WorldWideScience

Sample records for radio emission solar

  1. Solar energetic particles and radio burst emission

    Directory of Open Access Journals (Sweden)

    Miteva Rositsa

    2017-01-01

    Full Text Available We present a statistical study on the observed solar radio burst emission associated with the origin of in situ detected solar energetic particles. Several proton event catalogs in the period 1996–2016 are used. At the time of appearance of the particle origin (flare and coronal mass ejection we identified radio burst signatures of types II, III and IV by inspecting dynamic radio spectral plots. The information from observatory reports is also accounted for during the analysis. The occurrence of solar radio burst signatures is evaluated within selected wavelength ranges during the solar cycle 23 and the ongoing 24. Finally, we present the burst occurrence trends with respect to the intensity of the proton events and the location of their solar origin.

  2. RADIO EMISSION FROM ACCELERATION SITES OF SOLAR FLARES

    International Nuclear Information System (INIS)

    Li Yixuan; Fleishman, Gregory D.

    2009-01-01

    This Letter takes up the question of what radio emission is produced by electrons at the very acceleration site of a solar flare. Specifically, we calculate incoherent radio emission produced within two competing acceleration models-stochastic acceleration by cascading MHD turbulence and regular acceleration in collapsing magnetic traps. Our analysis clearly demonstrates that radio emission from acceleration sites (1) has sufficiently strong intensity to be observed by currently available radio instruments, and (2) has spectra and light curves that are distinctly different in these two competing models, which makes them observationally distinguishable. In particular, we suggest that some of the narrowband microwave and decimeter continuum bursts may be a signature of the stochastic acceleration in solar flares.

  3. A model for radio emission from solar coronal shocks

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, G. Q.; Chen, L.; Wu, D. J., E-mail: djwu@pmo.ac.cn [Purple Mountain Observatory, CAS, Nanjing 210008 (China)

    2014-05-01

    Solar coronal shocks are very common phenomena in the solar atmosphere and are believed to be the drivers of solar type II radio bursts. However, the microphysical nature of these emissions is still an open question. This paper proposes that electron cyclotron maser (ECM) emission is responsible for the generation of radiation from the coronal shocks. In the present model, an energetic ion beam accelerated by the shock first excites the Alfvén wave (AW), then the excited AW leads to the formation of a density-depleted duct along the foreshock boundary of the shock. In this density-depleted duct, the energetic electron beam produced via the shock acceleration can effectively excite radio emission by ECM instability. Our results show that this model may potentially be applied to solar type II radio bursts.

  4. A model for radio emission from solar coronal shocks

    International Nuclear Information System (INIS)

    Zhao, G. Q.; Chen, L.; Wu, D. J.

    2014-01-01

    Solar coronal shocks are very common phenomena in the solar atmosphere and are believed to be the drivers of solar type II radio bursts. However, the microphysical nature of these emissions is still an open question. This paper proposes that electron cyclotron maser (ECM) emission is responsible for the generation of radiation from the coronal shocks. In the present model, an energetic ion beam accelerated by the shock first excites the Alfvén wave (AW), then the excited AW leads to the formation of a density-depleted duct along the foreshock boundary of the shock. In this density-depleted duct, the energetic electron beam produced via the shock acceleration can effectively excite radio emission by ECM instability. Our results show that this model may potentially be applied to solar type II radio bursts.

  5. Annals of the International Geophysical Year solar radio emission during the International Geophysical Year

    CERN Document Server

    Smerd, S F

    1969-01-01

    Annals of the International Geophysical Year, Volume 34: Solar Radio Emission During the International Geophysical Year covers the significant solar radio emission events observed during the International Geophysical Year (IGY). This book is composed of six chapters, and begins with a summary of tabulated quantities describing solar radio emission during the IGY. The tabulated figures illustrate the method of recording the position of radio sources on the sun, the use of symbols in describing the structure of bursts observed at single frequencies, and the different types used in a spectral

  6. Wavelet Based Characterization of Low Radio Frequency Solar Emissions

    Science.gov (United States)

    Suresh, A.; Sharma, R.; Das, S. B.; Oberoi, D.; Pankratius, V.; Lonsdale, C.

    2016-12-01

    Low-frequency solar radio observations with the Murchison Widefield Array (MWA) have revealed the presence of numerous short-lived, narrow-band weak radio features, even during quiet solar conditions. In their appearance in in the frequency-time plane, they come closest to the solar type III bursts, but with much shorter spectral spans and flux densities, so much so that they are not detectable with the usual swept frequency radio spectrographs. These features occur at rates of many thousand features per hour in the 30.72 MHz MWA bandwidth, and hence necessarily require an automated approach to determine robust statistical estimates of their properties, e.g., distributions of spectral widths, temporal spans, flux densities, slopes in the time-frequency plane and distribution over frequency. To achieve this, a wavelet decomposition approach has been developed for feature recognition and subsequent parameter extraction from the MWA dynamic spectrum. This work builds on earlier work by the members of this team to achieve a reliable flux calibration in a computationally efficient manner. Preliminary results show that the distribution of spectral span of these features peaks around 3 MHz, most of them last for less than two seconds and are characterized by flux densities of about 60% of the background solar emission. In analogy with the solar type III bursts, this non-thermal emission is envisaged to arise via coherent emission processes. There is also an exciting possibility that these features might correspond to radio signatures of nanoflares, hypothesized (Gold, 1964; Parker, 1972) to explain coronal heating.

  7. Solar energetic particles and radio burst emission

    Czech Academy of Sciences Publication Activity Database

    Miteva, R.; Samwel, S. W.; Krupař, Vratislav

    2017-01-01

    Roč. 7 (2017), č. článku A37. ISSN 2115-7251 R&D Projects: GA ČR(CZ) GJ17-06818Y Institutional support: RVO:68378289 Keywords : solar energetic particles * solar radio burst emission * solar cycle Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 2.446, year: 2016 https://www.swsc-journal.org/ articles /swsc/abs/2017/01/swsc170028/swsc170028.html

  8. The Relationship Between Solar Radio and Hard X-Ray Emission

    Science.gov (United States)

    White, S. M.; Benz, A. O.; Christe, S.; Farnik, F.; Kundu, M. R.; Mann, G.; Ning, Z.; Raulin, J.-P.; Silva-Valio, A. V. R.; Saint-Hilaire, P.; hide

    2011-01-01

    This review discusses the complementary relationship between radio and hard Xray observations of the Sun using primarily results from the era of the Reuven Ramaty High Energy Solar Spectroscopic Imager satellite. A primary focus of joint radio and hard X-ray studies of solar flares uses observations of nonthermal gyrosynchrotron emission at radio wavelengths and bremsstrahlung hard X-rays to study the properties of electrons accelerated in the main flare site, since it is well established that these two emissions show very similar temporal behavior. A quantitative prescription is given for comparing the electron energy distributions derived separately from the two wavelength ranges: this is an important application with the potential for measuring the magnetic field strength in the flaring region, and reveals significant differences between the electrons in different energy ranges. Examples of the use of simultaneous data from the two wavelength ranges to derive physical conditions are then discussed, including the case of microflares, and the comparison of images at radio and hard X-ray wavelengths is presented. There have been puzzling results obtained from observations of solar flares at millimeter and submillimeter wavelengths, and the comparison of these results with corresponding hard X-ray data is presented. Finally, the review discusses the association of hard X-ray releases with radio emission at decimeter and meter wavelengths, which is dominated by plasma emission (at lower frequencies) and electron cyclotron maser emission (at higher frequencies), both coherent emission mechanisms that require small numbers of energetic electrons. These comparisons show broad general associations but detailed correspondence remains more elusive.

  9. Full PIC simulations of solar radio emission

    Science.gov (United States)

    Sgattoni, A.; Henri, P.; Briand, C.; Amiranoff, F.; Riconda, C.

    2017-12-01

    Solar radio emissions are electromagnetic (EM) waves emitted in the solar wind plasma as a consequence of electron beams accelerated during solar flares or interplanetary shocks such as ICMEs. To describe their origin, a multi-stage model has been proposed in the 60s which considers a succession of non-linear three-wave interaction processes. A good understanding of the process would allow to infer the kinetic energy transfered from the electron beam to EM waves, so that the radio waves recorded by spacecraft can be used as a diagnostic for the electron beam.Even if the electrostatic problem has been extensively studied, full electromagnetic simulations were attempted only recently. Our large scale 2D-3V electromagnetic PIC simulations allow to identify the generation of both electrostatic and EM waves originated by the succession of plasma instabilities. We tested several configurations varying the electron beam density and velocity considering a background plasma of uniform density. For all the tested configurations approximately 105 of the electron-beam kinetic energy is transfered into EM waves emitted in all direction nearly isotropically. With this work we aim to design experiments of laboratory astrophysics to reproduce the electromagnetic emission process and test its efficiency.

  10. Solar radio emissions: 2D full PIC simulations

    Science.gov (United States)

    Pierre, H.; Sgattoni, A.; Briand, C.; Amiranoff, F.; Riconda, C.

    2016-12-01

    Solar radio emissions are electromagnetic waves observed at the local plasma frequency and/or at twice the plasma frequency. To describe their origin a multi-stage model has been proposed by Ginzburg & Zhelezniakov (1958) and further developed by several authors, which consider a succession of non-linear three-wave interaction processes. Electron beams accelerated by solar flares travel in the interplanetary plasma and provide the free energy for the development of plasma instabilities. The model describes how part of the free energy of these beams can be transformed in a succession of plasma waves and eventually into electromagnetic waves. Following the work of Thurgood & Tsiklauri (2015) we performed several 2D Particle In Cell simulations. The simulations follow the entire set of processes from the electron beam propagation in the background plasma to the generation of the electromagnetic waves in particular the 2ωp emission, including the excitation of the low frequency waves. As suggested by Thurgood & Tsiklauri (2015) it is possible to identify regimes where the radiation emission can be directly linked to the electron beams. Our attention was devoted to estimate the conversion efficiency from electron kinetic energy to the em energy, and the growth rate of the several processes which can be identified. We studied the emission angles of the 2ωpradiation and compared them with the theoretical predictions of Willes et. al. (1995). We also show the role played by some numerical parameters i.e. the size and shape of the simulation box. This work is the first step to prepare laser-plasma experiments. V. L. Ginzburg, V. V. Zhelezniakov On the Possible Mechanisms of Sporadic Solar Radio Emission (Radiation in an Isotropic Plasma) Soviet Astronomy, Vol. 2, p.653 (1958) J. O. Thurgood and D. Tsiklauri Self-consistent particle-in-cell simulations of funda- mental and harmonic plasma radio emission mechanisms. Astronomy & Astrophysics 584, A83 (2015). A. Willes, P

  11. Origin of solar radio waves

    International Nuclear Information System (INIS)

    Olmr, J.

    1977-01-01

    Solar radiowave radiation amounts to about 10 -7 of the total solar radiation. The solar atmosphere emits radiation of different wavelengths from a fraction of nanometer to kilometer waves. The solar radiowaves are of thermal origin and except for neutral hydrogen emission and solid body radio emission their emission always results from free electrons. The radiowave radiation active components were classified in several types, such as noise storms, flashes, flares, continuum, and flashes lasting for several minutes. The respective types are discussed and their origins shown. The mechanisms are described permitting the formation of radio waves of nonthermal origin, i.e., plasma oscillations, gyromagnetic emission, synchrotron and Cherenkov radiations. (J.P.)

  12. Saturn radio emission and the solar wind - Voyager-2 studies

    International Nuclear Information System (INIS)

    Desch, M.D.; Rucker, H.O.; Observatorium Lustbuhel, Graz, Austria)

    1985-01-01

    Voyager 2 data from the Plasma Science experiment, the Magnetometer experiment and the Planetary Radio Astronomy experiment were used to analyze the relationship between parameters of the solar wind/interplanetary medium and the nonthermal Saturn radiation. Solar wind and interplanetary magnetic field properties were combined to form quantities known to be important in controlling terrestrial magnetospheric processes. The Voyager 2 data set used in this investigation consists of 237 days of Saturn preencounter measurements. However, due to the immersion of Saturn and the Voyager 2 spacecraft into the extended Jupiter magnetic tail, substantial periods of the time series were lacking solar wind data. To cope with this problem a superposed epoch method (CHREE analysis) was used. The results indicate the superiority of the quantities containing the solar wind density in stimulating the radio emission of Saturn - a result found earlier using Voyager 1 data - and the minor importance of quantities incorporating the interplanetary magnetic field. 10 references

  13. EFFECTS OF ALFVEN WAVES ON ELECTRON CYCLOTRON MASER EMISSION IN CORONAL LOOPS AND SOLAR TYPE I RADIO STORMS

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, G. Q.; Chen, L.; Wu, D. J. [Purple Mountain Observatory, CAS, Nanjing 210008 (China); Yan, Y. H., E-mail: djwu@pmo.ac.cn [Key Laboratory of Solar Activity, National Astronomical Observatories, CAS, Beijing 100012 (China)

    2013-06-10

    Solar type I radio storms are long-lived radio emissions from the solar atmosphere. It is believed that these type I storms are produced by energetic electrons trapped within a closed magnetic structure and are characterized by a high ordinary (O) mode polarization. However, the microphysical nature of these emissions is still an open problem. Recently, Wu et al. found that Alfven waves (AWs) can significantly influence the basic physics of wave-particle interactions by modifying the resonant condition. Taking the effects of AWs into account, this work investigates electron cyclotron maser emission driven by power-law energetic electrons with a low-energy cutoff distribution, which are trapped in coronal loops by closed solar magnetic fields. The results show that the emission is dominated by the O mode. It is proposed that this O mode emission may possibly be responsible for solar type I radio storms.

  14. Gnevyshev peaks in solar radio emissions at different frequencies

    Directory of Open Access Journals (Sweden)

    R. P. Kane

    2009-04-01

    Full Text Available Sunspots have a major 11-year cycle, but the years near the sunspot maximum show two or more peaks called GP (Gnevyshev Peaks. In this communication, it was examined whether these peaks in sunspots are reflected in other parameters such as Lyman-α (the chromospheric emission 121.6 nm, radio emissions 242–15 400 MHz emanating from altitude levels 2000–12 000 km, the low latitude (+45° to −45° solar open magnetic flux and the coronal green line emission (Fe XIV, 530.3 nm. In the different solar cycles 20–23, the similarity extended at least upto the level of 609 MHz, but in cycle 22, the highest level was of 242 MHz. The extension to the higher level in cycle 22 does not seem to be related to the cycle strength Rz(max, or to the cycle length.

  15. Solar radio observations and interpretations

    International Nuclear Information System (INIS)

    Rosenberg, H.

    1976-01-01

    The recent solar radio observations related to flares are reviewed for the frequency range of a few kilohertz to several gigahertz. The analysis of the radio data leads to boundary conditions on the acceleration processes which are responsible for the fast particles which cause radio emission. The role and cause of plasma turbulence at the plasma-frequency and at much lower frequencies is discussed in relation to the acceleration processes and the radio emission mechanisms for the various radio bursts. (author)

  16. Radio emission of the sun and planets

    CERN Document Server

    Zheleznyakov, V V

    1970-01-01

    International Series of Monographs in Natural Philosophy, Volume 25: Radio Emission of the Sun and Planets presents the origin of the radio emission of the planets. This book examines the outstanding triumphs achieved by radio astronomy of the solar system. Comprised of 10 chapters, this volume begins with an overview of the physical conditions in the upper layers of the Sun, the Moon, and the planets. This text then examines the three characteristics of radio emission, namely, the frequency spectrum, the polarization, and the angular spectrum. Other chapters consider the measurements of the i

  17. STUDY OF CALIBRATION OF SOLAR RADIO SPECTROMETERS AND THE QUIET-SUN RADIO EMISSION

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Chengming; Yan, Yihua; Tan, Baolin; Fu, Qijun; Liu, Yuying [Key Laboratory of Solar Activity, National Astronomical Observatories of Chinese Academy of Sciences, Datun Road A20, Chaoyang District, Beijing 100012 (China); Xu, Guirong [Hubei Key Laboratory for Heavy Rain Monitoring and Warning Research, Institute of Heavy Rain, China Meteorological Administration, Wuhan 430205 (China)

    2015-07-20

    This work presents a systematic investigation of the influence of weather conditions on the calibration errors by using Gaussian fitness, least chi-square linear fitness, and wavelet transform to analyze the calibration coefficients from observations of the Chinese Solar Broadband Radio Spectrometers (at frequency bands of 1.0–2.0 GHz, 2.6–3.8 GHz, and 5.2–7.6 GHz) during 1997–2007. We found that calibration coefficients are influenced by the local air temperature. Considering the temperature correction, the calibration error will reduce by about 10%–20% at 2800 MHz. Based on the above investigation and the calibration corrections, we further study the radio emission of the quiet Sun by using an appropriate hybrid model of the quiet-Sun atmosphere. The results indicate that the numerical flux of the hybrid model is much closer to the observation flux than that of other ones.

  18. Development of solar flares and features of the fine structure of solar radio emission

    Science.gov (United States)

    Chernov, G. P.; Fomichev, V. V.; Yan, Y.; Tan, B.; Tan, Ch.; Fu, Q.

    2017-11-01

    The reason for the occurrence of different elements of the fine structure of solar radio bursts in the decimeter and centimeter wavelength ranges has been determined based on all available data from terrestrial and satellite observations. In some phenomena, fast pulsations, a zebra structre, fiber bursts, and spikes have been observed almost simultaneously. Two phenomena have been selected to show that the pulsations of radio emission are caused by particles accelerated in the magnetic reconnection region and that the zebra structure is excited in a source, such as a magnetic trap for fast particles. The complex combination of unusual fiber bursts, zebra structure, and spikes in the phenomenon on December 1, 2004, is associated with a single source, a magnetic island formed after a coronal mass ejection.

  19. Aperture synthesis observations of solar and stellar radio emission

    International Nuclear Information System (INIS)

    Bastian, T.S.

    1987-01-01

    The work presented in this thesis relied upon the radio astronomical instrument, The Very Large Array. The thesis is divided into three major sections. In the first the author applied maximum entropy-type image reconstruction techniques, using both single dish and iterferometer data, to generate full disk images of the Sun at a wavelength λ ∼ 21 cm. Using a set of six such images obtained during the Sun's decline from sunspot maximum to minimum, he has noted a number of previously unreported phenomena. Among these: (1) a systematic decrease in quiet Sun's brightness temperature as it declined to minimum; (2) a systematic decrease in the Sun's radius at 21 cm; (3) evidence for the evolution of polar coronal holes during the course of the solar cycle. The observed variation, though not noted previously at radio wavelengths, is entirely consistent with white light K coronagraph data. The results reported here explain the conflicting nature of a number of past observations. In the second section of the thesis, he presents the results of a long term survey of magnetic cataclysmic variables (CVs). Cataclysmic variables are close binary systems which contain a white dwarf accreting mass from a late-type secondary, typically a dwarf of spectral type, G, K, or M. The survey resulted in the detection of two out of the eighteen systems observed. In the third section of the thesis, he presents new results on flare stars in the solar neighborhood and in the Pleiades. He has successfully employed the technique of dynamic spectroscopy to constrain the mechanisms(s) for radio flaring on other stars. The second part of section three is devoted to a search for radio emission from flare stars in the Pleiades which was motivated by the evolutionary questions raised by flare stars and the Pleiades lower main sequence

  20. Ionospheric Caustics in Solar Radio Observations

    Science.gov (United States)

    Koval, A.; Chen, Y.; Stanislavsky, A.

    2016-12-01

    The Earth ionosphere possesses by natural focusing and defocusing effects on radio waves due to presence of variable ionospheric irregularities which could act like convergent and divergent lenses on incident radiation. In particular, the focusing of emission from the Sun was firstly detected on the Nançay Decameter Array dynamic spectra in the 1980s. On time-frequency spectrograms the intensity variations form specific structures different from well-known solar radio bursts and clearly distinguishing on a background of solar radiation. Such structures have been identified as ionospheric caustics (ICs) and considered to be the result of radio waves refraction on medium scale travelling ionospheric disturbances (MSTIDs). Although nowadays the ICs are registered by different radio observatories due to augmentation of low-frequency radio telescopes, the most recent papers devoted to ICs in solar radio records date back to the 1980s. In this study, we revisit the ICs issue with some new results by conducting a statistical analysis of occurrence rate of ICs in solar dynamic spectra in meter-decameter wavelength range for long continuous period (15 years). The seasonal variations in ICs appearance have been found for the first time. Besides, we report the possible solar cycle dependence of ICs emergence. The radio waves propagation in the ionosphere comprising MSTIDs will be considered. The present research renews the subject of ICs in the low-frequency solar radio astronomy after about 35-year letup.

  1. On the Reflection in the Solar Radio Emission of Processes in the Chromosphere and the lower Corona preceded CMEs Registration

    Science.gov (United States)

    Durasova, M. S.; Tikhomirov, Yu. V.; Fridman, V. M.; Sheiner, O. A.

    The phenomena preceding the Coronal Mass Ejections (CMEs) and observed in the radio-frequency band represent a lot of sporadic components of the emission, that cover the wide frequency range. The study of these phenomena composes the new, prevailing for the last ten years direction. This is caused by the fact that solar radioastronomy possesses the developed network of observant tools, by the sensitive methods of observations. It makes possible in a number of cases to obtain information from the layers of solar atmosphere, inaccessible for the studies by other methods of observations. The purpose of this work is analysis of information about the CMEs preceding radio-events and their dynamics in the centimeter and decimeter radio emission in 1998. We use the data of the worldwide network of solar observatories in the radio-frequency band, the data about the CMEs phenomena and the characteristics are taken from Internet: http://sdaw.gsfc.nasa.gov./CME_list}. From great number of the CMEs we select only such, before which there were no more recorded events in the time interval of 8 hours, and before which sporadic radio emission was observed on 2-hours interval. The selection of this interval was caused by available study about the mean lifetime of precursors before CMEs and powerful flares, as a rule, accompanying CMEs, in the optical, X-ray and radio emissions. It constitutes, on the average, about 30 min. The total volume of data composed 68 analyzed events of CMEs in 1998. The analysis of the spectral- temporary characteristics of sporadic radio emission in the dependence on the CMEs parameters is carried out. The nature of processes at the stage of formation and initial propagation of CMEs, such as floating up of new magnetic fluxes, the development of instabilities, the characteristic scales of phenomena, that have an effect upon the observed radio emission is analyzed. The work is carried out with the support of Russian Fund of Basic Research (grant 03

  2. Interplanetary radio storms. II - Emission levels and solar wind speed in the range 0.05-0.8 AU

    Science.gov (United States)

    Bougeret, J.-L.; Fainberg, J.; Stone, R. G.

    1984-01-01

    Storms of interplanetary type III radio bursts (IP storms) are commonly observed in the interplanetary medium by the ISEE-3 radio instrument. This instrument has the capability of accurately determining the arrival direction of the radio emission. At each observing frequency, the storm radio sources are tracked as they cross the line-of-sight to the sun. Using a simple model, the emission levels are determined at a number of radio frequencies for four separate storms. The IP storm radiation is found to occur in regions of enhanced density at levels of 0.05 to 0.8 AU. The density in these enhancements falls off faster than R(-2). The solar wind speed in the storm region is also measured. The analysis is consistent with steady conditions in the storm region during a few days around the III storm burst radio emission at the harmonic of the local plasma frequency.

  3. The detectability of radio emission from exoplanets

    Science.gov (United States)

    Lynch, C. R.; Murphy, Tara; Lenc, E.; Kaplan, D. L.

    2018-05-01

    Like the magnetised planets in our Solar System, magnetised exoplanets should emit strongly at radio wavelengths. Radio emission directly traces the planetary magnetic fields and radio detections can place constraints on the physical parameters of these features. Large comparative studies of predicted radio emission characteristics for the known population of exoplanets help to identify what physical parameters could be key for producing bright, observable radio emission. Since the last comparative study, many thousands of exoplanets have been discovered. We report new estimates for the radio flux densities and maximum emission frequencies for the current population of known exoplanets orbiting pre-main sequence and main-sequence stars with spectral types F-M. The set of exoplanets predicted to produce observable radio emission are Hot Jupiters orbiting young stars. The youth of these system predicts strong stellar magnetic fields and/or dense winds, which are key for producing bright, observable radio emission. We use a new all-sky circular polarisation Murchison Widefield Array survey to place sensitive limits on 200 MHz emission from exoplanets, with 3σ values ranging from 4.0 - 45.0 mJy. Using a targeted Giant Metre Wave Radio Telescope observing campaign, we also report a 3σ upper limit of 4.5 mJy on the radio emission from V830 Tau b, the first Hot Jupiter to be discovered orbiting a pre-main sequence star. Our limit is the first to be reported for the low-frequency radio emission from this source.

  4. Solar Plasma Radio Emission in the Presence of Imbalanced Turbulence of Kinetic-Scale Alfvén Waves

    Science.gov (United States)

    Lyubchyk, O.; Kontar, E. P.; Voitenko, Y. M.; Bian, N. H.; Melrose, D. B.

    2017-09-01

    We study the influence of kinetic-scale Alfvénic turbulence on the generation of plasma radio emission in the solar coronal regions where the ratio β of plasma to magnetic pressure is lower than the electron-to-ion mass ratio me/mi. The present study is motivated by the phenomenon of solar type I radio storms that are associated with the strong magnetic field of active regions. The measured brightness temperature of the type I storms can be up to 10^{10} K for continuum emission, and can exceed 10^{11} K for type I bursts. At present, there is no generally accepted theory explaining such high brightness temperatures and some other properties of the type I storms. We propose a model with an imbalanced turbulence of kinetic-scale Alfvén waves that produce an asymmetric quasi-linear plateau on the upper half of the electron velocity distribution. The Landau damping of resonant Langmuir waves is suppressed and their amplitudes grow spontaneously above the thermal level. The estimated saturation level of Langmuir waves is high enough to generate observed type I radio emission at the fundamental plasma frequency. Harmonic emission does not appear in our model because the backward-propagating Langmuir waves undergo strong Landau damping. Our model predicts 100% polarization in the sense of the ordinary (o-) mode of type I emission.

  5. Interplanetary radio storms. 2: Emission levels and solar wind speed in the range 0.05-0.8 AU

    Science.gov (United States)

    Bougeret, J. L.; Fainberg, J.; Stone, R. G.

    1982-01-01

    Storms of interplanetary type III radio bursts (IP storms) are commonly observed in the interplanetry medium by the ISEE-3 radio instrument. This instrument has the capability of accurately determining the arrival direction of the radio emission. At each observing frequency, the storm radio sources are tracked as they cross the line-of-sight to the Sun. Usng a simple model, the emission levels are determined at a number of radio frequencies for four separate storms. The IP storm radiation is found to occur in regions of enhanced density at levels of 0.05 to 0.8 AU. The density in these enhancements falls off faster than R(-2). The solar wind speed in the storm region is also measured. The analysis is consistent with steady conditions in the storm region during a few days around the central meridian passage of the storm. The comparison with average in situ density measurements compiled from the HELIOS 1-2 observations favors type III storm burst radio emission at the harmonic of the local plasma frequency.

  6. Fibre structure of decametric type II radio bursts as a manifestation of emission propagation effects in a disturbed near-solar plasma

    Directory of Open Access Journals (Sweden)

    A. N. Afanasiev

    2009-10-01

    Full Text Available This paper addresses the fine structure of solar decametric type II radio bursts in the form of drifting narrowband fibres on the dynamic spectrum. Observations show that this structure appears in those events where there is a coronal mass ejection (CME traveling in the near-solar space ahead of the shock wave responsible for the radio burst. The diversity in observed morphology of fibres and values of their parameters implies that the fibres may be caused by different formation mechanisms. The burst emission propagates through extremely inhomogeneous plasma of the CME, so one possible mechanism can be related to radio propagation effects. I suggest that the fibres in some events represent traces of radio emission caustics, which are formed due to regular refraction of radio waves on the large-scale inhomogeneous structure of the CME front. To support this hypothesis, I have modeled the propagation of radio waves through inhomogeneous plasma of the CME, taking into consideration the presence of electron density fluctuations in it. The calculations, which are based on the Monte Carlo technique, indicate that, in particular, the emission of the fibres should be harmonic. Moreover, the mechanism under consideration suggests that in solar observations from two different points in space, the observed sets of fibres can be shifted in frequency with respect to one another or can have a different structure. This potentially can be used for identifying fibres caused by the propagation effects.

  7. Sporadic radio emission connected with a definite manifestation of solar activity in the near Earth space

    Science.gov (United States)

    Dudnic, A. V.; Zaljubovski, I. I.; Kartashev, V. M.; Shmatko, E. S.

    1985-01-01

    Sporadic radio emission of near Earth space at the frequency of 38 MHz is shown to appear in the event of a rapid development of instabilities in the ionospheric plasma. The instabilities are generated due to primary ionospheric disturbances occurring under the influence of solar chromospheric flares.

  8. Affirmation of triggered Jovian radio emissions and their attribution to corotating radio lasers

    Science.gov (United States)

    Calvert, W.

    1985-01-01

    It is argued that the original statistical evidence for the existence of triggered radio emissions and corotating radio lasers on Jupiter remains valid notwithstanding the critique of Desch and Kaiser (1985). The Voyager radio spectrograms used to identify the triggered emissions are analyzed and the results are discussed. It is shown that the critique by Desch and Kaiser is unjustified because it is not based on the original event criteria, i.e., the correlation between the occurrence of Jovian auroral kilometric radiation and fast-drift type III solar bursts in the same frequency.

  9. Solar system radio astronomy at low frequencies

    International Nuclear Information System (INIS)

    Desch, M.D.

    1987-01-01

    The planetary radio-astronomy observations obtained with the two Voyager spacecraft since their launch in 1977 are briefly characterized and illustrated with graphs, diagrams, and sample spectra. Topics addressed include the spacecraft designs and trajectories, the wavelength coverage of the radio instruments, the Io-controlled LF emission of Jupiter, the solar-wind effect on the Saturn kilometric radiation, the Saturn electrostatic discharges, and the use of the clocklike feature of the Uranus emission to measure the planet's rotation period. 23 references

  10. Resonators for magnetohydrodynamic waves in the solar corona: The effect of modulation of radio emission

    International Nuclear Information System (INIS)

    Zaitsev, V.V.; Stepanov, A.V.

    1982-01-01

    It is shown that the existence of a minimum of the Alfven speed in the corona at a height of approx.1R/sub sun/ follows from the characteristics of type II radio bursts. The region of a reduced Alfven speed is a resonator for a fast magnetosonic (FMS) waves. The eigenmodes of the resonator are determined. The period of the fundamental mode has the order of several minutes. In the resonator FMS waves can be excited at the Cherenkov resonance by streams of energetic ions. Modulations of metal solar radio emission with a period of several minutes is explained by the effect of the propagation of radio waves through an oscillating magnetohydrodynamic (MHD) resonator

  11. LOFAR tied-array imaging of Type III solar radio bursts

    NARCIS (Netherlands)

    Morosan, D.E.; et al., [Unknown; Hessels, J.W.T.; Markoff, S.

    2014-01-01

    Context. The Sun is an active source of radio emission which is often associated with energetic phenomena such as solar flares and coronal mass ejections (CMEs). At low radio frequencies (<100 MHz), the Sun has not been imaged extensively because of the instrumental limitations of previous radio

  12. LOFAR tied-array imaging of Type III solar radio bursts

    NARCIS (Netherlands)

    Morosan, D.E.; Gallagher, P.T.; Zucca, P.; Fallows, R.; Carley, E.P.; Mann, G.; Bisi, M.M.; Kerdraon, A.; Avruch, I.M.; Bentum, Marinus Jan; Bernardi, G.; Best, P.; Bonafede, A.; Bregman, J.; Breitling, F.

    2014-01-01

    Context: The Sun is an active source of radio emission which is often associated with energetic phenomena such as solar flares and coronal mass ejections (CMEs). At low radio frequencies (<100 MHz), the Sun has not been imaged extensively because of the instrumental limitations of previous radio

  13. Introduction to solar radio astronomy and radio physics

    International Nuclear Information System (INIS)

    Krueger, A.

    1979-01-01

    A systematic summary is presented of the work done during the last thirty years in the field of solar radio astronomy from the standpoint of general solar physics. Instrumental aspects, observations and theory are covered. A brief introduction is given to the matter consisting of the history of solar radio astronomy and some fundamentals of astronomy and solar physics are outlined. Some topics of the instrumental background of solar radio astronomy and the main results of observations are presented. The elements of a theoretical interpretation of solar radio observations are reported and a synthesis of both observation and theory contributing to a general picture of solar and solar-terrestrial physics is outlined. (C.F./Auth)

  14. Type III-L Solar Radio Bursts and Solar Energetic Particle Events

    Science.gov (United States)

    Duffin, R. T.; White, S. M.; Ray, P. S.; Kaiser, M. L.

    2015-09-01

    A radio-selected sample of fast drift radio bursts with complex structure occurring after the impulsive phase of the associated flare (“Type III-L bursts”) is identified by inspection of radio dynamic spectra from 1 to 180 MHz for over 300 large flares in 2001. An operational definition that takes into account previous work on these radio bursts starting from samples of solar energetic particle (SEP) events is applied to the data, and 66 Type III-L bursts are found in the sample. In order to determine whether the presence of these radio bursts can be used to predict the occurrence of SEP events, we also develop a catalog of all SEP proton events in 2001 using data from the ERNE detector on the SOHO satellite. 68 SEP events are found, for 48 of which we can identify a solar source and hence look for associated Type III-L emission. We confirm previous work that found that most (76% in our sample) of the solar sources of SEP events exhibit radio emission of this type. However, the correlation in the opposite direction is not as strong: starting from a radio-selected sample of Type III-L events, around 64% of the bursts that occur at longitudes magnetically well-connected to the Earth, and hence favorable for detection of SEPs, are associated with SEP events. The degree of association increases when the events have durations over 10 minutes at 1 MHz, but in general Type III-L bursts do not perform any better than Type II bursts in our sample as predictors of SEP events. A comparison of Type III-L timing with the arrival of near-relativistic electrons at the ACE spacecraft is not inconsistent with a common source for the accelerated electrons in both phenomena.

  15. Type III-L Solar Radio Bursts and Solar Energetic Particle Events

    International Nuclear Information System (INIS)

    Duffin, R T; White, S M; Ray, P S; Kaiser, M L

    2015-01-01

    A radio-selected sample of fast drift radio bursts with complex structure occurring after the impulsive phase of the associated flare (“Type III-L bursts”) is identified by inspection of radio dynamic spectra from 1 to 180 MHz for over 300 large flares in 2001. An operational definition that takes into account previous work on these radio bursts starting from samples of solar energetic particle (SEP) events is applied to the data, and 66 Type III-L bursts are found in the sample. In order to determine whether the presence of these radio bursts can be used to predict the occurrence of SEP events, we also develop a catalog of all SEP proton events in 2001 using data from the ERNE detector on the SOHO satellite. 68 SEP events are found, for 48 of which we can identify a solar source and hence look for associated Type III-L emission. We confirm previous work that found that most (76% in our sample) of the solar sources of SEP events exhibit radio emission of this type. However, the correlation in the opposite direction is not as strong: starting from a radio-selected sample of Type III-L events, around 64% of the bursts that occur at longitudes magnetically well-connected to the Earth, and hence favorable for detection of SEPs, are associated with SEP events. The degree of association increases when the events have durations over 10 minutes at 1 MHz, but in general Type III-L bursts do not perform any better than Type II bursts in our sample as predictors of SEP events. A comparison of Type III-L timing with the arrival of near-relativistic electrons at the ACE spacecraft is not inconsistent with a common source for the accelerated electrons in both phenomena. (paper)

  16. Relation between gamma-ray emission, radio bursts, and proton fluxes from solar flares

    International Nuclear Information System (INIS)

    Fomichev, V.V.; Chertok, I.M.

    1985-01-01

    Data on solar gamma-ray flares, including 24 flares with gamma-ray lines, recorded up to June 1982, are analyzed. It is shown that from the point of view of radio emission the differences between flares with and without gamma-ray lines has a purely quantitative character: the former are accompanied by the most intense microwave bursts. Meter type II bursts are not a distinctive feature of flares with gamma-ray lines. Pulsed flares, regardless of the presence or absence of gamma-ray lines, are not accompanied by significant proton fluxes at the earth. On the whole, contrary to the popular opinion in the literature, flares with gamma-ray lines do not display a deficit of proton flux in interplanetary space in comparison with similar flares without gamma-ray lines. The results of quantitative diagnostics of proton flares based on radio bursts are not at variance with the presence of flares without detectable gamma-ray emission in lines but with a pronounced increase in the proton flux at the earth. 23 references

  17. `Fingerprint' Fine Structure in the Solar Decametric Radio Spectrum Solar Physics

    Science.gov (United States)

    Zlotnik, E. Y.; Zaitsev, V. V.; Melnik, V. N.; Konovalenko, A. A.; Dorovskyy, V. V.

    2015-07-01

    We study a unique fine structure in the dynamic spectrum of the solar radio emission discovered by the UTR-2 radio telescope (Kharkiv, Ukraine) in the frequency band of 20 - 30 MHz. The structure was observed against the background of a broadband type IV radio burst and consisted of parallel drifting narrow bands of enhanced emission and absorption on the background emission. The observed structure differs from the widely known zebra pattern at meter and decimeter wavelengths by the opposite directions of the frequency drift within a single stripe at a given time. We show that the observed properties can be understood in the framework of the radiation mechanism by virtue of the double plasma resonance effect in a nonuniform coronal magnetic trap. We propose a source model providing the observed frequency drift of the stripes.

  18. Comparison of nonflare solar soft x ray flux with 10.7-cm radio flux

    International Nuclear Information System (INIS)

    Donnelly, R.F.

    1982-01-01

    The similarities and differences of the nonflare solar 1- to 8-A X ray flux and the daily 10.7-cm Ottawa solar radio flux are examined. The radio flux is shown to be much less sensitive than the soft X ray flux on the average to the coronal emission of active regions located near or beyond the solar chromospheric limb relative to regions near the center of the solar disk. This is caused by the solar soft X ray emission's being optically thin while much of the 10.7-cm active region emission is from optical depths of tauapprox.1. The radio flux includes a large quiet sun flux which is emitted mostly from the tenuous chromosphere-corona transition region (Tapprox.10 4 --10 6 0 K) and partly from the cooler portions of the quiet corona Tapprox.1.5 x 10 6 0 K. Conversely, the solar soft X ray flux has a very small quiet sun component

  19. Shock-related radio emission during coronal mass ejection lift-off?

    OpenAIRE

    Pohjolainen, S.

    2008-01-01

    Aims: We identify the source of fast-drifting decimetric-metric radio emission that is sometimes observed prior to the so-called flare continuum emission. Fast-drift structures and continuum bursts are also observed in association with coronal mass ejections (CMEs), not only flares. Methods: We analyse radio spectral features and images acquired at radio, H-alpha, EUV, and soft X-ray wavelengths, during an event close to the solar limb on 2 June 2003. Results: The fast-drifting decimetric-met...

  20. Characteristics of coronal shock waves and solar type 2 radio bursts

    Science.gov (United States)

    Mann, G.; Classen, H.-T.

    1995-01-01

    In the solar corona shock waves generated by flares and/or coronal mass ejections can be observed by radio astronomical methods in terms of solar type 2 radio bursts. In dynamic radio spectra they appear as emission stripes slowly drifting from high to low frequencies. A sample of 25 solar type 2 radio bursts observed in the range of 40 - 170 MHz with a time resolution of 0.1 s by the new radiospectrograph of the Astrophvsikalisches Institut Potsdam in Tremsdorf is statistically investigated concerning their spectral features, i.e, drift rate, instantaneous bandwidth, and fundamental harmonic ratio. In-situ plasma wave measurements at interplanetary shocks provide the assumption that type 2 radio radiation is emitted in the vicinity of the transition region of shock waves. Thus, the instantaneous bandwidth of a solar type 2 radio burst would reflect the density jump across the associated shock wave. Comparing the inspection of the Rankine-Hugoniot relations of shock waves under coronal circumstances with those obtained from the observational study, solar type 2 radio bursts should be regarded to be generated by weak supercritical, quasi-parallel, fast magnetosonic shock waves in the corona.

  1. Radio astronomy

    Energy Technology Data Exchange (ETDEWEB)

    Nagnibeda, V.G.

    1981-01-01

    The history of radio astronomical observations at the Astronomical Observatory of Leningrad State University is reviewed. Various facilities are described, and methods and instruments used are discussed. Some results are summarized for radio observations of the sun, including observations of local sources of solar radio emission, the absolute solar radio flux, and radio emission from filaments and prominences.

  2. Fast solar electrons, interplanetary plasma and km-wave type-III radio bursts observed from the IMP-6 spacecraft

    International Nuclear Information System (INIS)

    Alvarez, H.; Lin, R.P.

    1975-01-01

    IMP-6 spacecraft observations of low frequency radio emission, fast electrons, and solar wind plasma are used to examine the dynamics of the fast electron streams which generate solar type-III radio bursts. Of twenty solar electron events observed between April 1971 and August 1972, four were found to be amenable to detailed analysis. Observations of the direction of arrival of the radio emission at different frequencies were combined with the solar wind density and velocity measurements at 1 AU to define an Archimedean spiral trajectory for the radio burst exciter. The propagation characteristics of the exciter and of the fast electrons observed at 1 AU were then compared. It is found that: (1) the fast electrons excite the radio emission at the second harmonic; (2) the total distance travelled by the electrons was between 30 and 70% longer than the length of the smooth spiral defined by the radio observations; (3) this additional distance travelled is the result of scattering of the electrons in the interplanetary medium; (4) the observations are consistent with negligible true energy loss by the fast electrons.(Auth.)

  3. Energy Storage and Release through the Solar Activity Cycle Models Meet Radio Observations

    CERN Document Server

    Nindos, Alexander

    2012-01-01

    For nearly sixty years, radio observations have provided a unique insight into the physics of the active and quiescent solar atmosphere. Thanks to the variety of emission mechanisms and to the large altitude range available to observations, fundamental plasma parameters have been measured from the low chromosphere to the upper corona and interplanetary medium. This book presents current research in solar radio astronomy and shows how well it fits in the exceptional scientific context brought by the current space solar observatories. It essentially contains contributed research and review papers presented during the 2010 Community of European Solar Radio Astronomers (CESRA) meeting, which took place in Belgium in June 2010. This book is aimed at graduate students and researchers working in solar physics and space science. Previously published in Solar Physics journal, Vol. 273/2, 2011.

  4. LOW-FREQUENCY OBSERVATIONS OF TRANSIENT QUASI-PERIODIC RADIO EMISSION FROM THE SOLAR ATMOSPHERE

    Energy Technology Data Exchange (ETDEWEB)

    Sasikumar Raja, K.; Ramesh, R., E-mail: sasikumar@iiap.res.in [Indian Institute of Astrophysics, II Block, Koramangala, Bangalore 560 034 (India)

    2013-09-20

    We report low-frequency observations of quasi-periodic, circularly polarized, harmonic type III radio bursts whose associated sunspot active regions were located close to the solar limb. The measured periodicity of the bursts at 80 MHz was ≈5.2 s, and their average degree of circular polarization (dcp) was ≈0.12. We calculated the associated magnetic field B (1) using the empirical relationship between the dcp and B for the harmonic type III emission, and (2) from the observed quasi-periodicity of the bursts. Both the methods result in B ≈ 4.2 G at the location of the 80 MHz plasma level (radial distance r ≈ 1.3 R{sub ☉}) in the active region corona.

  5. Near Earth space sporadic radio emission busts occurring during sunrise

    Science.gov (United States)

    Dudnik, A. V.; Zaljubovsky, I. I.; Kartashev, V. M.; Lasarev, A. V.; Shmatko, E. S.

    1985-01-01

    During the period of low solar activity at sunrise the effect of sporadic high frequency near Earth space radio emission was experimentally discovered at middle latitudes. The possible mechanism of its origin is discussed.

  6. The Effect of Solar Radiation on Radio Signal for Radio Astronomy Purposes

    International Nuclear Information System (INIS)

    Nor Hazmin Sabri; Atiq Wahidah Azlan; Roslan Umar; Roslan Umar; Shahirah Syafa Sulan; Zainol Abidin Ibrahim; Wan Zul Adli Wan Mokhtar

    2015-01-01

    Radio astronomy is a subfields of astronomy which is discovers the celestial objects at radio frequencies. Observation in radio astronomy is conducted using single antenna or array of antennas, known as radio telescope. Other than that, radio astronomy also holds an advantage over other alternatives to optical astronomy due to its capability of observing from the ground level. In this study, the effect of solar radiation that contributes the Radio Frequency Interferences (RFI) is reviewed. The low RFI level is required to set up the radio telescope for radio astronomy observation. The effect of solar radiation on radio signal was investigated by determining the RFI pattern using spectrum analyzer. The solar radiation data was obtained from weather station located at KUSZA Observatory, East Coast Environmental Research Institute (ESERI), UniSZA. We can conclude that the solar radiation factor give the minimum significant effect to radio signal. (author)

  7. First detection of thermal radio emission from solar-type stars with the Karl G. Jansky very large array

    Energy Technology Data Exchange (ETDEWEB)

    Villadsen, Jackie; Hallinan, Gregg; Bourke, Stephen [Department of Astronomy, California Institute of Technology, 1200 E. California Ave., Pasadena, CA 91125 (United States); Güdel, Manuel [Department of Astrophysics, University of Vienna, Türkenschanzstrasse 17, A-1180 Vienna (Austria); Rupen, Michael, E-mail: jrv@astro.caltech.edu [National Radio Astronomy Observatory, Socorro, NM 87801 (United States)

    2014-06-20

    We present the first detections of thermal radio emission from the atmospheres of solar-type stars τ Cet, η Cas A, and 40 Eri A. These stars all resemble the Sun in age and level of magnetic activity, as indicated by X-ray luminosity and chromospheric emission in Ca II H and K lines. We observed these stars with the Karl G. Jansky Very Large Array with sensitivities of a few μJy at combinations of 10.0, 15.0, and 34.5 GHz. τ Cet, η Cas A, and 40 Eri A are all detected at 34.5 GHz with signal-to-noise ratios of 6.5, 5.2, and 4.5, respectively. 15.0 GHz upper limits imply a rising spectral index greater than 1.0 for τ Cet and 1.6 for η Cas A, at the 95% confidence level. The measured 34.5 GHz flux densities correspond to stellar disk-averaged brightness temperatures of roughly 10,000 K, similar to the solar brightness temperature at the same frequency. We explain this emission as optically thick thermal free-free emission from the chromosphere, with possible contributions from coronal gyroresonance emission above active regions and coronal free-free emission. These and similar quality data on other nearby solar-type stars, when combined with Atacama Large Millimeter/Submillimeter Array observations, will enable the construction of temperature profiles of their chromospheres and lower transition regions.

  8. First detection of thermal radio emission from solar-type stars with the Karl G. Jansky very large array

    International Nuclear Information System (INIS)

    Villadsen, Jackie; Hallinan, Gregg; Bourke, Stephen; Güdel, Manuel; Rupen, Michael

    2014-01-01

    We present the first detections of thermal radio emission from the atmospheres of solar-type stars τ Cet, η Cas A, and 40 Eri A. These stars all resemble the Sun in age and level of magnetic activity, as indicated by X-ray luminosity and chromospheric emission in Ca II H and K lines. We observed these stars with the Karl G. Jansky Very Large Array with sensitivities of a few μJy at combinations of 10.0, 15.0, and 34.5 GHz. τ Cet, η Cas A, and 40 Eri A are all detected at 34.5 GHz with signal-to-noise ratios of 6.5, 5.2, and 4.5, respectively. 15.0 GHz upper limits imply a rising spectral index greater than 1.0 for τ Cet and 1.6 for η Cas A, at the 95% confidence level. The measured 34.5 GHz flux densities correspond to stellar disk-averaged brightness temperatures of roughly 10,000 K, similar to the solar brightness temperature at the same frequency. We explain this emission as optically thick thermal free-free emission from the chromosphere, with possible contributions from coronal gyroresonance emission above active regions and coronal free-free emission. These and similar quality data on other nearby solar-type stars, when combined with Atacama Large Millimeter/Submillimeter Array observations, will enable the construction of temperature profiles of their chromospheres and lower transition regions.

  9. Collective radio-emission from plasmas

    International Nuclear Information System (INIS)

    Papadopoulos, K.; Freund, H.P.

    1979-01-01

    Collective radiation processes operating in laboratory and space plasmas are reviewed with an emphasis towards astrophysical applications. Particular stress is placed on the physics involved in the various processes rather than in the detailed derivation of the formulas. Radiation processes from stable non-thermal, weakly turbulent and strongly turbulent magnetized and unmagnetized plasmas are discussed. The general theoretical ideas involved in amplification processes such as stimulated scattering are presented along with their application to free electron and plasma lasers. Direct radio-emission of electromagnetic waves by linear instabilities driven by beams or velocity anisotropies are shown to be of relevance in space applications. Finally, as an example of the computational state of the art pertaining to plasma radiation, a study of the type III solar radio bursts is presented. (orig.)

  10. A search for radio emission from exoplanets around evolved stars

    Science.gov (United States)

    O'Gorman, E.; Coughlan, C. P.; Vlemmings, W.; Varenius, E.; Sirothia, S.; Ray, T. P.; Olofsson, H.

    2018-04-01

    The majority of searches for radio emission from exoplanets have to date focused on short period planets, i.e., the so-called hot Jupiter type planets. However, these planets are likely to be tidally locked to their host stars and may not generate sufficiently strong magnetic fields to emit electron cyclotron maser emission at the low frequencies used in observations (typically ≥150 MHz). In comparison, the large mass-loss rates of evolved stars could enable exoplanets at larger orbital distances to emit detectable radio emission. Here, we first show that the large ionized mass-loss rates of certain evolved stars relative to the solar value could make them detectable with the LOw Frequency ARray (LOFAR) at 150 MHz (λ = 2 m), provided they have surface magnetic field strengths >50 G. We then report radio observations of three long period (>1 au) planets that orbit the evolved stars β Gem, ι Dra, and β UMi using LOFAR at 150 MHz. We do not detect radio emission from any system but place tight 3σ upper limits of 0.98, 0.87, and 0.57 mJy on the flux density at 150 MHz for β Gem, ι Dra, and β UMi, respectively. Despite our non-detections these stringent upper limits highlight the potential of LOFAR as a tool to search for exoplanetary radio emission at meter wavelengths.

  11. Advances in solar radio astronomy

    Science.gov (United States)

    Kundu, M. R.

    1982-01-01

    The status of the observations and interpretations of the sun's radio emission covering the entire radio spectrum from millimeter wavelengths to hectometer and kilometer wavelengths is reviewed. Emphasis is given to the progress made in solar radio physics as a result of recent advances in plasma and radiation theory. It is noted that the capability now exists of observing the sun with a spatial resolution of approximately a second of arc and a temporal resolution of about a millisecond at centimeter wavelengths and of obtaining fast multifrequency two-dimensional pictures of the sun at meter and decameter wavelengths. A summary is given of the properties of nonflaring active regions at millimeter, centimeter, and meter-decameter wavelengths. The properties of centimeter wave bursts are discussed in connection with the high spatial resolution observations. The observations of the preflare build-up of an active region are reviewed. High spatial resolution observations (a few seconds of arc to approximately 1 arcsec) are discussed, with particular attention given to the one- and two-dimensional maps of centimeter-wavelength burst sources.

  12. EUV and Magnetic Activities Associated with Type-I Solar Radio Bursts

    Science.gov (United States)

    Li, C. Y.; Chen, Y.; Wang, B.; Ruan, G. P.; Feng, S. W.; Du, G. H.; Kong, X. L.

    2017-06-01

    Type-I bursts ( i.e. noise storms) are the earliest-known type of solar radio emission at the meter wavelength. They are believed to be excited by non-thermal energetic electrons accelerated in the corona. The underlying dynamic process and exact emission mechanism still remain unresolved. Here, with a combined analysis of extreme ultraviolet (EUV), radio and photospheric magnetic field data of unprecedented quality recorded during a type-I storm on 30 July 2011, we identify a good correlation between the radio bursts and the co-spatial EUV and magnetic activities. The EUV activities manifest themselves as three major brightening stripes above a region adjacent to a compact sunspot, while the magnetic field there presents multiple moving magnetic features (MMFs) with persistent coalescence or cancelation and a morphologically similar three-part distribution. We find that the type-I intensities are correlated with those of the EUV emissions at various wavelengths with a correlation coefficient of 0.7 - 0.8. In addition, in the region between the brightening EUV stripes and the radio sources there appear consistent dynamic motions with a series of bi-directional flows, suggesting ongoing small-scale reconnection there. Mainly based on the induced connection between the magnetic motion at the photosphere and the EUV and radio activities in the corona, we suggest that the observed type-I noise storms and the EUV brightening activities are the consequence of small-scale magnetic reconnection driven by MMFs. This is in support of the original proposal made by Bentley et al. ( Solar Phys. 193, 227, 2000).

  13. The effect of solar radio bursts on the GNSS radio occultation signals

    Science.gov (United States)

    Yue, Xinan; Schreiner, William S.; Kuo, Ying-Hwa; Zhao, Biqiang; Wan, Weixing; Ren, Zhipeng; Liu, Libo; Wei, Yong; Lei, Jiuhou; Solomon, Stan; Rocken, Christian

    2013-09-01

    radio burst (SRB) is the radio wave emission after a solar flare, covering a broad frequency range, originated from the Sun's atmosphere. During the SRB occurrence, some specific frequency radio wave could interfere with the Global Navigation Satellite System (GNSS) signals and therefore disturb the received signals. In this study, the low Earth orbit- (LEO-) based high-resolution GNSS radio occultation (RO) signals from multiple satellites (COSMIC, CHAMP, GRACE, SAC-C, Metop-A, and TerraSAR-X) processed in University Corporation for Atmospheric Research (UCAR) were first used to evaluate the effect of SRB on the RO technique. The radio solar telescope network (RSTN) observed radio flux was used to represent SRB occurrence. An extreme case during 6 December 2006 and statistical analysis during April 2006 to September 2012 were studied. The LEO RO signals show frequent loss of lock (LOL), simultaneous decrease on L1 and L2 signal-to-noise ratio (SNR) globally during daytime, small-scale perturbations of SNR, and decreased successful retrieval percentage (SRP) for both ionospheric and atmospheric occultations during SRB occurrence. A potential harmonic band interference was identified. Either decreased data volume or data quality will influence weather prediction, climate study, and space weather monitoring by using RO data during SRB time. Statistically, the SRP of ionospheric and atmospheric occultation retrieval shows ~4% and ~13% decrease, respectively, while the SNR of L1 and L2 show ~5.7% and ~11.7% decrease, respectively. A threshold value of ~1807 SFU of 1415 MHz frequency, which can result in observable GNSS SNR decrease, was derived based on our statistical analysis.

  14. AN IMAGING STUDY OF A COMPLEX SOLAR CORONAL RADIO ERUPTION

    Energy Technology Data Exchange (ETDEWEB)

    Feng, S. W.; Chen, Y.; Song, H. Q.; Wang, B.; Kong, X. L., E-mail: yaochen@sdu.edu.cn [Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, and Institute of Space Sciences, Shandong University, Weihai, Shandong 264209 (China)

    2016-08-10

    Solar coronal radio bursts are enhanced radio emission excited by energetic electrons accelerated during solar eruptions. Studying these bursts is important for investigating the origin and physical mechanism of energetic particles and further diagnosing coronal parameters. Earlier studies suffered from a lack of simultaneous high-quality imaging data of the radio burst and the eruptive structure in the inner corona. Here we present a study on a complex solar radio eruption consisting of a type II burst and three reversely drifting type III bursts, using simultaneous EUV and radio imaging data. It is found that the type II burst is closely associated with a propagating and evolving CME-driven EUV shock structure, originated initially at the northern shock flank and later transferred to the top part of the shock. This source transfer is coincident with the presence of shock decay and enhancing signatures observed at the corresponding side of the EUV front. The electron energy accelerated by the shock at the flank is estimated to be ∼0.3 c by examining the imaging data of the fast-drifting herringbone structure of the type II burst. The reverse-drifting type III sources are found to be within the ejecta and correlated with a likely reconnection event therein. The implications for further observational studies and relevant space weather forecasting techniques are discussed.

  15. Solar Radio

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Scientists monitor the structure of the solar corona, the outer most regions of the Sun's atmosphere, using radio waves (100?s of MHz to 10?s of GHz). Variations in...

  16. Highlighting the history of Japanese radio astronomy. 5: The 1950 Osaka solar grating array proposal

    Science.gov (United States)

    Wendt, Harry; Orchiston, Wayne; Ishiguro, Masato; Nakamura, Tsuko

    2017-04-01

    In November 1950, a paper was presented at the 5th Annual Assembly of the Physical Society of Japan that outlined the plan for a radio frequency grating array, designed to provide high-resolution observations of solar radio emission at 3.3 GHz. This short paper provides details of the invention of this array, which occurred independently of W.N. Christiansen's invention of the solar grating array in Australia at almost the same time.

  17. Radio continuum emission from young stellar objects in L1641

    International Nuclear Information System (INIS)

    Morgan, J.A.; Snell, R.L.; Strom, K.M.

    1990-01-01

    The results of a 6 and 20 cm radio continuum survey of young stellar objects in the L1641 region located south of the Orion Nebula are presented. Four are identified as low-luminosity young stellar objects in L1641 and three more as Herbig-Haro or Herbig-Haro-like objects. These objects have bolometric luminosities between 80 and 300 solar, and their 6-20 cm spectral index suggests optically thick, free-free emission. They are characterized by a rising spectrum between 2.2 and 25 microns, have no optical counterparts, and are associated with stellar wind activity. Thus, detectable radio continuum emission may be produced only by the youngest and most luminous objects in L1641. 34 refs

  18. Radio wave propagation in the inhomogeneous magnetic field of the solar corona

    International Nuclear Information System (INIS)

    Zheleznyakov, V.V.; Zlotnik, E.Ya.

    1977-01-01

    Various types of linear coupling between ordinary and extra-ordinary waves in the coronal plasma with the inhomogeneous magnetic field and the effect of this phenomenon upon the polarization characteristics of solar radio emission are considered. A qualitative analysis of the wave equation indicates that in a rarefied plasma the coupling effects can be displayed in a sufficiently weak magnetic field or at the angles between the magnetic field and the direction of wave propagation close enough to zero or π/2. The wave coupling parameter are found for these three cases. The radio wave propagation through the region with a quasi-transverse magnetic field and through the neutral current sheet is discussed more in detail. A qualitative picture of coupling in such a layer is supported by a numerical solution of the ''quasi-isotropic approximation'' equations. The role of the coupling effects in formation of polarization characteristics of different components of solar radio emission has been investigated. For cm wave range, the polarization is essentially dependent on the conditions in the region of the transverse magnetic field

  19. Virtual observatory tools and amateur radio observations supporting scientific analysis of Jupiter radio emissions

    Science.gov (United States)

    Cecconi, Baptiste; Hess, Sebastien; Le Sidaner, Pierre; Savalle, Renaud; Stéphane, Erard; Coffre, Andrée; Thétas, Emmanuel; André, Nicolas; Génot, Vincent; Thieman, Jim; Typinski, Dave; Sky, Jim; Higgins, Chuck; Imai, Masafumi

    2016-04-01

    In the frame of the preparation of the NASA/JUNO and ESA/JUICE (Jupiter Icy Moon Explorer) missions, and the development of a planetary sciences virtual observatory (VO), we are proposing a new set of tools directed to data providers as well as users, in order to ease data sharing and discovery. We will focus on ground based planetary radio observations (thus mainly Jupiter radio emissions), trying for instance to enhance the temporal coverage of jovian decametric emission. The data service we will be using is EPN-TAP, a planetary science data access protocol developed by Europlanet-VESPA (Virtual European Solar and Planetary Access). This protocol is derived from IVOA (International Virtual Observatory Alliance) standards. The Jupiter Routine Observations from the Nancay Decameter Array are already shared on the planetary science VO using this protocol, as well as data from the Iitate Low Frquency Radio Antenna, in Japan. Amateur radio data from the RadioJOVE project is also available. The attached figure shows data from those three providers. We will first introduce the VO tools and concepts of interest for the planetary radioastronomy community. We will then present the various data formats now used for such data services, as well as their associated metadata. We will finally show various prototypical tools that make use of this shared datasets.

  20. CONSTRAINING RADIO EMISSION FROM MAGNETARS

    Energy Technology Data Exchange (ETDEWEB)

    Lazarus, P.; Kaspi, V. M.; Dib, R. [Department of Physics, Rutherford Physics Building, McGill University, 3600 University Street, Montreal, Quebec H3A 2T8 (Canada); Champion, D. J. [Max-Planck-Institut fuer Radioastronomie, Auf dem Huegel 69, 53121 Bonn (Germany); Hessels, J. W. T., E-mail: plazar@physics.mcgill.ca [Netherlands Institute for Radio Astronomy (ASTRON), Postbus 2, 7990 AA Dwingeloo (Netherlands)

    2012-01-10

    We report on radio observations of five magnetars and two magnetar candidates carried out at 1950 MHz with the Green Bank Telescope in 2006-2007. The data from these observations were searched for periodic emission and bright single pulses. Also, monitoring observations of magnetar 4U 0142+61 following its 2006 X-ray bursts were obtained. No radio emission was detected for any of our targets. The non-detections allow us to place luminosity upper limits of L{sub 1950} {approx}< 1.60 mJy kpc{sup 2} for periodic emission and L{sub 1950,single} {approx}< 7.6 Jy kpc{sup 2} for single pulse emission. These are the most stringent limits yet for the magnetars observed. The resulting luminosity upper limits together with previous results are discussed, as is the importance of further radio observations of radio-loud and radio-quiet magnetars.

  1. Radio emission from Jupiter

    International Nuclear Information System (INIS)

    Velusamy, T.

    1976-01-01

    The basic features of the different radio emissions from the planet Jupiter are reviewed. These radio emissions characterized into three types as thermal, decimetric and decametric, are discussed. The coherent emission mechanism for the origin of the decametric bursts and the acceleration mechanism for relativistic electrons in the decimetric radiation have not been properly understood. The emissions are much related to the magnetic field of Jupiter. The system III rotation period for Jupiter has been calculated as 092 55 m 29.74 S. (A.K.)

  2. Radio evidence for shock acceleration of electrons in the solar corona

    Science.gov (United States)

    Cane, H. V.; Stone, R. G.; Fainberg, J.; Steinberg, J. L.; Hoang, S.; Stewart, R. T.

    1981-01-01

    It is pointed out that the new class of kilometer-wavelength solar radio bursts observed with the ISEE-3 Radio Astronomy Experiment occurs at the reported times of type II events, which are indicative of a shock wave. An examination of records from the Culgoora Radio Observatory reveals that the associated type II bursts have fast drift elements emanating from them; that is, a herringbone structure is formed. It is proposed that this new class of bursts is a long-wavelength continuation of the herringbone structure, and it is thought probable that the electrons producing the radio emission are accelerated by shocks. These new events are referred to as shock-accelerated events, and their characteristics are discussed.

  3. LOOKING FOR A PULSE: A SEARCH FOR ROTATIONALLY MODULATED RADIO EMISSION FROM THE HOT JUPITER, {tau} BOOeTIS b

    Energy Technology Data Exchange (ETDEWEB)

    Hallinan, G.; Bourke, S. [Cahill Center for Astrophysics, California Institute of Technology, 1200 E. California Blvd., MC 249-17, Pasadena, CA 91125 (United States); Sirothia, S. K.; Ishwara-Chandra, C. H. [National Centre for Radio Astrophysics, TIFR, Post Bag 3, Pune University Campus, Pune 411007 (India); Antonova, A. [Department of Astronomy, St. Kliment Ohridski University of Sofia, 5 James Bourchier Blvd., 1164 Sofia (Bulgaria); Doyle, J. G. [Armagh Observatory, College Hill, Armagh BT61 9DG (United Kingdom); Hartman, J. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Golden, A. [Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461 (United States)

    2013-01-01

    Hot Jupiters have been proposed as a likely population of low-frequency radio sources due to electron cyclotron maser emission of similar nature to that detected from the auroral regions of magnetized solar system planets. Such emission will likely be confined to specific ranges of orbital/rotational phase due to a narrowly beamed radiation pattern. We report on GMRT 150 MHz radio observations of the hot Jupiter {tau} Booetis b, consisting of 40 hr carefully scheduled to maximize coverage of the planet's 79.5 hr orbital/rotational period in an effort to detect such rotationally modulated emission. The resulting image is the deepest yet published at these frequencies and leads to a 3{sigma} upper limit on the flux density from the planet of 1.2 mJy, two orders of magnitude lower than predictions derived from scaling laws based on solar system planetary radio emission. This represents the most stringent upper limits for both quiescent and rotationally modulated radio emission from a hot Jupiter yet achieved and suggests that either (1) the magnetic dipole moment of {tau} Booetis b is insufficient to generate the surface field strengths of >50 G required for detection at 150 MHz or (2) Earth lies outside the beaming pattern of the radio emission from the planet.

  4. Millimeter and X-Ray Emission from the 5 July 2012 Solar Flare

    Science.gov (United States)

    Tsap, Y. T.; Smirnova, V. V.; Motorina, G. G.; Morgachev, A. S.; Kuznetsov, S. A.; Nagnibeda, V. G.; Ryzhov, V. S.

    2018-03-01

    The 5 July 2012 solar flare SOL2012-07-05T11:44 (11:39 - 11:49 UT) with an increasing millimeter spectrum between 93 and 140 GHz is considered. We use space and ground-based observations in X-ray, extreme ultraviolet, microwave, and millimeter wave ranges obtained with the Reuven Ramaty High-Energy Solar Spectroscopic Imager, Solar Dynamics Observatory (SDO), Geostationary Operational Environmental Satellite, Radio Solar Telescope Network, and Bauman Moscow State Technical University millimeter radio telescope RT-7.5. The main parameters of thermal and accelerated electrons were determined through X-ray spectral fitting assuming the homogeneous thermal source and thick-target model. From the data of the Atmospheric Imaging Assembly/SDO and differential-emission-measure calculations it is shown that the thermal coronal plasma gives a negligible contribution to the millimeter flare emission. Model calculations suggest that the observed increase of millimeter spectral flux with frequency is determined by gyrosynchrotron emission of high-energy (≳ 300 keV) electrons in the chromosphere. The consequences of the results are discussed in the light of the flare-energy-release mechanisms.

  5. Diffuse infrared emission from the galaxy. I. Solar neighborhood

    International Nuclear Information System (INIS)

    Boulanger, F.; Perault, M.

    1988-01-01

    A large-scale study of the infrared emission originating in the solar neighborhood based on IRAS data is presented. Away from heating sources and outside molecular clouds, the infrared emission from the ISM is well-correlated with the column density of H I gas. The interstellar radiation field and the dust abundance are roughly uniform on scales of the order of 100 pc. The extinction in the polar caps is discussed, and the origin of the infrared emission from the solar neighborhood is investigated. It is shown that stars younger than a few 100 million yr are responsible for two-thirds of the infrared emission from the solar neighborhood, but that most of this emission comes from interstellar matter not associated with current star formation. The correlation between infrared and radio-continuum fluxes of galaxies breaks down on the scale of a few hundred pc around regions of star formation. 81 references

  6. Variability of fractal dimension of solar radio flux

    Science.gov (United States)

    Bhatt, Hitaishi; Sharma, Som Kumar; Trivedi, Rupal; Vats, Hari Om

    2018-04-01

    In the present communication, the variation of the fractal dimension of solar radio flux is reported. Solar radio flux observations on a day to day basis at 410, 1415, 2695, 4995, and 8800 MHz are used in this study. The data were recorded at Learmonth Solar Observatory, Australia from 1988 to 2009 covering an epoch of two solar activity cycles (22 yr). The fractal dimension is calculated for the listed frequencies for this period. The fractal dimension, being a measure of randomness, represents variability of solar radio flux at shorter time-scales. The contour plot of fractal dimension on a grid of years versus radio frequency suggests high correlation with solar activity. Fractal dimension increases with increasing frequency suggests randomness increases towards the inner corona. This study also shows that the low frequency is more affected by solar activity (at low frequency fractal dimension difference between solar maximum and solar minimum is 0.42) whereas, the higher frequency is less affected by solar activity (here fractal dimension difference between solar maximum and solar minimum is 0.07). A good positive correlation is found between fractal dimension averaged over all frequencies and yearly averaged sunspot number (Pearson's coefficient is 0.87).

  7. Changed Relation between Solar 10.7-cm Radio Flux and some ...

    Indian Academy of Sciences (India)

    The time series of monthly average values of sunspot numbers SSN, 10.7 cm flux ... This radio emission comes from the higher part of the chromosphere and .... work elements on the solar surface on one hand and spots on the other hand ... size, their magnetic fields were less composite and characterized by the greater life-.

  8. Infrared and radio emission from S0 galaxies

    International Nuclear Information System (INIS)

    Bally, J.; Thronson, H.A. Jr.

    1989-01-01

    Far-IR data are presented on 74 early-type S0 galaxies that were selected on the basis of the availability of radio-continuum measurements. Most of the galaxies are detected at IR wavelengths with IRAS, indicating the presence of a cold interstellar medium (ISM) in these galaxies. The mass of gas in these systems is estimated to lie in the range of 10 to the 7th to 10 to the 10th solar. The most massive ISM in some S0s approaches that found in some spirals. The brighter IR-emitting galaxies all lie close to a relationship established for gas-rich spiral galaxies. None of these galaxies have large ratio fluxes, suggesting that strong nuclear radio sources or extended radio lobes and jets are absent or suppressed. Strong radio emission is found among those galaxies that are either faint or not detected at IR wavelengths. The absence of an ISM suggests that these galaxies are of an earlier type that those that have large IR fluxes. 38 references

  9. Physics of the Solar Active Regions from Radio Observations

    Science.gov (United States)

    Gelfreikh, G. B.

    1999-12-01

    Localized increase of the magnetic field observed by routine methods on the photosphere result in the growth of a number of active processes in the solar atmosphere and the heliosphere. These localized regions of increased magnetic field are called active regions (AR). The main processes of transfer, accumulation and release of energy in an AR is, however, out of scope of photospheric observations being essentially a 3D-process and happening either under photosphere or up in the corona. So, to investigate these plasma structures and processes we are bound to use either extrapolation of optical observational methods or observations in EUV, X-rays and radio. In this review, we stress and illustrate the input to the problem gained from radio astronomical methods and discuss possible future development of their applicatications. Historically speaking each new step in developing radio technique of observations resulted in detecting some new physics of ARs. The most significant progress in the last few years in radio diagnostics of the plasma structures of magnetospheres of the solar ARs is connected with the developing of the 2D full disk analysis on regular basis made at Nobeyama and detailed multichannel spectral-polarization (but one-dimensional and one per day) solar observations at the RATAN-600. In this report the bulk of attention is paid to the new approach to the study of solar activity gained with the Nobeyama radioheliograph and analyzing the ways for future progress. The most important new features of the multicomponent radio sources of the ARs studied using Nobeyama radioheliograph are as follow: 1. The analysis of magnetic field structures in solar corona above sunspot with 2000 G. Their temporal evolution and fluctuations with the periods around 3 and 5 minutes, due to MHD-waves in sunspot magnetic tubes and surrounding plasma. These investigations are certainly based on an analysis of thermal cyclotron emission of lower corona and CCTR above sunspot

  10. AN ANALYSIS OF INTERPLANETARY SOLAR RADIO EMISSIONS ASSOCIATED WITH A CORONAL MASS EJECTION

    Energy Technology Data Exchange (ETDEWEB)

    Krupar, V.; Eastwood, J. P. [The Blackett Laboratory, Imperial College London, London (United Kingdom); Kruparova, O.; Santolik, O.; Soucek, J., E-mail: v.krupar@imperial.ac.uk, E-mail: jonathan.eastwood@imperial.ac.uk, E-mail: ok@ufa.cas.cz, E-mail: os@ufa.cas.cz, E-mail: soucek@ufa.cas.cz [Institute of Atmospheric Physics CAS, Prague (Czech Republic); and others

    2016-05-20

    Coronal mass ejections (CMEs) are large-scale eruptions of magnetized plasma that may cause severe geomagnetic storms if Earth directed. Here, we report a rare instance with comprehensive in situ and remote sensing observations of a CME combining white-light, radio, and plasma measurements from four different vantage points. For the first time, we have successfully applied a radio direction-finding technique to an interplanetary type II burst detected by two identical widely separated radio receivers. The derived locations of the type II and type III bursts are in general agreement with the white-light CME reconstruction. We find that the radio emission arises from the flanks of the CME and are most likely associated with the CME-driven shock. Our work demonstrates the complementarity between radio triangulation and 3D reconstruction techniques for space weather applications.

  11. Calibration of Solar Radio Spectrometer of the Purple Mountain Observatory

    Science.gov (United States)

    Lei, LU; Si-ming, LIU; Qi-wu, SONG; Zong-jun, NING

    2015-10-01

    Calibration is a basic and important job in solar radio spectral observations. It not only deduces the solar radio flux as an important physical quantity for solar observations, but also deducts the flat field of the radio spectrometer to display the radio spectrogram clearly. In this paper, we first introduce the basic method of calibration based on the data of the solar radio spectrometer of Purple Mountain Observatory. We then analyze the variation of the calibration coefficients, and give the calibrated results for a few flares. These results are compared with those of the Nobeyama solar radio polarimeter and the hard X-ray observations of the RHESSI (Reuven Ramaty High Energy Solar Spectroscopic Imager) satellite, it is shown that these results are consistent with the characteristics of typical solar flare light curves. In particular, the analysis on the correlation between the variation of radio flux and the variation of hard X-ray flux in the pulsing phase of a flare indicates that these observations can be used to study the relevant radiation mechanism, as well as the related energy release and particle acceleration processes.

  12. Wavelet-based Characterization of Small-scale Solar Emission Features at Low Radio Frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Suresh, A. [Indian Institute of Science Education and Research, Pune-411008 (India); Sharma, R.; Oberoi, D. [National Centre for Radio Astrophysics, Tata Institute for Fundamental Research, Pune 411007 (India); Das, S. B. [Indian Institute of Science Education and Research, Kolkata-741249 (India); Pankratius, V.; Lonsdale, C. J.; Cappallo, R. J.; Corey, B. E.; Kratzenberg, E. [MIT Haystack Observatory, Westford, MA 01886 (United States); Timar, B. [California Institute of Technology, Pasadena, CA 91125 (United States); Bowman, J. D. [School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287 (United States); Briggs, F. [Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611 (Australia); Deshpande, A. A. [Raman Research Institute, Bangalore 560080 (India); Emrich, D. [International Centre for Radio Astronomy Research, Curtin University, Bentley, WA 6102 (Australia); Goeke, R. [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Greenhill, L. J. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Hazelton, B. J. [Department of Physics, University of Washington, Seattle, WA 98195 (United States); Johnston-Hollitt, M. [School of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington 6140 (New Zealand); Kaplan, D. L. [Department of Physics, University of Wisconsin–Milwaukee, Milwaukee, WI 53201 (United States); Kasper, J. C., E-mail: akshay@students.iiserpune.ac.in [Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); and others

    2017-07-01

    Low radio frequency solar observations using the Murchison Widefield Array have recently revealed the presence of numerous weak short-lived narrowband emission features, even during moderately quiet solar conditions. These nonthermal features occur at rates of many thousands per hour in the 30.72 MHz observing bandwidth, and hence necessarily require an automated approach for their detection and characterization. Here, we employ continuous wavelet transform using a mother Ricker wavelet for feature detection from the dynamic spectrum. We establish the efficacy of this approach and present the first statistically robust characterization of the properties of these features. In particular, we examine distributions of their peak flux densities, spectral spans, temporal spans, and peak frequencies. We can reliably detect features weaker than 1 SFU, making them, to the best of our knowledge, the weakest bursts reported in literature. The distribution of their peak flux densities follows a power law with an index of −2.23 in the 12–155 SFU range, implying that they can provide an energetically significant contribution to coronal and chromospheric heating. These features typically last for 1–2 s and possess bandwidths of about 4–5 MHz. Their occurrence rate remains fairly flat in the 140–210 MHz frequency range. At the time resolution of the data, they appear as stationary bursts, exhibiting no perceptible frequency drift. These features also appear to ride on a broadband background continuum, hinting at the likelihood of them being weak type-I bursts.

  13. SOLAR RADIO TYPE-I NOISE STORM MODULATED BY CORONAL MASS EJECTIONS

    International Nuclear Information System (INIS)

    Iwai, K.; Tsuchiya, F.; Morioka, A.; Misawa, H.; Miyoshi, Y.; Masuda, S.; Shimojo, M.; Shiota, D.; Inoue, S.

    2012-01-01

    The first coordinated observations of an active region using ground-based radio telescopes and the Solar Terrestrial Relations Observatory (STEREO) satellites from different heliocentric longitudes were performed to study solar radio type-I noise storms. A type-I noise storm was observed between 100 and 300 MHz during a period from 2010 February 6 to 7. During this period the two STEREO satellites were located approximately 65° (ahead) and –70° (behind) from the Sun-Earth line, which is well suited to observe the earthward propagating coronal mass ejections (CMEs). The radio flux of the type-I noise storm was enhanced after the preceding CME and began to decrease before the subsequent CME. This time variation of the type-I noise storm was directly related to the change of the particle acceleration processes around its source region. Potential-field source-surface extrapolation from the Solar and Heliospheric Observatory/Michelson Doppler Imager (SOHO/MDI) magnetograms suggested that there was a multipolar magnetic system around the active region from which the CMEs occurred around the magnetic neutral line of the system. From our observational results, we suggest that the type-I noise storm was activated at a side-lobe reconnection region that was formed after eruption of the preceding CME. This magnetic structure was deformed by a loop expansion that led to the subsequent CME, which then suppressed the radio burst emission.

  14. Direct observations of low-energy solar electrons associated with a type 3 solar radio burst

    Science.gov (United States)

    Frank, L. A.; Gurnett, D. A.

    1972-01-01

    On 6 April 1971 a solar X-ray flare and a type 3 solar radio noise burst were observed with instrumentation on the eccentric-orbiting satellite IMP 6. The type 3 solar radio noise burst was detected down to a frequency of 31 kHz. A highly anisotropic packet of low-energy solar electron intensities arrived at the satellite approximately 6000 seconds after the onset of the solar flare. This packet of solar electron intensities was observed for 4200 seconds. Maximum differential intensities of the solar electrons were in the energy range of one to several keV. The frequency drift rate of the type 3 radio noise at frequencies below 178 kHz also indicated an average particle speed corresponding to that of a 3-keV electron. The simultaneous observations of these solar electron intensities and of the type 3 solar radio burst are presented, and their interrelationships are explored.

  15. Solar observations with a low frequency radio telescope

    Science.gov (United States)

    Myserlis, I.; Seiradakis, J.; Dogramatzidis, M.

    2012-01-01

    We have set up a low frequency radio monitoring station for solar bursts at the Observatory of the Aristotle University in Thessaloniki. The station consists of a dual dipole phased array, a radio receiver and a dedicated computer with the necessary software installed. The constructed radio receiver is based on NASA's Radio Jove project. It operates continuously, since July 2010, at 20.1 MHz (close to the long-wavelength ionospheric cut-off of the radio window) with a narrow bandwidth (~5 kHz). The system is properly calibrated, so that the recorded data are expressed in antenna temperature. Despite the high interference level of an urban region like Thessaloniki (strong broadcasting shortwave radio stations, periodic experimental signals, CBs, etc), we have detected several low frequency solar radio bursts and correlated them with solar flares, X-ray events and other low frequency solar observations. The received signal is monitored in ordinary ASCII format and as audio signal, in order to investigate and exclude man-made radio interference. In order to exclude narrow band interference and calculate the spectral indices of the observed events, a second monitoring station, working at 36 MHz, is under construction at the village of Nikiforos near the town of Drama, about 130 km away of Thessaloniki. Finally, we plan to construct a third monitoring station at 58 MHz, in Thessaloniki. This frequency was revealed to be relatively free of interference, after a thorough investigation of the region.

  16. How expanded ionospheres of Hot Jupiters can prevent escape of radio emission generated by the cyclotron maser instability

    Science.gov (United States)

    Weber, C.; Lammer, H.; Shaikhislamov, I. F.; Chadney, J. M.; Khodachenko, M. L.; Grießmeier, J.-M.; Rucker, H. O.; Vocks, C.; Macher, W.; Odert, P.; Kislyakova, K. G.

    2017-08-01

    We present a study of plasma conditions in the atmospheres of the Hot Jupiters HD 209458b and HD 189733b and for an HD 209458b like planet at orbit locations between 0.2 and 1 au around a Sun-like star. We discuss how these conditions influence the radio emission we expect from their magnetospheres. We find that the environmental conditions are such that the cyclotron maser instability (CMI), the process responsible for the generation of radio waves at magnetic planets in the Solar system, most likely will not operate at Hot Jupiters. Hydrodynamically expanding atmospheres possess extended ionospheres whose plasma densities within the magnetosphere are so large that the plasma frequency is much higher than the cyclotron frequency, which contradicts the condition for the production of radio emission and prevents the escape of radio waves from close-in exoplanets at distances produce radio emission. However, even if the CMI could operate, the extended ionospheres of Hot Jupiters are too dense to allow the radio emission to escape from the planets.

  17. Frequency dependent characteristics of solar impulsive radio bursts

    International Nuclear Information System (INIS)

    Das, T.K.; Das Gupta, M.K.

    1983-01-01

    An investigation was made of the impulsive radio bursts observed in the frequency range 0.245 to 35 GHz. Important results obtained are: (i) Simple type 1 bursts with intensities 0 to 10 f.u. and simple type 2 bursts with intensities 10 to 500 f.u. are predominant in the frequency ranges 1.415 to 4.995 GHz and 4.995 to 8.8 GHz, respectively; (ii) With maxima around 2.7 GHz and 4 GHz for the first and second types respectively, the durations of the radio bursts decrease gradually both towards lower and higher frequencies; (iii) As regards occurrences, the first type dominates in the southern solar hemisphere peaking around 8.8 GHz, whereas the second type favours the north with no well-defined maximum in any frequency; (iv) Both types prefer the eastern hemisphere, the peak occurrences being around 8.8 GHz and 5 GHz for the two successive types, respectively; (c) The spectra of impulsive radio bursts are generally of the inverted U-type with the maximum emission intensity between 5 and 15 GHz. (author)

  18. Propagation of Energetic Electrons from the Corona into Interplanetary Space and Type III Radio Emission. Planetary Radio Emissions| PLANETARY RADIO EMISSIONS VII 7|

    OpenAIRE

    Vocks, C.; Breitling, F.; Mann, G.

    2011-01-01

    During solar flares a large amount of electrons with energies greater than 20 keV is generated with a production rate of typically 1036 s-1. A part of them is able to propagate along open magnetic field lines through the corona into interplanetary space. During their travel they emit radio radiation which is observed as type III radio bursts in the frequency range from 100 MHz down to 10 kHz by the WAVES radio spectrometer aboard the spacecraft WIND, for instance. From the drift rates of thes...

  19. Variations of Synchrotron Radio Emissions from Jupiter's Inner Radiation Belt

    Science.gov (United States)

    Lou, Y.-Q.

    2017-09-01

    Variations of Synchrotron Radio Emissions from Jupiter's Inner Radiation Belt Yu-Qing Lou* Physics Department, Tsinghua Centre for Astrophysics (THCA), Tsinghua-National Astronomical Observatories of China (NAOC) joint Research Centre for Astrophysics, Tsinghua University, Beijing 100084, China We describe the basic phenommenology of quasi-periodic 40 minute (QP-40) polar burst activities of Jupiter and their close correlation with the solar wind speed variations at the Jovian magnetosphere. Physically, relativistic electrons of QP-40 bursts most likely come from the circumpolar regions of the inner radiation belt (IRB) which gives off intense synchroton radio emissions in a wide wavelength range. Such relativistic electron bursts also give rise to beamed low-frequency radio bursts along polar magnetic field lines with distinct polarizations from Jupiter's two polar regions. Jovian aurora activities are expected to be also affected by such QP-40 burst activities. We present evidence of short-term (typical timescales shorter than an hour) variabilities of the IRB at 6cm wavelength and describe recent joint radio telescope observation campaign to monitor Jupiter in coordination with JUNO spacecraft. Except for low-frequency polarization features, we anticipate JUNO to detect QP-40 activities from both polar regions during the arrival of high-speed solar wind with intermittency. References 1. Y.-Q. Lou, The Astrophysical Journal, 548, 460 (2001). 2. Y.-Q. Lou, and C. Zheng, Mon. Not. Roy. Astron. Soc. Letters, 344, L1 (2003). 3. Y.-Q. Lou, H. G. Song, Y.Y. Liu, and M. Yang, Mon. Not. Roy. Astron. Soc. Letters, 421, L62 (2012). 4. Y.-Q. Lou, Geophysical Research Letters, 23, 609 (1996). 5. Y.-Q. Lou, Journal of Geophysical Research, 99, 14747 (1994). 6. G. R. Gladstone, et al., Nature, 415, 1000 (2002).

  20. First Colombian Solar Radio Interferometer: current stage

    Science.gov (United States)

    Guevara Gómez, J. C.; Martínez Oliveros, J. C.; Calvo-Mozo, B.

    2017-10-01

    Solar radio astronomy is a fast developing research field in Colombia. Here, we present the scientific goals, specifications and current state of the First Colombian Solar Radio Interferometer consisting of two log-periodic antennas covering a frequency bandwidth op to 800 MHz. We describe the importance and benefits of its development to the radioastronomy in Latin America and its impact on the scientific community and general public.

  1. Outer heliospheric radio emissions. II - Foreshock source models

    Science.gov (United States)

    Cairns, Iver H.; Kurth, William S.; Gurnett, Donald A.

    1992-01-01

    Observations of LF radio emissions in the range 2-3 kHz by the Voyager spacecraft during the intervals 1983-1987 and 1989 to the present while at heliocentric distances greater than 11 AU are reported. New analyses of the wave data are presented, and the characteristics of the radiation are reviewed and discussed. Two classes of events are distinguished: transient events with varying starting frequencies that drift upward in frequency and a relatively continuous component that remains near 2 kHz. Evidence for multiple transient sources and for extension of the 2-kHz component above the 2.4-kHz interference signal is presented. The transient emissions are interpreted in terms of radiation generated at multiples of the plasma frequency when solar wind density enhancements enter one or more regions of a foreshock sunward of the inner heliospheric shock. Solar wind density enhancements by factors of 4-10 are observed. Propagation effects, the number of radiation sources, and the time variability, frequency drift, and varying starting frequencies of the transient events are discussed in terms of foreshock sources.

  2. Solar Flares, Type III Radio Bursts, Coronal Mass Ejections, and Energetic Particles

    Science.gov (United States)

    Cane, Hilary V.; Erickson, W. C.; Prestage, N. P.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    In this correlative study between greater than 20 MeV solar proton events, coronal mass ejections (CMEs), flares, and radio bursts it is found that essentially all of the proton events are preceded by groups of type III bursts and all are preceded by CMEs. These type III bursts (that are a flare phenomenon) usually are long-lasting, intense bursts seen in the low-frequency observations made from space. They are caused by streams of electrons traveling from close to the solar surface out to 1 AU. In most events the type III emissions extend into, or originate at, the time when type II and type IV bursts are reported (some 5 to 10 minutes after the start of the associated soft X-ray flare) and have starting frequencies in the 500 to approximately 100 MHz range that often get lower as a function of time. These later type III emissions are often not reported by ground-based observers, probably because of undue attention to type II bursts. It is suggested to call them type III-1. Type III-1 bursts have previously been called shock accelerated (SA) events, but an examination of radio dynamic spectra over an extended frequency range shows that the type III-1 bursts usually start at frequencies above any type II burst that may be present. The bursts sometimes continue beyond the time when type II emission is seen and, furthermore, sometimes occur in the absence of any type II emission. Thus the causative electrons are unlikely to be shock accelerated and probably originate in the reconnection regions below fast CMEs. A search did not find any type III-1 bursts that were not associated with CMEs. The existence of low-frequency type III bursts proves that open field lines extend from within 0.5 radius of the Sun into the interplanetary medium (the bursts start above 100 MHz, and such emission originates within 0.5 solar radius of the solar surface). Thus it is not valid to assume that only closed field lines exist in the flaring regions associated with CMEs and some

  3. Characteristic studies on solar x-ray flares and solar radio bursts during descending phases of solar cycles 22 and 23

    International Nuclear Information System (INIS)

    Bhattacharya, J.; De, B.K.; Guha, A.

    2014-01-01

    In this paper, a comparative study between the solar X-ray flares and solar radio bursts in terms of their duration and energy has been done. This has been done by analyzing the data in a statistical way covering the descending phase of the 22nd and 23rd solar cycles. It has been observed that the most probable value of duration of both solar X-ray flares and solar radio bursts remain same for a particular cycle. There is a slight variation in the most probable value of duration in going from 22nd cycle to 23rd cycle in the case of both kinds of events. This small variation may be due to the variation of polar field. A low correlation has been observed between energy fluxes in solar X-ray flares and in solar radio bursts. This has been attributed to the non symmetric contribution of energy to the solar radio and X-ray band controlled by solar magnetic field

  4. Radio and X-ray emission from supernova remnants

    International Nuclear Information System (INIS)

    Asvarova, A.I.; Novruzova, H.I.; Ahmedova, S.I.

    2010-01-01

    In this paper it was studied the statistical correlation between radio and X-ray emissions from shell-type supernova remnants (SNR). The primary aim of this study is to test the model of radio emission of shell-type SNRs presented by one of the authors. Based on this model of radio emission, by using the Monte Carlo techniques we have simulated statistical relations radio - X-ray luminosities (not surface brightnesses) which then were compared with the observations. X-ray emission is assumed to be thermal. To have a uniform statistical material it was used observational data on the SNRs in Magellanic Clouds

  5. Solar Radio Bursts and Space Weather

    Science.gov (United States)

    Gopalswamy, Natchimuthuk,

    2012-01-01

    Radio bursts from the Sun are produced by electron accelerated to relativistic energies by physical processes on the Sun such as solar flares and coronal mass ejections (CMEs). The radio bursts are thus good indicators of solar eruptions. Three types of nonthermal radio bursts are generally associated with CMEs. Type III bursts due to accelerated electrons propagating along open magnetic field lines. The electrons are thought to be accelerated at the reconnection region beneath the erupting CME, although there is another view that the electrons may be accelerated at the CME-driven shock. Type II bursts are due to electrons accelerated at the shock front. Type II bursts are also excellent indicators of solar energetic particle (SEP) events because the same shock is supposed accelerate electrons and ions. There is a hierarchical relationship between the wavelength range of type /I bursts and the CME kinetic energy. Finally, Type IV bursts are due to electrons trapped in moving or stationary structures. The low frequency stationary type IV bursts are observed occasionally in association with very fast CMEs. These bursts originate from flare loops behind the erupting CME and hence indicate tall loops. This paper presents a summary of radio bursts and their relation to CMEs and how they can be useful for space weather predictions.

  6. Imaging spectroscopy of type U and J solar radio bursts with LOFAR

    Science.gov (United States)

    Reid, Hamish A. S.; Kontar, Eduard P.

    2017-10-01

    Context. Radio U-bursts and J-bursts are signatures of electron beams propagating along magnetic loops confined to the corona. The more commonly observed type III radio bursts are signatures of electron beams propagating along magnetic loops that extend into interplanetary space. Given the prevalence of solar magnetic flux to be closed in the corona, why type III bursts are more frequently observed than U-bursts or J-bursts is an outstanding question. Aims: We use Low-Frequency Array (LOFAR) imaging spectroscopy between 30-80 MHz of low-frequency U-bursts and J-bursts, for the first time, to understand why electron beams travelling along coronal loops produce radio emission less often. Radio burst observations provide information not only about the exciting electron beams but also about the structure of large coronal loops with densities that are too low for standard extreme ultraviolet (EUV) or X-ray analysis. Methods: We analysed LOFAR images of a sequence of two J-bursts and one U-burst. The different radio source positions were used to model the spatial structure of the guiding magnetic flux tube and then deduce the energy range of the exciting electron beams without the assumption of a standard density model. We also estimated the electron density along the magnetic flux rope and compared it to coronal models. Results: The radio sources infer a magnetic loop that is 1 solar radius in altitude with the highest frequency sources starting around 0.6 solar radii. Electron velocities were found between 0.13 c and 0.24 c with the front of the electron beam travelling faster than the back of the electron beam. The velocities correspond to energy ranges within the beam from 0.7-11 keV to 0.7-43 keV. The density along the loop is higher than typical coronal density models and the density gradient is smaller. Conclusions: We found that a more restrictive range of accelerated beam and background plasma parameters can result in U-bursts or J-bursts, causing type III

  7. Extended radio emission and the nature of blazars

    International Nuclear Information System (INIS)

    Antonucci, R.R.J.; Ulvestad, J.S.

    1985-01-01

    The VLA has been used at 20 cm to map all 23 of the 54 confirmed blazars listed in the Angel and Stockman review paper that had not been mapped before at high resolution. (Blazars include BL Lac objects and optically violently variable quasars.) In addition, data on most of the previously mapped blazars have been reprocessed in order to achieve higher dynamic range. Extended emission has been detected associated with 49 of the 54 objects. The extended radio emission has been used to test the hypothesis that blazars are normal radio galaxies and radio quasars viewed along the jet axes. We find that blazars have substantial extended power, consistent with this hypothesis. Many have extended powers as high as the luminous Fanaroff-Riley class 2 radio doubles. The projected linear sizes are small, as expected from foreshortening of the extended sources, and many blazars have the expected core-halo morphology. There are also several small doubles, a head-tail source, and some one-sided sources, and these could be in cases where the line of sight is slightly off the jet axis, or projections of asymmetrical radio galaxies and quasars. The ratio of core to extended radio emission has been studied as a possible indicator of viewing aspect or beaming intensity. It is found to correlate with optical polarization, optical and radio core variability, and one-sided radio morphology. We can go beyond these consistency checks and work toward a proof of the hypothesis under discussion. The flux from the extended emission alone is sufficient in some blazars to qualify them for inclusion in the 3C and 4C catalogs. Suppose that the radio core emission is anisotropic, but the extended emission is predominantly isotropic. The isotropy of the extended emission implies that these blazars would be in the catalogs even if viewed from the side

  8. Automated solar radio burst detection on radio spectrum: a review of ...

    African Journals Online (AJOL)

    By doing manual detection, human effort and error become the issues when the solar astronomer needs the fast and accurate result. Recently, the success of various techniques in image processing to identify solar radio burst automatically was presented. This paper reviews previous technique in image processing.

  9. THE CHROMOSPHERIC SOLAR LIMB BRIGHTENING AT RADIO, MILLIMETER, SUB-MILLIMETER, AND INFRARED WAVELENGTHS

    International Nuclear Information System (INIS)

    De la Luz, V.

    2016-01-01

    Observations of the emission at radio, millimeter, sub-millimeter, and infrared wavelengths in the center of the solar disk validate the autoconsistence of semi-empirical models of the chromosphere. Theoretically, these models must reproduce the emission at the solar limb. In this work, we tested both the VALC and C7 semi-empirical models by computing their emission spectrum in the frequency range from 2 GHz to 10 THz at solar limb altitudes. We calculate the Sun's theoretical radii as well as their limb brightening. Non-local thermodynamic equilibrium was computed for hydrogen, electron density, and H − . In order to solve the radiative transfer equation, a three-dimensional (3D) geometry was employed to determine the ray paths, and Bremsstrahlung, H − , and inverse Bremsstrahlung opacity sources were integrated in the optical depth. We compared the computed solar radii with high-resolution observations at the limb obtained by Clark. We found that there are differences between the observed and computed solar radii of 12,000 km at 20 GHz, 5000 km at 100 GHz, and 1000 km at 3 THz for both semi-empirical models. A difference of 8000 km in the solar radii was found when comparing our results against the heights obtained from H α observations of spicules-off at the solar limb. We conclude that the solar radii cannot be reproduced by VALC and C7 semi-empirical models at radio—infrared wavelengths. Therefore, the structures in the high chromosphere provide a better measurement of the solar radii and their limb brightening as shown in previous investigations.

  10. Analysis and Modeling of Jovian Radio Emissions Observed by Galileo

    Science.gov (United States)

    Menietti, J. D.

    2003-01-01

    Our studies of Jovian radio emission have resulted in the publication of five papers in refereed journals, with three additional papers in progress. The topics of these papers include the study of narrow-band kilometric radio emission; the apparent control of radio emission by Callisto; quasi-periodic radio emission; hectometric attenuation lanes and their relationship to Io volcanic activity; and modeling of HOM attenuation lanes using ray tracing. A further study of the control of radio emission by Jovian satellites is currently in progress. Abstracts of each of these papers are contained in the Appendix. A list of the publication titles are also included.

  11. Optical emission line spectra of Seyfert galaxies and radio galaxies

    International Nuclear Information System (INIS)

    Osterbrock, D.E.

    1978-01-01

    Many radio galaxies have strong emission lines in their optical spectra, similar to the emission lines in the spectra of Seyfert galaxies. The range of ionization extends from [O I] and [N I] through [Ne V] and [Fe VII] to [Fe X]. The emission-line spectra of radio galaxies divide into two types, narrow-line radio galaxies whose spectra are indistinguishable from Seyfert 2 galaxies, and broad-line radio galaxies whose spectra are similar to Seyfert 1 galaxies. However on the average the broad-line radio galaxies have steeper Balmer decrements, stronger [O III] and weaker Fe II emission than the Seyfert 1 galaxies, though at least one Seyfert 1 galaxy not known to be a radio source has a spectrum very similar to typical broad-line radio galaxies. Intermediate-type Seyfert galaxies exist that show various mixtures of the Seyfert 1 and Seyfert 2 properties, and the narrow-line or Seyfert 2 property seems to be strongly correlated with radio emission. (Auth.)

  12. Tracking Solar Type II Bursts with Space Based Radio Interferometers

    Science.gov (United States)

    Hegedus, Alexander M.; Kasper, Justin C.; Manchester, Ward B.

    2018-06-01

    The Earth’s Ionosphere limits radio measurements on its surface, blocking out any radiation below 10 MHz. Valuable insight into many astrophysical processes could be gained by having a radio interferometer in space to image the low frequency window for the first time. One application is observing type II bursts tracking solar energetic particle acceleration in Coronal Mass Ejections (CMEs). In this work we create a simulated data processing pipeline for several space based radio interferometer (SBRI) concepts and evaluate their performance in the task of localizing these type II bursts.Traditional radio astronomy software is hard coded to assume an Earth based array. To circumvent this, we manually calculate the antenna separations and insert them along with the simulated visibilities into a CASA MS file for analysis. To create the realest possible virtual input data, we take a 2-temperature MHD simulation of a CME event, superimpose realistic radio emission models from the CME-driven shock front, and propagate the signal through simulated SBRIs. We consider both probabilistic emission models derived from plasma parameters correlated with type II bursts, and analytical emission models using plasma emission wave interaction theory.One proposed SBRI is the pathfinder mission SunRISE, a 6 CubeSat interferometer to circle the Earth in a GEO graveyard orbit. We test simulated trajectories of SunRISE and image what the array recovers, comparing it to the virtual input. An interferometer on the lunar surface would be a stable alternative that avoids noise sources that affect orbiting arrays, namely the phase noise from positional uncertainty and atmospheric 10s-100s kHz noise. Using Digital Elevation Models from laser altimeter data, we test different sets of locations on the lunar surface to find near optimal configurations for tracking type II bursts far from the sun. Custom software is used to model the response of different array configurations over the lunar year

  13. Radio emission, cosmic ray electrons, and the production of γ-rays in the galaxy

    International Nuclear Information System (INIS)

    Webber, W.R.; Simpson, G.A.; Cane, H.V.

    1980-01-01

    Using a perspective based on new radio data, we have reexamined the traditional derivation of the interstellar electron spectrum using the galactic nonthermal radio spectrum. The radio spectrum derived in the polar directions is now used as a base for this derivation rather than the anticenter spectrum. The interstellar electron spectrum between 70 and 1200 MeV is found to have an exponent -2.14 +- 0.06, steeper than previously determined, and leading to electron fluxes at low energies up to a factor of 10 larger than previously predicted. The electron spectrum below approx.20 MeV measured at Earth is used along with solar modulation arguments to suggest that this interstellar electron spectrum flattens to an exponent of -1.6 +- 0.1 between 5 and 70 MeV. We then use radio maps to predict the γ-ray fluxes produced by the bremsstrahlung process to be expected from these electrons. Using the radio maps, we fiest define L/sub eff/, the effective path length for radio emission in various directions, to predict the effective path length for γ-ray emission. The spectral shapes of γ-rays predicted when the contribution from π 0 decay is included, show little evidence of a pion-decay bump and agree well with those observed, indicating that large changes in the cosmic-ray electron to proton ratio from that observed locally are unlikely along a line of sight. The differences in the predicted and observed γ-ray intensities in the galactic plane are small. However, in the polar direction, the predicted γ-ray flux using the radio data is approx.6 times larger than that actually observed. This is indicative of the fact that the radio emissivity is considerably thicker than the γ-ray emissivity disk, and the cosmic-ray electron population extends beyond the gaseous disk of the Galaxy. This technique of estimating the γ-ray intensity using the radio data is compared with the usual technique which employs estimates of the column density of hydrogen

  14. The Sun Radio Imaging Space Experiment (SunRISE) Mission

    Science.gov (United States)

    Kasper, J. C.; Lazio, J.; Alibay, F.; Amiri, N.; Bastian, T.; Cohen, C.; Landi, E.; Hegedus, A. M.; Maksimovic, M.; Manchester, W.; Reinard, A.; Schwadron, N.; Cecconi, B.; Hallinan, G.; Krupar, V.

    2017-12-01

    Radio emission from coronal mass ejections (CMEs) is a direct tracer of particle acceleration in the inner heliosphere and potential magnetic connections from the lower solar corona to the larger heliosphere. Energized electrons excite Langmuir waves, which then convert into intense radio emission at the local plasma frequency, with the most intense acceleration thought to occur within 20 R_S. The radio emission from CMEs is quite strong such that only a relatively small number of antennas is required to detect and map it, but many aspects of this particle acceleration and transport remain poorly constrained. Ground-based arrays would be quite capable of tracking the radio emission associated with CMEs, but absorption by the Earth's ionosphere limits the frequency coverage of ground-based arrays (nu > 15 MHz), which in turn limits the range of solar distances over which they can track the radio emission (concept: A constellation of small spacecraft in a geostationary graveyard orbit designed to localize and track radio emissions in the inner heliosphere. Each spacecraft would carry a receiving system for observations below 25 MHz, and SunRISE would produce the first images of CMEs more than a few solar radii from the Sun. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  15. Production of fine structures in type III solar radio bursts due to turbulent density profiles

    International Nuclear Information System (INIS)

    Loi, Shyeh Tjing; Cairns, Iver H.; Li, Bo

    2014-01-01

    Magnetic reconnection events in the corona release energetic electron beams along open field lines, and the beams generate radio emission at multiples of the electron plasma frequency f p to produce type III solar radio bursts. Type III bursts often exhibit irregularities in the form of flux modulations with frequency and/or local temporal advances and delays, and a type IIIb burst represents the extreme case where a type III burst is fragmented into a chain of narrowband features called striae. Remote and in situ spacecraft measurements have shown that density turbulence is ubiquitous in the corona and solar wind, and often exhibits a Kolmogorov power spectrum. In this work, we numerically investigate the effects of one-dimensional macroscopic density turbulence (along the beam direction) on the behavior of type III bursts, and find that this turbulence produces stria-like fine structures in the dynamic spectra of both f p and 2 f p radiation. Spectral and temporal fine structures in the predicted type III emission are produced by variations in the scattering path lengths and group speeds of radio emission, and in the locations and sizes of emitting volumes. Moderate turbulence levels yield flux enhancements with much broader half-power bandwidths in f p than 2 f p emission, possibly explaining the often observed type IIIb-III harmonic pairs as being where intensifications in 2 f p radiation are not resolved observationally. Larger turbulence levels producing trough-peak regions in the plasma density profile may lead to broader, resolvable intensifications in 2 f p radiation, which may account for the type IIIb-IIIb pairs that are sometimes observed.

  16. Radio Emissions from Magnetopause Reconnection Events

    Science.gov (United States)

    Fung, S. F.; Kunze, J.

    2017-12-01

    A new terrestrial radio emission has recently been identified and attributed to a source connected to the magnetopause magnetic reconnection process [Fung et al., 2013]. Known as the terrestrial myriametric radio burst (TMRB), the new emission was observed by both the IMAGE and Geotail spacecraft during a period of northward interplanetary magnetic field (IMF Bz >0) as a temporal and isolated burst of emission with perhaps well-defined or directed emission cones. Spectral and spin-modulation analyses showed that both the intensity and source direction of the emission are sensitive to the variability of the IMF. The strong control of the emission by the IMF suggests that the emission is connected to the magnetopause reconnection process. A number of potential TMRB events have now been identified by surveying all the dynamic spectrogram data obtained by the IMAGE, Geotail, Cluster, and Wind spacecraft in 5/2000-12/2005. This paper will present our analyses of how the spectral signatures and beaming characteristics of the emissions might depend on the IMF orientations, and thus their likelihood of being TMRBs. Special emphasis will be on events associated with northward and southward IMF in order to determine if TMRBs might be generally produced from magnetopause reconnection processes. Fung, S. F., K. Hashimoto, H. Kojima, S. A. Boardsen, L. N. Garcia, H. Matsumoto, J. L. Green, and B. W. Reinisch (2013), Terrestrial myriametric radio burst observed by IMAGE and Geotail satellites, J. Geophys. Res. Space Physics, 118, doi:10.1002/jgra.50149.

  17. THE CHROMOSPHERIC SOLAR LIMB BRIGHTENING AT RADIO, MILLIMETER, SUB-MILLIMETER, AND INFRARED WAVELENGTHS

    Energy Technology Data Exchange (ETDEWEB)

    De la Luz, V. [Conacyt—SCiESMEX, Instituto de Geofísica, Unidad Michoacán, Universidad Nacional Autónoma de México, Morelia, Michoacán, 58190, México (Mexico)

    2016-07-10

    Observations of the emission at radio, millimeter, sub-millimeter, and infrared wavelengths in the center of the solar disk validate the autoconsistence of semi-empirical models of the chromosphere. Theoretically, these models must reproduce the emission at the solar limb. In this work, we tested both the VALC and C7 semi-empirical models by computing their emission spectrum in the frequency range from 2 GHz to 10 THz at solar limb altitudes. We calculate the Sun's theoretical radii as well as their limb brightening. Non-local thermodynamic equilibrium was computed for hydrogen, electron density, and H{sup −}. In order to solve the radiative transfer equation, a three-dimensional (3D) geometry was employed to determine the ray paths, and Bremsstrahlung, H{sup −}, and inverse Bremsstrahlung opacity sources were integrated in the optical depth. We compared the computed solar radii with high-resolution observations at the limb obtained by Clark. We found that there are differences between the observed and computed solar radii of 12,000 km at 20 GHz, 5000 km at 100 GHz, and 1000 km at 3 THz for both semi-empirical models. A difference of 8000 km in the solar radii was found when comparing our results against the heights obtained from H α observations of spicules-off at the solar limb. We conclude that the solar radii cannot be reproduced by VALC and C7 semi-empirical models at radio—infrared wavelengths. Therefore, the structures in the high chromosphere provide a better measurement of the solar radii and their limb brightening as shown in previous investigations.

  18. Remote Sensing of the Heliospheric Solar Wind using Radio ...

    Indian Academy of Sciences (India)

    tribpo

    Astr. (2000) 21, 439–444. Remote Sensing of the Heliospheric Solar Wind using Radio. Astronomy Methods and Numerical Simulations. S. Ananthakrishnan, National Center for Radio Astrophysics, Tata Institute of. Fundamental Research, Pune, India. Abstract. The ground-based radio astronomy method of interplanetary.

  19. Fossil shell emission in dying radio loud AGNs

    Science.gov (United States)

    Kino, M.; Ito, H.; Kawakatu, N.; Orienti, M.; Nagai, H.; Wajima, K.; Itoh, R.

    2016-02-01

    We investigate shell emission associated with dying radio loud AGNs. First, based on our recent work by Ito et al. (2015), we describe the dynamical and spectral evolution of shells after stopping the jet energy injection. We find that the shell emission overwhelms that of the radio lobes soon after stopping the jet energy injection because fresh electrons are continuously supplied into the shell via the forward shock, while the radio lobes rapidly fade out without jet energy injection. We find that such fossil shells can be a new class of target sources for SKA telescope. Next, we apply the model to the nearby radio source 3C84. Then, we find that the fossil shell emission in 3C84 is less luminous in the radio band while it is bright in the TeV γ-ray band and can be detectable by CTA. Data from STELLA

  20. MASER: Measuring, Analysing, Simulating low frequency Radio Emissions.

    Science.gov (United States)

    Cecconi, B.; Le Sidaner, P.; Savalle, R.; Bonnin, X.; Zarka, P. M.; Louis, C.; Coffre, A.; Lamy, L.; Denis, L.; Griessmeier, J. M.; Faden, J.; Piker, C.; André, N.; Genot, V. N.; Erard, S.; King, T. A.; Mafi, J. N.; Sharlow, M.; Sky, J.; Demleitner, M.

    2017-12-01

    The MASER (Measuring, Analysing and Simulating Radio Emissions) project provides a comprehensive infrastructure dedicated to low frequency radio emissions (typically Radioastronomie de Nançay and the CDPP deep archive. These datasets include Cassini/RPWS, STEREO/Waves, WIND/Waves, Ulysses/URAP, ISEE3/SBH, Voyager/PRA, Nançay Decameter Array (Routine, NewRoutine, JunoN), RadioJove archive, swedish Viking mission, Interball/POLRAD... MASER also includes a Python software library for reading raw data.

  1. Extended Radio Emission in MOJAVE Blazars: Challenges to Unification

    Science.gov (United States)

    Kharb, P.; Lister, M. L.; Cooper, N. J.

    2010-02-01

    We present the results of a study on the kiloparsec-scale radio emission in the complete flux density limited MOJAVE sample, comprising 135 radio-loud active galactic nuclei. New 1.4 GHz Very Large Array (VLA) radio images of six quasars and previously unpublished images of 21 blazars are presented, along with an analysis of the high-resolution (VLA A-array) 1.4 GHz emission for the entire sample. While extended emission is detected in the majority of the sources, about 7% of the sources exhibit only radio core emission. We expect more sensitive radio observations, however, to detect faint emission in these sources, as we have detected in the erstwhile "core-only" source, 1548+056. The kiloparsec-scale radio morphology varies widely across the sample. Many BL Lac objects exhibit extended radio power and kiloparsec-scale morphology typical of powerful FRII jets, while a substantial number of quasars possess radio powers intermediate between FRIs and FRIIs. This poses challenges to the simple radio-loud unified scheme, which links BL Lac objects to FRIs and quasars to FRIIs. We find a significant correlation between extended radio emission and parsec-scale jet speeds: the more radio powerful sources possess faster jets. This indicates that the 1.4 GHz (or low-frequency) radio emission is indeed related to jet kinetic power. Various properties such as extended radio power and apparent parsec-scale jet speeds vary smoothly between different blazar subclasses, suggesting that, at least in terms of radio jet properties, the distinction between quasars and BL Lac objects, at an emission-line equivalent width of 5 Å, is essentially an arbitrary one. While the two blazar subclasses display a smooth continuation in properties, they often reveal differences in the correlation test results when considered separately. This can be understood if, unlike quasars, BL Lac objects do not constitute a homogeneous population, but rather include both FRI and FRII radio galaxies for

  2. EXTENDED RADIO EMISSION IN MOJAVE BLAZARS: CHALLENGES TO UNIFICATION

    International Nuclear Information System (INIS)

    Kharb, P.; Lister, M. L.; Cooper, N. J.

    2010-01-01

    We present the results of a study on the kiloparsec-scale radio emission in the complete flux density limited MOJAVE sample, comprising 135 radio-loud active galactic nuclei. New 1.4 GHz Very Large Array (VLA) radio images of six quasars and previously unpublished images of 21 blazars are presented, along with an analysis of the high-resolution (VLA A-array) 1.4 GHz emission for the entire sample. While extended emission is detected in the majority of the sources, about 7% of the sources exhibit only radio core emission. We expect more sensitive radio observations, however, to detect faint emission in these sources, as we have detected in the erstwhile 'core-only' source, 1548+056. The kiloparsec-scale radio morphology varies widely across the sample. Many BL Lac objects exhibit extended radio power and kiloparsec-scale morphology typical of powerful FRII jets, while a substantial number of quasars possess radio powers intermediate between FRIs and FRIIs. This poses challenges to the simple radio-loud unified scheme, which links BL Lac objects to FRIs and quasars to FRIIs. We find a significant correlation between extended radio emission and parsec-scale jet speeds: the more radio powerful sources possess faster jets. This indicates that the 1.4 GHz (or low-frequency) radio emission is indeed related to jet kinetic power. Various properties such as extended radio power and apparent parsec-scale jet speeds vary smoothly between different blazar subclasses, suggesting that, at least in terms of radio jet properties, the distinction between quasars and BL Lac objects, at an emission-line equivalent width of 5 A, is essentially an arbitrary one. While the two blazar subclasses display a smooth continuation in properties, they often reveal differences in the correlation test results when considered separately. This can be understood if, unlike quasars, BL Lac objects do not constitute a homogeneous population, but rather include both FRI and FRII radio galaxies for

  3. Solar radio observations in support of Skylab A

    Science.gov (United States)

    Gotwols, B. L.

    1974-01-01

    The solar radio spectra were recorded in real time, both on film and magnetic tape, during the period from November 1972 to February 1974. A catalogue of the observations is given for the frequency range 565-1000 MHz and includes descriptions of the bursts, intensity scales, and pertinent remarks. Some theoretical considerations resulting from the research are given. Equipment modified for the experiment is described and the text of the final report which summarizes the research on type IV solar radio bursts is included.

  4. Cross-Correlations in Quasar Radio Emission

    Science.gov (United States)

    Nefedyev, Yuri; Panischev, Oleg; Demin, Sergey

    The main factors forming the complex evolution of the accretive astrophysical systems are nonlinearity, intermittency, nonstationarity and also collective phenomena. To discover the dynamic processes in these objects and to detain understanding their properties we need to use all the applicable analyzing methods. Here we use the Flicker-Noise Spectroscopy (FNS) as a phenomenological approach to analyzing and parameterizing the auto- and cross-correlations in time series of astrophysical objects dynamics. As an example we consider the quasar flux radio spectral density at frequencies 2.7 GHz and 8.1 GHz. Data have been observed by Dr. N. Tanizuka (Laboratory for Complex Systems Analysis, Osaka Prefecture University) in a period of 1979 to 1988 (3 309 days). According to mental habits quasar is a very energetic and distant active galactic nucleus containing a supermassive black hole by size 10-10,000 times the Schwarzschild radius. The quasar is powered by an accretion disc around the black hole. The accretion disc material layers, moving around the black hole, are under the influence of gravitational and frictional forces. It results in raising the high temperature and arising the resonant and collective phenomena reflected in quasar emission dynamics. Radio emission dynamics of the quasar 0215p015 is characterized by three quasi-periodic processes, which are prevalent in considering dynamics. By contrast the 1641p399's emission dynamics have not any distinguish processes. It means the presence of high intermittency in accretive modes. The second difference moment allows comparing the degree of manifesting of resonant and chaotic components in initial time series of the quasar radio emission. The comparative analysis shows the dominating of chaotic part of 1641p399's dynamics whereas the radio emission of 0215p015 has the predominance of resonant component. Analyzing the collective features of the quasar radio emission intensity demonstrates the significant

  5. Fibre structure of decametric type II radio bursts as a manifestation of emission propagation effects in a disturbed near-solar plasma

    OpenAIRE

    A. N. Afanasiev

    2009-01-01

    This paper addresses the fine structure of solar decametric type II radio bursts in the form of drifting narrowband fibres on the dynamic spectrum. Observations show that this structure appears in those events where there is a coronal mass ejection (CME) traveling in the near-solar space ahead of the shock wave responsible for the radio burst. The diversity in observed morphology of fibres and values of their parameters implies that the fibres may be caused by different formation mechanisms. ...

  6. An alternative to the plasma emission model: Particle-in-cell, self-consistent electromagnetic wave emission simulations of solar type III radio bursts

    International Nuclear Information System (INIS)

    Tsiklauri, David

    2011-01-01

    High-resolution (sub-Debye length grid size and 10 000 particle species per cell), 1.5D particle-in-cell, relativistic, fully electromagnetic simulations are used to model electromagnetic wave emission generation in the context of solar type III radio bursts. The model studies generation of electromagnetic waves by a super-thermal, hot beam of electrons injected into a plasma thread that contains uniform longitudinal magnetic field and a parabolic density gradient. In effect, a single magnetic line connecting Sun to Earth is considered, for which five cases are studied. (i) We find that the physical system without a beam is stable and only low amplitude level electromagnetic drift waves (noise) are excited. (ii) The beam injection direction is controlled by setting either longitudinal or oblique electron initial drift speed, i.e., by setting the beam pitch angle (the angle between the beam velocity vector and the direction of background magnetic field). In the case of zero pitch angle, i.e., when v-vector b ·E-vector perpendicular =0, the beam excites only electrostatic, standing waves, oscillating at local plasma frequency, in the beam injection spatial location, and only low level electromagnetic drift wave noise is also generated. (iii) In the case of oblique beam pitch angles, i.e., when v-vector b ·E-vector perpendicular =0, again electrostatic waves with same properties are excited. However, now the beam also generates the electromagnetic waves with the properties commensurate to type III radio bursts. The latter is evidenced by the wavelet analysis of transverse electric field component, which shows that as the beam moves to the regions of lower density and hence lower plasma frequency, frequency of the electromagnetic waves drops accordingly. (iv) When the density gradient is removed, an electron beam with an oblique pitch angle still generates the electromagnetic radiation. However, in the latter case no frequency decrease is seen. (v) Since in most of

  7. An analysis of interplanetary solar radio emissions associated with a coronal mass ejection

    Czech Academy of Sciences Publication Activity Database

    Krupař, Vratislav; Eastwood, J. P.; Krupařová, Oksana; Santolík, Ondřej; Souček, Jan; Magdalenic, J.; Vourlidas, A.; Maksimovic, M.; Bonnin, X.; Bothmer, V.; Mrotzek, N.; Pluta, A.; Barnes, D.; Davies, J. A.; Oliveros, J.C.M.; Bale, S. D.

    2016-01-01

    Roč. 823, č. 1 (2016) ISSN 2041-8205 R&D Projects: GA ČR GJ16-16050Y; GA ČR(CZ) GAP209/12/2394; GA MŠk(CZ) LH15304 Grant - others:AV ČR(CZ) AP1401 Program:Akademická prémie - Praemium Academiae Institutional support: RVO:68378289 Keywords : solar -terrestrial relations * coronal mass ejections (CMEs) * radio radiation Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 5.522, year: 2016 http://iopscience.iop.org/article/10.3847/2041-8205/823/1/L5/meta

  8. Geomagnetic storm related to intense solar radio burst type II and III ...

    African Journals Online (AJOL)

    The strong energetic particles ejected during sun's activity will propagate towards earth and contribute to solar radio bursts. These solar radio bursts can be detected using CALLISTO system. The open website of the NASA provides us the data including CALLISTO, TESIS, solar monitor, SOHO and space weather. The type ...

  9. Radio emission from Supernovae and High Precision Astrometry

    Science.gov (United States)

    Perez-Torres, M. A.

    1999-11-01

    -similarly and spherically symmetric expanding, and that the radio emission comes only from its shell. We take into account radiative losses due to synchrotron emission and losses due to the supernova expansion. Although relatively simple, the model retains the main physical features involving the process of radio emission. Our code, MOSES (MOdeling of Synchrotron Emissiom from Supernovae), reproduces fairly well the radio light curves for SN 1993J obtained from single dish measurements. Constrained by our VLBI measurements, we fitted the light curves of the supernova by adjusting five parameters, namely: index of the injected distribution of relativistic electrons, p; ratio of the mass-loss rate to the wind velocity of the supernova progenitor, M_w; and the initial values for the injection of electrons, N_0, the low-energy cut-off of the relativistic electrons, emin, and the magnetic field, B_0. To get a reasonable fit, we need: values of the spectral index, p, very close to three; a wind parameter M_w approx 1.7, thus indicating the existence of a strong presupernova wind ( 8.5*10^{-5} solar masses per year); low initial values of N_0 ( 7 * 10^{-7} erg^{p-1} cm^3); initially high low-energy cut-offs of the relativistic electrons (Erel approx. 90 m_e*c^2); and high initial magnetic fields (B_0 approx. 30 Gauss). An uncertainty of about a factor 2 is likely to exist for such parameters as B_0, N_0, and E_min. In contrast, both p and M_w seem to be well constrained to their nominal values. We stress that the large magnetic field required represents a relatively shocking result in view of the usually small (a few microgauss) interstellar magnetic fields, and tends to favor theories in which the magnetic field is amplified in situ by turbulences inside the supernova shell.

  10. Mean and Extreme Radio Properties of Quasars and the Origin of Radio Emission

    Science.gov (United States)

    Richards, Gordon T.; Kratzer, R.

    2014-01-01

    We explore the evolution of the fraction of radio loud quasars and the mean radio properties of quasars. Although any quasar has only a ~10% chance of being radio loud and the average quasar has a radio luminosity of ~4x10^30 ergs/s/Hz, these properties are strong functions of not only luminosity, redshift, black hole mass, and accretion rate, but also the strength of the accretion disk wind (as characterized by CIV emission line properties). Quasars with higher optical luminosity and/or lower redshift have a higher than average probability of being radio loud, but their median radio luminosity (relative to optical) is much lower than average. We find that, while radio properties of quasars generally cannot be predicted from their optical properties, objects where one expects a strong radiation line driven wind (based on emission line features) have virtually no chance of being radio loud. The redder quasars are in the optical, the more radio flux (relative to optical) they have; this trend holds even for quasars that are not expected to be significantly dust reddened/extincted in the optical. Finally, we consider the radio properties of quasars in the framework of models which describe the radio loud extrema as being due to particularly high spin resulting from second generation mergers and in the context of star formation at lower levels of radio flux. This work was supported by NSF AAG grant 1108798.

  11. Radio emission from supernovae. I. One to twelve year old supernovae

    International Nuclear Information System (INIS)

    Weiler, K.W.; Panagia, N.; Sramek, R.A.; Van Der Hulst, J.M.; Roberts, M.S.

    1989-01-01

    All recorded optical supernovae brighter than 14.0 mag from SN 1970A to SN 1981A were observed in May 1982 using VLA at 6 cm. Apart from the known radio supernovae (SN 1970G, SN 1979C, and SN 1980K), radio emissions were not detected from any of the objects to a limit of about 0.5 mJy. Limits on mass-loss rates from the presupernova systems are established. It is found that Type Ia Sns originate in systems which contain very little circumstellar material at the time of explosion. These systems are very different from those which originate Type Ib Sns. With some exceptions, Type II SNs originate with the high presupernova mass-loss rates expected from red supergiant progenitors with original main-sequence masses greater than about 8 solar masses. 16 references

  12. Numerical simulation of nonlinear beam-plasma interaction for the application to solar radio burst

    International Nuclear Information System (INIS)

    Takakura, T.

    1981-01-01

    By the use of semi-analytical method the numerical simulations for the nonlinear scattering of axially symmetric plasma waves into plasma waves and radio waves have been made. The initial electron beam has a finite length and one-dimensional velocity distribution of power law. Induced back-scattering of plasma waves by thermal ions is strong even for a solar electron stream of rather low flux, say 2x10 11 cm -2 above 5 keV at fsub(p) of 40 MHz, which is enough to emit the observed type III bursts as the second harmonic. The ratio between the energy densities of plasma waves and thermal electrons (nkT) is of the order of 10 -6 , which may be a few orders lower than the threshold value for a caviton collapse of the plasma waves to occur. The second harmonic radio emission as attributed to the coalescence of two plasma waves, i.e. one excited by electron beam and one back-scattered by ions, is several orders higher than the fundamental radio emission caused by the scattering of plasma waves by thermal ions. (Auth.)

  13. Radio emission in the Virgo cluster and in SO galaxies

    International Nuclear Information System (INIS)

    Kotanyi, C.

    1981-01-01

    A survey of the radio continuum emission from the galaxies in the Virgo Cluster is presented. The sample of 274 galaxies in total contains a subsample of 188 galaxies complete down to magntiude msub(p) = 14. The observations consisted mostly of short (10 minutes) observations providing one-dimensional (East-West) strip distributions of the radio brightness at 1.4 GHz, with an East-West resolution of 23'' allowing separation of central sources from extended emission, and an r.m.s. noise level of 2 mJy. The radio emission of SO galaxies is examined. A sample of 145 SO galaxies is obtained by combining the Virgo cluster SO's with the nearby non-cluster SO's. The radio data, mainly from short observations, are used to derive the RLF. The radio emission in SO galaxies is at least three times weaker than that in ellipticals and spirals. Flat-spectrum compact nuclear sources are found in SO galaxies but they are at least 10 times weaker than in elliptical galaxies, which is attributed to the small mass of the bulges in SO's as compared to the mass of elliptical galaxies. The absence of steep-spectrum, extended central sources and of disk radio emission in SO's is attributed to their low neutral hydrogen content. (Auth.)

  14. Slowly varying component of extreme ultraviolet solar radiation and its relation to solar radio radiation

    Science.gov (United States)

    Chapman, R. D.; Neupert, W. M.

    1974-01-01

    A study of the correlations between solar EUV line fluxes and solar radio fluxes has been carried out. A calibration for the Goddard Space Flight Center EUV spectrum is suggested. The results are used to obtain an equation for the absolute EUV flux for several lines in the 150- to 400-A region and the total flux of 81 intense lines in the region, the 2800-MHz radio flux being used as independent variable.

  15. A possible mechanism for the pulsar radio emission

    International Nuclear Information System (INIS)

    Hinata, S.

    1977-01-01

    The possibility of radio emission is considered within a model which produces the beam-plasma system near the pulsar. A longitudinal instability develops near the light cylinder for a particular choice of parameters adopted in the paper. The excited wave strongly oscillates the beam particles perpendicular to its average velocity on one hand, and forms bunches of them on the other hand. Consequently, coherent radiation is expected. The frequency of the emission falls within the radio band, but the intensity turns out to be too low to explain observations. An appreciable enhancement of the beam number density over the Goldreich-Julian value (nsub(b) approximately equal to BΩ/2πec) is needed if the mechanism discussed in the present paper is responsible for the pulsar radio emission. (Auth.)

  16. Radio Remote Sensing of Coronal Mass Ejections: Implications for Parker Solar Probe and Solar Orbiter

    Science.gov (United States)

    Kooi, J. E.; Thomas, N. C.; Guy, M. B., III; Spangler, S. R.

    2017-12-01

    Coronal mass ejections (CMEs) are fast-moving magnetic field structures of enhanced plasma density that play an important role in space weather. The Solar Orbiter and Parker Solar Probe will usher in a new era of in situ measurements, probing CMEs within distances of 60 and 10 solar radii, respectively. At the present, only remote-sensing techniques such as Faraday rotation can probe the plasma structure of CMEs at these distances. Faraday rotation is the change in polarization position angle of linearly polarized radiation as it propagates through a magnetized plasma (e.g. a CME) and is proportional to the path integral of the electron density and line-of-sight magnetic field. In conjunction with white-light coronagraph measurements, Faraday rotation observations have been used in recent years to determine the magnetic field strength of CMEs. We report recent results from simultaneous white-light and radio observations made of a CME in July 2015. We made radio observations using the Karl G. Jansky Very Large Array (VLA) at 1 - 2 GHz frequencies of a set of radio sources through the solar corona at heliocentric distances that ranged between 8 - 23 solar radii. These Faraday rotation observations provide a priori estimates for comparison with future in situ measurements made by the Solar Orbiter and Parker Solar Probe. Similar Faraday rotation observations made simultaneously with observations by the Solar Orbiter and Parker Solar Probe in the future could provide information about the global structure of CMEs sampled by these probes and, therefore, aid in understanding the in situ measurements.

  17. Investigating the Origins of Two Extreme Solar Particle Events: Proton Source Profile and Associated Electromagnetic Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Kocharov, Leon; Usoskin, Ilya [Sodankylä Geophysical Observatory/Oulu Unit, University of Oulu, P.O.B. 3000, Oulu FI-90014 (Finland); Pohjolainen, Silja [Tuorla Observatory, University of Turku, Piikkiö FI-21500 (Finland); Mishev, Alexander [Space Climate Research Unit, University of Oulu, Oulu FI-90014 (Finland); Reiner, Mike J. [The Catholic University of America, Washington, DC, and NASA/Goddard Space Flight Center, Greenbelt, MD (United States); Lee, Jeongwoo [Department of Physics and Astronomy, Seoul National University, Seoul 151-747 (Korea, Republic of); Laitinen, Timo [Jeremiah Horrocks Institute, University of Central Lancashire, Preston PR1 2HE (United Kingdom); Didkovsky, Leonid V. [University of Southern California Space Sciences Center, 835 Bloom Walk, Los Angeles CA 90089 (United States); Pizzo, Victor J. [NOAA Space Weather Prediction Center, Boulder, CO 80305 (United States); Kim, Roksoon; Cho, Kyung-Suk [Korea Astronomy and Space Science Institute, Daejeon 305-348 (Korea, Republic of); Klassen, Andreas [Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität, Kiel D-24118 (Germany); Karlicky, Marian [Astronomical Institute of the Czech Academy of Sciences, Fričova 258, Ondřejov 251 65 (Czech Republic); Gary, Dale E. [Center for Solar-Terrestrial Research, New Jersey Institute of Technology, Newark NJ 07102-1982 (United States); Valtonen, Eino; Vainio, Rami [Space Research Laboratory, University of Turku, Turku FI-20014 (Finland)

    2017-04-20

    We analyze the high-energy particle emission from the Sun in two extreme solar particle events in which protons are accelerated to relativistic energies and can cause a significant signal even in the ground-based particle detectors. Analysis of a relativistic proton event is based on modeling of the particle transport and interaction, from a near-Sun source through the solar wind and the Earth’s magnetosphere and atmosphere to a detector on the ground. This allows us to deduce the time profile of the proton source at the Sun and compare it with observed electromagnetic emissions. The 1998 May 2 event is associated with a flare and a coronal mass ejection (CME), which were well observed by the Nançay Radioheliograph, thus the images of the radio sources are available. For the 2003 November 2 event, the low corona images of the CME liftoff obtained at the Mauna Loa Solar Observatory are available. Those complementary data sets are analyzed jointly with the broadband dynamic radio spectra, EUV images, and other data available for both events. We find a common scenario for both eruptions, including the flare’s dual impulsive phase, the CME-launch-associated decimetric-continuum burst, and the late, low-frequency type III radio bursts at the time of the relativistic proton injection into the interplanetary medium. The analysis supports the idea that the two considered events start with emission of relativistic protons previously accelerated during the flare and CME launch, then trapped in large-scale magnetic loops and later released by the expanding CME.

  18. Solar-Geophysical Data Number 539, July 1989. Part 1 (prompt reports). Data for June, May 1989, and late data

    International Nuclear Information System (INIS)

    Coffey, H.E.

    1989-07-01

    Contents include: detailed index for 1988-1989; data for June 1989 -- IUWDS alert periods (advance and worldwide), solar-activity indices, solar flares, solar radio emission, Stanford mean solar magnetic field; data for May 1989 -- solar active regions, sudden ionospheric disturbances, solar radio spectral observations, cosmic-ray measurements by neutron monitor, geomagnetic indices; late data -- solar radio emission (Nancay 169-MHz solar interferometric chart, May 1989)

  19. Radio emission from embryonic superluminous supernova remnants

    Science.gov (United States)

    Omand, Conor M. B.; Kashiyama, Kazumi; Murase, Kohta

    2018-02-01

    It has been widely argued that Type-I superluminous supernovae (SLSNe-I) are driven by powerful central engines with a long-lasting energy injection after the core-collapse of massive progenitors. One of the popular hypotheses is that the hidden engines are fast-rotating pulsars with a magnetic field of B ˜ 1013-1015 G. Murase, Kashiyama & Mészáros proposed that quasi-steady radio/submm emission from non-thermal electron-positron pairs in nascent pulsar wind nebulae can be used as a relevant counterpart of such pulsar-driven supernovae (SNe). In this work, focusing on the nascent SLSN-I remnants, we examine constraints that can be placed by radio emission. We show that the Atacama Large Millimeter/submillimetre Array can detect the radio nebula from SNe at DL ˜ 1 Gpc in a few years after the explosion, while the Jansky Very Large Array can also detect the counterpart in a few decades. The proposed radio follow-up observation could solve the parameter degeneracy in the pulsar-driven SN model for optical/UV light curves, and could also give us clues to young neutron star scenarios for SLSNe-I and fast radio bursts.

  20. Radio Astronomers Get Their First Glimpse of Powerful Solar Storm

    Science.gov (United States)

    2001-08-01

    Astronomers have made the first radio-telescope images of a powerful coronal mass ejection on the Sun, giving them a long-sought glimpse of hitherto unseen aspects of these potentially dangerous events. "These observations are going to provide us with a new and unique tool for deciphering the mechanisms of coronal mass ejections and how they are related to other solar events," said Tim Bastian, an astronomer at the National Science Foundation's National Radio Astronomy Observatory (NRAO) in Charlottesville, Virginia. Radio image of coronal mass ejection; circle indicates the size and location of the Sun. White dots are where radio spectral measurements were made. Bastian, along with Monique Pick, Alain Kerdraon and Dalmiro Maia of the Paris Observatory, and Angelos Vourlidas of the Naval Research Laboratory in Washington, D.C., used a solar radio telescope in Nancay, France, to study a coronal mass ejection that occurred on April 20, 1998. Their results will be published in the September 1 edition of the Astrophysical Journal Letters. Coronal mass ejections are powerful magnetic explosions in the Sun's corona, or outer atmosphere, that can blast billions of tons of charged particles into interplanetary space at tremendous speeds. If the ejection is aimed in the direction of Earth, the speeding particles interact with our planet's magnetic field to cause auroral displays, radio-communication blackouts, and potentially damage satellites and electric-power systems. "Coronal mass ejections have been observed for many years, but only with visible-light telescopes, usually in space. While previous radio observations have provided us with powerful diagnostics of mass ejections and associated phenomena in the corona, this is the first time that one has been directly imaged in wavelengths other than visible light," Bastian said. "These new data from the radio observations give us important clues about how these very energetic events work," he added. The radio images show an

  1. First solar radio spectrometer deployed in Scotland, UK

    Science.gov (United States)

    Monstein, Christian

    2012-10-01

    A new Callisto solar radio spectrometer system has recently been installed and set into operation at Acre Road Observatory, a facility of University of Glasgow, Scotland UK. There has been an Observatory associated with Glasgow University since 1757, and they presently occupy two different sites. The main observatory ('Acre Road') is close to the Garscube Estate on the outskirts of the city of Glasgow. The outstation ('Cochno', housing the big 20 inch Grubb Parsons telescope) is located farther out at a darker site in the Kilpatrick Hills. The Acre Road Observatory comprises teaching and research labs, a workshop, the main dome housing the 16 inch Meade, the solar dome, presently housing the 12 inch Meade, a transit house containing the transit telescope, a 3m HI radio telescope and a 408 MHz pulsar telescope. They also have 10 and 8 inch Meade telescopes and several 5 inch Celestron instruments. There is a small planetarium beneath the solar dome. The new Callisto instrument is mainly foreseen for scientific solar burst observations as well as for student projects and for 'bad-weather' outreach activities.

  2. Solar-Geophysical Data Number 538, June 1989. Part 1 (prompt reports). Data for May, April 1989, and late data

    International Nuclear Information System (INIS)

    Coffey, H.E.

    1989-06-01

    Contents include: detailed index for 1988-1989; data for May 1989--(IUWDS alert periods (advance and worldwide), solar activity indices, solar flares, solar radio emission, Stanford mean solar magnetic field); data for April 1989--(solar-active regions, sudden ionospheric disturbances, solar radio-spectral observations, geomagnetic indices, radio-propagation indices); late data--(solar active regions--H-alpha synoptic charts 1813 March 1989, solar radio emission--Nancay 169-Mhz solar interferometric chart April 1989, cosmic rays climax and Huancayo--March 1989, geomagnetic indices-sudden commencements/solar flare effects February 1989)

  3. Energetics of small electron acceleration episodes in the solar corona from radio noise storm observations

    Science.gov (United States)

    James, Tomin; Subramanian, Prasad

    2018-05-01

    Observations of radio noise storms can act as sensitive probes of nonthermal electrons produced in small acceleration events in the solar corona. We use data from noise storm episodes observed jointly by the Giant Metrewave Radio Telescope (GMRT) and the Nancay Radioheliograph (NRH) to study characteristics of the nonthermal electrons involved in the emission. We find that the electrons carry 1021 to 1024 erg/s, and that the energy contained in the electrons producing a representative noise storm burst ranges from 1020 to 1023 ergs. These results are a direct probe of the energetics involved in ubiquitous, small-scale electron acceleration episodes in the corona, and could be relevant to a nanoflare-like scenario for coronal heating.

  4. Ground-based solar radio observations of the August 1972 events

    International Nuclear Information System (INIS)

    Bhonsle, R.V.; Degaonkar, S.S.; Alurkar, S.K.

    1976-01-01

    Ground-based observations of the variable solar radio emission ranging from few millimetres to decametres have been used here as a diagnostic tool to gain coherent phenomenological understanding of the great 2, 4 and 7 August, 1972 solar events in terms of dominant physical processes like generation and propagation of shock waves in the solar atmosphere, particle acceleration and trapping. Four major flares are selected for detailed analysis on the basis of their ability to produce energetic protons, shock waves, polar cap absorptions (PCA) and sudden commencement (SC) geomagnetic storms. A comparative study of their radio characteristics is made. Evidence is seen for the pulsations during microwave bursts by the mechanism similar to that proposed by McLean et al. (1971), to explain the pulsations in the metre wavelength continuum radiation. It is suggested that the multiple peaks observed in some microwave bursts may be attributable to individual flares occurring sequentially due to a single initiating flare. Attempts have been made to establish identification of Type II bursts with the interplanetary shock waves and SC geomagnetic storms. Furthermore, it is suggested that it is the mass behind the shock front which is the deciding factor for the detection of shock waves in the interplantary space. It appears that more work is necessary in order to identify which of the three moving Type IV bursts (Wild and Smerd, 1972), namely, advancing shock front, expanding magnetic arch and ejected plasma blob serves as the piston-driver behind the interplanetary shocks. The existing criteria for proton flare prediction have been summarized and two new criteria have been proposed. (Auth.)

  5. Solar radio proxies for improved satellite orbit prediction

    Science.gov (United States)

    Yaya, Philippe; Hecker, Louis; Dudok de Wit, Thierry; Fèvre, Clémence Le; Bruinsma, Sean

    2017-12-01

    Specification and forecasting of solar drivers to thermosphere density models is critical for satellite orbit prediction and debris avoidance. Satellite operators routinely forecast orbits up to 30 days into the future. This requires forecasts of the drivers to these orbit prediction models such as the solar Extreme-UV (EUV) flux and geomagnetic activity. Most density models use the 10.7 cm radio flux (F10.7 index) as a proxy for solar EUV. However, daily measurements at other centimetric wavelengths have also been performed by the Nobeyama Radio Observatory (Japan) since the 1950's, thereby offering prospects for improving orbit modeling. Here we present a pre-operational service at the Collecte Localisation Satellites company that collects these different observations in one single homogeneous dataset and provides a 30 days forecast on a daily basis. Interpolation and preprocessing algorithms were developed to fill in missing data and remove anomalous values. We compared various empirical time series prediction techniques and selected a multi-wavelength non-recursive analogue neural network. The prediction of the 30 cm flux, and to a lesser extent that of the 10.7 cm flux, performs better than NOAA's present prediction of the 10.7 cm flux, especially during periods of high solar activity. In addition, we find that the DTM-2013 density model (Drag Temperature Model) performs better with (past and predicted) values of the 30 cm radio flux than with the 10.7 flux.

  6. Solar radio proxies for improved satellite orbit prediction

    Directory of Open Access Journals (Sweden)

    Yaya Philippe

    2017-01-01

    Full Text Available Specification and forecasting of solar drivers to thermosphere density models is critical for satellite orbit prediction and debris avoidance. Satellite operators routinely forecast orbits up to 30 days into the future. This requires forecasts of the drivers to these orbit prediction models such as the solar Extreme-UV (EUV flux and geomagnetic activity. Most density models use the 10.7 cm radio flux (F10.7 index as a proxy for solar EUV. However, daily measurements at other centimetric wavelengths have also been performed by the Nobeyama Radio Observatory (Japan since the 1950's, thereby offering prospects for improving orbit modeling. Here we present a pre-operational service at the Collecte Localisation Satellites company that collects these different observations in one single homogeneous dataset and provides a 30 days forecast on a daily basis. Interpolation and preprocessing algorithms were developed to fill in missing data and remove anomalous values. We compared various empirical time series prediction techniques and selected a multi-wavelength non-recursive analogue neural network. The prediction of the 30 cm flux, and to a lesser extent that of the 10.7 cm flux, performs better than NOAA's present prediction of the 10.7 cm flux, especially during periods of high solar activity. In addition, we find that the DTM-2013 density model (Drag Temperature Model performs better with (past and predicted values of the 30 cm radio flux than with the 10.7 flux.

  7. Mean and extreme radio properties of quasars and the origin of radio emission

    Energy Technology Data Exchange (ETDEWEB)

    Kratzer, Rachael M.; Richards, Gordon T. [Department of Physics, Drexel University, Philadelphia, PA (United States)

    2015-02-01

    We investigate the evolution of both the radio-loud fraction (RLF) and (using stacking analysis) the mean radio loudness of quasars. We consider how these properties evolve as a function of redshift and luminosity, black hole (BH) mass and accretion rate, and parameters related to the dominance of a wind in the broad emission-line region. We match the FIRST source catalog to samples of luminous quasars (both spectroscopic and photometric), primarily from the Sloan Digital Sky Survey. After accounting for catastrophic errors in BH mass estimates at high redshift, we find that both the RLF and the mean radio luminosity increase for increasing BH mass and decreasing accretion rate. Similarly, both the RLF and mean radio loudness increase for quasars that are argued to have weaker radiation line driven wind components of the broad emission-line region. In agreement with past work, we find that the RLF increases with increasing optical/UV luminosity and decreasing redshift, while the mean radio loudness evolves in the exact opposite manner. This difference in behavior between the mean radio loudness and the RLF in L−z may indicate selection effects that bias our understanding of the evolution of the RLF; deeper surveys in the optical and radio are needed to resolve this discrepancy. Finally, we argue that radio-loud (RL) and radio-quiet (RQ) quasars may be parallel sequences, but where only RQ quasars at one extreme of the distribution are likely to become RL, possibly through slight differences in spin and/or merger history.

  8. Fast Radio Bursts’ Emission Mechanism: Implication from Localization

    Energy Technology Data Exchange (ETDEWEB)

    Lyutikov, Maxim [Department of Physics and Astronomy, Purdue University, 525 Northwestern Avenue, West Lafayette, IN 47907-2036 (United States)

    2017-03-20

    We argue that the localization of the repeating fast radio bursts (FRBs) at ∼1 Gpc excludes a rotationally powered type of radio emission (e.g., analogs of Crab’s giant pulses coming from very young energetic pulsars) as the origin of FRBs.

  9. Fast Radio Bursts’ Emission Mechanism: Implication from Localization

    International Nuclear Information System (INIS)

    Lyutikov, Maxim

    2017-01-01

    We argue that the localization of the repeating fast radio bursts (FRBs) at ∼1 Gpc excludes a rotationally powered type of radio emission (e.g., analogs of Crab’s giant pulses coming from very young energetic pulsars) as the origin of FRBs.

  10. On the relationship between optical and radio emission from active galaxy nuclei

    International Nuclear Information System (INIS)

    Zentsova, A.S.; Fedorenko, V.N.

    1991-01-01

    Model in which the radio emission of nuclei of Seyfert galaxies emerges in the regions of formation of their narrow emission lines, R∼100 pc is developed. Gaseous clouds, producing this emission, are moving in the surrounding hot gas and induce shock waves. The shock waves accelerate electrons, which produce radio emission via synchrotron mechanism. The model explains an observational correlation between the radio and optical properties of Seyfert galaxies and makes some predictions on the parameters of the region R∼100 pc

  11. Kinetic Simulations of Type II Radio Burst Emission Processes

    Science.gov (United States)

    Ganse, U.; Spanier, F. A.; Vainio, R. O.

    2011-12-01

    The fundamental emission process of Type II Radio Bursts has been under discussion for many decades. While analytic deliberations point to three wave interaction as the source for fundamental and harmonic radio emissions, sparse in-situ observational data and high computational demands for kinetic simulations have not allowed for a definite conclusion to be reached. A popular model puts the radio emission into the foreshock region of a coronal mass ejection's shock front, where shock drift acceleration can create eletrcon beam populations in the otherwise quiescent foreshock plasma. Beam-driven instabilities are then assumed to create waves, forming the starting point of three wave interaction processes. Using our kinetic particle-in-cell code, we have studied a number of emission scenarios based on electron beam populations in a CME foreshock, with focus on wave-interaction microphysics on kinetic scales. The self-consistent, fully kinetic simulations with completely physical mass-ratio show fundamental and harmonic emission of transverse electromagnetic waves and allow for detailled statistical analysis of all contributing wavemodes and their couplings.

  12. Solar radio bursts and their relation of coronal magnetic structures

    International Nuclear Information System (INIS)

    Kattenberg, A.

    1981-01-01

    Following a general introduction, chapters II and III describe a model for coronal flux tubes. The model tube is a cylindrically symmetric localized force free current, that is embedded in a potential field. In both chapters the growth rates and sizes of the kink mode instability are calculated by solving the linearized equation of motion. In chapters IV and V, observations of solar Type-I radio bursts are presented and analysed. The observations were gathered with the 60-channel radio spectrograph in Dwingeloo. Chapters VI, VII, VIII, IX and X are concerned with observations of solar microwave bursts. The observations, with high time resolution (0.1 s) and high one-dimensional angular resolution (max. 4'') were made with the Westerbork Synthesis Radio Telescope. (Auth.)

  13. Statistical survey of type III radio bursts at long wavelengths observed by the Solar TErrestrial RElations Observatory (STEREO)/Waves instruments: radio flux density variations with frequency

    Czech Academy of Sciences Publication Activity Database

    Krupař, Vratislav; Maksimovic, M.; Santolík, Ondřej; Kontar, E. P.; Cecconi, B.; Hoang, S.; Krupařová, Oksana; Souček, Jan; Reid, H.; Zaslavsky, A.

    2014-01-01

    Roč. 289, č. 8 (2014), s. 3121-3135 ISSN 0038-0938 R&D Projects: GA ČR(CZ) GAP209/12/2394; GA ČR GP13-37174P; GA ČR GAP205/10/2279 Institutional support: RVO:68378289 Keywords : solar radio emissions * plasma radiation Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.039, year: 2014 http://link.springer.com/article/10.1007%2Fs11207-014-0522-x

  14. Statistical survey of type III radio bursts at long wavelengths observed by the Solar TErrestrial RElations Observatory (STEREO)/Waves instruments: goniopolarimetric properties and radio source locations

    Czech Academy of Sciences Publication Activity Database

    Krupař, Vratislav; Maksimovic, M.; Santolík, Ondřej; Cecconi, B.; Krupařová, Oksana

    2014-01-01

    Roč. 289, č. 12 (2014), s. 4633-4652 ISSN 0038-0938 R&D Projects: GA ČR GP13-37174P; GA ČR GAP205/10/2279; GA ČR(CZ) GAP209/12/2394 Institutional support: RVO:68378289 Keywords : plasma radiation * solar radio emissions Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.039, year: 2014 http://link.springer.com/article/10.1007%2Fs11207-014-0601-z

  15. Unification in the low radio luminosity regime: evidence from optical line emission

    Science.gov (United States)

    Marchã, M. J. M.; Browne, I. W. A.; Jethava, N.; Antón, S.

    2005-08-01

    We address the question of whether or not the properties of all low-luminosity flat spectrum radio sources, not just the obvious BL Lac objects, are consistent with them being the relativistically beamed counterparts of the low radio luminosity radio galaxies (the Fanaroff-Riley type 1, FR I). We have accumulated data on a well-defined sample of low redshift, core-dominated, radio sources all of which have one-sided core-jet structures seen with very long baseline interferometry, just like most BL Lac objects. We first compare the emission-line luminosities of the sample of core-dominated radio sources with a matched sample of FR I radio galaxies. The emission lines in the core-dominated objects are on average significantly more luminous than those in the comparison sample, inconsistent with the simplest unified models in which there is no orientation dependence of the line emission. We then compare the properties of our core-dominated sample with those of a sample of radio-emitting UGC galaxies selected without bias to core strength. The core-dominated objects fit well on the UGC correlation between line emission and radio core strength found by Verdoes Kleijn et al. The results are not consistent with all the objects participating in a simple unified model in which the observed line emission is orientation independent, though they could fit a single, unified model provided that some FR I radio galaxies have emission line regions that become more visible when viewed along the jet axis. However, they are equally consistent with a scenario in which, for the majority of objects, beaming has minimal effect on the observed core luminosities of a large fraction of the FR I population and that intrinsically stronger cores simply give rise to stronger emission lines. We conclude that FR I unification is much more complex than usually portrayed, and models combining beaming with an intrinsic relationship between core and emission line strengths need to be explored.

  16. Evidence for four- and three-wave interactions in solar type III radio emissions

    Directory of Open Access Journals (Sweden)

    G. Thejappa

    2013-08-01

    Full Text Available The high time resolution observations obtained by the STEREO/WAVES experiment show that in the source regions of solar type III radio bursts, Langmuir waves often occur as intense localized wave packets with short durations of only few ms. One of these wave packets shows that it is a three-dimensional field structure with WLneTe ~ 10−3, where WL is the peak energy density, and ne and Te are the electron density and temperature, respectively. For this wave packet, the conditions of the oscillating two-stream instability (OTSI and supersonic collapse are satisfied within the error range of determination of main parameters. The density cavity, observed during this wave packet indicates that its depth, width and temporal coincidence are consistent with those of a caviton, generated by the ponderomotive force of the collapsing wave packet. The spectrum of each of the parallel and perpendicular components of the wave packet contains a primary peak at fpe, two secondary peaks at fpe ± fS and a low-frequency enhancement below fS, which, as indicated by the frequency and wave number resonance conditions, and the fast Fourier transform (FFT-based tricoherence spectral peak at (fpe, fpe, fpe + fS, fpe − fS, are coupled to each other by the OTSI type of four-wave interaction (fpe is the local electron plasma frequency and fS is the frequency of ion sound waves. In addition to the primary peak at fpe, each of these spectra also contains a peak at 2fpe, which as indicated by the frequency and wave number resonance conditions, and the wavelet-based bicoherence spectral peak at (fpe, fpe, appears to correspond to the second harmonic electromagnetic waves generated as a result of coalescence of oppositely propagating sidebands excited by the OTSI. Thus, these observations for the first time provide combined evidence that (1 the OTSI and related strong turbulence processes play a significant role in the stabilization of the electron beam, (2 the coalescence

  17. GAMMA-RAY BURST REVERSE SHOCK EMISSION IN EARLY RADIO AFTERGLOWS

    Energy Technology Data Exchange (ETDEWEB)

    Resmi, Lekshmi [Indian Institute of Space Science and Technology, Trivandrum (India); Zhang, Bing, E-mail: l.resmi@iist.ac.in [Department of Physics and Astronomy, University of Nevada, Las Vegas (United States)

    2016-07-01

    Reverse shock (RS) emission from gamma-ray bursts is an important tool in investigating the nature of the ejecta from the central engine. If the magnetization of the ejecta is not high enough to suppress the RS, a strong RS emission component, usually peaking in the optical/IR band early on, would provide an important contribution to early afterglow light curve. In the radio band, synchrotron self-absorption may suppress early RS emission and also delay the RS peak time. In this paper, we calculate the self-absorbed RS emission in the radio band under different dynamical conditions. In particular, we stress that the RS radio emission is subject to self-absorption in both RSs and forward shocks (FSs). We calculate the ratio between the RS to FS flux at the RS peak time for different frequencies, which is a measure of the detectability of the RS emission component. We then constrain the range of physical parameters for a detectable RS, in particular the role of magnetization. We notice that unlike optical RS emission which is enhanced by moderate magnetization, moderately magnetized ejecta do not necessarily produce a brighter radio RS due to the self-absorption effect. For typical parameters, the RS emission component would not be detectable below 1 GHz unless the medium density is very low (e.g., n < 10{sup −3} cm{sup −3} for the interstellar medium and A {sub *} < 5 × 10{sup −4} for wind). These predictions can be tested using the afterglow observations from current and upcoming radio facilities such as the Karl G. Jansky Very Large Array, the Low-Frequency Array, the Five Hundred Meter Aperture Spherical Telescope, and the Square Kilometer Array.

  18. Radio search for pulsed emission from X-ray pulsars

    Energy Technology Data Exchange (ETDEWEB)

    delli Santi, F S; Delpino, F [Bologna Univ. (Italy). Ist. di Astronomia; Inzani, P; Sironi, G [Consiglio Nazionale delle Ricerche, Milan (Italy). Lab. di Fisica Cosmica e Tecnologie Relative; Mandolesi, N; Morigi, G [Consiglio Nazionale delle Ricerche, Bologna (Italy). Lab. TESRE

    1981-05-01

    An experiment has been performed at 325 MHz, with a 10 m tracking dish, for the search of pulsed radio emission associated with X-ray pulsars. No evidence of radio pulses has been found in the four sources investigated, although the radio pulsar PSR 0329 + 54, used a testing object, has been detected successfully.

  19. STEREO-Wind radio positioning of an unusually slow drifting event

    Czech Academy of Sciences Publication Activity Database

    Martínez-Oliveros, J. C.; Raftery, C.; Bain, H.; Liu, Y.; Pulupa, M.; Saint-Hilaire, P.; Higgins, P.; Krupař, Vratislav; Krucker, S.; Bale, S. D.

    2015-01-01

    Roč. 290, č. 3 (2015), s. 891-901 ISSN 0038-0938 R&D Projects: GA ČR GAP205/10/2279 Institutional support: RVO:68378289 Keywords : solar radio emission * solar radio bursts, type II Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.862, year: 2015 http://link.springer.com/article/10.1007/s11207-014-0638-z

  20. Observation of quasi-periodic solar radio bursts associated with propagating fast-mode waves

    Science.gov (United States)

    Goddard, C. R.; Nisticò, G.; Nakariakov, V. M.; Zimovets, I. V.; White, S. M.

    2016-10-01

    Aims: Radio emission observations from the Learmonth and Bruny Island radio spectrographs are analysed to determine the nature of a train of discrete, periodic radio "sparks" (finite-bandwidth, short-duration isolated radio features) which precede a type II burst. We analyse extreme ultraviolet (EUV) imaging from SDO/AIA at multiple wavelengths and identify a series of quasi-periodic rapidly-propagating enhancements, which we interpret as a fast wave train, and link these to the detected radio features. Methods: The speeds and positions of the periodic rapidly propagating fast waves and the coronal mass ejection (CME) were recorded using running-difference images and time-distance analysis. From the frequency of the radio sparks the local electron density at the emission location was estimated for each. Using an empirical model for the scaling of density in the corona, the calculated electron density was used to obtain the height above the surface at which the emission occurs, and the propagation velocity of the emission location. Results: The period of the radio sparks, δtr = 1.78 ± 0.04 min, matches the period of the fast wave train observed at 171 Å, δtEUV = 1.7 ± 0.2 min. The inferred speed of the emission location of the radio sparks, 630 km s-1, is comparable to the measured speed of the CME leading edge, 500 km s-1, and the speeds derived from the drifting of the type II lanes. The calculated height of the radio emission (obtained from the density) matches the observed location of the CME leading edge. From the above evidence we propose that the radio sparks are caused by the quasi-periodic fast waves, and the emission is generated as they catch up and interact with the leading edge of the CME. The movie associated to Fig. 2 is available at http://www.aanda.org

  1. QUASI-QUIESCENT RADIO EMISSION FROM THE FIRST RADIO-EMITTING T DWARF

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Peter K. G.; Berger, Edo; Zauderer, B. Ashley, E-mail: pwilliams@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2013-04-20

    Radio detections of ultracool dwarfs provide insight into their magnetic fields and the dynamos that maintain them, especially at the very bottom of the main sequence, where other activity indicators dramatically weaken. Until recently, radio emission was only detected in the M and L dwarf regimes, but this has changed with the Arecibo detection of rapid polarized flares from the T6.5 dwarf 2MASS J10475385+2124234. Here, we report the detection of quasi-quiescent radio emission from this source at 5.8 GHz using the Karl G. Jansky Very Large Array. The spectral luminosity is L{sub {nu}} = (2.2 {+-} 0.7) Multiplication-Sign 10{sup 12} erg s{sup -1} Hz{sup -1}, a factor of {approx}100 times fainter than the Arecibo flares. Our detection is the lowest luminosity yet achieved for an ultracool dwarf. Although the emission is fully consistent with being steady, unpolarized, and broad band, we find tantalizing hints for variability. We exclude the presence of short-duration flares as seen by Arecibo, although this is not unexpected given estimates of the duty cycle. Follow-up observations of this object will offer the potential to constrain its rotation period, electron density, and the strength and configuration of the magnetic field. Equally important, follow-up observations will address the question of whether the electron cyclotron maser instability, which is thought to produce the flares seen by Arecibo, also operates in the very different parameter regime of the emission we detect, or whether instead this ultracool dwarf exhibits both maser and gyrosynchrotron radiation, potentially originating from substantially different locations.

  2. Solar cooker effect test and temperature field simulation of radio telescope subreflector

    International Nuclear Information System (INIS)

    Chen, Deshen; Wang, Huajie; Qian, Hongliang; Zhang, Gang; Shen, Shizhao

    2016-01-01

    Highlights: • Solar cooker effect test of a telescope subreflector is conducted for the first time. • The cause and temperature distribution regularities are analyzed contrastively. • Simulation methods are proposed using light beam segmentation and tracking methods. • The validity of simulation methods is evaluated using the test results. - Abstract: The solar cooker effect can cause a local high temperature of the subreflector and can directly affect the working performance of the radio telescope. To study the daily temperature field and solar cooker effect of a subreflector, experimental studies are carried out with a 3-m-diameter radio telescope model for the first time. Initially, the solar temperature distribution rules, especially the solar cooker effect, are summarized according to the field test results under the most unfavorable conditions. Then, a numerical simulation for the solar temperature field of the subreflector is studied by light beam segmentation and tracking methods. Finally, the validity of the simulation methods is evaluated using the test results. The experimental studies prove that the solar cooker effect really exists and should not be overlooked. In addition, simulation methods for the subreflector temperature field proposed in this paper are effective. The research methods and conclusions can provide valuable references for thermal design, monitoring and control of similar high-precision radio telescopes.

  3. Coronal mass ejection kinematics deduced from white light (Solar Mass Ejection Imager) and radio (Wind/WAVES) observations

    Science.gov (United States)

    Reiner, M. J.; Jackson, B. V.; Webb, D. F.; Mizuno, D. R.; Kaiser, M. L.; Bougeret, J.-L.

    2005-09-01

    White-light and radio observations are combined to deduce the coronal and interplanetary kinematics of a fast coronal mass ejection (CME) that was ejected from the Sun at about 1700 UT on 2 November 2003. The CME, which was associated with an X8.3 solar flare from W56°, was observed by the Mauna Loa and Solar and Heliospheric Observatory (SOHO) Large-Angle Spectrometric Coronograph (LASCO) coronagraphs to 14 R⊙. The measured plane-of-sky speed of the LASCO CME was 2600 km s-1. To deduce the kinematics of this CME, we use the plane-of-sky white light observations from both the Solar Mass Ejection Imager (SMEI) all-sky camera on board the Coriolis spacecraft and the SOHO/LASCO coronagraph, as well as the frequency drift rate of the low-frequency radio data and the results of the radio direction-finding analysis from the WAVES experiment on the Wind spacecraft. In agreement with the in situ observations for this event, we find that both the white light and radio observations indicate that the CME must have decelerated significantly beginning near the Sun and continuing well into the interplanetary medium. More specifically, by requiring self-consistency of all the available remote and in situ data, together with a simple, but not unreasonable, assumption about the general characteristic of the CME deceleration, we were able to deduce the radial speed and distance time profiles for this CME as it propagated from the Sun to 1 AU. The technique presented here, which is applicable to mutual SMEI/WAVES CME events, is expected to provide a more complete description and better quantitative understanding of how CMEs propagate through interplanetary space, as well as how the radio emissions, generated by propagating CME/shocks, relate to the shock and CME. This understanding can potentially lead to more accurate predictions for the onset times of space weather events, such as those that were observed during this unique period of intense solar activity.

  4. Solar-geophysical data number 420, August 1979. Part II (Comprehensive reports). Data for February 1979, January 1979

    International Nuclear Information System (INIS)

    Coffey, H.E.

    1979-08-01

    This comprehensive report provides data for February 1979 on active regions, synoptic solar maps, solar radio emission, energetic solar particles and plasma, and solar x-ray radiation. It also provides synoptic charts and abbreviated calendar record for January 1979. The miscellaneous data include solar radio emission, cosmic rays-April and May 1979, Solar flares-January 1979, and regional flare index - December 1978

  5. Solar-geophysical data number 417, May 1979. Part II. Data for November 1978--October 1978 and miscellanea

    International Nuclear Information System (INIS)

    Coffey, H.E.

    1979-05-01

    This comprehensive report provides data for November 1978 on active regions, synoptic solar maps, solar flares, solar radio emission, energetic solar particles and plasma, and solar x-ray radiation. It also provides synoptic charts, abbreviated calendar record and regional flare index for October 1978. The miscellaneous data includes solar radio emission for January and February 1979 and cosmic rays for February 1979

  6. The statistics of radio emission from quasars

    International Nuclear Information System (INIS)

    Peacock, J.A.; Miller, L.; Longair, M.S.; Edinburgh Univ.

    1986-01-01

    The radio properties of quasars have traditionally been discussed in terms of the radio-to-optical flux-density ratio R, implying a correlation between emission in these wavebands. It is here shown that, for bright quasars, this apparent correlation is largely due to an abrupt change in the radio properties of the quasar population near absolute magnitude Msub(B)=-24. It is suggested that this change in due to the existence of two classes of quasar with differing host galaxies: a proportion of quasars brighter than Msub(B)approx.=-24 lie in elliptical galaxies and thus generate powerful radio sources, while elliptical galaxies with weaker nuclear quasar components are classified as N-galaxies rather than quasars; quasars fainter than Msub(B)approx.=-24 lie in spiral galaxies and thus are high-luminosity analogues of radio-quiet Seyfert galaxies. (author)

  7. X-ray Emission from Solar Flares

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Solar flares; X-ray detectors; X-ray line emission and continuum; break energy; microflares. Abstract. Solar X-ray Spectrometer (SOXS), the first space-borne solar astronomy experiment of India was designed to improve our current understanding of X-ray emission from the Sun in general and solar flares in ...

  8. Coherent emission mechanisms in astrophysical plasmas

    Science.gov (United States)

    Melrose, D. B.

    2017-12-01

    Three known examples of coherent emission in radio astronomical sources are reviewed: plasma emission, electron cyclotron maser emission (ECME) and pulsar radio emission. Plasma emission is a multi-stage mechanism with the first stage being generation of Langmuir waves through a streaming instability, and subsequent stages involving partial conversion of the Langmuir turbulence into escaping radiation at the fundamental (F) and second harmonic (H) of the plasma frequency. The early development and subsequent refinements of the theory, motivated by application to solar radio bursts, are reviewed. The driver of the instability is faster electrons outpacing slower electrons, resulting in a positive gradient ({d}f(v_allel )/{d}v_allel >0) at the front of the beam. Despite many successes of the theory, there is no widely accepted explanation for type I bursts and various radio continua. The earliest models for ECME were purely theoretical, and the theory was later adapted and applied to Jupiter (DAM), the Earth (AKR), solar spike bursts and flare stars. ECME strongly favors the x mode, whereas plasma emission favors the o mode. Two drivers for ECME are a ring feature (implying {d}f(v)/{d}v>0) and a loss-cone feature. Loss-cone-driven ECME was initially favored for all applications. The now favored driver for AKR is the ring-feature in a horseshoe distribution, which results from acceleration by a parallel electric on converging magnetic field lines. The driver in DAM and solar and stellar applications is uncertain. The pulsar radio emission mechanism remains an enigma. Ingredients needed in discussing possible mechanisms are reviewed: general properties of pulsars, pulsar electrodynamics, the properties of pulsar plasma and wave dispersion in such plasma. Four specific emission mechanisms (curvature emission, linear acceleration emission, relativistic plasma emission and anomalous Doppler emission) are discussed and it is argued that all encounter difficulties. Coherent

  9. The air shower maximum probed by Cherenkov effects from radio emission

    NARCIS (Netherlands)

    de Vries, Krijn D.; Scholten, Olaf; Werner, Klaus

    Radio detection of cosmic-ray-induced air showers has come to a flight the last decade. Along with the experimental efforts, several theoretical models were developed. The main radio-emission mechanisms are established to be the geomagnetic emission due to deflection of electrons and positrons in

  10. Resonators for magnetohydrodynamic waves in the solar corona: radioemission modulation effect

    International Nuclear Information System (INIS)

    Zajtsev, V.V.; Stepanov, A.V.

    1982-01-01

    Data on type 2 solar radio bursts are analyzed in the framework of a model of radio emission production by shock waves. Type 2 solar radio bursts data are shown to suggest the existence of Alfven velocity minimum at a height of the one solar radius in the corona. The domain of a low Alfven velocity is a resonator for the fast magnetosonic waves. The eigenmodes of the resonator are determined. The main mode period is about a few minutes. Fast modes in the resonator can be amplified by energetic ion beams at the Cherenkov resonance. The modulation of meter solar radio emission with a period of about a few minutes can be explained by radiowave propagation through the MHD-resonator

  11. Radio emission region exposed: courtesy of the double pulsar

    Science.gov (United States)

    Lomiashvili, David; Lyutikov, Maxim

    2014-06-01

    The double pulsar system PSR J0737-3039A/B offers exceptional possibilities for detailed probes of the structure of the pulsar magnetosphere, pulsar winds and relativistic reconnection. We numerically model the distortions of the magnetosphere of pulsar B by the magnetized wind from pulsar A, including effects of magnetic reconnection and of the geodetic precession. Geodetic precession leads to secular evolution of the geometric parameters and effectively allows a 3D view of the magnetosphere. Using the two complimentary models of pulsar B's magnetosphere, adapted from the Earth's magnetosphere models by Tsyganenko (ideal pressure confinement) and Dungey (highly resistive limit), we determine the precise location and shape of the coherent radio emission generation region within pulsar B's magnetosphere. We successfully reproduce orbital variations and secular evolution of the profile of B, as well as subpulse drift (due to reconnection between the magnetospheric and wind magnetic fields), and determine the location and the shape of the emission region. The emission region is located at about 3750 stellar radii and has a horseshoe-like shape, which is centred on the polar magnetic field lines. The best-fitting angular parameters of the emission region indicate that radio emission is generated on the field lines which, according to the theoretical models, originate close to the poles and carry the maximum current. We resolved all but one degeneracy in pulsar B's geometry. When considered together, the results of the two models converge and can explain why the modulation of B's radio emission at A's period is observed only within a certain orbital phase region. Our results imply that the wind of pulsar A has a striped structure only 1000 light-cylinder radii away. We discuss the implications of these results for pulsar magnetospheric models, mechanisms of coherent radio emission generation and reconnection rates in relativistic plasma.

  12. Giant pulses of pulsar radio emission

    OpenAIRE

    Kuzmin, A. D.

    2007-01-01

    Review report of giant pulses of pulsar radio emission, based on our detections of four new pulsars with giant pulses, and the comparative analysis of the previously known pulsars with giant pulses, including the Crab pulsar and millisecond pulsar PSR B1937+21.

  13. Observation of solar wind with radio-star scintillation

    International Nuclear Information System (INIS)

    Watanabe, Takashi

    1974-01-01

    Large solar flares occurred in groups in early August 1972, and many interesting phenomena were observed. The solar wind condition during this period, obtained by scintillation observation, is reviewed. The velocity of solar wind has been determined from the observation of interplanetary space scintillation at Toyokawa, Fujigamine and Sugadaira. Four to ten radio wave sources were observed for ten minutes at each southing every day. Strong earth magnetic storm and the Forbush decrease of cosmic ray were observed during the period from August 3rd to 7th. Pioneer 9 observed a solar wind having the maximum velocity as high as 1,100 km/sec, and HEOS-II observed a solar wind having the velocity close to 2,000 km/sec. On the other hand, according to the scintillation of 3C-48 and 3C-144, the velocity of solar wind passing in the interplanetary space on the westside of the earth was only 300 to 400 km/sec. Therefore it is considered that the condition of solar wind on the east side of the earth differs from that on the west side of the earth. Pioneer 9 observed the pass of a shock wave on August 9th. With all radio wave sources, high velocity solar wind was observed and Pioneer 6 positioned on the west side of the earth also observed it. The thickness of this shock wave is at least 0.3 AU. Discussion is made on the cause for the difference between the asymmetric shock wave in the direction of south-west and symmetrical shock wave. The former may be blast wave, and the latter may be piston driven shock wave and the like. (Iwakiri, K.)

  14. Characteristics of shocks in the solar corona, as inferred from radio, optical, and theoretical investigations

    Science.gov (United States)

    Maxwell, A.; Dryer, M.

    1982-01-01

    Solar radio bursts of spectral type II provide one of the chief diagnostics for the propagation of shocks through the solar corona. Radio data on the shocks are compared with computer models for propagation of fast-mode MHD shocks through the solar corona. Data on coronal shocks and high-velocity ejecta from solar flares are then discussed in terms of a general model consisting of three main velocity regimes.

  15. Radio-continuum emission from quasar host galaxies

    International Nuclear Information System (INIS)

    Condon, J. J.; Gower, A. C.; Hutchings, J. B.; Victoria Univ., Canada; Dominion Astrophysical Observatory, Victoria)

    1987-01-01

    Seven low-redshift quasars that are likely to be in spiral galaxies have been observed in a search for radio-continuum emission from the host galaxies of quasars. The properties of the individual quasars are listed, and 1.49 GHz contour maps of the seven quasar fields are presented. Map parameters and radio source parameters are given along with optical images of three of the objects. The results indicate that these quasars probably do reside in spiral galaxies. The radio luminosities, sizes, orientations, and u values all indicate that relativistic beaming alone cannot be used to explain the differences between the present sources and the far stronger radio sources seen in blazars or larger optically selected quasar samples. However, an apparent correlation between the radio luminosity and the ratio of the optical nuclear to host-galaxy luminosity is consistent with some beaming of nuclear radiation. 26 references

  16. MULTIWAVELENGTH OBSERVATIONS OF RADIO-QUIET QUASARS WITH WEAK EMISSION LINES

    International Nuclear Information System (INIS)

    Plotkin, Richard M.; Anderson, Scott F.; MacLeod, Chelsea L.; Brandt, W. N.; Schneider, Donald P.; Diamond-Stanic, Aleksandar M.; Fan Xiaohui; Shemmer, Ohad

    2010-01-01

    We present radio and X-ray observations, as well as optical light curves, for a subset of 26 BL Lac candidates from the Sloan Digital Sky Survey (SDSS) lacking strong radio emission and with z < 2.2. Half of these 26 objects are shown to be stars, galaxies, or absorbed quasars. We conclude that the other 13 objects are active galactic nuclei (AGNs) with abnormally weak emission features; 10 of those 13 are definitively radio quiet, and, for those with available optical light curves, their level of optical flux variability is consistent with radio-quiet quasars. We cannot exclude the possibility that some of these 13 AGNs lie on the extremely radio-faint tail of the BL Lac distribution, but our study generally supports the notion that all BL Lac objects are radio-loud. These radio-quiet AGNs appear to have intrinsically weak or absent broad emission line regions (BELRs), and, based on their X-ray properties, we argue that some are low-redshift analogs to weak line quasars (WLQs). SDSS BL Lac searches are so far the only systematic surveys of the SDSS database capable of recovering such exotic low-redshift WLQs. There are 71 more z < 2.2 radio-quiet BL Lac candidates already identified in the SDSS, but not considered here, and many of those might be best unified with WLQs as well. Future studies combining low- and high-redshift WLQ samples will yield new insight on our understanding of the structure and formation of AGN BELRs.

  17. Gradient pattern analysis of short solar radio bursts

    Czech Academy of Sciences Publication Activity Database

    Rosa, R. R.; Karlický, Marian; Veronese, T.B.; Vijaykumar, N. L.; Sawant, H. S.; Borgazzi, A. I.; Dantas, M. S.; Barbosa, E. M. B.; Sych, R.A.; Mendes, O.

    2008-01-01

    Roč. 42, č. 5 (2008), s. 844-851 ISSN 0273-1177 Institutional research plan: CEZ:AV0Z10030501 Keywords : solar radio bursts * stochastic processes * wavelets Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 0.860, year: 2008

  18. A giant radio flare from Cygnus X-3 with associated γ-ray emission

    Science.gov (United States)

    Corbel, S.; Dubus, G.; Tomsick, J. A.; Szostek, A.; Corbet, R. H. D.; Miller-Jones, J. C. A.; Richards, J. L.; Pooley, G.; Trushkin, S.; Dubois, R.; Hill, A. B.; Kerr, M.; Max-Moerbeck, W.; Readhead, A. C. S.; Bodaghee, A.; Tudose, V.; Parent, D.; Wilms, J.; Pottschmidt, K.

    2012-04-01

    With frequent flaring activity of its relativistic jets, Cygnus X-3 (Cyg X-3) is one of the most active microquasars and is the only Galactic black hole candidate with confirmed high-energy γ-ray emission, thanks to detections by Fermi Large Area Telescope (Fermi/LAT) and AGILE. In 2011, Cyg X-3 was observed to transit to a soft X-ray state, which is known to be associated with high-energy γ-ray emission. We present the results of a multiwavelength campaign covering a quenched state, when radio emission from Cyg X-3 is at its weakest and the X-ray spectrum is very soft. A giant (˜20 Jy) optically thin radio flare marks the end of the quenched state, accompanied by rising non-thermal hard X-rays. Fermi/LAT observations (E≥ 100 MeV) reveal renewed γ-ray activity associated with this giant radio flare, suggesting a common origin for all non-thermal components. In addition, current observations unambiguously show that the γ-ray emission is not exclusively related to the rare giant radio flares. A three-week period of γ-ray emission is also detected when Cyg X-3 was weakly flaring in radio, right before transition to the radio quenched state. No γ-rays are observed during the ˜1-month long quenched state, when the radio flux is weakest. Our results suggest transitions into and out of the ultrasoft X-ray (radio-quenched) state trigger γ-ray emission, implying a connection to the accretion process, and also that the γ-ray activity is related to the level of radio flux (and possibly shock formation), strengthening the connection to the relativistic jets.

  19. Fast Radio Bursts with Extended Gamma-Ray Emission?

    International Nuclear Information System (INIS)

    Murase, Kohta; Mészáros, Peter; Fox, Derek B.

    2017-01-01

    We consider some general implications of bright γ -ray counterparts to fast radio bursts (FRBs). We show that even if these manifest in only a fraction of FRBs, γ -ray detections with current satellites (including Swift ) can provide stringent constraints on cosmological FRB models. If the energy is drawn from the magnetic energy of a compact object such as a magnetized neutron star, the sources should be nearby and be very rare. If the intergalactic medium is responsible for the observed dispersion measure, the required γ -ray energy is comparable to that of the early afterglow or extended emission of short γ -ray bursts. While this can be reconciled with the rotation energy of compact objects, as expected in many merger scenarios, the prompt outflow that yields the γ -rays is too dense for radio waves to escape. Highly relativistic winds launched in a precursor phase, and forming a wind bubble, may avoid the scattering and absorption limits and could yield FRB emission. Largely independent of source models, we show that detectable radio afterglow emission from γ -ray bright FRBs can reasonably be anticipated. Gravitational wave searches can also be expected to provide useful tests.

  20. Propagation of interplanetary shock waves by observations of type II solar radio bursts on IMP-6

    International Nuclear Information System (INIS)

    Chertok, I.M.; Fomichev, V.V.

    1976-01-01

    A new interpretation of the low frequency type II solar radio bursts of 30 June 1971, and 7-8 August 1972 observed with IMP-6 satellite (Malitson, H.H., Fainberg, J. and Stone, R.G., 1973, Astrophys. Lett., vol. 14, 111; Astrophys. J., vol. 183, L35) is suggested. The analysis is carried out for two models of the electron density distribution in the interplanetary medium taking into account that N approximately 3.5 cm -3 at a distance of 1 a.u. It is assumed that the frequency of the radio emission corresponds to the average electron density behind the shock front which exceeds the undisturbed electron density by the factor of 3. The radio data indicate essential deceleration of the shock waves during propagation from the Sun up to 1 a.u. The characteristics of the shock waves obtained from the type II bursts agree with the results of the in situ observations. (author)

  1. The Detectability of Radio Auroral Emission from Proxima b

    Energy Technology Data Exchange (ETDEWEB)

    Burkhart, Blakesley; Loeb, Abraham [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA (United States)

    2017-11-01

    Magnetically active stars possess stellar winds whose interactions with planetary magnetic fields produce radio auroral emission. We examine the detectability of radio auroral emission from Proxima b, the closest known exosolar planet orbiting our nearest neighboring star, Proxima Centauri. Using the radiometric Bode’s law, we estimate the radio flux produced by the interaction of Proxima Centauri’s stellar wind and Proxima b’s magnetosphere for different planetary magnetic field strengths. For plausible planetary masses, Proxima b could produce radio fluxes of 100 mJy or more in a frequency range of 0.02–3 MHz for planetary magnetic field strengths of 0.007–1 G. According to recent MHD models that vary the orbital parameters of the system, this emission is expected to be highly variable. This variability is due to large fluctuations in the size of Proxima b’s magnetosphere as it crosses the equatorial streamer regions of dense stellar wind and high dynamic pressure. Using the MHD model of Garraffo et al. for the variation of the magnetosphere radius during the orbit, we estimate that the observed radio flux can vary nearly by an order of magnitude over the 11.2-day period of Proxima b. The detailed amplitude variation depends on the stellar wind, orbital, and planetary magnetic field parameters. We discuss observing strategies for proposed future space-based observatories to reach frequencies below the ionospheric cutoff (∼10 MHz), which would be required to detect the signal we investigate.

  2. Propagation of energetic electrons in the solar corona observed with LOFAR

    Science.gov (United States)

    Breitling, F.

    2017-06-01

    This work reports about new high-resolution imaging and spectroscopic observations of solar type III radio bursts at low radio frequencies in the range from 30 to 80 MHz. Solar type III radio bursts are understood as result of the beam-plasma interaction of electron beams in the corona. The Sun provides a unique opportunity to study these plasma processes of an active star. Its activity appears in eruptive events like flares, coronal mass ejections and radio bursts which are all accompanied by enhanced radio emission. Therefore solar radio emission carries important information about plasma processes associated with the Sun's activity. Moreover, the Sun's atmosphere is a unique plasma laboratory with plasma processes under conditions not found in terrestrial laboratories. Because of the Sun's proximity to Earth, it can be studied in greater detail than any other star but new knowledge about the Sun can be transfer to them. This "solar stellar connection" is important for the understanding of processes on other stars. The novel radio interferometer LOFAR provides imaging and spectroscopic capabilities to study these processes at low frequencies. Here it was used for solar observations. LOFAR, the characteristics of its solar data and the processing and analysis of the latter with the Solar Imaging Pipeline and Solar Data Center are described. The Solar Imaging Pipeline is the central software that allows using LOFAR for solar observations. So its development was necessary for the analysis of solar LOFAR data and realized here. Moreover a new density model with heat conduction and Alfvén waves was developed that provides the distance of radio bursts to the Sun from dynamic radio spectra. Its application to the dynamic spectrum of a type III burst observed on March 16, 2016 by LOFAR shows a nonuniform radial propagation velocity of the radio emission. The analysis of an imaging observation of type III bursts on June 23, 2012 resolves a burst as bright, compact region

  3. Merger Activity and Radio Emission Within A2061

    Science.gov (United States)

    Bailey, Avery; Sarazin, Craig L.; Clarke, Tracy E.; Chatzikos, Marios; Hogge, Taylor; Wik, Daniel R.; Rudnick, Lawrence; Farnsworth, Damon; Van Weeren, Reinout J.; Brown, Shea

    2015-01-01

    Abell 2061 is a galaxy cluster located in the Corona Borealis Supercluster that boasts radio and X-ray structures indicative of a merger. A2061 is located at a redshift z = .0784, contains two brightest cluster galaxies, and has another cluster (A2067) about 2.5 Mpc to the NE, falling towards it. Within A2061, there exists an elongated structure of soft X-ray emission extending to the NE of cluster's center (referred to as the 'Plume') along with a hard X-ray shock region (the 'Shock') located just NE of the cluster's center. Previous observations in the radio have indicated the presence of a extended, central radio halo/relic accompanying the cluster's main X-ray emission but with slight NE displacement and further NE extension. Also emitting in the radio, to the SW of A2061, is a radio relic. The X-ray structures of A2061 were previously examined in 2009 by a Chandra observation. Here we present the results of an August 2013 XMM-Newton observation of the cluster. This XMM-Newton observation, imaged by three detectors, covers a greater field of view with a longer exposure (48.6 ks) than the previous Chandra observation. We will present images and spectra of various regions of the cluster. In addition, we will discuss the dynamics of the cluster, the nature of the Plume, Shock and other features, and origin of the central diffuse radio halo/relic and SW radio relic. These X-ray observations will also be compared to a numerical simulation from the Simulation Library of Astrophysics cluster Mergers (SLAM).

  4. FIRST SPECTROSCOPIC IMAGING OBSERVATIONS OF THE SUN AT LOW RADIO FREQUENCIES WITH THE MURCHISON WIDEFIELD ARRAY PROTOTYPE

    International Nuclear Information System (INIS)

    Oberoi, Divya; Matthews, Lynn D.; Lonsdale, Colin J.; Benkevitch, Leonid; Cairns, Iver H.; Lobzin, Vasili; Emrich, David; Wayth, Randall B.; Arcus, Wayne; Morgan, Edward H.; Williams, Christopher; Prabu, T.; Vedantham, Harish; Williams, Andrew; White, Stephen M.; Allen, G.; Barnes, David; Bernardi, Gianni; Bowman, Judd D.; Briggs, Frank H.

    2011-01-01

    We present the first spectroscopic images of solar radio transients from the prototype for the Murchison Widefield Array, observed on 2010 March 27. Our observations span the instantaneous frequency band 170.9- 201.6 MHz. Though our observing period is characterized as a period of 'low' to 'medium' activity, one broadband emission feature and numerous short-lived, narrowband, non-thermal emission features are evident. Our data represent a significant advance in low radio frequency solar imaging, enabling us to follow the spatial, spectral, and temporal evolution of events simultaneously and in unprecedented detail. The rich variety of features seen here reaffirms the coronal diagnostic capability of low radio frequency emission and provides an early glimpse of the nature of radio observations that will become available as the next generation of low-frequency radio interferometers come online over the next few years.

  5. Magnetar-like X-Ray Bursts Suppress Pulsar Radio Emission

    Energy Technology Data Exchange (ETDEWEB)

    Archibald, R. F.; Lyutikov, M.; Kaspi, V. M.; Tendulkar, S. P. [Department of Physics and McGill Space Institute, McGill University, 3600 University Street, Montreal, QC H3A 2T8 (Canada); Burgay, M.; Possenti, A. [INAF–Osservatorio Astronomico di Cagliari, Via della Scienza 5, I-09047 Selargius (Italy); Esposito, P.; Rea, N. [Anton Pannekoek Institute for Astronomy, University of Amsterdam, Postbus 94249, 1090 GE Amsterdam (Netherlands); Israel, G. [INAF–Osservatorio Astronomico di Roma, via Frascati 33, I-00040 Monteporzio Catone, Roma (Italy); Kerr, M. [Space Science Division, Naval Research Laboratory, Washington, DC 20375-5352 (United States); Sarkissian, J. [CSIRO Astronomy and Space Science, Parkes Observatory, P.O. Box 276, Parkes, NSW 2870 (Australia); Scholz, P., E-mail: archibald@astro.utoronto.ca [National Research Council of Canada, Herzberg Astronomy and Astrophysics, Dominion Radio Astrophysical Observatory, P.O. Box 248, Penticton, BC V2A 6J9 (Canada)

    2017-11-10

    Rotation-powered pulsars and magnetars are two different observational manifestations of neutron stars: rotation-powered pulsars are rapidly spinning objects that are mostly observed as pulsating radio sources, while magnetars, neutron stars with the highest known magnetic fields, often emit short-duration X-ray bursts. Here, we report simultaneous observations of the high-magnetic-field radio pulsar PSR J1119−6127 at X-ray, with XMM-Newton and NuSTAR , and at radio energies with the Parkes radio telescope, during a period of magnetar-like bursts. The rotationally powered radio emission shuts off coincident with the occurrence of multiple X-ray bursts and recovers on a timescale of ∼70 s. These observations of related radio and X-ray phenomena further solidify the connection between radio pulsars and magnetars and suggest that the pair plasma produced in bursts can disrupt the acceleration mechanism of radio-emitting particles.

  6. Scientists Detect Radio Emission from Rapidly Rotating Cosmic Dust Grains

    Science.gov (United States)

    2001-11-01

    Astronomers have made the first tentative observations of a long-speculated, but never before detected, source of natural radio waves in interstellar space. Data from the National Science Foundation's 140 Foot Radio Telescope at the National Radio Astronomy Observatory in Green Bank, W.Va., show the faint, tell-tale signals of what appear to be dust grains spinning billions of times each second. This discovery eventually could yield a powerful new tool for understanding the interstellar medium - the immense clouds of gas and dust that populate interstellar space. The NRAO 140 Foot Radio Telescope The NRAO 140-Foot Radio Telescope "What we believe we have found," said Douglas P. Finkbeiner of Princeton University's Department of Astrophysics, "is the first hard evidence for electric dipole emission from rapidly rotating dust grains. If our studies are confirmed, it will be the first new source of continuum emission to be conclusively identified in the interstellar medium in nearly the past 20 years." Finkbeiner believes that these emissions have the potential in the future of revealing new and exciting information about the interstellar medium; they also may help to refine future studies of the Cosmic Microwave Background Radiation. The results from this study, which took place in spring 1999, were accepted for publication in Astrophysical Journal. Other contributors to this paper include David J. Schlegel, department of astrophysics, Princeton University; Curtis Frank, department of astronomy, University of Maryland; and Carl Heiles, department of astronomy, University of California at Berkeley. "The idea of dust grains emitting radiation by rotating is not new," comments Finkbeiner, "but to date it has been somewhat speculative." Scientists first proposed in 1957 that dust grains could emit radio signals, if they were caused to rotate rapidly enough. It was believed, however, that these radio emissions would be negligibly small - too weak to be of any impact to

  7. Solar radiophysics

    International Nuclear Information System (INIS)

    McLean, D.J.; Labrum, N.R.

    1985-01-01

    This book treats all aspects of solar radioastronomy at metre wavelengths, particularly work carried out on the Australian radioheliograph at Culgoora, with which most of the authors have been associated in one way or another. After an introductory section on historical aspects, the solar atmosphere, solar flares, and coronal radio emission, the book deals with instrumentation, theory, and details of observations and interpretations of the various aspects of metrewave solar radioastronomy, including burst types, solar storms, and the quiet sun. (U.K.)

  8. Electron beams by shock waves in the solar corona

    International Nuclear Information System (INIS)

    Mann, G.; Klassen, A.

    2005-07-01

    Beams of energetic electrons can be generated by shock waves in the solar corona. At the Sun shock waves are produced either by flares and/or by coronal mass ejections (CMEs). They can be observed as type II bursts in the solar radio radiation. Shock accelerated electron beams appear as rapidly drifting emission stripes (so-called ''herringbones'') in dynamic radio spectra of type II bursts. A large sample of type II bursts showing ''herringbones'' was statistically analysed with respect to their properties in dynamic radio spectra. The electron beams associated with the ''herringbones'' are considered to be generated by shock drift acceleration. Then, the accelerated electrons establish a shifted loss-cone distribution in the upstream region of the associated shock wave. Such a distribution causes plasma instabilities leading to the emission of radio waves observed as ''herringbones''. Consequences of a shifted loss-cone distribution of the shock accelerated electrons are discussed in comparison with the observations of ''herringbones'' within solar type II radio bursts. (orig.)

  9. RADIO EMISSION FROM SN 1994I IN NGC 5194 (M 51): THE BEST-STUDIED TYPE Ib/c RADIO SUPERNOVA

    International Nuclear Information System (INIS)

    Weiler, Kurt W.; Panagia, Nino; Stockdale, Christopher; Rupen, Michael; Sramek, Richard A.; Williams, Christopher L.

    2011-01-01

    We present the results of detailed monitoring of the radio emission from the Type Ic supernova SN 1994I from three days after optical discovery on 1994 March 31 until eight years later at age 2927 days on 2002 April 5. The data were mainly obtained using the Very Large Array at the five wavelengths of λλ1.3, 2.0, 3.6, 6.2, and 21 cm and from the Cambridge 5 km Ryle Telescope at λ2.0 cm. Two additional measurements were obtained at millimeter wavelengths. This data set represents the most complete, multifrequency radio observations ever obtained for a Type Ib/c supernova. The radio emission evolves regularly in both time and frequency and is well described by established supernova emission/absorption models. It is the first radio supernova with sufficient data to show that it is clearly dominated by the effects of synchrotron self-absorption at early times.

  10. A young source of optical emission from distant radio galaxies.

    Science.gov (United States)

    Hammer, F; Fèvre, O Le; Angonin, M C

    1993-03-25

    DISTANT radio galaxies provide valuable insights into the properties of the young Universe-they are the only known extended optical sources at high redshift and might represent an early stage in the formation and evolution of galaxies in general. This extended optical emission often has very complex morphologies, but the origin of the light is still unclear. Here we report spectroscopic observations for several distant radio galaxies (0.75≤ z ≤ 1.1) in which the rest-frame spectra exhibit featureless continua between 2,500 Å and 5,000 Å. We see no evidence for the break in the spectrum at 4,000 Å expected for an old stellar population 1-3 , and suggest that young stars or scattered emissions from the active nuclei are responsible for most of the observed light. In either case, this implies that the source of the optical emission is com-parable in age to the associated radio source, namely 10 7 years or less.

  11. Solar maximum mission: Ground support programs at the Harvard Radio Astronomy Station

    Science.gov (United States)

    Maxwell, A.

    1983-01-01

    Observations of the spectral characteristics of solar radio bursts were made with new dynamic spectrum analyzers of high sensitivity and high reliability, over the frequency range 25-580 MHz. The observations also covered the maximum period of the current solar cycle and the period of international cooperative programs designated as the Solar Maximum Year. Radio data on shock waves generated by solar flares were combined with optical data on coronal transients, taken with equipment on the SMM and other satellites, and then incorporated into computer models for the outward passage of fast-mode MHD shocks through the solar corona. The MHD models are non-linear, time-dependent and for the most recent models, quasi-three-dimensional. They examine the global response of the corona for different types of input pulses (thermal, magnetic, etc.) and for different magnetic topologies (for example, open and closed fields). Data on coronal shocks and high-velocity material ejected from solar flares have been interpreted in terms of a model consisting of three main velocity regimes.

  12. NONLINEAR WAVE INTERACTIONS AS EMISSION PROCESS OF TYPE II RADIO BURSTS

    Energy Technology Data Exchange (ETDEWEB)

    Ganse, Urs; Kilian, Patrick; Spanier, Felix [Lehrstuhl fuer Astronomie, Universitaet Wuerzburg, Wuerzburg (Germany); Vainio, Rami, E-mail: uganse@astro.uni-wuerzburg.de [Department of Physics, University of Helsinki, Helsinki (Finland)

    2012-06-01

    The emission of fundamental and harmonic frequency radio waves of type II radio bursts are assumed to be products of three-wave interaction processes of beam-excited Langmuir waves. Using a particle-in-cell code, we have performed simulations of the assumed emission region, a coronal mass ejection foreshock with two counterstreaming electron beams. Analysis of wavemodes within the simulation shows self-consistent excitation of beam-driven modes, which yield interaction products at both fundamental and harmonic emission frequencies. Through variation of the beam strength, we have investigated the dependence of energy transfer into electrostatic and electromagnetic modes, confirming the quadratic dependence of electromagnetic emission on electron beam strength.

  13. NONLINEAR WAVE INTERACTIONS AS EMISSION PROCESS OF TYPE II RADIO BURSTS

    International Nuclear Information System (INIS)

    Ganse, Urs; Kilian, Patrick; Spanier, Felix; Vainio, Rami

    2012-01-01

    The emission of fundamental and harmonic frequency radio waves of type II radio bursts are assumed to be products of three-wave interaction processes of beam-excited Langmuir waves. Using a particle-in-cell code, we have performed simulations of the assumed emission region, a coronal mass ejection foreshock with two counterstreaming electron beams. Analysis of wavemodes within the simulation shows self-consistent excitation of beam-driven modes, which yield interaction products at both fundamental and harmonic emission frequencies. Through variation of the beam strength, we have investigated the dependence of energy transfer into electrostatic and electromagnetic modes, confirming the quadratic dependence of electromagnetic emission on electron beam strength.

  14. Thermal radio emission from the winds of single stars

    International Nuclear Information System (INIS)

    Abbott, D.C.

    1985-01-01

    Observations of thermal emission at radio wavelengths provides a powerful diagnostic of the rate of mass loss and temperature of the winds of early-type stars. Some winds are also strong sources of nonthermal emission. Case studies of known thermal and nonthermal sources provide empirical criteria for classifying the observed radio radiation. Mass loss rates are derived for 37 OB and Wolf-Rayet stars considered definite or probable thermal wind sources by these criteria. The rate of mass loss is strongly linked to stellar luminosity in OB stars and probably linked to stellar mass in Wolf-Rayet stars, with no measurable correlation with any other stellar property. A few late-type giants and supergiants also have detectable thermal emission, which arises from extended, accelerating, partially-ionized chromospheres. (orig.)

  15. Plasma emission mechanisms

    International Nuclear Information System (INIS)

    Melrose, D.B.

    1985-01-01

    Only three emission processes are thought to play a role in solar radio emission: plasma emission, gyromagnetic emission and bremsstrahlung. In this chapter plasma emission is discussed and the processes involved in its production are treated, namely, the generation of Langmuir turbulence, the partial conversion into fundamental transverse radiation, production of secondary Langmuir waves and the generation of second-harmonic transverse radiation. (U.K.)

  16. Discovery of radio emission from the symbiotic X-ray binary system GX 1+4

    Science.gov (United States)

    van den Eijnden, J.; Degenaar, N.; Russell, T. D.; Miller-Jones, J. C. A.; Wijnands, R.; Miller, J. M.; King, A. L.; Rupen, M. P.

    2018-02-01

    We report the discovery of radio emission from the accreting X-ray pulsar and symbiotic X-ray binary GX 1+4 with the Karl G. Jansky Very Large Array. This is the first radio detection of such a system, wherein a strongly magnetized neutron star accretes from the stellar wind of an M-type giant companion. We measure a 9 GHz radio flux density of 105.3 ± 7.3 μJy, but cannot place meaningful constraints on the spectral index due to a limited frequency range. We consider several emission mechanisms that could be responsible for the observed radio source. We conclude that the observed properties are consistent with shocks in the interaction of the accretion flow with the magnetosphere, a synchrotron-emitting jet, or a propeller-driven outflow. The stellar wind from the companion is unlikely to be the origin of the radio emission. If the detected radio emission originates from a jet, it would show that strong magnetic fields (≥1012 G) do not necessarily suppress jet formation.

  17. A low-frequency radio survey of the planets with RAE 2

    Science.gov (United States)

    Kaiser, M. L.

    1977-01-01

    Over one thousand occultations of each planet in the solar system have occurred during the period from mid-1973 through mid-1976 as seen from the lunar orbiting Radio Astronomy Explorer 2 (RAE 2) spacecraft. These occultations have been examined for evidence of planetary radio emissions in the 0.025-13.1 MHz band. Only Jupiter and the earth have given positive results. Lack of detection of emission from the other planets can mean that either they do not emit radio noise in this band or the flux level of their emissions and/or its occurrence rate are too low to be detected by RAE 2.

  18. A low-frequency radio survey of the planets with RAE-2

    International Nuclear Information System (INIS)

    Kaiser, M.L.

    1976-08-01

    Over one thousand occultations of each planet in the solar system have occurred during the period from mid-1973 through mid-1976 as seen from the lunar orbiting Radio Astronomy Explorer-2 (RAE-2) spacecraft. These occultations have been examined for evidence of planetary radio emissions in the 0.025 to 13.1 MHz band. Only Jupiter and the earth have given positive results. Lack of detection of emission from the other planets can mean that either they do not emit radio noise in this band or the flux level of their emissions and/or its occurrence rate are too low to be detected by RAE-2

  19. A low-frequency radio survey of the planets with RAE-2

    Science.gov (United States)

    Kaiser, M. L.

    1976-01-01

    Over one thousand occultations of each planet in the solar system have occurred during the period from mid-1973 through mid-1976 as seen from the lunar orbiting Radio Astronomy Explorer-2 (RAE-2) spacecraft. These occultations have been examined for evidence of planetary radio emissions in the 0.025 to 13.1 MHz band. Only Jupiter and the earth have given positive results. Lack of detection of emission from the other planets can mean that either they do not emit radio noise in this band or the flux level of their emissions and/or its occurrence rate are too low to be detected by RAE-2.

  20. A low-frequency radio survey of the planets with RAE 2

    International Nuclear Information System (INIS)

    Kaiser, M.L.

    1977-01-01

    Over one thousand occultations of each planet in the solar system have occurred during the period from mid-1973 through mid-1976 as seen from the lunar orbiting Radio Astronomy Explorer 2 (RAE 29) spacecraft. These occultations have been examined for evidence of planetary radio emissions in the 0.025--13.1 MHz band. Only Jupiter and the earth have given positive results. Lack of detection of emission from the other planets can mean that either they do not emit radio noise in this band or the flux level of their emissions and/or its occurrence rate are too low to be detected by RAE 2

  1. Radio emission from symbiotic stars: a binary model

    International Nuclear Information System (INIS)

    Taylor, A.R.; Seaquist, E.R.

    1985-01-01

    The authors examine a binary model for symbiotic stars to account for their radio properties. The system is comprised of a cool, mass-losing star and a hot companion. Radio emission arises in the portion of the stellar wind photo-ionized by the hot star. Computer simulations for the case of uniform mass loss at constant velocity show that when less than half the wind is ionized, optically thick spectral indices greater than +0.6 are produced. Model fits to radio spectra allow the binary separation, wind density and ionizing photon luminosity to be calculated. They apply the model to the symbiotic star H1-36. (orig.)

  2. Dynamical evolution in clusters of galaxies with low-frequency radio emission

    International Nuclear Information System (INIS)

    Guthrie, B.N.G.

    1977-01-01

    Clusters of galaxies in which radio emission at low frequencies ( approximately 10 9 yr). Confinement would probably occur for radio sources associated with bright galaxies in the cores of clusters and cD galaxies in clusters. However, cD galaxies may have recurrent radio outbursts so that steep spectra are not always observed. (Auth.)

  3. Fluctuation analysis of solar radio bursts associated with geoeffective X-class flares

    Czech Academy of Sciences Publication Activity Database

    Veronese, T.B.; Rosa, R. R.; Bolzan, M.J.A.; Fernandes, F. C. R.; Sawant, H. S.; Karlický, Marian

    2011-01-01

    Roč. 73, 11-12 (2011), s. 1311-1316 ISSN 1364-6826 Institutional research plan: CEZ:AV0Z10030501 Keywords : decimetric solar radio bursts * solar flares * detrended fluctuation analysis Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 1.596, year: 2011

  4. The importance of source positions during radio fine structure observations

    International Nuclear Information System (INIS)

    Chernov, Guennadi P.; Yan Yi-Hua; Fu Qi-Jun

    2014-01-01

    The measurement of positions and sizes of radio sources in the observations of the fine structure of solar radio bursts is a determining factor for the selection of the radio emission mechanism. The identical parameters describing the radio sources for zebra structures (ZSs) and fiber bursts confirm there is a common mechanism for both structures. It is very important to measure the size of the source in the corona to determine if it is distributed along the height or if it is point-like. In both models of ZSs (the double plasma resonance (DPR) and the whistler model) the source must be distributed along the height, but by contrast to the stationary source in the DPR model, in the whistler model the source should be moving. Moreover, the direction of the space drift of the radio source must correlate with the frequency drift of stripes in the dynamic spectrum. Some models of ZSs require a local source, for example, the models based on the Bernstein modes, or on explosive instability. The selection of the radio emission mechanism for fast broadband pulsations with millisecond duration also depends on the parameters of their radio sources. (mini-volume: solar radiophysics — recent results on observations and theories)

  5. A giant radio flare from Cygnus X-3 with associated γ-ray emission: The 2011 radio and γ-ray flare of Cyg X-3

    International Nuclear Information System (INIS)

    Corbel, S.; Dubus, G.; Tomsick, J. A.; Szostek, A.

    2012-01-01

    With frequent flaring activity of its relativistic jets, Cygnus X-3 (Cyg X-3) is one of the most active microquasars and is the only Galactic black hole candidate with confirmed high-energy γ-ray emission, thanks to detections by Fermi Large Area Telescope (Fermi/LAT) and AGILE. In 2011, we observed Cyg X-3 in order to transit to a soft X-ray state, which is known to be associated with high-energy γ-ray emission. We present the results of a multiwavelength campaign covering a quenched state, when radio emission from Cyg X-3 is at its weakest and the X-ray spectrum is very soft. A giant (~20 Jy) optically thin radio flare marks the end of the quenched state, accompanied by rising non-thermal hard X-rays. Fermi/LAT observations (E≥ 100 MeV) reveal renewed γ-ray activity associated with this giant radio flare, suggesting a common origin for all non-thermal components. In addition, current observations unambiguously show that the γ-ray emission is not exclusively related to the rare giant radio flares. A three-week period of γ-ray emission is also detected when Cyg X-3 was weakly flaring in radio, right before transition to the radio quenched state. There were no γ-rays observed during the ~1-month long quenched state, when the radio flux is weakest. These results suggest transitions into and out of the ultrasoft X-ray (radio-quenched) state trigger γ-ray emission, implying a connection to the accretion process, and also that the γ-ray activity is related to the level of radio flux (and possibly shock formation), strengthening the connection to the relativistic jets.

  6. The Correlation between γ-Ray and Radio Emissions for the Fermi ...

    Indian Academy of Sciences (India)

    Abstract. Based upon the Fermi blazars sample, the radio and γ-ray emissions are compiled for a sample of 74 γ-ray loud blazars to calculate the radio to γ-ray effective spectrum index αRγ . The correlations between. αRγ and γ-ray luminosity, and between radio and γ-ray luminosity are also investigated. Key words.

  7. A Link Between X-ray Emission Lines and Radio Jets in 4U 1630-47?

    Science.gov (United States)

    Neilsen, Joseph; Coriat, Mickaël; Fender, Rob; Lee, Julia C.; Ponti, Gabriele; Tzioumis, A.; Edwards, Phillip; Broderick, Jess

    2014-06-01

    Recently, Díaz Trigo et al. reported an XMM-Newton detection of relativistically Doppler-shifted emission lines associated with steep-spectrum radio emission in the stellar-mass black hole candidate 4U 1630-47 during its 2012 outburst. They interpreted these lines as indicative of a baryonic jet launched by the accretion disk. We present a search for the same lines earlier in the same outburst using high-resolution X-ray spectra from the Chandra HETGS. While our observations (eight months prior to the XMM-Newton campaign) also coincide with detections of steep spectrum radio emission by the Australia Telescope Compact Array, we find a strong disk wind but no evidence for any relativistic X-ray emission lines. Indeed, despite ˜5× brighter radio emission, our Chandra spectra allow us to place an upper limit on the flux in the blueshifted Fe XXVI line that is ˜20× weaker than the line observed by Díaz Trigo et al. Thus we can conclusively say that radio emission is not universally associated with relativistically Doppler-shifted emission lines in 4U 1630-47. We explore several scenarios that could explain our differing results, including variations in the geometry of the jet or a mass-loading process or jet baryon content that evolves with the accretion state of the black hole. We also consider the possibility that the radio emission arises in an interaction between a jet and the nearby ISM, in which case the X-ray emission lines might be unrelated to the radio emission.

  8. Radio continuum emission from winds, chromospheres, and coronae of cool giants and supergiants

    International Nuclear Information System (INIS)

    Drake, S.A.; Linsky, J.L.

    1986-01-01

    In this paper we present the results of a sensitive VLA radio continuum survey at 6 cm of 39 of the nearest, single cool giants and supergiants with spectral types in the range G0--M5. We discuss our findings in the context of the various mechanisms that might be producing radio emission in these cool stars. We have definitely detected four K and M giants (α 1 Her, α Boo, rho Per, and μ Gem) and probably detected a fifth ( β UMi) at flux levels of 0.1--1.0 mJy. We believe that in all five of these cases the radio emission is thermal emission from cool stellar winds. We have made additional 2 cm observations of several stars, including the four stars definitely detected at 6 cm. We have derived spectral indices for α Boo, α 1 Her, and rho Per of 0.80, 0.84, and 0.95, respectively, that are close to the 0.6 value predicted by standard stellar wind models in the optically thick regime. An additional cool giant (α Tau) was detected only at 2 cm, implying a spectral index of > or =0.87. None of the coronal or hybrid-chromosphere giants observed were detected in this study, with the exception of α Aur, a 0.2 mJy radio source at 6 cm, which is in fact a widely separated, long-period (P/sub orb/approx.104/sup d/) RS CVn system containing two cool giant stars. In this case, we believe that the 6 cm radio emission is optically thin, thermal emission from the corona(e) of one or both of the components, since the radio-emission measure is consistent with that of the observed x-ray emission

  9. Observation of solar radio bursts using swept-frequency radiospectrograph in 20 - 40 MHz band

    International Nuclear Information System (INIS)

    Aoyama, Takashi; Oya, Hiroshi.

    1987-01-01

    A new station for the observation of solar decametric radio bursts has been developed at Miyagi Vocational Training College in Tsukidate, Miyagi, Japan. Using the swept frequency radiospectrograph covering a frequency range from 20 MHz to 40 MHz within 200 msec, with bandwidth of 30 kHz, the radio outbursts from the sun have been currently monitored with colored dynamic spectrum display. After July 1982, successful observations provide the data which include all types of solar radio bursts such as type I, II, III, IV and V in the decametric wavelength range. In addition to these typical radio bursts, rising tone bursts with fast drift rate followed by strong type III bursts and a series of bursts repeating rising and falling tone bursts with slow drift rate have been observed. (author)

  10. Identification of radio emission from the Io flux tube

    International Nuclear Information System (INIS)

    Riddle, A.C.

    1983-01-01

    Many theories and observations suggest that Jovian decametric radio emission is generated in flux tubes that pass close to Io's orbit. However, comparison of theory and observation is hindered by lack of knowledge as to which specific flux tube is responsible for a particular emission. In this note, emission from the instantaneous Io flux tube is identified. This makes possible a mapping of emissions onto the causative flux tubes for a significant range of Jovian longitudes (240 0 --360 0 )

  11. Diffuse radio emission in the Coma cluster and Abell 1367: observations at 430 and 1400 MHz

    International Nuclear Information System (INIS)

    Hanisch, R.J.

    1980-01-01

    Two rich clusters of galaxies, Abell 1656 (the Coma cluster) and Abell 1367, have been mapped at both 430 and 1400 MHz with the 305-m telescope at Arecibo. The contribution to the observed radio emission due to known discrete sources has been calculated by convolving interferometrically determined source lists with observed Arecibo beam patterns, and maps of the diffuse radio emission alone have been constructed. Both clusters contain regions of diffuse radio emission, although the source in Coma is larger and much more luminous than the source in Abell 1367. The linear extent of the diffuse emission and its dependence on frequency have been used to study particle propagation rates and modes of diffusion in the intracluster medium. The possible correlations between the diffuse radio emission and x-ray emission in these clusters have been investigated, and it has been found that the observed x-ray luminosities can be accounted for if the intracluster gas is heated through Coulomb interactions with the relativistic electrons responsible for the diffuse radio emission

  12. Solar-Geophysical Data Number 553, September 1990. Part 1 (prompt reports). Data for August 1990, July 1990 and late data

    International Nuclear Information System (INIS)

    Coffey, H.E.

    1990-09-01

    ;Contents: Detailed index for 1990; Data for August 1990--Solar-terrestrial environment, IUWDS alert periods (Advance and Worldwide), Solar activity indices, Solar flares, Solar radio emission, Standford mean solar magnetic field; Data for July 1990--Solar active regions, Sudden ionospheric disturbances, Solar radio spectral observations, Cosmic ray measurements by neutron monitor, Geomagnetic indices; Late data--Solar radio spectral Bleien and Ondrejov Jun 90, Cosmic ray Huancayo Jun 90, Geomagnetic activity indices May-Jun 90

  13. Radio ejection and broad forbidden emission lines in the Seyfert galaxy NGC 7674

    International Nuclear Information System (INIS)

    Unger, S.W.; Pedlar, A.; Axon, D.J.

    1988-01-01

    The Seyfert nucleus in NGC7674 (Mkn533) is remarkable for its broad asymmetric forbidden line profiles, which extend 2000 kms -1 blueward of the systemic velocity. The galaxy also has a compact nuclear radio source. We have obtained new high-resolution radio observations of NGC7674, using the European VLBI network and the VLA, and optical spectroscopic observations using the Isaac Newton Telescope. The radio maps reveal a triple radio source with a total angular extent of about 0.7 arcsec, and provide evidence that the radio emission is powered by collimated ejection. In the plane of the sky, the ejection axis appears roughly perpendicular to the galactic rotation axis. Although the dominant radio components are separated by 0.5 arcsec, the broad [OIII]λ5007 line emission is confined to within about 0.25 arcsec of the continuum nucleus. (author)

  14. From Radio with Love: An Overview of the Role of Radio Observations in Understanding High-Energy Emission from Active Galaxies

    Science.gov (United States)

    Ojha, Roopesh

    2012-01-01

    The gamma-ray satellite Fermi and the ground based TeV facilities MAGIC, VERITAS and HESS have ushered in a new era in the observation of high-energy emission from active galaxies. The energy budgets of these objects have a major contribution from gamma-rays and it is simply not possible to understand their physics without high-energy observations. Though the exact mechanisms for high-energy production in galaxies remains an open question, gamma-rays typically result from interactions between high-energy particles. Via different interactions these same particles can produce radio emission. Thus the non-thermal nature of gamma-ray emission practically guarantees that high-energy emitters are also radio loud. Aside from their obvious role as a component of multiwavelength analysis, radio observations provide two crucial elements essential to understanding the source structure and physical processes of high-energy emitters: very high timing resolution and very high spatial resolution. A brief overview of the unique role played by radio observations in unraveling the mysteries of the high energy Universe as presented here.

  15. Cosmic ray radio emission as air shower detection

    International Nuclear Information System (INIS)

    Curutiu, Alexandru; Rusu, Mircea; Isar, Gina; Zgura, Sorin

    2004-01-01

    The possibility of radio-detection of ultra-high energy cosmic rays (within the 10 to 100 MHz range) are discussed. Currently, air showers are detected by various methods, mainly based on particle detectors (KASCADE, Auger) or optical detection (Cerenkov radiation). Recently,to detect radio emission from cosmic ray air showers a method using electromagnetic radiation in low frequency domain (LOFAR) was proposed. We are investigating this possibility, using simulation codes created to investigate electromagnetic radiation of intricate antennae structure, for example fractal antennas. Some of the preliminary results will be communicated in this session. (authors)

  16. Solar radio continuum storms and a breathing magnetic field model. Final report

    International Nuclear Information System (INIS)

    1975-01-01

    Radio noise continuum emissions observed in metric and decametric wave frequencies are, in general, associated with actively varying sunspot groups accompanied by the S-component of microwave radio emissions. These continuum emission sources, often called type I storm sources, are often associated with type III burst storm activity from metric to hectometric wave frequencies. This storm activity is, therefore, closely connected with the development of these continuum emission sources. It is shown that the S-component emission in microwave frequencies generally precedes, by several days, the emission of these noise continuum storms of lower frequencies. In order for these storms to develop, the growth of sunspot groups into complex types is very important in addition to the increase of the average magnetic field intensity and area of these groups. After giving a review on the theory of these noise continuum storm emissions, a model is briefly considered to explain the relation of the emissions to the storms

  17. Electron Cyclotron Maser Emissions from Evolving Fast Electron Beams

    Science.gov (United States)

    Tang, J. F.; Wu, D. J.; Chen, L.; Zhao, G. Q.; Tan, C. M.

    2016-05-01

    Fast electron beams (FEBs) are common products of solar active phenomena. Solar radio bursts are an important diagnostic tool for understanding FEBs and the solar plasma environment in which they propagate along solar magnetic fields. In particular, the evolution of the energy spectrum and velocity distribution of FEBs due to the interaction with the ambient plasma and field during propagation can significantly influence the efficiency and properties of their emissions. In this paper, we discuss the possible evolution of the energy spectrum and velocity distribution of FEBs due to energy loss processes and the pitch-angle effect caused by magnetic field inhomogeneity, and we analyze the effects of the evolution on electron-cyclotron maser (ECM) emission, which is one of the most important mechanisms for producing solar radio bursts by FEBs. Our results show that the growth rates all decrease with the energy loss factor Q, but increase with the magnetic mirror ratio σ as well as with the steepness index δ. Moreover, the evolution of FEBs can also significantly influence the fastest growing mode and the fastest growing phase angle. This leads to the change of the polarization sense of the ECM emission. In particular, our results also reveal that an FEB that undergoes different evolution processes will generate different types of ECM emission. We believe the present results to be very helpful for a more comprehensive understanding of the dynamic spectra of solar radio bursts.

  18. ELECTRON CYCLOTRON MASER EMISSIONS FROM EVOLVING FAST ELECTRON BEAMS

    International Nuclear Information System (INIS)

    Tang, J. F.; Wu, D. J.; Chen, L.; Zhao, G. Q.; Tan, C. M.

    2016-01-01

    Fast electron beams (FEBs) are common products of solar active phenomena. Solar radio bursts are an important diagnostic tool for understanding FEBs and the solar plasma environment in which they propagate along solar magnetic fields. In particular, the evolution of the energy spectrum and velocity distribution of FEBs due to the interaction with the ambient plasma and field during propagation can significantly influence the efficiency and properties of their emissions. In this paper, we discuss the possible evolution of the energy spectrum and velocity distribution of FEBs due to energy loss processes and the pitch-angle effect caused by magnetic field inhomogeneity, and we analyze the effects of the evolution on electron-cyclotron maser (ECM) emission, which is one of the most important mechanisms for producing solar radio bursts by FEBs. Our results show that the growth rates all decrease with the energy loss factor Q , but increase with the magnetic mirror ratio σ as well as with the steepness index δ . Moreover, the evolution of FEBs can also significantly influence the fastest growing mode and the fastest growing phase angle. This leads to the change of the polarization sense of the ECM emission. In particular, our results also reveal that an FEB that undergoes different evolution processes will generate different types of ECM emission. We believe the present results to be very helpful for a more comprehensive understanding of the dynamic spectra of solar radio bursts.

  19. Citizen Science Opportunity With the NASA Heliophysics Education Consortium (HEC)-Radio JOVE Project

    Science.gov (United States)

    Fung, S. F.; Higgins, C.; Thieman, J.; Garcia, L. N.; Young, C. A.

    2016-12-01

    The Radio JOVE project has long been a hands-on inquiry-based educational project that allows students, teachers and the general public to learn and practice radio astronomy by building their own radio antenna and receiver system from an inexpensive kit that operates at 20.1 MHz and/or using remote radio telescopes through the Internet. Radio JOVE participants observe and analyze natural radio emissions from Jupiter and the Sun. Within the last few years, several Radio JOVE amateurs have upgraded their equipment to make semi-professional spectrographic observations in the frequency band of 15-30 MHz. Due to the widely distributed Radio JOVE observing stations across the US, the Radio JOVE observations can uniquely augment observations by professional telescopes, such as the Long Wavelength Array (LWA) . The Radio JOVE project has recently partnered with the NASA Heliophysics Education Consortium (HEC) to work with students and interested amateur radio astronomers to establish additional spectrograph and single-frequency Radio JOVE stations. These additional Radio JOVE stations will help build a larger amateur radio science network and increase the spatial coverage of long-wavelength radio observations across the US. Our presentation will describe the Radio JOVE project within the context of the HEC. We will discuss the potential for citizen scientists to make and use Radio JOVE observations to study solar radio bursts (particularly during the upcoming solar eclipse in August 2017) and Jovian radio emissions. Radio JOVE observations will also be used to study ionospheric radio scintillation, promoting appreciation and understanding of this important space weather effect.

  20. Radio emission from the nova-like variable AC Cancri and the symbiotic variable AG Draconis

    International Nuclear Information System (INIS)

    Torbett, M.V.; Campbell, B.; Mount Wilson and Las Campanas Observatories, Pasadena, CA)

    1987-01-01

    Radio emission at 6 cm has been detected from the nova-like cataclysmic variable AC Cnc and the symbiotic variable AG Dra. The AC Cnc observation constitutes the first radio detection in this class of objects. The AG Dra source is probably resolved and appears to show asymmetric, extended structure. The radio emission can best be explained by thermal bremsstrahlung. 26 references

  1. Solar-geophysical data number 584, April 1993. Part 1 (prompt reports). Data for March, February 1993, and late data

    International Nuclear Information System (INIS)

    Coffey, H.E.

    1993-04-01

    Contents: data for march 1993: solar-terrestrial environment; iuwds alert periods (advance and worldwide); solar activity indices; solar flares; solar radio emission; stanford mean solar magnetic field; data for february 1993: solar active regions; sudden ionospheric disturbances; solar radio spectral observations; cosmic ray measurements by neutron monitor; geomagnetic indices. This research is applicable to studies in communications, environmental science,and solar energy

  2. The application of coronal scattering measurements to solar radio bursts

    International Nuclear Information System (INIS)

    Bradford, H.M.

    1980-01-01

    The interpretation of ground based observations of solar 'plasma frequency' radio bursts has been hampered in the past by an insufficient knowledge of coronal scattering by density inhomogeneities close to the Sun. Calculations based on measuurements of the angular broadening of natural radio sources, and Woo's 1975 measurement of the angular broadening of the telemetry carrier by Helios I near occultation (Woo, 1978), indicate that plasma frequency solar bursts should undergo considerable scattering, at least near the maximum of the sunspot cycle. The calculated displacements of the apparent positions of the bursts are about equal to the observed displacements which have been attributed to the bursts occurring in dense streamers. In order to obtain more scattering data close to the Sun, interferometer measurements of the angular broadening of spacecraft signals are planned, and the important contribution which could be made with large dishes is discussed. (Auth.)

  3. Radio jets and gamma-ray emission in radio-silent narrow-line Seyfert 1 galaxies

    Science.gov (United States)

    Lähteenmäki, A.; Järvelä, E.; Ramakrishnan, V.; Tornikoski, M.; Tammi, J.; Vera, R. J. C.; Chamani, W.

    2018-06-01

    We have detected six narrow-line Seyfert 1 (NLS1) galaxies at 37 GHz that were previously classified as radio silent and two that were classified as radio quiet. These detections reveal the presumption that NLS1 galaxies labelled radio quiet or radio silent and hosted by spiral galaxies are unable to launch jets to be incorrect. The detections are a plausible indicator of the presence of a powerful, most likely relativistic jet because this intensity of emission at 37 GHz cannot be explained by, for example, radiation from supernova remnants. Additionally, one of the detected NLS1 galaxies is a newly discovered source of gamma rays and three others are candidates for future detections. 37 GHz data are only available in electronic form at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/614/L1

  4. Nanosecond radio bursts from strong plasma turbulence in the Crab pulsar.

    Science.gov (United States)

    Hankins, T H; Kern, J S; Weatherall, J C; Eilek, J A

    2003-03-13

    The Crab pulsar was discovered by the occasional exceptionally bright radio pulses it emits, subsequently dubbed 'giant' pulses. Only two other pulsars are known to emit giant pulses. There is no satisfactory explanation for the occurrence of giant pulses, nor is there a complete theory of the pulsar emission mechanism in general. Competing models for the radio emission mechanism can be distinguished by the temporal structure of their coherent emission. Here we report the discovery of isolated, highly polarized, two-nanosecond subpulses within the giant radio pulses from the Crab pulsar. The plasma structures responsible for these emissions must be smaller than one metre in size, making them by far the smallest objects ever detected and resolved outside the Solar System, and the brightest transient radio sources in the sky. Only one of the current models--the collapse of plasma-turbulent wave packets in the pulsar magnetosphere--can account for the nanopulses we observe.

  5. RADIO EMISSION FROM RED-GIANT HOT JUPITERS

    International Nuclear Information System (INIS)

    Fujii, Yuka; Spiegel, David S.; Mroczkowski, Tony; Nordhaus, Jason; Zimmerman, Neil T.; Parsons, Aaron R.; Mirbabayi, Mehrdad; Madhusudhan, Nikku

    2016-01-01

    When planet-hosting stars evolve off the main sequence and go through the red-giant branch, the stars become orders of magnitudes more luminous and, at the same time, lose mass at much higher rates than their main-sequence counterparts. Accordingly, if planetary companions exist around these stars at orbital distances of a few au, they will be heated up to the level of canonical hot Jupiters and also be subjected to a dense stellar wind. Given that magnetized planets interacting with stellar winds emit radio waves, such “Red-Giant Hot Jupiters” (RGHJs) may also be candidate radio emitters. We estimate the spectral auroral radio intensity of RGHJs based on the empirical relation with the stellar wind as well as a proposed scaling for planetary magnetic fields. RGHJs might be intrinsically as bright as or brighter than canonical hot Jupiters and about 100 times brighter than equivalent objects around main-sequence stars. We examine the capabilities of low-frequency radio observatories to detect this emission and find that the signal from an RGHJ may be detectable at distances up to a few hundred parsecs with the Square Kilometer Array

  6. RADIO EMISSION FROM RED-GIANT HOT JUPITERS

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Yuka [Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, 152-8550 (Japan); Spiegel, David S. [Analytics and Algorithms, Stitch Fix, San Francisco, CA 94103 (United States); Mroczkowski, Tony [Naval Research Laboratory, 4555 Overlook Ave SW, Washington, DC 20375 (United States); Nordhaus, Jason [Department of Science and Mathematics, National Technical Institute for the Deaf, Rochester Institute of Technology, Rochester, NY 14623 (United States); Zimmerman, Neil T. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Parsons, Aaron R. [Astronomy Department, University of California, Berkeley, CA (United States); Mirbabayi, Mehrdad [Astrophysics Department, Institute for Advanced Study, Princeton, NJ 08540 (United States); Madhusudhan, Nikku, E-mail: yuka.fujii@elsi.jp [Astronomy Department, University of Cambridge (United Kingdom)

    2016-04-01

    When planet-hosting stars evolve off the main sequence and go through the red-giant branch, the stars become orders of magnitudes more luminous and, at the same time, lose mass at much higher rates than their main-sequence counterparts. Accordingly, if planetary companions exist around these stars at orbital distances of a few au, they will be heated up to the level of canonical hot Jupiters and also be subjected to a dense stellar wind. Given that magnetized planets interacting with stellar winds emit radio waves, such “Red-Giant Hot Jupiters” (RGHJs) may also be candidate radio emitters. We estimate the spectral auroral radio intensity of RGHJs based on the empirical relation with the stellar wind as well as a proposed scaling for planetary magnetic fields. RGHJs might be intrinsically as bright as or brighter than canonical hot Jupiters and about 100 times brighter than equivalent objects around main-sequence stars. We examine the capabilities of low-frequency radio observatories to detect this emission and find that the signal from an RGHJ may be detectable at distances up to a few hundred parsecs with the Square Kilometer Array.

  7. Radio Emission from Red-Giant Hot Jupiters

    Science.gov (United States)

    Fujii, Yuka; Spiegel, David S.; Mroczkowski, Tony; Nordhaus, Jason; Zimmerman, Neil T.; Parsons, Aaron R.; Mirbabayi, Mehrdad; Madhusudhan, Nikku

    2016-01-01

    When planet-hosting stars evolve off the main sequence and go through the red-giant branch, the stars become orders of magnitudes more luminous and, at the same time, lose mass at much higher rates than their main sequence counterparts. Accordingly, if planetary companions exist around these stars at orbital distances of a few au, they will be heated up to the level of canonical hot Jupiters and also be subjected to a dense stellar wind. Given that magnetized planets interacting with stellar winds emit radio waves, such "Red-Giant Hot Jupiters" (RGHJs) may also be candidate radio emitters. We estimate the spectral auroral radio intensity of RGHJs based on the empirical relation with the stellar wind as well as a proposed scaling for planetary magnetic fields. RGHJs might be intrinsically as bright as or brighter than canonical hot Jupiters and about 100 times brighter than equivalent objects around main-sequence stars. We examine the capabilities of low-frequency radio observatories to detect this emission and find that the signal from an RGHJ may be detectable at distances up to a few hundred parsecs with the Square Kilometer Array.

  8. A LINK BETWEEN X-RAY EMISSION LINES AND RADIO JETS IN 4U 1630-47?

    Energy Technology Data Exchange (ETDEWEB)

    Neilsen, Joseph [Department of Astronomy, Boston University, Boston, MA 02215 (United States); Coriat, Mickaël [Department of Astronomy, University of Cape Town, Private Bag X3, Rondebosch 7701 (South Africa); Fender, Rob; Broderick, Jess W. [Department of Physics, Oxford University, Oxford OX1 3RH (United Kingdom); Lee, Julia C. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Ponti, Gabriele [Max Planck Institute fur Extraterrestriche Physik, D-85748 Garching (Germany); Tzioumis, Anastasios K.; Edwards, Philip G., E-mail: neilsenj@bu.edu [CSIRO Astronomy and Space Science, Australia Telescope National Facility, P.O. Box 76, Epping, NSW 1710 (Australia)

    2014-03-20

    Recently, Díaz Trigo et al. reported an XMM-Newton detection of relativistically Doppler-shifted emission lines associated with steep-spectrum radio emission in the stellar-mass black hole candidate 4U 1630-47 during its 2012 outburst. They interpreted these lines as indicative of a baryonic jet launched by the accretion disk. Here we present a search for the same lines earlier in the same outburst using high-resolution X-ray spectra from the Chandra HETGS. While our observations (eight months prior to the XMM-Newton campaign) also coincide with detections of steep spectrum radio emission by the Australia Telescope Compact Array, we find no evidence for any relativistic X-ray emission lines. Indeed, despite ∼5 × brighter radio emission, our Chandra spectra allow us to place an upper limit on the flux in the blueshifted Fe XXVI line that is ≳ 20 × weaker than the line observed by Díaz Trigo et al. We explore several scenarios that could explain our differing results, including variations in the geometry of the jet or a mass-loading process or jet baryon content that evolves with the accretion state of the black hole. We also consider the possibility that the radio emission arises in an interaction between a jet and the nearby interstellar medium, in which case the X-ray emission lines might be unrelated to the radio emission.

  9. A LINK BETWEEN X-RAY EMISSION LINES AND RADIO JETS IN 4U 1630-47?

    International Nuclear Information System (INIS)

    Neilsen, Joseph; Coriat, Mickaël; Fender, Rob; Broderick, Jess W.; Lee, Julia C.; Ponti, Gabriele; Tzioumis, Anastasios K.; Edwards, Philip G.

    2014-01-01

    Recently, Díaz Trigo et al. reported an XMM-Newton detection of relativistically Doppler-shifted emission lines associated with steep-spectrum radio emission in the stellar-mass black hole candidate 4U 1630-47 during its 2012 outburst. They interpreted these lines as indicative of a baryonic jet launched by the accretion disk. Here we present a search for the same lines earlier in the same outburst using high-resolution X-ray spectra from the Chandra HETGS. While our observations (eight months prior to the XMM-Newton campaign) also coincide with detections of steep spectrum radio emission by the Australia Telescope Compact Array, we find no evidence for any relativistic X-ray emission lines. Indeed, despite ∼5 × brighter radio emission, our Chandra spectra allow us to place an upper limit on the flux in the blueshifted Fe XXVI line that is ≳ 20 × weaker than the line observed by Díaz Trigo et al. We explore several scenarios that could explain our differing results, including variations in the geometry of the jet or a mass-loading process or jet baryon content that evolves with the accretion state of the black hole. We also consider the possibility that the radio emission arises in an interaction between a jet and the nearby interstellar medium, in which case the X-ray emission lines might be unrelated to the radio emission

  10. Solar-Geophysical Data Number 535, March 1989. Part 1 (prompt reports). Data for February, January 1989, and late data

    International Nuclear Information System (INIS)

    Coffey, H.E.

    1989-03-01

    Contentsinclude: detailed index for 1988-1989; data for february 1989 (IUWDS alert periods (advance and worldwide), solar-activity indices, solar flares, solar radio emission, Stanford mean solar magnetic field); data for January 1989 (solar active regions, sudden ionospheric disturbances, solar radio spectral observations, cosmic-ray measurements by neutron monitor, geomagnetic indices, radio-propagation indices); late data (solar-active regions-- H-alpha synoptic charts 1806-1808 (September-November 1988), cosmic-ray measurements by neutron monitor--thule, December 1988, geomagnetic indices -- sudden commencements/solar flare effects December 1988)

  11. Tools of radio astronomy

    CERN Document Server

    Wilson, Thomas L; Hüttemeister, Susanne

    2013-01-01

    This 6th edition of “Tools of Radio Astronomy”, the most used introductory text in radio astronomy, has been revised to reflect the current state of this important branch of astronomy. This includes the use of satellites, low radio frequencies, the millimeter/sub-mm universe, the Cosmic Microwave Background and the increased importance of mm/sub-mm dust emission. Several derivations and presentations of technical aspects of radio astronomy and receivers, such as receiver noise, the Hertz dipole and  beam forming have been updated, expanded, re-worked or complemented by alternative derivations. These reflect advances in technology. The wider bandwidths of the Jansky-VLA and long wave arrays such as LOFAR and mm/sub-mm arrays such as ALMA required an expansion of the discussion of interferometers and aperture synthesis. Developments in data reduction algorithms have been included. As a result of the large amount of data collected in the past 20 years, the discussion of solar system radio astronomy, dust em...

  12. Solar-geophysical data number 586, June 1993. Part 1 (prompt reports). Data for May, April 1993, and late data

    International Nuclear Information System (INIS)

    Coffey, H.E.

    1993-06-01

    Contents: data for may 1993; solar-terrestrial environment; iuwds alert periods (advance and worldwide); solar activity indices; solar flares; solar radio emission; stanford mean solar magnetic field; data for april 1993; solar active regions; sudden ionospheric disturbances; solar radio spectral observations; solar radioheliograph; cosmic ray measurements by neutron monitor; geomagnetic indices. This research is relevant to studies in atmospheric/environmental science, solar energy, plasma physics, and communications

  13. The structure of the radio emission from the NGC 1579/LkHα101 region

    International Nuclear Information System (INIS)

    Brown, R.L.; Broderick, J.J.; Knapp, G.R.

    1976-01-01

    Radio-frequency observations at 3.7 and 11 cm of the NGC 1579/LkHα101 region show that the radio emission arises in a compact, < 1'' core concentric with a more extended approximately 1' emission region. At these wavelengths the compact component is optically thick, with a spectrum increasing as ν, whereas the extended region is optically thin and contributes at least 80 per cent of the total flux density. LkHα101 appears to be the source of excitation for all of the radio emission; this result, together with the total infrared luminosity, suggests that an appropriate spectral classification for LkHα101 is B1 IIe. (author)

  14. The Relationship Between Solar Radio and Hard X-ray Emission

    Czech Academy of Sciences Publication Activity Database

    White, S.M.; Benz, A. O.; Christe, S.; Fárník, František; Kundu, M.R.; Mann, G.; Ning, Z.; Raulin, J.-P.; Silva-Valio, A.V.R.; Saint-Hilaire, P.; Vilmer, N.; Warmuth, A.

    2011-01-01

    Roč. 159, 1-4 (2011), s. 225-261 ISSN 0038-6308 Institutional support: RVO:67985815 Keywords : Sun * radio radiation * X-rays Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 3.611, year: 2011

  15. Solar-Geophysical Data Number 551, July 1990. Part 1 (prompt reports). Data for June, May 1990 and late data

    International Nuclear Information System (INIS)

    Coffey, H.E.

    1990-07-01

    ;Contents: Detailed index for 1989-1990; Data for June 1990--Solar-terrestrial environment, IUWDS alert periods (Advance and worldwide), Solar activity indices, Solar flares, Solar radio emission, Stanford mean solar magnetic field; Data for May 1990--Solar active regions, Sudden ionospheric disturbances, Solar radio spectral observations, Cosmic ray measurements by neutron monitor, Geomagnetic indices; Late data--Geomagnetic indices February-April 1990--sudden commencements/solar flare effects

  16. First evidence of diffuse ultra-steep-spectrum radio emission surrounding the cool core of a cluster

    Science.gov (United States)

    Savini, F.; Bonafede, A.; Brüggen, M.; van Weeren, R.; Brunetti, G.; Intema, H.; Botteon, A.; Shimwell, T.; Wilber, A.; Rafferty, D.; Giacintucci, S.; Cassano, R.; Cuciti, V.; de Gasperin, F.; Röttgering, H.; Hoeft, M.; White, G.

    2018-05-01

    Diffuse synchrotron radio emission from cosmic-ray electrons is observed at the center of a number of galaxy clusters. These sources can be classified either as giant radio halos, which occur in merging clusters, or as mini halos, which are found only in cool-core clusters. In this paper, we present the first discovery of a cool-core cluster with an associated mini halo that also shows ultra-steep-spectrum emission extending well beyond the core that resembles radio halo emission. The large-scale component is discovered thanks to LOFAR observations at 144 MHz. We also analyse GMRT observations at 610 MHz to characterise the spectrum of the radio emission. An X-ray analysis reveals that the cluster is slightly disturbed, and we suggest that the steep-spectrum radio emission outside the core could be produced by a minor merger that powers electron re-acceleration without disrupting the cool core. This discovery suggests that, under particular circumstances, both a mini and giant halo could co-exist in a single cluster, opening new perspectives for particle acceleration mechanisms in galaxy clusters.

  17. Association of solar flares with coronal mass ejections accompanied by Deca-Hectometric type II radio burst for two solar cycles 23 and 24

    Science.gov (United States)

    Kharayat, Hema; Prasad, Lalan; Pant, Sumit

    2018-05-01

    The aim of present study is to find the association of solar flares with coronal mass ejections (CMEs) accompanied by Deca-Hectometric (DH) type II radio burst for the period 1997-2014 (solar cycle 23 and ascending phase of solar cycle 24). We have used a statistical analysis and found that 10-20∘ latitudinal belt of northern region and 80-90∘ longitudinal belts of western region of the sun are more effective for flare-CME accompanied by DH type II radio burst events. M-class flares (52%) are in good association with the CMEs accompanied by DH type II radio burst. Further, we have calculated the flare position and found that most frequent flare site is at the center of the CME span. However, the occurrence probability of all flares is maximum outside the CME span. X-class flare associated CMEs have maximum speed than that of M, C, and B-class flare associated CMEs. We have also found a good correlation between flare position and central position angle of CMEs accompanied by DH type II radio burst.

  18. Solar Radio Observation using Callisto Spectrometer at Sumedang West Java Indonesia: Current Status and Future Development Plan in Indonesia

    Science.gov (United States)

    Manik, T.; Sitompul, P.; Batubara, M.; Harjana, T.; Yatini, C. Y.; Monstein, C.

    2016-04-01

    Sumedang Observatory (6.91°S, 107,84°E) was established in 1975 and is one of the solar observation facilities of the Space Science Center of Indonesian National Institute of Aeronautics and Space (LAPAN), located around 40 km, east part of Bandung City, West Java, Indonesia. Several instrumentations for solar and space observation such as optical telescopes, radio solar spectrograph, flux gate magnetometer, etc. are operated there, together with an ionosphere sounding system (ionosonde) that was set up later. In July 2014, a standard Callisto (Compound Astronomical Low-cost Low-frequency Instrument for Spectroscopy and Transportable Observatory) spectrometer was installed at Sumedang Observatory for solar radio activity monitoring. Callisto has been developed in the framework of IHY2007 and ISWI, supported by UN and NASA. Callisto spectrometer has observation capability in the frequency range of 45-870 MHz. The Callisto spectrometer receives signal by using a set of 21 elements log-periodic antenna, model CLP5130-1N, pointed to the Sun and equipped with a low noise pre-amplifier. With respect to the Radio Frequency Interferences (RFI) measurements, the Callisto spectrometer is operated individually in frequency ranges of 45-80 MHz and 180-450 MHz. Observation status and data flow are monitored in on-line from center office located in Bandung. The data was transferred to central database at FHNW (Fachhochschule Nordwestschweiz) server every 15 minutes to appear on e-Callisto network subsequently. A real time data transfer and data processing based on Python software also has been developed successfully to be used as an input for Space Weather Information and Forecasting Services (SWIFtS) provided by LAPAN. On 5th November 2014, Callisto spectrometer at Sumedang observed the first clear solar radio event, a solar radio burst type II corresponding to a coronal mass ejection (CME), indicated by a strong X-ray event of M7.9 that was informed on by Space Weather

  19. Quantitative comparisons of type 3 radio burst intensity and fast electron flux at 1 AU

    Science.gov (United States)

    Fitzenreiter, R. J.; Evans, L. G.; Lin, R. P.

    1975-01-01

    The flux of fast solar electrons and the intensity of the type 111 radio emission generated by these particles were compared at one AU. Two regimes were found in the generation of type 111 radiation: one where the radio intensity is linearly proportional to the electron flux, and another, which occurs above a threshold electron flux, where the radio intensity is approximately proportional to the 2.4 power of the electron flux. This threshold appears to reflect a transition to a different emission mechanism.

  20. Quantitative comparisons of type 3 radio burst intensity and fast electron flux at 1 AU

    International Nuclear Information System (INIS)

    Fitzenreiter, R.J.; Evans, L.G.; Lin, R.P.

    1975-09-01

    The flux of fast solar electrons and the intensity of the type-III radio emission generated by these particles were compared at one AU. Two regimes were found in the generation of type-III radiation: one, where the radio intensity is linearly proportional to the electron flux, and another, which occurs above a threshold electron flux, where the radio intensity is approximately proportional to the 2.4 power of the electron flux. This threshold appears to reflect a transition to a different emission mechanism

  1. Frequency agile solar radiotelescope

    Science.gov (United States)

    Bastian, Tim S.

    2003-02-01

    The Frequency Agile Solar Radiotelescope (FASR) is a solar-dedicated, ground based, interferometric array optimized to perform broadband imaging spectroscopy from ~ 0.1-30+ GHz. It will do so with the angular, spectral, and temporal resolution required to exploit radio emission from the Sun as a diagnostic of the wide variety of astrophysical processes that occur there. FASR represents a major advance over existing radioheliographs, and is expected to remain the world's premier solar radio instrument for two decades or more after completion. FASR will be a versatile and powerful instrument, providing unique data to a broad users community. Solar, solar-terrestrial, and space physicists will exploit FASR to attack a broad science program, including problems of fundamental interest: coronal magnetography, solar flares and particle acceleration, drivers of space weather, and the thermal structure and dynamics of the solar atmosphere. A design study and implementation planning are underway. Recent progress is reviewed here.

  2. Solar-geophysical data number 587, July 1993. Part 1 (prompt reports). data for June, May 1993, and late data

    International Nuclear Information System (INIS)

    Coffey, H.E.

    1993-07-01

    Contents: data for june 1993; solar-terrestrial environment; iuwds alert periods (advance and worldwide); solar activity indices; solar flares; solar radio emission; stanford mean solar magnetic field; data for may 1993; solar active regions; sudden ionospheric disturbances; solar radio spectral observations; solar radioheliograph - 164 mhz - nancay; cosmic ray measurements by neutron monitor; geomagnetic indices. This research is applicable to research in solar energy, plasma physics, communications, and environmental science

  3. X-ray Emission from the Radio Jet in 3C 120

    DEFF Research Database (Denmark)

    Harris, D. E.; Hjorth, J.; Sadun, A. C.

    1999-01-01

    We report the discovery of X-ray emission from a radio knot at a projected distance of 25" from the nucleus of the Seyfert galaxy, 3C 120. The data were obtained with the ROSAT High Resolution Imager (HRI). Optical upper limits for the knot preclude a simple power law extension of the radio...

  4. Air emissions due to wind and solar power.

    Science.gov (United States)

    Katzenstein, Warren; Apt, Jay

    2009-01-15

    Renewables portfolio standards (RPS) encourage large-scale deployment of wind and solar electric power. Their power output varies rapidly, even when several sites are added together. In many locations, natural gas generators are the lowest cost resource available to compensate for this variability, and must ramp up and down quickly to keep the grid stable, affecting their emissions of NOx and CO2. We model a wind or solar photovoltaic plus gas system using measured 1-min time-resolved emissions and heat rate data from two types of natural gas generators, and power data from four wind plants and one solar plant. Over a wide range of renewable penetration, we find CO2 emissions achieve approximately 80% of the emissions reductions expected if the power fluctuations caused no additional emissions. Using steam injection, gas generators achieve only 30-50% of expected NOx emissions reductions, and with dry control NOx emissions increase substantially. We quantify the interaction between state RPSs and NOx constraints, finding that states with substantial RPSs could see significant upward pressure on NOx permit prices, if the gas turbines we modeled are representative of the plants used to mitigate wind and solar power variability.

  5. THE ABSENCE OF RADIO EMISSION FROM THE GLOBULAR CLUSTER G1

    Energy Technology Data Exchange (ETDEWEB)

    Miller-Jones, J. C. A. [International Centre for Radio Astronomy Research, Curtin University, GPO Box U1987, Perth, WA 6845 (Australia); Wrobel, J. M. [NRAO Domenici Science Operations Center, 1003 Lopezville Road, Socorro, NM 87801 (United States); Sivakoff, G. R.; Heinke, C. O.; Miller, R. E. [Department of Physics, University of Alberta, Room 238 CEB, Edmonton, AB T6G 2G7 (Canada); Plotkin, R. M. [Astronomical Institute ' Anton Pannekoek' , University of Amsterdam, Science Park 904, 1098 XH Amsterdam (Netherlands); Di Stefano, R. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Greene, J. E. [Department of Astronomy, University of Texas at Austin, 1 University Station C1400, Austin, TX 71712 (United States); Ho, L. C. [The Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Joseph, T. D.; Maccarone, T. J. [School of Physics and Astronomy, University of Southampton, Highfield SO17 IBJ (United Kingdom); Kong, A. K. H., E-mail: james.miller-jones@curtin.edu.au [Institute of Astronomy and Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan (China)

    2012-08-10

    The detections of both X-ray and radio emission from the cluster G1 in M31 have provided strong support for existing dynamical evidence for an intermediate-mass black hole (IMBH) of mass (1.8 {+-} 0.5) Multiplication-Sign 10{sup 4} M{sub Sun} at the cluster center. However, given the relatively low significance and astrometric accuracy of the radio detection, and the non-simultaneity of the X-ray and radio measurements, this identification required further confirmation. Here we present deep, high angular resolution, strictly simultaneous X-ray and radio observations of G1. While the X-ray emission (L{sub X} = 1.74{sup +0.53}{sub -0.44} Multiplication-Sign 10{sup 36} (d/750 kpc){sup 2} erg s{sup -1} in the 0.5-10 keV band) remained fully consistent with previous observations, we detected no radio emission from the cluster center down to a 3{sigma} upper limit of 4.7 {mu}Jy beam{sup -1}. Our favored explanation for the previous radio detection is flaring activity from a black hole low-mass X-ray binary (LMXB). We performed a new regression of the 'Fundamental Plane' of black hole activity, valid for determining black hole mass from radio and X-ray observations of sub-Eddington black holes, finding log M{sub BH} = (1.638 {+-} 0.070)log L{sub R} - (1.136 {+-} 0.077)log L{sub X} - (6.863 {+-} 0.790), with an empirically determined uncertainty of 0.44 dex. This constrains the mass of the X-ray source in G1, if a black hole, to be <9.7 Multiplication-Sign 10{sup 3} M{sub Sun} at 95% confidence, suggesting that it is a persistent LMXB. This annuls what was previously the most convincing evidence from radiation for an IMBH in the Local Group, though the evidence for an IMBH in G1 from velocity dispersion measurements remains unaffected by these results.

  6. Ulysses radio and plasma wave observations at high southern heliographic latitudes.

    Science.gov (United States)

    Stone, R G; Macdowall, R J; Fainberg, J; Kaiser, M L; Desch, M D; Goldstein, M L; Hoang, S; Bougeret, J L; Harvey, C C; Manning, R; Steinberg, J L; Kellogg, P J; Lin, N; Goetz, K; Osherovich, V A; Reiner, M J; Canu, P; Cornilleau-Wehrlin, N; Lengyel-Frey, D; Thejappa, G

    1995-05-19

    Ulysses spacecraft radio and plasma wave observations indicate that some variations in the intensity and occurrence rate of electric and magnetic wave events are functions of heliographic latitude, distance from the sun, and phase of the solar cycle. At high heliographic latitudes, solartype Ill radio emissions did not descend to the local plasma frequency, in contrast to the emission frequencies of some bursts observed in the ecliptic. Short-duration bursts of electrostatic and electromagnetic waves were often found in association with depressions in magnetic field amplitude, known as magnetic holes. Extensive wave activity observed in magnetic clouds may exist because of unusually large electron-ion temperature ratios. The lower number of intense in situ wave events at high latitudes was likely due to the decreased variability of the high- latitude solar wind.

  7. Quantitative comparisons of type III radio burst intensity and fast electron flux at 1 AU

    Science.gov (United States)

    Fitzenreiter, R. J.; Evans, L. G.; Lin, R. P.

    1976-01-01

    We compare the flux of fast solar electrons and the intensity of the type III radio emission generated by these particles at 1 AU. We find that there are two regimes in the generation of type III radiation: one where the radio intensity is linearly proportional to the electron flux, and the second regime, which occurs above a threshold electron flux, where the radio intensity is proportional to the approximately 2.4 power of the electron flux. This threshold appears to reflect a transition to a different emission mechanism.

  8. Solar-Geophysical Data Number 528, August 1988. Part 1 (prompt reports). Data for July, June 1988, and late data

    International Nuclear Information System (INIS)

    Coffey, H.E.; McKinnon, J.A.

    1988-08-01

    Contents include: data for July 1988; IUWDS alert periods (advance and worldwide); solar-activity indices; solar flares; solar radio emission; solar interferometric chart; Stanford mean solar magnetic field

  9. Definition phase of Grand Tour missions/radio science investigations study for outer planets missions

    Science.gov (United States)

    Tyler, G. L.

    1972-01-01

    Scientific instrumentation for satellite communication and radio tracking systems in the outer planet exploration mission is discussed. Mission planning considers observations of planetary and satellite-masses, -atmospheres, -magnetic fields, -surfaces, -gravitational fields, solar wind composition, planetary radio emissions, and tests of general relativity in time delay and ray bending experiments.

  10. Solar radio bursts of spectral type II, coronal shocks, and optical coronal transients

    Science.gov (United States)

    Maxwell, A.; Dryer, M.

    1981-01-01

    An examination is presented of the association of solar radio bursts of spectral type II and coronal shocks with solar flare ejecta observed in H-alpha, the green coronal line, and white-light coronagraphs. It is suggested that fast-moving optical coronal transients should for the most part be identified with piston-type phenomena well behind the outward-traveling shock waves that generate type II radio bursts. A general model is presented which relates type II radio bursts and coronal shocks to optically observed ejecta and consists of three main velocity regimes: (1) a quasi-hemispherical shock wave moving outward from the flare at speeds of 1000-2000 km/sec and Alfven Mach number of about 1.5; (2) the velocity of the piston driving the shock, on the order of 0.8 that of the shock; and (3) the regime of the slower-moving H-alpha ejecta, with velocities of 300-500 km/sec.

  11. A Measurement of the Millimeter Emission and the Sunyaev-Zel'dovich Effect Associated with Low-Frequency Radio Sources

    Science.gov (United States)

    Gralla, Megan B.; Crichton, Devin; Marriage, Tobias; Mo, Wenli; Aguirre, Paula; Addison, Graeme E.; Asboth, V.; Battaglia, Nick; Bock, James; Bond, J. Richard; hide

    2014-01-01

    We present a statistical analysis of the millimeter-wavelength properties of 1.4 GHz-selected sources and a detection of the Sunyaev-Zel'dovich effect associated with the halos that host them. We stack data at 148, 218 and 277 GHz from the Atacama Cosmology Telescope at the positions of a large sample of radio AGN selected at 1.4 GHz. The thermal Sunyaev-Zel'dovich (SZ) effect associated with the halos that host the AGN is detected at the 5 sigma level through its spectral signature, representing a statistical detection of the SZ effect in some of the lowest mass halos (average M(sub 200) approximately equals 10(sup 13) solar mass h(sub 70)(exp -1) ) studied to date. The relation between the SZ effect and mass (based on weak lensing measurements of radio galaxies) is consistent with that measured by Planck for local bright galaxies. In the context of galaxy evolution models, this study confirms that galaxies with radio AGN also typically support hot gaseous halos. Adding Herschel observations allows us to show that the SZ signal is not significantly contaminated by dust emission. Finally, we analyze the contribution of radio sources to the angular power spectrum of the cosmic microwave background.

  12. Analysis of the correlation between γ-ray and radio emissions from γ-ray loud Blazar using the discrete correlation function

    International Nuclear Information System (INIS)

    Cheng Yong; Zhang Xiong; Wu Lin; Mao Weiming; You Lisha

    2006-01-01

    The authors collect 119 γ-ray-loud Blazar (97 flat spectrum radio quasars (FSRQs) and 22 BL Lacertae objects (BL Lac)), and investigate respectively the correlation between the γ-ray emission (maximum, minimum, and average data) at 1 GeV and the radio emission at 8.4 GHz by discrete correlation function (DCF) method. Our main results are as follows: there is good correlation between the γ-ray in high state and average state and radio emissions for the whole 119 Blazar and 97 FSRQs. And there are no correlation between γ-ray emission and radio emission in low state. Our result shows that the γ-rays are associated with the radio emission from the jet, and that the γ-ray emission is likely to have come from the synchrotron self-compton model (SSC) process in this case. (authors)

  13. Improved Radio Emissivities for Satellites of Saturn

    Science.gov (United States)

    Ries, Paul

    2010-10-01

    The size distribution of TNOs is one of the most important constraints on the history of the early solar system. However, while TNOs are most detectable in the visible and near-IR wavelengths, their albedos vary substantially, thus creating uncertainty in their sizes when determined from reflected light alone. One way of determining the size distribution for a large number of TNOs is to measure their thermal emission, such as has been done with Spitzer and Herschel. However, in just a few year's time, ALMA will be coming online, and will be able to detect thermal emission from even more TNOs. However, thermal emission from Solar System bodies in the millimeter and submillimeter, such as that which ALMA will detect, is not that of a pure blackbody. Pluto, the Gallillean satellites, and Vesta have all shown deviations from unity emissivity. However, the cause of this variation is not well understood. Here we re-analayze data from the Cassini RADAR instrument at 2.5 cm. Cassini RADAR measured the brightness temperature and emissivity of several of Saturn's icy satellites, at least one of which, Phoebe, is thought to be a captured TNO. Previous emissivity determinations relied on relatively simple thermal models. We recalculate emissivities using thermal models based on recent data obtained with the CIRS (infrared) instrument on Cassini which account for, among other things, diurnal effects and the rotation during the RADAR observations. For one important result, we demonstrate that deviation from unity emissivity on Iapetus is due solely to surface depth effects at long wavelengths when RADAR data at 2.5 cm is combined with data obtained at 3.3 mm on the Green Bank Telescope (GBT). This research is supported by a grant under the NRAO Student Observing Support program.

  14. Solar-Geophysical Data Number 536, April 1989. Part 1 (prompt reports). Data for March, February 1989 and late data

    International Nuclear Information System (INIS)

    Coffey, H.E.

    1989-04-01

    Contents include: detailed index for 1988-1989; data for March 1989--(IUWDS alert periods (advance and worldwide), solar activity indices, solar flares, solar radio emission, Stanford mean solar magnetic field); data for February 1989--(solar-active regions, sudden ionospheric disturbances, solar radio spectral observations, cosmic-ray measurements by neutron monitor, geomagnetic indices, radio-propagation indices); late data--(solar-active-regions - H-alpha synoptic charts 1809-1810 (November-December 1988), cosmic ray measurements by neutron monitor January 1989, geomagnetic indices - sudden commencements/solar flare effects January 1989, Pioneer XII interplanetary magnetic field magnitudes July 1989, Pioneer XII solar wind January-December 1988, march special event data)

  15. Structure of the radio emission from the NGC 1579/LkH. cap alpha. 101 region

    Energy Technology Data Exchange (ETDEWEB)

    Brown, R L [National Radio Astronomy Observatory, Charlottesville, Va. (USA); Broderick, J J; Knapp, G R

    1976-06-01

    Radio-frequency observations at 3.7 and 11 cm of the NGC 1579/LkH..cap alpha..101 region show that the radio emission arises in a compact, < 1'' core concentric with a more extended approximately 1' emission region. At these wavelengths the compact component is optically thick, with a spectrum increasing as ..nu.., whereas the extended region is optically thin and contributes at least 80 per cent of the total flux density. LkH..cap alpha..101 appears to be the source of excitation for all of the radio emission; this result, together with the total infrared luminosity, suggests that an appropriate spectral classification for LkH..cap alpha..101 is B1 IIe.

  16. Coronal Radio Sounding Experiments with Mars Express: Scintillation Spectra during Low Solar Activity

    International Nuclear Information System (INIS)

    Efimov, A. I.; Lukanina, L. A.; Samoznaev, L. N.; Rudash, V. K.; Chashei, I. V.; Bird, M. K.; Paetzold, M.; Tellmann, S.

    2010-01-01

    Coronal radio sounding observations were carried out with the radio science experiment MaRS on the ESA spacecraft Mars Express during the period from 25 August to 22 October 2004. Differential frequency and log-amplitude fluctuations of the dual-frequency signals were recorded during a period of low solar activity. The data are applicable to low heliographic latitudes, i.e. to slow solar wind. The mean frequency fluctuation and power law index of the frequency fluctuation temporal spectra are determined as a function of heliocentric distance. The radial dependence of the frequency fluctuation spectral index α reflects the previously documented flattening of the scintillation power spectra in the solar wind acceleration region. Temporal spectra of S-band and X-band normalized log-amplitude fluctuations were investigated over the range of fluctuation frequencies 0.01 Hz<ν<0.5 Hz, where the spectral density is approximately constant. The radial variation of the spectral density is analyzed and compared with Ulysses 1991 data, a period of high solar activity. Ranging measurements are presented and compared with frequency and log-amplitude scintillation data. Evidence for a weak increase in the fractional electron density turbulence level is obtained in the range 10-40 solar radii.

  17. Solar-Geophysical Data Number 571, March 1992. Part 1 (prompt reports). Data for February, January 1992 and late data

    International Nuclear Information System (INIS)

    Coffey, H.E.

    1992-03-01

    The contents include: Detailed index for 1991-1992; Data for February 1992--Solar-terrestrial environment, IUWDS alert periods (advance and worldwide), Solar activity indices, Solar flares, Solar radio emission, Stanford mean solar magnetic field; Data for January 1992--Solar active regions, Sudden ionospheric disturbances, Solar radio spectral observations, Cosmic ray measurements by neutron monitor, Geomagnetic indices; Late data--Cosmic rays Climax and Huancayo Jul-Dec 91, Sudden Commencements Jun-Aug 91, and Geomagnetic indices Dec 91

  18. Solar-Geophysical Data Number 546, February 1990. Part 1 (prompt reports). data for January 1990, December 1989, and late data

    International Nuclear Information System (INIS)

    Coffey, H.E.

    1990-02-01

    Contents include: detailed index for 1989-1990; data for January 1990--solar-terrestrial environment, IUWDS alert periods (advance and worldwide), solar activity indices, solar flares, solar radio emission, Stanford mean solar magnetic field; data for December 1989--solar-active regions, sudden ionospheric disturbances, solar radio spectral observations, cosmic-ray measurements by neutron monitor, geomagnetic indices; late data--cosmic-ray measurements by neutron monitor, reprint of halftone-page Kitt Peak solar magnetic field synoptic chart November 1989

  19. Probing Atmospheric Electric Fields through Radio Emission from Cosmic-Ray-Induced Air Showers

    NARCIS (Netherlands)

    Scholten, Olaf; Trinh, Gia; Buitink, Stijn; Corstanje, Arthur; Ebert, Ute; Enriquez, Emilio; Falcke, Heino; Hoerandel, Joerg; Nelles, Anna; Schellart, Pim; Rachen, Joerg; Rutjes, Casper; ter Veen, Sander; Rossetto, Laura; Thoudam, Satyendra

    2016-01-01

    Energetic cosmic rays impinging on the atmosphere create a particle avalanche called an extensive air shower. In the leading plasma of this shower electric currents are induced that generate coherent radio wave emission that has been detected with LOFAR, a large and dense array of simple radio

  20. Radio physics of the sun; Proceedings of the Symposium, University of Maryland, College Park, Md., August 7-10, 1979

    Science.gov (United States)

    Kundu, M. R. (Editor); Gergely, T. E.

    1980-01-01

    Papers are presented in the areas of the radio characteristics of the quiet sun and active regions, the centimeter, meter and decameter wavelength characteristics of solar bursts, space observations of low-frequency bursts, theoretical interpretations of solar active regions and bursts, joint radio, visual and X-ray observations of active regions and bursts, and the similarities of stellar radio characteristics to solar radio phenomena. Specific topics include the centimeter and millimeter wave characteristics of the quiet sun, radio fluctuations arising upon the transit of shock waves through the transition region, microwave, EUV and X-ray observations of active region loops and filaments, interferometric observations of 35-GHz radio bursts, emission mechanisms for radio bursts, the spatial structure of microwave bursts, observations of type III bursts, the statistics of type I bursts, and the numerical simulation of type III bursts. Attention is also given to the theory of type IV decimeter bursts, Voyager observations of type II and III bursts at kilometric wavelengths, radio and whitelight observations of coronal transients, and the possibility of obtaining radio observations of current sheets on the sun.

  1. A search for radio emission from flare stars in the Pleiades

    Science.gov (United States)

    Bastian, T. S.; Dulk, G. A.; Slee, O. B.

    1988-01-01

    The VLA has been used to search for radio emission from flare stars in the Pleiades. Two observational strategies were employed. First, about 1/2 sq deg of cluster, containing about 40 known flare stars, was mapped at 1.4 GHz at two epochs. More than 120 sources with flux densities greater than 0.3 mJy exist on the maps. Detailed analysis shows that all but two of these sources are probably extragalactic. The two sources identified as stellar are probably not Pleiades members as judged by their proper motions; rather, based on their colors and magnitudes, they seem to be foreground G stars. One is a known X-ray source. The second observational strategy, where five rapidly rotating flare stars were observed at three frequencies, yielded no detections. The 0.3 mJy flux-density limit of this survey is such that only the most intense outbursts of flare stars in the solar neighborhood could have been detected if those stars were at the distance of the Pleiades.

  2. THE JET POWER AND EMISSION-LINE CORRELATIONS OF RADIO-LOUD OPTICALLY SELECTED QUASARS

    International Nuclear Information System (INIS)

    Punsly, Brian; Zhang Shaohua

    2011-01-01

    In this Letter, the properties of the extended radio emission form Sloan Digital Sky Survey Data Release 7 quasars with 0.4 20-30 kpc). The frequency of quasars with FR II level extended radio emission is ∼2.3% and >0.4% of quasars have FR I level extended radio emission. The lower limit simply reflects the flux density limit of the survey. The distribution of the long-term time-averaged jet powers of these quasars, Q-bar , has a broad peak ∼3 x 10 44 erg s -1 that turns over below 10 44 erg s -1 and sources above 10 45 erg s -1 are extremely rare. It is found that the correlation between the bolometric (total thermal) luminosity of the accretion flow, L bol , and Q-bar is not strong. The correlation of Q-bar with narrow line luminosity is stronger than the correlation with broad line luminosity and the continuum luminosity. It is therefore concluded that previous interpretations of correlations of Q-bar with narrow line strengths in radio galaxies as a direct correlation of jet power and accretion power have been overstated. It is explained why this interpretation mistakenly overlooks the sizeable fraction of sources with weak accretion luminosity and powerful jets discovered by Ogle et al.

  3. Milliarcsecond Imaging of the Radio Emission from the Quasar with the Most Massive Black Hole at Reionization

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ran; Wu, Xue-Bing; Jiang, Linhua [Kavli Institute of Astronomy and Astrophysics at Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871 (China); Momjian, Emmanuel; Carilli, Chris L. [National Radio Astronomy Observatory, P.O. Box 0, Socorro, NM 87801 (United States); Fan, Xiaohui [Steward Observatory, University of Arizona, 933 N Cherry Avenue, Tucson, AZ 85721 (United States); Walter, Fabian [Max-Planck-Institute for Astronomy, Königsstuhl 17, D-69117 Heidelberg (Germany); Strauss, Michael A. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Wang, Feige [Department of Astronomy, School of Physics, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871 (China)

    2017-02-01

    We report Very Long Baseline Array (VLBA) observations of the 1.5 GHz radio continuum emission of the z = 6.326 quasar SDSS J010013.02+280225.8 (hereafter J0100+2802). J0100+2802 is by far the most optically luminous and is a radio-quiet quasar with the most massive black hole known at z > 6. The VLBA observations have a synthesized beam size of 12.10 mas ×5.36 mas (FWHM), and detected the radio continuum emission from this object with a peak surface brightness of 64.6 ± 9.0 μ Jy beam{sup −1} and a total flux density of 88 ± 19 μ Jy. The position of the radio peak is consistent with that from SDSS in the optical and Chandra in the X-ray. The radio source is marginally resolved by the VLBA observations. A 2D Gaussian fit to the image constrains the source size to (7.1 ± 3.5) mas × (3.1 ± 1.7) mas. This corresponds to a physical scale of (40 ± 20) pc × (18 ± 10) pc. We estimate the intrinsic brightness temperature of the VLBA source to be T {sub B} = (1.6 ± 1.2) × 10{sup 7} K. This is significantly higher than the maximum value in normal star-forming galaxies, indicating an active galactic nucleus (AGN) origin for the radio continuum emission. However, it is also significantly lower than the brightness temperatures found in highest-redshift radio-loud quasars. J0100+2802 provides a unique example for studying the radio activity in optically luminous and radio-quiet AGNs in the early universe. Further observations at multiple radio frequencies will accurately measure the spectral index and address the dominant radiation mechanism of the radio emission.

  4. X-RAY AND RADIO EMISSION FROM TYPE IIn SUPERNOVA SN 2010jl

    Energy Technology Data Exchange (ETDEWEB)

    Chandra, Poonam [National Centre for Radio Astrophysics, Tata Institute of Fundamental Research, Pune University Campus, Pune 411 007 (India); Chevalier, Roger A. [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904-4325 (United States); Chugai, Nikolai [Institute of Astronomy of Russian Academy of Sciences, Pyatnitskaya St. 48, 109017 Moscow (Russian Federation); Fransson, Claes [Oskar Klein Centre, Department of Astronomy, Stockholm University, AlbaNova, SE-106 91 Stockholm (Sweden); Soderberg, Alicia M., E-mail: poonam@ncra.tifr.res.in [Smithsonian Astrophysical Observatory, 60 Garden St., MS-20, Cambridge, MA 02138 (United States)

    2015-09-01

    We present all X-ray and radio observations of the Type IIn supernova SN 2010jl. The X-ray observations cover a period up to day 1500 with Chandra, XMM-Newton, NuSTAR, and Swift-X-ray Telescope (XRT). The Chandra observations after 2012 June, the XMM-Newton observation in 2013 November, and most of the Swift-XRT observations until 2014 December are presented for the first time. All the spectra can be fitted by an absorbed hot thermal model except for Chandra spectra on 2011 October and 2012 June when an additional component is needed. Although the origin of this component is uncertain, it is spatially coincident with the supernova and occurs when there are changes to the supernova spectrum in the energy range close to that of the extra component, indicating that the emission is related to the supernova. The X-ray light curve shows an initial plateau followed by a steep drop starting at day ∼300. We attribute the drop to a decrease in the circumstellar density. The column density to the X-ray emission drops rapidly with time, showing that the absorption is in the vicinity of the supernova. We also present Very Large Array radio observations of SN 2010jl. Radio emission was detected from SN 2010jl from day 570 onwards. The radio light curves and spectra suggest that the radio luminosity was close to its maximum at the first detection. The velocity of the shocked ejecta derived assuming synchrotron self-absorption is much less than that estimated from the optical and X-ray observations, suggesting that free–free absorption dominates.

  5. Spectroscopic and polarimetric study of radio-quiet weak emission line quasars

    Science.gov (United States)

    Kumar, Parveen; Chand, Hum; Gopal-Krishna; Srianand, Raghunathan; Stalin, Chelliah Subramonian; Petitjean, Patrick

    2018-04-01

    A small subset of optically selected radio-quiet QSOs with weak or no emission lines may turn out to be the elusive radio-quiet BL Lac objects, or simply be radio-quiet QSOs with an infant/shielded broad line region (BLR). High polarisation (p > 3-4%), a hallmark of BL Lacs, can be used to test whether some optically selected ‘radio-quiet weak emission line QSOs’ (RQWLQs) show a fractional polarisation high enough to qualify as radio-quiet analogues of BL Lac objects. To check this possibility, we have made optical spectral and polarisation measurements of a sample of 19 RQWLQs. Out of these, only 9 sources show a non-significant proper motion (hence very likely extragalactic) and only two of them are found to have p > 1%. For these two RQWLQs, namely J142505.59+035336.2 and J154515.77+003235.2, we found the highest polarization to be 1.59±0.53%, which is again too low to classify them as (radio-quiet) BL Lacs, although one may recall that even genuine BL Lacs sometimes appear weakly polarised. We also present a statistical comparison of the optical spectral index, for a sample of 45 RQWLQs with redshift-luminosity matched control samples of 900 QSOs and an equivalent sample of 120 blazars, assembled from the literature. The spectral index distribution of RQWLQs is found to differ, at a high significance level, from that of blazars. This, too, is consistent with the common view that the mechanism of the central engine in RQWLQs, as a population, is close to that operating in normal QSOs and the primary difference between them is related to the BLR.

  6. Probing Twisted Magnetic Field Using Microwave Observations in an M Class Solar Flare on 11 February, 2014

    Science.gov (United States)

    Sharykin, I. N.; Kuznetsov, A. A.; Myshyakov, I. I.

    2018-02-01

    This work demonstrates the possibility of magnetic-field topology investigations using microwave polarimetric observations. We study a solar flare of GOES M1.7 class that occurred on 11 February, 2014. This flare revealed a clear signature of spatial inversion of the radio-emission polarization sign. We show that the observed polarization pattern can be explained by nonthermal gyrosynchrotron emission from the twisted magnetic structure. Using observations of the Reuven Ramaty High Energy Solar Spectroscopic Imager, Nobeyama Radio Observatory, Radio Solar Telescope Network, and Solar Dynamics Observatory, we have determined the parameters of nonthermal electrons and thermal plasma and identified the magnetic structure where the flare energy release occurred. To reconstruct the coronal magnetic field, we use nonlinear force-free field (NLFFF) and potential magnetic-field approaches. Radio emission of nonthermal electrons is simulated by the GX Simulator code using the extrapolated magnetic field and the parameters of nonthermal electrons and thermal plasma inferred from the observations; the model radio maps and spectra are compared with observations. We have found that the potential-magnetic-field approach fails to explain the observed circular polarization pattern; on the other hand, the Stokes-V map is successfully explained by assuming nonthermal electrons to be distributed along the twisted magnetic structure determined by the NLFFF extrapolation approach. Thus, we show that the radio-polarization maps can be used for diagnosing the topology of the flare magnetic structures where nonthermal electrons are injected.

  7. Search for harmonic emission in solar type I radio bursts

    Energy Technology Data Exchange (ETDEWEB)

    Jaeggi, M.; Benz, A.O.

    1982-03-01

    We have made a statistical analysis of the harmonic emission of type I bursts, based upon the latest plasma wave theories for the emission mechanism. No systematic harmonic emission is found within the detection limit. This is also the case for a superposed epoch analysis of many bursts. The derived upper limit of the Langmuir wave energy density is Wsub(L)<5 10/sup -7/.lsub(km)/sup -1/ erg cm/sup -3/, where lsub(km) is the depth of the source. In a few single cases there is emission at the harmonic frequency but we could not exclude that this are change hits of an independent activity present at that frequency. These observations provide a considerable constraint on plasma emission models of type I bursts.

  8. Pulsed Gamma Rays from the Original Millisecond and Black Widow Pulsars: A Case for Caustic Radio Emission?

    Science.gov (United States)

    Guillemot, L.; Johnson, T. J.; Venter, C.; Kerr, M.; Pancrazi, B.; Livingstone, M.; Janssen, G. H.; Jaroenjittichai, P.; Kramer, M.; Cognard, I.; hide

    2011-01-01

    We report the detection of pulsed gamma-ray emission from the fast millisecond pulsars (MSPs) B1937+21 (also known as J1939+2134) and B1957+20 (J1959+2048) using 18 months of survey data recorded by the Fermi Large Area Telescope (LAT) and timing solutions based on radio observations conducted at the Westerbork and Nancay radio telescopes. In addition, we analyzed archival RXTE and XMM-Newton X-ray data for the two MSPs, confirming the X-ray emission properties of PSR B1937+21 and finding evidence (approx. 4(sigma)) for pulsed emission from PSR B1957+20 for the first time. In both cases the gamma-ray emission profile is characterized by two peaks separated by half a rotation and are in close alignment with components observed in radio and X-rays. These two pulsars join PSRs J0034..0534 and J2214+3000 to form an emerging class of gamma-ray MSPs with phase-aligned peaks in different energy bands. The modeling of the radio and gamma-ray emission pro les suggests co-located emission regions in the outer magnetosphere.

  9. Sky-distribution of intensity of synchrotron radio emission of relativistic electrons trapped in Earth’s magnetic field

    Directory of Open Access Journals (Sweden)

    Klimenko V.V.

    2017-12-01

    Full Text Available This paper presents the calculations of synchrotron radio emission intensity from Van Allen belts with Gaussian space distribution of electron density across L-shells of a dipole magnetic field, and with Maxwell’s relativistic electron energy distribution. The results of these calculations come to a good agreement with measurements of the synchrotron emission intensity of the artificial radiation belt’s electrons during the Starfish nuclear test. We have obtained two-dimensional distributions of radio brightness in azimuth — zenith angle coordinates for an observer on Earth’s surface. The westside and eastside intensity maxima exceed several times the maximum level of emission in the meridian plane. We have also constructed two-dimensional distributions of the radio emission intensity in decibels related to the background galactic radio noise level. Isotropic fluxes of relativistic electrons (Е~1 MeV should be more than 107 cm–2s–1 for the synchrotron emission intensity in the meridian plane to exceed the cosmic noise level by 0.1 dB (riometer sensitivity threshold.

  10. Solar Flash Sub-Millimeter Wave Range Spectrum Part Radiation Modeling

    Directory of Open Access Journals (Sweden)

    V. Yu. Shustikov

    2015-01-01

    Full Text Available Currently, solar flares are under observation on the RT-7.5 radio telescope of BMSTU. This telescope operates in a little-studied range of the spectrum, at wavelengths of 3.2 and 2.2 mm (93 and 140 GHz, thereby providing unique information about parameters of the chromosphere plasma and zone of the temperature minimum. Observations on various instruments provided relatively small amount of data on the radio emission flare at frequencies close to 93 GHz, and at frequency of 140 GHz such observations were not carried out. For these reasons, data collected from the RT-7.5 radio telescope are of high value (Shustikov et al., 2012.This work describes modeling and gives interpretation of the reason for raising flux density spectrum of sub-millimeter radio frequency emission using as an example the GOES flare of class M 5.3 occurred on 04.07.2012 in the active region 11515. This flare was observed on the RT-7.5 radio telescope of BMSTU and was described by Shustikov et al. (2012 and by Smirnova et al. (2013, where it has been suggested that the reason for raising radio frequency emission is a bremsstrahlung of the thermal electrons in the hot plasma of the solar chromosphere. Rough estimates of the plasma temperature at the flare source were obtained.This paper proposes model calculations of the flux density spectrum of the sub-millimeter radio emission based on the gyrosynchrotron Fleischman-Kuznetsov code (Fleishman & Kuznetsov, 2010. Section 1 briefly describes observational data, tools and processing methods used in the work. Section 2 shows results of modeling the flare radio emission. Section 3 discusses results and conclusions.Numerical modeling the sub-millimeter part of the spectrum of the radio flux density for the GOES flare of class M5.3 has been carried out. This flare occurred in the active region 11515 on 04.07.2012. Modeling was based on the observations on the BMSTU’s RT-7.5 radio telescope.The paper draws conclusion based on the

  11. DISCOVERY OF A FLAT-SPECTRUM RADIO NUCLEUS IN NGC 3115

    Energy Technology Data Exchange (ETDEWEB)

    Wrobel, J. M. [National Radio Astronomy Observatory, P.O. Box O, Socorro, NM 87801 (United States); Nyland, K., E-mail: jwrobel@nrao.edu, E-mail: knyland@nrao.edu [New Mexico Tech, Department of Physics, 801 Leroy Place, Socorro, NM 87801 (United States)

    2012-12-01

    The early-type galaxy NGC 3115, at a distance of 10.2 Mpc, hosts the nearest billion-solar-mass black hole. Wong et al. recently inferred a substantial Bondi accretion rate near the black hole. Bondi-like accretion is thought to fuel outflows, which can be traced through their radio emission. This paper reports the discovery of a radio nucleus in NGC 3115, with a diameter less than 0.''17 (8.4 pc), a luminosity at 8.5 GHz of 3.1 Multiplication-Sign 10{sup 35} erg s{sup -1}, and a flat spectrum ({alpha} = -0.23 {+-} 0.20, S{proportional_to}{nu}{sup {alpha}}). The radio source coincides with the galaxy's photocenter and candidate X-ray nucleus. The emission is radio loud, suggesting the presence of an outflow on scales less than 10 pc. On such scales, the Bondi accretion could be impeded by heating due to disruption of the outflow.

  12. J1649+2635: A Grand-Design Spiral with a Large Double-Lobed Radio Source

    Science.gov (United States)

    Mao, Minnie Y.; Owen, Frazer; Duffin, Ryan; Keel, Bill; Lacy, Mark; Momjian, Emmanuel; Morrison, Glenn; Mroczkowski, Tony; Neff, Susan; Norris, Ray P.; hide

    2014-01-01

    We report the discovery of a grand-design spiral galaxy associated with a double-lobed radio source. J1649+2635 (z = 0.0545) is a red spiral galaxy with a prominent bulge that it is associated with a L(1.4GHz) is approximately 10(exp24) W Hz(exp-1) double-lobed radio source that spans almost 100 kpc. J1649+2635 has a black hole mass of M(BH) is approximately 3-7 × 10(exp8) Solar mass and SFR is approximately 0.26 - 2.6 solar mass year(exp-1). The galaxy hosts a approximately 96 kpc diffuse optical halo, which is unprecedented for spiral galaxies. We find that J1649+2635 resides in an overdense environment with a mass of M(dyn) = 7.7(+7.9/-4.3) × 10(exp13) Solar mass, likely a galaxy group below the detection threshold of the ROSAT All-Sky Survey. We suggest one possible scenario for the association of double-lobed radio emission from J1649+2635 is that the source may be similar to a Seyfert galaxy, located in a denser-than-normal environment. The study of spiral galaxies that host large-scale radio emission is important because although rare in the local Universe, these sources may be more common at high-redshifts.

  13. Coronal mass ejections and solar radio bursts

    International Nuclear Information System (INIS)

    Kundu, M.R.

    1990-01-01

    The properties of coronal mass ejection (CME) events and their radio signatures are discussed. These signatures are mostly in the form of type II and type IV burst emissions. Although type II bursts are temporally associated with CMEs, it is shown that there is no spatial relationship between them. Type II's associated with CMEs have in most cases a different origin, and they are not piston-driven by CMEs. Moving type IV and type II bursts can be associated with slow CMEs with speeds as low as 200 km/s, contrary to the earlier belief that only CMEs with speeds >400 km/s are associated with radio bursts. A specific event has been discussed in which the CME and type IV burst has nearly the same speed and direction, but the type II burst location was behind the CME and its motion was transverse. The speed and motion of the type II burst strongly suggest that the type II shock was decoupled from the CME and was probably due to a flare behind the limb. Therefore only the type IV source could be directly associated with the slow CME. The electrons responsble for the type IV emission could be produced in the flare or in the type II and then become trapped in a plasmoid associated with the CME. The reconnected loop could then move outwards as in the usual palsmoid model. Alternatively, the type IV emission could be interpreted as due to electrons produced by acceleration in wave turbulence driven by currents in the shock front driven by the CME. The lower-hybrid model Lampe and Papadopoulos (1982), which operates at both fast and slow mode shocks, could be applied to this situation. (author). 31 refs., 12 figs

  14. Modelling of radio emission from cosmic ray air showers

    Science.gov (United States)

    Ludwig, Marianne

    2011-06-01

    Cosmic rays entering the Earth's atmosphere induce extensive air showers consisting of up to billions of secondary particles. Among them, a multitude of electrons and positrons are generated. These get deflected in the Earth's magnetic field, creating time-varying transverse currents. Thereby, the air shower emits coherent radiation in the MHz frequency range measured by radio antenna arrays on the ground such as LOPES at the KIT. This detection method provides a possibility to study cosmic rays with energies above 1017 eV. At this time, the radio technique undergoes the change from prototype experiments to large scale application. Thus, a detailed understanding of the radio emission process is needed more than ever. Before starting this work, different models made conflicting predictions on the pulse shape and the amplitude of the radio signal. It turned out that a radiation component caused by the variation of the number of charged particles within the air shower was missed in several models. The Monte Carlo code REAS2 superposing the radiation of the individual air shower electrons and positrons was one of those. At this time, it was not known how to take the missing component into account. For REAS3, we developed and implemented the endpoint formalism, a universal approach, to calculate the radiation from each single particle. For the first time, we achieve a good agreement between REAS3 and MGMR, an independent and completely different simulation approach. In contrast to REAS3, MGMR is based on a macroscopic approach and on parametrisations of the air shower. We studied the differences in the underlying air shower models to explain the remaining deviations. For comparisons with LOPES data, we developed a new method which allows "top-down" simulations of air showers. From this, we developed an air shower selection criterion based on the number of muons measured with KASCADE to take shower-to-shower fluctuations for a single event analysis into account. With

  15. Radio stars

    International Nuclear Information System (INIS)

    Hjellming, R.M.; Gibson, D.M.

    1985-01-01

    Studies of stellar radio emission became an important field of research in the 1970's and have now expanded to become a major area of radio astronomy with the advent of new instruments such as the Very Large Array in New Mexico and transcontinental telescope arrays. This volume contains papers from the workshop on stellar continuum radio astronomy held in Boulder, Colorado, and is the first book on the rapidly expanding field of radio emission from stars and stellar systems. Subjects covered include the observational and theoretical aspects of stellar winds from both hot and cool stars, radio flares from active double star systems and red dwarf stars, bipolar flows from star-forming regions, and the radio emission from X-ray binaries. (orig.)

  16. Local Group dSph radio survey with ATCA - II. Non-thermal diffuse emission

    Science.gov (United States)

    Regis, Marco; Richter, Laura; Colafrancesco, Sergio; Profumo, Stefano; de Blok, W. J. G.; Massardi, Marcella

    2015-04-01

    Our closest neighbours, the Local Group dwarf spheroidal (dSph) galaxies, are extremely quiescent and dim objects, where thermal and non-thermal diffuse emissions lack, so far, of detection. In order to possibly study the dSph interstellar medium, deep observations are required. They could reveal non-thermal emissions associated with the very low level of star formation, or to particle dark matter annihilating or decaying in the dSph halo. In this work, we employ radio observations of six dSphs, conducted with the Australia Telescope Compact Array in the frequency band 1.1-3.1 GHz, to test the presence of a diffuse component over typical scales of few arcmin and at an rms sensitivity below 0.05 mJy beam-1. We observed the dSph fields with both a compact array and long baselines. Short spacings led to a synthesized beam of about 1 arcmin and were used for the extended emission search. The high-resolution data mapped background sources, which in turn were subtracted in the short-baseline maps, to reduce their confusion limit. We found no significant detection of a diffuse radio continuum component. After a detailed discussion on the modelling of the cosmic ray (CR) electron distribution and on the dSph magnetic properties, we present bounds on several physical quantities related to the dSphs, such that the total radio flux, the angular shape of the radio emissivity, the equipartition magnetic field, and the injection and equilibrium distributions of CR electrons. Finally, we discuss the connection to far-infrared and X-ray observations.

  17. Problems with interpreting the radio emission from hot stars

    International Nuclear Information System (INIS)

    Underhill, A.B.

    1985-01-01

    The hypothesis that the radio emission from a hot star is due solely to bremsstrahlung in a spherically symmetric wind flowing at a constant velocity and the constraint that the wind be transparent enough to allow the stationary photosphere to be seen, place a limit on mass loss/v (M/V). The constraint that the momentum in the wind be provided by the radiation field places a limit on Mv. It is noted that both constraints are satisfied by the usually deduced values of M and v(infinity) for OB supergiants. The case for early O stars is marginal, while for Wolf-Rayet stars M/v and Mv are too large to satisfy the several hypotheses usually made. The trouble is due to M being too large by at least a factor 10. It is noted that postulating that part of the radio flux from Wolf-Rayet stars is caused by processes in a low-density magnetized plasma provides a solution to the dilemma. This solution offers advantages when accounting for the emission lines of Wolf-Rayet stars. (orig.)

  18. Radio emission in peculiar galaxies

    Science.gov (United States)

    Demellorabaca, Dulia F.; Abraham, Zulema

    1990-01-01

    During the last decades a number of surveys of peculiar galaxies have been carried out and accurate positions become available. Since peculiarities are a possible evidence of radio emission (Wright, 1974; Sulentic, 1976; Stocke et al., 1978), the authors selected a sample of 24 peculiar galaxies with optical jet-like features or extensions in different optical catalogues, mainly the Catalogue of Southern Peculiar Galaxies and Associations (Arp and Madore, 1987) and the ESO/Uppsala Survey of the ESO(B) Atlas (Lauberts, 1982) for observation at the radio continuum frequency of 22 GHz. The sample is listed in a table. Sol (1987) studied this sample and concluded that the majority of the jet-like features seem to admit an explanation in terms of interactive galaxies with bridges and/or tails due to tidal effects. Only in a few cases do the jets seem to be possibly linked to some nuclear activity of the host galaxy. The observations were made with the 13.7m-radome enclosed Itapetinga Radiotelescope (HPBW of 4.3 arcmin), in Brazil. The receiver was a 1 GHz d.s.b. super-heterodine mixer operated in total-power mode, with a system temperature of approximately 800 K. The observational technique consisted in scans in right ascention, centralized in the optical position of the galaxy. The amplitude of one scan was 43 arcmin, and its duration time was 20 seconds. The integration time was at least 2 hours (12 ten-minute observations) and the sensibility limit adopted was an antenna temperature greater than 3 times the r.m.s. error of the baseline determination. Virgo A was used as the calibrator source. Three galaxies were detected for the first time as radio sources and four other known galaxies at low frequencies had their flux densities measured at 22 GHz. The results for these sources are presented.

  19. Solar-Geophysical Data Number 568, December 1991. Part 1 (prompt reports). Data for November, October 1991 and late data

    International Nuclear Information System (INIS)

    Coffey, H.E.

    1991-12-01

    The contents include: Detailed index for 1991; Data for November 1991--Solar-terrestrial environment, IUWDS alert periods (advance and worldwide), Solar activity indices, Solar flares, Solar radio emission, Stanford mean solar magnetic field; Data for October 1991--Solar active regions, Sudden ionospheric disturbances, Solar radio spectral observations, Cosmic ray measurements by neutron monitor, Geomagnetic indices; Late data--Cosmic ray measurements by neutron monitor (Climax February and May 1990, Deep River May-August 1991), Geomagnetic indices (Sudden commencements/Solar flare effects January-May 1991); Errata--August 1991 Geomagnetic activity indices

  20. Luminescent solar concentrators utilizing stimulated emission.

    Science.gov (United States)

    Kaysir, Md Rejvi; Fleming, Simon; MacQueen, Rowan W; Schmidt, Timothy W; Argyros, Alexander

    2016-03-21

    Luminescent solar concentrators (LSCs) are an emerging technology that aims primarily to reduce the cost of solar energy, with great potential for building integrated photovoltaic (PV) structures. However, realizing LSCs with commercially viable efficiency is currently hindered by reabsorption losses. Here, we introduce an approach to reducing reabsorption as well as improving directional emission in LSCs by using stimulated emission. Light from a seed laser (potentially an inexpensive laser diode) passes through the entire area of the LSC panel, modifying the emission spectrum of excited dye molecules such that it is spectrally narrower, at wavelengths that minimize reabsorption to allow net gain in the system, and directed towards a small PV cell. A mathematical model, taking into account thermodynamic considerations, of such a system is presented which identifies key parameters and allows evaluation in terms of net effective output power.

  1. Radio emissions from pulsar companions: a refutable explanation for galactic transients and fast radio bursts

    Science.gov (United States)

    Mottez, F.; Zarka, P.

    2014-09-01

    Context. The six known highly dispersed fast radio bursts are attributed to extragalactic radio sources that are of unknown origin but extremely energetic. We propose here a new explanation that does not require an extreme release of energy and involves a body (planet, asteroid, white dwarf) orbiting an extragalactic pulsar. Aims: We investigate a theory of radio waves associated with such pulsar-orbiting bodies. We focus our analysis on the waves emitted from the magnetic wake of the body in the pulsar wind. After deriving their properties, we compare them with the observations of various transient radio signals to determine whether they could originate from pulsar-orbiting bodies. Methods: The analysis is based on the theory of Alfvén wings: for a body immersed in a pulsar wind, a system of two stationary Alfvén waves is attached to the body, provided that the wind is highly magnetised. When they are destabilised through plasma instabilities, Alfvén wings can be the locus of strong radio sources that are convected with the pulsar wind. By assuming a cyclotron maser instability operating in the Alfvén wings, we make predictions about the shape, frequencies, and brightness of the resulting radio emissions. Results: Because of the beaming by relativistic aberration, the signal is seen only when the companion is perfectly aligned between its parent pulsar and the observer, as is the case for occultations. For pulsar winds with a high Lorentz factor (≥104), the whole duration of the radio event does not exceed a few seconds, and it is composed of one to four peaks that last a few milliseconds each and are detectable up to distances of several Mpc. The Lorimer burst, the three isolated pulses of PSR J1928+15, and the recently detected fast radio bursts are all compatible with our model. According to it, these transient signals should repeat periodically with the companion's orbital period. Conclusions: The search of pulsar-orbiting bodies could be an exploration

  2. Radio emission from a helical electron beam-plasma system in a twisted magnetic field

    International Nuclear Information System (INIS)

    Krishan, V.

    1982-01-01

    The excitation of electromagnetic radiation near the harmonics of electron plasma frequency from a helical electron beam travelling parallel to a helical magnetic field through a stationary inhomogeneous plasma is studied. The motivation behind this study is to explain the observed characteristics of the type III solar radio bursts and thus to predict the nature of the plasma system responsible for the generation of these radio bursts. (author)

  3. The Models for Radio Emission from Pulsars – The Outstanding issues

    Indian Academy of Sciences (India)

    tribpo

    in section 4, where existing models for pulsar radio emission are also reviewed. ... pair plasma flowing outward along open magnetic field lines from the polar caps ..... A reactive instability involves an intrinsically growing, phase-coherent wave.

  4. Impact of trade in emission reduction credits on solar projects

    International Nuclear Information System (INIS)

    Kulkarni, P.

    1993-01-01

    Since the amendment of the Clean Air Act in 1990, the possibility of trading in Emission Reduction Credits has been looked upon as a strategy for improving the economic feasibility of solar projects. This paper discusses developments towards such a market and reviews current and proposed emission trading practices. The paper analyzes how the current characteristics of the market help or hinder the trading of credits generated by solar projects, and suggests possible solutions. Emission credits from four different solar projects and their trading potentials are presented

  5. Dense solar wind cloud geometries deduced from comparisons of radio signal delay and in situ plasma measurements

    Science.gov (United States)

    Landt, J. A.

    1974-01-01

    The geometries of dense solar wind clouds are estimated by comparing single-location measurements of the solar wind plasma with the average of the electron density obtained by radio signal delay measurements along a radio path between earth and interplanetary spacecraft. Several of these geometries agree with the current theoretical spatial models of flare-induced shock waves. A new class of spatially limited structures that contain regions with densities greater than any observed in the broad clouds is identified. The extent of a cloud was found to be approximately inversely proportional to its density.

  6. Ground and space observations of medium frequency auroral radio emissions

    Science.gov (United States)

    Broughton, Matthew C.

    The auroral zone is a rich source of natural radio emissions that can be observed in space and at ground-level. By studying these waves, scientists can gain insight into the plasma processes that generate them and use the near-Earth space environment as a large-scale plasma physics laboratory. This thesis uses both ground-level and in situ observations to study two kinds of natural radio emissions. First, we report observations of a new kind of auroral radio emission. The waves have frequencies ranging from 1.3-2.2 MHz, bandwidths ranging from 90-272 kHz, and durations ranging from 16-355 s. Spectral analysis of the waveform data has revealed that the emission has a complex combination of at least three kinds of fine structures. For model auroral electron distributions, calculations indicate that Langmuir waves could be excited at frequencies consistent with observations. The remainder of the thesis discusses auroral medium frequency (MF) burst, an impulsive, broadband natural radio emission observed at ground-level within a few minutes of local substorm onset. LaBelle [2011] proposed that MF burst originates as Langmuir/Z-mode waves on the topside of the ionosphere that subsequently mode convert to L-mode waves and propagate to ground-level. Using continuous waveform measurements and combined observations with the Sondrestrom Incoherent Scatter Radar, we have performed two tests of this mechanism. The results of these tests are consistent with the mechanism described in LaBelle [2011]. A survey of 8,624 half-orbits of the DEMETER spacecraft has revealed 68 observations of bursty MF waves. We have compared the wave properties of these waves to those of MF burst and have found that although it is uncertain, the balance of the evidence suggests that the bursty MF waves observed with DEMETER are the same phenomenon as the ground-level MF burst. Finally, we have used numerical simulations to model both the fine structure of MF burst and to estimate the attenuation the

  7. Radio-emission of pre-main sequence stars of the Rho Ophiuchi cloud: observations and interpretation

    International Nuclear Information System (INIS)

    Andre, P.

    1987-11-01

    Observations of the radio continuum emission of a young star population have been made at VLA on the whole molecular cloud Rho Ophiuchi, one of the closest site of star formation. A dozen of stellar sources have been detected. Radio emission of some identified objects seems to have a magnetic nature and be produced by gyrosynchrotron mechanism. In particular, one of the sources shows a radio radiation circularly polarized; two other stars have a radiation strongly variable probably due to magnetic eruptions more important than those detected in X radiation. More generally, radio observations select probably a specific population of young stars characterized by magnetic field presence extended on several stellar radii and by absence of dense circumstellar environment. Spatial distribution of these objects suggest, they are younger than most of the pre-main sequence stars [fr

  8. LSPM J1314+1320: An Oversized Magnetic Star with Constraints on the Radio Emission Mechanism

    Energy Technology Data Exchange (ETDEWEB)

    MacDonald, James; Mullan, D. J. [Dept. Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States)

    2017-07-10

    LSPM J1314+1320 (=NLTT 33370) is a binary star system consisting of two nearly identical pre-main-sequence stars of spectral type M7. The system is remarkable among ultracool dwarfs for being the most luminous radio emitter over the widest frequency range. Masses and luminosities are at first sight consistent with the system being coeval at age ∼80 Myr according to standard (nonmagnetic) evolutionary models. However, these models predict an average effective temperature of ∼2950 K, which is 180 K hotter than the empirical value. Thus, the empirical radii are oversized relative to the standard models by ≈13%. We demonstrate that magnetic stellar models can quantitatively account for the oversizing. As a check on our models, we note that the radio emission limits the surface magnetic field strengths: the limits depend on identifying the radio emission mechanism. We find that the field strengths required by our magnetic models are too strong to be consistent with gyrosynchrotron emission but are consistent with electron cyclotron maser emission.

  9. Wave disturbances in the solar corona: radio observations at 24.5-25.5 MHz

    International Nuclear Information System (INIS)

    Kobrin, M.M.; Snegriev, S.D.

    1984-01-01

    We present an analysis of observations of fluctuations in the integrated flux of radio emission from the ''quiet'' sun. The observations were made on the UTR-2 radiotelescope, simultaneously at 11 frequencies in the range 24.5-25.5 MHz. Control observations of Taurus were made in order to allow for the effects of the earth's ionosphere. We measured the phase dependences between oscillations in the radio emission intensity which looked like wave trains. From these measurements we found that for periods of about 10 min we always observed disturbances propagating from the lower levels of the corona to the upper levels. The frequency drift in the trains is observed to be about 10 -3 MHz/sec, corresponding to a disturbance velocity of about 100 km/sec. This may be associated with the propagation of magnetosonic waves. Our estimates show that the observed effects cannot be explained by a bremsstrahlung mechanism: We need to rely on plasma mechanisms in order to explain how the radio emission is generated

  10. Radio emission from pre-main-sequence stars in Corona Australis

    International Nuclear Information System (INIS)

    Brown, A.

    1987-01-01

    The central region of the Corona Australis molecular cloud surrounding the stars R and TY CrA has been studied using the VLA at 6 cm. Eleven radio sources are detected including five associated with pre-main-sequence objects. The most striking is associated with the near-IR source IRS 7 and shows a complex structure comprising two strong pointlike sources positioned either side of the deeply embedded IR source and two extended lobes of radio emission. The IRS 7 radio source appears to be similar to that associated with Lynds 1551 IRS 5 but has a considerably larger angular size. The other detected sources include the massive pre-main-sequence star TY CrA, the near-IR sources IRS 1 and IRS 5, and the Herbig-Haro object HH 101. The stars R and T CrA were not detected. 35 references

  11. VARIABLE AND POLARIZED RADIO EMISSION FROM THE T6 BROWN DWARF WISEP J112254.73+255021.5

    Energy Technology Data Exchange (ETDEWEB)

    Williams, P. K. G.; Berger, E. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Gizis, J. E., E-mail: pwilliams@cfa.harvard.edu [Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States)

    2017-01-10

    Route and Wolszczan recently detected five radio bursts from the T6 dwarf WISEP J112254.73+255021.5 and used the timing of these events to propose that this object rotates with an ultra-short period of ∼17.3 minutes. We conducted follow-up observations with the Very Large Array and Gemini-North but found no evidence for this periodicity. We do, however, observe variable, highly circularly polarized radio emission. Assuming that the radio emission of this T dwarf is periodically variable on ∼hour timescales, like other radio-active ultracool dwarfs, we infer a likely period of 116 minutes. However, our observation lasted only 162 minutes and so more data are needed to test this hypothesis. The handedness of the circular polarization switches twice and there is no evidence for any unpolarized emission component, the first time such a phenomenology has been observed in radio studies of very low-mass stars and brown dwarfs. We suggest that the object’s magnetic dipole axis may be highly misaligned relative to its rotation axis.

  12. Solar Type II Radio Bursts and IP Type II Events

    Science.gov (United States)

    Cane, H. V.; Erickson, W. C.

    2005-01-01

    We have examined radio data from the WAVES experiment on the Wind spacecraft in conjunction with ground-based data in order to investigate the relationship between the shocks responsible for metric type II radio bursts and the shocks in front of coronal mass ejections (CMEs). The bow shocks of fast, large CMEs are strong interplanetary (IP) shocks, and the associated radio emissions often consist of single broad bands starting below approx. 4 MHz; such emissions were previously called IP type II events. In contrast, metric type II bursts are usually narrowbanded and display two harmonically related bands. In addition to displaying complete dynamic spectra for a number of events, we also analyze the 135 WAVES 1 - 14 MHz slow-drift time periods in 2001-2003. We find that most of the periods contain multiple phenomena, which we divide into three groups: metric type II extensions, IP type II events, and blobs and bands. About half of the WAVES listings include probable extensions of metric type II radio bursts, but in more than half of these events, there were also other slow-drift features. In the 3 yr study period, there were 31 IP type II events; these were associated with the very fastest CMEs. The most common form of activity in the WAVES events, blobs and bands in the frequency range between 1 and 8 MHz, fall below an envelope consistent with the early signatures of an IP type II event. However, most of this activity lasts only a few tens of minutes, whereas IP type II events last for many hours. In this study we find many examples in the radio data of two shock-like phenomena with different characteristics that occur simultaneously in the metric and decametric/hectometric bands, and no clear example of a metric type II burst that extends continuously down in frequency to become an IP type II event. The simplest interpretation is that metric type II bursts, unlike IP type II events, are not caused by shocks driven in front of CMEs.

  13. The solar eruption of 13 May 2005: EISCAT and MERLIN observations of a coronal radio burst

    Directory of Open Access Journals (Sweden)

    R. A. Jones

    2006-09-01

    Full Text Available We report results from EISCAT and MERLIN observations of radio scintillation during a solar eruptive event in May 2005. Anomalous increases in signal strength detected at sites more than 2000 km apart are shown to arise from the detection of a strong coronal radio burst in the distant off-axis response of the MERLIN and EISCAT antennas. These observations show that EISCAT is capable of detecting the signatures of explosive events in the solar atmosphere with a high degree of time resolution. We further suggest that the highly time-structured variation in signal strength caused by distant off-axis detection of a powerful coronal radio signal could provide an explanation for previously unexplained anomalies in EISCAT IPS observations, as well as being a potential source of errors in active observations using radar codes with a completion time longer than the time-variation of the coronal signal.

  14. Letter to the Editor UHF electromagnetic emission stimulated by HF pumping of the ionosphere

    Directory of Open Access Journals (Sweden)

    S. M. Grach

    2002-10-01

    Full Text Available UHF electromagnetic emission (with a frequency near 600 MHz from the F-region of the ionosphere pumped by an HF powerful radio wave is revealed. Possible mechanisms of the emission excitation, such as plasma mode con-version, scattering or Earth thermal noise emission off the plasma density irregularities, bremsstrahlung and excitation of high Rydberg states of the neutral particles by the accelerated electrons are discussed.Key words. Ionosphere (active experiments; wave-particle interactions – Solar physics, astrophysics, and astronomy (radio emissions

  15. Letter to the Editor UHF electromagnetic emission stimulated by HF pumping of the ionosphere

    Directory of Open Access Journals (Sweden)

    E. N. Sergeev

    Full Text Available UHF electromagnetic emission (with a frequency near 600 MHz from the F-region of the ionosphere pumped by an HF powerful radio wave is revealed. Possible mechanisms of the emission excitation, such as plasma mode con-version, scattering or Earth thermal noise emission off the plasma density irregularities, bremsstrahlung and excitation of high Rydberg states of the neutral particles by the accelerated electrons are discussed.Key words. Ionosphere (active experiments; wave-particle interactions – Solar physics, astrophysics, and astronomy (radio emissions

  16. Generation of auroral hectometer radio emission at the laser cyclotron resonance (ωp≥ωH)

    International Nuclear Information System (INIS)

    Vlasov, V.G.

    1992-01-01

    Generation of auroral hectometer (AHR) and kilometer (AKR) radio emission at a maser cyclotron resonance (MCR) in a relatively dense plasma (ω p ≥ω H ) is theoretically studied. The conclusion is made that availability of two-dimensional small-scale inhomogeneity of plasma density is the basic condition for the AHR generation at the MCR by auroral electron beams. The small-scale inhomogeneity of the auroral plasma, measured on satelites, meets by its parameters the conditions for the generation of auroral radio emission

  17. PLASMA EMISSION BY NONLINEAR ELECTROMAGNETIC PROCESSES

    Energy Technology Data Exchange (ETDEWEB)

    Ziebell, L. F.; Petruzzellis, L. T.; Gaelzer, R. [Instituto de Física, UFRGS, Porto Alegre, RS (Brazil); Yoon, P. H. [Institute for Physical Science and Technology, University of Maryland, College Park (United States); Pavan, J., E-mail: luiz.ziebell@ufrgs.br, E-mail: laripetruzzellis@yahoo.com.br, E-mail: rudi.gaelzer@ufrgs.br, E-mail: yoonp@umd.edu, E-mail: joel.pavan@ufpel.edu.br [Instituto de Física e Matemática, UFPel, Pelotas, RS (Brazil)

    2015-06-20

    The plasma emission, or electromagnetic (EM) radiation at the plasma frequency and/or its harmonic(s), is generally accepted as the radiation mechanism responsible for solar type II and III radio bursts. Identification and characterization of these solar radio burst phenomena were done in the 1950s. Despite many decades of theoretical research since then, a rigorous demonstration of the plasma emission process based upon first principles was not available until recently, when, in a recent Letter, Ziebell et al. reported the first complete numerical solution of EM weak turbulence equations; thus, quantitatively analyzing the plasma emission process starting from the initial electron beam and the associated beam-plasma (or Langmuir wave) instability, as well as the subsequent nonlinear conversion of electrostatic Langmuir turbulence into EM radiation. In the present paper, the same problem is revisited in order to elucidate the detailed physical mechanisms that could not be reported in the brief Letter format. Findings from the present paper may be useful for interpreting observations and full-particle numerical simulations.

  18. THE UBIQUITOUS RADIO CONTINUUM EMISSION FROM THE MOST MASSIVE EARLY-TYPE GALAXIES

    International Nuclear Information System (INIS)

    Brown, Michael J. I.; Jannuzi, Buell T.; Floyd, David J. E.; Mould, Jeremy R.

    2011-01-01

    We have measured the radio continuum emission of 396 early-type galaxies brighter than K = 9, using 1.4 GHz imagery from the NRAO Very Large Array Sky Survey, Green Bank 300 ft Telescope, and 64 m Parkes Radio Telescope. For M K K < -25.5 early-type galaxies are greater than zero in all cases. It is thus highly likely that the most massive galaxies always host an active galactic nucleus or have recently undergone star formation.

  19. Solar flares, coronal mass ejections and solar energetic particle event characteristics

    Science.gov (United States)

    Papaioannou, Athanasios; Sandberg, Ingmar; Anastasiadis, Anastasios; Kouloumvakos, Athanasios; Georgoulis, Manolis K.; Tziotziou, Kostas; Tsiropoula, Georgia; Jiggens, Piers; Hilgers, Alain

    2016-12-01

    A new catalogue of 314 solar energetic particle (SEP) events extending over a large time span from 1984 to 2013 has been compiled. The properties as well as the associations of these SEP events with their parent solar sources have been thoroughly examined. The properties of the events include the proton peak integral flux and the fluence for energies above 10, 30, 60 and 100 MeV. The associated solar events were parametrized by solar flare (SF) and coronal mass ejection (CME) characteristics, as well as related radio emissions. In particular, for SFs: the soft X-ray (SXR) peak flux, the SXR fluence, the heliographic location, the rise time and the duration were exploited; for CMEs the plane-of-sky velocity as well as the angular width were utilized. For radio emissions, type III, II and IV radio bursts were identified. Furthermore, we utilized element abundances of Fe and O. We found evidence that most of the SEP events in our catalogue do not conform to a simple two-class paradigm, with the 73% of them exhibiting both type III and type II radio bursts, and that a continuum of event properties is present. Although, the so-called hybrid or mixed events are found to be present in our catalogue, it was not possible to attribute each SEP event to a mixed/hybrid sub-category. Moreover, it appears that the start of the type III burst most often precedes the maximum of the SF and thus falls within the impulsive phase of the associated SF. At the same time, type III bursts take place within ≈5.22 min, on average, in advance from the time of maximum of the derivative of the SXR flux (Neupert effect). We further performed a statistical analysis and a mapping of the logarithm of the proton peak flux at E > 10 MeV, on different pairs of the parent solar source characteristics. This revealed correlations in 3-D space and demonstrated that the gradual SEP events that stem from the central part of the visible solar disk constitute a significant radiation risk. The velocity of

  20. Cosmological radio emission induced by WIMP Dark Matter

    International Nuclear Information System (INIS)

    Fornengo, N.; Regis, M.; Lineros, R.; Taoso, M.

    2012-01-01

    We present a detailed analysis of the radio synchrotron emission induced by WIMP dark matter annihilations and decays in extragalactic halos. We compute intensity, angular correlation, and source counts and discuss the impact on the expected signals of dark matter clustering, as well as of other astrophysical uncertainties as magnetic fields and spatial diffusion. Bounds on dark matter microscopic properties are then derived, and, depending on the specific set of assumptions, they are competitive with constraints from other indirect dark matter searches. At GHz frequencies, dark matter sources can become a significant fraction of the total number of sources with brightness below the microJansky level. We show that, at this level of fluxes (which are within the reach of the next-generation radio surveys), properties of the faint edge of differential source counts, as well as angular correlation data, can become an important probe for WIMPs

  1. Cosmological radio emission induced by WIMP Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Fornengo, N.; Regis, M. [Dipartimento di Fisica Teorica, Università di Torino, via P. Giuria 1, I-10125 Torino (Italy); Lineros, R.; Taoso, M., E-mail: fornengo@to.infn.it, E-mail: rlineros@ific.uv.es, E-mail: regis@to.infn.it, E-mail: mtaoso@phas.ubc.ca [IFIC, CSIC-Universidad de Valencia, Ed. Institutos, Apdo. Correos 22085, E-46071 Valencia (Spain)

    2012-03-01

    We present a detailed analysis of the radio synchrotron emission induced by WIMP dark matter annihilations and decays in extragalactic halos. We compute intensity, angular correlation, and source counts and discuss the impact on the expected signals of dark matter clustering, as well as of other astrophysical uncertainties as magnetic fields and spatial diffusion. Bounds on dark matter microscopic properties are then derived, and, depending on the specific set of assumptions, they are competitive with constraints from other indirect dark matter searches. At GHz frequencies, dark matter sources can become a significant fraction of the total number of sources with brightness below the microJansky level. We show that, at this level of fluxes (which are within the reach of the next-generation radio surveys), properties of the faint edge of differential source counts, as well as angular correlation data, can become an important probe for WIMPs.

  2. Search for Transient Gravitational Waves in Coincidence with Short-Duration Radio Transients During 2007-2013

    Science.gov (United States)

    Abbott, B. P.; Hughey, Brennan; Zanolin, Michele; Szczepanczyk, Marek; Gill, Kiranjyot; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; hide

    2016-01-01

    We present an archival search for transient gravitational-wave bursts in coincidence with 27 single-pulse triggers from Green Bank Telescope pulsar surveys, using the LIGO (Laser Interferometer Gravitational Wave Observatory), Virgo (Variability of Solar Irradiance and Gravity Oscillations) and GEO (German-UK Interferometric Detector) interferometer network. We also discuss a check for gravitational-wave signals in coincidence with Parkes fast radio bursts using similar methods. Data analyzed in these searches were collected between 2007 and 2013. Possible sources of emission of both short-duration radio signals and transient gravitational-wave emission include star quakes on neutron stars, binary coalescence of neutron stars, and cosmic string cusps. While no evidence for gravitational-wave emission in coincidence with these radio transients was found, the current analysis serves as a prototype for similar future searches using more sensitive second-generation interferometers.

  3. Strong Solar Control of Infrared Aurora on Jupiter: Correlation Since the Last Solar Maximum

    Science.gov (United States)

    Kostiuk, T.; Livengood, T. A.; Hewagama, T.

    2009-01-01

    Polar aurorae in Jupiter's atmosphere radiate throughout the electromagnetic spectrum from X ray through mid-infrared (mid-IR, 5 - 20 micron wavelength). Voyager IRIS data and ground-based spectroscopic measurements of Jupiter's northern mid-IR aurora, acquired since 1982, reveal a correlation between auroral brightness and solar activity that has not been observed in Jovian aurora at other wavelengths. Over nearly three solar cycles, Jupiter auroral ethane emission brightness and solar 10.7 cm radio flux and sunspot number are positively correlated with high confidence. Ethane line emission intensity varies over tenfold between low and high solar activity periods. Detailed measurements have been made using the GSFC HIPWAC spectrometer at the NASA IRTF since the last solar maximum, following the mid-IR emission through the declining phase toward solar minimum. An even more convincing correlation with solar activity is evident in these data. Current analyses of these results will be described, including planned measurements on polar ethane line emission scheduled through the rise of the next solar maximum beginning in 2009, with a steep gradient to a maximum in 2012. This work is relevant to the Juno mission and to the development of the Europa Jupiter System Mission. Results of observations at the Infrared Telescope Facility (IRTF) operated by the University of Hawaii under Cooperative Agreement no. NCC5-538 with the National Aeronautics and Space Administration, Science Mission Directorate, Planetary Astronomy Program. This work was supported by the NASA Planetary Astronomy Program.

  4. Effective Spectral Indices of Core and Extended Emissions for Radio ...

    Indian Academy of Sciences (India)

    Effective Spectral Indices of Core and Extended Emissions for Radio Sources. R. S. Yang1,∗, J. H. Yang1,2 & J. J. Nie1. 1Department of Physics and Electronics Science, Hunan University of Arts and Science,. Changde 415000, China. 2Centre for Astrophysics, Guangzhou University, Guangzhou 510006, China. ∗ e-mail: ...

  5. Electron-cyclotron maser emission during solar and stellar flares

    International Nuclear Information System (INIS)

    Winglee, R.M.

    1985-01-01

    Radio bursts, with high brightness temperature 10 to the 10th power K and high degree of polarization, and the heating of the solar and stellar coronae during flares have been attributed to emission from the semirelativistic maser instability. In plasmas where the electron-plasma frequency, p, omega sub p, and the electron-cyclotron frequency, Omega sub e, are such that omega sup 2 sub p/Omega sup 2 sub e 1, x-mode growth dominates while z-mode growth dominates if omega sup 2 sub p/Omega sup 2 sub e is of order unity. The actual value of omega sup 2 sub p/Omega sup 2 sub e at which x-mode growth dominates is shown to be dependent on the plasma temperature with x-mode growth dominating at higher omega sub p/Omega sub e as the plasma temperature increases. Observations from a set of 20 impulsive flares indicate that the derived conditions for the dominance of x-mode growth are satisfied in about 75 percent of the flares

  6. On a possible mechanism of quasi periodic pulses of the quiet Sun decametric radio emission

    International Nuclear Information System (INIS)

    Levin, B.N.; Snegireva, S.D.

    1983-01-01

    The observed fluctuations of the quiet Sun decametric radio emission are interpreted on the basis of the plasma mechanism of generation. These fluctuations may be caused by modulation of the optical depth of the radio source due to propagation of the sound wave packet through the corona

  7. Search for low-frequency diffuse radio emission around a shock in the massive galaxy cluster MACS J0744.9+3927

    Science.gov (United States)

    Wilber, A.; Brüggen, M.; Bonafede, A.; Rafferty, D.; Savini, F.; Shimwell, T.; van Weeren, R. J.; Botteon, A.; Cassano, R.; Brunetti, G.; De Gasperin, F.; Wittor, D.; Hoeft, M.; Birzan, L.

    2018-05-01

    Merging galaxy clusters produce low-Mach-number shocks in the intracluster medium. These shocks can accelerate electrons to relativistic energies that are detectable at radio frequencies. MACS J0744.9+3927 is a massive [M500 = (11.8 ± 2.8) × 1014 M⊙], high-redshift (z = 0.6976) cluster where a Bullet-type merger is presumed to have taken place. Sunyaev-Zel'dovich maps from MUSTANG indicate that a shock, with Mach number M = 1.0-2.9 and an extension of ˜200 kpc, sits near the centre of the cluster. The shock is also detected as a brightness and temperature discontinuity in X-ray observations. To search for diffuse radio emission associated with the merger, we have imaged the cluster with the LOw Frequency ARray (LOFAR) at 120-165 MHz. Our LOFAR radio images reveal previously undetected AGN emission, but do not show clear cluster-scale diffuse emission in the form of a radio relic nor a radio halo. The region of the shock is on the western edge of AGN lobe emission from the brightest cluster galaxy. Correlating the flux of known shock-induced radio relics versus their size, we find that the radio emission overlapping the shocked region in MACS J0744.9+3927 is likely of AGN origin. We argue against the presence of a relic caused by diffusive shock acceleration and suggest that the shock is too weak to accelerate electrons from the intracluster medium.

  8. Why is observable radio recombination line emission from galactic HII regions always close to LTE

    International Nuclear Information System (INIS)

    Shaver, P.A.

    1980-01-01

    There is no evidence for significant deviations from LTE in single-dish observations of radio recombination line emission from galactic HII regions. This is in agreement with the known properties of HII regions, particularly their density variations and limited range of excitation parameters; the optimum configuration for strong observable non-LTE effects, low electron density and high emission measure, simply does not exist in galactic HII regions, and the observed lines are emitted under near-LTE conditions. Models of the Orion Nebulae and NGC 6604 are presented which fit all available data and show only weak stimulated emission. It is concluded that reliable electron temperatures can indeed be obtained from straightforward analysis of appropriate radio recombination lines. (orig.)

  9. Found: The Original 1945 Records of Australian Radio Astronomy

    Science.gov (United States)

    Goss, Miller; Ekers, Ron; Sim, Helen

    2015-08-01

    In July 2014, we found the original records of the first published Australian radio astronomy observations. These were obtained by Joseph L. Pawsey and Ruby Payne-Scott in early October 1945. The observations gave strong evidence of a million degree corona as well as frequent radio bursts.These observations followed earlier detections of the radio sun by Stanley Hey, George Southworth, Grote Reber and Elizabeth Alexander. The latter observations (the "Norfolk Island Effect" of March 1945) were the immediate motivation for the campaign carried out by Pawsey and Payne-Scott.These observations formed the basis for a number of pioneering publications: the 9 February 1946 Nature paper of Pawsey, Payne-Scott and McCready which was submitted on the last date on which data was obtained on 23 October 1945, the major publication of the initial Australian radio solar publication in the Proceedings of the Royal Society of London in August 1947 and Pawsey's presentation of the radio properties of the million degree corona in the Nature of 2 November 1946. Contemporaneously with these publications, D. F.Martyn was involved in an independent theoretical study of the properties of the solar corona.(Ginzburg and Shklovsky were also involved in this era in a study of the properties of the corona.) The back-to-back Martyn and Pawsey Nature papers were the first that described the radio properties of the hot corona, due to free-free emission. The division of the observed emission into "bursting" and "quiet" modes was challenging for the novice radio astronomers.These historical records had been recognized by Paul Wild in 1968, who instructed the CSIRO Division of Radiophysics secretary to E.("Taffy") G. Bowen, Ms. Sally Atkinson, to submit these to the Australian Academy of Science. Wild characterized these documents as "of considerable historical interest". Apparently the transmission of the documents was not done; a thorough search of the Australian Academy Library in August 2014

  10. Commentary Relative to the Emission Spectrum of the Solar Atmosphere: Further Evidence for a Distinct Solar Surface

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2013-07-01

    Full Text Available The chromosphere and corona of the Sun represent tenuous regions which are characterized by numerous optically thin emission lines in the ultraviolet and X-ray bands. When observed from the center of the solar disk outward, these emission lines experience modest brightening as the limb is approached. The intensity of many ultraviolet and X-ray emission lines nearly doubles when observation is extended just beyond the edge of the disk. These findings indicate that the solar body is opaque in this frequency range and that an approximately two fold greater region of the solar atmosphere is being sampled outside the limb. These observations provide strong support for the presence of a distinct solar surface. Therefore, the behavior of the emission lines in this frequency range constitutes the twenty fifth line of evidence that the Sun is comprised of condensed matter

  11. Impulsive phase of solar flares: theory

    International Nuclear Information System (INIS)

    Mackinnon, A.L.

    1986-01-01

    The paper reviews the theoretical interpretation of impulsive phase phenomena in solar flares. The impulsive phase is defined to be that period of approx. 10 - 100s duration, during which the flare radiative output undergoes its most rapid, dramatic increase and decrease. The interpretation of the various impulsive phase radiation signatures are examined, including the i) hard x-ray emission, ii) radio emission, iii) UV, Hα and white light emissions and iv) gamma-ray emission. The acceleration mechanisms are discussed with respect to candidate acceleration mechanisms, and the synthesis of the theory and observations. (UK)

  12. Thermodynamics of photon-enhanced thermionic emission solar cells

    International Nuclear Information System (INIS)

    Reck, Kasper; Hansen, Ole

    2014-01-01

    Photon-enhanced thermionic emission (PETE) cells in which direct photon energy as well as thermal energy can be harvested have recently been suggested as a new candidate for high efficiency solar cells. Here, we present an analytic thermodynamical model for evaluation of the efficiency of PETE solar cells including an analysis of the entropy production due to thermionic emission of general validity. The model is applied to find the maximum efficiency of a PETE cell for given cathode and anode work functions and temperatures

  13. A Solar Stationary Type IV Radio Burst and Its Radiation Mechanism

    Science.gov (United States)

    Liu, Hongyu; Chen, Yao; Cho, Kyungsuk; Feng, Shiwei; Vasanth, Veluchamy; Koval, Artem; Du, Guohui; Wu, Zhao; Li, Chuanyang

    2018-04-01

    A stationary Type IV (IVs) radio burst was observed on September 24, 2011. Observations from the Nançay RadioHeliograph (NRH) show that the brightness temperature (TB) of this burst is extremely high, over 10^{11} K at 150 MHz and over 108 K in general. The degree of circular polarization (q) is between -60% ˜ -100%, which means that it is highly left-handed circularly polarized. The flux-frequency spectrum follows a power-law distribution, and the spectral index is considered to be roughly -3 ˜ -4 throughout the IVs. Radio sources of this event are located in the wake of the coronal mass ejection and are spatially dispersed. They line up to present a formation in which lower-frequency sources are higher. Based on these observations, it is suggested that the IVs was generated through electron cyclotron maser emission.

  14. MODELING THE RADIO EMISSION FROM Cyg OB2 NO. 5: A QUADRUPLE SYSTEM?

    International Nuclear Information System (INIS)

    Kennedy, M.; Dougherty, S. M.; Fink, A.; Williams, P. M.

    2010-01-01

    Fifty observations at frequencies between 1.4 GHz and 43 GHz of the 6.6 day O6.5-7+O5.5-6 binary Cyg OB2 No. 5 using the Very Large Array over 20 years are re-examined. The aim is to determine the location and character of the previously detected variable radio emission. The radio emission from the system consists of a primary component that is associated with the binary, and a non-thermal source (NE), 0.''8 to the NE of the binary that has been ascribed to a wind-collision region (WCR) between the stellar winds of the binary and that of a B-type star (Star D) to the NE. Previous studies have not accounted for the potential contribution of NE to the total radio emission, most especially in observations where the primary and NE sources are not resolved as separate sources. NE shows no evidence of variation in 23 epochs where it is resolved separately from the primary radio component, demonstrating that the variable emission arises in the primary component. Since NE is non-variable, the radio flux from the primary can now be well determined for the first time, most especially in observations that do not resolve both the primary and NE components. The variable radio emission from the primary component has a period of 6.7 ± 0.3 years which is described by a simple model of a non-thermal source orbiting within the stellar wind envelope of the binary. Such a model implies the presence of a third, unresolved stellar companion (Star C) orbiting the 6.6 day binary with a period of 6.7 years and independent of Star D to the NE. The variable non-thermal emission arises from either a WCR between Star C and the binary system, or possibly from Star C directly. The model gives a mass-loss rate of 3.4 x 10 -5 M sun yr -1 for Cyg OB2 No. 5, unusually high for an Of supergiant and comparable to that of WR stars, and consistent with an unusually strong He I 1.083 μm emission line, also redolent of WR stars. An examination of radial velocity observations available from the

  15. Faraday rotation fluctuations of MESSENGER radio signals through the equatorial lower corona near solar minimum

    Science.gov (United States)

    Wexler, D. B.; Jensen, E. A.; Hollweg, J. V.; Heiles, C.; Efimov, A. I.; Vierinen, J.; Coster, A. J.

    2017-02-01

    Faraday rotation (FR) of transcoronal radio transmissions from spacecraft near superior conjunction enables study of the temporal variations in coronal plasma density, velocity, and magnetic field. The MESSENGER spacecraft 8.4 GHz radio, transmitting through the corona with closest line-of-sight approach 1.63-1.89 solar radii and near-equatorial heliolatitudes, was recorded soon after the deep solar minimum of solar cycle 23. During egress from superior conjunction, FR gradually decreased, and an overlay of wave-like FR fluctuations (FRFs) with periods of hundreds to thousands of seconds was found. The FRF power spectrum was characterized by a power law relation, with the baseline spectral index being -2.64. A transient power increase showed relative flattening of the spectrum and bands of enhanced spectral power at 3.3 mHz and 6.1 mHz. Our results confirm the presence of coronal FRF similar to those described previously at greater solar offset. Interpreted as Alfvén waves crossing the line of sight radially near the proximate point, low-frequency FRF convey an energy flux density higher than that of the background solar wind kinetic energy, but only a fraction of that required to accelerate the solar wind. Even so, this fraction is quite variable and potentially escalates to energetically significant values with relatively modest changes in estimated magnetic field strength and electron concentration. Given the uncertainties in these key parameters, as well as in solar wind properties close to the Sun at low heliolatitudes, we cannot yet confidently assign the quantitative role for Alfvén wave energy from this region in driving the slow solar wind.

  16. Solar wind charge exchange emission in the Chandra deep field north

    Energy Technology Data Exchange (ETDEWEB)

    Slavin, Jonathan D.; Wargelin, Bradford J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Koutroumpa, Dimitra [LATMOS/IPSL, CNRS, Université Versailles Saint Quentin, 11 Boulevard d' Alembert, F-78280, Guyancourt (France)

    2013-12-10

    The diffuse soft X-ray background comes from distant galaxies, from hot Galactic gas, and from within the solar system. The latter emission arises from charge exchange between highly charged solar wind ions and neutral gas. This so-called solar wind charge exchange (SWCX) emission is spatially and temporally variable and interferes with our measurements of more distant cosmic emission while also providing important information on the nature of the solar wind-interstellar medium interaction. We present the results of our analysis of eight Chandra observations of the Chandra Deep Field North (CDFN) with the goal of measuring the cosmic and SWCX contributions to the X-ray background. Our modeling of both geocoronal and heliospheric SWCX emission is the most detailed for any observation to date. After allowing for ∼30% uncertainty in the SWCX emission and subtracting it from the observational data, we estimate that the flux of cosmic background for the CDFN in the O VII Kα, Kβ, and O VIII Lyα lines totals 5.8 ± 1.1 photons s{sup –1} cm{sup –2} sr{sup –1} (or LU). Heliospheric SWCX emission varied for each observation due to differences in solar wind conditions and the line of sight through the solar system, but was typically about half as strong as the cosmic background (i.e., one-third of the total) in those lines. The modeled geocoronal emission was 0.82 LU in one observation but averaged only 0.15 LU in the others. Our measurement of the cosmic background is lower than but marginally consistent with previous estimates based on XMM-Newton data.

  17. Solar wind charge exchange emission in the Chandra deep field north

    International Nuclear Information System (INIS)

    Slavin, Jonathan D.; Wargelin, Bradford J.; Koutroumpa, Dimitra

    2013-01-01

    The diffuse soft X-ray background comes from distant galaxies, from hot Galactic gas, and from within the solar system. The latter emission arises from charge exchange between highly charged solar wind ions and neutral gas. This so-called solar wind charge exchange (SWCX) emission is spatially and temporally variable and interferes with our measurements of more distant cosmic emission while also providing important information on the nature of the solar wind-interstellar medium interaction. We present the results of our analysis of eight Chandra observations of the Chandra Deep Field North (CDFN) with the goal of measuring the cosmic and SWCX contributions to the X-ray background. Our modeling of both geocoronal and heliospheric SWCX emission is the most detailed for any observation to date. After allowing for ∼30% uncertainty in the SWCX emission and subtracting it from the observational data, we estimate that the flux of cosmic background for the CDFN in the O VII Kα, Kβ, and O VIII Lyα lines totals 5.8 ± 1.1 photons s –1 cm –2 sr –1 (or LU). Heliospheric SWCX emission varied for each observation due to differences in solar wind conditions and the line of sight through the solar system, but was typically about half as strong as the cosmic background (i.e., one-third of the total) in those lines. The modeled geocoronal emission was 0.82 LU in one observation but averaged only 0.15 LU in the others. Our measurement of the cosmic background is lower than but marginally consistent with previous estimates based on XMM-Newton data.

  18. The Origin of the Infrared Emission in Radio Galaxies : III. Analysis of 3CRR Objects

    NARCIS (Netherlands)

    Dicken, D.; Tadhunter, C.; Axon, D.; Robinson, A.; Morganti, R.; Kharb, P.

    2010-01-01

    We present Spitzer photometric data for a complete sample of 19 low-redshift (z <0.1) 3CRR radio galaxies as part of our efforts to understand the origin of the prodigious mid-to far-infrared (MFIR) emission from radio-loud active galactic nuclei (AGNs). Our results show a correlation between AGN

  19. Solar energy and the abatement of atmospheric emissions

    International Nuclear Information System (INIS)

    Mirasgedis, S.; Diakoulaki, D.; Assimacopoulos, D.

    1996-01-01

    In spite of the fact that solar energy is a ''clean'' energy form, gaseous pollutants are emitted during the manufacturing of the systems necessary for its utilisation. An attempt is made in this paper to estimate the level of atmospheric pollutants emitted during the successive stages which make up the manufacture process for solar water heating (SWH) systems, and to evaluate these results in comparison with the respective pollutant emission levels attributed to the generation of electricity in Greece's conventional power plants. As energy consumption is recognised as the main source of atmospheric pollution, a Life Cycle Analysis (LCA) method was applied, focusing on the most energy-consuming stages of the SWH system production process. The conclusions of the analysis indicate that the emissions of gaseous pollutants associated with the utilisation of solar energy are considerably lower than those caused by the production of electricity in conventional systems, thereby substantiating that solar energy utilisation can make a notable contribution to the abatement of atmospheric pollution. (author)

  20. Formation of Radio Type II Bursts During a Multiple Coronal Mass Ejection Event

    Science.gov (United States)

    Al-Hamadani, Firas; Pohjolainen, Silja; Valtonen, Eino

    2017-12-01

    We study the solar event on 27 September 2001 that consisted of three consecutive coronal mass ejections (CMEs) originating from the same active region, which were associated with several periods of radio type II burst emission at decameter-hectometer (DH) wavelengths. Our analysis shows that the first radio burst originated from a low-density environment, formed in the wake of the first, slow CME. The frequency-drift of the burst suggests a low-speed burst driver, or that the shock was not propagating along the large density gradient. There is also evidence of band-splitting within this emission lane. The origin of the first shock remains unclear, as several alternative scenarios exist. The second shock showed separate periods of enhanced radio emission. This shock could have originated from a CME bow shock, caused by the fast and accelerating second or third CME. However, a shock at CME flanks is also possible, as the density depletion caused by the three CMEs would have affected the emission frequencies and hence the radio source heights could have been lower than usual. The last type II burst period showed enhanced emission in a wider bandwidth, which was most probably due to the CME-CME interaction. Only one shock that could reliably be associated with the investigated CMEs was observed to arrive near Earth.

  1. Strongly lensed neutral hydrogen emission: detection predictions with current and future radio interferometers

    Science.gov (United States)

    Deane, R. P.; Obreschkow, D.; Heywood, I.

    2015-09-01

    Strong gravitational lensing provides some of the deepest views of the Universe, enabling studies of high-redshift galaxies only possible with next-generation facilities without the lensing phenomenon. To date, 21-cm radio emission from neutral hydrogen has only been detected directly out to z ˜ 0.2, limited by the sensitivity and instantaneous bandwidth of current radio telescopes. We discuss how current and future radio interferometers such as the Square Kilometre Array (SKA) will detect lensed H I emission in individual galaxies at high redshift. Our calculations rely on a semi-analytic galaxy simulation with realistic H I discs (by size, density profile and rotation), in a cosmological context, combined with general relativistic ray tracing. Wide-field, blind H I surveys with the SKA are predicted to be efficient at discovering lensed H I systems, increasingly so at z ≳ 2. This will be enabled by the combination of the magnification boosts, the steepness of the H I luminosity function at the high-mass end, and the fact that the H I spectral line is relatively isolated in frequency. These surveys will simultaneously provide a new technique for foreground lens selection and yield the highest redshift H I emission detections. More near term (and existing) cm-wave facilities will push the high-redshift H I envelope through targeted surveys of known lenses.

  2. Investigation of the dynamics of HF plasma turbulence by means of artificial ionospheric radio emission

    International Nuclear Information System (INIS)

    Sergeev, E.N.; Boiko, G.N.; Frolov, V.L.

    1994-01-01

    The results of measurements of the growth and decay characteristics of artificial ionospheric radio emission and their dependence on the level of low-frequency artificial turbulence, time of day, and pump-wave frequency are presented. A time delay of the onset of the exponential nature of the decay process is detected, and its characteristics are studied. It is shown that the effect is determined by nonlinear pumping over the spectrum of high-frequency plasma turbulence. The experimental results demonstrate the possibilities of using artificial radio emission to study the properties of high-frequency plasma turbulence. Areas of future research are discussed

  3. Solar Indices - Solar Radio Flux

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  4. Space Weather Action Plan Solar Radio Burst Phase 1 Benchmarks and the Steps to Phase 2

    Science.gov (United States)

    Biesecker, D. A.; White, S. M.; Gopalswamy, N.; Black, C.; Love, J. J.; Pierson, J.

    2017-12-01

    Solar radio bursts, when at the right frequency and when strong enough, can interfere with radar, communication, and tracking signals. In severe cases, radio bursts can inhibit the successful use of radio communications and disrupt a wide range of systems that are reliant on Position, Navigation, and Timing services on timescales ranging from minutes to hours across wide areas on the dayside of Earth. The White House's Space Weather Action Plan asked for solar radio burst intensity benchmarks for an event occurrence frequency of 1 in 100 years and also a theoretical maximum intensity benchmark. The benchmark team has developed preliminary (phase 1) benchmarks for the VHF (30-300 MHz), UHF (300-3000 MHz), GPS (1176-1602 MHz), F10.7 (2800 MHz), and Microwave (4000-20000) bands. The preliminary benchmarks were derived based on previously published work. Limitations in the published work will be addressed in phase 2 of the benchmark process. In addition, deriving theoretical maxima requires additional work, where it is even possible to, in order to meet the Action Plan objectives. In this presentation, we will present the phase 1 benchmarks, the basis used to derive them, and the limitations of that work. We will also discuss the work that needs to be done to complete the phase 2 benchmarks.

  5. New and precise construction of the local interstellar electron spectrum from the radio background and an application to the solar modulation of cosmic rays showing an incompatability of the electron and nuclei modulation using the spherically symmetric Fokker-Planck equation

    International Nuclear Information System (INIS)

    Rockstroh, J.M.

    1977-01-01

    Cosmic-ray electrons generate the observed radio-frequency background. Previous attempts in the literature to reconcile quantitatively the measured radio-frequency intensity with the intensity deduced from the electron spectrum measured at earth have culminated in the problem that to get the respective emissivities to agree, an unacceptably high interstellar B field must be chosen. In the light of new experimental data on the emissivity as deduced from H II region studies and on the functional dependence of the diffusion coefficient with solar radius and particle rigidity, the assumptions under which the electron emissivity comparison has been made have been reexamined closely. The paradox between predicted and measured emissivity was resolved by ascribing to the magnetic fields of the galaxy a distribution of magnetic field strengths. From modified synchrotron formulas, the interstellar electron spectrum has been constructed from the radio frequency emission data with greatly improved precision. The interstellar electron spectrum has been determined independently of the solar modulation and provides, therefore, an estimate of the absolute depth of the electron modulation. Then the measured electron, proton, and helium-nuclei fluxes were systematically compared to the predictions of the spherically symmetric Fokker-Planck equation using the electron modulation as a base. A previously unnoticed non-tracking of the modulation parameters was observed during the recent recovery that did not occur during the 1965 to 1969 period. Although the argument could be presented just as well by attributing the anomaly to the nuclei, the discussion here arbitrarily tailored it to the electrons, and this new phenomenon was named, the modulation reluctance of the cosmic-ray electrons

  6. Observation of solar radio bursts of type II and III at kilometer wavelengths from Prognoz-8 during STIP Interval XII

    International Nuclear Information System (INIS)

    Pinter, S.; Kecskemety, K.; Kudela, K.

    1982-04-01

    Type II and type III radio events were observed at low frequencies (2.16 MHz to 114 kHz) by the Prognoz-8 satellite during the period of STIP Interval XII in April and May, 1981, respectively. This review covers briefly a chronology of the sub-megahertz radio events, and where possible their association with both groundbased radio observations and solar flare. (author)

  7. FAST DIFFERENTIAL EMISSION MEASURE INVERSION OF SOLAR CORONAL DATA

    Energy Technology Data Exchange (ETDEWEB)

    Plowman, Joseph; Kankelborg, Charles; Martens, Petrus [Montana State University, Bozeman, MT 59717 (United States)

    2013-07-01

    We present a fast method for reconstructing differential emission measures (DEMs) using solar coronal data. The method consists of a fast, simple regularized inversion in conjunction with an iteration scheme for removal of residual negative emission measure. On average, it computes over 1000 DEMs s{sup -1} for a sample active region observed by the Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory, and achieves reduced chi-squared of order unity with no negative emission in all but a few test cases. The high performance of this method is especially relevant in the context of AIA, which images of order one million solar pixels per second. This paper describes the method, analyzes its fidelity, compares its performance and results with other DEM methods, and applies it to an active region and loop observed by AIA and by the Extreme-ultraviolet Imaging Spectrometer on Hinode.

  8. The Origin of Powerful Radio Sources

    Science.gov (United States)

    Wilson, A. S.; Colbert, E. J. M.

    1995-05-01

    Radio-loud active galaxies are associated with elliptical or elliptical-like galaxies, many of which appear to be the result of a recent merger. In contrast, radio-quiet active galaxies prefer spiral hosts. Despite the very large difference in radio luminosities between the two classes, their continua and line spectra from infrared through X-ray frequencies are very similar. In this paper, we describe recent developments of our model (Ap. J. 438, 62 1995) in which the radio-loud phenomenon is the result of a merger of two galaxies, with each galaxy nucleus containing a slowly (or non-) rotating supermassive black hole. It is envisaged that the two black holes eventually coalesce. For the small fraction of mergers in which the two holes are both massive and of comparable mass, a rapidly-spinning, high-mass hole results. The spin energy of a rapidly rotating 10(8-9) solar mass hole suffices to provide the ~ 10(60) ergs in relativistic particles and magnetic fields in the most energetic radio sources. Luminous radio-quiet active galaxies contain high-mass, slowly-rotating holes, with the infrared through X-ray emission of both classes being fuelled by accretion as commonly assumed. We discuss constraints on the model from the luminosity functions of radio-loud and radio-quiet galaxies and from the known cosmological evolution of the radio source population; this evolution is assumed to reflect higher galaxy merger rates in the past.

  9. Radio stars

    International Nuclear Information System (INIS)

    Hjellming, R.M.

    1976-01-01

    Any discussion of the radio emission from stars should begin by emphasizing certain unique problems. First of all, one must clarify a semantic confusion introduced into radio astronomy in the late 1950's when most new radio sources were described as radio stars. All of these early 'radio stars' were eventually identified with other galactic and extra-galactic objects. The study of true radio stars, where the radio emission is produced in the atmosphere of a star, began only in the 1960's. Most of the work on the subject has, in fact, been carried out in only the last few years. Because the real information about radio stars is quite new, it is not surprising that major aspects of the subject are not at all understood. For this reason this paper is organized mainly around three questions: what is the available observational information; what physical processes seem to be involved; and what working hypotheses look potentially fruitful. (Auth.)

  10. Offset, tilted dipole models of Uranian smooth high-frequency radio emission

    International Nuclear Information System (INIS)

    Schweitzer, A.E.; Romig, J.H.; Evans, D.R.; Sawyer, C.B.; Warwick, J.W.

    1990-01-01

    During the Voyager 2 encounter with Uranus in January 1986, the Planetary Radio Astronomy (PRA) experiment detected a complex pattern of radio emissions. Two types of emissions were seen: smooth and bursty. The smooth emission has been divided into smooth high-frequency (SHF) and smooth low-frequency (SLF) components which are presumed to come from different sources because of their distinctly different characteristics. The SHF component is considered in this paper. The SHF emission has been modeled by many authors on OTD (offset, tilted dipole (Ness et al., 1986)) L shells ranging from 5 to 40. However, the bursts have been modeled at much higher L shells. The authors complete an OTD investigation of the SHF emission at high L shells within the range of the bursty source locations, and present a viable high L shell model. This model has fundamentally the same longitudinally symmetric net emission pattern in space as the L shell 5 model presented in Romig et al. (1987) and Barbosa (1988). However, they were unable to produce an acceptable model on intermediate L shells without restricting source longitude. They discuss the similarities and distinctions between their two models and the models of other authors. They believe that the high L shell model (and others similar to it) cannot account for the observed smoothness and periodicity of the SHF emissions because it has open field lines containing untrapped particles, which should produce more variable emission than that seen in the SHF data. Therefore, the authors prefer models at L shells less than 18, the boundary for closed field lines (Ness et al., 1986). They then discuss and contrast two models within this boundary: the L = 5 model and an L ∼ 12 model by Kaiser et al. (1987) and Farrell and Calvert (1989b). The main distinction between these two models is the longitudinal extent of the source location

  11. Broad Line Radio Galaxies Observed with Fermi-LAT: The Origin of the GeV Gamma-Ray Emission

    Energy Technology Data Exchange (ETDEWEB)

    Kataoka, J.; /Waseda U., RISE; Stawarz, L.; /JAXA, Sagamihara /Jagiellonian U., Astron. Observ.; Takahashi, Y.; /Waseda U., RISE; Cheung, C.C.; /Natl. Acad. Sci. /Naval Research Lab, Wash., D.C.; Hayashida, M.; /SLAC /Stanford U., HEPL /KIPAC, Menlo Park; Grandi, P.; /Bologna Observ.; Burnett, T.H.; /Washington U., Seattle; Celotti, A.; /SISSA, Trieste; Fegan, S.J.; Fortin, P.; /Ecole Polytechnique; Maeda, K.; Nakamori, T.; /Waseda U., RISE; Taylor, G.B.; /New Mexico U.; Tosti, G.; /INFN, Perugia /Perugia U.; Digel, S.W.; /SLAC /Stanford U., HEPL /KIPAC, Menlo Park; McConville, W.; /NASA, Goddard /Maryland U.; Finke, J.; /Naval Research Lab, Wash., D.C.; D' Ammando, F.; /IASF, Palermo /INAF, Rome

    2012-06-07

    We report on a detailed investigation of the {gamma}-ray emission from 18 broad line radio galaxies (BLRGs) based on two years of Fermi Large Area Telescope (LAT) data. We confirm the previously reported detections of 3C 120 and 3C 111 in the GeV photon energy range; a detailed look at the temporal characteristics of the observed {gamma}-ray emission reveals in addition possible flux variability in both sources. No statistically significant {gamma}-ray detection of the other BLRGs was however found in the considered dataset. Though the sample size studied is small, what appears to differentiate 3C 111 and 3C 120 from the BLRGs not yet detected in {gamma}-rays is the particularly strong nuclear radio flux. This finding, together with the indications of the {gamma}-ray flux variability and a number of other arguments presented, indicate that the GeV emission of BLRGs is most likely dominated by the beamed radiation of relativistic jets observed at intermediate viewing angles. In this paper we also analyzed a comparison sample of high accretion-rate Seyfert 1 galaxies, which can be considered radio-quiet counterparts of BLRGs, and found none were detected in {gamma}-rays. A simple phenomenological hybrid model applied for the broad-band emission of the discussed radio-loud and radio-quiet type 1 active galaxies suggests that the relative contribution of the nuclear jets to the accreting matter is {ge} 1% on average for BLRGs, while {le} 0.1% for Seyfert 1 galaxies.

  12. Some results of model calculations of the solar S-component radio emission

    International Nuclear Information System (INIS)

    Krueger, A.; Hildebrandt, J.

    1985-01-01

    Numerical calculations of special characteristics of the solar S-component microwave radiation are presented on the basis of recent sunspot and plage models. Quantitative results are discussed and can be used for the plasma diagnostics of solar active regions by comparisons with observations with high spatial and spectral resolution. The possibility of generalized applications to magnetic stars and stellar activity is briefly noted. (author)

  13. Atlas of fine structures of dynamic spectra of solar type IV-dm and some type II radio bursts

    International Nuclear Information System (INIS)

    Slottje, C.

    1982-01-01

    The author presents an atlas of spectral fine structures of solar radio bursts of types IV and II around 1 m wavelength, as obtained with a multichannel spectrograph at Dwingeloo. The structures form largely a collection of observations of these events during late 1968 through 1974, thus covering almost entirely the declining branch of solar cycle 20. The spectrograph has an extra enhanced contrast output with properties quite different from those of the commonly used swept frequency spectrographs. The corresponding instrumental characteristics and effects are discussed. A classification of fine structures and an analysis of their statistical properties and of those of the pertinent radio events are also given. (Auth.)

  14. The 3-D solar radioastronomy and the structure of the corona and the solar wind. [solar probes of solar activity

    Science.gov (United States)

    Steinberg, J. L.; Caroubalos, C.

    1976-01-01

    The mechanism causing solar radio bursts (1 and 111) is examined. It is proposed that a nonthermal energy source is responsible for the bursts; nonthermal energy is converted into electromagnetic energy. The advantages are examined for an out-of-the-ecliptic solar probe mission, which is proposed as a means of stereoscopically viewing solar radio bursts, solar magnetic fields, coronal structure, and the solar wind.

  15. Sub-second pulsations simultaneously observed at microwaves and hard X-rays in a solar burst

    International Nuclear Information System (INIS)

    Takakura, T.; Degaonkar, S.S.; Nitta, N.; Ohki, N.

    1982-11-01

    Sub-second time structures have been found in the emissions during solar bursts in mm-waves and, independently, in hard X-rays. However, simultaneous observations of such fast time structure in mm radio and X-ray ranges has not been available so far. Accordingly, coordinated observations of solar bursts in November 1981 with a high time resolution of a few milliseconds were planned. The hard X-rays (30-40 KeV were observed with hard X-ray monitor (HXM) aboard the Hinotori Satellite with a time resolution of 7.81 ms and the radio emissions were observed on the ground with 45ft dish at Itapetinga Radio Observatory with a high time resolution (1 ms) and high sensitivities at 22 GHz and 44 GHz, supplemented by a patrol observation at 7 GHz with time resolution of 100 ms. The pulsations repeated with a period of about 300 ms. The physical implication of the good correlation is not clear at this stage, but it may give a clue to the understanding of the high energy phenomena occuring during the solar flares. (Author) [pt

  16. Recent results of zebra patterns in solar radio bursts

    International Nuclear Information System (INIS)

    Chernov, Gennady P.

    2010-01-01

    This review covers the most recent experimental results and theoretical research on zebra patterns (ZPs) in solar radio bursts. The basic attention is given to events with new peculiar elements of zebra patterns received over the last few years. All new properties are considered in light of both what was known earlier and new theoretical models. Large-scale ZPs consisting of small-scale fiber bursts could be explained by simultaneous inclusion of two mechanisms when whistler waves 'highlight' the levels of double plasma resonance (DPR). A unique fine structure was observed in the event on 2006 December 13: spikes in absorption formed dark ZP stripes against the absorptive type III-like bursts. The spikes in absorption can appear in accordance with well known mechanisms of absorptive bursts. The additional injection of fast particles filled the loss-cone (breaking the loss-cone distribution), and the generation of the continuum was quenched at these moments. The maximum absorptive effect occurs at the DPR levels. The parameters of millisecond spikes are determined by small dimensions of the particle beams and local scale heights in the radio source. Thus, the DPR model helps to understand several aspects of unusual elements of ZPs. However, the simultaneous existence of several tens of the DPR levels in the corona is impossible for any realistic profile of the plasma density and magnetic field. Three new theories of ZPs are examined. The formation of eigenmodes of transparency and opacity during the propagation of radio waves through regular coronal inhomogeneities is the most natural and promising mechanism. Two other models (nonlinear periodic space - charge waves and scattering of fast protons on ion-sound harmonics) could happen in large radio bursts. (invited reviews)

  17. VERY LONG BASELINE ARRAY IMAGING OF PARSEC-SCALE RADIO EMISSIONS IN NEARBY RADIO-QUIET NARROW-LINE SEYFERT 1 GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Doi, Akihiro [The Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuou-ku, Sagamihara, Kanagawa 252-5210 (Japan); Asada, Keiichi; Inoue, Makoto [Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 10617, Taiwan (China); Fujisawa, Kenta [The Research Institute of Time Studies, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, Yamaguchi 753-8511 (Japan); Nagai, Hiroshi; Hagiwara, Yoshiaki [National Astronomical Observatory, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Wajima, Kiyoaki, E-mail: akihiro.doi@vsop.isas.jaxa.jp [Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai 200030 (China)

    2013-03-01

    We conducted Very Long Baseline Array (VLBA) observations of seven nearby narrow-line Seyfert 1 (NLS1) galaxies at 1.7 GHz ({lambda}18 cm) with milliarcsecond resolution. This is the first systematic very long baseline interferometry study focusing on the central parsec-scale regions of radio-quiet NLS1s. Five of the seven were detected at a brightness temperature of {approx}> 5 Multiplication-Sign 10{sup 6} K and contain radio cores with high brightness temperatures of >6 Multiplication-Sign 10{sup 7} K, indicating a nonthermal process driven by jet-producing central engines as in radio-loud NLS1s and other active galactic nucleus classes. VLBA images of MRK 1239, MRK 705, and MRK 766 exhibit parsec-scale jets with clear linear structures. A large portion of the radio power comes from diffuse emission components that are distributed within the nuclear regions ({approx}< 300 pc), which is a common characteristic throughout the observed NLS1s. Jet kinetic powers limited by the Eddington limit may be insufficient to allow the jets to escape to kiloparsec scales for these radio-quiet NLS1s with low-mass black holes of {approx}< 10{sup 7} M {sub Sun }.

  18. Fast hisslers: a form of magnetospheric radio emissions

    International Nuclear Information System (INIS)

    Siren, J.C.

    1974-01-01

    Auroral radio hiss bursts in the frequency range 2-18 kHz have been observed, with rise or turn-on-times of 20-50 ms, and fall or turn-off times of 20-80 ms. These time scales are too brief to reconcile with the Cerenkov radiation emission mechanism often proposed as the transducer that converts precipitating auroral electron kinetic energy into very-low-frequency radio wave energy. The auroral hiss bursts, called here ''fast hisslers,'' are observed to be ''dispersed,', that is, their arrival time at the receiving site is not simultaneous at all frequencies, but depends on frequency in a way that is consistent with propagation in the whistler mode of electromagnetic wave propagation. Since whistler mode wave propagation at these frequencies occurs only in the earth' magnetosphere, it is inferred that these fast hisslers are of magnetospheric origin. On the assumption that all the observed dispersion results from whistler mode dispersion at high latitudes, altitudes of origin of 1800 km to 30,000 km are calculated for these emissions. Fine details of some of the amplitude spectra of fast hisslers have been examined. Potential double layers have been investigated as a highly localized region of acceleration of the auroral electrons that are believed to be the source of energy of the fast hisslers. Evidence is strong that a plasma instability exists which rapidly converts electron kinetic energies into whistler-mode wave energy traveling in the same direction relative to the rest frame of the thermal magnetospheric plasma

  19. Testing the Young Neutron Star Scenario with Persistent Radio Emission Associated with FRB 121102

    International Nuclear Information System (INIS)

    Kashiyama, Kazumi; Murase, Kohta

    2017-01-01

    Recently a repeating fast radio burst (FRB) 121102 has been confirmed to be an extragalactic event and a persistent radio counterpart has been identified. While other possibilities are not ruled out, the emission properties are broadly consistent with Murase et al. that theoretically proposed quasi-steady radio emission as a counterpart of both FRBs and pulsar-driven supernovae. Here, we constrain the model parameters of such a young neutron star scenario for FRB 121102. If the associated supernova has a conventional ejecta mass of M ej ≳ a few M ⊙ , a neutron star with an age of t age ∼ 10–100 years, an initial spin period of P i ≲ a few ms, and a dipole magnetic field of B dip ≲ a few × 10 13 G can be compatible with the observations. However, in this case, the magnetically powered scenario may be favored as an FRB energy source because of the efficiency problem in the rotation-powered scenario. On the other hand, if the associated supernova is an ultra-stripped one or the neutron star is born by the accretion-induced collapse with M ej ∼ 0.1 M ⊙ , a younger neutron star with t age ∼ 1–10 years can be the persistent radio source and might produce FRBs with the spin-down power. These possibilities can be distinguished by the decline rate of the quasi-steady radio counterpart.

  20. Testing the Young Neutron Star Scenario with Persistent Radio Emission Associated with FRB 121102

    Energy Technology Data Exchange (ETDEWEB)

    Kashiyama, Kazumi [Department of Physics, The University of Tokyo, Bunkyo, Tokyo 113-0033 (Japan); Murase, Kohta [Department of Physics, The Pennsylvania State University, University Park, PA 16802 (United States)

    2017-04-10

    Recently a repeating fast radio burst (FRB) 121102 has been confirmed to be an extragalactic event and a persistent radio counterpart has been identified. While other possibilities are not ruled out, the emission properties are broadly consistent with Murase et al. that theoretically proposed quasi-steady radio emission as a counterpart of both FRBs and pulsar-driven supernovae. Here, we constrain the model parameters of such a young neutron star scenario for FRB 121102. If the associated supernova has a conventional ejecta mass of M {sub ej} ≳ a few M {sub ⊙}, a neutron star with an age of t {sub age} ∼ 10–100 years, an initial spin period of P{sub i} ≲ a few ms, and a dipole magnetic field of B {sub dip} ≲ a few × 10{sup 13} G can be compatible with the observations. However, in this case, the magnetically powered scenario may be favored as an FRB energy source because of the efficiency problem in the rotation-powered scenario. On the other hand, if the associated supernova is an ultra-stripped one or the neutron star is born by the accretion-induced collapse with M {sub ej} ∼ 0.1 M {sub ⊙}, a younger neutron star with t {sub age} ∼ 1–10 years can be the persistent radio source and might produce FRBs with the spin-down power. These possibilities can be distinguished by the decline rate of the quasi-steady radio counterpart.

  1. Cyclotron Line in Solar Microwave Radiation by Radio Telescope RATAN-600 Observations of the Solar Active Region NOAA 12182

    Science.gov (United States)

    Peterova, N. G.; Topchilo, N. A.

    2017-12-01

    This paper presents the results of observation of a rare phenomenon—a narrowband increase in the brightness of cyclotron radiation of one of the structural details of a radio source located in the solar corona above the solar active region NOAA 12182 in October 2014 at a frequency of 4.2 ± 0.1 GHz. The brightness of radiation in the maximum of the phenomenon has reached 10 MK; its duration was equal to 3 s. The exact location of the source of the narrowband cyclotron radiation is indicated: it is a corona above a fragmented (4-nuclear) sunspot, on which a small UV flare loop was closed.

  2. Jet-torus connection in radio galaxies. Relativistic hydrodynamics and synthetic emission

    Science.gov (United States)

    Fromm, C. M.; Perucho, M.; Porth, O.; Younsi, Z.; Ros, E.; Mizuno, Y.; Zensus, J. A.; Rezzolla, L.

    2018-01-01

    Context. High resolution very long baseline interferometry observations of active galactic nuclei have revealed asymmetric structures in the jets of radio galaxies. These asymmetric structures may be due to internal asymmetries in the jets or they may be induced by the different conditions in the surrounding ambient medium, including the obscuring torus, or a combination of the two. Aims: In this paper we investigate the influence of the ambient medium, including the obscuring torus, on the observed properties of jets from radio galaxies. Methods: We performed special-relativistic hydrodynamic (SRHD) simulations of over-pressured and pressure-matched jets using the special-relativistic hydrodynamics code Ratpenat, which is based on a second-order accurate finite-volume method and an approximate Riemann solver. Using a newly developed radiative transfer code to compute the electromagnetic radiation, we modelled several jets embedded in various ambient medium and torus configurations and subsequently computed the non-thermal emission produced by the jet and thermal absorption from the torus. To better compare the emission simulations with observations we produced synthetic radio maps, taking into account the properties of the observatory. Results: The detailed analysis of our simulations shows that the observed properties such as core shift could be used to distinguish between over-pressured and pressure matched jets. In addition to the properties of the jets, insights into the extent and density of the obscuring torus can be obtained from analyses of the single-dish spectrum and spectral index maps.

  3. Coronal mass ejections, type II radio bursts, and solar energetic particle events in the SOHO era

    Directory of Open Access Journals (Sweden)

    N. Gopalswamy

    2008-10-01

    Full Text Available Using the extensive and uniform data on coronal mass ejections (CMEs, solar energetic particle (SEP events, and type II radio bursts during the SOHO era, we discuss how the CME properties such as speed, width and solar-source longitude decide whether CMEs are associated with type II radio bursts and SEP events. We discuss why some radio-quiet CMEs are associated with small SEP events while some radio-loud CMEs are not associated with SEP events. We conclude that either some fast and wide CMEs do not drive shocks or they drive weak shocks that do not produce significant levels of particle acceleration. We also infer that the Alfvén speed in the corona and near-Sun interplanetary medium ranges from <200 km/s to ~1600 km/s. Radio-quiet fast and wide CMEs are also poor SEP producers and the association rate of type II bursts and SEP events steadily increases with CME speed and width (i.e. energy. If we consider western hemispheric CMEs, the SEP association rate increases linearly from ~30% for 800 km/s CMEs to 100% for ≥1800 km/s. Essentially all type II bursts in the decametre-hectometric (DH wavelength range are associated with SEP events once the source location on the Sun is taken into account. This is a significant result for space weather applications, because if a CME originating from the western hemisphere is accompanied by a DH type II burst, there is a high probability that it will produce an SEP event.

  4. Latitudinal beaming of Jupiter's low frequency radio emissions

    International Nuclear Information System (INIS)

    Alexander, J.K.; Desch, M.D.; Kaiser, M.L.; Thieman, J.R.

    1979-01-01

    By comparing Rae 1 and Imp 6 satelite measurements of Jupiter's radio emissions near 1 MHz with recent Voyager 1 and 2 observations in the same frequency range it is now possible to study the properties of the low frequency radiation pattern over a 10 0 range of latitudes with respect to the Jovian rotation equator. These observations, which cover a wider latitudinal range than is possible from the earth, are consistent with many aspect of earlier ground-based measurements that have been used to infer a sharp beaming pattern for the decameter wavelength emissions. We find marked, systematic changes in the statistical occurrence probability distributions with system III central meridian longitude as the Jovigraphic latitude of the observer changes over this range. Moreover, simultaneous observations by the two Voyager spacecraft, which are separated by up to 3 0 in Jovigraphic latitude, suggest that the instantaneous beam width may be no more than a few degrees at times. The new hectometer wave results can be interpreted in terms of a narrow, curved sheet at a fixed magnetic latitude into which the emission is beamed to escape the planet

  5. Radio emission from the X-ray pulsar Her X-1: a jet launched by a strong magnetic field neutron star?

    Science.gov (United States)

    van den Eijnden, J.; Degenaar, N.; Russell, T. D.; Miller-Jones, J. C. A.; Wijnands, R.; Miller, J. M.; King, A. L.; Rupen, M. P.

    2018-01-01

    Her X-1 is an accreting neutron star (NS) in an intermediate-mass X-ray binary. Like low-mass X-ray binaries (LMXBs), it accretes via Roche lobe overflow, but similar to many high-mass X-ray binaries containing a NS; Her X-1 has a strong magnetic field and slow spin. Here, we present the discovery of radio emission from Her X-1 with the Very Large Array. During the radio observation, the central X-ray source was partially obscured by a warped disc. We measure a radio flux density of 38.7 ± 4.8 μJy at 9 GHz but cannot constrain the spectral shape. We discuss possible origins of the radio emission, and conclude that coherent emission, a stellar wind, shocks and a propeller outflow are all unlikely explanations. A jet, as seen in LMXBs, is consistent with the observed radio properties. We consider the implications of the presence of a jet in Her X-1 on jet formation mechanisms and on the launching of jets by NSs with strong magnetic fields.

  6. Fiber fine structure during solar type IV radio bursts: Observations and theory of radiation in presence of localized whistler turbulence

    International Nuclear Information System (INIS)

    Bernold, T.E.X.; Treumann, R.A.

    1983-01-01

    Observations with a digital spectrometer within the frequency band between 250 and 273 MHz of fiber fine structures during the type IV solar radio burst of 1978 October 1 are presented and analyzed. The results are summarized in histograms. Typical values for drift rates are in the range between -2.3 and -9.9 MHz s -1 . Frequency intervals between absorption and emission within the spectrum were measured to be within 0.9 and 2.7 MHz. Several types of spectra are discussed. A theoretical interpretation is based upon the model of a population of electrons trapped within a magnetic-mirror loop-configuration. It is shown that the fiber emission can be explained assuming an interaction between spatially localized strong whistler turbulence (solitons) and a broad-band Langmuir wave spectrum. Estimates using the observed flux values indicate that a fiber is composed of some 10 11 --10 14 solitons occupying a volume of about 10 5 --10 8 km 3 . Ducting of whistler solitons in low-density magnetic loops provides a plausible explanation for coherent behavior during the lifetime of an individual fiber. The magnetic field strength is found to be 6.2< or =B< or =35 gauss at the radio source and 15.3< or =B< or =76 gauss at the lower hybrid wave level respectively. The quasi-periodicity of the fiber occurrence is interpreted as periodically switched-on soliton production

  7. PLASMA EMISSION BY COUNTER-STREAMING ELECTRON BEAMS

    Energy Technology Data Exchange (ETDEWEB)

    Ziebell, L. F.; Petruzzellis, L. T.; Gaelzer, R. [Instituto de Física, UFRGS, Porto Alegre, RS (Brazil); Yoon, P. H. [Institute for Physical Science and Technology, University of Maryland, College Park, MD (United States); Pavan, J., E-mail: luiz.ziebell@ufrgs.br, E-mail: yoonp@umd.edu, E-mail: joel.pavan@ufpel.edu.br [Instituto de Física e Matemática, UFPel, Pelotas, RS (Brazil)

    2016-02-10

    The radiation emission mechanism responsible for both type-II and type-III solar radio bursts is commonly accepted as plasma emission. Recently Ganse et al. suggested that type-II radio bursts may be enhanced when the electron foreshock geometry of a coronal mass ejection contains a double hump structure. They reasoned that the counter-streaming electron beams that exist between the double shocks may enhance the nonlinear coalescence interaction, thereby giving rise to more efficient generation of radiation. Ganse et al. employed a particle-in-cell simulation to study such a scenario. The present paper revisits the same problem with EM weak turbulence theory, and show that the fundamental (F) emission is not greatly affected by the presence of counter-streaming beams, but the harmonic (H) emission becomes somewhat more effective when the two beams are present. The present finding is thus complementary to the work by Ganse et al.

  8. Double-peaked Emission Lines Due to a Radio Outflow in KISSR 1219

    Energy Technology Data Exchange (ETDEWEB)

    Kharb, P.; Vaddi, S. [National Centre for Radio Astrophysics—Tata Institute of Fundamental Research, Postbag 3, Ganeshkhind, Pune 411007 (India); Subramanian, S. [Kavli Institute for Astronomy and Astrophysics, Peking University, 5 Yiheyuan Road, Haidian District, Beijing 100871 (China); Das, M. [Indian Institute of Astrophysics, II Block, Koramangala, Bangalore 560034 (India); Paragi, Z., E-mail: kharb@ncra.tifr.res.in [Joint Institute for VLBI in Europe, Postbus 2, 7990 AA Dwingeloo (Netherlands)

    2017-09-01

    We present the results from 1.5 and 5 GHz phase-referenced VLBA and 1.5 GHz Karl G. Jansky Very Large Array (VLA) observations of the Seyfert 2 galaxy KISSR 1219, which exhibits double-peaked emission lines in its optical spectrum. The VLA and VLBA data reveal a one-sided core-jet structure at roughly the same position angles, providing evidence of an active galactic nucleus outflow. The absence of dual parsec-scale radio cores puts the binary black-hole picture in doubt for the case of KISSR 1219. The high brightness temperatures of the parsec-scale core and jet components (>10{sup 6} K) are consistent with this interpretation. Doppler boosting with jet speeds of ≳0.55 c to ≳0.25 c , going from parsec to kiloparsec scales, at a jet inclination ≳50° can explain the jet one-sidedness in this Seyfert 2 galaxy. A blueshifted broad emission line component in [O iii] is also indicative of an outflow in the emission line gas at a velocity of ∼350 km s{sup −1}, while the [O i] doublet lines suggest the presence of shock-heated gas. A detailed line ratio study using the MAPPINGS III code further suggests that a shock+precursor model can explain the line ionization data well. Overall, our data suggest that the radio outflow in KISSR 1219 is pushing the emission line clouds, both ahead of the jet and in a lateral direction, giving rise to the double peak emission line spectra.

  9. A STRING OF RADIO EMISSION ASSOCIATED WITH IRAS 16562-3959: A COLLIMATED JET EMANATING FROM A LUMINOUS MASSIVE YOUNG STELLAR OBJECT

    International Nuclear Information System (INIS)

    Guzman, Andres E.; Garay, Guido; Brooks, Kate J.

    2010-01-01

    We report the discovery, made using the Australia Telescope Compact Array, of a remarkable string of radio emission toward IRAS 16562-3959, a luminous infrared source with a bolometric luminosity of 7.0 x 10 4 L sun . The radio emission arises from a compact, bright central component, two inner lobes which are separated by about 7'' and symmetrically offset from the central source, and two outer lobes which are separated by about 45''. The emission from the central object has a spectral index between 1.4 and 8.6 GHz of 0.85 ± 0.15, consistent with free-free emission from a thermal jet. The radio emission from the lobes has spectral indices in the range characteristic of thermal emission. We suggest that the emission from the lobes arises in shocks resulting from the interaction of a collimated wind with the surrounding medium. The radio string is located within a massive dense molecular core, and is associated with extended green emission (Spitzer three-color), Herbig-Haro-type emission (2MASS K s band), and OH maser sites-all phenomena readily observed toward sites of massive star formation. We conclude that the massive core hosts a high-mass star in an early stage of evolution in which it is undergoing the ejection of a powerful collimated stellar wind, showing that jets found in the formation of low-mass stars are also produced in high-mass stars.

  10. THE VLA SURVEY OF CHANDRA DEEP FIELD SOUTH. V. EVOLUTION AND LUMINOSITY FUNCTIONS OF SUB-MILLIJANSKY RADIO SOURCES AND THE ISSUE OF RADIO EMISSION IN RADIO-QUIET ACTIVE GALACTIC NUCLEI

    International Nuclear Information System (INIS)

    Padovani, P.; Mainieri, V.; Rosati, P.; Miller, N.; Kellermann, K. I.; Tozzi, P.

    2011-01-01

    We present the evolutionary properties and luminosity functions of the radio sources belonging to the Chandra Deep Field South Very Large Array survey, which reaches a flux density limit at 1.4 GHz of 43 μJy at the field center and redshift ∼5 and which includes the first radio-selected complete sample of radio-quiet active galactic nuclei (AGNs). We use a new, comprehensive classification scheme based on radio, far- and near-IR, optical, and X-ray data to disentangle star-forming galaxies (SFGs) from AGNs and radio-quiet from radio-loud AGNs. We confirm our previous result that SFGs become dominant only below 0.1 mJy. The sub-millijansky radio sky turns out to be a complex mix of SFGs and radio-quiet AGNs evolving at a similar, strong rate; non-evolving low-luminosity radio galaxies; and declining radio powerful (P ∼> 3 x 10 24 W Hz -1 ) AGNs. Our results suggest that radio emission from radio-quiet AGNs is closely related to star formation. The detection of compact, high brightness temperature cores in several nearby radio-quiet AGNs can be explained by the coexistence of two components, one non-evolving and AGN related and one evolving and star formation related. Radio-quiet AGNs are an important class of sub-millijansky sources, accounting for ∼30% of the sample and ∼60% of all AGNs, and outnumbering radio-loud AGNs at ∼< 0.1 mJy. This implies that future, large area sub-millijansky surveys, given the appropriate ancillary multiwavelength data, have the potential of being able to assemble vast samples of radio-quiet AGNs, bypassing the problems of obscuration that plague the optical and soft X-ray bands.

  11. Three-Wave Resonance Modulation and Fine Structures in the Solar Short Centimeter Wave Bursts

    Institute of Scientific and Technical Information of China (English)

    王德焴; 吴洪敖; 秦至海

    1994-01-01

    A theoretical model is presented. We propose that when the radiation of solar radio bursts propagates outward as a pump wave through the conora, the three-wave resonance interaction would occur if the radio emission interacts with the MHD wave and scattering wave in the conora. This process induces a nonlinear modulation in the emission flux S. The statistical relations between the repetition rates R and S and between the modulation amplitude △S and S, observed from 1.36cm, 2cm and 3.2cm solar radio bursts could be well interpreted by this model under the conditions of imperfect matching and k2≠0. The appreciable difference in the modulation periods among the 2cm, 3.2cm and 1.36cm waves might be caused by the differences in the MHD waves joining in the modulation. Several theoretical expectations have been made from this model, which may be inspected in further observation.

  12. Detection of elusive radio and optical emission from cosmic-ray showers in the 1960s

    International Nuclear Information System (INIS)

    Fegan, David J.

    2012-01-01

    During the 1960s, a small but vibrant community of cosmic ray physicists, pioneered novel optical methods of detecting extensive air showers (EAS) in the Earth's atmosphere with the prime objective of searching for point sources of energetic cosmic γ-rays. Throughout that decade, progress was extremely slow. Attempts to use the emission of optical Cherenkov radiation from showers as a basis for TeV gamma-ray astronomy proved difficult and problematical, given the rather primitive light-collecting systems in use at the time, coupled with a practical inability to reject the overwhelming background arising from hadronic showers. Simultaneously, a number of groups experimented with passive detection of radio emission from EAS as a possible cheap, simple, stand-alone method to detect and characterise showers of energy greater than 10 16 eV. By the end of the decade, it was shown that the radio emission was quite highly beamed and hence the effective collection area for detection of high energy showers was quite limited, diminishing the effectiveness of the radio signature as a stand-alone shower detection channel. By the early 1970s much of the early optimism for both the optical and radio techniques was beginning to dissipate, greatly reducing research activity. However, following a long hiatus both avenues were in time revived, the optical in the early 1980s and the radio in the early 2000s. With the advent of digital logic hardware, powerful low-cost computing, the ability to perform Monte Carlo simulations and above all, greatly improved funding, rapid progress became possible. In time this work proved to be fundamental to both High Energy γ-ray Astronomy and Neutrino Astrophysics. Here, that first decade of experimental investigation in both fields is reviewed.

  13. Detection of elusive radio and optical emission from cosmic-ray showers in the 1960s

    Energy Technology Data Exchange (ETDEWEB)

    Fegan, David J., E-mail: david.fegan@ucd.ie [School of Physics, University College Dublin, Dublin 4 (Ireland)

    2012-01-11

    During the 1960s, a small but vibrant community of cosmic ray physicists, pioneered novel optical methods of detecting extensive air showers (EAS) in the Earth's atmosphere with the prime objective of searching for point sources of energetic cosmic {gamma}-rays. Throughout that decade, progress was extremely slow. Attempts to use the emission of optical Cherenkov radiation from showers as a basis for TeV gamma-ray astronomy proved difficult and problematical, given the rather primitive light-collecting systems in use at the time, coupled with a practical inability to reject the overwhelming background arising from hadronic showers. Simultaneously, a number of groups experimented with passive detection of radio emission from EAS as a possible cheap, simple, stand-alone method to detect and characterise showers of energy greater than 10{sup 16} eV. By the end of the decade, it was shown that the radio emission was quite highly beamed and hence the effective collection area for detection of high energy showers was quite limited, diminishing the effectiveness of the radio signature as a stand-alone shower detection channel. By the early 1970s much of the early optimism for both the optical and radio techniques was beginning to dissipate, greatly reducing research activity. However, following a long hiatus both avenues were in time revived, the optical in the early 1980s and the radio in the early 2000s. With the advent of digital logic hardware, powerful low-cost computing, the ability to perform Monte Carlo simulations and above all, greatly improved funding, rapid progress became possible. In time this work proved to be fundamental to both High Energy {gamma}-ray Astronomy and Neutrino Astrophysics. Here, that first decade of experimental investigation in both fields is reviewed.

  14. IRAS observations of radio-quiet and radio-loud quasars

    Science.gov (United States)

    Neugebauer, G.; Soifer, B. T.; Miley, G.; Habing, H. J.; Young, E.; Low, F. J.; Beichman, C. A.; Clegg, P. E.; Harris, S.; Rowan-Robinson, M.

    1984-01-01

    Observations from 12 to 100 microns are presented of two radio-quiet and three radio-loud quasars. Over this wavelength range, all five have grossly similar continuum energy distributions. The continua of the radio-loud quasars are consistent with synchrotron radiation. There is an indication, however, of excess 100 micron emission in the two radio-quiet quasars.

  15. On the nature of emission of the star-gas-dust complex of the W1 radio source

    International Nuclear Information System (INIS)

    Udal'tsov, V.A.; Kovalenko, A.V.

    1982-01-01

    The brightness distribution of the radio source W 1 at 102 MHz has been investigated with the 187x384 m radio telescope in Pushchino. It is shown that W 1 is genetically connected with the stellar association Ceph IV as well as with the extended emission nebula GS 285 which consists of numerous nebulae, including two bright ones, Sharpless (S) 171 and NGC 7822. The radio emission of the nebula S 171 is shown to be thermal, and there is no Supernova remnant in it, in contrast with the other authors' suggestion. By two independent methods, the distance to S 171 has been evaluated to be 840 pc. The emission of NGC 7822 is mainly thermal. The extended nebula GS 285 is a thermal source, not a remnant of a Supernova that had exploded in a dense gas - dust medium, as was believed by other authors. Attention is drawn to the wrong identification by many authors of the radio source in the S 171 region with the nebula NGC 7822. It is shown that when measuring the difference of spectral indices of two sources, the calibration error may be eliminated if their calibration at given frequency is made by means of the same source [ru

  16. Far-IR and Radio Thermal Continua in Solar Flares

    Czech Academy of Sciences Publication Activity Database

    Kašparová, Jana; Heinzel, Petr; Karlický, Marian; Moravec, Z.; Varady, M.

    2009-01-01

    Roč. 33, - (2009), s. 309-315 ISSN 1845-8319 R&D Projects: GA ČR GA205/04/0358; GA ČR GP205/06/P135; GA ČR GA205/07/1100 Institutional research plan: CEZ:AV0Z10030501 Keywords : solar flares * radiative hydrodynamics * continuum emission Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  17. Costs of solar and wind power variability for reducing CO2 emissions.

    Science.gov (United States)

    Lueken, Colleen; Cohen, Gilbert E; Apt, Jay

    2012-09-04

    We compare the power output from a year of electricity generation data from one solar thermal plant, two solar photovoltaic (PV) arrays, and twenty Electric Reliability Council of Texas (ERCOT) wind farms. The analysis shows that solar PV electricity generation is approximately one hundred times more variable at frequencies on the order of 10(-3) Hz than solar thermal electricity generation, and the variability of wind generation lies between that of solar PV and solar thermal. We calculate the cost of variability of the different solar power sources and wind by using the costs of ancillary services and the energy required to compensate for its variability and intermittency, and the cost of variability per unit of displaced CO(2) emissions. We show the costs of variability are highly dependent on both technology type and capacity factor. California emissions data were used to calculate the cost of variability per unit of displaced CO(2) emissions. Variability cost is greatest for solar PV generation at $8-11 per MWh. The cost of variability for solar thermal generation is $5 per MWh, while that of wind generation in ERCOT was found to be on average $4 per MWh. Variability adds ~$15/tonne CO(2) to the cost of abatement for solar thermal power, $25 for wind, and $33-$40 for PV.

  18. Stimulation of auroral kilometric radiation by type III solar radio bursts

    International Nuclear Information System (INIS)

    Calvert, W.

    1981-01-01

    It has been found that the onset of auroral kilometric radiation (AKR) frequently coincides with the arrival of type III solar radio bursts. Although the AKR onsets are usually abrupt and appear to be spontaneous, they sometimes develop from a discrete frequency near the leading edge of a type III burst or sometimes occur at progressively lower frequencies following that edge. From this, and the absence of the related solar electrons in specific cases, it was concluded that the incoming type III waves were sometimes responsible for stimulating auroral kilometric radiation. It was estimated that intense, isolated type III bursts were capable of stimulating AKR roughly one third of the time, and that at least ten percent of the observed AKR onsets could be attributed to these and weaker bursts, including some barely detectable by the ISEE plasma wave receivers

  19. AUTOMATIC RECOGNITION OF CORONAL TYPE II RADIO BURSTS: THE AUTOMATED RADIO BURST IDENTIFICATION SYSTEM METHOD AND FIRST OBSERVATIONS

    International Nuclear Information System (INIS)

    Lobzin, Vasili V.; Cairns, Iver H.; Robinson, Peter A.; Steward, Graham; Patterson, Garth

    2010-01-01

    Major space weather events such as solar flares and coronal mass ejections are usually accompanied by solar radio bursts, which can potentially be used for real-time space weather forecasts. Type II radio bursts are produced near the local plasma frequency and its harmonic by fast electrons accelerated by a shock wave moving through the corona and solar wind with a typical speed of ∼1000 km s -1 . The coronal bursts have dynamic spectra with frequency gradually falling with time and durations of several minutes. This Letter presents a new method developed to detect type II coronal radio bursts automatically and describes its implementation in an extended Automated Radio Burst Identification System (ARBIS 2). Preliminary tests of the method with spectra obtained in 2002 show that the performance of the current implementation is quite high, ∼80%, while the probability of false positives is reasonably low, with one false positive per 100-200 hr for high solar activity and less than one false event per 10000 hr for low solar activity periods. The first automatically detected coronal type II radio burst is also presented.

  20. The apparent source size of type III radio bursts: Preliminary results by the STEREO/WAVES instruments

    Czech Academy of Sciences Publication Activity Database

    Krupař, Vratislav; Maksimovic, M.; Santolík, Ondřej; Cecconi, B.; Nguyen, Q. N.; Hoang, S.; Goetz, K.

    2010-01-01

    Roč. 1216, č. 1 (2010), s. 284-287 ISSN 0094-243X. [International Solar Wind Conference /12./. Saint-Milo, 21.06.2009-26.06.2009] R&D Projects: GA ČR GAP205/10/2279; GA AV ČR IAA301120601; GA MŠk ME09107 Institutional research plan: CEZ:AV0Z30420517 Keywords : WAVES Instrument * Solar Radio Emissions * Singular Value Decomposition technique Subject RIV: BL - Plasma and Gas Discharge Physics

  1. The Sun's X-ray Emission During the Recent Solar Minimum

    Science.gov (United States)

    Sylwester, Janusz; Kowalinski, Mirek; Gburek, Szymon; Siarkowski, Marek; Kuzin, Sergey; Farnik, Frantisek; Reale, Fabio; Phillips, Kenneth J. H.

    2010-02-01

    The Sun recently underwent a period of a remarkable lack of major activity such as large flares and sunspots, without equal since the advent of the space age a half century ago. A widely used measure of solar activity is the amount of solar soft X-ray emission, but until recently this has been below the threshold of the X-ray-monitoring Geostationary Operational Environmental Satellites (GOES). There is thus an urgent need for more sensitive instrumentation to record solar X-ray emission in this range. Anticipating this need, a highly sensitive spectrophotometer called Solar Photometer in X-rays (SphinX) was included in the solar telescope/spectrometer TESIS instrument package on the third spacecraft in Russia's Complex Orbital Observations Near-Earth of Activity of the Sun (CORONAS-PHOTON) program, launched 30 January 2009 into a near-polar orbit. SphinX measures X-rays in a band similar to the GOES longer-wavelength channel.

  2. Limits on radio emission from meteors using the MWA

    Science.gov (United States)

    Zhang, Xiang; Hancock, Paul; Devillepoix, Hadrien A. R.; Wayth, Randall B.; Beardsley, A.; Crosse, B.; Emrich, D.; Franzen, T. M. O.; Gaensler, B. M.; Horsley, L.; Johnston-Hollitt, M.; Kaplan, D. L.; Kenney, D.; Morales, M. F.; Pallot, D.; Steele, K.; Tingay, S. J.; Trott, C. M.; Walker, M.; Williams, A.; Wu, C.; Ji, Jianghui; Ma, Yuehua

    2018-04-01

    Recently, low frequency, broadband radio emission has been observed accompanying bright meteors by the Long Wavelength Array (LWA). The broadband spectra between 20 and 60 MHz were captured for several events, while the spectral index (dependence of flux density on frequency, with Sν∝να) was estimated to be -4 ± 1 during the peak of meteor afterglows. Here we present a survey of meteor emission and other transient events using the Murchison Widefield Array (MWA) at 72-103 MHz. In our 322-hour survey, down to a 5σ detection threshold of 3.5 Jy/beam, no transient candidates were identified as intrinsic emission from meteors. We derived an upper limit of -3.7 (95% confidence limit) on the spectral index in our frequency range. We also report detections of other transient events, like reflected FM broadcast signals from small satellites, conclusively demonstrating the ability of the MWA to detect and track space debris on scales as small as 0.1 m in low Earth orbits.

  3. X rays from radio binaries

    International Nuclear Information System (INIS)

    Apparao, K.M.V.

    1977-01-01

    Reference is made to the radio binary systems CC Cas, AR Lac, β Per (Algol), β Lyr, b Per and Cyg X-1. It is stated that a thermal interpretation of the radiation from Algol requires a much larger x-ray flux than the observed value of 3.8 x 10 -11 erg/cm 2 /sec/keV in the 2 to 6 keV energy range. Observations of some non-thermal flares, together with the small size of the radio source in Algol, indicate that the radio emission is non-thermal in nature. The radio emission is interpreted as synchrotron radiation and it is suggested that the observed x-ray emission is due to inverse Compton scattering of the light of the primary star by the radio electrons. The x-ray emission from other radio binaries is also calculated using this model. The energy for the radio electrons can arise from annihilation of magnetic lines connecting the binary stars, twisted by the rotation of the stars. (U.K.)

  4. Estimating the Quantity of Wind and Solar Required To Displace Storage-Induced Emissions.

    Science.gov (United States)

    Hittinger, Eric; Azevedo, Inês M L

    2017-11-07

    The variable and nondispatchable nature of wind and solar generation has been driving interest in energy storage as an enabling low-carbon technology that can help spur large-scale adoption of renewables. However, prior work has shown that adding energy storage alone for energy arbitrage in electricity systems across the U.S. routinely increases system emissions. While adding wind or solar reduces electricity system emissions, the emissions effect of both renewable generation and energy storage varies by location. In this work, we apply a marginal emissions approach to determine the net system CO 2 emissions of colocated or electrically proximate wind/storage and solar/storage facilities across the U.S. and determine the amount of renewable energy required to offset the CO 2 emissions resulting from operation of new energy storage. We find that it takes between 0.03 MW (Montana) and 4 MW (Michigan) of wind and between 0.25 MW (Alabama) and 17 MW (Michigan) of solar to offset the emissions from a 25 MW/100 MWh storage device, depending on location and operational mode. Systems with a realistic combination of renewables and storage will result in net emissions reductions compared with a grid without those systems, but the anticipated reductions are lower than a renewable-only addition.

  5. EMISSION HEIGHT AND TEMPERATURE DISTRIBUTION OF WHITE-LIGHT EMISSION OBSERVED BY HINODE/SOT FROM THE 2012 JANUARY 27 X-CLASS SOLAR FLARE

    International Nuclear Information System (INIS)

    Watanabe, Kyoko; Shimizu, Toshifumi; Masuda, Satoshi; Ichimoto, Kiyoshi; Ohno, Masanori

    2013-01-01

    White-light emissions were observed from an X1.7 class solar flare on 2012 January 27, using three continuum bands (red, green, and blue) of the Solar Optical Telescope on board the Hinode satellite. This event occurred near the solar limb, and so differences in the locations of the various emissions are consistent with differences in heights above the photosphere of the various emission sources. Under this interpretation, our observations are consistent with the white-light emissions occurring at the lowest levels of where the Ca II H emission occurs. Moreover, the centers of the source regions of the red, green, and blue wavelengths of the white-light emissions are significantly displaced from each other, suggesting that those respective emissions are emanating from progressively lower heights in the solar atmosphere. The temperature distribution was also calculated from the white-light data, and we found the lower-layer emission to have a higher temperature. This indicates that high-energy particles penetrated down to near the photosphere, and deposited heat into the ambient lower layers of the atmosphere

  6. Atlas of solar hidden photon emission

    Energy Technology Data Exchange (ETDEWEB)

    Redondo, Javier [Departamento de Física Teórica, Universidad de Zaragoza,Pedro Cerbuna 12, E-50009, Zaragoza (Spain); Max-Planck-Institut für Physik, Werner-Heisenberg-Institut,Föhringer Ring 6, 80805 München (Germany)

    2015-07-20

    Hidden photons, gauge bosons of a U(1) symmetry of a hidden sector, can constitute the dark matter of the universe and a smoking gun for large volume compactifications of string theory. In the sub-eV mass range, a possible discovery experiment consists on searching the copious flux of these particles emitted from the Sun in a helioscope setup à la Sikivie. In this paper, we compute in great detail the flux of HPs from the Sun, a necessary ingredient for interpreting such experiments. We provide a detailed exposition of transverse photon-HP oscillations in inhomogenous media, with special focus on resonance oscillations, which play a leading role in many cases. The region of the Sun emitting HPs resonantly is a thin spherical shell for which we justify an averaged-emission formula and which implies a distinctive morphology of the angular distribution of HPs on Earth in many cases. Low mass HPs with energies in the visible and IR have resonances very close to the photosphere where the solar plasma is not fully ionised and requires building a detailed model of solar refraction and absorption. We present results for a broad range of HP masses (from 0–1 keV) and energies (from the IR to the X-ray range), the most complete atlas of solar HP emission to date.

  7. Atlas of solar hidden photon emission

    Energy Technology Data Exchange (ETDEWEB)

    Redondo, Javier, E-mail: redondo@mpp.mpg.de [Departamento de Física Teórica, Universidad de Zaragoza, Pedro Cerbuna 12, E-50009, Zaragoza, España (Spain)

    2015-07-01

    Hidden photons, gauge bosons of a U(1) symmetry of a hidden sector, can constitute the dark matter of the universe and a smoking gun for large volume compactifications of string theory. In the sub-eV mass range, a possible discovery experiment consists on searching the copious flux of these particles emitted from the Sun in a helioscope setup à la Sikivie. In this paper, we compute in great detail the flux of HPs from the Sun, a necessary ingredient for interpreting such experiments. We provide a detailed exposition of transverse photon-HP oscillations in inhomogenous media, with special focus on resonance oscillations, which play a leading role in many cases. The region of the Sun emitting HPs resonantly is a thin spherical shell for which we justify an averaged-emission formula and which implies a distinctive morphology of the angular distribution of HPs on Earth in many cases. Low mass HPs with energies in the visible and IR have resonances very close to the photosphere where the solar plasma is not fully ionised and requires building a detailed model of solar refraction and absorption. We present results for a broad range of HP masses (from 0–1 keV) and energies (from the IR to the X-ray range), the most complete atlas of solar HP emission to date.

  8. On the secular decrease of radio emission flux densities of the supernova remnants of Cassiopeia A and Taurus A at frequency 927 MHz

    International Nuclear Information System (INIS)

    Vinyajkin, E.N.; Razin, V.A.

    1979-01-01

    Relative measurements of the radio emission flux densities of the supernova remnants of Cassiopeia A and Taurus A were made at the frequency 927 MHz to investigate the secular decrease of their intensity. Experiments were fulfilled in October-December 1977 at the 10-meter radio telescope of the radioastronomical station Staraya Pustyn' (NIRFI). The radio galaxied of Cygnus A, Virgo A and Orion Nebula were taken as the comparison sources. The comparison of the data obtained with the results of absolute measurements carried out in October 1962 permits to state that during 15 years the radio emission flux density of Cassiopeia A decreased by (14.2+-0.6)% (the average annual decrease amounts to (0.95+-O.04)%) and the radio emission flux density of Taurus A decreased by (2.7+-0.1)% (the annual decrease is (0.18+-0.01)%)

  9. Multiple-wavelength analysis of energy release during a solar flare - Thermal and nonthermal electron populations

    Science.gov (United States)

    Willson, Robert F.; Lang, Kenneth R.; Klein, Karl-Ludwig; Kerdraon, Alain; Trottet, Gerard

    1990-01-01

    Collaborative solar investigations by Tufts University and the Observatoire de Paris have resulted in simultaneous radio observations with the Very Large Array (VLA) and the Nancay Radioheliograph (NR), comparisons of this radio data with X-ray observations, and theoretical interpretations of the dominant radiation mechanisms during a weak impulsive solar flare observed on May 28, 1988. The VLA has mapped the flaring structures at time intervals of 3.3 s, showing that the preflash and flash-phase components of the impulsive emission originate in spatially separated sources. The 20.7 cm preflash source is ascribed to thermal gyroresonance emission from coronal loops with typical magnetic field strengths of up to 270 G; this emission is associated with heating and exhibits no detectable hard X-ray radiation above 30 keV. The flash-phase 20.7 cm source and the hard X-ray emission are attributed to nonthermal electrons in the coronal and chromospheric portions of a magnetic loop. The combination of imaging observations at 20.7 and 91.6 cm excludes emission from a confined hot plasma during the flash phase.

  10. THE NON-THERMAL, TIME-VARIABLE RADIO EMISSION FROM Cyg OB2 no. 5: A WIND-COLLISION REGION

    International Nuclear Information System (INIS)

    Ortiz-Leon, Gisela N.; Loinard, Laurent; RodrIguez, Luis F.; Dzib, Sergio A.; Mioduszewski, Amy J.

    2011-01-01

    The radio emission from the well-studied massive stellar system Cyg OB2 no. 5 is known to fluctuate with a period of 6.7 years between a low-flux state, when the emission is entirely of free-free origin, and a high-flux state, when an additional non-thermal component (of hitherto unknown nature) appears. In this paper, we demonstrate that the radio flux of that non-thermal component is steady on timescales of hours and that its morphology is arc-like. This shows that the non-thermal emission results from the collision between the strong wind driven by the known contact binary in the system and that of an unseen companion on a somewhat eccentric orbit with a 6.7 year period and a 5-10 mas semimajor axis. Together with the previously reported wind-collision region located about 0.''8 to the northeast of the contact binary, so far Cyg OB2 no. 5 appears to be the only multiple system known to harbor two radio-imaged wind-collision regions.

  11. Low-Frequency Radio Bursts and Space Weather

    Science.gov (United States)

    Gopalswamy, N.

    2016-01-01

    Low-frequency radio phenomena are due to the presence of nonthermal electrons in the interplanetary (IP) medium. Understanding these phenomena is important in characterizing the space environment near Earth and other destinations in the solar system. Substantial progress has been made in the past two decades, because of the continuous and uniform data sets available from space-based radio and white-light instrumentation. This paper highlights some recent results obtained on IP radio phenomena. In particular, the source of type IV radio bursts, the behavior of type III storms, shock propagation in the IP medium, and the solar-cycle variation of type II radio bursts are considered. All these phenomena are closely related to solar eruptions and active region evolution. The results presented were obtained by combining data from the Wind and SOHO missions.

  12. Ion Acoustic Wave Frequencies and Onset Times During Type 3 Solar Radio Bursts

    Science.gov (United States)

    Cairns, Iver H.; Robinson, P. A.

    1995-01-01

    Conflicting interpretations exist for the low-frequency ion acoustic (S) waves often observed by ISEE 3 in association with intense Langmuir (L) waves in the source regions of type III solar radio bursts near 1 AU. Two indirect lines of observational evidence, as well as plasma theory, suggest they are produced by the electrostatic (ES) decay L yields L(PRIME) + S. However, contrary to theoretical predictions, an existing analysis of the wave frequencies instead favors the electromagnetic (EM) decays L yields T + S, where T denotes an EM wave near the plasma frequency. This conflict is addressed here by comparing the observed wave frequencies and onset times with theoretical predictions for the ES and EM decays, calculated using the time-variable electron beam and magnetic field orientation data, rather than the nominal values used previously. Field orientation effects and beam speed variations are shown analytically to produce factor-of-three effects, greater than the difference in wave frequencies predicted for the ES and EM decays; effects of similar magnitude occur in the events analyzed here. The S-wave signals are extracted by hand from a sawtooth noise background, greatly improving the association between S waves and intense L waves. Very good agreement exists between the time-varying predictions for the ES decay and the frequencies of most (but not all) wave bursts. The waves occur only after the ES decay becomes kinematically allowed, which is consistent with the ES decay proceeding and producing most of the observed signals. Good agreement exists between the EM decay's predictions and a significant fraction of the S-wave observations while the EM decay is kinematically allowed. The wave data are not consistent, however, with the EM decay being the dominant nonlinear process. Often the observed waves are sufficiently broadband to overlap simultaneously the frequency ranges predicted for the ES and EM decays. Coupling the dominance of the ES decay with this

  13. PLASMA EMISSION BY WEAK TURBULENCE PROCESSES

    Energy Technology Data Exchange (ETDEWEB)

    Ziebell, L. F.; Gaelzer, R. [Instituto de Física, UFRGS, Porto Alegre, RS (Brazil); Yoon, P. H. [Institute for Physical Science and Technology, University of Maryland, College Park, MD (United States); Pavan, J., E-mail: luiz.ziebell@ufrgs.br, E-mail: rudi.gaelzer@ufrgs.br, E-mail: yoonp@umd.edu, E-mail: joel.pavan@ufpel.edu.br [Instituto de Física e Matemática, UFPel, Pelotas, RS (Brazil)

    2014-11-10

    The plasma emission is the radiation mechanism responsible for solar type II and type III radio bursts. The first theory of plasma emission was put forth in the 1950s, but the rigorous demonstration of the process based upon first principles had been lacking. The present Letter reports the first complete numerical solution of electromagnetic weak turbulence equations. It is shown that the fundamental emission is dominant and unless the beam speed is substantially higher than the electron thermal speed, the harmonic emission is not likely to be generated. The present findings may be useful for validating reduced models and for interpreting particle-in-cell simulations.

  14. Frequency drift of 3-kHz interplanetary radio emissions: evidence of Fermi accelerated trapped radiation in a small heliosphere?

    International Nuclear Information System (INIS)

    Czechowski, A.; Grzedzielski, S.

    1990-01-01

    Neither the termination shock wave formed where the solar wind ceases to be supersonic, nor the slightly more distant heliopause, where the wind runs into the interstellar medium, have been directly observed, but estimates based on observed cosmic-ray modulations and on pressure balance between the two media suggest that they are 50-200 AU from the Sun. We argue here that the well-known interplanetary radio emission of 2-3 kHz in frequency is trapped in the electromagnetic cavity formed by the heliopause, and furthermore that the fluctuating solar wind will cause the frequency of this trapped radiation to increase at a rate dependent on the geometry of the cavity. Applying this interpretation to the previously unexplained frequency drift, amounting to ∼ 1 kHz yr -1 , of the 3-kHz burst, we estimate an average heliopause distance of 60-100 AU. This agrees with recent data from Pioneer 10 and Voyager 2, suggesting that the termination shock is located at a distance of ∼50 AU, and implies that Voyager 1 may reach the shock in about 1993 and the heliopause as early as 1996. (author)

  15. Measurement Technique in Radio Frequency Interference (RFI) Study for Radio Astronomy Purposes

    International Nuclear Information System (INIS)

    Roslan Umar; Roslan Umar; Nor Hazmin Sabri; Zainol Abidin Ibrahim; Zamri Zainal Abidin; Asyaari Muhamad

    2015-01-01

    In this paper, we will review our method in making measurements of radio frequency interference (RFI) in order to investigate the sereneness of interference in selected radio interference in Malaysia and Thailand. The selected site are University of Malaya (UM), Universiti Pendidikan Sultan Idris (UPSI), Ubon (UB) and Chiang Mai (CM). The major RFI affecting radio astronomical windows below 1 GHz are electronic equipment system specifically radio navigation between 73.1 MHz and 75.2 MHz, radio broadcasting (151 MHz, 151.8 MHz and 152 MHz), aeronautical navigation (245.5 MHz, 248.7 MHz and 249 MHz and also fixed mobile at 605 MHz, 608.3 MHz, 612.2 MHz, 613.3 MHz. It is obviously showed that all sites within this region are free from interference between 320MHz and 330 MHz and is the best specific region to be considered for solar burst monitoring. We also investigate the effect of RFI on discovery of solar burst. (author)

  16. Bright radio emission from an ultraluminous stellar-mass microquasar in M 31

    NARCIS (Netherlands)

    Middleton, M.J.; Miller Jones, J.C.A.; Markoff, S.; Fender, R.; Henze, M.; Hurley-Walker, N.; Scaife, A.M.M.; Roberts, T.P.; Walton, D.; Carpenter, J.; Macquart, J.-P.; Bower, G.C.; Gurwell, G.; Pietsch, W.; Haberl, F.; Harris, J.; Daniel, M.; Miah, J.; Done, C.; Morgan, J.S.; Dickinson, H.; Charles, P.; Burwitz, V.; Della Valle, M.; Freyberg, M.; Greiner, J.; Hernanz, M.; Hartmann, D.H.; Hatzidimitriou, D.; Riffeser, A.; Sala, G.; Seitz, S.; Reig, P.; Rau, A.; Orio, M.; Titterington, D.; Grainge, K.

    2013-01-01

    A subset of ultraluminous X-ray sources (those with luminosities of less than 1040 erg s−1; ref. 1) are thought to be powered by the accretion of gas onto black holes with masses of ~5-20 , probably by means of an accretion disk2, 3. The X-ray and radio emission are coupled in such Galactic sources;

  17. Three-dimensional Langmuir wave instabilities in type III solar radio bursts

    International Nuclear Information System (INIS)

    Bardwell, S.; Goldman, M.V.

    1976-01-01

    Assuming that type III solar radio bursts are associated with electron streams moving at about c/3, Langmuir waves should be strongly excited. We have studied all of the Langmuir-wave linear parametric instabilities excited in cylindrical symmetry by an electron-stream--driven Langmuir wave-pump propagating along the stream axis. Included in this unified homogeneous treatment are induced backscattering off ions, the oscillating two-stream instability, and a new ''stimulated modulational instability,'' previously unconsidered in this context. Near a few solar radii, the latter two deposit Langmuir wave energy into a forward-scattering cone about the stream axis. It is concluded that the linear stage of the forward-scattering instabilities involves transfer of energy to Langmuir waves which remain in resonance with the stream, and therefore probably do not prevent rapid depletion of the electron stream due to quasilinear plateau formation at these distances from the Sun

  18. Radio Astronomy on and Around the Moon

    Science.gov (United States)

    Falcke, Heino; Klein Wolt, Mark; Ping, Jinsong; Chen, Linjie

    2018-06-01

    The exploration of remote places on other planets has now become a major goal in current space flight scenarios. On the other hand, astronomers have always sought the most remote and isolated sites to place their observatories and to make their most precise and most breath taking discoveries. Especially for radio astronomy, lunar exploration offers a complete new window to the universe. The polar region and the far-side of the moon are acknowledged as unique locations for a low-frequency radio telescope providing scientific data at wavelengths that cannot be obtained from the Earth nor from single satellites. Scientific areas to be covered range from radio surveys, to solar-system studies, exo-planet detection, and astroparticle physics. The key science area, however, is the detection and measurement of cosmological 21 cm hydrogen emission from the still unexplored dark ages of the universe. Developing a lunar radio facility can happen in steps and may involve small satellites, rover-based radio antennas, of free- flying constellations around the moon. A first such step could be the Netherlands-Chinese Long Wavelength Explorer (NCLE), which is supposed to be launched in 2018 as part of the ChangE’4 mission to the moon-earth L2 point.

  19. Assessing the lifecycle greenhouse gas emissions from solar PV and wind energy

    DEFF Research Database (Denmark)

    Nugent, Daniel; Sovacool, Benjamin

    2014-01-01

    This paper critically screens 153 lifecycle studies covering a broad range of wind and solar photovoltaic (PV) electricity generation technologies to identify 41 of the most relevant, recent, rigorous, original, and complete assessments so that the dynamics of their greenhouse gas (GHG) emissions...... profiles can be determined. When viewed in a holistic manner, including initial materials extraction, manufacturing, use and disposal/decommissioning, these 41 studies show that both wind and solar systems are directly tied to and responsible for GHG emissions. They are thus not actually emissions free......, this article uncovers best practices in wind and solar design and deployment that can better inform climate change mitigation efforts in the electricity sector...

  20. POLARIZED EXTENDED Ly{alpha} EMISSION FROM A z = 2.3 RADIO GALAXY

    Energy Technology Data Exchange (ETDEWEB)

    Humphrey, A. [Centro de Astrofisica da Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Vernet, J.; Fosbury, R. A. E. [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching (Germany); Villar-Martin, M. [Centro de Astrobiologia (INTA-CSIC), Carretera de Ajalvir, km 4, E-28850 Torrejon de Ardoz, Madrid (Spain); Di Serego Alighieri, S. [INAF-Osservatorio Astrofisico di Arcetri, L.go E. Fermi 5, I-50125 Firenze (Italy); Cimatti, A., E-mail: andrew.humphrey@astro.up.pt [Dipartimento di Astronomia, Universita di Bologna, Via Ranzani 1, I-40127 Bologna (Italy)

    2013-05-01

    We present spatially resolved spectropolarimetric measurements of the 100 kpc scale gaseous environment of the z = 2.34 radio galaxy TXS 0211-122. The polarization level of the narrow Ly{alpha} emission is low centrally (P < 5%), but rises to P = 16.4% {+-} 4.6% in the eastern part of the nebula, indicating that the nebula is at least partly powered by the scattering of Ly{alpha} photons by H I. Not only is this the first detection of polarized Ly{alpha} around a radio-loud active galaxy, it is also the second detection to date for any kind of Ly{alpha} nebula. We also detect a pair of diametrically opposed UV continuum sources along the slit, at the outer edges of the Ly{alpha} nebula, which we suggest may be the limb of a dusty shell, related to the large-scale H I absorbers often associated with high-z radio galaxies.

  1. Radio Emission from Pulsar Wind Nebulae without Surrounding Supernova Ejecta: Application to FRB 121102

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Z. G.; Wang, J. S. [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China); Yu, Y. W., E-mail: dzg@nju.edu.cn [Institute of Astrophysics, Central China Normal University, Wuhan 430079 (China)

    2017-03-20

    In this paper, we propose a new scenario in which a rapidly rotating strongly magnetized pulsar without any surrounding supernova ejecta repeatedly produces fast radio bursts (FRBs) via a range of possible mechanisms; simultaneously, an ultra-relativistic electron/positron pair wind from the pulsar sweeps up its ambient dense interstellar medium, giving rise to a non-relativistic pulsar wind nebula (PWN). We show that the synchrotron radio emission from such a PWN is bright enough to account for the recently discovered persistent radio source associated with the repeating FRB 121102 within reasonable ranges of the model parameters. Our PWN scenario is consistent with the non-evolution of the dispersion measure inferred from all of the repeating bursts observed in four years.

  2. Radio Emission from Pulsar Wind Nebulae without Surrounding Supernova Ejecta: Application to FRB 121102

    International Nuclear Information System (INIS)

    Dai, Z. G.; Wang, J. S.; Yu, Y. W.

    2017-01-01

    In this paper, we propose a new scenario in which a rapidly rotating strongly magnetized pulsar without any surrounding supernova ejecta repeatedly produces fast radio bursts (FRBs) via a range of possible mechanisms; simultaneously, an ultra-relativistic electron/positron pair wind from the pulsar sweeps up its ambient dense interstellar medium, giving rise to a non-relativistic pulsar wind nebula (PWN). We show that the synchrotron radio emission from such a PWN is bright enough to account for the recently discovered persistent radio source associated with the repeating FRB 121102 within reasonable ranges of the model parameters. Our PWN scenario is consistent with the non-evolution of the dispersion measure inferred from all of the repeating bursts observed in four years.

  3. SphinX MEASUREMENTS OF THE 2009 SOLAR MINIMUM X-RAY EMISSION

    OpenAIRE

    Sylwester, J.; Kowalinski, M.; Gburek, S.; Siarkowski, M.; Kuzin, S.; Farnik, F.; Reale, F.; Phillips, K. J. H.; Bakala, J.; Gryciuk, M.; Podgorski, P.; Sylwester, B.

    2012-01-01

    The SphinX X-ray spectrophotometer on the CORONAS-PHOTON spacecraft measured soft X-ray emission in the 1-15 keV energy range during the deep solar minimum of 2009 with a sensitivity much greater than GOES. Several intervals are identified when the X-ray flux was exceptionally low, and the flux and solar X-ray luminosity are estimated. Spectral fits to the emission at these times give temperatures of 1.7-1.9 MK and emission measures between 4 x 10^47 cm^-3 and 1.1 x 10^48 cm^-3. Comparing Sph...

  4. Constraints on Nonlinear and Stochastic Growth Theories for Type 3 Solar Radio Bursts from the Corona to 1 AU

    Science.gov (United States)

    Cairns, Iver H.; Robinson, P. A.

    1998-01-01

    Existing, competing theories for coronal and interplanetary type III solar radio bursts appeal to one or more of modulational instability, electrostatic (ES) decay processes, or stochastic growth physics to preserve the electron beam, limit the levels of Langmuir-like waves driven by the beam, and produce wave spectra capable of coupling nonlinearly to generate the observed radio emission. Theoretical constraints exist on the wavenumbers and relative sizes of the wave bandwidth and nonlinear growth rate for which Langmuir waves are subject to modulational instability and the parametric and random phase versions of ES decay. A constraint also exists on whether stochastic growth theory (SGT) is appropriate. These constraints are evaluated here using the beam, plasma, and wave properties (1) observed in specific interplanetary type III sources, (2) predicted nominally for the corona, and (3) predicted at heliocentric distances greater than a few solar radii by power-law models based on interplanetary observations. It is found that the Langmuir waves driven directly by the beam have wavenumbers that are almost always too large for modulational instability but are appropriate to ES decay. Even for waves scattered to lower wavenumbers (by ES decay, for instance), the wave bandwidths are predicted to be too large and the nonlinear growth rates too small for modulational instability to occur for the specific interplanetary events studied or the great majority of Langmuir wave packets in type III sources at arbitrary heliocentric distances. Possible exceptions are for very rare, unusually intense, narrowband wave packets, predominantly close to the Sun, and for the front portion of very fast beams traveling through unusually dilute, cold solar wind plasmas. Similar arguments demonstrate that the ES decay should proceed almost always as a random phase process rather than a parametric process, with similar exceptions. These results imply that it is extremely rare for

  5. SOLAR CYCLE VARIATIONS OF THE RADIO BRIGHTNESS OF THE SOLAR POLAR REGIONS AS OBSERVED BY THE NOBEYAMA RADIOHELIOGRAPH

    Energy Technology Data Exchange (ETDEWEB)

    Nitta, Nariaki V.; DeRosa, Marc L. [Lockheed Martin Advanced Technology Center, Dept/A021S, B/252, 3251 Hanover Street, Palo Alto, CA 94304 (United States); Sun, Xudong; Hoeksema, J. Todd [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 (United States)

    2014-01-10

    We have analyzed daily microwave images of the Sun at 17 GHz obtained with the Nobeyama Radioheliograph (NoRH) in order to study the solar cycle variations of the enhanced brightness in the polar regions. Unlike in previous works, the averaged brightness of the polar regions is obtained from individual images rather than from synoptic maps. We confirm that the brightness is anti-correlated with the solar cycle and that it has generally declined since solar cycle 22. Including images up to 2013 October, we find that the 17 GHz brightness temperature of the south polar region has decreased noticeably since 2012. This coincides with a significant decrease in the average magnetic field strength around the south pole, signaling the arrival of solar maximum conditions in the southern hemisphere more than a year after the northern hemisphere. We do not attribute the enhanced brightness of the polar regions at 17 GHz to the bright compact sources that occasionally appear in synthesized NoRH images. This is because they have no correspondence with small-scale bright regions in images from the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory with a broad temperature coverage. Higher-quality radio images are needed to understand the relationship between microwave brightness and magnetic field strength in the polar regions.

  6. Radio Emission from Supernovae

    International Nuclear Information System (INIS)

    Weiler, Kurt W.; Panagia, Nino; Sramek, Richard A.; Van Dyk, Schuyler D.; Williams, Christopher L.; Stockdale, Christopher J.; Kelley, Matthew T.

    2009-01-01

    Study of radio supernovae over the past 27 years includes more than three dozen detected objects and more than 150 upper limits. From this work it is possible to identify classes of radio properties, demonstrate conformance to and deviations from existing models, estimate the density and structure of the circumstellar material and, by inference, the evolution of the presupernova stellar wind, and reveal the last stages of stellar evolution before explosion. It is also possible to detect ionized hydrogen along the line of sight, to demonstrate binary properties of the presupernova stellar system, and to detect dumpiness of the circumstellar material.

  7. THE ORIGIN OF THE INFRARED EMISSION IN RADIO GALAXIES. II. ANALYSIS OF MID- TO FAR-INFRARED SPITZER OBSERVATIONS OF THE 2JY SAMPLE

    International Nuclear Information System (INIS)

    Dicken, D.; Tadhunter, C.; Axon, D.; Morganti, R.; Inskip, K. J.; Holt, J.; Groves, B.; Delgado, R. Gonzalez

    2009-01-01

    We present an analysis of deep mid- to far-infrared (MFIR) Spitzer photometric observations of the southern 2Jy sample of powerful radio sources (0.05 < z < 0.7), conducting a statistical investigation of the links between radio jet, active galactic nucleus (AGN), starburst activity and MFIR properties. This is part of an ongoing extensive study of powerful radio galaxies that benefits from both complete optical emission line information and a uniquely high detection rate in the far-infrared (far-IR). We find tight correlations between the MFIR and [O III]λ5007 emission luminosities, which are significantly better than those between MFIR and extended radio luminosities, or between radio and [O III] luminosities. Since [O III] is a known indicator of intrinsic AGN power, these correlations confirm AGN illumination of the circumnuclear dust as the primary heating mechanism for the dust producing thermal MFIR emission at both 24 and 70 μm. We demonstrate that AGN heating is energetically feasible, and identify the narrow-line region clouds as the most likely location of the cool, far-IR emitting dust. Starbursts make a major contribution to the heating of the cool dust in only 15%-28% of our targets. We also investigate the orientation dependence of the continuum properties, finding that the broad- and narrow-line objects in our sample with strong emission lines have similar distributions of MFIR luminosities and colors. Therefore our results are entirely consistent with the orientation-based unified schemes for powerful radio galaxies. However, the weak line radio galaxies form a separate class of objects with intrinsically low-luminosity AGNs in which both the optical emission lines and the MFIR continuum are weak.

  8. FAR-UV EMISSION PROPERTIES OF FR1 RADIO GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Danforth, Charles W.; Stocke, John T.; France, Kevin; Begelman, Mitchell C. [Department of Astrophysical and Planetary Sciences, University of Colorado, 391-UCB, Boulder, CO 80309 (United States); Perlman, Eric, E-mail: danforth@colorado.edu [Department of Physics and Space Sciences, Florida Institute of Technology, 150 W. University Boulevard, Melbourne, FL 32901 (United States)

    2016-11-20

    The power mechanism and accretion geometry for low-power FR 1 radio galaxies are poorly understood in comparison to those for Seyfert galaxies and QSOs. In this paper, we use the diagnostic power of the Ly α recombination line observed using the Cosmic Origins Spectrograph (COS) aboard the Hubble Space Telescope ( HST ) to investigate the accretion flows in three well-known, nearby FR 1s: M87, NGC 4696, and Hydra A. The Ly α emission line’s luminosity, velocity structure, and the limited knowledge of its spatial extent provided by COS are used to assess conditions within a few parsecs of the supermassive black hole in these radio-mode active galactic nuclei. We observe strong Ly α emission in all three objects with total luminosity similar to that seen in BL Lacertae objects. M87 shows a complicated emission-line profile in Ly α , which varies spatially across the COS aperture and possibly temporally over several epochs of observation. In both NGC 4696 and M87, the Ly α luminosities ∼10{sup 40} erg s{sup -1} are closely consistent with the observed strength of the ionizing continuum in Case B recombination theory and with the assumption of a near-unity covering factor. It is possible that the Ly α -emitting clouds are ionized largely by beamed radiation associated with the jets. Long-slit UV spectroscopy can be used to test this hypothesis. Hydra A and the several BL Lac objects studied in this and previous papers have Ly α luminosities larger than M87 but their extrapolated, nonthermal continua are so luminous that they overpredict the observed strength of Ly α , a clear indicator of relativistic beaming in our direction. Given their substantial space density (∼4 × 10{sup -3} Mpc{sup -3}), the unbeamed Lyman continuum radiation of FR 1s may make a substantial minority contribution (∼10%) to the local UV background if all FR 1s are similar to M87 in ionizing flux level.

  9. Impulsiveness and energetics in solar flares with and without type II radio bursts - A comparison of hard X-ray characteristics for over 2500 solar flares

    Science.gov (United States)

    Pearson, Douglas H.; Nelson, Robert; Kojoian, Gabriel; Seal, James

    1989-01-01

    The hard X-ray characteristics of more than 2500 solar flares are used to study the relative size, impulsiveness, and energetics of flares with and without type II radio bursts. A quantitative definition of the hard X-ray impulsiveness is introduced, which may be applied to a large number of events unambiguously. It is found that the flares with type II bursts are generally not significantly larger, more impulsive, or more energetic than those without type II bursts. Also, no evidence is found to suggest a simple classification of the flares as either 'impulsive' or 'gradual'. Because type II bursts are present even in small flares with relatively unimpulsive energy releases, it is concluded that changes in the ambient conditions of the solar atmosphere causing an unusually low Alfven speed may be important in the generation of the shock wave that produces type II radio bursts.

  10. Jet emission in young radio sources: A Fermi large area telescope gamma-ray view

    Energy Technology Data Exchange (ETDEWEB)

    Migliori, G.; Siemiginowska, A. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Kelly, B. C. [Department of Physics, Broida Hall, University of California, Santa Barbara, CA 93107 (United States); Stawarz, Ł. [Institute of Space and Astronautical Science, JAXA, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Celotti, A. [Scuola Internazionale Superiore di Studi Avanzati (SISSA), via Bonomea, 265-34136 Trieste (Italy); Begelman, M. C., E-mail: migliori@cfa.harvard.edu [JILA, University of Colorado and National Institute of Standards and Technology, 440 UCB, Boulder, CO 80309-0440 (United States)

    2014-01-10

    We investigate the contribution of the beamed jet component to the high-energy emission in young and compact extragalactic radio sources, focusing for the first time on the γ-ray band. We derive predictions on the γ-ray luminosities associated with the relativistic jet assuming a leptonic radiative model. The high-energy emission is produced via Compton scattering by the relativistic electrons in a spherical region at the considered scales (≲10 kpc). Simulations show a wide range of γ-ray luminosities, with intensities up to ∼10{sup 46}-10{sup 48} erg s{sup –1} depending on the assumed jet parameters. We find a highly linear relation between the simulated X-ray and γ-ray luminosities that can be used to select candidates for γ-ray detection. We compare the simulated luminosity distributions in the radio, X-ray, and γ-ray regimes with observations for the largest sample of X-ray-detected young radio quasars. Our analysis of ∼4-yr Fermi Large Area Telescope (LAT) data does not yield any statistically significant detections. However, the majority of the model-predicted γ-ray fluxes for the sample are near or below the current Fermi-LAT flux threshold and compatible with the derived upper limits. Our study gives constraints on the minimum jet power (L {sub jet,} {sub kin}/L {sub disk} > 0.01) of a potential jet contribution to the X-ray emission in the most compact sources (≲ 1 kpc) and on the particle-to-magnetic field energy density ratio that are in broad agreement with equipartition assumptions.

  11. RADIO MONITORING OF THE PERIODICALLY VARIABLE IR SOURCE LRLL 54361: NO DIRECT CORRELATION BETWEEN THE RADIO AND IR EMISSIONS

    Energy Technology Data Exchange (ETDEWEB)

    Forbrich, Jan, E-mail: jan.forbrich@univie.ac.at [University of Vienna, Department of Astrophysics, Türkenschanzstraße 17, A-1180 Vienna (Austria); Rodríguez, Luis F.; Palau, Aina; Zapata, Luis A. [Instituto de Radioastronomía y Astrofísica, UNAM, Apdo. Postal 3-72 (Xangari), 58089 Morelia, Michoacán (Mexico); Muzerolle, James [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Gutermuth, Robert A. [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States)

    2015-11-20

    LRLL 54361 is an infrared source located in the star-forming region IC 348 SW. Remarkably, its infrared luminosity increases by a factor of 10 over roughly one week every 25.34 days. To understand the origin of these remarkable periodic variations, we obtained sensitive 3.3 cm JVLA radio continuum observations of LRLL 54361 and its surroundings in six different epochs: three of them during the IR-on state and three during the IR-off state. The radio source associated with LRLL 54361 remained steady and did not show a correlation with the IR variations. We suggest that the IR is tracing the results of fast (with a timescale of days) pulsed accretion from an unseen binary companion, while the radio traces an ionized outflow with an extent of ∼100 AU that smooths out the variability over a period of the order of a year. The average flux density measured in these 2014 observations, 27 ± 5 μJy, is about a factor of two less than that measured about 1.5 years before, 53 ± 11 μJy, suggesting that variability in the radio is present, but over larger timescales than in the IR. We discuss other sources in the field, in particular two infrared/X-ray stars that show rapidly varying gyrosynchrotron emission.

  12. Radio Thermal Emission from Pluto and Charon during the New Horizons Encounter

    Science.gov (United States)

    Bird, Michael; Linscott, Ivan; Hinson, David; Tyler, G. L.; Strobel, Darrell F.; New Horizons Science Team

    2017-10-01

    As part of the New Horizons Radio-Science Experiment REX, radio thermal emission from Pluto and Charon (wavelength: 4.2 cm) was observed during the encounter on 14 July 2015. The primary REX measurement, a determination of the atmospheric height profile from the surface up to about 100 km, was conducted during an uplink radio occultation at both ingress and egress (Hinson et al., Icarus 290, 96-111, 2017). During the interval between ingress and egress, when the Earth and the REX uplink signals were occulted by the Pluto disk, the spacecraft antenna continued to point toward Earth and thus scanned diametrically across the Pluto nightside. The average diameter of the HGA 3 dB beam was ≈1100 km at the surface during this opportunity, thereby providing crudely resolved measurements of the radio brightness temperature across Pluto. The best resolution for the REX radiometry observations occurred shortly after closest approach, when the HGA was scanned twice across Pluto. These observations will be reported elsewhere (Linscott et al., Icarus, submitted, 2017). In addition to the resolved observations, full disk brightness temperature measurements of both bodies were performed during the approach (dayside) and departure (nightside) phases of the encounter. We present the results of these observations and provide a preliminary interpretation of the measured brightness temperatures.

  13. Interaction of suprathermal solar wind electron fluxes with sheared whistler waves: fan instability

    Directory of Open Access Journals (Sweden)

    C. Krafft

    Full Text Available Several in situ measurements performed in the solar wind evidenced that solar type III radio bursts were some-times associated with locally excited Langmuir waves, high-energy electron fluxes and low-frequency electrostatic and electromagnetic waves; moreover, in some cases, the simultaneous identification of energetic electron fluxes, Langmuir and whistler waves was performed. This paper shows how whistlers can be excited in the disturbed solar wind through the so-called "fan instability" by interacting with energetic electrons at the anomalous Doppler resonance. This instability process, which is driven by the anisotropy in the energetic electron velocity distribution along the ambient magnetic field, does not require any positive slope in the suprathermal electron tail and thus can account for physical situations where plateaued reduced electron velocity distributions were observed in solar wind plasmas in association with Langmuir and whistler waves. Owing to linear calculations of growth rates, we show that for disturbed solar wind conditions (that is, when suprathermal particle fluxes propagate along the ambient magnetic field, the fan instability can excite VLF waves (whistlers and lower hybrid waves with characteristics close to those observed in space experiments.

    Key words. Space plasma physics (waves and instabilities – Radio Science (waves in plasma – Solar physics, astrophysics and astronomy (radio emissions

  14. Interaction of suprathermal solar wind electron fluxes with sheared whistler waves: fan instability

    Directory of Open Access Journals (Sweden)

    C. Krafft

    2003-07-01

    Full Text Available Several in situ measurements performed in the solar wind evidenced that solar type III radio bursts were some-times associated with locally excited Langmuir waves, high-energy electron fluxes and low-frequency electrostatic and electromagnetic waves; moreover, in some cases, the simultaneous identification of energetic electron fluxes, Langmuir and whistler waves was performed. This paper shows how whistlers can be excited in the disturbed solar wind through the so-called "fan instability" by interacting with energetic electrons at the anomalous Doppler resonance. This instability process, which is driven by the anisotropy in the energetic electron velocity distribution along the ambient magnetic field, does not require any positive slope in the suprathermal electron tail and thus can account for physical situations where plateaued reduced electron velocity distributions were observed in solar wind plasmas in association with Langmuir and whistler waves. Owing to linear calculations of growth rates, we show that for disturbed solar wind conditions (that is, when suprathermal particle fluxes propagate along the ambient magnetic field, the fan instability can excite VLF waves (whistlers and lower hybrid waves with characteristics close to those observed in space experiments.Key words. Space plasma physics (waves and instabilities – Radio Science (waves in plasma – Solar physics, astrophysics and astronomy (radio emissions

  15. Search for EAS radio-emission at the Tien-Shan shower installation at a height of 3340 m above sea level

    Science.gov (United States)

    Beisenova, A.; Boos, E.; Haungs, A.; Sadykov, T.; Salihov, N.; Shepetov, A.; Tautayev, Y.; Vildanova, L.; Zhukov, V.

    2017-06-01

    The complex EAS installation of the Tien Shan mountain cosmic ray station which is situated at a height of 3340 m above sea level includes the scintillation and Cherenkov detectors of charged shower particles, an ionization calorimeter and a set of neutron detectors for registering the hadronic component of the shower, and a number of underground detectors of the penetrative EAS component. Now it is intended to expand this installation with a promising method for detecting the radio-emission generated by the particles of the developing shower. The facility for radio-emission detection consists of a three crossed dipole antennae, one being set vertically, and another two - mutually perpendicularly in a horizontal plane, all of them being connected to a three-channel radio-frequency amplifier of German production. By the passage of an extensive air shower, which is defined by a scintillation shower detector system, the output signal of antenna amplifier is digitized by a fast multichannel DT5720 ADC of Italian production, and kept within computer memory. The further analysis of the detected signal anticipates its operation according to a special algorithm and a search for the pulse of radio-emission from the shower. A functional test of the radio-installation is made with artificial signals which imitate those of the shower, and with the use of a N1996A type wave analyzer of Agilent Technologies production. We present preliminary results on the registration of extensive air shower emission at the Tien Shan installation which were collected during test measurements held in Summer 2016.

  16. The Dependence of Solar Flare Limb Darkening on Emission Peak Formation Temperature

    Science.gov (United States)

    Thiemann, Edward; Epp, Luke; Eparvier, Francis; Chamberlin, Phillip C.

    2017-08-01

    Solar limb effects are local brightening or darkening of an emission that depend on where in the Sun's atmosphere it forms. Near the solar limb, optically thick (thin) emissions will darken (brighten) as the column of absorbers (emitters) along the line-of-sight increases. Note that in limb brightening, emission sources are re-arranged whereas in limb darkening they are obscured. Thus, only limb darkening is expected to occur in disk integrated observations. Limb darkening also results in center-to-limb variations of disk-integrated solar flare spectra, with important consequences for how planetary atmospheres are affected by flares. Flares are typically characterized by their flux in the optically thin 0.1-0.8 nm band measured by the X-ray Sensor (XRS) on board the Geostationary Operational Environmental Satellite (GOES). On the other hand, Extreme Ultraviolet (EUV) line emissions can limb darken because they are sensitive to resonant scattering, resulting in a flare's location on the solar disk controlling the amount of ionizing radiation that reaches a planet. For example, an X-class flare originating from disk center may significantly heat a planet's thermosphere, whereas the same flare originating near the limb may have no effect because much of the effective emissions are scattered in the solar corona.To advance the relatively poor understanding of flare limb darkening, we use over 300 M-class or larger flares observed by the EUV Variability Experiment (EVE) onboard the Solar Dynamics Observatory (SDO) to characterize limb darkening as a function of emission peak formation temperature, Tf. For hot coronal emissions (Tf>2 MK), these results show a linear relationship between the degree of limb darkening and Tf where lines with Tf=2 MK darken approximately 7 times more than lines with Tf=16 MK. Because the extent of limb darkening is dependent on the height of the source plasma, we use simple Beer-Lambert radiative transfer analysis to interpret these results

  17. Interpretation of the galactic radio-continuum and gamma-ray emission

    International Nuclear Information System (INIS)

    Beuermann, K.P.

    1974-01-01

    An analysis is performed of the nonthermal radio-continuum and gamma-ray emission of the galactic disc, using a spiral-arm model of the Galaxy. The results for the 408 MHz brightness temperature and the >100 MeV gamma-ray line intensity as a function of galactic longitude at bsup(II)=0 deg are presented. The observational implications, as well as the uncertainties in the calculations, are briefly discussed. An estimate of the possible range of the inverse Compton contribution to the observed gamma-ray flux is made

  18. Possibility of detecting magnetospheric radio bursts from Uranus and Neptune

    International Nuclear Information System (INIS)

    Kennel, C.F.; Maggs, J.E.

    1976-01-01

    It is known that Earth, Jupiter and Saturn are sources of intense sporadic bursts of electromagnetic radiation, known as magnetospheric radio bursts. These bursts are here described. It is thought that the similarities in the power flux spectra, together with the burst occurrence patterns, suggest a common physical origin for these bursts in all three planets. The common mechanism may be noise amplification by field aligned currents, since it has been shown that the Earth's MRBs are associated with bright auroral arcs that involve intense field aligned currents. Such currents result from the interaction of the solar wind with the magnetosphere and should be a general feature of the interaction between the solar wind and planetary magnetospheres. If MRBs are produced by solar wind-magnetosphere interaction their total radiated power might scale with the solar wind input into the magnetosphere, and it has been suggested that the frequency of emission scales with the polar magnetic field strength of a planet. The intensity of MRBs is here scaled to the solar wind input and the frequency of emission to the polar field strength with a view to estimating the possibility of detecting MRBs from Uranus and Neptune. It is found that scaling of MRB power to the solar wind-magnetosphere dissipation power is probably a reasonable hypothesis. It is suggested that detection of MRB bursts from Uranus and Neptune might be a reasonable radioastronomy objective on future missions to the outer Solar System. (U.K.)

  19. First Experimental Impulse-Radio Ultra-Wideband Transmission Under the Russian Spectral Emission Mask

    DEFF Research Database (Denmark)

    Grakhova, Elizaveta P.; Rommel, Simon; Jurado-Navas, Antonio

    2016-01-01

    Ultra-wideband impulse-radio wireless transmission under the stringent conditions and complex shape of the Russian spectral emission mask is experimentally demonstrated for the first time. Transmission of 1Gbit/s and 1.25Gbit/s signals over distances of 6m and 3m is achieved with a BER below 3.8×10-3....

  20. Spectral Energy Distribution and Radio Halo of NGC 253 at Low Radio Frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Kapińska, A. D.; Staveley-Smith, L.; Meurer, G. R.; For, B.-Q. [International Centre for Radio Astronomy Research (ICRAR), University of Western Australia, 35 Stirling Hwy, WA 6009 (Australia); Crocker, R. [Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611 (Australia); Bhandari, S.; Callingham, J. R.; Gaensler, B. M.; Hancock, P. J.; Lenc, E. [ARC Centre of Excellence for All-Sky Astrophysics (CAASTRO), Sydney NSW (Australia); Hurley-Walker, N.; Seymour, N. [International Centre for Radio Astronomy Research (ICRAR), Curtin University, Bentley, WA 6102 (Australia); Offringa, A. R. [Netherlands Institute for Radio Astronomy (ASTRON), P.O. Box 2, 7990 AA Dwingeloo (Netherlands); Hanish, D. J. [Spitzer Science Center, California Institute of Technology, MC 220-6, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Ekers, R. D.; Bell, M. E. [CSIRO Astronomy and Space Science (CASS), P.O. Box 76, Epping, NSW 1710 (Australia); Dwarakanath, K. S. [Raman Research Institute, Bangalore 560080 (India); Hindson, L. [Centre of Astrophysics Research, University of Hertfordshire, College Lane, Hatfield AL10 9AB (United Kingdom); Johnston-Hollitt, M. [School of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington 6140 (New Zealand); McKinley, B., E-mail: anna.kapinska@uwa.edu.au [School of Physics, The University of Melbourne, Parkville, VIC 3010 (Australia); and others

    2017-03-20

    We present new radio continuum observations of NGC 253 from the Murchison Widefield Array at frequencies between 76 and 227 MHz. We model the broadband radio spectral energy distribution for the total flux density of NGC 253 between 76 MHz and 11 GHz. The spectrum is best described as a sum of a central starburst and extended emission. The central component, corresponding to the inner 500 pc of the starburst region of the galaxy, is best modeled as an internally free–free absorbed synchrotron plasma, with a turnover frequency around 230 MHz. The extended emission component of the spectrum of NGC 253 is best described as a synchrotron emission flattening at low radio frequencies. We find that 34% of the extended emission (outside the central starburst region) at 1 GHz becomes partially absorbed at low radio frequencies. Most of this flattening occurs in the western region of the southeast halo, and may be indicative of synchrotron self-absorption of shock-reaccelerated electrons or an intrinsic low-energy cutoff of the electron distribution. Furthermore, we detect the large-scale synchrotron radio halo of NGC 253 in our radio images. At 154–231 MHz the halo displays the well known X-shaped/horn-like structure, and extends out to ∼8 kpc in the z -direction (from the major axis).

  1. Charge exchange emission from solar wind helium ions

    NARCIS (Netherlands)

    Bodewits, D; Hoekstra, R; Seredyuk, B; McCullough, RW; Jones, GH; Tielens, AGGM

    2006-01-01

    Charge exchange X-ray and far-ultraviolet (FUV) aurorae can provide detailed insight into the interaction between solar system plasmas. Using the two complementary experimental techniques of photon emission spectroscopy and translation energy spectroscopy, we have studied state-selective charge

  2. POWERFUL RADIO EMISSION FROM LOW-MASS SUPERMASSIVE BLACK HOLES FAVORS DISK-LIKE BULGES

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J.; Xu, Y.; Xu, D. W.; Wei, J. Y., E-mail: wj@bao.ac.cn [CAS Key Laboratory of Space Astronomy and Technology, National Astronomical Observatories, Chinese Academy of Sciences, Beijing (China)

    2016-12-10

    The origin of spin of low-mass supermassive black holes (SMBHs) is still a puzzle at present. We report here a study on the host galaxies of a sample of radio-selected nearby ( z < 0.05) Seyfert 2 galaxies with a BH mass of 10{sup 6–7} M{sub ⊙}. By modeling the SDSS r -band images of these galaxies through a two-dimensional bulge+disk decomposition, we identify a new dependence of SMBH's radio power on host bulge surface brightness profiles, in which more powerful radio emission comes from an SMBH associated with a more disk-like bulge. This result means low-mass and high-mass SMBHs are spun up by two entirely different modes that correspond to two different evolutionary paths. A low-mass SMBH is spun up by a gas accretion with significant disk-like rotational dynamics of the host galaxy in the secular evolution, while a high-mass one by a BH–BH merger in the merger evolution.

  3. The Radio Light Curve of the Gamma-Ray Nova in V407 CYG: Thermal Emission from the Ionized Symbiotic Envelope, Devoured from Within by the Nova Blast

    Science.gov (United States)

    Chomiuk, Laura; Krauss, Miriam I.; Rupen, Michael P.; Nelson, Thomas; Roy, Nirupam; Sokoloski, Jennifer L.; Mukai, Koji; Munari, Ulisse; Mioduszewski, Amy; Weston, Jeninfer; hide

    2012-01-01

    We present multi-frequency radio observations of the 2010 nova event in the symbiotic binary V407 Cygni, obtained with the Karl G. Jansky Very Large Array (VLA) and spanning 1.45 GHz and 17.770 days following discovery. This nova.the first ever detected in gamma rays.shows a radio light curve dominated by the wind of the Mira giant companion, rather than the nova ejecta themselves. The radio luminosity grewas the wind became increasingly ionized by the nova outburst, and faded as the wind was violently heated from within by the nova shock. This study marks the first time that this physical mechanism has been shown to dominate the radio light curve of an astrophysical transient. We do not observe a thermal signature from the nova ejecta or synchrotron emission from the shock, due to the fact that these components were hidden behind the absorbing screen of the Mira wind. We estimate a mass-loss rate for the Mira wind of .Mw approximately equals 10(exp -6) Solar mass yr(exp -1). We also present the only radio detection of V407 Cyg before the 2010 nova, gleaned from unpublished 1993 archival VLA data, which shows that the radio luminosity of the Mira wind varies by a factor of 20 even in quiescence. Although V407 Cyg likely hosts a massive accreting white dwarf, making it a candidate progenitor system for a Type Ia supernova, the dense and radially continuous circumbinary material surrounding V407 Cyg is inconsistent with observational constraints on the environments of most Type Ia supernovae.

  4. Study of s-component of the solar radio emission and short-term quantitative prediction of powerful solar flares

    International Nuclear Information System (INIS)

    Guseynov, Sh; Gakhramanov, I.G.

    2012-01-01

    Full text : All living and non-living things on Earth is dependent on the processes occurring in the Sun. Therefore the study of the Sun with the aim to predict powerful solar flares is of great scientific and practical importance. It is known that the main drawback of modern forecasting of solar flares and the low reliability of forecasts is the lack of use of the physical concepts of the mechanism of flares

  5. Low-frequency Radio Observatory on the Lunar Surface (LROLS)

    Science.gov (United States)

    MacDowall, Robert; Network for Exploration and Space Science (NESS)

    2018-06-01

    A radio observatory on the lunar surface will provide the capability to image solar radio bursts and other sources. Radio burst imaging will improve understanding of radio burst mechanisms, particle acceleration, and space weather. Low-frequency observations (less than ~20 MHz) must be made from space, because lower frequencies are blocked by Earth’s ionosphere. Solar radio observations do not mandate an observatory on the farside of the Moon, although such a location would permit study of less intense solar bursts because the Moon occults the terrestrial radio frequency interference. The components of the lunar radio observatory array are: the antenna system consisting of 10 – 100 antennas distributed over a square kilometer or more; the system to transfer the radio signals from the antennas to the central processing unit; electronics to digitize the signals and possibly to calculate correlations; storage for the data until it is down-linked to Earth. Such transmission requires amplification and a high-gain antenna system or possibly laser comm. For observatories on the lunar farside a satellite or other intermediate transfer system is required to direct the signal to Earth. On the ground, the aperture synthesis analysis is completed to display the radio image as a function of time. Other requirements for lunar surface systems include the power supply, utilizing solar arrays with batteries to maintain the system at adequate thermal levels during the lunar night. An alternative would be a radioisotope thermoelectric generator requiring less mass. The individual antennas might be designed with their own solar arrays and electronics to transmit data to the central processing unit, but surviving lunar night would be a challenge. Harnesses for power and data transfer from the central processing unit to the antennas are an alternative, but a harness-based system complicates deployment. The concept of placing the antennas and harnesses on rolls of polyimide and

  6. Sunspot variation and selected associated phenomena: a look at solar cycle 21 and beyond

    International Nuclear Information System (INIS)

    Wilson, R.M.

    1982-02-01

    Solar sunspot cycles 8 through 21 are reviewed. Mean time intervals are calculated for maximum to maximum, minimum to minimum, minimum to maximum, and maximum to minimum phases for cycles 8 through 20 and 8 through 21. Simple cosine functions with a period of 132 years are compared to, and found to be representative of, the variation of smoothed sunspot numbers at solar maximum and minimum. A comparison of cycles 20 and 21 is given, leading to a projection for activity levels during the Spacelab 2 era (tentatively, November 1984). A prediction is made for cycle 22. Major flares are observed to peak several months subsequent to the solar maximum during cycle 21 and to be at minimum level several months after the solar minimum. Additional remarks are given for flares, gradual rise and fall radio events and 2800 MHz radio emission. Certain solar activity parameters, especially as they relate to the near term Spacelab 2 time frame are estimated

  7. Directivity of the radio emission from the K1 dwarf star AB Doradus

    Science.gov (United States)

    Lim, Jeremy; White, Stephen M.; Nelson, Graam J.; Benz, Arnold O.

    1994-01-01

    We present measurements of the spectrum and polarization of the flaring radio emission from the K1 dwarf star AB Doradus, together with previously reported single frequency measurements (with no polarization information) on 3 other days. On all 4 days spanning a 6 month period, the emission was strong and, when folded with the stellar rotation period, showed similar time variations with two prominant peaks at phase 0.35 and 0.75. These peaks coincide in longitude with two large starspots identified from the stellar optical light curve and have half-powe widths as small as 0.1 rotations and no larger than 0.2 rotations. The modulated emission shows no measurable circular polarization, and its two peaks have different turnover frequencies.

  8. Observations of radio emission in the 18 cm hydroxyl lines in the direction of Herbig-Haro objects and reflection nebulae

    International Nuclear Information System (INIS)

    Pashchenko, M.I.; Rudnitskij, G.M.

    1980-01-01

    In 1978 observations of Herbig-Haro objects and R associations in the 1665 and 1667 MHz main lines of the ground state of the OH molecule have been carried out at the Large radio telescope of the Nancay Radio Astronomy Station (France). Out of the 63 objects searched, the OH emission has been observed in 36 directions. In most cases, the observed line profiles have a simple singlepeak structure, with the line widths of 1-3 km/s. This emission most probably originates in interstellar dust clouds surrounding the Herbig-Haro objects and R associations. Some consequences of the results obtained are briefly discussed. Results of observations show that the quantity of strong maser radio sources near Herbig-Haro objects is not large

  9. MURCHISON WIDEFIELD ARRAY LIMITS ON RADIO EMISSION FROM ANTARES NEUTRINO EVENTS

    International Nuclear Information System (INIS)

    Croft, S.; Kaplan, D. L.; Tingay, S. J.; Murphy, T.; Rowlinson, A.; Bell, M. E.; Adrián-Martínez, S.; Ardid, M.; Ageron, M.; Aubert, J.-J.; Albert, A.; André, M.; Anton, G.; Avgitas, T.; Baret, B.

    2016-01-01

    We present a search, using the Murchison Widefield Array (MWA), for electromagnetic (EM) counterparts to two candidate high-energy neutrino events detected by the ANTARES neutrino telescope in 2013 November and 2014 March. These events were selected by ANTARES because they are consistent, within 0.°4, with the locations of galaxies within 20 Mpc of Earth. Using MWA archival data at frequencies between 118 and 182 MHz, taken ∼20 days prior to, at the same time as, and up to a year after the neutrino triggers, we look for transient or strongly variable radio sources that are consistent with the neutrino positions. No such counterparts are detected, and we set a 5σ upper limit for low-frequency radio emission of ∼10 37 erg s −1 for progenitors at 20 Mpc. If the neutrino sources are instead not in nearby galaxies, but originate in binary neutron star coalescences, our limits place the progenitors at z ≳ 0.2. While it is possible, due to the high background from atmospheric neutrinos, that neither event is astrophysical, the MWA observations are nevertheless among the first to follow up neutrino candidates in the radio, and illustrate the promise of wide-field instruments like MWA for detecting EM counterparts to such events

  10. MURCHISON WIDEFIELD ARRAY LIMITS ON RADIO EMISSION FROM ANTARES NEUTRINO EVENTS

    Energy Technology Data Exchange (ETDEWEB)

    Croft, S. [University of California, Berkeley, Astronomy Department, 501 Campbell Hall #3411, Berkeley, CA 94720 (United States); Kaplan, D. L. [Department of Physics, University of Wisconsin-Milwaukee, 1900 East Kenwood Boulevard, Milwaukee, WI 53211 (United States); Tingay, S. J. [International Centre for Radio Astronomy Research, Curtin University, Bentley, WA 6102 (Australia); Murphy, T.; Rowlinson, A. [ARC Centre of Excellence for All-sky Astrophysics (CAASTRO) (Australia); Bell, M. E. [CSIRO Australia Telescope National Facility, P.O. Box 76, Epping, NSW 1710 (Australia); Adrián-Martínez, S.; Ardid, M. [Institut d’Investigació per a la Gestió Integrada de les Zones Costaneres (IGIC)—Universitat Politècnica de València. C/ Paranimf 1, E-46730 Gandia (Spain); Ageron, M.; Aubert, J.-J. [Aix Marseille Université, CNRS/IN2P3, CPPM UMR 7346, F-13288, Marseille (France); Albert, A. [GRPHE—Université de Haute Alsace—Institut universitaire de technologie de Colmar, 34 rue du Grillenbreit BP 50568-68008 Colmar (France); André, M. [Technical University of Catalonia, Laboratory of Applied Bioacoustics, Rambla Exposició, E-08800 Vilanova i la Geltrú, Barcelona (Spain); Anton, G. [Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen Centre for Astroparticle Physics, Erwin-Rommel-Str. 1, D-91058 Erlangen (Germany); Avgitas, T.; Baret, B. [APC, Université Paris Diderot, CNRS/IN2P3, CEA/IRFU, Observatoire de Paris, Sorbonne Paris Cité, F-75205 Paris (France); Collaboration: for the MWA Collaboration; for the ANTARES Collaboration; for the TAROT Collaboration; for the ROTSE Collaboration; and others

    2016-04-01

    We present a search, using the Murchison Widefield Array (MWA), for electromagnetic (EM) counterparts to two candidate high-energy neutrino events detected by the ANTARES neutrino telescope in 2013 November and 2014 March. These events were selected by ANTARES because they are consistent, within 0.°4, with the locations of galaxies within 20 Mpc of Earth. Using MWA archival data at frequencies between 118 and 182 MHz, taken ∼20 days prior to, at the same time as, and up to a year after the neutrino triggers, we look for transient or strongly variable radio sources that are consistent with the neutrino positions. No such counterparts are detected, and we set a 5σ upper limit for low-frequency radio emission of ∼10{sup 37} erg s{sup −1} for progenitors at 20 Mpc. If the neutrino sources are instead not in nearby galaxies, but originate in binary neutron star coalescences, our limits place the progenitors at z ≳ 0.2. While it is possible, due to the high background from atmospheric neutrinos, that neither event is astrophysical, the MWA observations are nevertheless among the first to follow up neutrino candidates in the radio, and illustrate the promise of wide-field instruments like MWA for detecting EM counterparts to such events.

  11. Radio wave scattering observations of the solar corona: First-order measurements of expansion velocity and turbulence spectrum using Viking and Mariner 10 spacecraft

    International Nuclear Information System (INIS)

    Tyler, G.L.; Vesecky, J.F.; Plume, M.A.; Howard, H.T.; Barnes, A.

    1981-01-01

    Solar conjunction of Mars on 1976 November 25 occurred very near the beginning of solar cycle 21, about 4 months after the first Viking spacecraft arrived at the planet. Radio wave scattering data were collected at 3.6 and 13 cm wavelengths, using the radio link between the Viking orbiters and the Earth. These data allow measurements of solar wind properties over a range of heliocentric radial distance from approx.6 to 44 R/sub sun/ with solar latitudes ranging from -17 0 to +7 0 . Observations with Mariner 10 during a period of moderate solar activity in 1974 cover from 6 to 24 R/sub sun/ and from approx.20 0 to near 90 0 . We have found that the temporal frequency variance spectrum of amplitude fluctuations is useful for characterizing the bulk motion of the plasma. This spectrum has an approximately constant low frequency plateau and a power-law high frequency asymptote; the plateau-asymptote intersection frequency provides a measure of the solar wind velocity V. We also obtain the spectral index p of electron density turbulence, Phi/sub N/approx.kappa/sup -p/, where kappa is spatial wavenumber. These results apply to a cylindrical region oriented with its axis along the radio ray path and its center at the point of closest approach to the Sun. The measurements of V and p cover some 78/sup d/ for Viking and 49 2 for Mariner 10 and show the combined effects of changing heliocentric distance rho, solar latitude theta, and solar longitude Psi, as well as solar activity. The Viking results can be regarded as a function primary of rho and Psi since the observations are concentrated in the equatorial regions when solar activity was near minimum. For Mariner 10, rho, theta, and Psi variations were important. The Viking results show an abrupt change in V(rho) and the turbulence spectral index at approx.15 R/sub sun/

  12. Amplified spontaneous emission in solar-pumped iodine laser

    Science.gov (United States)

    Cho, Yong S.; Hwang, In H.; Han, Kwang S.; Lee, Ja H.

    1992-01-01

    The amplified spontaneous emission (ASE) from a long pulse, solar-simulating radiation pumped iodine laser amplifier is studied. The ASE threshold pump intensity is almost proportional to the inverse of the laser gain length when the gas pressure is constant in the laser tube.

  13. Observations of gamma-ray emission in solar flares

    International Nuclear Information System (INIS)

    Forrest, D.J.; Chupp, E.L.; Suri, A.N.; Reppin, C.

    1973-01-01

    This paper reviews the observations of gamma-ray emission made from the OSO-7 satellite in connection with two solar flares in early August 1972. The details of the measurements and a preliminary interpretation of some of the observed features are given. (U.S.)

  14. Generation of type III solar radio bursts: the role of induced scattering of plasma waves by ions

    International Nuclear Information System (INIS)

    Levin, B.N.; Lerner, A.M.; Rapoport, V.O.

    1984-01-01

    The plasma waves in type III solar radio-burst sources might have a spectrum which can explain why, in the quasilinear burst generation model, nonlinear scattering of the waves by ions is so weak. The agent exciting a burst would travel through the corona at velocities limited to a definite range

  15. Solar Flares and the High Energy Solar Spectroscopic Imager (HESSI)

    Science.gov (United States)

    Holman, Gordon D.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    Solar flares are the biggest explosions in the solar system. They are important both for understanding explosive events in the Universe and for their impact on human technology and communications. The satellite-based HESSI is designed to study the explosive release of energy and the acceleration of electrons, protons, and other charged particles to high energies in solar flares. HESSI produces "color" movies of the Sun in high-energy X rays and gamma rays radiated by these energetic particles. HESSI's X-ray and gamma-ray images of flares are obtained using techniques similar to those used in radio interferometry. Ground-based radio observations of the Sun provide an important complement to the HESSI observations of solar flares. I will describe the HESSI Project and the high-energy aspects of solar flares, and how these relate to radio astronomy techniques and observations.

  16. Periodicities in the X-ray Emission from the Solar Corona: SphinX and SOXS Observations

    Science.gov (United States)

    Steślicki, M.; Awasthi, A. K.; Gryciuk, M.; Jain, R.

    The structure and evolution of the solar magnetic field is driven by a magnetohydrodynamic dynamo operating in the solar interior, which induces various solar activities that exhibit periodic variations on different timescales. Therefore, probing the periodic nature of emission originating from the solar corona may provide insights of the convection-zone-photosphere-corona coupling processes. We present the study of the mid-range periodicities, between rotation period (˜27 days) and the Schwabe cycle period (˜11 yr), in the solar soft X-ray emission, based on the data obtained by two instruments: SphinX and SOXS in various energy bands.

  17. X-RAYS FROM A RADIO-LOUD COMPACT BROAD ABSORPTION LINE QUASAR 1045+352 AND THE NATURE OF OUTFLOWS IN RADIO-LOUD BROAD ABSORPTION LINE QUASARS

    International Nuclear Information System (INIS)

    Kunert-Bajraszewska, Magdalena; Katarzynski, Krzysztof; Siemiginowska, Aneta; Janiuk, Agnieszka

    2009-01-01

    We present new results on X-ray properties of radio-loud broad absorption line (BAL) quasars and focus on broadband spectral properties of a high-ionization BAL (HiBAL) compact steep spectrum (CSS) radio-loud quasar 1045+352. This HiBAL quasar has a very complex radio morphology indicating either strong interactions between a radio jet and the surrounding interstellar medium or a possible re-start of the jet activity. We detected 1045+352 quasar in a short 5 ksec Chandra ACIS-S observation. We applied theoretical models to explain spectral energy distribution of 1045+352 and argue that non-thermal, inverse-Compton (IC) emission from the innermost parts of the radio jet can account for a large fraction of the observed X-ray emission. In our analysis, we also consider a scenario in which the observed X-ray emission from radio-loud BAL quasars can be a sum of IC jet X-ray emission and optically thin corona X-ray emission. We compiled a sample of radio-loud BAL quasars that were observed in X-rays to date and report no correlation between their X-ray and radio luminosity. However, the radio-loud BAL quasars show a large range of X-ray luminosities and absorption columns. This is consistent with the results obtained earlier for radio-quiet BAL quasars and may indicate an orientation effect in BAL quasars or more complex dependence between X-ray emission, radio emission, and an orientation based on the radio morphology.

  18. A radio monitoring survey of ultra-luminous X-ray sources

    Science.gov (United States)

    Körding, E.; Colbert, E.; Falcke, H.

    2005-06-01

    We present the results of a radio monitoring campaign to search for radio emission from nearby ultra-luminous X-ray sources (ULXs). These sources are bright off-nuclear X-ray point sources with luminosities exceeding LX > 1039 erg s-1. A well-defined sample of the 9 nearest ULXs has been monitored eight times over 5 months with the Very Large Array in A and B configuration. Our limiting sensitivity is ≈0.15 mJy (4σ) for radio flares and ≈60 μJy for continuous emission. In M 82 two ULXs seem to have coincident compact radio sources, which are probably supernova remnants. No continuous or flaring radio emission has been detected from any other ULX. Thus, ULXs do not generally emit steady-state radio emission above radio powers of 1.5 × 1017 W/Hz. The non-detections of the continuous emission are consistent with beamed or unbeamed radio emission from accreting black holes of ≤ 103 M⊙ based on the radio/X-ray correlation. Other published radio detections (M 82, NGC 5408) are also discussed in this context. Both detections are significantly above our detection limit. If ULXs have flaring radio emission above 4 × 1017 W/Hz we can give an upper limit on the duty cycle of the flares of 6%. This upper limit is in agreement with the observed number of flares in Galactic radio transients. Additionally we present a yet unreported radio double structure in the nearby low-luminosity AGN NGC 4736.

  19. Turbulence and wave particle interactions in solar-terrestrial plasmas. Annual Status Report, 1 July 1983-30 June 1984

    International Nuclear Information System (INIS)

    Dulk, G.A.; Goldman, M.V.; Toomre, J.

    1985-01-01

    Activities in the following study areas are reported: (1) particle and wave processes in solar flares; (2) solar convection zone turbulence; and (3) solar radiation emission. To investigate the amplification of cyclotron maser radiation in solar flares, a radio frequency. (RF) heating model was developed for the corona surrounding the energy release site. Then nonlinear simulations of compressible convection display prominent penetration by plumes into regions of stable stratification at the base of the solar convection zone, leading to the excitation of internal gravity waves there. Lastly, linear saturation of electron-beam-driven Langmuir waves by ambient density fluctuations, nonlinear saturation by strong turbulence processes, and radiation emission mechanisms are examined. An additional section discusses solar magnetic fields and hydromagnetic waves in inhomogeneous media, and the effect of magnetic fields on stellar oscillation

  20. Analysis of Jovian decametric data: study of radio emission mechanisms

    International Nuclear Information System (INIS)

    Staelin, D.H.

    1986-01-01

    Catalogues of approx. 200 decametric arcs and approx. 200 gaps between arcs were studied, in an effort to reconcile the data with predictions for the model wherein reflections of Io-induced currents each emit in a conical pattern and yield a distinct radio arc. The most recent interpretations of this data suggest that these Io-produced Alfven waves persist for at least one or two passages of Io, and that the emission cone half angles are approx. 40 to 90 deg., varying from arc to arc. Below 1.2 MHz it was discovered that Jupiter emits radiation strongly modulated in frequency with periods of approx. 200 kHz; this quasi-sinusoidal emission (MSA) can shift more than 180 deg. in phase over periods of 6 seconds, although these shifts are usually much smaller. MSA is not strongly correlated with the longitudes of Io or Jupiter, and typically occurs in patches covering approx. 500 kHz or more for periods of a few minutes. Furthermore, this modulation sometimes resembles a train of impulses in frequency with exponential decays toward high frequencies. Comparison of these results with the previous studies of V-shaped S-bursts is suggestive of an emission mechanism

  1. Thermodynamics of photon-enhanced thermionic emission solar cells

    DEFF Research Database (Denmark)

    Reck, Kasper; Hansen, Ole

    2014-01-01

    Photon-enhanced thermionic emission (PETE) cells in which direct photon energy as well as thermal energy can be harvested have recently been suggested as a new candidate for high efficiency solar cells. Here, we present an analytic thermodynamical model for evaluation of the efficiency of PETE...

  2. Response of the mesopause airglow to solar activity inferred from measurements at Zvenigorod, Russia

    Directory of Open Access Journals (Sweden)

    N. Pertsev

    2008-05-01

    Full Text Available Ground-based spectrographical observations of infrared emissions of the mesopause region have been made at Zvenigorod Observatory (56 N, 37 E, located near Moscow, Russia, for 670 nights of 2000–2006. The characteristics of the hydroxyl and molecular oxygen (865 nm airglow, heights of which correspond to 87 and 94 km, are analyzed for finding their response to solar activity. The measured data exhibit a response to the F10.7 solar radio flux change, which is 30%–40%/100 sfu in intensities of the emissions and about 4.5 K/100 sfu in hydroxyl temperature. Seasonal variations of the airglow response to solar activity are observed. In winter it is more significant than in summer. Mechanisms that may provide an explanation of the solar influence on intensities of the emissions and temperature are considered. Radiative processes not involving atmospheric dynamics appear insufficient to explain the observed effect.

  3. Response of the mesopause airglow to solar activity inferred from measurements at Zvenigorod, Russia

    Directory of Open Access Journals (Sweden)

    N. Pertsev

    2008-05-01

    Full Text Available Ground-based spectrographical observations of infrared emissions of the mesopause region have been made at Zvenigorod Observatory (56 N, 37 E, located near Moscow, Russia, for 670 nights of 2000–2006. The characteristics of the hydroxyl and molecular oxygen (865 nm airglow, heights of which correspond to 87 and 94 km, are analyzed for finding their response to solar activity. The measured data exhibit a response to the F10.7 solar radio flux change, which is 30%–40%/100 sfu in intensities of the emissions and about 4.5 K/100 sfu in hydroxyl temperature. Seasonal variations of the airglow response to solar activity are observed. In winter it is more significant than in summer. Mechanisms that may provide an explanation of the solar influence on intensities of the emissions and temperature are considered. Radiative processes not involving atmospheric dynamics appear insufficient to explain the observed effect.

  4. The dust, nebular emission, and dependence on QSO radio properties of the associated Mg II absorption line systems

    International Nuclear Information System (INIS)

    Khare, Pushpa; Daniel, Vanden Berk; Rahmani, Hadi; York, Donald G.

    2014-01-01

    We studied dust reddening and [O II] emission in 1730 Mg II associated absorption systems (AAS; relative velocity with respect to QSOs, ≤3000 km s –1 ; in units of velocity of light, β, ≤0.01) with 0.4 ≤z abs ≤ 2 in the Sloan Digital Sky Survey DR7, focusing on their dependence on the radio and other QSO properties. We used control samples, several with matching radio properties, to show that (1) AAS in radio-detected (RD) QSOs cause 2.6 ± 0.2 times higher dust extinction than those in radio-undetected (RUD) ones, which in turn cause 2.9 ± 0.7 times the dust extinction in the intervening systems; (2) AAS in core-dominated QSOs cause 2.0 ± 0.1 times higher dust extinction than those in lobe-dominated QSOs; (3) the occurrence of AAS is 2.1 ± 0.2 times more likely in RD QSOs than in RUD QSOs and 1.8 ± 0.1 time more likely in QSOs having black holes with masses larger than 1.23 × 10 9 M ☉ than in those with lower-mass black holes; and (4) there is excess flux in [O II]λ3727 emission in the composite spectra of the AAS samples compared with those of the control samples, which is at the emission redshift. The presence of AAS enhances the O II emission from the active galactic nucleus and/or the host galaxy. This excess is similar for both RD and RUD samples and is 2.5 ± 0.4 times higher in lobe-dominated samples than in core-dominated samples. The excess depends on the black hole mass and Eddington ratio. All these point to the intrinsic nature of the AAS except for the systems with z abs > z em , which could be infalling galaxies.

  5. Outdoor fate and environmental impact of polymer solar cells through leaching and emission to rainwater and soil

    DEFF Research Database (Denmark)

    Espinosa Martinez, Nieves; Zimmermann, Yannick-Serge; Benatto, Gisele Alves dos Reis

    2016-01-01

    The emission of silver and zinc to the aqueous environment (rain, fog, dew) from polymer solar cells installed outdoors is presented. Studies included pristine solar cells and solar cells subjected to mechanical damage under natural weather conditions in Denmark. We find the emission of silver...

  6. Radio science investigations with Voyager

    International Nuclear Information System (INIS)

    Eshleman, V.R.; Tyler, G.L.; Croft, T.A.

    1977-01-01

    The planned radio science investigations during the Voyager missions to the outer planets involve: (1) the use of the radio links to and from the spacecraft for occultation measurements of planetary and satellite atmospheres and ionospheres, the rings of Saturn, the solar corona, and the general-relativistic time delay for radiowave propagation through the Sun's gravity field; (2) radio link measurements of true or apparent spacecraft motion caused by the gravity fields of the planets, the masses of their larger satellites, and characteristics of the interplanetary medium; and (3) related measurements which could provide results in other areas, including the possible detection of long-wavelength gravitational radiation propagating through the Solar System. The measurements will be used to study: atmospheric and ionospheric structure, constituents, and dynamics; the sizes, radial distribution, total mass, and other characteristics of the particles in the rings of Saturn; interior models for the major planets and the mean density and bulk composition of a number of their satellites; the plasma density and dynamics of the solar corona and interplanetary medium; and certain fundamental questions involving gravitation and relativity. The instrumentation for these experiments is the same ground-based and spacecraft radio systems as will be used for tracking and communicating with the Voyager spacecraft, although several important features of these systems have been provided primarily for the radio science investigations. (Auth.)

  7. Effects of the 2017 Solar Eclipse on HF Radio Propagation and the D-Region Ionosphere: Citizen Science Investigation

    Science.gov (United States)

    Fry, C. D.; Adams, M.; Gallagher, D. L.; Habash Krause, L.; Rawlins, L.; Suggs, R. M.; Anderson, S. C.

    2017-12-01

    August 21, 2017 provided a unique opportunity to investigate the effects of the total solar eclipse on high frequency (HF) radio propagation and ionospheric variability. In Marshall Space Flight Center's partnership with the US Space and Rocket Center (USSRC) and Austin Peay State University (APSU), we engaged students and citizen scientists in an investigation of the eclipse effects on the mid-latitude ionosphere. The Amateur Radio community has developed several automated receiving and reporting networks that draw from widely-distributed, automated and manual radio stations to build a near-real time, global picture of changing radio propagation conditions. We used these networks and employed HF radio propagation modeling in our investigation. A Ham Radio Science Citizen Investigation (HamSCI) collaboration with the American Radio Relay League (ARRL) ensured that many thousands of amateur radio operators would be "on the air" communicating on eclipse day, promising an extremely large quantity of data would be collected. Activities included implementing and configuring software, monitoring the HF Amateur Radio frequency bands and collecting radio transmission data on days before, the day of, and days after the eclipse to build a continuous record of changing propagation conditions as the moon's shadow marched across the United States. Our expectations were the D-Region ionosphere would be most impacted by the eclipse, enabling over-the-horizon radio propagation on lower HF frequencies (3.5 and 7 MHz) that are typically closed during the middle of the day. Post-eclipse radio propagation analysis provided insights into ionospheric variability due to the eclipse. We report on results, interpretation, and conclusions of these investigations.

  8. Flattening and radio emission among elliptical galaxies

    International Nuclear Information System (INIS)

    Disney, M.J.; Sparks, W.B.; Wall, J.V.

    1984-01-01

    In a sample of 132 bright elliptical galaxies it is shown that there is a strong correlation between radio activity and flattening in the sense that radio ellipticals are both apparently and inherently rounder than the average elliptical. Both extended and compact sources are subject to the same correlation. No galaxies with axial ratios below 0.65 are found to be radio emitters. (author)

  9. Information Content in Radio Waves: Student Investigations in Radio Science

    Science.gov (United States)

    Jacobs, K.; Scaduto, T.

    2013-12-01

    We describe an inquiry-based instructional unit on information content in radio waves, created in the summer of 2013 as part of a MIT Haystack Observatory (Westford, MA) NSF Research Experiences for Teachers (RET) program. This topic is current and highly relevant, addressing science and technical aspects from radio astronomy, geodesy, and atmospheric research areas as well as Next Generation Science Standards (NGSS). Projects and activities range from simple classroom demonstrations and group investigations, to long term research projects incorporating data acquisition from both student-built instrumentation as well as online databases. Each of the core lessons is applied to one of the primary research centers at Haystack through an inquiry project that builds on previously developed units through the MIT Haystack RET program. In radio astronomy, students investigate the application of a simple and inexpensive software defined radio chip (RTL-SDR) for use in systems implementing a small and very small radio telescope (SRT and VSRT). Both of these systems allow students to explore fundamental principles of radio waves and interferometry as applied to radio astronomy. In ionospheric research, students track solar storms from the initial coronal mass ejection (using Solar Dynamics Observatory images) to the resulting variability in total electron density concentrations using data from the community standard Madrigal distributed database system maintained by MIT Haystack. Finally, students get to explore very long-baseline interferometry as it is used in geodetic studies by measuring crustal plate displacements over time. Alignment to NextGen standards is provided for each lesson and activity with emphasis on HS-PS4 'Waves and Their Applications in Technologies for Information Transfer'.

  10. SphinX MEASUREMENTS OF THE 2009 SOLAR MINIMUM X-RAY EMISSION

    International Nuclear Information System (INIS)

    Sylwester, J.; Kowalinski, M.; Gburek, S.; Siarkowski, M.; Bakała, J.; Gryciuk, M.; Podgorski, P.; Sylwester, B.; Kuzin, S.; Farnik, F.; Reale, F.; Phillips, K. J. H.

    2012-01-01

    The SphinX X-ray spectrophotometer on the CORONAS-PHOTON spacecraft measured soft X-ray emission in the 1-15 keV energy range during the deep solar minimum of 2009 with a sensitivity much greater than GOES. Several intervals are identified when the X-ray flux was exceptionally low, and the flux and solar X-ray luminosity are estimated. Spectral fits to the emission at these times give temperatures of 1.7-1.9 MK and emission measures between 4 × 10 47 cm –3 and 1.1 × 10 48 cm –3 . Comparing SphinX emission with that from the Hinode X-ray Telescope, we deduce that most of the emission is from general coronal structures rather than confined features like bright points. For one of 27 intervals of exceptionally low activity identified in the SphinX data, the Sun's X-ray luminosity in an energy range roughly extrapolated to that of ROSAT (0.1-2.4 keV) was less than most nearby K and M dwarfs.

  11. SphinX Measurements of the 2009 Solar Minimum X-Ray Emission

    Science.gov (United States)

    Sylwester, J.; Kowalinski, M.; Gburek, S.; Siarkowski, M.; Kuzin, S.; Farnik, F.; Reale, F.; Phillips, K. J. H.; Bakała, J.; Gryciuk, M.; Podgorski, P.; Sylwester, B.

    2012-06-01

    The SphinX X-ray spectrophotometer on the CORONAS-PHOTON spacecraft measured soft X-ray emission in the 1-15 keV energy range during the deep solar minimum of 2009 with a sensitivity much greater than GOES. Several intervals are identified when the X-ray flux was exceptionally low, and the flux and solar X-ray luminosity are estimated. Spectral fits to the emission at these times give temperatures of 1.7-1.9 MK and emission measures between 4 × 1047 cm-3 and 1.1 × 1048 cm-3. Comparing SphinX emission with that from the Hinode X-ray Telescope, we deduce that most of the emission is from general coronal structures rather than confined features like bright points. For one of 27 intervals of exceptionally low activity identified in the SphinX data, the Sun's X-ray luminosity in an energy range roughly extrapolated to that of ROSAT (0.1-2.4 keV) was less than most nearby K and M dwarfs.

  12. SphinX MEASUREMENTS OF THE 2009 SOLAR MINIMUM X-RAY EMISSION

    Energy Technology Data Exchange (ETDEWEB)

    Sylwester, J.; Kowalinski, M.; Gburek, S.; Siarkowski, M.; Bakala, J.; Gryciuk, M.; Podgorski, P.; Sylwester, B. [Space Research Centre, Polish Academy of Sciences, 51-622, Kopernika 11, Wroclaw (Poland); Kuzin, S. [P. N. Lebedev Physical Institute (FIAN), Russian Academy of Sciences, Leninsky Prospect 53, Moscow 119991 (Russian Federation); Farnik, F. [Astronomical Institute, Ondrejov Observatory (Czech Republic); Reale, F. [Dipartimento di Fisica, Universita di Palermo, Palermo, Italy, and INAF, Osservatorio Astronomico di Palermo, Palermo (Italy); Phillips, K. J. H., E-mail: js@cbk.pan.wroc.pl [Mullard Space Science Laboratory, University College London, Holmbury St. Mary, Dorking, Surrey RH5 6NT (United Kingdom)

    2012-06-01

    The SphinX X-ray spectrophotometer on the CORONAS-PHOTON spacecraft measured soft X-ray emission in the 1-15 keV energy range during the deep solar minimum of 2009 with a sensitivity much greater than GOES. Several intervals are identified when the X-ray flux was exceptionally low, and the flux and solar X-ray luminosity are estimated. Spectral fits to the emission at these times give temperatures of 1.7-1.9 MK and emission measures between 4 Multiplication-Sign 10{sup 47} cm{sup -3} and 1.1 Multiplication-Sign 10{sup 48} cm{sup -3}. Comparing SphinX emission with that from the Hinode X-ray Telescope, we deduce that most of the emission is from general coronal structures rather than confined features like bright points. For one of 27 intervals of exceptionally low activity identified in the SphinX data, the Sun's X-ray luminosity in an energy range roughly extrapolated to that of ROSAT (0.1-2.4 keV) was less than most nearby K and M dwarfs.

  13. Fast electrons in small solar flares

    International Nuclear Information System (INIS)

    Lin, R.P.

    1975-01-01

    Because approximately 5-100 keV electrons are frequently accelerated and emitted by the Sun in small flares, it is possible to define a detailed characteristic physical picture of these events. The review summarizes both the direct spacecraft observations of non-relativistic solar electrons, and observations of the X-ray and radio emission generated by these particles at the Sun and in the interplanetary medium. These observations bear on the basic astrophysical process of particle acceleration in tenuous plasmas. It is found that in many small solar flares the approximately 5-100 keV electrons accelerated during flash phase constitute the bulk of the total flare energy. Thus the basic flare mechanism in these flares essentially converts the available flare energy into fast electrons. These electrons may produce the other flare electromagnetic emissions through their interactions with the solar atmosphere. In large proton flares these electrons may provide the energy to eject material from the Sun and to create a shock wave which could then accelerate nuclei and electrons to much higher energies. (Auth.)

  14. Outdoor fate and environmental impact of polymer solar cells through leaching and emission to rainwater and soil

    NARCIS (Netherlands)

    Espinosa, Nieves; Zimmermann, Yannick-Serge; Reis Benatto, Dos Gisele A.; Lenz, Markus; Krebs, Frederik C.

    2016-01-01

    The emission of silver and zinc to the aqueous environment (rain, fog, dew) from polymer solar cells installed outdoors is presented. Studies included pristine solar cells and solar cells subjected to mechanical damage under natural weather conditions in Denmark. We find the emission of silver and

  15. Predicting radio fluxes of extrasolar planets (Griessmeier+, 2007)

    NARCIS (Netherlands)

    Griessmeier, J.M.; Zarka, P.; Spreeuw, H.

    2007-01-01

    Expected radio emission from presently known exoplanets. For each of the currently known exoplanets, we list its estimated magnetic moment, maximum radio emission frequency, plasma frequency in the ambient stellar wind, and radio fluxes according to three different models. (1 data file).

  16. Comparison of the greenhouse gas emissions from the full energy chains of solar and wind power generation

    International Nuclear Information System (INIS)

    Van De Vate, J.F.

    1997-01-01

    Fair comparison of the climate impacts from different energy sources can be made only by accounting for the emissions of all relevant greenhouse gases (GHGs) from the full energy chain (FENCH) of the energy sources. The scanty FENCH-GHG literature is reviewed. The literature data on FENCH material and energy use for renewable, solar and wind power technologies are discussed. Some calculations of FENCH-GHG emission factors are presented using basic literature data on the major energy and materials fluxes associated with each link of the FENCH. GHGs considered are CO 2 , CH 4 , N 2 O, and CF 4 . The FENCH CO 2 -equivalent emission factors of wind and solar power systems are in the range of 10-50 and 100-400 g CO 2 /kWh, resp. This is low compared to those of fossil fuels: 500-1200 g CO 2 /kWh. Compared to the international-consensus emission factors of nuclear and hydropower (5-20 g CO 2 /kWh), those of modern wind power and solar-thermal power are somewhat higher: 10-50 and 20-200 g CO 2 /kWh, resp. Solar PV has a ca. 10 times higher FENCH-GHG emission factor; however, advanced solar PV systems are expected to have 5-10 times lower emission factors. Important inconsistencies exist between literature data on FENCH-GHG emission factors which require explanation. Land-use associated (negative CO 2 sink) contributions due to low photosynthesis under solar systems have been estimated, amounting to ca. 20 and 11 g CO 2 /kWh for solar PV and solar thermal, resp. No information is available about contributions associated with backup supply or storage systems. (author)

  17. A HIGH-FREQUENCY TYPE II SOLAR RADIO BURST ASSOCIATED WITH THE 2011 FEBRUARY 13 CORONAL MASS EJECTION

    Energy Technology Data Exchange (ETDEWEB)

    Cho, K.-S.; Kim, R.-S. [Korea Astronomy and Space Science Institute, Whaamdong, Yooseong-ku, Daejeon, 305-348 (Korea, Republic of); Gopalswamy, N.; Kwon, R.-Y.; Yashiro, S., E-mail: kscho@kasi.re.kr [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2013-03-10

    We examine the relationship between the high-frequency (425 MHz) type II radio burst and the associated white-light coronal mass ejection (CME) that occurred on 2011 February 13. The radio burst had a drift rate of 2.5 MHz s{sup -1}, indicating a relatively high shock speed. From SDO/AIA observations we find that a loop-like erupting front sweeps across high-density coronal loops near the start time of the burst (17:34:17 UT). The deduced distance of shock formation (0.06 Rs) from the flare center and speed of the shock (1100 km s{sup -1}) using the measured density from SDO/AIA observations are comparable to the height (0.05 Rs, from the solar surface) and speed (700 km s{sup -1}) of the CME leading edge observed by STEREO/EUVI. We conclude that the type II burst originates even in the low corona (<59 Mm or 0.08 Rs, above the solar surface) due to the fast CME shock passing through high-density loops.

  18. Radio-quiet Gamma-ray Pulsars

    Directory of Open Access Journals (Sweden)

    Lupin Chun-Che Lin

    2016-09-01

    Full Text Available A radio-quiet γ-ray pulsar is a neutron star that has significant γ-ray pulsation but without observed radio emission or only limited emission detected by high sensitivity radio surveys. The launch of the Fermi spacecraft in 2008 opened a new epoch to study the population of these pulsars. In the 2nd Fermi Large Area Telescope catalog of γ-ray pulsars, there are 35 (30 % of the 117 pulsars in the catalog known samples classified as radio-quiet γ-ray pulsars with radio flux density (S1400 of less than 30 μJy. Accompanying the observations obtained in various wavelengths, astronomers not only have the opportunity to study the emitting nature of radio-quiet γ-ray pulsars but also have proposed different models to explain their radiation mechanism. This article will review the history of the discovery, the emission properties, and the previous efforts to study pulsars in this population. Some particular cases known as Geminga-like pulsars (e.g., PSR J0633+1746, PSR J0007+7303, PSR J2021+4026, and so on are also to specified discuss their common and specific features.

  19. Demonstration of a viable quantitative theory for interplanetary type II radio bursts

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, J. M., E-mail: jschmidt@physics.usyd.edu.au; Cairns, Iver H. [School of Physics, Physics Road, Building A28, University of Sydney, NSW 2006 (Australia)

    2016-03-25

    Between 29 November and 1 December 2013 the two widely separated spacecraft STEREO A and B observed a long lasting, intermittent, type II radio burst for the extended frequency range ≈ 4 MHz to 30 kHz, including an intensification when the shock wave of the associated coronal mass ejection (CME) reached STEREO A. We demonstrate for the first time our ability to quantitatively and accurately simulate the fundamental (F) and harmonic (H) emission of type II bursts from the higher corona (near 11 solar radii) to 1 AU. Our modeling requires the combination of data-driven three-dimensional magnetohydrodynamic simulations for the CME and plasma background, carried out with the BATS-R-US code, with an analytic quantitative kinetic model for both F and H radio emission, including the electron reflection at the shock, growth of Langmuir waves and radio waves, and the radiations propagation to an arbitrary observer. The intensities and frequencies of the observed radio emissions vary hugely by factors ≈ 10{sup 6} and ≈ 10{sup 3}, respectively; the theoretical predictions are impressively accurate, being typically in error by less than a factor of 10 and 20 %, for both STEREO A and B. We also obtain accurate predictions for the timing and characteristics of the shock and local radio onsets at STEREO A, the lack of such onsets at STEREO B, and the z-component of the magnetic field at STEREO A ahead of the shock, and in the sheath. Very strong support is provided by these multiple agreements for the theory, the efficacy of the BATS-R-US code, and the vision of using type IIs and associated data-theory iterations to predict whether a CME will impact Earth’s magnetosphere and drive space weather events.

  20. Diagnostics of solar flare reconnection

    Directory of Open Access Journals (Sweden)

    M. Karlický

    2004-01-01

    Full Text Available We present new diagnostics of the solar flare reconnection, mainly based on the plasma radio emission. We propose that the high-frequency (600-2000 MHz slowly drifting pulsating structures map the flare magnetic field reconnection. These structures correspond to the radio emission from plasmoids which are formed in the extended current sheet due to tearing and coalescence processes. An increase of the frequency drift of the drifting structures is interpreted as an increase of the reconnection rate. Using this model, time scales of slowly drifting pulsating structure observed during the 12 April 2001 flare by the Trieste radiopolarimeter with high time resolution (1 ms are interpreted as a radio manifestation of electron beams accelerated in the multi-scale reconnection process. For short periods Fourier spectra of the observed structure have a power-law form with power-law indices in the 1.3-1.6 range. For comparison the 2-D MHD numerical modeling of the multi-scale reconnection is made and it is shown that Fourier spectrum of the reconnection dissipation power has also a power-law form, but with power-law index 2. Furthermore, we compute a time evolution of plasma parameters (density, magnetic field etc in the 2-D MHD model of the reconnection. Then assuming a plasma radio emission from locations, where the 'double-resonance' instability generates the upper-hybrid waves due to unstable distribution function of suprathermal electrons, we model radio spectra. Effects of the MHD turbulence are included. The resulting spectra are compared with those observed. It is found, that depending on model parameters the lace bursts and the decimetric spikes can be reproduced. Thus, it is shown that the model can be used for diagnostics of the flare reconnection process. We also point out possible radio signatures of reconnection outflow termination shocks. They are detected as type II-like herringbone structures in the 200-700 MHz frequency range. Finally

  1. Annual CO-emissions of combined pellet and solar heating systems

    OpenAIRE

    Fiedler, Frank; Persson, Tomas

    2007-01-01

    Emissions are an important aspect of a pellet heating system. High carbon monoxide emissions are often caused by unnecessary cycling of the burner when the burner is operated below the lowest combustion power. Combining pellet heating systems with a solar heating system can significantly reduce cycling of the pellet heater and avoid the inefficient summer operation of the pellet heater. The aim of this paper was to study CO-emissions of the different types of systems and to compare the yearly...

  2. Solar Radius at Subterahertz Frequencies and Its Relation to Solar Activity

    Science.gov (United States)

    Menezes, Fabian; Valio, Adriana

    2017-12-01

    The Sun emits radiation at several wavelengths of the electromagnetic spectrum. In the optical band, the solar radius is 695 700 km, and this defines the photosphere, which is the visible surface of the Sun. However, as the altitude increases, the electromagnetic radiation is produced at other frequencies, causing the solar radius to change as a function of wavelength. These measurements enable a better understanding of the solar atmosphere, and the radius dependence on the solar cycle is a good indicator of the changes that occur in the atmospheric structure. We measure the solar radius at the subterahertz frequencies of 0.212 and 0.405 THz, which is the altitude at which these emissions are primarily generated, and also analyze the radius variation over the 11-year solar activity cycle. For this, we used radio maps of the solar disk for the period between 1999 and 2017, reconstructed from daily scans made by the Solar Submillimeter-wave Telescope (SST), installed at El Leoncito Astronomical Complex (CASLEO) in the Argentinean Andes. Our measurements yield radii of 966.5'' ±2.8'' for 0.2 THz and 966.5'' ±2.7'' for 0.4 THz. This implies a height of 5.0 ±2.0 ×106 m above the photosphere. Furthermore, we also observed a strong anticorrelation between the radius variation and the solar activity at both frequencies.

  3. Ir A.H. de Voogt: life and career of a radio pioneer

    Science.gov (United States)

    Strom, R. G.

    2007-06-01

    There are probably few radio astronomers who would be able to recall A.H. de Voogt, which is unfortunate, but at the same time unsurprising: for he published no original astronomical research, never carried out pioneering observations, nor is his name linked to either theoretical or instrumental breakthroughs. Yet he was described by the man who first observed the 21 cm hydrogen line from the Netherlands as a radio astronomy pioneer, at the very birth of the Dutch effort. He was, moreover, a trail blazer at the cutting edge of radio, not once but twice in his career. Without him it is unlikely that the 21 cm line would have been observed in the Netherlands in 1951, and arguably the H I mapping of the Milky Way under Jan Oort's leadership would have taken place much later, if at all. Radio astronomy observing itself might well have been compromised by interference had it not been for De Voogt's foresight. \\ Anthonet Hugo de Voogt (1892-1969) built, while still a teenager, one of the very first amateur radio stations (call letters VO: *** -/- - -) in Holland, earned the radio-telegrapher's diploma during his student days, and was intimately involved in the foundation of the Dutch Society for Radio-Telegraphy in 1916. Until the 1920s, he was very active in amateur radio and astronomy circles. Trained in electrical engineering at Delft, he joined the PTT (Post Office) as a telegraph engineer in 1919, worked his way through the ranks to become head of the telephone district of Breda in 1939, and was promoted to head the PTT Radio Service just days after the end of the war. As his department was responsible for overseas radio communication, he initiated a research effort to study radio propagation in the ionosphere and the effects of solar activity. To this end, he rescued a number of Würzburg-Riese 7.5-m radar antennas abandoned at the end of the war, made one available for Jan Oort's H I work, and launched a series of radio astronomical initiatives. His group also

  4. Microwave and X-Ray emission during a isentropic expansion and its application to solar bursts

    International Nuclear Information System (INIS)

    Piazza, L.R.

    1983-01-01

    The gyro-synchrotron emission in microwaves and the free-free emission in X-rays of a plasma enclosed in a cylinder coincident with a magnetic force tube were calculated for an isentropic self-similar expansion, with plane and cylindrical symmetries. This expansion model was applied to a region of the low solar corona, and the results were compared to the emission observed in some simple solar events of low intensity. The calculations show satisfactory coincidence with the events in X-rays for energies around 10 29 ergs. The solar events analyzed in microwaves, which are not the same that were studied in X-rays, in general do not fit the theoretical results. The origin of the discrepancy is probably the formulation of the processes of emission applied to the expansion. (Author) [pt

  5. Solar Energy as an Alternative to Energy Saving and Pollutant Emissions Reduction

    Directory of Open Access Journals (Sweden)

    Arina Negoițescu

    2016-10-01

    Full Text Available In the paper is analyzed thermal solar systems efficiency from the point of view of energy savings and pollutant emissions concentrations exhausted during these installations operation. For this purpose were taking into account four versions of solar panel systems combined with different types of conventional heating sources, for which were simulated the operation conditions. As a result of the simulation, there were obtained the values of energy savings and pollutant emissions during the four systems operation. By analyzing these values, the combined thermal system optimum solution was selected.

  6. Radio observations of the fine structure inside a post-CME current sheet

    International Nuclear Information System (INIS)

    Gao Guan-Nan; Wang Min; Lin Jun; Kliem Berhard; Wu Ning; Tan Cheng-Ming; Su Yang

    2014-01-01

    A solar radio burst was observed in a coronal mass ejection/flare event by the Solar Broadband Radio Spectrometer at the Huairou Solar Observing Station on 2004 December 1. The data exhibited various patterns of plasma motions, suggestive of the interaction between sunward moving plasmoids and the flare loop system during the impulsive phase of the event. In addition to the radio data, the associated white-light, Hα, extreme ultraviolet light, and soft and hard X-rays were also studied. (mini-volume: solar radiophysics — recent results on observations and theories)

  7. NEAR-SIMULTANEOUS OBSERVATIONS OF X-RAY PLASMA EJECTION, CORONAL MASS EJECTION, AND TYPE II RADIO BURST

    International Nuclear Information System (INIS)

    Kim, Yeon-Han; Bong, Su-Chan; Park, Y.-D.; Cho, K.-S.; Moon, Y.-J.

    2009-01-01

    We report the first simultaneous observation of X-ray plasma ejection (XPE), coronal mass ejection (CME), and type II solar radio burst on 1999 October 26. First, an XPE was observed from 21:12 UT to 21:24 UT in the Yohkoh SXT field of view (1.1 to 1.4 R sun ). The XPE was accelerated with a speed range from 190 to 410 km s -1 and its average speed is about 290 km s -1 . Second, the associated CME was observed by the Mauna Loa Mk4 coronameter (1.1-2.8 R sun ) from 21:16 UT. The CME front was clearly identified at 21:26 UT and propagated with a deceleration of about -110 m s -2 . Its average speed is about 360 km s -1 . At the type II burst start time (21:25 UT), the height of the CME front is around 1.7 R sun and its speed is about 470 km s -1 . Third, a type II solar radio burst was observed from 21:25 UT to 21:43 UT by the Culgoora solar radio spectrograph. The burst shows three emission patches during this observing period and the emission heights of the burst are estimated to be about 1.3 R sun (21:25 UT), 1.4 R sun (21:30 UT), and 1.8 R sun (21:40 UT). By comparing these three phenomena, we find that: (1) kinematically, while the XPE shows acceleration, the associated CME front shows deceleration; (2) there is an obvious height difference (0.3 R sun ) between the CME front and the XPE front around 21:24 UT and the formation height of the type II burst is close to the trajectory extrapolated from the XPE front; (3) both speeds of the XPE and the CME are comparable with each other around the starting time of the type II burst. Considering the formation height and the speed of the type II burst, we suggest that its first emission is due to the coronal shock generated by the XPE and the other two emissions are driven by the CME flank interacting with the high-density streamer.

  8. Center-to-Limb Variability of Hot Coronal EUV Emissions During Solar Flares

    Science.gov (United States)

    Thiemann, E. M. B.; Chamberlin, P. C.; Eparvier, F. G.; Epp, L.

    2018-02-01

    It is generally accepted that densities of quiet-Sun and active region plasma are sufficiently low to justify the optically thin approximation, and this is commonly used in the analysis of line emissions from plasma in the solar corona. However, the densities of solar flare loops are substantially higher, compromising the optically thin approximation. This study begins with a radiative transfer model that uses typical solar flare densities and geometries to show that hot coronal emission lines are not generally optically thin. Furthermore, the model demonstrates that the observed line intensity should exhibit center-to-limb variability (CTLV), with flares observed near the limb being dimmer than those occurring near disk center. The model predictions are validated with an analysis of over 200 flares observed by the EUV Variability Experiment (EVE) on the Solar Dynamics Observatory (SDO), which uses six lines, with peak formation temperatures between 8.9 and 15.8 MK, to show that limb flares are systematically dimmer than disk-center flares. The data are then used to show that the electron column density along the line of sight typically increases by 1.76 × 10^{19} cm^{-2} for limb flares over the disk-center flare value. It is shown that the CTLV of hot coronal emissions reduces the amount of ionizing radiation propagating into the solar system, and it changes the relative intensities of lines and bands commonly used for spectral analysis.

  9. VLA radio observations of AR Scorpii

    Science.gov (United States)

    Stanway, E. R.; Marsh, T. R.; Chote, P.; Gänsicke, B. T.; Steeghs, D.; Wheatley, P. J.

    2018-03-01

    Aims: AR Scorpii is unique amongst known white dwarf binaries in showing powerful pulsations extending to radio frequencies. Here we aim to investigate the multi-frequency radio emission of AR Sco in detail, in order to constrain its origin and emission mechanisms. Methods: We present interferometric radio frequency imaging of AR Sco at 1.5, 5 and 9 GHz, analysing the total flux and polarization behaviour of this source at high time resolution (10, 3 and 3 s), across a full 3.6 h orbital period in each band. Results: We find strong modulation of the radio flux on the orbital period and the orbital sideband of the white dwarf's spin period (also known as the "beat" period). This indicates that, like the optical flux, the radio flux arises predominantly from on or near the inner surface of the M-dwarf companion star. The beat-phase pulsations of AR Sco decrease in strength with decreasing frequency. They are strongest at 9 GHz and at an orbital phase 0.5. Unlike the optical emission from this source, radio emission from AR Sco shows weak linear polarization but very strong circular polarization, reaching 30% at an orbital phase 0.8. We infer the probable existence of a non-relativistic cyclotron emission component, which dominates at low radio frequencies. Given the required magnetic fields, this also likely arises from on or near the M-dwarf. A table of the flux time series is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/611/A66

  10. Comparison of VLBI radio core and X-ray flux densities of extragalactic radio sources

    International Nuclear Information System (INIS)

    Bloom, S.D.; Marscher, A.P.

    1990-01-01

    The Einstein Observatory revealed that most quasars, selected in a variety of ways, are strong x-ray emitters. Radio bright quasars are statistically more luminous in the x-ray than their radio-quiet counterparts. It was also found that the 90 GHz to soft x-ray spectral index has a very small dispersion for sources selected by their strong millimeter emission. This implies a close relationship between compact radio flux density and x-ray emission. Strong correlations have been found between the arcsecond scale flux densities and soft x-ray fluxes. It is suggested that the correlation can be explained if the soft x-rays were produced by the synchrotron self-Compton (SSC) process within the compact radio emitting region. (author)

  11. RELATIVISTIC PLASMA AS THE DOMINANT SOURCE OF THE OPTICAL CONTINUUM EMISSION IN THE BROAD-LINE RADIO GALAXY 3C 120

    International Nuclear Information System (INIS)

    Leon-Tavares, J.; Lobanov, A. P.; Arshakian, T. G.; Chavushyan, V. H.; Doroshenko, V. T.; Sergeev, S. G.; Efimov, Y. S.; Nazarov, S. V.

    2010-01-01

    We report a relation between radio emission in the inner jet of the Seyfert galaxy 3C 120 and optical continuum emission in this galaxy. Combining the optical variability data with multi-epoch high-resolution very long baseline interferometry observations reveals that an optical flare rises when a superluminal component emerges into the jet, and its maxima is related to the passage of such component through the location of a stationary feature at a distance of ∼1.3 pc from the jet origin. This indicates that a significant fraction of the optical continuum produced in 3C 120 is non-thermal, and it can ionize material in a sub-relativistic wind or outflow. We discuss implications of this finding for the ionization and structure of the broad emission line region, as well as for the use of broad emission lines for determining black hole masses in radio-loud active galactic nucleus.

  12. THE SPECTACULAR RADIO-NEAR-IR-X-RAY JET OF 3C 111: THE X-RAY EMISSION MECHANISM AND JET KINEMATICS

    Energy Technology Data Exchange (ETDEWEB)

    Clautice, Devon; Perlman, Eric S. [Department of Physics and Space Sciences, Florida Institute of Technology, 150 W. University Boulevard, Melbourne, FL 32901 (United States); Georganopoulos, Markos [Department of Physics, University of Maryland—Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250 (United States); Lister, Matthew L.; Hogan, Brandon [Department of Physics and Astronomy, Purdue University, 525 Northwestern Avenue, West Lafayette, IN 47907 (United States); Tombesi, Francesco [Department of Astronomy, University of Maryland, College Park, MD 20742-2421 (United States); Cara, Mihai [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Marshall, Herman L. [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Kazanas, Demos [NASA’s Goddard Space Flight Center, Astrophysics Science Division, Code 663, Greenbelt, MD 20771 (United States)

    2016-08-01

    Relativistic jets are the most energetic manifestation of the active galactic nucleus (AGN) phenomenon. AGN jets are observed from the radio through gamma-rays and carry copious amounts of matter and energy from the sub-parsec central regions out to the kiloparsec and often megaparsec scale galaxy and cluster environs. While most spatially resolved jets are seen in the radio, an increasing number have been discovered to emit in the optical/near-IR and/or X-ray bands. Here we discuss a spectacular example of this class, the 3C 111 jet, housed in one of the nearest, double-lobed FR II radio galaxies known. We discuss new, deep Chandra and Hubble Space Telescope ( HST ) observations that reveal both near-IR and X-ray emission from several components of the 3C 111 jet, as well as both the northern and southern hotspots. Important differences are seen between the morphologies in the radio, X-ray, and near-IR bands. The long (over 100 kpc on each side), straight nature of this jet makes it an excellent prototype for future, deep observations, as it is one of the longest such features seen in the radio, near-IR/optical, and X-ray bands. Several independent lines of evidence, including the X-ray and broadband spectral shape as well as the implied velocity of the approaching hotspot, lead us to strongly disfavor the EC/CMB model and instead favor a two-component synchrotron model to explain the observed X-ray emission for several jet components. Future observations with NuSTAR , HST , and Chandra will allow us to further constrain the emission mechanisms.

  13. Measurement of macroscopic plasma parameters with a radio experiment: Interpretation of the quasi-thermal noise spectrum observed in the solar wind

    Science.gov (United States)

    Couturier, P.; Hoang, S.; Meyer-Vernet, N.; Steinberg, J. L.

    1983-01-01

    The ISEE-3 SBH radio receiver has provided the first systematic observations of the quasi-thermal (plasma waves) noise in the solar wind plasma. The theoretical interpretation of that noise involves the particle distribution function so that electric noise measurements with long antennas provide a fast and independent method of measuring plasma parameters: densities and temperatures of a two component (core and halo) electron distribution function have been obtained in that way. The polarization of that noise is frequency dependent and sensitive to the drift velocity of the electron population. Below the plasma frequency, there is evidence of a weak noise spectrum with spectral index -1 which is not yet accounted for by the theory. The theoretical treatment of the noise associated with the low energy (thermal) proton population shows that the moving electrical antenna radiates in the surrounding plasma by Carenkov emission which becomes predominant at the low frequencies, below about 0.1 F sub P.

  14. Soft X-ray emission from the radio pulsar PSR 0656 + 14

    Science.gov (United States)

    Cordova, F. A.; Middleditch, J.; Hjellming, R. M.; Mason, K. O.

    1989-01-01

    A radio source with a flux density of a few mJy was found in the error region of the soft X-ray source E0656 + 14, and identified as the radio pulsar PSR 0656 + 14. The radio source has a steep, nonthermal spectrum and a high degree of linear (62 percent) and circular (19 percent) polarization. The X-ray spectrum of the pulsar is among the softest sources observed with the Einstein Observatory. The X-ray data taken with the Einstein imaging proportional counter (IPC) permit a range of blackbody temperatures of 3-6 x 10 to the 5th K, and an equivalent column density of hydrogen smaller than 4 x 10 to the 20th/sq cm. If the assumption is made that the X-ray flux is thermal radiation from surface of the neutron star, then the pulsar must be at a distance smaller than 550 pc, consistent with the low dispersion measure of PSR 0656 + 14. The X-ray timing data suggest that the X-ray emission is modulated at the pulsar's 0.385-s spin period with an amplitude of 18 percent + or - 6 percent, and that there is a 0.0002 probability that this is spurious. It was noted that PSR 0656 + 14 is close to the geometric center of a 20-deg diameter soft X-ray emitting ring called the Gemini-Monoceros enhancement. The close distance of the pulsar, together with its relatively young age of 1.1 x 10 to the 5th yr, makes it possible that the ring is a supernova remnant from the explosion of the pulsar's progenitor. A radio source extending over a region 1.2 to 3.3 arcmin south of the pulsar is a candidate for association with the pulsar.

  15. Soft X-ray emission from the radio pulsar PSR 0656 + 14

    International Nuclear Information System (INIS)

    Cordova, F.A.; Middleditch, J.; Hjellming, R.M.; Mason, K.O.

    1989-01-01

    A radio source with a flux density of a few mJy was found in the error region of the soft X-ray source E0656 + 14, and identified as the radio pulsar PSR 0656 + 14. The radio source has a steep, nonthermal spectrum and a high degree of linear (62%) and circular (19%) polarization. The X-ray spectrum of the pulsar is among the softest sources observed with the Einstein Observatory. The X-ray data taken with the Einstein imaging proportional counter (IPC) permit a range of blackbody temperatures of 3-6 x 10 to the 5th K, and an equivalent column density of hydrogen smaller than 4 x 10 to the 20th/sq cm. If the assumption is made that the X-ray flux is thermal radiation from surface of the neutron star, then the pulsar must be at a distance smaller than 550 pc, consistent with the low dispersion measure of PSR 0656 + 14. The X-ray timing data suggest that the X-ray emission is modulated at the pulsar's 0.385-s spin period with an amplitude of 18% + or - 6%, and that there is a 0.0002 probability that this is spurious. It was noted that PSR 0656 + 14 is close to the geometric center of a 20-deg diameter soft X-ray emitting ring called the Gemini-Monoceros enhancement. The close distance of the pulsar, together with its relatively young age of 1.1 x 10 to the 5th yr, makes it possible that the ring is a supernova remnant from the explosion of the pulsar's progenitor. A radio source extending over a region 1.2 to 3.3 arcmin south of the pulsar is a candidate for association with the pulsar. 46 refs

  16. The dust, nebular emission, and dependence on QSO radio properties of the associated Mg II absorption line systems

    Energy Technology Data Exchange (ETDEWEB)

    Khare, Pushpa [CSIR Emeritus Scientist, IUCAA, Ganeshkhind, Pune 411007 (India); Daniel, Vanden Berk [Physics Department, St. Vincent College, Latrobe, PA 15650 (United States); Rahmani, Hadi [School of Astronomy, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); York, Donald G., E-mail: pushpakhare@gmail.com [Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637 (United States)

    2014-10-10

    We studied dust reddening and [O II] emission in 1730 Mg II associated absorption systems (AAS; relative velocity with respect to QSOs, ≤3000 km s{sup –1}; in units of velocity of light, β, ≤0.01) with 0.4 ≤z {sub abs} ≤ 2 in the Sloan Digital Sky Survey DR7, focusing on their dependence on the radio and other QSO properties. We used control samples, several with matching radio properties, to show that (1) AAS in radio-detected (RD) QSOs cause 2.6 ± 0.2 times higher dust extinction than those in radio-undetected (RUD) ones, which in turn cause 2.9 ± 0.7 times the dust extinction in the intervening systems; (2) AAS in core-dominated QSOs cause 2.0 ± 0.1 times higher dust extinction than those in lobe-dominated QSOs; (3) the occurrence of AAS is 2.1 ± 0.2 times more likely in RD QSOs than in RUD QSOs and 1.8 ± 0.1 time more likely in QSOs having black holes with masses larger than 1.23 × 10{sup 9} M {sub ☉} than in those with lower-mass black holes; and (4) there is excess flux in [O II]λ3727 emission in the composite spectra of the AAS samples compared with those of the control samples, which is at the emission redshift. The presence of AAS enhances the O II emission from the active galactic nucleus and/or the host galaxy. This excess is similar for both RD and RUD samples and is 2.5 ± 0.4 times higher in lobe-dominated samples than in core-dominated samples. The excess depends on the black hole mass and Eddington ratio. All these point to the intrinsic nature of the AAS except for the systems with z {sub abs} > z {sub em}, which could be infalling galaxies.

  17. A Radio Emission Analysis of Classical Nova V351 Pup (1991)

    Science.gov (United States)

    Wendeln, Carolyn; Chomiuk, Laura; Finzell, Thomas; Linford, Justin D.; Strader, Jay

    2017-05-01

    Previously, Nova Puppis 1991 (V351 Pup) was measured to host one of the most massive ejections claimed in the literature. Multi-frequency radio detections from one epoch were published for this nova in the 1990's; and yet, the remaining data collected by the Karl G. Jansky Very Large Array (VLA) have remained unpublished. In this paper, we analyze the remaining unpublished data sets for V351 Pup at frequencies of 4.9, 8.4, 14.9, and 22.5 GHz. We fit the resulting light curve to a model of expanding thermal ejecta, under the assumption that the radio emission is dominated by free-free radiation and accounting for high levels of clumping in the ejecta. Images of V351 Pup in both the radio (from the VLA) and Hα+[N II] (from Hubble Space Telescope) exhibit no aspherical structure, strengthening our assumption of spherical symmetry. From expansion parallax methods, we estimate the distance to V351 Pup to be 5.0 ± 1.5 kpc. Our light-curve fit yields a value of {{log}}10({M}{ej})=-5.2+/- 0.7 {M}⊙ for the ejecta mass, implying that V351 Pup is on the low end of expectations for ejecta mass from classical novae. A comparison between our derived ejecta mass and theoretical models gives evidence for a very massive (1.25 {M}⊙ ) white dwarf, which is consistent with spectroscopic evidence for an oxygen-neon white dwarf.

  18. The difference between radio-loud and radio-quiet active galaxies

    Science.gov (United States)

    Wilson, A. S.; Colbert, E. J. M.

    1995-01-01

    The recent development of unified theories of active galactic nuclei (AGNs) has indicated that there are two physically distinct classes of these objects--radio-loud and radio-quiet. Despite differences, the (probable) thermal emissions from the AGNs (continua and lines from X-ray to infrared wavelengths) are quite similar to the two classes of object. We argue that this last result suggests that the black hole masses and mass accretion rates in the two classes are not greatly different, and that the difference between the classes is associated with the spin of the black hole. We assume that the normal process of accretion through a disk does not lead to rapidly spinning holes and propose that galaxies (e.g., spirals) which have not suffered a recent major merger event contain nonrotating or only slowly rotating black holes. When two such galaxies merge, the two black holes are known to form a binary and we assume that they eventually coalesce. The ratio of the number of radio-loud to radio-quiet AGNs at a given thermal (e.g., optical) luminosity is determined by the galaxy merger rate. Comparisons between the predicted and observed radio luminosity functions constrain the efficiencies with which jet power is extracted from the spinning hole and radio emission is produced by the jet.

  19. THE ROLE OF FAST MAGNETIC RECONNECTION ON THE RADIO AND GAMMA-RAY EMISSION FROM THE NUCLEAR REGIONS OF MICROQUASARS AND LOW LUMINOSITY AGNs

    International Nuclear Information System (INIS)

    Kadowaki, L. H. S.; Pino, E. M. de Gouveia Dal; Singh, C. B.

    2015-01-01

    Fast magnetic reconnection events can be a very powerful mechanism operating in the core region of microquasars and active galactic nuclei (AGNs). In earlier work, it has been suggested that the power released by fast reconnection events between the magnetic field lines lifting from the inner accretion disk region and the lines anchored into the central black hole could accelerate relativistic particles and produce the observed radio emission from microquasars and low luminosity AGNs (LLAGNs). Moreover, it has been proposed that the observed correlation between the radio emission and the mass of these sources, spanning 10 10 orders of magnitude in mass, might be related to this process. In the present work, we revisit this model comparing two different fast magnetic reconnection mechanisms, namely, fast reconnection driven by anomalous resistivity (AR) and by turbulence. We apply the scenario above to a much larger sample of sources (including also blazars, and gamma-ray bursts—GRBs), and find that LLAGNs and microquasars do confirm the trend above. Furthermore, when driven by turbulence, not only their radio but also their gamma-ray emission can be due to magnetic power released by fast reconnection, which may accelerate particles to relativistic velocities in the core region of these sources. Thus the turbulent-driven fast reconnection model is able to reproduce verywell the observed emission. On the other hand, the emission from blazars and GRBs does not follow the same trend as that of the LLAGNs and microquasars, indicating that the radio and gamma-ray emission in these cases is produced beyond the core, along the jet, by another population of relativistic particles, as expected

  20. Sensitivity of upper atmospheric emissions calculations to solar/stellar UV flux

    Directory of Open Access Journals (Sweden)

    Barthelemy Mathieu

    2014-01-01

    Full Text Available The solar UV (UltraViolet flux, especially the EUV (Extreme UltraViolet and FUV (Far UltraViolet components, is one of the main energetic inputs for planetary upper atmospheres. It drives various processes such as ionization, or dissociation which give rise to upper atmospheric emissions, especially in the UV and visible. These emissions are one of the main ways to investigate the upper atmospheres of planets. However, the uncertainties in the flux measurement or modeling can lead to biased estimates of fundamental atmospheric parameters, such as concentrations or temperatures in the atmospheres. We explore the various problems that can be identified regarding the uncertainties in solar/stellar UV flux by considering three examples. The worst case appears when the solar reflection component is dominant in the recorded spectrum as is seen for outer solar system measurements from HST (Hubble Space Telescope. We also show that the estimation of some particular line parameters (intensity and shape, especially Lyman α, is crucial, and that both total intensity and line profile are useful. In the case of exoplanets, the problem is quite critical since the UV flux of their parent stars is often very poorly known.

  1. RADIO PROPERTIES OF THE BAT AGNs: THE FIR–RADIO RELATION, THE FUNDAMENTAL PLANE, AND THE MAIN SEQUENCE OF STAR FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Krista Lynne; Mushotzky, Richard F.; Vogel, Stuart; Shimizu, Thomas T. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Miller, Neal, E-mail: klsmith@astro.umd.edu [Department of Mathematics and Physics, Stevenson University, Stevenson, MD 21117 (United States)

    2016-12-01

    We conducted 22 GHz 1″ JVLA imaging of 70 radio-quiet active galactic nuclei (AGNs) from the Swift -BAT survey. We find radio cores in all but three objects. The radio morphologies of the sample fall into three groups: compact and core-dominated, extended, and jet-like. We spatially decompose each image into core flux and extended flux, and compare the extended radio emission with that predicted from previous Herschel observations using the canonical FIR–radio relation. After removing the AGN contribution to the FIR and radio flux densities, we find that the relation holds remarkably well despite the potentially different star formation physics in the circumnuclear environment. We also compare our core radio flux densities with predictions of coronal models and scale-invariant jet models for the origin of radio emission in radio-quiet AGNs, and find general consistency with both models. However, we find that the L {sub R}/ L {sub X} relation does not distinguish between star formation and non-relativistic AGN-driven outflows as the origin of radio emission in radio-quiet AGNs. Finally, we examine where objects with different radio morphologies fall in relation to the main sequence (MS) of star formation, and conclude that those AGNs that fall below the MS, as X-ray selected AGNs have been found to do, have core-dominated or jet-like 22 GHz morphologies.

  2. GHG emission assessment of full energy chain for solar power in China

    International Nuclear Information System (INIS)

    Li Junfeng

    1997-01-01

    Solar PV technologies have been made a very important role for meeting the energy demand in the remote area and some commercial case in China. The annual PV production is about 1 MW and the total installation of solar PV is about 3 MW in China. However, from the full energy chain point view, during the manufacturing of solar PV, some energy should be used. This paper will focus on the analysis of full energy chain for the solar PV production and utilization. This paper consists two parts: current status of solar PV production and utilization in China and analysis of greenhouse gas emission from the full energy chain of solar PV production. (author)

  3. MINIFILAMENT ERUPTION AS THE SOURCE OF A BLOWOUT JET, C-CLASS FLARE, AND TYPE-III RADIO BURST

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Junchao; Jiang, Yunchun; Yang, Jiayan; Li, Haidong; Xu, Zhe, E-mail: hjcsolar@ynao.ac.cn [Yunnan Observatories, Chinese Academy of Sciences, 396 Yangfangwang, Guandu District, Kunming, 650216 (China); Center for Astronomical Mega-Science, Chinese Academy of Sciences, 20A Datun Road, Chaoyang District, Beijing, 100012 (China)

    2017-01-20

    We report a strong minifilament eruption associated with Geostationary Operational Environmental Satellite C1.6 flare and WIND type-III radio burst. The minifilament, which lies at the periphery of active region 12259, is detected by H α images from the New Vacuum Solar Telescope. The minifilament undergoes a partial and then a full eruption. Simultaneously, two co-spatial jets are successively observed in extreme ultraviolet images from the Solar Dynamic Observatory . The first jet exhibits a typical fan-spine geometry, suggesting that the co-spatial minifilament is possibly embedded in magnetic fields with a fan-spine structure. However, the second jet displays blowout morphology when the entire minifilament erupts upward, leaving behind a hard X-ray emission source in the base. Differential emission measure analyses show that the eruptive region is heated up to about 4 MK during the fan-spine jet, while up to about 7 MK during the blowout jet. In particular, the blowout jet is accompanied by an interplanetary type-III radio burst observed by WIND /WAVES in the frequency range from above 10 to 0.1 MHz. Hence, the minifilament eruption is correlated with the interplanetary type-III radio burst for the first time. These results not only suggest that coronal jets can result from magnetic reconnection initiated by erupting minifilaments with open fields, but also shed light on the potential influence of minifilament eruption on interplanetary space.

  4. Radio Detections During Two State Transitions of the Intermediate-Mass Black Hole HLX-1

    Science.gov (United States)

    Webb, Natalie; Cseh, David; Lenc, Emil; Godet, Olivier; Barret, Didier; Corbel, Stephane; Farrell, Sean; Fender, Robert; Gehrels, Neil; Heywood, Ian

    2012-01-01

    Relativistic jets are streams of plasma moving at appreciable fractions of the speed of light. They have been observed from stellar-mass black holes (approx. 3 to 20 solar masses) as well as supermassive black holes (approx.. 10(exp 6) to 10(exp 9) Solar Mass) found in the centers of most galaxies. Jets should also be produced by intermediate-mass black holes (approx. 10(exp 2) to 10(exp 5) Solar Mass), although evidence for this third class of black hole has, until recently, been weak. We report the detection of transient radio emission at the location of the intermediate-mass black hole candidate ESO 243-49 HLX-1, which is consistent with a discrete jet ejection event. These observations also allow us to refine the mass estimate of the black hole to be between approx. 9 × 10(exp 3) Solar Mass and approx. 9 × 10(exp 4) Solar Mass.

  5. Radio astronomy

    CERN Document Server

    Alder, Berni

    1975-01-01

    Methods in Computational Physics, Volume 14: Radio Astronomy is devoted to the role of the digital computer both as a control device and as a calculator in addressing problems related to galactic radio noise. This volume contains four chapters and begins with a technical description of the hardware and the special data-handling problems of using radioheliography, with an emphasis on a selection of observational results obtained with the Culgoora radioheliograph and their significance to solar physics and to astrophysics in general. The subsequent chapter examines interstellar dispersion, i

  6. Latest Observations of Interstellar Plasma Waves, Radio Emissions, and Dust Impacts from the Voyager 1 Plasma Wave Instrument

    Science.gov (United States)

    Gurnett, D. A.

    2017-12-01

    Voyager 1, which is now 140 AU (Astronomical Units) from the Sun, crossed the heliopause into interstellar space in 2012 at a heliospheric radial distance of 121 AU. Since crossing the heliopause the plasma wave instrument has on several occasions detected plasma oscillations and radio emissions at or near the electron plasma frequency. The most notable of these events occurred in Oct.-Nov. 2012, April-May 2013, Feb.-Nov. 2014, and Sept.-Nov. 2015. Most recently, a very weak emission has been observed at or near the electron plasma frequency through most of 2016. These emissions are all believed to be produced by shock waves propagating into the interstellar medium from energetic solar events. The oscillation frequency of the plasma indicates that the electron density in the interstellar plasma has gradually increased from about 0.06 cm-3 near the heliopause to about 0.12 cm-3 in the most recent data. The plasma wave instrument also continues to detect impacts of what are believed to be interstellar dust grains at an impact rate of a few per year. Comparisons with Ulysses observations of similar interstellar dust near 5 AU suggest that the dust grains have sizes in the range from about 0.1 to 1 micrometer. Although the statistics are poor due to the low count rate, the dust flux observed in the outer heliosphere appears to be as much as a factor of two greater than that observed in the interstellar medium. Since the dust particles are likely to be charged, this increase in the heliosphere suggests that there may be a significant electrodynamic interaction of the dust particles with the heliospheric magnetic field.

  7. Prompt acceleration of ions by oblique turbulent shocks in solar flares

    Science.gov (United States)

    Decker, R. B.; Vlahos, L.

    1985-01-01

    Solar flares often accelerate ions and electrons to relativistic energies. The details of the acceleration process are not well understood, but until recently the main trend was to divide the acceleration process into two phases. During the first phase elctrons and ions are heated and accelerated up to several hundreds of keV simultaneously with the energy release. These mildly relativistic electrons interact with the ambient plasma and magnetic fields and generate hard X-ray and radio radiation. The second phase, usually delayed from the first by several minutes, is responsible for accelerating ions and electrons to relativistic energies. Relativistic electrons and ions interact with the solar atmosphere or escape from the Sun and generate gamma ray continuum, gamma ray line emission, neutron emission or are detected in space by spacecraft. In several flares the second phase is coincident with the start of a type 2 radio burst that is believed to be the signature of a shock wave. Observations from the Solar Maximum Mission spacecraft have shown, for the first time, that several flares accelerate particles to all energies nearly simultaneously. These results posed a new theoretical problem: How fast are shocks and magnetohydrodynamic turbulence formed and how quickly can they accelerate ions to 50 MeV in the lower corona? This problem is discussed.

  8. Prompt acceleration of ions by oblique turbulent shocks in solar flares

    International Nuclear Information System (INIS)

    Decker, R.B.; Vlahos, L.

    1985-01-01

    Solar flares often accelerate ions and electrons to relativistic energies. The details of the acceleration process are not well understood, but until recently the main trend was to divide the acceleration process into two phases. During the first phase elctrons and ions are heated and accelerated up to several hundreds of keV simultaneously with the energy release. These mildly relativistic electrons interact with the ambient plasma and magnetic fields and generate hard x-ray and radio radiation. The second phase, usually delayed from the first by several minutes, is responsible for accelerating ions and electrons to relativistic energies. Relativistic electrons and ions interact with the solar atmosphere or escape from the Sun and generate gamma ray continuum, gamma ray line emission, neutron emission or are detected in space by spacecraft. In several flares the second phase is coincident with the start of a type 2 radio burst that is believed to be the signature of a shock wave. Observations from the Solar Maximum Mission spacecraft have shown, for the first time, that several flares accelerate particles to all energies nearly simultaneously. These results posed a new theoretical problem: How fast are shocks and magnetohydrodynamic turbulence formed and how quickly can they accelerate ions to 50 MeV in the lower corona. This problem is discussed

  9. Amateur Planetary Radio Data Archived for Science and Education: Radio Jove

    Science.gov (United States)

    Thieman, J.; Cecconi, B.; Sky, J.; Garcia, L. N.; King, T. A.; Higgins, C. A.; Fung, S. F.

    2015-12-01

    The Radio Jove Project is a hands-on educational activity in which students, teachers, and the general public build simple radio telescopes, usually from a kit, to observe single frequency decameter wavelength radio emissions from Jupiter, the Sun, the galaxy, and the Earth usually with simple dipole antennas. Some of the amateur observers have upgraded their receivers to spectrographs and their antennas have become more sophisticated as well. The data records compare favorably to more sophisticated professional radio telescopes such as the Long Wavelength Array (LWA) and the Nancay Decametric Array. Since these data are often carefully calibrated and recorded around the clock in widely scattered locations they represent a valuable database useful not only to amateur radio astronomers but to the professional science community as well. Some interesting phenomena have been noted in the data that are of interest to the professionals familiar with such records. The continuous monitoring of radio emissions from Jupiter could serve as useful "ground truth" data during the coming Juno mission's radio observations of Jupiter. Radio Jove has long maintained an archive for thousands of Radio Jove observations, but the database was intended for use by the Radio Jove participants only. Now, increased scientific interest in the use of these data has resulted in several proposals to translate the data into a science community data format standard and store the data in professional archives. Progress is being made in translating Radio Jove data to the Common Data Format (CDF) and also in generating new observations in that format as well. Metadata describing the Radio Jove data would follow the Space Physics Archive Search and Extract (SPASE) standard. The proposed archive to be used for long term preservation would be the Planetary Data System (PDS). Data sharing would be achieved through the PDS and the Paris Astronomical Data Centre (PADC) and the Virtual Wave Observatory (VWO

  10. GYRO-ORBIT SIZE, BRIGHTNESS TEMPERATURE LIMIT, AND IMPLAUSIBILITY OF COHERENT EMISSION BY BUNCHING IN SYNCHROTRON RADIO SOURCES

    International Nuclear Information System (INIS)

    Singal, Ashok K.

    2012-01-01

    We show that an upper limit on the maximum brightness temperature for a self-absorbed incoherent synchrotron radio source is obtained from the size of its gyro orbits, which in turn must lie well within the confines of the total source extent. These temperature limits are obtained without recourse to inverse Compton effects or the condition of equipartition of energy between magnetic fields and relativistic particles. For radio variables, the intra-day variability implies brightness temperatures ∼10 19 K in the comoving rest frame of the source. This, if interpreted purely due to an incoherent synchrotron emission, would imply gyroradii >10 28 cm, the size of the universe, while from the causality arguments the inferred maximum size of the source in such a case is ∼ 15 cm. Such high brightness temperatures are sometimes modeled in the literature as some coherent emission process where bunches of non-thermal particles are somehow formed that radiate in phase. We show that, unlike in the case of curvature radiation models proposed in pulsars, in the synchrotron radiation mechanism the oppositely charged particles would contribute together to the coherent phenomenon without the need to form separate bunches of the opposite charges. At the same time we show that bunches would disperse over dimensions larger than a wavelength in time shorter than the gyro orbital period (∼< 0.1 s). Therefore, a coherent emission by bunches cannot be a plausible explanation of the high brightness temperatures inferred in extragalactic radio sources showing variability over a few hours or longer.

  11. Analytic calculation of radio emission from parametrized extensive air showers: A tool to extract shower parameters

    Science.gov (United States)

    Scholten, O.; Trinh, T. N. G.; de Vries, K. D.; Hare, B. M.

    2018-01-01

    The radio intensity and polarization footprint of a cosmic-ray induced extensive air shower is determined by the time-dependent structure of the current distribution residing in the plasma cloud at the shower front. In turn, the time dependence of the integrated charge-current distribution in the plasma cloud, the longitudinal shower structure, is determined by interesting physics which one would like to extract, such as the location and multiplicity of the primary cosmic-ray collision or the values of electric fields in the atmosphere during thunderstorms. To extract the structure of a shower from its footprint requires solving a complicated inverse problem. For this purpose we have developed a code that semianalytically calculates the radio footprint of an extensive air shower given an arbitrary longitudinal structure. This code can be used in an optimization procedure to extract the optimal longitudinal shower structure given a radio footprint. On the basis of air-shower universality we propose a simple parametrization of the structure of the plasma cloud. This parametrization is based on the results of Monte Carlo shower simulations. Deriving the parametrization also teaches which aspects of the plasma cloud are important for understanding the features seen in the radio-emission footprint. The calculated radio footprints are compared with microscopic CoREAS simulations.

  12. Radio-Frequency Emissions from Streamer Collisions: Implications for High-Energy Processes.

    Science.gov (United States)

    Luque, A.

    2017-12-01

    The production of energetic particles in a discharge corona is possibly linked to the collision of streamers of opposite polarities [Cooray et al. (2009), Kochkin et al. (2012), Østgaard et al. (2016)]. There is also experimental evidence linking it to radio-frequency emissions in the UHF frequency range (300 MHz-3 GHz) [Montanyà et al. (2015), Petersen and Beasley (2014)]. Here we investigate these two links by modeling the radio-frequency emissions emanating from an encounter between two counter-propagating streamers. Our numerical model combines self-consistently a conservative, high-order Finite-Volume scheme for electron transport with a Finite-Difference Time-Domain (FDTD) method for electromagnetic propagation. We also include the most relevant reactions for streamer propagation: impact ionization, dissociative attachment and photo-ionization. Our implementation benefits from massive parallelization by running on a General-Purpose Graphical Processing Unit (GPGPU). With this code we found that streamer encounters emit electromagnetic waves predominantly in the UHF range, supporting the hypothesis that streamer collisions are essential precursors of high-energy processes in electric discharges. References Cooray, V., et al., J. Atm. Sol.-Terr. Phys., 71, 1890, doi:10.1016/j.jastp.2009.07.010 (2009). Kochkin, P. O., et al., J. Phys. D, 45, 425202, doi: 10.1088/0022-3727/45/42/425202 (2012). Montanyà, J., et al., J. Atm. Sol.-Terr. Phys., 136, 94, doi:10.1016/j.jastp.2015.06.009, (2015). Østgaard, N., et al., J. Geophys. Res. (Atmos.), 121, 2939, doi:10.1002/2015JD024394 (2016). Petersen, D., and W. Beasley, Atmospheric Research, 135, 314, doi:10.1016/j.atmosres.2013.02.006 (2014).

  13. Housing and sustainable development: perspectives offered by thermal solar energy. Particle emissions: prospective investigation of primary particle emissions in France by 2030

    International Nuclear Information System (INIS)

    Brignon, J.M.; Cauret, L.; Sambat, S.

    2004-09-01

    This publication proposes two investigation reports. A first study proposes a prospective analysis of the housing 'stock' in France and the evolution of global energy consumptions and CO 2 emissions by the housing sector, a prospective study of space heating and hot water needs by defining reference scenarios as well as a target scenario for heating consumption (based on the factor 4 of reduction of emissions by 2050), and an assessment of the contribution of the thermal solar energy applied to winter comfort under the form of direct solar floors and passive solar contributions, and applied to hot water by 2050. The contribution of the thermal solar energy is studied within its regulatory context. An analysis of urban forms is also performed to assess the potential of integration of renewable energy solutions in the existing housing stock, and thus to assess the morphological limits of an attempt of generalized solarization of roofs. The second study proposes a detailed identification and assessment of the various sources of primary particles (combustion, industrial processes, mineral extraction and processing, road transport, waste processing and elimination, agriculture, natural sources, forest fires), providing more precise results and methodological complements for some sources. It also proposes a prospective assessment of emissions and identifies the main factors of particle concentrations in urban environment

  14. Identification of a Likely Radio Counterpart to the Rapid Burster

    Science.gov (United States)

    Moore, Christopher B.; Rutledge, Robert E.; Fox, Derek W.; Guerriero, Robert A.; Lewin, Walter H. G.; Fender, Robert; van Paradijs, Jan

    2000-04-01

    We have identified a likely radio counterpart to the low-mass X-ray binary MXB 1730-335 (the Rapid Burster). The counterpart has shown 8.4 GHz radio on/off behavior correlated with the X-ray on/off behavior as observed by the RXTE/ASM during six VLA observations. The probability of an unrelated, randomly varying background source duplicating this behavior is 1%-3% depending on the correlation timescale. The location of the radio source is R.A. 17h33m24.61s, decl. -33 deg23'19.8" (J2000), +/-0.1". We do not detect 8.4 GHz radio emission coincident with type II (accretion-driven) X-ray bursts. The ratio of radio to X-ray emission during such bursts is constrained to be below the ratio observed during X-ray-persistent emission at the 2.9 σ level. Synchrotron bubble models of the radio emission can provide a reasonable fit to the full data set, collected over several outbursts, assuming that the radio evolution is the same from outburst to outburst but given the physical constraints the emission is more likely to be due to ~1 hr radio flares such as have been observed from the X-ray binary GRS 1915+105.

  15. THE CHROMOSPHERIC SOLAR MILLIMETER-WAVE CAVITY ORIGINATES IN THE TEMPERATURE MINIMUM REGION

    Energy Technology Data Exchange (ETDEWEB)

    De la Luz, Victor [Instituto Nacional de Astrofisica, Optica y Electronica, Tonantzintla, Puebla, Mexico, Apdo. Postal 51 y 216, 72000 (Mexico); Raulin, Jean-Pierre [CRAAM, Universidade Presbiteriana Mackenzie, Sao Paulo, SP 01302-907 (Brazil); Lara, Alejandro [Instituto de Geofisica, Universidad Nacional Autonoma de Mexico, Mexico 04510 (Mexico)

    2013-01-10

    We present a detailed theoretical analysis of the local radio emission at the lower part of the solar atmosphere. To accomplish this, we have used a numerical code to simulate the emission and transport of high-frequency electromagnetic waves from 2 GHz up to 10 THz. As initial conditions, we used VALC, SEL05, and C7 solar chromospheric models. In this way, the generated synthetic spectra allow us to study the local emission and absorption processes with high resolution in both altitude and frequency. Associated with the temperature minimum predicted by these models, we found that the local optical depth at millimeter wavelengths remains constant, producing an optically thin layer that is surrounded by two layers of high local emission. We call this structure the Chromospheric Solar Millimeter-wave Cavity (CSMC). The temperature profile, which features temperature minimum layers and a subsequent temperature rise, produces the CSMC phenomenon. The CSMC shows the complexity of the relation between the theoretical temperature profile and the observed brightness temperature and may help us to understand the dispersion of the observed brightness temperature in the millimeter wavelength range.

  16. UPPER LIMITS ON PULSED RADIO EMISSION FROM THE 6.85 s X-RAY PULSAR XTE J0103-728 IN THE SMALL MAGELLANIC CLOUD

    International Nuclear Information System (INIS)

    Crawford, Fronefield; Devour, Brian M.; Takacs, Brian P.; Lorimer, Duncan R.; Kondratiev, Vladislav I.

    2009-01-01

    X-ray pulsations with a 6.85 s period were recently detected in the Small Magellanic Cloud (SMC) and were subsequently identified as originating from the Be/X-ray binary system XTE J0103-728. The recent localization of the source of the X-ray emission has made a targeted search for radio pulsations from this source possible. The detection of pulsed radio emission from XTE J0103-728 would make it only the second system after PSR B1259-63 that is both a Be/X-ray binary and a radio pulsar. We observed XTE J0103-728 in 2008 February with the Parkes 64 m radio telescope soon after the identification of the source of X-ray pulsations was reported in order to search for corresponding radio pulsations. We used a continuous 6.4 hr observation with a 256 MHz bandwidth centered at 1390 MHz using the center beam of the Parkes multibeam receiver. In the subsequent data analysis, which included a folding search, a Fourier search, a fast-folding algorithm search, and a single pulse search, no pulsed signals were found for trial dispersion measures (DMs) between 0 and 800 pc cm -3 . This DM range easily encompasses the expected values for sources in the SMC. We place an upper limit of ∼45 mJy kpc 2 on the luminosity of periodic radio emission from XTE J0103-728 at the epoch of our observation, and we compare this limit to a range of luminosities measured for PSR B1259-63, the only Be/X-ray binary currently known to emit radio pulses. We also compare our limit to the radio luminosities of neutron stars having similarly long spin periods to XTE J0103-728. Since the radio pulses from PSR B1259-63 are eclipsed and undetectable during the portion of the orbit near periastron, repeated additional radio search observations of XTE J0103-728 may be valuable if it is undergoing similar eclipsing and if such observations are able to sample the orbital phase of this system well.

  17. The hot and cold interstellar matter of early type galaxies and their radio emission

    International Nuclear Information System (INIS)

    Kim, Dongwoo; Fabbiano, G.

    1990-01-01

    Over the last few years, the knowledge of the interstellar matter (ISM) of early type galaxies has increased dramatically. Many early type galaxies are now known to have ISM in three different phases: cold (neutral hydrogen (HI), dust and molecular material), warm (ionized) and hot (S-ray emitting) gas. Early type galaxies have smaller masses of cold ISM (10 to the 7th power - 10 to the 8th power solar mass; Jura et al. 1987) than later type spiral galaxies, while they have far more hot gas (10 to the 9th power - 10 to the tenth power solar mass; Forman et al. 1985, Canizares et al. 1987). In order to understand the relationship between the different phases of the ISM and the role of the ISM in fueling radio continuum sources and star formation, researchers compared observational data from a wide range of wavelengths

  18. The isotropic radio background revisited

    Energy Technology Data Exchange (ETDEWEB)

    Fornengo, Nicolao; Regis, Marco [Dipartimento di Fisica Teorica, Università di Torino, via P. Giuria 1, I–10125 Torino (Italy); Lineros, Roberto A. [Instituto de Física Corpuscular – CSIC/U. Valencia, Parc Científic, calle Catedrático José Beltrán, 2, E-46980 Paterna (Spain); Taoso, Marco, E-mail: fornengo@to.infn.it, E-mail: rlineros@ific.uv.es, E-mail: regis@to.infn.it, E-mail: taoso@cea.fr [Institut de Physique Théorique, CEA/Saclay, F-91191 Gif-sur-Yvette Cédex (France)

    2014-04-01

    We present an extensive analysis on the determination of the isotropic radio background. We consider six different radio maps, ranging from 22 MHz to 2.3 GHz and covering a large fraction of the sky. The large scale emission is modeled as a linear combination of an isotropic component plus the Galactic synchrotron radiation and thermal bremsstrahlung. Point-like and extended sources are either masked or accounted for by means of a template. We find a robust estimate of the isotropic radio background, with limited scatter among different Galactic models. The level of the isotropic background lies significantly above the contribution obtained by integrating the number counts of observed extragalactic sources. Since the isotropic component dominates at high latitudes, thus making the profile of the total emission flat, a Galactic origin for such excess appears unlikely. We conclude that, unless a systematic offset is present in the maps, and provided that our current understanding of the Galactic synchrotron emission is reasonable, extragalactic sources well below the current experimental threshold seem to account for the majority of the brightness of the extragalactic radio sky.

  19. The isotropic radio background revisited

    International Nuclear Information System (INIS)

    Fornengo, Nicolao; Regis, Marco; Lineros, Roberto A.; Taoso, Marco

    2014-01-01

    We present an extensive analysis on the determination of the isotropic radio background. We consider six different radio maps, ranging from 22 MHz to 2.3 GHz and covering a large fraction of the sky. The large scale emission is modeled as a linear combination of an isotropic component plus the Galactic synchrotron radiation and thermal bremsstrahlung. Point-like and extended sources are either masked or accounted for by means of a template. We find a robust estimate of the isotropic radio background, with limited scatter among different Galactic models. The level of the isotropic background lies significantly above the contribution obtained by integrating the number counts of observed extragalactic sources. Since the isotropic component dominates at high latitudes, thus making the profile of the total emission flat, a Galactic origin for such excess appears unlikely. We conclude that, unless a systematic offset is present in the maps, and provided that our current understanding of the Galactic synchrotron emission is reasonable, extragalactic sources well below the current experimental threshold seem to account for the majority of the brightness of the extragalactic radio sky

  20. Evaluating the Solar Slowly Varying Component at C-Band Using Dual- and Single-Polarization Weather Radars in Europe

    Directory of Open Access Journals (Sweden)

    M. Gabella

    2017-01-01

    Full Text Available Six C-band weather radars located in Europe (Finland, Netherlands, and Switzerland have been used to monitor the slowly varying solar emission, which is an oscillation with an amplitude of several decibels and a period of approximately 27 days. It is caused by the fact that the number of active regions that enhance the solar radio emission with respect to the quiet component, as seen from Earth, varies because of the Sun’s rotation about its axis. The analysis is based on solar signals contained in the polar volume data produced during the operational weather scan strategy. This paper presents hundreds of daily comparisons between radar estimates and the Sun’s reference signal, during the current active Sun period (year 2014. The Sun’s reference values are accurately measured by the Dominion Radio Astrophysical Observatory (DRAO at S-band and converted to C-band using a standard DRAO formula. Vertical and horizontal polarization receivers are able to capture the monthly oscillation of the solar microwave signal: the standard deviation of the log-transformed ratio between radars and the DRAO reference ranges from 0.26 to 0.4 dB. A larger coefficient (and a different value for the quiet Sun component in the standard formula improves the agreement.

  1. Radio Flares from Gamma-ray Bursts

    Science.gov (United States)

    Kopač, D.; Mundell, C. G.; Kobayashi, S.; Virgili, F. J.; Harrison, R.; Japelj, J.; Guidorzi, C.; Melandri, A.; Gomboc, A.

    2015-06-01

    We present predictions of centimeter and millimeter radio emission from reverse shocks (RSs) in the early afterglows of gamma-ray bursts (GRBs) with the goal of determining their detectability with current and future radio facilities. Using a range of GRB properties, such as peak optical brightness and time, isotropic equivalent gamma-ray energy, and redshift, we simulate radio light curves in a framework generalized for any circumburst medium structure and including a parameterization of the shell thickness regime that is more realistic than the simple assumption of thick- or thin-shell approximations. Building on earlier work by Mundell et al. and Melandri et al. in which the typical frequency of the RS was suggested to lie at radio rather than optical wavelengths at early times, we show that the brightest and most distinct RS radio signatures are detectable up to 0.1-1 day after the burst, emphasizing the need for rapid radio follow-up. Detection is easier for bursts with later optical peaks, high isotropic energies, lower circumburst medium densities, and at observing frequencies that are less prone to synchrotron self-absorption effects—typically above a few GHz. Given recent detections of polarized prompt gamma-ray and optical RS emission, we suggest that detection of polarized radio/millimeter emission will unambiguously confirm the presence of low-frequency RSs at early time.

  2. RADIO FLARES FROM GAMMA-RAY BURSTS

    International Nuclear Information System (INIS)

    Kopač, D.; Mundell, C. G.; Kobayashi, S.; Virgili, F. J.; Harrison, R.; Japelj, J.; Gomboc, A.; Guidorzi, C.; Melandri, A.

    2015-01-01

    We present predictions of centimeter and millimeter radio emission from reverse shocks (RSs) in the early afterglows of gamma-ray bursts (GRBs) with the goal of determining their detectability with current and future radio facilities. Using a range of GRB properties, such as peak optical brightness and time, isotropic equivalent gamma-ray energy, and redshift, we simulate radio light curves in a framework generalized for any circumburst medium structure and including a parameterization of the shell thickness regime that is more realistic than the simple assumption of thick- or thin-shell approximations. Building on earlier work by Mundell et al. and Melandri et al. in which the typical frequency of the RS was suggested to lie at radio rather than optical wavelengths at early times, we show that the brightest and most distinct RS radio signatures are detectable up to 0.1–1 day after the burst, emphasizing the need for rapid radio follow-up. Detection is easier for bursts with later optical peaks, high isotropic energies, lower circumburst medium densities, and at observing frequencies that are less prone to synchrotron self-absorption effects—typically above a few GHz. Given recent detections of polarized prompt gamma-ray and optical RS emission, we suggest that detection of polarized radio/millimeter emission will unambiguously confirm the presence of low-frequency RSs at early time

  3. GMRT Low Radio Frequency Study of the Wolf Rayet Galaxy NGC ...

    Indian Academy of Sciences (India)

    In this paper, we present the first low frequency (< 1.4 GHz) radio continuum study of a Wolf Rayet galaxy NGC 4214 using the Giant Meterwave Radio Telescope (GMRT). We detect diffuse extended emission from the galaxy disk at 325 MHz and find that the radio emission closely follows the ultraviolet emission mapped by ...

  4. Spectral and angle dependent emission of solar fluorescence collectors

    Energy Technology Data Exchange (ETDEWEB)

    Straeter, Hendrik; Knabe, Sebastian; Bauer, Gottfried H. [Institute of Physics, Carl von Ossietzky University Oldenburg, D-26111 Oldenburg (Germany)

    2011-07-01

    Fluorescence collectors (FCs) provide the option for concentration and simultaneous spectral selection of solar photons of direct or diffuse light. The energetic and commercial benefit of these systems depend on the yield of the conversion of solar photons into luminescence photons and on the efficiency of their respective conductance to the edges of the FC where they are coupled into appropriate solar cells. For the characterization of the performance of FCs and the identification of losses, we have performed angle and spectrally resolved measurements of fluorescence photons from FC with two different types of optical designs, a PMMA substrate with homogeneous depth dependent dye concentration and a novel type of FC, which consist of a transparent substrate with a thin overlayer containing the absorbing and emitting dye. We have recorded the edge fluorescence when illuminating the entire FC surface laterally homogeneously, as well as for slit-like excitation on the front surface with variation of the distance of the illuminated slit from the edge. We compare the experimental fluorescence results with a 2-dimensional ray-tracing approach and verify the spectral and angle dependent edge emission. Moreover we illuminate the FC with long wavelength photons which are not absorbed and conclude, again from angle dependent and spectrally resolved edge emission, on scattering losses at surfaces and in the bulk.

  5. Performance comparison of two low-CO2 emission solar/methanol hybrid combined cycle power systems

    International Nuclear Information System (INIS)

    Li, Yuanyuan; Zhang, Na; Lior, Noam

    2015-01-01

    Highlights: • Two novel solar hybrid combined cycle systems have been proposed and analyzed. • The power systems integrate solar-driven thermo-chemical conversion and CO 2 capture. • Exergy efficiency of about 55% and specific CO 2 emissions of 34 g/kW h are predicted. • Systems CO 2 emissions are 36.8% lower compared to a combined cycle with CO 2 capture. • The fossil fuel demand is ∼30% lower with a solar share of ∼20%. - Abstract: Two novel hybrid combined cycle power systems that use solar heat and methanol, and integrate CO 2 capture, are proposed and analyzed, one based on solar-driven methanol decomposition and the other on solar-driven methanol reforming. The high methanol conversion rates at relatively low temperatures offer the advantage of using the solar heat at only 200–300 °C to drive the syngas production by endothermic methanol conversions and its conversion to chemical energy. Pre-combustion decarbonization is employed to produce CO 2 -free fuel from the fully converted syngas, which is then burned to produce heat at the high temperature for power generation in the proposed advanced combined cycle systems. To improve efficiency, the systems’ configurations were based on the principle of cascade use of multiple heat sources of different temperatures. The thermodynamic performance of the hybrid power systems at its design point is simulated and evaluated. The results show that the hybrid systems can attain an exergy efficiency of about 55%, and specific CO 2 emissions as low as 34 g/kW h. Compared to a gas/steam combined cycle with flue gas CO 2 capture, the proposed solar-assisted system CO 2 emissions are 36.8% lower, and a fossil fuel saving ratio of ∼30% is achievable with a solar thermal share of ∼20%. The system integration predicts high efficiency conversion of solar heat and low-energy-penalty CO 2 capture, with the additional advantage that solar heat is at relatively low temperature where its collection is cheaper and

  6. VERITAS UPPER LIMIT ON THE VERY HIGH ENERGY EMISSION FROM THE RADIO GALAXY NGC 1275

    International Nuclear Information System (INIS)

    Acciari, V. A.; Benbow, W.; Aliu, E.; Boltuch, D.; Arlen, T.; Celik, O.; Aune, T.; Bautista, M.; Cogan, P.; Beilicke, M.; Buckley, J. H.; Bugaev, V.; Dickherber, R.; Bradbury, S. M.; Byrum, K.; Cannon, A.; Cesarini, A.; Ciupik, L.; Cui, W.; Duke, C.

    2009-01-01

    The recent detection by the Fermi γ-ray space telescope of high-energy γ-rays from the radio galaxy NGC 1275 makes the observation of the very high energy (VHE: E>100 GeV) part of its broadband spectrum particularly interesting, especially for the understanding of active galactic nuclei with misaligned multi-structured jets. The radio galaxy NGC 1275 was recently observed by VERITAS at energies above 100 GeV for about 8 hr. No VHE γ-ray emission was detected by VERITAS from NGC 1275. A 99% confidence level upper limit of 2.1% of the Crab Nebula flux level is obtained at the decorrelation energy of approximately 340 GeV, corresponding to 19% of the power-law extrapolation of the Fermi Large Area Telescope result.

  7. Solar effects on communications

    International Nuclear Information System (INIS)

    Cleveland, F.; Malcolm, W.; Nordell, D.E.; Zirker, J.

    1991-01-01

    When people involved in the power industry think of Solar Magnetic Disturbances (SMD), they normally consider the potential for disrupting power transmission which results form solar-induced disturbances to the earth's magnetic field known as geomagnetic storms. However, in addition to the disruption of power transmission, solar phenomena can interfere with utility communication systems. Utilities use many different types of communication media, some of which can be affected by various solar phenomena. These include wire-based facilities (metallic cables and power line carrier), radio systems (HF, VHF, UHF mobile radio, microwave networks, and satellite transmissions), and fiber optic systems. This paper reports that the solar flares and other solar phenomena can affect these media through different mechanisms: Radio communications can be disturbed by flare-induced changes in the ionispheric layer of the atmosphere; Cable communications can be disrupted by the flare-induced changes in the magnetosphere which surrounds the earth. These changes, in turn, induce currents in the power equipment that energizes long communications cables; Satellite communications can be disrupted by the flare-induced perturbations of satellite orbits and equipment

  8. Interstellar scintillation as the origin of the rapid radio variability of the quasar J1819+3845.

    Science.gov (United States)

    Dennett-Thorpe, J; de Bruyn, A G

    2002-01-03

    The liberation of gravitational energy as matter falls onto a supermassive black hole at the centre of a galaxy is believed to explain the high luminosity of quasars. The variability of this emission from quasars and other types of active galactic nuclei can provide information on the size of the emitting regions and the physical process of fuelling the black hole. Some active galactic nuclei are variable at optical (and shorter) wavelengths, and display radio outbursts over years and decades. These active galactic nuclei often also show faster intraday variability at radio wavelengths. The origin of this rapid variability has been extensively debated, but a correlation between optical and radio variations in some sources suggests that both are intrinsic. This would, however, require radiation brightness temperatures that seem physically implausible, leading to the suggestion that the rapid variations are caused by scattering of the emission by the interstellar medium inside our Galaxy. Here we show that the rapid variations in the extreme case of quasar J1819+3845 (ref. 10) indeed arise from interstellar scintillation. The transverse velocity of the scattering material reveals the presence of plasma with a surprisingly high velocity close to the Solar System.

  9. Suppression of Hydrogen Emission in an X-class White-light Solar Flare

    Energy Technology Data Exchange (ETDEWEB)

    Procházka, Ondrej; Milligan, Ryan O.; Mathioudakis, Mihalis [Astrophysics Research Centre, Queen’s University Belfast, Northern Ireland (United Kingdom); Allred, Joel C. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Kowalski, Adam F. [Department of Astrophysical and Planetary Sciences, University of Colorado Boulder, 2000 Colorado Avenue, Boulder, CO 80305 (United States); Kotrč, Pavel, E-mail: oprochazka01@qub.ac.uk [Astronomical Institute, The Czech Academy of Sciences, 25165 Ondřejov (Czech Republic)

    2017-03-01

    We present unique NUV observations of a well-observed X-class flare from NOAA 12087 obtained at the Ondřejov Observatory. The flare shows a strong white-light continuum but no detectable emission in the higher Balmer and Lyman lines. Reuven Ramaty High-Energy Solar Spectroscopic Imager and Fermi observations indicate an extremely hard X-ray spectrum and γ -ray emission. We use the RADYN radiative hydrodynamic code to perform two types of simulations: one where an energy of 3 × 10{sup 11} erg cm{sup −2} s{sup −1} is deposited by an electron beam with a spectral index of ≈3, and a second where the same energy is applied directly to the photosphere. The combination of observations and simulations allows us to conclude that the white-light emission and the suppression or complete lack of hydrogen emission lines is best explained by a model where the dominant energy deposition layer is located in the lower layers of the solar atmosphere, rather than the chromosphere.

  10. THE 1.6 μm NEAR-INFRARED NUCLEI OF 3C RADIO GALAXIES: JETS, THERMAL EMISSION, OR SCATTERED LIGHT?

    International Nuclear Information System (INIS)

    Baldi, Ranieri D.; Chiaberge, Marco; Sparks, William; Macchetto, F. Duccio; Capetti, Alessandro; O'Dea, Christopher P.; Axon, David J.; Baum, Stefi A.; Quillen, Alice C.

    2010-01-01

    Using HST NICMOS 2 observations we have measured 1.6 μm near-infrared nuclear luminosities of 100 3CR radio galaxies with z < 0.3, by modeling and subtracting the extended emission from the host galaxy. We performed a multiwavelength statistical analysis (including optical and radio data) of the properties of the nuclei following classification of the objects into FR I and FR II, and low-ionization galaxies (LIGs), high-ionization galaxies (HIGs), and broad-line objects (BLOs) using the radio morphology and optical spectra, respectively. The correlations among near-infrared, optical, and radio nuclear luminosity support the idea that the near-infrared nuclear emission of FR Is has a non-thermal origin. Despite the difference in radio morphology, the multiwavelength properties of FR II LIG nuclei are statistically indistinguishable from those of FR Is, an indication of a common structure of the central engine. All BLOs show an unresolved near-infrared nucleus and a large near-infrared excess with respect to FR II LIGs and FR Is of equal radio core luminosity. This requires the presence of an additional (and dominant) component other than the non-thermal light. Considering the shape of their spectral energy distribution, we ascribe the origin of their near-infrared light to hot circumnuclear dust. A near-infrared excess is also found in HIGs, but their nuclei are substantially fainter than those of BLO. This result indicates that substantial obscuration along the line of sight to the nuclei is still present at 1.6 μm. Nonetheless, HIG nuclei cannot simply be explained in terms of dust obscuration: a significant contribution from light reflected in a circumnuclear scattering region is needed to account for their multiwavelength properties.

  11. Radio continuum observations of NML Cygni

    International Nuclear Information System (INIS)

    Gregory, P.C.; Seaquist, E.R.

    1976-01-01

    An attempt to detect thermal radio emission from a compact circumstellar cloud about the infrared star NML Cyg has been carried out at three frequencies, 2.7, 8.1, and 10.5 GHz. Although positive results were obtained with single-dish observations at 10.5 GHz, the radio emission is not from a circumstellar cloud about NML Cyg. Instead it is postulated that the emission is from an H ii region with an angular extent of approx.2'. The red print of the Sky Survey shows a faint nebulosity of comparable angular size overlapping the star's position, lending support to this interpretation. The interferometer observations at 2.7 and 8.1 GHz provide an upper limit on the radio emission from any compact circumstellar cloud about NML Cyg of 2.8 mJy, which is well below the flux density expected for the absorbing cloud postulated by Davies et al. (1972)

  12. Constraining the neutrino emission of gravitationally lensed Flat-Spectrum Radio Quasars with ANTARES data

    Energy Technology Data Exchange (ETDEWEB)

    Adrián-Martínez, S.; Ardid, M.; Bou-Cabo, M. [Institut d' Investigació per a la Gestió Integrada de les Zones Costaneres (IGIC), Universitat Politècnica de València, C/ Paranimf 1, Gandia, 46730 Spain (Spain); Albert, A. [GRPHE - Institut universitaire de technologie de Colmar, 34 rue du Grillenbreit BP 50568, Colmar, 68008 France (France); André, M. [Technical University of Catalonia, Laboratory of Applied Bioacoustics, Rambla Exposició, Vilanova i la Geltrú, Barcelona, 08800 Spain (Spain); Anton, G. [Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen Centre for Astroparticle Physics, Erwin-Rommel-Str. 1, Erlangen, 91058 Germany (Germany); Aubert, J.-J.; Bertin, V.; Brunner, J.; Busto, J. [Aix Marseille Université, CNRS/IN2P3, CPPM UMR 7346, Marseille, 13288 France (France); Baret, B. [APC, AstroParticule et Cosmologie, Université Paris Diderot, CNRS/IN2P3, CEA/Irfu, Observatoire de Paris, Sorbonne Paris Cité, 10, rue Alice Domon et Léonie Duquet, Paris Cedex 13, F-75205 France (France); Barrios-Martí, J. [IFIC - Instituto de Física Corpuscular, Edificios Investigación de Paterna, CSIC - Universitat de València, Apdo de Correos 22085, Valencia, 46071 Spain (Spain); Basa, S. [LAM - Laboratoire d' Astrophysique de Marseille, Pôle de l' Étoile Site de Château-Gombert, rue Frédéric Joliot-Curie 38, Marseille Cedex 13, 13388 France (France); Biagi, S. [INFN - Sezione di Bologna, Viale Berti-Pichat 6/2, Bologna, 40127 Italy (Italy); Bogazzi, C.; Bormuth, R.; Bouwhuis, M.C.; Bruijn, R. [Nikhef, Science Park 105, Amsterdam, 1098XG The Netherlands (Netherlands); Capone, A. [INFN -Sezione di Roma, P.le Aldo Moro 2, Roma, 00185 Italy (Italy); Caramete, L., E-mail: antares.spokesperson@in2p3.fr [Institute for Space Sciences, Bucharest, Măgurele, R-77125 Romania (Romania); and others

    2014-11-01

    This paper proposes to exploit gravitational lensing effects to improve the sensitivity of neutrino telescopes to the intrinsic neutrino emission of distant blazar populations. This strategy is illustrated with a search for cosmic neutrinos in the direction of four distant and gravitationally lensed Flat-Spectrum Radio Quasars. The magnification factor is estimated for each system assuming a singular isothermal profile for the lens. Based on data collected from 2007 to 2012 by the ANTARES neutrino telescope, the strongest constraint is obtained from the lensed quasar B0218+357, providing a limit on the total neutrino luminosity of this source of 1.08× 10{sup 46} erg s{sup -1}. This limit is about one order of magnitude lower than those previously obtained in the ANTARES standard point source searches with non-lensed Flat-Spectrum Radio Quasars.

  13. Galactic radio astronomy

    CERN Document Server

    Sofue, Yoshiaki

    2017-01-01

    This book is a concise primer on galactic radio astronomy for undergraduate and graduate students, and provides wide coverage of galactic astronomy and astrophysics such as the physics of interstellar matter and the dynamics and structure of the Milky Way Galaxy and galaxies. Radio astronomy and its technological development have led to significant progress in galactic astronomy and contributed to understanding interstellar matter and galactic structures. The book begins with the fundamental physics of radio-wave radiation, i.e., black body radiation, thermal emission, synchrotron radiation, and HI and molecular line emissions. The author then gives overviews of ingredients of galactic physics, including interstellar matter such as the neutral (HI), molecular hydrogen, and ionized gases, as well as magnetic fields in galaxies. In addition, more advanced topics relevant to the Galaxy and galaxies are also contained here: star formation, supernova remnants, the Galactic Center and black holes, galactic dynamics...

  14. Field emission from ZnS nanorods synthesized by radio frequency magnetron sputtering technique

    Science.gov (United States)

    Ghosh, P. K.; Maiti, U. N.; Jana, S.; Chattopadhyay, K. K.

    2006-11-01

    The field emission property of zinc sulphides nanorods synthesized in the thin film form on Si substrates has been studied. It is seen that ZnS nanorod thin films showed good field emission properties with a low-macroscopic turn-on field (2.9-6.3 V/μm). ZnS nanorods were synthesized by using radio frequency magnetron sputtering of a polycrystalline prefabricated ZnS target at a relatively higher pressure (10 -1 mbar) and at a lower substrate temperature (233-273 K) without using any catalyst. Transmission electron microscopic image showed the formation of ZnS nanorods with high aspect ratio (>60). The field emission data were analysed using Fowler-Nordhiem theory and the nearly straight-line nature of the F-N plots confirmed cold field emission of electrons. It was also found that the turn-on field decreased with the decrease of nanorod's diameters. The optical properties of the ZnS nanorods were also studied. From the measurements of transmittance of the films deposited on glass substrates, the direct allowed bandgap values have been calculated and they were in the range 3.83-4.03 eV. The thickness of the films was ˜600 nm.

  15. FARIMA MODELING OF SOLAR FLARE ACTIVITY FROM EMPIRICAL TIME SERIES OF SOFT X-RAY SOLAR EMISSION

    International Nuclear Information System (INIS)

    Stanislavsky, A. A.; Burnecki, K.; Magdziarz, M.; Weron, A.; Weron, K.

    2009-01-01

    A time series of soft X-ray emission observed by the Geostationary Operational Environment Satellites from 1974 to 2007 is analyzed. We show that in the solar-maximum periods the energy distribution of soft X-ray solar flares for C, M, and X classes is well described by a fractional autoregressive integrated moving average model with Pareto noise. The model incorporates two effects detected in our empirical studies. One effect is a long-term dependence (long-term memory), and another corresponds to heavy-tailed distributions. The parameters of the model: self-similarity exponent H, tail index α, and memory parameter d are statistically stable enough during the periods 1977-1981, 1988-1992, 1999-2003. However, when the solar activity tends to minimum, the parameters vary. We discuss the possible causes of this evolution and suggest a statistically justified model for predicting the solar flare activity.

  16. The EVE plus RHESSI DEM for Solar Flares, and Implications for Residual Non-Thermal X-Ray Emission

    Science.gov (United States)

    McTiernan, James; Caspi, Amir; Warren, Harry

    2016-05-01

    Solar flare spectra are typically dominated by thermal emission in the soft X-ray energy range. The low energy extent of non-thermal emission can only be loosely quantified using currently available X-ray data. To address this issue, we combine observations from the EUV Variability Experiment (EVE) on-board the Solar Dynamics Observatory (SDO) with X-ray data from the Reuven Ramaty High Energy Spectroscopic Imager (RHESSI) to calculate the Differential Emission Measure (DEM) for solar flares. This improvement over the isothermal approximation helps to resolve the ambiguity in the range where the thermal and non-thermal components may have similar photon fluxes. This "crossover" range can extend up to 30 keV.Previous work (Caspi et.al. 2014ApJ...788L..31C) concentrated on obtaining DEM models that fit both instruments' observations well. For this current project we are interested in breaks and cutoffs in the "residual" non-thermal spectrum; i.e., the RHESSI spectrum that is left over after the DEM has accounted for the bulk of the soft X-ray emission. As in our earlier work, thermal emission is modeled using a DEM that is parametrized as multiple gaussians in temperature. Non-thermal emission is modeled as a photon spectrum obtained using a thin-target emission model ('thin2' from the SolarSoft Xray IDL package). Spectra for both instruments are fit simultaneously in a self-consistent manner.For this study, we have examined the DEM and non-thermal resuidual emission for a sample of relatively large (GOES M class and above) solar flares observed from 2011 to 2014. The results for the DEM and non-thermal parameters found using the combined EVE-RHESSI data are compared with those found using only RHESSI data.

  17. Orbiting low frequency array for radio astronomy

    NARCIS (Netherlands)

    Rajan, Rai Thilak; Rajan, Raj; Engelen, Steven; Bentum, Marinus Jan; Verhoeven, Chris

    2011-01-01

    Recently new and interesting science drivers have emerged for very low frequency radio astronomy from 0.3 MHz to 30 MHz. However Earth bound radio observations at these wavelengths are severely hampered by ionospheric distortions, man made interference, solar flares and even complete reflection

  18. Millimeter observations of radio-loud active galaxies

    NARCIS (Netherlands)

    van Bemmel, IM; Bertoldi, F

    In order to study the nature of the far-infrared emission observed in radio-loud active galaxies, we have obtained 1.2 mill observations with the IRAM 30 m telescope for a sample of eight radio-loud active galaxies. In all objects we find that the 1.2 mm emission is dominated by non-thermal

  19. HARD X-RAY AND MICROWAVE EMISSIONS FROM SOLAR FLARES WITH HARD SPECTRAL INDICES

    Energy Technology Data Exchange (ETDEWEB)

    Kawate, T. [Kwasan and Hida Observatory, Kitashirakawa-oiwakecho, Sakyo, Kyoto 606-8502 (Japan); Nishizuka, N. [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 229-8510 (Japan); Oi, A. [College of Science, Ibaraki University, Mito, Ibaraki 310-8512 (Japan); Ohyama, M. [Faculty of Education, Shiga University, 2-5-1 Hiratsu, Otsu, Shiga 1-1, Baba Hikone city, Siga 522-8522 (Japan); Nakajima, H., E-mail: kawate@kusastro.kyoto-u.ac.jp [Nobeyama Solar Radio Observatory, NAOJ, Nobeyama, Minamisaku, Nagano 384-1305 (Japan)

    2012-03-10

    We analyze 10 flare events that radiate intense hard X-ray (HXR) emission with significant photons over 300 keV to verify that the electrons that have a common origin of acceleration mechanism and energy power-law distribution with solar flares emit HXRs and microwaves. Most of these events have the following characteristics. HXRs emanate from the footpoints of flare loops, while microwaves emanate from the tops of flare loops. The time profiles of the microwave emission show delays of peak with respect to those of the corresponding HXR emission. The spectral indices of microwave emissions show gradual hardening in all events, while the spectral indices of the corresponding HXR emissions are roughly constant in most of the events, though rather rapid hardening is simultaneously observed in some for both indices during the onset time and the peak time. These characteristics suggest that the microwave emission emanates from the trapped electrons. Then, taking into account the role of the trapping of electrons for the microwave emission, we compare the observed microwave spectra with the model spectra calculated by a gyrosynchrotron code. As a result, we successfully reproduce the eight microwave spectra. From this result, we conclude that the electrons that have a common acceleration and a common energy distribution with solar flares emit both HXR and microwave emissions in the eight events, though microwave emission is contributed to by electrons with much higher energy than HXR emission.

  20. RADIO VARIABILITY IN SEYFERT NUCLEI

    International Nuclear Information System (INIS)

    Mundell, C. G.; Ferruit, P.; Nagar, N.; Wilson, A. S.

    2009-01-01

    Comparison of 8.4 GHz radio images of a sample of eleven, early-type Seyfert galaxies with previous observations reveals possible variation in the nuclear radio flux density in five of them over a seven year period. Four Seyferts (NGC 2110, NGC 3081, MCG -6-30-15, and NGC 5273) show a decline in their 8.4 GHz nuclear flux density between 1992 and 1999, while one (NGC 4117) shows an increase; the flux densities of the remaining six Seyferts (Mrk 607, NGC 1386, Mrk 620, NGC 3516, NGC 4968, and NGC 7465) have remained constant over this period. New images of MCG -5-23-16 are also presented. We find no correlation between radio variability and nuclear radio luminosity or Seyfert nuclear type, although the sample is small and dominated by type 2 Seyferts. Instead, a possible correlation between the presence of nuclear radio variability and the absence of hundred parsec-scale radio emission is seen, with four out of five marginally resolved or unresolved nuclei showing a change in nuclear flux density, while five out of six extended sources show no nuclear variability despite having unresolved nuclear sources. NGC 2110 is the only source in our sample with significant extended radio structure and strong nuclear variability (∼38% decline in nuclear flux density over seven years). The observed nuclear flux variability indicates significant changes are likely to have occurred in the structure of the nucleus on scales smaller than the VLA beam size (i.e., within the central ∼0.''1 (15 pc)), between the two epochs, possibly due to the appearance and fading of new components or shocks in the jet, consistent with previous detection of subparsec-scale nuclear structure in this Seyfert. Our results suggest that all Seyferts may exhibit variation in their nuclear radio flux density at 8.4 GHz, but that variability is more easily recognized in compact sources in which emission from the variable nucleus is not diluted by unresolved, constant flux density radio jet emission

  1. The Analysis of the Possible Thermal Emission at Radio Frequencies from an Evolved Supernova Remnant HB 3 (G132.7+1.3: Revisited

    Directory of Open Access Journals (Sweden)

    Onić, D.

    2008-12-01

    Full Text Available It has recently been reported that some of the flux density values for an evolved supernova remnant (SNR HB 3 (G132.7$+$1.3 are not accurate enough. In this work we therefore revised the analysis of the possible thermal emission at radio frequencies from this SNR using the recently published, corrected flux density values. A model including the sum of non-thermal (purely synchrotron and thermal (bremsstrahlung components is applied to fit the integrated radio spectrum of this SNR. The contribution of thermal component to the total volume emissivity at $1 mathrm{GHz}$ is estimated to be $approx37 \\%$. The ambient density is also estimated to be $napprox 9 mathrm{cm}^{-3}$ for $mathrm{T}=10^{4} mathrm{K}$. Again we obtained a relatively significant presence of thermal emission at radio frequencies from the SNR, which can support interaction between SNR HB 3 and adjacent molecular cloud associated with the mbox{H,{sc ii}} region W3. Our model estimates for thermal component contribution to total volume emissivity at $1 mathrm{GHz}$ and ambient density are similar to those obtained earlier ($approx40 \\%$, $approx10 mathrm{cm^{-3}}$. It is thus obvious that the corrected flux density values do not affect the basic conclusions.

  2. Radio continuum, far infrared and star formation

    International Nuclear Information System (INIS)

    Wielebinski, R.; Wunderlich, E.; Klein, U.; Hummel, E.

    1987-01-01

    A very tight correlation was found between the radio emission and the far infrared emission from galaxies. This has been found for various samples of galaxies and is explained in terms of recent star formation. The tight correlation would imply that the total radio emission is a good tracer of star formation. The correlation between the radio power at 5 GHz and the far infrared luminosity is shown. The galaxies are of various morphological types and were selected from the various IRAS circulars, hence the sample is an infrared selected sample. The far infrared luminosities were corrected for the dust temperature. This is significant because it decreases the dispersion in the correlation

  3. Modelling blazar flaring using a time-dependent fluid jet emission model - an explanation for orphan flares and radio lags

    Science.gov (United States)

    Potter, William J.

    2018-01-01

    Blazar jets are renowned for their rapid violent variability and multiwavelength flares, however, the physical processes responsible for these flares are not well understood. In this paper, we develop a time-dependent inhomogeneous fluid jet emission model for blazars. We model optically thick radio flares for the first time and show that they are delayed with respect to the prompt optically thin emission by ∼months to decades, with a lag that increases with the jet power and observed wavelength. This lag is caused by a combination of the travel time of the flaring plasma to the optically thin radio emitting sections of the jet and the slow rise time of the radio flare. We predict two types of flares: symmetric flares - with the same rise and decay time, which occur for flares whose duration is shorter than both the radiative lifetime and the geometric path-length delay time-scale; extended flares - whose luminosity tracks the power of particle acceleration in the flare, which occur for flares with a duration longer than both the radiative lifetime and geometric delay. Our model naturally produces orphan X-ray and γ-ray flares. These are caused by flares that are only observable above the quiescent jet emission in a narrow band of frequencies. Our model is able to successfully fit to the observed multiwavelength flaring spectra and light curves of PKS1502+106 across all wavelengths, using a transient flaring front located within the broad-line region.

  4. New solar broad-band hard X-ray spectrometer: first results

    Czech Academy of Sciences Publication Activity Database

    Fárník, František; Garcia, H.; Karlický, Marian

    2001-01-01

    Roč. 201, č. 2 (2001), s. 357-372 ISSN 0038-0938 R&D Projects: GA ČR GA205/00/1726; GA AV ČR IAA3003003; GA AV ČR IBS1003006; GA AV ČR KSK2043105; GA AV ČR IAA303108 Institutional research plan: CEZ:AV0Z1003909 Keywords : X-ray * spectrometer * solar flare * radio emission Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 2.103, year: 2001

  5. Plasma Diagnostics of the Interstellar Medium with Radio Astronomy

    OpenAIRE

    Haverkorn, Marijke; Spangler, Steven R.

    2013-01-01

    We discuss the degree to which radio propagation measurements diagnose conditions in the ionized gas of the interstellar medium (ISM). The "signal generators" of the radio waves of interest are extragalactic radio sources (quasars and radio galaxies), as well as Galactic sources, primarily pulsars. The polarized synchrotron radiation of the Galactic non-thermal radiation also serves to probe the ISM, including space between the emitting regions and the solar system. Radio propagation measurem...

  6. Full-energy-chain analysis of greenhouse gas emissions for solar thermal electric power generation systems

    International Nuclear Information System (INIS)

    Norton, B.; Lawson, W.R.

    1997-01-01

    Technical attributes and environmental impacts of solar thermal options for centralized electricity generation are discussed. In particular, the full-energy-chain, including embodied energy and energy production, is considered in relation to greenhouse gas emission arising from solar thermal electricity generation. Central receiver, parabolic dish, parabolic trough and solar pond systems are considered. (author)

  7. Radio and γ -Ray Variability in the BL Lac PKS 0219−164: Detection of Quasi-periodic Oscillations in the Radio Light Curve