioactive waste disposal

    International Nuclear Information System (INIS)

    Bohm, H.; Closs, K.D.; Kuhn, K.

    1981-01-01

    The solutions to the technical problem of the disposal of radioactive waste are limited by a) the state of knowledge of reprocessing possibilites, b) public acceptance of the use of those techniques which are known, c) legislative procedures linking licensing of new nuclear power plants to the solution of waste problems, and d) other political constraints. Wastes are generated in the mining and enriching of radioactive elements, and in the operation of nuclear power plants as well as in all fields where radioactive substances may be used. Waste management will depend on the stability and concentration of radioactive materials which must be stored, and a resolution of the tension between numerous small storage sites and a few large ones, which again face problems of public acceptability

  10. Radioactive waste management

    International Nuclear Information System (INIS)

    Syed Abdul Malik Syed Zain

    2005-01-01

    This chapter discussed the basic subjects covered in the radioactive waste management. The subjects are policy and legislation, pre-treatment, classification, segregation, treatment, conditioning, storage, siting and disposal, and quality assurance

  11. K. Radioactive waste management

    International Nuclear Information System (INIS)

    1976-01-01

    Radioactive waste management is a controversial and emotive subject. This report discusses radioactivity hazards which arise from each stage of the fuel cycle and then relates these hazards to the New Zealand situation. There are three appendices, two of which are detailed considerations of a paper by Dr. B.L.Cohen

  12. Radioactive lightning rods waste treatment

    International Nuclear Information System (INIS)

    Vicente, Roberto; Dellamano, Jose C.; Hiromoto, Goro

    2008-01-01

    Full text: In this paper, we present alternative processes that could be adopted for the management of radioactive waste that arises from the replacement of lightning rods with attached Americium-241 sources. Lightning protectors, with Americium-241 sources attached to the air terminals, were manufactured in Brazil until 1989, when the regulatory authority overthrew the license for fabrication, commerce, and installation of radioactive lightning rods. It is estimated that, during the license period, about 75,000 such devices were set up in public, commercial and industrial buildings, including houses and schools. However, the policy of CNEN in regard to the replacement of the installed radioactive rods, has been to leave the decision to municipal governments under local building regulations, requiring only that the replaced rods be sent immediately to one of its research institutes to be treated as radioactive waste. As a consequence, the program of replacement proceeds in a low pace and until now only about twenty thousand rods have reached the waste treatment facilities The process of management that was adopted is based primarily on the assumption that the Am-241 sources will be disposed of as radioactive sealed sources, probably in a deep borehole repository. The process can be described broadly by the following steps: a) Receive and put the lightning rods in initial storage; b) Disassemble the rods and pull out the sources; c) Decontaminate and release the metal parts to metal recycling; d) Store the sources in intermediate storage; e) Package the sources in final disposal packages; and f) Send the sources for final disposal. Up to now, the disassembled devices gave rise to about 90,000 sources which are kept in storage while the design of the final disposal package is in progress. (author)

  13. Monitoring of radioactive wastes

    International Nuclear Information System (INIS)

    Houriet, J.Ph.

    1982-08-01

    The estimation of risks presented by final disposal of radioactive wastes depends, among other things, on what is known of their radioisotope content. The first aim of this report is to present the current state of possibilities for measuring (monitoring) radionuclides in wastes. The definition of a global monitoring system in the framework of radioactive waste disposal has to be realized, based on the information presented here, in accordance with the results of work to come and on the inventory of wastes to be stored. Designed for direct measurement of unpackaged wastes and for control of wastes ready to be stored, the system would ultimately make it possible to obtain all adaquate information about their radioisotope content with regard to the required disposal safety. The second aim of this report is to outline the definition of such a global system of monitoring. Designed as a workbase and reference source for future work by the National Cooperative for the Storage of Radioactive Waste on the topic of radioactive waste monitoring, this report describes the current situation in this field. It also makes it possible to draw some preliminary conclusions and to make several recommendations. Centered on the possibilities of current and developing techniques, it makes evident that a global monitoring system should be developed. However, it shows that the monitoring of packaged wastes will be difficult, and should be avoided as far as possible, except for control measurements

  14. Programmatic Environmental Impact Statement: related to decontamination and disposal of radioactive wastes resulting from March 28, 1979 accident Three Mile Island Nuclear Station, Unit 2 (Docket No. 50-320). Final supplement dealing with occupational radiation dose. Supplement No. 1

    International Nuclear Information System (INIS)

    1984-10-01

    In accordance with the National Environmental Policy Act, the Programmatic Environmental Impact Statement Related to Decontamination and Disposal of Radioactive Wastes Resulting from March 28, 1979 Accident Three Mile Island Nuclear Station, Unit 2 has been supplemented. The supplement was required because current information indicates that cleanup may entail substantially more occupational radiation dose to the cleanup work force than originally anticipated. Cleanup was originally estimated to result in from 2000 to 8000 person-rem of occupational radiation dose. Although nearly 2000 person-rem have resulted from cleanup operations performed up to now, current estimates now indicate that between 13,000 and 46,000 person-rem are expected to be required. Alternative cleanup methods considered in the supplement either did not result in appreciable dose savings or were not known to be technically feasible

  15. Programmatic Environmental Impact Statement related to decontamination and disposal of radioactive wastes resulting from March 28, 1979 accident at Three Mile Island Nuclear Station, Unit 2 (Docket No. 50-320): Final report

    International Nuclear Information System (INIS)

    1987-06-01

    In accordance with the National Environmental Policy Act, the Commission's implementing regulations, and the Commission's April 27, 1981 Statement of Policy, the Programmatic Environmental Impact Statement related to decontamination and disposal of radioactive wastes resulting from March 28, 1979, accident Three Mile Island Nuclear Station, Unit 2 NUREG-0683 (PEIS) is being supplemented. This supplement updates the environmental evaluation of accident-generated water disposal alternatives published in the PEIS, utilizing more complete and current information. Also, the supplement includes a specific environmental evaluation of the licensee's proposal for water disposition. Although no clearly preferable water disposal alternative was identified, the supplement concluded that a number of alternatives could be implemented without significant environmental impact. The NRC staff has concluded that the licensee's proposed disposal of the accident-generated water by evaporation will not significantly affect the quality of the human environment. Further, any impacts from the disposal program are outweighed by its benefits

  16. Programmatic environmental impact statement related to decontamination and disposal of radioactive wastes resulting from March 28, 1979 accident, Three Mile Island Nuclear Station, Unit 2 (Docket No. 50-320). Draft supplement dealing with occupational radiation dose. Supplement No. 1

    International Nuclear Information System (INIS)

    1983-12-01

    In accordance with the National Environmental Policy Act, the Programmatic Environmental Impact Statement Related to Decontamination and Disposal of Radioactive Waste for the 1979 Accident at Three Mile Island Nuclear Station Unit 2 has been supplemented. The supplement was required because current information indicates that cleanup will entail substantially more occupational radiation dose to the cleanup work force than originally anticipated. Cleanup was originally estimated to result in from 2000 to 8000 person-rem of occupational radiation dose. Although only 1700 person-rem have resulted from cleanup operations performed up to now, current estimates now indicate that between 13,000 and 46,000 person-rem are expected to be required. Alternate cleanup methods considered in the supplement either did not result in appreciable dose savings or were not known to be technically feasible

  17. Radioactive waste management

    International Nuclear Information System (INIS)

    Tang, Y.S.; Saling, J.H.

    1990-01-01

    The purposes of the book are: To create a general awareness of technologies and programs of radioactive waste management. To summarize the current status of such technologies, and to prepare practicing scientists, engineers, administrative personnel, and students for the future demand for a working team in such waste management

  18. Storage of radioactive waste

    International Nuclear Information System (INIS)

    Pittman, F.K.

    1974-01-01

    Four methods for managing radioactive waste in order to protect man from its potential hazards include: transmutation to convert radioisotopes in waste to stable isotopes; disposal in space; geological disposal; and surface storage in shielded, cooled, and monitored containers. A comparison of these methods shows geologic disposal in stable formations beneath landmasses appears to be the most feasible with today's technology. (U.S.)

  19. Radioactive waste management

    International Nuclear Information System (INIS)

    Pahissa Campa, Jaime; Pahissa, Marta H. de

    2000-01-01

    Throughout this century, the application of nuclear energy has produced many benefits, in industry, in research, in medicine, and in the generation of electricity. These activities generate wastes in the same way as do other human activities. The primary objective of radioactive waste management is to protect human health and environment now and in the future without imposing undue burden on future generations, through sound, safe and efficient radioactive waste management. This paper briefly describes the different steps of the management of short lived low and intermediate level wastes, and presents and overview of the state of art in countries involved in nuclear energy, describing their organizations, methodologies used in the processing of these wastes and the final disposal concepts. It also presents the Argentine strategy, its technical and legal aspects. Worldwide experience during the past 50 years has shown that short lived low and intermediate level wastes can be successfully isolated from human and environment in near surface disposal facilities. (author)

  20. Radioactive waste management

    International Nuclear Information System (INIS)

    Tsoulfanidis, N.

    1991-01-01

    The management of radioactive waste is a very important part of the nuclear industry. The future of the nuclear power industry depends to a large extent on the successful solution of the perceived or real problems associated with the disposal of both low-level waste (LLW) and high-level waste (HLW). All the activities surrounding the management of radioactive waste are reviewed. The federal government and the individual states are working toward the implementation of the Nuclear Waste Policy Act and the Low-Level Waste Policy Act. The two congressional acts are reviewed and progress made as of early 1990 is presented. Spent-fuel storage and transportation are discussed in detail as are the concepts of repositories for HLW. The status of state compacts for LLW is also discussed. Finally, activities related to the decommissioning of nuclear facilities are also described

  1. Electrochemistry and Radioactive Wastes: A Scientific Overview

    Directory of Open Access Journals (Sweden)

    Maher Abed Elaziz

    2015-12-01

    Full Text Available Radioactive wastes are arising from nuclear applications such as nuclear medicine and nuclear power plants. Radioactive wastes should be managed in a safe manner to protect human beings and the environment now and in the future. The management strategy depends on collection, segregation, treatment, immobilization, and disposal. The treatment process is a very important step in which the hazardous materials were converted to a more concentrated, less volume and less movable materials. Electrochemistry is the branch of chemistry in which the passage of electric current was producing a chemical change. Electrochemical treatment of radioactive wastes is widely used all over the world. It has a number of advantages and hence benefits. Electrochemistry can lead to remote, automatic control and increasing safety. The present work is focusing on the role of electrochemistry in the treatment of radioactive wastes worldwide. It contains the fundamentals of electrochemistry, the brief story of radioactive wastes, and the modern trends in the electrochemical treatment of radioactive wastes. An overview of electrochemical decomposition of organic wastes, electrochemical reduction of nitrates, electro- precipitation, electro- ion exchange, and electrochemical remediation of soil are outlined. The main operating factors, the mechanism of decontamination, energy consumption and examples of field trials are considered.

  2. Radioactive wastes management

    International Nuclear Information System (INIS)

    Albert, Ph.

    1999-01-01

    This article presents the French way to deal with nuclear wastes. 4 categories of radioactive wastes have been defined: 1) very low-level wastes (TFA), 2) low or medium-wastes with short or medium half-life (A), 3) low or medium-level wastes with long half-life (B), and 4) high-level wastes with long half-life (C). ANDRA (national agency for the management of radioactive wastes) manages 2 sites of definitive surface storage (La-Manche and Aube centers) for TFA-wastes. The Aube center allows the storage of A-wastes whose half-life is less than 30 years. This site will receive waste packages for 50 years and will require a regular monitoring for 300 years after its decommissioning. No definitive solutions have been taken for B and C wastes, they are temporarily stored at La Hague processing plant. Concerning these wastes the French parliament will have to take a decision by 2006. At this date and within the framework of the Bataille law (1991), scientific studies concerning the definitive or retrievable storage, the processing techniques (like transmutation) will have been achieved and solutions will be proposed. These studies are numerous, long and complex, they involve fresh knowledge in geology, chemistry, physics,.. and they have implied the setting of underground facilities in order to test and validate solutions in situ. This article presents also the transmutation technique. (A.C.)

  3. Radioactive waste management

    International Nuclear Information System (INIS)

    Slansky, C.M.

    1975-01-01

    High-level radioactive waste is produced at Idaho Chemical Processing Plant (ICPP) during the recovery of spent highly enriched nuclear fuels. Liquid waste is stored safely in doubly contained tanks made of steel. The liquid waste is calcined to a solid and stored safely in a retrievable form in doubly contained underground bins. The calcine can be treated further or left untreated in anticipation of ultimate storage. Fluidized bed calcination has been applied to many kinds of high-level waste. The environmental impact of high-level waste management at the ICcP has been negligible and should continue to be negligible. 13 refs

  4. Disposal of radioactive waste

    International Nuclear Information System (INIS)

    Schmude, J.

    1976-01-01

    Speech on the 18th March 1976 in the Bundestag by the parliamentary Secretary of State, Dr. Juergen Schmude, to substantiate the Federal government's draft to a Fourth Act amending the Atomic Energy Act. The draft deals mainly with the final storage of radioactive wastes and interrelated questions concerning waste treatment and waste collection, and with several ordinance empowerments in order to improve licensing and supervisory procedures. (orig./LN) [de

  5. Radioactive waste processing

    International Nuclear Information System (INIS)

    Curtiss, D.H.; Heacock, H.W.

    1976-01-01

    The description is given of a process for treating radioactive waste whereby a mud of radioactive waste and cementing material is formed in a mixer. This mud is then transferred from the mixer to a storage and transport container where it is allowed to harden. To improve transport efficiency an alkali silicate or an alkaline-earth metal silicate is added to the mud. For one hundred parts by weight of radioactive waste in the mud, twenty to one hundred parts by weight of cementing material are added and five to fifty parts by weight of silicate, the amount of waste in the mud exceeding the combined amount of cementing and silicate material [fr

  6. Disposal of Radioactive Waste

    International Nuclear Information System (INIS)

    2011-01-01

    This Safety Requirements publication applies to the disposal of radioactive waste of all types by means of emplacement in designed disposal facilities, subject to the necessary limitations and controls being placed on the disposal of the waste and on the development, operation and closure of facilities. The classification of radioactive waste is discussed. This Safety Requirements publication establishes requirements to provide assurance of the radiation safety of the disposal of radioactive waste, in the operation of a disposal facility and especially after its closure. The fundamental safety objective is to protect people and the environment from harmful effects of ionizing radiation. This is achieved by setting requirements on the site selection and evaluation and design of a disposal facility, and on its construction, operation and closure, including organizational and regulatory requirements.

  7. Main directions of works on radioactive waste management at 30-km zone near the Chernobyl' NPP

    International Nuclear Information System (INIS)

    Grushinskij, B.Ya.; Komarov, V.I.; Proskuryakov, A.N.; Kham'yanov, L.N.; Khubizov, S.B.; Ignatenko, E.I.; Ryzhkova, V.N.; Luppov, V.A.; Matskevich, G.V.; Frolov, V.N.

    1989-01-01

    Main points and stages of creating an specialized enterprise for centralized reprocessing and radioactive waste disposal are considered. The enterprise is intended for collection conditioning and burial of all types of radioactive wastes, formed during liquidation of accident effect at the Chernobyl' NPP as well as forming in operation of NPP. The enterprise is also used to decontaminate equipment and constructions, for reprocessing of secondary radioactive wastes forming during decontamination process of equipment constructions, transport and work clothes

  8. Security of Radioactive Waste

    International Nuclear Information System (INIS)

    Goldammer, W.

    2003-01-01

    Measures to achieve radioactive waste security are discussed. Categorization of waste in order to implement adequate and consistent security measures based on potential consequences is made. The measures include appropriate treatment/storage/disposal of waste to minimize the potential and consequences of malicious acts; management of waste only within an authorised, regulated, legal framework; management of the security of personnel and information; measures to minimize the acquisition of radioactive waste by those with malicious intent. The specific measures are: deter unauthorized access to the waste; detect any such attempt or any loss or theft of waste; delay unauthorized access; provide timely response to counter any attempt to gain unauthorised access; measures to minimize acts of sabotage; efforts to recover any lost or stolen waste; mitigation and emergency plans in case of release of radioactivity. An approach to develop guidance, starting with the categorisation of sources and identification of dangerous sources, is presented. Dosimetric criteria for internal and external irradiation are set. Different exposure scenarios are considered. Waste categories and security categories based on the IAEA INFCIRC/225/Rev.4 are presented

  9. Low-waste electrochemical decontamination of stainless-steel surface

    International Nuclear Information System (INIS)

    Babain, V.A.; Smirnov, I.V.; Shadrin, A.Yu.; Firsin, N.G.; Zakharchuk, G.A.; Pavlov, A.B.; Shilov, V.V.

    2002-01-01

    An electrochemical decontamination method using a formic acid-based recycling electrolyte was proposed to remove firmly fixed contaminants from stainless-steel surfaces. The following provisions make for minimisation of the amounts of waste: (i) use of specially designed electrodes with vacuum removal of spent electrolyte; (ii) inter-cycle removal of radionuclides from the electrolyte by using an inorganic sorbent; (iii) periodic regeneration of the spent electrolyte. the dissolved metals (Fe, Cr, Ni) being transformed into acidic phosphates; (iv) solidification of residues arising from the regeneration of the electrolyte and spent sorbent into iron-phosphate ceramics. The technology and equipment developed were used for decontamination of a plutonium glove-box. The level of surface contamination was reduced 100-fold in two decontamination cycles. The depth of metal skimming was 1.5 μ for the ceiling and walls and 4.5 μ for the table top. Each square meter of stainless-steel surface provides about 100 g of solid radioactive waste in the form of iron-phosphate ceramic blocks

  10. Decontamination and disposal of radioactive wastes resulting from the March 28, 1979 accident, Three-Mile Island Nuclear Station, Unit 2, Pennsylvania-Docket No. 50-320 (final supplement 2 to the final environmental impact statement of March 1981)

    International Nuclear Information System (INIS)

    1987-06-01

    Implementation of actions necessary for decontamination of the facility, defueling of the reactor, and disposition of the radioactive wastes that resulted from the accident on March 28, 1979 at Unit 2 of the Three-Mile Island Nuclear Station in Dauphin County, Pennsylvania are discussed. This second final supplement to the final environmental impact statement, filed in March 1981 on facility decontamination, reevaluates the environmental impacts of accident-generated water disposal alternatives, using more complete and current information. This supplement also includes a specific evaluation of the recently submitted proposal for water disposition. The project would alleviate a radiological hazard that threatens the well-being of the surrounding population and downstream communities. Risks to the general public have been estimated to be very small fractions of the estimated normal incidence of cancer fatalities and genetic disorders. The most significant potential impact is the risk of physical injury associated with transportation accidents. Social impacts during the operation could result in reduced property values, competition between the work force and tourists for temporary housing, and congestion of local traffic arteries. Some psychological stress would experienced by area residents. Economic effects could include increased electricity rates, reduced tourism, and possible resistance to consumption of area goods that consumers might mistakenly think are contaminated

  11. Method of storing radioactive wastes

    International Nuclear Information System (INIS)

    Adachi, Toshio; Hiratake, Susumu.

    1980-01-01

    Purpose: To reduce the radiation doses externally irradiated from treated radioactive waste and also reduce the separation of radioactive nuclide due to external environmental factors such as air, water or the like. Method: Radioactive waste adhered with radioactive nuclide to solid material is molten to mix and submerge the radioactive nuclide adhered to the surface of the solid material into molten material. Then, the radioactive nuclide thus mixed is solidified to store the waste in solidified state. (Aizawa, K.)

  12. The Research Results of Radioactive Waste Management Technology Center Year 1997/1998

    International Nuclear Information System (INIS)

    1998-12-01

    The research results of Radioactive Waste Management Technology Center, National Atomic Energy Agency of Indonesia year 1997/1998 contain paper as form of research results on radioactive waste management related fields. There were included many aspects such as radioactive waste processing, storage, decontamination, decommissioning, safety and environmental aspects. There are 26 papers indexed individually (ID)

  13. The Research Results of Radioactive Waste Management Technology Center Year 1996/1997

    International Nuclear Information System (INIS)

    Budiman, P.; Martono, H.; Las, T.; Lubis, E.; Mulyanto; Wisnubroto, D. S.; Sucipta

    1997-12-01

    The research results of Radioactive Waste Management Technology Center, National Atomic Energy Agency of Indonesia year 1996/1997 contain paper as form of research results on radioactive waste management related fields. There were included many aspects such as radioactive waste processing, storage, decontamination, decommissioning, safety and environmental aspects. There are 24 papers and 12 short communications indexed individually(ID)

  14. Decontamination impacts on solidification and waste disposal

    International Nuclear Information System (INIS)

    Kempf, C.R.; Soo, P.

    1988-01-01

    Research to determine chemical and physical conditions which could lead to thermal excursions, gas generation, and/or general degradation of decontamination-reagent-loaded resins has shown that IRN-78, IONAC A-365, and IRN-77 organic ion exchange resin moisture contents vary significantly depending on the counter ion ''loading.'' The extent/vigor of the reaction is very highly dependent on the degree of dewatering of the resins and on the method of solution addition. The heat generation may be due, in part, to the heat of neutralization. In studies of the long-term compatibility effects of decontamination waste resins in contact with waste package container materials in the presence of decontamination reagents, radiolysis products and gamma irradiation, it has been found that the corrosion of carbon steel and austenitic stainless steel in mixed bed resins is enhanced by gamma irradiation. However, cracking in high density polyethylene is essentially eliminated because of the rapid removal of oxygen from the environment by gamma-induced oxidation of the large resin mass. 13 refs., 10 figs., 3 tabs

  15. Management on radioactive wastes

    International Nuclear Information System (INIS)

    Balu, K.; Bhatia, S.C.

    1979-01-01

    The basic philosophy governing the radioactive waste management activities in India is to concentrate and contain as much activity as possible and to discharge to the environment only such of these streams that have radioactive content much below the nationally and internationally accepted standards. The concept of ''Zero Release'' is also kept in view. At Tarapur, the effluents are discharged into coastal waters after the radioactivity of the effluents is brought down by a factor 100. The effluents fΩm Rajasthan reactors are discharged into a lake keeping their radioactivity well within permissible limits and a solar evaporation plant is being set up. The plant, when it becomes operational, will be a step towards the concept of ''Zero Release''. At Kalpakkam, the treated wastes are proposed to be diluted by circulating sea water and discharged away from the shore through a long pipe. At Narora, ion exchange followed by chemical precipitation is to be employed to treat effluents and solar evaporation process for total containment. Solid wastes are stored/dispsed in the concrete trenches, underground with the water proofing of external surfaces and the top of the trench is covered with concrete. Highly active wastes are stored/disposed in tile holes which are vaults made of steel-lined, reinforced concrete pipes. Gas cleaning, dilution and dispersion techniques are adopted to treat gaseous radioactive wastes. (M.G.B.)

  16. Fusion reactor radioactive waste management

    International Nuclear Information System (INIS)

    Kaser, J.D.; Postma, A.K.; Bradley, D.J.

    1976-01-01

    Quantities and compositions of non-tritium radioactive waste are estimated for some current conceptual fusion reactor designs, and disposal of large amounts of radioactive waste appears necessary. Although the initial radioactivity of fusion reactor and fission reactor wastes are comparable, the radionuclides in fusion reactor wastes are less hazardous and have shorter half-lives. Areas requiring further research are discussed

  17. Method for calcining radioactive wastes

    International Nuclear Information System (INIS)

    Bjorklund, W.J.; McElroy, J.L.; Mendel, J.E.

    1979-01-01

    A method for the preparation of radioactive wastes in a low leachability form involves calcining the radioactive waste on a fluidized bed of glass frit, removing the calcined waste to melter to form a homogeneous melt of the glass and the calcined waste, and then solidifying the melt to encapsulate the radioactive calcine in a glass matrix

  18. Membrane Treatment of Liquid Salt Bearing Radioactive Wastes

    International Nuclear Information System (INIS)

    Dmitriev, S. A.; Adamovich, D. V.; Demkin, V. I.; Timofeev, E. M.

    2003-01-01

    The main fields of introduction and application of membrane methods for preliminary treatment and processing salt liquid radioactive waste (SLRW) can be nuclear power stations (NPP) and enterprises on atomic submarines (AS) utilization. Unlike the earlier developed technology for the liquid salt bearing radioactive waste decontamination and concentrating this report presents the new enhanced membrane technology for the liquid salt bearing radioactive waste processing based on the state-of-the-art membrane unit design, namely, the filtering units equipped with the metal-ceramic membranes of ''TruMem'' brand, as well as the electrodialysis and electroosmosis concentrators. Application of the above mentioned units in conjunction with the pulse pole changer will allow the marked increase of the radioactive waste concentrating factor and the significant reduction of the waste volume intended for conversion into monolith and disposal. Besides, the application of the electrodialysis units loaded with an ion exchange material at the end polishing stage of the radioactive waste decontamination process will allow the reagent-free radioactive waste treatment that meets the standards set for the release of the decontaminated liquid radioactive waste effluents into the natural reservoirs of fish-farming value

  19. Radioactive waste storage issues

    International Nuclear Information System (INIS)

    Kunz, D.E.

    1994-01-01

    In the United States we generate greater than 500 million tons of toxic waste per year which pose a threat to human health and the environment. Some of the most toxic of these wastes are those that are radioactively contaminated. This thesis explores the need for permanent disposal facilities to isolate radioactive waste materials that are being stored temporarily, and therefore potentially unsafely, at generating facilities. Because of current controversies involving the interstate transfer of toxic waste, more states are restricting the flow of wastes into - their borders with the resultant outcome of requiring the management (storage and disposal) of wastes generated solely within a state's boundary to remain there. The purpose of this project is to study nuclear waste storage issues and public perceptions of this important matter. Temporary storage at generating facilities is a cause for safety concerns and underscores, the need for the opening of permanent disposal sites. Political controversies and public concern are forcing states to look within their own borders to find solutions to this difficult problem. Permanent disposal or retrievable storage for radioactive waste may become a necessity in the near future in Colorado. Suitable areas that could support - a nuclear storage/disposal site need to be explored to make certain the health, safety and environment of our citizens now, and that of future generations, will be protected

  20. Decontamination of radioactively polluted game by means of pickling

    International Nuclear Information System (INIS)

    Hecht, H.

    1987-01-01

    The effect of pickling on the decontamination of game polluted by radioactive cesium isotopes has been investigated in the study reported. The best decontamination degree has been achieved with a vinegar marinade, the ratio between game and marinade being 1:3, pickling temperature being maintained at 12 0 C for a period of 4 days. By this procedure, 90 p.c. of the cesium isotopes have been taken up by the marinade. Buttermilk marinade also is a successful means of decontamination, but with clearly lower effects, and at the same temperature of 12 0 C does not remain microbiologically stable. Spices added to the marinade have shown to reduce the decontamination effet. Also, the ratio between game and marinade has been found to be decisive, the best ratio being 1:3. (orig./MG) [de

  1. Development of the destruction technology for radioactive organic solid wastes

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Won Zin; Park, H.S.; Lee, K.W. [and others

    1999-04-01

    The followings were studied through the project entitled 'Technology development for nuclear fuel cycle waste treatment'. 1. Organic waste decomposition technology development A. Destruction technology for organic wastes using Ag(2)-mediated electrochemical oxidation B. Recovery and regeneration technology for the spent chemicals used in the MEO process 2. Radioactive metal waste recycling technology A. Surface decontamination processes B. Decontamination waste treatment technology 3. Volume reduction technology nuclear fuel cycle (NFC) technology A. Estimation of the amount of radwastes and the optimum volume reduction methodology of domestic NFC B. Pretreatment of spent fuel cladding by electrochemical decontamination C. Hot cell process technology for the treatment of NFC wastes 4. Design and fabrication of the test equipment of volume reduction and reuse of alpha contaminated wastes 5. Evaluation on environmental compatibility of NFC A. Development of evaluation methodology on environmental friendliness of NFC B. Residual activity assessment of recycling wastes. (author). 321 refs., 54 tabs., 183 figs.

  2. Development of the destruction technology for radioactive organic solid wastes

    International Nuclear Information System (INIS)

    Oh, Won Zin; Park, H.S.; Lee, K.W.

    1999-04-01

    The followings were studied through the project entitled 'Technology development for nuclear fuel cycle waste treatment'. 1. Organic waste decomposition technology development A. Destruction technology for organic wastes using Ag(2)-mediated electrochemical oxidation B. Recovery and regeneration technology for the spent chemicals used in the MEO process 2. Radioactive metal waste recycling technology A. Surface decontamination processes B. Decontamination waste treatment technology 3. Volume reduction technology nuclear fuel cycle (NFC) technology A. Estimation of the amount of radwastes and the optimum volume reduction methodology of domestic NFC B. Pretreatment of spent fuel cladding by electrochemical decontamination C. Hot cell process technology for the treatment of NFC wastes 4. Design and fabrication of the test equipment of volume reduction and reuse of alpha contaminated wastes 5. Evaluation on environmental compatibility of NFC A. Development of evaluation methodology on environmental friendliness of NFC B. Residual activity assessment of recycling wastes. (author). 321 refs., 54 tabs., 183 figs

  3. Radioactive waste management perspectives in Malaysian Nuclear Agency

    International Nuclear Information System (INIS)

    Nurul Wahida Ahmad Khairuddin; Nik Marzukee Nik Ibrahim; Mat Bakar Mahusin; Mohamad Hakiman Mohamad Yusoff; Muhammad Zahid Azrmi

    2009-01-01

    Waste Technology Development Centre (WasTeC) has been mandated to carry out radioactive waste management activities since 1984. The main objective of WasTeC is to deal with radioactive waste in a manner that protects health and the environment now and in the future, without imposing undue burdens on the future generations. This centre provides services for waste generators within Nuclear Malaysia and also for external waste generators. Services provided include transportation of radioactive waste, decontamination, treatment and storage. This paper will discuss on procedure for applying for services, responsibility of waste generator, responsibility of waste operator, need to comply with waste acceptance criteria and regulations related to management of radioactive waste. (Author)

  4. Radioactive wastes in Oklo

    International Nuclear Information System (INIS)

    Balcazar, M.; Flores R, J.H.; Pena, P.; Lopez, A.

    2006-01-01

    The acceptance of the Nuclear Energy as electric power supply implies to give answer to the population on the two main challenges to conquer in the public opinion: the nuclear accidents and the radioactive wastes. Several of the questions that are made on the radioactive wastes, its are the mobility migration of them, the geologic stability of the place where its are deposited and the possible migration toward the aquifer mantels. Since the half lives of the radioactive waste of a Nuclear Reactor are of several hundred of thousands of years, the technical explanations to the previous questions little convince to the public in general. In this work summary the results of the radioactive waste generated in a natural reactor, denominated Oklo effect that took place in Gabon, Africa, it makes several thousands of millions of years, a lot before the man appeared in the Earth. The identification of at least 17 reactors in Oklo it was carried out thanks to the difference in the concentrations of Uranium 235 and 238 prospective, and to the analysis of the non-mobility of the radioactive waste in the site. It was able by this way to determine that the reactors with sizes of hardly some decimeter and powers of around 100 kilowatts were operating in intermittent and spontaneous form for space of 150,000 years, with operation cycles of around 30 minutes. Recent studies have contributed information valuable on the natural confinement of the radioactive waste of the Oklo reactors in matrixes of minerals of aluminum phosphate that caught and immobilized them for thousands of millions of years. This extracted information from the nature contributes guides and it allows 'to verify' the validity of the current proposals on the immobilization of radioactive wastes of a nuclear reactor. This work presents in clear and accessible form to the public in general on the secure 'design', operation, 'decommissioning' and 'storage' of the radioactive waste of the reactors that the nature put

  5. Radioactive waste processing method

    International Nuclear Information System (INIS)

    Sakuramoto, Naohiko.

    1992-01-01

    When granular materials comprising radioactive wastes containing phosphorus are processed at first in a fluidized bed type furnace, if the granular materials are phosphorus-containing activated carbon, granular materials comprising alkali compound such as calcium hydroxide and barium hydroxide are used as fluidizing media. Even granular materials of slow burning speed can be burnt stably in a fluidizing state by high temperature heat of the fluidizing media, thereby enabling to take a long burning processing time. Accordingly, radioactive activated carbon wastes can be processed by burning treatment. (T.M.)

  6. Radioactive waste processing method

    International Nuclear Information System (INIS)

    Kikuchi, Makoto; Kamiya, Kunio; Yusa, Hideo.

    1976-01-01

    Object: To form radioactive wastes into a pellet-like solid body having high strength. Structure: Liquid waste containing a radioactive material is heated into a powdery body. Granular solid matter such as sand greater in diameter than grain size of the powdery body are mixed into the powdery body, and thereafter the mixture is formed by a granulator into a pellet-like solid body. The thus formed material is introduced into a drum can, into which a thermoplastic material such as asphalt is poured into the can and cooled so that the asphalt is impregnated inside the pellet to obtain a solid having high strength. (Furukawa, Y.)

  7. Radioactive waste processing container

    International Nuclear Information System (INIS)

    Ishizaki, Kanjiro; Koyanagi, Naoaki; Sakamoto, Hiroyuki; Uchida, Ikuo.

    1992-01-01

    A radioactive waste processing container used for processing radioactive wastes into solidification products suitable to disposal such as underground burying or ocean discarding is constituted by using cements. As the cements, calcium sulfoaluminate clinker mainly comprising calcium sulfoaluminate compound; 3CaO 3Al 2 O 3 CaSO 4 , Portland cement and aqueous blast furnace slug is used for instance. Calciumhydroxide formed from the Portland cement is consumed for hydration of the calcium sulfoaluminate clinker. According, calcium hydroxide is substantially eliminated in the cement constituent layer of the container. With such a constitution, damages such as crackings and peelings are less caused, to improve durability and safety. (I.N.)

  8. Radioactive waste containment

    International Nuclear Information System (INIS)

    Beranger, J.-C.

    1978-01-01

    The problem of confining the radioactive wastes produced from the nuclear industry, after the ore concentration stage, is envisaged. These residues being not released into the environment are to be stored. The management policy consists in classifying them in view of adapting to each type of treatment, the suitable conditioning and storage. This classification is made with taking account of the following data: radioactivity (weak, medium or high) nature and lifetime of this radioactivity (transuranians) physical nature and volume. The principles retained are those of volume reduction and shaping into insoluble solids (vitrification) [fr

  9. Characterization of the solid radioactive waste from Cernavoda NPP

    International Nuclear Information System (INIS)

    Iordache, M.; Lautaru, V.; Bujoreanu, D.

    2005-01-01

    During the operation of a nuclear plant significant quantities of radioactive waste result that have a very large diversity. At Cernavoda NPP large amounts of wastes are either non-radioactive wastes or radioactive wastes, each of these being managed completely different from each other. For a CANDU type reactor, the occurrence of radioactive wastes is due to contamination with the following types of radioactive substances: - fission products resulting from nuclear fuel burning; - activated products from materials composing the technological systems; - activated products in process fluids. Radioactive wastes can be in solid, liquid or gas form. At Cernavoda NPP the solid wastes represent about 70% of the waste volume which is produced during plant operation and as a consequence of maintenance and decontamination operations. The most important types of solid wastes that are obtained and then handled, processed (if necessary) and temporarily stored are: solid low-level radioactive wastes (classified as compactible and non-compactible), solid medium radioactive wastes, spent resins, used filters and filter cartridges. The liquid radioactive waste class includes organic liquids (used oil, scintillator liquids and used solvents) and aqueous wastes resulting from process system operating, from decontamination and maintenance operations. Radioactive gas wastes occur subsequently to the fission process inside the fuel elements as well as due to the neutron activation of process fluids in the reactor systems. As result of plant operation, iodine, noble gases, tritium and radioactive particles occur and are passed toward the ventilation stack in a controlled manner so that environmental release of radioactive materials with concentrations exceeding the maximum permissible level could not occur. (authors)

  10. Characterization of the solid radioactive waste From Cernavoda NPP

    International Nuclear Information System (INIS)

    Iordache, M.; Laotaru, V.

    2005-01-01

    Full text: During the operation of a nuclear plant significant quantities of radioactive waste result that have a very large diversity. At Cernavoda NPP large amounts of wastes are either non-radioactive wastes or radioactive wastes, each of these being managed completely different from which other. For a CANDU type reactor, the appearance of radioactive wastes is due to contamination with the following types of radioactive substances: - fission products resulting from nuclear fuel burning; - activated products from materials composing the technological systems; - activated products in process fluids. Radioactive wastes can be in solid, liquid or gas form. At Cernavoda NPP the solid wastes represent about 70% of the waste volume which is produced during plant operation and as a consequence of maintenance and decontamination operations. The most important types of solid wastes that are obtained and then handled, processed (if necessary) and temporarily stored are: solid low-level radioactive wastes (classified as compactible and non-compactible), solid medium radioactive wastes, spent resins, used filters and filter cartridges. The liquid radioactive waste class includes organic liquids (used oil, scintillator liquids and used solvents) and aqueous wastes resulting from process system operating, from decontamination and maintenance operations. Radioactive gas wastes occur subsequently to the fission process inside the fuel elements as well as due to the neutron activation of process fluids in the reactor systems. As result of plant operation, iodine, noble gases, tritium and radioactive particles occur and are passed toward the ventilation stack in a controlled manner so that environmental release of radioactive materials with concentrations exceeding the maximum permissible level could not occur. (authors)

  11. Radioactive waste processing device

    International Nuclear Information System (INIS)

    Seki, Shuji.

    1992-01-01

    Liquid wastes are supplied to a ceramic filter to conduct filtration. In this case, a device for adding a powdery inorganic ion exchanger is disposed to the upstream of the ceramic filter. When the powdery inorganic ion exchanger is charged to the addition device, it is precoated to the surface of the ceramic filter, to conduct separation of suspended matters and separation of ionic nuclides simultaneously. Liquid wastes returned to a collecting tank are condensed while being circulated between the ceramic filter and the tank and then contained in a condensation liquid waste tank. With such a constitution, both of radioactive nuclides accompanied by suspended matters in the radioactive liquid wastes and ionic nuclides can be captured efficiently. (T.M.)

  12. Radioactive waste management

    International Nuclear Information System (INIS)

    Kizawa, Hideo

    1982-01-01

    A system of combining a calciner for concentrated radioactive liquid waste and an incinerator for miscellaneous radioactive solid waste is being developed. Both the calciner and the incinerator are operated by fluidized bed method. The system features the following points: (1) Inflammable miscellaneous solids and concentrated liquid can be treated in combination to reduce the volume. (2) Used ion-exchange resin can be incinerated. (3) The system is applicable even if any final waste disposal method is adopted; calcinated and incinerated solids obtained as intermediate products are easy to handle and store. (4) The system is readily compatible with other waste treatment systems to form optimal total system. The following matters are described: the principle of fluidized-bed furnaces, the objects of treatment, system constitution, the features of the calciner and incinerator, and the current status of development. (J.P.N.)

  13. Studies on radioactive liquid waste treatment by reverse osmosis

    International Nuclear Information System (INIS)

    Koyama, Akio; Shimoura, Kazukuni; Tsutsui, Tenson

    1982-01-01

    Reverse osmosis is a simple process and has relatively high decontamination factor comparing to other processes used for the treatment of radioactive liquid waste. Furthermore the quantity of secondary waste of this process is small. In this study, test solution containing nine elements such as cesium, strontium, cobalt etc. in chloride forms are treated by reverse osmosis. Permeate rate decreases as the increase of osmotic pressure of feed solution and is expressed by linear equation. Decontamination factor of cations of univalency is more than ten, and about one tenth of that of bivalency. Decontamination factors of all the elements used in this experiment are approximately estimated using the solution-diffusion model. (author)

  14. Disposal of radioactive waste

    International Nuclear Information System (INIS)

    Critchley, R.J.; Swindells, R.J.

    1984-01-01

    A method and apparatus for charging radioactive waste into a disposable steel drum having a plug type lid. The drum is sealed to a waste dispenser and the dispenser closure and lid are withdrawn into the dispenser in back-to-back manner. Before reclosing the dispenser the drum is urged closer to it so that on restoring the dispenser closure to the closed position the lid is pressed into the drum opening

  15. Underground storage of radioactive wastes

    International Nuclear Information System (INIS)

    Dietz, D.N.

    1977-01-01

    An introductory survey of the underground disposal of radioactive wastes is given. Attention is paid to various types of radioactive wastes varying from low to highly active materials, as well as mining techniques and salt deposits

  16. Decontamination of high-level waste canisters

    International Nuclear Information System (INIS)

    Nesbitt, J.F.; Slate, S.C.; Fetrow, L.K.

    1980-12-01

    This report presents evaluations of several methods for the in-process decontamination of metallic canisters containing any one of a number of solidified high-level waste (HLW) forms. The use of steam-water, steam, abrasive blasting, electropolishing, liquid honing, vibratory finishing and soaking have been tested or evaluated as potential techniques to decontaminate the outer surfaces of HLW canisters. Either these techniques have been tested or available literature has been examined to assess their applicability to the decontamination of HLW canisters. Electropolishing has been found to be the most thorough method to remove radionuclides and other foreign material that may be deposited on or in the outer surface of a canister during any of the HLW processes. Steam or steam-water spraying techniques may be adequate for some applications but fail to remove all contaminated forms that could be present in some of the HLW processes. Liquid honing and abrasive blasting remove contamination and foreign material very quickly and effectively from small areas and components although these blasting techniques tend to disperse the material removed from the cleaned surfaces. Vibratory finishing is very capable of removing the bulk of contamination and foreign matter from a variety of materials. However, special vibratory finishing equipment would have to be designed and adapted for a remote process. Soaking techniques take long periods of time and may not remove all of the smearable contamination. If soaking involves pickling baths that use corrosive agents, these agents may cause erosion of grain boundaries that results in rough surfaces

  17. Incineration of radioactive waste

    International Nuclear Information System (INIS)

    Eid, C.

    1985-01-01

    The incineration process currently seems the most appropriate way to solve the problems encountered by the increasing quantities of low and medium active waste from nuclear power generation waste. Although a large number of incinerators operate in the industry, there is still scope for the improvement of safety, throughput capacity and reduction of secondary waste. This seminar intends to give opportunity to scientists working on the different aspects of incineration to present their most salient results and to discuss the possibilities of making headway in the management of LL/ML radioactive waste. These proceedings include 17 contributions ranging over the subjects: incineration of solid β-γ wastes; incineration of other radwastes; measurement and control of wastes; off-gas filtration and release. (orig./G.J.P.)

  18. Radioactive waste management

    International Nuclear Information System (INIS)

    Alfredson, P.G.; Levins, D.M.

    1975-08-01

    Present and future methods of managing radioactive wastes in the nuclear industry are reviewed. In the stages from uranium mining to fuel fabrication, the main purpose of waste management is to limit and control dispersal into the environment of uranium and its decay products, particularly radium and radon. Nuclear reactors produce large amounts of radioactivity but release rates from commercial power reactors have been low and well within legal limits. The principal waste from reprocessing is a high activity liquid containing essentially all the fission products along with the transuranium elements. Most high activity wastes are currently stored as liquids in tanks but there is agreement that future wastes must be converted into solids. Processes to solidify wastes have been demonstrated in pilot plant facilities in the United States and Europe. After solidification, wastes may be stored for some time in man-made structures at or near the Earth's surface. The best method for ultimate disposal appears to be placing solid wastes in a suitable geological formation on land. (author)

  19. Method for electrochemical decontamination of radioactive metal

    Science.gov (United States)

    Ekechukwu, Amy A [Augusta, GA

    2008-06-10

    A decontamination method for stripping radionuclides from the surface of stainless steel or aluminum material comprising the steps of contacting the metal with a moderately acidic carbonate/bicarbonate electrolyte solution containing sodium or potassium ions and thereafter electrolytically removing the radionuclides from the surface of the metal whereby radionuclides are caused to be stripped off of the material without corrosion or etching of the material surface.

  20. Dynamics of radioactive waste generation

    International Nuclear Information System (INIS)

    Dogaru, Daniela; Virtopeanu, Cornelia; Ivan, Alexandrina

    2008-01-01

    In Romania there are in operation three facilities licensed for collection, treatment and storage of radioactive waste resulted from industry, research, medicine, and agriculture, named institutional radioactive waste. The repository, which is of near surface type, is designed for disposing institutional radioactive waste. The institutional radioactive wastes generated are allowed to be disposed into repository according to the waste acceptance criteria, defined for the disposal facility. The radioactive wastes which are not allowed for disposal are stored on the site of each facility which is special authorised for this. The paper describes the dynamics of generation of institutional waste in Romania, both for radioactive waste which are allowed to be disposed into repository and for radioactive waste which are not allowed to be disposed of. (authors)

  1. Contamination and decontamination of vehicles when driven in radioactive areas

    International Nuclear Information System (INIS)

    Ulvsand, T.; Nygren, U.

    1999-10-01

    There is reason to ask whether it is beneficial to decontaminate vehicles, in view of the great effort applied. If the level of contamination is low before the decontamination process, then the cost is not motivated, even if the decontamination is shown to be effective in relative terms. The report describes two trials at the National NBC Defence School in Umeaa and one trial at the French test site in Bourges. The aim is to investigate how vehicles are contaminated and at which ground deposition levels troublesome levels of contamination will arise. In the trials, a non-radioactive agent substituting real radioactivity was used. The trials in Sweden so far have used the oversnow vehicle BV 206, during both winter and summer conditions. The vehicles were driven a specific distance along a road on which a known amount of the test substance had been dispersed. Samples were taken on pre-determined areas on one side of the vehicles to measure the amount of test substance. Later, the vehicles continued along a 'clean' road where additional samples were taken, but on the other side of the vehicles. The largest amount of test substance was collected on the tracks and on the back of the vehicle. The tracks and mud-flaps were effectively decontaminated when the vehicles were driven along a clean road, while most of the contamination remained on the backside. The purpose of the trials in France was to compare the results from our non-radioactive and their radioactive method, based on the radioactive La-140. Due to ground conditions, the level of contamination on the vehicles was much less than in the trials in Umeaa, but the effect decontamination could be measured after all

  2. Contamination and decontamination of vehicles driven in radioactive areas

    International Nuclear Information System (INIS)

    Ulvsand, T.; Nygren, U.

    1999-03-01

    There is reason to ask whether it is beneficial to decontaminate vehicles, in view of the great effort applied. If the level of contamination is low before the decontamination process, then the cost is not motivated, even if the decontamination is shown to be effective in relative terms. The report describes two trials at the National NBC Defence School in Umeaa and one trial at the French test site in Bourges. The aim is to investigate how vehicles are contaminated and at which ground deposition levels troublesome levels of contamination will arise. In the trials, a non-radioactive agent substituting real radioactivity was used. The trials in Sweden so far have used the oversnow vehicle BV 206, during both winter and summer conditions. The vehicles were driven a specific distance along a road on which a known amount of the test substance had been dispersed. Samples were taken on pre-determined areas on one side of the vehicles to measure the amount of test substance. Later, the vehicles continued along a 'clean' road where additional samples were taken, but on the other side of the vehicles. The largest amount of test substance was collected on the tracks and on the back of the vehicle. The tracks and mud-flaps were effectively decontaminated when the vehicles were driven along a clean road, while most of the contamination remained on the backside. The purpose of the trials in France was to compare the results from our non-radioactive and their radioactive method, based on the radioactive La-140. Due to ground conditions, the level of contamination on the vehicles was much less than in the trials in Umeaa, but the effect decontamination could be measured after all

  3. Radioactive waste management and regulation

    International Nuclear Information System (INIS)

    Willrich, M.

    1976-12-01

    The following conclusions are reached: (1) safe management of post-fission radioactive waste is already a present necessity and an irreversible long-term commitment; (2) basic goals of U.S. radioactive waste policy are unclear; (3) the existing organization for radioactive waste management is likely to be unworkable if left unchanged; and (4) the existing framework for radioactive waste regulation is likely to be ineffective if left unchanged

  4. Decontamination Study for Mixed Waste Storage Tanks RCRA Closure

    International Nuclear Information System (INIS)

    Leaphart, D.M.; Reed, S.R.; Rankin, W.N.

    1995-01-01

    The Savannah River Site (SRS) plans to close six underground tanks storing mixed waste under RCRA regulations. In support of this closure effort, a study was performed to determine the optimal method of decontaminating these tanks to meet the closure requirements. Items consaidered in the evaluation of the decontamination methods included effectiveness, compatibility with existing waste residues, possible cleaning solution disposal methods, and cost

  5. Radioactive waste processing field

    International Nuclear Information System (INIS)

    Ito, Minoru.

    1993-01-01

    Storing space for radioactive wastes (storage tunnels) are formed underground of the sea bottom along coast. A plurality of boreholes through which sea water flows are pored vertically in a direction intersecting underground streams of brine in the ground between the tunnels and seaside. Sea water introduction pipes are joined to the upper side walls of the boreholes. The sea water introduction pipes have introduction ports protruded under the sea level of the coastal sea area region. Since sea water flows from the introduction ports to the boreholes passing through the sea water introduction pipes, sea water is always filled in the boreholes. Therefore, brine is sufficiently supplied toward the land by sea water from the boreholes, the underground stream of brine is negligibly small. This can prevent radioactive contamination due to flow of the underground water when radioactive wastes are buried in the underground near coast. (I.N.)

  6. Radioactive waste material disposal

    Science.gov (United States)

    Forsberg, Charles W.; Beahm, Edward C.; Parker, George W.

    1995-01-01

    The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide.

  7. Radioactive waste processing device

    International Nuclear Information System (INIS)

    Ikeda, Takashi; Funabashi, Kiyomi; Chino, Koichi.

    1992-01-01

    In a waste processing device for solidifying, pellets formed by condensing radioactive liquid wastes generated from a nuclear power plant, by using a solidification agent, sodium chloride, sodium hydroxide or sodium nitrate is mixed upon solidification. In particular, since sodium sulfate in a resin regenerating liquid wastes absorbs water in the cement upon cement solidification, and increases the volume by expansion, there is a worry of breaking the cement solidification products. This reaction can be prevented by the addition of sodium chloride and the like. Accordingly, integrity of the solidification products can be maintained for a long period of time. (T.M.)

  8. Radioactive waste management glossary

    International Nuclear Information System (INIS)

    1988-01-01

    The Waste Management Glossary defines over 300 terms in the English language that have special meanings when they are used in the context of radioactive waste management. The Glossary is intended to provide a consistent reference for these terms for specialists in this field. It also will assist non-specialists who read IAEA reports dealing with waste management. This is the second edition of the Glossary. It is intended to update and replace its predecessor, TECDOC-264, that was issued in 1982. (author)

  9. Radioactive waste management in Mexico

    International Nuclear Information System (INIS)

    Paredes, L.; Reyes L, J.; Jimenez D, J.

    2000-01-01

    This paper describes the radioactive waste management in Mexico, particularly the activities that the National Institute of Nuclear Research (NINR) is undertaking in this field. Classification and annual generation of radioactive waste, together with practices and facilities relating to the management of radioactive waste are addressed. The respective national legal framework and policy are outlined. (author)

  10. Radioactive waste management

    International Nuclear Information System (INIS)

    1982-07-01

    In response to the Sixth Report of the Royal Commission on Environmental Pollution, a White Paper was published in 1977, announcing a number of steps to deal with the problems presented by wastes from the nuclear industry and setting out the position of the then government. The present White paper is in four sections. i. A brief description of the nature of radioactive wastes, and the general objectives of waste management. ii. What has been achieved, the role of the Radioactive Waste Management Advisory Committee, the expansion of research, and the conclusions from the review of existing controls. iii. The present position for each major category of waste, including relevant current action and research, transport and decommissioning. iv. The next steps. Research and development must continue; shallow land burial and the carefully controlled disposal of certain wastes to the sea will continue to play a role; and, for some wastes, new disposal facilities are needed at an early date. For others, the appropriate course of action at the moment is properly controlled storage. New developments are also required in organisation. Throughout, the public must be kept fully informed about what is being done, and there must be proper scope for public discussion. (U.K.)

  11. Radioactive waste management profiles

    International Nuclear Information System (INIS)

    1991-10-01

    In 1989, the International Atomic Energy Agency began development of the Waste Management Data Base (WMDB) to, primarily, establish a mechanism for the collection, integration, storage, and retrieval of information relevant to radioactive waste management in Member States. This report is a summary and compilation of the information contained in the data base. The WMDB contains information and data on several aspects of waste management and offer a ready source of information on such activities as R and D efforts, waste disposal plans and programmes, important programme milestones, waste volume projections, and national and regulatory policies. This report is divided into two parts. Part one describes the Waste Management Data Base system and the type of information it contains. The second part contains data provided by Member States between August 1989 and December 1990 in response to a questionnaire sent by the Agency. However, if a Member State did not respond to the questionnaire, data from IAEA sources, such as technical assistance mission reports, were used - where such data exist. The WMDB system became operational in January 1991. The type of information contained in the data base includes radioactive waste management plans, policies and activities in Member States

  12. Defense radioactive waste management

    International Nuclear Information System (INIS)

    Hindman, T.B. Jr.

    1988-01-01

    The Office of Defense Programs (DP), U.S. Department of Energy, is responsible for the production of nuclear weapons and materials for national defense. Pursuant to this mission, DP operates a large industrial complex that employs over 60,000 people at various installations across the country. As a byproduct of their activities, these installations generate radioactive, hazardous, or mixed wastes that must be managed in a safe and cost-effective manner in compliance with all applicable Federal and STate environmental requirements. At the Federal level such requirements derive primarily from the Atomic Energy Act, the Resource Conservation and Recovery Act (RCRA), the comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and the Superfund Amendments and Reauthorization Act (SARA). Responsibility for DP activities in connection with the disposal of defense wastes is consolidated within the Office of Defense Waste and Transportation Management (DWTM). This paper discusses these activities which consist of five principal elements: the environmental restoration of inactive DP facilities and sites, the processing storage and disposal of wastes associated with ongoing operations at active DP facilities, research and development directed toward the long-term disposal of radioactive, hazardous, mixed wastes, technology development directly supporting regulatory compliance, and the development of policies, procedures, and technologies for assuring the safe transportation of radioactive and hazardous materials

  13. Radioactive wastes handling facility

    International Nuclear Information System (INIS)

    Hirose, Emiko; Inaguma, Masahiko; Ozaki, Shigeru; Matsumoto, Kaname.

    1997-01-01

    There are disposed an area where a conveyor is disposed for separating miscellaneous radioactive solid wastes such as metals, on area for operators which is disposed in the direction vertical to the transferring direction of the conveyor, an area for receiving the radioactive wastes and placing them on the conveyor and an area for collecting the radioactive wastes transferred by the conveyor. Since an operator can conduct handling while wearing a working cloth attached to a partition wall as he wears his ordinary cloth, the operation condition can be improved and the efficiency for the separating work can be improved. When the area for settling conveyors and the area for the operators is depressurized, cruds on the surface of the wastes are not released to the outside and the working clothes can be prevented from being involved. Since the wastes are transferred by the conveyor, the operator's moving range is reduced, poisonous materials are fallen and moved through a sliding way to an area for collecting materials to be separated. Accordingly, the materials to be removed can be accumulated easily. (N.H.)

  14. Method of melt-decontaminating alumium contaminated with radioactivity

    International Nuclear Information System (INIS)

    Uda, Tatsuhiko; Iba, Hajime; Miura, Noboru; Kawasaki, Katsuo.

    1986-01-01

    Purpose: To enable optimum deontamination for radioactive-contaminated aluminum by further improving the decontaminating effect of the slag agent added to radioactive contaminated materials. Method: The slag agent is mainly composed of chloride type slags having a high reactivity for mainly incorporating uranium compounds and easily reacting near the melting point of aluminum and incorporated with fluorides for weakening the deliquescent characteristic to the chloride materials. Further, those slag agents are selected which can be treated at a low temperature in order to prevent the uranium compounds once incorporated into the slags from re-melting into the molten aluminum. Typically, a slag agent comprising 14 LiF, 76 KCl - 10 BaCl 2 is preferred. The basicity of the slag agent ranges from 0.5 to 2 and the melting point is 700 deg C. The melting decontaminating efficiency for the radioactive-contaminated aluminum can thus be improved. (Horiuchi, T.)

  15. Management of hospital radioactive wastes

    International Nuclear Information System (INIS)

    Mantrana, D.

    1986-01-01

    The general structure of a regulatory scheme for the management of hospital radioactive wastes is presented. The responsabilities of an institution in the radioactive waste management, and storage conditions are defined. The radioactive wastes are classified in physical terms, and the criteria for evaluating the activity of solid wastes are described. The container characteristics and, the types of treatments given to the wastes are specified. (M.C.K.) [pt

  16. Radioactive waste solidification material

    International Nuclear Information System (INIS)

    Nishihara, Yukio; Wakuta, Kuniharu; Ishizaki, Kanjiro; Koyanagi, Naoaki; Sakamoto, Hiroyuki; Uchida, Ikuo.

    1992-01-01

    The present invention concerns a radioactive waste solidification material containing vermiculite cement used for a vacuum packing type waste processing device, which contains no residue of calcium hydroxide in cement solidification products. No residue of calcium hydroxide means, for example, that peak of Ca(OH) 2 is not recognized in an X ray diffraction device. With such procedures, since calcium sulfoaluminate clinker and Portland cement themselves exhibit water hardening property, and slugs exhibit hydration activity from the early stage, the cement exhibits quick-hardening property, has great extension of long term strength, further, has no shrinking property, less dry- shrinkage, excellent durability, less causing damages such as cracks and peeling as processing products of radioactive wastes, enabling to attain highly safe solidification product. (T.M.)

  17. Treatment of radioactive wastes

    International Nuclear Information System (INIS)

    Machida, Chuji

    1976-01-01

    Japan Atomic Energy Research Institute (JAERI) is equipped with such atomic energy facilities as a power test reactor, four research reactors, a hot laboratory, and radioisotope-producing factory. All the radioactive wastes but gas generated from these facilities are treated by the waste treatment facilities established in JAERI. The wastes carried into JAERI through Japan Radioisotope Association are also treated there. Low level water solution is treated with an evaporating apparatus, an ion-exchange apparatus, and a cohesive precipitating apparatus, while medium level solution is treated with an evaporating apparatus, and low level combustible solid is treated with an incinerating apparatus. These treated wastes and sludges are mixed with Portland cement in drum cans to solidify, and stored in a concrete pit. The correct classification and its indication as well as the proper packing for the wastes are earnestly demanded by the treatment facilities. (Kobatake, H.)

  18. Management of radioactive waste from reprocessing plants

    International Nuclear Information System (INIS)

    Kanwar Raj

    2010-01-01

    Reprocessing and recycling of both fissile and fertile components back into appropriate reactor systems is an integral part of three stage nuclear energy programme of India. Different steps involved in processing of spent nuclear fuel (SNF) are decladding, dissolution and recovery of fissile and fertile materials. Reprocessing of SNF is a complex process involving handling of large quantity of radioactive materials and processing chemicals. There are three reprocessing plants in operation in the country at Trombay, Tarapur and Kalpakkam. Out of these plants, Trombay reprocessing plant is engaged in reprocessing of SNF from research reactors and other two plants are processing of SNF from PHWRs. A facility is being built for reprocessing of thorium based spent fuel at BARC, Trombay based on the experience of pilot plant scale. Like other industrial activities of nuclear fuel cycle, fuel reprocessing facilities too generate various types of radioactive waste streams. These are generated in all the three physical forms namely solid, liquid and gas. These waste streams are primarily categorized on the basis of concentration of radionuclides, their half lives and toxicity. Management of these wastes aims at (a) recovery and recycle of useful materials, (b) concentration and confinement of radioactivity in inert and stable matrices, (c) minimization of final waste volume for disposal, (d) decontamination of effluents following ALARA principle and (e) minimization of radioactive discharge to the environment. The present paper outlines the salient features of management of different types of radioactive waste generated in reprocessing plants handling SNF from research reactors and PHWR

  19. Radioactive waste computerized management

    International Nuclear Information System (INIS)

    Communaux, M.; Lantes, B.

    1993-01-01

    Since December 31, 1990, the management of the nuclear wastes for all the power stations has been computerized, using the DRA module of the Power Generation and Transmission Group's data processing master plan. So now EDF has a software package which centralizes all the data, enabling it to declare the characteristics of the nuclear wastes which are to be stored on the sites operated by the National Radioactive Waste Management Agency (ANDRA). Among other uses, this application makes it possible for EDF, by real time data exchange with ANDRA, to constitute an inventory of validated, shippable packs. It also constitutes a data base for all the wastes produced on the various sites. This application was developed to meet the following requirements: give the producers of radioactive waste a means to fully manage all the characteristics and materials that are necessary to condition their waste correctly; guarantee the traceability and safety of data and automatically assure the transmission of this data in real time between the producers and the ANDRA; give the Central Services of EDF an operation and statistical tool permitting an experienced feed-back based on the complete national production (single, centralized data base); and integrate the application within the products of the processing master plan in order to assure its maintenance and evolution

  20. Treatment of low-level liquid radioactive wastes by electrodialysis

    International Nuclear Information System (INIS)

    DelDebbio, J.A.; Donovan, R.I.

    1986-01-01

    This paper presents the results of pilot plant studies on the use of electrodialysis (ED) for the removal of radioactive and chemical contaminants from acidic low-level radioactive wastes resulting from nuclear fuel reprocessing operations. Decontamination efficiencies are reported for strontium-90, cesium-137, iodine-129, ruthenium-106 and mercury. Data for contaminant adsorption on ED membranes and liquid waste volumes generated are also presented

  1. Radioactive wastes. The groundwork of current solutions

    International Nuclear Information System (INIS)

    Grevoz, A.; Boullis, B.; Devezeaux de Lavergne, J.G.; Butez, M.; Bordier, G.; Vitart, X.; Hablot, I.; Chastagnet, F.

    2005-01-01

    Today the groundwork laid down by research has made processes available for the durable treatment and conditioning of all types of radioactive waste. This document illustrates the today situations in five presentations. Now standing as a national reference, the french inventory of radioactive waste, drawn up by ANDRA, has not only expanded to cover recoverable material but also features predictions of waste arisings for 2010 and 2020, including waste from the decommissioning of current installations. The current process used for spent fuel reprocessing allows extraction for recycling purpose, of uranium and plutonium, with very high recovery and purification rates. Advances in characterization and decontamination allow improvements in sorting and retrieval and conditioning to be considered for older wastes. The french National radioactive waste management agency (ANDRA) is already providing optimum industrial solutions for all short-lived, low and very low level waste on its Soulaines and Morvillers sites. For several decades, Areva has been reprocessing spent fuel and conditioning ultimate waste in its La Hague plants. (A.L.B.)

  2. Radioactive waste management

    International Nuclear Information System (INIS)

    Strohl, P.

    1985-01-01

    The OECD Nuclear Energy Agency (NEA) attaches considerable importance to its cooperation with Japan. It was said in the annual conference in 1977 that the presentation of the acceptable policy regarding radioactive waste management is the largest single factor for gaining public confidence when nuclear power is adopted with assurance. The risk connected with radioactive wastes was often presented as the major obstacle to the development of nuclear energy, however, an overall impression of optimism and confidence prevailed by the technical appraisal of the situation in this field by the committee of the NEA. This evolution can be easily explained by the significant progress achieved in radioactive waste management both at the technical level and with respect to the implementation of special legislation and the establishment of specialized institutions and financing schemes. More research will focus on the optimization of the technical, safety and economic aspects of specific engineering designs at specific sites on the long term isolation of wastes, and the NEA contributes to this general effort. The implementation of disposal programs is also in progress. (Kako, I.)

  3. Categorizing operational radioactive wastes

    International Nuclear Information System (INIS)

    2007-04-01

    The primary objective of this publication is to improve communications among waste management professionals and Member States relative to the properties and status of radioactive waste. This is accomplished by providing a standardized approach to operational waste categorization using accepted industry practices and experience. It is a secondary objective to draw a distinction between operational waste categorization and waste disposal classification. The approach set forth herein is applicable to waste generation by mature (major, advanced) nuclear programmes, small-to-medium sized nuclear programmes, and programmes with waste from other nuclear applications. It can be used for planning, developing or revising categorization methodologies. For existing categorization programmes, the approach set forth in this publication may be used as a validation and evaluation tool for assessing communication effectiveness among affected organizations or nations. This publication is intended for use by waste management professionals responsible for creating, implementing or communicating effective categorization, processing and disposal strategies. For the users of this publication, it is important to remember that waste categorization is a communication tool. As such, the operational waste categories are not suitable for regulatory purposes nor for use in health and safety evaluations. Following Section 1 (Introduction) Section 2 of this publication defines categorization and its relationship to existing waste classification and management standards, regulations and practices. It also describes the benefits of a comprehensive categorization programme and fundamental record considerations. Section 3 provides an overview of the categorization process, including primary categories and sub-categories. Sections 4 and 5 outline the specific methodology for categorizing unconditioned and conditioned wastes. Finally, Section 6 provides a brief summary of critical considerations that

  4. Decommissioning of nuclear facilities: Decontamination, disassembly and waste management

    International Nuclear Information System (INIS)

    1983-01-01

    The term 'decommissioning', as used within the nuclear industry, means the actions taken at the end of a facility's useful life to retire the facility from service in a manner that provides adequate protection for the health and safety of the decommissioning workers, the general public, and for the environment. These actions can range from merely closing down the facility and a minimal removal of radioactive material coupled with continuing maintenance and surveillance, to a complete removal of residual radioactivity in excess of levels acceptable for unrestricted use of the facility and its site. This latter condition, unrestricted use, is the ultimate goal of all decommissioning actions at retired nuclear facilities. The purpose of this report is to provide an information base on the considerations important to decommissioning, the methods available for decontamination and disassembly of a nuclear facility, the management of the resulting radioactive wastes, and the areas of decommissioning methodology where improvements might be made. Specific sections are devoted to each of these topics, and conclusions are presented concerning the present status of each topic. A summary of past decommissioning experience in Member States is presented in the Appendix. The report, with its discussions of necessary considerations, available operational methods, and waste management practices, together with supporting references, provides an appreciation of the activities that comprise decommissioning of nuclear facilities. It is anticipated that the information presented in the report should prove useful to persons concerned with the development of plans for the decommissioning of retired nuclear facilities

  5. Chapter 7. Radioactive wastes

    International Nuclear Information System (INIS)

    2000-01-01

    The inspection and assessment activities of Nuclear Regulatory Authority of the Slovak Republic (UJD) focused on minimization of activity and the quantity of produced radioactive waste (RAW), and on increasing safety of waste management. The general scheme of rad-waste management in the Slovak Republic is presented. The radioactive wastes produced during the operation of NPP V-1, NPP V-2 and NPP Mochovce in 1999 are listed.Liquid RAW was treated and conditioned into a solid form at the nuclear facility Technology for treatment and conditioning of RAW. In 1999 combustible solid waste was treated at the nuclear facility Incinerator of VUJE Trnava. Produced liquid and solid RAW are stored at designed equipment at individual nuclear installations (in case of NPP V-1, NPP V-2 Bohunice and NPP Mochovce in compliance with the Regulation No. 67/1987 Coll. law).The status of free capacity of these storages as of 31.121999 is presented. Storage solidified product built the SE-VYZ was fully filled at the end of 1999. In 1999 there was a significant improvement in the process of radioactive waste management by: (A) issuing approval for commissioning the National Repository for RAW, (B) issuing approval for commissioning the Treatment and Conditioning Center for RAW, (C) having the application for approval to transport conditioned RAW to the National repository Mochovce in the final stage of evaluation. At the beginning of 2000 it is realistic to expect that RAW conditioned in the Conditioning center of RAW will start to be disposed at the National repository of RAW in Mochovce

  6. Radioactive wastes eliminating device

    International Nuclear Information System (INIS)

    Mitsutsuka, Norimasa.

    1979-01-01

    Purpose: To eliminate impurities and radioactive wastes by passing liquid sodium in a cold trap and an adsorption device. Constitution: Heated sodium is partially extracted from the core of a nuclear reactor by way of a pump, flown into and cooled in heat exchangers and then introduced into a cold trap for removal of impurities. The liquid sodium eliminated with impurities is introduced into an adsorption separator and purified by the elimination of radioactive wastes. The purified sodium is returned to the nuclear reactor. A heater is provided between the cold trap and the adsorption separator, so that the temperature of the liquid sodium introduced into the adsorption separator is not lower than the minimum temperature in the cold trap to thereby prevent deposition of impurities in the adsorption separator. (Kawakami, Y.)

  7. Radioactive wastes - inventories and classification

    International Nuclear Information System (INIS)

    Brennecke, P.; Hollmann, A.

    1992-01-01

    A survey is given of the origins, types, conditioning, inventories, and expected abundance of radioactive wastes in the future in the Federal Republic of Germany. The Federal Government's radioactive waste disposal scheme provides that radioactive wastes be buried in deep geological formations which are expected to ensure a maintenance-free, unlimited and safe disposal without intentional excavation of the wastes at a later date. (orig./BBR) [de

  8. Radioactive waste management for a radiologically contaminated hospitalized patient

    International Nuclear Information System (INIS)

    Pina Jomir, G.; Michel, X.; Lecompte, Y.; Chianea, N.; Cazoulat, A.

    2015-01-01

    Radioactive waste management in the post-accidental phase following caring for a radiologically contaminated patient in a hospital decontamination facility must be anticipated at a local level to be truly efficient, as the volume of waste could be substantial. This management must comply with the principles set out for radioactive as well as medical waste. The first step involves identification of radiologically contaminated waste based on radioactivity measurement for volume reduction. Then, the management depends on the longest radioactive half-life of contaminative radionuclides. For a half-life inferior to 100 days, wastes are stored for their radioactivity to decay for at least 10 periods before disposal like conventional medical waste. Long-lived radioactive waste management implies treatment of liquid waste and special handling for sorting and packaging before final elimination at the French National Agency for Radioactive Waste Management (ANDRA). Following this, highly specialized waste management skills, financial responsibility issues and detention of non-medical radioactive sources are questions raised by hospital radioactive waste management in the post-accidental phase. (authors)

  9. Decontamination of organic wastes containing radionuclides

    International Nuclear Information System (INIS)

    Unsworth, T.J.; Pimblott, S.M.; Brown, N.W.

    2015-01-01

    An electrochemical oxidation treatment has been developed by Arvia Technology for organic wastes containing radionuclides, in which GIC-bisulphate is used as an adsorbent and electrode. Significant work has been carried out in the irradiation of graphite for medical and nuclear applications and in the use of carbonaceous adsorbents but knowledge of the applicability of graphite intercalation compounds (GICs) in these roles is limited. This project will attempt to fill this gap. It will investigate the suitability of GIC-bisulphate as an adsorbent in an electrochemical treatment process for radioactive organic liquids. The process was initially used to treat waste-water from non-nuclear operations and now requires technical knowledge and research to adapt the treatment for the nuclear industry. Adsorption processes involving organic wastes containing mobile radionuclides such as 137 Cs are difficult to understand. The effects of gamma radiation on the chemistry of water and organics could complicate the treatment process further. To ensure the suitability and effectiveness of the electrochemical oxidation treatment for radioactive organic wastes, the following effects are being investigated: -) radiolytic degradation of GIC-bisulphate in solution, -) leaching of intercalated ions due to gamma radiation, -) effect of gamma radiation on the adsorption of organics by GIC-bisulphate, -) changes in the sorption behaviour of radioactive contaminants, -) distribution coefficients of contaminants in organic and aqueous phases, and -) selective or competitive adsorption on graphite surface sites

  10. Decontamination system study for the Tank Waste Retrieval System

    International Nuclear Information System (INIS)

    Reutzel, T.; Manhardt, J.

    1994-05-01

    This report summarizes the findings of the Idaho National Engineering Laboratory's decontamination study in support of the Tank Waste Retrieval System (TWRS) development program. Problems associated with waste stored in existing single shell tanks are discussed as well as the justification for the TWRS program. The TWRS requires a decontamination system. The subsystems of the TWRS are discussed, and a list of assumptions pertinent to the TWRS decontamination system were developed. This information was used to develop the functional and operational requirements of the TWRS decontamination system. The requirements were combined with a comprehensive review of currently available decontamination techniques to produced a set of evaluation criteria. The cleaning technologies and techniques were evaluated, and the CO 2 blasting decontamination technique was chosen as the best technology for the TWRS

  11. PROCESSING OF RADIOACTIVE WASTE

    Science.gov (United States)

    Johnson, B.M. Jr.; Barton, G.B.

    1961-11-14

    A process for treating radioactive waste solutions prior to disposal is described. A water-soluble phosphate, borate, and/or silicate is added. The solution is sprayed with steam into a space heated from 325 to 400 deg C whereby a powder is formed. The powder is melted and calcined at from 800 to 1000 deg C. Water vapor and gaseous products are separated from the glass formed. (AEC)

  12. Disposal of radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1960-11-15

    A discussion on the disposal of radioactive wastes was held in Vienna on 20 September 1960. The three scientists who participated in the discussion were Mr. Harry Brynielsson (Sweden), Head of the Swedish Atomic Energy Company; Mr. H. J. Dunster (United Kingdom), Health Physics Adviser to the United Kingdom Atomic Energy Authority; and Mr. Leslie Silverman (United States), Professor of Harvard University, and Chairman of the US AEC Advisory Committee on Reactor Safeguards, as well as consultant on air cleaning

  13. Radioactive waste management glossary

    International Nuclear Information System (INIS)

    1982-04-01

    Terminology used in documents published by the IAEA is frequently defined in glossaries in the separate documents so that understanding is enhanced, particularly for terms having unique meanings in the field of radioactive waste management. This has been found to be a good practice but frequently a burdensome one, too. In addition, terms in various documents occasionally were used differently. Thus, a common glossary of terms for radioactive waste management documents is believed to have merit. This glossary has been developed for use in IAEA documentation on radioactive waste management topics. The individual items have been compiled by selecting terms and definitions from thirty sources, listed on the next page, and numerous people. An effort has been made to use the definitions in internationally-accepted glossaries (e.g. ICRP, ICRU, ISO), with minimum modification; similarly, definitions in recently published IAEA documents have been respected. Nevertheless, when modifications were believed appropriate, they have been made. The glossary, stored on magnetic tape, is intended to be used as a standard for terminology for IAEA use; it is hoped that some benefits of common international terminology may result from its use in IAEA documentation

  14. Radioactive waste equivalence

    International Nuclear Information System (INIS)

    Orlowski, S.; Schaller, K.H.

    1990-01-01

    The report reviews, for the Member States of the European Community, possible situations in which an equivalence concept for radioactive waste may be used, analyses the various factors involved, and suggests guidelines for the implementation of such a concept. Only safety and technical aspects are covered. Other aspects such as commercial ones are excluded. Situations where the need for an equivalence concept has been identified are processes where impurities are added as a consequence of the treatment and conditioning process, the substitution of wastes from similar waste streams due to the treatment process, and exchange of waste belonging to different waste categories. The analysis of factors involved and possible ways for equivalence evaluation, taking into account in particular the chemical, physical and radiological characteristics of the waste package, and the potential risks of the waste form, shows that no simple all-encompassing equivalence formula may be derived. Consequently, a step-by-step approach is suggested, which avoids complex evaluations in the case of simple exchanges

  15. Laser techniques for radioactive decontamination gives metallic surfaces

    International Nuclear Information System (INIS)

    Escobar Alracon, L.; Molina, G.; Vizuet Gonzalez, J.

    1998-01-01

    In this work it presented the prototype for system decontamination at diverse component with removable superficial contamination, using the technique gives laser ablation, for the evaporation at the pollutant. It discusses the principle in the fact that system, as well as the different elements that compose it. The are presented the obtained results when irradiating with a laser a surface without radioactive contamination to verify the system operation

  16. Argentina's radioactive waste disposal policy

    International Nuclear Information System (INIS)

    Palacios, E.

    1986-01-01

    The Argentina policy for radioactive waste disposal from nuclear facilities is presented. The radioactive wastes are treated and disposed in confinement systems which ensure the isolation of the radionucles for an appropriate period. The safety criteria adopted by Argentina Authorities in case of the release of radioactive materials under normal conditions and in case of accidents are analysed. (M.C.K.) [pt

  17. Treatment of wastes arising from decontamination process using citric acid as a decontaminate agent

    International Nuclear Information System (INIS)

    Mierzwa, J.C.; Riella, H.G.; Carvalho, E.U. de

    1993-01-01

    Wastes arising from equipment decontamination processes from nuclear fuel cycle facilities at Coordenacao de Projetos Especiais - Comissao Nacional de Energia Nuclear, Sao Paulo (COPESP-CNEN/SP) has been studied after using citric acid as a decontaminate agent. Precipitation of uranium and metallic impurities resulted from use of sodium hydroxide or calcium oxide plus a flocculation agent. The removal efficient of uranium was 95% and 99% for sodium hydroxide and calcium oxide respectively. The results shows that this process can be used to test wastes from decontamination processes which use citric acid. (B.C.A.). 03 refs, 08 figs, 04 tabs

  18. Radioactive waste disposal

    International Nuclear Information System (INIS)

    Cluchet, J.; Roger, B.

    1975-10-01

    After mentioning the importance of the problem of the disposal of wastes produced in the electro-nuclear industry, a short reminder on a few laws of radioactivity (nature and energy of radiations, half-life) and on some basic dosimetry is given. The conditioning and storage procedures are then indicated for solid wastes. The more active fractions of liquid wastes are incorporated into blocks of glass, whereas the less active are first concentrated by chemical treatments or by evaporation. The concentrates are then embedded into concrete, asphalt or resins. Storage is done according to the nature of each type of wastes: on a hard-surfaced area or inside concrete-lined trenches for the lowest radioactivity, in pits for the others. Transuranium elements with very long half-lives are buried in very deep natural cavities which can shelter them for centuries. From the investigations conducted so far and from the experience already gained, it can be concluded that safe solutions are within our reach [fr

  19. Radioactive waste management and regulation

    International Nuclear Information System (INIS)

    Willrich, M.; Lester, R.K.; Greenberg, S.C.; Mitchell, H.C.; Walker, D.A.

    1977-01-01

    Purpose of this book is to assist in developing public policy and institutions for the safe management of radioactive waste, currently and long term. Both high-level waste and low-level waste containing transuranium elements are covered. The following conclusions are drawn: the safe management of post-fission radioactive waste is already a present necessity and an irreversible long-term commitment; the basic goals of U.S. radioactive waste policy are unclear; the existing organization for radioactive waste management is likely to be unworkable if left unchanged; and the existing framework for radioactive waste regulation is likely to be ineffective if left unchanged. The following recommendations are made: a national Radioactive Waste Authority should be established as a federally chartered public corporation; with NRC as the primary agency, a comprehensive regulatory framework should be established to assure the safety of all radioactive waste management operations under U.S. jurisdiction or control; ERDA should continue to have primary government responsibility for R and D and demonstration of radioactive waste technology; and the U.S. government should propose that an international Radioactive Waste Commission be established under the IAEA

  20. Decontamination of radioactive materials (part II)

    Energy Technology Data Exchange (ETDEWEB)

    Akashi, Makoto; Shimomura, Satoshi; Hachiya, Misao [National Inst. of Radiological Sciences, Chiba (Japan)

    1998-06-01

    Drifting agents accelerate the exchange process and thus promote to eliminate radioactive materials from human body. The earlier is the administration of the agent, the more effective is the elimination. Against the uptake of radioiodine by thyroid, anti-thyroid drug like NaI, Lugol`s iodine solution, propylthiouracil and methimazole are recommended. Ammonium chloride can be a solubilizer of radioactive strontium. Diuretics may be useful for excretion of radioisotopes of sodium, chlorine, potassium and hydrogen through diuresis. Efficacy of expectorants and inhalants is not established. Parathyroid extract induces decalcification and thus is useful for elimination of 32P. Steroids are used for compensating adrenal function and for treatment of inflammation and related symptoms. Chelating agents are useful for removing cations and effective when given early after contamination. EDTA and, particularly, DTPA are useful for elimination of heavy metals. For BAL (dimercaprol), its toxicity should be taken into consideration. Penicillamine is effective for removing copper and deferoxamine, for iron. Drugs for following radioisotopes are summarized: Am, As, Ba, Br, Ca, Cf, C, Ce, Cs, Cr, Co, Cm, Eu, fission products, F, Ga, Au, H, In, I, Fe, Kr, La, PB, Mn, Hg, Np, P, Pu, Po, K, Pm, Ra, Rb, Ru, Sc, Ag, Na, Sr, S, Tc, Th, U, Y, Zn and Zr. Lung and bronchia washing are effective for treatment of patients who inhaled insoluble radioactive particles although their risk-benefit should be carefully assessed. The present review is essentially based of NCRP Report No.65. (K.H.) 128 refs.

  1. Storage of radioactive wastes

    International Nuclear Information System (INIS)

    1992-07-01

    Even if the best waste minimization measures are undertaken throughout radioisotope production or usage, significant radioactive wastes arise to make management measures essential. For developing countries with low isotope usage and little or no generation of nuclear materials, it may be possible to handle the generated waste by simply practicing decay storage for several half-lives of the radionuclides involved, followed by discharge or disposal without further processing. For those countries with much larger facilities, longer lived isotopes are produced and used. In this situation, storage is used not only for decay storage but also for in-process retention steps and for the key stage of interim storage of conditioned wastes pending final disposal. The report will serve as a technical manual providing reference material and direct step-by-step know-how to staff in radioisotope user establishments and research centres in the developing Member States without nuclear power generation. Considerations are limited to the simpler storage facilities. The restricted quantities and low activity associated with the relevant wastes will generally permit contact-handling and avoid the need for shielding requirements in the storage facilities or equipment used for handling. A small quantity of wastes from some radioisotope production cells and from reactor cooling water treatment may contain sufficient short lived activity from activated corrosion products to require some separate decay storage before contact-handling is suitable. 16 refs, 12 figs, 8 tabs

  2. Method of melting decontamination of radioactive contaminated metals

    International Nuclear Information System (INIS)

    Uda, Tatsuhiko; Miura, Noboru; Tsuchiya, Hiroyuki.

    1984-01-01

    Purpose: To improve the transfer efficiency of radioactive materials into slags. Method: Contaminated metals are melt with adding slagging agent in order to transfer the radioactive materials into the slag, where the slagging agent holds less free energy than that of metal oxides contaminated with radioactive materials in order to promote the transfer of the contaminated materials into the slag layer. This effect can also be attained on metals or alloys other than iron contaminated with radioactive materials. In the case of alloy, the slagging agent is to containing such metal oxide that free energy is less than that of the oxide of metal being the main ingredient element of the alloy. The decontamination effect can further be improved by containing halogenide such as calcium fluoride together with the metal oxide into the slagging agent. (Ikeda, J.)

  3. Radioactive liquid waste filtering device

    International Nuclear Information System (INIS)

    Inami, Ichiro; Tabata, Masayuki; Kubo, Koji.

    1988-01-01

    Purpose: To prevent clogging in filter materials and improve the filtration performance for radioactive liquid wastes without increasing the amount of radioactive wastes. Constitution: In a radioactive waste filtering device, a liquid waste recycling pipe and a liquid recycling pump are disposed for recycling the radioactive liquid wastes in a liquid wastes vessel. In this case, the recycling pipe and the recycling pump are properly selected so as to satisfy the conditions capable of making the radioactive liquid wastes flowing through the pipe to have the Reynolds number of 10 4 - 10 5 . By repeating the transportation of radioactive liquid wastes in the liquid waste vessel through the liquid waste recycling pipe by the liquid waste recycling pump and then returning them to the liquid waste vessel again, particles of fine grain size in the suspended liquids are coagulated with each other upon collision to increase the grain size of the suspended particles. In this way, clogging of the filter materials caused by the particles of fine grain size can be prevented, thereby enabling to prevent the increase in the rising rate of the filtration differential pressure, reduce the frequency for the occurrence of radioactive wastes such as filter sludges and improve the processing performance. (Kamimura, M.)

  4. radioactive waste disposal standards abroad

    International Nuclear Information System (INIS)

    Lu Yan; Xin Pingping; Wu Jian; Zhang Xue

    2012-01-01

    With the world focus on human health and environmental protection, the problem of radioactive waste disposal has gradually become a global issue, and the focus of attention of public. The safety of radioactive waste disposal, is not only related to human health and environmental safety, but also an important factor of affecting the sustainable development of nuclear energy. In recent years the formulation of the radioactive waste disposal standards has been generally paid attention to at home and abroad, and it has made great progress. In China, radioactive waste management standards are being improved, and there are many new standards need to be developed. The revised task of implement standards is very arduous, and there are many areas for improvement about methods and procedures of the preparation of standards. This paper studies the current situation of radioactive waste disposal standards of the International Atomic Energy Agency, USA, France, Britain, Russia, Japan, and give some corresponding recommendations of our radioactive waste disposal standards. (authors)

  5. Disposal facility for radioactive wastes

    International Nuclear Information System (INIS)

    Utsunomiya, Toru.

    1985-01-01

    Purpose: To remove heat generated from radioactive wastes thereby prevent the working circumstances from being worsened in a disposal-facility for radioactive wastes. Constitution: The disposal-facility comprises a plurality of holes dug out into the ground inside a tunnel excavated for the storage of radioactive wastes. After placing radioactive wastes into the shafts, re-filling materials are directly filled with a purpose of reducing the dosage. Further, a plurality of heat pipes are inserted into the holes and embedded within the re-filling materials so as to gather heat from the radioactive wastes. The heat pipes are connected to a heat exchanger disposed within the tunnel. As a result, heating of the solidified radioactive wastes itself or the containing vessel to high temperature can be avoided, as well as thermal degradation of the re-filling materials and the worsening in the working circumstance within the tunnel can be overcome. (Moriyama, K.)

  6. Evolution in radioactive waste countermeasures

    International Nuclear Information System (INIS)

    Moriguchi, Yasutaka

    1984-01-01

    The establishment of radioactive waste management measures is important to proceed further with nuclear power development. While the storage facility projects by utilities are in progress, large quantity of low level wastes are expected to arise in the future due to the decommissioning of nuclear reactors, etc. An interim report made by the committee on radioactive waste countermeasures to the Atomic Energy Commission is described as follows: the land disposal measures of ultra-low level and low level radioactive wastes, that is, the concept of level partitioning, waste management, the possible practice of handling wastes, etc.; the treatment and disposal measures of high level radioactive wastes and transuranium wastes, including task sharing among respective research institutions, the solidification/storage and the geological formation disposal of high level wastes, etc. (Mori, K.)

  7. An attemp to use a pulsed CO2 laser for decontamination of radioactive metal surfaces

    Directory of Open Access Journals (Sweden)

    MILAN S. TRTICA

    2000-06-01

    Full Text Available There is a growing interest in laser radioactive decontamination of metal surfaces. It offers advantages over conventional methods: improved safety, reduction of secondary waste, reduced waste volume, acceptable cost. The main mechanism of cleaning by lasers is ablation. A pulsed TEA CO2 laser was used in this work for surface cleaning in order to show that ablation of metal surfaces is possible even at relatively low pulse energies, and to suggest that it could be competitive with other lasers because of much higher energy efficiencies. A brief theoretical analysis was made before the experiments. The laser beam was focused using a KBr-lens onto a surface contaminated with 137Cs (b-, t1/2 = 30.17 y. Three different metals were used: stainless steel, copper and aluminium. The ablated material was pumped out in an air atmosphere and transferred to a filter. The presence of activity on the filter was shown by a germanium detector-multichannel analyzer. The activity levels were measured by a GM counter. The calculated decontamination factors and collection factors showed that ablation occurs with a relatively high efficiency of decontamination. This investigation suggests that decontamination using a CO2 laser should be seriously considered.

  8. Possibilities of a metal surface radioactive decontamination using a pulsed CO2 laser

    Science.gov (United States)

    Milijanic, Scepan S.; Stjepanovic, Natasa N.; Trtica, Milan S.

    2000-01-01

    There is a growing interest in the laser radioactive decontamination of metal surfaces. It offers advantages over conventional methods: improved safety, reduction of secondary waste, reduced waste volume, acceptable cost. A main mechanism of cleaning in by lasers is ablation. In this work a pulsed TEA CO2 laser was used for surface cleaning, primarily in order to demonstrate that the ablation from metal surfaces with this laser is possible even with relatively low pulse energies, and secondary, that it could be competitive with other lasers because of much higher energy efficiencies. The laser pulse contains two parts, one strong and shot peak at the beginning, followed with a tail. The beam was focused onto a contaminated surface with a KBr lens. The surface was contaminated with 137Cs. Three different metals were used: stainless steel, copper and aluminum. The evaporated material was pumped out in air atmosphere and transferred to a filter. Presence of the activity on the filter was proved by a germanium detector-multichannel analyzer. Activity levels were measured by a GM counter. Calculated decontamination factors as well as collection factors have shown that ablation takes place with relatively high efficiency of decontamination. This investigation suggests that decontamination using the CO2 laser should be seriously considered.

  9. The transport of radioactive waste

    International Nuclear Information System (INIS)

    Appleton, P.R.; Poulter, D.R.

    1989-01-01

    Regulations have been developed to ensure the safe transport of all radioactive materials by all modes (road, rail, sea and air). There are no features of radioactive waste which set it aside from other radioactive materials for transport, and the same regulations control all radioactive material transport. These regulations and their underlying basis are described in this paper, and their application to waste transport is outlined. (author)

  10. Radioactive waste in Federal Germany

    International Nuclear Information System (INIS)

    Brennecke, P.; Schumacher, J.; Warnecke, E.

    1988-01-01

    The Physikalisch-Technische Bundesanstalt (PTB) is responsible for the long-term storage and disposal of radioactive waste according to the Federal Atomic Energy Act. On behalf of the Federal Minister of the Environment, Nature Conservation and Nuclear Safety, since 1985, the PTB has been carrying out annual inquiries into the amounts of radioactive waste produced in the Federal Republic of Germany. Within the scope of this inquiry performed for the preceding year, the amounts of unconditioned and conditioned waste are compiled on a producer- and plant-specific basis. On the basis of the inquiry for 1986 and of data presented to the PTB by the waste producers, future amounts of radioactive waste have been estimated up to the year 2000. The result of this forecast is presented. In the Federal Republic of Germany two sites are under consideration for disposal of radioactive waste. In the abandoned Konrad iron mine in Salzgitter-Bleckenstedt it is intended to dispose of such radioactive waste which has a negligible thermal influence upon the host rock. The Gorleben salt dome is being investigated for its suitability for the disposal of all kinds of solid and solidified radioactive wastes, especially of heat-generating waste. Comparing the estimated amount of radioactive wastes with the capacity of both repositories it may be concluded that the Konrad and Gorleben repositories will provide sufficient capacity to ensure the disposal of all kinds of radioactive waste on a long-term basis in the Federal Republic of Germany. 1 fig., 2 tabs

  11. Radioactive waste management policy

    International Nuclear Information System (INIS)

    Werthamer, N.R.

    1977-01-01

    The State of New York, some 15 years ago, became a party to an attempt to commercialize the reprocessing and storage of spent nuclear fuels at the West Valley Reprocessing Facility operated by Nuclear Fuel Services, Inc. (NFS). That attempted commercialization, and the State of New York, have fallen victim to changing Federal policies in the United States, leaving an outstanding and unique radioactive waste management problem unresolved. At the beginning of construction in 1963, the AEC assured both NFS and New York State of the acceptability of long-term liquid tank storage for high level wastes, and New York State ERDA therefore agreed to become the responsible long-lived stable institution whose oversight was needed. It was understood that perpetual care and maintenance of the wastes, as liquid, in on-site underground tanks, would provide for safe and secure storage in perpetuity. All that was thought to be required was the replacement of the tanks near the end of their 40-year design life, and the transferring of the contents; for this purpose, a perpetual care trust fund was established. In March of 1972, NFS shut West Valley down for physical expansion, requiring a new construction permit from the AEC. After four years of administrative proceedings, NFS concluded that changes in Federal regulations since the original operating license had been issued would require about 600 million dollars if operations were to resume. In the fall of 1976, NFS informed the NRC, of its intention of closing the reprocessing business. The inventories of wastes left are listed. The premises upon which the original agreements were based are no longer valid. Federal responsibilities for radioactive wastes require Federal ownership of the West Valley site. The views of New York State ERDA are discussed in detail

  12. Stigma and radioactive waste

    International Nuclear Information System (INIS)

    Mitchell, R.C.

    1988-01-01

    Stigma is a special impact of radioactive waste disposal resulting from the perceptions of risk people have of nuclear waste. In this case, stigma is the devaluing or discrediting of a person, group, or geographical area because of proximity to a nuclear waste disposal site, resulting in negative consequences for the individual and collective (e.g., local economy, community relations, perceived quality of life). As part of a social and economic impact assessment of the proposed HLWR at Hanford Site, WA for Washington State, focus groups were conducted in the Tri-Cities near Hanford to identify stigma effects. Results from the groups showed strong evidence of individual impacts of stigmatization: local residents described prejudice towards them because they live near Hanford which appeared to affect their self-respect, the use of the phrase glowing in the dark by outsiders to symbolize the stigma, and showed concern about the possibility that local products might suffer from reduced demand because of products becoming associated with radioactivity in the public's mind. These results indicate that stigma effects are real and should be studied in research and assessments

  13. Management of radioactive wastes

    International Nuclear Information System (INIS)

    2005-01-01

    The law from December 30, 1991, precisely defines 3 axes of researches for the management of high level and long-lived radioactive wastes: separation/transmutation, surface storage and underground disposal. A global evaluation report about these researches is to be supplied in 2006 by the French government to the Parliament. A first synthesis of the knowledge gained after 14 years of research has led the national commission of the public debate (CNDP) to organize a national debate about the general options of management of high-level and long-lived radioactive wastes before the 2006 date line. The debate comprises 4 public hearings (September 2005: Bar-le-Duc, Saint-Dizier, Pont-du-Gard, Cherbourg), 12 round-tables (October and November 2005: Paris, Joinville, Caen, Nancy, Marseille), a synthesis meeting (December 2005, Dunkerque) and a closing meeting (January 2006, Lyon). This document is the synthesis of the round table debates which took place at Joinville, i.e. in the same area as the Bure underground laboratory of Meuse/Haute-Marne. Therefore, the discussion focuses more on the local impacts of the setting up of a waste disposal facility (environmental aspects, employment, economic development). (J.S.)

  14. Radioactive waste processing device

    International Nuclear Information System (INIS)

    Inaguma, Masahiko; Takahara, Nobuaki; Hara, Satomi.

    1996-01-01

    In a processing device for filtering laundry liquid wastes and shower drains incorporated with radioactive materials, a fiber filtration device is disposed and an activated carbon filtration device is also disposed subsequent to the fiber filtration device. In addition, a centrifugal dewatering device is disposed for dewatering spent granular activated carbon in the activated carbon filtration device, and a minute filtering device is disposed for filtering the separated dewatering liquid. Filtrates filtered by the minute filtration device are recovered in a collecting tank. Namely, at first, suspended solid materials in laundry liquid wastes and shower drains are captured, and then, ingredients concerning COD are adsorbed in the activated carbon filtration device. The radioactive liquid wastes of spent granular activated carbon in the activated carbon filtration device are reduced by dewatering them by the centrifugal dewatering device, and then the granular activated carbon is subjected to an additional processing. Further, it is separated by filtration using the minute filtration device and removed as cakes. Since the filtrates are recovered to the collecting tank and filtered again, the water quality of the drains is not degraded. (N.H.)

  15. National inventory of radioactive wastes

    International Nuclear Information System (INIS)

    1997-01-01

    There are in France 1064 sites corresponding to radioactive waste holders that appear in this radioactive waste inventory. We find the eighteen sites of E.D.F. nuclear power plants, The Cogema mine sites, the Cogema reprocessing plants, The Cea storages, the different factories and enterprises of nuclear industry, the sites of non nuclear industry, the Andra centers, decommissioned installations, disposals with low level radioactive wastes, sealed sources distributors, national defence. (N.C.)

  16. Decontamination method for radiation-contaminated metal waste

    International Nuclear Information System (INIS)

    Suwa, Takeshi; Kuribayashi, Nobuhide; Yasumune, Taketoshi.

    1991-01-01

    In immersing radiation-contaminated metal wastes into a sulfuric acid solution thereby peeling and removing radioactive deposition cruds and dissolving the surface of the matrix metals to eliminate radioactive contaminants, when the potential of the sulfuric acid solution is shifted to a higher direction by more than a certain level due to the increase of the amount of metal ions leached from the cruds and the matrix material, the leached metal ions are electrolytically reduced to control the potential of the sulfuric acid solution to less than a predetermined potential level. Although the dissolving rate is increased as the concentration of the sulfuric acid solution is higher, it is preferably from 0.5 to 2 mol/l, since higher concentration increases the load on the waste liquid processing. Further, the temperature for solution is set to higher than a room temperature and, preferably from 50 to 90degC. Further, the potential level of the solution, although varies somewhat depending on the concentration of the leached metal ions and the temperature, is preferably controlled to less than 0.1 to 0.2 V. This can attain high decontaminating effect in a short period of time by using a sulfuric acid solution alone. (T.M.)

  17. Disposal of radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1960-01-15

    The problem of disposal can be tackled in two ways: the waste can be diluted and dispersed so that the radiation to which any single individual would be subjected would be negligible, or it can be concentrated and permanently isolated from man and his immediate environment. A variety of methods for the discharge of radioactive waste into the ground were described at the Monaco conference. They range from letting liquid effluent run into pits or wells at appropriately chosen sites to the permanent storage of high activity material at great depth in geologically suitable strata. Another method discussed consists in the incorporation of high level fission products in glass which is either buried or stored in vaults. Waste disposal into rivers, harbours, outer continental shelves and the open sea as well as air disposal are also discussed. Many of the experts at the Monaco conference were of the view that most of the proposed, or actually applied, methods of waste disposal were compatible with safety requirements. Some experts, felt that certain of these methods might not be harmless. This applied to the possible hazards of disposal in the sea. There seemed to be general agreement, however, that much additional research was needed to devise more effective and economical methods of disposal and to gain a better knowledge of the effects of various types of disposal operations, particularly in view of the increasing amounts of waste material that will be produced as the nuclear energy industry expands

  18. Regulation of radioactive waste management

    International Nuclear Information System (INIS)

    2002-01-01

    This bulletin contains information about activities of the Nuclear Regulatory Authority of the Slovak Republic (UJD). In this leaflet the regulation of radioactive waste management of the UJD are presented. Radioactive waste (RAW) is the gaseous, liquid or solid material that contains or is contaminated with radionuclides at concentrations or activities greater than clearance levels and for which no use is foreseen. The classification of radioactive waste on the basis of type and activity level is: - transition waste; - short lived low and intermediate level waste (LlLW-SL); - long lived low and intermediate level waste (LlLW-LL); - high level waste. Waste management (in accordance with Act 130/98 Coll.) involves collection, sorting, treatment, conditioning, transport and disposal of radioactive waste originated by nuclear facilities and conditioning, transport to repository and disposal of other radioactive waste (originated during medical, research and industrial use of radioactive sources). The final goal of radioactive waste management is RAW isolation using a system of engineered and natural barriers to protect population and environment. Nuclear Regulatory Authority of the Slovak Republic regulates radioactive waste management in accordance with Act 130/98 Coll. Inspectors regularly inspect and evaluate how the requirements for nuclear safety at nuclear facilities are fulfilled. On the basis of safety documentation evaluation, UJD issued permission for operation of four radioactive waste management facilities. Nuclear facility 'Technologies for treatment and conditioning contains bituminization plants and Bohunice conditioning centre with sorting, fragmentation, evaporation, incineration, supercompaction and cementation. Final product is waste package (Fibre reinforced container with solidified waste) acceptable for near surface repository in Mochovce. Republic repository in Mochovce is built for disposal of short lived low and intermediate level waste. Next

  19. Recycle operations as a methodology for radioactive waste volume reduction

    International Nuclear Information System (INIS)

    Rasmussen, G.A.

    1985-01-01

    The costs for packaging, transportation and burial of low-level radioactive metallic waste have become so expensive that an alternate method of decontamination for volume reduction prior to disposal can now be justified. The operation of a large-scale centralized recycle center for decontamination of selected low level radioactive waste has been proven to be an effective method for waste volume reduction and for retrieving valuable materials for unlimited use. The centralized recycle center concept allows application of state-of-the-art decontamination technology resulting in a reduction in utility disposal costs and a reduction in overall net amount of material being buried. Examples of specific decontamination process activities at the centralized facility will be reviewed along with a discussion of the economic impact of decontamination for recycling and volume reduction. Based on almost two years of operation of a centralized decontamination facility, a demonstrated capability exists. The concept has been cost effective and proves that valuable resources can be recycled

  20. Radioactive waste management in Korea

    International Nuclear Information System (INIS)

    Lee, Ik Hwan

    1997-01-01

    In order to meet the increasing energy demand in Korea, continuous promotion of nuclear power program will be inevitable in the future. However, the use of nuclear energy eventually requires effective and reliable radioactive waste management. For the safe and economical management of radioactive waste, first of all, volume reduction is essentially required and hence the development of related technologies continuously be pursued. A site for overall radioactive waste management has to be secured in Korea. KEPCO-NETEC will improve public understanding by reinforcing PA and will maintain transparency of radioactive waste management. (author). 1 fig

  1. Radioactive Waste Repositories Administration - SURAO

    International Nuclear Information System (INIS)

    Kucerka, M.

    1998-01-01

    The Atomic Act specifies, among other things, responsibilities of the government in the field of safe disposal of radioactive wastes. To satisfy this responsibility, the Ministry of Industry and Trade has established the Radioactive Waste Repositories Administration (SURAO). SURAO's major responsibilities include: (a) the preparation, construction, commissioning, operation, and decommissioning of radioactive waste repositories and the monitoring of their environmental impacts; (b) radioactive waste management; (c) spent or irradiated nuclear fuel processing into a form suitable for storage/disposal or reuse; (d) record-keeping of received radioactive wastes and their producers; (e) administration of fund transfers as stipulated by the Atomic Act, Article 27; (f) development of proposals for specification of fees to be paid to the Nuclear Account; (g) responsibility for and coordination of research and development in the field of radioactive waste handling and management; (h) supervision of licensees' margin earmarked for the decommissioning of their facilities; (i) providing services in radioactive waste handling and management; (j) handling and management of radioactive wastes that have been transferred to the Czech Republic from abroad and cannot be sent back; (k) interim administration of radioactive wastes that have become state property. The Statute of the Administration is reproduced in full. (P.A.)

  2. Solid and liquid radioactive wastes

    International Nuclear Information System (INIS)

    Cluchet, J.; Desroches, J.

    1977-01-01

    The problems raised by the solid and liquid radioactive wastes from the CEA nuclear centres are briefly exposed. The processing methods developed at the Saclay centre are described together with the methods for the wastes from nuclear power plants and reprocessing plants. The different storage techniques used at the La Hague centre are presented. The production of radioactive wastes by laboratories, hospitals and private industry is studied for the sealed sources and the various radioactive substances used in these plants. The cost of the radioactive wastes is analysed: processing, transport, long term storage [fr

  3. IEN low-level radioactive waste management

    International Nuclear Information System (INIS)

    Rocha, A.C.S. da; Pina, J.L.S.; Silva, S. da; Silva, J.J.G.

    1986-09-01

    The low-level radioactive waste produced in Instituto de Engenharia Nuclear is generated basically from three distinct modes: a particle accelerator (CV-28 Cyclotron), radiochemistry laboratories and the operation of a nuclear research reactor (Argonaut type). In the Cyclotron unit, all water flow from hot labs as well as from the decontamination laundry is retained in special tank with homogenizing system and a remote control, that signalizes when the tank gets a pre-specified level. Samples homogenized from the tank are colected for previous analysis. (Author) [pt

  4. Radioactive waste management

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    The dossier published in this issue deals with all matters relating to radioactive waste management. It describes in detail the guidelines implemented by France in this field and provides a general overview of actions carried out at international level. The articles are assembled in several chapters, treating the following subjects: I. Upstream storage management. II. Storage (surface and underground). III. Research to back up the management program. There then follows a description of various processes and equipment developed by research laboratories and industrialists to provide, at the different stages, a number of operations required by the management programs [fr

  5. Evaluation of destructive methods for managing decontamination wastes

    International Nuclear Information System (INIS)

    Piciulo, P.L.; Adams, J.W.

    1986-01-01

    Results are discussed of a laboratory evaluation of destructive methods for processing chemical decontamination wastes. Incineration, acid digestion and wet-air oxidation are capable of degrading decontamination reagents and organic ion-exchange resins. The extent of destruction as a function of operating parameters was waste specific. The reagents used in the testing were: EDTA, oxalic acid, citric acid, picolinic acid and LND-101A

  6. Low-Activity Radioactive Wastes

    Science.gov (United States)

    In 2003 EPA published an Advance Notice of Proposed Rulemaking (ANPR) to collect public comment on alternatives for disposal of waste containing low concentrations of radioactive material ('low-activity' waste).

  7. Radioactive waste management in Canada

    International Nuclear Information System (INIS)

    Hawley, N.J.

    1979-09-01

    Reports and other Canadian literature on radioactive waste processing and disposal covering the period 1953-1979 are listed. A selected list of international conferences relating to waste management (1959-1979) is attached. (LL)

  8. Management of radioactive waste at INR-technical support for processing of radioactive waste from nuclear facilities

    International Nuclear Information System (INIS)

    Bujoreanu, D.; Popescu, I.V.; Bujoreanu, L.

    2009-01-01

    The Institute for nuclear research (INR) subsidiary of the Romanian authority for nuclear activities has its own radwaste treatment plant (STDR). STDR is supposed to treat and condition radioactive waste from the nuclear fuel facility, the TRIGA reactor, post irradiation examination laboratories and other research laboratories of NRI. The main steps of waste processing are: pretreatment (collection, characterization, segregation, decontamination)., treatment (waste volume reduction, radionuclide removal, compositional change), conditioning (immobilization and containerization), interim storage of the packages in compliance with safety requirements for the protection of human health and environmental protection, transport of the packages containing radioactive waste, disposal.

  9. Radioactive waste treatment apparatus

    International Nuclear Information System (INIS)

    Abrams, R.F.; Chellis, J.G.

    1983-01-01

    Radioactive waste treatment apparatus is disclosed in which the waste is burned in a controlled combustion process, the ash residue from the combustion process is removed and buried, the gaseous effluent is treated in a scrubbing solution the pH of which is maintained constant by adding an alkaline compound to the solution while concurrently extracting a portion of the scrubbing solution, called the blowdown stream. The blowdown stream is fed to the incinerator where it is evaporated and the combustibles in the blowdown stream burned and the gaseous residue sent to the scrubbing solution. Gases left after the scrubbing process are treated to remove iodides and are filtered and passed into the atmosphere

  10. Radioactive Waste SECURITY

    International Nuclear Information System (INIS)

    Brodowski, R.; Drapalik, M.; Gepp, C.; Gufler, K.; Sholly, S.

    2010-01-01

    The purpose of this work is to investigate the safety requirements for a radioactive waste repository, the fundamental problems involved and the legislative rules and arrangements for doing so. As the title already makes clear, the focus of this work is on aspects that can be assigned to the security sector - ie the security against the influence of third parties - and are to be distinguished from safety measures for the improvement of the technical safety aspects. In this context, mention is made of events such as human intrusion into guarded facilities, whereas e.g. a geological analysis on seismic safety is not discussed. For a variety of reasons, the consideration of security nuclear waste repositories in public discussions is increasingly taking a back seat, as ia. Terrorist threats can be considered as negligible risk or well calculable. Depending on the type of storage, different security aspects still have to be considered. (roessner)

  11. Plasma separation process: Disposal of PSP radioactive wastes

    International Nuclear Information System (INIS)

    1989-07-01

    Radioactive wastes, in the form of natural uranium contaminated scrap hardware and residual materials from decontamination operations, were generated in the PSP facilities in buildings R1 and 106. Based on evaluation of the characteristics of these wastes and the applicable regulations, the various options for the processing and disposal of PSP radioactive wastes were investigated and recommended procedures were developed. The essential features of waste processing included: (1) the solidification of all liquid wastes prior to shipment; (2) cutting of scrap hardware to fit 55-gallon drums and use of inerting agents (diatomaceous earth) to eliminate pyrophoric hazards; and (3) compaction of soft wastes. All PSP radioactive wastes were shipped to the Hanford Site for disposal. As part of the waste disposal process, a detailed plan was formulated for handling and tracking of PSP radioactive wastes, from the point of generation through shipping. In addition, a waste minimization program was implemented to reduce the waste volume or quantity. Included in this document are discussions of the applicable regulations, the types of PSP wastes, the selection of the preferred waste disposal approach and disposal site, the analysis and classification of PSP wastes, the processing and ultimate disposition of PSP wastes, the handling and tracking of PSP wastes, and the implementation of the PSP waste minimization program. 9 refs., 1 fig., 8 tabs

  12. Regulation on radioactive waste management

    International Nuclear Information System (INIS)

    1999-01-01

    A national calculator control system for the metropolitan radioactive waste banks was developed in 1999. The NNSA reviewed by the regulations the feasibility of some rectification projects for uranium ore decommissioning and conducted field inspections on waste treating systems and radioactive waste banks at the 821 plant. The NNSA realized in 1999 the calculator control for the disposal sites of low and medium radioactive waste. 3 routine inspections were organized on the reinforced concrete structures for disposal units and their pouring of concrete at waste disposal site and specific requirements were put forth

  13. Radioactive waste engineering and management

    CERN Document Server

    Nakayama, Shinichi

    2015-01-01

    This book describes essential and effective management for reliably ensuring public safety from radioactive wastes in Japan. This is the first book to cover many aspects of wastes from the nuclear fuel cycle to research and medical use, allowing readers to understand the characterization, treatment and final disposal of generated wastes, performance assessment, institutional systems, and social issues such as intergenerational ethics. Exercises at the end of each chapter help to understand radioactive waste management in context.

  14. The management of radioactive wastes

    International Nuclear Information System (INIS)

    1998-01-01

    This educative booklet describes the role and missions of the ANDRA, the French national agency for the management of radioactive wastes, and the different aspects of the management of radioactive wastes: goal, national inventory, classification, transport (organisation, regulation, safety), drumming, labelling, surface storage of short life wastes, environmental control, management of long life wastes (composition, research, legal aspects) and the underground research laboratories (description, public information, projects, schedules). (J.S.)

  15. Waste management research abstracts no. 16. Information on radioactive waste programmes in progress

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1985-11-01

    The research abstracts contained in this issue have been collected during recent months ending August 1985. The abstracts reflect research currently in progress in the field of radioactive waste management: environmental impacts, site selection, decontamination and decommissioning, environmental restoration and legal aspects of radioactive waste management. The abstracts have been printed in the language and in the form of submittal and without any changes other than minor editorial ones.

  16. Waste management research abstracts no. 16. Information on radioactive waste programmes in progress

    International Nuclear Information System (INIS)

    1985-11-01

    The research abstracts contained in this issue have been collected during recent months ending August 1985. The abstracts reflect research currently in progress in the field of radioactive waste management: environmental impacts, site selection, decontamination and decommissioning, environmental restoration and legal aspects of radioactive waste management. The abstracts have been printed in the language and in the form of submittal and without any changes other than minor editorial ones

  17. A study on Cs decontamination characterisitcs of radioactively contaminated soil using soil washing

    International Nuclear Information System (INIS)

    Lee, K. W.; Son, J. K.; Kim, K. D.; Kim, H. S.; Choi, Y. C.; Kang, K. D.; Sin, S. W.

    2002-01-01

    To decontaminate radioactively contaminated soil, various characteristics of soil were investigated, and applied for the best decontamination method and requirement. The effects of several conditions such as decontamination solutions, temperature and time was investigated. Na 2 CO 3 , which is not toxic to environment, was used as primary decontamination solution. The efficiency of decontamination was increased approximately 9% when decontamination time was increased from 30 min to 120 min. The efficiency of decontamination was increased approximately 10% when decontamination temperature was increased from 25 .deg. C to 70 .deg. C. The efficiency of decontamination was increased approximately 7% when the ratio of decontamination solution and soil was increased from 5:1 to 10:1

  18. Low-level Radioactive waste Management

    International Nuclear Information System (INIS)

    1991-01-01

    This meeting describes low-level radioactive waste management problems and contains 8 papers: 1 Low-level radioactive waste management: exemption concept and criteria used by international organizations. 2 Low-level radioactive waste management: french and foreign regulations 3 Low-level radioactive waste management in EDF nuclear power plants (FRANCE) 4 Low-level radioactive waste management in COGEMA (FRANCE) 5 Importance of low-level radioactive wastes in dismantling strategy in CEA (FRANCE) 6 Low-level radioactive waste management in hospitals 7 Low-level radioactive waste disposal: radiation protection laws 8 Methods of low-level radioactive materials measurements during reactor dismantling or nuclear facilities demolition (FRANCE)

  19. Basic study on decontamination of TRU wastes with cerium mediated electrolytic oxidation method

    International Nuclear Information System (INIS)

    Ishii, Junichi; Kobayashi, Fuyumi; Uchida, Shoji; Sumiya, Masato; Kida, Takashi; Shirahashi, Koichi; Umeda, Miki; Sakuraba, Koichi

    2010-03-01

    At Nuclear Fuel Cycle Safety Engineering Research Facility (NUCEF), the cerium mediated electrolytic oxidation method which is a decontamination technique to decrease the radioactivity of TRU wastes to the clearance-level has been developed for the effective reduction of TRU wastes generated from the decommissioning of a nuclear fuel reprocessing facility and so on. This method corrodes the oxide layer and the surface of metallic TRU metal wastes by the strong oxidation power of Ce 4+ in nitric acid. In this study, parameter tests were conducted to optimize the solution condition of Ce 3+ initial concentrations and nitric acid concentrations. The target corrosion rate of metallic TRU wastes set to be 2 - 4 μm/h for the practical use of this method. Under the optimized solution condition, a dissolution test of stainless steel simulating wastes was carried out. From the result of the dissolution test, the average corrosion rate was 3.3 μm/h during the test time of 90 hours. Based on the supposition that the corrosion depth of metallic TRU wastes was 20 μm enough to achieve the clearance-level, the treatment time for the decontamination was about 6 hours. It was confirmed from the result that the decontamination could be performed within one day and the decontamination solution could repeatedly reuse 15 times. (author)

  20. Radioactive waste processing method

    International Nuclear Information System (INIS)

    Ando, Ken-ichi; Kawamura, Hideki; Takeuchi, Kunifumi.

    1997-01-01

    Base rock is dug in a substantially cylindrical shape, bentonite blocks in an amount for a predetermined lift are disposed on the inner side of the dug wall surfaces. Concrete blocks constituting a structure of an underground silo are disposed at the inner side. Barrier blocks are disposed to the inner side thereof, and vessels incorporated with radioactive wastes are disposed to the inner side. The bentonite disposed to the inner side of the dug wall surfaces, the concrete structure of the underground silo and the barrier members are divided in the vertical direction into a plurality of blocks, and these blocks are stacked successively from the lowermost layer together with the containing vessels of the radioactive wastes, and after stacking them to a predetermined height, a filler is filled up to the circumference of the vessels. With such a constitution, the underground silo is not fallen down or vibrated even upon occurrence of an earthquake. In addition, bending stresses are scarcely caused thereby making reinforcement of iron reinforcing materials unnecessary. Accordingly, the sealing performance is improved, and processing cost is reduced. (T.M.)

  1. High-Level Radioactive Waste.

    Science.gov (United States)

    Hayden, Howard C.

    1995-01-01

    Presents a method to calculate the amount of high-level radioactive waste by taking into consideration the following factors: the fission process that yields the waste, identification of the waste, the energy required to run a 1-GWe plant for one year, and the uranium mass required to produce that energy. Briefly discusses waste disposal and…

  2. Radioactive waste management for reactors

    International Nuclear Information System (INIS)

    Rodger, W.A.

    1974-01-01

    Radioactive waste management practices at nuclear power plants are summarized. The types of waste produced and methods for treating various types of wastes are described. The waste management systems, including simplified flow diagrams, for typical boiling water reactors and pressurized water reactors are discussed. (U.S.)

  3. Waste and decontamination services FY 94 Multi-Year Program Plan Phase II WBS No. 1.2.3

    International Nuclear Information System (INIS)

    Cruz, E.A.

    1994-05-01

    During the remediation of the Hanford Site large volumes of radioactive and mixed solid waste are expected to be produced, thus creating the need for subsequent decontamination, treatment, storage, and/or waste disposal. The program mission is to manage current and future contaminated solid waste streams in a safe, responsible, cost effective and legally compliant manner. This document presents the strategy and technical requirements, along with key objectives and deliverables for the waste and decontamination services program for fiscal year 1994. Time schedules, cost estimates, and justification for each proposed activity are given in tables and charts

  4. Integrating the radioactive waste management system into other management systems

    International Nuclear Information System (INIS)

    Silva, Ana Cristina Lourenco da; Nunes Neto, Carlos Antonio

    2007-01-01

    Radioactive waste management is to be included in the Integrated Management System (IMS) which pursues the continuous improvement of the company's quality, occupational safety and health, and environment protection processes. Radioactive waste management is based on the following aspects: optimization of human and material resources for execution of tasks, including the provision of a radiation protection supervisor to watch over the management of radioactive waste; improved documentation (management plan and procedures); optimization of operational levels for waste classification and release; maintenance of generation records and history through a database that facilitates traceability of information; implementation of radioactive waste segregation at source (source identification, monitoring and decontamination) activities intended to reduce the amount of radioactive waste; licensing of initial storage site for radioactive waste control and storage; employee awareness training on radioactive waste generation; identification and evaluation of emergency situations and response planning; implementation of preventive maintenance program for safety related items; development and application of new, advanced treatment methodologies or systems. These aspects are inherent in the concepts underlying quality management (establishment of administrative controls and performance indicators), environment protection (establishment of operational levels and controls for release), occupational health and safety (establishment of operational controls for exposure in emergency and routine situations and compliance with strict legal requirements and standards). It is noted that optimizing the addressed aspects of a radioactive waste management system further enhances the efficiency of the Integrated Management System for Quality, Environment, and Occupational Safety and Health. (author)

  5. A Planning Tool for Estimating Waste Generated by a Radiological Incident and Subsequent Decontamination Efforts - 13569

    International Nuclear Information System (INIS)

    Boe, Timothy; Lemieux, Paul; Schultheisz, Daniel; Peake, Tom; Hayes, Colin

    2013-01-01

    Management of debris and waste from a wide-area radiological incident would probably constitute a significant percentage of the total remediation cost and effort. The U.S. Environmental Protection Agency's (EPA's) Waste Estimation Support Tool (WEST) is a unique planning tool for estimating the potential volume and radioactivity levels of waste generated by a radiological incident and subsequent decontamination efforts. The WEST was developed to support planners and decision makers by generating a first-order estimate of the quantity and characteristics of waste resulting from a radiological incident. The tool then allows the user to evaluate the impact of various decontamination/demolition strategies on the waste types and volumes generated. WEST consists of a suite of standalone applications and Esri R ArcGIS R scripts for rapidly estimating waste inventories and levels of radioactivity generated from a radiological contamination incident as a function of user-defined decontamination and demolition approaches. WEST accepts Geographic Information System (GIS) shape-files defining contaminated areas and extent of contamination. Building stock information, including square footage, building counts, and building composition estimates are then generated using the Federal Emergency Management Agency's (FEMA's) Hazus R -MH software. WEST then identifies outdoor surfaces based on the application of pattern recognition to overhead aerial imagery. The results from the GIS calculations are then fed into a Microsoft Excel R 2007 spreadsheet with a custom graphical user interface where the user can examine the impact of various decontamination/demolition scenarios on the quantity, characteristics, and residual radioactivity of the resulting waste streams. (authors)

  6. A Planning Tool for Estimating Waste Generated by a Radiological Incident and Subsequent Decontamination Efforts - 13569

    Energy Technology Data Exchange (ETDEWEB)

    Boe, Timothy [Oak Ridge Institute for Science and Education, Research Triangle Park, NC 27711 (United States); Lemieux, Paul [U.S. Environmental Protection Agency, Research Triangle Park, NC 27711 (United States); Schultheisz, Daniel; Peake, Tom [U.S. Environmental Protection Agency, Washington, DC 20460 (United States); Hayes, Colin [Eastern Research Group, Inc, Morrisville, NC 26560 (United States)

    2013-07-01

    Management of debris and waste from a wide-area radiological incident would probably constitute a significant percentage of the total remediation cost and effort. The U.S. Environmental Protection Agency's (EPA's) Waste Estimation Support Tool (WEST) is a unique planning tool for estimating the potential volume and radioactivity levels of waste generated by a radiological incident and subsequent decontamination efforts. The WEST was developed to support planners and decision makers by generating a first-order estimate of the quantity and characteristics of waste resulting from a radiological incident. The tool then allows the user to evaluate the impact of various decontamination/demolition strategies on the waste types and volumes generated. WEST consists of a suite of standalone applications and Esri{sup R} ArcGIS{sup R} scripts for rapidly estimating waste inventories and levels of radioactivity generated from a radiological contamination incident as a function of user-defined decontamination and demolition approaches. WEST accepts Geographic Information System (GIS) shape-files defining contaminated areas and extent of contamination. Building stock information, including square footage, building counts, and building composition estimates are then generated using the Federal Emergency Management Agency's (FEMA's) Hazus{sup R}-MH software. WEST then identifies outdoor surfaces based on the application of pattern recognition to overhead aerial imagery. The results from the GIS calculations are then fed into a Microsoft Excel{sup R} 2007 spreadsheet with a custom graphical user interface where the user can examine the impact of various decontamination/demolition scenarios on the quantity, characteristics, and residual radioactivity of the resulting waste streams. (authors)

  7. Minimization of waste volumes by means of pin-pointed decontamination during decommissioning measures. Final report

    International Nuclear Information System (INIS)

    Henschel, K.; Jacobs, W.; Kanitz, L.; Schildbach, T.

    1992-06-01

    This semi-automated equipment is able to remove surface building contamination as well as take radioactive measurements. This equipment is newly developed. The goal of the equipment is to improve the identification of areas of contamination and the compounding decontamination of epoxy layer building construction material by using commercially available components minimizing the waste volume. A system design for decommissioning of building surfaces was developed, selected components were tested and their function certified. With this systems concept the decontamination of fixed epoxy layers up to 20 m in height is possible. Operational data for the system are available. (orig.) [de

  8. Radioactive waste processing apparatus

    Science.gov (United States)

    Nelson, R.E.; Ziegler, A.A.; Serino, D.F.; Basnar, P.J.

    1985-08-30

    Apparatus for use in processing radioactive waste materials for shipment and storage in solid form in a container is disclosed. The container includes a top, and an opening in the top which is smaller than the outer circumference of the container. The apparatus includes an enclosure into which the container is placed, solution feed apparatus for adding a solution containing radioactive waste materials into the container through the container opening, and at least one rotatable blade for blending the solution with a fixing agent such as cement or the like as the solution is added into the container. The blade is constructed so that it can pass through the opening in the top of the container. The rotational axis of the blade is displaced from the center of the blade so that after the blade passes through the opening, the blade and container can be adjusted so that one edge of the blade is adjacent the cylindrical wall of the container, to insure thorough mixing. When the blade is inside the container, a substantially sealed chamber is formed to contain vapors created by the chemical action of the waste solution and fixant, and vapors emanating through the opening in the container. The chamber may be formed by placing a removable extension over the top of the container. The extension communicates with the apparatus so that such vapors are contained within the container, extension and solution feed apparatus. A portion of the chamber includes coolant which condenses the vapors. The resulting condensate is returned to the container by the force of gravity.

  9. Radioactive wastes. Their industrial management

    International Nuclear Information System (INIS)

    Lavie, J.M.

    1982-01-01

    This paper introduces a series that will review the present situation in the field of long-term management of radioactive wastes. Both the meaning and the purposes of an industrial management of radioactive wastes are specified. This short introduction is complemented by outline of data on the French problem [fr

  10. Public debate - radioactive wastes management

    International Nuclear Information System (INIS)

    2005-01-01

    Between September 2005 and January 2006 a national debate has been organized on the radioactive wastes management. This debate aimed to inform the public and to allow him to give his opinion. This document presents, the reasons of this debate, the operating, the synthesis of the results and technical documents to bring information in the domain of radioactive wastes management. (A.L.B.)

  11. Disposal method of radioactive wastes

    International Nuclear Information System (INIS)

    Uetake, Naoto; Fukazawa, Tetsuo.

    1986-01-01

    Purpose: To improve the safety of underground disposal of radioactive wastes for a long period of time by surrounding the periphery of the radioactive wastes with materials that can inhibit the migration of radioactive nuclides and are physically and chemically stable. Method: Hardening products prepared from a water-hardenable calcium silicate compound and an aqueous solution of alkali silicate have compression strength as comparable with that of concretes, high water tightness and adsorbing property to radioactive isotopes such as cobalt similar to that of concretes and they also show adsorption to cesium which is not adsorbed to concretes. Further, the kneaded slurry thereof is excellent in the workability and can be poured even into narrow gaps. Accordingly, by alternately charging granular radioactive wastes and this slurry before hardening into the ground, the radioactive wastes can be put to underground disposal stably with simple procedures. (Kamimura, M.)

  12. Waste Isolation Pilot Plant Salt Decontamination Testing

    Energy Technology Data Exchange (ETDEWEB)

    Rick Demmer; Stephen Reese

    2014-09-01

    On February 14, 2014, americium and plutonium contamination was released in the Waste Isolation Pilot Plant (WIPP) salt caverns. At the request of WIPP’s operations contractor, Idaho National Laboratory (INL) personnel developed several methods of decontaminating WIPP salt, using surrogate contaminants and also americium (241Am). The effectiveness of the methods is evaluated qualitatively, and to the extent possible, quantitatively. One of the requirements of this effort was delivering initial results and recommendations within a few weeks. That requirement, in combination with the limited scope of the project, made in-depth analysis impractical in some instances. Of the methods tested (dry brushing, vacuum cleaning, water washing, strippable coatings, and mechanical grinding), the most practical seems to be water washing. Effectiveness is very high, and it is very easy and rapid to deploy. The amount of wastewater produced (2 L/m2) would be substantial and may not be easy to manage, but the method is the clear winner from a usability perspective. Removable surface contamination levels (smear results) from the strippable coating and water washing coupons found no residual removable contamination. Thus, whatever is left is likely adhered to (or trapped within) the salt. The other option that shows promise is the use of a fixative barrier. Bartlett Nuclear, Inc.’s Polymeric Barrier System (PBS) proved the most durable of the coatings tested. The coatings were not tested for contaminant entrapment, only for coating integrity and durability.

  13. Centralized collection of radioactive wastes

    International Nuclear Information System (INIS)

    1985-06-01

    The standard based upon TGL-190-921/02 applies to solid wastes of the category A1 and the radiation protection groups S1 and S2. The following items are specified: (1) requirements concerning the form and properties of the waste (permitted composition, unpermitted components, type of packaging, maximum weight per package/container), (2) technical conditions for connecting technical means of collection (lifting devices, traffic connections) with customer, and (3) tasks in handing/taking over the waste in relation to waste type (controls, operation of facilities, decontamination, transport documents)

  14. Centralized collection of radioactive wastes

    International Nuclear Information System (INIS)

    1985-06-01

    The standard based upon TGL-190-921/03 applies to solid wastes of the category A2 and the radiation protection groups S3, S4 and S5. The following items are specified: (1) requirements concerning the form and properties of the waste (permitted composition, unpermitted components, type of packaging, maximum weight per package/container), (2) technical conditions for connecting technical means of collection (lifting devices, traffic connections) with customer, and (3) tasks in handing/taking over the waste in relation to waste type (controls, operation of facilities, decontamination, transport documents)

  15. Management situation and prospect of radioactive waste

    International Nuclear Information System (INIS)

    Han, Pil Jun

    1985-04-01

    This book tell US that management situation and prospect of radioactive waste matter, which includes importance of energy, independence, limitation of fossil fuel energy, density of nuclear energy, strategy of supply of energy resource in Korea, nuclear energy development and radioactive waste matter, summary of management of radioactive waste, statistics of radioactive waste, disposal principle of radioactive waste, management on radioactive waste after using, disposal of Trench, La Marche in French, and Asse salt mine in Germany.

  16. A simple and feasible method of effectiveness evaluation on radioactive decontamination action

    International Nuclear Information System (INIS)

    Chen Lin; Geng Xiaobing; Sun Jian; Wang Jihong; Guo Lijun

    2012-01-01

    Radioactive decontamination is a vital task in nuclear emergency response. The assessment of decontamination effectiveness is of great importance to decision-making. An index system for effectiveness evaluation of radioactive decontamination action in nuclear emergency response is produced. A method of decontamination effectiveness evaluation based on analytic hierarchy process and fuzzy comprehensive evaluation is presented. Index weights are determined through analytic hierarchy process. And scores of objects in each hierarchy are judged by fuzzy comprehensive evaluation. Then comprehensive effectiveness of the top object can be obtained, which can offer a basis for decision-making of decontamination action. (authors)

  17. Developing radioactive waste management policy

    International Nuclear Information System (INIS)

    Gichana, Z.

    2012-04-01

    A policy for radioactive waste management with defined goals and requirements is needed as a basis for the preparation of legislation, review or revision of related legislation and to define roles and responsibilities for ensuring the safe management of radioactive waste. A well defined policy and associated strategies are useful in promoting consistency of emphasis and direction within all of the sectors involved in radioactive waste management. The absence of policy and strategy can lead to confusion or lack of coordination and direction. A policy and/or strategy may sometimes be needed to prevent inaction on a particular waste management issue or to resolve an impasse. (author)

  18. Radioactive waste cementation

    International Nuclear Information System (INIS)

    Soriano B, A.

    1996-01-01

    This research was carried out to develop the most adequate technique to immobilize low and medium-activity radioactive waste. different brands of national cement were used, portland and pozzolanic cement. Prismatic and cylindrical test tubes were prepared with different water/cement (W/C) relationship. Additives such a as clay and bentonite were added in some other cases. Later, the properties of these test tubes were evaluated. Properties such as: mechanical resistance, immersion resistance, lixiviation and porosity resistance. Cement with the highest mechanical resistance values, 62,29 MPa was pozzolanic cement for a W/C relationship of 0,35. It must be mentioned that the other types of cements reached a mechanical resistance over 10 MPa, a value indicated by the international standards for transportation and storage of low and medium-activity radioactive waste at a superficial level. However, in the case of immersion resistance, Sol cement (portland type I) with a W/C relationship of 0,35 reached a compression resistance over 61,92 MPa; as in the previous cases, the other cements reached a mechanical resistance > 10 MPa. Regarding porosity, working with W/C relationships = 0,35 0,40 and 0,45, without additives and with additives, the percentage of porosity found for all cements is lower than 40% percentage indicated by international standards. With regard to the lixiviation test, pozzolanic cement best retained Cesium-137 and Cobalt-60, and increased its advantages when bentonite was added, obtaining a lixiviation rate of 2,02 x E-6 cm/day. Sol cement also improved its properties when bentonite was added and obtained a lixiviation rate of 2,84 x E-6 cm/day for Cesium-137. However, Cobalt-60 is almost completely retained with the 3 types of cement with or without additives, reaching the limits indicated by the international standards for the lixiviation rate of beta-gamma emitter < 5,00E-4 cm/day. Characterizing the final product involves the knowledge of its

  19. Radioactive waste management at AECL

    International Nuclear Information System (INIS)

    Gadsby, R.D.; Allan, C.J.

    2003-01-01

    AECL has maintained an active program in radioactive waste management since 1945, when the Canadian nuclear program commenced activities at the Chalk River Laboratories (CRL). Waste management activities have included operation of waste management storage and processing facilities at AECL's CRL and Whiteshell Laboratories (WL); operation of the Low Level Radioactive Waste Management Office on behalf of Natural Resources Canada to resolve historic radioactive waste problems (largely associated with radioactive ore recovery, transport and processing operations) that are the responsibility of the Federal Government; development of the concept and related technology for geological disposal of Canada's nuclear fuel waste; development of the Intrusion-Resistant Underground Structure (IRUS) disposal concept for low-level nuclear waste; development of dry storage technology for the interim storage of used fuel; and development and assessment of waste processing technology for application in CANDU nuclear power plants and at CRL and WL. Today these activities are continuing. In addition, AECL is: preparing to decommission the nuclear facilities at WL; carrying out a number of smaller decommissioning projects at CRL; putting in place projects to upgrade the low-level liquid waste processing capabilities of the CRL Waste Treatment Centre, recover and process highly active liquid wastes currently in storage, and recover, condition and improve the storage of selected fuel wastes currently stored in below-ground standpipes in the CRL waste management areas; and assessing options for additional remediation projects to improve the management of other wastes currently in storage and to address environmental contamination from past practices. (author)

  20. 78 FR 45579 - Request for a License to Import Radioactive Waste

    Science.gov (United States)

    2013-07-29

    ... NUCLEAR REGULATORY COMMISSION Request for a License to Import Radioactive Waste Pursuant to 10 CFR... Technologies, Inc., Class A Up to a maximum Laundering and Canada June 4, 2013, June 5, 2013, radioactive total of 0.074 decontamination IW032. waste consisting TBq (2 Ci) per of protective 11006100 of corrosion...

  1. Design of mobile receiving and treatment equipment for radioactive liquid waste

    International Nuclear Information System (INIS)

    Kong Jinsong; Guo Weiqun; Lu Jingbin

    2012-01-01

    The advantage and disadvantage of radioactive liquid waste treatment technology are analyzed in this paper. The experimental disposal equipment for radioactive liquid waste with complicated sources is designed by combining the far infrared calcification technology with evaporation technology. It has advantages of low energy consuming and high decontamination efficiency. The frothy and dirt appear rarely in this equipment. (authors)

  2. Wow Technology’s innovative radioactive liquid waste treatment

    Energy Technology Data Exchange (ETDEWEB)

    Marin, A.

    2015-07-01

    WOW presents its revolutionary technology and equipment for liquid radioactive waste treatment: outperforming ultimate water decontamination and purification process, enhanced sludge concentration, no secondary waste nor consumables, fully automated, remote controlled and self-decontaminating device. The WOW’s technology is based upon a never before observed discovery of fluid dynamics science: the possibility of performing a molecular separation between solute and suspended elements and the solvent. The combination of such a molecular separation process with a standard vacuum evaporation improves the abatement performances by thousands of times, with respect to those of the state of the art vacuum evaporators. In addition to this, no secondary waste is produced during the process, as no filters, membranes, resins or additives are used. WOW equipment, automated and remote controlled, self decontaminates after use and can be designed and constructed either tailored to the application needs or with a modular approach for enhanced transportability and application flexibility. After the preliminary verification by CNR, the Italian National Research Center, Wow Technology decontamination device was tested c/o LENA, the Laboratory of Applied Nuclear Energy of the University of Pavia, Italy with a simulated solution 6000 times more contaminated than the nuclear reactor’s cooling water of Fukushima-Daiichi NPP. In addition to that, WOW Technology was also used in a real case at the Radiochemistry laboratory of the Pavia’s University Chemistry department. Both the above mentioned contaminated fluids have been successfully decontaminated without production of additional or secondary waste WOW Technology has already performed on industrial scale c/o the Nuclear Repository of S.S.M. in Saluggia, Italy: 45000 liters of acid radioactive solution have been successfully decontaminated to a Decontamination Factor (DF) of 335000 for Cs-137 by one single evaporation step and

  3. Education and training in radioactive waste topics

    International Nuclear Information System (INIS)

    Falcon Cabrera, S.; Marco Arboli, M.

    2003-01-01

    Tecnologically developed countries rely on nuclear fission as an important source for the production of electrical power. some of th epower plants in current generation will continue to be operated for at least 20 years, and there exist plans for the future. As a consequence, these countries take part in R and D projects oriented towards progress to be made in the management of radioactive waste, and particularly in the industrial implementation of technical solutions for the management of long-lived waste. The great experience of CIEMAT in this field has made it possible that different standard and re-creation training actions were carried out in the last years. At national level, these actions have covered both the question of reducing the impact of radioactive waste and the problem of its management. In the first subject, actions have been focused to the following aspects: Characterization of radioactive waste, where the present-day knowledge on efficient technologies of physicochemical and radiological characterization of low and medium activity waste are provided. Partitioning and Transmutation, where the development of new technologies like the Accelerator Driven Systems (ADS) and the climination by transmutation, that reduce the hazards associated with waste of high activity are shown. Decommissioning of nuclear ficilities, development of techniques which will allow to mange these wastes with minimum radioactive waste generation, using new techniques for the decontamination and cutting of contaminated materials that have to be immobilized. On the second subject Management of Radioactive Wastes, a doctorate course organised in collaboration with the Polytechnic University of Madrid, and sponsored by ENRESA. At the international level, CIEMAT usually takes part in training activities of the technical assistance programmes of the International Atomic Energy agency (IAEA). In particular, actions related to Safety assessment methodologies for near surface

  4. Process innovations in the management of radioactive wastes

    International Nuclear Information System (INIS)

    Theyyunni, T.K.

    1995-01-01

    Innovative processes and techniques were investigated for their possible application in the management of low, intermediate and high level radioactive wastes. High decontamination, high volume reduction, process simplicity and operational safety are some of the objectives of these investigation. Based on the favourable results, it is hoped that many of these process innovations can be introduced in the waste management schemes with beneficial results. (author)

  5. CEA and its radioactive wastes

    International Nuclear Information System (INIS)

    Marano, S.

    1999-01-01

    CEA annually produces about 3500 tons of radioactive wastes in its 43 basic nuclear installations. CEA ranks third behind EDF and Cogema. Low-level wastes (A wastes) are sent to ANDRA (national agency for the management of nuclear wastes)whereas medium-level wastes (B wastes) are stored by CEA itself. CEA has checked off its storing places and has set up an installation Cedra to process and store ancient and new nuclear wastes. 3 other installations are planned to operate within 6 years: Agate (Cadarache) will treat liquid effluents, Stella (Saclay) will process liquid wastes that are beta or gamma emitters, and Atena (Marcoule) will treat and store radioactive sodium coming from Phenix reactor and IPSN laboratories. The use of plasma torch for vitrifying wastes is detailed, the management of all the nuclear wastes produced by CEA laboratories and installations is presented. (A.C.)

  6. The treatment of radioactive waste with reverse osmosis membrane

    International Nuclear Information System (INIS)

    Hendro

    1997-01-01

    The study of liquid waste characteristic and performance of reverse osmosis for treatment of liquid radioactive waste had been taken. Waste simulation was used to contain of 100 ppm strontium, 100 ppm cesium, pH between 5 and 6, and dry extract of 0.11 g/l, with operating condition of feed solution pressure 100 psi, temperature 25 o C, spiral wound composite membrane modules and area of membrane was 0,3042 m 2 . Results of the experiment indicated that the decontamination factor obtained between 9.3 and 15.4 for strontium, and 7,3 and 7,9 for cesium. From the beginning until one hour of operation decontamination factor increased to 53,8% for strontium and 4,1% for cesium, and permeate flux decreased at operating time more than 12 hours. Decontamination factor of process can be increased by using the series of osmosis unit (author)

  7. Radioactive waste sealing container

    International Nuclear Information System (INIS)

    Tozawa, S.; Kitamura, T.; Sugimoto, S.

    1984-01-01

    A low- to medium-level radioactive waste sealing container is constructed by depositing a foundation coating consisting essentially of zinc, cadmium or a zinc-aluminum alloy over a steel base, then coating an organic synthetic resin paint containing a metal phosphate over the foundation coating, and thereafter coating an acryl resin, epoxy resin, and/or polyurethane paint. The sealing container can consist of a main container body, a lid placed over the main body, and fixing members for clamping and fixing the lid to the main body. Each fixing member may consist of a material obtained by depositing a coating consisting essentially of cadmium or a zinc-aluminum alloy over a steel base

  8. The disposal of radioactive waste

    International Nuclear Information System (INIS)

    Ormai, P.

    2006-01-01

    The first part shows different ways of 'producing' radioactive wastes, defines the wastes of small, medium and high activity and gives estimation on the quantity of the necessary capacities of waste disposal facilities. The modern radioactive waste disposal that is the integrated processing of the form of waste, the package, the technical facility and the embedding geological environment that guarantee the isolation together. Another factor is the lifetime of radioactive waste which means that any waste containing long lifetime waste in higher concentration than 400-4000 kBq/kg should be disposed geologically. Today the centre of debate disposal of radioactive waste is more social than technical. For this reason not only geological conditions and technical preparations, but social discussions and accepting communities are needed in selecting place of facilities. Now, the focus is on long term temporary disposal of high activity wastes, like burnt out heating elements. The final part of the paper summarizes the current Hungarian situation of disposal of radioactive wastes. (T-R.A.)

  9. Final disposal of radioactive waste

    Directory of Open Access Journals (Sweden)

    Freiesleben H.

    2013-06-01

    Full Text Available In this paper the origin and properties of radioactive waste as well as its classification scheme (low-level waste – LLW, intermediate-level waste – ILW, high-level waste – HLW are presented. The various options for conditioning of waste of different levels of radioactivity are reviewed. The composition, radiotoxicity and reprocessing of spent fuel and their effect on storage and options for final disposal are discussed. The current situation of final waste disposal in a selected number of countries is mentioned. Also, the role of the International Atomic Energy Agency with regard to the development and monitoring of international safety standards for both spent nuclear fuel and radioactive waste management is described.

  10. Effects of some decontaminating agents on the purification of radioactive sewage; Influence de quelques agents decontaminants sur l'epuration d'eaux residuaires radioactives

    Energy Technology Data Exchange (ETDEWEB)

    Cantel, J; Cohen, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    The efficiency of different decontaminating agents on the processing of radioactive sewage was studied. Versene, which is often used, decreases very slightly the efficiency of the chemical treatment. (author) [French] On a etudie l'influence de differents agents decontaminants sur l'efficacite du traitement d'eaux residuaires radioactives. Le Versene, souvent utilise, ne gene pratiquement pas l'efficacite du traitement chimique employe. (auteur)

  11. Incineration of radioactive waste

    International Nuclear Information System (INIS)

    Caramelle, D.; Florestan, J.; Waldura, C.

    1990-01-01

    This paper reports that one of the methods used to reduce the volume of radioactive wastes is incineration. Incineration also allows combustible organic wastes to be transformed into inert matter that is stable from the physico-chemical viewpoint and ready to be conditioned for long-term stockage. The quality of the ashes obtained (low carbon content) depends on the efficiency of combustion. A good level of efficiency requires a combustion yield higher than 99% at the furnace door. Removal efficiency is defined as the relation between the CO 2 /CO + CO 2 concentrations multiplied by 100. This implies a CO concentration of the order of a few vpm. However, the gases produced by an incineration facility can represent a danger for the environment especially if toxic or corrosive gases (HCL,NO x ,SO 2 , hydrocarbons...) are given off. The gaseous effluents must therefore be checked after purification before they are released into the atmosphere. The CO and CO 2 measurement gives us the removal efficiency value. This value can also be measured in situ at the door of the combustion chamber. Infrared spectrometry is used for the various measurements: Fourier transform infrared spectrometry for the off-gases, and diode laser spectrometry for combustion

  12. Researching radioactive waste disposal

    International Nuclear Information System (INIS)

    Feates, F.; Keen, N.

    1976-01-01

    At present it is planned to use the vitrification process to convert highly radioactive liquid wastes, arising from nuclear power programme, into glass which will be contained in steel cylinders for storage. The UKAEA in collaboration with other European countries is currently assessing the relative suitability of various natural geological structures as final repositories for the vitrified material. The Institute of Geological Sciences has been commissioned to specify the geological criteria that should be met by a rock structure if it is to be used for the construction of a repository though at this stage disposal sites are not being sought. The current research programme aims to obtain basic geological data about the structure of the rocks well below the surface and is expected to continue for at least three years. The results in all the European countries will then be considered so that the United Kingdom can choose a preferred method for isolating their wastes. It is only at that stage that a firm commitment may be made to select a site for a potential repository, when a far more detailed scientific research study will be instituted. Heat transfer problems and chemical effects which may occur within and around repositories are being investigated and a conceptual design study for an underground repository is being prepared. (U.K.)

  13. Radioactive wastes. Management prospects

    International Nuclear Information System (INIS)

    Guillaumont, R.

    2003-01-01

    This article describes the perspectives of management of radioactive wastes as defined in the French law from December 30, 1991. This law defines three ways of research: abatement of the radiotoxicity of wastes (first way), reversible geological storage (second way) or long duration geological disposal (third way). This article develops these three solutions: 1 - strategic perspectives; 2 - separation, transmutation and specific conditioning: isotopes to be separated (evolution of the radio-toxicity inventory of spent fuels, migration of long-living radionuclides, abatement of radio-toxicity), research on advanced separation (humid and dry way), research on transmutation of separate elements (transmutation and transmutation systems, realistic scenarios of Pu consumption and actinides transmutation, transmutation performances), research on materials (spallation targets, fuels and transmutation targets), research on conditioning matrices for separated elements; 3 - long-term storage: principles and problems, containers, surface and subsurface facilities; 4 - disposal: reversibility and disposal, geological disposal (principle and problems, site and concept selection), adaptation to reversibility, research on materials (bentonite and cements for geologic barrier, metals for containers), underground research and qualification laboratories, quantity of containers to be stored. (J.S.)

  14. Method and techniques of radioactive waste treatment

    International Nuclear Information System (INIS)

    Ghafar, M.; Aasi, N.

    2002-04-01

    This study illustrates the characterization of radioactive wastes produced by the application of radioisotopes in industry and research. The treatment methods of such radioactive wastes, chemical co-precipitation and ion exchange depending on the technical state of radioactive waste management facility in Syria were described. The disposal of conditioned radioactive wastes, in a safe way, has been discussed including the disposal of the radioactive sources. The characterizations of the repository to stock conditioned radioactive wastes were mentioned. (author)

  15. Management of radioactive waste: A review

    OpenAIRE

    Luis Paulo Sant'ana; Taynara Cristina Cordeiro

    2016-01-01

    The issue of disposal of radioactive waste around the world is not solved by now and the principal reason is the lack of an efficient technologic system. The fact that radioactive waste decays of radioactivity with time are the main reasons for setting nuclear or radioactive waste apart from the other common hazardous wastes management. Radioactive waste can be classified according to the state of matter and level of radioactivity and this classification can be differently interpreted from co...

  16. Management of radioactive wastes

    International Nuclear Information System (INIS)

    Mawson, C.A.

    1967-01-01

    When I first became concerned with radioactive waste management, in the early 1950's, very little was really known about the subject. There was a general feeling that it was a serious 'problem'. Articles were appearing in the press and talks were being given on the radio suggesting that the wastes generated by the proposed nuclear power reactors might be a serious menace to humanity. The prophets pointed with alarm to the enormous quantities of fission products that would accumulate steadily over the years in tank farms associated with reactor fuel reprocessing plants, and calculations were made of the possible results from rupture of the tanks due to corrosion, earthquakes or enemy attack. Responsible people suggested seriously that the waste disposal problem might be fatal to the development of a nuclear power industry, and this attitude was reinforced by the popular outcry that arose from experience with fallout from nuclear weapons testing. The Canadian nuclear power industry was not critically involved in this controversy because our heavy-water reactors are fuelled with natural uranium, and reprocessing of the fuel is not necessary. The spent fuel contains plutonium, a potential fuel, but the cost of recovering it was such that it was not competitive with natural uranium, which is not in short supply in Canada. Our spent fuel is not dissolved in acid - it is stored. still in its zirconium cladding, under water at the reactor site, or placed in sealed concrete-and-steel pipes below ground. If the price of uranium rises sufficiently it will become profitable to recover the plutonium, and only then shall we have an appreciable amount of waste from this source. However. during the first five or six years of research and development at Chalk River we did investigate fuel processing methods, and like everybody else we grad stainless steel tanks containing high and medium level wastes. These were located quite close to the Ottawa River, and we worried about what

  17. Radioactive waste disposal

    International Nuclear Information System (INIS)

    Petit, J.C.

    1998-04-01

    A deep gap, reflecting a persisting fear, separates the viewpoints of the experts and that of the public on the issue of the disposal of nuclear WASTES. The history of this field is that of the proliferation with time of spokesmen who pretend to speak in the name of the both humans and non humans involved. Three periods can be distinguished: 1940-1970, an era of contestation and confusion when the experts alone represents the interest of all; 1970-1990, an era of contestation and confusion when spokespersons multiply themselves, generating the controversy and the slowing down of most technological projects; 1990-, an era of negotiation, when viewpoints, both technical and non technical, tend to get closer and, let us be optimistic, leading to the overcome of the crisis. We show that, despite major differences, the options and concepts developed by the different actors are base on two categories of resources, namely Nature and Society, and that the consensus is built up through their 'hydridation'. we show in this part that the perception of nuclear power and, in particular of the underground disposal of nuclear wastes, involves a very deep psychological substrate. Trying to change mentalities in the domain by purely scientific and technical arguments is thus in vain. The practically instinctive fear of radioactivity, far from being due only to lack of information (and education), as often postulated by scientists and engineers, is rooted in archetypical structures. These were, without doubt, reactivated in the 40 s by the traumatizing experience of the atomic bomb. In addition, anthropological-linked considerations allow us to conclude that he underground disposal of wastes is seen as a 'rape' and soiling of Mother Earth. This contributes to explaining, beyond any rationality, the refusal of this technical option by some persons. However, it would naturally be simplistic and counter-productive to limit all controversy in this domain to these psychological aspects

  18. Radioactive waste material melter apparatus

    Science.gov (United States)

    Newman, D.F.; Ross, W.A.

    1990-04-24

    An apparatus for preparing metallic radioactive waste material for storage is disclosed. The radioactive waste material is placed in a radiation shielded enclosure. The waste material is then melted with a plasma torch and cast into a plurality of successive horizontal layers in a mold to form a radioactive ingot in the shape of a spent nuclear fuel rod storage canister. The apparatus comprises a radiation shielded enclosure having an opening adapted for receiving a conventional transfer cask within which radioactive waste material is transferred to the apparatus. A plasma torch is mounted within the enclosure. A mold is also received within the enclosure for receiving the melted waste material and cooling it to form an ingot. The enclosure is preferably constructed in at least two parts to enable easy transport of the apparatus from one nuclear site to another. 8 figs.

  19. Method of solidifying radioactive waste

    International Nuclear Information System (INIS)

    Hasegawa, Akira; Mihara, Shigeru; Yamashita, Koji; Sauda, Kenzo.

    1988-01-01

    Purpose: To obtain satisfactory plastic solidification products rapidly and more conveniently from radioactive wastes. Method: liquid wastes contain, in addition to sodium sulfate as the main ingredient, nitrates hindering the polymerizing curing reactions and various other unknown ingredients, while spent resins contain residual cationic exchange groups hindering the polymerizing reaction. Generally, as the acid value of unsaturated liquid polyester resins is lower, the number of terminal alkyd resins is small, formation of nitrates is reduced and the polymerizing curing reaction is taken place more smoothly. In view of the above, radioactive wastes obtained by dry powderization or dehydration of radioactive liquid wastes or spent resins are polymerized with unsaturated liquid polyester resins with the acid value of less than 13 to obtain plastic solidification. Thus, if the radioactive wastes contain a great amount of polymerization hindering material such as NaNO 2 , they can be solidified rapidly and conveniently with no requirement for pre-treatment. (Kamimura, Y.)

  20. Gaseous radioactive waste processing system

    International Nuclear Information System (INIS)

    Onizawa, Hideo.

    1976-01-01

    Object: To prevent explosion of hydrogen gas within gaseous radioactive waste by removing the hydrogen gas by means of a hydrogen absorber. Structure: A coolant extracted from a reactor cooling system is sprayed by nozzle into a gaseous phase (hydrogen) portion within a tank, thus causing slipping of radioactive rare gas. The gaseous radioactive waste rich in hydrogen, which is purged in the tank, is forced by a waste gas compressor into a hydrogen occlusion device. The hydrogen occlusion device is filled with hydrogen occluding agents such as Mg, Mg-Ni alloy, V-Nb alloy, La-Ni alloy and so forth, and hydrogen in the waste gas is removed through reaction to produce hydrogen metal. The gaseous radioactive waste, which is deprived of hydrogen and reduced in volume, is stored in an attenuation tank. The hydrogen stored in the hydrogen absorber is released and used again as purge gas. (Horiuchi, T.)

  1. Radioactive waste material melter apparatus

    International Nuclear Information System (INIS)

    Newman, D.F.; Ross, W.A.

    1990-01-01

    An apparatus for preparing metallic radioactive waste material for storage is disclosed. The radioactive waste material is placed in a radiation shielded enclosure. The waste material is then melted with a plasma torch and cast into a plurality of successive horizontal layers in a mold to form a radioactive ingot in the shape of a spent nuclear fuel rod storage canister. The apparatus comprises a radiation shielded enclosure having an opening adapted for receiving a conventional transfer cask within which radioactive waste material is transferred to the apparatus. A plasma torch is mounted within the enclosure. A mold is also received within the enclosure for receiving the melted waste material and cooling it to form an ingot. The enclosure is preferably constructed in at least two parts to enable easy transport of the apparatus from one nuclear site to another. 8 figs

  2. Radiation protection at the RA Reactor in 1989, Part -2, Decontamination, collection of treatment of fluid and solid radioactive waste, Annex 3; Deo 2 - Zastita od zracenja kod reaktora RA u 1989. godini, Dekontaminacija i intervencija, sakupljanje i obrada tecnih i cvrstih radioaktivnih otpadnih materija za potrebe reaktora RA - Prilog 3

    Energy Technology Data Exchange (ETDEWEB)

    Mandic, M; Vukovic, Z; Plecas, I; Knezevic, Lj; Lazic, S; Bacic, S [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1989-12-15

    Certain amount of solid waste results from RA reactor operation, the mean quantity of which depends on the duration of reactor operation and related activities. During repair, when reactor is not operated as well under accidental conditions, the quantity of waste is higher, dependent on the type of repair and comprehensiveness of decontamination of the working surface, contaminated tools and components. The waste is sorted and packed on the spot where they appeared according to the existing regulations and principles of radiation protection with aim to minimize unnecessary exposure of the radiation protection personnel who deals with control, transport, radioactive waste treatment and decontamination. During exceptional operations (decontamination, repair, bigger volume of contaminated material, etc.) professional staff of the Radiation protection department gives recommendations and helps in planning the actions related to repair, sorting and packaging of radioactive waste in special containers, identification of the contaminants, etc. [Serbo-Croat] Tokom rada reaktora RA dolazi do stvaranja odredjenih cvrstih otpadnih materijala cija prosecna kolicina zavisi od vremena rada reaktora i aktivnosti koje se tamo obavljaju. Tokom remonta, kada reaktor ne radi kao i pri akcidentalnim situacijama nastaju vece kolicine otpadnih materijala koje zavise od obima i vrste remontnih operacija i obima dekontaminacije kontaminirane radne povrsine i kontaminiranog alata, predmeta, opreme, itd. Nastali otpadni materijali se razvrstavaju i pakuju na mestu nastanka prema odgovarajucim propisima u skladu sa principima zastite od zracenja i aspekta bezbednosti u cilju minimiziranja nepotrebnog ozracivanja ljudstva za preuzimanje, kontrolu, transport, naknadnu obradu RAO i dekontaminaciju. Pri nerutinskim operacijama (dekontaminacija, remont, kontaminiarni otpadni materijal velike zapremine i sl.), strucna sluzba Institita ZASTITA pruza strucne konsultacije i pomaze pri planiranju

  3. Radioactive waste: show time? - 16309

    International Nuclear Information System (INIS)

    Codee, Hans; Verhoef, Ewoud

    2009-01-01

    Time will render radioactive waste harmless. How can we manage the time radioactive substances remain harmful? Just 'wait and see' or 'marking time' is not an option. We need to isolate the waste from our living environment and control it as long as necessary. For the situation in the Netherlands, it is obvious that a period of long term storage is needed. Both the small volume of waste and the limited financial possibilities are determining factors. Time is needed to let the volume of waste grow and to let the money, needed for disposal, grow in a capital growth fund. An organisation such as COVRA - the radioactive waste organisation in the Netherlands - can only function when it has good, open and transparent relationship with the public and particularly with the local population. If we tell people that we safely store radioactive waste for 100 years, they often ask: 'That long?' How can we explain the long-term aspect of radioactive waste management in a way people can relate to? In this paper, an overview is given of the activities of COVRA on the communication of radioactive waste management. (authors)

  4. Latest movements associated with radioactive contamination and disaster waste management

    International Nuclear Information System (INIS)

    Omura, Tomomi

    2012-01-01

    As for the radioactive contamination countermeasures taken for the accident of the Fukushima Daiichi Nuclear Station of Tokyo Electric Power Company, this paper introduces in the digest version the following movements from early March to early April 2012. (1) Organizational structure. Inauguration of Nuclear Regulatory Agency, and the organizational structure of Fukushima Environment Regeneration Office of the Ministry of the Environment. (2) The Act on Special Measures concerning the Handling of Radioactive Pollution. Publication by the Ministry of the Environment on decontamination plan for three municipalities belonging to Special Decontamination Area, decontamination plan for Intensive Contamination Survey Area, new construction of disposal sites for designated waste with the level exceeding 8,000 Bq / kg, and disaster waste direct treatment project and substitute treatment project in Fukushima Prefecture. (3) Radiation exposure countermeasures. Lawmaker-initiated registration plan by Democratic Party, Liberal Democratic Party, and New Komeito. (4) Technological evaluation. Publication of the results of Decontamination Technology Demonstration Test Projects by the Cabinet Office, the Ministry of the Environment, and Fukushima Prefecture. (5) Monitoring. Full-scale implementation of radioactivity monitoring plan in Tokyo Bay in Fiscal 2012. (6) Disaster waste countermeasures. Request of the government to the local governments on the wide-area treatment of wreckage, active request to the Cement Association in cooperation with the treatment of wreckage, and positive replies from of 22 prefectures / cities regarding the acceptance of wide-area wreckage treatment. (O.A.)

  5. Handling and treatment of radioactive aqueous wastes

    International Nuclear Information System (INIS)

    1992-07-01

    This report aims to provide essential guidance to developing Member States without a nuclear power programme regarding selection, design and operation of cost effective treatment processes for radioactive aqueous liquids arising as effluents from small research institutions, hospitals and industries. The restricted quantities and low activity associated with the relevant wastes will generally permit contact-handling and avoid the need for shielding requirements. The selection of liquid waste treatment involves: Characterization of arising with the possibility of segregation; Discharge requirements for decontaminated liquors, both radioactive and non-radioactive; Available technologies and costs; Conditioning of the concentrates resulting from the treatment; Storage and disposal of the conditioned concentrates. The report will serve as a technical manual providing reference material and direct step-by-step know-how to staff in radioisotope user establishments and research centres in the developing Member States without nuclear power generation. Therefore, emphasis is limited to the simpler treatment facilities, which will be included with only the robust, well-established waste management processes carefully chosen as appropriate to developing countries. 20 refs, 12 figs, 7 tabs

  6. Radioactive waste programme in Latvia

    International Nuclear Information System (INIS)

    Salmins, A.

    2000-01-01

    An overview is made on the use of radioactive sources and waste management in Latvia. Brief overview of the development of national legal documents - the framework law of environmental protection; international agreements; the new law on radiation safety and nuclear safety; regulation of the Cabinet of Ministers - is given. The regulatory infrastructure in the nearest future is outlined. The institutional framework for radioactive waste management is described. Basic design of the repository and radioactive waste inventory are also given. The activities on the EU DG Environment project CASIOPEE are reported

  7. Krsko NPP radioactive waste characteristics

    International Nuclear Information System (INIS)

    Skanata, D.; Kroselj, V.; Jankovic, M.

    2007-01-01

    In May 2005 Krsko NPP initiated the Radioactive Waste Characterization Project and commissioned its realization to the consulting company Enconet International, Zagreb. The Agency for Radwaste Management was invited to participate on the Project. The Project was successfully closed out in August 2006. The main Project goal consisted of systematization the existing and gathering the missing radiological, chemical, physical, mechanical, thermal and biological information and data on radioactive waste. In a general perspective, the Project may also be considered as a part of broader scope of activities to support state efforts to find a disposal solution for radioactive waste in Slovenia. The operational low and intermediate level radioactive waste has been structured into 6 waste streams that contain evaporator concentrates and tank sludges, spent ion resins, spent filters, compressible and non-compressible waste as well as specific waste. For each of mentioned waste streams, process schemes have been developed including raw waste, treatment and conditioning technologies, waste forms, containers and waste packages. In the paper the main results of the Characterization Project will be briefly described. The results will indicate that there are 17 different types of raw waste that have been processed by applying 9 treatment/conditioning technologies. By this way 18 different waste forms have been produced and stored into 3 types of containers. Within each type of container several combinations should be distinguished. Considering all of this, there are 34 different types of waste packages altogether that are currently stored in the Solid Radwaste Storage Facility at the Krsko NPP site. Because of these findings a new identification system has been recommended and consequently the improvement of the existing database on radioactive waste has been proposed. The potential areas of further in depth characterization are indicated. In the paper a brief description on the

  8. Formulation of special glass frit and its use for decontamination of Joule melter employed for vitrification of high level and radioactive liquid waste

    International Nuclear Information System (INIS)

    Valsala, T.P.; Mishra, P.K.; Thakur, D.A.; Ghongane, D.E.; Jayan, R.V.; Dani, U.; Sonavane, M.S.; Kulkarni, Y.

    2012-01-01

    Advanced vitrification system at TWMP Tarapur was used for successful vitrification of large volume of HLW stored in waste tank farm. After completion of the operational life of the joule melter, dismantling was planned. Prior to the dismantling, the hold up inventory of active glass product from the melter was flushed out using specially formulated inactive glass frit to reduce the air activity buildup in the cell during dismantling operations. The properties of the special glass frit prepared are comparable with that of the regular product glass. More than 94% of holdup activity was flushed out from the joule melter prior to the dismantling of the melter. (author)

  9. Radioactive waste management in Tanzania

    International Nuclear Information System (INIS)

    Banzi, F.P.; Bundala, F.M.; Nyanda, A.M.; Msaki, P.

    2002-01-01

    Radioactive waste, like many other hazardous wastes, is of great concern in Tanzania because of its undesirable health effects. The stochastic effects due to prolonged exposure to ionizing radiation produce cancer and hereditary effects. The deterministic effects due to higher doses cause vomiting, skin reddening, leukemia, and death to exposed victims. The aim of this paper is to give an overview of the status of radioactive wastes in Tanzania, how they are generated and managed to protect humans and the environment. As Tanzania develops, it is bound to increase the use of ionizing radiation in research and teaching, industry, health and agriculture. Already there are more than 42 Centers which use one form of radioisotopes or another for these purposes: Teletherapy (Co-60), Brach-therapy (Cs-137, Sr-89), Nuclear Medicine (P-32, Tc-99m, 1-131, 1-125, Ga-67, In-111, Tl-206), Nuclear gauge (Am-241, Cs- 137, Sr-90, Kr-85), Industrial radiography (Am-241, C-137, Co-60, lr-92), Research and Teaching (1-125, Am241/Be, Co-60, Cs-137, H-3 etc). According to IAEA definition, these radioactive sources become radioactive waste if they meet the following criteria: if they have outlived their usefulness, if they have been abandoned, if they have been displaced without authorization, and if they contaminate other substances. Besides the origin of radioactive wastes, special emphasis will also be placed on the existing radiation regulations that guide disposal of radioactive waste, and the radioactive infrastructure Tanzania needs for ultimate radioactive waste management. Specific examples of incidences (theft, loss, abandonment and illegal possession) of radioactive waste that could have led to serious deterministic radiation effects to humans will also be presented. (author)

  10. Treatment of Radioactive Gaseous Waste

    International Nuclear Information System (INIS)

    2014-07-01

    Radioactive waste, with widely varying characteristics, is generated from the operation and maintenance of nuclear power plants, nuclear fuel cycle facilities, research laboratories and medical facilities. The waste needs to be treated and conditioned as necessary to provide waste forms acceptable for safe storage and disposal. Although radioactive gaseous radioactive waste does not constitute the main waste flow stream at nuclear fuel cycle and radioactive waste processing facilities, it represents a major source for potential direct environmental impact. Effective control and management of gaseous waste in both normal and accidental conditions is therefore one of the main issues of nuclear fuel cycle and waste processing facility design and operation. One of the duties of an operator is to take measures to avoid or to optimize the generation and management of radioactive waste to minimize the overall environmental impact. This includes ensuring that gaseous and liquid radioactive releases to the environment are within authorized limits, and that doses to the public and the effects on the environment are reduced to levels that are as low as reasonably achievable. Responsibilities of the regulatory body include the removal of radioactive materials within authorized practices from any further regulatory control — known as clearance — and the control of discharges — releases of gaseous radioactive material that originate from regulated nuclear facilities during normal operation to the environment within authorized limits. These issues, and others, are addressed in IAEA Safety Standards Series Nos RS-G-1.7, WS-G-2.3 and NS-G-3.2. Special systems should be designed and constructed to ensure proper isolation of areas within nuclear facilities that contain gaseous radioactive substances. Such systems consist of two basic subsystems. The first subsystem is for the supply of clean air to the facility, and the second subsystem is for the collection, cleanup and

  11. Disposal of radioactive wastes. Chapter 11

    International Nuclear Information System (INIS)

    Skitt, J.

    1979-01-01

    An account is given of the history and present position of legislation in the United Kingdom on the disposal of radioactive wastes. The sections are headed: introduction and definitions; history; the Radioactive Substances Act 1960; disposal of solid radioactive wastes through Local Authority services; function of Local Authorities; exemptions; national radioactive waste disposal service; incidents involving radioactivity. (U.K.)

  12. Radioactive Waste Management Objectives

    International Nuclear Information System (INIS)

    2011-01-01

    considered and the specific goals to be achieved at different stages of implementation, all of which are consistent with the Basic Principles. The four Objectives publications include Nuclear General Objectives, Nuclear Power Objectives, Nuclear Fuel Cycle Objectives, and Radioactive Waste Management and Decommissioning Objectives. This publication sets out the objectives that need to be achieved in the area of radioactive waste management, including decommissioning and environmental remediation, to ensure that the Nuclear Energy Basic Principles are satisfied.

  13. Dismantlement and Radioactive Waste Management of DPRK Nuclear Facilities

    International Nuclear Information System (INIS)

    Jooho, W.; Baldwin, G.T.

    2005-01-01

    One critical aspect of any denuclearization of the Democratic People's Republic of Korea (DPRK) involves dismantlement of its nuclear facilities and management of their associated radioactive wastes. The decommissioning problem for its two principal operational plutonium facilities at Yongbyun, the 5MWe nuclear reactor and the Radiochemical Laboratory reprocessing facility, alone present a formidable challenge. Dismantling those facilities will create radioactive waste in addition to existing inventories of spent fuel and reprocessing wastes. Negotiations with the DPRK, such as the Six Party Talks, need to appreciate the enormous scale of the radioactive waste management problem resulting from dismantlement. The two operating plutonium facilities, along with their legacy wastes, will result in anywhere from 50 to 100 metric tons of uranium spent fuel, as much as 500,000 liters of liquid high-level waste, as well as miscellaneous high-level waste sources from the Radiochemical Laboratory. A substantial quantity of intermediate-level waste will result from disposing 600 metric tons of graphite from the reactor, an undetermined quantity of chemical decladding liquid waste from reprocessing, and hundreds of tons of contaminated concrete and metal from facility dismantlement. Various facilities for dismantlement, decontamination, waste treatment and packaging, and storage will be needed. The shipment of spent fuel and liquid high level waste out of the DPRK is also likely to be required. Nuclear facility dismantlement and radioactive waste management in the DPRK are all the more difficult because of nuclear nonproliferation constraints, including the call by the United States for 'complete, verifiable and irreversible dismantlement,' or 'CVID.' It is desirable to accomplish dismantlement quickly, but many aspects of the radioactive waste management cannot be achieved without careful assessment, planning and preparation, sustained commitment, and long completion times

  14. Radioactive waste management and disposal

    International Nuclear Information System (INIS)

    Kaluzny, Y.

    1994-01-01

    The public has demonstrated interest and even concern for radioactive waste. A fully demonstrated industrial solution already exists for 90% of the waste generated by the nuclear industry. Several solutions are currently under development for long-term management of long-lived waste. They could be implemented on an industrial scale within twenty years. The low volumes of this type of waste mean there is plenty of time to adopt a solution. (author). 5 photos

  15. The radioactive waste management conference

    International Nuclear Information System (INIS)

    Fareeduddin, S.; Hirling, J.

    1983-01-01

    The international conference on radioactive waste management was held in Seattle, Washington, from 16 to 20 May 1983. The response was gratifying, reflecting world-wide interest: it was attended by 528 participants from 29 Member States of the IAEA and eight international organizations. The conference programme was structured to permit reviews and presentation of up-to-date information on five major topics: - waste management policy and its implementation: national and international approaches; legal, economic, environmental, and social aspects (four sessions with 27 papers from 16 countries and four international organizations); - handling, treatment, and conditioning of wastes from nuclear facilities, nuclear power plants and reprocessing plants, including the handling and treatment of gaseous wastes and wastes of specific types (five sessions with 35 papers); - storage and underground disposal of radioactive wastes: general, national concepts, underground laboratories, and designs of repositories for high-level, and low- and intermediate-level waste disposal (five sessions with 35 papers); - environmental and safety assessment of waste management systems: goals methodologies, assessments for geological repositories, low- and intermediate-level wastes, and mill tailings (four sessions with 26 papers); - radioactive releases to the environment from nuclear operations: status and perspectives, environmental transport processes, and control of radioactive waste disposal into the environment (three sessions with 23 papers)

  16. Radioactive waste mangement in Canada

    International Nuclear Information System (INIS)

    Didyk, J.P.

    1976-01-01

    The objectives of the Canadian radioactive waste management program are to manage the wastes so that the potential hazards of the material are minimized, and to manage the wastes in a manner which places the minimum possible burden on future generations. The Atomic Energy Control Board regulates all activities in the nuclear field in Canada, including radioactive waste management facility licensing. The Atomic Energy Control Act authorizes the Board to make rules for regulating its proceedings and the performance of its functions. The Atomic Energy Control Regulations define basic regulatory requirements for the licensing of facilities, equipment and materials, including requirements for records and inspection, for security and for health and safety

  17. Low-level radioactive wastes

    International Nuclear Information System (INIS)

    Garbay, H.; Chapuis, A.M.

    1988-01-01

    During dismantling operations of nuclear facilities radioctive and non radioactive wastes are produced. The distinction between both kinds of wastes is not easy. In each dismantling operation special care and rules are defined for the separation of wastes. Each case must be separately studied. The volume and the surface activites are analyzed. Part of the wastes had been disposed in a public environment. The regulations, the international recommendations, thetheoretical and experimental investigations in this field are presented. A regulation principle and examples of radioactivity limits, on the basis of international recommendations, are provided. Those limits are calculated from individual radiation dose that may reach human beings [fr

  18. Radioactive contamination of some rubber or plastic surfaces by fission products. Decontamination tests

    International Nuclear Information System (INIS)

    Mestre, E.; Sautiez, N.

    1957-10-01

    With the objective of notably addressing the contamination and decontamination of gloves and floor covering, this report first presents some characteristics of contaminating radioactive materials (nature, physical and chemical condition), of contaminated surfaces (surface condition, surface nature), and of decontamination processes (physical, chemical or mechanical action). It describes the operational modality implemented to test decontamination processes on various glove or flooring materials: sample preparation, counting, decontamination, reproducibility of decontamination tests, results in terms of activity reduction. It more precisely describes the tested samples: short gloves, gloves from glove boxes, floor and wall coverings. Results are presented and discussed in terms of sample susceptibility to contamination, and of decontamination, but also for re-contamination tests after a Nab-based decontamination (susceptibility to contamination, decontamination gain)

  19. Progress on Radioactive Waste Treatment Facilities Construction

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    In 2011, five projects were undertaken by radioactive waste projects management department, which are "Cold Commissioning of the Pilot Project on Radioactive Waste Retrieval and Conditioning (abbreviation 'Pilot Project')", "Radioactive Ventilation Project Construction (abbreviation 'Ventilation

  20. Radioactive waste management - with evidence

    International Nuclear Information System (INIS)

    1988-01-01

    The select committee was appointed to report on the present (1988) situation and future prospects in the field of radioactive waste management in the European Community. The report covers all aspects of the subject. After an introduction the parts of the report are concerned with the control of radiation hazards, the nuclear fuel cycle and radioactive waste, the control of radioactive effluents, storage and disposal of solid radioactive wastes, research programmes, surface storage versus deep geological disposal of long-term wastes, the future of reprocessing and the public debate. Part 10 is a resume of the main conclusions and recommendations. It is recommended that the House of Lords debate the issue. The oral and written evidence presented to the committee is included in the report. (U.K.)

  1. Geological Disposal of Radioactive Waste

    International Nuclear Information System (INIS)

    Dody, A.; Klein, Ben; David, O.

    2014-01-01

    Disposal of radioactive waste imposes complicated constrains on the regulator to ensure the isolation of radioactive elements from the biosphere. The IAEA (1995) states that T he objective of radioactive waste management is to deal with radioactive waste in a manner that protects human health and the environment now and the future without imposing undue burdens on future generation . The meaning of this statement is that the operator of the waste disposal facilities must prove to the regulator that in routine time and in different scenarios the dose rate to the public will not exceed 0.3 mSv/y in the present and in the future up to 10,000 years

  2. Radioactive waste management in France

    International Nuclear Information System (INIS)

    Pradel, J.

    1975-01-01

    The different stages of radioactive waste production are examined: ore production, reactor operation, reprocessing plants. The treatment and storage methods used and the French realizations relative to these problems are described [fr

  3. Radioactive waste management in Belgium

    International Nuclear Information System (INIS)

    Detilleux, E.

    1984-01-01

    The first part of this paper briefly describes the nuclear industry in Belgium and the problem of radioactive wastes with regard to their quality and quantity. The second part emphasizes the recent guidelines regarding the management of the nuclear industry in general and the radioactive wastes in particular. In this respect, important tasks are the reinforcement of administrative structures with regard to the supervision and the control of nuclear activities, the establishment of a mixed company entrusted with the covering of the needs of nuclear plants in the field of nuclear fuels and particularly the setting up of a public autonomous and specialized organization, the 'Public Organization for the Management of Radioactive Waste and Fissile Materials', in short 'O.N.D.R.A.F.'. This organization is in charge of the management of the transport, the conditioning, the storage and the disposal of radioactive wastes. (Auth.)

  4. World ocean and radioactive wastes

    International Nuclear Information System (INIS)

    Kiknadze, O.E.; Sivintsev, Yu.V.

    2000-01-01

    The radioecological situation that took shape in the Arctic, North Atlantic Ocean and Far East regions as a result of radioactive waste marine disposal was assessed. Accurate account of radionuclides formation and decay in submerged water-water reactors of nuclear submarines suggests that total activity of radioactive waste disposed near the Novaya Zemlya amounted to 107 kCi by the end of 1999. Activity of radioactive waste disposed in the North Atlantic currently is not in excess of 430 kCi. It is pointed out that the Far East region heads the list in terms of total activity disposed (529 kCi). Effective individual dose for critical groups of population in the Arctic, North Atlantic and Far East regions was determined. The conclusion was made that there is no detrimental effect of the radioactive waste disposed on radioecological situation in the relevant areas [ru

  5. Method of solidifying radioactive wastes

    International Nuclear Information System (INIS)

    Fukazawa, Tetsuo; Ootsuka, Masaharu; Uetake, Naoto; Ozawa, Yoshihiro.

    1984-01-01

    Purpose: To prepare radioactive solidified wastes excellent in strength, heat resistance, weather-proof, water resistance, dampproof and low-leaching property. Method: A hardening material reactive with alkali silicates to form less soluble salts is used as a hardener for alkali silicates which are solidification filler for the radioactive wastes, and mixed with cement as a water absorbent and water to solidify the radioactive wastes. The hardening agent includes, for example, CaCO 3 , Ca(ClO 4 ) 2 , CaSiF 6 and CaSiO 3 . Further, in order to reduce the water content in the wastes and reduce the gap ratio in the solidification products, the hardener adding rate, cement adding rate and water content are selected adequately. As the result, solidification products can be prepared with no deposition of easily soluble salts to the surface thereof, with extremely low leaching of radioactive nucleides. (Kamimura, M.)

  6. Radioactive waste processing and disposal

    International Nuclear Information System (INIS)

    1980-01-01

    This compilation contains 4144 citations of foreign and domestic reports, journal articles, patents, conference proceedings, and books pertaining to radioactive waste processing and disposal. Five indexes are provided: Corporate Author, Personal Author, Subject, Contract Number, and Report Number

  7. Application of PHADEC method for the decontamination of radioactive steam piping components of Caorso plant

    International Nuclear Information System (INIS)

    Lo Frano, R.; Aquaro, D.; Fontani, E.; Pilo, F.

    2014-01-01

    Highlights: • Application of PHADEC chemical off-line methodology. • Decontamination of radioactive steam piping components of Caorso turbine building. • Experimental characterization of metallic components, e.g., by SEM analysis. • Measure of the efficiency of treatment by means of the reduction of activity and vs. the treatment time. • Minimization of secondary waste produced during decontamination activity of Caorso BWR plant. - Abstract: The dismantling of nuclear plants is a complex activity that originates often a large quantity of radioactive contaminated residue. In this paper the attention was focused on the PHADEC (PHosphoric Acid DEContamination) plant adopted for the clearance of Caorso NPP (in Italy) metallic systems and components contaminated by Co60 (produced by the neutron capture in the iron materials), like the main steam lines, moisture separator of the turbine buildings, etc. The PHADEC plant consists in a chemical off line treatment: the crud, deposited along the steam piping during life plant as an example, is removed by means of acid attacks in ponds coupled to a high pressure water washing. Due to the fact that the removed contaminated layers, essentially, iron oxides of various chemical composition, depend on components geometry, type of contamination and time of treatment in the PHADEC plant, it becomes of meaningful importance to suggest a procedure capable to improve the control of the PHADEC process parameters. This study aimed thus at the prediction and optimization of the mentioned treatment time in order to improve the efficiency of the plant itself and to achieve, in turn, the minimization of produced wastes. To the purpose an experimental campaign was carried out by analysing several samples, i.e., taken along the main steam piping line. Smear tests as well as metallographic analyses were carried out in order to determine respectively the radioactivity distribution and the crud composition on the inner surface of the

  8. Radioactive waste management in perspective

    International Nuclear Information System (INIS)

    1996-01-01

    This report drafted by the Nuclear Energy Agency (NEA) deals with the basic principles and the main stages of radioactive waste management. The review more precisely focuses on what relates to environment protection, safety assessment, financing, social issues, public concerns and international co-operation. An annex finally summarises the radioactive waste management programs that are implemented in 15 of the NEA countries. (TEC). figs

  9. Method of solidifying radioactive wastes

    International Nuclear Information System (INIS)

    Tomita, Toshihide; Minami, Yuji; Matsuura, Hiroyuki; Kageyama, Hisashi; Kobori, Junzo.

    1984-01-01

    Purpose: To perform the curing sufficiently even when copper hydroxide that interferes the curing reaction is contained in radioactive wastes. Method: Solidification of radioactive wastes containing copper hydroxide using thermoset resins is carried out under the presence of an alkaline material. The thermoset resin used herein is an polyester resin comprising unsaturated polyester and a polymerizable monomer. The alkaline substance usable herein can include powder or an aqueous solution of hydroxides or oxides of sodium, magnesium, calcium or the like. (Yoshino, Y.)

  10. Radioactive waste problems in Russia

    International Nuclear Information System (INIS)

    Bridges, O.; Bridges, J.W.

    1995-01-01

    The collapse of the former Soviet Union, with the consequent shift to a market driven economy and demilitarisation, has had a profound effect on the nuclear and associated industries. The introduction of tighter legislation to control the disposal of radioactive wastes has been delayed and the power and willingness of the various government bodies responsible for its regulation is in doubt. Previously secret information is becoming more accessible and it is apparent that substantial areas of Russian land and surface waters are contaminated with radioactive material. The main sources of radioactive pollution in Russia are similar to those in many western countries. The existing atomic power stations already face problems in the storage and safe disposal of their wastes. These arise because of limited on site capacity for storage and the paucity of waste processing facilities. Many Russian military nuclear facilities also have had a sequence of problems with their radioactive wastes. Attempts to ameliorate the impacts of discharges to important water sources have had variable success. Some of the procedures used have been technically unsound. The Russian navy has traditionally dealt with virtually all of its radioactive wastes by disposal to sea. Many areas of the Barents, Kola and the Sea of Japan are heavily contaminated. To deal with radioactive wastes 34 large and 257 small disposal sites are available. However, the controls at these sites are often inadequate and illegal dumps of radioactive waste abound. Substantial funding will be required to introduce the necessary technologies to achieve acceptable standards for the storage and disposal of radioactive wastes in Russia. (author)

  11. The nymphea concept: a new way for using ion exchange in the decontamination of radioactive liquid wastes with low salt content

    International Nuclear Information System (INIS)

    Pierlas, R.; Nicoud, R.; Schweich, D.; Kalimbadjian, M.; Dozol, J.F.

    1986-09-01

    SGN has undertaken the development of a new equipment ''NYMPHEA'', specially fitted for the purification of the pool water in spent fuel storage facilities. Based on ion-exchange process, these immersed units are working with high flow rate and a small thickness of the resins bed. Cogema has selected these ionic ''NYMPHEA'' for installation in the new storage basins already built or in construction in the new french reprocessing plant UP3 in La Hague (France). Together with the necessary and complementary hot tests in CEA laboratories (CADARACHE), a basic research has been started in cooperation with the Chemical Engineering Science Laboratory (LSGC Nancy) and the results already achieved are presented in this paper. Since two years, the ''NYMPHEA'' are into operation at La Hague (pool C), fulfilling all the required performances. This new and promising concept could, in the future, be extended to other applications, for the treatment of low salt content solutions, in the nuclear waste processing field, as well as for various chemical separations

  12. Melting decontamination and recycling of radioactive polluted metals from uranium mining and metallurgy

    International Nuclear Information System (INIS)

    Chen Anquan

    2011-01-01

    Melting method is a primary method used for decontamination of radioactive polluted metal from uranium mining and metallurgy. The decontamination mechanism of the method, the way selection and its features are introduced. Taking the ten year's work of CNNC Uranium Mining and Metallurgy Radioactive Polluted Metal Melting Processing Center as example, the effects of processing radioactive polluted metals by smelting method are discussed. The surface pollution levels of radioactive polluted metal from uranium mining and metallurgy decreased from 4-48 Bq/cm 2 before decontamination to 0.004-0.016 Bq/cm 2 after decontamination, and the specific activity of its metal is less than 1 Bq/g, which is below the solution control level proposed by IAEARS-G1.7 'the application of the concepts of exclusion, immunity and solution control'. The metals after decontamination can be recycled by producing tooth plate and bucket teeth of excavator used in mines. (authors)

  13. Sorbents for effective removal of radioactive antimony during chemical decontamination

    International Nuclear Information System (INIS)

    Nishad, Padala Abdul; Bhaskarapillai, Anupkumar; Velmurugan, Sankaralingam

    2014-01-01

    Removal of radioactive antimony is a challenging problem. Often, during decontamination, they get mobilized around the system and redeposit in different areas thus offsetting the reduction in the radiation field obtained by removing other activities such as 60 Co. Thus, there is a clear need for better antimony removing materials/strategies for effective reactor decontamination. In this regard, six commercially available sorbents namely, Tulsion A33 (strong base anion (-OH) resin), Amberlite IRC-718 (chelating resin), Radex ® Sb-1000, nano TiO 2 -special grade (Inorganic type IX), Chitosan (biosorbent) and Aeroxide p25 (nano TiO 2 , Inorganic type IX) were evaluated for their antimony sorption properties. Radex ® and TiO 2 based materials were found to be more effective in removing both Sb(V) and Sb(III). Solution pH was seen to significantly influence the antimony sorption and the effect was more prominent in anion resin, when tested under column conditions. Apart from the commercial sorbents, we have synthesised a robust high performing sorbent (TA-Chitosan beads) in the form of stable beads, using nano-TiO 2 and chitosan. The beads were found to retain the antimony sorption properties of the nano-TiO 2 , while adapting a physical format suitable for large scale operations. The sorbent exhibited almost complete sorption of antimony both in low (ppb level) as well as high concentrations of antimony. The suitability of the beads for use in column mode has been established and its radiation stability was probed in detail. The beads were found to be stable to irradiations as ascertained from the TOC values and unchanged sorption properties. The sorption properties of the CHITA beads in typical decontamination formulation containing mixture of complexing agents have been investigated in detail. (author)

  14. Technical report on treatment of radioactive slurry liquid waste

    International Nuclear Information System (INIS)

    Jeong, Gyeong Hwan; Jo, Eun Sung; Park, Seung Kook; Jung, Ki Jung

    1999-06-01

    By literature survey, this report deals with the technology on typical pre-treatment and filtration of radioactive slurry liquid waste, produced during the operation of TRIGA Mark-II, III research reactor, and produced during the decommission/decontamination of TRIGA Mark-II, III research reactor. It is reviewed pre-treatment procedure, both physical and chemical that optimise the dewatering characteristics, and also surveyed types of dewatering devices based on centrifuges, vacuum and pressure filters with particular reference to various combined field approaches using two or more complementary driving forces to achieve better performance. Dewatering operations and devises on filtration of radioactive slurry liquid waste are also analysed. (author)

  15. High Level Radioactive Waste Management

    International Nuclear Information System (INIS)

    1991-01-01

    The proceedings of the second annual international conference on High Level Radioactive Waste Management, held on April 28--May 3, 1991, Las Vegas, Nevada, provides information on the current technical issue related to international high level radioactive waste management activities and how they relate to society as a whole. Besides discussing such technical topics as the best form of the waste, the integrity of storage containers, design and construction of a repository, the broader social aspects of these issues are explored in papers on such subjects as conformance to regulations, transportation safety, and public education. By providing this wider perspective of high level radioactive waste management, it becomes apparent that the various disciplines involved in this field are interrelated and that they should work to integrate their waste management activities. Individual records are processed separately for the data bases

  16. Radioactive wastes and their disposal

    International Nuclear Information System (INIS)

    Neumann, L.

    1984-01-01

    The classification of radioactive wastes is given and the achievements evaluated in the disposal of radioactive wastes from nuclear power plants. An experimental pilot unit was installed at the Jaslovske Bohunice nuclear power plant for the bituminization of liquid radioactive wastes. UJV has developed a mobile automated high-output unit for cementation. In 1985 the unit will be tested at the Jaslovske Bohunice and the Dukovany nuclear power plants. A prototype press for processing solid wastes was manufactured which is in operation at the Jaslovske Bohunice plant. A solidification process for atypical wastes from long-term storage of spent fuel elements has been developed to be used for the period of nuclear power plant decommissioning. (E.S.)

  17. Overview of radioactive waste management

    International Nuclear Information System (INIS)

    Ritter, G.L.

    1980-01-01

    The question of what to do with radioactive wastes is discussed. The need to resolve this issue promptly is pointed out. Two significant events which have occurred during the Carter administration are discussed. An Interagency Review Group (IRG) on waste management was formed to formulate recommendations leading to the establishment of a National policy for managing radioactive wastes. The technical findings in the IRG report are listed. The author points out some issues not addressed by the report. President Carter issued a national policy statement on Radioactive Waste Management in February 1980. The most significant elements of this statement are summarized. The cancellation of the Waste Isolation Pilot Plant is currently meeting opposition in Congress. This and other items in the National Policy Statement are discussed

  18. Membrane technologies for liquid radioactive waste treatment

    International Nuclear Information System (INIS)

    Chmielewski, A.G.; Harasimowicz, M.; Zakrzewska-Trznadel, G.

    1998-01-01

    At Institute of Nuclear Chemistry and Technology (INCT) the membrane method for purification of radioactive wastes applied such processes as ultrafiltration (UF), 'seeded' ultrafiltration and reverse osmosis (RO) was developed. On the basis of the results obtained in laboratory experiments the pilot plant for radioactive effluents treatment was built. The plant was composed of UF unit (AMICON H 26P30 capillary module) and two RO units (NITTO NTR 739 HF S-4 spiral wound LPRO modules). The capacity of the pilot plant was up to 200 L/h and the specific activity of wastes purified in the system - below 10 4 Bq/L. Decontamination factor for entire system is higher than 5 x10 3 . Another possibility for radioactive wastes treatment is membrane distillation (MD), non-isothermal process employing hydrophobic polymer membrane, which is developed at INCT now. Preliminary tests with liquid radwaste were carried out on laboratory unit with permeation test-cell holding flat sheet membrane. As a hydrophobic barrier membranes made of two polymers were used: polytetrafluoroethylene (PTFE) and polypropylene (PP). The process was arranged in direct contact membrane distillation configuration. The permeate condensed directly in the cold stream (distilled water) and retentate was enriched in radionuclides. The further experiments carried out with capillary module BFMF 06-30-33 (Euro-Sep Ltd.) with polypropylene capillaries, diameter 0.33 mm and cut off 0.6 μm proved previous results. A pilot plant employing GORE-TEX membrane distillation was constructed. The plant can clean the low-level radioactive wastes from nuclear centre, at a throughput about 0.05 m 3 /h

  19. Localization of decontamination waste in the territory of Ukraine.; Lokalizatsiya otkhodov dezaktivatsionnykh rabot na territorii Ukrainy.

    Energy Technology Data Exchange (ETDEWEB)

    Borodin, L P; Zhivotenko, A N [Naukovo-Tekhnyichnij Tsentr z dezaktivatsyiyi ta kompleksnogo povodzhennya z radyioaktivnimi vyidkhodami, Zhovtyi Vodi (Ukraine)

    1994-12-31

    Various environmental conditions in decontamination waste storage areas in the Zhitomir, Kiev, Chernigov, Rovno, Cherkassy, Sumy Regions of Ukraine are analyzed. Typical designs and basic parameters of decontamination waste storage areas implemented in 17 contractor designs are described. Theoretical grounds of safe storage of decontamination waste in the areas are discussed.

  20. Solidification method of radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    Baba, Tsutomu; Chino, Koichi; Sasahira, Akira; Ikeda, Takashi

    1992-07-24

    Metal solidification material can completely seal radioactive wastes and it has high sealing effect even if a trace amount of evaporation should be caused. In addition, the solidification operation can be conducted safely by using a metal having a melting point of lower than that of the decomposition temperature of the radioactive wastes. Further, the radioactive wastes having a possibility of evaporation and scattering along with oxidation can be solidified in a stable form by putting the solidification system under an inert gas atmosphere. Then in the present invention, a metal is selected as a solidification material for radioactive wastes, and a metal, for example, lead or tin having a melting point of lower than that of the decomposition temperature of the wastes is used in order to prevent the release of the wastes during the solidification operation. Radioactive wastes which are unstable in air and scatter easily, for example, Ru or the like can be converted into a stable solidification product by conducting the solidification processing under an inert gas atmosphere. (T.M.).

  1. USDOE activities in low-level radioactive waste treatment

    International Nuclear Information System (INIS)

    Vath, J.E.

    1981-01-01

    This paper describes current research, development and demonstration (R, D and D) programs sponsored by the US Department of Energy in the area of low-level radioactive waste treatment. During the twelve month period ending September 30, 1981, 14 prime US Department of Energy contractors were involved with over 40 low-level radioactive waste disposal technology projects. Three specific projects or task areas have been selected for discussion to illustrate new and evolving technologies, and application of technology developed in other waste management areas to low-level waste treatment. The areas to be discussed include a microwave plasma torch incinerator, application of waste vitrification, and decontamination of metal waste by melting

  2. Acid digestion of combustible radioactive wastes

    International Nuclear Information System (INIS)

    Allen, C.R.; Lerch, R.E.; Crippen, M.D.; Cowan, R.G.

    1982-03-01

    The following conclusions resulted from operation of Radioactive Acid Digestion Test Unit (RADTU) for processing transuranic waste: (1) the acid digestion process can be safely and efficiently operated for radioactive waste treatment.; (2) in transuranic waste treatment, there was no detectable radionuclide carryover into the exhaust off-gas. The plutonium decontamination factor (DF) between the digester and the second off-gas tower was >1.5 x 10 6 and the overall DF from the digester to the off-gas stack was >1 x 10 8 ; (3) plutonium can be easily leached from undried digestion residue with dilute nitric acid (>99% recovery). Leachability is significantly reduced if the residue is dried (>450 0 stack temp.) prior to leaching; (4) sulfuric acid recovery and recycle in the process is 100%; (5) nitric acid recovery is typically 35% to 40%. Losses are due to the formation of free nitrogen (N 2 ) during digestion, reaction with chlorides in waste (NO 2 stack was > 1.5 x 10 6 andl), and other process losses; (6) noncombustible components comprised approximately 6% by volume of glovebox waste and contained 18% of the plutonium; (7) the acid digestion process can effectively handle a wide variety of waste forms. Some design changes are desirable in the head end to reduce manual labor, particularly if large quantities of specific waste forms will be processed; (8) with the exception of residue removal and drying equipment, all systems performed satisfactorily and only minor design and equipment changes would be recommended to improve performance; and(9) the RADTU program met all of its planned primary objectives and all but one of additional secondary objectives

  3. Environmental aspects of commercial radioactive waste management

    International Nuclear Information System (INIS)

    1979-05-01

    Volume 2 contains chapters 6 through 10: environmental effects related to radioactive waste management associated with LWR fuel reprocessing - mixed-oxide fuel fabrication plant; environmental effects related to transporting radioactive wastes associated with LWR fuel reprocessing and fabrication; environmental effects related to radioactive waste management associated with LWR fuel reprocessing - retrievable waste storage facility; environmental effects related to geologic isolation of LWR fuel reprocessing wastes; and integrated systems for commercial radioactive waste management

  4. Method of disposing radioactive wastes

    International Nuclear Information System (INIS)

    Isozaki, Kei.

    1983-01-01

    Purpose : To enable safety ocean disposal of radioactive wastes by decreasing the leaching rate of radioactive nucleides, improving the quick-curing nature and increasing the durability. Method : A mixture comprising 2 - 20 parts by weight of alkali metal hydroxide and 100 parts by weight of finely powdered aqueous slags from a blast furnace is added to radioactive wastes to solidify them. In the case of medium or low level radioactive wastes, the solidification agent is added by 200 parts by weight to 100 parts by weight of the wastes and, in the case of high level wastes, the solidification agent is added in such an amount that the wastes occupy about 20% by weight in the total of the wastes and the solidification agent. Sodium hydroxide used as the alkali metal hydroxide is partially replaced with sodium carbonate, a water-reducing agent such as lignin sulfonate is added to improve the fluidity and suppress the leaching rate and the wastes are solidified in a drum can. In this way, corrosions of the vessel can be suppressed by the alkaline nature and the compression strength, heat stability and the like of the product also become excellent. (Sekiya, K.)

  5. Radioactive waste management in Canada

    International Nuclear Information System (INIS)

    Hawley, N.J.

    1986-09-01

    This bibliography is an up-date to AECL-6186(Rev 3), 1952-1982, 'Radioactive Waste Management in Canada AECL Publications and Other Literature' compiled by Dianne Wallace. Canadian publications from outside contractors concerning the Canadian Nuclear Fuel Waste Management Program are included in addition to Atomic Energy of Canada Limited reports and papers. 252 refs

  6. The incineration of radioactive waste

    International Nuclear Information System (INIS)

    Thegerstroem, C.

    1980-03-01

    In this study, made on contract for the Swedish Nuclear Power Inspectorate, different methods for incineration of radioactive wastes are reviewed. Operation experiences and methods under development are also discussed. The aim of incineration of radioactive wastes is to reduce the volume and weight of the wastes. Waste categories most commonly treated by incineration are burnable solid low level wastes like trash wastes consisting of plastic, paper, protective clothing, isolating material etc. Primarily, techniques for the incineration of this type of waste are described but incineration of other types of low level wastes like oil or solvents and medium level wastes like ion-exchange resins is also briefly discussed. The report contains tables with condensed data on incineration plants in different countries. Problems encountered, experiences and new developments are reviewed. The most important problems in incineration of radioactive wastes have been plugging and corrosion of offgas systems, due to incomplete combustion of combustion of materials like rubber and PVC giving rise to corrosive gases, combined with inadequate materials of construction in heat-exchangers, channels and filter housings. (author)

  7. Development of decontamination system for radioactive matter on paved road using dry ice blast method

    International Nuclear Information System (INIS)

    Nagamine, Haruo; Wakayama, Masanori; Nakamura, Hiroshi

    2014-01-01

    As a decontamination method for paved road surface, the 'Dry Ice Blast Decontamination System' has been developed. This decontamination system has characteristic as follows; 1) Generation of decontamination waste is extremely small, 2) not using water, 3) not damaging the pavement surface. In actual decontamination work, more than 60% average (maximum 84%) reduction rate of the radiation counting rate has been achieved. In addition to these features, this system prevent the diffusion into the surrounding and the radiation exposure of workers by sucking waste quickly using attached dust collecting function. This system is also characterized in that it does not cause a difference in skill by the operator because of faceted decontamination using repetitive motion by concatenating three pellet injection nozzle and self-propelled decontamination machine. (author)

  8. Radioactive waste management and disposal

    International Nuclear Information System (INIS)

    Simon, R.; Orlowski, S.

    1980-01-01

    The first European Community conference on Radioactive Waste Management and Disposal was held in Luxembourg, where twenty-five papers were presented by scientists involved in European Community contract studies and by members of the Commission's scientific staff. The following topics were covered: treatment and conditioning technology of solid intermediate level wastes, alpha-contaminated combustible wastes, gaseous wastes, hulls and dissolver residues and plutonium recovery; waste product evaluation which involves testing of solidified high level wastes and other waste products; engineering storage of vitrified high level wastes and gas storage; and geological disposal in salt, granite and clay formations which includes site characterization, conceptual repository design, waste/formation interactions, migration of radionuclides, safety analysis, mathematical modelling and risk assessment

  9. Method of processing radioactive wastes

    International Nuclear Information System (INIS)

    Takahashi, Toshihiko; Maruko, Morihisa; Takamura, Yoshiyuki.

    1981-01-01

    Purpose: To effectively separate radioactive claddings from the slurry of wasted ion exchange resins containing radioactive claddings. Method: Wasted ion exchange resins having radioactive claddings (fine particles of iron oxides or hydroxide adhered with radioactive cobalt) are introduced into a clad separation tank. Sulfuric acid or sodium hydroxide is introduced to the separation tank to adjust the pH value to 3 - 6. Then, sodium lauryl sulfate is added for capturing claddings and airs are blown from an air supply nozzle to generate air bubbles. The claddings are detached from the ion exchange resins and adhered to the air bubbles. The air bubbles adhered with the claddings float up to the surface of the liquid wastes and then forced out of the separation tank. (Ikeda, J.)

  10. Method of processing radioactive wastes

    International Nuclear Information System (INIS)

    Katada, Katsuo.

    1986-01-01

    Purpose: To improve the management for radioactive wastes containers thereby decrease the amount of stored matters by arranging the radioactive wastes containers in the order of their radioactivity levels. Method: The radiation doses of radioactive wastes containers arranged in the storing area before volume-reducing treatment are previously measured by a dosemeter. Then, a classifying machine is actuated to hoist the containers in the order to their radiation levels and the containers are sent out passing through conveyor, surface contamination gage, weight measuring device and switcher to a volume-reducing processing machine. The volume-reduced products are packed each by several units to the storing containers. Thus, the storing containers after stored for a certain period of time can be transferred in an assembled state. (Kawakami, Y.)

  11. Geological storage of radioactive waste

    International Nuclear Information System (INIS)

    Barthoux, A.

    1983-01-01

    Certain radioactive waste contains substances which present, although they disappear naturally in a progressive manner, a potential risk which can last for very long periods, of over thousands of years. To ensure a safe long-term handling, provision has been made to bury it deep in stable geological structures which will secure its confinement. Radioactive waste is treated and conditioned to make it insoluble and is then encased in matrices which are to immobilize them. The most radioactive waste is thus incorporated in a matrix of glass which will ensure the insulation of the radioactive substances during the first thousands of years. Beyond that time, the safety will be ensured by the properties of the storage site which must be selected from now on. Various hydrogeological configurations have been identified. They must undergo detailed investigations, including even the creation of an underground laboratory. This document also presents examples of underground storage installations which are due to be built [fr

  12. Method for burning radioactive wastes

    International Nuclear Information System (INIS)

    Hattori, Akinori; Tejima, Takaya.

    1987-01-01

    Purpose: To completely process less combustible radioactive wastes with no excess loads on discharge gas processing systems and without causing corrosions to furnace walls. Method: Among combustible radioactive wastes, chlorine-containing less combustible wastes such as chlorine-containing rubbers and vinyl chlorides, and highly heat generating wastes not containing chloride such as polyethylene are selectively packed into packages. While on the other hand, packages of less combustible wastes are charged into a water-cooled jacket type incinerator intermittently while controlling the amount and the interval of charging so that the temperature in the furnace will be kept to lower than 850 deg C for burning treatment. Directly after the completion of the burning, the packed highly heat calorie producing wastes are charged and subjected to combustion treatment. (Yoshihara, H.)

  13. Radioactive waste shredding: Preliminary evaluation

    International Nuclear Information System (INIS)

    Soelberg, N.R.; Reimann, G.A.

    1994-07-01

    The critical constraints for sizing solid radioactive and mixed wastes for subsequent thermal treatment were identified via a literature review and a survey of shredding equipment vendors. The types and amounts of DOE radioactive wastes that will require treatment to reduce the waste volume, destroy hazardous organics, or immobilize radionuclides and/or hazardous metals were considered. The preliminary steps of waste receipt, inspection, and separation were included because many potential waste treatment technologies have limits on feedstream chemical content, physical composition, and particle size. Most treatment processes and shredding operations require at least some degree of feed material characterization. Preliminary cost estimates show that pretreatment costs per unit of waste can be high and can vary significantly, depending on the processing rate and desired output particle size

  14. Operational experience acquired in radioactive waste compaction

    International Nuclear Information System (INIS)

    Bauer, S.; Mohr, P.; Hempelmann, W.

    1993-01-01

    The low-level radioactive waste scrapping facility in the KfK decontamination division was commissioned in 1983. Non-combustible residues and removed system components of low activity, but which are to be handled and disposed of as radioactive waste are in drums, casks or containers delivered to the facility. The waste usually undergoes pretreatment in a crusher, with the volume being definitively reduced at a pressure of 690 bar in the high-pressure compactor. In 1990, the overhead-crane was refurbished for remote control handling in the scrapping caisson. The parts to undergo scrapping are unpacked in the material lock, and then go into the scrapping caisson. It is possible to use here various mechanical and thermal methods to dismantle the respective parts. But most of the parts to undergo scrapping are such as that it is possible to directly pretreat them in the crusher. The obtained scrap is loaded into 180-liter drums. Most of the machinery in the caisson is manually operated. The operating crew enters the caisson in fully ventilated protective overalls. The drums filled with the scrap then go to the high-pressure compactor in the caisson. The compacts are temporarily stored, until recalled depending on their height and filled into drums such as that optimal drum filling is guaranteed

  15. Final disposal of radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    Kroebel, R [Kernforschungszentrum Karlsruhe G.m.b.H. (Germany, F.R.). Projekt Wiederaufarbeitung und Abfallbehandlung; Krause, H [Kernforschungszentrum Karlsruhe G.m.b.H. (Germany, F.R.). Abt. zur Behandlung Radioaktiver Abfaelle

    1978-08-01

    This paper discusses the final disposal possibilities for radioactive wastes in the Federal Republic of Germany and the related questions of waste conditioning, storage methods and safety. The programs in progress in neighbouring CEC countries and in the USA are also mentioned briefly. The autors conclude that the existing final disposal possibilities are sufficiently well known and safe, but that they could be improved still further by future development work. The residual hazard potential of radioactive wastes from fuel reprocessing after about 1000 years of storage is lower that of known inorganic core deposits.

  16. Industrial management of radioactive wastes

    International Nuclear Information System (INIS)

    Lavie, J.M.

    1984-01-01

    This article deals with the present situation in France concerning radioactive waste management. For the short and medium term, that is to say processing and disposal of low and medium level radioactive wastes, there are industrial processes giving all the guarantees for a safe containment, but improvements are possible. For the long term optimization of solution requires more studies of geologic formations. Realization emergency comes less from the waste production than the need to optimize the disposal techniques. An international cooperation exists. All this should convince the public opinion and should develop planning and realization [fr

  17. Radioactive waste below regulatory concern

    International Nuclear Information System (INIS)

    Neuder, S.M.

    1987-01-01

    The U.S. Nuclear Regulatory Commission (NRC) published two notices in the Federal Register concerning radioactive waste below regulatory concern. The first, a Commission Policy Statement and Implementation Plan published August 29, 1986, concerns petition to exempt specific radioactive waste streams from the regulations. The second, an Advanced Notice of Proposed Rulemaking published Decemger 2, 1986, addresses the concept of generic rulemaking by the NRC on radioactive wastes that are below regulatory concern. Radioactive waste determined to be below regulatory concern would not be subject to regulatory control and would not need to go to a licensed low-level radioactive waste disposal site. The Policy Statement and Implementation Plan describe (1) the information a petitioner should file in support of a petition to exempt a specific waste stream, (2) the decision criteria the Commission intends to use for judging the petition, and (3) the internal administrative procedures to use be followed in order to permit the Commission to act upon the petition in an expedited manner

  18. Radioactive Waste Management Program Activities in Croatia

    International Nuclear Information System (INIS)

    Matanic, R.

    2000-01-01

    The concept of radioactive waste management in Croatia comprises three major areas: management of low and intermediate level radioactive waste (LILRW), spent fuel management and decommissioning. All the work regarding radioactive waste management program is coordinated by Hazardous Waste Management Agency (APO) and Croatian Power Utility (HEP) in cooperation with other relevant institutions. Since the majority of work has been done in developing low and intermediate level radioactive waste management program, the paper will focus on this part of radioactive waste management, mainly on issues of site selection and characterization, repository design, safety assessment and public acceptance. A short description of national radioactive waste management infrastructure will also be presented. (author)

  19. CEGB's radioactive waste management strategy

    International Nuclear Information System (INIS)

    Passant, F.H.; Maul, P.R.

    1989-01-01

    The Central Electricity Generating Board (CEGB) produces low-level and intermediate-level radioactive wastes in the process of operating its eight Magnox and five Advanced Gas Cooled Reactor (AGR) nuclear power stations. Future wastes will also arise from a programme of Pressurised Water Reactors (PWRs) and the decommissioning of existing reactors. The paper gives details of how the UK waste management strategy is put into practice by the CEGB, and how general waste management principles are developed into strategies for particular waste streams. (author)

  20. Method of solidifying radioactive wastes

    International Nuclear Information System (INIS)

    Maeda, Masahiko; Kira, Satoshi; Watanabe, Naotoshi; Nagaoka, Takeshi; Akane, Junta.

    1982-01-01

    Purpose: To obtain solidification products of radioactive wastes having sufficient monoaxial compression strength and excellent in water durability upon ocean disposal of the wastes. Method: Solidification products having sufficient strength and filled with a great amount of radioactive wastes are obtained by filling and solidifying 100 parts by weight of chlorinated polyethylene resin and 100 - 500 parts by weight of particular or powderous spent ion exchange resin as radioactive wastes. The chlorinated polyethylene resin preferably used herein is prepared by chlorinating powderous or particulate polyethylene resin in an aqueous suspending medium or by chlorinating polyethylene resin dissolved in an organic solvent capable of dissolving the polyethylene resin, and it is crystalline or non-crystalline chlorinated polyethylene resin comprising 20 - 50% by weight of chlorine, non-crystalline resin with 25 - 40% by weight of chlorine being particularly preferred. (Horiuchi, T.)

  1. Radioactive waste management in Slovenia

    International Nuclear Information System (INIS)

    Fink, K.

    1992-01-01

    The problem of radioactive waste management is both scientifically and technically complex and also deeply emotional issue. In the last twenty years the first two aspects have been mostly resolved up to the point of safe implementation. In the Republic of Slovenia, certain fundamentalist approaches in politics and the use of radioactive waste problem as political marketing tool, make things even more complex. Public involvement in planning and development of radioactive waste management program must be perceived as essential for the success of the program. Education is a precursor to public comprehension and confidence which lead to adequate waste management decisions that will protect the public health, safety and environment without jeopardizing further progress and development. (author) [sl

  2. Standardization of radioactive waste categories

    International Nuclear Information System (INIS)

    1970-01-01

    A large amount of information about most aspects of radioactive waste management has been accumulated and made available to interested nations in recent years. The efficiency of this service has been somewhat hampered because the terminology used to describe the different types of radioactive waste has varied from country to country and indeed from installation to installation within a given country. This publication is the outcome of a panel meeting on Standardization of Radioactive Waste Categories. It presents a simple standard to be used as a common language between people working in the field of waste management at nuclear installations. The purpose of the standard is only to act as a practical tool for increasing efficiency in communicating, collecting and assessing technical and economical information in the common interest of all nations and the developing countries in particular. 20 refs, 1 fig., 3 tabs

  3. Underground radioactive waste disposal concept

    International Nuclear Information System (INIS)

    Frgic, L.; Tor, K.; Hudec, M.

    2002-01-01

    The paper presents some solutions for radioactive waste disposal. An underground disposal of radioactive waste is proposed in deep boreholes of greater diameter, fitted with containers. In northern part of Croatia, the geological data are available on numerous boreholes. The boreholes were drilled during investigations and prospecting of petroleum and gas fields. The available data may prove useful in defining safe deep layers suitable for waste repositories. The paper describes a Russian disposal design, execution and verification procedure. The aim of the paper is to discuss some earlier proposed solutions, and present a solution that has not yet been considered - lowering of containers with high level radioactive waste (HLW) to at least 500 m under the ground surface.(author)

  4. Plastic solidification of radioactive wastes

    International Nuclear Information System (INIS)

    Moriyama, Noboru

    1981-01-01

    Over 20 years have elapsed after the start of nuclear power development, and the nuclear power generation in Japan now exceeds the level of 10,000 MW. In order to meet the energy demands, the problem of the treatment and disposal of radioactive wastes produced in nuclear power stations must be solved. The purpose of the plastic solidification of such wastes is to immobilize the contained radionuclides, same as other solidification methods, to provide the first barrier against their move into the environment. The following matters are described: the nuclear power generation in Japan, the radioactive wastes from LWR plants, the position of plastic solidification, the status of plastic solidification in overseas countries and in Japan, the solidification process for radioactive wastes with polyethylene, and the properties of solidified products, and the leachability of radionuclides in asphalt solids. (J.P.N.)

  5. Research programme on radioactive wastes

    International Nuclear Information System (INIS)

    Eckhardt, A.; Hufschmid, P.; Jordi, S.; Schanne, M.; Vigfusson, J.

    2009-11-01

    This report for the Swiss Federal Department of the Environment, Transport, Energy and Communication (DETEC) takes a look at work done within the framework of the research programme on radioactive wastes. The paper discusses the development of various projects and the associated organisations involved. Both long-term and short-term topics are examined. The long-term aspects of handling radioactive wastes include organisation and financing as well as the preservation of know-how and concepts for marking the repositories. Communication with the general public on the matter is looked at along with public perception, opinion-making and acceptance. Waste storage concepts are looked at in detail and aspects such as environmental protection, monitoring concepts, retrievability and encasement materials are discussed. Finally, ethical and legal aspects of radioactive waste repositories are examined. The paper is completed with appendixes dealing with planning, co-ordination and the responsibilities involved

  6. An overview of the AECB's strategy for regulating radioactive waste management activities

    International Nuclear Information System (INIS)

    Hamel, P.E.; Smythe, W.D.; Duncan, R.M.; Coady, J.R.

    1982-07-01

    The goal of the Canadian Atomic Energy Control Board in regulating the management of radioactive wastes is to ensure the protection of people and the environment. A program of cooperation with other agencies, identification and adoption of baselines for describing radioactive wastes, development of explicit criteria and requirements, publication of related regulatory documents, establishment of independent consultative processes with technical experts and the public, and maintenance of awareness and compatibility with international activities is underway. Activities related to high-level radioactive waste, uranium mine and mill tailings, low- and medium-level wastes, radioactive effluents from nuclear facilities, and decommissioning and decontamination are described

  7. Institutional radioactive waste management in the Nuclear Research Institute Rez plc

    International Nuclear Information System (INIS)

    Kovarik, P.; Svoboda, K.; Podlaha, J.

    2008-01-01

    Nuclear research institute Rez, plc. (mentioned below as NRI) has had a dominant position in the area of the nuclear research and development in the Czech Republic, the Central and the Eastern Europe. Naturally, the radioactive waste management is an integral part of the nuclear industry, research and development. For that reason, there is Centre of the radioactive waste management (mentioned below as Centre) in the NRI. This Centre is engaged in the radioactive waste treatment, decontamination, characterisation, decommissioning and other relevant activities. This paper describes the system of technology and other information about institutional radioactive waste management in the NRI. (authors)

  8. The separation of silica nanoparticle by cetyltrimethylammonium bromide from decontamination foam waste

    International Nuclear Information System (INIS)

    Choi, Man Soo; Yoon, In Ho; Jung, Chong Hun; Moon, Jei Kwon; Choi, Wang Kyu

    2016-01-01

    Decontamination foam has been considered as a potential application for the cleaning of radioactive contaminant in the field of metallic walls, overhead surfaces, and complex components. Moreover, foam decontamination could generate the low secondary waste amount owing to its volume expansion. In order to increase the decontamination efficiency, it is essential to improve the foam stability with low amount of chemical decontamination agent. Yoon et al. reported that the silica nanoparticle containing surfactant increased the foam stability compared to only surfactant solution[3]. Nanoparticle has been used with surfactant, which they adsorb at fluid/fluid interface, to stabilize emulsions or bubbles in foams. Despite of improving foam stability, they still used the surfactant, silica nanoparticle (1 wt%), and viscosifier. In addition, it is difficult to separate silica nanoparticle from decontamination solution. Because nanoparticles differ from classical solid particles due to smaller particle size and their specific properties. Thus, the separation method for nanoparticle should be also developed with high recovery rates. The flocculation of silica nanoparticle added by CTAB could be quickly achieved for only 30 min. The particle size of SiO_2 was larger as CTAB amount increased, and SiO_2 contents in the top solution were decreased after centrifugation

  9. The separation of silica nanoparticle by cetyltrimethylammonium bromide from decontamination foam waste

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Man Soo; Yoon, In Ho; Jung, Chong Hun; Moon, Jei Kwon; Choi, Wang Kyu [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    Decontamination foam has been considered as a potential application for the cleaning of radioactive contaminant in the field of metallic walls, overhead surfaces, and complex components. Moreover, foam decontamination could generate the low secondary waste amount owing to its volume expansion. In order to increase the decontamination efficiency, it is essential to improve the foam stability with low amount of chemical decontamination agent. Yoon et al. reported that the silica nanoparticle containing surfactant increased the foam stability compared to only surfactant solution[3]. Nanoparticle has been used with surfactant, which they adsorb at fluid/fluid interface, to stabilize emulsions or bubbles in foams. Despite of improving foam stability, they still used the surfactant, silica nanoparticle (1 wt%), and viscosifier. In addition, it is difficult to separate silica nanoparticle from decontamination solution. Because nanoparticles differ from classical solid particles due to smaller particle size and their specific properties. Thus, the separation method for nanoparticle should be also developed with high recovery rates. The flocculation of silica nanoparticle added by CTAB could be quickly achieved for only 30 min. The particle size of SiO{sub 2} was larger as CTAB amount increased, and SiO{sub 2} contents in the top solution were decreased after centrifugation.

  10. Method to decontaminate radioactive water in the presence of impurity substances

    Energy Technology Data Exchange (ETDEWEB)

    Krause, H; Hepp, H; Kluger, W; Geisel, R

    1978-08-24

    The method ensures the removal of radioactive substances from hard-to-decontaminate water. Before decontamination proper, ozone or chlorine is added to the water for demasking. The daughter products (oxidized radionuclides) of ozone are gaseous while the decay products of the chlorine remain in the water in the form of salts. In both cases, complex or chelate formation during the subsequent decontamination process is avoided.

  11. Method to decontaminate radioactive water in the presence of impurity substances

    International Nuclear Information System (INIS)

    Krause, H.; Hepp, H.; Kluger, W.; Geisel, R.

    1978-01-01

    The method ensures the removal of radioactive substances from hard-to-decontaminate water. Before decontamination proper, ozone or chlorine is added to the water for demasking. The daughter products (oxidized radionuclides) of ozone are gaseous while the decay products of the chlorine remain in the water in the form of salts. In both cases, complex or chelate formation during the subsequent decontamination process is avoided. (DG) [de

  12. Some aspects of radioactive contamination and decontamination of the Chernobyl' NPP accident zone territory

    International Nuclear Information System (INIS)

    Samojlenko, Yu.N.; Nad''yarnykh, G.V.; Teplitskij, A.L.; Shilin, S.A.

    1989-01-01

    Data are presented on the radioactive contamination of the 30-km zone, on the radionuclide (RN) distribution in soils and on the RN migration in grounds. During 1986-1988 were tested over 20 techniques for territory decontamination and were found out the most optimal ones. The first stage of decontamination was removal of an upper contaminated soil layer. The second stage was prolonged chemical fixation of dusting decontaminated soil areas. 3 tabs

  13. The Hot Cell Radioactive Waste Concept of Forschungszentrum Juelich

    International Nuclear Information System (INIS)

    Pott, G.; Halaszovich, St.

    1999-01-01

    During the last 30 years extensive scientific examinations on radioactive metals,ceramics and fuel elements have been carried out, so that a high volume of waste has resulted. Also from the dismantling of irradiated facilities metallics waste has o be handed. Prior for equipment repair the hot cell involved has to be decontaminated and a large amount of lower active waste is produced. The waste is collected for conditioning and storing. There are different categories as: low active liquid waste, low active burnable waste, fuel waste, low and high active metallic waste. For each waste category special transport container are used. For the volume reduction our Waste Department is equipped with special facilities e.g.: furnace for burning, drying, liquids evaporators, hydraulic press for pelletizing, decontamination box for the dismantling ad cleaning of components. After conditioning the waste will be stored on site or transported to final storage in a salt mine (ERAM) . Special documentation has to be done for the acceptance of this waste

  14. Assessment of the Characteristic Aggregates during a Decontamination of Contaminated Concrete Waste

    International Nuclear Information System (INIS)

    Min, B. Y.; Choi, W. K.; Oh, W. Z.; Jung, C. H.; Park, J. W.

    2008-01-01

    During a decommissioning of nuclear plants and facilities, large quantities of slightly contaminated concrete wastes are generated. The exposure to radiation over many years could be hazardous to human health. In Korea, the decontamination and decommissioning of the retired TRIGA MARK II and III research reactors and a uranium conversion plant at the Korea Atomic Energy Research Institute (KAERI) has been under way. Hundreds of tons of concrete wastes are expected from the D and D of these facilities. Typically, the contaminated layer is only 1∼10mm thick because cementitious materials are porous media, the penetration of radionuclides may occur up to several centimeters from the surface of a material. Contaminated concrete waste can be of two forms, either a surface or bulk contamination. Bulk contamination usually arises from a neutron activation of nuclides during the service life on a component. Surface activity can be a loose contamination arising from a deposition of nuclides from an interfacing medium, and it also can be tightly bound. Most of the dismantled concrete wastes are slightly contaminated rather than activated. This decontamination can be accomplished during the course of a separation of the concrete wastes contaminated with radioactive materials through a thermal treatment step of the radionuclide (e.g. cesium and strontium), transportation of the radionuclide to fine aggregates through a mechanical treatment step such as a crushing, milling and sieving. Produced fine powder (paste) should be stabilized for the final disposal. Melting technology has been known as the one of the most effective technologies for a stabilization and volume reduction to the paste. Therefore, a melting may be a last step in the decontamination of a contaminated paste. The aim of this study was to establish the separation conditions for an optimum decontamination for the treatment of concrete wastes contaminated with radionuclides. The separation tests had been

  15. Chemical precipitation processes for the treatment of aqueous radioactive waste

    International Nuclear Information System (INIS)

    1992-01-01

    Chemical precipitation by coagulation-flocculation and sedimentation has been commonly used for many years to treat liquid (aqueous) radioactive waste. This method allows the volume of waste to be substantially reduced for further treatment or conditioning and the bulk of the waste to de discharged. Chemical precipitation is usually applied in combination with other methods as part of a comprehensive waste management scheme. As with any other technology, chemical precipitation is constantly being improved to reduce cost to increase the effectiveness and safety on the entire waste management system. The purpose of this report is to review and update the information provided in Technical Reports Series No. 89, Chemical Treatment of Radioactive Wastes, published in 1968. In this report the chemical methods currently in use for the treatment of low and intermediate level aqueous radioactive wastes are described and illustrated. Comparisons are given of the advantages and limitations of the processes, and it is noted that good decontamination and volume reduction are not the only criteria according to which a particular process should be selected. Emphasis has been placed on the need to carefully characterize each waste stream, to examine fully the effect of segregation and the importance of looking at the entire operation and not just the treatment process when planning a liquid waste treatment facility. This general approach includes local requirements and possibilities, discharge authorization, management of the concentrates, ICRP recommendations and economics. It appears that chemical precipitation process and solid-liquid separation techniques will continue to be widely used in liquid radioactive waste treatment. Current research and development is showing that combining different processes in one treatment plant can provide higher decontamination factors and smaller secondary waste arisings. Some of these processes are already being incorporated into new and

  16. Activities of the IAEA in the area of radioactive waste management

    International Nuclear Information System (INIS)

    Efremenkov, V.M.

    1998-01-01

    The IAEA activity in the area of radioactive waste management mainly concentrates on three areas, namely: (i) the establishing of international principles and standards for the safe management of radioactive waste; (ii) to promote the development and improvements of waste processing technologies, including handling, treatment, conditioning, packaging, storage and disposal of waste; and (iii) assisting developing Member States in establishing good waste management practice through dissemination of technical information, providing technical support and training. These activities are carried out by the Waste Technology Section, Department of Nuclear Energy, and the Waste Safety Section, Department of Nuclear Safety. The Waste Technology Section's activities are organized into four subprogrammes covering: the handling, processing and storage of radioactive waste; radioactive waste disposal; technology and management aspects of decontamination, decommissioning and environmental restoration; and waste management information and support services

  17. Nuclear engineering questions: power, reprocessing, waste, decontamination, fusion

    International Nuclear Information System (INIS)

    Walton, R.D. Jr.

    1979-01-01

    This volume contains papers presented at the chemical engineering symposium on nuclear questions. Specific questions addressed by the speakers included: nuclear power - why and how; commercial reprocessing - permanent death or resurrection; long-term management of commercial high-level wastes; long-term management of defense high-level waste; decontamination and decommissioning of nuclear facilities, engineering aspects of laser fusion I; and engineering aspects of laser fusion II. Individual papers have been input to the Energy Data Base previously

  18. Radioactive waste repository study

    International Nuclear Information System (INIS)

    1978-11-01

    This is the second part of a report of a preliminary study for AECL. It considers the requirements for an underground waste repository for the disposal of wastes produced by the Canadian Nuclear Fuel Program. The following topics are discussed with reference to the repository: 1) geotechnical assessment, 2) hydrogeology and waste containment, 3) thermal loading and 4) rock mechanics. (author)

  19. Where are the radioactive wastes in France? Brochure no 6

    International Nuclear Information System (INIS)

    2004-01-01

    This document is one of the 6 regional brochures which make the geographical inventory of radioactive wastes in France. For each region, a table lists the recorded sites and a regional map localizes those having a detailed descriptive file. These files mention the most important waste owners (medical, research, nuclear and military industries), the type of waste and the type of management. The polluted sites are also mentioned, even if they are already decontaminated. The volume no 6 concerns the Aquitaine, Limousin, Midi-Pyrenees and Poitou-Charentes regions. (J.S.)

  20. Where are the radioactive wastes in France? Brochure no 3

    International Nuclear Information System (INIS)

    2004-01-01

    This document is one of the 6 regional brochures which make the geographical inventory of radioactive wastes in France. For each region, a table lists the recorded sites and a regional map localizes those having a detailed descriptive file. These files mention the most important waste owners (medical, research, nuclear and military industries), the type of waste and the type of management. The polluted sites are also mentioned, even if they are already decontaminated. The volume no 3 concerns the Nord-Pas-de-Calais, Picardie, Champagne-Ardenne, Bourgogne, Alsace, Lorraine, Franche-Comte regions. (J.S.)

  1. Where are the radioactive wastes in France? Brochure no 1

    International Nuclear Information System (INIS)

    2004-01-01

    This document is one of the 6 regional brochures which make the geographical inventory of radioactive wastes in France. For each region, a table lists the recorded sites and a regional map localizes those having a detailed descriptive file. These files mention the most important waste owners (medical, research, nuclear and military industries), the type of waste and the type of management. The polluted sites are also mentioned, even if they are already decontaminated. The volume no 1 concerns the Ile-de-France region (Paris region). (J.S.)

  2. Where are the radioactive wastes in France? Brochure no 5

    International Nuclear Information System (INIS)

    2004-01-01

    This document is one of the 6 regional brochures which make the geographical inventory of radioactive wastes in France. For each region, a table lists the recorded sites and a regional map localizes those having a detailed descriptive file. These files mention the most important waste owners (medical, research, nuclear and military industries), the type of waste and the type of management. The polluted sites are also mentioned, even if they are already decontaminated. The volume no 5 concerns the Languedoc-Roussillon and Provence-Alpes-Cote d'Azur regions, Corsica, and the overseas departements and territories. (J.S.)

  3. Where are the radioactive wastes in France? Brochure no 2

    International Nuclear Information System (INIS)

    2004-01-01

    This document is one of the 6 regional brochures which make the geographical inventory of radioactive wastes in France. For each region, a table lists the recorded sites and a regional map localizes those having a detailed descriptive file. These files mention the most important waste owners (medical, research, nuclear and military industries), the type of waste and the type of management. The polluted sites are also mentioned, even if they are already decontaminated. The volume no 2 concerns the Bretagne (Brittany), Pays de la Loire, Haute-Normandie, Basse-Normandie and Centre regions. (J.S.)

  4. Development of a new process for radioactive decontamination of painted carbon steel structures by molten salt stripping

    International Nuclear Information System (INIS)

    Lainetti, Paulo Ernesto de O.

    2009-01-01

    The main practical difficulty associated to the task of the dismantling and decommissioning of the old Nuclear Fuel Cycle facilities of the IPEN has been the large amount of radioactive waste generated in the dismantling operations. The waste is mainly in the form of contaminated carbon steel structures. In the IPEN, the presence of contamination in the equipment, structures and buildings, although restricted to low and average activity levels, constituted an important concern due, on one hand, to the great volume of radioactive wastes generated during the operations. On the other hand, it should be outstanding that the capacity of stockpiling the radioactive wastes in IPEN found been exhausted. Basically, for the dismantling operations of the units, the main radionuclides of interest, from the radioprotection point of view, are U of natural isotopic composition and the thorium-232. Some attempts were done to reduce the volume of those wastes. Nevertheless, the only decontamination available methods were chemical methods such as pickling/rinsing treatments employing acid solutions (with nitric or citric acids) and alkaline solutions (sodium hydroxide). Different concentrations of such solutions were tested. The results obtained in the employed processes were not satisfactory. Ultrasonic equipment available was also employed in an attempt to increase the efficiency of decontamination. The choice of a coating removal process for radioactive material in the form of carbon steel pieces must have into account, among other factors, that it is not necessary a high quality of finishing, since the main objective is the release of the material as iron scrap. This paper describes the development of a new method for surface decontamination by immersion in molten salt baths. (author)

  5. Radioactive liquid waste processing system

    International Nuclear Information System (INIS)

    Noda, Tetsuya; Kuramitsu, Kiminori; Ishii, Tomoharu.

    1997-01-01

    The present invention provides a system for processing radioactive liquid wastes containing laundry liquid wastes, shower drains or radioactive liquid wastes containing chemical oxygen demand (COD) ingredients and oil content generated from a nuclear power plant. Namely, a collecting tank collects radioactive liquid wastes. A filtering device is connected to the exit of the collective tank. A sump tank is connected to the exit of the filtering device. A powdery active carbon supplying device is connected to the collecting tank. A chemical fluid tank is connected to the collecting tank and the filtering device by way of chemical fluid injection lines. Backwarding pipelines connect a filtered water flowing exit of the filtering device and the collecting tank. The chemical solution is stored in the chemical solution tank. Then, radioactive materials in radioactive liquid wastes generated from a nuclear power plant are removed by the filtering device. The water quality standard specified in environmental influence reports can be satisfied. In the filtering device, when the filtering flow rate is reduced, the chemical fluid is supplied from the chemical fluid tank to the filtering device to recover the filtering flow rate. (I.S.)

  6. Decontamination of radioactive liquid systems by modified clay minerals

    OpenAIRE

    Petrushka, Ihor; Moroz, Olexandr

    2016-01-01

    The process mechanism for sorption of strontium and cesium from liquid radioactive waste using modified bentonites from Yaziv sulfur deposit was investigated. The technique for predicting the intensity of the sorption process based on the comparison of experimental and calculated values of mass transfer coefficients was proposed. It was detected that the process of sorption extraction of strontium and cesium from liquid medium using modified clay minerals may be bes...

  7. Classification of solid wastes as non-radioactive wastes

    International Nuclear Information System (INIS)

    Suzuki, Masahiro; Tomioka, Hideo; Kamike, Kozo; Komatu, Junji

    1995-01-01

    The radioactive wastes generally include nuclear fuels, materials contaminated with radioactive contaminants or neutron activation to be discarded. The solid wastes arising from the radiation control area in nuclear facilities are used to treat and stored as radioactive solid wastes at the operation of nuclear facilities in Japan. However, these wastes include many non-radioactive wastes. Especially, a large amount of wastes is expected to generate at the decommissioning of nuclear facilities in the near future. It is important to classify these wastes into non-radioactive and radioactive wastes. The exemption or recycling criteria of radioactive solid wastes is under discussion and not decided yet in Japan. Under these circumstances, the Nuclear Safety Committee recently decided the concept on the category of non-radioactive waste for the wastes arising from decommissioning of nuclear facilities. The concept is based on the separation and removal of the radioactively contaminated parts from radioactive solid wastes. The residual parts of these solid wastes will be treated as non-radioactive waste if no significant difference in radioactivity between the similar natural materials and materials removed the radioactive contaminants. The paper describes the procedures of classification of solid wastes as non-radioactive wastes. (author)

  8. Report on radioactive waste disposal

    International Nuclear Information System (INIS)

    1993-01-01

    The safe management of radioactive wastes constitutes an essential part of the IAEA programme. A large number of reports and conference proceedings covering various aspects of the subject have been issued. The Technical Review Committee on Underground Disposal (February 1988) recommended that the Secretariat issue a report on the state of the art of underground disposal of radioactive wastes. The Committee recommended the need for a report that provided an overview of the present knowledge in the field. This report covers the basic principles associated with the state of the art of near surface and deep geological radioactive waste disposal, including examples of prudent practice, and basic information on performance assessment methods. It does not include a comprehensive description of the waste management programmes in different countries nor provide a textbook on waste disposal. Such books are available elsewhere. Reviewing all the concepts and practices of safe radioactive waste disposal in a document of reasonable size is not possible; therefore, the scope of this report has been limited to cover essential parts of the subject. Exotic disposal techniques and techniques for disposing of uranium mill tailings are not covered, and only brief coverage is provided for disposal at sea and in the sea-bed. The present report provides a list of references to more specialized reports on disposal published by the IAEA as well as by other bodies, which may be consulted if additional information is sought. 108 refs, 22 figs, 2 tabs

  9. Waste minimization fundamental principles used in radioactive waste management plan for decommissioning of a CANDU - 600 nuclear power plant

    International Nuclear Information System (INIS)

    Barariu, Gheorghe; Georgescu, Roxana Cristiana; Sociu, Florin

    2009-01-01

    The objectives of waste minimization are to limit the generation and spread of radioactive contamination and to reduce the amount of wastes for storage and disposal, thereby limiting any consequent environmental impact, as well as the total costs associated with contaminated material management. This objective will be achieved by: reviewing the sources and characteristics of radioactive materials arising from Decontamination and Decommissioning (D and D) activities; reviewing waste minimization principles and current practical applications, together with regulatory, technical, financial and political factors influencing waste minimization practices; and reviewing current trends in improving waste minimization practices during Decontamination and Decommissioning. The main elements of a waste minimization strategy can be grouped into four areas: source reduction, prevention of contamination spread, recycle and reuse, and waste management optimization. For sustaining this objective, the following principles and procedures of wastes management are taken into account: safety and environment protection principles; principles regarding the facility operation; quality assurance procedures; procedures for material classification and releasing. (authors)

  10. Radioactive waste management in Belgium

    International Nuclear Information System (INIS)

    Dejonghe, P.

    1977-01-01

    In 1975 the research association BELGOWASTE was founded in order to prepare a technical and administrative plan for radioactive waste management in Belgium and to take the preliminary steps for establishing an organization which would be responsible for this activity. The association made a survey of all forecasts concerning radioactive waste production by power reactors and the fuel cycle industry based on various schemes of development of the nuclear industry. From the technical point of view, the reference plan for waste management envisages: Purification at the production site of large volumes of low-level effluents; construction of a central facility for the treatment and intermediate storage of process concentrates (slurries, resins, etc.) and medium-level waste; centralization assumes the making of adequate arrangements for transporting waste before final treatment; maximum recovery of plutonium from waste and treatment of resiudal material by incineration at very high temperatures; treatment at the production site of high-level effluents from irradiated fuel reprocessing; construction of an underground long-term storage site for high-level treated waste and plutonium fuel fabrication waste; deep clay formations are at present preferred; disposal of low-level treated waste into the Atlantic ocean. It is intended to entrust the entire responsibility for treatment, disposal and storage of treated waste to a single body with participation by the State, the Nuclear Energy Research Centre (CEN/SCK), the electricity companies and Belgonucleaire. The partners intend to set up their facilities and services in the area of Mol [fr

  11. Risk comparison of different treatment and disposal strategies of high level liquid radioactive waste

    International Nuclear Information System (INIS)

    Fang Dong

    1997-01-01

    The risk of different treatment and disposal strategies of high level liquid radioactive waste from spent fuel reprocessing is estimated and compared. The conclusions obtained are that risk difference from these strategies is very small and high level liquid waste can be reduced to middle and low level waste, if the decontamination factor for 99 Tc is large enough, which is the largest risk contributor in the high level radioactive waste from spent fuel reprocessing. It is also shown that the risk of high level radioactive waste could be reduced by the technical strategy of combining partitioning and transmutation

  12. Radioactive waste gas processing systems

    International Nuclear Information System (INIS)

    Kita, Kaoru; Minemoto, Masaki; Takezawa, Kazuaki.

    1981-01-01

    Purpose: To effectively separate and remove only hydrogen from hydrogen gas-containing radioactive waste gases produced from nuclear power plants without using large scaled facilities. Constitution: From hydrogen gas-enriched waste gases which contain radioactive rare gases (Kr, Xe) sent from the volume control tank of a chemical volume control system, only the hydrogen is separated in a hydrogen separator using palladium alloy membrane and rare gases are concentrated, volume-decreased and then stored. In this case, an activated carbon adsorption device is connected at its inlet to the radioactive gas outlet of the hydrogen separator and opened at its outlet to external atmosphere. In this system, while only the hydrogen gas permeates through the palladium alloy membrane, other gases are introduced, without permeation, into the activated carbon adsorption device. Then, the radioactive rare gases are decayed by the adsorption on the activated carbon and then released to the external atmosphere. (Furukawa, Y.)

  13. Software for radioactive wastes database

    International Nuclear Information System (INIS)

    Souza, Eros Viggiano de; Reis, Luiz Carlos Alves

    1996-01-01

    A radioactive waste database was implemented at CDTN in 1991. The objectives are to register and retrieve information about wastes ge in 1991. The objectives are to register and retrieve information about wastes generated and received at the Centre in order to improve the waste management. Since 1995, the database has being reviewed and a software has being developed aiming at processing information in graphical environment (Windows 95 and Windows NT), minimising the possibility of errors and making the users access more friendly. It was also envisaged to ease graphics and reports edition and to make this database available to other CNEN institutes and even to external organizations. (author)

  14. Public debate on radioactive wastes

    International Nuclear Information System (INIS)

    2005-01-01

    The definition and implementation of safe and perennial solutions for the management of radioactive wastes is a necessity from the point of view of both the nuclear industrialists and the public authorities, but also of the overall French citizens. For the low- or medium-level or short living radioactive wastes, some solutions have been defined are are already implemented. On the other hand, no decision has been taken so far for the long living medium to high-level radioactive wastes. Researches are in progress in this domain according to 3 ways of research defined by the law from December 30, 1991: separation-transmutation, disposal in deep underground, and long duration surface or sub-surface storage. This paper presents in a digest way, the principle, the results obtained so far, and the perspectives of each of the three solutions under study. (J.S.)

  15. Method of processing radioactive wastes

    International Nuclear Information System (INIS)

    Funabashi, Kiyomi; Sugimoto, Yoshikazu; Kikuchi, Makoto; Yusa, Hideo.

    1979-01-01

    Purpose: To obtain solidified radioactive wastes at high packing density by packing radioactive waste pellets in a container and then packing and curing a thermosetting resin therein. Method: Radioactive liquid wastes are dried into power and subjected to compression molding. The pellets thus obtained are supplied in a predetermined amount from the hopper to the inside of a drum can. Then, thermosetting plastic and a curing agent are filled in the drum can. Gas between the pellets is completely expelled by the intrusion of the thermosetting resin and the curing agent among the pellets. Thereafter, the drum can is heated by a heater and curing is effected. After the curing, the drum can is sealed. (Kawakami, Y.)

  16. Old radioactive waste storage sites

    International Nuclear Information System (INIS)

    2008-01-01

    After a recall of the regulatory context for the management of old sites used for the storage of radioactive wastes with respect with their activity, the concerned products, the disposal or storage type, this document describes AREVA's involvement in the radioactive waste management process in France. Then, for the different kinds of sites (currently operated sites having radioactive waste storage, storage sites for uranium mineral processing residues), it indicates their location and name, their regulatory status and their control authority, the reference documents. It briefly presents the investigation on the long term impact of uranium mineral processing residues on health and environment, evokes some aspects of public information transparency, and presents the activities of an expertise group on old uranium mines. The examples of the sites of Bellezane (uranium mineral processing residues) and COMURHEX Malvesi (assessment of underground and surface water quality at the vicinity of this installation) are given in appendix

  17. Where are the radioactive wastes in France? 2006 geographic inventory of radioactive wastes

    International Nuclear Information System (INIS)

    2006-01-01

    This document presents, by region, the localization of existing radioactive wastes in France at the date of December 31, 2004. In addition to the geographic situation, this inventory is presented by site and by category of waste producer or owner. The collection of these data is based on the free declaration made by waste owners or producers. The gathered information has been reformatted and homogenized and is reported in a synthetic way in the form of tables and files. Thus, 899 sites have been indexed, among which 159 are presented in the form of a detailed file. For each region, a table details the registered sites by category of producer/owner and the location of the main ones is reported on a regional map. The registered waste producers are radionuclide users belonging to 4 specific domains: medical, research, industry and national defense. The corresponding wastes are in general modest both in quantity and activity. The sites polluted by radioactive substances are also mentioned, even if they are already decontaminated or not. (J.S.)

  18. Radioactive waste repository study

    International Nuclear Information System (INIS)

    1978-11-01

    This is the first part of a report of a preliminary study for Atomic Energy of Canada Limited. It considers the requirements for an underground waste repository for the disposal of wastes produced by the Canadian Nuclear Fuel Program. The following topics are discussed with reference to the repository: 1) underground layout, 2) cost estimates, 3) waste handling, 4) retrievability, decommissioning, sealing and monitoring, and 5) research and design engineering requirements. (author)

  19. Management of Radioactive Wastes in Developing Countries

    International Nuclear Information System (INIS)

    Abdel Ghani, A.H.

    1999-01-01

    The management of radioactive wastes is one area of increasing interest especially in developing countries having more and more activities in the application of radioisotopes in medicine, research and industry. For a better understanding of radioactive waste management in developing countries this work will discuss the following items:Classification of countries with respect to waste management programs. Principal Radionuclides used in medicine, biological research and others and the range of radioactivity commonly used. Estimation of radioactive waste volumes and activities. Management of liquid wastes Collection. Treatment. Management of small volumes of organic liquid waste. Collection Treatment. Packaging and storage of radioactive wastes

  20. Treatment methods for radioactive mixed wastes in commercial low-level wastes: technical considerations

    International Nuclear Information System (INIS)

    MacKenzie, D.R.; Kempf, C.R.

    1986-01-01

    Treatment options for the management of three generic categories of radioactive mixed waste in commercial low-level wastes (LLW) have been identified and evaluated. These wastes were characterized as part of a BNL study in which LLW generators were surveyed for information on potential chemical hazards in their wastes. The general treatment options available for mixed wastes are destruction, immobilization, and reclamation. Solidification, absorption, incineration, acid digestion, wet-air oxidation, distillation, liquid-liquid wastes. Containment, segregation, decontamination, and solidification or containment of residues, have been considered for lead metal wastes which have themselves been contaminated and are not used for purposes of waste disposal shielding, packaging, or containment. For chromium-containing wastes, solidification, incineration, wet-air oxidation, acid digestion, and containment have been considered. For each of these wastes, the management option evaluation has included an assessment of testing appropriate to determine the effect of the option on both the radiological and potential chemical hazards present

  1. Treatment methods for radioactive mixed wastes in commercial low-level wastes: technical considerations

    Energy Technology Data Exchange (ETDEWEB)

    MacKenzie, D.R.; Kempf, C.R.

    1986-01-01

    Treatment options for the management of three generic categories of radioactive mixed waste in commercial low-level wastes (LLW) have been identified and evaluated. These wastes were characterized as part of a BNL study in which LLW generators were surveyed for information on potential chemical hazards in their wastes. The general treatment options available for mixed wastes are destruction, immobilization, and reclamation. Solidification, absorption, incineration, acid digestion, wet-air oxidation, distillation, liquid-liquid wastes. Containment, segregation, decontamination, and solidification or containment of residues, have been considered for lead metal wastes which have themselves been contaminated and are not used for purposes of waste disposal shielding, packaging, or containment. For chromium-containing wastes, solidification, incineration, wet-air oxidation, acid digestion, and containment have been considered. For each of these wastes, the management option evaluation has included an assessment of testing appropriate to determine the effect of the option on both the radiological and potential chemical hazards present.

  2. Radioactive waste disposal and constitution

    International Nuclear Information System (INIS)

    Stober, R.

    1983-01-01

    The radioactive waste disposal has many dimensions with regard to the constitutional law. The central problem is the corret delimitation between adequate governmental precautions against risks and or the permitted risk which the state can impose on the citizen, and the illegal danger which nobody has to accept. The solution requires to consider all aspects which are relevant to the constitutional law. Therefore, the following analysis deals not only with the constitutional risks and the risks of the nuclear energy, but also with the liberal, overall-economic, social, legal, and democratic aspects of radioactive waste disposal. (HSCH) [de

  3. Radioactive waste integrated management system

    Energy Technology Data Exchange (ETDEWEB)

    Song, D Y; Choi, S S; Han, B S [Atomic Creative Technology, Taejon (Korea, Republic of)

    2003-10-01

    In this paper, we present an integrated management system for radioactive waste, which can keep watch on the whole transporting process of each drum from nuclear power plant temporary storage house to radioactive waste storage house remotely. Our approach use RFID(Radio Frequency Identification) system, which can recognize the data information without touch, GSP system, which can calculate the current position precisely using the accurate time and distance measured from satellites, and the spread spectrum technology CDMA, which is widely used in the area of mobile communication.

  4. Radioactive waste integrated management system

    International Nuclear Information System (INIS)

    Song, D. Y.; Choi, S. S.; Han, B. S.

    2003-01-01

    In this paper, we present an integrated management system for radioactive waste, which can keep watch on the whole transporting process of each drum from nuclear power plant temporary storage house to radioactive waste storage house remotely. Our approach use RFID(Radio Frequency Identification) system, which can recognize the data information without touch, GSP system, which can calculate the current position precisely using the accurate time and distance measured from satellites, and the spread spectrum technology CDMA, which is widely used in the area of mobile communication

  5. Low-level radioactive waste, mixed low-level radioactive waste, and biomedical mixed waste

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    This document describes the proceedings of a workshop entitled: Low-Level Radioactive Waste, Mixed Low-Level Radioactive Waste, and Biomedical Mixed Waste presented by the National Low-Level Waste Management Program at the University of Florida, October 17-19, 1994. The topics covered during the workshop include technical data and practical information regarding the generation, handling, storage and disposal of low-level radioactive and mixed wastes. A description of low-level radioactive waste activities in the United States and the regional compacts is presented

  6. Characterisation of radioactive waste at Cernavoda NPP Unit 1 during normal operation

    International Nuclear Information System (INIS)

    Iordache, M.; Bujoreanu, L.; Popescu, I. V.

    2008-01-01

    During the operation of a nuclear plant significant quantities of radioactive waste results that have a very large diversity. At Cernavoda NPP the important waste categories are non-radioactive wastes and radioactive wastes, which are manipulated completely different from which other. For a CANDU type reactor, the production of radioactive wastes is due to contamination with the following types of radioactive substances: - fission products resulting from nuclear fuel burning; - activated products of materials which form part of the technological systems; - activated products of process fluids. Radioactive wastes can be in solid, liquid or gas form. At Cernavoda NPP the solid wastes represent about 70% of the waste volume which is produced during plant operation and as a consequence of maintenance and decontamination activities. The most important types of solid wastes that are obtained and then handled, processed (if required) and temporarily stored are: solid low level radioactive wastes (classified as compact and non-compact), solid medium radioactive wastes, spent resins, used filters and filter cartridges. The liquid radioactive waste class includes organic liquids (used oil, scintillator liquids and used solvents) and aqueous wastes resulting from process system operating, decontamination and maintenance operations. Radioactive gas wastes occur subsequent to the fission process inside the fuel elements as well as due to the process fluids neutron activation in the reactor systems. As result of the plant operation, iodine, noble gases, tritium and radioactive particles occur and are passed to the ventilation stack in a controlled manner so that an exceeding of the maximum permissible concentrations of radioactive material to the environment should not occur. (authors)

  7. DECONTAMINATION/DESTRUCTION TECHNOLOGY DEMONSTRATION FOR ORGANICS IN TRANSURANIC WASTE

    Energy Technology Data Exchange (ETDEWEB)

    Chris Jones; Javier Del Campo; Patrick Nevins; Stuart Legg

    2002-08-01

    The United States Department of Energy's Savannah River Site has approximately 5000 55-gallon drums of {sup 238}Pu contaminated waste in interim storage. These may not be shipped to WIPP in TRUPACT-II containers due to the high rate of hydrogen production resulting from the radiolysis of the organic content of the drums. In order to circumvent this problem, the {sup 238}Pu needs to be separated from the organics--either by mineralization of the latter or by decontamination by a chemical separation. We have conducted ''cold'' optimization trials and surrogate tests in which a combination of a mediated electrochemical oxidation process (SILVER II{trademark}) and ultrasonic mixing have been used to decontaminate the surrogate waste materials. The surrogate wastes were impregnated with copper oxalate for plutonium dioxide. Our process combines both mineralization of reactive components (such cellulose, rubber, and oil) and surface decontamination of less reactive materials such as polyethylene, polystyrene and polyvinylchloride. By using this combination of SILVER II and ultrasonic mixing, we have achieved 100% current efficiency for the destruction of the reactive components. We have demonstrated that: The degree of decontamination achieved would be adequate to meet both WIPP waste acceptance criteria and TRUPACT II packaging and shipping requirements; The system can maintain near absolute containment of the surrogate radionuclides; Only minimal pre-treatment (coarse shredding) and minimal waste sorting are required; The system requires minimal off gas control processes and monitoring instrumentation; The laboratory trials have developed information that can be used for scale-up purposes; The process does not produce dioxins and furans; Disposal routes for secondary process arisings have already been demonstrated in other programs. Based on the results from Phase 1, the recommendation is to proceed to Phase 2 and use the equipment at Savannah

  8. Cosmic disposal of radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Y; Morisawa, S [Kyoto Univ. (Japan). Faculty of Engineering

    1975-03-01

    The technical and economical possibility and safety of the disposal of highly radioactive waste into cosmos are reviewed. The disposal of highly radioactive waste is serious problem to be solved in the near future, because it is produced in large amounts by the reprocessing of spent fuel. The promising methods proposed are (i) underground disposal, (ii) ocean disposal, (iii) cosmic disposal and (iv) extinguishing disposal. The final disposal method is not yet decided internationally. The radioactive waste contains very long life nuclides, for example transuranic elements and actinide elements. The author thinks the most perfect and safe disposal method for these very long life nuclides is the disposal into cosmos. The space vehicle carrying radioactive waste will be launched safely into outer space with recent space technology. The selection of orbit for vehicles (earth satellite or orbit around planets) or escape from solar system, selection of launching rocket type pretreatment of waste, launching weight, and the cost of cosmic disposal were investigated roughly and quantitatively. Safety problem of cosmic disposal should be examined from the reliable safety study data in the future.

  9. Chemical decontaminating method for stainless steel

    International Nuclear Information System (INIS)

    Onuma, Tsutomu; Akimoto, Hidetoshi.

    1990-01-01

    Radioactive metal wastes comprising passivated stainless steels are chemically decontaminated to such a radioactivity level as that of usual wastes. The present invention for chemically decontaminating stainless steels comprises a first step of immersing decontaminates into a sulfuric acid solution and a second step of immersing them into an aqueous solution prepared by adding oxidative metal salts to sulfuric acid, in which a portion of the surface of stainless steels as decontaminates are chemically ground to partially expose substrate materials and then the above-mentioned decontamination steps are applied. More than 90% of radioactive materials are removed in this method by the dissolution of the exposed substrate materials and peeling of cruds secured to the surface of the materials upon dissolution. This method is applicable to decontamination of articles having complicate shapes, can reduce the amount of secondary wastes after decontamination and also remarkably shorten the time required for decontamination. (T.M.)

  10. Radioactive waste management alternatives

    International Nuclear Information System (INIS)

    Baranowski, F.P.

    1976-01-01

    The information in the US ERDA ''Technical Alternatives Document'' is summarized. The first two points show that waste treatment, interim storage and transportation technologies for all wastes are currently available. Third, an assessment of integrated waste management systems is needed. One such assessment will be provided in our expanded waste management environmental statement currently planned for release in about one year. Fourth, geologies expected to be suitable for final geologic storage are known. Fifth, repository system assessment methods, that is a means to determine and assess the acceptability of a terminal storage facility for nonretrievable storage, must and will be prepared. Sixth, alternatives to geologic storage are not now available. Seventh, waste quantities and characteristics are sensitive to technologies and fuel-cycle modes, and therefore an assessment of these technologies and modes is important. Eighth, and most important, it is felt that the LWR fuel cycle can be closed with current technologies

  11. Method of processing radioactive wastes

    International Nuclear Information System (INIS)

    Nomura, Ichiro; Hashimoto, Yasuo.

    1984-01-01

    Purpose: To improve the volume-reduction effect, as well as enable simultaneous procession for the wastes such as burnable solid wastes, resin wastes or sludges, and further convert the processed materials into glass-solidified products which are much less burnable and stable chemically and thermally. Method: Auxiliaries mainly composed of SiO 2 such as clays, and wastes such as burnable solid wastes, waste resins and sludges are charged through a waste hopper into an incinerating melting furnace comprising an incinerating and a melting furnace, while radioactive concentrated liquid wastes are sprayed from a spray nozzle. The wastes are burnt by the heat from the melting furnace and combustion air, and the sprayed concentrated wastes are dried by the hot air after the combustion into solid components. The solid matters from the concentrated liquid wastes and the incinerating ashes of the wastes are melted together with the auxiliaries in the melting furnace and converted into glass-like matters. The glass-like matters thus formed are caused to flow into a vessel and gradually cooled to solidify. (Horiuchi, T.)

  12. Radioactive waste management in Switzerland

    International Nuclear Information System (INIS)

    Hugi, M.

    2011-01-01

    The Federal Nuclear Safety Inspectorate ENSI is the Supervisory Authority for Nuclear Safety and Security of Swiss Nuclear Facilities. The responsibilities include the evaluation and operational monitoring of the existing five Swiss nuclear power plants, the radioactive waste disposals and the nuclear research facilities. The supervisory area includes project planning, operational issues, and decommissioning of plants. ENSI supervises the formation, handling and storage of radioactive waste, the work on deep geological disposal and the transport of radioactive materials. The disposal of radioactive waste is regulated by the Swiss Nuclear Energy Act (2005) and the Nuclear Energy Ordinance (2005). The protection of humans and the environment must be guaranteed permanently. Waste disposal must be carried out in the own country by deep geological repositories. The licensing procedure for the disposal facilities is concentrated at the federal level, the cooperation of the location canton, neighboring cantons and the neighboring countries is ensured. The general license for the deep geological repository is subject to an optional referendum. The polluter pays principle applies to the disposal of radioactive waste. The waste producers are legally obliged to dispose of them and have founded the National Cooperative for the Storage of Radioactive Waste (Nagra). The federal government is responsible for waste from medicine, industry and research (MIF). The Federal Council approved the waste management certificate for low and intermediate level waste (SMA) in 1988. High-level-waste (HAA) and long-live-intermediate-level-waste (LMA), where approved in 2006. Nagra's disposal concept envisages two separate deep geological repositories for SMA and HAA / LMA in a suitable, tectonically stable, low-permeability rock formation. If a site meets both the SMA and HAA / LMA storage requirements, the selection process may result in a common location for all radioactive waste. Until the

  13. Radioactive waste removing device

    International Nuclear Information System (INIS)

    Sakai, Takuhiko.

    1982-01-01

    Purpose: To cleanup primary coolants for LMFBR type reactors by magnetically generating a high speed rotational flow in the flow of liquid metal, and adsorbing radioactive corrosion products and fission products onto capturing material of a complicated shape. Constitution: Three-phase AC coils for generating a rotational magnetic field are provided to the outside of a container through which liquid sodium is passed to thereby generate a high speed rotational stream in the liquid sodium flowing into the container. A radioactive substance capturing material made of a metal plate such as of nickel and stainless steel in the corrugated shape with shape edges is secured within a flow channel. Magnetic field at a great slope is generated in the flow channel by the capturing material to adsorb radioactive corrosion products and fission products present in the liquid sodium onto the capturing material and removing therefrom. This enables to capture the ferri-magnetic impurities by adsorption. (Moriyama, K.)

  14. Incineration technology for alpha-bearing radioactive waste in Germany

    International Nuclear Information System (INIS)

    Dirks, Friedlich; Pfeiffer, Reinhard

    1997-01-01

    Since 1971 the Karlsruhe Research Center has developed and operated plants for the incineration of radioactive waste. Three incineration plants for pure β/γ solid, α-bearing solid and radioactive liquid waste have been successfully utilized during last two decades. Recently more than 20 year-old β/γ plant was shut down with the economic point of view, mainly due to the recently reduced volume of burnable β/γ waste. Burnable β/γ solid waste is now being treated with α-bearing waste in a α solid incineration plant. The status of incineration technology for α-bearing waste and other radioactive waste treatment technologies, which are now utilized in Karlsruhe Research Center, such as conditioning of incineration ash, supercompaction, scrapping, and decontamination of solid radioactive waste, etc. are introduced in this presentation. Additionally, operational results of the recently installed new dioxin adsorber and fluidized-bed drier for scrubber liquid in α incineration plant are also described in this presentation. (author) 1 tab., 13 figs

  15. Cross flow filtration of aqueous radioactive tank wastes

    International Nuclear Information System (INIS)

    McCabe, D.J.; Reynolds, B.A.; Todd, T.A.; Wilson, J.H.

    1997-01-01

    The Tank Focus Area (TFA) of the Department of Energy (DOE) Office of Science and Technology addresses remediation of radioactive waste currently stored in underground tanks. Baseline technologies for treatment of tank waste can be categorized into three types of solid liquid separation: (a) removal of radioactive species that have been absorbed or precipitated, (b) pretreatment, and (c) volume reduction of sludge and wash water. Solids formed from precipitation or absorption of radioactive ions require separation from the liquid phase to permit treatment of the liquid as Low Level Waste. This basic process is used for decontamination of tank waste at the Savannah River Site (SRS). Ion exchange of radioactive ions has been proposed for other tank wastes, requiring removal of insoluble solids to prevent bed fouling and downstream contamination. Additionally, volume reduction of washed sludge solids would reduce the tank space required for interim storage of High Level Wastes. The scope of this multi-site task is to evaluate the solid/liquid separations needed to permit treatment of tank wastes to accomplish these goals. Testing has emphasized cross now filtration with metal filters to pretreat tank wastes, due to tolerance of radiation and caustic

  16. Disposal of radioactive waste material

    International Nuclear Information System (INIS)

    Cairns, W.J.; Burton, W.R.

    1984-01-01

    A method of disposal of radioactive waste consists in disposing the waste in trenches dredged in the sea bed beneath shallow coastal waters. Advantageously selection of the sites for the trenches is governed by the ability of the trenches naturally to fill with silt after disposal. Furthermore, this natural filling can be supplemented by physical filling of the trenches with a blend of absorber for radionuclides and natural boulders. (author)

  17. The limitation of radioactive wastes from hospitals

    International Nuclear Information System (INIS)

    Schuurman, B.; IJtsma, D.; Zwigt, A.

    1987-01-01

    Interviews were made with radiation experts working at hospitals about the treatment and limiting of radioactive wastes. The authors conclude that with the aid of hospital personnel a decrease of the volume of radioactive waste is possible. 25 refs

  18. Management of hospital radioactive wastes

    International Nuclear Information System (INIS)

    Houy, J.C.; Rimbert, J.C.; Bouvet, C.; Laugle, S.

    1997-01-01

    The hospital radioactive wastes are of three types: solid, liquid and gaseous. Prior to final evacuation all these wastes are checked by a detector the threshold of which is lower than the standard. This system allows detecting activities very low under the daily recommended threshold of 37 kBq (1μ Ci), for the group II. In metabolic radiotherapy the unsealed sources of iodine 131 will form mainly the wastes arising from the rooms contaminated by the patient himself. In this service anything touching the patient's room most by systematically checked. All the rooms are provided with toilette with two compartments, one connected traditionally to the sewerage system for faeces and the other coupled to tanks for urine storing. The filled reservoirs waits around 10 month span prior to being emptied, after checking, into the sewerage system. The volume activity most be lower than 7 Bq per liter (standard). For the hot labs, injection room and in-vitro lab, the liquid waste retrieved from dedicated stainless sinks are stored in storage tanks and will waits for 2 years before evacuation. The undies coming from the metabolic radiotherapy service are possible contaminated by the patient sheets, pillow cases, etc. These undies freshly contaminated may be contaminating if the contamination is non fixated. All the undies coming from this service are checked like all the wastes by means of the fixed detector. For the solid wastes two evacuation channels are possible: the urban garbage repository for household wastes and the Brest waste repository for hospital wastes. For the liquid waste arising for urines, used washing water, etc, the evacuation will be done towards city sewerage system after storing or dilution. Concerning the liquid wastes presenting chemical risks, they will be evacuated in cans by NETRA. Concerning the gaseous wastes, trapped on active carbon filters, they will be handled like solid wastes and will be directed to the waste repository of Brest. The other

  19. Disposal options for radioactive waste

    International Nuclear Information System (INIS)

    Olivier, J.P.

    1991-01-01

    On the basis of the radionuclide composition and the relative toxicity of radioactive wastes, a range of different options are available for their disposal. Practically all disposal options rely on confinement of radioactive materials and isolation from the biosphere. Dilution and dispersion into the environment are only used for slightly contaminated gaseous and liquid effluents produced during the routine operation of nuclear facilities, such as power plants. For the bulk of solid radioactive waste, whatever the contamination level and decay of radiotoxicity with time are, isolation from the biosphere is the objective of waste disposal policies. The paper describes disposal approaches and the various techniques used in this respect, such as shallow land burial with minimum engineered barriers, engineered facilities built at/near the surface, rock cavities at great depth and finally deep geologic repositories for long-lived waste. The concept of disposing long-lived waste into seabed sediment layers is also discussed, as well as more remote possibilities, such as disposal in outer space or transmutation. For each of these disposal methods, the measures to be adopted at institutional level to reinforce technical isolation concepts are described. To the extent possible, some comments are made with regard to the applicability of such disposal methods to other hazardous wastes. (au)

  20. Nuclear power and radioactive waste

    International Nuclear Information System (INIS)

    Grimston, M.

    1991-03-01

    The gap between the relative perceptions in the area of nuclear waste is wide. The broad view of the industry is that the disposal of nuclear waste is not a serious technical problem, and that solutions are already available to provide safe disposal of all our waste. The broad view of those who oppose the industry is that radioactive waste is so unpleasant, and will remain lethal for so long, that no acceptable policy will ever be developed, and so production of such waste (except, oddly, the significant amounts arising from uses of radioactive materials in medicine, agriculture, industrial safety research, etc) should stop immediately. This booklet will not attempt to describe in great detail the technicalities of the United Kingdom nuclear industry's current approach to radioactive waste: such issues are described in detail in other publications, especially those by Nirex. It is our intention to outline some of the main issues involved, and to associate these issues with the divergence in perceptions of various parties. (author)