WorldWideScience

Sample records for radio-faint gamma-ray pulsar

  1. Inverse Compton gamma-rays from pulsars

    International Nuclear Information System (INIS)

    Morini, M.

    1983-01-01

    A model is proposed for pulsar optical and gamma-ray emission where relativistic electrons beams: (i) scatter the blackbody photons from the polar cap surface giving inverse Compton gamma-rays and (ii) produce synchrotron optical photons in the light cylinder region which are then inverse Compton scattered giving other gamma-rays. The model is applied to the Vela pulsar, explaining the first gamma-ray pulse by inverse Compton scattering of synchrotron photons near the light cylinder and the second gamma-ray pulse partly by inverse Compton scattering of synchrotron photons and partly by inverse Compton scattering of the thermal blackbody photons near the star surface. (author)

  2. Gamma ray emission from pulsars

    International Nuclear Information System (INIS)

    Salvati, M.; Massaro, E.

    1978-01-01

    A model for the production of gamma rays in a pulsar environment is presented, together with numerical computations fitted to the observations of PSR 0833-45. It is assumed that the primary particles are accelerated close to the star surface and then injected along the open field lines, which cause them to emit curvature radiation. The equation describing the particles' braking is integrated exactly up to the first order in the pulsar rotational frequency, and the transfer problem for the curvature photons is solved with the aberration, the Doppler shif, and the pair production absorption being taken into account. The latter effect is due not only to the transverse component of the magnetic field, but also to the electric field induced by the rotation. The synchrotron radiation emitted by the secondary particles is also included, subject to the 'on-the-spot' approximation. It is found that the observed gamma rays originate in the innermost regions of the magnetosphere, where the open lines' bundle is narrow and the geometrical beaming is effective. As shown by the computed pulse profiles, the duty cycle turns out to be equal to a few percent, comparable to the one of PSR 0833-45. The averaged spectra indicate that a substantial fraction of the primary photons do outlive the interaction with the magnetisphere; furthermore, the agreement in shape with the observational curves suggests that the acceleration output is fiarly close to a monoenergetic beam of particles. (orig.) [de

  3. Gamma-Ray Pulsar Studies With GLAST

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, D.J.; /NASA, Goddard

    2011-11-23

    Some pulsars have their maximum observable energy output in the gamma-ray band, offering the possibility of using these high-energy photons as probes of the particle acceleration and interaction processes in pulsar magnetospheres. After an extended hiatus between satellite missions, the recently-launched AGILE mission and the upcoming Gamma-ray Large Area Space Telescope (GLAST) Large Area Telescope (LAT) will allow gamma-ray tests of the theoretical models developed based on past discoveries. With its greatly improved sensitivity, better angular resolution, and larger energy reach than older instruments, GLAST LAT should detect dozens to hundreds of new gamma-ray pulsars and measure luminosities, light curves, and phase-resolved spectra with unprecedented resolution. It will also have the potential to find radio-quiet pulsars like Geminga, using blind search techniques. Cooperation with radio and X-ray pulsar astronomers is an important aspect of the LAT team's planning for pulsar studies.

  4. Theoretical Study of Gamma-ray Pulsars

    Directory of Open Access Journals (Sweden)

    Kwong Sang Cheng

    2016-06-01

    Full Text Available We use the non-stationary three dimensional two-layer outer gap model to explain gamma-ray emissions from a pulsar magnetosphere. We found out that for some pulsars like the Geminga pulsar, it was hard to explain emissions above a level of around 1 GeV. We then developed the model into a non-stationary model. In this model we assigned a power-law distribution to one or more of the spectral parameters proposed in the previous model and calculated the weighted phaseaveraged spectrum. Though this model is suitable for some pulsars, it still cannot explain the high energy emission of the Geminga pulsar. An Inverse-Compton Scattering component between the primary particles and the radio photons in the outer magnetosphere was introduced into the model, and this component produced a sufficient number of GeV photons in the spectrum of the Geminga pulsar.

  5. Gamma-Ray Pulsars Models and Predictions

    CERN Document Server

    Harding, A K

    2001-01-01

    Pulsed emission from gamma-ray pulsars originates inside the magnetosphere, from radiation by charged particles accelerated near the magnetic poles or in the outer gaps. In polar cap models, the high energy spectrum is cut off by magnetic pair production above an energy that is dependent on the local magnetic field strength. While most young pulsars with surface fields in the range B = 10^{12} - 10^{13} G are expected to have high energy cutoffs around several GeV, the gamma-ray spectra of old pulsars having lower surface fields may extend to 50 GeV. Although the gamma-ray emission of older pulsars is weaker, detecting pulsed emission at high energies from nearby sources would be an important confirmation of polar cap models. Outer gap models predict more gradual high-energy turnovers at around 10 GeV, but also predict an inverse Compton component extending to TeV energies. Detection of pulsed TeV emission, which would not survive attenuation at the polar caps, is thus an important test of outer gap models. N...

  6. Gamma rays from pulsar outer gaps

    International Nuclear Information System (INIS)

    Chiang, J.; Romani, R.W.; Cheng Ho

    1993-01-01

    We describe a gamma ray pulsar code which computes the high energy photon emissivities from vacuum gaps in the outer magnetosphere, after the model outlined by Cheng, Ho and Ruderman (1986) and Ho (1989). Pair-production due to photon-photon interactions and radiation processes including curvature, synchrotron and inverse Compton processes are computed with an iterative scheme which converges to self-consistent photon and particle distributions for a sampling of locations in the outer magnetosphere. We follow the photons from these distributions as they propagate through the pulsar magnetosphere toward a distant observer. We include the effects of relativistic aberration, time-of-flight delays and reabsorption by photon-photon pair-production to determine an intensity map of the high energy pulsar emission on the sky. Using data from radio and optical observations to constrain the geometry of the magnetosphere as well as the possible observer viewing angles, we derive light curves and phase dependent spectra which can be directly compared to data from the Compton Observatory. Observations for Crab, Vela and the recently identified gamma ray pulsars Geminga, PSR1706-44 aNd PSR 1509-58 will provide important tests of our model calculations, help us to improve our picture of the relevant physics at work in pulsar magnetospheres and allow us to comment on the implications for future pulsar discoveries

  7. Public List of LAT-Detected Gamma-Ray Pulsars

    Data.gov (United States)

    National Aeronautics and Space Administration — The following is a compilation of all publicly-announced gamma-ray pulsars detected using the Fermi LAT. Each of the detections has been vetted by the LAT team,...

  8. Population Studies of Radio and Gamma-Ray Pulsars

    Science.gov (United States)

    Harding, Alice K; Gonthier, Peter; Coltisor, Stefan

    2004-01-01

    Rotation-powered pulsars are one of the most promising candidates for at least some of the 40-50 EGRET unidentified gamma-ray sources that lie near the Galactic plane. Since the end of the EGRO mission, the more sensitive Parkes Multibeam radio survey has detected mere than two dozen new radio pulsars in or near unidentified EGRET sources, many of which are young and energetic. These results raise an important question about the nature of radio quiescence in gamma-ray pulsars: is the non-detection of radio emission a matter of beaming or of sensitivity? The answer is very dependent on the geometry of the radio and gamma-ray beams. We present results of a population synthesis of pulsars in the Galaxy, including for the first time the full geometry of the radio and gamma-ray beams. We use a recent empirically derived model of the radio emission and luminosity, and a gamma-ray emission geometry and luminosity derived theoretically from pair cascades in the polar slot gap. The simulation includes characteristics of eight radio surveys of the Princeton catalog plus the Parkes MB survey. Our results indicate that EGRET was capable of detecting several dozen pulsars as point sources, with the ratio of radio-loud to radio-quiet gamma-ray pulsars increasing significantly to about ten to one when the Parkes Survey is included. Polar cap models thus predict that many of the unidentified EGRET sources could be radio-loud gamma- ray pulsars, previously undetected as radio pulsars due to distance, large dispersion and lack of sensitivity. If true, this would make gamma-ray telescopes a potentially more sensitive tool for detecting distant young neutron stars in the Galactic plane.

  9. Gamma-ray pulsars: Emission zones and viewing geometries

    Science.gov (United States)

    Romani, Roger W.; Yadigaroglu, I.-A.

    1995-01-01

    There are now a half-dozen young pulsars detected in high-energy photons by the Compton Gamma-Ray Observatory (CGRO), showing a variety of emission efficiencies and pulse profiles. We present here a calculation of the pattern of high-energy emission on the sky in a model which posits gamma-ray production by charge-depleted gaps in the outer magnetosphere. This model accounts for the radio to gamma-ray pulse offsets of the known pulsars, as well as the shape of the high-energy pulse profiles. We also show that about one-third of emitting young radio pulsars will not be detected due to beaming effects, while approximately 2.5 times the number of radio-selected gamma-ray pulsars will be viewed only high energies. Finally we compute the polarization angle variation and find that the previously misunderstood optical polarization sweep of the Crab pulsar arises naturally in this picture. These results strongly support an outer magnetosphere location for the gamma-ray emission.

  10. Binary millisecond pulsar discovery via gamma-ray pulsations.

    Science.gov (United States)

    Pletsch, H J; Guillemot, L; Fehrmann, H; Allen, B; Kramer, M; Aulbert, C; Ackermann, M; Ajello, M; de Angelis, A; Atwood, W B; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Bechtol, K; Bellazzini, R; Borgland, A W; Bottacini, E; Brandt, T J; Bregeon, J; Brigida, M; Bruel, P; Buehler, R; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Cecchi, C; Çelik, Ö; Charles, E; Chaves, R C G; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Conrad, J; Cutini, S; D'Ammando, F; Dermer, C D; Digel, S W; Drell, P S; Drlica-Wagner, A; Dubois, R; Dumora, D; Favuzzi, C; Ferrara, E C; Franckowiak, A; Fukazawa, Y; Fusco, P; Gargano, F; Gehrels, N; Germani, S; Giglietto, N; Giordano, F; Giroletti, M; Godfrey, G; Grenier, I A; Grondin, M-H; Grove, J E; Guiriec, S; Hadasch, D; Hanabata, Y; Harding, A K; den Hartog, P R; Hayashida, M; Hays, E; Hill, A B; Hou, X; Hughes, R E; Jóhannesson, G; Jackson, M S; Jogler, T; Johnson, A S; Johnson, W N; Kataoka, J; Kerr, M; Knödlseder, J; Kuss, M; Lande, J; Larsson, S; Latronico, L; Lemoine-Goumard, M; Longo, F; Loparco, F; Lovellette, M N; Lubrano, P; Massaro, F; Mayer, M; Mazziotta, M N; McEnery, J E; Mehault, J; Michelson, P F; Mitthumsiri, W; Mizuno, T; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nakamori, T; Nemmen, R; Nuss, E; Ohno, M; Ohsugi, T; Omodei, N; Orienti, M; Orlando, E; de Palma, F; Paneque, D; Perkins, J S; Piron, F; Pivato, G; Porter, T A; Rainò, S; Rando, R; Ray, P S; Razzano, M; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Romani, R W; Romoli, C; Sanchez, D A; Saz Parkinson, P M; Schulz, A; Sgrò, C; do Couto e Silva, E; Siskind, E J; Smith, D A; Spandre, G; Spinelli, P; Suson, D J; Takahashi, H; Tanaka, T; Thayer, J B; Thayer, J G; Thompson, D J; Tibaldo, L; Tinivella, M; Troja, E; Usher, T L; Vandenbroucke, J; Vasileiou, V; Vianello, G; Vitale, V; Waite, A P; Winer, B L; Wood, K S; Wood, M; Yang, Z; Zimmer, S

    2012-12-07

    Millisecond pulsars, old neutron stars spun up by accreting matter from a companion star, can reach high rotation rates of hundreds of revolutions per second. Until now, all such "recycled" rotation-powered pulsars have been detected by their spin-modulated radio emission. In a computing-intensive blind search of gamma-ray data from the Fermi Large Area Telescope (with partial constraints from optical data), we detected a 2.5-millisecond pulsar, PSR J1311-3430. This unambiguously explains a formerly unidentified gamma-ray source that had been a decade-long enigma, confirming previous conjectures. The pulsar is in a circular orbit with an orbital period of only 93 minutes, the shortest of any spin-powered pulsar binary ever found.

  11. $\\gamma$-Ray Pulsars: Emission Zones and Viewing Geometries

    OpenAIRE

    Romani, Roger W.; Yadigaroglu, I. -A.

    1994-01-01

    There are now a half dozen young pulsars detected in high energy photons by the Compton GRO, showing a variety of emission efficiencies and pulse profiles. We present here a calculation of the pattern of high energy emission on the sky in a model which posits $\\gamma$-ray production by charge depleted gaps in the outer magnetosphere. This model accounts for the radio to $\\gamma$-ray pulse offsets of the known pulsars, as well as the shape of the high energy pulse profiles. We also show that $...

  12. Radio-quiet Gamma-ray Pulsars

    Directory of Open Access Journals (Sweden)

    Lupin Chun-Che Lin

    2016-09-01

    Full Text Available A radio-quiet γ-ray pulsar is a neutron star that has significant γ-ray pulsation but without observed radio emission or only limited emission detected by high sensitivity radio surveys. The launch of the Fermi spacecraft in 2008 opened a new epoch to study the population of these pulsars. In the 2nd Fermi Large Area Telescope catalog of γ-ray pulsars, there are 35 (30 % of the 117 pulsars in the catalog known samples classified as radio-quiet γ-ray pulsars with radio flux density (S1400 of less than 30 μJy. Accompanying the observations obtained in various wavelengths, astronomers not only have the opportunity to study the emitting nature of radio-quiet γ-ray pulsars but also have proposed different models to explain their radiation mechanism. This article will review the history of the discovery, the emission properties, and the previous efforts to study pulsars in this population. Some particular cases known as Geminga-like pulsars (e.g., PSR J0633+1746, PSR J0007+7303, PSR J2021+4026, and so on are also to specified discuss their common and specific features.

  13. Population Synthesis of Radio & Gamma-Ray Millisecond Pulsars

    Science.gov (United States)

    Frederick, Sara; Gonthier, P. L.; Harding, A. K.

    2014-01-01

    In recent years, the number of known gamma-ray millisecond pulsars (MSPs) in the Galactic disk has risen substantially thanks to confirmed detections by Fermi Gamma-ray Space Telescope (Fermi). We have developed a new population synthesis of gamma-ray and radio MSPs in the galaxy which uses Markov Chain Monte Carlo techniques to explore the large and small worlds of the model parameter space and allows for comparisons of the simulated and detected MSP distributions. The simulation employs empirical radio and gamma-ray luminosity models that are dependent upon the pulsar period and period derivative with freely varying exponents. Parameters associated with the birth distributions are also free to vary. The computer code adjusts the magnitudes of the model luminosities to reproduce the number of MSPs detected by a group of ten radio surveys, thus normalizing the simulation and predicting the MSP birth rates in the Galaxy. Computing many Markov chains leads to preferred sets of model parameters that are further explored through two statistical methods. Marginalized plots define confidence regions in the model parameter space using maximum likelihood methods. A secondary set of confidence regions is determined in parallel using Kuiper statistics calculated from comparisons of cumulative distributions. These two techniques provide feedback to affirm the results and to check for consistency. Radio flux and dispersion measure constraints have been imposed on the simulated gamma-ray distributions in order to reproduce realistic detection conditions. The simulated and detected distributions agree well for both sets of radio and gamma-ray pulsar characteristics, as evidenced by our various comparisons.

  14. Gamma-ray pulsars and Geminga

    International Nuclear Information System (INIS)

    Ruderman, M.; Halpern, J.P.; Chen, K.; Cheng, K.S.

    1992-01-01

    Observed properties of γ-ray pulsars are related to those of the accelerators which power their radiation. It is argued that the relatively slowly spinning Geminga is a strong γ-ray source only because its magnetic dipole is more inclined than that of the more rapidly spinning Vela. This would also account for special Geminga properties including 180 degrees subpulse separation, soft X-ray spectra and intensities, and suppression of radio emission

  15. Inverse compton emission of gamma rays near the pulsar surface

    International Nuclear Information System (INIS)

    Morini, M.

    1981-01-01

    The physical conditions near pulsar surface that might give rise to gamma ray emission from Crab and Vela pulsars are not yet well understood. Here I suggest that, in the context of the vacuum discharge mechanism proposed by Ruderman and Sutherland (1975), gamma rays are produced by inverse Compton scattering of secondary electrons with the thermal radiation of the star surface as well as for curvature and synchotron radiation. It is found that inverse Compton scattering is relevant if the neutron star surface temperature is greater than 10 6 K or of the polar cap temperature is of the order of 5 x 10 6 K. Inverse Compton scattering in anisotropic photon fields and Klein-Nishina regime is here carefully considered. (orig.)

  16. Constraining Gamma-Ray Pulsar Gap Models with a Simulated Pulsar Population

    Science.gov (United States)

    Pierbattista, Marco; Grenier, I. A.; Harding, A. K.; Gonthier, P. L.

    2012-01-01

    With the large sample of young gamma-ray pulsars discovered by the Fermi Large Area Telescope (LAT), population synthesis has become a powerful tool for comparing their collective properties with model predictions. We synthesised a pulsar population based on a radio emission model and four gamma-ray gap models (Polar Cap, Slot Gap, Outer Gap, and One Pole Caustic). Applying gamma-ray and radio visibility criteria, we normalise the simulation to the number of detected radio pulsars by a select group of ten radio surveys. The luminosity and the wide beams from the outer gaps can easily account for the number of Fermi detections in 2 years of observations. The wide slot-gap beam requires an increase by a factor of 10 of the predicted luminosity to produce a reasonable number of gamma-ray pulsars. Such large increases in the luminosity may be accommodated by implementing offset polar caps. The narrow polar-cap beams contribute at most only a handful of LAT pulsars. Using standard distributions in birth location and pulsar spin-down power (E), we skew the initial magnetic field and period distributions in a an attempt to account for the high E Fermi pulsars. While we compromise the agreement between simulated and detected distributions of radio pulsars, the simulations fail to reproduce the LAT findings: all models under-predict the number of LAT pulsars with high E , and they cannot explain the high probability of detecting both the radio and gamma-ray beams at high E. The beaming factor remains close to 1.0 over 4 decades in E evolution for the slot gap whereas it significantly decreases with increasing age for the outer gaps. The evolution of the enhanced slot-gap luminosity with E is compatible with the large dispersion of gamma-ray luminosity seen in the LAT data. The stronger evolution predicted for the outer gap, which is linked to the polar cap heating by the return current, is apparently not supported by the LAT data. The LAT sample of gamma-ray pulsars

  17. Detection of 16 Gamma-Ray Pulsars Through Blind Frequency Searches Using the Fermi LAT

    International Nuclear Information System (INIS)

    Anderson, B.; Atwood, W.B.; Dormody, M.; Johnson, R.P.; Porter, T.A.; Primack, J.R.; Sadrozinski, H.F.W.; Parkinson, P.M.S.; Ziegler, M.; Abdo, A.A.; Dermer, C.D.; Grove, J.E.; Gwon, C.; Johnson, W.N.; Lovellette, M.N.; Makeev, A.; Ray, P.S.; Strickman, M.S.; Wolff, M.T.; Wood, K.S.; Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R.D.; Borgland, A.W.; Cameron, R.A.; Chiang, J.; Claus, R.; Digel, S.W.; Silva, E.D.E.; Drell, P.S.; Dubois, R.; Funk, S.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johannesson, G.; Kamae, T.; Kocian, M.L.; Lande, J.; Madejski, G.M.; Michelson, P.F.; Mitthumsiri, W.; Monzani, M.E.; Moskalenko, I.V.; Murgia, S.; Nolan, P.L.; Paneque, D.; Reimer, A.; Reimer, O.; Rochester, L.S.; Romani, R.W.; Tajima, H.; Tanaka, T.; Thayer, J.G.; Tramacere, A.; Uchiyama, Y.; Usher, T.L.; Van Etten, A.; Waite, A.P.; Wang, P.; Watters, K.; Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Bloom, E.D.; Borgland, A.W.; Cameron, R.A.; Chiang, J.; Claus, R.; Digel, S.W.; Silva, E.D.E.; Drell, P.S.; Dubois, R.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johannesson, G.; Kamae, T.; Kocian, M.L.; Lande, J.; Madejski, G.M.; Michelson, P.F.; Mitthumsiri, W.; Monzani, M.E.; Moskalenko, I.V.; Murgia, S.; Nolan, P.L.; Paneque, D.; Reimer, A.; Reimer, O.; Rochester, L.S.; Romani, R.W.; Tajima, H.; Tanaka, T.; Thayer, J.G.; Tramacere, A.; Uchiyama, Y.; Usher, T.L.; Van Etten, A.; Waite, A.P.; Wang, P.; Watters, K.; Axelsson, M.; Conrad, J.; Meurer, C.; Ryde, F.; Ylinen, T.; Axelsson, M.; Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; Kuss, M.; Latronico, L.; Omodei, N.; Pesce-Rollins, M.; Razzano, M.; Sgro, C.; Spandre, G.; Ballet, J.; Casandjian, J.M.; Grenier, I.A.; Pierbattista, M.; Starck, J.L.

    2009-01-01

    Pulsars are rapidly rotating, highly magnetized neutron stars emitting radiation across the electromagnetic spectrum. Although there are more than 1800 known radio pulsars, until recently only seven were observed to pulse in gamma rays, and these were all discovered at other wavelengths. The Fermi Large Area Telescope (LAT) makes it possible to pinpoint neutron stars through their gamma-ray pulsations. We report the detection of 16 gamma-ray pulsars in blind frequency searches using the LAT. Most of these pulsars are coincident with previously unidentified gamma-ray sources, and many are associated with supernova remnants. Direct detection of gamma-ray pulsars enables studies of emission mechanisms, population statistics, and the energetics of pulsar wind nebulae and supernova remnants. (authors)

  18. An extremely bright gamma-ray pulsar in the Large Magellanic Cloud.

    Science.gov (United States)

    2015-11-13

    Pulsars are rapidly spinning, highly magnetized neutron stars, created in the gravitational collapse of massive stars. We report the detection of pulsed giga-electron volt gamma rays from the young pulsar PSR J0540-6919 in the Large Magellanic Cloud, a satellite galaxy of the Milky Way. This is the first gamma-ray pulsar detected in another galaxy. It has the most luminous pulsed gamma-ray emission yet observed, exceeding the Crab pulsar's by a factor of 20. PSR J0540-6919 presents an extreme test case for understanding the structure and evolution of neutron star magnetospheres. Copyright © 2015, American Association for the Advancement of Science.

  19. THE SECOND FERMI LARGE AREA TELESCOPE CATALOG OF GAMMA-RAY PULSARS

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, A. A. [Center for Earth Observing and Space Research, College of Science, George Mason University, Fairfax, VA 22030 (United States); Ajello, M. [Space Sciences Laboratory, 7 Gauss Way, University of California, Berkeley, CA 94720-7450 (United States); Allafort, A.; Bloom, E. D.; Bottacini, E. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Baldini, L. [Università di Pisa and Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Ballet, J. [Laboratoire AIM, CEA-IRFU/CNRS/Université Paris Diderot, Service d' Astrophysique, CEA Saclay, F-91191 Gif sur Yvette (France); Barbiellini, G. [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, I-34127 Trieste (Italy); Baring, M. G. [Rice University, Department of Physics and Astronomy, MS-108, P.O. Box 1892, Houston, TX 77251 (United States); Bastieri, D. [Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131 Padova (Italy); Belfiore, A. [Santa Cruz Institute for Particle Physics, Department of Physics and Department of Astronomy and Astrophysics, University of California at Santa Cruz, Santa Cruz, CA 95064 (United States); Bellazzini, R.; Bregeon, J. [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Bhattacharyya, B. [National Centre for Radio Astrophysics, Tata Institute of Fundamental Research, Pune 411 007 (India); Bissaldi, E. [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, and Università di Trieste, I-34127 Trieste (Italy); Bonamente, E. [Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, I-06123 Perugia (Italy); Brandt, T. J. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Brigida, M., E-mail: hartog@stanford.edu [Dipartimento di Fisica ' ' M. Merlin' ' dell' Università e del Politecnico di Bari, I-70126 Bari (Italy); and others

    2013-10-01

    This catalog summarizes 117 high-confidence ≥0.1 GeV gamma-ray pulsar detections using three years of data acquired by the Large Area Telescope (LAT) on the Fermi satellite. Half are neutron stars discovered using LAT data through periodicity searches in gamma-ray and radio data around LAT unassociated source positions. The 117 pulsars are evenly divided into three groups: millisecond pulsars, young radio-loud pulsars, and young radio-quiet pulsars. We characterize the pulse profiles and energy spectra and derive luminosities when distance information exists. Spectral analysis of the off-peak phase intervals indicates probable pulsar wind nebula emission for four pulsars, and off-peak magnetospheric emission for several young and millisecond pulsars. We compare the gamma-ray properties with those in the radio, optical, and X-ray bands. We provide flux limits for pulsars with no observed gamma-ray emission, highlighting a small number of gamma-faint, radio-loud pulsars. The large, varied gamma-ray pulsar sample constrains emission models. Fermi's selection biases complement those of radio surveys, enhancing comparisons with predicted population distributions.

  20. The second FERMI large area telescope catalog of gamma-ray pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, A. A.; Ajello, M.; Allafort, A.; Baldini, L.; Ballet, J.; Barbiellini, G.; Baring, M. G.; Bastieri, D.; Belfiore, A.; Bellazzini, R.; Bhattacharyya, B.; Bissaldi, E.; Bloom, E. D.; Bonamente, E.; Bottacini, E.; Brandt, T. J.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Burgay, M.; Burnett, T. H.; Busetto, G.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Camilo, F.; Caraveo, P. A.; Casandjian, J. M.; Cecchi, C.; Çelik, Ö.; Charles, E.; Chaty, S.; Chaves, R. C. G.; Chekhtman, A.; Chen, A. W.; Chiang, J.; Chiaro, G.; Ciprini, S.; Claus, R.; Cognard, I.; Cohen-Tanugi, J.; Cominsky, L. R.; Conrad, J.; Cutini, S.; D' Ammando, F.; de Angelis, A.; DeCesar, M. E.; De Luca, A.; den Hartog, P. R.; de Palma, F.; Dermer, C. D.; Desvignes, G.; Digel, S. W.; Di Venere, L.; Drell, P. S.; Drlica-Wagner, A.; Dubois, R.; Dumora, D.; Espinoza, C. M.; Falletti, L.; Favuzzi, C.; Ferrara, E. C.; Focke, W. B.; Franckowiak, A.; Freire, P. C. C.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Germani, S.; Giglietto, N.; Giommi, P.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Gotthelf, E. V.; Grenier, I. A.; Grondin, M. -H.; Grove, J. E.; Guillemot, L.; Guiriec, S.; Hadasch, D.; Hanabata, Y.; Harding, A. K.; Hayashida, M.; Hays, E.; Hessels, J.; Hewitt, J.; Hill, A. B.; Horan, D.; Hou, X.; Hughes, R. E.; Jackson, M. S.; Janssen, G. H.; Jogler, T.; Jóhannesson, G.; Johnson, R. P.; Johnson, A. S.; Johnson, T. J.; Johnson, W. N.; Johnston, S.; Kamae, T.; Kataoka, J.; Keith, M.; Kerr, M.; Knödlseder, J.; Kramer, M.; Kuss, M.; Lande, J.; Larsson, S.; Latronico, L.; Lemoine-Goumard, M.; Longo, F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Lyne, A. G.; Manchester, R. N.; Marelli, M.; Massaro, F.; Mayer, M.; Mazziotta, M. N.; McEnery, J. E.; McLaughlin, M. A.; Mehault, J.; Michelson, P. F.; Mignani, R. P.; Mitthumsiri, W.; Mizuno, T.; Moiseev, A. A.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nakamori, T.; Nemmen, R.; Nuss, E.; Ohno, M.; Ohsugi, T.; Orienti, M.; Orlando, E.; Ormes, J. F.; Paneque, D.; Panetta, J. H.; Parent, D.; Perkins, J. S.; Pesce-Rollins, M.; Pierbattista, M.; Piron, F.; Pivato, G.; Pletsch, H. J.; Porter, T. A.; Possenti, A.; Rainò, S.; Rando, R.; Ransom, S. M.; Ray, P. S.; Razzano, M.; Rea, N.; Reimer, A.; Reimer, O.; Renault, N.; Reposeur, T.; Ritz, S.; Romani, R. W.; Roth, M.; Rousseau, R.; Roy, J.; Ruan, J.; Sartori, A.; Saz Parkinson, P. M.; Scargle, J. D.; Schulz, A.; Sgrò, C.; Shannon, R.; Siskind, E. J.; Smith, D. A.; Spandre, G.; Spinelli, P.; Stappers, B. W.; Strong, A. W.; Suson, D. J.; Takahashi, H.; Thayer, J. G.; Thayer, J. B.; Theureau, G.; Thompson, D. J.; Thorsett, S. E.; Tibaldo, L.; Tibolla, O.; Tinivella, M.; Torres, D. F.; Tosti, G.; Troja, E.; Uchiyama, Y.; Usher, T. L.; Vandenbroucke, J.; Vasileiou, V.; Venter, C.; Vianello, G.; Vitale, V.; Wang, N.; Weltevrede, P.; Winer, B. L.; Wolff, M. T.; Wood, D. L.; Wood, K. S.; Wood, M.; Yang, Z.

    2013-09-19

    This catalog summarizes 117 high-confidence ≥0.1 GeV gamma-ray pulsar detections using three years of data acquired by the Large Area Telescope (LAT) on the Fermi satellite. Half are neutron stars discovered using LAT data through periodicity searches in gamma-ray and radio data around LAT unassociated source positions. The 117 pulsars are evenly divided into three groups: millisecond pulsars, young radio-loud pulsars, and young radio-quiet pulsars. We characterize the pulse profiles and energy spectra and derive luminosities when distance information exists. Spectral analysis of the off-peak phase intervals indicates probable pulsar wind nebula emission for four pulsars, and off-peak magnetospheric emission for several young and millisecond pulsars. We compare the gamma-ray properties with those in the radio, optical, and X-ray bands. We provide flux limits for pulsars with no observed gamma-ray emission, highlighting a small number of gamma-faint, radio-loud pulsars. The large, varied gamma-ray pulsar sample constrains emission models. Fermi's selection biases complement those of radio surveys, enhancing comparisons with predicted population distributions.

  1. The second fermi large area telescope catalog of gamma-ray pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, A. A.; Ajello, M.; Allafort, A.; Baldini, L.; Ballet, J.; Barbiellini, G.; Baring, M. G.; Bastieri, D.; Belfiore, A.; Bellazzini, R.; Bhattacharyya, B.; Bissaldi, E.; Bloom, E. D.; Bonamente, E.; Bottacini, E.; Brandt, T. J.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Burgay, M.; Burnett, T. H.; Busetto, G.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Camilo, F.; Caraveo, P. A.; Casandjian, J. M.; Cecchi, C.; Çelik, Ö.; Charles, E.; Chaty, S.; Chaves, R. C. G.; Chekhtman, A.; Chen, A. W.; Chiang, J.; Chiaro, G.; Ciprini, S.; Claus, R.; Cognard, I.; Cohen-Tanugi, J.; Cominsky, L. R.; Conrad, J.; Cutini, S.; D' Ammando, F.; de Angelis, A.; DeCesar, M. E.; De Luca, A.; den Hartog, P. R.; de Palma, F.; Dermer, C. D.; Desvignes, G.; Digel, S. W.; Di Venere, L.; Drell, P. S.; Drlica-Wagner, A.; Dubois, R.; Dumora, D.; Espinoza, C. M.; Falletti, L.; Favuzzi, C.; Ferrara, E. C.; Focke, W. B.; Franckowiak, A.; Freire, P. C. C.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Germani, S.; Giglietto, N.; Giommi, P.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Gotthelf, E. V.; Grenier, I. A.; Grondin, M. -H.; Grove, J. E.; Guillemot, L.; Guiriec, S.; Hadasch, D.; Hanabata, Y.; Harding, A. K.; Hayashida, M.; Hays, E.; Hessels, J.; Hewitt, J.; Hill, A. B.; Horan, D.; Hou, X.; Hughes, R. E.; Jackson, M. S.; Janssen, G. H.; Jogler, T.; Jóhannesson, G.; Johnson, R. P.; Johnson, A. S.; Johnson, T. J.; Johnson, W. N.; Johnston, S.; Kamae, T.; Kataoka, J.; Keith, M.; Kerr, M.; Knödlseder, J.; Kramer, M.; Kuss, M.; Lande, J.; Larsson, S.; Latronico, L.; Lemoine-Goumard, M.; Longo, F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Lyne, A. G.; Manchester, R. N.; Marelli, M.; Massaro, F.; Mayer, M.; Mazziotta, M. N.; McEnery, J. E.; McLaughlin, M. A.; Mehault, J.; Michelson, P. F.; Mignani, R. P.; Mitthumsiri, W.; Mizuno, T.; Moiseev, A. A.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nakamori, T.; Nemmen, R.; Nuss, E.; Ohno, M.; Ohsugi, T.; Orienti, M.; Orlando, E.; Ormes, J. F.; Paneque, D.; Panetta, J. H.; Parent, D.; Perkins, J. S.; Pesce-Rollins, M.; Pierbattista, M.; Piron, F.; Pivato, G.; Pletsch, H. J.; Porter, T. A.; Possenti, A.; Rainò, S.; Rando, R.; Ransom, S. M.; Ray, P. S.; Razzano, M.; Rea, N.; Reimer, A.; Reimer, O.; Renault, N.; Reposeur, T.; Ritz, S.; Romani, R. W.; Roth, M.; Rousseau, R.; Roy, J.; Ruan, J.; Sartori, A.; Saz Parkinson, P. M.; Scargle, J. D.; Schulz, A.; Sgrò, C.; Shannon, R.; Siskind, E. J.; Smith, D. A.; Spandre, G.; Spinelli, P.; Stappers, B. W.; Strong, A. W.; Suson, D. J.; Takahashi, H.; Thayer, J. G.; Thayer, J. B.; Theureau, G.; Thompson, D. J.; Thorsett, S. E.; Tibaldo, L.; Tibolla, O.; Tinivella, M.; Torres, D. F.; Tosti, G.; Troja, E.; Uchiyama, Y.; Usher, T. L.; Vandenbroucke, J.; Vasileiou, V.; Venter, C.; Vianello, G.; Vitale, V.; Wang, N.; Weltevrede, P.; Winer, B. L.; Wolff, M. T.; Wood, D. L.; Wood, K. S.; Wood, M.; Yang, Z.

    2013-09-19

    This catalog summarizes 117 high-confidence ≥0.1 GeV gamma-ray pulsar detections using three years of data acquired by the Large Area Telescope (LAT) on the Fermi satellite. Half are neutron stars discovered using LAT data through periodicity searches in gamma-ray and radio data around LAT unassociated source positions. The 117 pulsars are evenly divided into three groups: millisecond pulsars, young radio-loud pulsars, and young radio-quiet pulsars. We characterize the pulse profiles and energy spectra and derive luminosities when distance information exists. Spectral analysis of the off-peak phase intervals indicates probable pulsar wind nebula emission for four pulsars, and off-peak magnetospheric emission for several young and millisecond pulsars. We compare the gamma-ray properties with those in the radio, optical, and X-ray bands. We provide flux limits for pulsars with no observed gamma-ray emission, highlighting a small number of gamma-faint, radio-loud pulsars. The large, varied gamma-ray pulsar sample constrains emission models. Fermi's selection biases complement those of radio surveys, enhancing comparisons with predicted population distributions.

  2. The pulsar contribution to the diffuse galactic gamma-ray emission

    DEFF Research Database (Denmark)

    Pohl, M.; Kanbach, G.; Hunter, S.D.

    1997-01-01

    There is active interest in the extent to which unresolved gamma-ray pulsars contribute to the Galactic diffuse emission, and in whether unresolved gamma-ray pulsars could be responsible for the excess of diffuse Galactic emission above 1 GeV that has been observed by EGRET. The diffuse gamma......-ray intensity due to unresolved pulsars is directly linked to the number of objects that should be observed in the EGRET data. We can therefore use our knowledge of the unidentified EGRET sources to constrain model parameters like the pulsar birthrate and their beaming angle. This analysis is based only...... on the properties of the six pulsars that have been identified in the EGRET data and is independent of choice of a pulsar emission model. We find that pulsars contribute very little to the diffuse emission at lower energies, whereas above 1 GeV they can account for 18% of the observed intensity in selected regions...

  3. Gamma-Ray Pulsar Light Curves as Probes of Magnetospheric Structure

    Science.gov (United States)

    Harding, A. K.

    2016-01-01

    The large number of gamma-ray pulsars discovered by the Fermi Gamma-Ray Space Telescope since its launch in 2008 dwarfs the handful that were previously known. The variety of observed light curves makes possible a tomography of both the ensemble-averaged field structure and the high-energy emission regions of a pulsar magnetosphere. Fitting the gamma-ray pulsar light curves with model magnetospheres and emission models has revealed that most of the high-energy emission, and the particles acceleration, takes place near or beyond the light cylinder, near the current sheet. As pulsar magnetosphere models become more sophisticated, it is possible to probe magnetic field structure and emission that are self-consistently determined. Light curve modeling will continue to be a powerful tool for constraining the pulsar magnetosphere physics.

  4. THERMAL X-RAY EMISSION FROM THE SHOCKED STELLAR WIND OF PULSAR GAMMA-RAY BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Zabalza, V.; Paredes, J. M. [Departament d' Astronomia i Meteorologia, Institut de Ciencies del Cosmos (ICC), Universitat de Barcelona (IEEC-UB), Marti i Franques 1, E08028 Barcelona (Spain); Bosch-Ramon, V., E-mail: vzabalza@am.ub.es [Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, Dublin 2 (Ireland)

    2011-12-10

    Gamma-ray-loud X-ray binaries are binary systems that show non-thermal broadband emission from radio to gamma rays. If the system comprises a massive star and a young non-accreting pulsar, their winds will collide producing broadband non-thermal emission, most likely originated in the shocked pulsar wind. Thermal X-ray emission is expected from the shocked stellar wind, but until now it has neither been detected nor studied in the context of gamma-ray binaries. We present a semi-analytic model of the thermal X-ray emission from the shocked stellar wind in pulsar gamma-ray binaries, and find that the thermal X-ray emission increases monotonically with the pulsar spin-down luminosity, reaching luminosities of the order of 10{sup 33} erg s{sup -1}. The lack of thermal features in the X-ray spectrum of gamma-ray binaries can then be used to constrain the properties of the pulsar and stellar winds. By fitting the observed X-ray spectra of gamma-ray binaries with a source model composed of an absorbed non-thermal power law and the computed thermal X-ray emission, we are able to derive upper limits on the spin-down luminosity of the putative pulsar. We applied this method to LS 5039, the only gamma-ray binary with a radial, powerful wind, and obtain an upper limit on the pulsar spin-down luminosity of {approx}6 Multiplication-Sign 10{sup 36} erg s{sup -1}. Given the energetic constraints from its high-energy gamma-ray emission, a non-thermal to spin-down luminosity ratio very close to unity may be required.

  5. Search for gamma-ray spectral modulations in Galactic pulsars

    Science.gov (United States)

    Majumdar, Jhilik; Calore, Francesca; Horns, Dieter

    2018-04-01

    Well-motivated extensions of the standard model predict ultra-light and fundamental pseudo-scalar particles (e.g., axions or axion-like particles: ALPs). Similarly to the Primakoff-effect for axions, ALPs can mix with photons and consequently be searched for in laboratory experiments and with astrophysical observations. Here, we search for energy-dependent modulations of high-energy gamma-ray spectra that are tell-tale signatures of photon-ALPs mixing. To this end, we analyze the data recorded with the Fermi-LAT from Galactic pulsars selected to have a line of sight crossing spiral arms at a large pitch angle. The large-scale Galactic magnetic field traces the shape of spiral arms, such that a sizable photon-ALP conversion probability is expected for the sources considered. For the nearby Vela pulsar, the energy spectrum is well described by a smooth model spectrum (a power-law with a sub-exponential cut-off) while for the six selected Galactic pulsars, a common fit of the ALPs parameters improves the goodness of fit in comparison to a smooth model spectrum with a significance of 4.6 σ. We determine the most-likely values for mass ma and coupling gaγγ to be ma=(3.6‑0.2 stat.+0.5 stat.± 0.2syst. ) neV and gaγγ=(2.3‑0.4stat.+0.3 stat.± 0.4syst.)× 10‑10 GeV‑1. In the error budget, we consider instrumental effects, scaling of the adopted Galactic magnetic field model (± 20 %), and uncertainties on the distance of individual sources. The best-fit parameters are by a factor of ≈ 3 larger than the current best limit on solar ALPs generation obtained with the CAST helioscope, although known modifications of the photon-ALP mixing in the high density solar environment could provide a plausible explanation for the apparent tension between the helioscope bound and the indication for photon-ALPs mixing reported here.

  6. Millisecond Pulsars at Gamma-Ray Energies: Fermi Detections and Implications

    Science.gov (United States)

    Harding, Alice K.

    2011-01-01

    The Fermi Gamma-Ray Space Telescope has revolutionized the study of pulsar physics with the discovery of new populations of radio quiet and millisecond gamma-ray pulsars. The Fermi Large Area Telescope has so far discovered approx.20 new gamma-ray millisecond pulsars (MSPs) by both folding at periods of known radio MSPs or by detecting them as gamma-ray sources that are followed up by radio pulsar searches. The second method has resulted in a phenomenally successful synergy, with -30 new radio MSPs (to date) having been discovered at Fermi unidentified source locations and the gamma-ray pulsations having then been detected in a number of these using the radio timing solutions. Many of the newly discovered MSPs may be suitable for addition to the collection of very stable MSPs used for gravitational wave detection. Detection of such a large number of MSPs was surprising, given that most have relatively low spin-down luminosity and surface field strength. I will discuss their properties and the implications for pulsar particle acceleration and emission, as well as their potential contribution to gamma-ray backgrounds and Galactic cosmic rays.

  7. EINSTEIN@HOME DISCOVERY OF FOUR YOUNG GAMMA-RAY PULSARS IN FERMI LAT DATA

    Energy Technology Data Exchange (ETDEWEB)

    Pletsch, H. J.; Allen, B.; Aulbert, C.; Bock, O.; Eggenstein, H. B.; Fehrmann, H.; Machenschalk, B.; Papa, M. A. [Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut), D-30167 Hannover (Germany); Guillemot, L.; Champion, D. J.; Karuppusamy, R.; Kramer, M.; Ng, C. [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Anderson, D. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Hammer, D.; Siemens, X. [Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI 53201 (United States); Keith, M. [CSIRO Astronomy and Space Science, Australia Telescope National Facility (Australia); Ray, P. S., E-mail: holger.pletsch@aei.mpg.de, E-mail: lucas.guillemot@cnrs-orleans.fr [Space Science Division, Naval Research Laboratory, Washington, DC 20375-5352 (United States)

    2013-12-10

    We report the discovery of four gamma-ray pulsars, detected in computing-intensive blind searches of data from the Fermi Large Area Telescope (LAT). The pulsars were found using a novel search approach, combining volunteer distributed computing via Einstein@Home and methods originally developed in gravitational-wave astronomy. The pulsars PSRs J0554+3107, J1422–6138, J1522–5735, and J1932+1916 are young and energetic, with characteristic ages between 35 and 56 kyr and spin-down powers in the range 6 × 10{sup 34}—10{sup 36} erg s{sup –1}. They are located in the Galactic plane and have rotation rates of less than 10 Hz, among which the 2.1 Hz spin frequency of PSR J0554+3107 is the slowest of any known gamma-ray pulsar. For two of the new pulsars, we find supernova remnants coincident on the sky and discuss the plausibility of such associations. Deep radio follow-up observations found no pulsations, suggesting that all four pulsars are radio-quiet as viewed from Earth. These discoveries, the first gamma-ray pulsars found by volunteer computing, motivate continued blind pulsar searches of the many other unidentified LAT gamma-ray sources.

  8. Gamma-Ray Pulsars: Beaming Evolution, Stats and Unident. EGRET Sources

    OpenAIRE

    Yadigaroglu, I. -A.; Romani, Roger W.

    1994-01-01

    We compute the variation of the beaming fraction with the efficiency of high energy gamma-ray production in the outer gap pulsar model of Romani and Yadigaroglu. This allows us to correct the fluxes observed for pulsars in the EGRET band and to derive a simple estimate of the variation of efficiency with age. Integration of this model over the population of young neutron stars gives the expected number of gamma-ray pulsars along with their distributions in age and distance. This model also sh...

  9. A Population of Gamma-Ray Millisecond Pulsars Seen with the Fermi Large Area Telescope

    International Nuclear Information System (INIS)

    Dumora, D.; Grondin, M.H.; Guillemot, L.; Lemoine-Goumard, M.; Lovellette, M.N.; Parent, D.; Smith, D.A.; Abdo, A.A.; Chekhtman, A.; Dermer, C.D.; Grove, J.E.; Johnson, W.N.; Makeev, A.; Ray, P.S.; Strickman, M.S.; Wood, K.S.; Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R.D.; Bloom, E.D.; Borgland, A.W.; Cameron, R.A.; Charles, E.; Chiang, J.; Claus, R.; Digel, S.W.; Silva, E.D.E.; Drell, P.S.; Dubois, R.; Edmonds, Y.; Focke, W.B.; Funk, S.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johannesson, G.; Kocian, M.L.; Lande, J.; Madejski, G.M.; Michelson, P.F.; Mitthumsiri, W.; Monzani, M.E.; Moskalenko, I.V.; Murgia, S.; Nolan, P.L.; Paneque, D.; Panetta, J.H.; Reimer, A.; Reimer, O.; Rochester, L.S.; Romani, R.W.; Tajima, H.; Tanaka, T.; Thayer, J.B.; Thayer, J.G.; Tramacere, A.; Uchiyama, Y.; Usher, T.L.; Van Etten, A.; Waite, A.P.; Wang, P.; Watters, K.; Atwood, W.B.; Dormody, M.; Johnson, R.P.; Porter, T.A.; Sadrozinski, H.F.W.; Schalk, T.L.; Thorsett, S.E.; Ziegler, M.; Axelsson, M.; Carlson, P.; Conrad, J.; Meurer, C.; Ryde, F.; Ylinen, T.; Axelsson, M.; Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; Kuss, M.; Latronico, L.; Omodei, N.; Pesce-Rollins, M.; Razzano, M.; Sgro, C.; Spandre, G.; Ballet, J.; Casandjian, J.M.; Grenier, I.A.; Starck, J.L.

    2009-01-01

    Pulsars are born with sub-second spin periods and slow by electromagnetic braking for several tens of millions of years, when detectable radiation ceases. A second life can occur for neutron stars in binary systems. They can acquire mass and angular momentum from their companions, to be spun up to millisecond periods and begin radiating again. We searched Fermi Large Area Telescope data for pulsations from all known millisecond pulsars (MSPs) outside of globular clusters, using rotation parameters from radio telescopes. Strong gamma-ray pulsations were detected for eight MSPs. The gamma-ray pulse profiles and spectral properties resemble those of young gamma-ray pulsars. The basic emission mechanism seems to be the same for MSPs and young pulsars, with the emission originating in regions far from the neutron star surface. (authors)

  10. The Einstein@Home Gamma-ray Pulsar Survey. II. Source Selection, Spectral Analysis, and Multiwavelength Follow-up

    Science.gov (United States)

    Wu, J.; Clark, C. J.; Pletsch, H. J.; Guillemot, L.; Johnson, T. J.; Torne, P.; Champion, D. J.; Deneva, J.; Ray, P. S.; Salvetti, D.; Kramer, M.; Aulbert, C.; Beer, C.; Bhattacharyya, B.; Bock, O.; Camilo, F.; Cognard, I.; Cuéllar, A.; Eggenstein, H. B.; Fehrmann, H.; Ferrara, E. C.; Kerr, M.; Machenschalk, B.; Ransom, S. M.; Sanpa-Arsa, S.; Wood, K.

    2018-02-01

    We report on the analysis of 13 gamma-ray pulsars discovered in the Einstein@Home blind search survey using Fermi Large Area Telescope (LAT) Pass 8 data. The 13 new gamma-ray pulsars were discovered by searching 118 unassociated LAT sources from the third LAT source catalog (3FGL), selected using the Gaussian Mixture Model machine-learning algorithm on the basis of their gamma-ray emission properties being suggestive of pulsar magnetospheric emission. The new gamma-ray pulsars have pulse profiles and spectral properties similar to those of previously detected young gamma-ray pulsars. Follow-up radio observations have revealed faint radio pulsations from two of the newly discovered pulsars and enabled us to derive upper limits on the radio emission from the others, demonstrating that they are likely radio-quiet gamma-ray pulsars. We also present results from modeling the gamma-ray pulse profiles and radio profiles, if available, using different geometric emission models of pulsars. The high discovery rate of this survey, despite the increasing difficulty of blind pulsar searches in gamma rays, suggests that new systematic surveys such as presented in this article should be continued when new LAT source catalogs become available.

  11. The gamma-ray pulsar population of globular clusters: implications for the GeV excess

    Energy Technology Data Exchange (ETDEWEB)

    Hooper, Dan [Fermi National Accelerator Laboratory, Center for Particle Astrophysics, Batavia, IL 60510 (United States); Linden, Tim, E-mail: dhooper@fnal.gov, E-mail: linden.70@osu.edu [Ohio State University, Center for Cosmology and AstroParticle Physcis (CCAPP), Columbus, OH 43210 (United States)

    2016-08-01

    It has been suggested that the GeV excess, observed from the region surrounding the Galactic Center, might originate from a population of millisecond pulsars that formed in globular clusters. With this in mind, we employ the publicly available Fermi data to study the gamma-ray emission from 157 globular clusters, identifying a statistically significant signal from 25 of these sources (ten of which are not found in existing gamma-ray catalogs). We combine these observations with the predicted pulsar formation rate based on the stellar encounter rate of each globular cluster to constrain the gamma-ray luminosity function of millisecond pulsars in the Milky Way's globular cluster system. We find that this pulsar population exhibits a luminosity function that is quite similar to those millisecond pulsars observed in the field of the Milky Way (i.e. the thick disk). After pulsars are expelled from a globular cluster, however, they continue to lose rotational kinetic energy and become less luminous, causing their luminosity function to depart from the steady-state distribution. Using this luminosity function and a model for the globular cluster disruption rate, we show that millisecond pulsars born in globular clusters can account for only a few percent or less of the observed GeV excess. Among other challenges, scenarios in which the entire GeV excess is generated from such pulsars are in conflict with the observed mass of the Milky Way's Central Stellar Cluster.

  12. Detection of gamma-ray emission from the Vela pulsar wind nebula with AGILE.

    Science.gov (United States)

    Pellizzoni, A; Trois, A; Tavani, M; Pilia, M; Giuliani, A; Pucella, G; Esposito, P; Sabatini, S; Piano, G; Argan, A; Barbiellini, G; Bulgarelli, A; Burgay, M; Caraveo, P; Cattaneo, P W; Chen, A W; Cocco, V; Contessi, T; Costa, E; D'Ammando, F; Del Monte, E; De Paris, G; Di Cocco, G; Di Persio, G; Donnarumma, I; Evangelista, Y; Feroci, M; Ferrari, A; Fiorini, M; Fuschino, F; Galli, M; Gianotti, F; Hotan, A; Labanti, C; Lapshov, I; Lazzarotto, F; Lipari, P; Longo, F; Marisaldi, M; Mastropietro, M; Mereghetti, S; Moretti, E; Morselli, A; Pacciani, L; Palfreyman, J; Perotti, F; Picozza, P; Pittori, C; Possenti, A; Prest, M; Rapisarda, M; Rappoldi, A; Rossi, E; Rubini, A; Santolamazza, P; Scalise, E; Soffitta, P; Striani, E; Trifoglio, M; Vallazza, E; Vercellone, S; Verrecchia, F; Vittorini, V; Zambra, A; Zanello, D; Giommi, P; Colafrancesco, S; Antonelli, A; Salotti, L; D'Amico, N; Bignami, G F

    2010-02-05

    Pulsars are known to power winds of relativistic particles that can produce bright nebulae by interacting with the surrounding medium. These pulsar wind nebulae are observed by their radio, optical, and x-ray emissions, and in some cases also at TeV (teraelectron volt) energies, but the lack of information in the gamma-ray band precludes drawing a comprehensive multiwavelength picture of their phenomenology and emission mechanisms. Using data from the AGILE satellite, we detected the Vela pulsar wind nebula in the energy range from 100 MeV to 3 GeV. This result constrains the particle population responsible for the GeV emission and establishes a class of gamma-ray emitters that could account for a fraction of the unidentified galactic gamma-ray sources.

  13. THE BRAKING INDEX OF A RADIO-QUIET GAMMA-RAY PULSAR

    Energy Technology Data Exchange (ETDEWEB)

    Clark, C. J.; Pletsch, H. J.; Allen, B.; Aulbert, C.; Beer, C.; Bock, O.; Cuéllar, A.; Eggenstein, H. B.; Fehrmann, H.; Machenschalk, B.; Nieder, L. [Albert-Einstein-Institut, Max-Planck-Institut für Gravitationsphysik, D-30167 Hannover (Germany); Wu, J.; Guillemot, L.; Kramer, M. [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Camilo, F. [SKA South Africa, Pinelands, 7405 (South Africa); Johnson, T. J. [College of Science, George Mason University, Fairfax, VA 22030 (United States); Kerr, M., E-mail: colin.clark@aei.mpg.de [CSIRO Astronomy and Space Science, Australia Telescope National Facility, Epping, NSW 1710 (Australia)

    2016-11-20

    We report the discovery and timing measurements of PSR J1208−6238, a young and highly magnetized gamma-ray pulsar, with a spin period of 440 ms. The pulsar was discovered in gamma-ray photon data from the Fermi Large Area Telescope (LAT) during a blind-search survey of unidentified LAT sources, running on the distributed volunteer computing system Einstein@Home . No radio pulsations were detected in dedicated follow-up searches with the Parkes radio telescope, with a flux density upper limit at 1369 MHz of 30 μ Jy. By timing this pulsar’s gamma-ray pulsations, we measure its braking index over five years of LAT observations to be n = 2.598 ± 0.001 ± 0.1, where the first uncertainty is statistical and the second estimates the bias due to timing noise. Assuming its braking index has been similar since birth, the pulsar has an estimated age of around 2700 years, making it the youngest pulsar to be found in a blind search of gamma-ray data and the youngest known radio-quiet gamma-ray pulsar. Despite its young age, the pulsar is not associated with any known supernova remnant or pulsar wind nebula. The pulsar’s inferred dipolar surface magnetic field strength is 3.8 × 10{sup 13} G, almost 90% of the quantum-critical level. We investigate some potential physical causes of the braking index deviating from the simple dipole model but find that LAT data covering a longer time interval will be necessary to distinguish between these.

  14. THE BRAKING INDEX OF A RADIO-QUIET GAMMA-RAY PULSAR

    International Nuclear Information System (INIS)

    Clark, C. J.; Pletsch, H. J.; Allen, B.; Aulbert, C.; Beer, C.; Bock, O.; Cuéllar, A.; Eggenstein, H. B.; Fehrmann, H.; Machenschalk, B.; Nieder, L.; Wu, J.; Guillemot, L.; Kramer, M.; Camilo, F.; Johnson, T. J.; Kerr, M.

    2016-01-01

    We report the discovery and timing measurements of PSR J1208−6238, a young and highly magnetized gamma-ray pulsar, with a spin period of 440 ms. The pulsar was discovered in gamma-ray photon data from the Fermi Large Area Telescope (LAT) during a blind-search survey of unidentified LAT sources, running on the distributed volunteer computing system Einstein@Home . No radio pulsations were detected in dedicated follow-up searches with the Parkes radio telescope, with a flux density upper limit at 1369 MHz of 30 μ Jy. By timing this pulsar’s gamma-ray pulsations, we measure its braking index over five years of LAT observations to be n = 2.598 ± 0.001 ± 0.1, where the first uncertainty is statistical and the second estimates the bias due to timing noise. Assuming its braking index has been similar since birth, the pulsar has an estimated age of around 2700 years, making it the youngest pulsar to be found in a blind search of gamma-ray data and the youngest known radio-quiet gamma-ray pulsar. Despite its young age, the pulsar is not associated with any known supernova remnant or pulsar wind nebula. The pulsar’s inferred dipolar surface magnetic field strength is 3.8 × 10 13 G, almost 90% of the quantum-critical level. We investigate some potential physical causes of the braking index deviating from the simple dipole model but find that LAT data covering a longer time interval will be necessary to distinguish between these.

  15. GAMMA-RAY SIGNAL FROM THE PULSAR WIND IN THE BINARY PULSAR SYSTEM PSR B1259-63/LS 2883

    Energy Technology Data Exchange (ETDEWEB)

    Khangulyan, Dmitry [Institute of Space and Astronautical Science/JAXA, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Aharonian, Felix A. [Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, Dublin 2 (Ireland); Bogovalov, Sergey V. [National Research Nuclear University-MEPHI, Kashirskoe Shosse 31, Moscow 115409 (Russian Federation); Ribo, Marc, E-mail: khangul@astro.isas.jaxa.jp, E-mail: felix.aharonian@dias.ie, E-mail: svbogovalov@mephi.ru, E-mail: mribo@am.ub.es [Departament d' Astronomia i Meteorologia, Institut de Ciences del Cosmos (ICC), Universitat de Barcelona (IEEC-UB), Marti i Franques 1, E-08028 Barcelona (Spain)

    2011-12-01

    Binary pulsar systems emit potentially detectable components of gamma-ray emission due to Comptonization of the optical radiation of the companion star by relativistic electrons of the pulsar wind, both before and after termination of the wind. The recent optical observations of binary pulsar system PSR B1259-63/LS 2883 revealed radiation properties of the companion star which differ significantly from previous measurements. In this paper, we study the implications of these observations for the interaction rate of the unshocked pulsar wind with the stellar photons and the related consequences for fluxes of high energy and very high energy (VHE) gamma rays. We show that the signal should be strong enough to be detected with Fermi close to the periastron passage, unless the pulsar wind is strongly anisotropic or the Lorentz factor of the wind is smaller than 10{sup 3} or larger than 10{sup 5}. The higher luminosity of the optical star also has two important implications: (1) attenuation of gamma rays due to photon-photon pair production and (2) Compton drag of the unshocked wind. While the first effect has an impact on the light curve of VHE gamma rays, the second effect may significantly decrease the energy available for particle acceleration after termination of the wind.

  16. X-RAY PULSATIONS FROM THE RADIO-QUIET GAMMA-RAY PULSAR IN CTA 1

    International Nuclear Information System (INIS)

    Caraveo, P. A.; De Luca, A.; Marelli, M.; Bignami, G. F.; Ray, P. S.; Saz Parkinson, P. M.; Kanbach, G.

    2010-01-01

    Prompted by the Fermi-LAT discovery of a radio-quiet gamma-ray pulsar inside the CTA 1 supernova remnant, we obtained a 130 ks XMM-Newton observation to assess the timing behavior of this pulsar. Exploiting both the unprecedented photon harvest and the contemporary Fermi-LAT timing measurements, a 4.7σ single-peak pulsation is detected, making PSR J0007+7303 the second example, after Geminga, of a radio-quiet gamma-ray pulsar also seen to pulsate in X-rays. Phase-resolved spectroscopy shows that the off-pulse portion of the light curve is dominated by a power-law, non-thermal spectrum, while the X-ray peak emission appears to be mainly of thermal origin, probably from a polar cap heated by magnetospheric return currents, pointing to a hot spot varying throughout the pulsar rotation.

  17. Gamma rays and neutrinos from the Crab Nebula produced by pulsar accelerated nuclei

    OpenAIRE

    Bednarek, W.; Protheroe, R. J.

    1997-01-01

    We investigate the consequences of the acceleration of heavy nuclei (e.g. iron nuclei) by the Crab pulsar. Accelerated nuclei can photodisintegrate in collisions with soft photons produced in the pulsar's outer gap, injecting energetic neutrons which decay either inside or outside the Crab Nebula. The protons from neutron decay inside the nebula are trapped by the Crab Nebula magnetic field, and accumulate inside the nebula producing gamma-rays and neutrinos in collisions with the matter in t...

  18. Extended gamma-ray sources around pulsars constrain the origin of the positron flux at Earth

    OpenAIRE

    Abeysekara, A. U.; Albert, A.; Alfaro, R.; Alvarez, C.; Álvarez, J. D.; Arceo, R.; Arteaga-Velázquez, J. C.; Rojas, D. Avila; Solares, H. A. Ayala; Barber, A. S.; Bautista-Elivar, N.; Becerril, A.; Belmont-Moreno, E.; BenZvi, S. Y.; Berley, D.

    2017-01-01

    The unexpectedly high flux of cosmic ray positrons detected at Earth may originate from nearby astrophysical sources, dark matter, or unknown processes of cosmic-ray secondary production. We report the detection, using the HighAltitude Water Cherenkov Observatory (HAWC), of extended tera-electron volt gamma-ray emission coincident with the locations of two nearby middle-aged pulsars (Geminga and PSR B0656+14). The HAWC observations demonstrate that these pulsars are indeed local sources of ac...

  19. PSR J1838–0537: DISCOVERY OF A YOUNG, ENERGETIC GAMMA-RAY PULSAR

    International Nuclear Information System (INIS)

    Pletsch, H. J.; Allen, B.; Aulbert, C.; Fehrmann, H.; Guillemot, L.; Kramer, M.; Baring, M. G.; Camilo, F.; Caraveo, P. A.; Marelli, M.; Grove, J. E.; Ray, P. S.; Kerr, M.; Ransom, S. M.; Saz Parkinson, P. M.

    2012-01-01

    We report the discovery of PSR J1838–0537, a gamma-ray pulsar found through a blind search of data from the Fermi Large Area Telescope (LAT). The pulsar has a spin frequency of 6.9 Hz and a frequency derivative of –2.2 × 10 –11 Hz s –1 , implying a young characteristic age of 4970 yr and a large spin-down power of 5.9 × 10 36 erg s –1 . Follow-up observations with radio telescopes detected no pulsations; thus PSR J1838–0537 appears radio-quiet as viewed from Earth. In 2009 September the pulsar suffered the largest glitch so far seen in any gamma-ray-only pulsar, causing a relative increase in spin frequency of about 5.5 × 10 –6 . After the glitch, during a putative recovery period, the timing analysis is complicated by the sparsity of the LAT photon data, the weakness of the pulsations, and the reduction in average exposure from a coincidental, contemporaneous change in LAT's sky-survey observing pattern. The pulsar's sky position is coincident with the spatially extended TeV source HESS J1841–055 detected by the High Energy Stereoscopic System (H.E.S.S.). The inferred energetics suggest that HESS J1841–055 contains a pulsar wind nebula powered by the pulsar.

  20. SAX J1808.4−3658, an accreting millisecond pulsar shining in gamma rays?

    International Nuclear Information System (INIS)

    Oña Wilhelmi, E. de; Papitto, A.; Li, J.; Rea, N.

    2015-01-01

    We report the detection of a possible gamma-ray counterpart of the accreting millisec- ond pulsar SAXJ1808.4–3658. The analysis of ~6 years of data from the Large Area Telescope on board the Fermi Gamma-ray Space Telescope (Fermi-LAT) within a re- gion of 15° radius around the position of the pulsar reveals a point gamma-ray source detected at a significance of ~6σ (Test Statistic TS = 32), with position compatible with that of SAXJ1808.4–3658 within 95% Confidence Level. The energy flux in the energy range between 0.6 GeV and 10 GeV amounts to (2.1 ± 0.5) × 10 -12 erg cm -2 s -1 and the spectrum is well-represented by a power-law function with photon index 2.1±0.1. We searched for significant variation of the flux at the spin frequency of the pulsar and for orbital modulation, taking into account the trials due to the uncertain- ties in the position, the orbital motion of the pulsar and the intrinsic evolution of the pulsar spin. No significant deviation from a constant flux at any time scale was found, preventing a firm identification via time variability. Nonetheless, the association of the LAT source as the gamma-ray counterpart of SAXJ1808.4–3658 would match the emission expected from the millisecond pulsar, if it switches on as a rotation-powered source during X-ray quiescence.

  1. SEARCH FOR VERY HIGH ENERGY GAMMA-RAY EMISSION FROM PULSAR-PULSAR WIND NEBULA SYSTEMS WITH THE MAGIC TELESCOPE

    International Nuclear Information System (INIS)

    Anderhub, H.; Biland, A.; Antonelli, L. A.; Antoranz, P.; Balestra, S.; Barrio, J. A.; Bose, D.; Backes, M.; Becker, J. K.; Baixeras, C.; Bastieri, D.; Bock, R. K.; Gonzalez, J. Becerra; Bednarek, W.; Berger, K.; Bernardini, E.; Bonnoli, G.; Bordas, P.; Bosch-Ramon, V.; Tridon, D. Borla

    2010-01-01

    The MAGIC collaboration has searched for high-energy gamma-ray emission of some of the most promising pulsar candidates above an energy threshold of 50 GeV, an energy not reachable up to now by other ground-based instruments. Neither pulsed nor steady gamma-ray emission has been observed at energies of 100 GeV from the classical radio pulsars PSR J0205+6449 and PSR J2229+6114 (and their nebulae 3C58 and Boomerang, respectively) and the millisecond pulsar PSR J0218+4232. Here, we present the flux upper limits for these sources and discuss their implications in the context of current model predictions.

  2. Gamma-Ray Emission in Dissipative Pulsar Magnetospheres: from Theory to Fermi Observations

    Science.gov (United States)

    Kalapotharakos, Konstantinos; Harding, Alice K.; Kazanas, Demosthenes

    2014-01-01

    We compute the patterns of gamma-ray emission due to curvature radiation in dissipative pulsar magnetospheres. Our ultimate goal is to construct macrophysical models that are able to reproduce the observed gamma-ray light curve phenomenology recently published in the Second Fermi Pulsar Catalog. We apply specific forms of Ohm's law on the open field lines using a broad range for the macroscopic conductivity values that result in solutions ranging, from near-vacuum to near-force-free. Using these solutions, we generate model gamma-ray light curves by calculating realistic trajectories and Lorentz factors of radiating particles under the influence of both the accelerating electric fields and curvature radiation reaction. We further constrain our models using the observed dependence of the phase lags between the radio and gamma-ray emission on the gamma-ray peak separation. We perform a statistical comparison of our model radio-lag versus peak-separation diagram and the one obtained for the Fermi standard pulsars. We find that for models of uniform conductivity over the entire open magnetic field line region, agreement with observations favors higher values of this parameter. We find, however, significant improvement in fitting the data with models that employ a hybrid form of conductivity, specifically, infinite conductivity interior to the light cylinder and high but finite conductivity on the outside. In these models the gamma-ray emission is produced in regions near the equatorial current sheet but modulated by the local physical properties. These models have radio lags near the observed values and statistically best reproduce the observed light curve phenomenology. Additionally, they also produce GeV photon cut-off energies.

  3. CONSTRAINTS ON THE EMISSION GEOMETRIES AND SPIN EVOLUTION OF GAMMA-RAY MILLISECOND PULSARS

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, T. J. [National Research Council Research Associate, National Academy of Sciences, Washington, DC 20001 (United States); Venter, C. [Centre for Space Research, North-West University, Potchefstroom Campus, Private Bag X6001, 2520 Potchefstroom (South Africa); Harding, A. K.; Çelik, Ö.; Ferrara, E. C. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Guillemot, L. [Laboratoire de Physique et Chimie de l' Environnement, LPCE UMR 6115 CNRS, F-45071 Orléans Cedex 02 (France); Smith, D. A.; Hou, X. [Centre d' Études Nucléaires de Bordeaux Gradignan, IN2P3/CNRS, Université Bordeaux 1, BP120, F-33175 Gradignan Cedex (France); Kramer, M. [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn (Germany); Den Hartog, P. R. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Lande, J. [Twitter Inc., 1355 Market Street 900, San Francisco, CA 94103 (United States); Ray, P. S., E-mail: tyrel.j.johnson@gmail.com, E-mail: Christo.Venter@nwu.ac.za, E-mail: ahardingx@yahoo.com [Space Science Division, Naval Research Laboratory, Washington, DC 20375-5352 (United States)

    2014-07-01

    Millisecond pulsars (MSPs) are a growing class of gamma-ray emitters. Pulsed gamma-ray signals have been detected from more than 40 MSPs with the Fermi Large Area Telescope (LAT). The wider radio beams and more compact magnetospheres of MSPs enable studies of emission geometries over a broader range of phase space than non-recycled radio-loud gamma-ray pulsars. We have modeled the gamma-ray light curves of 40 LAT-detected MSPs using geometric emission models assuming a vacuum retarded-dipole magnetic field. We modeled the radio profiles using a single-altitude hollow-cone beam, with a core component when indicated by polarimetry; however, for MSPs with gamma-ray and radio light curve peaks occurring at nearly the same rotational phase, we assume that the radio emission is co-located with the gamma rays and caustic in nature. The best-fit parameters and confidence intervals are determined using a maximum likelihood technique. We divide the light curves into three model classes, with gamma-ray peaks trailing (Class I), aligned (Class II), or leading (Class III) the radio peaks. Outer gap and slot gap (two-pole caustic) models best fit roughly equal numbers of Class I and II, while Class III are exclusively fit with pair-starved polar cap models. Distinguishing between the model classes based on typical derived parameters is difficult. We explore the evolution of the magnetic inclination angle with period and spin-down power, finding possible correlations. While the presence of significant off-peak emission can often be used as a discriminator between outer gap and slot gap models, a hybrid model may be needed.

  4. CONSTRAINTS ON THE EMISSION GEOMETRIES AND SPIN EVOLUTION OF GAMMA-RAY MILLISECOND PULSARS

    International Nuclear Information System (INIS)

    Johnson, T. J.; Venter, C.; Harding, A. K.; Çelik, Ö.; Ferrara, E. C.; Guillemot, L.; Smith, D. A.; Hou, X.; Kramer, M.; Den Hartog, P. R.; Lande, J.; Ray, P. S.

    2014-01-01

    Millisecond pulsars (MSPs) are a growing class of gamma-ray emitters. Pulsed gamma-ray signals have been detected from more than 40 MSPs with the Fermi Large Area Telescope (LAT). The wider radio beams and more compact magnetospheres of MSPs enable studies of emission geometries over a broader range of phase space than non-recycled radio-loud gamma-ray pulsars. We have modeled the gamma-ray light curves of 40 LAT-detected MSPs using geometric emission models assuming a vacuum retarded-dipole magnetic field. We modeled the radio profiles using a single-altitude hollow-cone beam, with a core component when indicated by polarimetry; however, for MSPs with gamma-ray and radio light curve peaks occurring at nearly the same rotational phase, we assume that the radio emission is co-located with the gamma rays and caustic in nature. The best-fit parameters and confidence intervals are determined using a maximum likelihood technique. We divide the light curves into three model classes, with gamma-ray peaks trailing (Class I), aligned (Class II), or leading (Class III) the radio peaks. Outer gap and slot gap (two-pole caustic) models best fit roughly equal numbers of Class I and II, while Class III are exclusively fit with pair-starved polar cap models. Distinguishing between the model classes based on typical derived parameters is difficult. We explore the evolution of the magnetic inclination angle with period and spin-down power, finding possible correlations. While the presence of significant off-peak emission can often be used as a discriminator between outer gap and slot gap models, a hybrid model may be needed

  5. TeV Gamma Rays From Galactic Center Pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Hooper, Dan [Fermilab; Cholis, Ilias [Johns Hopkins U.; Linden, Tim [Ohio State U., CCAPP

    2017-05-25

    Measurements of the nearby pulsars Geminga and B0656+14 by the HAWC and Milagro telescopes have revealed the presence of bright TeV-emitting halos surrounding these objects. If young and middle-aged pulsars near the Galactic Center transfer a similar fraction of their energy into TeV photons, then these sources could dominate the emission that is observed by HESS and other ground-based telescopes from the innermost ~10^2 parsecs of the Milky Way. In particular, both the spectral shape and the angular extent of this emission is consistent with TeV halos produced by a population of pulsars. The overall flux of this emission requires a birth rate of ~100-1000 neutron stars per Myr near the Galactic Center, in good agreement with recent estimates.

  6. Simulated gamma-ray pulse profile of the Crab pulsar with the Cherenkov Telescope Array

    Science.gov (United States)

    Burtovoi, A.; Zampieri, L.

    2016-07-01

    We present simulations of the very high energy (VHE) gamma-ray light curve of the Crab pulsar as observed by the Cherenkov Telescope Array (CTA). The CTA pulse profile of the Crab pulsar is simulated with the specific goal of determining the accuracy of the position of the interpulse. We fit the pulse shape obtained by the Major Atmospheric Gamma-Ray Imaging Cherenkov (MAGIC) telescope with a three-Gaussian template and rescale it to account for the different CTA instrumental and observational configurations. Simulations are performed for different configurations of CTA and for the ASTRI (Astrofisica con Specchi a Tecnologia Replicante Italiana) mini-array. The northern CTA configuration will provide an improvement of a factor of ˜3 in accuracy with an observing time comparable to that of MAGIC (73 h). Unless the VHE spectrum above 1 TeV behaves differently from what we presently know, unreasonably long observing times are required for a significant detection of the pulsations of the Crab pulsar with the high-energy-range sub-arrays. We also found that an independent VHE timing analysis is feasible with Large Size Telescopes. CTA will provide a significant improvement in determining the VHE pulse shape parameters necessary to constrain theoretical models of the gamma-ray emission of the Crab pulsar. One of such parameters is the shift in phase between peaks in the pulse profile at VHE and in other energy bands that, if detected, may point to different locations of the emission regions.

  7. Gamma-Ray Light Curves from Pulsar Magnetospheres with Finite Conductivity

    Science.gov (United States)

    Harding, A. K.; Kalapotharakos, C.; Kazanas, D.; Contopoulos, I.

    2012-01-01

    The Fermi Large Area Telescope has provided an unprecedented database for pulsar emission studies that includes gamma-ray light curves for over 100 pulsars. Modeling these light curves can reveal and constrain the geometry of the particle accelerator, as well as the pulsar magnetic field structure. We have constructed 3D magnetosphere models with finite conductivity, that bridge the extreme vacuum and force-free solutions used in previous light curves modeling. We are investigating the shapes of pulsar gamma-ray light curves using these dissipative solutions with two different approaches: (l) assuming geometric emission patterns of the slot gap and outer gap, and (2) using the parallel electric field provided by the resistive models to compute the trajectories and . emission of the radiating particles. The light curves using geometric emission patterns show a systematic increase in gamma-ray peak phase with increasing conductivity, introducing a new diagnostic of these solutions. The light curves using the model electric fields are very sensitive to the conductivity but do not resemble the observed Fermi light curves, suggesting that some screening of the parallel electric field, by pair cascades not included in the models, is necessary

  8. Magnetic Pair Creation Attenuation Altitude Constraints in Gamma-Ray Pulsars

    Science.gov (United States)

    Baring, Matthew; Story, Sarah

    The Fermi gamma-ray pulsar database now exceeds 150 sources and has defined an important part of Fermi's science legacy, providing rich information for the interpretation of young energetic pulsars and old millisecond pulsars. Among the well established population characteristics is the common occurrence of exponential turnovers in the 1-10 GeV range. These turnovers are too gradual to arise from magnetic pair creation in the strong magnetic fields of pulsar inner magnetospheres, so their energy can be used to provide lower bounds to the typical altitude of GeV band emission. We explore such constraints due to single-photon pair creation transparency at and below the turnover energy. Our updated computations span both domains when general relativistic influences are important and locales where flat spacetime photon propagation is modified by rotational aberration effects. The altitude bounds, typically in the range of 2-5 stellar radii, provide key information on the emission altitude in radio quiet pulsars that do not possess double-peaked pulse profiles. However, the exceptional case of the Crab pulsar provides an altitude bound of around 20% of the light cylinder radius if pair transparency persists out to 350 GeV, the maximum energy detected by MAGIC. This is an impressive new physics-based constraint on the Crab's gamma-ray emission locale.

  9. Einstein@Home discovers a radio-quiet gamma-ray millisecond pulsar

    Science.gov (United States)

    Clark, Colin J.; Pletsch, Holger J.; Wu, Jason; Guillemot, Lucas; Kerr, Matthew; Johnson, Tyrel J.; Camilo, Fernando; Salvetti, David; Allen, Bruce; Anderson, David; Aulbert, Carsten; Beer, Christian; Bock, Oliver; Cuéllar, Andres; Eggenstein, Heinz-Bernd; Fehrmann, Henning; Kramer, Michael; Kwang, Shawn A.; Machenschalk, Bernd; Nieder, Lars; Ackermann, Markus; Ajello, Marco; Baldini, Luca; Ballet, Jean; Barbiellini, Guido; Bastieri, Denis; Bellazzini, Ronaldo; Bissaldi, Elisabetta; Blandford, Roger D.; Bloom, Elliott D.; Bonino, Raffaella; Bottacini, Eugenio; Brandt, Terri J.; Bregeon, Johan; Bruel, Philippe; Buehler, Rolf; Burnett, Toby H.; Buson, Sara; Cameron, Rob A.; Caputo, Regina; Caraveo, Patrizia A.; Cavazzuti, Elisabetta; Cecchi, Claudia; Charles, Eric; Chekhtman, Alexandre; Ciprini, Stefano; Cominsky, Lynn R.; Costantin, Denise; Cutini, Sara; D’Ammando, Filippo; De Luca, Andrea; Desiante, Rachele; Di Venere, Leonardo; Di Mauro, Mattia; Di Lalla, Niccolò; Digel, Seth W.; Favuzzi, Cecilia; Ferrara, Elizabeth C.; Franckowiak, Anna; Fukazawa, Yasushi; Funk, Stefan; Fusco, Piergiorgio; Gargano, Fabio; Gasparrini, Dario; Giglietto, Nico; Giordano, Francesco; Giroletti, Marcello; Gomez-Vargas, Germán A.; Green, David; Grenier, Isabelle A.; Guiriec, Sylvain; Harding, Alice K.; Hewitt, John W.; Horan, Deirdre; Jóhannesson, Guðlaugur; Kensei, Shiki; Kuss, Michael; La Mura, Giovanni; Larsson, Stefan; Latronico, Luca; Li, Jian; Longo, Francesco; Loparco, Francesco; Lovellette, Michael N.; Lubrano, Pasquale; Magill, Jeffrey D.; Maldera, Simone; Manfreda, Alberto; Mazziotta, Mario N.; McEnery, Julie E.; Michelson, Peter F.; Mirabal, Nestor; Mitthumsiri, Warit; Mizuno, Tsunefumi; Monzani, Maria Elena; Morselli, Aldo; Moskalenko, Igor V.; Nuss, Eric; Ohsugi, Takashi; Omodei, Nicola; Orienti, Monica; Orlando, Elena; Palatiello, Michele; Paliya, Vaidehi S.; de Palma, Francesco; Paneque, David; Perkins, Jeremy S.; Persic, Massimo; Pesce-Rollins, Melissa; Porter, Troy A.; Principe, Giacomo; Rainò, Silvia; Rando, Riccardo; Ray, Paul S.; Razzano, Massimiliano; Reimer, Anita; Reimer, Olaf; Romani, Roger W.; Saz Parkinson, Pablo M.; Sgrò, Carmelo; Siskind, Eric J.; Smith, David A.; Spada, Francesca; Spandre, Gloria; Spinelli, Paolo; Thayer, Jana B.; Thompson, David J.; Torres, Diego F.; Troja, Eleonora; Vianello, Giacomo; Wood, Kent; Wood, Matthew

    2018-01-01

    Millisecond pulsars (MSPs) are old neutron stars that spin hundreds of times per second and appear to pulsate as their emission beams cross our line of sight. To date, radio pulsations have been detected from all rotation-powered MSPs. In an attempt to discover radio-quiet gamma-ray MSPs, we used the aggregated power from the computers of tens of thousands of volunteers participating in the Einstein@Home distributed computing project to search for pulsations from unidentified gamma-ray sources in Fermi Large Area Telescope data. This survey discovered two isolated MSPs, one of which is the only known rotation-powered MSP to remain undetected in radio observations. These gamma-ray MSPs were discovered in completely blind searches without prior constraints from other observations, raising hopes for detecting MSPs from a predicted Galactic bulge population. PMID:29503868

  10. Einstein@Home discovers a radio-quiet gamma-ray millisecond pulsar.

    Science.gov (United States)

    Clark, Colin J; Pletsch, Holger J; Wu, Jason; Guillemot, Lucas; Kerr, Matthew; Johnson, Tyrel J; Camilo, Fernando; Salvetti, David; Allen, Bruce; Anderson, David; Aulbert, Carsten; Beer, Christian; Bock, Oliver; Cuéllar, Andres; Eggenstein, Heinz-Bernd; Fehrmann, Henning; Kramer, Michael; Kwang, Shawn A; Machenschalk, Bernd; Nieder, Lars; Ackermann, Markus; Ajello, Marco; Baldini, Luca; Ballet, Jean; Barbiellini, Guido; Bastieri, Denis; Bellazzini, Ronaldo; Bissaldi, Elisabetta; Blandford, Roger D; Bloom, Elliott D; Bonino, Raffaella; Bottacini, Eugenio; Brandt, Terri J; Bregeon, Johan; Bruel, Philippe; Buehler, Rolf; Burnett, Toby H; Buson, Sara; Cameron, Rob A; Caputo, Regina; Caraveo, Patrizia A; Cavazzuti, Elisabetta; Cecchi, Claudia; Charles, Eric; Chekhtman, Alexandre; Ciprini, Stefano; Cominsky, Lynn R; Costantin, Denise; Cutini, Sara; D'Ammando, Filippo; De Luca, Andrea; Desiante, Rachele; Di Venere, Leonardo; Di Mauro, Mattia; Di Lalla, Niccolò; Digel, Seth W; Favuzzi, Cecilia; Ferrara, Elizabeth C; Franckowiak, Anna; Fukazawa, Yasushi; Funk, Stefan; Fusco, Piergiorgio; Gargano, Fabio; Gasparrini, Dario; Giglietto, Nico; Giordano, Francesco; Giroletti, Marcello; Gomez-Vargas, Germán A; Green, David; Grenier, Isabelle A; Guiriec, Sylvain; Harding, Alice K; Hewitt, John W; Horan, Deirdre; Jóhannesson, Guðlaugur; Kensei, Shiki; Kuss, Michael; La Mura, Giovanni; Larsson, Stefan; Latronico, Luca; Li, Jian; Longo, Francesco; Loparco, Francesco; Lovellette, Michael N; Lubrano, Pasquale; Magill, Jeffrey D; Maldera, Simone; Manfreda, Alberto; Mazziotta, Mario N; McEnery, Julie E; Michelson, Peter F; Mirabal, Nestor; Mitthumsiri, Warit; Mizuno, Tsunefumi; Monzani, Maria Elena; Morselli, Aldo; Moskalenko, Igor V; Nuss, Eric; Ohsugi, Takashi; Omodei, Nicola; Orienti, Monica; Orlando, Elena; Palatiello, Michele; Paliya, Vaidehi S; de Palma, Francesco; Paneque, David; Perkins, Jeremy S; Persic, Massimo; Pesce-Rollins, Melissa; Porter, Troy A; Principe, Giacomo; Rainò, Silvia; Rando, Riccardo; Ray, Paul S; Razzano, Massimiliano; Reimer, Anita; Reimer, Olaf; Romani, Roger W; Saz Parkinson, Pablo M; Sgrò, Carmelo; Siskind, Eric J; Smith, David A; Spada, Francesca; Spandre, Gloria; Spinelli, Paolo; Thayer, Jana B; Thompson, David J; Torres, Diego F; Troja, Eleonora; Vianello, Giacomo; Wood, Kent; Wood, Matthew

    2018-02-01

    Millisecond pulsars (MSPs) are old neutron stars that spin hundreds of times per second and appear to pulsate as their emission beams cross our line of sight. To date, radio pulsations have been detected from all rotation-powered MSPs. In an attempt to discover radio-quiet gamma-ray MSPs, we used the aggregated power from the computers of tens of thousands of volunteers participating in the Einstein@Home distributed computing project to search for pulsations from unidentified gamma-ray sources in Fermi Large Area Telescope data. This survey discovered two isolated MSPs, one of which is the only known rotation-powered MSP to remain undetected in radio observations. These gamma-ray MSPs were discovered in completely blind searches without prior constraints from other observations, raising hopes for detecting MSPs from a predicted Galactic bulge population.

  11. Gamma-rays and neutrinos from the pulsar wind nebulae

    International Nuclear Information System (INIS)

    Bednarek, W.; Bartosik, M.

    2005-01-01

    We construct the time-dependent radiation model for the pulsar wind nebulae (PWNe), assuming that leptons are accelerated in resonant scattering with heavy nuclei, which are injected into the nebula by the pulsar. The equilibrium spectra of these particles inside the nebula are calculated taking into account their radiation and adiabatic energy losses. The spectra of γ-rays produced by these particles are compared with the observations of the PWNe emitting TeV γ-rays and predictions are made for the expected γ-ray fluxes from other PWNe. Expected neutrino fluxes and neutrino event rates in a 1 km 2 neutrino detector from these nebulae are also calculated. It is concluded that only the Crab Nebula can produce a detectable neutrino event rate in the 1 km 2 neutrino detector. Other PWNe can emit TeV γ-rays on the level of a few percent of that observed from the Crab Nebula

  12. VHE gamma-rays from radio pulsars and cataclysmic variables

    International Nuclear Information System (INIS)

    De Jager, O.C.; Brink, C.; Meintjies, P.J.; Nel, H.I.; North, A.R.; Raubenheimer, B.C.; Van der Walt, D.J.

    1990-01-01

    We present the results of observations (above 1 TeV) of radio pulsars and cataclysmic variables with the Potchefstroom air Cerenkov facility. We were able to confirm our previous detection of PSR 1509-58 and the final significance is 1.7x10 -5 . A DC enhancement at the 10 -3 significance level was seen from the L 4 Lagrange position in the PSR 1957+20 system. This result was confirmed by COS-B data. We were also able to detect the 5.4 ms pulsar PSR 1855+09 at a marginal significance level of 5%. However, the best and longest observation indicates non-uniformity at the 0.005 significance level. The TeV light curve resembles the radio light curve. The latter is also reminiscent of other millisecond pulsar observed above 1 TeV. The intermediate polar AEAQR (P = 33.08s) shows a period shift which is consistent with recent model predictions. However, the present significance of this results does not allow an unambiguous claim. (orig.)

  13. Fermi Detection of a Luminous gamma-ray Pulsar in a Globular Cluster

    Science.gov (United States)

    Freire, P. C. C.; Abdo, A. A.; Ajello, M.; Allafort, A.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Blandford, R. D.; hide

    2011-01-01

    We report the Fermi Large Area Telescope detection of gamma -ray (>100 mega-electron volts) pulsations from pulsar J1823--3021A in the globular cluster NGC 6624 with high significance (approx 7 sigma). Its gamma-ray luminosity L (sub 3) = (8:4 +/- 1:6) X 10(exp 34) ergs per second, is the highest observed for any millisecond pulsar (MSP) to date, and it accounts for most of the cluster emission. The non-detection of the cluster in the off-pulse phase implies that its contains < 32 gamma-ray MSPs, not approx 100 as previously estimated. The gamma -ray luminosity indicates that the unusually large rate of change of its period is caused by its intrinsic spin-down. This implies that J1823--3021A has the largest magnetic field and is the youngest MSP ever detected, and that such anomalous objects might be forming at rates comparable to those of the more normal MSPs.

  14. Search for gamma ray emission above 20 MeV from the Crab nebula and the NP 0532 pulsar

    International Nuclear Information System (INIS)

    Leray, J.-P.

    1976-08-01

    The search for gamma-ray emission above 20 MeV from the Crab Nebula and Pulsar NP 0532 was undertaken. A critical analysis of the detector is presented together with a study of the background. The observed flux from the sources are compared with a theoretical model for the gamma-ray emission bases on the synchrotron process in the Crab Nebula and Pulsar NP 0532 [fr

  15. Population synthesis of radio and gamma-ray millisecond pulsars using Markov Chain Monte Carlo techniques

    Science.gov (United States)

    Gonthier, Peter L.; Koh, Yew-Meng; Kust Harding, Alice

    2016-04-01

    We present preliminary results of a new population synthesis of millisecond pulsars (MSP) from the Galactic disk using Markov Chain Monte Carlo techniques to better understand the model parameter space. We include empirical radio and gamma-ray luminosity models that are dependent on the pulsar period and period derivative with freely varying exponents. The magnitudes of the model luminosities are adjusted to reproduce the number of MSPs detected by a group of thirteen radio surveys as well as the MSP birth rate in the Galaxy and the number of MSPs detected by Fermi. We explore various high-energy emission geometries like the slot gap, outer gap, two pole caustic and pair starved polar cap models. The parameters associated with the birth distributions for the mass accretion rate, magnetic field, and period distributions are well constrained. With the set of four free parameters, we employ Markov Chain Monte Carlo simulations to explore the model parameter space. We present preliminary comparisons of the simulated and detected distributions of radio and gamma-ray pulsar characteristics. We estimate the contribution of MSPs to the diffuse gamma-ray background with a special focus on the Galactic Center.We express our gratitude for the generous support of the National Science Foundation (RUI: AST-1009731), Fermi Guest Investigator Program and the NASA Astrophysics Theory and Fundamental Program (NNX09AQ71G).

  16. Young gamma-ray pulsar: from modeling the gamma-ray emission to the particle-in-cell simulations of the global magnetosphere

    Science.gov (United States)

    Brambilla, Gabriele; Kalapotharakos, Constantions; Timokhin, Andrey; Kust Harding, Alice; Kazanas, Demosthenes

    2016-04-01

    Accelerated charged particles flowing in the magnetosphere produce pulsar gamma-ray emission. Pair creation processes produce an electron-positron plasma that populates the magnetosphere, in which the plasma is very close to force-free. However, it is unknown how and where the plasma departs from the ideal force-free condition, which consequently inhibits the understanding of the emission generation. We found that a dissipative magnetosphere outside the light cylinder effectively reproduces many aspects of the young gamma-ray pulsar emission as seen by the Fermi Gamma-ray Space Telescope, and through particle-in-cell simulations (PIC), we started explaining this configuration self-consistently. These findings show that, together, a magnetic field structure close to force-free and the assumption of gamma-ray curvature radiation as the emission mechanism are strongly compatible with the observations. Two main issues from the previously used models that our work addresses are the inability to explain luminosity, spectra, and light curve features at the same time and the inconsistency of the electrodynamics. Moreover, using the PIC simulations, we explore the effects of different pair multiplicities on the magnetosphere configurations and the locations of the accelerating regions. Our work aims for a self-consistent modeling of the magnetosphere, connecting the microphysics of the pair-plasma to the global magnetosphere macroscopic quantities. This direction will lead to a greater understanding of pulsar emission at all wavelengths, as well as to concrete insights into the physics of the magnetosphere.

  17. Near Infrared Activity Close to the Crab Pulsar Correlated with Giant Gamma-ray Flares

    Science.gov (United States)

    Rudy, Alexander R.; Max, Claire E.; Weisskopf, Martin C.

    2014-01-01

    We describe activity observed in the near-infrared correlated with a giant gamma-ray flare in the Crab Pulsar. The Crab Pulsar has been observed by the Fermi and AGILE satellites to flare for a period of 3 to 7 days, once every 1-1.5 years, increasing in brightness by a factor of 3-10 between 100MeV and 1GeV. We used Keck NIRC2 laser guide star adaptive optics imaging to observe the Crab Pulsar and environs before and during the March 2013 flare. We discuss the evidence for the knot as the location of the flares, and the theoretical implications of these observations. Ongoing target-of-opportunity programs hope to confirm this correlation for future flares.

  18. Dark matter and pulsar model constraints from Galactic Center Fermi-LAT gamma-ray observations

    Science.gov (United States)

    Gordon, Chris; Macías, Oscar

    2013-10-01

    Employing Fermi-LAT gamma-ray observations, several independent groups have found excess extended gamma-ray emission at the Galactic Center (GC). Both annihilating dark matter (DM) or a population of ˜103 unresolved millisecond pulsars (MSPs) are regarded as well-motivated possible explanations. However, there are significant uncertainties in the diffuse galactic background at the GC. We have performed a revaluation of these two models for the extended gamma-ray source at the GC by accounting for the systematic uncertainties of the Galactic diffuse emission model. We also marginalize over point-source and diffuse background parameters in the region of interest. We show that the excess emission is significantly more extended than a point source. We find that the DM (or pulsar-population) signal is larger than the systematic errors and therefore proceed to determine the sectors of parameter space that provide an acceptable fit to the data. We find that a population of 1000-2000 MSPs with parameters consistent with the average spectral shape of Fermi-LAT measured MSPs is able to fit the GC excess emission. For DM, we find that a pure τ+τ- annihilation channel is not a good fit to the data. But a mixture of τ+τ- and bb¯ with a ⟨σv⟩ of order the thermal relic value and a DM mass of around 20 to 60 GeV provides an adequate fit.

  19. The Fermi Gamma Ray Space Telescope discovers the Pulsar in the Young Galactic Supernova-Remnant CTA 1

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, Aous A.; Ackermann, M.; Atwood, W.B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Baring, M.G.; Bastieri, Denis; Baughman, B.M.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Blandford, R.D.; Bloom, Elliott D.; Bogaert, G.; Bonamente, E.; Borgland, A.W.; Bregeon, J.; Brez, A.; Brigida, M.; Bruel, P.

    2009-05-15

    Energetic young pulsars and expanding blast waves (supernova remnants, SNRs) are the most visible remains after massive stars, ending their lives, explode in core-collapse supernovae. The Fermi Gamma-Ray Space Telescope has unveiled a radio quiet pulsar located near the center of the compact synchrotron nebula inside the supernova remnant CTA 1. The pulsar, discovered through its gamma-ray pulsations, has a period of 316.86 ms, a period derivative of 3.614 x 10{sup -13} s s{sup -1}. Its characteristic age of 10{sup 4} years is comparable to that estimated for the SNR. It is conjectured that most unidentified Galactic gamma ray sources associated with star-forming regions and SNRs are such young pulsars.

  20. The Fermi Gamma Ray Space Telescope discovers the Pulsar in the Young Galactic Supernova-Remnant CTA 1

    International Nuclear Information System (INIS)

    Abdo, Aous A.; Ackermann, M.; Atwood, W.B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Baring, M.G.; Bastieri, Denis; Baughman, B.M.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Blandford, R.D.; Bloom, Elliott D.; Bogaert, G.; Bonamente, E.; Borgland, A.W.; Bregeon, J.; Brez, A.; Brigida, M.; Bruel, P.

    2009-01-01

    Energetic young pulsars and expanding blast waves (supernova remnants, SNRs) are the most visible remains after massive stars, ending their lives, explode in core-collapse supernovae. The Fermi Gamma-Ray Space Telescope has unveiled a radio quiet pulsar located near the center of the compact synchrotron nebula inside the supernova remnant CTA 1. The pulsar, discovered through its gamma-ray pulsations, has a period of 316.86 ms, a period derivative of 3.614 x 10 -13 s s -1 . Its characteristic age of 10 4 years is comparable to that estimated for the SNR. It is conjectured that most unidentified Galactic gamma ray sources associated with star-forming regions and SNRs are such young pulsars

  1. Pulsed Gamma-Rays From the Millisecond Pulsar J0030+0451 with the Fermi Large Area Telescope

    International Nuclear Information System (INIS)

    Abdo, Aous A.; Ackermann, M.; Atwood, W.B.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, Guido; Bastieri, Denis; Battelino, M.; Baughman, B.M.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Bloom, Elliott D.; Bonamente, E.; Borgland, A.W.; Bregeon, J.; Brez, A.; Brigida, M.; Bruel, P.; Burnett, Thompson H.

    2009-01-01

    We report the discovery of gamma-ray pulsations from the nearby isolated millisecond pulsar PSR J0030+0451 with the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope (formerly GLAST). This discovery makes PSR J0030+0451 the second millisecond pulsar to be detected in gamma-rays after PSR J0218+4232, observed by the EGRET instrument on the Compton Gamma Ray Observatory. The spin-down power (dot E) = 3.5 x 10 33 ergs s -1 is an order of magnitude lower than the empirical lower bound of previously known gamma-ray pulsars. The emission profile is characterized by two narrow peaks, respectively 0.07 ± 0.01 and 0.08 ± 0.02 wide, separated by 0.44 ± 0.02 in phase. The first gamma-ray peak falls 0.15 ± 0.01 after the main radio peak. The pulse shape is similar to that of the 'normal' gamma-ray pulsars. An exponentially cut-off power-law fit of the emission spectrum leads to an integral photon flux above 100 MeV of (6.76 ± 1.05 ± 1.35) x 10 -8 cm -2 s -1 with cut-off energy (1.7 ± 0.4 ± 0.5) GeV. Based on its parallax distance of (300 ± 90) pc, we obtain a gamma-ray efficiency L γ /(dot E) ≅ 15% for the conversion of spin-down energy rate into gamma-ray radiation, assuming isotropic emission.

  2. Pulsed Gamma-Rays From the Millisecond Pulsar J0030+0451 with the Fermi Large Area Telescope

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, Aous A.; /Naval Research Lab, Wash., D.C.; Ackermann, M.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Atwood, W.B.; /UC, Santa Cruz; Axelsson, M. /Stockholm U., OKC /Stockholm U.; Baldini, L.; /INFN, Pisa; Ballet, J.; /DAPNIA, Saclay; Barbiellini, Guido; /INFN, Trieste /Trieste U.; Bastieri, Denis; /INFN, Padua /Padua U.; Battelino, M.; /Stockholm U., OKC /Royal Inst. Tech., Stockholm; Baughman, B.M.; /Ohio State U.; Bechtol, K.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bellazzini, R.; /INFN, Pisa; Berenji, B.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bloom, Elliott D.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bonamente, E.; /INFN, Perugia /Perugia U.; Borgland, A.W.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bregeon, J.; /INFN, Pisa; Brez, A.; /INFN, Pisa; Brigida, M.; /Bari U. /INFN, Bari; Bruel, P.; /Ecole Polytechnique; Burnett, Thompson H.; /Washington U., Seattle /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /IASF, Milan /IASF, Milan /DAPNIA, Saclay /INFN, Perugia /Perugia U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /George Mason U. /Naval Research Lab, Wash., D.C. /NASA, Goddard /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /INFN, Perugia /Perugia U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /LPCE, Orleans /Montpellier U. /Sonoma State U. /Stockholm U., OKC /Royal Inst. Tech., Stockholm /Stockholm U. /ASDC, Frascati /Naval Research Lab, Wash., D.C. /INFN, Trieste /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /UC, Santa Cruz /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /CENBG, Gradignan /CENBG, Gradignan /Montpellier U. /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /INFN, Trieste /Hiroshima U.; /more authors..

    2011-11-17

    We report the discovery of gamma-ray pulsations from the nearby isolated millisecond pulsar PSR J0030+0451 with the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope (formerly GLAST). This discovery makes PSR J0030+0451 the second millisecond pulsar to be detected in gamma-rays after PSR J0218+4232, observed by the EGRET instrument on the Compton Gamma Ray Observatory. The spin-down power {dot E} = 3.5 x 10{sup 33} ergs s{sup -1} is an order of magnitude lower than the empirical lower bound of previously known gamma-ray pulsars. The emission profile is characterized by two narrow peaks, respectively 0.07 {+-} 0.01 and 0.08 {+-} 0.02 wide, separated by 0.44 {+-} 0.02 in phase. The first gamma-ray peak falls 0.15 {+-} 0.01 after the main radio peak. The pulse shape is similar to that of the 'normal' gamma-ray pulsars. An exponentially cut-off power-law fit of the emission spectrum leads to an integral photon flux above 100 MeV of (6.76 {+-} 1.05 {+-} 1.35) x 10{sup -8} cm{sup -2} s{sup -1} with cut-off energy (1.7 {+-} 0.4 {+-} 0.5) GeV. Based on its parallax distance of (300 {+-} 90) pc, we obtain a gamma-ray efficiency L{sub {gamma}}/{dot E} {approx_equal} 15% for the conversion of spin-down energy rate into gamma-ray radiation, assuming isotropic emission.

  3. Observations of Pulsars with the Fermi Gamma-ray Space Telescope

    International Nuclear Information System (INIS)

    Parent, D.

    2009-11-01

    The Large Area Telescope (LAT) on Fermi, launched on 2008 June 11, is a space telescope to explore the high energy γ-ray universe. The instrument covers the energy range from 20 MeV to 300 GeV with greatly improved sensitivity and ability to localize γ-ray point sources. It detects γ-rays through conversion to electron-positron pairs and measurement of their direction in a tracker and their energy in a calorimeter. This thesis presents the γ-ray light curves and the phase-resolved spectral measurements of radio-loud gamma-ray pulsars detected by the LAT. The measurement of pulsar spectral parameters (i.e. integrated flux, spectral index, and energy cut-off) depends on the instrument response functions (IRFs). A method developed for the on-orbit validation of the effective area is presented using the Vela pulsar. The cut efficiencies between the real data and the simulated data are compared at each stage of the background rejection. The results are then propagated to the IRFs, allowing the systematic uncertainties of the spectral parameters to be estimated. The last part of this thesis presents the discoveries, using both the LAT observations and the radio and X ephemeris, of new individual γ-ray pulsars such as PSR J0205+6449, and the Vela-like pulsars J2229+6114 and J1048-5832. Timing and spectral analysis are investigated in order to constrain the γ-ray emission model. In addition, we discuss the properties of a large population of γ-ray pulsars detected by the LAT, including normal pulsars, and millisecond pulsars. (author)

  4. The 4U 0115+63: Another energetic gamma ray binary pulsar

    Science.gov (United States)

    Chadwick, P. M.; Dipper, N. A.; Dowthwaite, J. C.; Kirkman, I. W.; Mccomb, T. J. L.; Orford, K. J.; Turver, K. E.

    1985-01-01

    Following the discovery of Her X-1 as a source of pulsed 1000 Gev X-rays, a search for emission from an X-ray binary containing a pulsar with similar values of period, period derivative and luminosity was successful. The sporadic X-ray binary 4U 0115-63 has been observed, with probability 2.5 x 10 to the minus 6 power ergs/s to emit 1000 GeV gamma-rays with a time averaged energy flux of 6 to 10 to the 35th power.

  5. PULSED GAMMA RAYS FROM THE MILLISECOND PULSAR J0030+0451 WITH THE FERMI LARGE AREA TELESCOPE

    International Nuclear Information System (INIS)

    Abdo, A. A.; Ackermann, M.; Bechtol, K.; Berenji, B.; Bloom, E. D.; Borgland, A. W.; Atwood, W. B.; Axelsson, M.; Battelino, M.; Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Baughman, B. M.; Bonamente, E.; Brigida, M.; Bruel, P.

    2009-01-01

    We report the discovery of gamma-ray pulsations from the nearby isolated millisecond pulsar (MSP) PSR J0030+0451 with the Large Area Telescope on the Fermi Gamma-ray Space Telescope (formerly GLAST). This discovery makes PSR J0030+0451 the second MSP to be detected in gamma rays after PSR J0218+4232, observed by the EGRET instrument on the Compton Gamma-Ray Observatory. The spin-down power E-dot=3.5x10 33 erg s -1 is an order of magnitude lower than the empirical lower bound of previously known gamma-ray pulsars. The emission profile is characterized by two narrow peaks, 0.07 ± 0.01 and 0.08 ± 0.02 wide, respectively, separated by 0.44 ± 0.02 in phase. The first gamma-ray peak falls 0.15 ± 0.01 after the main radio peak. The pulse shape is similar to that of the 'normal' gamma-ray pulsars. An exponentially cutoff power-law fit of the emission spectrum leads to an integral photon flux above 100 MeV of (6.76 ± 1.05 ± 1.35) x 10 -8 cm -2 s -1 with cutoff energy (1.7 ± 0.4 ± 0.5) GeV. Based on its parallax distance of (300 ± 90) pc, we obtain a gamma-ray efficiency L γ /E-dot≅15 percent for the conversion of spin-down energy rate into gamma-ray radiation, assuming isotropic emission.

  6. Optimized blind gamma-ray pulsar searches at fixed computing budget

    International Nuclear Information System (INIS)

    Pletsch, Holger J.; Clark, Colin J.

    2014-01-01

    The sensitivity of blind gamma-ray pulsar searches in multiple years worth of photon data, as from the Fermi LAT, is primarily limited by the finite computational resources available. Addressing this 'needle in a haystack' problem, here we present methods for optimizing blind searches to achieve the highest sensitivity at fixed computing cost. For both coherent and semicoherent methods, we consider their statistical properties and study their search sensitivity under computational constraints. The results validate a multistage strategy, where the first stage scans the entire parameter space using an efficient semicoherent method and promising candidates are then refined through a fully coherent analysis. We also find that for the first stage of a blind search incoherent harmonic summing of powers is not worthwhile at fixed computing cost for typical gamma-ray pulsars. Further enhancing sensitivity, we present efficiency-improved interpolation techniques for the semicoherent search stage. Via realistic simulations we demonstrate that overall these optimizations can significantly lower the minimum detectable pulsed fraction by almost 50% at the same computational expense.

  7. Current Sheets in Pulsar Magnetospheres and Winds: Particle Acceleration and Pulsed Gamma Ray Emission

    Science.gov (United States)

    Arons, Jonathan

    The research proposed addresses understanding of the origin of non-thermal energy in the Universe, a subject beginning with the discovery of Cosmic Rays and continues, including the study of relativistic compact objects - neutron stars and black holes. Observed Rotation Powered Pulsars (RPPs) have rotational energy loss implying they have TeraGauss magnetic fields and electric potentials as large as 40 PetaVolts. The rotational energy lost is reprocessed into particles which manifest themselves in high energy gamma ray photon emission (GeV to TeV). Observations of pulsars from the FERMI Gamma Ray Observatory, launched into orbit in 2008, have revealed 130 of these stars (and still counting), thus demonstrating the presence of efficient cosmic accelerators within the strongly magnetized regions surrounding the rotating neutron stars. Understanding the physics of these and other Cosmic Accelerators is a major goal of astrophysical research. A new model for particle acceleration in the current sheets separating the closed and open field line regions of pulsars' magnetospheres, and separating regions of opposite magnetization in the relativistic winds emerging from those magnetopsheres, will be developed. The currents established in recent global models of the magnetosphere will be used as input to a magnetic field aligned acceleration model that takes account of the current carrying particles' inertia, generalizing models of the terrestrial aurora to the relativistic regime. The results will be applied to the spectacular new results from the FERMI gamma ray observatory on gamma ray pulsars, to probe the physics of the generation of the relativistic wind that carries rotational energy away from the compact stars, illuminating the whole problem of how compact objects can energize their surroundings. The work to be performed if this proposal is funded involves extending and developing concepts from plasma physics on dissipation of magnetic energy in thin sheets of

  8. DIVERSITY OF SHORT GAMMA-RAY BURST AFTERGLOWS FROM COMPACT BINARY MERGERS HOSTING PULSARS

    International Nuclear Information System (INIS)

    Holcomb, Cole; Ramirez-Ruiz, Enrico; De Colle, Fabio; Montes, Gabriela

    2014-01-01

    Short-duration gamma-ray bursts (sGRBs) are widely believed to result from the mergers of compact binaries. This model predicts an afterglow that bears the characteristic signatures of a constant, low-density medium, including a smooth prompt-afterglow transition, and a simple temporal evolution. However, these expectations are in conflict with observations for a non-negligible fraction of sGRB afterglows. In particular, the onset of the afterglow phase for some of these events appears to be delayed and, in addition, a few of them exhibit late-time rapid fading in their light curves. We show that these peculiar observations can be explained independently of ongoing central engine activity if some sGRB progenitors are compact binaries hosting at least one pulsar. The Poynting flux emanating from the pulsar companion can excavate a bow-shock cavity surrounding the binary. If this cavity is larger than the shock deceleration length scale in the undisturbed interstellar medium, then the onset of the afterglow will be delayed. Should the deceleration occur entirely within the swept-up thin shell, a rapid fade in the light curve will ensue. We identify two types of pulsar that can achieve the conditions necessary for altering the afterglow: low-field, long-lived pulsars, and high-field pulsars. We find that a sizable fraction (≈20%-50%) of low-field pulsars are likely to reside in neutron star binaries based on observations, while their high-field counterparts are not. Hydrodynamical calculations motivated by this model are shown to be in good agreement with observations of sGRB afterglow light curves

  9. Are PSR 0656+14, PSR 0950+08, and PSR 1822-09 gamma ray pulsars?

    Science.gov (United States)

    Brown, Lawrence E.; Hartmann, Dieter H.

    1993-01-01

    The possible discovery of three new gamma-ray pulsars PSR 0656+14, PSR 0950+08, and PSR 1822-09 (Ma, Lu, Yu, and Young, 1993) in data obtained with the COS-B experiment is reinvestigated using a refined technique for pulsar light curve analysis. The results of this study do not confirm the previously claimed gamma-ray pulsar nature of any of these pulsars. Even when using the standard epoch folding technique in conjunction with energy-dependent acceptance cones, we do not detect pulsed gamma-ray emission from these sources. We suspect that insufficient position accuracy is the cause for the discrepancy between our results and those of Ma et al. (1993). We do not rule out that any one of the three candidates, or all of them, is in fact a gamma-ray pulsar, but their spin properties must differ from those derived by Ma et al. (1993). More work is needed to determine the correct high-energy properties of these three sources.

  10. Pulsar-driven Jets in Supernovae, Gamma-ray Bursts, and SS 433

    Science.gov (United States)

    Middleditch, John

    2010-05-01

    The model of pulsar emission through superluminally induced polarization currents (SLIP) predicts that pulsations produced by such currents, induced at many light cylinder radii by a rotating, magnetized body, as would be the case for a neutron star born within any star of more than 1.4 solar masses, will drive pulsations close to the axis of rotation. In SN 1987A, such highly collimated (less than 1 in 10,000) 2.14 ms pulsations, and the similarly collimated jets of particles which they drove, including 1e-6 solar masses with velocities of up to 0.95 c, were responsible for the features of its very early light (days 3 - 20), its "Mystery Spot," observed slightly later (days 30 - 50 and after), and still later, in less collimated form, its bipolarity. SLIP also explains why the 2.14 ms pulsations were more or less consistently observed between years 5.0 and 6.5, and why they eventually disappeared after year 9.0. There is no reason to suggest that this mechanism is not universally applicable to all SNe with gaseous remnants remaining, and thus SN 1987A is the Rosetta Stone for 99% of SNe, gamma-ray bursts, and millisecond pulsars, and possibly SS 433. The axially driven pulsations enforce a toroidal geometry onto all early SNRs, rendering even Ia's unsuitable as standard candles. SLIP predicts that almost all pulsars with very sharp single pulses have been detected because the Earth is in a favored direction where their fluxes diminish only as 1/distance, and this has been verified in the laboratory as well as for the Parkes Multibeam Survey. SLIP also specifically predicts that gamma-ray-burst afterglows will be essentially 100% pulsed at 500 Hz in their proper frame. This work was supported in part by the Department of Energy through the Los Alamos Directed Research Grant DR20080085.

  11. Modeling Phase-Aligned Gamma-Ray and Radio Millisecond Pulsar Light Curves

    Science.gov (United States)

    Venter, C.; Johnson, T.; Harding, A.

    2012-01-01

    Since the discovery of the first eight gamma-ray millisecond pulsars (MSPs) by the Fermi Large Area Telescope, this population has been steadily expanding. Four of the more recent detections, PSR J00340534, PSR J1939+2134 (B1937+21; the first MSP ever discovered), PSR J1959+2048 (B1957+20; the first discovery of a black widow system), and PSR J2214+3000, exhibit a phenomenon not present in the original discoveries: nearly phase-aligned radio and gamma-ray light curves (LCs). To account for the phase alignment, we explore models where both the radio and gamma-ray emission originate either in the outer magnetosphere near the light cylinder or near the polar caps. Using a Markov Chain Monte Carlo technique to search for best-fit model parameters, we obtain reasonable LC fits for the first three of these MSPs in the context of altitude-limited outer gap (alOG) and two-pole caustic (alTPC) geometries (for both gamma-ray and radio emission). These models differ from the standard outer gap (OG)/two-pole caustic (TPC) models in two respects: the radio emission originates in caustics at relatively high altitudes compared to the usual conal radio beams, and we allow both the minimum and maximum altitudes of the gamma-ray and radio emission regions to vary within a limited range (excluding the minimum gamma-ray altitude of the alTPC model, which is kept constant at the stellar radius, and that of the alOG model, which is set to the position-dependent null charge surface altitude). Alternatively, phase-aligned solutions also exist for emission originating near the stellar surface in a slot gap scenario (low-altitude slot gap (laSG) models). We find that the alTPC models provide slightly better LC fits than the alOG models, and both of these give better fits than the laSG models (for the limited range of parameters considered in the case of the laSG models). Thus, our fits imply that the phase-aligned LCs are likely of caustic origin, produced in the outer magnetosphere, and

  12. EGRET upper limits to the high-energy gamma-ray emission from the millisecond pulsars in nearby globular clusters

    Science.gov (United States)

    Michelson, P. F.; Bertsch, D. L.; Brazier, K.; Chiang, J.; Dingus, B. L.; Fichtel, C. E.; Fierro, J.; Hartman, R. C.; Hunter, S. D.; Kanbach, G.

    1994-01-01

    We report upper limits to the high-energy gamma-ray emission from the millisecond pulsars (MSPs) in a number of globular clusters. The observations were done as part of an all-sky survey by the energetic Gamma Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory (CGRO) during Phase I of the CGRO mission (1991 June to 1992 November). Several theoretical models suggest that MSPs may be sources of high-energy gamma radiation emitted either as primary radiation from the pulsar magnetosphere or as secondary radiation generated by conversion into photons of a substantial part of the relativistic e(+/-) pair wind expected to flow from the pulsar. To date, no high-energy emission has been detected from an individual MSP. However, a large number of MSPs are expected in globular cluster cores where the formation rate of accreting binary systems is high. Model predictions of the total number of pulsars range in the hundreds for some clusters. These expectations have been reinforced by recent discoveries of a substantial number of radio MSPs in several clusters; for example, 11 have been found in 47 Tucanae (Manchester et al.). The EGRET observations have been used to obtain upper limits for the efficiency eta of conversion of MSP spin-down power into hard gamma rays. The upper limits are also compared with the gamma-ray fluxes predicted from theoretical models of pulsar wind emission (Tavani). The EGRET limits put significant constraints on either the emission models or the number of pulsars in the globular clusters.

  13. DISCOVERY OF NINE GAMMA-RAY PULSARS IN FERMI LARGE AREA TELESCOPE DATA USING A NEW BLIND SEARCH METHOD

    Energy Technology Data Exchange (ETDEWEB)

    Pletsch, H. J.; Allen, B.; Aulbert, C.; Fehrmann, H. [Albert-Einstein-Institut, Max-Planck-Institut fuer Gravitationsphysik, D-30167 Hannover (Germany); Guillemot, L.; Kramer, M.; Barr, E. D.; Champion, D. J.; Eatough, R. P.; Freire, P. C. C. [Max-Planck-Institut fuer Radioastronomie, Auf dem Huegel 69, D-53121 Bonn (Germany); Ray, P. S. [Space Science Division, Naval Research Laboratory, Washington, DC 20375-5352 (United States); Belfiore, A.; Dormody, M. [Santa Cruz Institute for Particle Physics, Department of Physics and Department of Astronomy and Astrophysics, University of California at Santa Cruz, Santa Cruz, CA 95064 (United States); Camilo, F. [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Caraveo, P. A. [INAF-Istituto di Astrofisica Spaziale e Fisica Cosmica, I-20133 Milano (Italy); Celik, Oe.; Ferrara, E. C. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Hessels, J. W. T. [Astronomical Institute ' Anton Pannekoek' , University of Amsterdam, Postbus 94249, 1090 GE Amsterdam (Netherlands); Keith, M. [CSIRO Astronomy and Space Science, Australia Telescope National Facility, Epping NSW 1710 (Australia); Kerr, M., E-mail: holger.pletsch@aei.mpg.de, E-mail: guillemo@mpifr-bonn.mpg.de [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); and others

    2012-01-10

    We report the discovery of nine previously unknown gamma-ray pulsars in a blind search of data from the Fermi Large Area Telescope (LAT). The pulsars were found with a novel hierarchical search method originally developed for detecting continuous gravitational waves from rapidly rotating neutron stars. Designed to find isolated pulsars spinning at up to kHz frequencies, the new method is computationally efficient and incorporates several advances, including a metric-based gridding of the search parameter space (frequency, frequency derivative, and sky location) and the use of photon probability weights. The nine pulsars have spin frequencies between 3 and 12 Hz, and characteristic ages ranging from 17 kyr to 3 Myr. Two of them, PSRs J1803-2149 and J2111+ 4606, are young and energetic Galactic-plane pulsars (spin-down power above 6 Multiplication-Sign 10{sup 35} erg s{sup -1} and ages below 100 kyr). The seven remaining pulsars, PSRs J0106+4855, J0622+3749, J1620-4927, J1746-3239, J2028+3332, J2030+4415, and J2139+4716, are older and less energetic; two of them are located at higher Galactic latitudes (|b| > 10 Degree-Sign ). PSR J0106+4855 has the largest characteristic age (3 Myr) and the smallest surface magnetic field (2 Multiplication-Sign 10{sup 11} G) of all LAT blind-search pulsars. PSR J2139+4716 has the lowest spin-down power (3 Multiplication-Sign 10{sup 33} erg s{sup -1}) among all non-recycled gamma-ray pulsars ever found. Despite extensive multi-frequency observations, only PSR J0106+4855 has detectable pulsations in the radio band. The other eight pulsars belong to the increasing population of radio-quiet gamma-ray pulsars.

  14. Discovery of Nine Gamma-Ray Pulsars in Fermi-Lat Data Using a New Blind Search Method

    Science.gov (United States)

    Celik-Tinmaz, Ozlem; Ferrara, E. C.; Pletsch, H. J.; Allen, B.; Aulbert, C.; Fehrmann, H.; Kramer, M.; Barr, E. D.; Champion, D. J.; Eatough, R. P.; hide

    2011-01-01

    We report the discovery of nine previously unknown gamma-ray pulsars in a blind search of data from the Fermi Large Area Telescope (LAT). The pulsars were found with a novel hierarchical search method originally developed for detecting continuous gravitational waves from rapidly rotating neutron stars. Designed to find isolated pulsars spinning at up to kHz frequencies, the new method is computationally efficient, and incorporates several advances, including a metric-based gridding of the search parameter space (frequency, frequency derivative and sky location) and the use of photon probability weights. The nine pulsars have spin frequencies between 3 and 12 Hz, and characteristic ages ranging from 17 kyr to 3 Myr. Two of them, PSRs Jl803-2149 and J2111+4606, are young and energetic Galactic-plane pulsars (spin-down power above 6 x 10(exp 35) ergs per second and ages below 100 kyr). The seven remaining pulsars, PSRs J0106+4855, J010622+3749, Jl620-4927, Jl746-3239, J2028+3332,J2030+4415, J2139+4716, are older and less energetic; two of them are located at higher Galactic latitudes (|b| greater than 10 degrees). PSR J0106+4855 has the largest characteristic age (3 Myr) and the smallest surface magnetic field (2x 10(exp 11)G) of all LAT blind-search pulsars. PSR J2139+4716 has the lowest spin-down power (3 x l0(exp 33) erg per second) among all non-recycled gamma-ray pulsars ever found. Despite extensive multi-frequency observations, only PSR J0106+4855 has detectable pulsations in the radio band. The other eight pulsars belong to the increasing population of radio-quiet gamma-ray pulsars.

  15. Pulsar-Driven Jets in Supernovae, Gamma-Ray Bursts, and the Universe

    Directory of Open Access Journals (Sweden)

    John Middleditch

    2012-01-01

    Full Text Available The bipolarity of Supernova 1987A can be understood through its very early light curve from the CTIO 0.4 m telescope and IUE FES and following speckle observations of the “Mystery Spot”. These indicate a beam/jet of light/particles, with initial collimation factors >104 and velocities >0.95 c, involving up to 10−5 M⊙ interacting with circumstellar material. These can be produced by a model of pulsar emission from polarization currents induced/(modulated faster than c beyond the pulsar light cylinder by the periodic electromagnetic field (supraluminally induced polarization currents (SLIP. SLIP accounts for the disruption of supernova progenitors and their anomalous dimming at cosmological distances, jets from Sco X-1 and SS 433, the lack/presence of pulsations from the high-/low-luminosity low-mass X-ray binaries, and long/short gamma-ray bursts, and it predicts that their afterglows are the pulsed optical-/near-infrared emission associated with these pulsars. SLIP may also account for the TeV e+/e− results from PAMELA and ATIC, the WMAP “Haze”/Fermi “Bubbles,” and the r-process. SLIP jets from SNe of the first stars may allow galaxies to form without dark matter and explain the peculiar nongravitational motions between pairs of distant galaxies observed by GALEX.

  16. Gamma rays, tracers of the interstellar medium and messengers of pulsars and other energetic objects

    International Nuclear Information System (INIS)

    Grenier, I.

    1988-03-01

    Gamma radiation observed in our Galaxy by the COS-B satellite was studied. The interstellar medium was studied at large scale using the fact that diffuse gamma rays are created by the interaction of cosmic rays with any interstellar matter and comparisons with different tracers and star and galaxy counts. Ground-based maps of molecular clouds were also used. Bright compact gamma sources were also analyzed. Results include the detection in Co of a distant spiral arm of the Galaxy (15kpc) and an important molecular complex nearby (300pc); the first Co survey of the Galaxy; measurement of the NH2/WCo ratio and week galactic gradients of cosmic rays; the high energy behavior of the Vela pulsar; the detection of a gamma source; and the discovery of a large supernova remnant which exploded 300pc from the Sun 40,000 years ago [fr

  17. X-Ray Study of Variable Gamma-Ray Pulsar PSR J2021+4026

    Science.gov (United States)

    Wang, H. H.; Takata, J.; Hu, C.-P.; Lin, L. C. C.; Zhao, J.

    2018-04-01

    PSR J2021+4026 showed a sudden decrease in the gamma-ray emission at the glitch that occurred around 2011 October 16, and a relaxation of the flux to the pre-glitch state at around 2014 December. We report X-ray analysis results of the data observed by XMM-Newton on 2015 December 20 in the post-relaxation state. To examine any change in the X-ray emission, we compare the properties of the pulse profiles and spectra at the low gamma-ray flux state and at the post-relaxation state. The phase-averaged spectra for both states can be well described by a power-law component plus a blackbody component. The former is dominated by unpulsed emission and probably originated from the pulsar wind nebula as reported by Hui et al. The emission property of the blackbody component is consistent with the emission from the polar cap heated by the back-flow bombardment of the high-energy electrons or positrons that were accelerated in the magnetosphere. We found no significant change in the X-ray emission properties between two states. We suggest that the change of the X-ray luminosity is at an order of ∼4%, which is difficult to measure with the current observations. We model the observed X-ray light curve with the heated polar cap emission, and we speculate that the observed large pulsed fraction is owing to asymmetric magnetospheric structure.

  18. DISCOVERY OF AN ULTRACOMPACT GAMMA-RAY MILLISECOND PULSAR BINARY CANDIDATE

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Albert K. H.; Jin, Ruolan; Yen, T.-C.; Tam, P. H. T.; Lin, L. C. C. [Institute of Astronomy and Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Hu, C.-P. [Graduate Institute of Astronomy, National Central University, Jhongli 32001, Taiwan (China); Hui, C. Y.; Park, S. M. [Department of Astronomy and Space Science, Chungnam National University, Daejeon (Korea, Republic of); Takata, J.; Cheng, K. S. [Department of Physics, University of Hong Kong, Pokfulam Road (Hong Kong); Kim, C. L., E-mail: akong@phys.nthu.edu.tw [Department of Physics and Astronomy, Seoul National University (Korea, Republic of)

    2014-10-20

    We report multi-wavelength observations of the unidentified Fermi object 2FGL J1653.6-0159. With the help of high-resolution X-ray observations, we have identified an X-ray and optical counterpart to 2FGL J1653.6-0159. The source exhibits a periodic modulation of 75 minutes in the optical and possibly also in the X-ray. We suggest that 2FGL J1653.6-0159 is a compact binary system with an orbital period of 75 minutes. Combining the gamma-ray and X-ray properties, 2FGL J1653.6-0159 is potentially a black-widow-/redback-type gamma-ray millisecond pulsar (MSP). The optical and X-ray light curve profiles show that the companion is mildly heated by the high-energy emission and that the X-rays are from intrabinary shock. Although no radio pulsation has yet been detected, we estimated that the spin period of the MSP is ∼ 2 ms based on a theoretical model. If pulsation can be confirmed in the future, 2FGL J1653.6-0159 will become the first ultracompact rotation-powered MSP.

  19. Modelling gamma-ray light curves of phase-aligned millisecond pulsars

    Science.gov (United States)

    Chang, Shan; Zhang, Li; Li, Xiang; Jiang, Zejun

    2018-04-01

    Three gamma-ray millisecond pulsars (MSPs), PSR J1939+2134, PSR J1959+2048, and PSR J0034-0534, have been confirmed to have a common feature of phase-aligned in radio and gamma-ray bands. With a geometric (two-pole caustic) model and a physical outer gap model (revised 3D outer gap model) in a three dimensional (3D) retarded magnetic dipole with a perturbation magnetic field, the observed features of these MSPs are studied. In order to obtained the best-fitting model parameters, the Markov chain Monte Carlo technique is used and reasonable GeV band light curves for three MSPs are given. Our calculations indicate that MSPs emit high energy photons with smaller inclination angles (α ≈ 10°-50°), larger view angles (ζ ≈ 65°-100°), and smaller perturbation factor (ɛ ≈ -0.15-0.1). Note that the factor ɛ, describing the strength of the perturbed magnetic field, is all less than zero in these two models, so the magnetic field caused by current-induced play a leading role in the pulsed location of MSPs.

  20. A SEARCH FOR VERY HIGH ENERGY GAMMA RAYS FROM THE MISSING LINK BINARY PULSAR J1023+0038 WITH VERITAS

    Energy Technology Data Exchange (ETDEWEB)

    Aliu, E. [Department of Physics and Astronomy, Barnard College, Columbia University, NY 10027 (United States); Archambault, S. [Physics Department, McGill University, Montreal, QC H3A 2T8 (Canada); Archer, A.; Buckley, J. H.; Bugaev, V. [Department of Physics, Washington University, St. Louis, MO 63130 (United States); Benbow, W.; Cerruti, M. [Fred Lawrence Whipple Observatory, Harvard-Smithsonian Center for Astrophysics, Amado, AZ 85645 (United States); Bird, R. [School of Physics, University College Dublin, Belfield, Dublin 4 (Ireland); Biteau, J. [Santa Cruz Institute for Particle Physics and Department of Physics, University of California, Santa Cruz, CA 95064 (United States); Buchovecky, M. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Byrum, K. [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States); Cardenzana, J. V; Dickinson, H. J.; Eisch, J. D. [Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States); Chen, X. [Institute of Physics and Astronomy, University of Potsdam, D-14476 Potsdam-Golm (Germany); Ciupik, L. [Astronomy Department, Adler Planetarium and Astronomy Museum, Chicago, IL 60605 (United States); Connolly, M. P. [School of Physics, National University of Ireland Galway, University Road, Galway (Ireland); Cui, W.; Feng, Q. [Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907 (United States); Falcone, A., E-mail: ester.aliu.fuste@gmail.com, E-mail: gtrichards@gatech.edu, E-mail: masha.chernyakova@dcu.ie, E-mail: malloryr@gmail.com [Department of Astronomy and Astrophysics, 525 Davey Lab, Pennsylvania State University, University Park, PA 16802 (United States); and others

    2016-11-10

    The binary millisecond radio pulsar PSR J1023+0038 exhibits many characteristics similar to the gamma-ray binary system PSR B1259–63/LS 2883, making it an ideal candidate for the study of high-energy nonthermal emission. It has been the subject of multiwavelength campaigns following the disappearance of the pulsed radio emission in 2013 June, which revealed the appearance of an accretion disk around the neutron star. We present the results of very high energy (VHE) gamma-ray observations carried out by the Very Energetic Radiation Imaging Telescope Array System before and after this change of state. Searches for steady and pulsed emission of both data sets yield no significant gamma-ray signal above 100 GeV, and upper limits are given for both a steady and pulsed gamma-ray flux. These upper limits are used to constrain the magnetic field strength in the shock region of the PSR J1023+0038 system. Assuming that VHE gamma rays are produced via an inverse Compton mechanism in the shock region, we constrain the shock magnetic field to be greater than ∼2 G before the disappearance of the radio pulsar and greater than ∼10 G afterward.

  1. Pulsed Gamma Rays from the Original Millisecond and Black Widow Pulsars: A Case for Caustic Radio Emission?

    Science.gov (United States)

    Guillemot, L.; Johnson, T. J.; Venter, C.; Kerr, M.; Pancrazi, B.; Livingstone, M.; Janssen, G. H.; Jaroenjittichai, P.; Kramer, M.; Cognard, I.; hide

    2011-01-01

    We report the detection of pulsed gamma-ray emission from the fast millisecond pulsars (MSPs) B1937+21 (also known as J1939+2134) and B1957+20 (J1959+2048) using 18 months of survey data recorded by the Fermi Large Area Telescope (LAT) and timing solutions based on radio observations conducted at the Westerbork and Nancay radio telescopes. In addition, we analyzed archival RXTE and XMM-Newton X-ray data for the two MSPs, confirming the X-ray emission properties of PSR B1937+21 and finding evidence (approx. 4(sigma)) for pulsed emission from PSR B1957+20 for the first time. In both cases the gamma-ray emission profile is characterized by two peaks separated by half a rotation and are in close alignment with components observed in radio and X-rays. These two pulsars join PSRs J0034..0534 and J2214+3000 to form an emerging class of gamma-ray MSPs with phase-aligned peaks in different energy bands. The modeling of the radio and gamma-ray emission pro les suggests co-located emission regions in the outer magnetosphere.

  2. SEARCH FOR A CORRELATION BETWEEN VERY-HIGH-ENERGY GAMMA RAYS AND GIANT RADIO PULSES IN THE CRAB PULSAR

    Energy Technology Data Exchange (ETDEWEB)

    Aliu, E. [Department of Physics and Astronomy, Barnard College, Columbia University, NY 10027 (United States); Archambault, S. [Physics Department, McGill University, Montreal, QC H3A 2T8 (Canada); Arlen, T. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Aune, T.; Bouvier, A. [Santa Cruz Institute for Particle Physics and Department of Physics, University of California, Santa Cruz, CA 95064 (United States); Beilicke, M.; Buckley, J. H.; Bugaev, V.; Dickherber, R. [Department of Physics, Washington University, St. Louis, MO 63130 (United States); Benbow, W. [Fred Lawrence Whipple Observatory, Harvard-Smithsonian Center for Astrophysics, Amado, AZ 85645 (United States); Byrum, K. [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States); Cesarini, A.; Connolly, M. P. [School of Physics, National University of Ireland Galway, University Road, Galway (Ireland); Ciupik, L. [Astronomy Department, Adler Planetarium and Astronomy Museum, Chicago, IL 60605 (United States); Collins-Hughes, E. [School of Physics, University College Dublin, Belfield, Dublin 4 (Ireland); Cui, W. [Department of Physics, Purdue University, West Lafayette, IN 47907 (United States); Duke, C. [Department of Physics, Grinnell College, Grinnell, IA 50112-1690 (United States); Dumm, J. [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States); Falcone, A. [Department of Astronomy and Astrophysics, 525 Davey Lab, Pennsylvania State University, University Park, PA 16802 (United States); Federici, S., E-mail: schroedter@veritas.sao.arizona.edu, E-mail: mccann@kicp.uchicago.edu, E-mail: nepomuk.otte@gmail.com [DESY, Platanenallee 6, 15738 Zeuthen (Germany); and others

    2012-12-01

    We present the results of a joint observational campaign between the Green Bank radio telescope and the VERITAS gamma-ray telescope, which searched for a correlation between the emission of very-high-energy (VHE) gamma rays (E {sub {gamma}} > 150 GeV) and giant radio pulses (GRPs) from the Crab pulsar at 8.9 GHz. A total of 15,366 GRPs were recorded during 11.6 hr of simultaneous observations, which were made across four nights in 2008 December and in 2009 November and December. We searched for an enhancement of the pulsed gamma-ray emission within time windows placed around the arrival time of the GRP events. In total, eight different time windows with durations ranging from 0.033 ms to 72 s were positioned at three different locations relative to the GRP to search for enhanced gamma-ray emission which lagged, led, or was concurrent with, the GRP event. Furthermore, we performed separate searches on main pulse GRPs and interpulse GRPs and on the most energetic GRPs in our data sample. No significant enhancement of pulsed VHE emission was found in any of the preformed searches. We set upper limits of 5-10 times the average VHE flux of the Crab pulsar on the flux simultaneous with interpulse GRPs on single-rotation-period timescales. On {approx}8 s timescales around interpulse GRPs, we set an upper limit of 2-3 times the average VHE flux. Within the framework of recent models for pulsed VHE emission from the Crab pulsar, the expected VHE-GRP emission correlations are below the derived limits.

  3. Search for a Correlation Between Very-High-Energy Gamma Rays and Giant Radio Pulses in the Crab Pulsar

    Science.gov (United States)

    Aliu, E.; Archambault, S.; Arlen, T.; Aune, T.; Beilicke, M.; Benbow, W.; Bouvier, A.; Buckley, J. H.; Bugaev, V.; Byrum, K.; hide

    2012-01-01

    We present the results of a joint observational campaign between the Green Bank radio telescope and the VERITAS gamma-ray telescope, which searched for a correlation between the emission of very-high-energy (VHE) gamma rays ( E(sub Gamma) > 150 GeV) and giant radio pulses (GRPs) from the Crab pulsar at 8.9 GHz. A total of 15,366 GRPs were recorded during 11.6 hr of simultaneous observations, which were made across four nights in 2008 December and in 2009 November and December. We searched for an enhancement of the pulsed gamma-ray emission within time windows placed around the arrival time of the GRP events. In total, eight different time windows with durations ranging from 0.033 ms to 72 s were positioned at three different locations relative to the GRP to search for enhanced gamma-ray emission which lagged, led, or was concurrent with, the GRP event. Furthermore, we performed separate searches on main pulse GRPs and interpulse GRPs and on the most energetic GRPs in our data sample. No significant enhancement of pulsed VHE emission was found in any of the preformed searches. We set upper limits of 5-10 times the average VHE flux of the Crab pulsar on the flux simultaneous with interpulse GRPs on single-rotation-period timescales. On approx. 8 s timescales around interpulse GRPs, we set an upper limit of 2-3 times the average VHE flux. Within the framework of recent models for pulsed VHE emission from the Crab pulsar, the expected VHE-GRP emission correlations are below the derived limits.

  4. Discovery of Pulsed Gamma Rays from the Young Radio Pulsar PSR J1028-5819 with the Fermi Large Area Telescope

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, Aous A.; /Naval Research Lab, Wash., D.C.; Ackermann, M.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Atwood, W.B.; /UC, Santa Cruz; Baldini, L.; /INFN, Pisa; Ballet, J.; /DAPNIA, Saclay; Barbiellini, Guido; /INFN, Trieste /Trieste U.; Baring, Matthew G.; /Rice U.; Bastieri, Denis; /INFN, Padua /Padua U.; Baughman, B.M.; /Ohio State U.; Bechtol, K.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bellazzini, R.; /INFN, Pisa; Berenji, B.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bloom, Elliott D.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bonamente, E.; /INFN, Perugia /Perugia U.; Borgland, A.W.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bregeon, J.; /INFN, Pisa; Brez, A.; /INFN, Pisa; Brigida, M.; /Bari U. /INFN, Bari; Bruel, P.; /Ecole Polytechnique; Burnett, Thompson H.; /Washington U., Seattle; Caliandro, G.A.; /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /IASF, Milan /IASF, Milan /DAPNIA, Saclay /INFN, Perugia /Perugia U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /George Mason U. /Naval Research Lab, Wash., D.C. /NASA, Goddard /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /INFN, Perugia /Perugia U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Montpellier U. /Sonoma State U. /Stockholm U., OKC /Royal Inst. Tech., Stockholm /Stockholm U. /Naval Research Lab, Wash., D.C. /INFN, Trieste /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /NASA, Goddard /UC, Santa Cruz /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /CENBG, Gradignan /CENBG, Gradignan /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Montpellier U. /Bari U. /INFN, Bari /Ecole Polytechnique /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /INFN, Trieste /Hiroshima U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; /more authors..

    2009-05-15

    Radio pulsar PSR J1028-5819 was recently discovered in a high-frequency search (at 3.1 GHz) in the error circle of the Energetic Gamma-Ray Experiment Telescope (EGRET) source 3EG J1027-5817. The spin-down power of this young pulsar is great enough to make it very likely the counterpart for the EGRET source. We report here the discovery of {gamma}-ray pulsations from PSR J1028-5819 in early observations by the Large Area Telescope (LAT) on the Fermi Gamma-Ray Space Telescope. The {gamma}-ray light curve shows two sharp peaks having phase separation of 0.460 {+-} 0.004, trailing the very narrow radio pulse by 0.200 {+-} 0.003 in phase, very similar to that of other known {gamma}-ray pulsars. The measured {gamma}-ray flux gives an efficiency for the pulsar of {approx}10-20% (for outer magnetosphere beam models). No evidence of a surrounding pulsar wind nebula is seen in the current Fermi data but limits on associated emission are weak because the source lies in a crowded region with high background emission. However, the improved angular resolution afforded by the LAT enables the disentanglement of the previous COS-B and EGRET source detections into at least two distinct sources, one of which is now identified as PSR J1028-5819.

  5. POST-PERIASTRON GAMMA-RAY FLARE FROM PSR B1259-63/LS 2883 AS A RESULT OF COMPTONIZATION OF THE COLD PULSAR WIND

    Energy Technology Data Exchange (ETDEWEB)

    Khangulyan, Dmitry [Institute of Space and Astronautical Science/JAXA, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Aharonian, Felix A. [Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, Dublin 2 (Ireland); Bogovalov, Sergey V. [Department of Molecular Physics, National Research Nuclear University (MEPHI), Kashirskoe shosse 31, Moscow 115409 (Russian Federation); Ribo, Marc, E-mail: khangul@astro.isas.jaxa.jp, E-mail: felix.aharonian@dias.ie, E-mail: svbogovalov@mephi.ru, E-mail: mribo@am.ub.es [Departament d' Astronomia i Meteorologia, Institut de Ciences del Cosmos (ICC), Universitat de Barcelona (IEEC-UB), Marti i Franques 1, E-08028 Barcelona (Spain)

    2012-06-10

    We argue that the bright flare of the binary pulsar PSR B1259-63/LS2883 detected by the Fermi Large Area Telescope is due to the inverse Compton scattering of the unshocked electron-positron pulsar wind with a Lorentz factor {Gamma}{sub 0} Almost-Equal-To 10{sup 4}. The combination of two effects both linked to the circumstellar disk (CD) is a key element in the proposed model. The first effect is related to the impact of the surrounding medium on the termination of the pulsar wind. Inside the disk, the 'early' termination of the wind results in suppression of its gamma-ray luminosity. When the pulsar escapes the disk, the conditions for termination of the wind undergo significant changes. This would lead to a dramatic increase of the pulsar wind zone, and thus to the proportional increase of the gamma-ray flux. On the other hand, if the parts of the CD disturbed by the pulsar can supply infrared photons of density high enough for efficient Comptonization of the wind, almost the entire kinetic energy of the pulsar wind would be converted to radiation, thus the gamma-ray luminosity of the wind could approach the level of the pulsar's spin-down luminosity as reported by the Fermi Collaboration.

  6. Discovery of TeV gamma-ray emission from the pulsar wind nebula 3C 58 by MAGIC

    Directory of Open Access Journals (Sweden)

    López-Coto Rubén

    2016-01-01

    Full Text Available The pulsar wind nebula (PWN 3C 58 is one of the historical very-high-energy (VHE; E>100 GeV gamma-ray source candidates. It has been compared to the Crab Nebula due to their morphological similarities. This object was detected by Fermi-LAT with a spectrum extending beyond 100 GeV. We analyzed 81 hours of 3C 58 data taken with the MAGIC telescopes and we detected VHE gamma-ray emission for the first time at TeV energies with a significance of 5.7 sigma and an integral flux of 0.65% C.U. above 1 TeV. According to our results 3C 58 is the least luminous PWN ever detected at VHE and the one with the lowest flux at VHE to date. We compare our results with the expectations of time-dependent models in which electrons up-scatter photon fields. The best representation favors a distance to the PWN of 2 kpc and Far Infrared (FIR comparable to CMB photon fields. Hadronic contribution from the hosting supernova remnant (SNR requires unrealistic energy budget given the density of the medium, disfavoring cosmic ray acceleration in the SNR as origin of the VHE gamma-ray emission.

  7. FERMI-LAT DETECTION OF PULSED GAMMA-RAYS ABOVE 50 GeV FROM THE VELA PULSAR

    Energy Technology Data Exchange (ETDEWEB)

    Leung, Gene C. K.; Takata, J.; Ng, C. W.; Cheng, K. S. [Department of Physics, The University of Hong Kong, Pokfulam Road (Hong Kong); Kong, A. K. H.; Tam, P. H. T. [Institute of Astronomy and Department of Physics, National Tsing Hua University, Hsinchu, Taiwan (China); Hui, C. Y., E-mail: gene930@connect.hku.hk, E-mail: takata@hku.hk [Department of Astronomy and Space Science, Chungnam National University, Daejeon (Korea, Republic of)

    2014-12-20

    The first Fermi-Large Area Telescope (LAT) catalog of sources above 10 GeV reported evidence of pulsed emission above 25 GeV from 12 pulsars, including the Vela pulsar, which showed evidence of pulsation at >37 GeV energy bands. Using 62 months of Fermi-LAT data, we analyzed the gamma-ray emission from the Vela pulsar and searched for pulsed emission above 50 GeV. Having confirmed the significance of the pulsation in 30-50 GeV with the H test (p-value ∼10{sup –77}), we extracted its pulse profile using the Bayesian block algorithm and compared it with the distribution of the five observed photons above 50 GeV using the likelihood ratio test. Pulsation was significantly detected for photons above 50 GeV with a p-value of =3 × 10{sup –5} (4.2σ). The detection of pulsation is significant above 4σ at >79 GeV and above 3σ at >90 GeV energy bands, making this the highest energy pulsation significantly detected by the LAT. We explore the non-stationary outer gap scenario of the very high-energy emissions from the Vela pulsar.

  8. Gamma-Ray Pulsars: Beaming Evolution, Statistics, and Unidentified EGRET Sources

    Science.gov (United States)

    Yadigaroglu, I.-A.; Romani, Roger W.

    1995-08-01

    We compute the variation of the beaming fraction with the efficiency of high-energy γ-ray production in the outer gap pulsar model of Romani and Yadigaroglu. This allows us to correct the fluxes observed for pulsars in the EGRET band and to derive a simple estimate of the variation of efficiency with age. Integration of this model over the population of young neutron stars gives the expected number of γ-ray pulsars along with their distributions in age and distance. This model also shows that many of the unidentified EGRET plane sources should be pulsars and predicts the γ-ray fluxes of known radio pulsars. The contribution of unresolved pulsars to the background flux in the EGRET band is found to be ˜5%.

  9. THE RADIATIVE X-RAY AND GAMMA-RAY EFFICIENCIES OF ROTATION-POWERED PULSARS

    International Nuclear Information System (INIS)

    Vink, Jacco; Bamba, Aya; Yamazaki, Ryo

    2011-01-01

    We present a statistical analysis of the X-ray luminosity of rotation-powered pulsars and their surrounding nebulae using the sample of Kargaltsev and Pavlov, and we complement this with an analysis of the γ-ray emission of Fermi-detected pulsars. We report a strong trend in the efficiency with which spin-down power is converted to X-ray and γ-ray emission with characteristic age: young pulsars and their surrounding nebulae are efficient X-ray emitters, whereas in contrast old pulsars are efficient γ-ray emitters. We divided the X-ray sample in a young (τ c 4 yr) and old sample and used linear regression to search for correlations between the logarithm of the X-ray and γ-ray luminosities and the logarithms of the periods and period derivatives. The X-ray emission from young pulsars and their nebulae are both consistent with L X ∝ P-dot 3 /P 6 . For old pulsars and their nebulae the X-ray luminosity is consistent with a more or less constant efficiency η≡L X / E-dot rot ∼8x10 -5 . For the γ-ray luminosity we confirm that L γ ∝ √E-dot rot . We discuss these findings in the context of pair production inside pulsar magnetospheres and the striped wind model. We suggest that the striped wind model may explain the similarity between the X-ray properties of the pulsar wind nebulae and the pulsars themselves, which according to the striped wind model may both find their origin outside the light cylinder, in the pulsar wind zone.

  10. The Radiative X-ray and Gamma-ray Efficiencies of Rotation-powered Pulsars

    Science.gov (United States)

    Vink, Jacco; Bamba, Aya; Yamazaki, Ryo

    2011-02-01

    We present a statistical analysis of the X-ray luminosity of rotation-powered pulsars and their surrounding nebulae using the sample of Kargaltsev & Pavlov, and we complement this with an analysis of the γ-ray emission of Fermi-detected pulsars. We report a strong trend in the efficiency with which spin-down power is converted to X-ray and γ-ray emission with characteristic age: young pulsars and their surrounding nebulae are efficient X-ray emitters, whereas in contrast old pulsars are efficient γ-ray emitters. We divided the X-ray sample in a young (τ c < 1.7 × 104 yr) and old sample and used linear regression to search for correlations between the logarithm of the X-ray and γ-ray luminosities and the logarithms of the periods and period derivatives. The X-ray emission from young pulsars and their nebulae are both consistent with L_X ∝ \\dot{P}^3/P^6. For old pulsars and their nebulae the X-ray luminosity is consistent with a more or less constant efficiency η ≡ L_X/\\dot{E}_{rot} ≈ 8× 10^{-5}. For the γ-ray luminosity we confirm that L_γ ∝ √{\\dot{E}_{rot}}. We discuss these findings in the context of pair production inside pulsar magnetospheres and the striped wind model. We suggest that the striped wind model may explain the similarity between the X-ray properties of the pulsar wind nebulae and the pulsars themselves, which according to the striped wind model may both find their origin outside the light cylinder, in the pulsar wind zone.

  11. Discovery of Pulsations from the Pulsar J0205 6449 in SNR 3C 58 with the Fermi Gamma-Ray Space Telescope

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, Aous A.; /Naval Research Lab, Wash., D.C.; Ackermann, M.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Ajello, Marco; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Atwood, William B.; /UC, Santa Cruz; Axelsson, M.; /Stockholm U., OKC /Stockholm U.; Baldini, L.; /INFN, Pisa; Ballet, J.; /DAPNIA, Saclay; Barbiellini, Guido; /INFN, Trieste /Trieste U.; Bastieri, Denis; /INFN, Padua /Padua U.; Baughman, B.M.; /Ohio State U.; Bechtol, K.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bellazzini, Ronaldo; /INFN, Pisa; Berenji, Bijan; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Blandford, Roger D.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bloom, Elliott D.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bonamente, E.; /INFN, Perugia /Perugia U.; Borgland, Anders W.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bouvier, A.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bregeon, J.; /INFN, Pisa; Brez, A.; /INFN, Pisa; Brigida, M.; /Bari U. /INFN, Bari /Ecole Polytechnique /Washington U., Seattle /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Columbia U. /IASF, Milan /IASF, Milan /DAPNIA, Saclay /INFN, Perugia /Perugia U. /NASA, Goddard /George Mason U. /Naval Research Lab, Wash., D.C. /NASA, Goddard /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /INFN, Perugia /Perugia U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /LPCE, Orleans /Montpellier U. /Stockholm U., OKC /Royal Inst. Tech., Stockholm /Stockholm U. /Naval Research Lab, Wash., D.C. /INFN, Trieste /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /UC, Santa Cruz /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /CENBG, Gradignan /CENBG, Gradignan /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Manchester U. /Montpellier U. /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; /more authors..

    2011-12-01

    We report the discovery of {gamma}-ray pulsations ({ge}0.1 GeV) from the young radio and X-ray pulsar PSR J0205 + 6449 located in the Galactic supernova remnant 3C 58. Data in the {gamma}-ray band were acquired by the Large Area Telescope aboard the Fermi Gamma-ray Space Telescope (formerly GLAST), while the radio rotational ephemeris used to fold {gamma}-rays was obtained using both the Green Bank Telescope and the Lovell telescope at Jodrell Bank. The light curve consists of two peaks separated by 0.49 {+-} 0.01 {+-} 0.01 cycles which are aligned with the X-ray peaks. The first {gamma}-ray peak trails the radio pulse by 0.08 {+-} 0.01 {+-} 0.01, while its amplitude decreases with increasing energy as for the other {gamma}-ray pulsars. Spectral analysis of the pulsed {gamma}-ray emission suggests a simple power law of index -2.1 {+-} 0.1 {+-} 0.2 with an exponential cutoff at 3.0{sub -0.7}{sup +1.1} {+-} 0.4 GeV. The first uncertainty is statistical and the second is systematic. The integral {gamma}-ray photon flux above 0.1 GeV is (13.7 {+-} 1.4 {+-} 3.0) x 10{sup -8} cm{sup -2} s{sup -1}, which implies for a distance of 3.2 kpc and assuming a broad fan-like beam a luminosity of 8.3 x 10{sup 34} erg s{sup -1} and an efficiency {eta} of 0.3%. Finally, we report a 95% upper limit on the flux of 1.7 x 10{sup -8} cm{sup -2} s{sup -1} for off-pulse emission from the object.

  12. Gamma ray astronomy

    International Nuclear Information System (INIS)

    Fichtel, C.E.

    1975-01-01

    The first certain detection of celestial high energy gamma rays came from a satellite experiment flown on the third Orbiting Solar Observatory (OSO-111). A Gamma ray spark chamber telescope with substantively greater sensitivity and angular resolution (a few degrees) flown on the second Small Astronomy Satellite (SAS-II) has now provided a better picture of the gamma ray sky, and particularly the galactic plane and pulsars. This paper will summarize the present picture of gamma ray astronomy as it has developed at this conference from measurements made with experiments carried out on balloons, those remaining on the ground, and ones flown on satellites. (orig.) [de

  13. A NuSTAR Observation of the Gamma-Ray Emitting Millisecond Pulsar PSR J1723–2837

    Energy Technology Data Exchange (ETDEWEB)

    Kong, A. K. H. [Institute of Astronomy and Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Hui, C. Y. [Department of Astronomy and Space Science, Chungnam National University, Daejeon (Korea, Republic of); Takata, J. [Institute of Particle Physics and Astronomy, Huazhong University of Science and Technology (China); Li, K. L. [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Tam, P. H. T., E-mail: akong@phys.nthu.edu.tw, E-mail: cyhui@cnu.ac.kr [School of Physics and Astronomy, Sun Yat-sen University, Zhuhai 519082 (China)

    2017-04-20

    We report on the first NuSTAR observation of the gamma-ray emitting millisecond pulsar binary PSR J1723–2837. X-ray radiation up to 79 keV is clearly detected, and the simultaneous NuSTAR and Swift spectrum is well described by an absorbed power law with a photon index of ∼1.3. We also find X-ray modulations in the 3–10, 10–20, 20–79, and 3–79 keV bands at the 14.8 hr binary orbital period. All of these are entirely consistent with previous X-ray observations below 10 keV. This new hard X-ray observation of PSR J1723–2837 provides strong evidence that the X-rays are from the intrabinary shock via an interaction between the pulsar wind and the outflow from the companion star. We discuss how the NuSTAR observation constrains the physical parameters of the intrabinary shock model.

  14. THE MASSIVE PULSAR PSR J1614-2230: LINKING QUANTUM CHROMODYNAMICS, GAMMA-RAY BURSTS, AND GRAVITATIONAL WAVE ASTRONOMY

    International Nuclear Information System (INIS)

    Oezel, Feryal; Psaltis, Dimitrios; Ransom, Scott; Demorest, Paul; Alford, Mark

    2010-01-01

    The recent measurement of the Shapiro delay in the radio pulsar PSR J1614-2230 yielded a mass of 1.97 ± 0.04 M sun , making it the most massive pulsar known to date. Its mass is high enough that, even without an accompanying measurement of the stellar radius, it has a strong impact on our understanding of nuclear matter, gamma-ray bursts (GRBs), and the generation of gravitational waves from coalescing neutron stars. This single high-mass value indicates that a transition to quark matter in neutron-star cores can occur at densities comparable to the nuclear saturation density only if the quarks are strongly interacting and are color superconducting. We further show that a high maximum neutron-star mass is required if short-duration GRBs are powered by coalescing neutron stars and, therefore, this mechanism becomes viable in the light of the recent measurement. Finally, we argue that the low-frequency (≤500 Hz) gravitational waves emitted during the final stages of neutron-star coalescence encode the properties of the equation of state because neutron stars consistent with this measurement cannot be centrally condensed. This will facilitate the measurement of the neutron star equation of state with Advanced LIGO/Virgo.

  15. Fermi LAT Detection of Pulsed Gamma-Rays From the Vela-Like Pulsars PSR J1048-5832 and PSR J2229+6114

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, A.A.; /Naval Research Lab, Wash., D.C. /Federal City Coll.; Ackermann, M.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Ajello, M.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Atwood, W.B.; /UC, Santa Cruz; Axelsson, M.; /Stockholm U. /Stockholm U., OKC; Baldini, L.; /INFN, Pisa; Ballet, J.; /DAPNIA, Saclay; Barbiellini, G.; /INFN, Trieste /Trieste U.; Baring, M.G.; /Rice U.; Bastieri, D.; /INFN, Padua /Padua U.; Baughman, B.M.; /Ohio State U.; Bechtol, K.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bellazzini, R.; /INFN, Pisa; Berenji, B.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bloom, E.D.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bonamente, E.; /INFN, Perugia /Perugia U.; Borgland, A.W.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bregeon, J.; /INFN, Pisa; Brez, A.; /INFN, Pisa; Brigida, M.; /Bari U. /INFN, Bari; Bruel, P.; /Ecole Polytechnique /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Columbia U. /IASF, Milan /Milan Polytechnic /DAPNIA, Saclay /INFN, Perugia /Perugia U. /Naval Research Lab, Wash., D.C. /George Mason U. /NASA, Goddard /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /INFN, Perugia /Perugia U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /LPCE, Orleans /Montpellier U. /Stockholm U. /Stockholm U., OKC /INFN, Trieste /Bari U. /INFN, Bari /UC, Santa Cruz /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /CENBG, Gradignan /CENBG, Gradignan /Montpellier U. /Bari U. /INFN, Bari /INFN, Trieste /Arecibo Observ. /Hiroshima U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Bari U. /INFN, Bari /INFN, Bari /NASA, Goddard /Maryland U. /INFN, Perugia /Perugia U.; /more authors..

    2012-03-29

    We report the detection of {gamma}-ray pulsations ({ge}0.1 GeV) from PSR J2229+6114 and PSR J1048-5832, the latter having been detected as a low-significance pulsar by EGRET. Data in the {gamma}-ray band were acquired by the Large Area Telescope (LAT) aboard the Fermi Gamma-ray Space Telescope, while the radio rotational ephemerides used to fold the {gamma}-ray light curves were obtained using the Green Bank Telescope, the Lovell telescope at Jodrell Bank, and the Parkes Telescope. The two young radio pulsars, located within the error circles of the previously unidentified EGRET sources 3EG J1048-5840 and 3EG J2227+6122, present spin-down characteristics similar to the Vela pulsar. PSR J1048-5832 shows two sharp peaks at phases 0.15 {+-} 0.01 and 0.57 {+-} 0.01 relative to the radio pulse confirming the EGRET light curve, while PSR J2229+6114 presents a very broad peak at phase 0.49 {+-} 0.01. The {gamma}-ray spectra above 0.1 GeV of both pulsars are fit with power laws having exponential cutoffs near 3 GeV, leading to integral photon fluxes of (2.19 {+-} 0.22 {+-} 0.32) x 10{sup -7} cm{sup -2} s{sup -1} for PSR J1048-5832 and (3.77 {+-} 0.22 {+-} 0.44) x 10{sup -7} cm{sup -2} s{sup -1} for PSR J2229+6114. The first uncertainty is statistical and the second is systematic. PSR J1048-5832 is one of the two LAT sources which were entangled together as 3EG J1048-5840. These detections add to the growing number of young {gamma}-ray pulsars that make up the dominant population of GeV {gamma}-ray sources in the Galactic plane.

  16. Gamma-ray pulsar physics: gap-model populations and light-curve analyses in the Fermi era

    International Nuclear Information System (INIS)

    Pierbattista, M.

    2010-01-01

    This thesis research focusses on the study of the young and energetic isolated ordinary pulsar population detected by the Fermi gamma-ray space telescope. We compared the model expectations of four emission models and the LAT data. We found that all the models fail to reproduce the LAT detections, in particular the large number of high E objects observed. This inconsistency is not model dependent. A discrepancy between the radio-loud/radio-quiet objects ratio was also found between the observed and predicted samples. The L γ α E 0.5 relation is robustly confirmed by all the assumed models with particular agreement in the slot gap (SG) case. On luminosity bases, the intermediate altitude emission of the two pole caustic SG model is favoured. The beaming factor f Ω shows an E dependency that is slightly visible in the SG case. Estimates of the pulsar orientations have been obtained to explain the simultaneous gamma and radio light-curves. By analysing the solutions we found a relation between the observed energy cutoff and the width of the emission slot gap. This relation has been theoretically predicted. A possible magnetic obliquity α alignment with time is rejected -for all the models- on timescale of the order of 10 6 years. The light-curve morphology study shows that the outer magnetosphere gap emission (OGs) are favoured to explain the observed radio-gamma lag. The light curve moment studies (symmetry and sharpness) on the contrary favour a two pole caustic SG emission. All the model predictions suggest a different magnetic field layout with an hybrid two pole caustic and intermediate altitude emission to explain both the pulsar luminosity and light curve morphology. The low magnetosphere emission mechanism of the polar cap model, is systematically rejected by all the tests done. (author) [fr

  17. Millisecond Pulsars, TeV Halos, and Implications For The Galactic Center Gamma-Ray Excess

    Energy Technology Data Exchange (ETDEWEB)

    Hooper, Dan [Fermilab; Linden, Tim [UC, Santa Cruz, Inst. Part. Phys.

    2018-03-21

    Observations by HAWC indicate that many young pulsars (including Geminga and Monogem) are surrounded by spatially extended, multi-TeV emitting regions. It is not currently known, however, whether TeV emission is also produced by recycled, millisecond pulsars (MSPs). In this study, we perform a stacked analysis of 24 MSPs within HAWC's field-of-view, finding between 2.6-3.2 sigma evidence that these sources are, in fact, surrounded by TeV halos. The efficiency with which these MSPs produce TeV halos is similar to that exhibited by young pulsars. This result suggests that several dozen MSPs will ultimately be detectable by HAWC, including many "invisible" pulsars without radio beams oriented in our direction. The TeV halos of unresolved MSPs could also dominate the TeV-scale diffuse emission observed at high galactic latitudes. We also discuss the possibility that TeV and radio observations could be used to constrain the population of MSPs that is present in the inner Milky Way, thereby providing us with a new way to test the hypothesis that MSPs are responsible for the Galactic Center GeV excess.

  18. Electron-positron pair production by gamma-rays in an anisotropic flux of soft photons, and application to pulsar polar caps

    Science.gov (United States)

    Voisin, Guillaume; Mottez, Fabrice; Bonazzola, Silvano

    2018-02-01

    Electron-positron pair production by collision of photons is investigated in view of application to pulsar physics. We compute the absorption rate of individual gamma-ray photons by an arbitrary anisotropic distribution of softer photons, and the energy and angular spectrum of the outgoing leptons. We work analytically within the approximation that 1 ≫ mc2/E > ɛ/E, with E and ɛ the gamma-ray and soft-photon maximum energy and mc2 the electron mass energy. We give results at leading order in these small parameters. For practical purposes, we provide expressions in the form of Laurent series which give correct reaction rates in the isotropic case within an average error of ˜ 7 per cent. We apply this formalism to gamma-rays flying downward or upward from a hot neutron star thermally radiating at a uniform temperature of 106 K. Other temperatures can be easily deduced using the relevant scaling laws. We find differences in absorption between these two extreme directions of almost two orders of magnitude, much larger than our error estimate. The magnetosphere appears completely opaque to downward gamma-rays while there are up to ˜ 10 per cent chances of absorbing an upward gamma-ray. We provide energy and angular spectra for both upward and downward gamma-rays. Energy spectra show a typical double peak, with larger separation at larger gamma-ray energies. Angular spectra are very narrow, with an opening angle ranging from 10-3 to 10-7 radians with increasing gamma-ray energies.

  19. Nebulae of young pulsars: emitters of TeV neutrinos and gamma-rays

    International Nuclear Information System (INIS)

    Das, Manabindu; Dey, Rajat K.

    2015-01-01

    High-energy neutrinos are expected to be produced in astrophysical objects by the decays of charged pions made in cosmic-ray interactions with surrounding photons and/or matter. As these pions decay, they produce neutrinos with typical energies of 5% compared to those of the cosmic-ray nucleons. These neutrinos can travel long distances undisturbed by either the absorption experienced by high-energy photons or the magnetic deflection experienced by charged particles, making them a unique tracer of cosmic-ray acceleration. Hence neutrinos are considered to be important probes for exploring the high energy Universe, and they may fill the missing link between the TeV gamma-rays and the PeV - EeV cosmic-rays. At the same time, neutrinos produced in cosmic-ray air showers provide information about hadronic physics in kinematic regions that are difficult to probe with terrestrial accelerators

  20. FERMI LARGE AREA TELESCOPE OBSERVATIONS OF GAMMA-RAY PULSARS PSR J1057-5226, J1709-4429, AND J1952+3252

    International Nuclear Information System (INIS)

    Abdo, A. A.; Ajello, M.; Bechtol, K.; Berenji, B.; Borgland, A. W.; Bouvier, A.; Buehler, R.; Antolini, E.; Bonamente, E.; Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; Ballet, J.; Barbiellini, G.; Baring, M. G.; Bastieri, D.; Brigida, M.; Bruel, P.; Burnett, T. H.

    2010-01-01

    The Fermi Large Area Telescope (LAT) data have confirmed the pulsed emission from all six high-confidence gamma-ray pulsars previously known from the EGRET observations. We report results obtained from the analysis of 13 months of LAT data for three of these pulsars (PSR J1057-5226, PSR J1709-4429, and PSR J1952+3252) each of which had some unique feature among the EGRET pulsars. The excellent sensitivity of LAT allows more detailed analysis of the evolution of the pulse profile with energy and also of the variation of the spectral shape with phase. We measure the cutoff energy of the pulsed emission from these pulsars for the first time and provide a more complete picture of the emission mechanism. The results confirm some, but not all, of the features seen in the EGRET data.

  1. An X-ray Pulsar with a Superstrong Magnetic Field in the Soft Gamma-Ray Repeater SGR1806-20

    Science.gov (United States)

    Kouveliotou, C.; Dieters, S.; Strohmayer, T.; vanParadijs, J.; Fishman, G. J.; Meegan, C. A.; Hurley, K.; Kommers, J.; Smith, I.; Frail, D.; hide

    1998-01-01

    Soft gamma-ray repeaters (SGRs) emit multiple, brief (approximately O.1 s) intense outbursts of low-energy gamma-rays. They are extremely rare; three are known in our galaxy and one in the Large Magellanic Cloud. Two SGRs are associated with young supernova remnants (SNRs), and therefore most probably with neutron stars, but it remains a puzzle why SGRs are so different from 'normal' radio pulsars. Here we report the discovery of pulsations in the persistent X-ray flux of SGR1806-20, with a period of 7.47 s and a spindown rate of 2.6 x 10(exp -3) s/yr. We argue that the spindown is due to magnetic dipole emission and find that the pulsar age and (dipolar) magnetic field strength are approximately 1500 years and 8 x 10(exp 14) gauss, respectively. Our observations demonstrate the existence of 'magnetars', neutron stars with magnetic fields about 100 times stronger than those of radio pulsars, and support earlier suggestions that SGR bursts are caused by neutron-star 'crust-quakes' produced by magnetic stresses. The 'magnetar' birth rate is about one per millenium, a substantial fraction of that of radio pulsars. Thus our results may explain why some SNRs have no radio pulsars.

  2. Three-dimensional Kinetic Pulsar Magnetosphere Models: Connecting to Gamma-Ray Observations

    Science.gov (United States)

    Kalapotharakos, Constantinos; Brambilla, Gabriele; Timokhin, Andrey; Harding, Alice K.; Kazanas, Demosthenes

    2018-04-01

    We present three-dimensional (3D) global kinetic pulsar magnetosphere models, where the charged particle trajectories and the corresponding electromagnetic fields are treated self-consistently. For our study, we have developed a Cartesian 3D relativistic particle-in-cell code that incorporates radiation reaction forces. We describe our code and discuss the related technical issues, treatments, and assumptions. Injecting particles up to large distances in the magnetosphere, we apply arbitrarily low to high particle injection rates, and obtain an entire spectrum of solutions from close to the vacuum-retarded dipole to close to the force-free (FF) solution, respectively. For high particle injection rates (close to FF solutions), significant accelerating electric field components are confined only near the equatorial current sheet outside the light cylinder. A judicious interpretation of our models allows the particle emission to be calculated, and consequently, the corresponding realistic high-energy sky maps and spectra to be derived. Using model parameters that cover the entire range of spin-down powers of Fermi young and millisecond pulsars, we compare the corresponding model γ-ray light curves, cutoff energies, and total γ-ray luminosities with those observed by Fermi to discover a dependence of the particle injection rate, { \\mathcal F }, on the spin-down power, \\dot{{ \\mathcal E }}, indicating an increase of { \\mathcal F } with \\dot{{ \\mathcal E }}. Our models, guided by Fermi observations, provide field structures and particle distributions that are not only consistent with each other but also able to reproduce a broad range of the observed γ-ray phenomenologies of both young and millisecond pulsars.

  3. PULSAR: a balloon-borne experiment to detect variable low energy gamma-ray

    International Nuclear Information System (INIS)

    Bui-Van, N.A.; Martin, I.M.; Blanco, F.G.; Braga, J.

    1983-01-01

    The main goal of the balloon-borne 'PULSAR' experiment is to observe γ-ray photons of variable sources and pulsars in the energy range 0.1-5.0 MeV. The geometrical arrangement of the telescope has been designed according to detector sensitivity estimations for the pulsed radiation, which have been made by empirical and analytical methods. From the obtained results we expect to achieve a detection sensitivity of 3.7 x 10 -7 photons cm -2 s -1 KeV -1 (0.1 - 0.5 MeV) and 4.5 x 10 -6 photons cm -2 s -1 KeV -1 (1.0 - 5.0 MeV), for 5 hours integration time at 5 g cm -2 atmospheric depth, with 3σ statistical significance. It was developed an on-board electronics, compatible with the available telemetry capacity, that is able to process the data with a time resolution of approximatelly 4 miliseconds. (Author) [pt

  4. Study of the high energy gamma-ray emission from the crab pulsar with the MAGIC telescope and Fermi-LAT

    International Nuclear Information System (INIS)

    Saito, Takayuki

    2010-01-01

    My thesis deals with a fundamental question of high energy gamma-ray astronomy. Namely, I studied the cut-off shape of the Crab pulsar spectrum to distinguish between the leading scenarios for the pulsar models. Pulsars are celestial objects, which emit periodic pulsed electromagnetic radiation (pulsation) from radio to high energy gamma-rays. Two major scenarios evolved in past 40 years to explain the pulsation mechanism: the inner magnetosphere scenario and the outer magnetosphere scenario. Both scenarios predict a high energy cut-off in the gamma-ray energy spectrum, but with different cut-off sharpness. An exponential cut-off is expected for the outer magnetosphere scenario while a super-exponential cut-off is predicted for the inner magnetosphere scenario. Therefore, one of the best ways to confirm or refute these scenarios is to measure the energy spectrum of a pulsar at around the cut-off energy, i.e., at energies between a few GeV and a few tens of GeV. All past attempts to measure pulsar spectra with ground-based instruments have failed while satellite-borne detectors had a too small area to study detailed spectra in the GeV domain. In this thesis, the gamma-ray emission at around the cut-off energy from the Crab pulsar is studied with the MAGIC telescope. The public data of the satellite-borne gamma-ray detector, Fermi-LAT, are also analyzed in order to discuss the MAGIC observation results in comparison with the adjacent energy band. In late 2007, a new trigger system (SUM trigger system) allowed to reduce the threshold energy of the MAGIC telescope from 50 GeV to 25 GeV and the Crab pulsar was successfully detected during observations from October 2007 and January 2009. My analysis reveals that the energy spectrum is consistent with a simple power law between 25 GeV to 100 GeV. The extension of the energy spectrum up to 100 GeV rules out the inner magnetosphere scenario. Fermi-LAT started operation in August 2008. The Fermi-LAT data reveal that a power

  5. Study of the high energy gamma-ray emission from the crab pulsar with the MAGIC telescope and Fermi-LAT

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Takayuki

    2010-12-06

    My thesis deals with a fundamental question of high energy gamma-ray astronomy. Namely, I studied the cut-off shape of the Crab pulsar spectrum to distinguish between the leading scenarios for the pulsar models. Pulsars are celestial objects, which emit periodic pulsed electromagnetic radiation (pulsation) from radio to high energy gamma-rays. Two major scenarios evolved in past 40 years to explain the pulsation mechanism: the inner magnetosphere scenario and the outer magnetosphere scenario. Both scenarios predict a high energy cut-off in the gamma-ray energy spectrum, but with different cut-off sharpness. An exponential cut-off is expected for the outer magnetosphere scenario while a super-exponential cut-off is predicted for the inner magnetosphere scenario. Therefore, one of the best ways to confirm or refute these scenarios is to measure the energy spectrum of a pulsar at around the cut-off energy, i.e., at energies between a few GeV and a few tens of GeV. All past attempts to measure pulsar spectra with ground-based instruments have failed while satellite-borne detectors had a too small area to study detailed spectra in the GeV domain. In this thesis, the gamma-ray emission at around the cut-off energy from the Crab pulsar is studied with the MAGIC telescope. The public data of the satellite-borne gamma-ray detector, Fermi-LAT, are also analyzed in order to discuss the MAGIC observation results in comparison with the adjacent energy band. In late 2007, a new trigger system (SUM trigger system) allowed to reduce the threshold energy of the MAGIC telescope from 50 GeV to 25 GeV and the Crab pulsar was successfully detected during observations from October 2007 and January 2009. My analysis reveals that the energy spectrum is consistent with a simple power law between 25 GeV to 100 GeV. The extension of the energy spectrum up to 100 GeV rules out the inner magnetosphere scenario. Fermi-LAT started operation in August 2008. The Fermi-LAT data reveal that a power

  6. Very high energy gamma-ray astronomy with H.E.S.S. Development of a multivariate analysis and application to study of pulsar wind nebulae

    International Nuclear Information System (INIS)

    Dubois, Florent

    2009-01-01

    H.E.S.S. (High Energy Stereoscopic System) is one of the leading systems of four Imaging Atmospheric Cherenkov Telescopes that investigates very high energy (VHE) cosmic gamma-rays in the 100 GeV to 100 TeV energy range. H.E.S.S. is located in Namibia, near the Gamsberg mountain and operational since December 2003. The H.E.S.S. experiment is mainly aimed to the observation of the southern sky including the galactic plan and the numerous astrophysics sources therein. Three analysis methods have been developed using various properties of the electromagnetic showers generated by the interaction of primary cosmic gamma-rays within the Earth atmosphere. The first goal of this thesis was to combine the information from these methods for the selection and the energy and direction reconstruction of gamma-ray events. The new analysis called X eff improves significantly the quality of the selection and the precision of the reconstruction. This analysis has been afterwards applied to the study of pulsar wind nebulae like Vela X, G0.9+0.1 and MSH 15-52. New results were found concerning the source extension (Vela X) or spectral analysis (G0.9+0.1 and MSH 15-52) at TeV energies, thanks to additional data and to the improved efficiency of the new method. In 2010, a new phase will begin with the achievement of a fifth telescope dedicated to gamma-ray observation from tens GeV. The calibration processes of the photomultipliers equipping the camera of the new telescope, as well as the results of the tests, are also described in this thesis. (author)

  7. Application of bootstrap sampling in gamma-ray astronomy: Time variability in pulsed emission from crab pulsar

    International Nuclear Information System (INIS)

    Ozel, M.E.; Mayer-Hasselwander, H.

    1985-01-01

    This paper discusses the bootstrap scheme which fits well for many astronomical applications. It is based on the well-known sampling plan called ''sampling with replacement''. Digital computers make the method very practical for the investigation of various trends present in a limited set of data which is usually a small fraction of the total population. The authors attempt to apply the method and demonstrate its feasibility. The study indicates that the discrete nature of high energy gamma-ray data makes the bootstrap method especially attractive for gamma-ray astronomy. Present analysis shows that the ratio of pulse strengths is variable with a 99.8% confidence

  8. The Gamma-ray Sky with Fermi

    Science.gov (United States)

    Thompson, David

    2012-01-01

    Gamma rays reveal extreme, nonthermal conditions in the Universe. The Fermi Gamma-ray Space Telescope has been exploring the gamma-ray sky for more than four years, enabling a search for powerful transients like gamma-ray bursts, novae, solar flares, and flaring active galactic nuclei, as well as long-term studies including pulsars, binary systems, supernova remnants, and searches for predicted sources of gamma rays such as dark matter annihilation. Some results include a stringent limit on Lorentz invariance derived from a gamma-ray burst, unexpected gamma-ray variability from the Crab Nebula, a huge gamma-ray structure associated with the center of our galaxy, surprising behavior from some gamma-ray binary systems, and a possible constraint on some WIMP models for dark matter.

  9. NuSTAR Discovery Of A Young, Energetic Pulsar Associated with the Luminous Gamma-Ray Source HESS J1640-465

    Science.gov (United States)

    Gotthelf, E. V.; Tomsick, J. A.; Halpern, J. P.; Gelfand, J. D.; Harrison, F. A.; Boggs, S. E.; Christensen, F. E.; Craig, W. W.; Hailey, J. C.; Kaspi, V. M.; hide

    2014-01-01

    We report the discovery of a 206 ms pulsar associated with the TeV gamme-ray source HESS J1640-465 using the Nuclear Spectroscopic Telescope Array (NuSTAR) X-ray observatory. PSR J1640-4631 lies within the shelltype supernova remnant (SNR) G338.3-0.0, and coincides with an X-ray point source and putative pulsar wind nebula (PWN) previously identified in XMM-Newton and Chandra images. It is spinning down rapidly with period derivative P = 9.758(44) × 10(exp -13), yielding a spin-down luminosity E = 4.4 × 10(exp 36) erg s(exp -1), characteristic age tau(sub c) if and only if P/2 P = 3350 yr, and surface dipole magnetic field strength B(sub s) = 1.4×10(exp 13) G. For the measured distance of 12 kpc to G338.3-0.0, the 0.2-10 TeV luminosity of HESS J1640-465 is 6% of the pulsar's present E. The Fermi source 1FHL J1640.5-4634 is marginally coincident with PSR J1640-4631, but we find no gamma-ray pulsations in a search using five years of Fermi Large Area Telescope (LAT) data. The pulsar energetics support an evolutionary PWN model for the broadband spectrum of HESS J1640-465, provided that the pulsar's braking index is n approximately equal to 2, and that its initial spin period was P(sub 0) approximately 15 ms.

  10. RADIO-QUIET AND RADIO-LOUD PULSARS: SIMILAR IN GAMMA-RAYS BUT DIFFERENT IN X-RAYS

    Energy Technology Data Exchange (ETDEWEB)

    Marelli, M.; Mignani, R. P.; Luca, A. De; Salvetti, D. [INAF—Istituto di Astrofisica Spaziale e Fisica Cosmica Milano, via E. Bassini 15, I-20133, Milano (Italy); Parkinson, P. M. Saz [Santa Cruz Institute for Particle Physics, Department of Physics, University of California at Santa Cruz, Santa Cruz, CA 95064 (United States); Hartog, P. R. Den [Stanford University HEPL/KIPAC, 452 Lomita Mall, Stanford, CA 94305-4085 (United States); Wolff, M. T., E-mail: marelli@iasf-milano.inaf.it [Space Science Division, Naval Research Laboratory, Washington, DC 20375-5352 (United States)

    2015-04-01

    We present new Chandra and XMM-Newton observations of a sample of eight radio-quiet (RQ) γ-ray pulsars detected by the Fermi Large Area Telescope. For all eight pulsars we identify the X-ray counterpart, based on the X-ray source localization and the best position obtained from γ-ray pulsar timing. For PSR J2030+4415 we found evidence for a ∼10″-long pulsar wind nebula. Our new results consolidate the work from Marelli et al. and confirm that, on average, the γ-ray-to-X-ray flux ratios (F{sub γ}/F{sub X}) of RQ pulsars are higher than for the radio-loud (RL) ones. Furthermore, while the F{sub γ}/F{sub X} distribution features a single peak for the RQ pulsars, the distribution is more dispersed for the RL ones, possibly showing two peaks. We discuss possible implications of these different distributions based on current models for pulsar X-ray emission.

  11. The Gamma-ray Universe through Fermi

    Science.gov (United States)

    Thompson, David J.

    2012-01-01

    Gamma rays, the most powerful form of light, reveal extreme conditions in the Universe. The Fermi Gamma-ray Space Telescope and its smaller cousin AGILE have been exploring the gamma-ray sky for several years, enabling a search for powerful transients like gamma-ray bursts, novae, solar flares, and flaring active galactic nuclei, as well as long-term studies including pulsars, binary systems, supernova remnants, and searches for predicted sources of gamma rays such as dark matter annihilation. Some results include a stringent limit on Lorentz invariance derived from a gamma-ray burst, unexpected gamma-ray variability from the Crab Nebula, a huge ga.nuna-ray structure associated with the center of our galaxy, surprising behavior from some gamma-ray binary systems, and a possible constraint on some WIMP models for dark matter.

  12. PSR J2030+364I: Radio Discovery and Gamma-ray Study of a Middle-aged Pulsar in the Now Identified Fermi-LAT Source 1FGL J2030.0+3641

    Science.gov (United States)

    Camilo, F.; Kerr, M.; Ray, P. S.; Ransom, S. M.; Johnston, S.; Romani, R. W.; Parent, D.; Decesar, M. E.; Harding, A. K.; Donato, D.; hide

    2011-01-01

    In a radio search with the Green Bank Telescope of three unidentified low Galactic latitude Fermi-LAT sources, we have discovered the middle-aged pulsar J2030+3641, associated with IFGL J2030.0+3641 (2FGL J2030.0+3640). Following the detection of gamma-ray pulsations using a radio ephemeris, we have obtained a phase-coherent timing solution based on gamma-ray and radio pulse arrival times that spans the entire Fermi mission. With a rotation period of 0.28, spin-down luminosity of 3 x 10(exp 34) erg/s, and characteristic age of 0.5 Myr, PSR J2030+3641 is a middle-aged neutron star with spin parameters similar to those of the exceedingly gamma-ray-bright and radio-undetected Geminga. Its gamma-ray flux is 1 % that of Geminga, primarily because of its much larger distance, as suggested by the large integrated column density of free electrons, DM = 246 pc/cu cm. We fit the gamma-ray light curve, along with limited radio polarimetric constraints, to four geometrical models of magnetospheric emission, and while none of the fits have high significance some are encouraging and suggest that further refinements of these models may be worthwhile. We argue that not many more non-millisecond radio pulsars may be detected along the Galactic plane that are responsible for LAT sources, but that modified methods to search for gamma-ray pulsations should be productive - PSR J2030+364 I would have been found blindly in gamma rays if only > or approx. 0.8 GeV photons had been considered, owing to its relatively flat spectrum and location in a region of high soft background.

  13. Optical and Infrared Lightcurve Modeling of the Gamma-ray Millisecond Pulsar 2FGL J2339.6-0532

    Directory of Open Access Journals (Sweden)

    Tzu-Ching Yen

    2013-09-01

    Full Text Available We report the detection of a quasi-sinusoidally modulated optical flux with a period of 4.6343 hour in the optical and infrared band of the Fermi source 2FGL J2339.7-0531. Comparing the multi-wavelength observations, we suggest that 2FGL J2339.7- 0531 is a γ-ray emitting millisecond pulsar (MSP in a binary system with an optically visible late-type companion accreted by the pulsar, where the MSP is responsible for the γ-ray emission while the optical and infrared emission originate from the heated side of the companion. Based on the optical properties, the companion star is believed to be heated by the pulsar and reaches peak magnitude when the heated side faces the observer. We conclude that 2FGL J2339.7-0531 is a member of a subclass of γ-ray emitting pulsars -the ‘black widows’- recently revealed to be evaporating their companions in the late-stage of recycling as a prominent group of these newly revealed Fermi sources.

  14. Chandra and RXTE studies of the X-ray/gamma-ray millisecond pulsar PSR J0218+4232

    NARCIS (Netherlands)

    Kuiper, L.; Hermsen, W.; Stappers, B.W.

    2004-01-01

    We report on high-resolution spatial and timing observations of the millisecond pulsar PSR J0218+4232 performed with the Chandra X-ray Observatory (CXO) and the Rossi X-ray Timing Explorer (RXTE). With these observations we were able to study: (a) the possible spatial extent at X-ray energies of the

  15. PSR J2021+4026 in the Gamma Cygni Region: The First Variable Gamma-Ray Pulsar Seen by the Fermi LAT

    Science.gov (United States)

    Allafort, A.; Baldini, L.; Ballet, J.; Barbiellini, G.; Baring, M. G.; Bastieri, D.; Bellazzini, R.; Bonamente, E.; Bottacini, E.; Brandt, T. J.; hide

    2013-01-01

    Long-term monitoring of PSR J2021+4026 in the heart of the Cygnus region with the Fermi Large Area Telescope unveiled a sudden decrease in flux above 100 MeV over a timescale shorter than a week. The "jump" was near MJD 55850 (2011 October 16), with the flux decreasing from (8.33 plus or minus 0.08)×10(exp -10) erg cm(exp -2) s(exp -1) to (6.86 plus or minus 0.13)× 10 (exp -1)0 erg cm (exp -2) s(exp -1). Simultaneously, the frequency spindown rate increased from (7.8 plus or minus 0.1) × 10(exp -13) Hz s(exp -1) to (8.1 plus or minus 0.1) × 10(exp -1)3 Hz s(exp -1). Significant (greater than 5 sigma) changes in the pulse profile and marginal (less than 3 sigma) changes in the emission spectrum occurred at the same time. There is also evidence for a small, steady flux increase over the 3 yr preceding MJD 55850. This is the first observation at gamma-ray energies of mode changes and intermittent behavior, observed at radio wavelengths for other pulsars. We argue that the change in pulsed gamma-ray emission is due to a change in emission beaming and we speculate that it is precipitated by a shift in the magnetic field structure, leading to a change of either effective magnetic inclination or effective current.

  16. Discovery of Pulsations from the Pulsar J0205 6449 in SNR 3C 58 with the Fermi Gamma-Ray Space Telescope

    International Nuclear Information System (INIS)

    Abdo, Aous A.; Ackermann, M.; Ajello, Marco; Atwood, William B.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, Guido; Bastieri, Denis; Baughman, B.M.; Bechtol, K.; Bellazzini, Ronaldo; Berenji, Bijan; Blandford, Roger D.; Bloom, Elliott D.; Bonamente, E.; Borgland, Anders W.; Bouvier, A.; Bregeon, J.; Brez, A.; Brigida, M.

    2009-01-01

    We report the discovery of γ-ray pulsations ((ge)0.1 GeV) from the young radio and X-ray pulsar PSR J0205 + 6449 located in the Galactic supernova remnant 3C 58. Data in the γ-ray band were acquired by the Large Area Telescope aboard the Fermi Gamma-ray Space Telescope (formerly GLAST), while the radio rotational ephemeris used to fold γ-rays was obtained using both the Green Bank Telescope and the Lovell telescope at Jodrell Bank. The light curve consists of two peaks separated by 0.49 ± 0.01 ± 0.01 cycles which are aligned with the X-ray peaks. The first γ-ray peak trails the radio pulse by 0.08 ± 0.01 ± 0.01, while its amplitude decreases with increasing energy as for the other γ-ray pulsars. Spectral analysis of the pulsed γ-ray emission suggests a simple power law of index -2.1 ± 0.1 ± 0.2 with an exponential cutoff at 3.0 -0.7 +1.1 ± 0.4 GeV. The first uncertainty is statistical and the second is systematic. The integral γ-ray photon flux above 0.1 GeV is (13.7 ± 1.4 ± 3.0) x 10 -8 cm -2 s -1 , which implies for a distance of 3.2 kpc and assuming a broad fan-like beam a luminosity of 8.3 x 10 34 erg s -1 and an efficiency η of 0.3%. Finally, we report a 95% upper limit on the flux of 1.7 x 10 -8 cm -2 s -1 for off-pulse emission from the object.

  17. DISCOVERY OF PULSATIONS FROM THE PULSAR J0205+6449 IN SNR 3C 58 WITH THE FERMI GAMMA-RAY SPACE TELESCOPE

    International Nuclear Information System (INIS)

    Abdo, A. A.; Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Bouvier, A.; Atwood, W. B.; Axelsson, M.; Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Baughman, B. M.; Bonamente, E.

    2009-01-01

    We report the discovery of γ-ray pulsations (≥0.1 GeV) from the young radio and X-ray pulsar PSR J0205 + 6449 located in the Galactic supernova remnant 3C 58. Data in the γ-ray band were acquired by the Large Area Telescope aboard the Fermi Gamma-ray Space Telescope (formerly GLAST), while the radio rotational ephemeris used to fold γ-rays was obtained using both the Green Bank Telescope and the Lovell telescope at Jodrell Bank. The light curve consists of two peaks separated by 0.49 ± 0.01 ± 0.01 cycles which are aligned with the X-ray peaks. The first γ-ray peak trails the radio pulse by 0.08 ± 0.01 ± 0.01, while its amplitude decreases with increasing energy as for the other γ-ray pulsars. Spectral analysis of the pulsed γ-ray emission suggests a simple power law of index -2.1 ± 0.1 ± 0.2 with an exponential cutoff at 3.0 +1.1 -0.7 ± 0.4 GeV. The first uncertainty is statistical and the second is systematic. The integral γ-ray photon flux above 0.1 GeV is (13.7 ± 1.4 ± 3.0) x 10 -8 cm -2 s -1 , which implies for a distance of 3.2 kpc and assuming a broad fan-like beam a luminosity of 8.3 x 10 34 erg s -1 and an efficiency η of 0.3%. Finally, we report a 95% upper limit on the flux of 1.7 x 10 -8 cm -2 s -1 for off-pulse emission from the object.

  18. ELECTRON ACCELERATION IN PULSAR-WIND TERMINATION SHOCKS: AN APPLICATION TO THE CRAB NEBULA GAMMA-RAY FLARES

    Energy Technology Data Exchange (ETDEWEB)

    Kroon, John J.; Becker, Peter A.; Dermer, Charles D. [Department of Physics and Astronomy, George Mason University, Fairfax, VA 22030-4444 (United States); Finke, Justin D., E-mail: jkroon@gmu.edu, E-mail: pbecker@gmu.edu, E-mail: charlesdermer@outlook.com, E-mail: justin.finke@nrl.navy.mil [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States)

    2016-12-20

    The γ -ray flares from the Crab Nebula observed by AGILE and Fermi -LAT reaching GeV energies and lasting several days challenge the standard models for particle acceleration in pulsar-wind nebulae because the radiating electrons have energies exceeding the classical radiation-reaction limit for synchrotron. Previous modeling has suggested that the synchrotron limit can be exceeded if the electrons experience electrostatic acceleration, but the resulting spectra do not agree very well with the data. As a result, there are still some important unanswered questions about the detailed particle acceleration and emission processes occurring during the flares. We revisit the problem using a new analytical approach based on an electron transport equation that includes terms describing electrostatic acceleration, stochastic wave-particle acceleration, shock acceleration, synchrotron losses, and particle escape. An exact solution is obtained for the electron distribution, which is used to compute the associated γ -ray synchrotron spectrum. We find that in our model the γ -ray flares are mainly powered by electrostatic acceleration, but the contributions from stochastic and shock acceleration play an important role in producing the observed spectral shapes. Our model can reproduce the spectra of all the Fermi -LAT and AGILE flares from the Crab Nebula, using magnetic field strengths in agreement with the multi-wavelength observational constraints. We also compute the spectrum and duration of the synchrotron afterglow created by the accelerated electrons, after they escape into the region on the downstream side of the pulsar-wind termination shock. The afterglow is expected to fade over a maximum period of about three weeks after the γ -ray flare.

  19. Observing and Modeling the Gamma-Ray Emission from Pulsar/Pulsar Wind Nebula Complex PSR J0205+6449/3C 58

    Science.gov (United States)

    Li, Jian; Torres, Diego F.; Lin, Ting Ting; Grondin, Marie-Helene; Kerr, Matthew; Lemoine-Goumard, Marianne; de Oña Wilhelmi, Emma

    2018-05-01

    We present the results of the analysis of eight years of Fermi-LAT data of the pulsar/pulsar wind nebula complex PSR J0205+6449/3C 58. Using a contemporaneous ephemeris, we carried out a detailed analysis of PSR J0205+6449 both during its off-peak and on-peak phase intervals. 3C 58 is significantly detected during the off-peak phase interval. We show that the spectral energy distribution at high energies is the same disregarding the phases considered, and thus that this part of the spectrum is most likely dominated by the nebula radiation. We present results of theoretical models of the nebula and the magnetospheric emission that confirm this interpretation. Possible high-energy flares from 3C 58 were searched for, but none were unambiguously identified.

  20. A search for TeV gamma-ray emission from SNRs, pulsars and unidentified GeV sources in the Galactic plane in the longitude range between -2 deg and 85 deg.

    Science.gov (United States)

    Aharonian, F. A.; Akhperjanian, A. G.; Beilicke, M.; Bernloehr, K.; Bojahr, H.; Bolz, O.; Boerst, H.; Coarasa, T.; Contreras, J. L.; Cortina, J.; Denninghoff, S.; Fonseca, V.; Girma, M.; Goetting, N.; Heinzelmann, G.; Hermann, G.; Heusler, A.; Hofmann, W.; Horns, D.; Jung, I.; Kankanyan, R.; Kestel, M.; Kettler, J.; Kohnle, A.; Konopelko, A.; Kornmeyer, H.; Kranich, D.; Krawczynski, H.; Lampeitl, H.; Lopez, M.; Lorenz, E.; Lucarelli, F.; Mang, O.; Meyer, H.; Mirzoyan, R.; Moralejo, A.; Ona, E.; Panter, M.; Plyasheshnikov, A.; Puehlhofer, G.; Rauterberg, G.; Reyes, R.; Rhode, W.; Ripken, J.; Roehring, A.; Rowell, G. P.; Sahakian, V.; Samorski, M.; Schilling, M.; Siems, M.; Sobzynska, D.; Stamm, W.; Tluczykont, M.; Voelk, H. J.; Wiedner, C. A.; Wittek, W.

    2002-12-01

    Using the HEGRA system of imaging atmospheric Cherenkov telescopes, one quarter of the Galactic plane (-2o < l < 85o) was surveyed for TeV gamma-ray emission from point sources and moderately extended sources (φ <= 0.8o). The region covered includes 86 known pulsars (PSR), 63 known supernova remnants (SNR) and nine GeV sources, representing a significant fraction of the known populations. No evidence for emission of TeV gamma radiation was detected, and upper limits range from 0.15 Crab units up to several Crab units, depending on the observation time and zenith angles covered. The ensemble sums over selected SNR and pulsar subsamples and over the GeV-sources yield no indication of emission from these potential sources. The upper limit for the SNR population is 6.7% of the Crab flux and for the pulsar ensemble is 3.6% of the Crab flux.

  1. Very-high-energy gamma-ray observations of pulsar wind nebulae and cataclysmic variable stars with MAGIC and development of trigger systems for IACTs

    Science.gov (United States)

    Lopez-Coto, Ruben

    2015-07-01

    The history of astronomy is as ancient as the reach of our written records. All the human civilizations have been interested in the study and interpretation of the night sky and its objects and phenomena. These observations were performed with the naked eye until the beginning of the 17th century, when Galileo Galilei started to use an instrument recently developed called telescope. Since then, the range of accessible wavelengths has been increasing, with a burst in the 20th century with the developing of instruments to observe them: antennas (radio and submillimeter), telescopes (optical, IR) and satellites (UV, X-rays and soft gamma rays). The last wavelength range accessed was the Very-High-Energy (VHE) gamma rays. At this range fluxes are so low that it is not possible to use space-based instruments with typical collection areas of O(1) m2. We must resort to the imaging atmospheric Cherenkov technique, which is based on the detection of the flashes of Cherenkov light that VHE gamma rays produce when they interact with the Earth's atmosphere. The field is very young, with the first source discovered in 1989 by the pioneering Whipple telescope. It is very dynamic with more than 150 sources detected to date, most of them by MAGIC, HESS and VERITAS, that make up the current generation of instruments. Finally, the field is also very promising, with the preparation of a next generation of imaging atmospheric Cherenkov telescopes: CTA, that is expected to start full operation in 2020. The work presented in this thesis comprises my efforts to take the ground-based γ-ray astronomy one step forward. Part I of the thesis is an introduction to the non- thermal universe, the imaging atmospheric Cherenkov technique and the Imaging Atmospheric Cherenkov Telescopes (IACTs) MAGIC and CTA. Part II deals with several ways to reduce the trigger threshold of IACTs. This includes the simula- tion, characterization and test of an analog trigger especially designed to achieve the

  2. X- and γ-ray pulsations of the nearby radio-faint PSR J1741–2054

    Energy Technology Data Exchange (ETDEWEB)

    Marelli, M.; Belfiore, A.; Caraveo, P.; De Luca, A.; Salvetti, D. [INAF-Istituto di Astrofisica Spaziale e Fisica Cosmica Milano, via E. Bassini 15, I-20133 Milano (Italy); Saz Parkinson, P. [Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, CA 95064 (United States); Sarazin, C.; Sivakoff, G. R. [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904-4325 (United States); Camilo, F., E-mail: marelli@lambrate.inaf.it [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States)

    2014-07-20

    We report the results of a deep XMM-Newton observation of the radio-faint γ-ray pulsar J1741–2054 and its nebula together with the analysis of five years of Fermi Large Area Telescope (LAT) data. The X-ray spectrum of the pulsar is consistent with an absorbed power law plus a blackbody, originating at least partly from the neutron star cooling. The nebular emission is consistent with that of a synchrotron pulsar wind nebula, with hints of spatial spectral variation. We extended the available Fermi LAT ephemeris and folded the γ-ray and X-ray data. We detected X-ray pulsations from the neutron star: both the thermal and non-thermal components are ∼35%-40% pulsed, with phase-aligned maxima. A sinusoid fits the thermal-folded profile well. A 10 bin phase-resolved analysis of the X-ray emission shows softening of the non-thermal spectrum during the on-pulse phases. The radio, X-ray, and γ-ray light curves are single-peaked, not phase-aligned, with the X-ray peak trailing the γ-ray peak by more than half a rotation. Spectral considerations suggest that the most probable pulsar distance is in the 0.3-1.0 kpc range, in agreement with the radio dispersion measure.

  3. X- and γ-ray pulsations of the nearby radio-faint PSR J1741–2054

    International Nuclear Information System (INIS)

    Marelli, M.; Belfiore, A.; Caraveo, P.; De Luca, A.; Salvetti, D.; Saz Parkinson, P.; Sarazin, C.; Sivakoff, G. R.; Camilo, F.

    2014-01-01

    We report the results of a deep XMM-Newton observation of the radio-faint γ-ray pulsar J1741–2054 and its nebula together with the analysis of five years of Fermi Large Area Telescope (LAT) data. The X-ray spectrum of the pulsar is consistent with an absorbed power law plus a blackbody, originating at least partly from the neutron star cooling. The nebular emission is consistent with that of a synchrotron pulsar wind nebula, with hints of spatial spectral variation. We extended the available Fermi LAT ephemeris and folded the γ-ray and X-ray data. We detected X-ray pulsations from the neutron star: both the thermal and non-thermal components are ∼35%-40% pulsed, with phase-aligned maxima. A sinusoid fits the thermal-folded profile well. A 10 bin phase-resolved analysis of the X-ray emission shows softening of the non-thermal spectrum during the on-pulse phases. The radio, X-ray, and γ-ray light curves are single-peaked, not phase-aligned, with the X-ray peak trailing the γ-ray peak by more than half a rotation. Spectral considerations suggest that the most probable pulsar distance is in the 0.3-1.0 kpc range, in agreement with the radio dispersion measure.

  4. Compton Gamma-Ray Observatory

    Science.gov (United States)

    1991-01-01

    This photograph shows the Compton Gamma-Ray Observatory (GRO) being deployed by the Remote Manipulator System (RMS) arm aboard the Space Shuttle Atlantis during the STS-37 mission in April 1991. The GRO reentered Earth atmosphere and ended its successful mission in June 2000. For nearly 9 years, the GRO Burst and Transient Source Experiment (BATSE), designed and built by the Marshall Space Flight Center (MSFC), kept an unblinking watch on the universe to alert scientists to the invisible, mysterious gamma-ray bursts that had puzzled them for decades. By studying gamma-rays from objects like black holes, pulsars, quasars, neutron stars, and other exotic objects, scientists could discover clues to the birth, evolution, and death of stars, galaxies, and the universe. The gamma-ray instrument was one of four major science instruments aboard the Compton. It consisted of eight detectors, or modules, located at each corner of the rectangular satellite to simultaneously scan the entire universe for bursts of gamma-rays ranging in duration from fractions of a second to minutes. In January 1999, the instrument, via the Internet, cued a computer-controlled telescope at Las Alamos National Laboratory in Los Alamos, New Mexico, within 20 seconds of registering a burst. With this capability, the gamma-ray experiment came to serve as a gamma-ray burst alert for the Hubble Space Telescope, the Chandra X-Ray Observatory, and major gound-based observatories around the world. Thirty-seven universities, observatories, and NASA centers in 19 states, and 11 more institutions in Europe and Russia, participated in the BATSE science program.

  5. Gamma ray generator

    Science.gov (United States)

    Firestone, Richard B; Reijonen, Jani

    2014-05-27

    An embodiment of a gamma ray generator includes a neutron generator and a moderator. The moderator is coupled to the neutron generator. The moderator includes a neutron capture material. In operation, the neutron generator produces neutrons and the neutron capture material captures at least some of the neutrons to produces gamma rays. An application of the gamma ray generator is as a source of gamma rays for calibration of gamma ray detectors.

  6. Highlights of GeV Gamma-Ray Astronomy

    Science.gov (United States)

    Thompson, David J.

    2010-01-01

    Because high-energy gamma rays are primarily produced by high-energy particle interactions, the gamma-ray survey of the sky by the Fermi Gamma-ray Space Telescope offers a view of sites of cosmic ray production and interactions. Gamma-ray bursts, pulsars, pulsar wind nebulae, binary sources, and Active Galactic Nuclei are all phenomena that reveal particle acceleration through their gamma-ray emission. Diffuse Galactic gamma radiation, Solar System gamma-ray sources, and energetic radiation from supernova remnants are likely tracers of high-energy particle interactions with matter and photon fields. This paper will present a broad overview of the constantly changing sky seen with the Large Area Telescope (LAT) on the Fermi spacecraft.

  7. High-energy gamma-ray emission in compact binaries

    International Nuclear Information System (INIS)

    Cerutti, Benoit

    2010-01-01

    Four gamma-ray sources have been associated with binary systems in our Galaxy: the micro-quasar Cygnus X-3 and the gamma-ray binaries LS I +61 degrees 303, LS 5039 and PSR B1259-63. These systems are composed of a massive companion star and a compact object of unknown nature, except in PSR B1259-63 where there is a young pulsar. I propose a comprehensive theoretical model for the high-energy gamma-ray emission and variability in gamma-ray emitting binaries. In this model, the high-energy radiation is produced by inverse Compton scattering of stellar photons on ultra-relativistic electron-positron pairs injected by a young pulsar in gamma-ray binaries and in a relativistic jet in micro-quasars. Considering anisotropic inverse Compton scattering, pair production and pair cascade emission, the TeV gamma-ray emission is well explained in LS 5039. Nevertheless, this model cannot account for the gamma-ray emission in LS I +61 degrees 303 and PSR B1259-63. Other processes should dominate in these complex systems. In Cygnus X-3, the gamma-ray radiation is convincingly reproduced by Doppler-boosted Compton emission of pairs in a relativistic jet. Gamma-ray binaries and micro-quasars provide a novel environment for the study of pulsar winds and relativistic jets at very small spatial scales. (author)

  8. Discovery of a Young, Energetic Pulsar Near the Supernova Remnant G290.1-0.8 and the Gamma-Ray Source 2EG J1103-6106

    Science.gov (United States)

    Kaspi, V. M.; Bailes, M.; Manchester, R. N.; Stappers, B. W.; Sandhu, J.; Navarro, J.; D'Amico, N.

    1996-01-01

    We report on the discovery and follow-up timing observations of a 63-ms radio pulsar, PSR J1105-6107. We show that the pulsar is young, having a characteristic age of only 63kyr. We consider its possible association with the nearby remnant G290.1-0.8 (MSH 11-61A) but uncertainties in the distances and ages preclude a firm conclusion.

  9. Discoveries by the Fermi Gamma Ray Space Telescope

    Science.gov (United States)

    Gehrels, Neil

    2011-01-01

    Fermi is a large space gamma-ray mission developed by NASA and the DOE with major contributions from France, Germany, Italy, Japan and Sweden. It was launched in June 2008 and has been performing flawlessly since then. The main instrument is the Large Area Telescope (LAT) operating in the 20 MeV to 300 GeV range and a smaller monitor instrument is the Gamma-ray Burst Monitor (GBM) operating in the 8 keV to 40 MeV range. New findings are occurring every week. Some of the key discoveries are: 1) Discovery of many new gamma-ray pulsars, including gamma-ray only and millisecond pulsars. 2) Detection of high energy gamma-ray emission from globular clusters, most likely due to summed emission from msec pulsars. 3) Discovery of delayed and extended high energy gamma-ray emission from short and long gamma-ray busts. 4) Detection of approximately 250 gamma-ray bursts per year with the GBM instrument. 5) Most accurate measurement of the cosmic ray electron spectrum between 30 GeV and 1 TeV, showing some excess above the conventional diffusion model. The talk will present the new discoveries and their implications.

  10. X-ray measurement of the spin-down of CalverA: A radio- and gamma-ray-quiet pulsar

    Energy Technology Data Exchange (ETDEWEB)

    Halpern, J. P.; Bogdanov, S.; Gotthelf, E. V., E-mail: jules@astro.columbia.edu [Columbia Astrophysics Laboratory, Columbia University, 550 West 120th Street, New York, NY 10027-6601 (United States)

    2013-12-01

    We measure spin-down of the 59 ms X-ray pulsar Calvera by comparing the XMM-Newton discovery data from 2009 with new Chandra timing observations taken in 2013. Its period derivative is P-dot =(3.19± 0.08)×10{sup −15}, which corresponds to spin-down luminosity E-dot =6.1×10{sup 35} erg s{sup –1}, characteristic age τ{sub c}≡P/2 P-dot =2.9×10{sup 5} yr, and surface dipole magnetic field strength B{sub s} = 4.4 × 10{sup 11} G. These values rule out a mildly recycled pulsar, but Calvera could be an orphaned central compact object (anti-magnetar), with a magnetic field that was initially buried by supernova debris and is now reemerging and approaching normal strength. We also performed unsuccessful searches for high-energy γ-rays from Calvera in both imaging and timing of >100 MeV Fermi photons. Even though the distance to Calvera is uncertain by an order of magnitude, an upper limit of d < 2 kpc inferred from X-ray spectra implies a γ-ray luminosity limit of <3.3 × 10{sup 32} erg s{sup –1}, which is less than that of any pulsar of comparable E-dot . Calvera shares some properties with PSR J1740+1000, a young radio pulsar that we show by virtue of its lack of proper motion was born outside of the Galactic disk. As an energetic, high-Galactic-latitude pulsar, Calvera is unique in being undetected in both radio and γ-rays to faint limits, which should place interesting constraints on models for particle acceleration and beam patterns in pulsar magnetospheres.

  11. Structure and content of the galaxy and galactic gamma rays

    Energy Technology Data Exchange (ETDEWEB)

    1976-01-01

    The conference included papers on ..gamma..-ray pulsars, galactic diffuse flux and surveys, radio surveys of external galaxies, galactic distribution of pulsars, and galactic gamma emission. Galactic structure drawing on all branches of galactic astronomy is discussed. New and unpublished material is included. (JFP)

  12. NuSTAR discovery of a young, energetic pulsar associated with the luminous gamma-ray source HESS J1640–465

    Energy Technology Data Exchange (ETDEWEB)

    Gotthelf, E. V.; Halpern, J. P.; Hailey, J. C. [Columbia Astrophysics Laboratory, Columbia University, 550 West 120th Street, New York, NY 10027-6601 (United States); Tomsick, J. A.; Boggs, S. E.; Craig, W. W. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Gelfand, J. D. [NYU Abu Dhabi, PO Box 129188, Abu Dhabi (United Arab Emirates); Harrison, F. A. [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Christensen, F. E. [DTU Space-National Space Institute, Technical University of Denmark, Elektrovej 327, 2800 Lyngby (Denmark); Kaspi, V. M. [Department of Physics, McGill University, Montreal, QC H3A 2T8 (Canada); Stern, D. K. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Zhang, W. W., E-mail: eric@astro.columbia.edu [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2014-06-20

    We report the discovery of a 206 ms pulsar associated with the TeV γ-ray source HESS J1640–465 using the Nuclear Spectroscopic Telescope Array (NuSTAR) X-ray observatory. PSR J1640–4631 lies within the shell-type supernova remnant (SNR) G338.3–0.0, and coincides with an X-ray point source and putative pulsar wind nebula (PWN) previously identified in XMM-Newton and Chandra images. It is spinning down rapidly with period derivative P-dot = 9.758(44) × 10{sup –13}, yielding a spin-down luminosity E-dot = 4.4 × 10{sup 36} erg s{sup –1}, characteristic age τ{sub c}≡P/2 P-dot = 3350 yr, and surface dipole magnetic field strength B{sub s} = 1.4 × 10{sup 13} G. For the measured distance of 12 kpc to G338.3–0.0, the 0.2-10 TeV luminosity of HESS J1640–465 is 6% of the pulsar's present E-dot . The Fermi source 1FHL J1640.5–4634 is marginally coincident with PSR J1640–4631, but we find no γ-ray pulsations in a search using five years of Fermi Large Area Telescope (LAT) data. The pulsar energetics support an evolutionary PWN model for the broadband spectrum of HESS J1640–465, provided that the pulsar's braking index is n ≈ 2, and that its initial spin period was P {sub 0} ∼ 15 ms.

  13. Gamma-ray sources

    International Nuclear Information System (INIS)

    Hermsen, W.

    1980-01-01

    Results are presented from an analysis of the celestial gamma-ray fine-scale structure based on over half of the data which may ultimately be available from the COS-B satellite. A catalogue consisting of 25 gamma-ray sources measured at energies above 100 MeV is presented. (Auth.)

  14. Gamma ray astronomy

    International Nuclear Information System (INIS)

    Hillier, R.

    1984-01-01

    The book reviews the development of gamma ray astronomy over the past twenty five years. A large section of the book is devoted to the problems of background radiation and the design of detectors. Gamma rays from the sun, the galactic disc, the galaxy, and extra galactic sources; are also discussed. (U.K.)

  15. Very high energy gamma-ray astronomy

    International Nuclear Information System (INIS)

    Weekes, T.C.

    1988-01-01

    Current interest in gamma-ray astronomy at energies above 100 GeV comes from the identification of Cygnus X-3 and other X-ray binaries as sources. In addition there are reports of emission from radio pulsars and a variety of other objects. The statistical significance of many of the observations is not high and many reported effects await confirmation, but there are a sufficient number of independent reports that very high energy gamma-ray astronomy must now be considered to have an observational basis. The observations are summarized with particular emphasis on those reported since 1980. The techniques used - the detection of small air showers using the secondary photons and particles at ground level - are unusual and are described. Future prospects for the field are discussed in relation to new ground-based experiments, satellite gamma-ray studies and proposed neutrino astronomy experiments. (orig.) With 296 refs

  16. NuSTAR discovery of a young, energetic pulsar associated with the luminous gamma-ray source Hess J1640-465

    DEFF Research Database (Denmark)

    Gotthelf, E. V.; Tomsick, J. A.; Halpern, J. P.

    2014-01-01

    We report the discovery of a 206 ms pulsar associated with the TeV γ-ray source HESS J1640-465 using the Nuclear Spectroscopic Telescope Array (NuSTAR) X-ray observatory. PSR J1640-4631 lies within the shell-type supernova remnant (SNR) G338.3-0.0, and coincides with an X-ray point source...... and putative pulsar wind nebula (PWN) previously identified in XMM-Newton and Chandra images. It is spinning down rapidly with period derivative 9.758(44) × 10-13, yielding a spin-down luminosity 4.4 × 1036 erg s-1, characteristic age 3350 yr, and surface dipole magnetic field strength Bs = 1.4 × 1013 G....... For the measured distance of 12 kpc to G338.3-0.0, the 0.2-10 TeV luminosity of HESS J1640-465 is 6% of the pulsar's present . The Fermi source 1FHL J1640.5-4634 is marginally coincident with PSR J1640-4631, but we find no γ-ray pulsations in a search using five years of Fermi Large Area Telescope (LAT) data...

  17. Gamma-ray Emission from Globular Clusters

    Directory of Open Access Journals (Sweden)

    Pak-Hin T. Tam

    2016-03-01

    Full Text Available Over the last few years, the data obtained using the Large Area Telescope (LAT aboard the Fermi Gamma-ray Space Telescope has provided new insights on high-energy processes in globular clusters, particularly those involving compact objects such as MilliSecond Pulsars (MSPs. Gamma-ray emission in the 100 MeV to 10 GeV range has been detected from more than a dozen globular clusters in our galaxy, including 47 Tucanae and Terzan 5. Based on a sample of known gammaray globular clusters, the empirical relations between gamma-ray luminosity and properties of globular clusters such as their stellar encounter rate, metallicity, and possible optical and infrared photon energy densities, have been derived. The measured gamma-ray spectra are generally described by a power law with a cut-off at a few gigaelectronvolts. Together with the detection of pulsed γ-rays from two MSPs in two different globular clusters, such spectral signature lends support to the hypothesis that γ-rays from globular clusters represent collective curvature emission from magnetospheres of MSPs in the clusters. Alternative models, involving Inverse-Compton (IC emission of relativistic electrons that are accelerated close to MSPs or pulsar wind nebula shocks, have also been suggested. Observations at >100 GeV by using Fermi/LAT and atmospheric Cherenkov telescopes such as H.E.S.S.-II, MAGIC-II, VERITAS, and CTA will help to settle some questions unanswered by current data.

  18. Pulsars

    CERN Document Server

    Smith, Francis Graham

    1977-01-01

    The discovery of the pulsars ; techniques for search and for observation ; the identification with rotating neutron stars ; the X-ray pulsars ; the internal structure of neutron stars ; the magnetosphere of neutron stars ; pulse timing ; properties of the integrated radio pulses ; individual radio pulses ; the Crab nebula ; the Crab pulsar ; the interstellar medium as an indicator of pulsar distances ; the interstellar magnetic field ; interstellar scintillation ; radiation processes ; the emission mechanism I : analysis of observed particles ; the emission mechanism II : geometrical considerations ; the emission mechanism : discussion ; supernovae : the origin of the pulsars ; the distribution and the ages of pulsars ; high energies and condensed stars.

  19. Basics of Gamma Ray Detection

    Energy Technology Data Exchange (ETDEWEB)

    Stinnett, Jacob [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Venkataraman, Ram [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-09-13

    The objective of this training is to explain the origin of x-rays and gamma rays, gamma ray interactions with matter, detectors and electronics used in gamma ray-spectrometry, and features of a gamma-ray spectrum for nuclear material that is safeguarded.

  20. The Effect of an Offset Polar Cap Dipolar Magnetic Field on the Modeling of the Vela Pulsar's Gamma-Ray Light Curves

    Science.gov (United States)

    Barnard, M.; Venter, C.; Harding, A. K.

    2016-01-01

    We performed geometric pulsar light curve modeling using static, retarded vacuum, and offset polar cap (PC) dipole B-fields (the latter is characterized by a parameter epsilon), in conjunction with standard two-pole caustic (TPC) and outer gap (OG) emission geometries. The offset-PC dipole B-field mimics deviations from the static dipole (which corresponds to epsilon equals 0). In addition to constant-emissivity geometric models, we also considered a slot gap (SG) E-field associated with the offset-PC dipole B-field and found that its inclusion leads to qualitatively different light curves. Solving the particle transport equation shows that the particle energy only becomes large enough to yield significant curvature radiation at large altitudes above the stellar surface, given this relatively low E-field. Therefore, particles do not always attain the radiation-reaction limit. Our overall optimal light curve fit is for the retarded vacuum dipole field and OG model, at an inclination angle alpha equals 78 plus or minus 1 degree and observer angle zeta equals 69 plus 2 degrees or minus 1 degree. For this B-field, the TPC model is statistically disfavored compared to the OG model. For the static dipole field, neither model is significantly preferred. We found that smaller values of epsilon are favored for the offset-PC dipole field when assuming constant emissivity, and larger epsilon values favored for variable emissivity, but not significantly so. When multiplying the SG E-field by a factor of 100, we found improved light curve fits, with alpha and zeta being closer to best fits from independent studies, as well as curvature radiation reaction at lower altitudes.

  1. Mechanism of the X-ray and Soft Gamma-ray Emissions from the High Magnetic Field Pulsar: PSR B1509-58

    Directory of Open Access Journals (Sweden)

    Yu Wang

    2013-06-01

    Full Text Available We use the outer gap model to explain the spectrum and the energy dependent light curves of the X-ray and soft γ-ray radiations of the spin-down powered pulsar PSR B1509-58. In the outer gap model, most pairs inside the gap are created around the null charge surface and the gap’s electric field separates the opposite charges to move in opposite directions. Consequently, the region from the null charge surface to the light cylinder is dominated by the outflow current and that from the null charge surface to the star is dominated by the inflow current. We suggest that the viewing angle of PSR B1509-58 only receives the inflow radiation. The incoming curvature photons are converted to pairs by the strong magnetic field of the star. The X-rays and soft γ-rays of PSR B1509-58 result from the synchrotron radiation of these pairs. The magnetic pair creation requires a large pitch angle, which makes the pulse profile of the synchrotron radiation distinct from that of the curvature radiation. We carefully trace the pulse profiles of the synchrotron radiation with different pitch angles. We find that the differences between the light curves of different energy bands are due to the different pitch angles of the secondary pairs, and the second peak appearing at E > 10 MeV comes from the region near the star, where the stronger magnetic field allows the pair creation to happen with a smaller pitch angle.

  2. Gamma-Ray Bursts

    Science.gov (United States)

    Pellizza, L. J.

    Gamma-ray bursts are the brightest transient sources in the gamma-ray sky. Since their discovery in the late 1960s, the investigation of the astrophysical sys- tems in which these phenomena take place, and the physical mechanisms that drive them, has become a vast and prolific area of modern astrophysics. In this work I will briefly describe the most relevant observations of these sources, and the models that describe their nature, emphasizing on the in- vestigations about the progenitor astrophysical systems. FULL TEXT IN SPANISH

  3. Gamma Ray Bursts

    Science.gov (United States)

    Gehrels, Neil; Meszaros, Peter

    2012-01-01

    Gamma-ray bursts (GRBs) are bright flashes of gamma-rays coming from the cosmos. They occur roughly once per day ,last typically lOs of seconds and are the most luminous events in the universe. More than three decades after their discovery, and after pioneering advances from space and ground experiments, they still remain mysterious. The launch of the Swift and Fermi satellites in 2004 and 2008 brought in a trove of qualitatively new data. In this review we survey the interplay between these recent observations and the theoretical models of the prompt GRB emission and the subsequent afterglows.

  4. The Future of Gamma Ray Astrophysics

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    Over the past decade, gamma ray astrophysics has entered the astrophysical mainstream. Extremely successful space-borne (GeV) and ground-based (TeV) detectors, combined with a multitude of partner telescopes, have revealed a fascinating “astroscape" of active galactic nuclei, pulsars, gamma ray bursts, supernova remnants, binary stars, star-forming galaxies, novae much more, exhibiting major pathways along which large energy releases can flow. From  a basic physics perspective, exquisitely sensitive measurements have constrained the nature of dark matter, the cosmological origin of magnetic field and the properties of black holes. These advances have motivated the development of new facilities, including HAWC, DAMPE, CTA and SVOM, which will further our understanding of the high energy universe. Topics that will receive special attention include merging neutron star binaries, clusters of galaxies, galactic cosmic rays and putative, TeV dark matter.

  5. Gamma ray astronomy

    International Nuclear Information System (INIS)

    Broomhead, Laurent.

    1980-01-01

    The nuclear gamma astronomy is presented, in particular the Gamma Ray Observatory, an enormous eight tonnes machine fitted with gamma telescopes, scheduled for launching around 1985. It is thereby hoped to study the natural nuclear reactions which occur when stars explode [fr

  6. Gamma ray calibration system

    International Nuclear Information System (INIS)

    Rosauer, P.J.; Flaherty, J.J.

    1981-01-01

    This invention is in the field of gamma ray inspection devices for tubular products and the like employing an improved calibrating block which prevents the sensing system from being overloaded when no tubular product is present, and also provides the operator with a means for visually detecting the presence of wall thicknesses which are less than a required minimum. (author)

  7. High-energy gamma-ray emission from the Galactic Center

    DEFF Research Database (Denmark)

    Mayer-Hasselwander, H.A.; Bertsch, D.L.; Dingus, B.L.

    1998-01-01

    '. A compact sources model hints at an origin in pulsars. While the spectrum suggests middle-aged pulsars like Vela, too many are required to produce the observed flux. The only detected very young pulsar, the Crab pulsar, has an incompatible spectrum. However, it is not proven that the Crab spectrum...... is characteristic for all young pulsars: thus, a single or a few very young pulsars (at the GC not detectable in radio emission), provided their gamma-ray emission is larger than that of the Crab pulsar by a factor of 13, are likely candidates. Alternatively, more exotic scenarios, related to the postulated central...

  8. Gamma-ray flares from the Crab Nebula.

    Science.gov (United States)

    Abdo, A A; Ackermann, M; Ajello, M; Allafort, A; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bouvier, A; Brandt, T J; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Buehler, R; Buson, S; Caliandro, G A; Cameron, R A; Cannon, A; Caraveo, P A; Casandjian, J M; Çelik, Ö; Charles, E; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Costamante, L; Cutini, S; D'Ammando, F; Dermer, C D; de Angelis, A; de Luca, A; de Palma, F; Digel, S W; do Couto e Silva, E; Drell, P S; Drlica-Wagner, A; Dubois, R; Dumora, D; Favuzzi, C; Fegan, S J; Ferrara, E C; Focke, W B; Fortin, P; Frailis, M; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giglietto, N; Giordano, F; Giroletti, M; Glanzman, T; Godfrey, G; Grenier, I A; Grondin, M-H; Grove, J E; Guiriec, S; Hadasch, D; Hanabata, Y; Harding, A K; Hayashi, K; Hayashida, M; Hays, E; Horan, D; Itoh, R; Jóhannesson, G; Johnson, A S; Johnson, T J; Khangulyan, D; Kamae, T; Katagiri, H; Kataoka, J; Kerr, M; Knödlseder, J; Kuss, M; Lande, J; Latronico, L; Lee, S-H; Lemoine-Goumard, M; Longo, F; Loparco, F; Lubrano, P; Madejski, G M; Makeev, A; Marelli, M; Mazziotta, M N; McEnery, J E; Michelson, P F; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nakamori, T; Naumann-Godo, M; Nolan, P L; Norris, J P; Nuss, E; Ohsugi, T; Okumura, A; Omodei, N; Ormes, J F; Ozaki, M; Paneque, D; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Pierbattista, M; Piron, F; Porter, T A; Rainò, S; Rando, R; Ray, P S; Razzano, M; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Romani, R W; Sadrozinski, H F-W; Sanchez, D; Saz Parkinson, P M; Scargle, J D; Schalk, T L; Sgrò, C; Siskind, E J; Smith, P D; Spandre, G; Spinelli, P; Strickman, M S; Suson, D J; Takahashi, H; Takahashi, T; Tanaka, T; Thayer, J B; Thompson, D J; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Troja, E; Uchiyama, Y; Vandenbroucke, J; Vasileiou, V; Vianello, G; Vitale, V; Wang, P; Wood, K S; Yang, Z; Ziegler, M

    2011-02-11

    A young and energetic pulsar powers the well-known Crab Nebula. Here, we describe two separate gamma-ray (photon energy greater than 100 mega-electron volts) flares from this source detected by the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. The first flare occurred in February 2009 and lasted approximately 16 days. The second flare was detected in September 2010 and lasted approximately 4 days. During these outbursts, the gamma-ray flux from the nebula increased by factors of four and six, respectively. The brevity of the flares implies that the gamma rays were emitted via synchrotron radiation from peta-electron-volt (10(15) electron volts) electrons in a region smaller than 1.4 × 10(-2) parsecs. These are the highest-energy particles that can be associated with a discrete astronomical source, and they pose challenges to particle acceleration theory.

  9. Very high energy gamma ray astronomy from Hanle

    International Nuclear Information System (INIS)

    Chitnis, Varsha R.

    2015-01-01

    Over a past decade very high energy (VHE) gamma ray astronomy has emerged as a major astronomical discipline. In India, we have a long tradition of experiments in this field. Few years ago, multi-institutional Himalayan Gamma Ray Observatory (HiGRO) collaboration was formed to set up VHE gamma rays experiments at Hanle, a high altitude location in Himalayas. HAGAR, the first phase of this collaboration is operational since 2008. HAGAR has successfully detected VHE gamma ray emission from some of the extragalactic objects like Mrk 421, Mrk 501 as well as galactic sources including Crab nebula/pulsar. Details of HAGAR telescope system and results obtained will be discussed. HiGRO is now gearing up for the next phase, i.e. 21 m diameter MACE telescope, which is being installed at Hanle at present. Details of MACE telescope system and future plans will be discussed. (author)

  10. High energy astrophysics with ground-based gamma ray detectors

    International Nuclear Information System (INIS)

    Aharonian, F; Buckley, J; Kifune, T; Sinnis, G

    2008-01-01

    Recent advances in ground-based gamma ray astronomy have led to the discovery of more than 70 sources of very high energy (E γ ≥ 100 GeV) gamma rays, falling into a number of source populations including pulsar wind nebulae, shell type supernova remnants, Wolf-Rayet stars, giant molecular clouds, binary systems, the Galactic Center, active galactic nuclei and 'dark' (yet unidentified) galactic objects. We summarize the history of TeV gamma ray astronomy up to the current status of the field including a description of experimental techniques and highlight recent astrophysical results. We also discuss the potential of ground-based gamma ray astronomy for future discoveries and describe possible directions for future instrumental developments

  11. Gamma-ray flares from the Crab nebula

    International Nuclear Information System (INIS)

    Abdo, A.A.; Ackermann, M.; Ajello, M.; Allafort, A.; Baldini, L.; Ballet, J.; Casandjian, J.M.; Grenier, I.A.; Naumann-Godo, M.; Pierbattista, M.; Tibaldo, L.

    2011-01-01

    A young and energetic pulsar powers the well-known Crab Nebula. Here, we describe two separate gamma-ray (photon energy greater than 100 mega-electron volts) flares from this source detected by the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. The first flare occurred in February 2009 and lasted approximately 16 days. The second flare was detected in September 2010 and lasted approximately 4 days. During these outbursts, the gamma-ray flux from the nebula increased by factors of four and six, respectively. The brevity of the flares implies that the gamma rays were emitted via synchrotron radiation from peta-electron-volt (10 15 electron volts) electrons in a region smaller than 1.4 * 10 -2 parsecs. These are the highest-energy particles that can be associated with a discrete astronomical source, and they pose challenges to particle acceleration theory. (authors)

  12. Exploring the extreme gamma-ray sky with HESS

    International Nuclear Information System (INIS)

    Sol, Helene

    2006-01-01

    The international HESS experiment. High Energy Stereoscopic System, fully operational since January 2004, is opening a new era for extreme gamma-ray astronomy. Located in Namibia, it is now the most sensitive detector for cosmic sources of very high energy (VHE) gamma-rays, in the tera-electron-volt (TeV) range. In July 2005, it had already more than double the number of sources detected at such energies, with the discovery of several active galactic nuclei (AGN), supernova remnants and plerions, a binary pulsar system, a microquasar candidate, and a sample of yet unidentified sources. HESS has also provide for the first time gamma-ray images of extended sources with the first astrophysical jet resolved in gamma-rays, and the first mapping of a shell supernova remnant, which proves the efficiency of in situ acceleration of particles up to 100 TeV and beyond

  13. Gamma-ray bursts

    CERN Document Server

    Wijers, Ralph A M J; Woosley, Stan

    2012-01-01

    Cosmic gamma ray bursts (GRBs) have fascinated scientists and the public alike since their discovery in the late 1960s. Their story is told here by some of the scientists who participated in their discovery and, after many decades of false starts, solved the problem of their origin. Fourteen chapters by active researchers in the field present a detailed history of the discovery, a comprehensive theoretical description of GRB central engine and emission models, a discussion of GRB host galaxies and a guide to how GRBs can be used as cosmological tools. Observations are grouped into three sets from the satellites CGRO, BeppoSAX and Swift, and followed by a discussion of multi-wavelength observations. This is the first edited volume on GRB astrophysics that presents a fully comprehensive review of the subject. Utilizing the latest research, Gamma-ray Bursts is an essential desktop companion for graduate students and researchers in astrophysics.

  14. Gamma ray camera

    International Nuclear Information System (INIS)

    Wang, S.-H.; Robbins, C.D.

    1979-01-01

    An Anger gamma ray camera is improved by the substitution of a gamma ray sensitive, proximity type image intensifier tube for the scintillator screen in the Anger camera. The image intensifier tube has a negatively charged flat scintillator screen, a flat photocathode layer, and a grounded, flat output phosphor display screen, all of which have the same dimension to maintain unit image magnification; all components are contained within a grounded metallic tube, with a metallic, inwardly curved input window between the scintillator screen and a collimator. The display screen can be viewed by an array of photomultipliers or solid state detectors. There are two photocathodes and two phosphor screens to give a two stage intensification, the two stages being optically coupled by a light guide. (author)

  15. 363. WE-Heraeus seminar on neutron stars and pulsars - 40 years after the discovery. Posters and contributed talks

    International Nuclear Information System (INIS)

    Becker, W.; Huang, H.H.

    2007-01-01

    The following topics were dealt with: X-ray observation of pulsars, gamma-ray observation of pulsars, radio observations of pulsars, theory of neutron stars and pulsars, AXPs, SGRs, and strange stars, gravitayional waves, analysis tools with software. (HSI)

  16. 363. WE-Heraeus seminar on neutron stars and pulsars - 40 years after the discovery. Posters and contributed talks

    Energy Technology Data Exchange (ETDEWEB)

    Becker, W; Huang, H H [eds.

    2007-07-01

    The following topics were dealt with: X-ray observation of pulsars, gamma-ray observation of pulsars, radio observations of pulsars, theory of neutron stars and pulsars, AXPs, SGRs, and strange stars, gravitayional waves, analysis tools with software. (HSI)

  17. THE ORIGIN OF GAMMA RAYS FROM GLOBULAR CLUSTERS

    International Nuclear Information System (INIS)

    Cheng, K. S.; Chernyshov, D. O.; Dogiel, V. A.; Hui, C. Y.; Kong, A. K. H.

    2010-01-01

    Fermi has detected gamma-ray emission from eight globular clusters (GCs). It is commonly believed that the energy sources of these gamma rays are millisecond pulsars (MSPs) inside GCs. Also it has been standard to explain the spectra of most Fermi Large Area Telescope pulsars including MSPs resulting from the curvature radiation (CR) of relativistic electrons/positrons inside the pulsar magnetosphere. Therefore, gamma rays from GCs are expected to be the collection of CR from all MSPs inside the clusters. However, the angular resolution is not high enough to pinpoint the nature of the emission. In this paper, we calculate the gamma rays produced by the inverse Compton (IC) scattering between relativistic electrons/positrons in the pulsar wind of MSPs in the GCs and background soft photons including cosmic microwave/relic photons, background star lights in the clusters, the galactic infrared photons, and the galactic star lights. We show that the gamma-ray spectrum from 47 Tucanae can be explained equally well by upward scattering of either the relic photons, the galactic infrared photons, or the galactic star lights, whereas the gamma-ray spectra from the other seven GCs are best fitted by the upward scattering of either the galactic infrared photons or the galactic star lights. We also find that the observed gamma-ray luminosity is correlated better with the combined factor of the encounter rate and the background soft photon energy density. Therefore, the IC scattering may also contribute to the observed gamma-ray emission from GCs detected by Fermi in addition to the standard CR process. Furthermore, we find that the emission region of high-energy photons from GCs produced by the IC scattering is substantially larger than the cores of GCs with a radius >10 pc. The diffuse radio and X-rays emitted from GCs can also be produced by the synchrotron radiation and IC scattering, respectively. We suggest that future observations including radio, X-rays, and gamma rays

  18. The Animated Gamma-ray Sky Revealed by the Fermi Gamma-ray Space Telescope

    International Nuclear Information System (INIS)

    Grenier, Isabelle

    2009-01-01

    The Fermi Gamma-ray Space Telescope has been observing the sky in gamma-rays since August 2008. In addition to breakthrough capabilities in energy coverage (20 MeV-300 GeV) and angular resolution, the wide field of view of the Large Area Telescope enables observations of 20% of the sky at any instant, and of the whole sky every three hours. It has revealed a very animated sky with bright gamma-ray bursts flashing and vanishing in minutes, powerful active galactic nuclei flaring over hours and days, many pulsars twinkling in the Milky Way, and X-ray binaries shimmering along their orbit. Most of these variable sources had not been seen by the Fermi predecessor, EGRET, and the wealth of new data already brings important clues to the origin of the high-energy emission and particles powered by the compact objects. The telescope also brings crisp images of the bright gamma-ray emission produced by cosmic-ray interactions in the interstellar medium, thus allowing to measure the cosmic nuclei and electron spectra across the Galaxy, to weigh interstellar clouds, in particular in the dark-gas phase. The telescope sensitivity at high energy will soon provide useful constraints on dark-matter annihilations in a variety of environments. I will review the current results and future prospects of the Fermi mission.

  19. VHE and UHE gamma ray astronomy: transients and sources

    International Nuclear Information System (INIS)

    Fegan, D.J.

    1987-01-01

    The transient and sporadic nature of a number of Cosmic gamma ray sources is examined in relation to VHE (10 11 to 10 14 eV) observations of pulsars and X-ray binary systems. Transients are not all that common but when they occur they generally produce emission of sufficient intensity and duration to obtain statistically significant effects which are gradually helping to establish a source catalog. A brief review is also made of the staus of UHE (>10 14 eV) gamma ray astronomy

  20. Lunar based gamma ray astronomy

    International Nuclear Information System (INIS)

    Haymes, R.C.

    1985-01-01

    Gamma ray astronomy represents the study of the universe on the basis of the electromagnetic radiation with the highest energy. Gamma ray astronomy provides a crucial tool for the understanding of astronomical phenomena, taking into account nucleosynthesis in supernovae, black holes, active galaxies, quasars, the sources of cosmic rays, neutron stars, and matter-antimatter annihilation. Difficulties concerning the conduction of studies by gamma ray astronomy are related to the necessity to perform such studies far from earth because the atmosphere is a source of gamma rays. Studies involving the use of gamma ray instruments in earth orbit have been conducted, and more gamma ray astronomy observations are planned for the future. Imperfections of studies conducted in low earth orbit could be overcome by estalishing an observatory on the moon which represents a satellite orbiting at 60 earth radii. Details concerning such an observatory are discussed. 5 references

  1. Gamma ray beam transmutation

    International Nuclear Information System (INIS)

    Imasaki, K.; Li, D.; Miyamoto, S.; Amano, S.; Motizuki, T.

    2007-01-01

    We have proposed a new approach to nuclear transmutation by a gamma ray beam of Compton scattered laser photon. We obtained 20 MeV gamma ray in this way to obtain transmutation rates with the giant resonance of 1 97Au and 1 29Iodine. The rate of the transmutation agreed with the theoretical calculation. Experiments on energy spectrum of positron, electron and neutron from targets were performed for the energy balance and design of the system scheme. The reaction rate was about 1.5∼4% for appropriate photon energies and neutron production rate was up to 4% in the measurements. We had stored laser photon more than 5000 times in a small cavity which implied for a significant improvement of system efficiency. Using these technologies, we have designed an actual transmutation system for 1 29Iodine which has a 16 million year's activity. In my presentation, I will address the properties of this scheme, experiments results and transmutation system for iodine transmutation

  2. Gamma Ray Bursts - Observations

    Science.gov (United States)

    Gehrels, N.; Cannizzo, J. K.

    2010-01-01

    We are in an exciting period of discovery for gamma-ray bursts. The Swift observatory is detecting 100 bursts per year, providing arcsecond localizations and sensitive observations of the prompt and afterglow emission. The Fermi observatory is observing 250 bursts per year with its medium-energy GRB instrument and about 10 bursts per year with its high-energy LAT instrument. In addition, rapid-response telescopes on the ground are providing new capabilities to study optical emission during the prompt phase and spectral signatures of the host galaxies. The combined data set is enabling great advances in our understanding of GRBs including afterglow physics, short burst origin, and high energy emission.

  3. Apparatus for gamma ray radiography

    International Nuclear Information System (INIS)

    Kobayashi, Masatoshi; Enomoto, Shigemasa; Oga, Hiroshi

    1979-01-01

    This is the standard of Japan Non-Destructive Inspection Society, NDIS 1101-79, which stipulates on the design, construction and testing method of the apparatuses for gamma ray radiography used for taking industrial radiograms. The gamma ray apparatuses stipulated in this standard are those containing sealed radioactive isotopes exceeding 100 μCi, which emit gamma ray. The gamma ray apparatuses are classified into three groups according to their movability. The general design conditions, the irradiation dose rate and the sealed radiation sources for the gamma ray apparatuses are stipulated. The construction of the gamma ray apparatuses must be in accordance with the notification No. 52 of the Ministry of Labor, and safety devices and collimators must be equipped. The main bodies of the gamma ray apparatuses must pass the vibration test, penetration test, impact test and shielding efficiency test. The method of each test is described. The attached equipments must be also tested. The tests according to this standard are carried out by the makers of the apparatuses. The test records must be made when the apparatuses have passed the tests, and the test certificates are attached. The limit of guarantee by the endurance test must be clearly shown. The items to be shown on the apparatuses are stipulated. (Kako, I.)

  4. Applied gamma-ray spectrometry

    CERN Document Server

    Dams, R; Crouthamel, Carl E

    1970-01-01

    Applied Gamma-Ray Spectrometry covers real life application of the gamma-ray and the devices used in their experimental studies. This book is organized into 9 chapters, and starts with discussions of the various decay processes, the possible interaction mechanisms of gamma radiation with matter, and the intrinsic and extrinsic variables, which affect the observed gamma-ray and X-ray spectra. The subsequent chapters deal with the properties and fabrication of scintillation detectors, semiconductor detectors, and proportional gas counters. These chapters present some of the most widely utilized

  5. Gamma-Rays from Galactic Compact Sources

    Science.gov (United States)

    Kaaret, Philip

    2007-04-01

    Recent discoveries have revealed many sources of TeV photons in our Mikly Way galaxy powered by compact objects, either neutron stars or black holes. These objects must be powerful particle accelerators, some with peak energies of at least 100 TeV, and may be neutrino, as well as photon, sources. Future TeV observations will enable us to address key questions concerning particle acceleration by compact objects including the fraction of energy which accreting black holes channel into relativstic jet production, whether the compact object jets are leptonic or hadronic, and the mechanism by which pulsar winds accelerate relativistic particles. We report on work done related to compact Galactic objects in preparation of a White Paper on the status and future of ground-based gamma-ray astronomy requested by the Division of Astrophysics of the American Physical Society.

  6. Gamma-ray astrophysics

    International Nuclear Information System (INIS)

    Fichtel, C.E.

    1977-01-01

    The most striking feature of the celestial sphere when viewed in the frequency range of γ-rays is the emission from the galactic plane, which is particularly intense in the galactic longitudinal region from 300 0 to 50 0 . The longitudinal and latitudinal distributions are generally correlated with galactic structural features and when studied in detail suggest a non-uniform distribution of cosmic rays in the galaxy. Several point γ-ray sources have now been observed, including four radio pulsars. This last result is particularly striking since only one radio pulsar has been seen at either optical or X-ray frequencies. Nuclear γ-ray lines have been seen from the Sun during a large solar flare and future satellite experiments are planned to search for γ-ray lines from supernovae and their remnants. A general apparently diffuse flux of γ-rays has also been seen whose energy spectrum has interesting implications; however, in view of the possible contribution of point sources and the observation of galactic features such as Gould's belt, its interpretation must await γ-ray experiments with finer spatial and energy resolution, as well as greater sensitivity. (Auth.)

  7. Gamma rays at airplane altitudes

    International Nuclear Information System (INIS)

    Iwai, J.; Koss, T.; Lord, J.; Strausz, S.; Wilkes, J.; Woosley, J.

    1990-01-01

    An examination of the gamma ray flux above 1 TeV in the atmosphere is needed to better understand the anomalous showers from point sources. Suggestions are made for future experiments on board airplanes

  8. About cosmic gamma ray lines

    Science.gov (United States)

    Diehl, Roland

    2017-06-01

    Gamma ray lines from cosmic sources convey the action of nuclear reactions in cosmic sites and their impacts on astrophysical objects. Gamma rays at characteristic energies result from nuclear transitions following radioactive decays or high-energy collisions with excitation of nuclei. The gamma-ray line from the annihilation of positrons at 511 keV falls into the same energy window, although of different origin. We present here the concepts of cosmic gamma ray spectrometry and the corresponding instruments and missions, followed by a discussion of recent results and the challenges and open issues for the future. Among the lessons learned are the diffuse radioactive afterglow of massive-star nucleosynthesis in 26Al and 60Fe gamma rays, which is now being exploited towards the cycle of matter driven by massive stars and their supernovae; large interstellar cavities and superbubbles have been recognised to be of key importance here. Also, constraints on the complex processes making stars explode as either thermonuclear or core-collapse supernovae are being illuminated by gamma-ray lines, in this case from shortlived radioactivities from 56Ni and 44Ti decays. In particular, the three-dimensionality and asphericities that have recently been recognised as important are enlightened in different ways through such gamma-ray line spectroscopy. Finally, the distribution of positron annihilation gamma ray emission with its puzzling bulge-dominated intensity disctribution is measured through spatially-resolved spectra, which indicate that annihilation conditions may differ in different parts of our Galaxy. But it is now understood that a variety of sources may feed positrons into the interstellar medium, and their characteristics largely get lost during slowing down and propagation of positrons before annihilation; a recent microquasar flare was caught as an opportunity to see positrons annihilate at a source.

  9. High energy neutrinos from gamma-ray bursts with precursor supernovae.

    Science.gov (United States)

    Razzaque, Soebur; Mészáros, Peter; Waxman, Eli

    2003-06-20

    The high energy neutrino signature from proton-proton and photo-meson interactions in a supernova remnant shell ejected prior to a gamma-ray burst provides a test for the precursor supernova, or supranova, model of gamma-ray bursts. Protons in the supernova remnant shell and photons entrapped from a supernova explosion or a pulsar wind from a fast-rotating neutron star remnant provide ample targets for protons escaping the internal shocks of the gamma-ray burst to interact and produce high energy neutrinos. We calculate the expected neutrino fluxes, which can be detected by current and future experiments.

  10. Cosmic gamma-ray burst

    International Nuclear Information System (INIS)

    Yamagami, Takamasa

    1985-01-01

    Ballon experiments for searching gamma-ray burst were carried out by employing rotating-cross modulation collimators. From a very long observation of total 315 hours during 1975 to 1979, three gamma-ray intensity anomalies were observed which were speculated as a gamma-ray burst. As for the first gamma-ray intensity anomaly observed in 1975, the burst source could be located precisely but the source, heavenly body, could not be specified. Gamma-ray burst source estimation was made by analyzing distribution of burst source in the celestial sphere, burst size distribution, and burst peak. Using the above-mentioned data together with previously published ones, apparent inconsistency was found between the observed results and the adopted theory that the source was in the Galaxy, and this inconsistency was found due to the different time profiles of the burst observed with instruments of different efficiency. It was concluded by these analysis results that employment of logN - logP (relation between burst frequency and burst count) was better than that of logN - logS (burst size) in the examination of gamma-ray burst because the former was less uncertain than the latter. Analyzing the author's observed gamma-ray burst data and the related published data, it was clarified that the burst distribution was almost P -312 for the burst peak value larger than 10 -6 erg/cm 2 .sec. The author could indicate that the calculated celestial distribution of burst source was consistent with the observed results by the derivation using the logN - logP relationship and that the burst larger than 10 -6 erg/cm 2 .sec happens about one thousand times a year, about ten times of the previous value. (Takagi, S.)

  11. Extragalactic Gamma-Ray Astrophysics

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    During the last decades, various classes of radio-loud active galactic nuclei have been established as sources of high-energy radiation extending over a very broad range from soft gamma-rays (photon energies E~MeV) up to very-high-energy gamma-rays (E>100 GeV). These include blazars of different types, as well as young and evolved radio galaxies. The observed gamma-ray emission from such implies efficient particle acceleration processes taking place in highly magnetized and relativistic jets produced by supermassive black holes, processes that have yet to be identified and properly understood. In addition, nearby starforming and starburst galaxies, some of which host radio-quiet Seyfert-type nuclei, have been detected in the gamma-ray range as well. In their cases, the observed gamma-ray emission is due to non-thermal activity in the interstellar medium, possibly including also a contribution from accretion disks and nuclear outflows. Finally, the high-energy emission from clusters of galaxies remains elusive...

  12. Discovery of an Unidentified Fermi Object as a Black Widow-Like Millisecond Pulsar

    Science.gov (United States)

    Kong, A. K. H.; Huang, R. H. H.; Cheng, K. S.; Takata, J.; Yatsu, Y.; Cheung, C. C.; Donato, D.; Lin, L. C. C.; Kataoka, J.; Takahashi, Y.; hide

    2012-01-01

    The Fermi Gamma-ray Space Telescope has revolutionized our knowledge of the gamma-ray pulsar population, leading to the discovery of almost 100 gamma-ray pulsars and dozens of gamma-ray millisecond pulsars (MSPs). Although the outer-gap model predicts different sites of emission for the radio and gamma-ray pulsars, until now all of the known gamma-ray MSPs have been visible in the radio. Here we report the discovery of a radio-quiet" gamma-ray emitting MSP candidate by using Fermi, Chandra, Swift, and optical observations. The X-ray and gamma-ray properties of the source are consistent with known gamma-ray pulsars. We also found a 4.63-hr orbital period in optical and X-ray data. We suggest that the source is a black widow-like MSP with a approx. 0.1 Stellar Mass late-type companion star. Based on the profile of the optical and X-ray light-curves, the companion star is believed to be heated by the pulsar while the X-ray emissions originate from pulsar magnetosphere and/or from intra-binary shock. No radio detection of the source has been reported yet and although no gamma-ray/radio pulsation has been found, we estimated that the spin period of the MSP is approx. 3-5 ms based on the inferred gamma-ray luminosity.

  13. Pulsed Gamma-Rays From PSR J2021 3651 with the Fermi Large Area Telescope

    International Nuclear Information System (INIS)

    Abdo, Aous A.; Ackermann, M.; Ajello, Marco; Atwood, William B.; Baldini, L.; Ballet, J.; Barbiellini, Guido; Bastieri, Denis; Battelino, Milan; Baughman, B.M.; Bechtol, K.; Bellazzini, Ronaldo; Berenji, Bijan; Bloom, Elliott D.; Bogaert, G.; Borgland, Anders W.; Bregeon, J.; Brez, A.; Brigida, M.; Bruel, P.; Burnett, Thompson H.

    2009-01-01

    We report the detection of pulsed gamma-rays from the young, spin-powered radio pulsar PSR J2021+3651 using data acquired with the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope (formerly GLAST). The light curve consists of two narrow peaks of similar amplitude separated by 0.468 ± 0.002 in phase. The first peak lags the maximum of the 2 GHz radio pulse by 0.162 ± 0.004 ± 0.01 in phase. The integral gamma-ray photon flux above 100 MeV is (56 ± 3 ± 11) x 10 -8 cm -2 s -1 . The photon spectrum is well-described by an exponentially cut-off power law of the form dF/dE = kE -# Gamma#e (-E/E c ) where the energy E is expressed in GeV. The photon index is Γ = 1.5 ± 0.1 ± 0.1 and the exponential cut-off is E c = 2.4 ± 0.3 ± 0.5 GeV. The first uncertainty is statistical and the second is systematic. The integral photon flux of the bridge is approximately 10% of the pulsed emission, and the upper limit on off-pulse gamma-ray emission from a putative pulsar wind nebula is -2 but a poorly constrained magnetic geometry. Re-analysis of Chandra data enhanced the significance of the weak X-ray pulsations, and the first peak is roughly phase-aligned with the first gamma-ray peak. We discuss the emission region and beaming geometry based on the shape and spectrum of the gamma-ray light curve combined with radio and X-ray measurements, and the implications for the pulsar distance. Gamma-ray emission from the polar cap region seems unlikely for this pulsar.

  14. Terrestrial gamma-ray flashes

    Science.gov (United States)

    Marisaldi, Martino; Fuschino, Fabio; Labanti, Claudio; Tavani, Marco; Argan, Andrea; Del Monte, Ettore; Longo, Francesco; Barbiellini, Guido; Giuliani, Andrea; Trois, Alessio; Bulgarelli, Andrea; Gianotti, Fulvio; Trifoglio, Massimo

    2013-08-01

    Lightning and thunderstorm systems in general have been recently recognized as powerful particle accelerators, capable of producing electrons, positrons, gamma-rays and neutrons with energies as high as several tens of MeV. In fact, these natural systems turn out to be the highest energy and most efficient natural particle accelerators on Earth. Terrestrial Gamma-ray Flashes (TGFs) are millisecond long, very intense bursts of gamma-rays and are one of the most intriguing manifestation of these natural accelerators. Only three currently operative missions are capable of detecting TGFs from space: the RHESSI, Fermi and AGILE satellites. In this paper we review the characteristics of TGFs, including energy spectrum, timing structure, beam geometry and correlation with lightning, and the basic principles of the associated production models. Then we focus on the recent AGILE discoveries concerning the high energy extension of the TGF spectrum up to 100 MeV, which is difficult to reconcile with current theoretical models.

  15. Terrestrial gamma-ray flashes

    International Nuclear Information System (INIS)

    Marisaldi, Martino; Fuschino, Fabio; Labanti, Claudio; Tavani, Marco; Argan, Andrea; Del Monte, Ettore; Longo, Francesco; Barbiellini, Guido; Giuliani, Andrea; Trois, Alessio; Bulgarelli, Andrea; Gianotti, Fulvio; Trifoglio, Massimo

    2013-01-01

    Lightning and thunderstorm systems in general have been recently recognized as powerful particle accelerators, capable of producing electrons, positrons, gamma-rays and neutrons with energies as high as several tens of MeV. In fact, these natural systems turn out to be the highest energy and most efficient natural particle accelerators on Earth. Terrestrial Gamma-ray Flashes (TGFs) are millisecond long, very intense bursts of gamma-rays and are one of the most intriguing manifestation of these natural accelerators. Only three currently operative missions are capable of detecting TGFs from space: the RHESSI, Fermi and AGILE satellites. In this paper we review the characteristics of TGFs, including energy spectrum, timing structure, beam geometry and correlation with lightning, and the basic principles of the associated production models. Then we focus on the recent AGILE discoveries concerning the high energy extension of the TGF spectrum up to 100 MeV, which is difficult to reconcile with current theoretical models

  16. Gamma-ray burst spectra

    International Nuclear Information System (INIS)

    Teegarden, B.J.

    1982-01-01

    A review of recent results in gamma-ray burst spectroscopy is given. Particular attention is paid to the recent discovery of emission and absorption features in the burst spectra. These lines represent the strongest evidence to date that gamma-ray bursts originate on or near neutron stars. Line parameters give information on the temperature, magnetic field and possibly the gravitational potential of the neutron star. The behavior of the continuum spectrum is also discussed. A remarkably good fit to nearly all bursts is obtained with a thermal-bremsstrahlung-like continuum. Significant evolution is observed of both the continuum and line features within most events

  17. Airborne gamma-ray spectrometry

    DEFF Research Database (Denmark)

    Hovgaard, Jens

    A new method - Noise Adjusted Singular Value Decomposition, NASVD - for processing gamma-ray spectra has been developed as part of a Ph.D. project. By using this technique one is able to decompose a large set of data - for example from airborne gamma-ray surveys - into a few spectral components....... By knowing the spectral components and their amplitudes in each of the measured spectra one is able to extract more information from the data than possible with the methods used otherwise....

  18. Gamma-ray Imaging Methods

    Energy Technology Data Exchange (ETDEWEB)

    Vetter, K; Mihailescu, L; Nelson, K; Valentine, J; Wright, D

    2006-10-05

    In this document we discuss specific implementations for gamma-ray imaging instruments including the principle of operation and describe systems which have been built and demonstrated as well as systems currently under development. There are several fundamentally different technologies each with specific operational requirements and performance trade offs. We provide an overview of the different gamma-ray imaging techniques and briefly discuss challenges and limitations associated with each modality (in the appendix we give detailed descriptions of specific implementations for many of these technologies). In Section 3 we summarize the performance and operational aspects in tabular form as an aid for comparing technologies and mapping technologies to potential applications.

  19. Optical observations of Gamma-Ray Bursts

    International Nuclear Information System (INIS)

    Hjorth, J.; Pian, E.; Fynbo, J.P.U.

    2004-01-01

    We briefly review the status and recent progress in the field of optical observations of gamma-ray burst afterglows. We will focus on the fundamental observational evidence for the relationship between gamma-ray bursts and the final evolutionary phases of massive stars. In particular, we will address (i) gamma-ray burst host galaxies, (ii) optically dark gamma-ray burst afterglows, (iii) the gamma-ray burst-supernova connection, and (iv) the relation between X-ray flashes, gamma-ray bursts, and supernovae

  20. Equipment for x- and gamma ray radiography

    International Nuclear Information System (INIS)

    Abd Nasir Ibrahim; Azali Muhammad; Ab Razak Hamzah; Abd Aziz Mohamed; Mohammad Pauzi Ismail

    2004-01-01

    The following topics related to the equipment for x - and gamma ray radiography are discussed in this chapter. The topics are x-ray source for Industrial Radiography: properties of x-ray, generation of x-ray, mechanism of x-ray production, x-ray equipment, power supply, distribution of x-ray intensity along the tube: gamma ray source for Industrial Radiography: properties of gamma rays, gamma ray sources, gamma ray projectors on cameras, source changing. Care of Radiographic Equipments: Merits and Demerits of x and Gamma Rays

  1. Europe's space camera unmasks a cosmic gamma-ray machine

    Science.gov (United States)

    1996-11-01

    The new-found neutron star is the visible counterpart of a pulsating radio source, Pulsar 1055-52. It is a mere 20 kilometres wide. Although the neutron star is very hot, at about a million degrees C, very little of its radiant energy takes the form of visible light. It emits mainly gamma-rays, an extremely energetic form of radiation. By examining it at visible wavelengths, astronomers hope to figure out why Pulsar 1055-52 is the most efficient generator of gamma-rays known so far, anywhere the Universe. The Faint Object Camera found Pulsar 1055-52 in near ultraviolet light at 3400 angstroms, a little shorter in wavelength than the violet light at the extremity of the human visual range. Roberto Mignani, Patrizia Caraveo and Giovanni Bignami of the Istituto di Fisica Cosmica in Milan, Italy, report its optical identification in a forthcoming issue of Astrophysical Journal Letters (1 January 1997). The formal name of the object is PSR 1055-52. Evading the glare of an adjacent star The Italian team had tried since 1988 to spot Pulsar 1055-52 with two of the most powerful ground-based optical telescopes in the Southern Hemisphere. These were the 3.6-metre Telescope and the 3.5-metre New Technology Telescope of the European Southern Observatory at La Silla, Chile. Unfortunately an ordinary star 100,000 times brighter lay in almost the same direction in the sky, separated from the neutron star by only a thousandth of a degree. The Earth's atmosphere defocused the star's light sufficiently to mask the glimmer from Pulsar 1055-52. The astronomers therefore needed an instrument in space. The Faint Object Camera offered the best precision and sensitivity to continue the hunt. Devised by European astronomers to complement the American wide field camera in the Hubble Space Telescope, the Faint Object Camera has a relatively narrow field of view. It intensifies the image of a faint object by repeatedly accelerating electrons from photo-electric films, so as to produce

  2. The GAMMA Ray Sky as Seen by Fermi: Opening a New Window on the High Energy Space Environment

    Science.gov (United States)

    2009-01-01

    important early discoveries of Fermi have been from objects in our galaxy. The LAT has discovered 12 new pulsars that seem to be visible only in gamma...have now been discov- ered by LAT. Finally, the discovery of pulsed gamma rays from several radio pulsars with millisecond spin periods, previously... pulsars , stars whose repeating emissions can be used as ultra-precise chronometers. Measurement of gamma radiation provides unique insight

  3. Galactic bulge preferred over dark matter for the Galactic centre gamma-ray excess

    Science.gov (United States)

    Macias, Oscar; Gordon, Chris; Crocker, Roland M.; Coleman, Brendan; Paterson, Dylan; Horiuchi, Shunsaku; Pohl, Martin

    2018-05-01

    An anomalous gamma-ray excess emission has been found in the Fermi Large Area Telescope data1 covering the centre of the Galaxy2,3. Several theories have been proposed for this `Galactic centre excess'. They include self-annihilation of dark-matter particles4, an unresolved population of millisecond pulsars5, an unresolved population of young pulsars6, or a series of burst events7. Here, we report on an analysis that exploits hydrodynamical modelling to register the position of interstellar gas associated with diffuse Galactic gamma-ray emission. We find evidence that the Galactic centre excess gamma rays are statistically better described by the stellar over-density in the Galactic bulge and the nuclear stellar bulge, rather than a spherical excess. Given its non-spherical nature, we argue that the Galactic centre excess is not a dark-matter phenomenon but rather associated with the stellar population of the Galactic bulge and the nuclear bulge.

  4. Recent findings about the galactic gamma-ray sky by MAGIC

    Energy Technology Data Exchange (ETDEWEB)

    Strzys, Marcel C. [Max-Planck-Institut fuer Physik, Muenchen (Germany); Collaboration: MAGIC-Collaboration

    2015-07-01

    The TeV sky currently consists of around 150 sources, about half of them situated within our galaxy. This group comprises various types of cosmic accelerators such as supernova remnants, pulsars, pulsar wind nebula, and binaries. From what we have observed in gamma rays so far, these sources can accelerate particles up to several hundred TeV. In this talk I will present recent results from the observation of galactic gamma-ray sources by MAGIC. This includes, among others, latest findings about the brightest, galactic gamma-ray source in the sky, the Crab nebula, results about one of the rare binary systems at TeV energies, insights into a not yet identified enigmatic source, and the discovery of the, so far, faintest PWN.

  5. DISCOVERY OF GAMMA-RAY PULSATIONS FROM THE TRANSITIONAL REDBACK PSR J1227-4853

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, T. J. [College of Science, George Mason University, Fairfax, VA 22030 (United States); Ray, P. S.; Cheung, C. C. [Space Science Division, Naval Research Laboratory, Washington, DC 20375-5352 (United States); Roy, J.; Bhattacharyya, B.; Stappers, B. W. [Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, The University of Manchester, Manchester M13 9PL (United Kingdom); Harding, A. K. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Pletsch, H. J.; Fort, S. [Albert-Einstein-Institut, Max-Planck-Institut für Gravitationsphysik, D-30167 Hannover (Germany); Camilo, F. [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Deneva, J. [National Research Council Research Associate, National Academy of Sciences, Washington, DC 20001 (United States); Kerr, M., E-mail: tyrel.j.johnson@gmail.com, E-mail: Paul.Ray@nrl.navy.mil, E-mail: jayanta.roy@manchester.ac.uk [CSIRO Astronomy and Space Science, Australia Telescope National Facility, Epping NSW 1710 (Australia)

    2015-06-10

    The 1.69 ms spin period of PSR J1227−4853 was recently discovered in radio observations of the low-mass X-ray binary XSS J12270−4859 following the announcement of a possible transition to a rotation-powered millisecond pulsar state, inferred from decreases in optical, X-ray, and gamma-ray flux from the source. We report the detection of significant (5σ) gamma-ray pulsations after the transition, at the known spin period, using ∼1 year of data from the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope. The gamma-ray light curve of PSR J1227−4853 can be fit by one broad peak, which occurs at nearly the same phase as the main peak in the 1.4 GHz radio profile. The partial alignment of light-curve peaks in different wavebands suggests that at least some of the radio emission may originate at high altitude in the pulsar magnetosphere, in extended regions co-located with the gamma-ray emission site. We folded the LAT data at the orbital period, both pre- and post-transition, but find no evidence for significant modulation of the gamma-ray flux. Analysis of the gamma-ray flux over the mission suggests an approximate transition time of 2012 November 30. Continued study of the pulsed emission and monitoring of PSR J1227−4853, and other known redback systems, for subsequent flux changes will increase our knowledge of the pulsar emission mechanism and transitioning systems.

  6. Multifrequency Observations of Gamma-Ray Burst

    OpenAIRE

    Greiner, J.

    1995-01-01

    Neither a flaring nor a quiescent counterpart to a gamma-ray burst has yet been convincingly identified at any wavelength region. The present status of the search for counterparts of classical gamma-ray bursts is given. Particular emphasis is put on the search for flaring counterparts, i.e. emission during or shortly after the gamma-ray emission.

  7. Stellar Sources of Gamma-ray Bursts

    OpenAIRE

    Luchkov, B. I.

    2011-01-01

    Correlation analysis of Swift gamma-ray burst coordinates and nearby star locations (catalog Gliese) reveals 4 coincidences with good angular accuracy. The random probability is 4\\times 10^{-5}, so evidencing that coincident stars are indeed gamma-ray burst sources. Some additional search of stellar gamma-ray bursts is discussed.

  8. Gamma-rays from deep inelastic collisions

    International Nuclear Information System (INIS)

    Stephens, F.S.

    1981-01-01

    My objective in this talk is to consider the question: 'What can be learned about deep inelastic collisions (DIC) from studying the associated gamma-rays'. First, I discuss the origin and nature of the gamma-rays from DIC, then the kinds of information gamma-ray spectra contain, and finally come to the combination of these two subjects. (orig./HSI)

  9. Pulsar Polar Cap and Slot Gap Models: Confronting Fermi Data

    Science.gov (United States)

    Harding, Alice K.

    2012-01-01

    Rotation-powered pulsars are excellent laboratories for studying particle acceleration as well as fundamental physics of strong gravity, strong magnetic fields and relativity. I will review acceleration and gamma-ray emission from the pulsar polar cap and slot gap. Predictions of these models can be tested with the data set on pulsars collected by the Large Area Telescope on the Fermi Gamma-Ray Telescope over the last four years, using both detailed light curve fitting and population synthesis.

  10. UNVEILING THE NATURE OF THE UNIDENTIFIED GAMMA-RAY SOURCES. III. GAMMA-RAY BLAZAR-LIKE COUNTERPARTS AT LOW RADIO FREQUENCIES

    Energy Technology Data Exchange (ETDEWEB)

    Massaro, F.; Funk, S. [SLAC National Laboratory and Kavli Institute for Particle Astrophysics and Cosmology, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); D' Abrusco, R.; Paggi, A. [Harvard-Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Giroletti, M. [INAF Istituto di Radioastronomia, via Gobetti 101, I-40129 Bologna (Italy); Masetti, N. [INAF-Istituto di Astrofisica Spaziale e Fisica Cosmica di Bologna, via Gobetti 101, I-40129 Bologna (Italy); Tosti, G. [Dipartimento di Fisica, Universita degli Studi di Perugia, I-06123 Perugia (Italy); Nori, M. [Department of Physics and Astronomy, University of Bologna, viale Berti Pichat 6/2, I-40127 Bologna (Italy)

    2013-07-01

    About one-third of the {gamma}-ray sources listed in the second Fermi Large Area Telescope catalog (2FGL) have no firmly established counterpart at lower energies and so are classified as unidentified gamma-ray sources (UGSs). Here, we propose a new approach to find candidate counterparts for the UGSs based on the 325 MHz radio survey performed with the Westerbork Synthesis Radio Telescope in the northern hemisphere. First, we investigate the low-frequency radio properties of blazars, the largest known population of {gamma}-ray sources; then we search for sources with similar radio properties combining the information derived from the Westerbork Northern Sky Survey (WENSS) with those of the NRAO Very Large Array Sky Survey. We present a list of candidate counterparts for 32 UGSs with at least one counterpart in the WENSS. We also performed an extensive research in the literature to look for infrared and optical counterparts of the {gamma}-ray blazar candidates selected using the low-frequency radio observations to confirm their nature. On the basis of our multifrequency research, we identify 23 new {gamma}-ray blazar candidates out of the 32 UGSs investigated. Comparison with previous results on the UGSs is also presented. Finally, we speculate on the advantages of using low-frequency radio observations to associate UGSs and to search for {gamma}-ray pulsar candidates.

  11. High-energy neutrinos from gamma ray bursts

    International Nuclear Information System (INIS)

    Dermer, Charles D.; Atoyan, Armen

    2003-01-01

    We treat high-energy neutrino production in gamma ray bursts (GRBs). Detailed calculations of photomeson neutrino production are presented for the collapsar model, where internal nonthermal synchrotron radiation is the primary target photon field, and the supranova model, where external pulsar-wind synchrotron radiation provides important additional target photons. Detection of > or approx. 10 TeV neutrinos from GRBs with Doppler factors > or approx. 200, inferred from γ-ray observations, would support the supranova model. Detection of or approx. 3x10 -4 erg cm -2 offer a realistic prospect for detection of ν μ

  12. Airborne gamma ray spectrometer surveying

    International Nuclear Information System (INIS)

    1991-01-01

    The International Atomic Energy Agency (IAEA) in its role as collector and disseminator of information on nuclear techniques has long had an interest in gamma ray spectrometer methods and has published a number of Technical Reports on various aspects of the subject. At an Advisory Group Meeting held in Vienna in November 1986 to review appropriate activities the IAEA could take following the Chernobyl accident, it was recommended that preparation begin on a new Technical Report on airborne gamma ray spectrometer surveying, taking into account the use of the technique for environmental monitoring as well as for nuclear emergency response requirements. Shortly thereafter the IAEA became the lead organization in the Radioelement Geochemical Mapping section of the International Geological Correlation Programme/United Nations Educational, Scientific and Cultural Organization (UNESCO) Project on International Geochemical Mapping. These two factors led to the preparation of the present Technical Report. 18 figs, 4 tabs

  13. Compton suppression gamma ray spectrometry

    International Nuclear Information System (INIS)

    Landsberger, S.; Iskander, F.Y.; Niset, M.; Heydorn, K.

    2002-01-01

    In the past decade there have been many studies to use Compton suppression methods in routine neutron activation analysis as well as in the traditional role of low level gamma ray counting of environmental samples. On a separate path there have been many new PC based software packages that have been developed to enhance photopeak fitting. Although the newer PC based algorithms have had significant improvements, they still suffer from being effectively used in weak gamma ray lines in natural samples or in neutron activated samples that have very high Compton backgrounds. We have completed a series of experiments to show the usefulness of Compton suppression. As well we have shown the pitfalls when using Compton suppression methods for high counting deadtimes as in the case of neutron activated samples. We have also investigated if counting statistics are the same both suppressed and normal modes. Results are presented in four separate experiments. (author)

  14. CAMAC gamma ray scanning system

    International Nuclear Information System (INIS)

    Moss, C.E.; Pratt, J.C.; Shunk, E.R.

    1981-01-01

    A flexible gamma-ray scanning system, based on a LeCroy 3500 multichannel analyzer and CAMAC modules, is described. The system is designed for making simultaneous passive and active scans of objects of interest to nuclear safeguards. The scanner is a stepping-motor-driven carriage; the detectors, a bismuth-germanate scintillator and a high-purity germanium detector. A total of sixteen peaks in the two detector-produced spectra can be integrated simultaneously, and any scan can be viewed during data acquisition. For active scanning, the 2615-keV gamma-ray line from a 232 U source and the 4439-keV gamma-ray line from 9 Be(α,n) 12 C were selected. The system can be easily reconfigured to accommodate up to seven detectors because it is based on CAMAC modules and FORTRAN. The system is designed for field use and is easily transported. Examples of passive and active scans are presented

  15. X-Ray and Optical Study of the Gamma-ray Source 3FGL J0838.8–2829: Identification of a Candidate Millisecond Pulsar Binary and an Asynchronous Polar

    Energy Technology Data Exchange (ETDEWEB)

    Halpern, Jules P.; Bogdanov, Slavko [Columbia Astrophysics Laboratory, Columbia University, 550 West 120th Street, New York, NY 10027-6601 (United States); Thorstensen, John R., E-mail: jules@astro.columbia.edu [Department of Physics and Astronomy, 6127 Wilder Laboratory, Dartmouth College, Hanover, NH 03755-3528 (United States)

    2017-04-01

    We observed the field of the Fermi source 3FGL J0838.8−2829 in optical and X-rays, initially motivated by the cataclysmic variable (CV) 1RXS J083842.1−282723 that lies within its error circle. Several X-ray sources first classified as CVs have turned out to be γ -ray emitting millisecond pulsars (MSPs). We find that 1RXS J083842.1−282723 is in fact an unusual CV, a stream-fed asynchronous polar in which accretion switches between magnetic poles (that are ≈120° apart) when the accretion rate is at minimum. High-amplitude X-ray modulation at periods of 94.8 ± 0.4 minutes and 14.7 ± 1.2 hr are seen. The former appears to be the spin period, while the latter is inferred to be one-third of the beat period between the spin and the orbit, implying an orbital period of 98.3 ± 0.5 minutes. We also measure an optical emission-line spectroscopic period of 98.413 ± 0.004 minutes, which is consistent with the orbital period inferred from the X-rays. In any case, this system is unlikely to be the γ -ray source. Instead, we find a fainter variable X-ray and optical source, XMMU J083850.38−282756.8, that is modulated on a timescale of hours in addition to exhibiting occasional sharp flares. It resembles the black widow or redback pulsars that have been discovered as counterparts of Fermi sources, with the optical modulation due to heating of the photosphere of a low-mass companion star by, in this case, an as-yet undetected MSP. We propose XMMU J083850.38−282756.8 as the MSP counterpart of 3FGL J0838.8−2829.

  16. Revisiting the Gamma-Ray Source 2FGL J1823.8+4312

    Science.gov (United States)

    Stern, Daniel; Assef, Roberto J.

    2013-02-01

    One of the great challenges of gamma-ray astronomy is identifying the lower energy counterparts to these high-energy sources. Recently, in this journal, Massaro et al. attempted to find the counterpart of 2FGL J1823.8+4312, a gamma-ray active galactic nucleus (AGN) of uncertain type from the Second Fermi Large Area Telescope catalog. After considering mid-infrared data in the field from the Wide-field Infrared Survey Explorer (WISE), those authors conclude that the preferred identification of 2FGL J1823.8+4312 is WISE J182352.33+431452.5, despite the fact that the mid-infrared source is undetected at radio energies. They claim that WISE J182352.33+431452.5 constitutes the discovery of a new class of extragalactic X-ray source, either a radio-faint blazar or the prototype of a new class of active galaxy with an enigmatic spectral energy distribution. This conclusion is claimed to be independent of whether or not the WISE source is the actual counterpart to 2FGL J1823.8+4312. Based on a re-analysis of public data in this field and new spectroscopy from Palomar, we conclude that WISE J182352.33+431452.5 is a dust-reddened quasar at z = 0.560, a representative example of a very common extragalactic AGN class. Were WISE J182352.33+431452.5 to be associated with the gamma-ray emission, this would be an unusual and exciting discovery. However, we argue that 2FGL J1823.8+4312 is more likely associated with either WISE J182409.25+431404.7 or, more likely, WISE J182419.04+430949.6, two radio-loud sources in the field. The former is a radio-loud quasar and the latter is an optically variable source with a featureless blue spectrum.

  17. Space instrumentation for gamma-ray astronomy

    Energy Technology Data Exchange (ETDEWEB)

    Teegarden, B.J

    1999-02-11

    The decade of the 1990s has witnessed a renaissance in the field of gamma-ray astronomy. The seminal event was the launch of the Compton Gamma-Ray Observatory (CGRO) in April 1991. There have been a flood of major discoveries from CGRO including breakthroughs in gamma-ray bursts, annihilation radiation, and blazars. The Italian SAX satellite was launched in April 1996. Although not primarily a gamma-ray mission, it has added a new dimension to our understanding of gamma-ray bursts. Along with these new discoveries a firm groundwork has been laid for missions and new technology development that should maintain a healthy and vigorous field throughout most of the next decade. These include the ESA INTEGRAL mission (INTErnational Gamma-Ray Astrophysics Laboratory, to be launched in mid-2001) and the NASA GLAST mission (Gamma-Ray Large Area Space Telescope) with a likely launch in the middle of the next decade. These two missions will extend the observational capabilities well beyond those of CGRO. New technologies (to gamma-ray astronomy), such as cooled germanium detectors, silicon strip detectors, and CdTe detectors are planned for these new missions. Additional promising new technologies such as CdZnTe strip detectors, scintillator fibers, and a gamma-ray lens for future gamma-ray astronomy missions are under development in laboratories around the world.

  18. Space instrumentation for gamma-ray astronomy

    International Nuclear Information System (INIS)

    Teegarden, B.J.

    1999-01-01

    The decade of the 1990s has witnessed a renaissance in the field of gamma-ray astronomy. The seminal event was the launch of the Compton Gamma-Ray Observatory (CGRO) in April 1991. There have been a flood of major discoveries from CGRO including breakthroughs in gamma-ray bursts, annihilation radiation, and blazars. The Italian SAX satellite was launched in April 1996. Although not primarily a gamma-ray mission, it has added a new dimension to our understanding of gamma-ray bursts. Along with these new discoveries a firm groundwork has been laid for missions and new technology development that should maintain a healthy and vigorous field throughout most of the next decade. These include the ESA INTEGRAL mission (INTErnational Gamma-Ray Astrophysics Laboratory, to be launched in mid-2001) and the NASA GLAST mission (Gamma-Ray Large Area Space Telescope) with a likely launch in the middle of the next decade. These two missions will extend the observational capabilities well beyond those of CGRO. New technologies (to gamma-ray astronomy), such as cooled germanium detectors, silicon strip detectors, and CdTe detectors are planned for these new missions. Additional promising new technologies such as CdZnTe strip detectors, scintillator fibers, and a gamma-ray lens for future gamma-ray astronomy missions are under development in laboratories around the world

  19. Coincidence gamma-ray spectrometry

    DEFF Research Database (Denmark)

    Markovic, Nikola; Roos, Per; Nielsen, Sven Poul

    2017-01-01

    Gamma-ray spectrometry with high-purity germanium (HPGe) detectors is often the technique of choice in an environmental radioactivity laboratory. When measuring environmental samples associated activities are usually low so an important parameter that describes the performance of the spectrometer...... for a nuclide of interest is the minimum detectable activity (MDA). There are many ways for lowering the MDAs in gamma spectrometry. Recently, developments of fast and compact digital acquisition systems have led to growing number of multiple HPGe detector spectrometers. In these applications all detected...

  20. Cosmic gamma-ray bursts

    International Nuclear Information System (INIS)

    Hurley, K.

    1989-01-01

    This paper reviews the essential aspects of the gamma-ray burst (GRB) phenomenon, with emphasis on the more recent results. GRBs are introduced by their time histories, which provide some evidence for a compact object origin. The energy spectra of bursts are presented and they are seen to demonstrate practically unambiguously that the origin of some GRBs involves neutron stars. Counterpart searches are reviewed briefly and the statistical properties of bursters treated. This paper presents a review of the three known repeating bursters (the Soft Gamma Repeaters). Extragalactic and galactic models are discussed and future prospects are assessed

  1. Gamma-ray burst polarimeter (GAP)

    International Nuclear Information System (INIS)

    Mihara, Tatehiro; Murakami, Toshio; Yonetoku, Daisuke; Gunji, Shuichi; Kubo, Shin

    2013-01-01

    The gamma-ray burst polarimeter (GAP: GAmma-ray burst Polarimeter), which had been almost handcrafted by scientists, has succeeded in working normally in interplanetary space, and in detecting the polarization of the gamma-ray from a mysterious astronomical object 'gamma-ray burst'. It is the first result of the detectors in the world exclusively aiming at detecting gamma-ray polarization. We mainly describe the hardware of our GAP equipment and show the method of preparing equipment to work in the cosmic space with a tight budget. The mechanical structure, the electronic circuits, the software on the equipment, the data analysis on the earth, and the scientific results gained by the observation just over one year, are presented after explaining the principle of gamma-ray polarization detection. Our design to protect equipment against mechanical shock and cosmic radiation may provide useful information for future preparation of compact satellite. (J.P.N.)

  2. Gamma-Ray Astronomy Technology Needs

    Science.gov (United States)

    Gehrels, N.; Cannizzo, J. K.

    2012-01-01

    In recent decades gamma-ray observations have become a valuable tool for studying the universe. Progress made in diverse 8re1lS such as gamma-ray bursts (GRBs), nucleosynthesis, and active galactic nuclei (AGNs) has complimented and enriched our astrophysical understanding in many ways. We present an overview of current and future planned space y-ray missions and discussion technology needs for- the next generation of space gamma-ray instruments.

  3. Gamma-ray burst models.

    Science.gov (United States)

    King, Andrew

    2007-05-15

    I consider various possibilities for making gamma-ray bursts, particularly from close binaries. In addition to the much-studied neutron star+neutron star and black hole+neutron star cases usually considered good candidates for short-duration bursts, there are also other possibilities. In particular, neutron star+massive white dwarf has several desirable features. These systems are likely to produce long-duration gamma-ray bursts (GRBs), in some cases definitely without an accompanying supernova, as observed recently. This class of burst would have a strong correlation with star formation and occur close to the host galaxy. However, rare members of the class need not be near star-forming regions and could have any type of host galaxy. Thus, a long-duration burst far from any star-forming region would also be a signature of this class. Estimates based on the existence of a known progenitor suggest that this type of GRB may be quite common, in agreement with the fact that the absence of a supernova can only be established in nearby bursts.

  4. Dark gamma-ray bursts

    Science.gov (United States)

    Brdar, Vedran; Kopp, Joachim; Liu, Jia

    2017-03-01

    Many theories of dark matter (DM) predict that DM particles can be captured by stars via scattering on ordinary matter. They subsequently condense into a DM core close to the center of the star and eventually annihilate. In this work, we trace DM capture and annihilation rates throughout the life of a massive star and show that this evolution culminates in an intense annihilation burst coincident with the death of the star in a core collapse supernova. The reason is that, along with the stellar interior, also its DM core heats up and contracts, so that the DM density increases rapidly during the final stages of stellar evolution. We argue that, counterintuitively, the annihilation burst is more intense if DM annihilation is a p -wave process than for s -wave annihilation because in the former case, more DM particles survive until the supernova. If among the DM annihilation products are particles like dark photons that can escape the exploding star and decay to standard model particles later, the annihilation burst results in a flash of gamma rays accompanying the supernova. For a galactic supernova, this "dark gamma-ray burst" may be observable in the Čerenkov Telescope Array.

  5. Relativistic motion in gamma-ray bursts

    International Nuclear Information System (INIS)

    Krolik, J.H.; Pier, E.A.

    1991-01-01

    Three fundamental problems affect models of gamma-ray bursts, i.e., the energy source, the ability of high-energy photons to escape the radiation region, and the comparative weakness of X-ray emission. It is indicated that relativistic bulk motion of the gamma-ray-emitting plasma generically provides a solution to all three of these problems. Results show that, if the plasma that produces gamma-ray bursts has a bulk relativistic velocity with Lorentz factor gamma of about 10, several of the most troubling problems having to do with gamma-ray bursts are solved. 42 refs

  6. Radio Observations of Gamma-ray Novae

    Science.gov (United States)

    Linford, Justin D.; Chomiuk, L.; Ribeiro, V.; project, E.-Nova

    2014-01-01

    Recent detection of gamma-ray emission from classical novae by the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope surprised many in the astronomical community. We present results from radio observations, obtained using the Karl G. Jansky Very Large Array (VLA), of three gamma-ray novae: Mon2012, Sco2012, and Del2013. Radio observations allow for the calculation of ejecta masses, place limits on the distances, and provide information about the gamma-ray emission mechanism for these sources.

  7. Pulsars and Acceleration Sites

    Science.gov (United States)

    Harding, Alice

    2008-01-01

    Rotation-powered pulsars are excellent laboratories for the studying particle acceleration as well as fundamental physics of strong gravity, strong magnetic fields and relativity. But even forty years after their discovery, we still do not understand their pulsed emission at any wavelength. I will review both the basic physics of pulsars as well as the latest developments in understanding their high-energy emission. Special and general relativistic effects play important roles in pulsar emission, from inertial frame-dragging near the stellar surface to aberration, time-of-flight and retardation of the magnetic field near the light cylinder. Understanding how these effects determine what we observe at different wavelengths is critical to unraveling the emission physics. Fortunately the Gamma-Ray Large Area Space Telescope (GLAST), with launch in May 2008 will detect many new gamma-ray pulsars and test the predictions of these models with unprecedented sensitivity and energy resolution for gamma-rays in the range of 30 MeV to 300 GeV.

  8. Gravitational Waves versus X and Gamma Ray Emission in a Short Gamma-Ray Burst

    OpenAIRE

    Oliveira, F. G.; Rueda, Jorge A.; Ruffini, Remo

    2012-01-01

    The recent progress in the understanding the physical nature of neutron star equilibrium configurations and the first observational evidence of a genuinely short gamma-ray burst, GRB 090227B, allows to give an estimate of the gravitational waves versus the X and Gamma-ray emission in a short gamma-ray burst.

  9. Handbook on Mobile Gamma-ray Spectrometry

    DEFF Research Database (Denmark)

    Aage, Helle Karina; Korsbech, Uffe C C

    2003-01-01

    Basic physics and mathematics for Airborne and Car-borne Gamma-ray Spectrometry supplemented with practical examples and methods for advanced data processing......Basic physics and mathematics for Airborne and Car-borne Gamma-ray Spectrometry supplemented with practical examples and methods for advanced data processing...

  10. Gamma-Ray Interactions for Reachback Analysts

    Energy Technology Data Exchange (ETDEWEB)

    Karpius, Peter Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Myers, Steven Charles [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-08-02

    This presentation is a part of the DHS LSS spectroscopy training course and presents an overview of the following concepts: identification and measurement of gamma rays; use of gamma counts and energies in research. Understanding the basic physics of how gamma rays interact with matter can clarify how certain features in a spectrum were produced.

  11. Gamma ray astronomy from satellites and balloons

    International Nuclear Information System (INIS)

    Schoenfelder, V.

    1986-01-01

    A survey is given of gamma ray astronomy topics presented at the Cosmic Ray Conference. The major conclusions at the Cosmic Ray Conference in the field of gamma ray astronomy are given. (1) MeV-emission of gamma-ray bursts is a common feature. Variations in duration and energy spectra from burst to burst may explain the discrepancy between the measured log N - log S dependence and the observed isotropy of bursts. (2) The gamma-ray line at 1.809 MeV from Al(26) is the first detected line from a radioactive nucleosynthesis product. In order to understand its origin it will be necessary to measure its longitude distribution in the Milky Way. (3) The indications of a gamma-ray excess found from the direction of Loop I is consistent with the picture that the bulk of cosmic rays below 100 GeV is produced in galactic supernova remnants. (4) The interpretation of the large scale distribution of gamma rays in the Milky Way is controversial. At present an extragalactic origin of the cosmic ray nuclei in the GeV-range cannot be excluded from the gamma ray data. (5) The detection of MeV-emission from Cen A is a promising step towards the interesting field of extragalactic gamma ray astronomy

  12. Prompt gamma-ray activation analysis (PGAA)

    Energy Technology Data Exchange (ETDEWEB)

    Kern, J [Fribourg Univ. (Switzerland). Inst. de Physique

    1996-11-01

    The paper deals with a brief description of the principles of prompt gamma-ray activation analysis (PGAA), with the detection of gamma-rays, the PGAA project at SINQ and with the expected performances. 8 figs., 3 tabs., 10 refs.

  13. Prompt gamma-ray activation analysis (PGAA)

    International Nuclear Information System (INIS)

    Kern, J.

    1996-01-01

    The paper deals with a brief description of the principles of prompt gamma-ray activation analysis (PGAA), with the detection of gamma-rays, the PGAA project at SINQ and with the expected performances. 8 figs., 3 tabs., 10 refs

  14. A high energy gamma ray astronomy experiment

    International Nuclear Information System (INIS)

    Hofstadter, R.

    1988-01-01

    The author describes work involving NASA's Gamma Ray Observatory (GRO). GRO exemplifies the near zero principle because it investigates new gamma ray phenomena by relying on the space program to take us into the region of zero interference above the earth's atmosphere. In its present form GRO has four experiments

  15. Intercomparison of gamma ray analysis software packages

    International Nuclear Information System (INIS)

    1998-04-01

    The IAEA undertook an intercomparison exercise to review available software for gamma ray spectra analysis. This document describes the methods used in the intercomparison exercise, characterizes the software packages reviewed and presents the results obtained. Only direct results are given without any recommendation for a particular software or method for gamma ray spectra analysis

  16. Bursts of the Crab Nebula gamma-ray emission at high and ultra-high energies

    Directory of Open Access Journals (Sweden)

    Lidvansky A.S.

    2017-01-01

    Full Text Available Characteristics of the flares of gamma rays detected from the Crab Nebula by the AGILE and Fermi-LAT satellite instruments are compared with those of a gamma ray burst recorded by several air shower arrays on February 23, 1989 and with one recent observation made by the ARGO-YBJ array. It is demonstrated that though pulsar-periodicity and energy spectra of emissions at 100 MeV (satellite gamma ray telescopes and 100 TeV (EAS arrays are different, their time structures seem to be similar. Moreover, maybe the difference between “flares” and “waves” recently found in the Crab Nebula emission by the AGILE team also exists at ultra-high energies.

  17. Disentangling the gamma-ray emission towards Cygnus X: Sh2-104

    Science.gov (United States)

    Gotthelf, Eric

    2015-09-01

    We have just discovered distinct X-ray emission coincident with VER J2018+363, a TeV source recently resolved from the giant gamma-ray complex MGRO J2019+37 in the Cygnus region. NuSTAR reveals a hard point source and a diffuse nebula adjacent to and possibly part of Sh2-104, a compact HII region containing several young massive stellar clusters. There is reasonable evidence that these X-rays probe the origin of the gamma-ray flux, however, unrelated extragalactic sources need to be excluded. We propose a short Chandra observation to localize the X-ray emission to identify a putative pulsar or stellar counterpart(s). This is an important step to fully understand the energetics of the MGRO J2019+37 complex and the production of gamma-rays in star formation regions, in general.

  18. SEARCH FOR PULSED {gamma}-RAY EMISSION FROM GLOBULAR CLUSTER M28

    Energy Technology Data Exchange (ETDEWEB)

    Wu, J. H. K.; Kong, A. K. H.; Huang, R. H. H.; Tam, P. H. T. [Institute of Astronomy and Department of Physics, National Tsing Hua University, Hsinchu, Taiwan (China); Hui, C. Y. [Department of Astronomy and Space Science, Chungnam National University, Daejeon (Korea, Republic of); Wu, E. M. H.; Takata, J.; Cheng, K. S., E-mail: wuhkjason@gmail.com, E-mail: cyhui@cnu.ac.kr [Department of Physics, University of Hong Kong, Pokfulam Road (Hong Kong)

    2013-03-10

    Using the data from the Large Area Telescope on board the Fermi Gamma-ray Space Telescope, we have searched for {gamma}-ray pulsations from the direction of the globular cluster M28 (NGC 6626). We report the discovery of a signal with a frequency consistent with that of the energetic millisecond pulsar (MSP) PSR B1821-24 in M28. A weighted H-test test statistic of 28.8 is attained, which corresponds to a chance probability of {approx}10{sup -5} (4.3{sigma} detection). With a phase-resolved analysis, the pulsed component is found to contribute {approx}25% of the total observed {gamma}-ray emission from the cluster. However, the unpulsed level provides a constraint for the underlying MSP population and the fundamental plane relations for the scenario of inverse Compton scattering. Follow-up timing observations in radio/X-ray are encouraged to further investigate this periodic signal candidate.

  19. Very high-energy gamma rays from gamma-ray bursts.

    Science.gov (United States)

    Chadwick, Paula M

    2007-05-15

    Very high-energy (VHE) gamma-ray astronomy has undergone a transformation in the last few years, with telescopes of unprecedented sensitivity having greatly expanded the source catalogue. Such progress makes the detection of a gamma-ray burst at the highest energies much more likely than previously. This paper describes the facilities currently operating and their chances for detecting gamma-ray bursts, and reviews predictions for VHE gamma-ray emission from gamma-ray bursts. Results to date are summarized.

  20. Observations of the highest energy gamma-rays from gamma-ray bursts

    International Nuclear Information System (INIS)

    Dingus, Brenda L.

    2001-01-01

    EGRET has extended the highest energy observations of gamma-ray bursts to GeV gamma rays. Such high energies imply the fireball that is radiating the gamma-rays has a bulk Lorentz factor of several hundred. However, EGRET only detected a few gamma-ray bursts. GLAST will likely detect several hundred bursts and may extend the maximum energy to a few 100 GeV. Meanwhile new ground based detectors with sensitivity to gamma-ray bursts are beginning operation, and one recently reported evidence for TeV emission from a burst

  1. Pulsed Gamma-Rays From PSR J2021 3651 with the Fermi Large Area Telescope

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, Aous A.; /Naval Research Lab, Wash., D.C.; Ackermann, M.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Ajello, Marco; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Atwood, William B.; /UC, Santa Cruz; Baldini, L.; /INFN, Pisa; Ballet, J.; /DAPNIA, Saclay; Barbiellini, Guido; /INFN, Trieste /Trieste U.; Bastieri, Denis; /INFN, Padua /Padua U.; Battelino, Milan; /Royal Inst. Tech., Stockholm; Baughman, B.M.; /Ohio State U.; Bechtol, K.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bellazzini, Ronaldo; /INFN, Pisa; Berenji, Bijan; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bloom, Elliott D.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bogaert, G.; /Ecole Polytechnique; Borgland, Anders W.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bregeon, J.; /INFN, Pisa; Brez, A.; /INFN, Pisa; Brigida, M.; /Bari U. /INFN, Bari; Bruel, P.; /Ecole Polytechnique; Burnett, Thompson H.; /Washington U., Seattle /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Columbia U. /IASF, Milan /IASF, Milan /DAPNIA, Saclay /INFN, Perugia /Perugia U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /George Mason U. /Naval Research Lab, Wash., D.C. /IASF, Milan /IASF, Milan /NASA, Goddard /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /INFN, Perugia /Perugia U. /LPCE, Orleans /Montpellier U. /Sonoma State U. /Royal Inst. Tech., Stockholm /Stockholm U. /ASI, Rome /NRAO, Charlottesville /Naval Research Lab, Wash., D.C. /INFN, Trieste /Pavia U. /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /UC, Santa Cruz /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /CENBG, Gradignan /CENBG, Gradignan /Manchester U. /Montpellier U. /Bari U. /INFN, Bari; /more authors..

    2011-11-30

    We report the detection of pulsed gamma-rays from the young, spin-powered radio pulsar PSR J2021+3651 using data acquired with the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope (formerly GLAST). The light curve consists of two narrow peaks of similar amplitude separated by 0.468 {+-} 0.002 in phase. The first peak lags the maximum of the 2 GHz radio pulse by 0.162 {+-} 0.004 {+-} 0.01 in phase. The integral gamma-ray photon flux above 100 MeV is (56 {+-} 3 {+-} 11) x 10{sup -8} cm{sup -2} s{sup -1}. The photon spectrum is well-described by an exponentially cut-off power law of the form dF/dE = kE{sup -{Gamma}}e{sup (-E/E{sub c})} where the energy E is expressed in GeV. The photon index is {Gamma} = 1.5 {+-} 0.1 {+-} 0.1 and the exponential cut-off is E{sub c} = 2.4 {+-} 0.3 {+-} 0.5 GeV. The first uncertainty is statistical and the second is systematic. The integral photon flux of the bridge is approximately 10% of the pulsed emission, and the upper limit on off-pulse gamma-ray emission from a putative pulsar wind nebula is < 10% of the pulsed emission at the 95% confidence level. Radio polarization measurements yield a rotation measure of RM = 524 {+-} 4 rad m{sup -2} but a poorly constrained magnetic geometry. Re-analysis of Chandra data enhanced the significance of the weak X-ray pulsations, and the first peak is roughly phase-aligned with the first gamma-ray peak. We discuss the emission region and beaming geometry based on the shape and spectrum of the gamma-ray light curve combined with radio and X-ray measurements, and the implications for the pulsar distance. Gamma-ray emission from the polar cap region seems unlikely for this pulsar.

  2. Cosmic gamma-ray bursts from BATSE - Another great debate

    Science.gov (United States)

    Hartmann, Dieter H.; The, Lih-Sin; Clayton, Donald D.; Schnepf, Neil G.; Linder, Eric V.

    1992-01-01

    The BATSE detectors aboard Compton Observatory record about one cosmic gamma-ray burst (GRB) per day. Preliminary data analysis shows a highly isotropic sky map and a nonuniform brightness distribution. Anisotropies expected from a Galactic neutron star population, the most frequently considered source model, did not emerge from the data. Taken at face value, the data seem to suggest a heliocentric solution of the GRB puzzle. The observed isotropy can be achieved if sources are either very near or extragalactic. Pop I neutron stars in the disk do not simultaneously fit sky and brightness distributions. A possibility are sources in an extended Galactic halo with scale length large enough to avoid strong anisotropies due to the solar offset from the Galactic center. If GRBs are located in an extended halo we ask whether the neutron star paradigm can survive. We show that the recently discovered high velocity radio pulsars may provide a natural source population for GRBs. If these pulsars formed in the halo, as suggested by the radio data, the possibility arises that GRBs and high velocity pulsars are two related phenomena that provide observational evidence of the dark Galactic corona. We also discuss cosmological redshift constraints that follow from the observed brightness distribution.

  3. Identifying the TeV gamma-ray source MGRO J2228+61, FINALLY!

    Science.gov (United States)

    Aliu, Ester

    2012-09-01

    New VERITAS observations of MGRO J2228+61 allow us to associate its TeV emission with the enigmatic radio supernova remnant SNR G106.3+2.7. This remnant is part of a large complex that includes the Boomerang pulsar and nebula. The reduced field suggests that the TeV emission is not powered by the Boomerang, but instead associated with a much larger remnant. A recent SUZAKU X-ray observation of the smaller gamma-ray error box reveals two possible pulsar candidates. We propose short ACIS exposures to identify these sources to determine if one or both can be responsible for the gamma-ray emission. This will allow us to address the long standing problem on the nature of both MGRO J2228+61 and SNR G106.3+2.7.

  4. CHANDRA, KECK, AND VLA OBSERVATIONS OF THE CRAB NEBULA DURING THE 2011-APRIL GAMMA-RAY FLARE

    Energy Technology Data Exchange (ETDEWEB)

    Weisskopf, Martin C.; Tennant, Allyn F.; O' Dell, Stephen L. [NASA Marshall Space Flight Center, Astrophysics Office (ZP12), Huntsville, AL 35812 (United States); Arons, Jonathan [Astronomy Department and Theoretical Astrophysics Center, University of California, Berkeley, 601 Campbell Hall, Berkeley, CA 94720 (United States); Blandford, Roger; Funk, Stefan; Romani, Roger W. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Buehler, Rolf [DESY, Platanenallee 6, D-15738 Zeuthen (Germany); Caraveo, Patrizia; De Luca, Andrea [INAF-IASF Milano, via E. Bassini 15, I-20133 Milano (Italy); Cheung, Chi C. [National Research Council Research Associate, National Academy of Sciences, Washington, DC 20001 (United States); Costa, Enrico [INFN Roma Tor Vergata, via della Ricerca Scientifica 1, I-00133 Roma (Italy); Ferrigno, Carlo [ISDC, Data Center for Astrophysics of the University of Geneva, chemin d' cogia 16, CH-1290 Versoix (Switzerland); Fu, Hai [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Habermehl, Moritz; Horns, Dieter [Institut fuer Experimentalphysik, Universitaet Hamburg, Luruper Chaussee 149, D-22761 Hamburg (Germany); Linford, Justin D. [Department of Physics and Astronomy, University of New Mexico, MSC07 4220, Albuquerque, NM 87131-0001 (United States); Lobanov, Andrei [Max-Planck-Institut fuer Radioastronomie, Auf dem Huegel 69, D-53121 Bonn (Germany); Max, Claire [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Mignani, Roberto [Mullard Space Science Laboratory, University College London, Holmbury St. Mary Dorking, Surrey RH5 6NT (United Kingdom); and others

    2013-03-01

    We present results from our analysis of Chandra X-Ray Observatory, W. M. Keck Observatory, and Karl G. Jansky Very Large Array (VLA) images of the Crab Nebula that were contemporaneous with the {gamma}-ray flare of 2011 April. Despite hints in the X-ray data, we find no evidence for statistically significant variations that pinpoint the specific location of the flares within the Nebula. The Keck observations extend this conclusion to the 'inner knot', i.e., the feature within an arcsecond of the pulsar. The VLA observations support this conclusion. We also discuss theoretical implications of the {gamma}-ray flares and suggest that the most dramatic {gamma}-ray flares are due to radiation-reaction-limited synchrotron emission associated with sudden, dissipative changes in the current system sustained by the central pulsar.

  5. Future prospects for. gamma. -ray astronomy

    Energy Technology Data Exchange (ETDEWEB)

    Fichtel, C [National Aeronautics and Space Administration, Greenbelt, MD (USA). Goddard Space Flight Center

    1981-06-30

    As ..gamma..-ray astronomy moves from the discovery to the exploratory phase, the promise of ..gamma..-ray astrophysics noted by theorists in the late 1940s and 1950s is beginning to be realized. In the future, satellites should carry instruments that will have over an order of magnitude greater sensitivity than those flown thus far, and, for at least some portions of the ..gamma..-ray energy range, these detectors will also have substantially improved energy and angular resolution. The information to be obtained from these experiments should greatly enhance our knowledge of several astrophysical phenomena including the very energetic and nuclear processes associated with compact objects, astrophysical nucleosynthesis, solar particle acceleration, the chemical composition of the planets and other bodies of the Solar System, the structure of our Galaxy, the origin and dynamic pressure effects of the cosmic rays, high energy particles and energetic processes in other galaxies especially active ones, and the degree of matter-antimatter symmetry of the Universe. The ..gamma..-ray results of the forthcoming programs such as Gamma-I, the Gamma Ray Observatory, the ..gamma..-ray burst network, Solar Polar, and very high energy ..gamma..-ray telescopes on the ground will almost certainly provide justification for more sophisticated telescopes. These advanced instruments might be placed on the Space Platform currently under study by N.A.S.A.

  6. CLASSIFICATION AND RANKING OF FERMI LAT GAMMA-RAY SOURCES FROM THE 3FGL CATALOG USING MACHINE LEARNING TECHNIQUES

    Energy Technology Data Exchange (ETDEWEB)

    Saz Parkinson, P. M. [Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong (China); Xu, H.; Yu, P. L. H. [Department of Statistics and Actuarial Science, The University of Hong Kong, Pokfulam Road, Hong Kong (China); Salvetti, D.; Marelli, M. [INAF—Istituto di Astrofisica Spaziale e Fisica Cosmica Milano, via E. Bassini 15, I-20133, Milano (Italy); Falcone, A. D. [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States)

    2016-03-20

    We apply a number of statistical and machine learning techniques to classify and rank gamma-ray sources from the Third Fermi Large Area Telescope Source Catalog (3FGL), according to their likelihood of falling into the two major classes of gamma-ray emitters: pulsars (PSR) or active galactic nuclei (AGNs). Using 1904 3FGL sources that have been identified/associated with AGNs (1738) and PSR (166), we train (using 70% of our sample) and test (using 30%) our algorithms and find that the best overall accuracy (>96%) is obtained with the Random Forest (RF) technique, while using a logistic regression (LR) algorithm results in only marginally lower accuracy. We apply the same techniques on a subsample of 142 known gamma-ray pulsars to classify them into two major subcategories: young (YNG) and millisecond pulsars (MSP). Once more, the RF algorithm has the best overall accuracy (∼90%), while a boosted LR analysis comes a close second. We apply our two best models (RF and LR) to the entire 3FGL catalog, providing predictions on the likely nature of unassociated sources, including the likely type of pulsar (YNG or MSP). We also use our predictions to shed light on the possible nature of some gamma-ray sources with known associations (e.g., binaries, supernova remnants/pulsar wind nebulae). Finally, we provide a list of plausible X-ray counterparts for some pulsar candidates, obtained using Swift, Chandra, and XMM. The results of our study will be of interest both for in-depth follow-up searches (e.g., pulsar) at various wavelengths and for broader population studies.

  7. CLASSIFICATION AND RANKING OF FERMI LAT GAMMA-RAY SOURCES FROM THE 3FGL CATALOG USING MACHINE LEARNING TECHNIQUES

    International Nuclear Information System (INIS)

    Saz Parkinson, P. M.; Xu, H.; Yu, P. L. H.; Salvetti, D.; Marelli, M.; Falcone, A. D.

    2016-01-01

    We apply a number of statistical and machine learning techniques to classify and rank gamma-ray sources from the Third Fermi Large Area Telescope Source Catalog (3FGL), according to their likelihood of falling into the two major classes of gamma-ray emitters: pulsars (PSR) or active galactic nuclei (AGNs). Using 1904 3FGL sources that have been identified/associated with AGNs (1738) and PSR (166), we train (using 70% of our sample) and test (using 30%) our algorithms and find that the best overall accuracy (>96%) is obtained with the Random Forest (RF) technique, while using a logistic regression (LR) algorithm results in only marginally lower accuracy. We apply the same techniques on a subsample of 142 known gamma-ray pulsars to classify them into two major subcategories: young (YNG) and millisecond pulsars (MSP). Once more, the RF algorithm has the best overall accuracy (∼90%), while a boosted LR analysis comes a close second. We apply our two best models (RF and LR) to the entire 3FGL catalog, providing predictions on the likely nature of unassociated sources, including the likely type of pulsar (YNG or MSP). We also use our predictions to shed light on the possible nature of some gamma-ray sources with known associations (e.g., binaries, supernova remnants/pulsar wind nebulae). Finally, we provide a list of plausible X-ray counterparts for some pulsar candidates, obtained using Swift, Chandra, and XMM. The results of our study will be of interest both for in-depth follow-up searches (e.g., pulsar) at various wavelengths and for broader population studies

  8. On Gamma-Ray Bursts

    CERN Document Server

    Ruffini, Remo; Bianco, Carlo Luciano; Caito, Letizia; Chardonnet, Pascal; Cherubini, Christian; Dainotti, Maria Giovanna; Fraschetti, Federico; Geralico, Andrea; Guida, Roberto; Patricelli, Barbara; Rotondo, Michael; Hernandez, Jorge Armando Rueda; Vereshchagin, Gregory; Xue, She-Sheng

    2008-01-01

    (Shortened) We show by example how the uncoding of Gamma-Ray Bursts (GRBs) offers unprecedented possibilities to foster new knowledge in fundamental physics and in astrophysics. After recalling some of the classic work on vacuum polarization in uniform electric fields by Klein, Sauter, Heisenberg, Euler and Schwinger, we summarize some of the efforts to observe these effects in heavy ions and high energy ion collisions. We then turn to the theory of vacuum polarization around a Kerr-Newman black hole, leading to the extraction of the blackholic energy, to the concept of dyadosphere and dyadotorus, and to the creation of an electron-positron-photon plasma. We then present a new theoretical approach encompassing the physics of neutron stars and heavy nuclei. It is shown that configurations of nuclear matter in bulk with global charge neutrality can exist on macroscopic scales and with electric fields close to the critical value near their surfaces. These configurations may represent an initial condition for the...

  9. Some aspects of ultra high energy gamma ray astronomy

    International Nuclear Information System (INIS)

    De Jager, O.C.

    1983-11-01

    A short review of ultra high energy (UHE) gamma ray astronomy (10 11 14 eV) as well as a description of a planned experiment to be erected at Potchefstroom is given in the introduction. This experiment will be the first and only one in the Southern Hemisphere and as such may play an important role in this new field of astronomy and astrophysics. In the first part the necessary infrastructure for astronomical observations of known celestial objects is developed. This embodies the special physical, mechanical and astronomical constraints in this type of astronomy, such as the definition of the various astronomical coordinate systems and transformations between them, the effect of precession and nutation on the source position etc. This leads to automatic observation schedules for the various applicable techniques of observation. In the second part the various effects which may influence the arrival time of a gamma ray at the telescope is investigated. It is found that dispersion and relativistic effects are negligible, given the special type of analysis used in this low counting rate system. The classic Doppler effect due to the motion of Earth as well as the configuration of the telescope does have a major effect and must be taken into consideration when analysing the data. A simple method, depending only on the movement of Earth around the sun, is developed to simplify the identification of pulsars at the planned observatory where computing facilities are limited

  10. Variable gamma-ray sky at 1 GeV

    International Nuclear Information System (INIS)

    Pshirkov, M. S.; Rubtsov, G. I.

    2013-01-01

    We search for the long-term variability of the gamma-ray sky in the energy range E > 1 GeV with 168 weeks of the gamma-ray telescope Fermi-LAT data. We perform a full sky blind search for regions with variable flux looking for deviations from uniformity. We bin the sky into 12288 pixels using the HEALPix package and use the Kolmogorov-Smirnov test to compare weekly photon counts in each pixel with the constant flux hypothesis. The weekly exposure of Fermi-LAT for each pixel is calculated with the Fermi-LAT tools. We consider flux variations in a pixel significant if the statistical probability of uniformity is less than 4 × 10 −6 , which corresponds to 0.05 false detections in the whole set. We identified 117 variable sources, 27 of which have not been reported variable before. The sources with previously unidentified variability contain 25 active galactic nuclei (AGN) belonging to the blazar class (11 BL Lacs and 14 FSRQs), one AGN of an uncertain type, and one pulsar PSR J0633+1746 (Geminga).

  11. Neutron detection gamma ray sensitivity criteria

    International Nuclear Information System (INIS)

    Kouzes, Richard T.; Ely, James H.; Lintereur, Azaree T.; Mace, Emily K.; Stephens, Daniel L.; Woodring, Mitchell L.

    2011-01-01

    The shortage of 3 He has triggered the search for effective alternative neutron detection technologies for national security and safeguards applications. Any new detection technology must satisfy two basic criteria: (1) it must meet a neutron detection efficiency requirement, and (2) it must be insensitive to gamma-ray interference at a prescribed level, while still meeting the neutron detection requirement. It is the purpose of this paper to define measureable gamma ray sensitivity criteria for neutron detectors. Quantitative requirements are specified for: intrinsic gamma ray detection efficiency and gamma ray absolute rejection. The gamma absolute rejection ratio for neutrons (GARRn) is defined, and it is proposed that the requirement for neutron detection be 0.9 3 He based neutron detector is provided showing that this technology can meet the stated requirements. Results from tests of some alternative technologies are also reported.

  12. Processing of gamma-ray spectrometric logs

    International Nuclear Information System (INIS)

    Umiastowski, K.; Dumesnil, P.

    1984-10-01

    CEA (Commissariat a l'Energie Atomique) has developped a gamma-ray spectrometric tool, containing an analog-to-digital converter. This new tool permits to perform very precise uranium logs (natural gamma-ray spectrometry), neutron activation logs and litho-density logs (gamma-gamma spectrometric logs). Specific processing methods were developped to treate the particular problems of down-hole gamma-ray spectrometry. Extraction of the characteristic gamma-ray peak, even if they are superposed on the background radiation of very high intensity, is possible. This processing methode enables also to obtain geological informations contained in the continuous background of the spectrum. Computer programs are written in high level language for SIRIUS (VICTOR) and APOLLO computers. Exemples of uranium and neutron activation logs treatment are presented [fr

  13. Gamma ray astronomy with COS-B

    International Nuclear Information System (INIS)

    Swanenburg, B.N.

    1981-01-01

    Observational results in the field of gamma-ray astronomy that have been obtained to date with the COS-B satellite are discussed and questions raised by these observations are summarized. Following a brief review of the instrumental characteristics of COS-B and the extent of COS-B gamma-ray coverage of the sky, particular attention is given to the questions raised by the discovery of many unidentified gamma-ray sources with no apparent optical, X-ray or radio counterparts and the detection of high-energy gamma radiation from the quasar 3C 273, which suggests the role of gamma-ray emission in the creation of other radiation

  14. Thermal neutron capture gamma-rays

    International Nuclear Information System (INIS)

    Tuli, J.K.

    1983-01-01

    The energy and intensity of gamma rays as seen in thermal neutron capture are presented. Only those (n,α), E = thermal, reactions for which the residual nucleus mass number is greater than or equal to 45 are included. These correspond to evaluations published in Nuclear Data Sheets. The publication source data are contained in the Evaluated Nuclear Structure Data File (ENSDF). The data presented here do not involve any additional evaluation. Appendix I lists all the residual nuclides for which the data are included here. Appendix II gives a cumulated index to A-chain evaluations including the year of publication. The capture gamma ray data are given in two tables - the Table 1 is the list of all gamma rays seen in (n,#betta#) reaction given in the order of increasing energy; the Table II lists the gamma rays according to the nuclide

  15. Gamma ray auto absorption correction evaluation methodology

    International Nuclear Information System (INIS)

    Gugiu, Daniela; Roth, Csaba; Ghinescu, Alecse

    2010-01-01

    Neutron activation analysis (NAA) is a well established nuclear technique, suited to investigate the microstructural or elemental composition and can be applied to studies of a large variety of samples. The work with large samples involves, beside the development of large irradiation devices with well know neutron field characteristics, the knowledge of perturbing phenomena and adequate evaluation of correction factors like: neutron self shielding, extended source correction, gamma ray auto absorption. The objective of the works presented in this paper is to validate an appropriate methodology for gamma ray auto absorption correction evaluation for large inhomogeneous samples. For this purpose a benchmark experiment has been defined - a simple gamma ray transmission experiment, easy to be reproduced. The gamma ray attenuation in pottery samples has been measured and computed using MCNP5 code. The results show a good agreement between the computed and measured values, proving that the proposed methodology is able to evaluate the correction factors. (authors)

  16. Observations of gamma-ray bursts

    International Nuclear Information System (INIS)

    Strong, I.B.; Klebesadel, R.W.; Evans, W.D.

    1975-01-01

    Observational data on gamma-ray bursts are reviewed. Information is grouped into temporal properties, energy fluxes and spectral properties, and directions and distributions of the sources in space. (BJG)

  17. Gamma-rays from decaying dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Bertone, G. [Paris-6 Univ., 75 (France). Inst. d' Astrophysique; Buchmueller, W.; Covi, L.; Ibarra, A. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2007-10-15

    We study the prospects for detecting gamma-rays from decaying Dark Matter (DM), focusing in particular on gravitino DM in R-parity breaking vacua. Given the substantially different angular distribution of the predicted gamma-ray signal with respect to the case of annihilating DM, and the relatively poor (of order 0.1 ) angular resolution of gamma-ray detectors, the best strategy for detection is in this case to look for an exotic contribution to the gamma-ray flux at high galactic latitudes, where the decaying DM contribution would resemble an astrophysical extragalactic component, similar to the one inferred by EGRET observations. Upcoming experiments such as GLAST and AMS-02 may identify this exotic contribution and discriminate it from astrophysical sources, or place significant constraints on the mass and lifetime of DM particles. (orig.)

  18. Possible galactic origin of. gamma. -ray bursts

    Energy Technology Data Exchange (ETDEWEB)

    Manchanda, R K; Ramsden, D [Southampton Univ. (UK). Dept. of Physics

    1977-03-31

    It is stated that extragalactic models for the origin of non-solar ..gamma..-ray bursts include supernova bursts in remote galaxies, and the collapse of the cores of active stars, whilst galactic models are based on flare stars, thermonuclear explosions in neutron stars and the sudden accretion of cometary gas on to neutron stars. The acceptability of any of these models may be tested by the observed size spectrum of the ..gamma..-ray bursts. The extragalactic models predict a power law spectrum with number index -1.5, whilst for the galactic models the number index will be -1. Experimental data on ..gamma..-ray bursts is, however, still meagre, and so far only 44 confirmed events have been recorded by satellite-borne instruments. The number spectrum of the observed ..gamma..-ray bursts indicates that the observed distribution for events with an energy < 10/sup -4/ erg/cm/sup 2/ is flat; this makes the choice of any model completely arbitrary. An analysis of the observed ..gamma..-ray events is here presented that suggests very interesting possibilities for their origin. There appears to be a preferred mean energy for ..gamma..-ray bursts; some 90% of the recorded events show a mean energy between 5 x 10/sup -5/ and 5 x 10/sup -4/ erg/cm/sup 2/, contrary to the predicted characteristics of the number spectrum of various models. A remarkable similarity is found between the distribution of ..gamma..-ray bursts and that of supernova remnants, suggesting a genetic relationship between the two and the galactic origin of the ..gamma..-ray bursts, and the burst source could be identified with completely run down neutron stars, formed during supernova explosions.

  19. Magic gamma rays, extra-atmospheric source

    International Nuclear Information System (INIS)

    Bolufer, P.

    2010-01-01

    Without the atmospheric layer, the cosmos radiation would kill every living, our planet would be like the moon. The cosmic gamma ray to collide with gases in land cover, as it is disintegrated. They are harmless, they form a cone of light that points to the cosmic source comes from. On April 25, 2009 was born on the island of Palma Magic II and Magic I the best observer of atmospheric gamma rays of low intensity. (Author)

  20. Gamma Ray Bursts-Afterglows and Counterparts

    Science.gov (United States)

    Fishman, Gerald J

    1998-01-01

    Several breakthrough discoveries were made last year of x-ray, optical and radio afterglows and counterparts to gamma-ray bursts, and a redshift has been associated with at least one of these. These discoveries were made possible by the fast, accurate gamma-ray burst locations of the BeppoSAX satellite. It is now generally believed that the burst sources are at cosmological distances and that they represent the most powerful explosions in the Universe. These observations also open new possibilities for the study of early star formation, the physics of extreme conditions and perhaps even cosmology. This session will concentrate on recent x-ray, optical and radio afterglow observations of gamma-ray bursts, associated redshift measurements, and counterpart observations. Several review and theory talks will also be presented, along with a summary of the astrophysical implications of the observations. There will be additional poster contributions on observations of gamma-ray burst source locations at wavelengths other than gamma rays. Posters are also solicited that describe new observational capabilities for rapid follow-up observations of gamma-ray bursts.

  1. TeV Gamma-Ray Observations of Geminga with HAWC

    Science.gov (United States)

    Zhou, Hao; HAWC Collaboration

    2016-03-01

    Geminga is a radio-quiet pulsar that was first detected at GeV energies. Its pulsations were first discovered in X-rays. It is one of the closest middle-aged pulsars at approximately 250 parsecs from Earth. The Geminga pulsar is one of the brightest sources in the GeV sky but there is no unambiguous evidence for the existence of a pulsar wind nebula at GeV energies. Milagro reported an extended TeV source spatially consistent with Geminga, but IACT observations using standard analysis techniques have only provided upper limits. Geminga has been interpreted as a nearby cosmic-ray accelerator, which would possibly explain the observed multi-GeV positron excess. TeV observations of Geminga are crucial to test this interpretation. The High Altitude Water Cherenkov (HAWC) Observatory, located at 4100 m above see level in central Mexico, is sensitive to gamma rays between 100 GeV and 100 TeV. Thanks to its large field of view of 2 steradians, HAWC has a good sensitivity to extended sources. We will present the preliminary results for TeV gamma-ray emission from Geminga from HAWC data. Spectral and morphological analyses are on-going with a growing data set.

  2. The Gamma-Ray Imager GRI

    Science.gov (United States)

    Wunderer, Cornelia B.; GRI Collaboration

    2008-03-01

    Observations of the gamma-ray sky reveal the most powerful sources and the most violent events in the Universe. While at lower wavebands the observed emission is generally dominated by thermal processes, the gamma-ray sky provides us with a view on the non-thermal Universe. Here particles are accelerated to extreme relativistic energies by mechanisms which are still poorly understood, and nuclear reactions are synthesizing the basic constituents of our world. Cosmic accelerators and cosmic explosions are major science themes that are addressed in the gamma-ray regime. ESA's INTEGRAL observatory currently provides the astronomical community with a unique tool to investigate the sky up to MeV energies and hundreds of sources, new classes of objects, extraordinary views of antimatter annihilation in our Galaxy, and fingerprints of recent nucleosynthesis processes have been discovered. NASA's GLAST mission will similarly take the next step in surveying the high-energy ( GeV) sky, and NuSTAR will pioneer focusing observations at hard X-ray energies (to 80 keV). There will be clearly a growing need to perform deeper, more focused investigations of gamma-ray sources in the 100-keV to MeV regime. Recent technological advances in the domain of gamma-ray focusing using Laue diffraction and multilayer-coated mirror techniques have paved the way towards a gamma-ray mission, providing major improvements compared to past missions regarding sensitivity and angular resolution. Such a future Gamma-Ray Imager will allow the study of particle acceleration processes and explosion physics in unprecedented detail, providing essential clues on the innermost nature of the most violent and most energetic processes in the Universe.

  3. Localization of Gamma-Ray Bursts Using the Fermi Gamma-Ray Burst Monitor

    NARCIS (Netherlands)

    Connaughton, V.; Briggs, M.S.; Goldstein, A.; Meegan, C.A.; Paciesas, W.S.; Preece, R.D.; Wilson-Hodge, C.A.; Gibby, M.H.; Greiner, J.; Gruber, D.; Jenke, P.; Kippen, R.M.; Pelassa, V.; Xiong, S.; Yu, H-F.; Bhat, P.N.; Burgess, J.M.; Byrne, D.; Fitzpatrick, G.; Foley, S.; Giles, M.M.; Guiriec, S.; van der Horst, A.J.; von Kienlin, A.; McBreen, S.; McGlynn, S.; Tierney, D.; Zhang, B..B.

    2015-01-01

    The Fermi Gamma-ray Burst Monitor (GBM) has detected over 1400 gamma-ray bursts (GRBs) since it began science operations in 2008 July. We use a subset of over 300 GRBs localized by instruments such as Swift, the Fermi Large Area Telescope, INTEGRAL, and MAXI, or through triangulations from the

  4. Gamma-Ray Lenses for Astrophysics-and the Gamma-Ray Imager Mission GRI

    DEFF Research Database (Denmark)

    Wunderer, C. B.; Ballmoos, P. V.; Barriere, N.

    2009-01-01

    Observations of the gamma-ray sky reveal the most powerful sources and the most violent events in the Universe. While at lower wavebands the observed emission is generally dominated by thermal processes, the gamma-ray sky provides us with a view on the non-thermal Universe. Here particles are acc...

  5. NRAO Teams With NASA Gamma-Ray Satellite

    Science.gov (United States)

    2007-06-01

    The National Radio Astronomy Observatory (NRAO) is teaming with NASA's upcoming Gamma-ray Large Area Space Telescope (GLAST) to allow astronomers to use both the orbiting facility and ground-based radio telescopes to maximize their scientific payoff. Under the new, streamlined process, astronomers can compete for coordinated observing time and support from both GLAST and NRAO's radio telescopes. GLAST satellite Artist's rendering of the GLAST spacecraft in orbit above the Earth. CREDIT: General Dynamics C4 Systems Click on Image for Larger File Images of NRAO Telescopes Robert C. Byrd Green Bank Telescope Very Long Baseline Array Very Large Array Atacama Large Millimeter/submillimeter Array GLAST is scheduled for launch no earlier than December 14. It will perform a survey of the entire sky at gamma-ray wavelengths every 3 hours using its primary instrument, the Large Area Telescope (LAT). NRAO operates the Very Large Array (VLA) in New Mexico, the continent-wide Very Long Baseline Array (VLBA), and the Robert C. Byrd Green Bank Telescope (GBT) in West Virginia. The NRAO is a research facility of the National Science Foundation (NSF). "Coordinated gamma-ray and radio observations of celestial objects will greatly enhance the ability to fully understand those objects. Astronomy today requires such multiwavelength studies, and this agreement paves the way for exciting, cutting-edge research," said Fred K.Y. Lo, NRAO Director. GLAST will be vastly more capable than previous gamma-ray satellites, and will carry an instrument, the GLAST Burst Monitor, specifically designed to detect gamma-ray bursts. GLAST observers will study objects such as active galaxies, pulsars, and supernova remnants, which are also readily studied with radio telescopes. By working together, NASA's GLAST mission and NSF's NRAO facilities can study flares from blazars over the widest possible range of energies, which is crucial to understanding how black holes, notorious for drawing matter in, can

  6. High-energy emissions from the gamma-ray binary LS 5039

    Energy Technology Data Exchange (ETDEWEB)

    Takata, J.; Leung, Gene C. K.; Cheng, K. S. [Department of Physics, University of Hong Kong, Pokfulam Road (Hong Kong); Tam, P. H. T.; Kong, A. K. H. [Institute of Astronomy and Department of Physics, National Tsing Hua University, Hsinchu, Taiwan (China); Hui, C. Y., E-mail: takata@hku.hk, E-mail: gene930@connect.hku.hk, E-mail: hrspksc@hku.hk [Department of Astronomy and Space Science, Chungnam National University, Daejeon (Korea, Republic of)

    2014-07-20

    We study mechanisms of multi-wavelength emissions (X-ray, GeV, and TeV gamma-rays) from the gamma-ray binary LS 5039. This paper is composed of two parts. In the first part, we report on results of observational analysis using 4 yr data of the Fermi Large Area Telescope. Due to the improvement of instrumental response function and increase of the statistics, the observational uncertainties of the spectrum in the ∼100-300 MeV bands and >10 GeV bands are significantly improved. The present data analysis suggests that the 0.1-100 GeV emissions from LS 5039 contain three different components: (1) the first component contributes to <1 GeV emissions around superior conjunction, (2) the second component dominates in the 1-10 GeV energy bands, and (3) the third component is compatible with the lower-energy tail of the TeV emissions. In the second part, we develop an emission model to explain the properties of the phase-resolved emissions in multi-wavelength observations. Assuming that LS 5039 includes a pulsar, we argue that emissions from both the magnetospheric outer gap and the inverse-Compton scattering process of cold-relativistic pulsar wind contribute to the observed GeV emissions. We assume that the pulsar is wrapped by two kinds of termination shock: Shock-I due to the interaction between the pulsar wind and the stellar wind and Shock-II due to the effect of the orbital motion. We propose that the X-rays are produced by the synchrotron radiation at the Shock-I region and the TeV gamma-rays are produced by the inverse-Compton scattering process at the Shock-II region.

  7. Fuzzy correlations of gamma-ray bursts

    International Nuclear Information System (INIS)

    Hartmann, D.H.; Linder, E.V.; Blumenthal, G.R.

    1991-01-01

    The origin of gamma-ray bursts is not known, both in the sense of the nature of the source emitting the radiation and literally, the position of the burst on the sky. Lacking unambiguously identified counterparts in any wavelength band studied to date, statistical approaches are required to determine the burster distance scale. Angular correlation analysis is one of the most powerful tools in this regard. However, poor detector resolution gives large localization errors, effectively beam smearing the positions. The resulting fuzzy angular correlation function is investigated and the generic isotropization that smearing induces on any intrinsic clustering is discussed. In particular, the extent to which gamma-ray burst observations by the BATSE detector aboard the Gamma-Ray Observatory might recover an intrinsic source correlation is investigated. 16 refs

  8. Prompt Gamma Ray Spectroscopy for process monitoring

    International Nuclear Information System (INIS)

    Zoller, W.H.; Holmes, J.L.

    1991-01-01

    Prompt Gamma Ray Spectroscopy (PGRS) is a very powerful analytical technique able to measure many metallic, contamination problem elements. The technique involves measurement of gamma rays that are emitted by nuclei upon capturing a neutron. This method is sensitive not only to the target element but also to the particular isotope of that element. PGRS is capable of measuring dissolved metal ions in a flowing system. In the field, isotopic neutron sources are used to produce the desired neutron flux ( 252 Cf can produce neutron flux of the order of 10 8 neutrons/cm 2 --sec.). Due to high penetrating power of gamma radiation, high efficiency gamma ray detectors can be placed in an appropriate geometry to maximize sensitivity, providing real-time monitoring with low detection level capabilities

  9. Librarian driven analysis of gamma ray spectra

    International Nuclear Information System (INIS)

    Kondrashov, V.; Petersone, I.

    2002-01-01

    For a set of a priori given radionuclides extracted from a general nuclide data library, the authors use median estimates of the gamma-peak areas and estimates of their errors to produce a list of possible radionuclides matching gamma ray line(s). The identification of a given radionuclide is obtained by searching for a match with the energy information of a database. This procedure is performed in an interactive graphic mode by markers that superimpose, on the spectral data, the energy information and yields provided by a general gamma ray data library. This library of experimental data includes approximately 17,000 gamma ray energy lines related to 756 known gamma emitter radionuclides listed by the ICRP. (author)

  10. Technology Needs for Gamma Ray Astronomy

    Science.gov (United States)

    Gehrels, Neil

    2011-01-01

    Gamma ray astronomy is currently in an exciting period of multiple missions and a wealth of data. Results from INTEGRAL, Fermi, AGILE, Suzaku and Swift are making large contributions to our knowledge of high energy processes in the universe. The advances are due to new detector and imaging technologies. The steps to date have been from scintillators to solid state detectors for sensors and from light buckets to coded aperture masks and pair telescopes for imagers. A key direction for the future is toward focusing telescopes pushing into the hard X-ray regime and Compton telescopes and pair telescopes with fine spatial resolution for medium and high energy gamma rays. These technologies will provide finer imaging of gamma-ray sources. Importantly, they will also enable large steps forward in sensitivity by reducing background.

  11. Evaluation of gamma-ray intensities

    International Nuclear Information System (INIS)

    Yoshizawa, Yasukazu; Inoue, Hikaru; Hoshi, Masaharu; Shizuma, Kiyoshi; Iwata, Yosei.

    1980-04-01

    Relative intensities and intensities per decay of gamma rays were evaluated for 16 nuclides, 22 Na, 24 Na, 46 Sc, 54 Mn, 60 Co, 85 Sr, 88 Y, 95 Nb, sup(108m)Ag, 134 Cs, 133 Ba, 139 Ce, sup(180m)Hf, 198 Au, 203 Hg and 207 Bi. For most of these nuclides disintegration rates can be determined by means of β-γ or X-γ coincidence method. Since decay schemes of these nuclides are established, intensities per decay of strong gamma rays were accurately evaluated by using weak beta-ray branching ratios, relative gamma-ray intensities and internal conversion coefficients. Half-lives of the nuclides were also evaluated. Use of the nuclides, therefore, are recommended for precision intensity calibration of the detectors. (author)

  12. Pulsar Polar Cap and Slot Gap Models: Confronting Fermi Data

    Directory of Open Access Journals (Sweden)

    Alice K. Harding

    2013-09-01

    Full Text Available Rotation-powered pulsars are excellent laboratories for studying particle acceleration as well as fundamental physics of strong gravity, strong magnetic fields and relativity. Particle acceleration and high-energy emission from the polar caps is expected to occur in connection with electron-positron pair cascades. I will review acceleration and gamma-ray emission from the pulsar polar cap and associated slot gap. Predictions of these models can be tested with the data set on pulsars collected by the Large Area Telescope on the Fermi Gamma-Ray Telescope over the last four years, using both detailed light curve fitting, population synthesis and phase-resolved spectroscopy.

  13. Limits on the space density of gamma-ray burst sources

    International Nuclear Information System (INIS)

    Epstein, R.I.

    1985-01-01

    Gamma-ray burst spectra which extend to several MeV without significant steepening indicate that there is negligible degradation due to two-photon pair production. The inferred low rate of photon-photon reactions is used to give upper limits to the distances to the sources and to the intensity of the radiation from the sources. These limits are calculated under the assumptions that the bursters are neutron stars which emit uncollimated gamma rays. The principal results are that the space density of the gamma-ray burst sources exceeds approx.10 -6 pc -3 if the entire surface of the neutron star radiates and exceeds approx.10 -3 pc -3 if only a small cap or thin strip in the stellar surface radiates. In the former case the density of gamma-ray bursters is approx.1% of the inferred density of extinct pulsars, and in the latter case the mean mass density of burster sources is a few percent of the density of unidentified dark matter in the solar neighborhood. In both cases the X-ray intensity of the sources is far below the Rayleigh-Jeans limit, and the total flux is at most comparable to the Eddington limit. This implies that low-energy self-absorption near 10 keV is entirely negligible and that radiation-driven explosions are just barely possible

  14. gamma. -ray. Present status and problems

    Energy Technology Data Exchange (ETDEWEB)

    Okudaira, K [Rikkyo Univ., Tokyo (Japan). Faculty of Science

    1975-01-01

    As ..gamma..-ray advances straightly through space, the study on cosmic ..gamma..-ray will give the information concerning the origin directly. However, the intensity is weak, and the avoidance of background is a serious problem. The wide-spread components were studied by OSO-3. The intensity of the galactic disc component around 100 MeV was reported as (3.4+-1.0)x10/sup -5/ photons (cm/sup 2/, radian, sec)/sup -1/ by OSO-3 and 0.2x10/sup -4/ photons (cm/sup 2/, radian sec)/sup -1/ by SAS-2, and corresponds to the calculated ..gamma.. yield from ..pi../sup 0/. The strong disc component, so-called galactic center region, has been observed, and is due to the mixture of ..gamma..-ray from ..pi../sup 0/ and inverse Compton ..gamma..-ray. A peak at 476+-24 KeV was found as well as the continuous component. Special care must be taken for the observation of isotropic component, since it is hardly distinguished from the background. It is considered that the isotropic component is due to the inverse Compton scattering of 3/sup 0/K radiation in super-galactic space and the contribution from outer galaxy. The nearest point source of ..gamma..-ray is the sun. Among the other point sources, the crab nebula is the most reliable one. The energy flux of pulse component showed the spectrum of E/sup -1/. ..gamma..-ray bursts were observed by man-made satellites Vela-5 and 6. Theoretical explanation is still incomplete regarding the bursts. (Kato, T.).

  15. Gamma-ray standards for detector calibration

    International Nuclear Information System (INIS)

    Lorenz, A.

    1985-10-01

    The proceeedings are reported of a Consultants' Meeting on Gamma-ray Standards for Detector Calibration, held at the CEN, Grenoble in France, from 30-31 May 1985. The meeting provided a forum to assess the requirements for a suitable file to be used internationally for the calibration of X- and gamma-ray detectors. A provisional list of nuclides was drawn up, and an initial assessment of the status of the required data was agreed to be performed by the participants before the end of 1985. (author)

  16. Very high energy gamma ray astrophysics

    International Nuclear Information System (INIS)

    Lamb, R.C.; Lewis, D.A.

    1991-01-01

    The Whipple Observatory High Resolution Camera will be used in a vigorous program of observations to search for new sources of very-high-energy gamma rays. In addition, a search for antimatter using the moon-earth system as an ion spectrometer will be begun. The first phase of GRANITE, the new 37-element 11-m camera, will be concluded with first light scheduled for September, 1991. The two cameras will operate in support of the Gamma Ray Observatory mission in the winter of 1991/2

  17. Gamma ray spectroscopy monitoring method and apparatus

    Science.gov (United States)

    Stagg, William R; Policke, Timothy A

    2017-05-16

    The present invention relates generally to the field of gamma ray spectroscopy monitoring and a system for accomplishing same to monitor one or more aspects of various isotope production processes. In one embodiment, the present invention relates to a monitoring system, and method of utilizing same, for monitoring one or more aspects of an isotope production process where the monitoring system comprises: (A) at least one sample cell; (B) at least one measuring port; (C) at least one adjustable collimator device; (D) at least one shutter; and (E) at least one high resolution gamma ray spectrometer.

  18. Gamma ray energy tracking in GRETINA

    Science.gov (United States)

    Lee, I. Y.

    2011-10-01

    The next generation of stable and exotic beam accelerators will provide physics opportunities to study nuclei farther away from the line of stability. However, these experiments will be more demanding on instrumentation performance. These come from the lower production rate for more exotic beams, worse beam impurities, and large beam velocity from the fragmentation and inverse reactions. Gamma-ray spectroscopy will be one of the most effective tools to study exotic nuclei. However, to fully exploit the physics reach provided by these new facilities, better gamma-ray detector will be needed. In the last 10 years, a new concept, gamma-ray energy tracking array, was developed. Tracking arrays will increase the detection sensitivity by factors of several hundred compared to current arrays used in nuclear physics research. Particularly, the capability of reconstructing the position of the interaction with millimeters resolution is needed to correct the Doppler broadening of gamma rays emitted from high velocity nuclei. GRETINA is a gamma-ray tracking array which uses 28 Ge crystals, each with 36 segments, to cover ¼ of the 4 π of the 4 π solid angle. The gamma ray tracking technique requires detailed pulse shape information from each of the segments. These pulses are digitized using 14-bit 100 MHz flash ADCs, and digital signal analysis algorithms implemented in the on-board FPGAs provides energy, time and selection of pulse traces. A digital trigger system, provided flexible trigger functions including a fast trigger output, and also allows complicated trigger decisions to be made up to 20 microseconds. Further analyzed, carried out in a computer cluster, determine the energy, time, and three-dimensional positions of all gamma-ray interactions in the array. This information is then utilized, together with the characteristics of Compton scattering and pair-production processes, to track the scattering sequences of the gamma rays. GRETINA construction is completed in

  19. VHE Gamma-ray Supernova Remnants

    Energy Technology Data Exchange (ETDEWEB)

    Funk, Stefan; /KIPAC, Menlo Park

    2007-01-22

    Increasing observational evidence gathered especially in X-rays and {gamma}-rays during the course of the last few years support the notion that Supernova remnants (SNRs) are Galactic particle accelerators up to energies close to the ''knee'' in the energy spectrum of Cosmic rays. This review summarizes the current status of {gamma}-ray observations of SNRs. Shell-type as well as plerionic type SNRs are addressed and prospect for observations of these two source classes with the upcoming GLAST satellite in the energy regime above 100 MeV are given.

  20. Gamma-ray lasers or grasers

    International Nuclear Information System (INIS)

    Wilson, G.V.H.; George, E.P.; Hora, H.

    1976-01-01

    A method is described for controlling the emission and direction of gamma rays from excited nuclei contained in a sample source of suitable geometry having its major axis parallel to the proposed direction of gamma ray emission, comprising subjecting said sample source to thermal or dynamic polarization at temperatures approaching absolute zero in the presence of a strong magnetic field, and when a pulse of coherent gamma radiation is required along said major axis rotating the active nuclei through 90 0 by employing a short pulse of radio frequency oscillations in an auxilliary coil around the sample source

  1. Nuclear Forensics using Gamma-ray Spectroscopy

    Directory of Open Access Journals (Sweden)

    Norman E. B.

    2016-01-01

    Full Text Available Much of George Dracoulis’s research career was devoted to utilising gamma-ray spectroscopy in fundamental studies in nuclear physics. This same technology is useful in a wide range of applications in the area of nuclear forensics. Over the last several years, our research group has made use of both high- and low-resolution gamma-ray spectrometers to: identify the first sample of plutonium large enough to be weighed; determine the yield of the Trinity nuclear explosion; measure fission fragment yields as a function of target nucleus and neutron energy; and observe fallout in the U. S. from the Fukushima nuclear reactor accident.

  2. Gamma-ray surveys in uranium exploration

    International Nuclear Information System (INIS)

    1979-01-01

    This report is intended to provide newcomers to uranium exploration with an up-to-date statement of the principal factors to be considered in planning and using gamma-ray surveys. Since the report incorporates the results of recent research, and since its preparation was influenced by the cumulative experience of its contributors, it should also be useful to those who already have some knowledge of radioactivity surveys and methods. The intention is that the information and explanations given in the report will make it possible for gamma-ray surveys to be used in the most efficient way for a given exploration task

  3. ICIT contribution to JET gamma-ray diagnostics enhancement

    International Nuclear Information System (INIS)

    Soare, S.; Curuia, M.; Zoita, V.

    2010-01-01

    Full text: Gamma-ray emission of tokamak plasmas is the result of the interaction of fast ions (fusion reaction products, including alpha particles, NBI ions, ICRH-accelerated ions) with main plasma impurities (e.g., carbon, beryllium). Gamma-ray diagnostics involve both gamma-ray imaging (cameras) and gamma-ray spectrometry (spectrometers). For the JET tokamak, gamma-ray diagnostics have been used to provide information on the characteristics of the fast ion population in plasmas. Two gamma-ray diagnostics enhancements project have been launched by JET and the MEdC/EURATOM Association has agreed to lead both of them with ICIT as projects leader. (authors)

  4. Found: A Galaxy's Missing Gamma Rays

    Science.gov (United States)

    Kohler, Susanna

    2016-04-01

    Recent reanalysis of data from the Fermi Gamma-ray Space Telescope has resulted in the first detection of high-energy gamma rays emitted from a nearby galaxy. This discovery reveals more about how supernovae interact with their environments.Colliding Supernova RemnantAfter a stellar explosion, the supernovas ejecta expand, eventually encountering the ambient interstellar medium. According to models, this generates a strong shock, and a fraction of the kinetic energy of the ejecta is transferred into cosmic rays high-energy radiation composed primarily of protons and atomic nuclei. Much is still unknown about this process, however. One open question is: what fraction of the supernovas explosion power goes into accelerating these cosmic rays?In theory, one way to answer this is by looking for gamma rays. In a starburst galaxy, the collision of the supernova-accelerated cosmic rays with the dense interstellar medium is predicted to produce high-energy gamma rays. That radiation should then escape the galaxy and be visible to us.Pass 8 to the RescueObservational tests of this model, however, have beenstumped by Arp 220. This nearby ultraluminous infrared galaxy is the product of a galaxy merger ~700 million years ago that fueled a frenzy of starbirth. Due to its dusty interior and extreme levels of star formation, Arp 220 has long been predicted to emit the gamma rays produced by supernova-accelerated cosmic rays. But though weve looked, gamma-ray emission has never been detected from this galaxy until now.In a recent study, a team of scientists led by Fang-Kun Peng (Nanjing University) reprocessed 7.5 years of Fermi observations using the new Pass 8 analysis software. The resulting increase in resolution revealed the first detection of GeV emission from Arp 220!Acceleration EfficiencyGamma-ray luminosity vs. total infrared luminosity for LAT-detected star-forming galaxies and Seyferts. Arp 220s luminosities are consistent with the scaling relation. [Peng et al. 2016

  5. The MAGIC telescope for gamma-ray astronomy above 30 GeV

    Science.gov (United States)

    Moralejo, A.; MAGIC Collaboration

    The MAGIC telescope is presently at its commissioning phase at the Roque de los Muchachos Observatory (ORM) on the island of La Palma. MAGIC will become the largest ground-based gamma ray telescope in the world, being sensitive to photons of energies as low as 30 GeV. The spectral range between 10 and 300 GeV remains to date mostly unexplored. Observations in this region of the spectrum are expected to provide key data for the understanding of a wide variety of astrophysical phenomena belonging to the so-called ``non thermal Universe'', like the processes in the nuclei of active galaxies, the radiation mechanisms of pulsars and supernova remnants, and the enigmatic gamma-ray bursts. And overview of the telescope and its Physics goals is presented.

  6. European team gauges a gamma-ray star

    Science.gov (United States)

    1996-03-01

    Italian astrophysicists have pushed the Hubble Space Telescope to the limit of its powers in finding the distance of Geminga, a pointlike object 500 light-years from the Earth. It is the prototype of a novel kind of star, a radio-silent neutron star, which may be much more common in the Universe than previously supposed. Geminga is so weak in visible light that Hubble had to stare at the spot for more than an hour to register it adequately. The object is nevertheless one of the brightest sources of gamma-rays in the sky, and its output of this very energetic form of radiation can now be accurately ganged. Neutron stars, first discovered as radio pulsars in 1967, are fantastic creations of exploding stars, just one step short of a black hole. They are heavier than the Sun yet only about twenty kilometres wide. Made of compressed nuclear matter, they have gravity and magnetic fields many billions of times stronger than on the Earth. With the first direct measurement of the distance of a radio-silent neutron star, astrophysicists can assess Geminga's power and speed of motion. The astronomical task was like judging the width of a one- franc piece in Paris, seen from the distance of Sicily. Geminga's low brightness greatly aggravated the difficulties. Patrizia Caraveo and her colleagues at the Istituto di Fisica Cosmica in Milan arranged for Hubble's wide-field camera (WFPC2) to make its prolonged observations of Geminga three times. Their findings will be published in Astrophysical Journal Letters on 20 April 1996. Caraveo's co-authors are Giovanni Bignami and Roberto Mignani of Milan, and Laurence Taff of Johns Hopkins University, Maryland. The Italians took advantage of the European Space Agency's collaboration with NASA in the Hubble mission, which gives European astronomers privileged access to the Space Telescope. Shifts of millionths of a degree The three sightings of Geminga, made at intervals of six months, revealed small shifts in the position of the faint

  7. Gamma ray observations of the solar system

    International Nuclear Information System (INIS)

    1981-01-01

    Two general categories are discussed concerning the evolution of the solar system: the dualistic view, the planetesimal approach and the monistic view, the nebular hypothesis. The major points of each view are given and the models that are developed from these views are described. Possible applications of gamma ray astronomical observations to the question of the dynamic evolution of the solar system are discussed

  8. Gamma ray observations of the solar system

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    Two general categories are discussed concerning the evolution of the solar system: the dualistic view, the planetesimal approach and the monistic view, the nebular hypothesis. The major points of each view are given and the models that are developed from these views are described. Possible applications of gamma ray astronomical observations to the question of the dynamic evolution of the solar system are discussed.

  9. Gamma ray observations of the solar system

    Science.gov (United States)

    1981-01-01

    Two general categories are discussed concerning the evolution of the solar system: the dualistic view, the planetesimal approach; and the monistic view, the nebular hypothesis. The major points of each view are given and the models that are developed from these views are described. Possible applications of gamma ray astronomical observations to the question of the dynamic evolution of the solar system are discussed.

  10. Black Hole Accretion in Gamma Ray Bursts

    Directory of Open Access Journals (Sweden)

    Agnieszka Janiuk

    2017-02-01

    Full Text Available We study the structure and evolution of the hyperaccreting disks and outflows in the gamma ray bursts central engines. The torus around a stellar mass black hole is composed of free nucleons, Helium, electron-positron pairs, and is cooled by neutrino emission. Accretion of matter powers the relativistic jets, responsible for the gamma ray prompt emission. The significant number density of neutrons in the disk and outflowing material will cause subsequent formation of heavier nuclei. We study the process of nucleosynthesis and its possible observational consequences. We also apply our scenario to the recent observation of the gravitational wave signal, detected on 14 September 2015 by the two Advanced LIGO detectors, and related to an inspiral and merger of a binary black hole system. A gamma ray burst that could possibly be related with the GW150914 event was observed by the Fermi satellite. It had a duration of about 1 s and appeared about 0.4 s after the gravitational-wave signal. We propose that a collapsing massive star and a black hole in a close binary could lead to the event. The gamma ray burst was powered by a weak neutrino flux produced in the star remnant’s matter. Low spin and kick velocity of the merged black hole are reproduced in our simulations. Coincident gravitational-wave emission originates from the merger of the collapsed core and the companion black hole.

  11. Swift: A gamma ray burst MIDEX

    International Nuclear Information System (INIS)

    Barthelmy, Scott

    2001-01-01

    Swift is a first of its kind multiwavelength transient observatory for gamma-ray burst astronomy. It has the optimum capabilities for the next breakthroughs in determining the origin of gamma-ray bursts and their afterglows as well as using bursts to probe the early Universe. Swift will also perform the first sensitive hard X-ray survey of the sky. The mission is being developed by an international collaboration and consists of three instruments, the Burst Alert Telescope (BAT), the X-ray Telescope (XRT), and the Ultraviolet and Optical Telescope (UVOT). The BAT, a wide-field gamma-ray detector, will detect ∼1 gamma-ray burst per day with a sensitivity 5 times that of BATSE. The sensitive narrow-field XRT and UVOT will be autonomously slewed to the burst location in 20 to 70 seconds to determine 0.3-5.0 arcsec positions and perform optical, UV, and X-ray spectrophotometry. On-board measurements of redshift will also be done for hundreds of bursts. Swift will incorporate superb, low-cost instruments using existing flight-spare hardware and designs. Strong education/public outreach and follow-up programs will help to engage the public and astronomical community. Swift has been selected by NASA for development and launch in late 2003

  12. Gamma-ray bursts at high redshift

    NARCIS (Netherlands)

    Wijers, R.A.M.J.

    1999-01-01

    Gamma-ray bursts are much brighter than supernovae, and could therefore possibly probe the Universe to high redshift. The presently established GRB redshifts range from 0.83 to 5, and quite possibly even beyond that. Since most proposed mechanisms for GRB link them closely to deaths of massive

  13. Coakial gamma ray detector and method therefor

    International Nuclear Information System (INIS)

    Harchol, M.

    1977-01-01

    A coaxial gamma ray detector is fabricated using intrinsic Ge semiconductor material in a geometry whereby full depletion of electrical carriers is prevented within a small region proximate the point of electrical contact thereby allowing greater biasing potentials across the detector and, consequently, providing reduced electronic noise and increased energy resolution

  14. Effects of Shielding on Gamma Rays

    Energy Technology Data Exchange (ETDEWEB)

    Karpius, Peter Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-13

    The interaction of gamma rays with matter results in an effect we call attenuation (i.e. ‘shielding’). Attenuation can dramatically alter the appearance of a spectrum. Attenuating materials may actually create features in a spectrum via x-ray fluorescence

  15. Developments in mercuric iodide gamma ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Patt, B E; Beyerle, A G; Dolin, R C; Ortale, C [EG and G Energy Measurements, Inc., Goleta, CA (USA). Santa Barbara Operations

    1989-11-01

    A mercuric iodide (HgI{sub 2}) gamma ray imaging array and camera system previously described have been characterized for spatial and energy resolution. Based on these data a new camera is being developed to more fully exploit the potential of the array. Characterization results and design criteria for the new camera will be presented. (orig.).

  16. Current segmented gamma-ray scanner technology

    International Nuclear Information System (INIS)

    Bjork, C.W.

    1987-01-01

    A new generation of segmented gamma-ray scanners has been developed at Los Alamos for scrap and waste measurements at the Savannah River Plant and the Los Alamos Plutonium Facility. The new designs are highly automated and exhibit special features such as good segmentation and thorough shielding to improve performance

  17. Gamma-Ray Telescope and Uncertainty Principle

    Science.gov (United States)

    Shivalingaswamy, T.; Kagali, B. A.

    2012-01-01

    Heisenberg's Uncertainty Principle is one of the important basic principles of quantum mechanics. In most of the books on quantum mechanics, this uncertainty principle is generally illustrated with the help of a gamma ray microscope, wherein neither the image formation criterion nor the lens properties are taken into account. Thus a better…

  18. Gamma-ray astronomy: A historical perspective

    International Nuclear Information System (INIS)

    Lingenfelter, R.E.

    1988-01-01

    This is a brief review of the course theoretical gamma-ray astronomy has taken over the past thirty years. An examination is given of what the theoretical expectations were; to what extent they were realized; how well they anticipated new directions of research; and alternatively, how often were new directions unexpected

  19. Discovery of powerful gamma-ray flares from the Crab Nebula.

    Science.gov (United States)

    Tavani, M; Bulgarelli, A; Vittorini, V; Pellizzoni, A; Striani, E; Caraveo, P; Weisskopf, M C; Tennant, A; Pucella, G; Trois, A; Costa, E; Evangelista, Y; Pittori, C; Verrecchia, F; Del Monte, E; Campana, R; Pilia, M; De Luca, A; Donnarumma, I; Horns, D; Ferrigno, C; Heinke, C O; Trifoglio, M; Gianotti, F; Vercellone, S; Argan, A; Barbiellini, G; Cattaneo, P W; Chen, A W; Contessi, T; D'Ammando, F; DePris, G; Di Cocco, G; Di Persio, G; Feroci, M; Ferrari, A; Galli, M; Giuliani, A; Giusti, M; Labanti, C; Lapshov, I; Lazzarotto, F; Lipari, P; Longo, F; Fuschino, F; Marisaldi, M; Mereghetti, S; Morelli, E; Moretti, E; Morselli, A; Pacciani, L; Perotti, F; Piano, G; Picozza, P; Prest, M; Rapisarda, M; Rappoldi, A; Rubini, A; Sabatini, S; Soffitta, P; Vallazza, E; Zambra, A; Zanello, D; Lucarelli, F; Santolamazza, P; Giommi, P; Salotti, L; Bignami, G F

    2011-02-11

    The well-known Crab Nebula is at the center of the SN1054 supernova remnant. It consists of a rotationally powered pulsar interacting with a surrounding nebula through a relativistic particle wind. The emissions originating from the pulsar and nebula have been considered to be essentially stable. Here, we report the detection of strong gamma-ray (100 mega-electron volts to 10 giga-electron volts) flares observed by the AGILE satellite in September 2010 and October 2007. In both cases, the total gamma-ray flux increased by a factor of three compared with the non-flaring flux. The flare luminosity and short time scale favor an origin near the pulsar, and we discuss Chandra Observatory x-ray and Hubble Space Telescope optical follow-up observations of the nebula. Our observations challenge standard models of nebular emission and require power-law acceleration by shock-driven plasma wave turbulence within an approximately 1-day time scale.

  20. Gamma ray bursts of black hole universe

    Science.gov (United States)

    Zhang, T. X.

    2015-07-01

    Slightly modifying the standard big bang theory, Zhang recently developed a new cosmological model called black hole universe, which has only a single postulate but is consistent with Mach's principle, governed by Einstein's general theory of relativity, and able to explain existing observations of the universe. In the previous studies, we have explained the origin, structure, evolution, expansion, cosmic microwave background radiation, quasar, and acceleration of black hole universe, which grew from a star-like black hole with several solar masses through a supermassive black hole with billions of solar masses to the present state with hundred billion-trillions of solar masses by accreting ambient matter and merging with other black holes. This study investigates gamma ray bursts of black hole universe and provides an alternative explanation for the energy and spectrum measurements of gamma ray bursts according to the black hole universe model. The results indicate that gamma ray bursts can be understood as emissions of dynamic star-like black holes. A black hole, when it accretes its star or merges with another black hole, becomes dynamic. A dynamic black hole has a broken event horizon and thus cannot hold the inside hot (or high-frequency) blackbody radiation, which flows or leaks out and produces a GRB. A star when it collapses into its core black hole produces a long GRB and releases the gravitational potential energy of the star as gamma rays. A black hole that merges with another black hole produces a short GRB and releases a part of their blackbody radiation as gamma rays. The amount of energy obtained from the emissions of dynamic star-like black holes are consistent with the measurements of energy from GRBs. The GRB energy spectra derived from this new emission mechanism are also consistent with the measurements.

  1. Matrix of response functions for xenon gamma-ray detector

    International Nuclear Information System (INIS)

    Shustov, A.E.; Vlasik, K.F.; Grachev, V.M.; Dmitrenko, V.V.; Novikov, A.S.; P'ya, S.N.; Ulin, S.E.; Uteshev, Z.M.; Chernysheva, I.V.

    2014-01-01

    An approach of creation of response matrix using simulation GEANT4 gamma-ray Monte-Carlo method has been described for gamma-ray spectrometer based on high pressure xenon impulse ionization chamber with a shielding grid [ru

  2. Cosmic gamma-ray background radiation. Current understandings and problems

    International Nuclear Information System (INIS)

    Inoue, Yoshiyuki

    2015-01-01

    The cosmic gamma-ray background radiation is one of the most fundamental observables in the gamma-ray band. Although the origin of the cosmic gamma-ray background radiation has been a mystery for a long time, the Fermi gamma-ray space telescope has recently measured it at 0.1-820 GeV and revealed that the cosmic GeV gamma-ray background is composed of blazars, radio galaxies, and star-forming galaxies. However, Fermi still leaves the following questions. Those are dark matter contribution, origins of the cosmic MeV gamma-ray background, and the connection to the IceCube TeV-PeV neutrino events. In this proceeding, I will review the current understandings of the cosmic gamma-ray background and discuss future prospects of cosmic gamma-ray background radiation studies. (author)

  3. Applications of Monte Carlo simulations of gamma-ray spectra

    International Nuclear Information System (INIS)

    Clark, D.D.

    1995-01-01

    A short, convenient computer program based on the Monte Carlo method that was developed to generate simulated gamma-ray spectra has been found to have useful applications in research and teaching. In research, we use it to predict spectra in neutron activation analysis (NAA), particularly in prompt gamma-ray NAA (PGNAA). In teaching, it is used to illustrate the dependence of detector response functions on the nature of gamma-ray interactions, the incident gamma-ray energy, and detector geometry

  4. Interstellar medium structure and content and gamma ray astronomy

    International Nuclear Information System (INIS)

    Lebrun, F.

    1982-05-01

    A general description of gamma-ray astronomy is presented with special emphasis on the study of diffuse gamma-ray emission. This is followed by a collection of reflections and observations on the structure and the gas and dust content of the local interstellar medium. Results of gamma-ray observations on the local interstellar medium are given. The last part is devoted to the whole of the galactic gamma-ray emission and its interpretation [fr

  5. Using HAWC to discover invisible pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Linden, Tim; Auchettl, Katie; Bramante, Joseph; Cholis, Ilias; Fang, Ke; Hooper, Dan; Karwal, Tanvi; Li, Shirley Weishi

    2017-11-01

    Observations by HAWC and Milagro have detected bright and spatially extended TeV gamma-ray sources surrounding the Geminga and Monogem pulsars. We argue that these observations, along with a substantial population of other extended TeV sources coincident with pulsar wind nebulae, constitute a new morphological class of spatially extended TeV halos. We show that HAWCs wide field-of-view unlocks an expansive parameter space of TeV halos not observable by atmospheric Cherenkov telescopes. Under the assumption that Geminga and Monogem are typical middle-aged pulsars, we show that ten-year HAWC observations should eventually observe 37$^{+17}_{-13}$ middle-aged TeV halos that correspond to pulsars whose radio emission is not beamed towards Earth. Depending on the extrapolation of the TeV halo efficiency to young pulsars, HAWC could detect more than 100 TeV halos from mis-aligned pulsars. These pulsars have historically been difficult to detect with existing multiwavelength observations. TeV halos will constitute a significant fraction of all HAWC sources, allowing follow-up observations to efficiently find pulsar wind nebulae and thermal pulsar emission. The observation and subsequent multi-wavelength follow-up of TeV halos will have significant implications for our understanding of pulsar beam geometries, the evolution of PWN, the diffusion of cosmic-rays near energetic pulsars, and the contribution of pulsars to the cosmic-ray positron excess.

  6. DISCOVERY OF TeV GAMMA-RAY EMISSION FROM CTA 1 BY VERITAS

    Energy Technology Data Exchange (ETDEWEB)

    Aliu, E.; Errando, M. [Department of Physics and Astronomy, Barnard College, Columbia University, NY 10027 (United States); Archambault, S. [Physics Department, McGill University, Montreal, QC H3A 2T8 (Canada); Arlen, T. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Aune, T.; Bouvier, A. [Santa Cruz Institute for Particle Physics and Department of Physics, University of California, Santa Cruz, CA 95064 (United States); Beilicke, M.; Buckley, J. H.; Bugaev, V.; Dickherber, R. [Department of Physics, Washington University, St. Louis, MO 63130 (United States); Benbow, W. [Fred Lawrence Whipple Observatory, Harvard-Smithsonian Center for Astrophysics, Amado, AZ 85645 (United States); Cesarini, A.; Connolly, M. P. [School of Physics, National University of Ireland Galway, University Road, Galway (Ireland); Ciupik, L. [Astronomy Department, Adler Planetarium and Astronomy Museum, Chicago, IL 60605 (United States); Collins-Hughes, E. [School of Physics, University College Dublin, Belfield, Dublin 4 (Ireland); Cui, W. [Department of Physics, Purdue University, West Lafayette, IN 47907 (United States); Duke, C. [Department of Physics, Grinnell College, Grinnell, IA 50112-1690 (United States); Dumm, J. [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States); Dwarkadas, V. V. [Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637 (United States); Falcone, A., E-mail: muk@astro.columbia.edu, E-mail: smcarthur@ulysses.uchicago.edu [Department of Astronomy and Astrophysics, 525 Davey Lab, Pennsylvania State University, University Park, PA 16802 (United States); and others

    2013-02-10

    We report the discovery of TeV gamma-ray emission coincident with the shell-type radio supernova remnant (SNR) CTA 1 using the VERITAS gamma-ray observatory. The source, VER J0006+729, was detected as a 6.5 standard deviation excess over background and shows an extended morphology, approximated by a two-dimensional Gaussian of semimajor (semiminor) axis 0. Degree-Sign 30 (0. Degree-Sign 24) and a centroid 5' from the Fermi gamma-ray pulsar PSR J0007+7303 and its X-ray pulsar wind nebula (PWN). The photon spectrum is well described by a power-law dN/dE = N {sub 0}(E/3 TeV){sup -{Gamma}}, with a differential spectral index of {Gamma} = 2.2 {+-} 0.2{sub stat} {+-} 0.3{sub sys}, and normalization N {sub 0} = (9.1 {+-} 1.3{sub stat} {+-} 1.7{sub sys}) Multiplication-Sign 10{sup -14} cm{sup -2} s{sup -1} TeV{sup -1}. The integral flux, F {sub {gamma}} = 4.0 Multiplication-Sign 10{sup -12} erg cm{sup -2} s{sup -1} above 1 TeV, corresponds to 0.2% of the pulsar spin-down power at 1.4 kpc. The energetics, colocation with the SNR, and the relatively small extent of the TeV emission strongly argue for the PWN origin of the TeV photons. We consider the origin of the TeV emission in CTA 1.

  7. Gamma-ray burst observations: the present situation

    International Nuclear Information System (INIS)

    Vedrenne, G.

    1984-01-01

    Recent results in gamma ray burst investigations concerning the spectral variability on a short time scale, precise locations, and the discovery of optical flashes in gamma ray burst positions on archival plates are presented. The implications of optical and X-ray observations of gamma ray burst error boxes are also discussed. 72 references

  8. Egret observations of the extragalactic gamma-ray emission

    DEFF Research Database (Denmark)

    Sreekumar, P.; Bertsch, D.L.; Dingus, B.L.

    1998-01-01

    The all-sky survey in high-energy gamma rays (E > 30 MeV) carried out by EGRET aboard the Compton Gamma Ray Observatory provides a unique opportunity to examine in detail the diffuse gamma-ray emission. The observed diffuse emission has a Galactic component arising from cosmic-ray interactions wi...

  9. Natural background gamma-ray spectrum. List of gamma-rays ordered in energy from natural radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Ichimiya, Tsutomu [Japan Radioisotope Association, Tokyo (Japan); Narita, Tsutomu; Kitao, Kensuke

    1998-03-01

    A quick index to {gamma}-rays and X-rays from natural radionuclides is presented. In the list, {gamma}-rays are arranged in order of increasing energy. The list also contains {gamma}-rays from radioactive nuclides produced in a germanium detector and its surrounding materials by interaction with cosmic neutrons, as well as direct {gamma}-rays from interaction with the neutrons. Artificial radioactive nuclides emitting {gamma}-rays with same or near energy value as that of the natural {gamma}-rays and X-rays are also listed. In appendix, {gamma}-ray spectra from a rock, uranium ore, thorium, monazite and uraninite and also background spectra obtained with germanium detectors placed in iron or lead shield have been given. The list is designed for use in {gamma}-ray spectroscopy under the conditions of highly natural background, such as in-situ environmental radiation monitoring or low-level activity measurements, with a germanium detector. (author)

  10. Relativistic effects in gamma-ray bursts

    International Nuclear Information System (INIS)

    Eriksen, Erik; Groen, Oeyvind

    1999-01-01

    According to recent models of the sources of gamma-ray bursts the extremely energetic emission is caused by shells expanding with ultrarelativistic velocity. With the recent identification of optical sources at the positions of some gamma-ray bursts these ''fireball'' models have acquired an actuality that invites to use them as a motivating application when teaching special relativity. We demonstrate several relativistic effects associated with these models which are very pronounced due to the great velocity of the shell. For example a burst lasting for a month in the rest frame of an element of the shell lasts for a few seconds only, in the rest frame of our detector. It is shown how the observed properties of a burst are modified by aberration and the Doppler effect. The apparent luminosity as a function of time is calculated. Modifications due to the motion of the star away from the observer are calculated. (Author)

  11. Fissile interrogation using gamma rays from oxygen

    Science.gov (United States)

    Smith, Donald; Micklich, Bradley J.; Fessler, Andreas

    2004-04-20

    The subject apparatus provides a means to identify the presence of fissionable material or other nuclear material contained within an item to be tested. The system employs a portable accelerator to accelerate and direct protons to a fluorine-compound target. The interaction of the protons with the fluorine-compound target produces gamma rays which are directed at the item to be tested. If the item to be tested contains either a fissionable material or other nuclear material the interaction of the gamma rays with the material contained within the test item with result in the production of neutrons. A system of neutron detectors is positioned to intercept any neutrons generated by the test item. The results from the neutron detectors are analyzed to determine the presence of a fissionable material or other nuclear material.

  12. Environmental Effects of Gamma Ray Bursts

    International Nuclear Information System (INIS)

    Martin, Osmel; Zarauza, Dario; Cardenas, Rolando

    2007-01-01

    Gamma rays bursts, coming from very massive stars, are the most powerful explosions in our Universe. Some authors have linked them to some of the climatic changes and consequent biological mass extinctions of the Phanerozoic eon. However, the consequences of their direct impact on primitive Earth, is today a hot topic of debate. On the other hand, it is usually assumed that they were more common in earlier stages of our galaxy. So it is important to evaluate its potential effects on terrestrial paleoenvironments. We outline some simple models to estimate their influence mainly on the primordial atmospheric chemistry of Earth and on the climate in general. To do that, we consider different scenarios where the atmospheric composition diverges substantially from the atmosphere today, and compute the evolution of principal chemical species under the intense radiational stress of a gamma ray burst. Furthermore, the possible impact on the isotopic composition, geochemistry and the biosphere are mentioned in general way

  13. TeV gamma-ray astronomy

    International Nuclear Information System (INIS)

    Cui Wei

    2009-01-01

    The field of ground-based gamma-ray astronomy has enjoyed rapid growth in recent years. As an increasing number of sources are detected at TeV energies, the field has matured and become a viable branch of modern astronomy. Lying at the uppermost end of the electromagnetic rainbow, TeV photons are always preciously few in number but carry essential information about the particle acceleration and radiative processes involved in extreme astronomical settings. Together with observations at longer wavelengths, TeV gamma-ray observations have drastically improved our view of the universe. In this review, we briefly describe recent progress in the field. We will conclude by providing a personal perspective on the future of the field, in particular, on the significant roles that China could play in advancing this young but exciting field. (invited reviews)

  14. Real time gamma-ray signature identifier

    Science.gov (United States)

    Rowland, Mark [Alamo, CA; Gosnell, Tom B [Moraga, CA; Ham, Cheryl [Livermore, CA; Perkins, Dwight [Livermore, CA; Wong, James [Dublin, CA

    2012-05-15

    A real time gamma-ray signature/source identification method and system using principal components analysis (PCA) for transforming and substantially reducing one or more comprehensive spectral libraries of nuclear materials types and configurations into a corresponding concise representation/signature(s) representing and indexing each individual predetermined spectrum in principal component (PC) space, wherein an unknown gamma-ray signature may be compared against the representative signature to find a match or at least characterize the unknown signature from among all the entries in the library with a single regression or simple projection into the PC space, so as to substantially reduce processing time and computing resources and enable real-time characterization and/or identification.

  15. Attenuation of the gamma rays in tissues

    International Nuclear Information System (INIS)

    Arcos P, A.; Rodriguez N, S.; Pinedo S, A.; Amador V, P.; Chacon R, A.; Vega C, H.R.

    2005-01-01

    The mass and lineal attenuation coefficient and of hepatic tissue, muscular, osseous and of brain before gamma rays of 10 -3 to 10 5 MeV were calculated. For the case of the osseous tissue the calculation was made for the cartilage, the cortical tissue and the bone marrow. During the calculations the elementary composition of the tissues of human origin was used. The calculations include by separate the Photoelectric effect, the Compton scattering and the Pair production, as well as the total. For to establish a comparison with the attenuation capacities, the coefficients of the water, the aluminum and the lead also were calculated. The study was complemented measuring the attenuation coefficient of hepatic tissue of bovine before gamma rays of 0.662 MeV of a source of 137 Cs. The measurement was made through of an experiment of photons transmission through samples frozen of hepatic tissue and with a Geiger-Mueller detector. (Author)

  16. Advances in gamma-ray burst astronomy

    International Nuclear Information System (INIS)

    Cline, T.L.; Desai, U.D.

    1976-01-01

    Work at Goddard is presently being carried out in three major areas of gamma-ray burst research: (1) A pair of simultaneously operating 0.8-m 2 burst detectors were successfully balloon-borne at locations 800 miles apart on 9 May, 1975, each to atmospheric depths of 3 to 4 g cm -2 , for a 20-h period of coincident data coverage. This experiment investigates the size spectrum of bursts in the 10 -7 to 10 -6 erg cm -2 size region where dozens of events per day are expected on a -1.5 index integral power-law extrapolation. Considerable separation in latitude was used to avoid possible atmospheric and auroral secondary effects. Its results are not yet available. (2) A deep-space burst detector, the first spacecraft instrument built specifically for gamma-ray burst studies, was recently successfully integrated into the Helios-B space probe. Its use at distances of up to 2 AU will make possible the first high-resolution directional study of gamma-ray burst source locations. Similar modifications to several other space vehicles are also being prepared. (3) The gamma-ray instrument on the IMP-7 satellite is presently the most sensitive burst detector still operating in orbit. Its results have shown that all measured event-average energy spectra are consistent with being alike. Using this characteristic spectrum to select IMP-7 candidate events of smaller size than those detected using other spacecraft in coincidence, a size spectrum is constructed which fits the -1.5 index power law down to 2.5 x 10 -5 erg cm -2 per event, at an occurrence rate of about once per month. (Auth.)

  17. Nature of gamma-ray burst sources

    International Nuclear Information System (INIS)

    Ventura, J.

    1983-01-01

    Observational evidence suggests that gamma ray bursts have a local galactic origin involving neutron stars. In this light we make a critical review of physics of the thermonuclear runaway model placing emphasis on self-consistency. We further show that some of the proposed models can be observationally excluded in the light of existing data from the Einstein Observatory. The possibility of gamma bursts arising in low mass binaries is finally discussed in the light of evolutionary scenarios leading to low luminosity systems

  18. Evaluation of gamma-ray intensities

    International Nuclear Information System (INIS)

    Yoshizawa, Yasukazu; Inoue, Hikaru; Hoshi, Masaharu; Shizuma, Kiyoshi; Iwata, Yosei.

    1978-03-01

    Results of literature survey and evaluation of relative intensities and intensities per decay of gamma rays are presented. Evaluations were made for 22 Na, 24 Na, 46 Sc, 48 Sc, 48 V, 54 Mn, 57 Co, 60 Co, 85 Sr, 88 Y, 95 Nb, 95 Zr, sup(108m)Ag, 134 Cs, 137 Cs, 144 Ce, 144 Pr, 203 Hg, and 207 Bi. For eight of the nuclides, the half-lives were also evaluated. (auth.)

  19. Gamma-ray standards for detector calibration

    International Nuclear Information System (INIS)

    Christmas, P.; Nichols, A.L.; Lorenz, A.

    1987-09-01

    The first official meeting of the IAEA Coordinated Research Programme on the Measurement and Evaluation of X- and Gamma-ray Standards for Detector Calibration was held in Rome from 11 to 13 June 1987. Work undertaken by the CRP members was reviewed in detail: specific problems in the evaluations were identified and actions placed on the participants to resolve these issues. (author). 3 tabs

  20. Gamma-ray bursts - a critical review

    International Nuclear Information System (INIS)

    Tudose, Valeriu; Biermann, Peter

    2003-01-01

    We present a short general introduction into the field of gamma-ray bursts (GRBs) research, summarizing the past and the present status. We give an general view of the GRBs observations to date, both in the prompt emission phase as well as in the afterglow phase, and a brief primer into the theory, mainly in the frame-work of the fireball model. (authors)

  1. The gamma-ray sky as seen with HAWC

    Science.gov (United States)

    Hüntemeyer, Petra

    2015-12-01

    The High-Altitude Water Cherenkov (HAWC) TeV Gamma-Ray Observatory located at a site about two hours drive east of Puebla, Mexico on the Sierra Negra plateau (4100 m a.s.l.) was inaugurated in March 2015. The array of 300 water Cherenkov detectors can observe large portions of the sky simultaneously and, with an energy range of 100 GeV to 100 TeV, is currently one of the most sensitive instruments capable of probing particle acceleration near PeV energies. HAWC has already started science operation in the Summer of 2013 and preliminary sky maps have been produced from 260 days of data taken with a partial array. Multiple > 5 σ (pre-trials) hotspots are visible along the galactic plane and some appear to coincide with known TeV sources from the H.E.S.S. catalog, SNRs and molecular cloud associations, and pulsars wind nebulae (PWNe). The sky maps based on partial HAWC array data are discussed as well as the scientific potential of the completed instrument especially in the context of multi-wavelengths studies.

  2. The gamma-ray sky as seen with HAWC

    Directory of Open Access Journals (Sweden)

    Hüntemeyer Petra

    2015-01-01

    Full Text Available The High-Altitude Water Cherenkov (HAWC TeV Gamma-Ray Observatory located at a site about two hours drive east of Puebla, Mexico on the Sierra Negra plateau (4100 m a.s.l. was inaugurated in March 2015. The array of 300 water Cherenkov detectors can observe large portions of the sky simultaneously and, with an energy range of 100 GeV to 100 TeV, is currently one of the most sensitive instruments capable of probing particle acceleration near PeV energies. HAWC has already started science operation in the Summer of 2013 and preliminary sky maps have been produced from 260 days of data taken with a partial array. Multiple > 5 σ (pre-trials hotspots are visible along the galactic plane and some appear to coincide with known TeV sources from the H.E.S.S. catalog, SNRs and molecular cloud associations, and pulsars wind nebulae (PWNe. The sky maps based on partial HAWC array data are discussed as well as the scientific potential of the completed instrument especially in the context of multi-wavelengths studies.

  3. Balloon observation of gamma-ray burst

    International Nuclear Information System (INIS)

    Nishimura, Jun; Fujii, Masami; Yamagami, Takamasa; Oda, Minoru; Ogawara, Yoshiaki

    1978-01-01

    Cosmic gamma-ray burst is an interesting high energy astrophysical phenomenon, but the burst mechanism has not been well understood. Since 1975, long duration balloon flight has been conducted to search for gamma-ray bursts and to determine the source locations. A rotating cross-modulation collimator was employed to determine the locations of sources, and four NaI(Tl) scintillation counters were employed to detect hard X-ray with energy from 20 to 200 keV. The balloon light was performed at altitude of 8.3 mb from September 28, 1977, and the observation time of 79 hours was achieved. In this experiment, the monitor counter was not mounted. The count increase was observed at 16 h 22 m 31 s JST on October 1, 1977. The event disappeared after 1 sec. The total flux is estimated to be 1.6 x 10 -6 erg/cm 2 sec at the top of the atmosphere. When this event was observed, the solar-terrestrial environment was also quiet. Thus, this event was attributed to a small gamma-ray burst. Unfortunately, the duration of the burst was so short that the position of the burst source was not able to be determined. (Yoshimori, M.)

  4. Prompt Gamma Ray Analysis of Soil Samples

    Energy Technology Data Exchange (ETDEWEB)

    Naqvi, A.A.; Khiari, F.Z.; Haseeb, S.M.A.; Hussein, Tanvir; Khateeb-ur-Rehman [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Isab, A.H. [Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia)

    2015-07-01

    Neutron moderation effects were measured in bulk soil samples through prompt gamma ray measurements from water and benzene contaminated soil samples using 14 MeV neutron inelastic scattering. The prompt gamma rays were measured using a cylindrical 76 mm x 76 mm (diameter x height) LaBr{sub 3}:Ce detector. Since neutron moderation effects strongly depend upon hydrogen concentration of the sample, for comparison purposes, moderation effects were studied from samples containing different hydrogen concentrations. The soil samples with different hydrogen concentration were prepared by mixing soil with water as well as benzene in different weight proportions. Then, the effects of increasing water and benzene concentrations on the yields of hydrogen, carbon and silicon prompt gamma rays were measured. Moderation effects are more pronounced in soil samples mixed with water as compared to those from soil samples mixed with benzene. This is due to the fact that benzene contaminated soil samples have about 30% less hydrogen concentration by weight than the water contaminated soil samples. Results of the study will be presented. (authors)

  5. AGILE: A gamma-ray mission

    International Nuclear Information System (INIS)

    Tavani, M.; Caraveo, P.; Mereghetti, S.; Perotti, F.; Vercellone, S.; Barbiellini, G.; Budini, G.; Longo, F.; Prest, M.; Vallazza, E.; Cocco, V.; Morselli, A.; Picozza, P.; Pittori, C.; Costa, E.; Feroci, M.; Lapshov, I.; Morelli, E.; Rubini, A.; Soffitta, P.

    2000-01-01

    AGILE is an innovative, cost-effective gamma-ray mission selected by the Italian Space Agency for a Program of Small Scientific Missions. The AGILE gamma-ray imaging detector (GRID, made of a Silicon tracker and CsI Mini-Calorimeter) is designed to detect and image photons in the 30 MeV-50 GeV energy band with good sensitivity and very large field of view (FOV ∼3 sr). The X-ray detector, Super-AGILE, sensitive in the 10-40 keV band and integrated on top of the GRID gamma-ray tracker will provide imaging (1-3 arcmin) and moderate spectroscopy. For selected sky areas, AGILE might achieve a flux sensitivity (above 100 MeV) better than 5x10 -8 ph cm 2 s -1 at the completion of its scientific program. AGILE will operate as an Observatory open to the international community and is planned to be operational during the year 2002 for a nominal 2-year mission. It will be an ideal 'bridge' between EGRET and GLAST, and the only mission entirely dedicated to high-energy astrophysics above 30 MeV during that period

  6. Gamma ray irradiation characteristics of SM fibers

    International Nuclear Information System (INIS)

    Ito, Ryuichi; Okano, Hiroaki; Hashiba, Keichi; Nakai, Hisanori

    1987-01-01

    1.3 μm range single mode (SM) optical fibers have been used for wide application of mainly long distance communication. At present, in order to realize the larger capacity and longer distance between relay points, the development of 1.5 μm range SM fibers of low dispersion and small loss has been actively promoted. As for the radiation withstanding property of SM fibers, report is scarce. The authors reported on the gamma ray irradiation characteristics of 1.3 μm range SM fibers, but since 1.5 μm range SM fibers are designed with the different structure from that of 1.3 μm fibers, it is necessary to evaluate from new viewpoint. In this report, mainly on the structure having triangular distribution, the effect that the manufacturing condition and the structural defects of glass exert on the gamma ray irradiation characteristics is described. The specimens were mainly dispersion shift type fibers (DSF), and for comparison, single window, double window and 1.3 μm SM fibers were examined. Co-60 gamma ray was irradiated, and the optical loss and electron spin resonance were measured. By low temperature and low speed drawing, the good result in the optical loss was obtained. The presence of oxygen at the time of sintering materials had no effect. The dependence of the ESR on the drawing condition was not very remarkable. (Kako, I.)

  7. A gamma-ray discriminating neutron scintillator

    International Nuclear Information System (INIS)

    Eschbach, P.A.; Miller, S.D.; Cole, M.C.

    1994-01-01

    A neutron scintillator has been developed at Pacific Northwest Laboratory which responds directly to as little as 10 mrem/hour dose equivalent rate fast neutron fields. The scintillator is composed of CaF 2 :Eu or of NaI grains within a silicone rubber or polystyrene matrix, respectively. Neutrons colliding with the plastic matrix provide knockon protons, which in turn deposit energy within the grains of phosphor to produce pulses of light. Neutron interactions are discriminated from gamma-ray events on the basis of pulse height. Unlike NE-213 liquid scintillators, this solid scintillator requires no pulseshape discrimination and therefore requires less hardware. Neutron events are anywhere from two to three times larger than the gamma-ray exposures are compared to 0.7 MeV gamma-ray exposures. The CaF 2 :Eu/silicone rubber scintillator is nearly optically transparent, and can be made into a very sizable detector (4 cm x 1.5 cm) without degrading pulse height. This CaF 2 :Eu scintillator has been observed to have an absolute efficiency of 0.1% when exposed to 5-MeV accelerator-generated neutrons (where the absolute efficiency is the ratio of observed neutron events divided by the number of fast neutrons striking the detector)

  8. Radio Flares from Gamma-ray Bursts

    Science.gov (United States)

    Kopač, D.; Mundell, C. G.; Kobayashi, S.; Virgili, F. J.; Harrison, R.; Japelj, J.; Guidorzi, C.; Melandri, A.; Gomboc, A.

    2015-06-01

    We present predictions of centimeter and millimeter radio emission from reverse shocks (RSs) in the early afterglows of gamma-ray bursts (GRBs) with the goal of determining their detectability with current and future radio facilities. Using a range of GRB properties, such as peak optical brightness and time, isotropic equivalent gamma-ray energy, and redshift, we simulate radio light curves in a framework generalized for any circumburst medium structure and including a parameterization of the shell thickness regime that is more realistic than the simple assumption of thick- or thin-shell approximations. Building on earlier work by Mundell et al. and Melandri et al. in which the typical frequency of the RS was suggested to lie at radio rather than optical wavelengths at early times, we show that the brightest and most distinct RS radio signatures are detectable up to 0.1-1 day after the burst, emphasizing the need for rapid radio follow-up. Detection is easier for bursts with later optical peaks, high isotropic energies, lower circumburst medium densities, and at observing frequencies that are less prone to synchrotron self-absorption effects—typically above a few GHz. Given recent detections of polarized prompt gamma-ray and optical RS emission, we suggest that detection of polarized radio/millimeter emission will unambiguously confirm the presence of low-frequency RSs at early time.

  9. RADIO FLARES FROM GAMMA-RAY BURSTS

    International Nuclear Information System (INIS)

    Kopač, D.; Mundell, C. G.; Kobayashi, S.; Virgili, F. J.; Harrison, R.; Japelj, J.; Gomboc, A.; Guidorzi, C.; Melandri, A.

    2015-01-01

    We present predictions of centimeter and millimeter radio emission from reverse shocks (RSs) in the early afterglows of gamma-ray bursts (GRBs) with the goal of determining their detectability with current and future radio facilities. Using a range of GRB properties, such as peak optical brightness and time, isotropic equivalent gamma-ray energy, and redshift, we simulate radio light curves in a framework generalized for any circumburst medium structure and including a parameterization of the shell thickness regime that is more realistic than the simple assumption of thick- or thin-shell approximations. Building on earlier work by Mundell et al. and Melandri et al. in which the typical frequency of the RS was suggested to lie at radio rather than optical wavelengths at early times, we show that the brightest and most distinct RS radio signatures are detectable up to 0.1–1 day after the burst, emphasizing the need for rapid radio follow-up. Detection is easier for bursts with later optical peaks, high isotropic energies, lower circumburst medium densities, and at observing frequencies that are less prone to synchrotron self-absorption effects—typically above a few GHz. Given recent detections of polarized prompt gamma-ray and optical RS emission, we suggest that detection of polarized radio/millimeter emission will unambiguously confirm the presence of low-frequency RSs at early time

  10. Gamma rays from the interstellar medium

    International Nuclear Information System (INIS)

    Bloemen, J.B.G.M.

    1985-01-01

    This thesis describes new gamma-ray views on cosmic rays and the interstellar medium. The author describes the COS-B data base and the pre-launch and in-flight calibration data used for all analyses. Diffuse galactic gamma radiation (> 50 MeV) may be either a result of cosmic-ray-matter interactions, or of the cosmic-ray electrons with the interstellar radiation field (mainly at optical and infrared wavelengths), through the inverse-Compton process. A detailed comparison between the gamma-ray observations of the large complex of interstellar clouds in Orion and Monoceros and the CO and HI surveys of this region is given. It gives insight into the cloud penetration of cosmic rays and in the relation between CO detections and molecular hydrogen column densities. Next, the radial distribution of gamma rays in the Galaxy is studied, as well as the galactic centre (more precisely, the central 400 pc), which contains a large concentration of CO molecules. The H 2 /CO abundance and the cosmic-ray density in the galactic centre are discussed and compared to the findings for the galactic disk. In various analyses in this thesis a likelihood-ratio method is applied for parameter estimation and hypothesis testing. A general description of this method is added as an appendix. (Auth.)

  11. Three Millisecond Pulsars in Fermi LAT Unassociated Bright Sources

    Science.gov (United States)

    Ransom, S. M.; Ray, P. S.; Camilo, F.; Roberts, M. S. E.; Celik, O.; Wolff, M. T.; Cheung, C. C.; Kerr, M.; Pennucci, T.; DeCesar, M. E.; hide

    2010-01-01

    We searched for radio pulsars in 25 of the non-variable, unassociated sources in the Fermi LAT Bright Source List with the Green Bank Telescope at 820 MHz. We report the discovery of three radio and gamma-ray millisecond pulsar (MSPs) from a high Galactic latitude subset of these sources. All of the pulsars are in binary systems, which would have made them virtually impossible to detect in blind gamma-ray pulsation searches. They seem to be relatively normal, nearby (pulsars are power law in nature with exponential cutoffs at a few Ge V, as has been found with most other pulsars. The MSPs have all been detected as X-ray point sources. Their soft X-ray luminosities of approx 10(exp 30) - 10(exp 31) erg/s are typical of the rare radio MSPs seen in X-rays.

  12. Gamma-ray Output Spectra from 239 Pu Fission

    International Nuclear Information System (INIS)

    Ullmann, John

    2015-01-01

    Gamma-ray multiplicities, individual gamma-ray energy spectra, and total gamma energy spectra following neutron-induced fission of 239 Pu were measured using the DANCE detector at Los Alamos. Corrections for detector response were made using a forward-modeling technique based on propagating sets of gamma rays generated from a paramaterized model through a GEANT model of the DANCE array and adjusting the parameters for best fit to the measured spectra. The results for the gamma-ray spectrum and multiplicity are in general agreement with previous results, but the measured total gamma-ray energy is about 10% higher. A dependence of the gamma-ray spectrum on the gamma-ray multplicity was also observed. Global model calculations of the multiplicity and gamma energy distributions are in good agreement with the data, but predict a slightly softer total-energy distribution

  13. Catalog of gamma-rays unplaced in radioactive decay schemes

    International Nuclear Information System (INIS)

    Narita, Tsutomu; Kitao, Kensuke.

    1991-03-01

    A catalog is made for gamma-rays emitted in decay of radioactive nuclides but not placed in their decay schemes. It consists of two tables. In Table 1, the number of these unplaced gamma-ray components by a nuclide is given together with the fraction of total intensity of these gamma-rays to that of all observed gamma-rays. In Table 2, the unplaced gamma-rays are arranged in order of increasing energy. Each line of this table contains the gamma-ray energy, intensity, nuclide identification, and energies and intensities of the most prominent gamma-rays from the decay of the radionuclides. This catalog is a compilation from Evaluated Nuclear Structure Data File (ENSDF) maintained by National Nuclear Data Center at Brookhaven National Laboratory, of at February 1990. (author)

  14. Lunar occultations for gamma-ray source measurements

    Science.gov (United States)

    Koch, David G.; Hughes, E. B.; Nolan, Patrick L.

    1990-01-01

    The unambiguous association of discrete gamma-ray sources with objects radiating at other wavelengths, the separation of discrete sources from the extended emission within the Galaxy, the mapping of gamma-ray emission from nearby galaxies and the measurement of structure within a discrete source cannot presently be accomplished at gamma-ray energies. In the past, the detection processes used in high-energy gamma-ray astronomy have not allowed for good angular resolution. This problem can be overcome by placing gamma-ray detectors on the moon and using the horizon as an occulting edge to achieve arcsec resolution. For purposes of discussion, this concept is examined for gamma rays above 100 MeV for which pair production dominates the detection process and locally-generated nuclear gamma rays do not contribute to the background.

  15. Physical constraints on models of gamma-ray bursters

    International Nuclear Information System (INIS)

    Epstein, R.I.

    1985-01-01

    This report deals with the constraints that can be placed on models of gamma-ray burst sources based on only the well-established observational facts and physical principles. The premise is developed that the very hard x-ray and gamma-ray continua spectra are well-established aspects of gamma-ray bursts. Recent theoretical work on gamma-ray bursts are summarized with emphasis on the geometrical properties of the models. Constraints on the source models which are implied by the x-ray and gamma-ray spectra are described. The allowed ranges for the luminosity and characteristic dimension for gamma-ray burst sources are shown. Some of the deductions and inferences about the nature of the gamma-ray burst sources are summarized. 67 refs., 3 figs

  16. A link between prompt optical and prompt gamma-ray emission in gamma-ray bursts.

    Science.gov (United States)

    Vestrand, W T; Wozniak, P R; Wren, J A; Fenimore, E E; Sakamoto, T; White, R R; Casperson, D; Davis, H; Evans, S; Galassi, M; McGowan, K E; Schier, J A; Asa, J W; Barthelmy, S D; Cummings, J R; Gehrels, N; Hullinger, D; Krimm, H A; Markwardt, C B; McLean, K; Palmer, D; Parsons, A; Tueller, J

    2005-05-12

    The prompt optical emission that arrives with the gamma-rays from a cosmic gamma-ray burst (GRB) is a signature of the engine powering the burst, the properties of the ultra-relativistic ejecta of the explosion, and the ejecta's interactions with the surroundings. Until now, only GRB 990123 had been detected at optical wavelengths during the burst phase. Its prompt optical emission was variable and uncorrelated with the prompt gamma-ray emission, suggesting that the optical emission was generated by a reverse shock arising from the ejecta's collision with surrounding material. Here we report prompt optical emission from GRB 041219a. It is variable and correlated with the prompt gamma-rays, indicating a common origin for the optical light and the gamma-rays. Within the context of the standard fireball model of GRBs, we attribute this new optical component to internal shocks driven into the burst ejecta by variations of the inner engine. The correlated optical emission is a direct probe of the jet isolated from the medium. The timing of the uncorrelated optical emission is strongly dependent on the nature of the medium.

  17. Detections of millisecond pulsars with the FERMI Large Area Telescope

    International Nuclear Information System (INIS)

    Guillemot, L.

    2009-09-01

    The Fermi observatory was launched on June 11, 2008. It hosts the Large Area Telescope (LAT), sensitive to gamma-ray photons from 20 MeV to over 300 GeV. When the LAT began its activity, nine young and energetic pulsars were known in gamma ray range. At least several tens of pulsar detections by the LAT were predicted before launch. The LAT also allowed the study of millisecond pulsars (MSPs), never firmly detected in gamma ray range before Fermi. This thesis first presents the pulsar timing campaign for the LAT, in collaboration with large radio telescopes and X-ray telescopes, allowing for high sensitivity pulsed searches. Furthermore, it lead to quasi-homogeneous coverage of the galactic MSPs, so that the search for pulsations in LAT data for this population of stars was not affected by an a-priori bias. We present a search for pulsations from these objects in LAT data. For the first time, eight galactic MSPs have been detected as sources of pulsed gamma-ray emission over 100 MeV. In addition, a couple of good candidates for future detection are seen. A similar search for globular cluster MSPs was not successful so far. Comparison of the phase-aligned gamma-ray and radio light curves, as well as the spectral shapes, leads to the conclusion that their gamma-ray emission is similar to that of normal pulsars, and is probably produced in the outer-magnetosphere. This discovery suggests that many unresolved gamma-ray sources are unknown MSPs. (author)

  18. Ultra high energy gamma rays and observations with CYGNUS/MILAGRO

    International Nuclear Information System (INIS)

    Weeks, D.D.; Yodh, G.B.

    1992-01-01

    This talk discusses high-energy observations of the Crab pulsar/nebula and the pulsar in the X-ray binary, Hercules X-1, and makes the case for continued observations with ground-based γ-ray detectors. The CYGNUS Air Shower Array has a wide field of view on monitors several astrophysical γ-ray sources at the same time, many of which are prime objects observed by the Compton Gamma Ray Observatory (GRO) and air Cerenkov telescopes. This array and the future MILAGRO Water Cerenkov Detector can perform observations that are simultaneous with similar experiments to provide confirmation of emission, and can measure source spectra at a range of high energies previously unexplored

  19. Pulsar-irradiated stars in dense globular clusters

    Science.gov (United States)

    Tavani, Marco

    1992-01-01

    We discuss the properties of stars irradiated by millisecond pulsars in 'hard' binaries of dense globular clusters. Irradiation by a relativistic pulsar wind as in the case of the eclipsing millisecond pulsar PSR 1957+20 alter both the magnitude and color of the companion star. Some of the blue stragglers (BSs) recently discovered in dense globular clusters can be irradiated stars in binaries containing powerful millisecond pulsars. The discovery of pulsar-driven orbital modulations of BS brightness and color with periods of a few hours together with evidence for radio and/or gamma-ray emission from BS binaries would valuably contribute to the understanding of the evolution of collapsed stars in globular clusters. Pulsar-driven optical modulation of cluster stars might be the only observable effect of a new class of binary pulsars, i.e., hidden millisecond pulsars enshrouded in the evaporated material lifted off from the irradiated companion star.

  20. Local gamma ray events as tests of the antimatter theory of gamma ray bursts

    International Nuclear Information System (INIS)

    Sofia, S.; Wilson, R.E.

    1976-01-01

    Nearby examples of the antimatter 'chunks' postulated by Sofia and Van Horn to explain the cosmic gamma ray bursts may produce detectable gamma ray events when struck by solar system meteoroids. These events would have a much shorter time scale and higher energy spectrum than the bursts already observed. In order to have a reasonably high event rate, the local meteoroid population must extend to a distance from the Sun of the order of 0.1 pc, but the required distance could become much lower if the instrumental threshold is improved. The expected gamma ray flux for interaction of the antimatter bodies with the solar wind is also examined, and found to be far below present instrumental capabilities. (Auth.)

  1. Large-Area Balloon-Borne Polarized Gamma Ray Observer (PoGO)

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, V.; Chen, P.; Kamae, T.; Madejski, G.; Mizuno, T.; Ng, J.; Tajima, H.; Thurston, T.; /SLAC; Bogaert, G.; /Ecole Polytechnique; Fukazawa, Y.; /Hiroshima U.; Saito,; Takahashi, T.; /Sagamihara, Inst. Space Astron. Sci.; Barbier, L.; Bloser, P.; Harding, A.; Hunter, S.; Krizmanic, J.; Mitchell, J.; Streitmatter, R.; Fernholz, R.; Groth, E.; /NASA, Goddard /Princeton U. /Royal Inst. Tech., Kista /Stockholm U. /Tokyo Inst. Tech. /Yamagata U.

    2005-06-30

    We are developing a new balloon-borne instrument (PoGO), to measure polarization of soft gamma rays (30-200 keV) using asymmetry in azimuth angle distribution of Compton scattering. PoGO is designed to detect 10% polarization in 100mCrab sources in a 6-8 hour observation and bring a new dimension to studies on gamma ray emission/transportation mechanism in pulsars, AGNs, black hole binaries, and neutron star surface. The concept is an adaptation to polarization measurements of well-type phoswich counter consisting of a fast plastic scintillator (the detection part), a slow plastic scintillator (the active collimator) and a BGO scintillator (the bottom anti-counter). PoGO consists of close-packed array of 217 hexagonal well-type phoswich counters and has a narrow field-of-view ({approx} 5 deg{sup 2}) to reduce possible source confusion. A prototype instrument has been tested in the polarized soft gamma-ray beams at Advanced Photon Source (ANL) and at Photon Factory (KEK). On the results, the polarization dependence of EGS4 has been validated and that of Geant4 has been corrected.

  2. Large-Area Balloon-Borne Polarized Gamma Ray Observer (PoGO)

    International Nuclear Information System (INIS)

    Andersson, V.; Chen, P.; Kamae, T.; Madejski, G.; Mizuno, T.; Ng, J.; Tajima, H.; Thurston, T.; SLAC; Bogaert, G.; Ecole Polytechnique; Fukazawa, Y.; Hiroshima U.; Saito, Y.; Takahashi, T.; Sagamihara, Inst. Space Astron. Sci.; Barbier, L.; Bloser, P.; Harding, A.; Hunter, S.; Krizmanic, J.; Mitchell, J.; Streitmatter, R.; Fernholz, R.; Groth, E.; NASA, Goddard; Princeton U.; Royal Inst. Tech., Kista; Stockholm U.; Tokyo Inst. Tech.; Yamagata U.

    2005-01-01

    We are developing a new balloon-borne instrument (PoGO), to measure polarization of soft gamma rays (30-200 keV) using asymmetry in azimuth angle distribution of Compton scattering. PoGO is designed to detect 10% polarization in 100mCrab sources in a 6-8 hour observation and bring a new dimension to studies on gamma ray emission/transportation mechanism in pulsars, AGNs, black hole binaries, and neutron star surface. The concept is an adaptation to polarization measurements of well-type phoswich counter consisting of a fast plastic scintillator (the detection part), a slow plastic scintillator (the active collimator) and a BGO scintillator (the bottom anti-counter). PoGO consists of close-packed array of 217 hexagonal well-type phoswich counters and has a narrow field-of-view (∼ 5 deg 2 ) to reduce possible source confusion. A prototype instrument has been tested in the polarized soft gamma-ray beams at Advanced Photon Source (ANL) and at Photon Factory (KEK). On the results, the polarization dependence of EGS4 has been validated and that of Geant4 has been corrected

  3. An alternative explanation for the GeV excess in the Fermi gamma ray data

    Energy Technology Data Exchange (ETDEWEB)

    Gebauer, Iris; Boer, Wim de; Neumann, Alexander [Karlsruhe Institute of Technologie, Karlsruhe (Germany)

    2016-07-01

    Towards the Galactic center the diffuse Fermi Gamma Ray data show a 1-3 GeV excess, which has been interpreted previously as a new source, like dark matter annihilation, contributions from millisecond pulsars or cosmic rays interacting with molecular clouds. We search for this excess in the whole Galactic Plane and find it to be perfectly correlated with the spatial distribution of the {sup 26}Al line, thought to be a tracer of SNRs. So the excess is not only found in the Galactic Center, but found everywhere, where there are molecular clouds (MCs). This excludes the dark matter annihilation interpretation. If we assume the proton spectrum in MCs to be depleted at energies below 14 GeV by a combination of trapping, solar winds and energy losses, we find a perfect description of the whole gamma ray sky. In this case the excess is not an excess, but a depletion of low energy gamma rays below a few GeV due to the depletion of the protons in MCs below 14 GeV, which happens not only in the Galactic Center, but everywhere in the Galactic Plane, where there are MCs with star formation, as proven by the identical morphology of the excess and the 1.8 MeV line of {sup 26}Al, observed by Comptel and Integral.

  4. Disrupted globular clusters and the gamma-ray excess in the Galactic Centre

    Science.gov (United States)

    Fragione, Giacomo; Antonini, Fabio; Gnedin, Oleg Y.

    2018-04-01

    The Fermi Large Area Telescope has provided the most detailed view towards the Galactic Centre (GC) in high-energy gamma-rays. Besides the interstellar emission and point source contributions, the data suggest a residual diffuse gamma-ray excess. The similarity of its spatial distribution with the expected profile of dark matter has led to claims that this may be evidence for dark matter particle annihilation. Here, we investigate an alternative explanation that the signal originates from millisecond pulsars (MSPs) formed in dense globular clusters and deposited at the GC as a consequence of cluster inspiral and tidal disruption. We use a semi-analytical model to calculate the formation, migration, and disruption of globular clusters in the Galaxy. Our model reproduces the mass of the nuclear star cluster and the present-day radial and mass distribution of globular clusters. For the first time, we calculate the evolution of MSPs from disrupted globular clusters throughout the age of the Galaxy and consistently include the effect of the MSP spin-down due to magnetic-dipole braking. The final gamma-ray amplitude and spatial distribution are in good agreement with the Fermi observations and provide a natural astrophysical explanation for the GC excess.

  5. GAMMA RAYS FROM STAR FORMATION IN CLUSTERS OF GALAXIES

    International Nuclear Information System (INIS)

    Storm, Emma M.; Jeltema, Tesla E.; Profumo, Stefano

    2012-01-01

    Star formation in galaxies is observed to be associated with gamma-ray emission, presumably from non-thermal processes connected to the acceleration of cosmic-ray nuclei and electrons. The detection of gamma rays from starburst galaxies by the Fermi Large Area Telescope (LAT) has allowed the determination of a functional relationship between star formation rate and gamma-ray luminosity. Since star formation is known to scale with total infrared (8-1000 μm) and radio (1.4 GHz) luminosity, the observed infrared and radio emission from a star-forming galaxy can be used to quantitatively infer the galaxy's gamma-ray luminosity. Similarly, star-forming galaxies within galaxy clusters allow us to derive lower limits on the gamma-ray emission from clusters, which have not yet been conclusively detected in gamma rays. In this study, we apply the functional relationships between gamma-ray luminosity and radio and IR luminosities of galaxies derived by the Fermi Collaboration to a sample of the best candidate galaxy clusters for detection in gamma rays in order to place lower limits on the gamma-ray emission associated with star formation in galaxy clusters. We find that several clusters have predicted gamma-ray emission from star formation that are within an order of magnitude of the upper limits derived in Ackermann et al. based on non-detection by Fermi-LAT. Given the current gamma-ray limits, star formation likely plays a significant role in the gamma-ray emission in some clusters, especially those with cool cores. We predict that both Fermi-LAT over the course of its lifetime and the future Cerenkov Telescope Array will be able to detect gamma-ray emission from star-forming galaxies in clusters.

  6. The 2017 Periastron Passage of PSR B1259-63 in Gamma-rays and X-rays

    Science.gov (United States)

    Wood, Kent S.; Johnson, Tyrel; Ray, Paul S.; Kerr, Matthew T.; Chernyakova, Masha; Fermi LAT Collaboration

    2018-01-01

    PSR B1259‑ 63 is a 48-ms radio pulsar in a highly eccentric 3.4-yr orbit with a Be star LS 2883. While the pulsed emission has been detected only in radio, un-pulsed radio, X-ray and gamma-ray emission are regularly observed from the binary system around the periastron. It is likely that the collision of the pulsar wind with the anisotropic wind of the Be star plays a crucial role in the generation of the observed non-thermal emission. The spectral energy distribution observed near periastron peaks in GeV gamma-rays, reaching maximum flux several weeks past periastron. In September 2017 it is being observed for a third periastron passage by the Fermi satellite. Here we present first results of the 2017 multi-wavelength campaign. The 2017 observations are compared to the two previous cycles, and used to test current models. Until recently there was no similar source known in the Galaxy but now a near-twin to it, PSR J2032+4127 , (Pspin=143 ms, Porbit ~50 yr, detectable radio to gamma rays) has been found, and is also undergoing periastron passage in Nov 2017. Gamma-ray and X-ray phenomena in the two sources are compared and discussed. These objects may represent a transitional phase, with possible later phases being accreting pulsars, and eventually perhaps NS-BH or NS-NS binary systems. Portions of this research performed at the US Naval Research Laboratory are sponsored by NASA DPR S-15633-Y.

  7. Light Curve and SED Modeling of the Gamma-Ray Binary 1FGL J1018.6–5856: Constraints on the Orbital Geometry and Relativistic Flow

    Energy Technology Data Exchange (ETDEWEB)

    An, Hongjun; Romani, Roger W., E-mail: hjan@chungbuk.ac.kr [Department of Physics/KIPAC, Stanford University, Stanford, CA 94305-4060 (United States)

    2017-04-01

    We present broadband spectral energy distributions and light curves of the gamma-ray binary 1FGL J1018.6−5856 measured in the X-ray and the gamma-ray bands. We find that the orbital modulation in the low-energy gamma-ray band is similar to that in the X-ray band, suggesting a common spectral component. However, above a GeV the orbital light curve changes significantly. We suggest that the GeV band contains significant flux from a pulsar magnetosphere, while the X-ray to TeV light curves are dominated by synchrotron and Compton emission from an intrabinary shock (IBS). We find that a simple one-zone model is inadequate to explain the IBS emission, but that beamed Synchrotron-self Compton radiation from adiabatically accelerated plasma in the shocked pulsar wind can reproduce the complex multiband light curves, including the variable X-ray spike coincident with the gamma-ray maximum. The model requires an inclination of ∼50° and an orbital eccentricity of ∼0.35, consistent with the limited constraints from existing optical observations. This picture motivates searches for pulsations from the energetic young pulsar powering the wind shock.

  8. Spectral analysis of the Crab Pulsar and Nebula with the Fermi Large Area Telescope

    International Nuclear Information System (INIS)

    Loparco, F.

    2011-01-01

    The Crab Pulsar is a relatively young neutron star. The Pulsar is the central star in the Crab Nebula, a remnant of the supernova SN 1054, which was observed on Earth in the year 1054. The Crab Pulsar has been extensively observed in the gamma-ray energy band by the Large Area Telescope (LAT), the main instrument onboard the Fermi gamma-ray space telescope, during its first months of data taking. The LAT data have been used to reconstruct the fluxes and the energy spectra of the pulsed gamma-ray component and of the gamma-rays from the Nebula. The results on the pulsed component are in good agreement with the previous measurement from EGRET, while the results on the Nebula are consistent with the observations from Earth based telescopes.

  9. Common Gamma-ray Glows above Thunderclouds

    Science.gov (United States)

    Kelley, Nicole; Smith, David; Dwyer, Joseph; Hazelton, Bryna; Grefenstette, Brian; Lowell, Alex; Splitt, Michael; Lazarus, Steven; Rassoul, Hamid

    2013-04-01

    Gamma-ray glows are continuous, long duration gamma- and x-ray emission seen coming from thunderclouds. The Airborne for Energetic Lightning Emissions (ADELE) observed 12 gamma-ray glows during its summer 2009 flight campaign over the areas of Colorado and Florida in the United States. For these glows we shall present their spectra, relationship to lightning activity and how their duration and size changes as a function of distance. Gamma-ray glows follow the relativistic runaway electron avalanche (RREA) spectrum and have been previously measured from the ground and inside the cloud. ADELE measured most glows as it flew above the screening layer of the cloud. During the brightest glow on August 21, 2009, we can show that we are flying directly into a downward facing relativistic runaway avalanche, indicative of flying between the upper positive and negative screening layer of the cloud. In order to explain the brightness of this glow, RREA with an electric field approaching the limit for relativistic feedback must be occurring. Using all 12 glows, we show that lightning activity diminishes during the onset of the glow. Using this along with the fact that glows occur as the field approaches the level necessary for feedback, we attempt to distinguish between two possibilities: that glows are evidence that RREA with feedback, rather than lightning, is sometimes the primary channel for discharging the cloud, or else that the overall discharging is still controlled by lightning, with glows simply appearing during times when a subsidence of lightning allows the field to rise above the threshold for RREA.

  10. Variable code gamma ray imaging system

    International Nuclear Information System (INIS)

    Macovski, A.; Rosenfeld, D.

    1979-01-01

    A gamma-ray source distribution in the body is imaged onto a detector using an array of apertures. The transmission of each aperture is modulated using a code such that the individual views of the source through each aperture can be decoded and separated. The codes are chosen to maximize the signal to noise ratio for each source distribution. These codes determine the photon collection efficiency of the aperture array. Planar arrays are used for volumetric reconstructions and circular arrays for cross-sectional reconstructions. 14 claims

  11. Detection circuit for gamma-ray burst

    International Nuclear Information System (INIS)

    Murakami, Hiroyuki; Yamagami, Takamasa; Mori, Kunishiro; Uchiyama, Sadayuki.

    1982-01-01

    A new gamma-ray burst detection system is described. The system was developed as an environmental monitor of an accelerator, and can be used as the burst detection system. The system detects the arrival time of burst. The difference between the arrival times detected at different places will give information on the burst source. The frequency of detecting false burst was estimated, and the detection limit under the estimated frequency of false burst was also calculated. Decision whether the signal is false or true burst was made by the statistical treatment. (Kato, T.)

  12. Very high energy gamma ray astrophysics

    International Nuclear Information System (INIS)

    Lamb, R.C.; Lewis, D.A.

    1986-01-01

    The Whipple Observatory's atmospheric Cerenkov camera has detected TeV radiation from four galactic sources: the Crab Nebula, Cygnus X-3, Hercules X-1, and 4U0115+63. Recent simulations encourage the view that unwanted cosmic-ray background showers may be suppressed by a large factor. Emphasis in the coming year will be on determining optimum selection criteria for enhancing gamma-ray signals and in developing a prototype camera with finer angular resolution as a first step towards implementation of the HERCULES concept

  13. Gamma ray induced decomposition of lanthanide nitrates

    International Nuclear Information System (INIS)

    Joshi, N.G.; Garg, A.N.

    1992-01-01

    Gamma ray induced decomposition of the lanthanide nitrates, Ln(NO 3 ) 3 .xH 2 O where Ln=La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Tm and Yb has been studied at different absorbed doses up to 600 kGy. G(NO 2 - ) values depend on the absorbed dose and the nature of the outer cation. It has been observed that those lanthanides which exhibit variable valency (Ce and Eu) show lower G-values. An attempt has been made to correlate thermal and radiolytic decomposition processes. (author). 20 refs., 3 figs., 1 tab

  14. Very high energy gamma-ray astronomy

    International Nuclear Information System (INIS)

    Weekes, T.C.

    1989-01-01

    It is apparent that very high gamma-ray astronomy, at the very end of the electromagnetic spectrum, is just at the threshold of becoming an important channel of astronomical information. The author discusses how, to fully develop, it requires telescopes with improved minimum flux sensitivity; development of techniques that characterize the nature of the primary; more overlapping observations to remove any question of the reality of the detected phenomenon; more consistency in the application of statistics among experimenters and more openness about methods used; development of models that will predict the phenomenon to be expected rather than explain what has been observed; and more accurate calibrations to determine absolute fluxes and energies

  15. Gamma-Ray Spectrum Analysis Software GDA

    International Nuclear Information System (INIS)

    Wanabongse, P.

    1998-01-01

    The developmental work on computer software for gamma-ray spectrum analysis has been completed as a software package version 1.02 named GDA, which is an acronym for Gamma-spectrum Deconvolution and Analysis. The software package consists of three 3.5-inch diskettes for setup and a user's manual. GDA software can be installed for using on a personal computer with Windows 95 or Windows NT 4.0 operating system. A computer maybe the type of 80486 CPU with 8 megabytes of memory

  16. Gamma ray bursts from extragalactic sources

    Science.gov (United States)

    Hoyle, Fred; Burbidge, Geoffrey

    1992-01-01

    The properties of gamma ray bursts of classical type are found to be explicable in terms of high speed collisions between stars. A model is proposed in which the frequency of such collisions can be calculated. The model is then applied to the nuclei of galaxies in general on the basis that galaxies, or at least some fraction of them, originate in the expulsion of stars from creation centers. Evidence that low level activity of this kind is also taking place at the center of our own Galaxy is discussed. The implications for galactic evolution are discussed and a negative view of black holes is taken.

  17. Gamma ray thermometrical facility for nuclear reactor

    International Nuclear Information System (INIS)

    Smith, R.D.; Regazzoni, Pierre.

    1981-01-01

    This invention concerns a gamma ray thermometer for nuclear reactors, fitted with a thermal bridge for use as a centring device. In accordance with the invention, an elastic device fills all the annular space between the gamma thermometer and the orifice through which the thermometer is introduced. This elastic device has the two-fold role of providing a thermal bridge at the gamma thermometer location suitable as a heat well, and of acting as a device for centring the thermometer in the orifice into which it has been introduced [fr

  18. Principles and techniques of gamma ray tracers

    International Nuclear Information System (INIS)

    Claxton, K.T.

    1978-01-01

    Radioactive tracer techniques provide a very sensitive means of studying physical and chemical processes in a whole variety of different media. Some of the techniques and principles of radioactive tracers and their application to practical engineering systems are discussed. Information which has been found useful in the design of high temperature liquid sodium facilities employing radio-tracers, is presented. The report deals solely with the use of gamma-emitting species as the tracer. These find particular application for in-situ studies on engineering systems where the highly penetrating properties of gamma rays are needed for detection through strongly absorbent media such as stainless steel pepe walls. (author)

  19. Gamma ray constraints on decaying dark matter

    DEFF Research Database (Denmark)

    Cirelli, M.; Moulin, E.; Panci, P.

    2012-01-01

    We derive new bounds on decaying dark matter from the gamma ray measurements of (i) the isotropic residual (extragalactic) background by Fermi and (ii) the Fornax galaxy cluster by H.E.S.S. We find that those from (i) are among the most stringent constraints currently available, for a large range...... of dark matter masses and a variety of decay modes, excluding half-lives up to similar to 10(26) to few 10(27) seconds. In particular, they rule out the interpretation in terms of decaying dark matter of the e(+/-) spectral features in PAMELA, Fermi and H.E.S.S., unless very conservative choices...

  20. Gamma ray spectroscopy with Arduino UNO

    Science.gov (United States)

    Lavelle, C. M.

    2018-05-01

    We review a simple gamma ray spectrometer constructed on a solderless breadboard. The spectrometer's detector consists of a CsI(Tl) scintillator and silicon photomultiplier (SiPM) and its readout is facilitated by an Arduino UNO. The system is low cost and utilizes a minimum of components while still achieving satisfactory charge linearity and noise levels. This instrument can be used in instructional laboratories to introduce both radiation detection and analog signal processing concepts. We also expect it will be of interest to those seeking to introduce gamma spectroscopy to the expanding ecosystem of Arduino hardware.

  1. Comptonization of gamma rays by cold electrons

    International Nuclear Information System (INIS)

    Xu, Yueming; Ross, R.R.; Mccray, R.

    1991-01-01

    An analytic method is developed for calculating the emergent spectrum of gamma-rays and X-rays scattered in a homogeneous medium with low-temperature electrons. The Klein-Nishina corrections of the scattering cross section and absorption processes are taken in account. The wavelength relaxation and the spatial diffusion problems are solved separately, and the emergent spectrum is calculated by convolving the evolution function of the spectrum in an infinite medium with the photon luminosity resulting from the spatial diffusion in a finite sphere. The analytic results are compared with that of Monte Carlo calculations and it is concluded that the analytic result is quite accurate. 9 refs

  2. Recent developments in airborne gamma ray surveying

    International Nuclear Information System (INIS)

    Grasty, Robert L.

    1999-01-01

    Standardized procedures have been developed for converting airborne gamma ray measurements to ground concentrations of potassium, uranium and thorium. These procedures make use of an airborne calibration range whose ground concentrations should be measured with a calibrated portable spectrometer rather than by taking geochemical samples. Airborne sensitivities and height attenuation coefficients are normally determined from flights over the calibration range but may not be applicable in mountainous areas. Mathematical techniques have been now developed to reduce statistical noise in the airborne measurements by utilizing up to 256 channels of spectral information. (author)

  3. Probing Gamma-ray Emission of Geminga & Vela with Non-stationary Models

    Directory of Open Access Journals (Sweden)

    Yating Chai

    2016-06-01

    Full Text Available It is generally believed that the high energy emissions from isolated pulsars are emitted from relativistic electrons/positrons accelerated in outer magnetospheric accelerators (outergaps via a curvature radiation mechanism, which has a simple exponential cut-off spectrum. However, many gamma-ray pulsars detected by the Fermi LAT (Large Area Telescope cannot be fitted by simple exponential cut-off spectrum, and instead a sub-exponential is more appropriate. It is proposed that the realistic outergaps are non-stationary, and that the observed spectrum is a superposition of different stationary states that are controlled by the currents injected from the inner and outer boundaries. The Vela and Geminga pulsars have the largest fluxes among all targets observed, which allows us to carry out very detailed phase-resolved spectral analysis. We have divided the Vela and Geminga pulsars into 19 (the off pulse of Vela was not included and 33 phase bins, respectively. We find that most phase resolved spectra still cannot be fitted by a simple exponential spectrum: in fact, a sub-exponential spectrum is necessary. We conclude that non-stationary states exist even down to the very fine phase bins.

  4. Contribution to gamma ray transport calculation in heterogeneous media

    International Nuclear Information System (INIS)

    Bourdet, L.

    1985-04-01

    This thesis presents the development of gamma transport calculation codes in three dimension heterogeneous geometries. These codes allow us to define the protection against gamma-rays or verify their efficiency. The laws that govern the interactions of gamma-rays with matters are briefly revised. A library with the all necessary constants for these codes is created. TRIPOLI-2, a code that treats in exact way the neutron transport in matters using Monte-Carlo method, has been adapted to deal with the transport of gamma-rays in matters as well. TRINISHI, a code which considers only one collision, has been realized to treat heterogeneous geometries containing voids. Elaborating a formula that calculates the albedo for gamma-ray reflection (the code ALBANE) allows us to solve the problem of gamma-ray reflection on plane surfaces. NARCISSE-2 deals with gamma-rays that suffer only one reflection on the inner walls of any closed volume (rooms, halls...) [fr

  5. Review of GRANAT observations of gamma-ray bursts

    DEFF Research Database (Denmark)

    Terekhov, O.; Denissenko, D.; Sunyaev, R.

    1995-01-01

    The GRANAT observatory was launched into a high apogee orbit on 1 December, 1989. Three instruments onboard GRANAT - PHEBUS, WATCH and SIGMA are able to detect gamma-ray bursts in a very broad energy range from 6 keV up to 100 MeV. Over 250 gamma-ray bursts were detected. We discuss the results...... of the observations of the time histories and spectral evolution of the detected events provided by the different instruments in different energy ranges. Short Gamma-Ray Bursts ( 2 s) events. Evidence of the existence...... of four differently behaving componenents in gamma-ray burst spectra is discussed. Statistical properties of the gamma-ray burst sources based on the 5 years of observations with (∼ 10−6 erg/cm2) sensitivity as well as the results of high sensitivity (∼ 10−8 erg/cm2) search for Gamma-Ray Bursts within...

  6. Microwave-gamma ray water in crude monitor

    International Nuclear Information System (INIS)

    Paap, H.J.

    1984-01-01

    A microwave-gamma ray water-in-crude monitoring system measures the percent quantity of fresh water or salt water in crude oil flowing in a pipe line. The system includes a measuring cell arranged with the pipe line so that the crude oil flows through the measuring cell. A microwave transmitter subsystem and a gamma ray source are arranged with the measuring cell so that microwave energy and gamma rays are transmitted through the measuring cell. A microwave receiving subsystem and a gamma ray detector provide signals corresponding to received microwave energy and to the received gamma rays, respectively. Apparatus connected to the microwave receiver and to the gamma ray detector provides an indication of the percentage of water in the crude oil

  7. Collimatorless imaging of gamma rays with help of gamma-ray tracking

    CERN Document Server

    Marel, J V D

    2001-01-01

    In many gamma-ray detector systems that are built for imaging purposes Compton scattered photons are suppressed as much as possible. However, the information from photons that scattered inside a detector system can be used to reconstruct the tracks of the photons with help of gamma-ray tracking. Estimates of the incident directions of the photons can be made and an image can be created. Examples of potential applications for this technique are the use as a gamma-camera in medical imaging (e.g. SPECT) or as a detector for PET. Due to the omission of collimators, much higher detection efficiencies can be achieved, reducing the doses required for an image. A gamma-ray tracking method, called backtracking, has been developed for nuclear spectroscopy. The method tracks gamma-rays originating from a point source in the center of a spherical detector system consisting of position-sensitive germanium detectors. This method can also be used as a tracking technique for imaging of an unknown source distribution. With he...

  8. SYSTEMATIC STUDY OF GAMMA-RAY-BRIGHT BLAZARS WITH OPTICAL POLARIZATION AND GAMMA-RAY VARIABILITY

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Ryosuke; Fukazawa, Yasushi; Kanda, Yuka; Shiki, Kensei; Kawabata, Miho; Nakaoka, Tatsuya; Takaki, Katsutoshi; Takata, Koji; Ui, Takahiro [Department of Physical Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Nalewajko, Krzysztof; Madejski, Greg M. [Kavli Institute for Particle Astrophysics and Cosmology, SLAC National Accelerator Laboratory, Stanford University, 2575 Sand Hill Road M/S 29, Menlo Park, CA 94025 (United States); Uemura, Makoto; Tanaka, Yasuyuki T.; Kawabata, Koji S.; Akitaya, Hiroshi; Ohsugi, Takashi [Hiroshima Astrophysical Science Center, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Schinzel, Frank K. [Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131 (United States); Moritani, Yuki [Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Kashiwa, Chiba 277-8583 (Japan); Sasada, Mahito [Institute for Astrophysical Research, Boston University, 725 Commonwealth Avenue, Boston, MA 02215 (United States); Yamanaka, Masayuki, E-mail: itoh@hep01.hepl.hiroshima-u.ac.jp, E-mail: itoh@hp.phys.titech.ac.jp [Department of Physics, Faculty of Science and Engineering, Konan University, Okamoto, Kobe, Hyogo 658-8501 (Japan); and others

    2016-12-10

    Blazars are highly variable active galactic nuclei that emit radiation at all wavelengths from radio to gamma rays. Polarized radiation from blazars is one key piece of evidence for synchrotron radiation at low energies, and it also varies dramatically. The polarization of blazars is of interest for understanding the origin, confinement, and propagation of jets. However, even though numerous measurements have been performed, the mechanisms behind jet creation, composition, and variability are still debated. We performed simultaneous gamma-ray and optical photopolarimetry observations of 45 blazars between 2008 July and 2014 December to investigate the mechanisms of variability and search for a basic relation between the several subclasses of blazars. We identify a correlation between the maximum degree of optical linear polarization and the gamma-ray luminosity or the ratio of gamma-ray to optical fluxes. Since the maximum polarization degree depends on the condition of the magnetic field (chaotic or ordered), this result implies a systematic difference in the intrinsic alignment of magnetic fields in parsec-scale relativistic jets between different types of blazars (flat-spectrum radio quasars vs. BL Lacs) and consequently between different types of radio galaxies (FR I versus FR II).

  9. Near stellar sources of gamma-ray bursts

    OpenAIRE

    Luchkov, B. I.; Markin, P. D.

    2012-01-01

    Correlation analysis of gamma-ray burst coordinates and nearby stars, registered on 2008-2011, revealed 5 coincidences with angular accuracy better than 0.1 degree. The random probability is $7\\times 10^{-7}$, so evidencing that coincident stars are indeed gamma-ray burst sources. The proposed method should be continued in order to provide their share in common balance of cosmic gamma-ray bursts.

  10. Fermi GBM Observations of Terrestrial Gamma-Ray Flashes

    Science.gov (United States)

    Wilson-Hodge, Colleen A.; Briggs, M. S.; Connaughton, V.; Fishman, G. J.; Bhat, P. N.; Paciesas, W. S.; Preece, R.; Kippen, R. M.; vonKienlin, A.; Dwyer, J. R.; hide

    2010-01-01

    This slide presentation explores the relationship between Terrestrial Gamma-Ray Flashes (TGF) and lightning. Using data from the World-Wide Lightning Location Network (WWLLN), and the gamma ray observations from Fermi's Gamma-ray Burst Monitor (GBM), the study reviews any causal relationship between TGFs and lightning. The conclusion of the study is that the TGF and lightning are simultaneous with out a causal relationship.

  11. Sensitivity of Gamma-Ray Detectors to Polarization

    OpenAIRE

    Yadigaroglu, I. -A.

    1996-01-01

    Previous studies have shown that the largest gamma-ray detector to date, EGRET, does not have useful polarization sensitivity. We have explored here some improved approaches to analyzing gamma-ray pair production events, leading to important gains in sensitivity to polarization. The performance of the next generation gamma-ray instrument GLAST is investigated using a detailed Monte Carlo simulation of the complete detector.

  12. Gamma-ray transients and related astrophysical phenomena

    International Nuclear Information System (INIS)

    Lingenfelter, R.E.; Hudson, H.S.; Worrall, D.M.

    1982-01-01

    The workshop covered the study of the explosive phenomena responsible for the various gamma ray transients. X-ray burster observations and theories were also reviewed with emphasis on their relationship to gamma ray bursts. Recent observational data, particularly from the SMM, HEAO, and VENERA satellites made the workshop especially timely. Major headings include: gamma-ray transients, x-ray bursts, solar transients, and instrumental concepts. Individual items from the workshop were prepared separately for the data base

  13. Discovery of the Optical Counterparts to Four Energetic Fermi Millisecond Pulsars

    NARCIS (Netherlands)

    Breton, R.P.; van Kerkwijk, M.H.; Roberts, M.S.E.; Hessels, J.W.T.; Camilo, F.; McLaughlin, M.A.; Ransom, S.M.; Ray, P.S.; Stairs, I.H.

    2013-01-01

    In the last few years, over 43 millisecond radio pulsars have been discovered by targeted searches of unidentified γ-ray sources found by the Fermi Gamma-Ray Space Telescope. A large fraction of these millisecond pulsars are in compact binaries with low-mass companions. These systems often show

  14. Very high energy gamma ray astrophysics

    International Nuclear Information System (INIS)

    Lamb, R.C.; Lewis, D.A.

    1990-02-01

    Our scientific goal is to discover and study by means of gamma-ray astronomy those regions of the universe where particles are accelerated to extreme energies. The atmospheric Cherenkov technique provides a unique and potentially sensitive window in the region of 10 11 to approximately 10 14 eV for this purpose. The Whipple Observatory Collaboration is currently engaged in the development of a Cherenkov camera which has the ultimate capability of distinguishing gamma-ray showers from the numerous cosmic-ray background showers by imaging the Cherenkov light from each shower. We have recently demonstrated the potential of the imaging technique with our 18 sigma detection of TeV photons from the Crab Nebula using a camera of 10 elements, pixel spacing 0.25 degrees. This detection represents a factor of 10 improvement in sensitivity compared to a non-imaging detector. The next step in the development of the detector is to obtain a second large reflector, similar to the present 10 meter instrument, for stereoscopic viewing of showers. This project, named GRANITE, is now approved by DOE. With GRANITE it should be possible to probe more deeply in space by a factor of 7, and to fully investigate the possibility of new physics which has been suggested by reports of anomalous radiation from Hercules X-1. 18 refs

  15. Spectra of {gamma} rays feeding superdeformed bands

    Energy Technology Data Exchange (ETDEWEB)

    Lauritsen, T.; Khoo, T.L.; Henry, R.G. [and others

    1995-08-01

    The spectrum of {gamma}rays coincident with SD transitions contains the transitions which populate the SD band. This spectrum can provide information on the feeding mechanism and on the properties (moment of inertia, collectivity) of excited SD states. We used a model we developed to explain the feeding of SD bands, to calculate the spectrum of feeding {gamma}rays. The Monte Carlo simulations take into account the trigger conditions present in our Eurogam experiment. Both experimental and theoretical spectra contain a statistical component and a broad E2 peak (from transitions occurring between excited states in the SD well). There is good resemblance between the measured and calculated spectra although the calculated multiplicity of an E2 bump is low by {approximately}30%. Work is continuing to improve the quality of the fits, which will result in a better understanding of excited SD states. In addition, a model for the last steps, which cool the {gamma} cascade into the SD yrast line, needs to be developed. A strong M1/E2 low-energy component, which we believe is responsible for this cooling, was observed.

  16. Observation of gamma-ray bursts with GINGA

    International Nuclear Information System (INIS)

    Murakami, Toshio; Fujii, Masami; Nishimura, Jun

    1989-01-01

    Gamma-ray Burst Detector System (GBD) on board the scientific satellite 'GINGA' which was launched on Feb. 5, 1987, was realized as an international cooperation between ISAS and LANL. It has recorded more than 40 Gamma-Ray Burst candidates during 20 months observation. Although many observational evidences were accumulated in past 20 years after the discovery of gamma-ray burst by LANL scientists, there are not enough evidence to determine the origin and the production mechanism of the gamma-ray burst. GBD consists of a proportional counter and a NaI scintillation counter so that it became possible to observe energy spectrum of the gamma-ray burst with high energy resolution over wide range of energy (1.5-380 keV) together with high time resolution. As the result of observation, the following facts are obtained: (1) A large fraction of observed gamma-ray bursts has a long X-ray tail after the harder part of gamma-ray emission has terminated. (2) Clear spectral absorption features with harmonic in energy was observed in some of the energy spectrum of gamma-ray bursts. These evidences support the hypothesis that the strongly magnetized neutron star is the origin of gamma-ray burst. (author)

  17. GRAP, Gamma-Ray Level-Scheme Assignment

    International Nuclear Information System (INIS)

    Franklyn, C.B.

    2002-01-01

    1 - Description of program or function: An interactive program for allocating gamma-rays to an energy level scheme. Procedure allows for searching for new candidate levels of the form: 1) L1 + G(A) + G(B) = L2; 2) G(A) + G(B) = G(C); 3) G(A) + G(B) = C (C is a user defined number); 4) L1 + G(A) + G(B) + G(C) = L2. Procedure indicates intensity balance of feed and decay of each energy level. Provides for optimization of a level energy (and associated error). Overall procedure allows for pre-defining of certain gamma-rays as belonging to particular regions of the level scheme, for example, high energy transition levels, or due to beta- decay. 2 - Method of solution: Search for cases in which the energy difference between two energy levels is equal to a gamma-ray energy within user-defined limits. 3 - Restrictions on the complexity of the problem: Maximum number of gamma-rays: 999; Maximum gamma ray energy: 32000 units; Minimum gamma ray energy: 10 units; Maximum gamma-ray intensity: 32000 units; Minimum gamma-ray intensity: 0.001 units; Maximum number of levels: 255; Maximum level energy: 32000 units; Minimum level energy: 10 units; Maximum error on energy, intensity: 32 units; Minimum error on energy, intensity: 0.001 units; Maximum number of combinations: 6400 (ca); Maximum number of gamma-ray types : 127

  18. Gamma-ray spectroscopy on irradiated fuel rods

    International Nuclear Information System (INIS)

    Terremoto, Luis Antonio Albiac

    2009-01-01

    The recording of gamma-ray spectra along an irradiated fuel rod allows the fission products to be qualitatively and quantitatively examined. Among all nondestructive examinations performed on irradiated fuel rods by gamma-ray spectroscopy, the most comprehensive one is the average burnup measurement, which is quantitative. Moreover, burnup measurements by means of gamma-ray spectroscopy are less time-consuming and waste-generating than burnup measurements by radiochemical, destructive methods. This work presents the theoretical foundations and experimental techniques necessary to measure, using nondestructive gamma-ray spectroscopy, the average burnup of irradiated fuel rods in a laboratory equipped with hot cells. (author)

  19. X-ray echoes from gamma-ray bursts

    International Nuclear Information System (INIS)

    Dermer, C.D.; Hurley, K.C.; Hartmann, D.H.

    1991-01-01

    The identification of an echo of reflected radiation in time histories of gamma-ray burst spectra can provide important information about the existence of binary companions or accretion disks in gamma-ray burst systems. Because of the nature of Compton scattering, the spectrum of the echo will be attenuated at gamma-ray energies compared with the spectrum of the primary burst emission. The expected temporal and spectral signatures of the echo and a search for such echoes are described, and implications for gamma-ray burst models are discussed. 35 refs

  20. Fermi Large Area Telescope Bright Gamma-ray Source List

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, Aous A.; /Naval Research Lab, Wash., D.C.; Ackermann, M.; /KIPAC, Menlo Park /SLAC; Ajello, M.; /KIPAC, Menlo Park /SLAC; Atwood, W.B.; /UC, Santa Cruz; Axelsson, M.; /Stockholm U., OKC /Stockholm U.; Baldini, L.; /INFN, Pisa; Ballet, J.; /DAPNIA, Saclay; Band, D.L.; /NASA, Goddard /NASA, Goddard; Barbiellini, Guido; /INFN, Trieste /Trieste U.; Bastieri, Denis; /INFN, Padua /Padua U.; Bechtol, K.; /KIPAC, Menlo Park /SLAC; Bellazzini, R.; /INFN, Pisa; Berenji, B.; /KIPAC, Menlo Park /SLAC; Bignami, G.F.; /Pavia U.; Bloom, Elliott D.; /KIPAC, Menlo Park /SLAC; Bonamente, E.; /INFN, Perugia /Perugia U.; Borgland, A.W.; /KIPAC, Menlo Park /SLAC; Bregeon, J.; /INFN, Pisa; Brigida, M.; /Bari U. /INFN, Bari; Bruel, P.; /Ecole Polytechnique; Burnett, Thompson H.; /Washington U., Seattle /Bari U. /INFN, Bari /KIPAC, Menlo Park /SLAC /IASF, Milan /IASF, Milan /DAPNIA, Saclay /ASDC, Frascati /INFN, Perugia /Perugia U. /KIPAC, Menlo Park /SLAC /George Mason U. /Naval Research Lab, Wash., D.C. /NASA, Goddard /KIPAC, Menlo Park /SLAC /INFN, Perugia /Perugia U. /KIPAC, Menlo Park /SLAC /Montpellier U. /Sonoma State U. /Stockholm U., OKC /Royal Inst. Tech., Stockholm /Stockholm U. /KIPAC, Menlo Park /SLAC /ASDC, Frascati /NASA, Goddard /Maryland U. /Naval Research Lab, Wash., D.C. /INFN, Trieste /Pavia U. /Bari U. /INFN, Bari /KIPAC, Menlo Park /SLAC /UC, Santa Cruz /KIPAC, Menlo Park /SLAC /KIPAC, Menlo Park /SLAC /KIPAC, Menlo Park /SLAC /Montpellier U. /Bari U. /INFN, Bari /Ecole Polytechnique /NASA, Goddard; /more authors..

    2009-05-15

    Following its launch in 2008 June, the Fermi Gamma-ray Space Telescope (Fermi) began a sky survey in August. The Large Area Telescope (LAT) on Fermi in three months produced a deeper and better resolved map of the {gamma}-ray sky than any previous space mission. We present here initial results for energies above 100 MeV for the 205 most significant (statistical significance greater than {approx}10{sigma}) {gamma}-ray sources in these data. These are the best characterized and best localized point-like (i.e., spatially unresolved) {gamma}-ray sources in the early mission data.

  1. Very high-energy {gamma}-ray observations of the Crab nebula and other potential sources with the GRAAL experiment

    Energy Technology Data Exchange (ETDEWEB)

    Arqueros, F.A.; Ballestrin, J.; Berenguel, M.; Borque, D.M.; Camacho, E.F.; Diaz, M.; Enriquez, R.; Gebauer, H.J.; Plaga, R.

    2001-07-01

    The Gamma Ray Astronomy at Almeria (GRAAL) experiment uses 63 heliostat-mirrors with a total mirror area of {approx}2500 m''2 from the CESA-1 field to collect Cherenkov light from air showers. The detector is located in a central solar tower and detects photon-induced showers with an energy threshold of 250{+-}110 GeV and an asymptotic effective detection area of about 15000 m''2. Data sets taken in the period September 1999-September 2000 in the direction of the Crab pulsar and the active galaxy 3C 454.3 were analysed for high energy {gamma}-ray emission. Evidence for {gamma}-ray flux from the Crab pulsar with an integral flux of 2.2{+-}0.4 (stat) ''1.9{sub 1}.5 (syst x 10''-9 cm''-2 s''-1) above threshold and a significance of 4.5 {sigma} in a total (usable) observing time of 7 hours and 10 minutes on source was found. No evidence for emission from the other sources was seen. The effect of the field-of-view restricted to the central part of a detected air shower on the lateral distribution and iming properties of Cherenkov light and their effect on an efficient {gamma}-hadron separation are discussed. (Author) 6 refs.

  2. Discovery of a Nonblazar Gamma-Ray Transient Source Near the Galactic Plane: GRO J1838-04

    Science.gov (United States)

    Tavani, M.; Oliversen, Ronald (Technical Monitor)

    2001-01-01

    We report the discovery of a remarkable gamma-ray transient source near the Galactic plane, GRO J1838-04. This source was serendipitously discovered by EGRET in 1995 June with a peak intensity of approx. (4 +/- 1) x 10(exp -6) photons/sq cm s (for photon energies larger than 100 MeV) and a 5.9 sigma significance. At that time, GRO J1838-04 was the second brightest gamma-ray source in the sky. A subsequent EGRET pointing in 1995 late September detected the source at a flux smaller than its peak value by a factor of approx. 7. We determine that no radio-loud spectrally flat blazar is within the error box of GRO J1838-04. We discuss the origin of the gamma-ray transient source and show that interpretations in terms of active galactic nuclei or isolated pulsars are highly problematic. GRO J1838-04 provides strong evidence for the existence of a new class of variable gamma-ray sources.

  3. Pulsar Wind Nebulae and Cosmic Rays: A Bedtime Story

    Energy Technology Data Exchange (ETDEWEB)

    Weinstein, A.

    2014-11-15

    The role pulsar wind nebulae play in producing our locally observed cosmic ray spectrum remains murky, yet intriguing. Pulsar wind nebulae are born and evolve in conjunction with SNRs, which are favored sites of Galactic cosmic ray acceleration. As a result they frequently complicate interpretation of the gamma-ray emission seen from SNRs. However, pulsar wind nebulae may also contribute directly to the local cosmic ray spectrum, particularly the leptonic component. This paper reviews the current thinking on pulsar wind nebulae and their connection to cosmic ray production from an observational perspective. It also considers how both future technologies and new ways of analyzing existing data can help us to better address the relevant theoretical questions. A number of key points will be illustrated with recent results from the VHE (E > 100 GeV) gamma-ray observatory VERITAS.

  4. HAWC Observations Strongly Favor Pulsar Interpretations of the Cosmic-Ray Positron Excess

    Energy Technology Data Exchange (ETDEWEB)

    Hooper, Dan [Fermilab; Cholis, Ilias [Johns Hopkins U.; Linden, Tim [Ohio State U., CCAPP; Fang, Ke [Maryland U.

    2017-11-17

    Recent measurements of the Geminga and B0656+14 pulsars by the gamma-ray telescope HAWC (along with earlier measurements by Milagro) indicate that these objects generate significant fluxes of very high-energy electrons. In this paper, we use the very high-energy gamma-ray intensity and spectrum of these pulsars to calculate and constrain their expected contributions to the local cosmic-ray positron spectrum. Among models that are capable of reproducing the observed characteristics of the gamma-ray emission, we find that pulsars invariably produce a flux of high-energy positrons that is similar in spectrum and magnitude to the positron fraction measured by PAMELA and AMS-02. In light of this result, we conclude that it is very likely that pulsars provide the dominant contribution to the long perplexing cosmic-ray positron excess.

  5. Observation of solar gamma-ray by Hinotori

    International Nuclear Information System (INIS)

    Yoshimori, Masato; Okudaira, Kiyoaki; Hirashima, Yo; Kondo, Ichiro.

    1982-01-01

    The solar gamma-ray emitted by solar flare was observed. The gamma-ray is the electromagnetic radiation with the energy more than 300 keV. The line gamma-ray intensity and the time profile were observed. The gamma-ray detector CsI (Tl) was loaded on Hinotori, and the observed gamma-ray was analyzed by a multi-channel analyzer. The observed line gamma-ray was the radiation from Fe-56 and Ne-20. The line gamma-ray from C-12 and O-16 was also seen. These gamma-ray is the direct evidence of the nuclear reaction on the sun. The observed spectrum suggested the existence of the lines from Mg-24 and Si-28. The intensity of the 2.22 MeV gamma-line was small. This fact showed that the origin of this line was different from other nuclear gamma-ray. Two kinds of hard X-ray bursts were detected. The one was impulsive burst, and the other was gradual burst. There was no time difference between the hard X-ray and the gamma-ray of the impulsive burst. The impulsive burst may be explained by the beam model. The delay of time profile in the high energy gamma-ray of the gradual burst was observed. This means that the time when accelerated electrons cause bremsstrahlung depends on the electron energy. The long trapping of electrons at the top of magnetic loop is suggested. (Kato, T.)

  6. GROSS- GAMMA RAY OBSERVATORY ATTITUDE DYNAMICS SIMULATOR

    Science.gov (United States)

    Garrick, J.

    1994-01-01

    The Gamma Ray Observatory (GRO) spacecraft will constitute a major advance in gamma ray astronomy by offering the first opportunity for comprehensive observations in the range of 0.1 to 30,000 megaelectronvolts (MeV). The Gamma Ray Observatory Attitude Dynamics Simulator, GROSS, is designed to simulate this mission. The GRO Dynamics Simulator consists of three separate programs: the Standalone Profile Program; the Simulator Program, which contains the Simulation Control Input/Output (SCIO) Subsystem, the Truth Model (TM) Subsystem, and the Onboard Computer (OBC) Subsystem; and the Postprocessor Program. The Standalone Profile Program models the environment of the spacecraft and generates a profile data set for use by the simulator. This data set contains items such as individual external torques; GRO spacecraft, Tracking and Data Relay Satellite (TDRS), and solar and lunar ephemerides; and star data. The Standalone Profile Program is run before a simulation. The SCIO subsystem is the executive driver for the simulator. It accepts user input, initializes parameters, controls simulation, and generates output data files and simulation status display. The TM subsystem models the spacecraft dynamics, sensors, and actuators. It accepts ephemerides, star data, and environmental torques from the Standalone Profile Program. With these and actuator commands from the OBC subsystem, the TM subsystem propagates the current state of the spacecraft and generates sensor data for use by the OBC and SCIO subsystems. The OBC subsystem uses sensor data from the TM subsystem, a Kalman filter (for attitude determination), and control laws to compute actuator commands to the TM subsystem. The OBC subsystem also provides output data to the SCIO subsystem for output to the analysts. The Postprocessor Program is run after simulation is completed. It generates printer and CRT plots and tabular reports of the simulated data at the direction of the user. GROSS is written in FORTRAN 77 and

  7. Operating experience with gamma ray irradiators

    International Nuclear Information System (INIS)

    Fraser, F.M.; Ouwerkerk, T.

    1980-01-01

    The experience of Atomic Energy of Canada, Limited (AECL) with radioisotopes dates back to the mid-1940s when radium was marketed for medical purposes. Cobalt-60 came on the scene in 1949 and within a few years a thriving business in cancer teletherapy machines and research irradiators was developed. AECL's first full-scale cobalt-60 gamma ray sterilizer for medical products was installed in 1964. AECL now has over 50 plants and 30 million curies in service around the world. Sixteen years of design experience in cobalt-60 sources, radiation shielding, safety interlock systems, and source pass mechanisms have made gamma irradiators safe, reliable, and easy to operate. This proven technology is being applied in promising new fields such as sludge treatment and food preservation. Cesium-137 is expected to be extensively utilized as the gamma radiation source for these applications

  8. Gravitational wave: gamma-ray burst connections.

    Science.gov (United States)

    Hough, Jim

    2007-05-15

    After 35 years of experimental research, we are rapidly approaching the point at which gravitational waves (GWs) from astrophysical sources may be directly detected by the long-baseline detectors LIGO (USA), GEO 600 (Germany/UK), VIRGO (Italy/France) and TAMA 300 (Japan), which are now in or coming into operation.A promising source of GWs is the coalescence of compact binary systems, events which are now believed to be the origin of short gamma-ray bursts (GRBs). In this paper, a brief review of the state of the art in detector development and exploitation will be given, with particular relevance to a search for signals associated with GRBs, and plans for the future will be discussed.

  9. Gamma-ray burst theory after Swift.

    Science.gov (United States)

    Piran, Tsvi; Fan, Yi-Zhong

    2007-05-15

    Afterglow observations in the pre-Swift era confirmed to a large extend the relativistic blast wave model for gamma-ray bursts (GRBs). Together with the observations of properties of host galaxies and the association with (type Ic) SNe, this has led to the generally accepted collapsar origin of long GRBs. However, most of the afterglow data was collected hours after the burst. The X-ray telescope and the UV/optical telescope onboard Swift are able to slew to the direction of a burst in real time and record the early broadband afterglow light curves. These observations, and in particular the X-ray observations, resulted in many surprises. While we have anticipated a smooth transition from the prompt emission to the afterglow, many observed that early light curves are drastically different. We review here how these observations are changing our understanding of GRBs.

  10. New possibilities in prompt gamma ray spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Borderie, B; Barrandon, J N [Centre National de la Recherche Scientifique, 45 - Orleans-la-Source (France). Lab. du cyclotron; Pinault, J L [Bureau de Recherches Geologiques et Minieres (BRGM), 45 - Orleans (France)

    1977-01-01

    Prompt gamma ray spectrometry has been used as an analytical tool for many years. The high level of background noise does, however, remain a major problem with this technique. From simple theoretical consideration, conditions (particle, energy) were determined to reduce significantly the background noise under irradiation. Alpha particles of 3.5 MeV were chosen. Some fifty elements were studied, of which 24 gave interesting results. The detection limits obtained for a sample of niobium were as follows: approximately 1 ppm (10/sup -6/g/g) for the light elements Li, B, F and Na, and between 50 ppm and 1% for the others. Numerous applications may be envisaged in the geo- and cosmo-sciences.

  11. Dosimetry for terrestrial gamma-ray sources

    International Nuclear Information System (INIS)

    Abdullah, S.A.; Dickson, H.W.; Kerr, G.D.; Miah, M.F.K.; Perdue, P.T.

    1975-01-01

    Dose rates from natural radionuclides and 137 Cs in soils of the Oak Ridge area have been determined from in situ and core sample measurements. Information on soil composition, density, and moisture content and on the distribution of cesium in the soil was obtained from the core samples. Measurements of radionuclide concentrations in the samples were made with a 4 x 4 in. NaI detector. Gamma-ray spectroscopy using a lithium-drifted germanium (GeLi) detector has been applied to the determination of radionuclide concentrations in soil and the associated gamma dose rates above the earth plane. An unshielded GeLi detector placed about 1 m above the earth detects gamma radiation from an area of about 100 m 2 . The equipment and data processing procedure are briefly described

  12. New lithology compensated capture gamma ray system

    International Nuclear Information System (INIS)

    Peatross, R.F.

    1976-01-01

    The results of the HYDROCARBON* log after a series of field tests in which gamma rays resulting from thermal neutron capture were measured utilizing an energy analyzer and a scintillation counter of unique construction are reported. A brief discussion covers the nuclear physics required for an understanding of gamma spectral logging. Included in the explanation will be the effects of different atoms on neutrons and photons. The HYDROCARBON log utilizes these nuclear principles to record cased hole measurements and quantitatively distinguish possible productive zones from non-productive zones. Different field examples are illustrated showing the response to shaly sands, porosity and water salinity. Interpretation techniques are discussed both qualitatively and quantitatively. The HYDROCARBON log has proven to be a reliable device in the determination of water saturation in sands behind casing even when shale content and porosity are not well known. This technique is also valuable in the location of the present position of gas--oil contacts and water levels

  13. A review of gamma ray bursts

    CERN Document Server

    Rees, Martin J

    2000-01-01

    Gamma-ray bursts, an enigma for more than 25 years, are now coming into focus. They involve extraordinary power outputs, and highly relativistic dynamics. The 'trigger' involves stellar-mass compact objects. The most plausible progenitors, ranging from neutron star binary mergers to collapsars (sometimes called 'hypernovae') eventually lead to the formation of a black hole with a torus of hot neutron-density material around it, the extractable energy being up to 10 sup 5 sup 4 ergs. Magnetic fields may exceed 10 sup 1 sup 5 G and particles may be accelerated up to > or approx. 10 sup 2 sup 0 eV. Details of the afterglow may be easier to understand than the initial trigger. Bursts at very high redshift can be astronomically-important as probes of the distant universe.

  14. Gamma-ray induced doppler broadening

    International Nuclear Information System (INIS)

    Robinson, S.J.

    1992-01-01

    The ultra high resolving power of the GAMS4 double-flat crystal spectrometer (M.S. Dewey et al Nucl. Instrum. Methods A 284 (1989) 151.) has been used to observe the Doppler broadening of gamma-rays emitted by nuclei recoiling at speeds as low as 10 -6 c. Such recoils may be induced by the previous emission of gamma-radiation following thermal neutron capture. If the population mechanism of an excited state is known (or can be approximated) and the slowing down mechanism can be modeled, then this technique can be used to extract the lifetime of excited nuclear states. The combination of this technique and the neutron capture reaction allows the study of states which cannot necessarily be accessed by other means. This has allowed the resolution of a number of long standing questions in low-spin nuclear structure. The basis of the technique is discussed and a number of examples given

  15. Gamma-Ray Bursts: A Radio Perspective

    Directory of Open Access Journals (Sweden)

    Poonam Chandra

    2016-01-01

    Full Text Available Gamma-ray bursts (GRBs are extremely energetic events at cosmological distances. They provide unique laboratory to investigate fundamental physical processes under extreme conditions. Due to extreme luminosities, GRBs are detectable at very high redshifts and potential tracers of cosmic star formation rate at early epoch. While the launch of Swift and Fermi has increased our understanding of GRBs tremendously, many new questions have opened up. Radio observations of GRBs uniquely probe the energetics and environments of the explosion. However, currently only 30% of the bursts are detected in radio bands. Radio observations with upcoming sensitive telescopes will potentially increase the sample size significantly and allow one to follow the individual bursts for a much longer duration and be able to answer some of the important issues related to true calorimetry, reverse shock emission, and environments around the massive stars exploding as GRBs in the early Universe.

  16. Gamma-Ray Burst Prompt Correlations

    Directory of Open Access Journals (Sweden)

    M. G. Dainotti

    2018-01-01

    Full Text Available The mechanism responsible for the prompt emission of gamma-ray bursts (GRBs is still a debated issue. The prompt phase-related GRB correlations can allow discriminating among the most plausible theoretical models explaining this emission. We present an overview of the observational two-parameter correlations, their physical interpretations, and their use as redshift estimators and possibly as cosmological tools. The nowadays challenge is to make GRBs, the farthest stellar-scaled objects observed (up to redshift z=9.4, standard candles through well established and robust correlations. However, GRBs spanning several orders of magnitude in their energetics are far from being standard candles. We describe the advances in the prompt correlation research in the past decades, with particular focus paid to the discoveries in the last 20 years.

  17. Nuclear gamma ray lines from supernovae

    International Nuclear Information System (INIS)

    Jardim, J.O.D.

    1980-01-01

    From theoretical considerations of the behaviour of gamma ray line fluxes occurring after a supernova explosion, the 1.156 and 0.847 MeV lines are seen to be the most likely to be observed. The 1.156 MeV line has been previously observed by other investigators. Observations of the 0.847 MeV line, and 1.332, 1.173 and 0.059 MeV lines using a Ge(Li) telescope aboard a stratospheric balloon which was flown in Brazil in 1977 are reported. The observation using a NaI(Tl) detector of a line in the energy interval 1.5 - 1.6 MeV, which may be due to 0 18 (p,p') 0 18 sup (*) reaction is also reported. (Author) [pt

  18. Gamma ray induced somatic mutations in rose

    International Nuclear Information System (INIS)

    Datta, S.K.

    1989-01-01

    Budwood of 32 rose cultivars (Rosa spp.) was exposed to 3-4 krad of gamma rays and eyes were grafted on Rosa indica var. odorata root stock. Radiosensitivity with respect to sprouting, survival and plant height, and mutation frequency varied with the cultivar and dose of gamma rays. Somatic mutations in flower colour/shape were detected as chimera in 21 cultivars. The size of the mutant sector varied from a narrow streak on a petal to a whole flower and from a portion of a branch to an entire branch. 14 mutants were detected in M 1 V 1 , four in M 1 V 2 and three in M 1 V 3 . Maximum number of mutations was detected following 3 krad treatment. Eyes from mutant branches were grafted again on root stock and non-chimeric mutants were aimed at by vegetative propagation. Mutants from 11 cultivars only could be isolated in pure form. Isolation of non-chimeric mutants sometimes is difficult due to weak growth of a mutant branch. In such a case, all normal looking branches are removed to force a better growth of the mutant branch. It is advisable to maintain irradiated plants at least for four years with drastic pruning in each year. Nine mutants viz. 'Sharada', 'Sukumari', 'Tangerine Contempo', 'Yellow Contempo', 'Pink Contempo', 'Striped Contempo', 'Twinkle', 'Curio' and 'Light Pink Prize' have already been released as new cultivars for commercialization [ref. MBNL No. 23 and 31] and others are being multiplied and assessed. The mutation spectrum appears to be wider for the cultivars 'Contempo' and 'Imperator'. Pigment composition of the original variety is relevant for the kind of flower colour mutations that can be induced

  19. High dose gamma-ray standard

    International Nuclear Information System (INIS)

    Macrin, R.; Moraru, R.

    1999-01-01

    The high gamma-ray doses produced in a gamma irradiator are used, mainly, for radiation processing, i.e. sterilization of medical products, processing of food, modifications of polymers, irradiation of electronic devices, a.s.o. The used absorbed doses depend on the application and cover the range 10 Gy to 100 MGy. The regulations in our country require that the response of the dosimetry systems, used for the irradiation of food and medical products, be calibrated and traceable to the national standards. In order to be sure that the products receive the desired absorbed dose, appropriate dosimetric measurements must be performed, including the calibration of the dosemeters and their traceability to the national standards. The high dose gamma-ray measurements are predominantly based on the use of reference radiochemical dosemeters. Among them the ferrous sulfate can be used as reference dosemeter for low doses (up to 400 Gy) but due to its characteristics it deserves to be considered a standard dosemeter and to be used for transferring the conventional absorbed dose to other chemical dosemeters used for absorbed doses up to 100 MGy. The study of the ferrous sulfate dosemeter consisted in preparing many batches of solution by different operators in quality assurance conditions and in determining for all batches the linearity, the relative intrinsic error, the repeatability and the reproducibility. The principal results are the following: the linear regression coefficient: 0.999, the relative intrinsic error: max.6 %, the repeatability (for P* = 95 %): max.3 %, the reproducibility (P* = 95%): max.5 %. (authors)

  20. Activation of wine bentonite with gamma rays

    International Nuclear Information System (INIS)

    Goranov, N.; Antonov, M.

    1997-01-01

    The action of gamma rays on wine bentonite as well as influence of its adsorption and technologic qualities on the composition and stability of wines against protein darkening and precipitation has been studied. The experiments were carried out with wine bentonite produced in the firm Bentonite and irradiated with doses of 0.4, 0.6, 0.8 and 1.0 MR. White and red wines have been treated with irradiated bentonite under laboratory conditions at 1.0 g/dm 3 . All samples are treated at the same conditions. The flocculation rate of the sediment was determined visually. Samples have been taken 24 h later from the cleared wine layers. The following parameters have been determined: clarification, filtration rate, phenolic compounds, calcium, colour intensity, total extracted substances, etc. The volume of the sediment has been determined also. The control samples have been taken from the same unirradiated wines. The results showed better and faster clarification in on the third, the 20th and the 24th hours with using of gamma-irradiated at doses 0.8 and 1.0 MR. The sediment was the most compact and its volume - the smallest compared to the samples treated with bentonite irradiated with doses of 0.6 and 0.4 MR. This ensures a faster clarification and better filtration of treated wines. The bentonite activated with doses of 0.8 and 1.0 MR adsorbs the phenolic compounds and the complex protein-phenolic molecules better. In the same time it adsorbs less extracted substances compared to untreated bentonite and so preserves all organoleptic properties of wine. The irradiated bentonite adsorbs less the monomers of anthocyan compounds which ensures brighter natural colour of wine. The gamma-rays activation consolidates calcium in the crystal lattice of bentonite particles and in this way eliminates the formation of crystal precipitates

  1. A new processing technique for airborne gamma-ray data

    DEFF Research Database (Denmark)

    Hovgaard, Jens

    1997-01-01

    The mathematical-statistical background for at new technique for processing gamma-ray spectra is presented. The technique - Noise Adjusted Singular Value Decomposition - decomposes at set of gamma-ray spectra into a few basic spectra - the spectral components. The spectral components can be proce...

  2. Pulser injection with subsequent removal for gamma-ray spectrometry

    International Nuclear Information System (INIS)

    Hartwell, J.K.; Goodwin, S.G.; Johnson, L.O.; Killian, E.W.

    1990-01-01

    This patent describes a module for use with a gamma-ray spectroscopy system. The system includes a gamma-ray detector for detecting gamma-ray events and producing a signal representing the gamma-ray events, a converter responsive to the detector and capable of converting the signal to a spectrum, a storage memory responsive to the converter and capable of storing the spectrum at address locations in memory, and a pulser capable of injecting pulses into the signal produced by the detector. The module comprises: means for generating a logic pulse for controlling the pulser, the controlling means adapted for coupling to the pulser; means for generating separation of events logic to isolate the components of a combined gamma-ray---pulse spectrum, the separation of events logic means adapted for coupling to the converter and the storage memory with the capability of storing pulses at address locations in the storage memory separate from the gamma-ray events; means for receiving an imitating signal from the converter to generate a plurality of operations by the module; means for tracking variations in a gamma-ray---pulse spectrum brought on by external parameter changes; and means for interfacing with commercially developed gamma-ray spectrometry equipment

  3. Effectiveness of gamma ray irradiation and ethyl methane ...

    African Journals Online (AJOL)

    Survival rate and plantlet performance of DNKW001 in gamma ray + EMS 7uM treatment declined profoundly with increasing doses and LD50 was lower (104 Gy) than LD50 in gamma ray irradiation (177 Gy) alone. Variants of plantlets were detected in pre (white streaked leaf and bigger petiole with distorted leaf) and post ...

  4. Wolf-Rayet stars as gamma-ray burst progenitors

    NARCIS (Netherlands)

    Langer, N.; van Marle, A. -J; Yoon, S.C.

    2010-01-01

    It became clear in the last few years that long gamma-ray bursts are associated with the endpoints of massive star evolution. They occur in star forming regions at cosmological distances (Jakobsson et al., 2005), and are associated with supernova-type energies. The collapsar model explains gamma-ray

  5. The First Fermi-LAT Gamma-Ray Burst Catalog

    NARCIS (Netherlands)

    Ackermann, M.; et al., [Unknown; van der Horst, A.J.

    2013-01-01

    In three years of observations since the beginning of nominal science operations in 2008 August, the Large Area Telescope (LAT) on board the Fermi Gamma-Ray Space Telescope has observed high-energy (gsim 20 MeV) γ-ray emission from 35 gamma-ray bursts (GRBs). Among these, 28 GRBs have been detected

  6. Gamma ray bursts observed with WATCH‐EURECA

    DEFF Research Database (Denmark)

    Brandt, Søren; Lund, Niels; Castro-Tirado, A. J.

    1994-01-01

    The WATCH wide field x‐ray monitor has the capability of independently locating bright Gamma Ray Bursts to 1° accuracy. We report the preliminary positions of 12 Gamma Ray Bursts observed with the WATCH monitor flown on the ES spacecraft EURECA during its 11 month mission. Also the recurrence...

  7. The many phases of gamma-ray burst afterglows

    NARCIS (Netherlands)

    Leventis, K.

    2013-01-01

    Gamma-ray bursts are the brightest sources in the universe. Their afterglows have been observed for about 15 years now, and their study has greatly advanced our understanding of these, mysterious until recently, events. In a way, gamma-ray bursts can be seen as huge cosmic bombs which convert

  8. Gamma ray bursts: Current status of observations and theory

    International Nuclear Information System (INIS)

    Meegan, C.A.

    1990-04-01

    Gamma ray bursts display a wide range of temporal and spectral characteristics, but typically last several seconds and emit most of their energy in a low energy, gamma ray region. The burst sources appear to be isotropically distributed on the sky. Several lines of evidence suggest magnetic neutron stars as sources for bursts. A variety of energy sources and emission mechanisms are proposed

  9. Supernova sheds light on gamma-ray bursts

    CERN Multimedia

    2003-01-01

    On 29 March the HETE-II satellite detected the most violent explosion in the universe to date - an enormous burst of gamma rays. Observers across the world recorded and studied the event. It appears to prove that gamma ray bursts originate in supernovae (1 page)

  10. X and gamma ray backgroud observations in Antarctic

    International Nuclear Information System (INIS)

    Jayanthi, U.B.

    1988-01-01

    Atmospheric X amd gamma rays are products of complex electromagnetic interation between charged particles and atmospheric constituents. The latitudinal dependence of the cosmic rays secondaries, auroral and South Atlantic Anomaly phenomena produce flux variations, especially the later temporal flux variations. We propose to discuss these variations in relevance to balloon flight observations of X and gamma ray atmospheric background at polar latitudes. (author) [pt

  11. Jet simulations and gamma-ray burst afterglow jet breaks

    NARCIS (Netherlands)

    van Eerten, H.J.; Meliani, Z.; Wijers, R.A.M.J.; Keppens, R.

    2011-01-01

    The conventional derivation of the gamma-ray burst afterglow jet break time uses only the blast wave fluid Lorentz factor and therefore leads to an achromatic break. We show that in general gamma-ray burst afterglow jet breaks are chromatic across the self-absorption break. Depending on

  12. Jet simulations and gamma-ray burst afterglow jet breaks

    NARCIS (Netherlands)

    van Eerten, H. J.; Meliani, Z.; Wijers, R.A.M.J.; Keppens, R.

    2010-01-01

    The conventional derivation of the gamma-ray burst afterglow jet break time uses only the blast wave fluid Lorentz factor and therefore leads to an achromatic break. We show that in general gamma-ray burst afterglow jet breaks are chromatic across the self-absorption break. Depending on

  13. Observational techniques of gamma rays astronomy in low energy

    International Nuclear Information System (INIS)

    Costa, J.M. da.

    1982-02-01

    Due to the absorption of great part of the gamma-ray spectrum of cosmic origin, by the earth's atmosphere at heights above 20Km, gamma-ray astronomy achieved its full development only after the advent of the space age. Ballons and satellites are the space vehicles which have been used to transport gamma-ray telescopes to observational heights in the atmosphere, or out of it. The results of these experiments can determine the sources, the energy spectra and the intensities of the cosmic gamma-rays, and provide other important information of astrophysical interest. The detection of gamma-rays of cosmic origin is very difficult. The observational techniques used in gamma-ray astronomy are dependent on the energy range of the gamma-rays which one desires to detect. The most common telescopes of low energy gamma-ray astronomy (50KeV - 20MeV) use NaI(Tl) scintillators, or germanium diodes, as principal detectors, surrounded by an active shield (anticoincidence) of organic or inorganic scintillators. (Author) [pt

  14. Gamma Ray Tomographic Scan Method for Large Scale Industrial Plants

    International Nuclear Information System (INIS)

    Moon, Jin Ho; Jung, Sung Hee; Kim, Jong Bum; Park, Jang Geun

    2011-01-01

    The gamma ray tomography systems have been used to investigate a chemical process for last decade. There have been many cases of gamma ray tomography for laboratory scale work but not many cases for industrial scale work. Non-tomographic equipment with gamma-ray sources is often used in process diagnosis. Gamma radiography, gamma column scanning and the radioisotope tracer technique are examples of gamma ray application in industries. In spite of many outdoor non-gamma ray tomographic equipment, the most of gamma ray tomographic systems still remained as indoor equipment. But, as the gamma tomography has developed, the demand on gamma tomography for real scale plants also increased. To develop the industrial scale system, we introduced the gamma-ray tomographic system with fixed detectors and rotating source. The general system configuration is similar to 4 th generation geometry. But the main effort has been made to actualize the instant installation of the system for real scale industrial plant. This work would be a first attempt to apply the 4th generation industrial gamma tomographic scanning by experimental method. The individual 0.5-inch NaI detector was used for gamma ray detection by configuring circular shape around industrial plant. This tomographic scan method can reduce mechanical complexity and require a much smaller space than a conventional CT. Those properties make it easy to get measurement data for a real scale plant

  15. Bulk density calculations from prompt gamma ray yield

    International Nuclear Information System (INIS)

    Naqvi, A.A.; Nagadi, M.M.; Al-Amoudi, O.S.B.; Maslehuddin, M.

    2006-01-01

    Full text: The gamma ray yield from a Prompt Gamma ray Neutron Activation Analysis (PGNAA) setup is a linear function of element concentration and neutron flux in a the sample with constant bulk density. If the sample bulk density varies as well, then the element concentration and the neutron flux has a nonlinear correlation with the gamma ray yield [1]. The measurement of gamma ray yield non-linearity from samples and a standard can be used to estimate the bulk density of the samples. In this study the prompt gamma ray yield from Blast Furnace Slag, Fly Ash, Silica Fumes and Superpozz cements samples have been measured as a function of their calcium and silicon concentration using KFUPM accelerator-based PGNAA setup [2]. Due to different bulk densities of the blended cement samples, the measured gamma ray yields have nonlinear correlation with calcium and silicon concentration of the samples. The non-linearity in the yield was observed to increase with gamma rays energy and element concentration. The bulk densities of the cement samples were calculated from ratio of gamma ray yield from blended cement and that from a Portland cement standard. The calculated bulk densities have good agreement with the published data. The result of this study will be presented

  16. MAGNETIC STRUCTURES IN GAMMA-RAY BURST JETS PROBED BY GAMMA-RAY POLARIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Yonetoku, Daisuke; Murakami, Toshio; Morihara, Yoshiyuki; Takahashi, Takuya; Wakashima, Yudai; Yonemochi, Hajime; Sakashita, Tomonori; Fujimoto, Hirofumi; Kodama, Yoshiki [College of Science and Engineering, School of Mathematics and Physics, Kanazawa University, Kakuma, Kanazawa, Ishikawa 920-1192 (Japan); Gunji, Shuichi; Toukairin, Noriyuki [Department of Physics, Faculty of Science, Yamagata University, 1-4-12, Koshirakawa, Yamagata, Yamagata 990-8560 (Japan); Mihara, Tatehiro [Cosmic Radiation Laboratory, RIKEN, 2-1, Hirosawa, Wako City, Saitama 351-0198 (Japan); Toma, Kenji, E-mail: yonetoku@astro.s.kanazawa-u.ac.jp [Department of Earth and Space Science, Osaka University, Toyonaka 560-0043 (Japan)

    2012-10-10

    We report polarization measurements in two prompt emissions of gamma-ray bursts, GRB 110301A and GRB 110721A, observed with the gamma-ray burst polarimeter (GAP) on borad the IKAROS solar sail mission. We detected linear polarization signals from each burst with polarization degree of {Pi} = 70 {+-} 22% with statistical significance of 3.7{sigma} for GRB 110301A, and {Pi} = 84{sup +16}{sub -28}% with 3.3{sigma} confidence level for GRB 110721A. We did not detect any significant change of polarization angle. These two events had shorter durations and dimmer brightness compared with GRB 100826A, which showed a significant change of polarization angle, as reported in Yonetoku et al. Synchrotron emission model can be consistent with the data of the three GRBs, while the photospheric quasi-thermal emission model is not favored. We suggest that magnetic field structures in the emission region are globally ordered fields advected from the central engine.

  17. The supernova-gamma-ray burst-jet connection.

    Science.gov (United States)

    Hjorth, Jens

    2013-06-13

    The observed association between supernovae and gamma-ray bursts represents a cornerstone in our understanding of the nature of gamma-ray bursts. The collapsar model provides a theoretical framework for this connection. A key element is the launch of a bipolar jet (seen as a gamma-ray burst). The resulting hot cocoon disrupts the star, whereas the (56)Ni produced gives rise to radioactive heating of the ejecta, seen as a supernova. In this discussion paper, I summarize the observational status of the supernova-gamma-ray burst connection in the context of the 'engine' picture of jet-driven supernovae and highlight SN 2012bz/GRB 120422A--with its luminous supernova but intermediate high-energy luminosity--as a possible transition object between low-luminosity and jet gamma-ray bursts. The jet channel for supernova explosions may provide new insights into supernova explosions in general.

  18. Gamma-Ray Bursts: 4th Huntsville Symposium. Proceedings

    International Nuclear Information System (INIS)

    Meegan, C.A.; Preece, R.D.; Koshut, T.M.

    1998-01-01

    These proceedings represent papers presented at the Fourth Huntsville Gamma-Ray Bursts Symposium held in September, 1997 in Huntsville, Alabama, USA. This conference occurred at a crucial time in the history of the gamma-ray burst research. In early 1997, 30 years after the detection of the first gamma-ray burst by the Vela satellites, counterparts to bursts were finally detected at optical and radio wavelengths. The symposium attracted about 200 scientists from 16 countries. Some of the topics discussed include gamma-ray burst spectra, x-ray observations, optical observations, radio observations, host galaxies, shocks and afterglows and models of gamma-ray bursts. There were 183 papers presented, out of these, 16 have been abstracted for the Energy Science and Technology database

  19. Recent achievements in the field of gamma-ray bursts

    International Nuclear Information System (INIS)

    Lu Tan; Dai Zigao

    2001-01-01

    Recent progresses in the field of gamma-ray bursts is briefly introduced. Gamma-ray bursts are the most energetic explosion since the Big Bang of the universe. Within a few tens of seconds, the energy released in gamma-ray bursts could be several hundred times larger than that released form the sun in its whole life (about 10 billion years). The authors will first briefly discuss the observational facts, based on which the authors will discuss the standard fireball model, the dynamical behavior and evolution of gamma-ray bursts and their afterglows. Then, various observational phenomena that contradict the standard model are given and the importance of these post-standard effects are pointed out. The questions related to the energy source of gamma-ray bursts are still unanswered, and other important questions also remain to be solved

  20. Gamma-Ray imaging for nuclear security and safety: Towards 3-D gamma-ray vision

    Science.gov (United States)

    Vetter, Kai; Barnowksi, Ross; Haefner, Andrew; Joshi, Tenzing H. Y.; Pavlovsky, Ryan; Quiter, Brian J.

    2018-01-01

    The development of portable gamma-ray imaging instruments in combination with the recent advances in sensor and related computer vision technologies enable unprecedented capabilities in the detection, localization, and mapping of radiological and nuclear materials in complex environments relevant for nuclear security and safety. Though multi-modal imaging has been established in medicine and biomedical imaging for some time, the potential of multi-modal data fusion for radiological localization and mapping problems in complex indoor and outdoor environments remains to be explored in detail. In contrast to the well-defined settings in medical or biological imaging associated with small field-of-view and well-constrained extension of the radiation field, in many radiological search and mapping scenarios, the radiation fields are not constrained and objects and sources are not necessarily known prior to the measurement. The ability to fuse radiological with contextual or scene data in three dimensions, in analog to radiological and functional imaging with anatomical fusion in medicine, provides new capabilities enhancing image clarity, context, quantitative estimates, and visualization of the data products. We have developed new means to register and fuse gamma-ray imaging with contextual data from portable or moving platforms. These developments enhance detection and mapping capabilities as well as provide unprecedented visualization of complex radiation fields, moving us one step closer to the realization of gamma-ray vision in three dimensions.

  1. High-Energy Pulsar Models: Developments and New Questions

    Science.gov (United States)

    Venter, C.; Harding, A. K.

    2014-01-01

    The past few years have seen a major advance in observational knowledge of high-energy (HE) pulsars. The Fermi Large Area Telescope (LAT) and AGILE have increased the number of known gamma-ray pulsars by an order of magnitude, its members being divided roughly equally among millisecond pulsars (MSPs), young radio-loud pulsars, and young radio-quiet pulsars. Many new and diverse emission characteristics are being measured, while radio and X-ray follow-up observations increase the pulsar detection rate and enrich our multiwavelength picture of these extreme sources. The wealth of new data has provided impetus for further development and improvement of existing theoretical pulsar models. Geometric light curve (LC) modelling has uncovered three broad classes into which HE pulsars fall: those where the radio profile leads, is aligned with, or lags the gamma-ray profile. For example, the original MSP and original black widow system are members of the second class, requiring co-located emission regions and thereby breaking with traditional notions of radio emission origin. These models imply narrow accelerator gaps in the outer magnetosphere, indicating copious pair production even in MSP magnetospheres that were previously thought to be pair-starved. The increased quality and variety of the LCs necessitate construction of ever more sophisticated models. We will review progress in global magnetosphere solutions which specify a finite conductivity on field lines above the stellar surface, filling the gap between the standard vacuum and force-free (FF; plasma-filled) models. The possibility of deriving phase-resolved spectra for the brightest pulsars, coupled with the fact that the HE pulsar population is sizable enough to allow sampling of various pulsar geometries, will enable much more stringent testing of future radiation models. Reproduction of the observed phase-resolved behavior of this disparate group will be one of the next frontiers in pulsar science, impacting on

  2. Multiwavelength Study of Gamma-Ray Bright Blazars

    Science.gov (United States)

    Morozova, Daria; Larionov, V. M.; Hagen-Thorn, V. A.; Jorstad, S. G.; Marscher, A. P.; Troitskii, I. S.

    2011-01-01

    We investigate total intensity radio images of 6 gamma-ray bright blazars (BL Lac, 3C 279, 3C 273, W Com, PKS 1510-089, and 3C 66A) and their optical and gamma-ray light curves to study connections between gamma-ray and optical brightness variations and changes in the parsec-scale radio structure. We use high-resolution maps obtained by the BU group at 43 GHz with the VLBA, optical light curves constructed by the St.Petersburg State U. (Russia) team using measurements with the 0.4 m telescope of St.Petersburg State U. (LX200) and the 0.7 m telescope of the Crimean Astrophysical Observatory (AZT-8), and gamma-ray light curves, which we have constructed with data provided by the Fermi Large Area Telescope. Over the period from August 2008 to November 2009, superluminal motion is found in all 6 objects with apparent speed ranging from 2c to 40c. The blazars with faster apparent speeds, 3C 273, 3C 279, PKS 1510-089, and 3C 66A, exhibit stronger variability of the gamma-ray emission. There is a tendency for sources with sharply peaked gamma-ray flares to have faster jet speed than sources with gamma-ray light curves with no sharp peaks. Gamma-ray light curves with sharply peaked gamma-ray flares possess a stronger gamma-ray/optical correlations. The research at St.Petersburg State U. was funded by the Minister of Education and Science of the Russian Federation (state contract N#P123). The research at BU was funded in part by NASA Fermi Guest Investigator grant NNX08AV65G and by NSF grant AST-0907893. The VLBA is an instrument of the National Radio Astronomy Observatory, a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

  3. VHE gamma-rays from radio pulsars and cataclysmic variables. [PSR 1055-52; PSR 1509-58; PSR 1620-26; PSR 1747-46; PSR 1800-21; PSR 1818-04; PSR 1821-24; PSR 1822-09; PSR 1823-13; PSR 1855+09; PSR 1929+10; PSR 1957+20

    Energy Technology Data Exchange (ETDEWEB)

    De Jager, O.C.; Brink, C.; Meintjies, P.J.; Nel, H.I.; North, A.R.; Raubenheimer, B.C.; Van der Walt, D.J. (Potchefstroom Univ. for C.H.E. (South Africa). Dept. of Physics)

    1990-03-01

    We present the results of observations (above 1 TeV) of radio pulsars and cataclysmic variables with the Potchefstroom air Cerenkov facility. We were able to confirm our previous detection of PSR 1509-58 and the final significance is 1.7x10{sup -5}. A DC enhancement at the 10{sup -3} significance level was seen from the L{sub 4} Lagrange position in the PSR 1957+20 system. This result was confirmed by COS-B data. We were also able to detect the 5.4 ms pulsar PSR 1855+09 at a marginal significance level of 5%. However, the best and longest observation indicates non-uniformity at the 0.005 significance level. The TeV light curve resembles the radio light curve. The latter is also reminiscent of other millisecond pulsar observed above 1 TeV. The intermediate polar AEAQR (P = 33.08s) shows a period shift which is consistent with recent model predictions. However, the present significance of this results does not allow an unambiguous claim. (orig.).

  4. Characteristics of the telescope for high energy gamma-ray astronomy selected for definition studies on the Gamma Ray Observatory

    Science.gov (United States)

    Hughes, E. B.; Hofstadter, R.; Rolfe, J.; Johansson, A.; Bertsch, D. L.; Cruickshank, W. J.; Ehrmann, C. H.; Fichtel, C. E.; Hartman, R. C.; Kniffen, D. A.

    1980-01-01

    The high energy gamma-ray telescope selected for definition studies on the Gamma Ray Observatory provides a substantial improvement in observational capability over earlier instruments. It will have about 20 times more sensitivity, cover a much broader energy range, have considerably better energy resolution and provide a significantly improved angular resolution. The design and performance are described.

  5. Topics in High-Energy Astrophysics: X-ray Time Lags and Gamma-ray Flares

    Science.gov (United States)

    Kroon, John J.

    2016-03-01

    The Universe is host to a wide variety of high-energy processes that convert gravitational potential energy or rest-mass energy into non-thermal radiation such as bremsstrahlung and synchrotron. Prevailing models of X-ray emission from accreting Black Hole Binaries (BHBs) struggle to simultaneously fit the quiescent X-ray spectrum and the transients which result in the phenomenon known as X-ray time lags. And similarly, classical models of diffusive shock acceleration in pulsar wind nebulae fail to explain the extreme particle acceleration in very short timescales as is inferred from recent gamma-ray flares from the Crab nebula. In this dissertation, I develop new exact analytic models to shed light on these intriguing processes. I take a fresh look at the formation of X-ray time lags in compact sources using a new mathematical approach in which I obtain the exact Green's function solution. The resulting Green's function allows one to explore a variety of injection scenarios, including both monochromatic and broadband (bremsstrahlung) seed photon injection. I obtain the exact solution for the dependence of the time lags on the Fourier frequency, for both homogeneous and inhomogeneous clouds. The model can successfully reproduce both the observed time lags and the quiescent X-ray spectrum using a single set of coronal parameters. I show that the implied coronal radii in the new model are significantly smaller than those obtained in the Monte Carlo simulations, hence greatly reducing the coronal heating problem. Recent bright gamma-ray flares from the Crab nebula observed by AGILE and Fermi reaching GeV energies and lasting several days challenge the contemporary model for particle acceleration in pulsar wind nebulae, specifically the diffusive shock acceleration model. Simulations indicate electron/positron pairs in the Crab nebula pulsar wind must be accelerated up to PeV energies in the presence of ambient magnetic fields with strength B ~100 microG. No

  6. Fermi LAT Pulsed Detection of PSR J0737-3039A in the Double Pulsar System

    Science.gov (United States)

    Guillemot, L.; Kramer, M.; Johnson, T. J.; Craig, H. A.; Romani, R. W.; Venter, C.; Harding, A. K.; Ferdman, R. D.; Stairs, I. H.; Kerr, M.

    2013-01-01

    We report the Fermi Large Area Telescope discovery of gamma-ray pulsations from the 22.7 ms pulsar A in the double pulsar system J0737-3039A/B. This is the first mildly recycled millisecond pulsar (MSP) detected in the GeV domain. The 2.7 s companion object PSR J0737-3039B is not detected in gamma rays. PSR J0737-3039A is a faint gamma-ray emitter, so that its spectral properties are only weakly constrained; however, its measured efficiency is typical of other MSPs. The two peaks of the gamma-ray light curve are separated by roughly half a rotation and are well offset from the radio and X-ray emission, suggesting that the GeV radiation originates in a distinct part of the magnetosphere from the other types of emission. From the modeling of the radio and the gamma-ray emission profiles and the analysis of radio polarization data, we constrain the magnetic inclination alpha and the viewing angle zeta to be close to 90 deg., which is consistent with independent studies of the radio emission from PSR J0737-3039A. A small misalignment angle between the pulsar's spin axis and the system's orbital axis is therefore favored, supporting the hypothesis that pulsar B was formed in a nearly symmetric supernova explosion as has been discussed in the literature already.

  7. FERMI LAT PULSED DETECTION OF PSR J0737-3039A IN THE DOUBLE PULSAR SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Guillemot, L.; Kramer, M. [Max-Planck-Institut fuer Radioastronomie, Auf dem Huegel 69, D-53121 Bonn (Germany); Johnson, T. J. [National Research Council Research Associate, National Academy of Sciences, Washington, DC 20001 (United States); Craig, H. A.; Romani, R. W.; Kerr, M. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Venter, C. [Centre for Space Research, North-West University, Potchefstroom Campus, Private Bag X6001, 2520 Potchefstroom (South Africa); Harding, A. K. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Ferdman, R. D. [Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, The University of Manchester, M13 9PL (United Kingdom); Stairs, I. H., E-mail: guillemo@mpifr-bonn.mpg.de [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z1 (Canada)

    2013-05-10

    We report the Fermi Large Area Telescope discovery of {gamma}-ray pulsations from the 22.7 ms pulsar A in the double pulsar system J0737-3039A/B. This is the first mildly recycled millisecond pulsar (MSP) detected in the GeV domain. The 2.7 s companion object PSR J0737-3039B is not detected in {gamma} rays. PSR J0737-3039A is a faint {gamma}-ray emitter, so that its spectral properties are only weakly constrained; however, its measured efficiency is typical of other MSPs. The two peaks of the {gamma}-ray light curve are separated by roughly half a rotation and are well offset from the radio and X-ray emission, suggesting that the GeV radiation originates in a distinct part of the magnetosphere from the other types of emission. From the modeling of the radio and the {gamma}-ray emission profiles and the analysis of radio polarization data, we constrain the magnetic inclination {alpha} and the viewing angle {zeta} to be close to 90 Degree-Sign , which is consistent with independent studies of the radio emission from PSR J0737-3039A. A small misalignment angle between the pulsar's spin axis and the system's orbital axis is therefore favored, supporting the hypothesis that pulsar B was formed in a nearly symmetric supernova explosion as has been discussed in the literature already.

  8. GAMMA-RAY EMISSION FROM TWO BLAZARS BEHIND THE GALACTIC PLANE: B2013+370 AND B2023+336

    International Nuclear Information System (INIS)

    Kara, E.; Errando, M.; Aliu, E.; Mukherjee, R.; Max-Moerbeck, W.; Readhead, A. C. S.; Richards, J. L.; Böttcher, M.; Fortin, P.; Halpern, J. P.

    2012-01-01

    B2013+370 and B2023+336 are two blazars at low-galactic latitude that were previously proposed to be the counterparts for the EGRET unidentified sources 3EG J2016+3657 and 3EG J2027+3429. Gamma-ray emission associated with the EGRET sources has been detected by the Fermi Gamma-ray Space Telescope, and the two sources, 1FGL J2015.7+3708 and 1FGL J2027.6+3335, have been classified as unidentified in the 1 year catalog. This analysis of the Fermi Large Area Telescope (LAT) data collected during 31 months reveals that the 1FGL sources are spatially compatible with the blazars and are significantly variable, supporting the hypothesis of extragalactic origin for the gamma-ray emission. The gamma-ray light curves are compared with 15 GHz radio light curves from the 40 m telescope at the Owens Valley Radio Observatory. Simultaneous variability is seen in both bands for the two blazar candidates. The study is completed with the X-ray analysis of 1FGL J2015.7+3708 using Swift observations that were triggered in 2010 August by a Fermi-detected flare. The resulting spectral energy distribution shows a two-component structure typical of blazars. We also identify a second source in the field of view of 1FGL J2027.6+3335 with similar characteristics to the known LAT pulsars. This study gives solid evidence favoring blazar counterparts for these two unidentified EGRET and Fermi sources, supporting the hypothesis that a number of unidentified gamma-ray sources at low-galactic latitudes are indeed of extragalactic origin.

  9. Gamma ray sensitivity of superheated liquid

    International Nuclear Information System (INIS)

    Sawamura, Teruko; Sugiyama, Noriyuki; Narita, Masakuni

    2000-01-01

    The superheated drop detector (SDD) is composed of droplets of sensitive liquid with a low-boiling point and a medium supporting the dispersed droplets throughout the medium. The SDD has been mainly used for neutron dosimetry and recently also for gamma-rays. While for neutrons the conditions for bubble formation have been discussed, there has been little work for gamma-rays. We investigated the conditions for low LET radiation, such as protons and gamma-rays, and showed octafluoropropane (C 3 F 8 , boiling point -36.7degC) as advantageous liquid. The bubble formation condition is given by the energy density imparted from the charged particle to the sensitive liquid. The energy density requirement means that the energy must be deposited over a definite region length, effective to produce the vapor nucleus that becomes the visible bubble. Recently for γ-rays, Evans and Wang proposed the model that the vaporization was triggered by the energy deposition in a 'cluster' including many events in proximity in a superheated liquid. Measurements of the γ-ray sensitivity have not been sufficiently carried out and therefore the effective length or the cluster model has not been well-established. In this study the detection sensitivity was evaluated by measuring the life time of a liquid drop exposed to γ-rays. We developed a device trapping a superheated drop, where a single drop of test liquid was trapped and decompressed by an acoustic standing wave field. When a liquid drop with volume V[cm 3 ] is exposed to a γ-ray flux φ γ [cm -2 s -1 ], the average evaporation rate λ(T, P) [s -1 ] (T: temperature, P: decompressed pressure) is expressed as λ(T, P)=K γ Vφ γ (1), K γ [cm -1 ] is the γ-ray detection sensitivity per unit volume of the sensitive liquid and unit fluence. If the average rate of spontaneous evaporation is λ 0 (T, P), then the probability distribution of the life time t, the probability that t > τ, is expressed by X(τ)=exp{-(λ+λ 0 )

  10. Combination of e+/e- ratio from AMS-02 and gamma ray line from Fermi-LAT with implication for Dark Matter

    OpenAIRE

    Li, Shiyuan; Luo, Yonggang

    2013-01-01

    The precise AMS-02 data provide definite information for the e+/e- ratio in 100 - 350 GeV region. Assuming that the recent gamma ray line observed by Fermi-LAT experiment is product of dark matter in space and taken as input. We make a global fit for the AMS-02 e+/e- spectrum with both dark matter and pulsar contribution. For this spectrum over 130 GeV, pulsar is the dominant contribution. We also investigate the constrains on hadron production from dark matter annihilation.

  11. ICF gamma-ray reaction history diagnostics

    International Nuclear Information System (INIS)

    Herrmann, H W; Young, C S; Mack, J M; Kim, Y H; McEvoy, A; Evans, S; Sedillo, T; Batha, S; Schmitt, M; Wilson, D C; Langenbrunner, J R; Malone, R; Kaufman, M I; Cox, B C; Frogget, B; Tunnell, T W; Miller, E K; Ali, Z A; Stoeffl, W; Horsfield, C J

    2010-01-01

    Reaction history measurements, such as nuclear bang time and burn width, are fundamental components of diagnosing ICF implosions and will be employed to help steer the National Ignition Facility (NIF) towards ignition. Fusion gammas provide a direct measure of nuclear interaction rate (unlike x-rays) without being compromised by Doppler spreading (unlike neutrons). Gas Cherenkov Detectors that convert fusion gamma rays to UV/visible Cherenkov photons for collection by fast optical recording systems have established their usefulness in illuminating ICF physics in several experimental campaigns at OMEGA. In particular, bang time precision better than 25 ps has been demonstrated, well below the 50 ps accuracy requirement defined by the NIF. NIF Gamma Reaction History (GRH) diagnostics are being developed based on optimization of sensitivity, bandwidth, dynamic range, cost, and NIF-specific logistics, requirements and extreme radiation environment. Implementation will occur in two phases. The first phase consists of four channels mounted to the outside of the target chamber at ∼6 m from target chamber center (GRH-6m) coupled to ultra-fast photo-multiplier tubes (PMT). This system is intended to operate in the 10 13 -10 17 neutron yield range expected during the early THD campaign. It will have high enough bandwidth to provide accurate bang times and burn widths for the expected THD reaction histories (> 80 ps fwhm). Successful operation of the first GRH-6m channel has been demonstrated at OMEGA, allowing a verification of instrument sensitivity, timing and EMI/background suppression. The second phase will consist of several channels located just inside the target bay shield wall at 15 m from target chamber center (GRH-15m) with optical paths leading through the cement shield wall to well-shielded streak cameras and PMTs. This system is intended to operate in the 10 16 -10 20 yield range expected during the DT ignition campaign, providing higher temporal resolution

  12. ICF gamma-ray reaction history diagnostics

    Science.gov (United States)

    Herrmann, H. W.; Young, C. S.; Mack, J. M.; Kim, Y. H.; McEvoy, A.; Evans, S.; Sedillo, T.; Batha, S.; Schmitt, M.; Wilson, D. C.; Langenbrunner, J. R.; Malone, R.; Kaufman, M. I.; Cox, B. C.; Frogget, B.; Miller, E. K.; Ali, Z. A.; Tunnell, T. W.; Stoeffl, W.; Horsfield, C. J.; Rubery, M.

    2010-08-01

    Reaction history measurements, such as nuclear bang time and burn width, are fundamental components of diagnosing ICF implosions and will be employed to help steer the National Ignition Facility (NIF) towards ignition. Fusion gammas provide a direct measure of nuclear interaction rate (unlike x-rays) without being compromised by Doppler spreading (unlike neutrons). Gas Cherenkov Detectors that convert fusion gamma rays to UV/visible Cherenkov photons for collection by fast optical recording systems have established their usefulness in illuminating ICF physics in several experimental campaigns at OMEGA. In particular, bang time precision better than 25 ps has been demonstrated, well below the 50 ps accuracy requirement defined by the NIF. NIF Gamma Reaction History (GRH) diagnostics are being developed based on optimization of sensitivity, bandwidth, dynamic range, cost, and NIF-specific logistics, requirements and extreme radiation environment. Implementation will occur in two phases. The first phase consists of four channels mounted to the outside of the target chamber at ~6 m from target chamber center (GRH-6m) coupled to ultra-fast photo-multiplier tubes (PMT). This system is intended to operate in the 1013-1017 neutron yield range expected during the early THD campaign. It will have high enough bandwidth to provide accurate bang times and burn widths for the expected THD reaction histories (> 80 ps fwhm). Successful operation of the first GRH-6m channel has been demonstrated at OMEGA, allowing a verification of instrument sensitivity, timing and EMI/background suppression. The second phase will consist of several channels located just inside the target bay shield wall at 15 m from target chamber center (GRH-15m) with optical paths leading through the cement shield wall to well-shielded streak cameras and PMTs. This system is intended to operate in the 1016-1020 yield range expected during the DT ignition campaign, providing higher temporal resolution for the

  13. Prompt gamma-ray analysis of steel slag in concrete

    International Nuclear Information System (INIS)

    Naqvi, Akhtar Abbas; Garwan, Muhammad Ahmad; Nagadi, Mahmoud Mohammad; Rehman, Khateeb-ur; Raashid, Mohammad; Masalehuddin Mohiuddin, Mohammad; Al-Amoudi, Omar Saeed Baghabra

    2009-01-01

    Blast furnace slag (BFS) is added to Portland cement concrete to increase its durability, particularly its corrosion resistance. Monitoring the concentration of BFS in concrete for quality control purposes is desired. In this study, the concentration of BFS in concrete was measured by utilizing an accelerator-based prompt gamma-ray neutron activation analysis (PGNAA) setup. The optimum size of the BFS cement concrete specimen that produces the maximum intensity of gamma rays at the detector location was calculated through Monte Carlo simulations. The simulation results were experimentally validated through the gamma-ray yield measurement from BFS cement concrete specimens having different radii. The concentration of BFS in the cement concrete specimens was assessed through calcium and silicon gamma-ray yield measurement from cement concrete specimens containing 5 to 80 wt% BFS. The yield of calcium gamma rays decreases with increasing BFS concentration in concrete while the yield of silicon gamma rays increases with increasing BFS concentration in concrete. The calcium-to-silicon gamma-ray yield ratio has an inverse relation with BFS concentration in concrete. (author)

  14. Guidelines for radioelement mapping using gamma ray spectrometry data

    International Nuclear Information System (INIS)

    2003-07-01

    The purpose of the report is to provide an up-to-date review on the use of gamma ray spectrometry for radioelement mapping and, where appropriate, provide guidelines on the correct application of the method. It is a useful training guide for those new to the method. It gives a broad coverage of all aspects of the gamma ray method and provides a comprehensive list of references. The report gives an overview of the theoretical background to radioactivity and the gamma ray spectrometric method followed by a review of the application of the method to mapping the radiation environment. A brief outline is presented of the principles of radioactivity, the interaction of gamma rays with matter, instrumentation applied to the measurement of gamma rays, and the quantities and units in contemporary use in gamma ray spectrometry. This is followed by a review of the fundamentals of gamma ray spectrometry, and its application to ground and airborne mapping. Covered are also all aspects of the calibration and data processing procedures required for estimating the ground concentrations of the radioelements. The procedures required for the recovery of older survey data are also presented as well as an overview of data presentation and integration for mapping applications

  15. Design Study for Direction Variable Compton Scattering Gamma Ray

    Science.gov (United States)

    Kii, T.; Omer, M.; Negm, H.; Choi, Y. W.; Kinjo, R.; Yoshida, K.; Konstantin, T.; Kimura, N.; Ishida, K.; Imon, H.; Shibata, M.; Shimahashi, K.; Komai, T.; Okumura, K.; Zen, H.; Masuda, K.; Hori, T.; Ohgaki, H.

    2013-03-01

    A monochromatic gamma ray beam is attractive for isotope-specific material/medical imaging or non-destructive inspection. A laser Compton scattering (LCS) gamma ray source which is based on the backward Compton scattering of laser light on high-energy electrons can generate energy variable quasi-monochromatic gamma ray. Due to the principle of the LCS gamma ray, the direction of the gamma beam is limited to the direction of the high-energy electrons. Then the target object is placed on the beam axis, and is usually moved if spatial scanning is required. In this work, we proposed an electron beam transport system consisting of four bending magnets which can stick the collision point and control the electron beam direction, and a laser system consisting of a spheroidal mirror and a parabolic mirror which can also stick the collision point. Then the collision point can be placed on one focus of the spheroid. Thus gamma ray direction and collision angle between the electron beam and the laser beam can be easily controlled. As the results, travelling direction of the LCS gamma ray can be controlled under the limitation of the beam transport system, energy of the gamma ray can be controlled by controlling incident angle of the colliding beams, and energy spread can be controlled by changing the divergence of the laser beam.

  16. Pulsar observations with the MAGIC telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Jezabel R.; Dazzi, F.; Idec, W.; Moretti, E.; Schweizer, T. [Max-Planck-Institut fuer Physik, Munich (Germany); Bonnefoy, S.; Carreto-Fidalgo, D.; Lopez, M. [Universitad Compultense, Madrid (Spain); Galindo, D.; Zanin, R. [Universitat de Barcelona, ICC/IEEC-UB, Barcelona (Spain); Ona Wilhelmi, E. de [Institute for Space Sciences (CSIC/IEEC), Barcelona (Spain); Reichardt, I. [Istituto Nazionale di Fisica Nucleare (INFN), Padova (Italy); Saito, T. [Kyoto University, Hakubi Center (Japan); Collaboration: MAGIC-Collaboration

    2016-07-01

    MAGIC is a stereoscopic system of two IACTs, located at the ORM (Spain). Since 2008, MAGIC has played a big role in Pulsar physics due to the discovery of the first VHE gamma-ray emission from the Crab pulsar. Such a discovery was possible thanks to a revolutionary trigger technique used in the initial MAGIC mono system, the Sum-Trigger, that provided a 25 GeV energy threshold. The study of the Crab keeps providing numerous important results for the understanding of pulsar physics. The most recent ones are the bridge emission at VHE and the detection of the Crab pulsations at TeV energies. MAGIC has been also searching for new pulsars, providing recently interesting results about the Geminga pulsar and nebula. This talk reviews the essential MAGIC results about VHE pulsars and their implications for pulsar physics.Also we discuss the development of a new stereo trigger system, the Sum-Trigger-II, and the importance of the observation windows that this system opens for the study of VHE pulsars.

  17. Large-Area Balloon-Borne Polarized Gamma Ray Observer (PoGO)

    Energy Technology Data Exchange (ETDEWEB)

    Blanford, R.

    2005-04-06

    We are developing a new balloon-borne instrument (PoGO), to measure polarization of soft gamma rays (25-200 keV) using asymmetry in azimuth angle distribution of Compton scattering. PoGO will detect 10% polarization in 100mCrab sources in a 6-8 hour observation and bring a new dimension to studies on gamma ray emission/transportation mechanism in pulsars, AGNs, black hole binaries, and neutron star surface. The concept is an adaptation to polarization measurements of well-type phoswich counter technology used in balloon-borne experiments (Welcome-1) and AstroE2 Hard X-ray Detector. PoGO consists of close-packed array of 397 hexagonal well-type phoswich counters. Each unit is composed of a long thin tube (well) of slow plastic scintillator, a solid rod of fast plastic scintillator, and a short BGO at the base. A photomultiplier coupled to the end of the BGO detects light from all 3 scintillators. The rods with decay times < 10 ns, are used as the active elements; while the wells and BGOs, with decay times {approx}250 ns are used as active anti-coincidence. The fast and slow signals are separated out electronically. When gamma rays entering the field-of-view (fwhm {approx} 3deg{sup 2}) strike a fast scintillator, some are Compton scattered. A fraction of the scattered photons are absorbed in another rod (or undergo a second scatter). A valid event requires one clean fast signal of pulse-height compatible with photo-absorption (> 20keV) and one or more compatible with Compton scattering (< 10keV). Studies based on EGS4 (with polarization features) and Geant4 predict excellent background rejection and high sensitivity.

  18. Gamma-ray emission from star-forming complexes observed by MAGIC: The cases of W51 and HESS J1857+026

    Directory of Open Access Journals (Sweden)

    Reichardt I.

    2015-01-01

    Full Text Available Massive star-forming regions assemble a large number of young stars with remnants of stellar evolution and a very dense environment. Therefore, particles accelerated in supernova remnants and pulsar wind nebulae encounter optimal conditions for interacting with target material and photon fields, and thus produce gamma-ray emission. However, observations are challenging because multiple phenomena may appear entangled within the resolution of current gamma-ray telescopes. We report on MAGIC observations aimed to understand the nature of the emission from the star-forming region W51 and the unidentified source HESS J1857+026. While gamma-ray emission from W51 is dominated by the interaction of the supernova remnant W51C with dense molecular clouds, HESS J1857+026 is associated to the pulsar wind nebula from PSR J1856+0245. However, an additional source is resolved north of HESSJ1857+026, with sufficient separation to determine that it cannot be powered by the same pulsar. We search for multiwavelength data to determine the origin of the new source.

  19. The LASL gamma-ray burst astronomy program

    International Nuclear Information System (INIS)

    Klebesadel, R.W.; Evans, W.D.; Laros, J.G.

    1981-01-01

    Gamma-ray burst observations performed by LASL began with the identification and initial report of the phenomenon from data acquired by the Vela satellites. The Vela instruments have recorded responses to 73 gamma-ray bursts over a ten-year interval, and are continuing to contribute toward these observations. Similar instrumentation was included aboard the NRL SOLRAD 11 spacecraft. These performed well but suffered an early demise. Recently, the LASL gamma-ray burst astronomy program has been enhanced through the implementation of experiments aboard the Pioneer Venus Orbiter and ISEF-C spacecraft. Both of these experiments are continuing to contribute data vital to trigonometric directional analyses. (orig.)

  20. Evaluation of effective dose equivalent from environmental gamma rays

    International Nuclear Information System (INIS)

    Saito, K.; Tsutsumi, M.; Moriuchi, S.; Petoussi, N.; Zankl, M.; Veit, R.; Jacob, P.; Drexler, G.

    1991-01-01

    Organ doses and effective dose equivalents for environmental gamma rays were calculated using human phantoms and Monte Carlo methods accounting rigorously the environmental gamma ray fields. It was suggested that body weight is the dominant factor to determine organ doses. The weight function expressing organ doses was introduced. Using this function, the variation in organ doses due to several physical factors were investigated. A detector having gamma-ray response similar to that of human bodies has been developed using a NaI(Tl) scintillator. (author)

  1. Gamma-ray bursts from black hole accretion disks

    International Nuclear Information System (INIS)

    Strong, I.B.

    1975-01-01

    The suggestion was first made more than a year ago that gamma-ray bursts might originate in the neighborhood of black holes, based on some rather circumstantial evidence linking Cygnus X-1, the prime black-hole candidate, with two of the then-known gamma-ray bursts. Since then additional evidence makes the idea still more plausible. The evidence is summarized briefly, a physical model for production of gamma-ray bursts is given, and several of the more interesting consequences of such an origin are pointed out. (orig.) [de

  2. Cellular response to low Gamma-ray doses

    Energy Technology Data Exchange (ETDEWEB)

    Manzanares A, E; Vega C, H R; Leon, L.C. de . [Unidades Academicas de Estudios Nucleares, Universidad Autonoma de Zacatecas, A.P. 336, 98000 Zacatecas (Mexico); Rebolledo D, O; Radillo J, F [Facultad de Ciencias Biologicas y Agropecuarias de la Universidad de Colima, Colima (Mexico)

    2002-07-01

    Lymphocytes, obtained from healthy donors, were exposed to a low strength gamma-ray field to determine heat shock protein expression in function of radiation dose. Protein identification was carried out using mAb raised against Hsp70 and Hsc70.Hsp70 protein was detected after lymphocyte irradiation. In all cases, an increasing trend of relative amounts of Hsp70 in function to irradiation time was observed. After 1.25 c Gy gamma-ray dose, lymphocytes expressed Hsp70 protein, indicating a threshold response to gamma rays. (Author)

  3. High energy photons and neutrinos from gamma ray bursts

    International Nuclear Information System (INIS)

    Dar, A.

    1998-01-01

    The Hubble space telescope has recently discovered thousands of gigantic comet-like objects in a ring around the central star in the nearest planetary nebula. It is suggested that such circumstellar rings exist around most of stars. Collisions of the relativistic debris from gamma ray bursts in dense stellar regions with such gigantic comet-like objects, which have been stripped off from the circumstellar rings by gravitational perturbations, produce detectable fluxes of high energy gamma-rays and neutrinos from gamma ray bursts

  4. Analytical applications of neutron capture gamma-rays

    International Nuclear Information System (INIS)

    Lindstrom, R.M.; Paul, R.L.; Anderson, D.L.; Paul, R.L.

    1997-01-01

    Field and industrial applications of neutron capture gamma-ray spectrometry with isotopic sources or neutron generators are economically important. Geochemical exploration in boreholes is done routinely with neutron probes. Coal and ores are assayed with analyzers adjacent to a conveyor belt in dozens of industrial facilities. The use of capture gamma rays for explosives detection has been described in the literature, both for scanning airline baggage and for characterizing obsolete munitions; a packaged system for the latter is available commercially. Generalizations are drawn from the history of the field, and predictions are made about the future usefulness of capture gamma rays. (author)

  5. Optical telescope BIRT in ORIGIN for gamma ray burst observing

    DEFF Research Database (Denmark)

    Content, Robert; Content, Robert; Sharples, Ray

    2012-01-01

    The ORIGIN concept is a space mission with a gamma ray, an X-ray and an optical telescope to observe the gamma ray bursts at large Z to determine the composition and density of the intergalactic matter in the line of sight. It was an answer to the ESA M3 call for proposal. The optical telescope i...... length. All 3 instruments use the same 2k x 2k detector simultaneously so that telescope pointing and tip-tilt control of a fold mirror permit to place the gamma ray burst on the desired instrument without any other mechanism. © 2012 SPIE....

  6. Cellular response to low Gamma-ray doses

    International Nuclear Information System (INIS)

    Manzanares A, E.; Vega C, H.R.; Leon, L.C. de; Rebolledo D, O.; Radillo J, F.

    2002-01-01

    Lymphocytes, obtained from healthy donors, were exposed to a low strength gamma-ray field to determine heat shock protein expression in function of radiation dose. Protein identification was carried out using mAb raised against Hsp70 and Hsc70.Hsp70 protein was detected after lymphocyte irradiation. In all cases, an increasing trend of relative amounts of Hsp70 in function to irradiation time was observed. After 1.25 c Gy gamma-ray dose, lymphocytes expressed Hsp70 protein, indicating a threshold response to gamma rays. (Author)

  7. Gamma ray astronomy and search for antimatter in the universe

    International Nuclear Information System (INIS)

    Schoenfelder, V.

    1989-01-01

    Gamma ray astronomy provides a powerful tool for searching antimatter in the universe; it probably provides the only means to determine, if the universe has baryon symmetry. Presently existing gamma-ray observations can be interpreted without postulating the existence of antimatter. However, the measurements are not precise enough to definitely exclude the possibility of its existence. The search for antimatter belongs to one of the main scientific objectives of the Gamma Ray Observatory GRO of NASA, which will be launched in 1990 by the Space Shuttle. (orig.)

  8. Gamma ray induced mutants in Coleus

    International Nuclear Information System (INIS)

    Vasudevan, K.; Jos, J.S.

    1988-01-01

    The germplasm collection of Chinese potato (Coleus parviflorus Benth) contains almost no variation for yield contributing traits. The crop does not produce seeds. Treatment of underground tubers with 1 kR, 2 kR, 3 kR and 4 kR gamma rays resulted in 50 morphologically different mutants which are maintained as mutant clones. In the M 1 V 1 generation, suspected mutant sprouts, were carefully removed and grown separately. The most interesting mutant types are the following: (i) erect mutant with spoon shaped light green leaves, 30 cm long inflorescences against 20 cm in the control, cylindrical tubers measuring ca. 7.0 cm long and 3 cm girth against 4 cm and 2.5 cm in the control (ii) early mutants 1 and 2, one having less leaf serration, the other having light green small leaves and dwarf type (iii) fleshy leaf mutant, dark green, thick and smooth leaves. Control plants spread almost in 1 m 2 area and bear tubers from the nodes of branches. In the early mutants tuber formation is mainly restricted to the base of the plant, which makes harvest easier. The crop usually matures within 150 - 160 days, the early mutants are ready for harvest 100 days after planting. As the mutants are less spreading, the yield could be increased by closer spacing

  9. Observations of short gamma-ray bursts.

    Science.gov (United States)

    Fox, Derek B; Roming, Peter W A

    2007-05-15

    We review recent observations of short-hard gamma-ray bursts and their afterglows. The launch and successful ongoing operations of the Swift satellite, along with several localizations from the High-Energy Transient Explorer mission, have provoked a revolution in short-burst studies: first, by quickly providing high-quality positions to observers; and second, via rapid and sustained observations from the Swift satellite itself. We make a complete accounting of Swift-era short-burst localizations and proposed host galaxies, and discuss the implications of these observations for the distances, energetics and environments of short bursts, and the nature of their progenitors. We then review the physical modelling of short-burst afterglows: while the simplest afterglow models are inadequate to explain the observations, there have been several notable successes. Finally, we address the case of an unusual burst that threatens to upset the simple picture in which long bursts are due to the deaths of massive stars, and short bursts to compact-object merger events.

  10. Gamma ray induced mutants in Coleus

    Energy Technology Data Exchange (ETDEWEB)

    Vasudevan, K; Jos, J S [Central Tuber Crops Research Institute, Trivandrum, Kerala (India)

    1988-07-01

    The germplasm collection of Chinese potato (Coleus parviflorus Benth) contains almost no variation for yield contributing traits. The crop does not produce seeds. Treatment of underground tubers with 1 kR, 2 kR, 3 kR and 4 kR gamma rays resulted in 50 morphologically different mutants which are maintained as mutant clones. In the M{sub 1}V{sub 1} generation, suspected mutant sprouts, were carefully removed and grown separately. The most interesting mutant types are the following: (i) erect mutant with spoon shaped light green leaves, 30 cm long inflorescences against 20 cm in the control, cylindrical tubers measuring ca. 7.0 cm long and 3 cm girth against 4 cm and 2.5 cm in the control (ii) early mutants 1 and 2, one having less leaf serration, the other having light green small leaves and dwarf type (iii) fleshy leaf mutant, dark green, thick and smooth leaves. Control plants spread almost in 1 m{sup 2} area and bear tubers from the nodes of branches. In the early mutants tuber formation is mainly restricted to the base of the plant, which makes harvest easier. The crop usually matures within 150 - 160 days, the early mutants are ready for harvest 100 days after planting. As the mutants are less spreading, the yield could be increased by closer spacing.

  11. Portable high energy gamma ray imagers

    International Nuclear Information System (INIS)

    Guru, S.V.; Squillante, M.R.

    1996-01-01

    To satisfy the needs of high energy gamma ray imagers for industrial nuclear imaging applications, three high energy gamma cameras are presented. The RMD-Pinhole camera uses a lead pinhole collimator and a segmented BGO detector viewed by a 3 in. square position sensitive photomultiplier tube (PSPMT). This pinhole gamma camera displayed an energy resolution of 25.0% FWHM at the center of the camera at 662 keV and an angular resolution of 6.2 FWHM at 412 keV. The fixed multiple hole collimated camera (FMCC), used a multiple hole collimator and a continuous slab of NaI(Tl) detector viewed by the same PSPMT. The FMCC displayed an energy resolution of 12.4% FWHM at 662 keV at the center of the camera and an angular resolution of 6.0 FWHM at 412 keV. The rotating multiple hole collimated camera (RMCC) used a 180 antisymmetric rotation modulation collimator and CsI(Tl) detectors coupled to PIN silicon photodiodes. The RMCC displayed an energy resolution of 7.1% FWHM at 662 keV and an angular resolution of 4.0 FWHM at 810 keV. The performance of these imagers is discussed in this paper. (orig.)

  12. Uses Of Gamma Rays In Peas Breeding

    International Nuclear Information System (INIS)

    Ghunim, A.; Mobakher, H.; Salman, S.

    2004-01-01

    Most of peas varieties grown in Syria are introduced and they have variable characteristics and unstable in the productivity. Therefore this study aims to utilize physical mutagens as the developed technology in plant breeding to obtain high, stable productivity and suitable for human consumption and processing. Two green peas vars (onward, local homsi) were used in this study, and their dry seeds were subjected to different doses of Gamma rays (5.0,7.5,10.0) KR and planted conventional used methods at AL Taibba searching station (20 Km from Damascus) in 1985/1986 season. Individual selection from M2 was practiced based on yield traits. Starting from 1991/1992 season the best selected mutants were used in yield trials to be compared with the best common cultivars. After/3/years of yield trials, the advanced lines were incorporated into field test trials. Some morphological and phonological scores, i.e. green pods yield, dry seeds yield per area were achieved in addition to lab tests. Some strains have advanced in yield of green pods and dry seeds per area compared with the local check. Some other strains. Showed an increase in earliness, length of pods, number of seeds per pod, and number of pods per plant than the local check. Therefore these can be called promising strains and as nucleus for new vars. will be used into verifiable fields, and in large-scale cultivation in order to be released. (Authors)

  13. Magnetars in Ultra-Long Gamma-Ray Bursts and GRB 111209A

    Energy Technology Data Exchange (ETDEWEB)

    Gompertz, B.; Fruchter, A., E-mail: bgompertz@stsci.edu [Space Telescope Science Institute, Baltimore, MD 21218 (United States)

    2017-04-10

    Supernova 2011kl, associated with the ultra-long gamma-ray burst (ULGRB) 111209A, exhibited a higher-than-normal peak luminosity, placing it in the parameter space between regular supernovae and super-luminous supernovae. Its light curve can only be matched by an abnormally high fraction of {sup 56}Ni that appears inconsistent with the observed spectrum, and as a result it has been suggested that the supernova, and by extension the gamma-ray burst, are powered by the spin-down of a highly magnetized millisecond pulsar, known as a magnetar. We investigate the broadband observations of ULGRB 111209A and find two independent measures that suggest a high density circumburst environment. However, the light curve of the GRB afterglow shows no evidence of a jet break (the steep decline that would be expected as the jet slows due to the resistance of the external medium) out to three weeks after trigger, implying a wide jet. Combined with the high isotropic energy of the burst, this implies that only a magnetar with a spin period of ∼1 ms or faster can provide enough energy to power both ULGRB 111209A and Supernova 2011kl.

  14. Large-Area Balloon-Borne Polarized Gamma Ray Observer (PoGO)

    International Nuclear Information System (INIS)

    Blanford, R.

    2005-01-01

    We are developing a new balloon-borne instrument (PoGO), to measure polarization of soft gamma rays (25-200 keV) using asymmetry in azimuth angle distribution of Compton scattering. PoGO will detect 10% polarization in 100mCrab sources in a 6-8 hour observation and bring a new dimension to studies on gamma ray emission/transportation mechanism in pulsars, AGNs, black hole binaries, and neutron star surface. The concept is an adaptation to polarization measurements of well-type phoswich counter technology used in balloon-borne experiments (Welcome-1) and AstroE2 Hard X-ray Detector. PoGO consists of close-packed array of 397 hexagonal well-type phoswich counters. Each unit is composed of a long thin tube (well) of slow plastic scintillator, a solid rod of fast plastic scintillator, and a short BGO at the base. A photomultiplier coupled to the end of the BGO detects light from all 3 scintillators. The rods with decay times 2 ) strike a fast scintillator, some are Compton scattered. A fraction of the scattered photons are absorbed in another rod (or undergo a second scatter). A valid event requires one clean fast signal of pulse-height compatible with photo-absorption (> 20keV) and one or more compatible with Compton scattering (< 10keV). Studies based on EGS4 (with polarization features) and Geant4 predict excellent background rejection and high sensitivity

  15. SEARCH FOR GAMMA-RAY EMISSION FROM MAGNETARS WITH THE FERMI LARGE AREA TELESCOPE

    International Nuclear Information System (INIS)

    Abdo, A. A.; Ackermann, M.; Ajello, M.; Allafort, A.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Bouvier, A.; Baldini, L.; Bellazzini, R.; Bregeon, J.; Ballet, J.; Barbiellini, G.; Baring, M. G.; Bastieri, D.; Bonamente, E.; Brigida, M.; Bruel, P.; Burnett, T. H.; Caliandro, G. A.

    2010-01-01

    We report on the search for 0.1-10 GeV emission from magnetars in 17 months of Fermi Large Area Telescope (LAT) observations. No significant evidence for gamma-ray emission from any of the currently known magnetars is found. The most stringent upper limits to date on their persistent emission in the Fermi energy range are estimated between ∼10 -12 and10 -10 erg s -1 cm -2 , depending on the source. We also searched for gamma-ray pulsations and possible outbursts, also with no significant detection. The upper limits derived support the presence of a cutoff at an energy below a few MeV in the persistent emission of magnetars. They also show the likely need for a revision of current models of outer-gap emission from strongly magnetized pulsars, which, in some realizations, predict detectable GeV emission from magnetars at flux levels exceeding the upper limits identified here using the Fermi-LAT observations.

  16. Planetary gamma-ray spectroscopy: the effects of hydrogen absorption cross-section of the gamma-ray spectrum

    International Nuclear Information System (INIS)

    Lapides, J.R.

    1981-01-01

    The gamma-ray spectroscopy of planet surfaces is one of several possible methods that are useful in determining the elemental composition of planet surfaces from orbiting spacecraft. This has been demonstrated on the Apollos 15 and 16 missions as well as the Soviet Mars-5 mission. Planetary gamma-ray emission is primarily the result of natural radioactive decay and cosmic-ray and solar-flare-induced nuclear reactions. Secondary neutron reactions play a large role in the more intense gamma-ray emission. The technique provides information on the elemental composition of the top few tens of centimeters of the planet surface. Varying concentrations of hydrogen and compositional variations that alter the macroscopic thermal-neutron absorption cross section have a significant effect on the neutron flux in the planet surface and therefore also on the gamma-ray emission from the surface. These effects have been systematically studied for a wide range of possible planetary compositions that include Mercury, the moon, Mars, the comets, and the asteroids. The problem of the Martian atmosphere was also investigated. The results of these calculations, in which both surface neutron fluxes and gamma-ray emission fluxes were determined, were used to develop general procedures for obtaining planet compositions from the gamma-ray spectrum. Several changes have been suggested for reanalyzing the Apollos 15 and 16 gamma-ray results. In addition, procedures have been suggested that can be applied to neutron-gamma techniques in mineral and oil exploration

  17. Experimental Constraints on γ-Ray Pulsar Gap Models and the Pulsar GeV to Pulsar Wind Nebula TeV Connection

    Science.gov (United States)

    Abeysekara, A. U.; Linnemann, J. T.

    2015-05-01

    The pulsar emission mechanism in the gamma ray energy band is poorly understood. Currently, there are several models under discussion in the pulsar community. These models can be constrained by studying the collective properties of a sample of pulsars, which became possible with the large sample of gamma ray pulsars discovered by the Fermi Large Area Telescope. In this paper we develop a new experimental multi-wavelength technique to determine the beaming factor ≤ft( {{f}{Ω }} \\right) dependance on spin-down luminosity of a set of GeV pulsars. This technique requires three input parameters: pulsar spin-down luminosity, pulsar phase-averaged GeV flux, and TeV or X-ray flux from the associated pulsar wind nebula (PWN). The analysis presented in this paper uses the PWN TeV flux measurements to study the correlation between {{f}{Ω }} and \\dot{E}. The measured correlation has some features that favor the Outer Gap model over the Polar Cap, Slot Gap, and One Pole Caustic models for pulsar emission in the energy range of 0.1-100 GeV, but one must keep in mind that these simulated models failed to explain many of the most important pulsar population characteristics. A tight correlation between the pulsar GeV emission and PWN TeV emission was also observed, which suggests the possibility of a linear relationship between the two emission mechanisms. In this paper we also discuss a possible mechanism to explain this correlation.

  18. Gamma-Ray Imaging Spectrometer (GRIS): a new balloon-borne experiment for gamma-ray line astronomy

    International Nuclear Information System (INIS)

    Teegarden, B.J.; Cline, T.L.; Gehrels, N.; Porreca, G.; Tueller, J.; Leventhal, M.; Huters, A.F.; Maccallum, C.J.; Stang, P.D.; Sandia Labs., Albuquerque, NM)

    1985-01-01

    High resolution gamma-ray spectroscopy is a relatively new field that holds great promise for further understanding of high energy astrophysical processes. When the high resolution gamma-ray spectrometer (GRSE) was removed from the GRO payload, a balloon program was initiated to permit continued development and improvement of instrumentation in this field, as well as continued scientific observations. The Gamma-Ray Imaging Spectrometer (GRIS) is one of the experiments selected as part of this program. The instrument contains a number of new and innovative features that are expected to produce a significant improvement in source location accuracy and sensitivity over previous balloon and satellite experiments

  19. NO CORRELATION BETWEEN HOST GALAXY METALLICITY AND GAMMA-RAY ENERGY RELEASE FOR LONG-DURATION GAMMA-RAY BURSTS

    International Nuclear Information System (INIS)

    Levesque, Emily M.; Kewley, Lisa J.; Soderberg, Alicia M.; Berger, Edo

    2010-01-01

    We compare the redshifts, host galaxy metallicities, and isotropic (E γ,iso ) and beaming-corrected (E γ ) gamma-ray energy release of 16 long-duration gamma-ray bursts (LGRBs) at z γ,iso , or E γ . These results are at odds with previous theoretical and observational predictions of an inverse correlation between gamma-ray energy release and host metallicity, as well as the standard predictions of metallicity-driven wind effects in stellar evolutionary models. We consider the implications that these results have for LGRB progenitor scenarios, and discuss our current understanding of the role that metallicity plays in the production of LGRBs.

  20. Gamma-Ray Instrument for Polarimetry, Spectroscopy and Imaging (GIPSI)

    National Research Council Canada - National Science Library

    Kroeger, R. A; Johnson, W. N; Kinzer, R. L; Kurfess, J. D; Inderhees, S. E; Phlips, B. F; Graham, B. L

    1996-01-01

    .... Gamma-ray polarimetry in the energy band around 60-300 keV is an interesting area of high energy astrophysics where observations have not been possible with the technologies employed in current and past space missions...

  1. AGIS -- the Advanced Gamma-ray Imaging System

    Science.gov (United States)

    Krennrich, Frank

    2009-05-01

    The Advanced Gamma-ray Imaging System, AGIS, is envisioned to become the follow-up mission of the current generation of very high energy gamma-ray telescopes, namely, H.E.S.S., MAGIC and VERITAS. These instruments have provided a glimpse of the TeV gamma-ray sky, showing more than 70 sources while their detailed studies constrain a wealth of physics and astrophysics. The particle acceleration, emission and absorption processes in these sources permit the study of extreme physical conditions found in galactic and extragalactic TeV sources. AGIS will dramatically improve the sensitivity and angular resolution of TeV gamma-ray observations and therefore provide unique prospects for particle physics, astrophysics and cosmology. This talk will provide an overview of the science drivers, scientific capabilities and the novel technical approaches that are pursued to maximize the performance of the large array concept of AGIS.

  2. Gamma-ray emission profile measurements during JET ICRH discharges

    Energy Technology Data Exchange (ETDEWEB)

    Jarvis, O N; Marcus, F B; Sadler, G; Van Belle, P [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Howarth, P J.A. [Birmingham Univ. (United Kingdom); Adams, J M; Bond, D S [UKAEA Harwell Lab. (United Kingdom). Energy Technology Div.

    1994-07-01

    Gamma-ray emission from plasma-impurity reactions caused by minority ICRH accelerating fuel ions to MeV energies has been measured using the JET neutron profile monitor. A successful data analysis technique has been used to isolate the RF-induced gamma-ray emission that was detected, enabling profiles of gamma-ray emission to be obtained. The 2-d gamma-ray emission profiles show that virtually all the radiation originates from the low field side of the RF resonance layer, as expected from RF-induced pitch angle diffusion. The emission profiles indicate the presence of a small population of resonant {sup 3}He ions that possess orbits lying near the passing-trapped boundary. 6 refs., 4 figs.

  3. Some deficiencies and solutions in gamma ray spectrometry

    International Nuclear Information System (INIS)

    Westmeier, W.

    1998-01-01

    A number of problems in high-resolution gamma ray spectrometry as well as some deficiencies of existing computer programs for the quantitative evaluation of spectra are discussed and some practical solutions are proposed. (author)

  4. Multidimensional analysis of high resolution. gamma. -ray data

    Energy Technology Data Exchange (ETDEWEB)

    Flibotte, S.; Huettmeier, U.J.; France, G. de; Haas, B.; Romain, P.; Theisen, C.; Vivien, J.P.; Zen, J. (Centre de Recherches Nucleaires, 67 - Strasbourg (France)); Bednarczyk, P. (Inst. of Nuclear Physics, Krakow (Poland))

    1992-08-15

    Algorithms are developed to analyze high-fold {gamma}-ray coincidences. Performances of the programs have been tested in 3, 4 and 5 dimensions using events generated with a Monte Carlo simulation. (orig.).

  5. A new measurement-while-drilling gamma ray log calibrator

    International Nuclear Information System (INIS)

    Meisner, J.; Brooks, A.; Wisniewski, W.

    1985-01-01

    Many of the present methods of calibration for both wireline and MWD gamma ray detectors use a point source at a fixed distance from the detector. MWD calibration errors are introduced from scattering effects, from spectral differences, from position sensitivity and form lack of cylindrical geometry. A new method has been developed at Exploration Logging INc. (EXLOG) that eliminates these errors. The method uses a wrap-around or annular calibrator, referenced to the University of Houston gamma ray API pit. The new calibrator is designed to simulate the API pit's gamma ray emission spectrum with a finite amount of natural source material in the annular shape. Because of the thickness of steel between the MWD gamma ray detector and the formation, there is theoretical necessity for spectral matching. A simple theoretical approach was used to calibrate the new calibrator. Spectral matching allows a closer approximation to wireline logs and makes it possible to estimate the relative spectral content of a formation

  6. Saccharification of gamma-ray and alkali pretreated lignocellulosics

    International Nuclear Information System (INIS)

    Begum, A.; Choudhury, N.

    1988-01-01

    Enzymic saccharification of gamma ray and alkali pretreated sawdust, rice straw, and sugar cane bagasse showed higher release of reducing sugar from pretreated substrates. By gamma ray treatment alone (500 kGy) reducing sugar release of 2.8, 9.2, and 10 g/l was obtained from 7.5% (w/v) sawdust, rice straw, and bagasse and the same substrates showed reducing sugar release of 4.2, 30, and 20 g/l respectively when treated with alkali (0.1 g/g). Combination of gamma ray with alkali treatment further increased the reducing sugar release to 10.2, 33, and 36 g/l from sawdust, rice straw, and bagasse respectively. The effects of gamma ray and alkali treatment on saccharification varied with the nature of the substrate

  7. Gamma-ray dosimetry measurements of the Little Boy replica

    International Nuclear Information System (INIS)

    Plassmann, E.A.; Pederson, R.A.

    1984-01-01

    We present the current status of our gamma-ray dosimetry results for the Little Boy replica. Both Geiger-Mueller and thermoluminescent detectors were used in the measurements. Future work is needed to test assumptions made in data analysis

  8. Gamma-ray spectroscopy with relativistic exotic heavy-ions

    Indian Academy of Sciences (India)

    Abstract. Feasibility of gamma-ray spectroscopy at relativistic energies with exotic heavy-ions and new generation of germanium detectors (segmented Clover) is discussed. An experiment with such detector array and radioactive is discussed.

  9. Generation of laser Compton gamma-rays using Compact ERL

    International Nuclear Information System (INIS)

    Shizuma, Toshiyuki; Hajima, Ryoichi; Nagai, Ryoji; Hayakawa, Takehito; Mori, Michiaki; Seya, Michio

    2015-01-01

    Nondestructive isotope-specific assay system using nuclear resonance fluorescence has been developed at JAEA. In this system, intense, mono-energetic laser Compton scattering (LCS) gamma-rays are generated by combining an energy recovery linac (ERL) and laser enhancement cavity. As technical development for such an intense gamma-ray source, we demonstrated generation of LCS gamma-rays using Compact ERL (supported by the Ministry of Education, Culture, Sports, Science and Technology) developed in collaboration with KEK. We also measured X-ray fluorescence for elements near iron region by using mono-energetic LCS gamma-rays. In this presentation, we will show results of the experiment and future plan. (author)

  10. Secondary gamma-ray data for shielding calculation

    International Nuclear Information System (INIS)

    Miyasaka, Sunichi

    1979-01-01

    In deep penetration transport calculations, the integral design parameters is determined mainly by secondary particles which are produced by interactions of the primary radiation with materials. The shield thickness and the biological dose rate at a given point of a bulk shield are determined from the contribution from secondary gamma rays. The heat generation and the radiation damage in the structural and shield materials depend strongly on the secondary gamma rays. In this paper, the status of the secondary gamma ray data and its further problems are described from the viewpoint of shield design. The secondary gamma-ray data in ENDF/B-IV and POPOP4 are also discussed based on the test calculations made for several shield assemblies. (author)

  11. Gamma-ray astronomy and cosmic-ray origin theory

    International Nuclear Information System (INIS)

    Ginzburg, V.L.

    1973-01-01

    A theory of the origin of cosmic radiation is discussed in light of the advances made in gamma-ray astronomy. Arguments against metagalactic models for the origin of cosmic rays are emphasized. (U.S.)

  12. A STACKED ANALYSIS OF 115 PULSARS OBSERVED BY THE FERMI LAT

    Energy Technology Data Exchange (ETDEWEB)

    McCann, A., E-mail: mccann@kicp.uchicago.edu [Kavli Institute for Cosmological Physics, University of Chicago 933 East 56th Street, Chicago, IL 60637 (United States)

    2015-05-10

    Due to the low gamma-ray fluxes from pulsars above 50 GeV and the small collecting area of space-based telescopes, the gamma-ray emission discovered by the Fermi Large Area Telescope (LAT) in ∼150 pulsars is largely unexplored at these energies. In this regime, the uncertainties on the spectral data points and/or the constraints from upper limits are not sufficient to provide robust tests of competing emission models in individual pulsars. The discovery of power-law-type emission from the Crab pulsar at energies exceeding 100 GeV provides a compelling justification for exploration of other pulsars at these energies. We applied the method of aperture photometry to measure pulsar emission spectra from Fermi-LAT data and present a stacked analysis of 115 pulsars selected from the Second Fermi-LAT catalog of gamma-ray pulsars. This analysis, which uses an average of ∼4.2 yr of data per pulsar, aggregates low-level emission which cannot be resolved in individual objects but can be detected in an ensemble. We find no significant stacked excess at energies above 50 GeV. An upper limit of 30% of the Crab pulsar level is found for the average flux from 115 pulsars in the 100–177 GeV energy range at the 95% confidence level. Stacked searches exclusive to the young pulsar sample, the millisecond pulsar sample, and several other promising sub-samples also return no significant excesses above 50 GeV.

  13. Upgrade of the JET gamma-ray cameras

    International Nuclear Information System (INIS)

    Soare, S.; Curuia, M.; Anghel, M.; Constantin, M.; David, E.; Craciunescu, T.; Falie, D.; Pantea, A.; Tiseanu, I.; Kiptily, V.; Prior, P.; Edlington, T.; Griph, S.; Krivchenkov, Y.; Loughlin, M.; Popovichev, S.; Riccardo, V; Syme, B.; Thompson, V.; Lengar, I.; Murari, A.; Bonheure, G.; Le Guern, F.

    2007-01-01

    Full text: The JET gamma-ray camera diagnostics have already provided valuable information on the gamma-ray imaging of fast ion in JET plasmas. The applicability of gamma-ray imaging to high performance deuterium and deuterium-tritium JET discharges is strongly dependent on the fulfilment of rather strict requirements for the characterisation of the neutron and gamma-ray radiation fields. These requirements have to be satisfied within very stringent boundary conditions for the design, such as the requirement of minimum impact on the co-existing neutron camera diagnostics. The JET Gamma-Ray Cameras (GRC) upgrade project deals with these issues with particular emphasis on the design of appropriate neutron/gamma-ray filters ('neutron attenuators'). Several design versions have been developed and evaluated for the JET GRC neutron attenuators at the conceptual design level. The main design parameter was the neutron attenuation factor. The two design solutions, that have been finally chosen and developed at the level of scheme design, consist of: a) one quasi-crescent shaped neutron attenuator (for the horizontal camera) and b) two quasi-trapezoid shaped neutron attenuators (for the vertical one). The second design solution has different attenuation lengths: a short version, to be used together with the horizontal attenuator for deuterium discharges, and a long version to be used for high performance deuterium and DT discharges. Various neutron-attenuating materials have been considered (lithium hydride with natural isotopic composition and 6 Li enriched, light and heavy water, polyethylene). Pure light water was finally chosen as the attenuating material for the JET gamma-ray cameras. The neutron attenuators will be steered in and out of the detector line-of-sight by means of an electro-pneumatic steering and control system. The MCNP code was used for neutron and gamma ray transport in order to evaluate the effect of the neutron attenuators on the neutron field of the

  14. A New Standard Pulsar Magnetosphere

    Science.gov (United States)

    Contopoulos, Ioannis; Kalapotharakos, Constantinos; Kazanas, Demosthenes

    2014-01-01

    In view of recent efforts to probe the physical conditions in the pulsar current sheet, we revisit the standard solution that describes the main elements of the ideal force-free pulsar magnetosphere. The simple physical requirement that the electric current contained in the current layer consists of the local electric charge moving outward at close to the speed of light yields a new solution for the pulsar magnetosphere everywhere that is ideal force-free except in the current layer. The main elements of the new solution are as follows: (1) the pulsar spindown rate of the aligned rotator is 23% larger than that of the orthogonal vacuum rotator; (2) only 60% of the magnetic flux that crosses the light cylinder opens up to infinity; (3) the electric current closes along the other 40%, which gradually converges to the equator; (4) this transfers 40% of the total pulsar spindown energy flux in the equatorial current sheet, which is then dissipated in the acceleration of particles and in high-energy electromagnetic radiation; and (5) there is no separatrix current layer. Our solution is a minimum free-parameter solution in that the equatorial current layer is electrostatically supported against collapse and thus does not require a thermal particle population. In this respect, it is one more step toward the development of a new standard solution. We discuss the implications for intermittent pulsars and long-duration gamma-ray bursts. We conclude that the physical conditions in the equatorial current layer determine the global structure of the pulsar magnetosphere.

  15. The Advanced Gamma-ray Imaging System (AGIS): Simulation Studies

    Science.gov (United States)

    Fegan, Stephen; Buckley, J. H.; Bugaev, S.; Funk, S.; Konopelko, A.; Maier, G.; Vassiliev, V. V.; Simulation Studies Working Group; AGIS Collaboration

    2008-03-01

    The Advanced Gamma-ray Imaging System (AGIS) is a concept for the next generation instrument in ground-based very high energy gamma-ray astronomy. It has the goal of achieving significant improvement in sensitivity over current experiments. We present the results of simulation studies of various possible designs for AGIS. The primary characteristics of the array performance, collecting area, angular resolution, background rejection, and sensitivity are discussed.

  16. The Advanced Gamma-ray Imaging System (AGIS): Simulation Studies

    OpenAIRE

    Maier, G.; Collaboration, for the AGIS

    2009-01-01

    The Advanced Gamma-ray Imaging System (AGIS) is a next-generation ground-based gamma-ray observatory being planned in the U.S. The anticipated sensitivity of AGIS is about one order of magnitude better than the sensitivity of current observatories, allowing it to measure gammaray emmission from a large number of Galactic and extra-galactic sources. We present here results of simulation studies of various possible designs for AGIS. The primary characteristics of the array performance - collect...

  17. Significant gamma-ray lines from dark matter annihilation

    Energy Technology Data Exchange (ETDEWEB)

    Duerr, Michael [DESY, Notkestrasse 85, 22607 Hamburg (Germany); Fileviez Perez, Pavel; Smirnov, Juri [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany)

    2016-07-01

    Gamma-ray lines from dark matter annihilation are commonly seen as a ''smoking gun'' for the particle nature of dark matter. However, in many dark matter models the continuum background from tree-level annihilations makes such a line invisible. I present two simple extensions of the Standard Model where the continuum contributions are suppressed and the gamma-ray lines are easily visible over the continuum background.

  18. Gamma-ray bursts: astrophysical puzzle of the century

    International Nuclear Information System (INIS)

    Hudec, R.

    1998-01-01

    An overview is given of the problems of gamma-ray bursts /GRB/. As GRB became one of the greatest mysteries in modern astrophysics, this field of astrophysics is a subject of intensive research. The article covers some topical aspects of experiments related to the indentification of gamma-ray bursts. The preparation and results of experiments in the Astronomical Institute of the Academy of Sciences of the Czech Republic are described. (Z.J.)

  19. Extragalactic Gamma Ray Excess from Coma Supercluster Direction

    Indian Academy of Sciences (India)

    More precise analysis of EGRET data however, makes it possible to estimate the diffuse gamma ray in Coma supercluster (i.e., Coma\\A1367 supercluster) direction with a value of ( > 30MeV) ≃ 1.9 × 10-6 cm-2 s-1, which is considered to be an upper limit for the diffuse gamma ray due to Coma supercluster. The related ...

  20. GLAST, the Gamma-ray Large Area Space Telescope

    CERN Document Server

    De Angelis, A

    2001-01-01

    GLAST, a detector for cosmic gamma rays in the range from 20 MeV to 300 GeV, will be launched in space in 2005. Breakthroughs are expected in particular in the study of particle acceleration mechanisms in space and of gamma ray bursts, and maybe on the search for cold dark matter; but of course the most exciting discoveries could come from the unexpected.

  1. Measuring The Variability Of Gamma-Ray Sources With AGILE

    International Nuclear Information System (INIS)

    Chen, Andrew W.; Vercellone, Stefano; Pellizzoni, Alberto; Tavani, Marco

    2005-01-01

    Variability in the gamma-ray flux above 100 MeV at various time scales is one of the primary characteristics of the sources detected by EGRET, both allowing the identification of individual sources and constraining the unidentified source classes. We present a detailed simulation of the capacity of AGILE to characterize the variability of gamma-ray sources, discussing the implications for source population studies

  2. Physics and astrophysics with gamma-ray telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Vandenbroucke, J. [Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States)

    2012-08-15

    In the past few years gamma-ray astronomy has entered a golden age. A modern suite of telescopes is now scanning the sky over both hemispheres and over six orders of magnitude in energy. At {approx}TeV energies, only a handful of sources were known a decade ago, but the current generation of ground-based imaging atmospheric Cherenkov telescopes (H.E.S.S., MAGIC, and VERITAS) has increased this number to nearly one hundred. With a large field of view and duty cycle, the Tibet and Milagro air shower detectors have demonstrated the promise of the direct particle detection technique for TeV gamma rays. At {approx}GeV energies, the Fermi Gamma-ray Space Telescope has increased the number of known sources by nearly an order of magnitude in its first year of operation. New classes of sources that were previously theorized to be gamma-ray emitters have now been confirmed observationally. Moreover, there have been surprise discoveries of GeV gamma-ray emission from source classes for which no theory predicted it was possible. In addition to elucidating the processes of high-energy astrophysics, gamma-ray telescopes are making essential contributions to fundamental physics topics including quantum gravity, gravitational waves, and dark matter. I summarize the current census of astrophysical gamma-ray sources, highlight some recent discoveries relevant to fundamental physics, and describe the synergetic connections between gamma-ray and neutrino astronomy. This is a brief overview intended in particular for particle physicists and neutrino astronomers, based on a presentation at the Neutrino 2010 conference in Athens, Greece. I focus in particular on results from Fermi (which was launched soon after Neutrino 2008), and conclude with a description of the next generation of instruments, namely HAWC and the Cherenkov Telescope Array.

  3. The MAGIC gamma-ray telescope: status and first results

    International Nuclear Information System (INIS)

    Fernandez, Enrique

    2006-01-01

    MAGIC, a 17 m diameter Cherenkov telescope for gamma ray astronomy, has recently been commissioned at the Roque de los Muchachos site in the Island of La Palma, of the Canary Islands. The telescope was proposed in 1998 with the goal of lowering the threshold of observation of gamma rays by ground detectors to 20-30 GeV energies. This paper describes its main design features, its physics objectives and its first operations

  4. Catalogue of gamma rays from radionuclides ordered by nuclide

    International Nuclear Information System (INIS)

    Ekstroem, L.P.; Andersson, P.; Sheppard, H.M.

    1984-01-01

    A catalogue of about 28500 gamma-ray energies from 2338 radionuclides is presented. The nuclides are listed in order of increasing (A,Z) of the daughter nuclide. In addition the gamma-ray intensity per 100 decays of the parent (if known) and the decay half-life are given. All data are from a computer processing of a recent ENSDF (Evaluated Nuclear Structure Data File) file. (authors)

  5. Computers in activation analysis and gamma-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, B. S.; D' Agostino, M. D.; Yule, H. P. [eds.

    1979-01-01

    Seventy-three papers are included under the following session headings: analytical and mathematical methods for data analysis; software systems for ..gamma..-ray and x-ray spectrometry; ..gamma..-ray spectra treatment, peak evaluation; least squares; IAEA intercomparison of methods for processing spectra; computer and calculator utilization in spectrometer systems; and applications in safeguards, fuel scanning, and environmental monitoring. Separate abstracts were prepared for 72 of those papers. (DLC)

  6. Terrestrial gamma ray flash production by lightning current pulses

    OpenAIRE

    İnan, Umran Savaş; Carlson, B. E.; Lehtinen, N. G.

    2017-01-01

    Terrestrial gamma ray flashes (TGFs) are brief bursts of gamma rays observed by satellites, typically in coincidence with detectable lightning. We incorporate TGF observations and the key physics behind current TGF production theories with lightning physics to produce constraints on TGF production mechanisms. The combined constraints naturally suggest a mechanism for TGF production by current pulses in lightning leader channels. The mechanism involves local field enhancements due to charge re...

  7. Gamma-Ray Imager With High Spatial And Spectral Resolution

    Science.gov (United States)

    Callas, John L.; Varnell, Larry S.; Wheaton, William A.; Mahoney, William A.

    1996-01-01

    Gamma-ray instrument developed to enable both two-dimensional imaging at relatively high spatial resolution and spectroscopy at fractional-photon-energy resolution of about 10 to the negative 3rd power in photon-energy range from 10 keV to greater than 10 MeV. In its spectroscopic aspect, instrument enables identification of both narrow and weak gamma-ray spectral peaks.

  8. Technical Aspect on Procedure of Gamma-Ray Pipeline Inspection

    International Nuclear Information System (INIS)

    Rasif Mohd Zain; Ainul Mardhiah Terry; Norman Shah Dahing

    2015-01-01

    The main problems happen in industrial pipelines are deposit build-up, blockage, corrosion and erosion. These effects will give a constraint in transporting refined products to process or production points and cause a major problem in production. One of the techniques to inspect the problem is using gamma-ray pipe scans. The principle of the technique is gamma-ray absorption technique. In this paper describes on the technical aspect to perform the pipe inspection in laboratory work. (author)

  9. A directional gamma-ray detector based on scintillator plates

    Energy Technology Data Exchange (ETDEWEB)

    Hanna, D., E-mail: hanna@physics.mcgill.ca; Sagnières, L.; Boyle, P.J.; MacLeod, A.M.L.

    2015-10-11

    A simple device for determining the azimuthal location of a source of gamma radiation, using ideas from astrophysical gamma-ray burst detection, is described. A compact and robust detector built from eight identical modules, each comprising a plate of CsI(Tl) scintillator coupled to a photomultiplier tube, can locate a point source of gamma rays with degree-scale precision by comparing the count rates in the different modules. Sensitivity to uniform environmental background is minimal.

  10. Heterogeneity in Short Gamma-Ray Bursts

    Science.gov (United States)

    Norris, Jay P.; Gehrels Neil; Scargle, Jeffrey D.

    2011-01-01

    We analyze the Swift/BAT sample of short gamma-ray bursts, using an objective Bayesian Block procedure to extract temporal descriptors of the bursts' initial pulse complexes (IPCs). The sample comprises 12 and 41 bursts with and without extended emission (EE) components, respectively. IPCs of non-EE bursts are dominated by single pulse structures, while EE bursts tend to have two or more pulse structures. The medians of characteristic timescales - durations, pulse structure widths, and peak intervals - for EE bursts are factors of approx 2-3 longer than for non-EE bursts. A trend previously reported by Hakkila and colleagues unifying long and short bursts - the anti-correlation of pulse intensity and width - continues in the two short burst groups, with non-EE bursts extending to more intense, narrower pulses. In addition we find that preceding and succeeding pulse intensities are anti-correlated with pulse interval. We also examine the short burst X-ray afterglows as observed by the Swift/XRT. The median flux of the initial XRT detections for EE bursts (approx 6 X 10(exp -10) erg / sq cm/ s) is approx > 20 x brighter than for non-EE bursts, and the median X-ray afterglow duration for EE bursts (approx 60,000 s) is approx 30 x longer than for non-EE bursts. The tendency for EE bursts toward longer prompt-emission timescales and higher initial X-ray afterglow fluxes implies larger energy injections powering the afterglows. The longer-lasting X-ray afterglows of EE bursts may suggest that a significant fraction explode into more dense environments than non-EE bursts, or that the sometimes-dominant EE component efficiently p()wers the afterglow. Combined, these results favor different progenitors for EE and non-EE short bursts.

  11. Gamma-ray effect on sweet potato

    International Nuclear Information System (INIS)

    Ferdes, O.; Ciofu, R.; Stroia, L.; Ghering, A.; Ferdes, M.

    1994-01-01

    The paper presents the results on modification occurred in biochemical properties of sweet potato (Ipomea batatus L.) after gamma irradiation. Two varieties, named Victoria Ianb (a white variety) and Portocaliu (a red variety), were selected and acclimatized for the agrometeorological conditions of Romania. The samples consist of roots from both usual and experimental crops. They were irradiated in batch, one week after harvesting, with a ICPR Co-60 gamma-ray source by approx. 370 TBq, dose range 100-500 Gy, dose rate 100±5 Gy/hour, dose uniformity ±5%, temperature 10 o C, 80±5% relative humidity (rh). The irradiation doses received were checked using the Fricke ferrous sulphate dosimeter procedure. The roots were kept two months at relative darkness, 6-11 o C, 60-75% rh and analyzed from time to time (initial, 5, 7, 14, 30 and 60 days). The following parameters are analyzed by conventional methods: total and reducing sugars (in De equivalent, %, on dry weight basis), starch content and the activities of sugar metabolizing enzymes. The red variety had a better behaviour towards irradiation that the white one. The sugar contents (both total and reducing), as well as starch, varied more in the white variety. The sugar metabolizing enzyme activities were influenced by both irradiation and storage conditions. Their activities were maximal at 200 and 300 Gy, and decreased significantly at higher doses. The activities also decreased in time, their variations being higher at lower doses (100 and 200 Gy). The results showed no significant influence of gamma irradiation on storage life. The modifications induced in sugar contents and enzyme activities had maximal effects at 200-300 Gy. (author)

  12. HETEROGENEITY IN SHORT GAMMA-RAY BURSTS

    International Nuclear Information System (INIS)

    Norris, Jay P.; Gehrels, Neil; Scargle, Jeffrey D.

    2011-01-01

    We analyze the Swift/BAT sample of short gamma-ray bursts, using an objective Bayesian Block procedure to extract temporal descriptors of the bursts' initial pulse complexes (IPCs). The sample is comprised of 12 and 41 bursts with and without extended emission (EE) components, respectively. IPCs of non-EE bursts are dominated by single pulse structures, while EE bursts tend to have two or more pulse structures. The medians of characteristic timescales-durations, pulse structure widths, and peak intervals-for EE bursts are factors of ∼2-3 longer than for non-EE bursts. A trend previously reported by Hakkila and colleagues unifying long and short bursts-the anti-correlation of pulse intensity and width-continues in the two short burst groups, with non-EE bursts extending to more intense, narrower pulses. In addition, we find that preceding and succeeding pulse intensities are anti-correlated with pulse interval. We also examine the short burst X-ray afterglows as observed by the Swift/X-Ray Telescope (XRT). The median flux of the initial XRT detections for EE bursts (∼6x10 -10 erg cm -2 s -1 ) is ∼>20x brighter than for non-EE bursts, and the median X-ray afterglow duration for EE bursts (∼60,000 s) is ∼30x longer than for non-EE bursts. The tendency for EE bursts toward longer prompt-emission timescales and higher initial X-ray afterglow fluxes implies larger energy injections powering the afterglows. The longer-lasting X-ray afterglows of EE bursts may suggest that a significant fraction explode into denser environments than non-EE bursts, or that the sometimes-dominant EE component efficiently powers the afterglow. Combined, these results favor different progenitors for EE and non-EE short bursts.

  13. When will a pulsar in supernova 1987a be seen?

    Science.gov (United States)

    Michel, F. Curtis; Kennel, C. F.; Fowler, William A.

    1987-01-01

    The means by which a pulsar might be detected in the remnant of supernova 1987a in the Large Magellanic Cloud is examined. One possibility is that the slower-than-radioactive decay typically seen in the type II light curves is itself the sign of powering by the underlying pulsar, with the decline representing not the spinning down of the pulsar but rather the declining nebular opacity that would allow increasing amounts of the energy to escape as gamma rays. The test of this hypothesis (if the supernova conforms to type II expectations) would be to look for the 'missing' energy in the form of those gamma rays that escape from the remnant instead of powering it.

  14. The surprising Crab pulsar and its nebula: a review.

    Science.gov (United States)

    Bühler, R; Blandford, R

    2014-06-01

    The Crab nebula and its pulsar (referred to together as 'the Crab') have historically played a central role in astrophysics. True to this legacy, several unique discoveries have been made recently. The Crab was found to emit gamma-ray pulsations up to energies of 400 GeV, beyond what was previously expected from pulsars. Strong gamma-ray flares, of durations of a few days, were discovered from within the nebula, while the source was previously expected to be stable in flux on these time scales. Here we review these intriguing and suggestive developments. In this context we give an overview of the observational properties of the Crab and our current understanding of pulsars and their nebulae.

  15. A study of gamma-ray bursts and a new detector for gamma-ray astronomy

    International Nuclear Information System (INIS)

    Carter, J.N.

    1979-09-01

    Three gamma-ray experiments flown on balloons between August 1975 and August 1976 are described in detail. The successful Transatlantic balloon flight enabled a rate of 3 bursts year -1 with energies > 7 x 10 -7 ergs cm -2 to be established. This result is discussed in the light of other work. The choice of γ-ray detector for optimum sensitivity is presented. In addition various techniques for determining the arrival direction of gamma-ray bursts are compared. A new balloon borne γ-ray burst telescope is proposed. The design, testing and results of the beam calibration of a new drift chamber detector system for high energy (> 50 MeV) γ-rays are presented. A projected angular resolution of 0.8 0 was obtained at 300 MeV. Techniques for the measurement of γ-ray energies are discussed in relation to this instrument. Finally the use of drift chambers in an integrated free flying satellite is illustrated, and the expected performance is presented. (author)

  16. The Fermi Gamma-ray Burst Monitor (GBM) Terrestrial Gamma-ray Flash (TGF) Catalog

    Science.gov (United States)

    Briggs, M. S.; Roberts, O.; Fitzpatrick, G.; Stanbro, M.; Cramer, E.; Mailyan, B. G.; McBreen, S.; Connaughton, V.; Grove, J. E.; Chekhtman, A.; Holzworth, R.

    2017-12-01

    The revised Second Fermi GBM TGF catalog includes data on 4144 TGFs detected by the Fermi Gamma-ray Burst Monitor through 2016 July 31. The catalog includes 686 bright TGFs there were detected in orbit and 4135 TGFs that were discovered by ground analysis of GBM data (the two samples overlap). Thirty of the events may have been detected as electrons and positrons rather than gamma-rays: Terrestrial Electron Beams (TEBs). We also provide results from correlating the GBM TGFs with VLF radio detections of the World Wide Lightning Location Network (WWLLN). TGFs with WWLLN associations have their localization uncertainties improved from 800 to 10 km, making it possible to identify specific thunderstorms responsible for the TGFs and opening up new types of scientific investigations. There are 1544 TGFs with WWLLN associations; maps are provided for these and the other TGFs of the catalog. The data tables of the catalog are available for use by the scientific community at the Fermi Science Support Center, at https://fermi.gsfc.nasa.gov/ssc/data/access/gbm/tgf/.

  17. LOCALIZATION OF GAMMA-RAY BURSTS USING THE FERMI GAMMA-RAY BURST MONITOR

    Energy Technology Data Exchange (ETDEWEB)

    Connaughton, V.; Briggs, M. S.; Burgess, J. M. [CSPAR and Physics Department, University of Alabama in Huntsville, 320 Sparkman Drive, Huntsville, AL 35899 (United States); Goldstein, A.; Wilson-Hodge, C. A. [Astrophysics Office, ZP12, NASA/Marshall Space Flight Center, Huntsville, AL 35812 (United States); Meegan, C. A.; Jenke, P.; Pelassa, V.; Xiong, S.; Bhat, P. N. [CSPAR, University of Alabama in Huntsville, 320 Sparkman Drive, Huntsville, AL 35899 (United States); Paciesas, W. S. [Universities Space Research Association, Huntsville, AL (United States); Preece, R. D. [Department of Space Science, University of Alabama in Huntsville, 320 Sparkman Drive, Huntsville, AL 35899 (United States); Gibby, M. H. [Jacobs Technology, Inc., Huntsville, AL (United States); Greiner, J.; Yu, H.-F. [Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse 1, D-85748 Garching (Germany); Gruber, D. [Planetarium Südtirol, Gummer 5, I-39053 Karneid (Italy); Kippen, R. M. [Los Alamos National Laboratory, NM 87545 (United States); Byrne, D.; Fitzpatrick, G.; Foley, S., E-mail: valerie@nasa.gov [School of Physics, University College Dublin, Belfield, Stillorgan Road, Dublin 4 (Ireland); and others

    2015-02-01

    The Fermi Gamma-ray Burst Monitor (GBM) has detected over 1400 gamma-ray bursts (GRBs) since it began science operations in 2008 July. We use a subset of over 300 GRBs localized by instruments such as Swift, the Fermi Large Area Telescope, INTEGRAL, and MAXI, or through triangulations from the InterPlanetary Network, to analyze the accuracy of GBM GRB localizations. We find that the reported statistical uncertainties on GBM localizations, which can be as small as 1°, underestimate the distance of the GBM positions to the true GRB locations and we attribute this to systematic uncertainties. The distribution of systematic uncertainties is well represented (68% confidence level) by a 3.°7 Gaussian with a non-Gaussian tail that contains about 10% of GBM-detected GRBs and extends to approximately 14°. A more complex model suggests that there is a dependence of the systematic uncertainty on the position of the GRB in spacecraft coordinates, with GRBs in the quadrants on the Y axis better localized than those on the X axis.

  18. CENTRAL ENGINE MEMORY OF GAMMA-RAY BURSTS AND SOFT GAMMA-RAY REPEATERS

    International Nuclear Information System (INIS)

    Zhang, Bin-Bin; Castro-Tirado, Alberto J.; Zhang, Bing

    2016-01-01

    Gamma-ray bursts (GRBs) are bursts of γ-rays generated from relativistic jets launched from catastrophic events such as massive star core collapse or binary compact star coalescence. Previous studies suggested that GRB emission is erratic, with no noticeable memory in the central engine. Here we report a discovery that similar light curve patterns exist within individual bursts for at least some GRBs. Applying the Dynamic Time Warping method, we show that similarity of light curve patterns between pulses of a single burst or between the light curves of a GRB and its X-ray flare can be identified. This suggests that the central engine of at least some GRBs carries “memory” of its activities. We also show that the same technique can identify memory-like emission episodes in the flaring emission in soft gamma-ray repeaters (SGRs), which are believed to be Galactic, highly magnetized neutron stars named magnetars. Such a phenomenon challenges the standard black hole central engine models for GRBs, and suggest a common physical mechanism behind GRBs and SGRs, which points toward a magnetar central engine of GRBs

  19. Spatial distribution of reflected gamma rays by Monte Carlo simulation

    International Nuclear Information System (INIS)

    Jehouani, A.; Merzouki, A.; Boutadghart, F.; Ghassoun, J.

    2007-01-01

    In nuclear facilities, the reflection of gamma rays of the walls and metals constitutes an unknown origin of radiation. These reflected gamma rays must be estimated and determined. This study concerns reflected gamma rays on metal slabs. We evaluated the spatial distribution of the reflected gamma rays spectra by using the Monte Carlo method. An appropriate estimator for the double differential albedo is used to determine the energy spectra and the angular distribution of reflected gamma rays by slabs of iron and aluminium. We took into the account the principal interactions of gamma rays with matter: photoelectric, coherent scattering (Rayleigh), incoherent scattering (Compton) and pair creation. The Klein-Nishina differential cross section was used to select direction and energy of scattered photons after each Compton scattering. The obtained spectra show peaks at 0.511 * MeV for higher source energy. The Results are in good agreement with those obtained by the TRIPOLI code [J.C. Nimal et al., TRIPOLI02: Programme de Monte Carlo Polycinsetique a Trois dimensions, CEA Rapport, Commissariat a l'Energie Atomique.

  20. Self-powered neutron and gamma-ray flux detector

    International Nuclear Information System (INIS)

    Allan, C.J.; Shields, R.B.; Lynch, G.F.; Cuttler, J.M.

    1980-01-01

    A new type of self-powered neutron detector was developed which is sensitive to both the neutron and gamma-ray fluxes. The emitter comprises two parts. The central emitter core is made of materials that generate high-energy electrons on exposure to neutrons. The outer layer acts as a gamma-ray/electron converter, and since it has a higher atomic number and higher back-scattering coefficient than the collector, increases the net outflow or emmission of electrons. The collector, which is around the emitter outer layer, is insulated from the outer layer electrically with dielectric insulation formed from compressed metal-oxide powder. The fraction of electrons given off by the emitter that is reflected back by the collector is less than the fraction of electrons emitted by the collector that is reflected back by the emitter. The thickness of the outer layer needed to achieve this result is very small. A detector of this design responds to external reactor gamma-rays as well as to neutron capture gamma-rays from the collector. The emitter core is either nickel, iron or titanium, or alloys based on these metals. The outer layer is made of platinum, tantalum, osmium, molybdenum or cerium. The detector is particularly useful for monitoring neutron and gamma ray flux intensities in nuclear reactor cores in which the neutron and gamma ray flux intensities are closely proportional, are unltimately related to the fission rate, and are used as measurements of nuclear reactor power. (DN)

  1. A study on gamma rays from electrochemical cells

    International Nuclear Information System (INIS)

    Shin, Seung Ai

    1993-01-01

    The energies and intensities of gamma rays emitted from 3 cells with Pd-cathodes of φ 1mm x 10mm, φ 2mm x 20mm, φ 1mm x 10mm were determined using HPGe-detector system and compared with Pd-neutron capture model. Very strong gamma rays of 512keC, 622keC, 1051keC and 8 more important ones were found to be identical with characteristic gamma rays of 106 Pd and 109 Pd. It is likely that the neutron capture reaction, A PD(n, γ) A+1 Pd, occurred in the cell and the neutrons came from the fusion reaction of two deutrons. It is necessary, however, to retest the model since another strong 84keV-gamma rays do not belong to any A+1 Pd-gamma spectra and two important 106 Pd-gamma rays 717keV, 1046KeV were not detected. Total amount of emitted gamma rays was large when the size of the Pd-cathod was large. Its depedence on the time of measurement and the preheating period did not have any regularities. Thus the replication is not an easy thing. (Author)

  2. Gamma-ray emission profile measurements during JET ICRH discharges

    Energy Technology Data Exchange (ETDEWEB)

    Howarth, P.J.A. [Birmingham Univ. (United Kingdom); Adams, J.M.; Bond, D.S.; Watkins, N. [AEA Technology, Harwell (United Kingdom); Jarvis, O.N.; Marcus, F.B.; Sadler, G.; Belle, P. van [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking

    1994-12-31

    Ion Cyclotron Resonant Heating (ICRH) that is tuned to minority fuel ions can induce an energy diffusion of the heated species and create high energy tail temperatures of {approx} 1 MeV. The most energetic of these accelerated minority ions can undergo nuclear reactions with impurity Be and C that produces {gamma}-ray emission from the decay of the excited product nuclei. This RF-induced {gamma}-ray emission has been recorded using the JET neutron emission profile diagnostic which is capable of distinguishing neutrons and {gamma}-rays. Appropriate data processing has enabled the RF-induced {gamma}-ray emission signals to be isolated from the {gamma}-ray emission signals associated with neutron interactions in the material surrounding the profile monitor. The 2-d {gamma}-ray emission profiles show that virtually all the radiation originates from the low field side of the RF resonance layer, as expected from RF-induced pitch angle diffusion. The emission profiles indicate the presence of a small population of resonant {sup 3}He ions that possess orbits lying near the passing-trapped boundary. (author) 6 refs., 4 figs.

  3. The unusual gamma-ray burst GRB 101225A explained as a minor body falling onto a neutron star.

    Science.gov (United States)

    Campana, S; Lodato, G; D'Avanzo, P; Panagia, N; Rossi, E M; Della Valle, M; Tagliaferri, G; Antonelli, L A; Covino, S; Ghirlanda, G; Ghisellini, G; Melandri, A; Pian, E; Salvaterra, R; Cusumano, G; D'Elia, V; Fugazza, D; Palazzi, E; Sbarufatti, B; Vergani, S D

    2011-11-30

    The tidal disruption of a solar-mass star around a supermassive black hole has been extensively studied analytically and numerically. In these events, the star develops into an elongated banana-shaped structure. After completing an eccentric orbit, the bound debris falls into the black hole, forming an accretion disk and emitting radiation. The same process may occur on planetary scales if a minor body passes too close to its star. In the Solar System, comets fall directly into our Sun or onto planets. If the star is a compact object, the minor body can become tidally disrupted. Indeed, one of the first mechanisms invoked to produce strong gamma-ray emission involved accretion of comets onto neutron stars in our Galaxy. Here we report that the peculiarities of the 'Christmas' gamma-ray burst (GRB 101225A) can be explained by a tidal disruption event of a minor body around an isolated Galactic neutron star. This would indicate either that minor bodies can be captured by compact stellar remnants more frequently than occurs in the Solar System or that minor-body formation is relatively easy around millisecond radio pulsars. A peculiar supernova associated with a gamma-ray burst provides an alternative explanation.

  4. The Characterization of the Gamma-Ray Signal from the Central Milky Way: A Compelling Case for Annihilating Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Daylan, Tansu [Harvard Univ., Cambridge, MA (United States); Finkbeiner, Douglas P. [Harvard-Smithsonian Center, Cambridge, MA (United States); Hooper, Dan [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Linden, Tim [Univ. of Illinois at Chicago, Chicago, IL (United States); Portillo, Stephen K. N. [Harvard-Smithsonian Center, Cambridge, MA (United States); Rodd, Nicholas L. [Massachusetts Institute of Technology, Boston, MA (United States); Slatyer, Tracy R. [Institute for Advanced Study, Princeton, NJ (United States)

    2014-02-26

    Past studies have identified a spatially extended excess of ~1-3 GeV gamma rays from the region surrounding the Galactic Center, consistent with the emission expected from annihilating dark matter. We revisit and scrutinize this signal with the intention of further constraining its characteristics and origin. By applying cuts to the Fermi event parameter CTBCORE, we suppress the tails of the point spread function and generate high resolution gamma-ray maps, enabling us to more easily separate the various gamma-ray components. Within these maps, we find the GeV excess to be robust and highly statistically significant, with a spectrum, angular distribution, and overall normalization that is in good agreement with that predicted by simple annihilating dark matter models. For example, the signal is very well fit by a 31-40 GeV dark matter particle annihilating to b quarks with an annihilation cross section of sigma v = (1.4-2.0) x 10^-26 cm^3/s (normalized to a local dark matter density of 0.3 GeV/cm^3). Furthermore, we confirm that the angular distribution of the excess is approximately spherically symmetric and centered around the dynamical center of the Milky Way (within ~0.05 degrees of Sgr A*), showing no sign of elongation along or perpendicular to the Galactic Plane. The signal is observed to extend to at least 10 degrees from the Galactic Center, disfavoring the possibility that this emission originates from millisecond pulsars.

  5. Cosmic ray nuclei detection in the balloon borne nuclear emulsion gamma ray telescope flight in Australia (GRAINE 2015

    Directory of Open Access Journals (Sweden)

    Iyono Atsushi

    2017-01-01

    Full Text Available Nuclear emulsion plates for studying elementary particle physics as well as cosmic ray physics are very powerful tracking tools with sub-micron spatial resolutions of charged particle trajectories. Even if gamma rays have to be detected, electron-positron pair tracks can provide precise information to reconstruct their direction and energy with high accuracy. Recent developments of emulsion analysis technology can digitally handle almost all tracks recorded in emulsion plates by using the Hyper Track Selector of the OPERA group at NAGOYA University. On the other hand, the potential of time resolutions have been equipped by emulsion multilayer shifter technology in the GRAINE (Gamma Ray Astro-Imager with Nuclear Emulsion experiments, the aims of which are to detect cosmic gamma rays such as the Vela pulsar stellar object by precise emulsion tracking analysis and to study cosmic ray particle interactions and chemical compositions. In this paper, we focus on the subject of cosmic ray nuclei detection in the GRAINE balloon flight experiments launched at Alice Springs, Australia in May 2015.

  6. First detections of nebula with the Fermi-Large Area Telescope and study of their pulsars

    International Nuclear Information System (INIS)

    Grondin, M.H.

    2010-07-01

    The Fermi Gamma-ray Space Telescope was launched on 2008 June 11, carrying the Large Area Telescope (LAT), sensitive to gamma-rays in the 20 MeV - 300 GeV energy range. The Crab Nebula had been detected and studied in the 70 MeV - 30 GeV band using the CGRO-EGRET experiment, but no pulsar wind nebula (PWN) had ever been firmly identified in the high energy gamma-ray domain. PWNe are powered by the constant injection of a relativistic wind of electrons and positrons from their central pulsars. These charged particles are accelerated at the shock front forming the PWN and emit photons which can be observed along the entire electromagnetic spectrum, including the high energy gamma-ray domain. Data provided by the Fermi-LAT during the first two years of the mission have allowed the detection and the identification of three PWNe and their associated pulsars (Crab Nebula, Vela X and MSH 15-52) as well as the PWN HESS J1825-137 discovered by ground-based experiments sensitive to very high energy gamma-rays. Results of temporal, spectral and morphological analyses of the pulsar/PWN systems detected by Fermi- LAT, as well as results of systematic studies performed first around every gamma-ray pulsar detected by the LAT and secondly around every very high energy source identified as a PWN or a PWN candidate are presented in this dissertation. These studies bring new insights and constraints on the physical properties of the sources as well as on emitting processes in pulsar magnetospheres and in PWNe. (author)

  7. Fermi-LAT Constraints on the Pulsar Wind Nebula Nature of HESS J1857+026

    Science.gov (United States)

    Rousseau, R.; Grondin, M.-H.; VanEtten, A.; Lemoine-Goumard, M.; Bogdanov, S.; Hessels, J. W. T.; Kaspi, V. M.; Arzoumanian, Z.; Camilo, F.; Casandjian, J. M.; hide

    2012-01-01

    Since its launch, the Fermi satellite has firmly identified 5 pulsar wind nebulae plus a large number of candidates, all powered by young and energetic pulsars. HESS J1857+026 is a spatially extended gamma-ray source detected by H.E.S.S. and classified as a possible pulsar wind nebula candidate powered by PSR J1856+0245. Aims. We search for -ray pulsations from PSR J1856+0245 and explore the characteristics of its associated pulsar wind nebula. Methods. Using a rotational ephemeris obtained from the Lovell telescope at Jodrell Bank Observatory at 1.5 GHz, we phase.fold 36 months of gamma-ray data acquired by the Large Area Telescope (LAT) aboard Fermi. We also perform a complete gamma-ray spectral and morphological analysis. Results. No pulsation was detected from PSR J1856+0245. However, significant emission is detected at a position coincident with the TeV source HESS J1857+026. The gamma-ray spectrum is well described by a simple power law with a spectral index of Gamma = 1.53 +/- 0.11(sub stat) +/- 0.55(sub syst) and an energy flux of G(0.1 C100 GeV) = (2.71 +/- 0.52(sub stat) +/- 1.51(sub syst) X 10(exp -11) ergs/ sq cm/s. This implies a gamma.ray efficiency of approx 5 %, assuming a distance of 9 kpc, the gamma-ray luminosity of L(sub gamma) (sub PWN) (0.1 C100 GeV) = (2.5 +/- 0.5(sub stat) +/- 1.5(sub syst)) X 10(exp 35)(d/(9kpc))(exp 2) ergs/s and E-dot = 4.6 X 10(exp 36) erg /s, in the range expected for pulsar wind nebulae. Detailed multi-wavelength modeling provides new constraints on its pulsar wind nebula nature.

  8. Gamma-ray emission from internal shocks in novae

    Science.gov (United States)

    Martin, P.; Dubus, G.; Jean, P.; Tatischeff, V.; Dosne, C.

    2018-04-01

    Context. Gamma-ray emission at energies ≥100 MeV has been detected from nine novae using the Fermi Large Area Telescope (LAT), and can be explained by particle acceleration at shocks in these systems. Eight out of these nine objects are classical novae in which interaction of the ejecta with a tenuous circumbinary material is not expected to generate detectable gamma-ray emission. Aim. We examine whether particle acceleration at internal shocks can account for the gamma-ray emission from these novae. The shocks result from the interaction of a fast wind radiatively-driven by nuclear burning on the white dwarf with material ejected in the initial runaway stage of the nova outburst. Methods: We present a one-dimensional model for the dynamics of a forward and reverse shock system in a nova ejecta, and for the associated time-dependent particle acceleration and high-energy gamma-ray emission. Non-thermal proton and electron spectra are calculated by solving a time-dependent transport equation for particle injection, acceleration, losses, and escape from the shock region. The predicted emission is compared to LAT observations of V407 Cyg, V1324 Sco, V959 Mon, V339 Del, V1369 Cen, and V5668 Sgr. Results: The ≥100 MeV gamma-ray emission arises predominantly from particles accelerated up to 100 GeV at the reverse shock and undergoing hadronic interactions in the dense cooling layer downstream of the shock. The emission rises within days after the onset of the wind, quickly reaches a maximum, and its subsequent decrease reflects mostly the time evolution of the wind properties. Comparison to gamma-ray data points to a typical scenario where an ejecta of mass 10-5-10-4 M⊙ expands in a homologous way with a maximum velocity of 1000-2000 km s-1, followed within a day by a wind with a velocity values of which result in the majority of best-fit models having gamma-ray spectra with a high-energy turnover below 10 GeV. Our typical model is able to account for the main

  9. NEW FERMI-LAT EVENT RECONSTRUCTION REVEALS MORE HIGH-ENERGY GAMMA RAYS FROM GAMMA-RAY BURSTS

    Energy Technology Data Exchange (ETDEWEB)

    Atwood, W. B. [Santa Cruz Institute for Particle Physics, Department of Physics and Department of Astronomy and Astrophysics, University of California at Santa Cruz, Santa Cruz, CA 95064 (United States); Baldini, L. [Universita di Pisa and Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Bregeon, J.; Pesce-Rollins, M.; Sgro, C.; Tinivella, M. [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Bruel, P. [Laboratoire Leprince-Ringuet, Ecole polytechnique, CNRS/IN2P3, Palaiseau (France); Chekhtman, A. [Center for Earth Observing and Space Research, College of Science, George Mason University, Fairfax, VA 22030 (United States); Cohen-Tanugi, J. [Laboratoire Univers et Particules de Montpellier, Universite Montpellier 2, CNRS/IN2P3, F-34095 Montpellier (France); Drlica-Wagner, A.; Omodei, N.; Rochester, L. S.; Usher, T. L. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Granot, J. [Department of Natural Sciences, The Open University of Israel, 1 University Road, P.O. Box 808, Ra' anana 43537 (Israel); Longo, F. [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, I-34127 Trieste (Italy); Razzaque, S. [Department of Physics, University of Johannesburg, Auckland Park 2006 (South Africa); Zimmer, S., E-mail: melissa.pesce.rollins@pi.infn.it, E-mail: nicola.omodei@stanford.edu, E-mail: granot@openu.ac.il [Department of Physics, Stockholm University, AlbaNova, SE-106 91 Stockholm (Sweden)

    2013-09-01

    Based on the experience gained during the four and a half years of the mission, the Fermi-LAT Collaboration has undertaken a comprehensive revision of the event-level analysis going under the name of Pass 8. Although it is not yet finalized, we can test the improvements in the new event reconstruction with the special case of the prompt phase of bright gamma-ray bursts (GRBs), where the signal-to-noise ratio is large enough that loose selection cuts are sufficient to identify gamma rays associated with the source. Using the new event reconstruction, we have re-analyzed 10 GRBs previously detected by the Large Area Telescope (LAT) for which an X-ray/optical follow-up was possible and found four new gamma rays with energies greater than 10 GeV in addition to the seven previously known. Among these four is a 27.4 GeV gamma ray from GRB 080916C, which has a redshift of 4.35, thus making it the gamma ray with the highest intrinsic energy ({approx}147 GeV) detected from a GRB. We present here the salient aspects of the new event reconstruction and discuss the scientific implications of these new high-energy gamma rays, such as constraining extragalactic background light models, Lorentz invariance violation tests, the prompt emission mechanism, and the bulk Lorentz factor of the emitting region.

  10. Gamma rays application in veterinary immunology

    International Nuclear Information System (INIS)

    Bulkhanov, R.U.; Butaev, M.K.; Mirzaev, B.Sh.; Ryasnyanskiy, I.V.; Yuldashev, R.Yu.

    2005-01-01

    Full text: The process based on stimulated action of ionized radiation, change of quality of agricultural goods and row materials, biocides including bactericide action of ionized radiation are among the methods of radiation biotechnology, which can be applied in agriculture. We used the bactericide action of ionized radiation in technological process for creation of fundamentally new preparation possessed by by immunogenic properties and named as 'radio vaccine'. This term is well known and frequently used in scientific papers in the field of applied radiobiology. It is well known that physical (thermal) and chemical actions are used for preparation of vaccine for veterinary. It was noted that this process resulted in destruction of antigenic structure of bacteria cells, with are responsible for immunity creation. The possibility of virulence reduction at constant immunogenic properties of microorganism and keeping its antigenic structure can be achieved by using ionized radiation as one of the factor, which influences on bacteria. Taking into account the necessity of vaccine improvement and increase of quantity of associated vaccine one of the most important problems of veterinary science and particle is creation of vaccines of new generation which are characterized by the ability to form immunity against several diseases of agricultural animals. As a result of many-years investigations using gamma rays radiations in UzSRIV (laboratory of radiobiology) the radiation biotechnology of vaccine preparation was developed. These vaccines are necessary for practical application. Radiation biotechnology allows to prepare high-effective mono-, associated and polyvalent radio vaccines against widespread infection diseases of agricultural animals especially cubs (calves, lambs, young pigs). On the basis of developed radiation biotechnology there were prepared the following vaccines: 'Associated radio vaccine against colibacteriosis and salmonellosis of small horned cattle

  11. RAPID GAMMA-RAY FLUX VARIABILITY DURING THE 2013 MARCH CRAB NEBULA FLARE

    International Nuclear Information System (INIS)

    Mayer, M.; Buehler, R.; Hays, E.; Cheung, C. C.; Grove, J. E.; Dutka, M. S.; Kerr, M.; Ojha, R.

    2013-01-01

    We report on a bright flare in the Crab Nebula detected by the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope. The period of significantly increased luminosity occurred in 2013 March and lasted for approximately two weeks. During this period, we observed flux variability on timescales of approximately 5 hr. The combined photon flux above 100 MeV from the pulsar and its nebula reached a peak value of (12.5 ± 0.8) · 10 –6 cm –2 s –1 on 2013 March 6. This value exceeds the average flux by almost a factor of six and implies a ∼20 times higher flux for the synchrotron component of the nebula alone. This is the second brightest flare observed from this source. Spectral and temporal analysis of the LAT data collected during the outburst reveal a rapidly varying synchrotron component of the Crab Nebula while the pulsar emission remains constant in time

  12. More surprises from the violent gamma-ray binary LS 2883 /B1259-63.

    Science.gov (United States)

    Kargaltsev, Oleg; Hare, Jeremy; Pavlov, George G.

    2018-01-01

    We report the results of a Chandra X-ray Observatory (CXO) monitoring campaign of the high-mass gamma-ray binary LS 2883, which hosts the young pulsar B1259-63. The monitoring now covers two binary cycles (6.8 years) and allows us to conclude that ejections of high-velocity X-ray emitting material are common for this binary. In the first cycle we observed an extended feature which detached and moved away from the binary. The observed changes in position were consistent with a steady motion with v=(0.07+/-0.01)c and a slight hint of acceleration. Tracing the motion back in time suggested that the X-ray emitting matter was ejected close to periastron passage. In the last orbital cycle, accelerated motion (reaching (0.13+/-0.02)c) is strongly preferred over a steady motion (the latter would imply that the ejected material was launched ~400 days after the periastron passage). The moving feature is also more luminous, compared to the previous binary cycle, larger in its apparent extent, and exhibits a puzzling morphology. We will show the CXO movies from both binary cycles and discuss physical interpretation of the resolved outflow dynamics in this remarkable system, which provides unique insight into the properties of the pulsar and stellar winds and their interaction.

  13. Effect of /sup 60/Co. gamma. -rays on polyphenyl methacrylate obtained by. gamma. -ray irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Raghunath, S.; Rao, M.H.; Rao, K.N. (Bhabha Atomic Research Centre, Bombay (India). Chemistry Div.)

    1983-01-01

    Polyphenyl methacrylate of different molecular weights Msub(n) 13000, 34500 and crosslinked polymer prepared by /sup 60/Co ..gamma..-irradiation has been irradiated with /sup 60/Co ..gamma..-rays at 300 K. G(scission) of the 13000 molecular weight polymer was 15. The crosslinked polymer undergoes both degradation and crosslinking. G(x) value determined for that polymer is approx. 9. The gaseous product consists largely of CO with some CO/sub 2/ and H/sub 2/. Hydrocarbon gases were not detected. The yield of H/sub 2/ is only to the extent of 2 to 5% of the total gas and it is assumed that majority of scission takes place at the ester linkage. On the basis of the estimation of phenol and benzene, a mechanism for degradation and crosslinking is proposed.

  14. The measurement of gamma ray induced heating in a mixed neutron and gamma ray environment

    International Nuclear Information System (INIS)

    Chiu, H.K.

    1991-10-01

    The problem of measuring the gamma heating in a mixed DT neutron and gamma ray environment was explored. A new detector technique was developed to make this measurement. Gamma heating measurements were made in a low-Z assembly irradiated with 14-Mev neutrons and (n, n') gammas produced by a Texas Nuclear Model 9400 neutron generator. Heating measurements were made in the mid-line of the lattice using a proportional counter operating in the Continuously-varied Bias-voltage Acquisition mode. The neutron-induced signal was separated from the gamma-induced signal by exploiting the signal rise-time differences inherent to radiations of different linear energy transfer coefficient, which are observable in a proportional counter. The operating limits of this measurement technique were explored by varying the counter position in the low-Z lattice, hence changing the irradiation spectrum observed. The experiment was modelled numerically to help interpret the measured results. The transport of neutrons and gamma rays in the assembly was modelled using the one- dimensional radiation transport code ANISN/PC. The cross-section set used for these calculations was derived from the ENDF/B-V library using the code MC 2 -2 for the case of DT neutrons slowing down in a low-Z material. The calculated neutron and gamma spectra in the slab and the relevant mass-stopping powers were used to construct weighting factors which relate the energy deposition in the counter fill-gas to that in the counter wall and in the surrounding material. The gamma energy deposition at various positions in the lattice is estimated by applying these weighting factors to the measured gamma energy deposition in the counter at those locations

  15. Pulsar Magnetospheres and Pulsar Winds

    OpenAIRE

    Beskin, Vasily S.

    2016-01-01

    Surprisingly, the chronology of nearly 50 years of the pulsar magnetosphere and pulsar wind research is quite similar to the history of our civilization. Using this analogy, I have tried to outline the main results obtained in this field. In addition to my talk, the possibility of particle acceleration due to different processes in the pulsar magnetosphere is discussed in more detail.

  16. Continued Development of a Soft Gamma-Ray Concentrator

    Science.gov (United States)

    Bloser, Peter

    We propose to continue our development of a concept for a soft gamma-ray (E > 100 keV) concentrator using thin-film multilayer structures. Alternating layers of low- and high-density materials will channel soft gamma-ray photons via total external reflection. A suitable arrangement of bent structures will then concentrate the incident radiation to a point. Gamma-ray optics made in this way offer the potential for soft gamma-ray telescopes with focal lengths of less than 10 m, removing the need for formation flying spacecraft and opening the field up to balloon-borne instruments. Under previous APRA funding we have been investigating methods for efficiently producing such multilayer structures and modeling their performance. We now propose to pursue magnetron sputtering (MS) techniques to quickly produce structures with the required smoothness and thickness, to measure their channeling efficiency and compare with calculations, and to design a "lens" with optimized bandpass and throughput and predict its scientific performance. If successful, this work will confirm that this innovative optics concept is suitable for a balloon-born soft gamma-ray telescope with unprecedented sensitivity.

  17. TL detectors for gamma ray dose measurements in criticality accidents

    International Nuclear Information System (INIS)

    Miljanic, S.; Zorko, B.; Gregori, B.; Knezevic, Z.

    2007-01-01

    Determination of gamma ray dose in mixed neutron + gamma ray fields is still a demanding task. Dosemeters used for gamma ray dosimetry are usually in some extent sensitive to neutrons and their response variations depend on neutron energy i.e., on neutron spectra. Besides, it is necessary to take into account the energy dependence of dosemeter responses to gamma rays. In this work, several types of thermoluminescent detectors (TLD) placed in different holders used for gamma ray dose determination in the mixed fields were examined. Dosemeters were from three different institutions: Ruder Boskovic Inst. (RBI), Croatia, Jozef Stefan Inst. (JSI), Slovenia and Autoridad Regulatoria Nuclear (ARN), Argentina. All dosemeters were irradiated during the International Intercomparison of Criticality Accident Dosimetry Systems at the SILENE Reactor, Valduc, June 2002. Three accidental scenarios were reproduced and in each irradiation the dosemeters were exposed placed on the front of phantom and 'free in air'. Following types of TLDs were used: 7 LiF (TLD-700), CaF 2 :Mn and Al2 O3 :Mg,Y - all from RBI; CaF 2 :Mn from JSI and 7 LiF (TLD-700) from ARN. Reported doses were compared with the reference values as well as with the values obtained from the results of all participants. The results show satisfactory agreement with other dosimetry systems used in the Intercomparison. The influence of different types of holders and applied corrections of dosemeters' readings are discussed. (authors)

  18. TL detectors for gamma ray dose measurements in criticality accidents.

    Science.gov (United States)

    Miljanić, Saveta; Zorko, Benjamin; Gregori, Beatriz; Knezević, Zeljka

    2007-01-01

    Determination of gamma ray dose in mixed neutron+gamma ray fields is still a demanding task. Dosemeters used for gamma ray dosimetry are usually in some extent sensitive to neutrons and their response variations depend on neutron energy i.e., on neutron spectra. Besides, it is necessary to take into account the energy dependence of dosemeter responses to gamma rays. In this work, several types of thermoluminescent detectors (TLD) placed in different holders used for gamma ray dose determination in the mixed fields were examined. Dosemeters were from three different institutions: Ruder Bosković Institute (RBI), Croatia, JoZef Stefan Institute (JSI), Slovenia and Autoridad Regulatoria Nuclear (ARN), Argentina. All dosemeters were irradiated during the International Intercomparison of Criticality Accident Dosimetry Systems at the SILENE Reactor, Valduc, June 2002. Three accidental scenarios were reproduced and in each irradiation the dosemeters were exposed placed on the front of phantom and 'free in air'. Following types of TLDs were used: 7LiF (TLD-700), CaF2:Mn and Al2O3:Mg,Y-all from RBI; CaF2:Mn from JSI and 7LiF (TLD-700) from ARN. Reported doses were compared with the reference values as well as with the values obtained from the results of all participants. The results show satisfactory agreement with other dosimetry systems used in the Intercomparison. The influence of different types of holders and applied corrections of dosemeters' readings are discussed.

  19. DISCOVERY OF X-RAY PULSATION FROM THE GEMINGA-LIKE PULSAR PSR J2021+4026

    Energy Technology Data Exchange (ETDEWEB)

    Lin, L. C. C. [General Education Center, China Medical University, Taichung 40402, Taiwan (China); Hui, C. Y.; Seo, K. A., E-mail: cyhui@cnu.ac.kr [Department of Astronomy and Space Science, Chungnam National University, Daejeon (Korea, Republic of); Hu, C. P.; Chou, Y. [Graduate Institute of Astronomy, National Central University, Jhongli 32001, Taiwan (China); Wu, J. H. K.; Huang, R. H. H. [Institute of Astronomy, National Tsing-Hua University, Hsinchu 30013, Taiwan (China); Trepl, L. [Astrophysikalisches Institut und Universitaets-Sternwarte, Universitaet Jena, Schillergaesschen 2-3, D-07745 Jena (Germany); Takata, J.; Wang, Y.; Cheng, K. S. [Department of Physics, University of Hong Kong, Pokfulam Road, Hong Kong (Hong Kong)

    2013-06-10

    We report the discovery of an X-ray periodicity of {approx}265.3 ms from a deep XMM-Newton observation of the radio-quiet {gamma}-ray pulsar, PSR J2021+4026, located at the edge of the supernova remnant G78.2+2.1 ({gamma}-Cygni). The detected frequency is consistent with the {gamma}-ray pulsation determined by the observation of the Fermi Gamma-ray Space Telescope at the same epoch. The X-ray pulse profile resembles the modulation of a hot spot on the surface of the neutron star. The phase-averaged spectral analysis also suggests that the majority of the observed X-rays have thermal origins. This is the third member in the class of radio-quiet pulsars with significant pulsations detected from both X-ray and {gamma}-ray regimes.

  20. High-Energy Emission from Rotation-Powered Pulsars

    Science.gov (United States)

    Harding, Alice K.

    2007-01-01

    Thirty-five years after the discovery of rotation-powered pulsars, we still do not understand their pulsed emission at any wavelength. In the last few years there have been some fundamental developments in acceleration and emission models. I will review both the basic physics of the models as well as the latest developments in understanding the high-energy emission of rotation-powered pulsars. Special and general relativistic effects play important roles in pulsar emission, from inertial frame-dragging near the stellar surface to aberration, time-of-flight and retardation of the magnetic field near the light cylinder. Understanding how these effects determine what we observe at different wavelengths is critical to unraveling the emission physics. Fortunately two new gamma-ray telescopes, AGILE and GLAST, with launches expected this year will detect many new gamma-ray pulsars and test the predictions of these models with unprecedented sensitivity and energy resolution for gamma-rays in the range of 30 MeV to 300 GeV.