WorldWideScience

Sample records for radio brightness temperature

  1. GYRO-ORBIT SIZE, BRIGHTNESS TEMPERATURE LIMIT, AND IMPLAUSIBILITY OF COHERENT EMISSION BY BUNCHING IN SYNCHROTRON RADIO SOURCES

    International Nuclear Information System (INIS)

    Singal, Ashok K.

    2012-01-01

    We show that an upper limit on the maximum brightness temperature for a self-absorbed incoherent synchrotron radio source is obtained from the size of its gyro orbits, which in turn must lie well within the confines of the total source extent. These temperature limits are obtained without recourse to inverse Compton effects or the condition of equipartition of energy between magnetic fields and relativistic particles. For radio variables, the intra-day variability implies brightness temperatures ∼10 19 K in the comoving rest frame of the source. This, if interpreted purely due to an incoherent synchrotron emission, would imply gyroradii >10 28 cm, the size of the universe, while from the causality arguments the inferred maximum size of the source in such a case is ∼ 15 cm. Such high brightness temperatures are sometimes modeled in the literature as some coherent emission process where bunches of non-thermal particles are somehow formed that radiate in phase. We show that, unlike in the case of curvature radiation models proposed in pulsars, in the synchrotron radiation mechanism the oppositely charged particles would contribute together to the coherent phenomenon without the need to form separate bunches of the opposite charges. At the same time we show that bunches would disperse over dimensions larger than a wavelength in time shorter than the gyro orbital period (∼< 0.1 s). Therefore, a coherent emission by bunches cannot be a plausible explanation of the high brightness temperatures inferred in extragalactic radio sources showing variability over a few hours or longer.

  2. The high brightness temperature of B0529+483 revealed by RadioAstron and implications for interstellar scattering

    Science.gov (United States)

    Pilipenko, S. V.; Kovalev, Y. Y.; Andrianov, A. S.; Bach, U.; Buttaccio, S.; Cassaro, P.; Cimò, G.; Edwards, P. G.; Gawroński, M. P.; Gurvits, L. I.; Hovatta, T.; Jauncey, D. L.; Johnson, M. D.; Kovalev, Yu A.; Kutkin, A. M.; Lisakov, M. M.; Melnikov, A. E.; Orlati, A.; Rudnitskiy, A. G.; Sokolovsky, K. V.; Stanghellini, C.; de Vicente, P.; Voitsik, P. A.; Wolak, P.; Zhekanis, G. V.

    2018-03-01

    The high brightness temperatures, Tb ≳ 1013 K, detected in several active galactic nuclei by RadioAstron space VLBI observations challenge theoretical limits. Refractive scattering by the interstellar medium may affect such measurements. We quantify the scattering properties and the sub-mas scale source parameters for the quasar B0529+483. Using RadioAstron correlated flux density measurements at 1.7, 4.8, and 22 GHz on projected baselines up to 240 000 km we find two characteristic angular scales in the quasar core, about 100 and 10 μas. Some indications of scattering substructure are found. Very high brightness temperatures, Tb ≥ 1013 K, are estimated at 4.8 and 22 GHz even taking into account the refractive scattering. Our findings suggest a clear dominance of the particle energy density over the magnetic field energy density in the core of this quasar.

  3. The quiet Sun brightness temperature at 408 MHz

    International Nuclear Information System (INIS)

    Avignon, Y.; Lantos, P.; Palagi, F.; Patriarchi, P.

    1975-01-01

    The flux of the radio quiet Sun and the brightness temperature at 408 MHz (73cm) are derived from measurements with the E-W Nancay interferometer and the E-W arm of the Medicina North Cross. It is shown that the lowest envelopes, which defined the radio quiet Sun, correspond to transits of extended coronal holes across the disk of the Sun. (Auth.)

  4. Brightness distribution data on 2918 radio sources at 365 MHz

    International Nuclear Information System (INIS)

    Cotton, W.D.; Owen, F.N.; Ghigo, F.D.

    1975-01-01

    This paper is the second in a series describing the results of a program attempting to fit models of the brightness distribution to radio sources observed at 365 MHz with the Bandwidth Synthesis Interferometer (BSI) operated by the University of Texas Radio Astronomy Observatory. Results for a further 2918 radio sources are given. An unresolved model and three symmetric extended models with angular sizes in the range 10--70 arcsec were attempted for each radio source. In addition, for 348 sources for which other observations of brightness distribution are published, the reference to the observations and a brief description are included

  5. H2O Megamasers toward Radio-bright Seyfert 2 Nuclei

    Science.gov (United States)

    Zhang, J. S.; Liu, Z. W.; Henkel, C.; Wang, J. Z.; Coldwell, G. V.

    2017-02-01

    Using the Effelsberg-100 m telescope, we perform a successful pilot survey on H2O maser emission toward a small sample of radio-bright Seyfert 2 galaxies with a redshift larger than 0.04. The targets were selected from a large Seyfert 2 sample derived from the spectroscopic Sloan Digital Sky Survey Data Release 7 (SDSS-DR7). One source, SDSS J102802.9+104630.4 (z ˜ 0.0448), was detected four times during our observations, with a typical maser flux density of ˜30 mJy and a corresponding (very large) luminosity of ˜1135 L ⊙. The successful detection of this radio-bright Seyfert 2 and an additional tentative detection support our previous statistical results that H2O megamasers tend to arise from Seyfert 2 galaxies with large radio luminosity. The finding provides further motivation for an upcoming larger H2O megamaser survey toward Seyfert 2s with particularly radio-bright nuclei with the basic goal to improve our understanding of the nuclear environment of active megamaser host galaxies. Based on observations with the 100 m telescope of the MPIfR (Max-Planck-Institut für Radioastronomie) at Effelsberg.

  6. H{sub 2}O Megamasers toward Radio-bright Seyfert 2 Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, J. S.; Liu, Z. W. [Center for Astrophysics, Guangzhou University, Guangzhou, 510006 (China); Henkel, C. [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Wang, J. Z. [Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030 (China); Coldwell, G. V., E-mail: jszhang@gzhu.edu.cn [FCEFyN-UNSJ-CONICET, San Juan (Argentina)

    2017-02-20

    Using the Effelsberg-100 m telescope, we perform a successful pilot survey on H{sub 2}O maser emission toward a small sample of radio-bright Seyfert 2 galaxies with a redshift larger than 0.04. The targets were selected from a large Seyfert 2 sample derived from the spectroscopic Sloan Digital Sky Survey Data Release 7 (SDSS-DR7). One source, SDSS J102802.9+104630.4 ( z ∼ 0.0448), was detected four times during our observations, with a typical maser flux density of ∼30 mJy and a corresponding (very large) luminosity of ∼1135 L {sub ⊙}. The successful detection of this radio-bright Seyfert 2 and an additional tentative detection support our previous statistical results that H{sub 2}O megamasers tend to arise from Seyfert 2 galaxies with large radio luminosity. The finding provides further motivation for an upcoming larger H{sub 2}O megamaser survey toward Seyfert 2s with particularly radio-bright nuclei with the basic goal to improve our understanding of the nuclear environment of active megamaser host galaxies.

  7. AXIAL RATIO OF EDGE-ON SPIRAL GALAXIES AS A TEST FOR BRIGHT RADIO HALOS

    International Nuclear Information System (INIS)

    Singal, J.; Jones, E.; Dunlap, H.; Kogut, A.

    2015-01-01

    We use surface brightness contour maps of nearby edge-on spiral galaxies to determine whether extended bright radio halos are common. In particular, we test a recent model of the spatial structure of the diffuse radio continuum by Subrahmanyan and Cowsik which posits that a substantial fraction of the observed high-latitude surface brightness originates from an extended Galactic halo of uniform emissivity. Measurements of the axial ratio of emission contours within a sample of normal spiral galaxies at 1500 MHz and below show no evidence for such a bright, extended radio halo. Either the Galaxy is atypical compared to nearby quiescent spirals or the bulk of the observed high-latitude emission does not originate from this type of extended halo. (letters)

  8. RADIOASTRON OBSERVATIONS OF THE QUASAR 3C273: A CHALLENGE TO THE BRIGHTNESS TEMPERATURE LIMIT

    Energy Technology Data Exchange (ETDEWEB)

    Kovalev, Y. Y.; Kardashev, N. S.; Voitsik, P. A.; Kovalev, Yu. A.; Lisakov, M. M.; Sokolovsky, K. V. [Astro Space Center of Lebedev Physical Institute, Profsoyuznaya 84/32, 117997 Moscow (Russian Federation); Kellermann, K. I. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903-2475 (United States); Lobanov, A. P.; Zensus, J. A.; Anderson, J. M.; Bach, U.; Kraus, A. [Max-Planck-Institute for Radio Astronomy, Auf dem Hügel 69, D-53121 (Germany); Johnson, M. D. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Gurvits, L. I. [Joint Institute for VLBI ERIC, P.O. Box 2, 7990 AA Dwingeloo (Netherlands); Jauncey, D. L. [CSIRO Astronomy and Space Sciences, Epping, NSW 1710 (Australia); Ghigo, F. [National Radio Astronomy Observatory, Rt. 28/92, Green Bank, WV 24944-0002 (United States); Ghosh, T.; Salter, C. J. [Arecibo Observatory, NAIC, HC3 Box 53995, Arecibo, Puerto Rico, PR 00612 (United States); Petrov, L. Yu. [Astrogeo Center, 7312 Sportsman Drive, Falls Church, VA 22043 (United States); Romney, J. D. [National Radio Astronomy Observatory, P.O. Box O, 1003 Lopezville Road, Socorro, NM 87801-0387 (United States)

    2016-03-20

    Inverse Compton cooling limits the brightness temperature of the radiating plasma to a maximum of 10{sup 11.5} K. Relativistic boosting can increase its observed value, but apparent brightness temperatures much in excess of 10{sup 13} K are inaccessible using ground-based very long baseline interferometry (VLBI) at any wavelength. We present observations of the quasar 3C 273, made with the space VLBI mission RadioAstron on baselines up to 171,000 km, which directly reveal the presence of angular structure as small as 26 μas (2.7 light months) and brightness temperature in excess of 10{sup 13} K. These measurements challenge our understanding of the non-thermal continuum emission in the vicinity of supermassive black holes and require a much higher Doppler factor than what is determined from jet apparent kinematics.

  9. SOLAR CYCLE VARIATIONS OF THE RADIO BRIGHTNESS OF THE SOLAR POLAR REGIONS AS OBSERVED BY THE NOBEYAMA RADIOHELIOGRAPH

    Energy Technology Data Exchange (ETDEWEB)

    Nitta, Nariaki V.; DeRosa, Marc L. [Lockheed Martin Advanced Technology Center, Dept/A021S, B/252, 3251 Hanover Street, Palo Alto, CA 94304 (United States); Sun, Xudong; Hoeksema, J. Todd [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 (United States)

    2014-01-10

    We have analyzed daily microwave images of the Sun at 17 GHz obtained with the Nobeyama Radioheliograph (NoRH) in order to study the solar cycle variations of the enhanced brightness in the polar regions. Unlike in previous works, the averaged brightness of the polar regions is obtained from individual images rather than from synoptic maps. We confirm that the brightness is anti-correlated with the solar cycle and that it has generally declined since solar cycle 22. Including images up to 2013 October, we find that the 17 GHz brightness temperature of the south polar region has decreased noticeably since 2012. This coincides with a significant decrease in the average magnetic field strength around the south pole, signaling the arrival of solar maximum conditions in the southern hemisphere more than a year after the northern hemisphere. We do not attribute the enhanced brightness of the polar regions at 17 GHz to the bright compact sources that occasionally appear in synthesized NoRH images. This is because they have no correspondence with small-scale bright regions in images from the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory with a broad temperature coverage. Higher-quality radio images are needed to understand the relationship between microwave brightness and magnetic field strength in the polar regions.

  10. Brightness temperature of the ''quiet'' Sun in the millimeter wavelength range

    International Nuclear Information System (INIS)

    Pelyushenko, S.A.

    1982-01-01

    Results are presented of recalibration of the data available for measurements of the solar brightness temperature Tsub(s) made by comparison with the lunar radio emission. A spectrum has been obtained of the ''quiet'' Sun radio emission in the range of 1-20 mm. The mean square spread of data does not exceed +-(from 3 to 4)%. The ''quiet'' Sun spectrum has a form of: Tsub(c)=(6150+-70)lambdasup(01+-0.01)[mm]K in the wavelength interval of lambda=(1-6) mm and Tsub(c)=(3470+-80)lambdasup(0.42+-0.01) [mm]K in the wavelength interval of lambda=(7-20) mm on approximation of recalibrated values of Tsub(c) with a linear dependence using the mean-square-root method. The obtained spectral characteristics of the ''quiet'' Sun radio frequency emission in the mullimeter wavelength range testify on the spectrum flatteming in the (1-6) mm wavelength range

  11. Direct measurements of the 160.01-min oscillation in the solar radio brightness

    International Nuclear Information System (INIS)

    Efanov, V.A.; Moiseev, I.G.; Nesterov, N.S.

    1983-01-01

    Direct (nondifferential) brightness measurements of the quiet sun at lambda = 8.2 and 13.5 mm, corrected by the Bouguer law for absorption in the terrestrial atmosphere, confirm the presence of a 160.009 +- 0.002 min periodicity. At the two wavelengths the relative amplitudes are roughly-equal0.6 x 10 -3 , 1 x 10 -3 . Maximum radio brightness occurs at the phase when optical data indicate the photosphere radius is largest

  12. Intrinsic brightness temperatures of blazar jets at 15 GHz

    Directory of Open Access Journals (Sweden)

    Hovatta Talvikki

    2013-12-01

    Full Text Available We have developed a new Bayesian Markov Chain Monte Carlo method to deconvolve light curves of blazars into individual flares, including proper estimation of the fit errors. We use the method to fit 15GHzlight curves obtained within the OVRO 40-m blazar monitoring program where a large number of AGN have been monitored since 2008 in support of the Fermi Gamma-Ray Space Telescope mission. The time scales obtained from the fitted models are used to calculate the variability brightness temperature of the sources. Additionally, we have calculated brightness temperatures of a sample of these objects using Very Long Baseline Array data from the MOJAVE survey. Combining these two data sets enables us to study the intrinsic brightness temperature distribution in these blazars at 15 GHz. Our preliminary results indicate that the mean intrinsic brightness temperature in a sample of 14 sources is near the equipartition brightness temperature of ~ 1011K.

  13. A connection between the X-ray spectral branches and the radio brightness in GX17+2

    International Nuclear Information System (INIS)

    Penninx, Wim; Lewin, W.H.G.; Paradijs, J. van; Klis, M. van der

    1988-01-01

    GX17 + 2(4U 1813 - 14) is a bright X-ray binary in which matter is accreting on to a neutron star from a nearby companion. X-ray bursts are sometimes observed, as well as quasiperiodic oscillations in the X-ray flux. The frequencies of the quasiperiodic oscillations depend on the spectral state of the source, which manifests itself as three distinct spectral 'branches' in an X-ray colour-colour diagram. GX17 + 2 is also a variable radio source; there is no believable optical counterpart. We report here on simultaneous X-ray and radio observations which showed a connection between the spectral branches and the radio brightness. The 6-cm and 20-cm flux density increased by factors of 30±5 and 40± 10, respectively, as the X-ray state changed from the so-called 'flaring branch' to the 'horizontal branch'. (author)

  14. Search for the sources of the solar wind in the 9.1 cm brightness temperature

    International Nuclear Information System (INIS)

    George, R.G.

    1975-01-01

    The sources of solar wind streams have been the object of intensive research for many years, but the various ideas of where and how streams originate on the sun are still incomplete and contradictory. The present study is an attempt to find the solar wind sources by mathematically approximating the 9.1 cm brightness temperature which would be expected at the foot of spacecraft-measured solar wind streams and by then comparing it with actual radio brightness temperature measurements. Several significant results were found from an analysis of the correlation results. Most plasma emanating from the sun was found to come from high solar latitudes and to deviate significantly from the normally expected east-west path in the low corona. Magnetic channelng causes correlation studies to fail when the sun's magnetic configuration is unstable. The travel time of the plasma from the sun's 9.1 cm emission level to the earth is often more than a month

  15. A comprehensive radio view of the extremely bright gamma-ray burst 130427A

    NARCIS (Netherlands)

    van der Horst, A.J.; Paragi, Z.; de Bruyn, A.G.; Granot, J.; Kouveliotou, C.; Wiersema, K.; Starling, R.L.C.; Curran, P.A.; Wijers, R.A.M.J.; Rowlinson, A.; Anderson, G.A.; Fender, R.P.; Yang, J.; Strom, R.G.

    2014-01-01

    GRB 130427A was extremely bright as a result of occurring at low redshift whilst the energetics were more typical of high-redshift gamma-ray bursts (GRBs). We collected well-sampled light curves at 1.4 and 4.8 GHz of GRB 130427A with the Westerbork Synthesis Radio Telescope (WSRT); and we obtained

  16. A comprehensive radio view of the extremely bright gamma-ray burst 130427A

    NARCIS (Netherlands)

    van der Horst, A. J.; Paragi, Z.; de Bruyn, A. G.; Granot, J.; Kouveliotou, C.; Wiersema, K.; Starling, R. L. C.; Curran, P. A.; Wijers, R. A. M. J.; Rowlinson, A.; Anderson, G. A.; Fender, R. P.; Yang, J.; Strom, R. G.

    GRB 130427A was extremely bright as a result of occurring at low redshift whilst the energetics were more typical of high-redshift gamma-ray bursts (GRBs). We collected well-sampled light curves at 1.4 and 4.8 GHz of GRB 130427A with the Westerbork Synthesis Radio Telescope (WSRT); and we obtained

  17. Measuring brightness temperature distributions of plasma bunches

    International Nuclear Information System (INIS)

    Kirko, V.I.; Stadnichenko, I.A.

    1981-01-01

    The possibility of restoration of brightness temperature distribution along plasma jet on the base of a simple ultra high- speed photography and subsequent photometric treatment is shown. The developed technique has been applied for finding spectral radiation intensity and brightness temperature of plasma jets of a tubular gas-cumulative charge and explosive plasma compressor. The problem of shock wave front has been successfully solved and thus distribution of above parameters beginning from the region preceeding the shock wave has been obtained [ru

  18. Robust fitting of diurnal brightness temperature cycle

    CSIR Research Space (South Africa)

    Udahemuka, G

    2007-11-01

    Full Text Available for a pixel concerned. Robust fitting of observed Diurnal Temperature Cycle (DTC) taken over a day of a given pixel without cloud cover and other abnormally conditions such as fire can give a data based brightness temperature model for a given pixel...

  19. Analytically derived conversion of spectral band radiance to brightness temperature

    Energy Technology Data Exchange (ETDEWEB)

    Berk, Alexander [Spectral Sciences, Inc., 44th Avenue, Burlington, MA 01803 (United States)], E-mail: lex@spectral.com

    2008-05-15

    Simple analytic expressions for brightness temperature have been derived in terms of band response function spectral moments. Accuracy measures are also derived. Application of these formulas to GOES-12 Sounder thermal infrared bands produces brightness temperature residuals between -5.0 and 2.5 mK for a 150-400 K temperature range. The magnitude of residuals for the five ASTER Radiometer thermal infrared bands over the same temperature range is less than 0.22 mK.

  20. A new perspective on the infrared brightness temperature ...

    Indian Academy of Sciences (India)

    CEAWMT), ... temperatures clearly discriminates the cloud pixels of deep convective and ... utilized in the modelling of the histogram of infrared brightness temperature of deep convective and ..... Henderson-Sellers A 1978 Surface type and its effect.

  1. Giant Low Surface Brightness Galaxies

    Science.gov (United States)

    Mishra, Alka; Kantharia, Nimisha G.; Das, Mousumi

    2018-04-01

    In this paper, we present radio observations of the giant low surface brightness (LSB) galaxies made using the Giant Metrewave Radio Telescope (GMRT). LSB galaxies are generally large, dark matter dominated spirals that have low star formation efficiencies and large HI gas disks. Their properties suggest that they are less evolved compared to high surface brightness galaxies. We present GMRT emission maps of LSB galaxies with an optically-identified active nucleus. Using our radio data and archival near-infrared (2MASS) and near-ultraviolet (GALEX) data, we studied morphology and star formation efficiencies in these galaxies. All the galaxies show radio continuum emission mostly associated with the centre of the galaxy.

  2. Near-Real-Time DMSP SSM/I-SSMIS Daily Polar Gridded Brightness Temperatures

    Data.gov (United States)

    National Aeronautics and Space Administration — The Near-Real-Time DMSP SSM/I-SSMIS Daily Polar Gridded Brightness Temperature product provides near-real-time brightness temperatures for both the Northern and...

  3. An Octave/MATLAB® Interface for Rapid Processing of SMOS L1C Full Polarization Brightness Temperature

    Directory of Open Access Journals (Sweden)

    Pablo Saavedra

    2018-01-01

    Full Text Available A tool to process the SMOS microwave radiometer level 1C polarized brightness temperatures data product has been developed. The SMOS L1C science product contains the dual and full (Stokes vector polarization brightness temperatures at L-band for multiple incidence angles. In order to use the L1C product, the measurements are processed by a number of procedures including radio frequency interference (RFI filters, conversion of the polarization plane from the antenna (X- & Y-pol to the Earth’s surface frame (H- & V-pol, and averaging to fixed classes of incidence angles. The software allows for the processing of data for the entire daily half-orbit product, or for specific regions of interest, and can be adapted as a bash-job to process a large number of data files e.g. for time series analysis. This paper describes the tool which was developed in GNU C++ with the capability to be compiled as MEX function to work with Octave or MATLAB® without any source code adjustment. Funding statement: 'Deutsche Forschungsgemeinschaft' DFG under grant number SI 606/24-1.

  4. Radio Thermal Emission from Pluto and Charon during the New Horizons Encounter

    Science.gov (United States)

    Bird, Michael; Linscott, Ivan; Hinson, David; Tyler, G. L.; Strobel, Darrell F.; New Horizons Science Team

    2017-10-01

    As part of the New Horizons Radio-Science Experiment REX, radio thermal emission from Pluto and Charon (wavelength: 4.2 cm) was observed during the encounter on 14 July 2015. The primary REX measurement, a determination of the atmospheric height profile from the surface up to about 100 km, was conducted during an uplink radio occultation at both ingress and egress (Hinson et al., Icarus 290, 96-111, 2017). During the interval between ingress and egress, when the Earth and the REX uplink signals were occulted by the Pluto disk, the spacecraft antenna continued to point toward Earth and thus scanned diametrically across the Pluto nightside. The average diameter of the HGA 3 dB beam was ≈1100 km at the surface during this opportunity, thereby providing crudely resolved measurements of the radio brightness temperature across Pluto. The best resolution for the REX radiometry observations occurred shortly after closest approach, when the HGA was scanned twice across Pluto. These observations will be reported elsewhere (Linscott et al., Icarus, submitted, 2017). In addition to the resolved observations, full disk brightness temperature measurements of both bodies were performed during the approach (dayside) and departure (nightside) phases of the encounter. We present the results of these observations and provide a preliminary interpretation of the measured brightness temperatures.

  5. The relationship between brightness temperature and soil moisture. Selection of frequency range for microwave remote sensing

    International Nuclear Information System (INIS)

    Rao, K.S.; Chandra, G.; Rao, P.V.N.

    1987-01-01

    The analysis of brightness temperature data acquired from field and aircraft experiments demonstrates a linear relationship between soil moisture and brightness temperature. However, the analysis of brightness temperature data acquired by the Skylab radiometer demonstrates a non-linear relationship between soil moisture and brightness temperature. In view of the above and also because of recent theoretical developments for the calculation of the dielectric constant and brightness temperature under varying soil moisture profile conditions, an attempt is made to study the theoretical relationship between brightness temperature and soil moisture as a function of frequency. Through the above analysis, the appropriate microwave frequency range for soil moisture studies is recommended

  6. VERY LONG BASELINE ARRAY IMAGING OF PARSEC-SCALE RADIO EMISSIONS IN NEARBY RADIO-QUIET NARROW-LINE SEYFERT 1 GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Doi, Akihiro [The Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuou-ku, Sagamihara, Kanagawa 252-5210 (Japan); Asada, Keiichi; Inoue, Makoto [Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 10617, Taiwan (China); Fujisawa, Kenta [The Research Institute of Time Studies, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, Yamaguchi 753-8511 (Japan); Nagai, Hiroshi; Hagiwara, Yoshiaki [National Astronomical Observatory, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Wajima, Kiyoaki, E-mail: akihiro.doi@vsop.isas.jaxa.jp [Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai 200030 (China)

    2013-03-01

    We conducted Very Long Baseline Array (VLBA) observations of seven nearby narrow-line Seyfert 1 (NLS1) galaxies at 1.7 GHz ({lambda}18 cm) with milliarcsecond resolution. This is the first systematic very long baseline interferometry study focusing on the central parsec-scale regions of radio-quiet NLS1s. Five of the seven were detected at a brightness temperature of {approx}> 5 Multiplication-Sign 10{sup 6} K and contain radio cores with high brightness temperatures of >6 Multiplication-Sign 10{sup 7} K, indicating a nonthermal process driven by jet-producing central engines as in radio-loud NLS1s and other active galactic nucleus classes. VLBA images of MRK 1239, MRK 705, and MRK 766 exhibit parsec-scale jets with clear linear structures. A large portion of the radio power comes from diffuse emission components that are distributed within the nuclear regions ({approx}< 300 pc), which is a common characteristic throughout the observed NLS1s. Jet kinetic powers limited by the Eddington limit may be insufficient to allow the jets to escape to kiloparsec scales for these radio-quiet NLS1s with low-mass black holes of {approx}< 10{sup 7} M {sub Sun }.

  7. EUV and radio spectrum of coronal holes

    Energy Technology Data Exchange (ETDEWEB)

    Chiuderi Drago, F [Osservatorio Astrofisico di Arcetri, Florence (Italy)

    1980-03-01

    From the intensity of 19 EUV lines whose formation temperature anti T ranges from 3 x 10/sup 4/ to 1.4 x 10/sup 6/, two different models of the transition region and corona for the cell-centre and the network are derived. It is shown that both these models give radio brightness temperatures systematically higher than the observed ones. An agreement with radio data can be found only with lines formed at low temperature (anti T < 8.5 x 10/sup 5/) by decreasing the coronal temperature and the emission measure. The possibility of resolving the discrepancy by using different ion abundances has also been investigated with negative results.

  8. High-brightness rf linear accelerators

    International Nuclear Information System (INIS)

    Jameson, R.A.

    1986-01-01

    The issue of high brightness and its ramifications in linacs driven by radio-frequency fields is discussed. A history of the RF linacs is reviewed briefly. Some current applications are then examined that are driving progress in RF linacs. The physics affecting the brightness of RF linacs is then discussed, followed by the economic feasibility of higher brightness machines

  9. Exposure to bright light for several hours during the daytime lowers tympanic temperature

    Science.gov (United States)

    Aizawa, Seika; Tokura, H.

    The present study investigates the effect on thympanic temperature of exposure to different light intensities for several hours during the daytime. Nine healthy young adult volunteers (two male, seven female) were exposed to bright light of 4000 lx or dim light of 100 lx during the daytime from 0930 to 1800 hours; the light condition was then kept at 100 lx for a further hour. Tympanic temperature was measured continuously at a neutral condition (28° C, 60% relative humidity) from 1000 to 1800 hours. Urinary samples were collected from 1100 to 1900 hours every 2 h, and melatonin excretion rate was measured by enzyme immunoassay. Of nine subjects, six showed clearly lower tympanic temperatures in the bright compared with the dim condition from 1400 to 1800 hours. Average tympanic temperatures were significantly lower in the bright than in the dim condition from 1645 to 1800 hours. Melatonin excretion rate tended to be higher in the bright than in the dim condition. It was concluded that exposure to bright light of 4000 lx during the daytime for several hours could reduce tympanic temperature, compared with that measured in dim light of 100 lx.

  10. Exposure to bright light for several hours during the daytime lowers tympanic temperature.

    Science.gov (United States)

    Aizawa, S; Tokura, H

    1997-11-01

    The present study investigates the effect on thympanic temperature of exposure to different light intensities for several hours during the daytime. Nine healthy young adult volunteers (two male, seven female) were exposed to bright light of 4000 lx or dim light of 100 lx during the daytime from 0930 to 1800 hours; the light condition was then kept at 100 lx for a further hour. Tympanic temperature was measured continuously at a neutral condition (28 degrees C, 60% relative humidity) from 1000 to 1800 hours. Urinary samples were collected from 1100 to 1900 hours every 2 h, and melatonin excretion rate was measured by enzyme immunoassay. Of nine subjects, six showed clearly lower tympanic temperatures in the bright compared with the dim condition from 1400 to 1800 hours. Average tympanic temperatures were significantly lower in the bright than in the dim condition from 1645 to 1800 hours. Melatonin excretion rate tended to be higher in the bright than in the dim condition. It was concluded that exposure to bright light of 4000 lx during the daytime for several hours could reduce tympanic temperature, compared with that measured in dim light of 100 lx.

  11. Arctic sea ice signatures: L-band brightness temperature sensitivity comparison using two radiation transfer models

    Science.gov (United States)

    Richter, Friedrich; Drusch, Matthias; Kaleschke, Lars; Maaß, Nina; Tian-Kunze, Xiangshan; Mecklenburg, Susanne

    2018-03-01

    Sea ice is a crucial component for short-, medium- and long-term numerical weather predictions. Most importantly, changes of sea ice coverage and areas covered by thin sea ice have a large impact on heat fluxes between the ocean and the atmosphere. L-band brightness temperatures from ESA's Earth Explorer SMOS (Soil Moisture and Ocean Salinity) have been proven to be a valuable tool to derive thin sea ice thickness. These retrieved estimates were already successfully assimilated in forecasting models to constrain the ice analysis, leading to more accurate initial conditions and subsequently more accurate forecasts. However, the brightness temperature measurements can potentially be assimilated directly in forecasting systems, reducing the data latency and providing a more consistent first guess. As a first step towards such a data assimilation system we studied the forward operator that translates geophysical parameters provided by a model into brightness temperatures. We use two different radiative transfer models to generate top of atmosphere brightness temperatures based on ORAP5 model output for the 2012/2013 winter season. The simulations are then compared against actual SMOS measurements. The results indicate that both models are able to capture the general variability of measured brightness temperatures over sea ice. The simulated brightness temperatures are dominated by sea ice coverage and thickness changes are most pronounced in the marginal ice zone where new sea ice is formed. There we observe the largest differences of more than 20 K over sea ice between simulated and observed brightness temperatures. We conclude that the assimilation of SMOS brightness temperatures yields high potential for forecasting models to correct for uncertainties in thin sea ice areas and suggest that information on sea ice fractional coverage from higher-frequency brightness temperatures should be used simultaneously.

  12. Arctic sea ice signatures: L-band brightness temperature sensitivity comparison using two radiation transfer models

    Directory of Open Access Journals (Sweden)

    F. Richter

    2018-03-01

    Full Text Available Sea ice is a crucial component for short-, medium- and long-term numerical weather predictions. Most importantly, changes of sea ice coverage and areas covered by thin sea ice have a large impact on heat fluxes between the ocean and the atmosphere. L-band brightness temperatures from ESA's Earth Explorer SMOS (Soil Moisture and Ocean Salinity have been proven to be a valuable tool to derive thin sea ice thickness. These retrieved estimates were already successfully assimilated in forecasting models to constrain the ice analysis, leading to more accurate initial conditions and subsequently more accurate forecasts. However, the brightness temperature measurements can potentially be assimilated directly in forecasting systems, reducing the data latency and providing a more consistent first guess. As a first step towards such a data assimilation system we studied the forward operator that translates geophysical parameters provided by a model into brightness temperatures. We use two different radiative transfer models to generate top of atmosphere brightness temperatures based on ORAP5 model output for the 2012/2013 winter season. The simulations are then compared against actual SMOS measurements. The results indicate that both models are able to capture the general variability of measured brightness temperatures over sea ice. The simulated brightness temperatures are dominated by sea ice coverage and thickness changes are most pronounced in the marginal ice zone where new sea ice is formed. There we observe the largest differences of more than 20 K over sea ice between simulated and observed brightness temperatures. We conclude that the assimilation of SMOS brightness temperatures yields high potential for forecasting models to correct for uncertainties in thin sea ice areas and suggest that information on sea ice fractional coverage from higher-frequency brightness temperatures should be used simultaneously.

  13. Nimbus-5 ESMR Polar Gridded Brightness Temperatures, Version 2

    Data.gov (United States)

    National Aeronautics and Space Administration — The Nimbus-5 Electrically Scanning Microwave Radiometer (ESMR) data set consists of gridded brightness temperature arrays for the Arctic and Antarctic, spanning 11...

  14. RADIO AND MID-INFRARED PROPERTIES OF COMPACT STARBURSTS: DISTANCING THEMSELVES FROM THE MAIN SEQUENCE

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, E. J. [Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Stierwalt, S.; Armus, L. [Spitzer Science Center, California Institute of Technology, MC 314-6, Pasadena, CA 91125 (United States); Condon, J. J. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Evans, A. S., E-mail: emurphy@obs.carnegiescience.edu [Department of Astronomy, University of Virginia, 530 McCormick Road, Charlottesville, VA 22904 (United States)

    2013-05-01

    We investigate the relationship between 8.44 GHz brightness temperatures and 1.4 to 8.44 GHz radio spectral indices with 6.2 {mu}m polycyclic aromatic hydrocarbon (PAH) emission and 9.7 {mu}m silicate absorption features for a sample of 36 local luminous and ultraluminous infrared galaxies. We find that galaxies having small 6.2 {mu}m PAH equivalent widths (EQWs), which signal the presence of weak PAH emission and/or an excess of very hot dust, also have flat spectral indices. The three active galactic nuclei (AGN) identified through their excessively large 8.44 GHz brightness temperatures are also identified as AGN via their small 6.2 {mu}m PAH EQWs. We also find that the flattening of the radio spectrum increases with increasing silicate optical depth, 8.44 GHz brightness temperature, and decreasing size of the radio source even after removing potential AGN, supporting the idea that compact starbursts show spectral flattening as the result of increased free-free absorption. These correlations additionally suggest that the dust obscuration in these galaxies must largely be coming from the vicinity of the compact starburst itself, and is not distributed throughout the (foreground) disk of the galaxy. Finally, we investigate the location of these infrared-bright systems relative to the main sequence (star formation rate versus stellar mass) of star-forming galaxies in the local universe. We find that the radio spectral indices of galaxies flatten with increasing distance above the main sequence, or in other words, with increasing specific star formation rate. This indicates that galaxies located above the main sequence, having high specific star formation rates, are typically compact starbursts hosting deeply embedded star formation that becomes more optically thick in the radio and infrared with increased distance above the main sequence.

  15. SMOS brightness temperature assimilation into the Community Land Model

    Directory of Open Access Journals (Sweden)

    D. Rains

    2017-11-01

    Full Text Available SMOS (Soil Moisture and Ocean Salinity mission brightness temperatures at a single incident angle are assimilated into the Community Land Model (CLM across Australia to improve soil moisture simulations. Therefore, the data assimilation system DasPy is coupled to the local ensemble transform Kalman filter (LETKF as well as to the Community Microwave Emission Model (CMEM. Brightness temperature climatologies are precomputed to enable the assimilation of brightness temperature anomalies, making use of 6 years of SMOS data (2010–2015. Mean correlation R with in situ measurements increases moderately from 0.61 to 0.68 (11 % for upper soil layers if the root zone is included in the updates. A reduced improvement of 5 % is achieved if the assimilation is restricted to the upper soil layers. Root-zone simulations improve by 7 % when updating both the top layers and root zone, and by 4 % when only updating the top layers. Mean increments and increment standard deviations are compared for the experiments. The long-term assimilation impact is analysed by looking at a set of quantiles computed for soil moisture at each grid cell. Within hydrological monitoring systems, extreme dry or wet conditions are often defined via their relative occurrence, adding great importance to assimilation-induced quantile changes. Although still being limited now, longer L-band radiometer time series will become available and make model output improved by assimilating such data that are more usable for extreme event statistics.

  16. Brightness Temperature of Radio Zebras and Wave Energy Densities in Their Sources

    Czech Academy of Sciences Publication Activity Database

    Yasnov, L. V.; Benáček, J.; Karlický, Marian

    2017-01-01

    Roč. 292, č. 11 (2017), 163/1-163/12 ISSN 0038-0938 R&D Projects: GA ČR(CZ) GA16-13277S; GA ČR(CZ) GA17-16447S Grant - others:GA MŠk,CERIT-SC(CZ) LM2015085; GA MŠk(CZ) LM2015042 Institutional support: RVO:67985815 Keywords : Sun corona * Su flares * radio radiation Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics OBOR OECD: Astronomy (including astrophysics,space science) Impact factor: 2.682, year: 2016

  17. Milliarcsecond Imaging of the Radio Emission from the Quasar with the Most Massive Black Hole at Reionization

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ran; Wu, Xue-Bing; Jiang, Linhua [Kavli Institute of Astronomy and Astrophysics at Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871 (China); Momjian, Emmanuel; Carilli, Chris L. [National Radio Astronomy Observatory, P.O. Box 0, Socorro, NM 87801 (United States); Fan, Xiaohui [Steward Observatory, University of Arizona, 933 N Cherry Avenue, Tucson, AZ 85721 (United States); Walter, Fabian [Max-Planck-Institute for Astronomy, Königsstuhl 17, D-69117 Heidelberg (Germany); Strauss, Michael A. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Wang, Feige [Department of Astronomy, School of Physics, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871 (China)

    2017-02-01

    We report Very Long Baseline Array (VLBA) observations of the 1.5 GHz radio continuum emission of the z = 6.326 quasar SDSS J010013.02+280225.8 (hereafter J0100+2802). J0100+2802 is by far the most optically luminous and is a radio-quiet quasar with the most massive black hole known at z > 6. The VLBA observations have a synthesized beam size of 12.10 mas ×5.36 mas (FWHM), and detected the radio continuum emission from this object with a peak surface brightness of 64.6 ± 9.0 μ Jy beam{sup −1} and a total flux density of 88 ± 19 μ Jy. The position of the radio peak is consistent with that from SDSS in the optical and Chandra in the X-ray. The radio source is marginally resolved by the VLBA observations. A 2D Gaussian fit to the image constrains the source size to (7.1 ± 3.5) mas × (3.1 ± 1.7) mas. This corresponds to a physical scale of (40 ± 20) pc × (18 ± 10) pc. We estimate the intrinsic brightness temperature of the VLBA source to be T {sub B} = (1.6 ± 1.2) × 10{sup 7} K. This is significantly higher than the maximum value in normal star-forming galaxies, indicating an active galactic nucleus (AGN) origin for the radio continuum emission. However, it is also significantly lower than the brightness temperatures found in highest-redshift radio-loud quasars. J0100+2802 provides a unique example for studying the radio activity in optically luminous and radio-quiet AGNs in the early universe. Further observations at multiple radio frequencies will accurately measure the spectral index and address the dominant radiation mechanism of the radio emission.

  18. Effect of Different Tree canopies on the Brightness Temperature of Snowpack

    Science.gov (United States)

    Mousavi, S.; De Roo, R. D.; Brucker, L.

    2017-12-01

    Snow stores the water we drink and is essential to grow food that we eat. But changes in snow quantities such as snow water equivalent (SWE) are underway and have serious consequences. So, effective management of the freshwater reservoir requires to monitor frequently (weekly or better) the spatial distribution of SWE and snowpack wetness. Both microwave radar and radiometer systems have long been considered as relevant remote sensing tools in retrieving globally snow physical parameters of interest thanks to their all-weather operation capability. However, their observations are sensitive to the presence of tree canopies, which in turns impacts SWE estimation. To address this long-lasting challenge, we parked a truck-mounted microwave radiometer system for an entire winter in a rare area where it exists different tree types in the different cardinal directions. We used dual-polarization microwave radiometers at three different frequencies (1.4, 19, and 37 GHz), mounted on a boom truck to observe continuously the snowpack surrounding the truck. Observations were recorded at different incidence angles. These measurements have been collected in Grand Mesa National Forest, Colorado as part of the NASA SnowEx 2016-17. In this presentation, the effect of Engelmann Spruce and Aspen trees on the measured brightness temperature of snow is discussed. It is shown that Engelmann Spruce trees increases the brightness temperature of the snowpack more than Aspen trees do. Moreover, the elevation angular dependence of the measured brightness temperatures of snowpack with and without tree canopies is investigated in the context of SWE retrievals. A time-lapse camera was monitoring a snow post installed in the sensors' field of view to characterize the brightness temperature change as snow depth evolved. Also, our study takes advantage of the snowpit measurements that were collected near the radiometers' field of view.

  19. Solar brightness distribution at 8.6 mm from interferometer observations

    International Nuclear Information System (INIS)

    Kawabata, K.; Fujishita, M.; Kato, T.; Ogawa, H.; Omodaka, T.

    1980-01-01

    The radial brightness distribution of the quiet Sun at 8.6 mm is synthesized from observations using a sixteen element east-west interferometer in Nagoya. The observed brightness is flat from the disk center to 0.8 Rsub(sun). A slight darkening appeared between 0.8 Rsub(sun) and the limb. No evidence if the bright ring near the limb is found. The radio radius at 8.6 mm is 1.015 +- 0.005 Rsub(sun). In addition there exists a coronal component just outside the radio limb. (orig.)

  20. The extreme blazar AO 0235+164 as seen by extensive ground and space radio observations

    Science.gov (United States)

    Kutkin, A. M.; Pashchenko, I. N.; Lisakov, M. M.; Voytsik, P. A.; Sokolovsky, K. V.; Kovalev, Y. Y.; Lobanov, A. P.; Ipatov, A. V.; Aller, M. F.; Aller, H. D.; Lahteenmaki, A.; Tornikoski, M.; Gurvits, L. I.

    2018-04-01

    Clues to the physical conditions in radio cores of blazars come from measurements of brightness temperatures as well as effects produced by intrinsic opacity. We study the properties of the ultra-compact blazar AO 0235+164 with RadioAstron ground-space radio interferometer, multifrequency VLBA, EVN, and single-dish radio observations. We employ visibility modelling and image stacking for deriving structure and kinematics of the source, and use Gaussian process regression to find the relative multiband time delays of the flares. The multifrequency core size and time lags support prevailing synchrotron self-absorption. The intrinsic brightness temperature of the core derived from ground-based very long baseline interferometry (VLBI) is close to the equipartition regime value. In the same time, there is evidence for ultra-compact features of the size of less than 10 μas in the source, which might be responsible for the extreme apparent brightness temperatures of up to 1014 K as measured by RadioAstron. In 2007-2016 the VLBI components in the source at 43 GHz are found predominantly in two directions, suggesting a bend of the outflow from southern to northern direction. The apparent opening angle of the jet seen in the stacked image at 43 GHz is two times wider than that at 15 GHz, indicating a collimation of the flow within the central 1.5 mas. We estimate the Lorentz factor Γ = 14, the Doppler factor δ = 21, and the viewing angle θ = 1.7° of the apparent jet base, derive the gradients of magnetic field strength and electron density in the outflow, and the distance between jet apex and the core at each frequency.

  1. A synthetic aperture radio telescope for ICME observations as a potential payload of SPORT

    Science.gov (United States)

    Zhang, C.; Sun, W.; Liu, H.; Xiong, M.; Liu, Y. D.; Wu, J.

    2013-12-01

    We introduce a potential payload for the Solar Polar ORbit Telescope (SPORT), a space weather mission proposed by the National Space Science Center, Chinese Academy of Sciences. This is a synthetic aperture radio imager designed to detect radio emissions from interplanetary coronal mass ejections (ICMEs), which is expected to be an important instrument to monitor the propagation and evolution of ICMEs. The radio telescope applies a synthetic aperture interferometric technique to measure the brightness temperature of ICMEs. Theoretical calculations of the brightness temperature utilizing statistical properties of ICMEs and the background solar wind indicate that ICMEs within 0.35 AU from the Sun are detectable by a radio telescope at a frequency <= 150 MHz with a sensitivity of <=1 K. The telescope employs a time shared double rotation scan (also called a clock scan), where two coplanar antennas revolve around a fixed axis at different radius and speed, to fulfill sampling of the brightness temperature. An array of 4+4 elements with opposite scanning directions are developed for the radio telescope to achieve the required sensitivity (<=1K) within the imaging refreshing time (~30 minutes). This scan scheme is appropriate for a three-axis stabilized spacecraft platform while keeping a good sampling pattern. We also discuss how we select the operating frequency, which involves a trade-off between the engineering feasibility and the scientific goal. Our preliminary results indicate that the central frequency of 150 MHz with a bandwidth of 20 MHz, which requires arm lengths of the two groups of 14m and 16m, respectively, gives an angular resolution of 2°, a field of view of ×25° around the Sun, and a time resolution of 30 minutes.

  2. Nimbus-5/THIR Level 1 Brightness Temperature at 11.5 microns V001

    Data.gov (United States)

    National Aeronautics and Space Administration — The Nimbus-5 Temperature-Humidity Infrared Radiometer (THIR) Level 1 Brightness Temperature at 11.5 microns data product contains radiances expressed in units of...

  3. Assimilation of microwave brightness temperatures for soil moisture estimation using particle filter

    International Nuclear Information System (INIS)

    Bi, H Y; Ma, J W; Qin, S X; Zeng, J Y

    2014-01-01

    Soil moisture plays a significant role in global water cycles. Both model simulations and remote sensing observations have their limitations when estimating soil moisture on a large spatial scale. Data assimilation (DA) is a promising tool which can combine model dynamics and remote sensing observations to obtain more precise ground soil moisture distribution. Among various DA methods, the particle filter (PF) can be applied to non-linear and non-Gaussian systems, thus holding great potential for DA. In this study, a data assimilation scheme based on the residual resampling particle filter (RR-PF) was developed to assimilate microwave brightness temperatures into the macro-scale semi-distributed Variance Infiltration Capacity (VIC) Model to estimate surface soil moisture. A radiative transfer model (RTM) was used to link brightness temperatures with surface soil moisture. Finally, the data assimilation scheme was validated by experimental data obtained at Arizona during the Soil Moisture Experiment 2004 (SMEX04). The results show that the estimation accuracy of soil moisture can be improved significantly by RR-PF through assimilating microwave brightness temperatures into VIC model. Both the overall trends and specific values of the assimilation results are more consistent with ground observations compared with model simulation results

  4. ALMA SCIENCE VERIFICATION DATA: MILLIMETER CONTINUUM POLARIMETRY OF THE BRIGHT RADIO QUASAR 3C 286

    Energy Technology Data Exchange (ETDEWEB)

    Nagai, H.; Nakanishi, K.; Hada, K. [National Astronomical Observatory of Japan, Osawa 2-21-1, Mitaka, Tokyo 181-8588 (Japan); Paladino, R. [INAF-Osservatorio di Radioastronomia, Via P. Gobetti, 101 I-40129 Bologna (Italy); Hull, C. L. H. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Cortes, P.; Fomalont, E. [Joint ALMA Observatory, Alonso de Córdova 3107, Vitacura 763 0355, Santiago de Chile (Chile); Moellenbrock, G. [National Radio Astronomy Observatory, Socorro, NM 87801 (United States); Asada, K., E-mail: hiroshi.nagai@nao.ac.jp [The Academia Sinica Institute of Astronomy and Astrophysics, AS/NTU. No.1, Sec. 4, Roosevelt Rd, Taipei 10617, Taiwan, R.O.C (China)

    2016-06-20

    We present full-polarization observations of the compact, steep-spectrum radio quasar 3C 286 made with the Atacama Large Millimeter and Submillimeter Array (ALMA) at 1.3 mm. These are the first full-polarization ALMA observations, which were obtained in the framework of Science Verification. A bright core and a south–west component are detected in the total intensity image, similar to previous centimeter images. Polarized emission is also detected toward both components. The fractional polarization of the core is about 17%; this is higher than the fractional polarization at centimeter wavelengths, suggesting that the magnetic field is even more ordered in the millimeter radio core than it is further downstream in the jet. The observed polarization position angle (or electric vector position angle (EVPA)) in the core is ∼39{sup ◦}, which confirms the trend that the EVPA slowly increases from centimeter to millimeter wavelengths. With the aid of multi-frequency VLBI observations, we argue that this EVPA change is associated with the frequency-dependent core position. We also report a serendipitous detection of a sub-mJy source in the field of view, which is likely to be a submillimeter galaxy.

  5. Sources of the Radio Background Considered

    Energy Technology Data Exchange (ETDEWEB)

    Singal, J.; /KIPAC, Menlo Park /Stanford U.; Stawarz, L.; /KIPAC, Menlo Park /Stanford U. /Jagiellonian U., Astron. Observ.; Lawrence, A.; /Edinburgh U., Inst. Astron. /KIPAC, Menlo Park /Stanford U.; Petrosian, V.; /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., Appl. Phys. Dept.

    2011-08-22

    We investigate possible origins of the extragalactic radio background reported by the ARCADE 2 collaboration. The surface brightness of the background is several times higher than that which would result from currently observed radio sources. We consider contributions to the background from diffuse synchrotron emission from clusters and the intergalactic medium, previously unrecognized flux from low surface brightness regions of radio sources, and faint point sources below the flux limit of existing surveys. By examining radio source counts available in the literature, we conclude that most of the radio background is produced by radio point sources that dominate at sub {mu}Jy fluxes. We show that a truly diffuse background produced by elections far from galaxies is ruled out because such energetic electrons would overproduce the observed X-ray/{gamma}-ray background through inverse Compton scattering of the other photon fields. Unrecognized flux from low surface brightness regions of extended radio sources, or moderate flux sources missed entirely by radio source count surveys, cannot explain the bulk of the observed background, but may contribute as much as 10%. We consider both radio supernovae and radio quiet quasars as candidate sources for the background, and show that both fail to produce it at the observed level because of insufficient number of objects and total flux, although radio quiet quasars contribute at the level of at least a few percent. We conclude that the most important population for production of the background is likely ordinary starforming galaxies above redshift 1 characterized by an evolving radio far-infrared correlation, which increases toward the radio loud with redshift.

  6. Spatio-temporal behavior of brightness temperature in Tel-Aviv and its application to air temperature monitoring

    International Nuclear Information System (INIS)

    Pelta, Ran; Chudnovsky, A. Alexandra; Schwartz, Joel

    2016-01-01

    This study applies remote sensing technology to assess and examine the spatial and temporal Brightness Temperature (BT) profile in the city of Tel-Aviv, Israel over the last 30 years using Landsat imagery. The location of warmest and coldest zones are constant over the studied period. Distinct diurnal and temporal BT behavior divide the city into four different segments. As an example of future application, we applied mixed regression models with daily random slopes to correlate Landsat BT data with monitored air temperature (Tair) measurements using 14 images for 1989–2014. Our preliminary results show a good model performance with R"2 = 0.81. Furthermore, based on the model's results, we analyzed the spatial profile of Tair within the study domain for representative days. - Highlights: • The location of warmest and coldest zones are constant over the last 30 years. • Distinct diurnal and temporal Brightness Temperature behavior divide the city into four segments. • We assess air temperature from satellite surface temperature (R"2 = 0.81). - The location of warmest and coldest zones are constant over the last 30 years. Distinct diurnal and temporal Surface Temperature behavior divide the city into four different segments.

  7. SARAS MEASUREMENT OF THE RADIO BACKGROUND AT LONG WAVELENGTHS

    International Nuclear Information System (INIS)

    Patra, Nipanjana; Subrahmanyan, Ravi; Sethi, Shiv; Shankar, N. Udaya; Raghunathan, A.

    2015-01-01

    SARAS is a correlation spectrometer connected to a frequency independent antenna that is purpose-designed for precision measurements of the radio background at long wavelengths. The design, calibration, and observing strategies admit solutions for the internal additive contributions to the radiometer response, and hence a separation of these contaminants from the antenna temperature. We present here a wideband measurement of the radio sky spectrum by SARAS that provides an accurate measurement of the absolute brightness and spectral index between 110 and 175 MHz. Accuracy in the measurement of absolute sky brightness is limited by systematic errors of magnitude 1.2%; errors in calibration and in the joint estimation of sky and system model parameters are relatively smaller. We use this wide-angle measurement of the sky brightness using the precision wide-band dipole antenna to provide an improved absolute calibration for the 150 MHz all-sky map of Landecker and Wielebinski: subtracting an offset of 21.4 K and scaling by a factor of 1.05 will reduce the overall offset error to 8 K (from 50 K) and scale error to 0.8% (from 5%). The SARAS measurement of the temperature spectral index is in the range −2.3 to −2.45 in the 110–175 MHz band and indicates that the region toward the Galactic bulge has a relatively flatter index

  8. Radio emission from quasars and BL Lac objects by coherent plasma oscillation and stimulated Compton scattering

    International Nuclear Information System (INIS)

    Colgate, S.A.; Petschek, A.G.

    1978-01-01

    The full radiation spectrum of quasars and BL Lac objects is interpreted as due to a dependent combination of a soft plasma oscillation source at 2ν/sub P/ and bremsstrahlung. Previous work of the plasma oscillation radiation is extended into the radio part of the spectrum and it is shown how the high brightness temperature observations of BL Lac objects [kT/sub b/ (100 MHz) approximate = 3 x 10 5 mc 2 ] are a reasonable consequence of a lower external plasma density and ejection as required for the observed lack of emission lines. Two extreme cases are considered, the one where the plasma oscillations are suddenly extinguished and only stimulated Compton scattering remains and a second case of a constant source of plasma oscillations but a graded surface density. The first case gives 1/100 of the required brightness temperature and the second gives 100 times too large a brightness temperature and also a x 10 too large a radius. It is believed reasonable to invoke a combination of both processes to explain the observed radio spectrum. This model circumvents the self-Compton x-ray flux difficulty of incoherent synchrotron emission

  9. The radio structure of the peculiar narrow-line Seyfert 1 galaxy candidate J1100+4421

    Science.gov (United States)

    Gabányi, K. É.; Frey, S.; Paragi, Z.; Järvelä, E.; Morokuma, T.; An, T.; Tanaka, M.; Tar, I.

    2018-01-01

    Narrow-line Seyfert 1 galaxies (NLS1) are an intriguing subclass of active galactic nuclei. Their observed properties indicate low central black hole mass and high accretion rate. The extremely radio-loud NLS1 sources often show relativistic beaming and are usually regarded as younger counterparts of blazars. Recently, the object SDSS J110006.07+442144.3 was reported as a candidate NLS1 source. The characteristics of its dramatic optical flare indicated its jet-related origin. The spectral energy distribution of the object was similar to that of the γ-ray detected radio-loud NLS1, PMN J0948+0022. Our high-resolution European very long baseline interferometry network observations at 1.7 and 5 GHz revealed a compact core feature with a brightness temperature of ≳1010 K. Using the lowest brightness temperature value and assuming a moderate Lorentz factor of ∼9, the jet viewing angle is ≲26°. Archival Very Large Array data show a large-scale radio structure with a projected linear size of ∼150 kpc reminiscent of double-sided morphology.

  10. Probing the innermost regions of AGN jets and their magnetic fields with RadioAstron. II. Observations of 3C 273 at minimum activity

    Science.gov (United States)

    Bruni, G.; Gómez, J. L.; Casadio, C.; Lobanov, A.; Kovalev, Y. Y.; Sokolovsky, K. V.; Lisakov, M. M.; Bach, U.; Marscher, A.; Jorstad, S.; Anderson, J. M.; Krichbaum, T. P.; Savolainen, T.; Vega-García, L.; Fuentes, A.; Zensus, J. A.; Alberdi, A.; Lee, S.-S.; Lu, R.-S.; Pérez-Torres, M.; Ros, E.

    2017-08-01

    Context. RadioAstron is a 10 m orbiting radio telescope mounted on the Spektr-R satellite, launched in 2011, performing Space Very Long Baseline Interferometry (SVLBI) observations supported by a global ground array of radio telescopes. With an apogee of 350 000 km, it is offering for the first time the possibility to perform μas-resolution imaging in the cm-band. Aims: The RadioAstron active galactic nuclei (AGN) polarization Key Science Project (KSP) aims at exploiting the unprecedented angular resolution provided by RadioAstron to study jet launching/collimation and magnetic-field configuration in AGN jets. The targets of our KSP are some of the most powerful blazars in the sky. Methods: We present observations at 22 GHz of 3C 273, performed in 2014, designed to reach a maximum baseline of approximately nine Earth diameters. Reaching an angular resolution of 0.3 mas, we study a particularly low-activity state of the source, and estimate the nuclear region brightness temperature, comparing with the extreme one detected one year before during the RadioAstron early science period. We also make use of the VLBA-BU-BLAZAR survey data, at 43 GHz, to study the kinematics of the jet in a 1.5-yr time window. Results: We find that the nuclear brightness temperature is two orders of magnitude lower than the exceptionally high value detected in 2013 with RadioAstron at the same frequency (1.4 × 1013 K, source-frame), and even one order of magnitude lower than the equipartition value. The kinematics analysis at 43 GHz shows that a new component was ejected 2 months after the 2013 epoch, visible also in our 22 GHz map presented here. Consequently this was located upstream of the core during the brightness temperature peak. Fermi-LAT observations for the period 2010-2014 do not show any γ-ray flare in conjunction with the passage of the new component by the core at 43 GHz. Conclusions: These observations confirm that the previously detected extreme brightness temperature in

  11. Detection and analysis of anomalies in the brightness temperature difference field using MSG rapid scan data

    Czech Academy of Sciences Publication Activity Database

    Šťástka, J.; Radová, Michaela

    2013-01-01

    Roč. 123, SI (2013), s. 354-359 ISSN 0169-8095 R&D Projects: GA ČR GA205/07/0905 Institutional support: RVO:68378289 Keywords : brightness temperature difference (BTD) * BTD anomaly * cloud-top brightness temperature (BT) * convective storm * MSG Subject RIV: DG - Athmosphere Sciences, Meteorology OBOR OECD: Meteorology and atmospheric sciences Impact factor: 2.421, year: 2013 https://www.sciencedirect.com/science/article/pii/S0169809512001548

  12. A NEW PERSPECTIVE OF THE RADIO BRIGHT ZONE AT THE GALACTIC CENTER: FEEDBACK FROM NUCLEAR ACTIVITIES

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Jun-Hui [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Morris, Mark R. [Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, CA 90095 (United States); Goss, W. M., E-mail: jzhao@cfa.harvard.edu [NRAO, P.O. Box O, Socorro, NM 87801 (United States)

    2016-02-01

    New observations of Sgr A have been carried out with the Jansky VLA in the B and C arrays using the broadband (2 GHz) continuum mode at 5.5 GHz. The field of view covers the central 13′ (30 pc) region of the radio-bright zone at the Galactic center. Using the multi-scale and multi-frequency-synthesis (MS-MFS) algorithms in CASA, we have imaged Sgr A with a resolution of 1″, achieving an rms noise of 8 μJy beam{sup −1}, and a dynamic range of 100,000:1. Both previously known and newly identified radio features in this region are revealed, including numerous filamentary sources. The radio continuum image is compared with Chandra X-ray images, with a CN emission-line image obtained with the Submillimeter Array and with detailed Paschen-α images obtained with Hubble Space Telescope/NICMOS. We discuss several prominent features in the radio image. The “Sgr A west Wings” extend 2′ (5 pc) from the NW and SE tips of the Sgr A west H ii region (the “Mini-spiral”) to positions located 2.9 and 2.4 arcmin to the northwest and southeast of Sgr A*, respectively. The NW wing, along with several other prominent features, including the previously identified “NW Streamers,” form an elongated radio lobe (NW lobe), oriented nearly perpendicular to the Galactic plane. This radio lobe, with a size of 6.′3 × 3.′2 (14.4 pc × 7.3 pc), has a known X-ray counterpart. In the outer region of the NW lobe, a row of three thermally emitting rings is observed. A field containing numerous amorphous radio blobs extends for a distance of ∼2 arcmin beyond the tip of the SE wing; these newly recognized features coincide with the SE X-ray lobe. Most of the amorphous radio blobs in the NW and SE lobes have Paschen-α counterparts. We propose that they have been produced by shock interaction of ambient gas concentrations with a collimated nuclear wind or an outflow that originated from within the circumnuclear disk (CND). We also discuss the possibility that the ionized

  13. INTERSTELLAR SCINTILLATION AND THE RADIO COUNTERPART OF THE FAST RADIO BURST FRB 150418

    International Nuclear Information System (INIS)

    Akiyama, Kazunori; Johnson, Michael D.

    2016-01-01

    Keane et al. have recently reported the discovery of a new fast radio burst (FRB), FRB 150418, with a promising radio counterpart at 5.5 and 7.5 GHz—a rapidly decaying source, falling from 200–300 μ Jy to 100 μ Jy on timescales of ∼6 days. This transient source may be associated with an elliptical galaxy at redshift z = 0.492, providing the first firm spectroscopic redshift for an FRB and the ability to estimate the density of baryons in the intergalactic medium via the combination of known redshift and radio dispersion of the FRB. An alternative explanation, first suggested by Williams and Berger, is that the identified counterpart may instead be a compact active galactic nucleus (AGN). The putative counterpart’s variation may then instead be extrinsic, caused by refractive scintillation in the ionized interstellar medium of the Milky Way, which would invalidate the association with FRB 150418. We examine this latter explanation in detail and show that the reported observations are consistent with scintillating radio emission from the core of a radio-loud AGN having a brightness temperature T _b ≳ 10"9 K. Using numerical simulations of the expected scattering for the line of sight to FRB 150418, we provide example images and light curves of such an AGN at 5.5 and 7.5 GHz. These results can be compared with continued radio monitoring to conclusively determine the importance of scintillation for the observed radio variability, and they show that scintillation is a critical consideration for continued searches for FRB counterparts at radio wavelengths.

  14. THE STATISTICS OF RADIO ASTRONOMICAL POLARIMETRY: BRIGHT SOURCES AND HIGH TIME RESOLUTION

    International Nuclear Information System (INIS)

    Van Straten, W.

    2009-01-01

    A four-dimensional statistical description of electromagnetic radiation is developed and applied to the analysis of radio pulsar polarization. The new formalism provides an elementary statistical explanation of the modal-broadening phenomenon in single-pulse observations. It is also used to argue that the degree of polarization of giant pulses has been poorly defined in past studies. Single- and giant-pulse polarimetry typically involves sources with large flux-densities and observations with high time-resolution, factors that necessitate consideration of source-intrinsic noise and small-number statistics. Self-noise is shown to fully explain the excess polarization dispersion previously noted in single-pulse observations of bright pulsars, obviating the need for additional randomly polarized radiation. Rather, these observations are more simply interpreted as an incoherent sum of covariant, orthogonal, partially polarized modes. Based on this premise, the four-dimensional covariance matrix of the Stokes parameters may be used to derive mode-separated pulse profiles without any assumptions about the intrinsic degrees of mode polarization. Finally, utilizing the small-number statistics of the Stokes parameters, it is established that the degree of polarization of an unresolved pulse is fundamentally undefined; therefore, previous claims of highly polarized giant pulses are unsubstantiated.

  15. SMAP L1B Radiometer Half-Orbit Time-Ordered Brightness Temperatures V003

    Data.gov (United States)

    National Aeronautics and Space Administration — This Level-1B (L1B) product provides calibrated estimates of time-ordered geolocated brightness temperatures measured by the Soil Moisture Active Passive (SMAP)...

  16. Soil hydraulic parameters and surface soil moisture of a tilled bare soil plot inversely derived from l-band brightness temperatures

    KAUST Repository

    Dimitrov, Marin; Vanderborght, Jan P.; Kostov, K. G.; Jadoon, Khan; Weihermü ller, Lutz; Jackson, Thomas J.; Bindlish, Rajat; Pachepsky, Ya A.; Schwank, Mike; Vereecken, Harry

    2014-01-01

    model (CRTM) that accounts for vertical gradients in dielectric permittivity. Brightness temperatures simulated by the CRTM and the 2-cm-layer Fresnel model fitted well to the measured ones. L-band brightness temperatures are therefore related

  17. Radio-flaring Ultracool Dwarf Population Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Route, Matthew, E-mail: mroute@purdue.edu [Department of Astronomy and Astrophysics, the Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802 (United States)

    2017-08-10

    Over a dozen ultracool dwarfs (UCDs), low-mass objects of spectral types ≥M7, are known to be sources of radio flares. These typically several-minutes-long radio bursts can be up to 100% circularly polarized and have high brightness temperatures, consistent with coherent emission via the electron cyclotron maser operating in approximately kilogauss magnetic fields. Recently, the statistical properties of the bulk physical parameters that describe these UCDs have become described adequately enough to permit synthesis of the population of radio-flaring objects. For the first time, I construct a Monte Carlo simulator to model the population of these radio-flaring UCDs. This simulator is powered by Intel Secure Key (ISK), a new processor technology that uses a local entropy source to improve random number generation that has heretofore been used to improve cryptography. The results from this simulator indicate that only ∼5% of radio-flaring UCDs within the local interstellar neighborhood (<25 pc away) have been discovered. I discuss a number of scenarios that may explain this radio-flaring fraction and suggest that the observed behavior is likely a result of several factors. The performance of ISK as compared to other pseudorandom number generators is also evaluated, and its potential utility for other astrophysical codes is briefly described.

  18. Relationship of magnetic field strength and brightness of fine-structure elements in the solar temperature minimum region

    Science.gov (United States)

    Cook, J. W.; Ewing, J. A.

    1990-01-01

    A quantitative relationship was determined between magnetic field strength (or magnetic flux) from photospheric magnetograph observations and the brightness temperature of solar fine-structure elements observed at 1600 A, where the predominant flux source is continuum emission from the solar temperature minimum region. A Kitt Peak magnetogram and spectroheliograph observations at 1600 A taken during a sounding rocket flight of the High Resolution Telescope and Spectrograph from December 11, 1987 were used. The statistical distributions of brightness temperature in the quiet sun at 1600 A, and absolute value of magnetic field strength in the same area were determined from these observations. Using a technique which obtains the best-fit relationship of a given functional form between these two histogram distributions, a quantitative relationship was determined between absolute value of magnetic field strength B and brightness temperature which is essentially linear from 10 to 150 G. An interpretation is suggested, in which a basal heating occurs generally, while brighter elements are produced in magnetic regions with temperature enhancements proportional to B.

  19. A model for atmospheric brightness temperatures observed by the special sensor microwave imager (SSM/I)

    Science.gov (United States)

    Petty, Grant W.; Katsaros, Kristina B.

    1989-01-01

    A closed-form mathematical model for the atmospheric contribution to microwave the absorption and emission at the SSM/I frequencies is developed in order to improve quantitative interpretation of microwave imagery from the Special Sensor Microwave Imager (SSM/I). The model is intended to accurately predict upwelling and downwelling atmospheric brightness temperatures at SSM/I frequencies, as functions of eight input parameters: the zenith (nadir) angle, the integrated water vapor and vapor scale height, the integrated cloud water and cloud height, the effective surface temperature, atmospheric lapse rate, and surface pressure. It is shown that the model accurately reproduces clear-sky brightness temperatures computed by explicit integration of a large number of radiosonde soundings representing all maritime climate zones and seasons.

  20. Estimate of Hurricane Wind Speed from AMSR-E Low-Frequency Channel Brightness Temperature Data

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    2018-01-01

    Full Text Available Two new parameters (W6H and W6V were defined that represent brightness temperature increments for different low-frequency channels due to ocean wind. We developed a new wind speed retrieval model inside hurricanes based on W6H and W6V using brightness temperature data from AMSR-E. The AMSR-E observations of 12 category 3–5 hurricanes from 2003 to 2011 and corresponding data from the H*wind analysis system were used to develop and validate the AMSR-E wind speed retrieval model. The results show that the mean bias and the overall root-mean-square (RMS difference of the AMSR-E retrieved wind speeds with respect to H*wind (HRD Real-time Hurricane Wind Analysis System analysis data were −0.01 m/s and 2.66 m/s, respectively. One case study showed that W6H and W6V were less sensitive to rain than the observed AMSR-E C-band and X-band brightness temperature data. The AMSR-E retrieval model was further validated by comparing the retrieved wind speeds against stepped-frequency microwave radiometer (SFMR measurements. The comparison showed an RMS difference of 3.41 m/s and a mean bias of 0.49 m/s.

  1. IS THERE AN UNACCOUNTED FOR EXCESS IN THE EXTRAGALACTIC COSMIC RADIO BACKGROUND?

    Energy Technology Data Exchange (ETDEWEB)

    Subrahmanyan, Ravi [Raman Research Institute, CV Raman Avenue, Sadashivanagar, Bangalore 560080 (India); Cowsik, Ramanath, E-mail: rsubrahm@rri.res.in, E-mail: cowsik@physics.wustl.edu [Physics Department and McDonnell Center for the Space Sciences, Washington University, Campus Box 1105, St. Louis, MO 63130 (United States)

    2013-10-10

    Analyses of the distribution of absolute brightness temperature over the radio sky have recently led to suggestions that there exists a substantial unexplained extragalactic radio background. Consequently, there have been numerous attempts to place constraints on plausible origins of this 'excess'. We suggest here that this expectation of a large extragalactic background, over and above that contributed by the sources observed in the surveys, is based on an extremely simple geometry adopted to model the Galactic emission and the procedure adopted in the estimation of the extragalactic contribution. In this paper, we derive the extragalactic radio background from wide-field radio images using a more realistic modeling of the Galactic emission and decompose the sky maps at 150, 408, and 1420 MHz into anisotropic Galactic and isotropic extragalactic components. The anisotropic Galactic component is assumed to arise from a highly flattened spheroid representing the thick disk, embedded in a spherical halo, both centered at the Galactic center, along with Galactic sources, filamentary structures, and Galactic loops and spurs. All components are constrained to be positive and the optimization scheme minimizes the sky area occupied by the complex filaments. We show that in contrast with simple modeling of Galactic emission as a plane parallel slab, the more realistic modeling yields estimates for the uniform extragalactic brightness that are consistent with expectations from known extragalactic radio source populations.

  2. INTERSTELLAR SCINTILLATION AND THE RADIO COUNTERPART OF THE FAST RADIO BURST FRB 150418

    Energy Technology Data Exchange (ETDEWEB)

    Akiyama, Kazunori [Massachusetts Institute of Technology, Haystack Observatory, Route 40, Westford, MA 01886 (United States); Johnson, Michael D., E-mail: kazu@haystack.mit.edu [Harvard Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2016-06-10

    Keane et al. have recently reported the discovery of a new fast radio burst (FRB), FRB 150418, with a promising radio counterpart at 5.5 and 7.5 GHz—a rapidly decaying source, falling from 200–300 μ Jy to 100 μ Jy on timescales of ∼6 days. This transient source may be associated with an elliptical galaxy at redshift z = 0.492, providing the first firm spectroscopic redshift for an FRB and the ability to estimate the density of baryons in the intergalactic medium via the combination of known redshift and radio dispersion of the FRB. An alternative explanation, first suggested by Williams and Berger, is that the identified counterpart may instead be a compact active galactic nucleus (AGN). The putative counterpart’s variation may then instead be extrinsic, caused by refractive scintillation in the ionized interstellar medium of the Milky Way, which would invalidate the association with FRB 150418. We examine this latter explanation in detail and show that the reported observations are consistent with scintillating radio emission from the core of a radio-loud AGN having a brightness temperature T {sub b} ≳ 10{sup 9} K. Using numerical simulations of the expected scattering for the line of sight to FRB 150418, we provide example images and light curves of such an AGN at 5.5 and 7.5 GHz. These results can be compared with continued radio monitoring to conclusively determine the importance of scintillation for the observed radio variability, and they show that scintillation is a critical consideration for continued searches for FRB counterparts at radio wavelengths.

  3. THE RADIO PROPERTIES OF RADIO-LOUD NARROW-LINE SEYFERT 1 GALAXIES ON PARSEC SCALES

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Minfeng; Chen, Yongjun; Shen, Zhiqiang [Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai 200030 (China); Komossa, S.; Zensus, J. A. [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Yuan, Weimin [Key Lab for Space Astronomy and Technology, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Wajima, Kiyoaki [Korea Astronomy and Space Science Institute, 776 Daedeokdae-ro, Yuseong, Daejeon 305-348 (Korea, Republic of); Zhou, Hongyan, E-mail: gumf@shao.ac.cn [Polar Research Institute of China, 451 Jinqiao Road, Shanghai 200136 (China)

    2015-11-15

    We present the detection of the compact radio structures of 14 radio-loud narrow-line Seyfert 1 (NLS1) galaxies from Very Long Baseline Array (VLBA) observations at 5 GHz performed in 2013. While 50% of the sources of our sample show a compact core only, the remaining 50% exhibit a core-jet structure. The measured brightness temperatures of the cores range from 10{sup 8.4} to 10{sup 11.4} K with a median value of 10{sup 10.1} K, indicating that the radio emission is from non-thermal jets, and that, likely, most sources are not strongly beamed, thus implying a low jet speed in these radio-loud NLS1 galaxies. In combination with archival data taken at multiple frequencies, we find that seven sources show flat or even inverted radio spectra, while steep spectra are revealed in the remaining seven objects. Although all of these sources are very radio-loud with R > 100, their jet properties are diverse in terms of their milliarcsecond (mas) scale (parsec scale) morphology and their overall radio spectral shape. The evidence for slow jet speeds (i.e., less relativistic jets), in combination with the low kinetic/radio power, may offer an explanation for the compact VLBA radio structure in most sources. The mildly relativistic jets in these high accretion rate systems are consistent with a scenario where jets are accelerated from the hot corona above the disk by the magnetic field and the radiation force of the accretion disk. Alternatively, a low jet bulk velocity can be explained by low spin in the Blandford–Znajek mechanism.

  4. Development of Yellow Sand Image Products Using Infrared Brightness Temperature Difference Method

    Science.gov (United States)

    Ha, J.; Kim, J.; Kwak, M.; Ha, K.

    2007-12-01

    A technique for detection of airborne yellow sand dust using meteorological satellite has been developed from various bands from ultraviolet to infrared channels. Among them, Infrared (IR) channels have an advantage of detecting aerosols over high reflecting surface as well as during nighttime. There had been suggestion of using brightness temperature difference (BTD) between 11 and 12¥ìm. We have found that the technique is highly depends on surface temperature, emissivity, and zenith angle, which results in changing the threshold of BTD. In order to overcome these problems, we have constructed the background brightness temperature threshold of BTD and then aerosol index (AI) has been determined from subtracting the background threshold from BTD of our interested scene. Along with this, we utilized high temporal coverage of geostationary satellite, MTSAT, to improve the reliability of the determined AI signal. The products have been evaluated by comparing the forecasted wind field with the movement fiend of AI. The statistical score test illustrates that this newly developed algorithm produces a promising result for detecting mineral dust by reducing the errors with respect to the current BTD method.

  5. High resolution radio observations of nuclear and circumnuclear regions of luminous infrared galaxies (LIRGs)

    Energy Technology Data Exchange (ETDEWEB)

    Alberdi, A; Perez-Torres, M A [Instituto de Astrofisica de Andalucia (IAA, CSIC), PO Box 3004, 18080-Granada (Spain); Colina, L [Instituto de Estructura de la Materia - IEM, CSIC, C, Serrano 115, 28005 Madrid (Spain); Torrelles, J M [Instituto de Ciencias del Espacio (ICE, CSIC) and IEEC, Gran Capita 2-4, 08034 Barcelona (Spain)], E-mail: antxon@iaa.es, E-mail: torres@iaa.es, E-mail: colina@damir.iem.csic.es, E-mail: torrelle@ieec.fcr.es

    2008-10-15

    High-resolution radio observations of the nuclear region of Luminous and Ultraluminous Infrared Galaxies (ULIRGs) have shown that its radio structure consists of a compact high surface-brightness central radio source immersed in a diffuse low brightness circumnuclear halo. While the central component could be associated with an AGN or compact star-forming regions where radio supernovae are exploding, it is well known that the circumnuclear regions host bursts of star-formation. The studies of radio supernovae can provide essential information about stellar evolution and CSM/ISM properties in regions hidden by dust at optical and IR wavelengths. In this contribution, we show results from radio interferometric observations from NGC 7469, IRAS 18293-3413 and IRAS 17138-1017 where three extremely bright radio supernovae have been found. High-resolution radio observations of these and other LIRGs would allow us to determine the core-collapse supernova rate in them as well as their star-formation rate.

  6. An Overnight Comparison of Core Temperature Using a Rectal Probe and a Radio Pill

    National Research Council Canada - National Science Library

    Paul, Michel

    1999-01-01

    Previous efforts to record core temperature with radio pills produced consistent results showing that core temperature provided by radio pill tended to be lower than that provided by rectal probe by about 0.5c to o...

  7. Radio evolution of young supernova remnants

    International Nuclear Information System (INIS)

    Shirkey, R.C. Jr.

    1976-01-01

    A one dimensional spherically symmetric magnetohydrodynamic code was developed to describe the evolution of the dynamical and radio properties of young supernova remnants. The code contains subroutines which treat the development of Rayleigh-Taylor instabilities wherever they arise in the remnant. Under the assumption of quasi-stationary equilibrium (dynamical changes considered slow in comparison to the time it takes the instability to achieve equilibrium) determined that the velocity of the instability is W approximately (a lambda)/sup 1 / 2 /, where a is the Rayleigh-Taylor acceleration and lambda is the wavelength of the instability. Subsequent processing of the kinetic energy of expansion, through turbulence, resulted in an increase in temperature and magnetic field strength. The model was used to analyze instability effects of density inhomogeneities in the interstellar medium on magnetic field amplification. A model was constructed for Cassiopeia A which gave good agreement with the measured dynamics, radio structure, and secular flux density decrease for the remnant. In order to compare observation with theory a computer routine was written that convolves the surface brightness at the source. The resultant convolved surface brightness graph is in good agreement with Rosenberg's observed ''model profile;'' differences between the graphs can be attributed to the asymmetric expansion of Cassiopeia A

  8. Validation of temperature-sensitive radio transmitters for measurement of body temperature in small animals

    NARCIS (Netherlands)

    Williams, Joseph B.; Tieleman, B. I.; Shobrak, Mohammed

    2009-01-01

    As part of a study on the core body temperature (T(b)) of desert birds, we purposed to use temperature-sensitive implantable radio transmitters. Because of the difficulty in recapturing these birds, we needed to know if these electronic devices held their calibration over the duration of normal

  9. Galactic supernova remnants: radio evolution and population characteristics

    International Nuclear Information System (INIS)

    Caswell, J.L.; Lerche, I.

    1979-01-01

    Shell SNRs show a systematic gradient of radio surface brightness normal to the galactic plane, and a measured scale height for this effect has been obtained. The progenitor distribution and birth rate are significantly modified when allowance is made for the effect. The galactic height dependence of radio surface brightness satisfactorily accounts for the otherwise anomalous high-latitude SNR AD1006. It also provides a crucial clue to the origin of the radio emission, suggesting that the interstellar magnetic field is dominant over internally generated fields in shell SNRs. The same conclusion is reached from a consideration of the cumulative number count of shell SNRs

  10. The Radio Synchrotron Background: Conference Summary and Report

    Science.gov (United States)

    Singal, J.; Haider, J.; Ajello, M.; Ballantyne, D. R.; Bunn, E.; Condon, J.; Dowell, J.; Fixsen, D.; Fornengo, N.; Harms, B.; Holder, G.; Jones, E.; Kellermann, K.; Kogut, A.; Linden, T.; Monsalve, R.; Mertsch, P.; Murphy, E.; Orlando, E.; Regis, M.; Scott, D.; Vernstrom, T.; Xu, L.

    2018-03-01

    We summarize the radio synchrotron background workshop that took place 2017 July 19–21 at the University of Richmond. This first scientific meeting dedicated to the topic was convened because current measurements of the diffuse radio monopole reveal a surface brightness that is several times higher than can be straightforwardly explained by known Galactic and extragalactic sources and processes, rendering it by far the least well understood photon background at present. It was the conclusion of a majority of the participants that the radio monopole level is at or near that reported by the ARCADE 2 experiment and inferred from several absolutely calibrated zero-level lower frequency radio measurements, and unanimously agreed that the production of this level of surface brightness, if confirmed, represents a major outstanding question in astrophysics. The workshop reached a consensus on the next priorities for investigations of the radio synchrotron background.

  11. The properties of radio ellipticals

    International Nuclear Information System (INIS)

    Sparks, W.B.; Disney, M.J.; Rodgers, A.W.

    1984-01-01

    Optical and additional radio data are presented for the bright galaxies of the Disney and Wall survey (1977 Mon. Not. R. Astron. Soc. 179, 235). These data form the basis of a statistical comparison of the properties of radio elliptical galaxies to radio-quiet ellipticals. The correlations may be explained by the depth of the gravitational potential well in which the galaxy resides governing the circumstances under which an elliptical galaxy rids itself of internally produced gas. (author)

  12. PHYSICAL CONSTRAINTS ON FAST RADIO BURSTS

    Energy Technology Data Exchange (ETDEWEB)

    Luan, Jing; Goldreich, Peter, E-mail: jingluan@caltech.edu [California Institute of Technology, Pasadena, CA 91125 (United States)

    2014-04-20

    Fast radio bursts (FRBs) are isolated, ms radio pulses with dispersion measure (DM) of order 10{sup 3} pc cm{sup –3}. Galactic candidates for the DM of high latitude bursts detected at GHz frequencies are easily dismissed. DM from bursts emitted in stellar coronas are limited by free-free absorption and those from H II regions are bounded by the nondetection of associated free-free emission at radio wavelengths. Thus, if astronomical, FRBs are probably extragalactic. FRB 110220 has a scattering tail of ∼5.6 ± 0.1 ms. If the electron density fluctuations arise from a turbulent cascade, the scattering is unlikely to be due to propagation through the diffuse intergalactic plasma. A more plausible explanation is that this burst sits in the central region of its host galaxy. Pulse durations of order ms constrain the sizes of FRB sources implying high brightness temperatures that indicates coherent emission. Electric fields near FRBs at cosmological distances would be so strong that they could accelerate free electrons from rest to relativistic energies in a single wave period.

  13. PHYSICAL CONSTRAINTS ON FAST RADIO BURSTS

    International Nuclear Information System (INIS)

    Luan, Jing; Goldreich, Peter

    2014-01-01

    Fast radio bursts (FRBs) are isolated, ms radio pulses with dispersion measure (DM) of order 10 3 pc cm –3 . Galactic candidates for the DM of high latitude bursts detected at GHz frequencies are easily dismissed. DM from bursts emitted in stellar coronas are limited by free-free absorption and those from H II regions are bounded by the nondetection of associated free-free emission at radio wavelengths. Thus, if astronomical, FRBs are probably extragalactic. FRB 110220 has a scattering tail of ∼5.6 ± 0.1 ms. If the electron density fluctuations arise from a turbulent cascade, the scattering is unlikely to be due to propagation through the diffuse intergalactic plasma. A more plausible explanation is that this burst sits in the central region of its host galaxy. Pulse durations of order ms constrain the sizes of FRB sources implying high brightness temperatures that indicates coherent emission. Electric fields near FRBs at cosmological distances would be so strong that they could accelerate free electrons from rest to relativistic energies in a single wave period

  14. THE VLA SURVEY OF CHANDRA DEEP FIELD SOUTH. V. EVOLUTION AND LUMINOSITY FUNCTIONS OF SUB-MILLIJANSKY RADIO SOURCES AND THE ISSUE OF RADIO EMISSION IN RADIO-QUIET ACTIVE GALACTIC NUCLEI

    International Nuclear Information System (INIS)

    Padovani, P.; Mainieri, V.; Rosati, P.; Miller, N.; Kellermann, K. I.; Tozzi, P.

    2011-01-01

    We present the evolutionary properties and luminosity functions of the radio sources belonging to the Chandra Deep Field South Very Large Array survey, which reaches a flux density limit at 1.4 GHz of 43 μJy at the field center and redshift ∼5 and which includes the first radio-selected complete sample of radio-quiet active galactic nuclei (AGNs). We use a new, comprehensive classification scheme based on radio, far- and near-IR, optical, and X-ray data to disentangle star-forming galaxies (SFGs) from AGNs and radio-quiet from radio-loud AGNs. We confirm our previous result that SFGs become dominant only below 0.1 mJy. The sub-millijansky radio sky turns out to be a complex mix of SFGs and radio-quiet AGNs evolving at a similar, strong rate; non-evolving low-luminosity radio galaxies; and declining radio powerful (P ∼> 3 x 10 24 W Hz -1 ) AGNs. Our results suggest that radio emission from radio-quiet AGNs is closely related to star formation. The detection of compact, high brightness temperature cores in several nearby radio-quiet AGNs can be explained by the coexistence of two components, one non-evolving and AGN related and one evolving and star formation related. Radio-quiet AGNs are an important class of sub-millijansky sources, accounting for ∼30% of the sample and ∼60% of all AGNs, and outnumbering radio-loud AGNs at ∼< 0.1 mJy. This implies that future, large area sub-millijansky surveys, given the appropriate ancillary multiwavelength data, have the potential of being able to assemble vast samples of radio-quiet AGNs, bypassing the problems of obscuration that plague the optical and soft X-ray bands.

  15. Parsec-Scale Radio Properties of Gamma-ray Bright Blazars

    Science.gov (United States)

    Linford, Justin

    2012-01-01

    The parsec-scale radio properties of blazars detected by the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope have been investigated using observations with the Very Long Baseline Array (VLBA). Comparisons between LAT and non-LAT detected samples were made using both archival and contemporaneous data. In total, 244 sources were used in the LAT-detected sample. This very large, radio flux-limited sample of active galactic nuclei (AGN) provides insights into the mechanism that produces strong gamma-ray emission. It has been found that LAT-detected BL Lac objects are very similar to the non-LAT BL Lac objects in most properties, although LAT BL Lac objects may have longer jets. The LAT flat spectrum radio quasars (FSRQs) are significantly different from non-LAT FSRQs and are likely extreme members of the FSRQ population. Archival radio data indicated that there was no significant correlation between radio flux density and gamma-ray flux, especially at lower flux levels. However, contemporaneous observations showed a strong correlation. Most of the differences between the LAT and non-LAT populations are related to the cores of the sources, indicating that the gamma-ray emission may originate near the base of the jets (i.e., within a few pc of the central engine). There is some indication that LAT-detected sources may have larger jet opening angles than the non-LAT sources. Strong core polarization is significantly more common among the LAT sources, suggesting that gamma-ray emission is related to strong, uniform magnetic fields at the base of the jets of the blazars. Observations of sources in two epochs indicate that core fractional polarization was higher when the objects were detected by the LAT. Included in our sample are several non-blazar AGN such as 3C84, M82, and NGC 6251.

  16. The detectability of radio emission from exoplanets

    Science.gov (United States)

    Lynch, C. R.; Murphy, Tara; Lenc, E.; Kaplan, D. L.

    2018-05-01

    Like the magnetised planets in our Solar System, magnetised exoplanets should emit strongly at radio wavelengths. Radio emission directly traces the planetary magnetic fields and radio detections can place constraints on the physical parameters of these features. Large comparative studies of predicted radio emission characteristics for the known population of exoplanets help to identify what physical parameters could be key for producing bright, observable radio emission. Since the last comparative study, many thousands of exoplanets have been discovered. We report new estimates for the radio flux densities and maximum emission frequencies for the current population of known exoplanets orbiting pre-main sequence and main-sequence stars with spectral types F-M. The set of exoplanets predicted to produce observable radio emission are Hot Jupiters orbiting young stars. The youth of these system predicts strong stellar magnetic fields and/or dense winds, which are key for producing bright, observable radio emission. We use a new all-sky circular polarisation Murchison Widefield Array survey to place sensitive limits on 200 MHz emission from exoplanets, with 3σ values ranging from 4.0 - 45.0 mJy. Using a targeted Giant Metre Wave Radio Telescope observing campaign, we also report a 3σ upper limit of 4.5 mJy on the radio emission from V830 Tau b, the first Hot Jupiter to be discovered orbiting a pre-main sequence star. Our limit is the first to be reported for the low-frequency radio emission from this source.

  17. Brightness temperature simulation of snow cover based on snow grain size evolution using in situ data

    Science.gov (United States)

    Wu, Lili; Li, Xiaofeng; Zhao, Kai; Zheng, Xingming; Jiang, Tao

    2016-07-01

    Snow depth parameter inversion from passive microwave remote sensing is of great significance to hydrological process and climate systems. The Helsinki University of Technology (HUT) model is a commonly used snow emission model. Snow grain size (SGS) is one of the important input parameters, but SGS is difficult to obtain in broad areas. The time series of SGS are first evolved by an SGS evolution model (Jordan 91) using in situ data. A good linear relationship between the effective SGS in HUT and the evolution SGS was found. Then brightness temperature simulations are performed based on the effective SGS and evolution SGS. The results showed that the biases of the simulated brightness temperatures based on the effective SGS and evolution SGS were -6.5 and -3.6 K, respectively, for 18.7 GHz and -4.2 and -4.0 K for 36.5 GHz. Furthermore, the model is performed in six pixels with different land use/cover type in other areas. The results showed that the simulated brightness temperatures based on the evolution SGS were consistent with those from the satellite. Consequently, evolution SGS appears to be a simple method to obtain an appropriate SGS for the HUT model.

  18. NOAA Climate Data Record (CDR) of MSU Level 1c Brightness Temperature, Version 1.0

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains Level 1c inter-calibrated brightness temperatures from the Microwave Sounding Unit (MSU) sensors onboard nine polar orbiting satellites...

  19. Flattening and radio emission among elliptical galaxies

    International Nuclear Information System (INIS)

    Disney, M.J.; Sparks, W.B.; Wall, J.V.

    1984-01-01

    In a sample of 132 bright elliptical galaxies it is shown that there is a strong correlation between radio activity and flattening in the sense that radio ellipticals are both apparently and inherently rounder than the average elliptical. Both extended and compact sources are subject to the same correlation. No galaxies with axial ratios below 0.65 are found to be radio emitters. (author)

  20. Analysis of SMOS brightness temperature and vegetation optical depth data with coupled land surface and radiative transfer models in Southern Germany

    Directory of Open Access Journals (Sweden)

    F. Schlenz

    2012-10-01

    Full Text Available Soil Moisture and Ocean Salinity (SMOS L1c brightness temperature and L2 optical depth data are analysed with a coupled land surface (PROMET and radiative transfer model (L-MEB. The coupled models are validated with ground and airborne measurements under contrasting soil moisture, vegetation and land surface temperature conditions during the SMOS Validation Campaign in May and June 2010 in the SMOS test site Upper Danube Catchment in southern Germany. The brightness temperature root-mean-squared errors are between 6 K and 9 K. The L-MEB parameterisation is considered appropriate under local conditions even though it might possibly be further optimised. SMOS L1c brightness temperature data are processed and analysed in the Upper Danube Catchment using the coupled models in 2011 and during the SMOS Validation Campaign 2010 together with airborne L-band brightness temperature data. Only low to fair correlations are found for this comparison (R between 0.1–0.41. SMOS L1c brightness temperature data do not show the expected seasonal behaviour and are positively biased. It is concluded that RFI is responsible for a considerable part of the observed problems in the SMOS data products in the Upper Danube Catchment. This is consistent with the observed dry bias in the SMOS L2 soil moisture products which can also be related to RFI. It is confirmed that the brightness temperature data from the lower SMOS look angles and the horizontal polarisation are less reliable. This information could be used to improve the brightness temperature data filtering before the soil moisture retrieval. SMOS L2 optical depth values have been compared to modelled data and are not considered a reliable source of information about vegetation due to missing seasonal behaviour and a very high mean value. A fairly strong correlation between SMOS L2 soil moisture and optical depth was found (R = 0.65 even though the two variables are considered independent in the

  1. Solar cooker effect test and temperature field simulation of radio telescope subreflector

    International Nuclear Information System (INIS)

    Chen, Deshen; Wang, Huajie; Qian, Hongliang; Zhang, Gang; Shen, Shizhao

    2016-01-01

    Highlights: • Solar cooker effect test of a telescope subreflector is conducted for the first time. • The cause and temperature distribution regularities are analyzed contrastively. • Simulation methods are proposed using light beam segmentation and tracking methods. • The validity of simulation methods is evaluated using the test results. - Abstract: The solar cooker effect can cause a local high temperature of the subreflector and can directly affect the working performance of the radio telescope. To study the daily temperature field and solar cooker effect of a subreflector, experimental studies are carried out with a 3-m-diameter radio telescope model for the first time. Initially, the solar temperature distribution rules, especially the solar cooker effect, are summarized according to the field test results under the most unfavorable conditions. Then, a numerical simulation for the solar temperature field of the subreflector is studied by light beam segmentation and tracking methods. Finally, the validity of the simulation methods is evaluated using the test results. The experimental studies prove that the solar cooker effect really exists and should not be overlooked. In addition, simulation methods for the subreflector temperature field proposed in this paper are effective. The research methods and conclusions can provide valuable references for thermal design, monitoring and control of similar high-precision radio telescopes.

  2. NOAA Fundamental Climate Data Record (CDR) of AMSU-B and MHS Brightness Temperature, Version 1

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA Climate Data Record (CDR) of Advanced Microwave Sounding Unit-B (AMSU-B) and Microwave Humidity Sounder (MHS) brightness temperature (Tb) in "window...

  3. Gas Sloshing and Radio Galaxy Dynamics in the Core of the 3C 449 Group

    Science.gov (United States)

    Lal, Dharam V.; Kraft, Ralph P.; Randall, Scott W.; Forman, William R.; Nulsen, Paul E.; Roediger, Elke; ZuHone, John A.; Hardcastle, Martin J.; Jones, Christine; Croston, Judith H.

    2013-01-01

    We present results from a 140 ks Chandra/ACIS-S observation of the hot gas around the canonical FR I radio galaxy 3C 449. An earlier, shorter 30 ks Chandra observation of the group gas showed an unusual entropy distribution and a surface brightness edge in the gas that could be a strong shock around the inner radio lobes. In our deeper data we find no evidence for a temperature increase inside of the brightness edge, but a temperature decrease across part of the edge. This suggests that the edge is a "sloshing" cold front due to a merger within the last 1.3-1.6 Gyr. Both the northern and southern inner jets are bent slightly to the west in projection as they enter their respective lobes, suggesting that the sloshing core is moving to the east. The straight inner jet flares at approximately the position where it crosses the contact edge, suggesting that the jet is entraining and thermalizing some of the hot gas as it crosses the edge.We also detect filaments of X-ray emission around the southern inner radio jet and lobe which we attribute to low entropy entrained gas. The lobe flaring and gas entrainment were originally predicted in simulations of Loken et al. and are confirmed in our deep observation.

  4. A Solar Stationary Type IV Radio Burst and Its Radiation Mechanism

    Science.gov (United States)

    Liu, Hongyu; Chen, Yao; Cho, Kyungsuk; Feng, Shiwei; Vasanth, Veluchamy; Koval, Artem; Du, Guohui; Wu, Zhao; Li, Chuanyang

    2018-04-01

    A stationary Type IV (IVs) radio burst was observed on September 24, 2011. Observations from the Nançay RadioHeliograph (NRH) show that the brightness temperature (TB) of this burst is extremely high, over 10^{11} K at 150 MHz and over 108 K in general. The degree of circular polarization (q) is between -60% ˜ -100%, which means that it is highly left-handed circularly polarized. The flux-frequency spectrum follows a power-law distribution, and the spectral index is considered to be roughly -3 ˜ -4 throughout the IVs. Radio sources of this event are located in the wake of the coronal mass ejection and are spatially dispersed. They line up to present a formation in which lower-frequency sources are higher. Based on these observations, it is suggested that the IVs was generated through electron cyclotron maser emission.

  5. Effect of morning bright light on body temperature, plasma cortisol and wrist motility measured during 24 hour of constant conditions.

    Science.gov (United States)

    Foret, J; Aguirre, A; Touitou, Y; Clodoré, M; Benoit, O

    1993-06-11

    Using 24 h constant conditions, time course of body temperature, plasma cortisol and wrist motility was measured in response to a 3 day morning 2 h bright light pulse. This protocol demonstrated that a 2000 lux illumination was sufficient to elicit a shift of about 2 h of temperature minimum and cortisol peak. In reference session, actimetric recordings showed a circadian time course, closely in relation with core temperature. Bright light pulse resulted in a decrease of amplitude and a disappearance of circadian pattern of actimetry.

  6. Mars' radio spectrum and the flying dust.

    NARCIS (Netherlands)

    Roos-Serote, M.; Stam, D.M.; Fender, R.P.

    2004-01-01

    Mars' radio spectrum at centimeter wavelengths is produced by thermal radiation from the surface and sub-surface. Observations at 2.8 cm made in the 1975 and 1978 show variations of its radio brightness as a function of longitude on the planet (Doherty et al. , ApJ 233, 1979). In addition, an

  7. Soil hydraulic parameters and surface soil moisture of a tilled bare soil plot inversely derived from l-band brightness temperatures

    KAUST Repository

    Dimitrov, Marin

    2014-01-01

    We coupled a radiative transfer model and a soil hydrologic model (HYDRUS 1D) with an optimization routine to derive soil hydraulic parameters, surface roughness, and soil moisture of a tilled bare soil plot using measured brightness temperatures at 1.4 GHz (L-band), rainfall, and potential soil evaporation. The robustness of the approach was evaluated using five 28-d data sets representing different meteorological conditions. We considered two soil hydraulic property models: the unimodal Mualem-van Genuchten and the bimodal model of Durner. Microwave radiative transfer was modeled by three different approaches: the Fresnel equation with depth-averaged dielectric permittivity of either 2-or 5-cm-thick surface layers and a coherent radiative transfer model (CRTM) that accounts for vertical gradients in dielectric permittivity. Brightness temperatures simulated by the CRTM and the 2-cm-layer Fresnel model fitted well to the measured ones. L-band brightness temperatures are therefore related to the dielectric permittivity and soil moisture in a 2-cm-thick surface layer. The surface roughness parameter that was derived from brightness temperatures using inverse modeling was similar to direct estimates from laser profiler measurements. The laboratory-derived water retention curve was bimodal and could be retrieved consistently for the different periods from brightness temperatures using inverse modeling. A unimodal soil hydraulic property function underestimated the hydraulic conductivity near saturation. Surface soil moisture contents simulated using retrieved soil hydraulic parameters were compared with in situ measurements. Depth-specific calibration relations were essential to derive soil moisture from near-surface installed sensors. © Soil Science Society of America 5585 Guilford Rd., Madison, WI 53711 USA.

  8. Minimum-phase distribution of cosmic source brightness

    International Nuclear Information System (INIS)

    Gal'chenko, A.A.; Malov, I.F.; Mogil'nitskaya, L.F.; Frolov, V.A.

    1984-01-01

    Minimum-phase distributions of brightness (profiles) for cosmic radio sources 3C 144 (the wave lambda=21 cm), 3C 338 (lambda=3.5 m), and 3C 353 (labda=31.3 cm and 3.5 m) are obtained. A real possibility for the profile recovery from module fragments of its Fourier-image is shown

  9. NOAA Climate Data Record (CDR) of SSM/I and SSMIS Microwave Brightness Temperatures, CSU Version 1

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This NOAA Climate Data Record (CDR) from Colorado State University (CSU) contains brightness temperatures that have been improved and quality-controlled over the...

  10. NOAA Climate Data Record (CDR) of SSM/I and SSMIS Microwave Brightness Temperatures, RSS Version 7

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This Version 7 NOAA Fundamental Climate Data Record (CDR) from Remote Sensing Systems (RSS) contains brightness temperatures that have been inter-calibrated and...

  11. Inferring Land Surface Model Parameters for the Assimilation of Satellite-Based L-Band Brightness Temperature Observations into a Soil Moisture Analysis System

    Science.gov (United States)

    Reichle, Rolf H.; De Lannoy, Gabrielle J. M.

    2012-01-01

    The Soil Moisture and Ocean Salinity (SMOS) satellite mission provides global measurements of L-band brightness temperatures at horizontal and vertical polarization and a variety of incidence angles that are sensitive to moisture and temperature conditions in the top few centimeters of the soil. These L-band observations can therefore be assimilated into a land surface model to obtain surface and root zone soil moisture estimates. As part of the observation operator, such an assimilation system requires a radiative transfer model (RTM) that converts geophysical fields (including soil moisture and soil temperature) into modeled L-band brightness temperatures. At the global scale, the RTM parameters and the climatological soil moisture conditions are still poorly known. Using look-up tables from the literature to estimate the RTM parameters usually results in modeled L-band brightness temperatures that are strongly biased against the SMOS observations, with biases varying regionally and seasonally. Such biases must be addressed within the land data assimilation system. In this presentation, the estimation of the RTM parameters is discussed for the NASA GEOS-5 land data assimilation system, which is based on the ensemble Kalman filter (EnKF) and the Catchment land surface model. In the GEOS-5 land data assimilation system, soil moisture and brightness temperature biases are addressed in three stages. First, the global soil properties and soil hydraulic parameters that are used in the Catchment model were revised to minimize the bias in the modeled soil moisture, as verified against available in situ soil moisture measurements. Second, key parameters of the "tau-omega" RTM were calibrated prior to data assimilation using an objective function that minimizes the climatological differences between the modeled L-band brightness temperatures and the corresponding SMOS observations. Calibrated parameters include soil roughness parameters, vegetation structure parameters

  12. Synchrotron brightness distribution of turbulent radio jets

    International Nuclear Information System (INIS)

    Henriksen, R.N.; Bridle, A.H.; Chan, K.L.

    1982-01-01

    In this paper we introduce the notion of radio jets as turbulent mixing regions. We further propose that the essential small-scale viscous dissipation in these jets is by Lighthill emission of MHD waves and by their subsequent strong damping due, at least partly, to gyroresonant acceleration of suprathermal particles. The equilibrium eddy, wave, and particle spectra are not found exactly in this paper but the problem is defined and rough estimates of the spectra are given to aid in the observational interpretation

  13. NOAA Climate Data Record (CDR) of AMSU-A Level 1c Brightness Temperature, Version 1.0

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains Level 1c inter-calibrated brightness temperatures from the Advanced Microwave Sounding Unit-A (AMSU-A) sensors onboard six polar orbiting...

  14. Brightness waves of electroluminescence in ZnO:La electroluminor

    International Nuclear Information System (INIS)

    Bhushan, S.; Pandey, A.N.; Kaza, Balakrishna Rao

    1979-01-01

    A cryostat for the measurement of different luminescent characteristics from liquid N 2 temperature to above has been fabricated. Using this cryostat brightness waves due to sinusoidal excitations for ZnO:La electroluminor (EL) has been studied at different temperatures from -168deg C. Brightness waves for this system consist of two primary peaks during each cycle of excitation. Each primary peak is associated with a secondary peak. This secondary peak at -168deg C exists at the left arm of the primary peak. As the temperature is increased to 18deg C it moves towards the right arm of the primary peak. At an intermediate temperature the secondary peaks are most pronounced. Possible mechanism for these phenomena have been discussed. Temperature dependence of time averaged EL brightness for this system has also been studied and three peaks have been found. The results of brightness waves have also been discussed in the light of temperature dependence of time averaged EL brightness. (auth.)

  15. Solar Plasma Radio Emission in the Presence of Imbalanced Turbulence of Kinetic-Scale Alfvén Waves

    Science.gov (United States)

    Lyubchyk, O.; Kontar, E. P.; Voitenko, Y. M.; Bian, N. H.; Melrose, D. B.

    2017-09-01

    We study the influence of kinetic-scale Alfvénic turbulence on the generation of plasma radio emission in the solar coronal regions where the ratio β of plasma to magnetic pressure is lower than the electron-to-ion mass ratio me/mi. The present study is motivated by the phenomenon of solar type I radio storms that are associated with the strong magnetic field of active regions. The measured brightness temperature of the type I storms can be up to 10^{10} K for continuum emission, and can exceed 10^{11} K for type I bursts. At present, there is no generally accepted theory explaining such high brightness temperatures and some other properties of the type I storms. We propose a model with an imbalanced turbulence of kinetic-scale Alfvén waves that produce an asymmetric quasi-linear plateau on the upper half of the electron velocity distribution. The Landau damping of resonant Langmuir waves is suppressed and their amplitudes grow spontaneously above the thermal level. The estimated saturation level of Langmuir waves is high enough to generate observed type I radio emission at the fundamental plasma frequency. Harmonic emission does not appear in our model because the backward-propagating Langmuir waves undergo strong Landau damping. Our model predicts 100% polarization in the sense of the ordinary (o-) mode of type I emission.

  16. Implementation of an Ultra-Bright Thermographic Phosphor for Gas Turbine Engine Temperature Measurements

    Science.gov (United States)

    Eldridge, Jeffrey I.; Bencic, Timothy J.; Zhu, Dongming; Cuy, Michael D.; Wolfe, Douglas E.; Allison, Stephen W.; Beshears, David L.; Jenkins, Thomas P.; Heeg, Bauke; Howard, Robert P.; hide

    2014-01-01

    The overall goal of the Aeronautics Research Mission Directorate (ARMD) Seedling Phase II effort was to build on the promising temperature-sensing characteristics of the ultrabright thermographic phosphor Cr-doped gadolinium aluminum perovskite (Cr:GAP) demonstrated in Phase I by transitioning towards an engine environment implementation. The strategy adopted was to take advantage of the unprecedented retention of ultra-bright luminescence from Cr:GAP at temperatures over 1000 C to enable fast 2D temperature mapping of actual component surfaces as well as to utilize inexpensive low-power laser-diode excitation suitable for on-wing diagnostics. A special emphasis was placed on establishing Cr:GAP luminescence-based surface temperature mapping as a new tool for evaluating engine component surface cooling effectiveness.

  17. Dust Temperatures in the Infrared Space Observatory Atlas of Bright Spiral Galaxies

    CERN Document Server

    Bendo, G J; Wells, M; Gallais, P; Haas, M; Heras, A M; Klaas, U; Laureijs, R J; Leech, K; Lemke, D; Metcalfe, L; Rowan-Robinson, M; Schulz, B; Telesco, C M; Bendo, George J.; Joseph, Robert D.; Wells, Martyn; Gallais, Pascal; Haas, Martin; Heras, Ana M.; Klaas, Ulrich; Laureijs, Rene J.; Leech, Kieron; Lemke, Dietrich; Metcalfe, Leo; Rowan-Robinson, Michael; Schulz, Bernhard; Telesco, Charles

    2003-01-01

    We examine far-infrared and submillimeter spectral energy distributions for galaxies in the Infrared Space Observatory Atlas of Bright Spiral Galaxies. For the 71 galaxies where we had complete 60-180 micron data, we fit blackbodies with lambda^-1 emissivities and average temperatures of 31 K or lambda^-2 emissivities and average temperatures of 22 K. Except for high temperatures determined in some early-type galaxies, the temperatures show no dependence on any galaxy characteristic. For the 60-850 micron range in eight galaxies, we fit blackbodies with lambda^-1, lambda-2, and lambda^-beta (with beta variable) emissivities to the data. The best results were with the lambda^-beta emissivities, where the temperatures were ~30 K and the emissivity coefficient beta ranged from 0.9 to 1.9. These results produced gas to dust ratios that ranged from 150 to 580, which were consistent with the ratio for the Milky Way and which exhibited relatively little dispersion compared to fits with fixed emissivities.

  18. Comparison of VLBI radio core and X-ray flux densities of extragalactic radio sources

    International Nuclear Information System (INIS)

    Bloom, S.D.; Marscher, A.P.

    1990-01-01

    The Einstein Observatory revealed that most quasars, selected in a variety of ways, are strong x-ray emitters. Radio bright quasars are statistically more luminous in the x-ray than their radio-quiet counterparts. It was also found that the 90 GHz to soft x-ray spectral index has a very small dispersion for sources selected by their strong millimeter emission. This implies a close relationship between compact radio flux density and x-ray emission. Strong correlations have been found between the arcsecond scale flux densities and soft x-ray fluxes. It is suggested that the correlation can be explained if the soft x-rays were produced by the synchrotron self-Compton (SSC) process within the compact radio emitting region. (author)

  19. NOAA Climate Data Record (CDR) of Advanced Microwave Sounding Unit (AMSU)-A Brightness Temperature, Version 1

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA Climate Data Record (CDR) for Advanced Microwave Sounding Unit-A (AMSU-A) brightness temperature in "window channels". The data cover a time period from...

  20. The Gamma-Ray Emitting Radio-Loud Narrow-Line Seyfert 1 Galaxy PKS 2004-447 II. The Radio View

    Science.gov (United States)

    Schulz, R.; Kreikenbohm, A.; Kadler, M.; Ojha, R.; Ros, E.; Stevens, J.; Edwards, P. G.; Carpenter, B.; Elsaesser, D.; Gehrels, N.; hide

    2016-01-01

    Context. gamma-ray-detected radio-loud narrow-line Seyfert 1 (gamma-NLS1) galaxies constitute a small but interesting sample of the gamma-ray-loud AGN. The radio-loudest gamma-NLS1 known, PKS2004447, is located in the southern hemisphere and is monitored in the radio regime by the multiwavelength monitoring programme TANAMI. Aims. We aim for the first detailed study of the radio morphology and long-term radio spectral evolution of PKS2004447, which are essential for understanding the diversity of the radio properties of gamma-NLS1s. Methods. The TANAMI VLBI monitoring program uses the Australian Long Baseline Array (LBA) and telescopes in Antarctica, Chile, New Zealand, and South Africa to monitor the jets of radio-loud active galaxies in the southern hemisphere. Lower resolution radio flux density measurements at multiple radio frequencies over four years of observations were obtained with the Australia Telescope Compact Array (ATCA). Results. The TANAMI VLBI image at 8.4GHz shows an extended one-sided jet with a dominant compact VLBI core. Its brightness temperature is consistent with equipartition, but it is an order of magnitude below other gamma-NLS1s with the sample value varying over two orders of magnitude. We find a compact morphology with a projected large-scale size 11 kpc and a persistent steep radio spectrum with moderate flux-density variability. Conclusions. PKS2004447 appears to be a unique member of the gamma-NLS1 sample. It exhibits blazar-like features, such as a flat featureless X-ray spectrum and a core-dominated, one-sided parsec-scale jet with indications for relativistic beaming. However, the data also reveal properties atypical for blazars, such as a radio spectrum and large-scale size consistent with compact-steep-spectrum (CSS) objects, which are usually associated with young radio sources. These characteristics are unique among all gamma-NLS1s and extremely rare among gamma-ray-loud AGN.

  1. Bright optical synchrotron counterpart of the western hot spot in Pictor A

    International Nuclear Information System (INIS)

    Roeser, H.J.; Meisenheimer, K.; Royal Observatory, Edinburgh, Scotland)

    1987-01-01

    A B = 19.5 mag bright, highly polarized object was detected close to the western hot spot in Pictor A during an optical polarization survey of radio hot spots in classical double radio sources. The unresolved source exhibits a featureless continuum between 400 and 800 nm and is identified as the optical counterpart of the radio hot spot. It is surrounded by optical filaments aligned roughly perpendicular to the source axis. The hot spot is also marginally detected in an Einstein IPC frame. 17 references

  2. Interpretation of the galactic radio-continuum and gamma-ray emission

    International Nuclear Information System (INIS)

    Beuermann, K.P.

    1974-01-01

    An analysis is performed of the nonthermal radio-continuum and gamma-ray emission of the galactic disc, using a spiral-arm model of the Galaxy. The results for the 408 MHz brightness temperature and the >100 MeV gamma-ray line intensity as a function of galactic longitude at bsup(II)=0 deg are presented. The observational implications, as well as the uncertainties in the calculations, are briefly discussed. An estimate of the possible range of the inverse Compton contribution to the observed gamma-ray flux is made

  3. Simulated X-ray galaxy clusters at the virial radius: Slopes of the gas density, temperature and surface brightness profiles

    Science.gov (United States)

    Roncarelli, M.; Ettori, S.; Dolag, K.; Moscardini, L.; Borgani, S.; Murante, G.

    2006-12-01

    Using a set of hydrodynamical simulations of nine galaxy clusters with masses in the range 1.5 × 1014 matter of tension between simulated and observed properties, and up to the virial radius and beyond, where present observations are unable to provide any constraints. We have modelled the radial profiles between 0.3R200 and 3R200 with power laws with one index, two indexes and a rolling index. The simulated temperature and [0.5-2] keV surface brightness profiles well reproduce the observed behaviours outside the core. The shape of all these profiles in the radial range considered depends mainly on the activity of the gravitational collapse, with no significant difference among models including extraphysics. The profiles steepen in the outskirts, with the slope of the power-law fit that changes from -2.5 to -3.4 in the gas density, from -0.5 to -1.8 in the gas temperature and from -3.5 to -5.0 in the X-ray soft surface brightness. We predict that the gas density, temperature and [0.5-2] keV surface brightness values at R200 are, on average, 0.05, 0.60, 0.008 times the measured values at 0.3R200. At 2R200, these values decrease by an order of magnitude in the gas density and surface brightness, by a factor of 2 in the temperature, putting stringent limits on the detectable properties of the intracluster-medium (ICM) in the virial regions.

  4. Dynamical evolution in clusters of galaxies with low-frequency radio emission

    International Nuclear Information System (INIS)

    Guthrie, B.N.G.

    1977-01-01

    Clusters of galaxies in which radio emission at low frequencies ( approximately 10 9 yr). Confinement would probably occur for radio sources associated with bright galaxies in the cores of clusters and cD galaxies in clusters. However, cD galaxies may have recurrent radio outbursts so that steep spectra are not always observed. (Auth.)

  5. VERY LONG BASELINE INTERFEROMETRY SEARCH FOR THE RADIO COUNTERPART OF HESS J1943+213

    Energy Technology Data Exchange (ETDEWEB)

    Gabanyi, K. E. [Konkoly Observatory, Research Centre for Astronomy and Earth Sciences of the Hungarian Academy of Sciences, P.O. Box 67, Budapest H-1525 (Hungary); Dubner, G.; Giacani, E. [Instituto de Astronomia y Fisica del Espacio (CONICET-UBA), CC 67, Suc. 28, 1428 Buenos Aires (Argentina); Paragi, Z.; Pidopryhora, Y. [Joint Institute for VLBI in Europe, Postbus 2, 7990 AA Dwingeloo (Netherlands); Frey, S., E-mail: gabanyi@konkoly.hu [FOeMI Satellite Geodetic Observatory, P.O. Box 585, H-1592 Budapest (Hungary)

    2013-01-01

    HESS J1943+213, a TeV point source close to the Galactic plane recently discovered by the H.E.S.S. Collaboration, was proposed to be an extreme BL Lacertae object, though a pulsar wind nebula (PWN) nature could not be completely discarded. To investigate its nature, we performed high-resolution radio observations with the European Very Long Baseline Interferometry Network (EVN) and reanalyzed archival continuum and H I data. The EVN observations revealed a compact radio counterpart of the TeV source. The low brightness temperature and the resolved nature of the radio source are indications against the beamed BL Lacertae hypothesis. The radio/X-ray source appears immersed in a {approx}1' elliptical feature, suggesting a possible galactic origin (PWN nature) for the HESS source. We found that HESS J1943+213 is located in the interior of a {approx}1 Degree-Sign diameter H I feature and explored the possibility of them being physically related.

  6. The surface brightness of spiral galaxies: Pt. 4

    International Nuclear Information System (INIS)

    Phillipps, S.; Disney, M.; Ohio State Univ., Columbus

    1988-01-01

    Using measurements from IRAS correlations are found between optical surface brightness and both infrared-to-optical flux ratio and infrared colour temperature, in the sense that galaxies with high surface brightness have higher FIR emission and higher temperatures. (author)

  7. Spatio-temporal behavior of brightness temperature in Tel-Aviv and its application to air temperature monitoring.

    Science.gov (United States)

    Pelta, Ran; Chudnovsky, A Alexandra; Schwartz, Joel

    2016-01-01

    This study applies remote sensing technology to assess and examine the spatial and temporal Brightness Temperature (BT) profile in the city of Tel-Aviv, Israel over the last 30 years using Landsat imagery. The location of warmest and coldest zones are constant over the studied period. Distinct diurnal and temporal BT behavior divide the city into four different segments. As an example of future application, we applied mixed regression models with daily random slopes to correlate Landsat BT data with monitored air temperature (Tair) measurements using 14 images for 1989-2014. Our preliminary results show a good model performance with R(2) = 0.81. Furthermore, based on the model's results, we analyzed the spatial profile of Tair within the study domain for representative days. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. A DETAILED STUDY OF THE LOBES OF ELEVEN POWERFUL RADIO GALAXIES

    International Nuclear Information System (INIS)

    Daly, Ruth A.; Mory, Matthew P.; McKane, Justin; Altenderfer, Christopher; Beury, Michael; Kharb, Preeti; O'Dea, Christopher P.; Baum, Stefi A.

    2010-01-01

    Radio lobes of a sample of 11 very powerful classical double radio galaxies were studied. Each source was rotated so that the symmetry axis of the source was horizontal, and vertical cross-sectional cuts were taken across the source at intervals of one beam size. These were used to study the cross-sectional surface brightness profiles, the width of each slice, radio emissivity as a function of position across each slice, the first and second moments, and the average surface brightness, minimum-energy magnetic field strength, and pressure of each slice. Typically, a Gaussian provides a good description of the surface brightness profile of cross-sectional slices. The Gaussian full width at half-maximum (FWHM) as a function of distance from the hot spot first increases and then decreases with increasing distance from the hot spot. The width as a function of distance from the hot spot is generally highly symmetric on each side of the source. The radio emissivity is often close to flat across a slice, indicating a roughly constant emissivity and pressure for that slice. Some slices show variations in radio emissivity that indicate an 'edge-peaked' pressure profile for that slice. When this occurs, it is generally found in slices near the local maxima of the bridge width. The emissivity does not exhibit any signature of emission from a jet. The first moment is generally quite close to zero indicating only small excursions of the ridgeline from the symmetry axis of the source. The second moment indicates the same source shape as is found using the Gaussian FWHM. The average surface brightness is peaked at the hot spot, and is fairly flat across most of the radio lobes. The average magnetic field strength and pressure peak at the hot spot and gradually decrease with increasing distance from the hot spot, reaching a roughly constant value at a location that is typically just before the location of a local maximum of the bridge width. These results are interpreted in terms

  9. Effect of a single 3-hour exposure to bright light on core body temperature and sleep in humans.

    Science.gov (United States)

    Dijk, D J; Cajochen, C; Borbély, A A

    1991-01-02

    Seven human subjects were exposed to bright light (BL, approx. 2500 lux) and dim light (DL, approx. 6 lux) during 3 h prior to nocturnal sleep, in a cross-over design. At the end of the BL exposure period core body temperature was significantly higher than at the end of the DL exposure period. The difference in core body temperature persisted during the first 4 h of sleep. The latency to sleep onset was increased after BL exposure. Rapid-eye movement sleep (REMS) and slow-wave sleep (SWS; stage 3 + 4 of non-REMS) were not significantly changed. Eight subjects were exposed to BL from 20.30 to 23.30 h while their eyes were covered or uncovered. During BL exposure with uncovered eyes, core body temperature decreased significantly less than during exposure with covered eyes. We conclude that bright light immediately affects core body temperature and that this effect is mediated via the eyes.

  10. Curved Radio Spectra of Weak Cluster Shocks

    Science.gov (United States)

    Kang, Hyesung; Ryu, Dongsu

    2015-08-01

    In order to understand certain observed features of arc-like giant radio relics such as the rareness, uniform surface brightness, and curved integrated spectra, we explore a diffusive shock acceleration (DSA) model for radio relics in which a spherical shock impinges on a magnetized cloud containing fossil relativistic electrons. Toward this end, we perform DSA simulations of spherical shocks with the parameters relevant for the Sausage radio relic in cluster CIZA J2242.8+5301, and calculate the ensuing radio synchrotron emission from re-accelerated electrons. Three types of fossil electron populations are considered: a delta-function like population with the shock injection momentum, a power-law distribution, and a power law with an exponential cutoff. The surface brightness profile of the radio-emitting postshock region and the volume-integrated radio spectrum are calculated and compared with observations. We find that the observed width of the Sausage relic can be explained reasonably well by shocks with speed {u}{{s}}˜ 3× {10}3 {km} {{{s}}}-1 and sonic Mach number {M}{{s}}˜ 3. These shocks produce curved radio spectra that steepen gradually over (0.1-10){ν }{br} with a break frequency {ν }{br}˜ 1 GHz if the duration of electron acceleration is ˜60-80 Myr. However, the abrupt increase in the spectral index above ˜1.5 GHz observed in the Sausage relic seems to indicate that additional physical processes, other than radiative losses, operate for electrons with {γ }{{e}}≳ {10}4.

  11. Far-infrared and submillimeter brightness temperatures of the giant planets

    International Nuclear Information System (INIS)

    Hildebrand, R.H.; Loewenstein, R.F.; Harper, D.A.; Orton, G.S.; Keene, J.; Yerkes Observatory, Williams Bay, WI; California Institute of Technology, Jet Propulsion Laboratory, Pasadena; California Institute of Technology, Pasadena)

    1985-01-01

    The brightness temperatures of Jupiter, Saturn, Uranus, and Neptune were measured in the 35-1000 micron range with the 3-m NASA Infrared Telescope Facility (at wavelengths greater than 350 microns) and with the Kuiper Airborne Observatory (at wavelengths less than 350 microns). The data indicate the presence in Jupiter's spectrum of excess radiation (compared to theoretical models) at 300-400 microns. In addition, slightly less flux was observed from Saturn at 200 microns than predicted by atmospheric models, which suggests the possible presence of an unmodeled absorber. The submillimeter fluxes from Uranus and Neptune appear to be most consistent with low mixing ratios (less than 1 percent) of CH 4 in their deep atmospheres. 73 refs

  12. INDUCED SCATTERING LIMITS ON FAST RADIO BURSTS FROM STELLAR CORONAE

    Energy Technology Data Exchange (ETDEWEB)

    Lyubarsky, Yuri [Physics Department, Ben-Gurion University, P.O.B. 653, Beer-Sheva 84105 (Israel); Ostrovska, Sofiya [Department of Mathematics, Atilim University, Incek 06836, Ankara (Turkey)

    2016-02-10

    The origin of fast radio bursts remains a puzzle. Suggestions have been made that they are produced within the Earth’s atmosphere, in stellar coronae, in other galaxies, or at cosmological distances. If they are extraterrestrial, the implied brightness temperature is very high, and therefore the induced scattering places constraints on possible models. In this paper, constraints are obtained on flares from coronae of nearby stars. It is shown that the radio pulses with the observed power could not be generated if the plasma density within and in the nearest vicinity of the source is as high as is necessary to provide the observed dispersion measure. However, one cannot exclude the possibility that the pulses are generated within a bubble with a very low density and pass through the dense plasma only in the outer corona.

  13. An unusually strong Einstein ring in the radio source PKS1830-211

    International Nuclear Information System (INIS)

    Jauncey, D.L.

    1991-01-01

    RADIO observations of the strong, flat-spectrum radio source PKS1830-211 revealed a double structure, with a separation of 1 arcsec, suggesting that it might be a gravitationally lensed object. We have now obtained high-resolution radio images of PKS1830-211 from several interferometric radiotelescope networks, which show an unusual elliptical ring-like structure connecting the two brighter components. The presence of the ring, and the similarity of the two brighter spots, argue strongly that this is indeed a gravitationally lensed system, specifically an Einstein ring in which lens and lensed object are closely aligned. Although the source is close to the galactic plane, it seems that both the lens and background (lensed) object are extragalactic. This object is one hundred times brighter than either of the two previously discovered radio Einstein rings, and is among the six brightest flat-spectrum sources in the sky. Its brightness makes it a peculiar object: it must involve either a chance alignment of a lensing object with an unusually bright background source, or an alignment with a less bright object but amplified to an unusual degree. (author)

  14. A radio and optical study of Molonglo radio sources

    Science.gov (United States)

    Ishwara-Chandra, C. H.; Saikia, D. J.; McCarthy, P. J.; van Breugel, W. J. M.

    2001-05-01

    We present multi-wavelength radio observations with the Very Large Array, and narrow- and broad-band optical observations with the 2.5-m telescope at the Las Campanas Observatory, of a well-defined sample of high-luminosity Fanaroff-Riley class II radio galaxies and quasars, selected from the Molonglo Reference Catalogue 1-Jy sample. These observations were carried out as part of a programme to investigate the effects of orientation and environment on some of the observed properties of these sources. We examine the dependence of the Liu-Pooley relationship, which shows that radio lobes with flatter radio spectra are less depolarized, on size, identification and redshift, and show that it is significantly stronger for smaller sources, with the strength of the relationship being similar for both radio galaxies and quasars. In addition to Doppler effects, there appear to be intrinsic differences between the lobes on opposite sides. We discuss the asymmetry in brightness and location of the hotspots, and present estimates of the ages and velocities from matched-resolution observations in the L and C bands. Narrow- and broad-band optical images of some of these sources were made to study their environments and correlate with the symmetry parameters. An extended emission-line region is seen in a quasar, and in four of the objects possible companion galaxies are seen close to the radio axis.

  15. CONSTRAINING RADIO EMISSION FROM MAGNETARS

    Energy Technology Data Exchange (ETDEWEB)

    Lazarus, P.; Kaspi, V. M.; Dib, R. [Department of Physics, Rutherford Physics Building, McGill University, 3600 University Street, Montreal, Quebec H3A 2T8 (Canada); Champion, D. J. [Max-Planck-Institut fuer Radioastronomie, Auf dem Huegel 69, 53121 Bonn (Germany); Hessels, J. W. T., E-mail: plazar@physics.mcgill.ca [Netherlands Institute for Radio Astronomy (ASTRON), Postbus 2, 7990 AA Dwingeloo (Netherlands)

    2012-01-10

    We report on radio observations of five magnetars and two magnetar candidates carried out at 1950 MHz with the Green Bank Telescope in 2006-2007. The data from these observations were searched for periodic emission and bright single pulses. Also, monitoring observations of magnetar 4U 0142+61 following its 2006 X-ray bursts were obtained. No radio emission was detected for any of our targets. The non-detections allow us to place luminosity upper limits of L{sub 1950} {approx}< 1.60 mJy kpc{sup 2} for periodic emission and L{sub 1950,single} {approx}< 7.6 Jy kpc{sup 2} for single pulse emission. These are the most stringent limits yet for the magnetars observed. The resulting luminosity upper limits together with previous results are discussed, as is the importance of further radio observations of radio-loud and radio-quiet magnetars.

  16. Radio and X-ray emission from supernova remnants

    International Nuclear Information System (INIS)

    Asvarova, A.I.; Novruzova, H.I.; Ahmedova, S.I.

    2010-01-01

    In this paper it was studied the statistical correlation between radio and X-ray emissions from shell-type supernova remnants (SNR). The primary aim of this study is to test the model of radio emission of shell-type SNRs presented by one of the authors. Based on this model of radio emission, by using the Monte Carlo techniques we have simulated statistical relations radio - X-ray luminosities (not surface brightnesses) which then were compared with the observations. X-ray emission is assumed to be thermal. To have a uniform statistical material it was used observational data on the SNRs in Magellanic Clouds

  17. L-band brightness temperature disaggregation for use with S-band and C-band radiometer data for WCOM

    Science.gov (United States)

    Yao, P.; Shi, J.; Zhao, T.; Cosh, M. H.; Bindlish, R.

    2017-12-01

    There are two passive microwave sensors onboard the Water Cycle Observation Mission (WCOM), which includes a synthetic aperture radiometer operating at L-S-C bands and a scanning microwave radiometer operating from C- to W-bands. It provides a unique opportunity to disaggregate L-band brightness temperature (soil moisture) with S-band C-bands radiometer data. In this study, passive-only downscaling methodologies are developed and evaluated. Based on the radiative transfer modeling, it was found that the TBs (brightness temperature) between the L-band and S-band exhibit a linear relationship, and there is an exponential relationship between L-band and C-band. We carried out the downscaling results by two methods: (1) downscaling with L-S-C band passive measurements with the same incidence angle from payload IMI; (2) downscaling with L-C band passive measurements with different incidence angle from payloads IMI and PMI. The downscaling method with L-S bands with the same incident angle was first evaluated using SMEX02 data. The RMSE are 2.69 K and 1.52 K for H and V polarization respectively. The downscaling method with L-C bands is developed with different incident angles using SMEX03 data. The RMSE are 2.97 K and 2.68 K for H and V polarization respectively. These results showed that high-resolution L-band brightness temperature and soil moisture products could be generated from the future WCOM passive-only observations.

  18. Brightness measurement of an electron impact gas ion source for proton beam writing applications

    Energy Technology Data Exchange (ETDEWEB)

    Liu, N.; Santhana Raman, P. [Centre for Ion Beam Applications, Department of Physics, National University of Singapore, Singapore 117542 (Singapore); Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583 (Singapore); Xu, X.; Pang, R.; Kan, J. A. van, E-mail: phyjavk@nus.edu.sg [Centre for Ion Beam Applications, Department of Physics, National University of Singapore, Singapore 117542 (Singapore); Khursheed, A. [Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583 (Singapore)

    2016-02-15

    We are developing a high brightness nano-aperture electron impact gas ion source, which can create ion beams from a miniature ionization chamber with relatively small virtual source sizes, typically around 100 nm. A prototype source of this kind was designed and successively micro-fabricated using integrated circuit technology. Experiments to measure source brightness were performed inside a field emission scanning electron microscope. The total output current was measured to be between 200 and 300 pA. The highest estimated reduced brightness was found to be comparable to the injecting focused electron beam reduced brightness. This translates into an ion reduced brightness that is significantly better than that of conventional radio frequency ion sources, currently used in single-ended MeV accelerators.

  19. NOAA Climate Data Record (CDR) of GPS RO-Calibrated AMSU Channel 7 (Temperatures of Troposphere / Stratosphere, TTS), Version 1.0 (Version Superseded)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Climate Data Records (CDR) for Channel 7 contains Radio Occulation (RO) calibrated brightness temperatures from AMSU-A channel 7 measurements at 54.9 GHz from...

  20. Brightness Temperature and Soil Moisture Validation at Different Scales During the SMOS Validation Campaign in the Rur and Erft Catchments, Germany

    DEFF Research Database (Denmark)

    Montzka, Carsten; Bogena, Heye R.; Weihermüller, Lutz

    2013-01-01

    The European Space Agency's Soil Moisture and Ocean Salinity (SMOS) satellite was launched in November 2009 and delivers now brightness temperature and soil moisture products over terrestrial areas on a regular three-day basis. In 2010, several airborne campaigns were conducted to validate the SMOS......-band Microwave Emission of the Biosphere model. Measurements of the airborne L-band sensors EMIRAD and HUT-2D on-board a Skyvan aircraft as well as ground-based mobile measurements performed with the truck mounted JÜLBARA L-band radiometer were analyzed for calibration of the simulated brightness temperature...

  1. Observations of a post-flare radio burst in X-rays

    Science.gov (United States)

    Svestka, Z.; Hoyng, P.; Van Tend, W.; Boelee, A.; De Jager, C.; Stewart, R. T.; Acton, L. W.; Bruner, E. C.; Gabriel, A. H.; Rapley, C. G.

    1982-01-01

    More than six hours after the two-ribbon flare of May 21, 1980, the hard X-ray spectrometer aboard the SMM imaged an extensive arch above the flare region which was found to be the lowest part of a stationary post-flare noise storm recorded at the same time at Culgoora. The bent crystal spectrometer aboard the SMM confirms that the arch emission was basically thermal. Variations in brightness and energy spectrum at one of the supposed footpoints of the arch are seen as correlation in time with radio brightness, suggesting that suprathermal particles from the radio noise regions dumped in variable quantities onto the low corona and transition layer.

  2. Infrared-faint radio sources in the SERVS deep fields. Pinpointing AGNs at high redshift

    NARCIS (Netherlands)

    Maini, A.; Prandoni, I.; Norris, R. P.; Spitler, L. R.; Mignano, A.; Lacy, M.; Morganti, R.

    2016-01-01

    Context. Infrared-faint radio sources (IFRS) represent an unexpected class of objects which are relatively bright at radio wavelength, but unusually faint at infrared (IR) and optical wavelengths. A recent and extensive campaign on the radio-brightest IFRSs (S1.4 GHz≳ 10 mJy) has provided evidence

  3. DEEP SPITZER OBSERVATIONS OF INFRARED-FAINT RADIO SOURCES: HIGH-REDSHIFT RADIO-LOUD ACTIVE GALACTIC NUCLEI?

    International Nuclear Information System (INIS)

    Norris, Ray P.; Mao, Minnie; Afonso, Jose; Cava, Antonio; Farrah, Duncan; Oliver, Seb; Huynh, Minh T.; Mauduit, Jean-Christophe; Surace, Jason; Ivison, R. J.; Jarvis, Matt; Lacy, Mark; Maraston, Claudia; Middelberg, Enno; Seymour, Nick

    2011-01-01

    Infrared-faint radio sources (IFRSs) are a rare class of objects which are relatively bright at radio wavelengths but very faint at infrared and optical wavelengths. Here we present sensitive near-infrared observations of a sample of these sources taken as part of the Spitzer Extragalactic Representative Volume Survey. Nearly all the IFRSs are undetected at a level of ∼1 μJy in these new deep observations, and even the detections are consistent with confusion with unrelated galaxies. A stacked image implies that the median flux density is S 3.6μm ∼ 0.2 μJy or less, giving extreme values of the radio-infrared flux density ratio. Comparison of these objects with known classes of object suggests that the majority are probably high-redshift radio-loud galaxies, possibly suffering from significant dust extinction.

  4. Temperature dependence of Ce:YAG single-crystal phosphors for high-brightness white LEDs/LDs

    Science.gov (United States)

    Arjoca, Stelian; Víllora, Encarnación G.; Inomata, Daisuke; Aoki, Kazuo; Sugahara, Yoshiyuki; Shimamura, Kiyoshi

    2015-05-01

    The growth of Ce:Y3Al5O12(Ce:YAG) single-crystal phosphors (SCPs) by the Czochralski technique is analyzed in terms of segregation coefficient, solubility and absorption cross-section. The emission characteristics of these SCPs are investigated in a wide temperature range, from liquid He temperature up to 500 °C. The internal quantum efficiency of SCPs achieves its maximum at about 250 °C. Thermal quenching of SCPs at high temperature is attributed to the Mott-Seitz mechanism. In the case of ceramic powder phosphors, a continuous droop is observed with the temperature due to defect-related non-radiative recombination paths. It is shown that (Ce:YAG SCPs + blue LEDs/LDs) can cover a wide range of color temperatures 5500-7000 K, with color rendering indices around 70. In conclusion, it is shown that Ce:YAG SCPs are the most efficient and temperature stable converters to fabricate high-brightness white light sources with high-power blue LEDs and LDs.

  5. AMSR-E/Aqua Daily L3 6.25 km 89 GHz Brightness Temperature (Tb) Polar Grids V002

    Data.gov (United States)

    National Aeronautics and Space Administration — The AMSR-E/Aqua Level-3 6.25 km daily sea ice product includes 89.0 GHz brightness temperature averages (daily, ascending, and descending) on a 6.25 km polar...

  6. Non-uniform temperature field measurement and simulation of a radio telescope’s main reflector under solar radiation

    International Nuclear Information System (INIS)

    Chen, Deshen; Qian, Hongliang; Wang, Huajie; Zhang, Gang; Fan, Feng; Shen, Shizhao

    2017-01-01

    Highlights: • Solar non-uniform temperature field test of a telescope’s reflector is conducted initially. • Time-varying distribution regularities are analyzed contrastively. • Simulation methods are proposed involving environmental factors and self-shadowing. • Refined discrimination method for the shadow distribution is put forward. • Validity of simulation methods is evaluated with the experimental data. - Abstract: To improve the ability of deep-space exploration, many astronomers around the world are actively engaged in the construction of large-aperture and high-precision radio telescopes. The temperature effect is one of three main factors affecting the reflector accuracy of radio telescopes. To study the daily non-uniform temperature field of the main reflector, experimental studies are first carried out with a 3-m-aperture radio telescope model. According to the test results for 16 working conditions, the distribution rule and time-varying regularity of the daily temperature field are summarized initially. Next, theoretical methods for the temperature field of the main reflector are studied considering multiple environmental parameters and self-shadows. Finally, the validity of the theoretical methods is evaluated with test results. The experimental study demonstrates that the non-uniform temperature distribution of the main reflector truly exists and should not be overlooked, and that the theoretical methods for the reflector temperature field proposed in this paper are effective. The research methods and conclusions can provide valuable references for thermal design, monitoring and control of similar high-precision radio telescopes.

  7. Stable high brightness radio frequency driven micro-discharge lamps at 193 (ArF*) and 157 nm ( F2*)

    International Nuclear Information System (INIS)

    Salvermoser, M; Murnick, D E

    2004-01-01

    A stable discharge between two pin electrodes separated by several hundred micrometres in a high pressure rare gas (∼900 mbar) halogen (∼1 mbar) mixture is shown to yield continuous wave (CW) ultra violet (UV) and vacuum UV light sources. Lamps operating at 193 (ArF*) and 157 nm F 2 *) have been demonstrated. Total CW output power in the UV was measured to be 30 for ArF* and 20 mW for F 2 *. The brightness of the light sources is estimated to be of the order of several W cm -2 sr -1 . With direct current excitation, electrode lifetimes are limited to a few minutes due to fluorine salt deposits. However, using a radio frequency (RF) field to drive the discharge, the lifetime of the lamps increased to hundreds of hours. A one-dimensional model of the RF micro-discharge explaining the increase in electrode lifetime is presented. The technology described can be adapted to many other wavelengths and promises even higher powers in future

  8. NOAA Climate Data Record (CDR) of Intersatellite Calibrated Clear-Sky HIRS Channel 12 Brightness Temperature, Version 2.6 (Superseded)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This NOAA Climate Data Record (CDR) of Inter-Satellite Calibrated Clear-Sky High Resolution Infrared Radiation Sounder (HIRS) Channel 12 brightness temperatures...

  9. Synthesis imaging in radio astronomy

    International Nuclear Information System (INIS)

    Perley, R.A.; Schwab, F.R.; Bridle, A.H.

    1989-01-01

    Recent advances in techniques and instrumentation for radio synthesis imaging in astronomy are discussed in a collection of review essays. Topics addressed include coherence in radio astronomy, the interferometer in practice, primary antenna elements, cross correlators, calibration and editing, sensitivity, deconvolution, self-calibration, error recognition, and image analysis. Consideration is given to wide-field imaging (bandwidth and time-average smearing, noncoplanar arrays, and mosaicking), high-dynamic-range imaging, spectral-line imaging, VLBI, solar imaging with a synthesis telescope, synthesis imaging of spatially coherent objects, noise in images of very bright sources, synthesis observing strategies, and the design of aperture-synthesis arrays

  10. Three Millisecond Pulsars in Fermi LAT Unassociated Bright Sources

    Science.gov (United States)

    Ransom, S. M.; Ray, P. S.; Camilo, F.; Roberts, M. S. E.; Celik, O.; Wolff, M. T.; Cheung, C. C.; Kerr, M.; Pennucci, T.; DeCesar, M. E.; hide

    2010-01-01

    We searched for radio pulsars in 25 of the non-variable, unassociated sources in the Fermi LAT Bright Source List with the Green Bank Telescope at 820 MHz. We report the discovery of three radio and gamma-ray millisecond pulsar (MSPs) from a high Galactic latitude subset of these sources. All of the pulsars are in binary systems, which would have made them virtually impossible to detect in blind gamma-ray pulsation searches. They seem to be relatively normal, nearby (pulsars are power law in nature with exponential cutoffs at a few Ge V, as has been found with most other pulsars. The MSPs have all been detected as X-ray point sources. Their soft X-ray luminosities of approx 10(exp 30) - 10(exp 31) erg/s are typical of the rare radio MSPs seen in X-rays.

  11. Associating Fast Radio Bursts with Extragalactic Radio Sources: General Methodology and a Search for a Counterpart to FRB 170107

    Science.gov (United States)

    Eftekhari, T.; Berger, E.; Williams, P. K. G.; Blanchard, P. K.

    2018-06-01

    The discovery of a repeating fast radio burst (FRB) has led to the first precise localization, an association with a dwarf galaxy, and the identification of a coincident persistent radio source. However, further localizations are required to determine the nature of FRBs, the sources powering them, and the possibility of multiple populations. Here we investigate the use of associated persistent radio sources to establish FRB counterparts, taking into account the localization area and the source flux density. Due to the lower areal number density of radio sources compared to faint optical sources, robust associations can be achieved for less precise localizations as compared to direct optical host galaxy associations. For generally larger localizations that preclude robust associations, the number of candidate hosts can be reduced based on the ratio of radio-to-optical brightness. We find that confident associations with sources having a flux density of ∼0.01–1 mJy, comparable to the luminosity of the persistent source associated with FRB 121102 over the redshift range z ≈ 0.1–1, require FRB localizations of ≲20″. We demonstrate that even in the absence of a robust association, constraints can be placed on the luminosity of an associated radio source as a function of localization and dispersion measure (DM). For DM ≈1000 pc cm‑3, an upper limit comparable to the luminosity of the FRB 121102 persistent source can be placed if the localization is ≲10″. We apply our analysis to the case of the ASKAP FRB 170107, using optical and radio observations of the localization region. We identify two candidate hosts based on a radio-to-optical brightness ratio of ≳100. We find that if one of these is indeed associated with FRB 170107, the resulting radio luminosity (1029‑ 4 × 1030 erg s‑1 Hz‑1, as constrained from the DM value) is comparable to the luminosity of the FRB 121102 persistent source.

  12. Short-term radio variability and parsec-scale structure in A gamma-ray narrow-line Seyfert 1 galaxy 1H 0323+342

    Energy Technology Data Exchange (ETDEWEB)

    Wajima, Kiyoaki [Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Xuhui District, Shanghai 200030 (China); Fujisawa, Kenta [The Research Institute for Time Studies, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, Yamaguchi 753-8511 (Japan); Hayashida, Masaaki [Institute for Cosmic Ray Research, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8582 (Japan); Isobe, Naoki [The Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Ishida, Takafumi [Graduate School of Science and Engineering, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, Yamaguchi 753-8512 (Japan); Yonekura, Yoshinori, E-mail: kwajima@shao.ac.cn [Center for Astronomy, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512 (Japan)

    2014-02-01

    We made simultaneous single-dish and very long baseline interferometer (VLBI) observations of a narrow-line Seyfert 1 galaxy 1H 323+342, showing gamma-ray activity revealed by Fermi/Large Area Telescope observations. We found significant variation of the total flux density at 8 GHz on the timescale of one month by the single-dish monitoring. The total flux density varied by 5.5% in 32 days, which is comparable to the gamma-ray variability timescale, corresponding to the variability brightness temperature of 7.0 × 10{sup 11} K. The source consists of central and southeastern components on the parsec (pc) scale. Only the flux of the central component decreased in the same way as the total flux density, indicating that the short-term radio variability, and probably the gamma-ray-emitting region, is associated with this component. From the VLBI observations, we obtained brightness temperatures of greater than (5.2 ± 0.3) × 10{sup 10} K and derived an equipartition Doppler factor of greater than 1.7, a variability Doppler factor of 2.2, and an 8 GHz radio power of 10{sup 24.6} W Hz{sup –1}. Combining them, we conclude that acceleration of radio jets and creation of high-energy particles are ongoing in the central engine and that the apparent very radio-loud feature of the source is due to the Doppler boosting effect, resulting in the intrinsic radio loudness being an order of magnitude smaller than the observed values. We also conclude that the pc-scale jet represents recurrent activity from the spectral fitting and the estimated kinematic age of pc- and kpc-scale extended components with different position angles.

  13. DISCOVERY OF ULTRA-STEEP SPECTRUM GIANT RADIO GALAXY WITH RECURRENT RADIO JET ACTIVITY IN ABELL 449

    International Nuclear Information System (INIS)

    Hunik, Dominika; Jamrozy, Marek

    2016-01-01

    We report a discovery of a 1.3 Mpc diffuse radio source with extremely steep spectrum fading radio structures in the vicinity of the Abell 449 cluster of galaxies. Its extended diffuse lobes are bright only at low radio frequencies and their synchrotron age is about 160 Myr. The parent galaxy of the extended relic structure, which is the dominant galaxy within the cluster, is starting a new jet activity. There are three weak X-rays sources in the vicinity of the cluster as found in the ROSAT survey, however it is not known if they are connected with this cluster of galaxies. Just a few radio galaxy relics are currently known in the literature, as finding them requires sensitive and high angular resolution low-frequency radio observations. Objects of this kind, which also are starting a new jet activity, are important for understanding the life cycle and evolution of active galactic nuclei. A new 613 MHz map as well as the archival radio data pertaining to this object are presented and analyzed

  14. Assimilation of global radar backscatter and radiometer brightness temperature observations to improve soil moisture and land evaporation estimates

    NARCIS (Netherlands)

    Lievens, H.; Martens, B.; Verhoest, N.E.C.; Hahn, S.; Reichle, R.H.; Gonzalez Miralles, D.

    2016-01-01

    Active radar backscatter (σ°) observations from the Advanced Scatterometer (ASCAT) and passive radiometer brightness temperature (TB) observations from the Soil Moisture Ocean Salinity (SMOS) mission are assimilated either individually or jointly into the Global Land Evaporation Amsterdam Model

  15. The statistics of radio emission from quasars

    International Nuclear Information System (INIS)

    Peacock, J.A.; Miller, L.; Longair, M.S.; Edinburgh Univ.

    1986-01-01

    The radio properties of quasars have traditionally been discussed in terms of the radio-to-optical flux-density ratio R, implying a correlation between emission in these wavebands. It is here shown that, for bright quasars, this apparent correlation is largely due to an abrupt change in the radio properties of the quasar population near absolute magnitude Msub(B)=-24. It is suggested that this change in due to the existence of two classes of quasar with differing host galaxies: a proportion of quasars brighter than Msub(B)approx.=-24 lie in elliptical galaxies and thus generate powerful radio sources, while elliptical galaxies with weaker nuclear quasar components are classified as N-galaxies rather than quasars; quasars fainter than Msub(B)approx.=-24 lie in spiral galaxies and thus are high-luminosity analogues of radio-quiet Seyfert galaxies. (author)

  16. The spatial and temporal behavior of brightness temperature in Tel-Aviv and its application to air temperature monitoring

    Science.gov (United States)

    Pelta, Ran; Chudnovsky, A. Alexandra; Schwarts, Joel

    2016-01-01

    This study applies remote sensing technology to assess and examine the spatial and temporal Brightness Temperature (BT) profile in the city of Tel-Aviv, Israel over the last 30 years using Landsat imagery. The location of warmest and coldest zones are constant over the studied period. Distinct diurnal and temporal BT behavior divide the city into four different segments. As an example of future application, we applied mixed regression models with daily random slopes to correlate Landsat BT data with monitored air temperature (Tair) measurements using 14 images for 1989–2014. Our preliminary results show a good model performance with R2 = 0.81. Furthermore, based on the model’s results, we analyzed the spatial profile of Tair within the study domain for representative days. PMID:26499933

  17. A MULTIWAVELENGTH STUDY OF THE HIGH SURFACE BRIGHTNESS HOT SPOT IN PKS 1421-490

    International Nuclear Information System (INIS)

    Godfrey, L. E. H.; Bicknell, G. V.; Lovell, J. E. J.; Jauncey, D. L.; Gelbord, J.; Schwartz, D. A.; Birkinshaw, M.; Worrall, D. M.; Marshall, H. L.; Georganopoulos, M.; Perlman, E. S.; Murphy, D. W.

    2009-01-01

    Long Baseline Array imaging of the z = 0.663 broadline radio galaxy PKS 1421-490 reveals a 400 pc diameter high surface brightness hot spot at a projected distance of ∼40 kpc from the active galactic nucleus. The isotropic X-ray luminosity of the hot spot, L 2-10keV = 3 x 10 44 ergs s -1 , is comparable to the isotropic X-ray luminosity of the entire X-ray jet of PKS 0637-752, and the peak radio surface brightness is hundreds of times greater than that of the brightest hot spot in Cygnus A. We model the radio to X-ray spectral energy distribution using a one-zone synchrotron self-Compton model with a near equipartition magnetic field strength of 3 mG. There is a strong brightness asymmetry between the approaching and receding hotspots and the hot spot spectrum remains flat (α ∼ 0.5) well beyond the predicted cooling break for a 3 mG magnetic field, indicating that the hotspot emission may be Doppler beamed. A high plasma velocity beyond the terminal jet shock could be the result of a dynamically important magnetic field in the jet. There is a change in the slope of the hotspot radio spectrum at GHz frequencies, which we model by incorporating a cutoff in the electron energy distribution at γ min ∼ 650, with higher values implied if the hotspot emission is Doppler beamed. We show that a sharp decrease in the electron number density below a Lorentz factor of 650 would arise from the dissipation of bulk kinetic energy in an electron/proton jet with a Lorentz factor Γ jet ∼> 5.

  18. Radio Imaging of Envelopes of Evolved Stars

    Science.gov (United States)

    Cotton, Bill

    2018-04-01

    This talk will cover imaging of stellar envelopes using radio VLBI techniques; special attention will be paid to the technical differences between radio and optical/IR interferomery. Radio heterodyne receivers allow a straightforward way to derive spectral cubes and full polarization observations. Milliarcsecond resolution of very bright, i.e. non thermal, emission of molecular masers in the envelopes of evolved stars can be achieved using VLBI techniques with baselines of thousands of km. Emission from SiO, H2O and OH masers are commonly seen at increasing distance from the photosphere. The very narrow maser lines allow accurate measurements of the velocity field within the emitting region.

  19. Satellite-derived ice data sets no. 2: Arctic monthly average microwave brightness temperatures and sea ice concentrations, 1973-1976

    Science.gov (United States)

    Parkinson, C. L.; Comiso, J. C.; Zwally, H. J.

    1987-01-01

    A summary data set for four years (mid 70's) of Arctic sea ice conditions is available on magnetic tape. The data include monthly and yearly averaged Nimbus 5 electrically scanning microwave radiometer (ESMR) brightness temperatures, an ice concentration parameter derived from the brightness temperatures, monthly climatological surface air temperatures, and monthly climatological sea level pressures. All data matrices are applied to 293 by 293 grids that cover a polar stereographic map enclosing the 50 deg N latitude circle. The grid size varies from about 32 X 32 km at the poles to about 28 X 28 km at 50 deg N. The ice concentration parameter is calculated assuming that the field of view contains only open water and first-year ice with an ice emissivity of 0.92. To account for the presence of multiyear ice, a nomogram is provided relating the ice concentration parameter, the total ice concentration, and the fraction of the ice cover which is multiyear ice.

  20. The collective radio properties of symbiotic stars

    International Nuclear Information System (INIS)

    Seaquist, E.R.; Taylor, A.R.

    1990-01-01

    Radio measurements of symbiotic stars are reported which extend the search for radio emission and provide multifrequency and multiepoch measurements of previously detected stars. The results show no evidence that there are time variations in excess of about 30 percent over a period of several years in the detected stars. The radio flux densities are correlated with brightness in the IR, especially at the longer IR wavelengths where dust emission dominates. It is confirmed that symbiotics with the latest red giant spectral types are the most luminous radio emitters. The D-types are the most radio-luminous. Virtually all detected stars with measurements at more than one frequency exhibit a positive spectral index, consistent with optically thick thermal bremsstrahlung. The binary separation for a number of radio-emitting symbiotics is estimated, and it is found that the distribution of inferred binary separations is dramatically different for IR D-types than for S-types. 37 refs

  1. The Atacama Cosmology Telescope: Beam Measurements and the Microwave Brightness Temperatures of Uranus and Saturn

    Science.gov (United States)

    Hasselfield, Matthew; Moodley, Kavilan; Bond, J. Richard; Das, Sudeep; Devlin, Mark J.; Dunkley, Joanna; Dunner, Rolando; Fowler, Joseph W.; Gallardo, Patricio; Gralla, Megan B.; hide

    2013-01-01

    We describe the measurement of the beam profiles and window functions for the Atacama Cosmology Telescope (ACT), which operated from 2007 to 2010 with kilopixel bolometer arrays centered at 148, 218, and 277 GHz. Maps of Saturn are used to measure the beam shape in each array and for each season of observations. Radial profiles are transformed to Fourier space in a way that preserves the spatial correlations in the beam uncertainty to derive window functions relevant for angular power spectrum analysis. Several corrections are applied to the resulting beam transforms, including an empirical correction measured from the final cosmic microwave background (CMB) survey maps to account for the effects of mild pointing variation and alignment errors. Observations of Uranus made regularly throughout each observing season are used to measure the effects of atmospheric opacity and to monitor deviations in telescope focus over the season. Using the WMAP-based calibration of the ACT maps to the CMB blackbody, we obtain precise measurements of the brightness temperatures of the Uranus and Saturn disks at effective frequencies of 149 and 219 GHz. For Uranus we obtain thermodynamic brightness temperatures T(149/U) = 106.7 +/- 2.2 K and T(219/U) = 100.1 +/- 3.1 K. For Saturn, we model the effects of the ring opacity and emission using a simple model and obtain resulting (unobscured) disk temperatures of T(149/S) = 137.3 +/- 3.2 K and T(219/S) = 137.3 +/- 4.7 K.

  2. Multiwavelength Study of Gamma-Ray Bright Blazars

    Science.gov (United States)

    Morozova, Daria; Larionov, V. M.; Hagen-Thorn, V. A.; Jorstad, S. G.; Marscher, A. P.; Troitskii, I. S.

    2011-01-01

    We investigate total intensity radio images of 6 gamma-ray bright blazars (BL Lac, 3C 279, 3C 273, W Com, PKS 1510-089, and 3C 66A) and their optical and gamma-ray light curves to study connections between gamma-ray and optical brightness variations and changes in the parsec-scale radio structure. We use high-resolution maps obtained by the BU group at 43 GHz with the VLBA, optical light curves constructed by the St.Petersburg State U. (Russia) team using measurements with the 0.4 m telescope of St.Petersburg State U. (LX200) and the 0.7 m telescope of the Crimean Astrophysical Observatory (AZT-8), and gamma-ray light curves, which we have constructed with data provided by the Fermi Large Area Telescope. Over the period from August 2008 to November 2009, superluminal motion is found in all 6 objects with apparent speed ranging from 2c to 40c. The blazars with faster apparent speeds, 3C 273, 3C 279, PKS 1510-089, and 3C 66A, exhibit stronger variability of the gamma-ray emission. There is a tendency for sources with sharply peaked gamma-ray flares to have faster jet speed than sources with gamma-ray light curves with no sharp peaks. Gamma-ray light curves with sharply peaked gamma-ray flares possess a stronger gamma-ray/optical correlations. The research at St.Petersburg State U. was funded by the Minister of Education and Science of the Russian Federation (state contract N#P123). The research at BU was funded in part by NASA Fermi Guest Investigator grant NNX08AV65G and by NSF grant AST-0907893. The VLBA is an instrument of the National Radio Astronomy Observatory, a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

  3. Estimation of wind speeds inside Super Typhoon Nepartak from AMSR2 low-frequency brightness temperatures

    Science.gov (United States)

    Zhang, Lei; Yin, Xiaobin; Shi, Hanqing; Wang, Zhenzhan; Xu, Qing

    2018-04-01

    Accurate estimations of typhoon-level winds are highly desired over the western Pacific Ocean. A wind speed retrieval algorithm is used to retrieve the wind speeds within Super Typhoon Nepartak (2016) using 6.9- and 10.7-GHz brightness temperatures from the Japanese Advanced Microwave Scanning Radiometer 2 (AMSR2) sensor on board the Global Change Observation Mission-Water 1 (GCOM-W1) satellite. The results show that the retrieved wind speeds clearly represent the intensification process of Super Typhoon Nepartak. A good agreement is found between the retrieved wind speeds and the Soil Moisture Active Passive wind speed product. The mean bias is 0.51 m/s, and the root-mean-square difference is 1.93 m/s between them. The retrieved maximum wind speeds are 59.6 m/s at 04:45 UTC on July 6 and 71.3 m/s at 16:58 UTC on July 6. The two results demonstrate good agreement with the results reported by the China Meteorological Administration and the Joint Typhoon Warning Center. In addition, Feng-Yun 2G (FY-2G) satellite infrared images, Feng-Yun 3C (FY-3C) microwave atmospheric sounder data, and AMSR2 brightness temperature images are also used to describe the development and structure of Super Typhoon Nepartak.

  4. NOAA Climate Data Record (CDR) of Reflectance and Brightness Temperatures from AVHRR Pathfinder Atmospheres - Extended (PATMOS-x), Version 5.3

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This NOAA Climate Data Record (CDR) of AVHRR reflectance and brightness temperatures was produced by the University of Wisconsin using the AVHRR Pathfinder...

  5. Detection of solar radio brightness oscillations with 160.01-min period from direct measurements

    International Nuclear Information System (INIS)

    Efanov, V.A.; Moiseev, I.G.; Nesterov, N.S.

    1983-01-01

    It is shown that direct measurements of the quiet Sun brightness at 8.2 and 13.5 mm wavelengths corrected for extinction in the Earth atmosphere by means of the Bouguer law reveal the 160.01-min periodic component. The relative amplitudes of variations are of approximately 6x10 -4 at the shorter wavelength and of 10 -3 at the longer one. The brightness maximum coincides with the phase of the maximal radius of the photosphere as derived from the optical data

  6. Fast Radio Bursts with Extended Gamma-Ray Emission?

    International Nuclear Information System (INIS)

    Murase, Kohta; Mészáros, Peter; Fox, Derek B.

    2017-01-01

    We consider some general implications of bright γ -ray counterparts to fast radio bursts (FRBs). We show that even if these manifest in only a fraction of FRBs, γ -ray detections with current satellites (including Swift ) can provide stringent constraints on cosmological FRB models. If the energy is drawn from the magnetic energy of a compact object such as a magnetized neutron star, the sources should be nearby and be very rare. If the intergalactic medium is responsible for the observed dispersion measure, the required γ -ray energy is comparable to that of the early afterglow or extended emission of short γ -ray bursts. While this can be reconciled with the rotation energy of compact objects, as expected in many merger scenarios, the prompt outflow that yields the γ -rays is too dense for radio waves to escape. Highly relativistic winds launched in a precursor phase, and forming a wind bubble, may avoid the scattering and absorption limits and could yield FRB emission. Largely independent of source models, we show that detectable radio afterglow emission from γ -ray bright FRBs can reasonably be anticipated. Gravitational wave searches can also be expected to provide useful tests.

  7. Impact of high temperature superconductors on the possibility of radio-frequency confinement

    International Nuclear Information System (INIS)

    Dean, S.O.

    1989-01-01

    Recent discoveries of superconducting materials that operate at high temperatures may have both technical and economic consequences for magnetic confinement fusion. In addition, they could also open up the possibility of plasma confinement by radio-frequency fields. The new, high temperature superconductors may impact the feasibility of rf confinement in two important ways: (1) higher temperature superconductors should have higher critical B fields and consequently may allow higher critical electric fields to be sustained in the cavity, thus allowing the necessary confining pressure to be achieved; and (2) the higher temperature superconductors lower the refrigeration power necessary to maintain the superconducting cavity, thus allowing a favorable energy balance

  8. THE COMPACT, TIME-VARIABLE RADIO SOURCE PROJECTED INSIDE W3(OH): EVIDENCE FOR A PHOTOEVAPORATED DISK?

    International Nuclear Information System (INIS)

    Dzib, Sergio A.; Rodríguez-Garza, Carolina B.; Rodríguez, Luis F.; Kurtz, Stan E.; Loinard, Laurent; Zapata, Luis A.; Lizano, Susana

    2013-01-01

    We present new Karl G. Jansky Very Large Array (VLA) observations of the compact (∼0.''05), time-variable radio source projected near the center of the ultracompact H II region W3(OH). The analysis of our new data as well as of VLA archival observations confirms the variability of the source on timescales of years and for a given epoch indicates a spectral index of α = 1.3 ± 0.3 (S ν ∝ν α ). This spectral index and the brightness temperature of the source (∼6500 K) suggest that we are most likely detecting partially optically thick free-free radiation. The radio source is probably associated with the ionizing star of W3(OH), but an interpretation in terms of an ionized stellar wind fails because the detected flux densities are orders of magnitude larger than expected. We discuss several scenarios and tentatively propose that the radio emission could arise in a static ionized atmosphere around a fossil photoevaporated disk

  9. Branched carbon nanofiber network synthesis at room temperature using radio frequency supported microwave plasmas

    OpenAIRE

    Boskovic, BO; Stolojan, V; Zeze, DA; Forrest, RD; Silva, SRP; Haq, S

    2004-01-01

    Carbon nanofibers have been grown at room temperature using a combination of radio frequency and microwave assisted plasma-enhanced chemical vapor deposition. The nanofibers were grown, using Ni powder catalyst, onto substrates kept at room temperature by using a purposely designed water-cooled sample holder. Branched carbon nanofiber growth was obtained without using a template resulting in interconnected carbon nanofiber network formation on substrates held at room temperatur...

  10. THE ATACAMA COSMOLOGY TELESCOPE: BEAM MEASUREMENTS AND THE MICROWAVE BRIGHTNESS TEMPERATURES OF URANUS AND SATURN

    Energy Technology Data Exchange (ETDEWEB)

    Hasselfield, Matthew [Department of Astrophysical Sciences, Peyton Hall, Princeton University, Princeton, NJ 08544 (United States); Moodley, Kavilan [Astrophysics and Cosmology Research Unit, School of Mathematics, Statistics, and Computer Science, University of KwaZulu-Natal, Durban 4041 (South Africa); Bond, J. Richard; Hajian, Amir; Hincks, Adam D.; Nolta, Michael R. [Canadian Institute for Theoretical Astrophysics, University of Toronto, Toronto, ON M5S 3H8 (Canada); Das, Sudeep [High Energy Physics Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439 (United States); Devlin, Mark J.; Marsden, Danica; Schmitt, Benjamin L. [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Dunkley, Joanna [Department of Astrophysics, Oxford University, Oxford OX1 3RH (United Kingdom); Dünner, Rolando; Gallardo, Patricio [Departamento de Astronomía y Astrofísica, Facultad de Física, Pontificía Universidad Católica, Casilla 306, Santiago 22 (Chile); Fowler, Joseph W.; Niemack, Michael D. [NIST Quantum Devices Group, 325 Broadway Mailcode 817.03, Boulder, CO 80305 (United States); Gralla, Megan B.; Marriage, Tobias A. [Department of Physics and Astronomy, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218-2686 (United States); Halpern, Mark [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z4 (Canada); Page, Lyman A. [Joseph Henry Laboratories of Physics, Jadwin Hall, Princeton University, Princeton, NJ 08544 (United States); Partridge, Bruce [Department of Physics and Astronomy, Haverford College, Haverford, PA 19041 (United States); and others

    2013-11-01

    We describe the measurement of the beam profiles and window functions for the Atacama Cosmology Telescope (ACT), which operated from 2007 to 2010 with kilopixel bolometer arrays centered at 148, 218, and 277 GHz. Maps of Saturn are used to measure the beam shape in each array and for each season of observations. Radial profiles are transformed to Fourier space in a way that preserves the spatial correlations in the beam uncertainty to derive window functions relevant for angular power spectrum analysis. Several corrections are applied to the resulting beam transforms, including an empirical correction measured from the final cosmic microwave background (CMB) survey maps to account for the effects of mild pointing variation and alignment errors. Observations of Uranus made regularly throughout each observing season are used to measure the effects of atmospheric opacity and to monitor deviations in telescope focus over the season. Using the WMAP-based calibration of the ACT maps to the CMB blackbody, we obtain precise measurements of the brightness temperatures of the Uranus and Saturn disks at effective frequencies of 149 and 219 GHz. For Uranus we obtain thermodynamic brightness temperatures T{sub U}{sup 149}= 106.7 ± 2.2 K and T{sub U}{sup 219}= 100.1 ± 3.1 K. For Saturn, we model the effects of the ring opacity and emission using a simple model and obtain resulting (unobscured) disk temperatures of T{sub S}{sup 149}= 137.3 ± 3.2 K and T{sub S}{sup 219}= 137.3 ± 4.7 K.

  11. 8-12 GHz Radio Observations of Flare Activity On M dwarf CN Leo

    Science.gov (United States)

    Wofford, Alia; Villadsen, Jackie; Quintana, Elisa; Barclay, Thomas; Thackeray, Beverly

    2018-01-01

    Red dwarfs are cool stars that make up 70% of all stars. Red dwarfs can be utilized to detect potentially habitable planets but they have particularly strong magnetic activity that can be detrimental to orbiting planets’ atmospheres and habitability. A coronal mass ejection (CME) is an eruption of magnetized plasma from the star that is ejected into the interplanetary medium which can erode a planet’s atmosphere daily. Based on the sun CMEs are expected to produce very bright radio bursts along with optical flares. We are using M dwarf CN Leo, a well studied flare star that was in the K2 campaign field in summer 2017, as a template to understand the relationship between radio and optical flares and the space weather conditions impacting M dwarf planets. Using radio frequencies ranging from 0.22 GHz-12 GHz we search for simultaneous radio bursts and optical flares to infer if CMEs, flares or aurorae are occurring on the star. I will present the 8-12 GHz radio data from eight 1.5-hour observations with simultaneous optical data. CN Leo produced a bright non-thermal radio flare that lasted approximately for a day during two consecutive observations, with a gyrosynchrotron emission mechanism.

  12. Radio identifications of IRAS point sources with b greater than 30 deg

    International Nuclear Information System (INIS)

    Condon, J.J.; Broderick, J.J.; Virginia Polytechnic Institute and State Univ., Blacksburg)

    1986-01-01

    The present radio identifications of IRAS point sources on the basis of Green Bank 1400 MHz survey maps notes that 365 hot IR sources are not detectable radio sources, and that nearly all cool high latitude IRAS sources are extragalactic. The fainter IR-source identifications encompass optically bright quasars, BL Lac objects, Seyfert galaxies, and elliptical galaxies. No IRAS sources could be identified with distant elliptical radio galaxies, so that although the radio and IR fluxes of most IRAS extragalactic sources are tightly correlated, complete samples of strong radio and IR sources are almost completely disjoint; no more than 1 percent of the IR sources are radio sources and less than 1 percent of the radio sources are IR ones. 35 references

  13. The mystery of the "Kite" radio source in Abell 2626: Insights from new Chandra observations

    Science.gov (United States)

    Ignesti, A.; Gitti, M.; Brunetti, G.; O'Sullivan, E.; Sarazin, C.; Wong, K.

    2018-03-01

    Context. We present the results of a new Chandra study of the galaxy cluster Abell 2626. The radio emission of the cluster shows a complex system of four symmetric arcs without known correlations with the thermal X-ray emission. The mirror symmetry of the radio arcs toward the center and the presence of two optical cores in the central galaxy suggested that they may be created by pairs of precessing radio jets powered by dual active galactic nuclei (AGNs) inside the core dominant galaxy. However, previous observations failed to observe the second jetted AGN and the spectral trend due to radiative age along the radio arcs, thus challenging this interpretation. Aim. The new Chandra observation had several scientific objectives, including the search for the second AGN that would support the jet precession model. We focus here on the detailed study of the local properties of the thermal and non-thermal emission in the proximity of the radio arcs, in order to obtain further insights into their origin. Methods: We performed a standard data reduction of the Chandra dataset deriving the radial profiles of temperature, density, pressure and cooling time of the intra-cluster medium. We further analyzed the two-dimensional (2D) distribution of the gas temperature, discovering that the south-western junction of the radio arcs surrounds the cool core of the cluster. Results: We studied the X-ray surface brightness and spectral profiles across the junction, finding a cold front spatially coincident with the radio arcs. This may suggest a connection between the sloshing of the thermal gas and the nature of the radio filaments, raising new scenarios for their origin. A tantalizing possibility is that the radio arcs trace the projection of a complex surface connecting the sites where electrons are most efficiently reaccelerated by the turbulence that is generated by the gas sloshing. In this case, diffuse emission embedded by the arcs and with extremely steep spectrum should be

  14. Fossil shell emission in dying radio loud AGNs

    Science.gov (United States)

    Kino, M.; Ito, H.; Kawakatu, N.; Orienti, M.; Nagai, H.; Wajima, K.; Itoh, R.

    2016-02-01

    We investigate shell emission associated with dying radio loud AGNs. First, based on our recent work by Ito et al. (2015), we describe the dynamical and spectral evolution of shells after stopping the jet energy injection. We find that the shell emission overwhelms that of the radio lobes soon after stopping the jet energy injection because fresh electrons are continuously supplied into the shell via the forward shock, while the radio lobes rapidly fade out without jet energy injection. We find that such fossil shells can be a new class of target sources for SKA telescope. Next, we apply the model to the nearby radio source 3C84. Then, we find that the fossil shell emission in 3C84 is less luminous in the radio band while it is bright in the TeV γ-ray band and can be detectable by CTA. Data from STELLA

  15. No evidence for radio-quiet BL Lacertae objects

    International Nuclear Information System (INIS)

    Stocke, J.T.; Morris, S.L.; Gioia, I.; Maccacaro, T.; Schild, R.E.

    1990-01-01

    Using a large, flux-limited sample of faint X-ray sources, a search has been conducted for radio-quiet BL Lacertae objects. None has been found. Thirty-two X-ray-selected BL Lac objects and BL Lac candidates have been found within the sources of the Einstein Medium Sensitivity Survey (EMSS). Thirty-one of these have been observed with the VLA and all have been detected at 5 GHz. While the optical magnitudes of the EMSS BL Lac objects range from 17 to 20.8, their radio-to-optical spectral indices occupy a very small range. The very bright X-ray-selected BL Lac objects like PKS 2155-304 and Markarian 501 have similar range values. Therefore, unlike the clear dichotomy between radio-loud quasars and radio-quiet QSOs, there is no evidence for two populations of Lacertids distinguished by radio loudness. 43 refs

  16. The isotropic radio background revisited

    Energy Technology Data Exchange (ETDEWEB)

    Fornengo, Nicolao; Regis, Marco [Dipartimento di Fisica Teorica, Università di Torino, via P. Giuria 1, I–10125 Torino (Italy); Lineros, Roberto A. [Instituto de Física Corpuscular – CSIC/U. Valencia, Parc Científic, calle Catedrático José Beltrán, 2, E-46980 Paterna (Spain); Taoso, Marco, E-mail: fornengo@to.infn.it, E-mail: rlineros@ific.uv.es, E-mail: regis@to.infn.it, E-mail: taoso@cea.fr [Institut de Physique Théorique, CEA/Saclay, F-91191 Gif-sur-Yvette Cédex (France)

    2014-04-01

    We present an extensive analysis on the determination of the isotropic radio background. We consider six different radio maps, ranging from 22 MHz to 2.3 GHz and covering a large fraction of the sky. The large scale emission is modeled as a linear combination of an isotropic component plus the Galactic synchrotron radiation and thermal bremsstrahlung. Point-like and extended sources are either masked or accounted for by means of a template. We find a robust estimate of the isotropic radio background, with limited scatter among different Galactic models. The level of the isotropic background lies significantly above the contribution obtained by integrating the number counts of observed extragalactic sources. Since the isotropic component dominates at high latitudes, thus making the profile of the total emission flat, a Galactic origin for such excess appears unlikely. We conclude that, unless a systematic offset is present in the maps, and provided that our current understanding of the Galactic synchrotron emission is reasonable, extragalactic sources well below the current experimental threshold seem to account for the majority of the brightness of the extragalactic radio sky.

  17. The isotropic radio background revisited

    International Nuclear Information System (INIS)

    Fornengo, Nicolao; Regis, Marco; Lineros, Roberto A.; Taoso, Marco

    2014-01-01

    We present an extensive analysis on the determination of the isotropic radio background. We consider six different radio maps, ranging from 22 MHz to 2.3 GHz and covering a large fraction of the sky. The large scale emission is modeled as a linear combination of an isotropic component plus the Galactic synchrotron radiation and thermal bremsstrahlung. Point-like and extended sources are either masked or accounted for by means of a template. We find a robust estimate of the isotropic radio background, with limited scatter among different Galactic models. The level of the isotropic background lies significantly above the contribution obtained by integrating the number counts of observed extragalactic sources. Since the isotropic component dominates at high latitudes, thus making the profile of the total emission flat, a Galactic origin for such excess appears unlikely. We conclude that, unless a systematic offset is present in the maps, and provided that our current understanding of the Galactic synchrotron emission is reasonable, extragalactic sources well below the current experimental threshold seem to account for the majority of the brightness of the extragalactic radio sky

  18. Biodiversity Loss in the Orion Radio Zoo?

    Science.gov (United States)

    Henney, W. J.; García-Díaz, Ma. T.; Kurtz, S. E.

    2001-03-01

    We re-examine radio observations of compact sources in the core of the Orion nebula and find that 70% of the sources correspond to known proplyds. For all of these sources, including many that have been previously classified as variable and non-thermal, the radio flux between 1.5 and 86 Ghz is fully accounted for by thermal free-free emission from the photoevaporation flow. We therefore suggest that many of the proposed Orion FOXES are in fact EIDERS, and that their apparent variability reflects observational difficulties in detecting the lower surface-brightness portions of the proplyds. The PIGs turn out to be extinct in Orion, and the hybrid creatures that we dub PANTHERS (Proplyds Associated with Non-THErmal Radio Sources) remain elusive.

  19. AN ABSENCE OF FAST RADIO BURSTS AT INTERMEDIATE GALACTIC LATITUDES

    Energy Technology Data Exchange (ETDEWEB)

    Petroff, E.; Van Straten, W.; Bailes, M.; Barr, E. D.; Coster, P.; Flynn, C.; Keane, E. F. [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, P.O. Box 218, Hawthorn, VIC 3122 (Australia); Johnston, S. [CSIRO Astronomy and Space Science, Australia Telescope National Facility, P.O. Box 76, Epping, NSW 1710 (Australia); Bates, S. D.; Keith, M. J.; Kramer, M.; Stappers, B. W. [Jodrell Bank Centre for Astrophysics, University of Manchester, Alan Turing Building, Oxford Road, Manchester M13 9PL (United Kingdom); Bhat, N. D. R. [ARC Centre of Excellence for All-sky Astrophysics (CAASTRO), 44 Rosehill Street, Redfern, NSW 2016 (Australia); Burgay, M.; Possenti, A.; Tiburzi, C. [INAF—Osservatorio Astronomico di Cagliari, Via della Scienza, I-09047 Selargius (Italy); Burke-Spolaor, S. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91104 (United States); Champion, D.; Ng, C. [Max Planck Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Levin, L., E-mail: epetroff@astro.swin.edu.au [Department of Physics, West Virginia University, Morgantown, WV 26506 (United States); and others

    2014-07-10

    Fast radio bursts (FRBs) are an emerging class of bright, highly dispersed radio pulses. Recent work by Thornton et al. has revealed a population of FRBs in the High Time Resolution Universe (HTRU) survey at high Galactic latitudes. A variety of progenitors have been proposed, including cataclysmic events at cosmological distances, Galactic flare stars, and terrestrial radio frequency interference. Here we report on a search for FRBs at intermediate Galactic latitudes (–15° temperature, and scintillation decrease the sensitivity by more than 3σ in ∼20% of survey pointings. Including all of these effects, we exclude the hypothesis that FRBs are uniformly distributed on the sky with 99% confidence. This low probability implies that additional factors—not accounted for by standard Galactic models—must be included to ease the discrepancy between the detection rates at high and low Galactic latitudes. A revised rate estimate or another strong and heretofore unknown selection effect in Galactic latitude would provide closer agreement between the surveys' detection rates. The dearth of detections at low Galactic latitude disfavors a Galactic origin for these bursts.

  20. AN ABSENCE OF FAST RADIO BURSTS AT INTERMEDIATE GALACTIC LATITUDES

    International Nuclear Information System (INIS)

    Petroff, E.; Van Straten, W.; Bailes, M.; Barr, E. D.; Coster, P.; Flynn, C.; Keane, E. F.; Johnston, S.; Bates, S. D.; Keith, M. J.; Kramer, M.; Stappers, B. W.; Bhat, N. D. R.; Burgay, M.; Possenti, A.; Tiburzi, C.; Burke-Spolaor, S.; Champion, D.; Ng, C.; Levin, L.

    2014-01-01

    Fast radio bursts (FRBs) are an emerging class of bright, highly dispersed radio pulses. Recent work by Thornton et al. has revealed a population of FRBs in the High Time Resolution Universe (HTRU) survey at high Galactic latitudes. A variety of progenitors have been proposed, including cataclysmic events at cosmological distances, Galactic flare stars, and terrestrial radio frequency interference. Here we report on a search for FRBs at intermediate Galactic latitudes (–15° temperature, and scintillation decrease the sensitivity by more than 3σ in ∼20% of survey pointings. Including all of these effects, we exclude the hypothesis that FRBs are uniformly distributed on the sky with 99% confidence. This low probability implies that additional factors—not accounted for by standard Galactic models—must be included to ease the discrepancy between the detection rates at high and low Galactic latitudes. A revised rate estimate or another strong and heretofore unknown selection effect in Galactic latitude would provide closer agreement between the surveys' detection rates. The dearth of detections at low Galactic latitude disfavors a Galactic origin for these bursts

  1. KILOPARSEC-SCALE JETS IN THREE RADIO-LOUD NARROW-LINE SEYFERT 1 GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Richards, Joseph L.; Lister, Matthew L., E-mail: jlr@purdue.edu [Department of Physics and Astronomy, Purdue University, 525 Northwestern Avenue, West Lafayette, IN 47907 (United States)

    2015-02-10

    We have discovered kiloparsec-scale extended radio emission in three narrow-line Seyfert 1 galaxies (NLS1s) in sub-arcsecond resolution 9 GHz images from the Karl G. Jansky Very Large Array. We find all sources show two-sided, mildly core-dominated jet structures with diffuse lobes dominated by termination hotspots. These span 20–70 kpc with morphologies reminiscent of FR II radio galaxies, while the extended radio luminosities are intermediate between FR I and FR II sources. In two cases the structure is linear, while a 45° bend is apparent in the third. Very Long Baseline Array images at 7.6 GHz reveal parsec-scale jet structures, in two cases with extended structure aligned with the inner regions of the kiloparsec-scale jets. Based on this alignment, the ratio of the radio core–luminosity to the optical luminosity, the jet/counter-jet intensity and extension length ratios, and moderate core brightness temperatures (≲10{sup 10} K), we conclude these jets are mildly relativistic (β≲0.3, δ∼1−1.5) and aligned at moderately small angles to the line of sight (10–15°). The derived kinematic ages of ∼10{sup 6}–10{sup 7} yr are much younger than radio galaxies but comparable to other NLS1s. Our results increase the number of radio-loud NLS1s with known kiloparsec-scale extensions from 7 to 10 and suggest that such extended emission may be common, at least among the brightest of these sources.

  2. Discovery of megaparsec-scale, low surface brightness nonthermal emission in merging galaxy clusters using the green bank telescope

    Energy Technology Data Exchange (ETDEWEB)

    Farnsworth, Damon; Rudnick, Lawrence [Minnesota Institute for Astrophysics, University of Minnesota, 116 Church Street S.E., Minneapolis, MN 55455 (United States); Brown, Shea [Department of Physics and Astronomy, University of Iowa, 203 Van Allen Hall, Iowa City, IA 52242 (United States); Brunetti, Gianfranco [INAF/Istituto di Radioastronomia, via Gobetti 101, I-40129 Bologna (Italy)

    2013-12-20

    We present results from a study of 12 X-ray bright clusters at 1.4 GHz with the 100 m Green Bank Telescope. After subtraction of point sources using existing interferometer data, we reach a median (best) 1σ rms sensitivity level of 0.01 (0.006) μJy arcsec{sup –2}, and find a significant excess of diffuse, low surface brightness emission in 11 of 12 Abell clusters observed. We also present initial results at 1.4 GHz of A2319 from the Very Large Array. In particular, we find: (1) four new detections of diffuse structures tentatively classified as two halos (A2065, A2069) and two relics (A2067, A2073); (2) the first detection of the radio halo in A2061 at 1.4 GHz, which qualifies this as a possible ultra-steep spectrum halo source with a synchrotron spectral index of α ∼ 1.8 between 327 MHz and 1.4 GHz; (3) a ∼2 Mpc radio halo in the sloshing, minor-merger cluster A2142; (4) a >2× increase of the giant radio halo extent and luminosity in the merging cluster A2319; (5) a ∼7× increase to the integrated radio flux and >4× increase to the observed extent of the peripheral radio relic in A1367 to ∼600 kpc, which we also observe to be polarized on a similar scale; (6) significant excess emission of ambiguous nature in three clusters with embedded tailed radio galaxies (A119, A400, A3744). Our radio halo detections agree with the well-known X-ray/radio luminosity correlation, but they are larger and fainter than current radio power correlation studies would predict. The corresponding volume-averaged synchrotron emissivities are 1-2 orders of magnitude below the characteristic value found in previous studies. Some of the halo-like detections may be some type of previously unseen, low surface brightness radio halo or blend of unresolved shock structures and sub-Mpc-scale turbulent regions associated with their respective cluster merging activity. Four of the five tentative halos contain one or more X-ray cold fronts, suggesting a possible connection between gas

  3. A3. 408 MHz radio continuum flux at mod(b) 0

    International Nuclear Information System (INIS)

    Haslam, C.G.T.

    1983-01-01

    The map shows the radio continuum brightness at a frequency of 408 MHz (lambda73 cm). The atlas of the all-sky survey published by Haslam et al. contains data from four surveys, made with the Jodrell Bank Mk I (anticenter region), the Bonn 100-m (-8 0 0 ), the Parkes 64-m (southern sky), and the Jodrell Bank Mk I A (north celestial pole region) telescopes. The respective references for the four component surveys are Haslam, Quigley, and Salter, 1970, Mon. Not. R. Astron. Soc. 147, 405; Haslam, Wilson, Graham, and Hunt, 1974, Astron. Astrophys. Suppl. Ser. 13, 359; Haslam, Wilson, Cooke, Cleary, Graham, Wilelebinski, and Day, 1975, Proc. ASA 2 (6), 331; and Haslam, Klein, Salter, Stoffel, Wilson, Cleary, Cooke, and Thomasson, 1981, Astron. Astrophys. 100, 209. The angular resolution of the original data base is 0 0 .85. For the map in galactic coordinates produced here, the data have been smoothed and placed on a 2 0 rectangular grid. The contours represent brightness temperature labelled in Kelvins. (Auth.)

  4. THE CHROMOSPHERIC SOLAR MILLIMETER-WAVE CAVITY ORIGINATES IN THE TEMPERATURE MINIMUM REGION

    Energy Technology Data Exchange (ETDEWEB)

    De la Luz, Victor [Instituto Nacional de Astrofisica, Optica y Electronica, Tonantzintla, Puebla, Mexico, Apdo. Postal 51 y 216, 72000 (Mexico); Raulin, Jean-Pierre [CRAAM, Universidade Presbiteriana Mackenzie, Sao Paulo, SP 01302-907 (Brazil); Lara, Alejandro [Instituto de Geofisica, Universidad Nacional Autonoma de Mexico, Mexico 04510 (Mexico)

    2013-01-10

    We present a detailed theoretical analysis of the local radio emission at the lower part of the solar atmosphere. To accomplish this, we have used a numerical code to simulate the emission and transport of high-frequency electromagnetic waves from 2 GHz up to 10 THz. As initial conditions, we used VALC, SEL05, and C7 solar chromospheric models. In this way, the generated synthetic spectra allow us to study the local emission and absorption processes with high resolution in both altitude and frequency. Associated with the temperature minimum predicted by these models, we found that the local optical depth at millimeter wavelengths remains constant, producing an optically thin layer that is surrounded by two layers of high local emission. We call this structure the Chromospheric Solar Millimeter-wave Cavity (CSMC). The temperature profile, which features temperature minimum layers and a subsequent temperature rise, produces the CSMC phenomenon. The CSMC shows the complexity of the relation between the theoretical temperature profile and the observed brightness temperature and may help us to understand the dispersion of the observed brightness temperature in the millimeter wavelength range.

  5. RESOLVE: A new algorithm for aperture synthesis imaging of extended emission in radio astronomy

    Science.gov (United States)

    Junklewitz, H.; Bell, M. R.; Selig, M.; Enßlin, T. A.

    2016-02-01

    We present resolve, a new algorithm for radio aperture synthesis imaging of extended and diffuse emission in total intensity. The algorithm is derived using Bayesian statistical inference techniques, estimating the surface brightness in the sky assuming a priori log-normal statistics. resolve estimates the measured sky brightness in total intensity, and the spatial correlation structure in the sky, which is used to guide the algorithm to an optimal reconstruction of extended and diffuse sources. During this process, the algorithm succeeds in deconvolving the effects of the radio interferometric point spread function. Additionally, resolve provides a map with an uncertainty estimate of the reconstructed surface brightness. Furthermore, with resolve we introduce a new, optimal visibility weighting scheme that can be viewed as an extension to robust weighting. In tests using simulated observations, the algorithm shows improved performance against two standard imaging approaches for extended sources, Multiscale-CLEAN and the Maximum Entropy Method.

  6. The radio spectral energy distribution of infrared-faint radio sources

    Science.gov (United States)

    Herzog, A.; Norris, R. P.; Middelberg, E.; Seymour, N.; Spitler, L. R.; Emonts, B. H. C.; Franzen, T. M. O.; Hunstead, R.; Intema, H. T.; Marvil, J.; Parker, Q. A.; Sirothia, S. K.; Hurley-Walker, N.; Bell, M.; Bernardi, G.; Bowman, J. D.; Briggs, F.; Cappallo, R. J.; Callingham, J. R.; Deshpande, A. A.; Dwarakanath, K. S.; For, B.-Q.; Greenhill, L. J.; Hancock, P.; Hazelton, B. J.; Hindson, L.; Johnston-Hollitt, M.; Kapińska, A. D.; Kaplan, D. L.; Lenc, E.; Lonsdale, C. J.; McKinley, B.; McWhirter, S. R.; Mitchell, D. A.; Morales, M. F.; Morgan, E.; Morgan, J.; Oberoi, D.; Offringa, A.; Ord, S. M.; Prabu, T.; Procopio, P.; Udaya Shankar, N.; Srivani, K. S.; Staveley-Smith, L.; Subrahmanyan, R.; Tingay, S. J.; Wayth, R. B.; Webster, R. L.; Williams, A.; Williams, C. L.; Wu, C.; Zheng, Q.; Bannister, K. W.; Chippendale, A. P.; Harvey-Smith, L.; Heywood, I.; Indermuehle, B.; Popping, A.; Sault, R. J.; Whiting, M. T.

    2016-10-01

    Context. Infrared-faint radio sources (IFRS) are a class of radio-loud (RL) active galactic nuclei (AGN) at high redshifts (z ≥ 1.7) that are characterised by their relative infrared faintness, resulting in enormous radio-to-infrared flux density ratios of up to several thousand. Aims: Because of their optical and infrared faintness, it is very challenging to study IFRS at these wavelengths. However, IFRS are relatively bright in the radio regime with 1.4 GHz flux densities of a few to a few tens of mJy. Therefore, the radio regime is the most promising wavelength regime in which to constrain their nature. We aim to test the hypothesis that IFRS are young AGN, particularly GHz peaked-spectrum (GPS) and compact steep-spectrum (CSS) sources that have a low frequency turnover. Methods: We use the rich radio data set available for the Australia Telescope Large Area Survey fields, covering the frequency range between 150 MHz and 34 GHz with up to 19 wavebands from different telescopes, and build radio spectral energy distributions (SEDs) for 34 IFRS. We then study the radio properties of this class of object with respect to turnover, spectral index, and behaviour towards higher frequencies. We also present the highest-frequency radio observations of an IFRS, observed with the Plateau de Bure Interferometer at 105 GHz, and model the multi-wavelength and radio-far-infrared SED of this source. Results: We find IFRS usually follow single power laws down to observed frequencies of around 150 MHz. Mostly, the radio SEDs are steep (α IFRS show statistically significantly steeper radio SEDs than the broader RL AGN population. Our analysis reveals that the fractions of GPS and CSS sources in the population of IFRS are consistent with the fractions in the broader RL AGN population. We find that at least % of IFRS contain young AGN, although the fraction might be significantly higher as suggested by the steep SEDs and the compact morphology of IFRS. The detailed multi

  7. NOAA Climate Data Record (CDR) of Intersatellite Calibrated Clear-Sky High Resolution Infrared Radiation Sounder (HIRS) Channel 12 Brightness Temperature Version 3

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The High-Resolution Infrared Radiation Sounder (HIRS) of intersatellite calibrated channel 12 brightness temperature (TB) product is a gridded global monthly time...

  8. Radio Flares from Gamma-ray Bursts

    Science.gov (United States)

    Kopač, D.; Mundell, C. G.; Kobayashi, S.; Virgili, F. J.; Harrison, R.; Japelj, J.; Guidorzi, C.; Melandri, A.; Gomboc, A.

    2015-06-01

    We present predictions of centimeter and millimeter radio emission from reverse shocks (RSs) in the early afterglows of gamma-ray bursts (GRBs) with the goal of determining their detectability with current and future radio facilities. Using a range of GRB properties, such as peak optical brightness and time, isotropic equivalent gamma-ray energy, and redshift, we simulate radio light curves in a framework generalized for any circumburst medium structure and including a parameterization of the shell thickness regime that is more realistic than the simple assumption of thick- or thin-shell approximations. Building on earlier work by Mundell et al. and Melandri et al. in which the typical frequency of the RS was suggested to lie at radio rather than optical wavelengths at early times, we show that the brightest and most distinct RS radio signatures are detectable up to 0.1-1 day after the burst, emphasizing the need for rapid radio follow-up. Detection is easier for bursts with later optical peaks, high isotropic energies, lower circumburst medium densities, and at observing frequencies that are less prone to synchrotron self-absorption effects—typically above a few GHz. Given recent detections of polarized prompt gamma-ray and optical RS emission, we suggest that detection of polarized radio/millimeter emission will unambiguously confirm the presence of low-frequency RSs at early time.

  9. RADIO FLARES FROM GAMMA-RAY BURSTS

    International Nuclear Information System (INIS)

    Kopač, D.; Mundell, C. G.; Kobayashi, S.; Virgili, F. J.; Harrison, R.; Japelj, J.; Gomboc, A.; Guidorzi, C.; Melandri, A.

    2015-01-01

    We present predictions of centimeter and millimeter radio emission from reverse shocks (RSs) in the early afterglows of gamma-ray bursts (GRBs) with the goal of determining their detectability with current and future radio facilities. Using a range of GRB properties, such as peak optical brightness and time, isotropic equivalent gamma-ray energy, and redshift, we simulate radio light curves in a framework generalized for any circumburst medium structure and including a parameterization of the shell thickness regime that is more realistic than the simple assumption of thick- or thin-shell approximations. Building on earlier work by Mundell et al. and Melandri et al. in which the typical frequency of the RS was suggested to lie at radio rather than optical wavelengths at early times, we show that the brightest and most distinct RS radio signatures are detectable up to 0.1–1 day after the burst, emphasizing the need for rapid radio follow-up. Detection is easier for bursts with later optical peaks, high isotropic energies, lower circumburst medium densities, and at observing frequencies that are less prone to synchrotron self-absorption effects—typically above a few GHz. Given recent detections of polarized prompt gamma-ray and optical RS emission, we suggest that detection of polarized radio/millimeter emission will unambiguously confirm the presence of low-frequency RSs at early time

  10. Testing the dark matter origin of the WMAP-Planck haze with radio observations of spiral galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, Eric; Linden, Tim; Profumo, Stefano [Department of Physics, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA, 95064 (United States); Hooper, Dan, E-mail: erccarls@ucsc.edu, E-mail: dhooper@fnal.gov, E-mail: tlinden@ucsc.edu, E-mail: profumo@ucsc.edu [Center for Particle Astrophysics, Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States)

    2013-07-01

    If the Galactic WMAP radio haze, as recently confirmed by Planck, is produced by dark matter annihilation or decay, similar diffuse radio halos should exist around other galaxies with physical properties comparable to the Milky Way. If instead the haze is due to an astrophysical mechanism peculiar to the Milky Way or to a transient event, a similar halo need not exist around all Milky Way ''twins''. We use radio observations of 66 spiral galaxies to test the dark matter origin of the haze. We select galaxies based on morphological type and maximal rotational velocity, and obtain their luminosities from a 1.49 GHz catalog and additional radio observations at other frequencies. We find many instances of galaxies with radio emission that is less than 5% as bright as naively expected from dark matter models that could produce the Milky Way haze, and at least 3 galaxies that are less than 1% as bright as expected, assuming dark matter distributions, magnetic fields, and cosmic ray propagation parameters equal to those of the Milky Way. For reasonable ranges for the variation of these parameters, we estimate the fraction of galaxies that should be expected to be significantly less bright in radio, and argue that this is marginally compatible with the observed distribution. While our findings therefore cannot rule out a dark matter origin for the radio haze at this time, we find numerous examples (including the Andromeda Galaxy) where, if dark matter is indeed the origin of the Milky Way haze, some mechanism must be in place to suppress the corresponding haze of the external galaxy. We point out that Planck data will offer opportunities to improve this type of constraint in a highly relevant frequency range and for a potentially larger set of candidate galaxies.

  11. MULTI-WAVELENGTH AFTERGLOWS OF FAST RADIO BURSTS

    International Nuclear Information System (INIS)

    Yi, Shuang-Xi; Gao, He; Zhang, Bing

    2014-01-01

    The physical origin of fast radio bursts (FRBs) is unknown. Detecting electromagnetic counterparts to FRBs in other wavelengths is essential to measure their distances and to determine their physical origin. Assuming that at least some of them are of cosmological origin, we calculate their afterglow light curves in multiple wavelengths (X-rays, optical, and radio) by assuming a range of total kinetic energies and redshifts. We focus on forward shock emission, but also consider the possibility that some of the FRBs might have bright reverse shock emission. In general, FRB afterglows are too faint to be detected by current detectors. Only if an FRB has a very low radiative efficiency in radio (hence, a very large kinetic energy), and when it is close enough to observe can its afterglow be detected in the optical and radio bands. We discuss observational strategies for detecting these faint afterglows using future telescopes such as Large Synoptic Survey Telescope and Expanded Very Large Array

  12. SKYMONITOR: A Global Network for Sky Brightness Measurements

    Science.gov (United States)

    Davis, Donald R.; Mckenna, D.; Pulvermacher, R.; Everett, M.

    2010-01-01

    We are implementing a global network to measure sky brightness at dark-sky critical sites with the goal of creating a multi-decade database. The heart of this project is the Night Sky Brightness Monitor (NSBM), an autonomous 2 channel photometer which measures night sky brightness in the visual wavelengths (Mckenna et al, AAS 2009). Sky brightness is measured every minute at two elevation angles typically zenith and 20 degrees to monitor brightness and transparency. The NSBM consists of two parts, a remote unit and a base station with an internet connection. Currently these devices use 2.4 Ghz transceivers with a range of 100 meters. The remote unit is battery powered with daytime recharging using a solar panel. Data received by the base unit is transmitted via email protocol to IDA offices in Tucson where it will be collected, archived and made available to the user community via a web interface. Two other versions of the NSBM are under development: one for radio sensitive areas using an optical fiber link and the second that reads data directly to a laptop for sites without internet access. NSBM units are currently undergoing field testing at two observatories. With support from the National Science Foundation, we will construct and install a total of 10 units at astronomical observatories. With additional funding, we will locate additional units at other sites such as National Parks, dark-sky preserves and other sites where dark sky preservation is crucial. We will present the current comparison with the National Park Service sky monitoring camera. We anticipate that the SKYMONITOR network will be functioning by the end of 2010.

  13. galario: Gpu Accelerated Library for Analyzing Radio Interferometer Observations

    Science.gov (United States)

    Tazzari, Marco; Beaujean, Frederik; Testi, Leonardo

    2017-10-01

    The galario library exploits the computing power of modern graphic cards (GPUs) to accelerate the comparison of model predictions to radio interferometer observations. It speeds up the computation of the synthetic visibilities given a model image (or an axisymmetric brightness profile) and their comparison to the observations.

  14. THE COMPACT, TIME-VARIABLE RADIO SOURCE PROJECTED INSIDE W3(OH): EVIDENCE FOR A PHOTOEVAPORATED DISK?

    Energy Technology Data Exchange (ETDEWEB)

    Dzib, Sergio A.; Rodriguez-Garza, Carolina B.; Rodriguez, Luis F.; Kurtz, Stan E.; Loinard, Laurent; Zapata, Luis A.; Lizano, Susana, E-mail: s.dzib@crya.unam.mx [Centro de Radiostronomia y Astrofisica, Universidad Nacional Autonoma de Mexico, Morelia 58089 (Mexico)

    2013-08-01

    We present new Karl G. Jansky Very Large Array (VLA) observations of the compact ({approx}0.''05), time-variable radio source projected near the center of the ultracompact H II region W3(OH). The analysis of our new data as well as of VLA archival observations confirms the variability of the source on timescales of years and for a given epoch indicates a spectral index of {alpha} = 1.3 {+-} 0.3 (S{sub {nu}}{proportional_to}{nu}{sup {alpha}}). This spectral index and the brightness temperature of the source ({approx}6500 K) suggest that we are most likely detecting partially optically thick free-free radiation. The radio source is probably associated with the ionizing star of W3(OH), but an interpretation in terms of an ionized stellar wind fails because the detected flux densities are orders of magnitude larger than expected. We discuss several scenarios and tentatively propose that the radio emission could arise in a static ionized atmosphere around a fossil photoevaporated disk.

  15. Branched carbon nanofiber network synthesis at room temperature using radio frequency supported microwave plasmas

    International Nuclear Information System (INIS)

    Boskovic, Bojan O.; Stolojan, Vlad; Zeze, Dagou A.; Forrest, Roy D.; Silva, S. Ravi P.; Haq, Sajad

    2004-01-01

    Carbon nanofibers have been grown at room temperature using a combination of radio frequency and microwave assisted plasma-enhanced chemical vapor deposition. The nanofibers were grown, using Ni powder catalyst, onto substrates kept at room temperature by using a purposely designed water-cooled sample holder. Branched carbon nanofiber growth was obtained without using a template resulting in interconnected carbon nanofiber network formation on substrates held at room temperature. This method would allow room-temperature direct synthesized nanofiber networks over relatively large areas, for a range of temperature sensitive substrates, such as organic materials, plastics, and other polymers of interest for nanoelectronic two-dimensional networks, nanoelectromechanical devices, nanoactuators, and composite materials

  16. Analyzing Snowpack Metrics Over Large Spatial Extents Using Calibrated, Enhanced-Resolution Brightness Temperature Data and Long Short Term Memory Artificial Neural Networks

    Science.gov (United States)

    Norris, W.; J Q Farmer, C.

    2017-12-01

    Snow water equivalence (SWE) is a difficult metric to measure accurately over large spatial extents; snow-tell sites are too localized, and traditional remotely sensed brightness temperature data is at too coarse of a resolution to capture variation. The new Calibrated Enhanced-Resolution Brightness Temperature (CETB) data from the National Snow and Ice Data Center (NSIDC) offers remotely sensed brightness temperature data at an enhanced resolution of 3.125 km versus the original 25 km, which allows for large spatial extents to be analyzed with reduced uncertainty compared to the 25km product. While the 25km brightness temperature data has proved useful in past research — one group found decreasing trends in SWE outweighed increasing trends three to one in North America; other researchers used the data to incorporate winter conditions, like snow cover, into ecological zoning criterion — with the new 3.125 km data, it is possible to derive more accurate metrics for SWE, since we have far more spatial variability in measurements. Even with higher resolution data, using the 37 - 19 GHz frequencies to estimate SWE distorts the data during times of melt onset and accumulation onset. Past researchers employed statistical splines, while other successful attempts utilized non-parametric curve fitting to smooth out spikes distorting metrics. In this work, rather than using legacy curve fitting techniques, a Long Short Term Memory (LSTM) Artificial Neural Network (ANN) was trained to perform curve fitting on the data. LSTM ANN have shown great promise in modeling time series data, and with almost 40 years of data available — 14,235 days — there is plenty of training data for the ANN. LSTM's are ideal for this type of time series analysis because they allow important trends to persist for long periods of time, but ignore short term fluctuations; since LSTM's have poor mid- to short-term memory, they are ideal for smoothing out the large spikes generated in the melt

  17. Sky brightness and twilight measurements at Jogyakarta city, Indonesia

    International Nuclear Information System (INIS)

    Herdiwijaya, Dhani

    2016-01-01

    The sky brightness measurements were performed using a portable photometer. A pocket-sized and low-cost photometer has 20 degree area measurement, and spectral ranges between 320-720 nm with output directly in magnitudes per arc second square (mass) unit. The sky brightness with 3 seconds temporal resolutions was recorded at Jogyakarta city (110° 25’ E; 70° 52’ S; elevation 100 m) within 136 days in years from 2014 to 2016. The darkest night could reach 22.61 mpass only in several seconds, with mean value 18.8±0.7 mpass and temperature variation 23.1±1.2 C. The difference of mean sky brightness between before and after midnight was about -0.76 mpass or 2.0 times brighter. Moreover, the sky brightness and temperature fluctuations were more stable in after midnight than in before midnight. It is suggested that city light pollution affects those variations, and subsequently duration of twilight. By comparing twilight brightness for several places, we also suggest a 17° solar dip or about 66 minutes before sunrise for new time of Fajr prayer. (paper)

  18. Energy-exchange collisions of dark-bright-bright vector solitons.

    Science.gov (United States)

    Radhakrishnan, R; Manikandan, N; Aravinthan, K

    2015-12-01

    We find a dark component guiding the practically interesting bright-bright vector one-soliton to two different parametric domains giving rise to different physical situations by constructing a more general form of three-component dark-bright-bright mixed vector one-soliton solution of the generalized Manakov model with nine free real parameters. Moreover our main investigation of the collision dynamics of such mixed vector solitons by constructing the multisoliton solution of the generalized Manakov model with the help of Hirota technique reveals that the dark-bright-bright vector two-soliton supports energy-exchange collision dynamics. In particular the dark component preserves its initial form and the energy-exchange collision property of the bright-bright vector two-soliton solution of the Manakov model during collision. In addition the interactions between bound state dark-bright-bright vector solitons reveal oscillations in their amplitudes. A similar kind of breathing effect was also experimentally observed in the Bose-Einstein condensates. Some possible ways are theoretically suggested not only to control this breathing effect but also to manage the beating, bouncing, jumping, and attraction effects in the collision dynamics of dark-bright-bright vector solitons. The role of multiple free parameters in our solution is examined to define polarization vector, envelope speed, envelope width, envelope amplitude, grayness, and complex modulation of our solution. It is interesting to note that the polarization vector of our mixed vector one-soliton evolves in sphere or hyperboloid depending upon the initial parametric choices.

  19. Thermal measurements of dark and bright surface features on Vesta as derived from Dawn/VIR

    Science.gov (United States)

    Tosi, Federico; Capria, Maria Teresa; De Sanctis, M.C.; Combe, J.-Ph.; Zambon, F.; Nathues, A.; Schröder, S.E.; Li, J.-Y.; Palomba, E.; Longobardo, A.; Blewett, D.T.; Denevi, B.W.; Palmer, E.; Capaccioni, F.; Ammannito, E.; Titus, Timothy N.; Mittlefehldt, D.W.; Sunshine, J.M.; Russell, C.T.; Raymond, C.A.; Dawn/VIR Team,

    2014-01-01

    Remote sensing data acquired during Dawn’s orbital mission at Vesta showed several local concentrations of high-albedo (bright) and low-albedo (dark) material units, in addition to spectrally distinct meteorite impact ejecta. The thermal behavior of such areas seen at local scale (1-10 km) is related to physical properties that can provide information about the origin of those materials. We use Dawn’s Visible and InfraRed (VIR) mapping spectrometer hyperspectral data to retrieve surface temperatures and emissivities, with high accuracy as long as temperatures are greater than 220 K. Some of the dark and bright features were observed multiple times by VIR in the various mission phases at variable spatial resolution, illumination and observation angles, local solar time, and heliocentric distance. This work presents the first temperature maps and spectral emissivities of several kilometer-scale dark and bright material units on Vesta. Results retrieved from the infrared data acquired by VIR show that bright regions generally correspond to regions with lower temperature, while dark regions correspond to areas with higher temperature. During maximum daily insolation and in the range of heliocentric distances explored by Dawn, i.e. 2.23-2.54 AU, the warmest dark unit found on Vesta rises to a temperature of 273 K, while bright units observed under comparable conditions do not exceed 266 K. Similarly, dark units appear to have higher emissivity on average compared to bright units. Dark-material units show a weak anticorrelation between temperature and albedo, whereas the relation is stronger for bright material units observed under the same conditions. Individual features may show either evanescent or distinct margins in the thermal images, as a consequence of the cohesion of the surface material. Finally, for the two categories of dark and bright materials, we were able to highlight the influence of heliocentric distance on surface temperatures, and estimate an

  20. Soil moisture estimation by assimilating L-band microwave brightness temperature with geostatistics and observation localization.

    Directory of Open Access Journals (Sweden)

    Xujun Han

    Full Text Available The observation could be used to reduce the model uncertainties with data assimilation. If the observation cannot cover the whole model area due to spatial availability or instrument ability, how to do data assimilation at locations not covered by observation? Two commonly used strategies were firstly described: One is covariance localization (CL; the other is observation localization (OL. Compared with CL, OL is easy to parallelize and more efficient for large-scale analysis. This paper evaluated OL in soil moisture profile characterizations, in which the geostatistical semivariogram was used to fit the spatial correlated characteristics of synthetic L-Band microwave brightness temperature measurement. The fitted semivariogram model and the local ensemble transform Kalman filter algorithm are combined together to weight and assimilate the observations within a local region surrounding the grid cell of land surface model to be analyzed. Six scenarios were compared: 1_Obs with one nearest observation assimilated, 5_Obs with no more than five nearest local observations assimilated, and 9_Obs with no more than nine nearest local observations assimilated. The scenarios with no more than 16, 25, and 36 local observations were also compared. From the results we can conclude that more local observations involved in assimilation will improve estimations with an upper bound of 9 observations in this case. This study demonstrates the potentials of geostatistical correlation representation in OL to improve data assimilation of catchment scale soil moisture using synthetic L-band microwave brightness temperature, which cannot cover the study area fully in space due to vegetation effects.

  1. Soil moisture estimation by assimilating L-band microwave brightness temperature with geostatistics and observation localization.

    Science.gov (United States)

    Han, Xujun; Li, Xin; Rigon, Riccardo; Jin, Rui; Endrizzi, Stefano

    2015-01-01

    The observation could be used to reduce the model uncertainties with data assimilation. If the observation cannot cover the whole model area due to spatial availability or instrument ability, how to do data assimilation at locations not covered by observation? Two commonly used strategies were firstly described: One is covariance localization (CL); the other is observation localization (OL). Compared with CL, OL is easy to parallelize and more efficient for large-scale analysis. This paper evaluated OL in soil moisture profile characterizations, in which the geostatistical semivariogram was used to fit the spatial correlated characteristics of synthetic L-Band microwave brightness temperature measurement. The fitted semivariogram model and the local ensemble transform Kalman filter algorithm are combined together to weight and assimilate the observations within a local region surrounding the grid cell of land surface model to be analyzed. Six scenarios were compared: 1_Obs with one nearest observation assimilated, 5_Obs with no more than five nearest local observations assimilated, and 9_Obs with no more than nine nearest local observations assimilated. The scenarios with no more than 16, 25, and 36 local observations were also compared. From the results we can conclude that more local observations involved in assimilation will improve estimations with an upper bound of 9 observations in this case. This study demonstrates the potentials of geostatistical correlation representation in OL to improve data assimilation of catchment scale soil moisture using synthetic L-band microwave brightness temperature, which cannot cover the study area fully in space due to vegetation effects.

  2. A prompt radio burst from supernova 1987A in the Large Magellanic Cloud

    International Nuclear Information System (INIS)

    Turtle, A.J.; Campbell-Wilson, D.; Bunton, J.D.; Jauncey, D.L.; Kesteven, M.J.; Manchester, R.N.; Norris, R.P.; Storey, M.C.; Reynolds, J.E.

    1987-01-01

    The paper concerns a prompt radio burst from supernova 1987A in the Large Magellanic Cloud. Radio emission from the supernova was detected at Australian observatories within two days of the increase in optical brightness. Observations of radio emission at four frequencies i.e. 0.843, 1.415, 2.29 and 8.41 GHz are presented for the region of the Large Magellanic Cloud supernova. At frequencies around 1 GHz the peak flux density was about 150mJy and occurred within four days of the supernova. (U.K.)

  3. Sensitivity of Support Vector Machine Predictions of Passive Microwave Brightness Temperature Over Snow-covered Terrain in High Mountain Asia

    Science.gov (United States)

    Ahmad, J. A.; Forman, B. A.

    2017-12-01

    High Mountain Asia (HMA) serves as a water supply source for over 1.3 billion people, primarily in south-east Asia. Most of this water originates as snow (or ice) that melts during the summer months and contributes to the run-off downstream. In spite of its critical role, there is still considerable uncertainty regarding the total amount of snow in HMA and its spatial and temporal variation. In this study, the NASA Land Information Systems (LIS) is used to model the hydrologic cycle over the Indus basin. In addition, the ability of support vector machines (SVM), a machine learning technique, to predict passive microwave brightness temperatures at a specific frequency and polarization as a function of LIS-derived land surface model output is explored in a sensitivity analysis. Multi-frequency, multi-polarization passive microwave brightness temperatures as measured by the Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E) over the Indus basin are used as training targets during the SVM training process. Normalized sensitivity coefficients (NSC) are then computed to assess the sensitivity of a well-trained SVM to each LIS-derived state variable. Preliminary results conform with the known first-order physics. For example, input states directly linked to physical temperature like snow temperature, air temperature, and vegetation temperature have positive NSC's whereas input states that increase volume scattering such as snow water equivalent or snow density yield negative NSC's. Air temperature exhibits the largest sensitivity coefficients due to its inherent, high-frequency variability. Adherence of this machine learning algorithm to the first-order physics bodes well for its potential use in LIS as the observation operator within a radiance data assimilation system aimed at improving regional- and continental-scale snow estimates.

  4. Performing a stellar autopsy using the radio-bright remnant of SN 1996cr

    Science.gov (United States)

    Meunier, C.; Bauer, F. E.; Dwarkadas, V. V.; Koribalski, B.; Emonts, B.; Hunstead, R. W.; Campbell-Wilson, D.; Stockdale, C.; Tingay, S. J.

    2013-05-01

    We present newly reduced archival radio observations of SN 1996cr in the Circinus Galaxy from the Australia Telescope Compact Array and the Molonglo Observatory Synthesis Telescope, and attempt to model its radio light curves using recent hydrodynamical simulations of the interaction between the supernova (SN) ejecta and the circumstellar material (CSM) at X-ray wavelengths. The radio data within the first 1000 d show clear signs of free-free absorption (FFA), which decreases gradually and is minimal above 1.4 GHz after day ˜3000. Constraints on the FFA optical depth provide estimates of the CSM free electron density, which allows insight into the ionization of SN 1996cr's CSM and offers a test on the density distribution adopted by the hydrodynamical simulation. The intrinsic spectral index of the radiation shows evidence for spectral flattening, which is characterized by α = 0.852 ± 0.002 at day 3000 and a decay rate of Δα = -0.014 ± 0.001 yr-1. The striking similarity in the spectral flattening of SN 1987A, SN 1993J and SN 1996cr suggests this may be a relatively common feature of SNe/CSM shocks. We adopt this spectral index variation to model the synchrotron radio emission of the shock, and consider several scalings that relate the parameters of the hydrodynamical simulation to the magnetic field and electron distribution. The simulated light curves match the large-scale features of the observed light curves, but fail to match certain tightly constraining sections. This suggests that simple energy density scalings may not be able to account for the complexities of the true physical processes at work, or alternatively, that the parameters of the simulation require modification in order to accurately represent the surroundings of SN 1996cr.

  5. Radio thermal sounding of natural environments

    Science.gov (United States)

    Gauss, Martin; Lomukhin, Yuriy

    2017-11-01

    At the moment, methods of sounding a status of soil, plant, forest and aquatic environments using radiometry and radar methods are intensively used. The main source of information using radar sounding is the back reflection ratio. The radiometric method is used for detection of the brightness temperature. In this paper, a communication between the back reflection ratio and the brightness temperature is described. This communication is proportional.

  6. Evolutionary tracks of extended radio sources

    International Nuclear Information System (INIS)

    Baldwin, J.E.

    1982-01-01

    We know almost nothing about the evolutionary tracks of extragalactic radio sources but those tracks are, however, strongly constrained by the distribution of sources in the radio luminosity, P, overall physical size, D, diagram. The P-D diagram for the 3CR 166 source sample of Jenkins et al. (1977) is presented with later additions. Most of the sources are identified and have known redshifts. Because of doubts about the completeness of the sample in this region, the author has made searches in the 6C 151MHz survey for sources with specific surface brightnesses. The numbers found to a limiting flux density of 1-2 Jy suggest that there is no serious underestimate of the numbers in 166 source sample. (Auth.)

  7. AN X-RAY COOLING-CORE CLUSTER SURROUNDING A LOW-POWER COMPACT STEEP SPECTRUM RADIO SOURCE 1321+045

    International Nuclear Information System (INIS)

    Kunert-Bajraszewska, M.; Siemiginowska, A.; Labiano, A.

    2013-01-01

    We discovered an X-ray cluster in a Chandra observation of the compact steep spectrum (CSS) radio source 1321+045 (z = 0.263). CSS sources are thought to be young radio objects at the beginning of their evolution and can potentially test the cluster heating process. 1321+045 is a relatively low-luminosity source and its morphology consists of two radio lobes on the opposite sides of a radio core with no evidence for jets or hotspots. The optical emission line ratios are consistent with an interstellar medium dominated by active galactic nucleus photoionization with a small contribution from star formation, and no contributions from shocks. Based on these ratios, we classify 1321+045 as a low excitation galaxy (LEG) and suggest that its radioactivity is in a coasting phase. The X-ray emission associated with the radio source is detected with 36.1 ± 8.3 counts, but the origin of this emission is highly uncertain. The current X-ray image of the cluster does not show any signatures of a radio source impact on the cluster medium. Chandra detects the cluster emission at >3σ level out to ∼60'' (240 kpc). We obtain the best-fit beta model parameters of the surface brightness profile of β = 0.58 ± 0.2 and a core radius of 9.4 +1.1 -0.9 arcsec. The average temperature of the cluster is equal to kT = 4.4 +0.5 -0.3 keV, with a temperature and cooling profile indicative of a cooling core. We measure the cluster luminosity L (0.5-2 k eV) = 3 × 10 44 erg s –1 and mass 1.5 × 10 14 M ☉

  8. AN X-RAY COOLING-CORE CLUSTER SURROUNDING A LOW-POWER COMPACT STEEP SPECTRUM RADIO SOURCE 1321+045

    Energy Technology Data Exchange (ETDEWEB)

    Kunert-Bajraszewska, M. [Torun Centre for Astronomy, Faculty of Physics, Astronomy and Informatics, NCU, Grudziacka 5, 87-100 Torun (Poland); Siemiginowska, A. [Harvard Smithsonian Center for Astrophysics, 60 Garden St, Cambridge, MA 02138 (United States); Labiano, A., E-mail: magda@astro.uni.torun.pl [Centro de Astrobiologia (CSIC-INTA), Carretera de Ajalvir km. 4, E-28850 Torrejon de Ardoz, Madrid (Spain)

    2013-07-20

    We discovered an X-ray cluster in a Chandra observation of the compact steep spectrum (CSS) radio source 1321+045 (z = 0.263). CSS sources are thought to be young radio objects at the beginning of their evolution and can potentially test the cluster heating process. 1321+045 is a relatively low-luminosity source and its morphology consists of two radio lobes on the opposite sides of a radio core with no evidence for jets or hotspots. The optical emission line ratios are consistent with an interstellar medium dominated by active galactic nucleus photoionization with a small contribution from star formation, and no contributions from shocks. Based on these ratios, we classify 1321+045 as a low excitation galaxy (LEG) and suggest that its radioactivity is in a coasting phase. The X-ray emission associated with the radio source is detected with 36.1 {+-} 8.3 counts, but the origin of this emission is highly uncertain. The current X-ray image of the cluster does not show any signatures of a radio source impact on the cluster medium. Chandra detects the cluster emission at >3{sigma} level out to {approx}60'' (240 kpc). We obtain the best-fit beta model parameters of the surface brightness profile of {beta} = 0.58 {+-} 0.2 and a core radius of 9.4{sup +1.1}{sub -0.9} arcsec. The average temperature of the cluster is equal to kT = 4.4{sup +0.5}{sub -0.3} keV, with a temperature and cooling profile indicative of a cooling core. We measure the cluster luminosity L{sub (0.5-2{sub keV)}} = 3 Multiplication-Sign 10{sup 44} erg s{sup -1} and mass 1.5 Multiplication-Sign 10{sup 14} M{sub Sun}.

  9. Low-temperature mechanical properties of superconducting radio frequency cavity materials

    Science.gov (United States)

    Byun, Thak Sang; Kim, Sang-Ho; Mammosser, John

    2009-08-01

    Low-temperature mechanical behaviors have been investigated for the constituent materials of superconducting radio frequency cavities. Test materials consist of small grain Nb, single crystal Nb, large grain Nb (bicrystal), Ti45Nb-Nb weld joint (e-beam welded), and Ti-316L bimetal joint (explosion welded). The strength of all test metals displayed strong temperature dependence and the Ti-316L bimetal showed the highest strength and lowest ductility among the test materials. The fracture toughness of the small grain Nb metals decreased with decreasing test temperature and reached the lower shelf values (30-40 MPa √m) at or above 173 K. The Ti45Nb base and Ti45Nb-Nb weld metals showed much higher fracture toughness than the small grain Nb. An extrapolation and comparison with existing data showed that the fracture toughness of the small grain Nb metals at 4 K was expected to be similar to those at 173 and 77 K. The results from optical photography at a low magnification and fractography by a scanning electron microscope were consistent with corresponding mechanical properties.

  10. Low-temperature mechanical properties of superconducting radio frequency cavity materials

    Energy Technology Data Exchange (ETDEWEB)

    Byun, Thak Sang [ORNL; Kim, Sang-Ho [ORNL; Mammosser, John [ORNL

    2009-01-01

    Low temperature mechanical behaviors have been investigated for the constituent materials of superconducting radio frequency cavities. Test materials consist of small grain Nb, single crystal Nb, large grain Nb (bicrystal), Ti45Nb-Nb weld joint (e-beam welded), and Ti-316L bimetal joint (explosion welded). The strength of all test metals displayed strong temperature dependence and the Ti-316L bimetal showed the highest strength and lowest ductility among the test materials. The fracture toughness of the small grain Nb metals decreased with decreasing test temperature and reached the lower shelf values (30 40 MPa m) at or above 173 K. The Ti45Nb base and Ti45Nb-Nb weld metals showed much higher fracture toughness than the small grain Nb. An extrapolation and comparison with existing data showed that the fracture toughness of the small grain Nb metals at 4 K was expected to be similar to those at 173 K and 77 K. The results from optical photography at a low magnification and fractography by a scanning electron microscope were consistent with corresponding mechanical properties.

  11. Hiding from the moonlight: luminosity and temperature affect activity of Asian nocturnal primates in a highly seasonal forest.

    Directory of Open Access Journals (Sweden)

    Carly Starr

    Full Text Available The effect of moonlight and temperature on activity of slow lorises was previously little known and this knowledge might be useful for understanding many aspects of their behavioural ecology, and developing strategies to monitor and protect populations. In this study we aimed to determine if the activity of the pygmy loris (Nycticebus pygmaeus is affected by ambient temperature and/or moonlight in a mixed deciduous forest. We radio-collared five females and five males in the Seima Protection Forest, Cambodia, in February to May, 2008 and January to March, 2009 and recorded their behaviour at 5 minutes intervals, totalling 2736 observations. We classified each observation as either inactive (sleeping or alert or active behaviour (travel, feeding, grooming, or others. Moon luminosity (bright/dark and ambient temperature were recorded for each observation. The response variable, activity, was binary (active or inactive, and a logit link function was used. Ambient temperature alone did not significantly affect mean activity. Although mean activity was significantly affected by moonlight, the interaction between moonlight and temperature was also significant: on bright nights, studied animals were increasingly more active with higher temperature; and on dark nights they were consistently active regardless of temperature. The most plausible explanation is that on bright cold nights the combined risk of being seen and attacked by predators and heat loss outweigh the benefit of active behaviours.

  12. A new sample of faint Gigahertz Peaked Spectrum radio sources

    NARCIS (Netherlands)

    Snellen, IAG; Schilizzi, RT; de Bruyn, AG; Miley, GK; Rengelink, RB; Rottgering, HJ

    The Westerbork Northern Sky Survey (WENSS) has been used to select a sample of Gigahertz Peaked Spectrum (GPS) radio sources at flux densities one to two orders of magnitude lower than bright GPS sources investigated in earlier studies. Sources with inverted spectra at frequencies above 325 MHz have

  13. Low temperature laser scanning microscopy of a superconducting radio-frequency cavity

    OpenAIRE

    Ciovati, G.; Anlage, Steven M.; Baldwin, C.; Cheng, G.; Flood, R.; Jordan, K.; Kneisel, P.; Morrone, M.; Nemes, G.; Turlington, L.; Wang, H.; Wilson, K.; Zhang, S.

    2012-01-01

    An apparatus was developed to obtain, for the first time, 2D maps of the surface resistance of the inner surface of an operating superconducting radio-frequency niobium cavity by a low-temperature laser scanning microscopy technique. This allows identifying non-uniformities of the surface resistance with a spatial resolution of about one order of magnitude better than with earlier methods and surface resistance resolution of ~ 1 micro-Ohm at 3.3 GHz. A signal-to-noise ratio of about 10 dB was...

  14. Low-frequency radio absorption in Cassiopeia A

    Science.gov (United States)

    Arias, M.; Vink, J.; de Gasperin, F.; Salas, P.; Oonk, J. B. R.; van Weeren, R. J.; van Amesfoort, A. S.; Anderson, J.; Beck, R.; Bell, M. E.; Bentum, M. J.; Best, P.; Blaauw, R.; Breitling, F.; Broderick, J. W.; Brouw, W. N.; Brüggen, M.; Butcher, H. R.; Ciardi, B.; de Geus, E.; Deller, A.; van Dijk, P. C. G.; Duscha, S.; Eislöffel, J.; Garrett, M. A.; Grießmeier, J. M.; Gunst, A. W.; van Haarlem, M. P.; Heald, G.; Hessels, J.; Hörandel, J.; Holties, H. A.; van der Horst, A. J.; Iacobelli, M.; Juette, E.; Krankowski, A.; van Leeuwen, J.; Mann, G.; McKay-Bukowski, D.; McKean, J. P.; Mulder, H.; Nelles, A.; Orru, E.; Paas, H.; Pandey-Pommier, M.; Pandey, V. N.; Pekal, R.; Pizzo, R.; Polatidis, A. G.; Reich, W.; Röttgering, H. J. A.; Rothkaehl, H.; Schwarz, D. J.; Smirnov, O.; Soida, M.; Steinmetz, M.; Tagger, M.; Thoudam, S.; Toribio, M. C.; Vocks, C.; van der Wiel, M. H. D.; Wijers, R. A. M. J.; Wucknitz, O.; Zarka, P.; Zucca, P.

    2018-05-01

    Context. Cassiopeia A is one of the best-studied supernova remnants. Its bright radio and X-ray emission is due to shocked ejecta. Cas A is rather unique in that the unshocked ejecta can also be studied: through emission in the infrared, the radio-active decay of 44Ti, and the low-frequency free-free absorption caused by cold ionised gas, which is the topic of this paper. Aims: Free-free absorption processes are affected by the mass, geometry, temperature, and ionisation conditions in the absorbing gas. Observations at the lowest radio frequencies can constrain a combination of these properties. Methods: We used Low Frequency Array (LOFAR) Low Band Antenna observations at 30-77 MHz and Very Large Array (VLA) L-band observations at 1-2 GHz to fit for internal absorption as parametrised by the emission measure. We simultaneously fit multiple UV-matched images with a common resolution of 17″ (this corresponds to 0.25 pc for a source at the distance of Cas A). The ample frequency coverage allows us separate the relative contributions from the absorbing gas, the unabsorbed front of the shell, and the absorbed back of the shell to the emission spectrum. We explored the effects that a temperature lower than the 100-500 K proposed from infrared observations and a high degree of clumping can have on the derived physical properties of the unshocked material, such as its mass and density. We also compiled integrated radio flux density measurements, fit for the absorption processes that occur in the radio band, and considered their effect on the secular decline of the source. Results: We find a mass in the unshocked ejecta of M = 2.95 ± 0.48 M⊙ for an assumed gas temperatureof T = 100 K. This estimate is reduced for colder gas temperatures and, most significantly, if the ejecta are clumped. We measure the reverse shock to have a radius of 114″± 6″ and be centred at 23:23:26, +58:48:54 (J2000). We also find that a decrease in the amount of mass in the unshocked ejecta

  15. Radio properties of central dominant galaxies in cluster cooling flows

    International Nuclear Information System (INIS)

    O'dea, C.P.; Baum, S.A.

    1986-01-01

    New VLA observations of central dominant (cd) galaxies currently thought to be in cluster cooling flows are combined with observations from the literature to examine the global properties of a heterogeneous sample of 31 cd galaxies. The radio sources tend to be of low or intermediate radio power and have small sizes (median extent about 25 kpc). The resolved sources tend to have distorted morphologies (e.g., wide-angle tails and S shapes). It is not yet clear whether the radio emission from these cd galaxies is significantly different from those not thought to be in cluster cooling flows. The result of Jones and Forman (1984), that there is a possible correlation between radio power and excess X-ray luminosity in the cluster center (above a King model fit to the X-ray surface brightness), is confirmed. 43 references

  16. A “Cosmic Comb” Model of Fast Radio Bursts

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Bing [Department of Physics and Astronomy, University of Nevada Las Vegas, Las Vegas, NV 89154 (United States)

    2017-02-20

    Recent observations of fast radio bursts (FRBs) indicate a perplexing, inconsistent picture. We propose a unified scenario to interpret diverse FRBs observed. A regular pulsar, otherwise unnoticeable at a cosmological distance, may produce a bright FRB if its magnetosphere is suddenly “combed” by a nearby, strong plasma stream toward the anti-stream direction. If the Earth is to the night side of the stream, the combed magnetic sheath would sweep across the direction of Earth and make a detectable FRB. The stream could be an AGN flare, a GRB or supernova blastwave, a tidal disruption event, or even a stellar flare. Since it is the energy flux received by the pulsar rather than the luminosity of the stream origin that defines the properties of the FRB, this model predicts a variety of counterparts of FRBs, including a possible connection between FRB 150418 and an AGN flare, a possible connection between FRB 131104 and a weak GRB, a steady radio nebula associated with the repeating FRB 121102, and probably no bright counterparts for some FRBs.

  17. A “Cosmic Comb” Model of Fast Radio Bursts

    International Nuclear Information System (INIS)

    Zhang, Bing

    2017-01-01

    Recent observations of fast radio bursts (FRBs) indicate a perplexing, inconsistent picture. We propose a unified scenario to interpret diverse FRBs observed. A regular pulsar, otherwise unnoticeable at a cosmological distance, may produce a bright FRB if its magnetosphere is suddenly “combed” by a nearby, strong plasma stream toward the anti-stream direction. If the Earth is to the night side of the stream, the combed magnetic sheath would sweep across the direction of Earth and make a detectable FRB. The stream could be an AGN flare, a GRB or supernova blastwave, a tidal disruption event, or even a stellar flare. Since it is the energy flux received by the pulsar rather than the luminosity of the stream origin that defines the properties of the FRB, this model predicts a variety of counterparts of FRBs, including a possible connection between FRB 150418 and an AGN flare, a possible connection between FRB 131104 and a weak GRB, a steady radio nebula associated with the repeating FRB 121102, and probably no bright counterparts for some FRBs.

  18. Tropical cyclone cloud‐top height and vertical temperature structure detection using GPS radio occultation measurements

    DEFF Research Database (Denmark)

    Biondi, Riccardo; Ho, Shu‐Peng; Randel, William

    2013-01-01

    The accurate determination of tropical cyclone (TC) cloud-top height and its vertical thermal structure using the GPS radio occultation (RO) technique is demonstrated in this study. Cloud-top heights are determined by using the bending angle anomaly and the temperature anomaly profiles during...

  19. The excess radio background and fast radio transients

    International Nuclear Information System (INIS)

    Kehayias, John; Kephart, Thomas W.; Weiler, Thomas J.

    2015-01-01

    In the last few years ARCADE 2, combined with older experiments, has detected an additional radio background, measured as a temperature and ranging in frequency from 22 MHz to 10 GHz, not accounted for by known radio sources and the cosmic microwave background. One type of source which has not been considered in the radio background is that of fast transients (those with event times much less than the observing time). We present a simple estimate, and a more detailed calculation, for the contribution of radio transients to the diffuse background. As a timely example, we estimate the contribution from the recently-discovered fast radio bursts (FRBs). Although their contribution is likely 6 or 7 orders of magnitude too small (though there are large uncertainties in FRB parameters) to account for the ARCADE 2 excess, our development is general and so can be applied to any fast transient sources, discovered or yet to be discovered. We estimate parameter values necessary for transient sources to noticeably contribute to the radio background

  20. Optical Spectra of Radio Planetary Nebulae in the Small Magellanic Cloud

    Directory of Open Access Journals (Sweden)

    Payne, J. L.

    2008-06-01

    Full Text Available We present preliminary results from spectral observations of four (4 candidate radio sources co-identified with known planetary nebulae (PNe in the Small Magellanic Cloud (SMC. These were made using the Radcliffe 1.9-meter telescope in Sutherland, South Africa. These radio PNe were originally found in Australia Telescope Compact Array (ATCA surveys of the SMC at 1.42 and 2.37~GHz, and were further confirmed by new high resolution ATCA images at 6 and 3 cm (4arcsec/2arcsec. Optical PNe and radio candidates are within 2arcsec and may represent a sub-population of selected radio bright objects. Nebular ionized masses of these objects may be 2.6~$M_odot$ or greater, supporting the existence of PNe progenitor central stars with masses up to 8 $M_odot$.

  1. Optical spectra of radio planetary nebulae in the small Magellanic cloud

    Directory of Open Access Journals (Sweden)

    Payne J.L.

    2008-01-01

    Full Text Available We present preliminary results from spectral observations of four (4 candidate radio sources co-identified with known planetary nebulae (PNe in the Small Magellanic Cloud (SMC. These were made using the Radcliffe 1.9-meter telescope in Sutherland, South Africa. These radio PNe were originally found in Australia Telescope Compact Array (ATCA surveys of the SMC at 1.42 and 2.37 GHz, and were further confirmed by new high resolution ATCA images at 6 and 3 cm (400 /200 . Optical PNe and radio candidates are within 200 and may represent a sub- population of selected radio bright objects. Nebular ionized masses of these objects may be 2.6 Mo or greater, supporting the existence of PNe progenitor central stars with masses up to 8 Mo.

  2. Another shock for the Bullet cluster, and the source of seed electrons for radio relics

    Science.gov (United States)

    Shimwell, Timothy W.; Markevitch, Maxim; Brown, Shea; Feretti, Luigina; Gaensler, B. M.; Johnston-Hollitt, M.; Lage, Craig; Srinivasan, Raghav

    2015-05-01

    With Australia Telescope Compact Array observations, we detect a highly elongated Mpc-scale diffuse radio source on the eastern periphery of the Bullet cluster 1E 0657-55.8, which we argue has the positional, spectral and polarimetric characteristics of a radio relic. This powerful relic (2.3 ± 0.1 × 1025 W Hz-1) consists of a bright northern bulb and a faint linear tail. The bulb emits 94 per cent of the observed radio flux and has the highest surface brightness of any known relic. Exactly coincident with the linear tail, we find a sharp X-ray surface brightness edge in the deep Chandra image of the cluster - a signature of a shock front in the hot intracluster medium (ICM), located on the opposite side of the cluster to the famous bow shock. This new example of an X-ray shock coincident with a relic further supports the hypothesis that shocks in the outer regions of clusters can form relics via diffusive shock (re-)acceleration. Intriguingly, our new relic suggests that seed electrons for reacceleration are coming from a local remnant of a radio galaxy, which we are lucky to catch before its complete disruption. If this scenario, in which a relic forms when a shock crosses a well-defined region of the ICM polluted with aged relativistic plasma - as opposed to the usual assumption that seeds are uniformly mixed in the ICM - is also the case for other relics, this may explain a number of peculiar properties of peripheral relics.

  3. Recent improvements in Hurricane Imaging Radiometer’s brightness temperature image reconstruction

    Directory of Open Access Journals (Sweden)

    Sayak K. Biswas

    Full Text Available NASA MSFCs airborne Hurricane Imaging Radiometer (HIRAD uses interferometric aperture synthesis to produce high resolution wide swath images of scene brightness temperature (Tb distribution at four discrete C-band microwave frequencies (4.0, 5.0, 6.0 and 6.6 GHz. Images of ocean surface wind speed under heavy precipitation such as in tropical cyclones, is inferred from these measurements. The baseline HIRAD Tb reconstruction algorithm had produced prominent along-track streaks in the Tb images. Particularly the 4.0 GHz channel had been so dominated by the streaks as to be unusable.The loss of a frequency channel had compromised the final wind speed retrievals. During 2016, the HIRAD team made substantial progress in developing a quality controlled signal processing technique for the HIRAD data collected in 2015’s Tropical Cyclone Intensity (TCI experiment and reduced the effect of streaks in all channels including 4.0 GHz. 2000 MSC: 41A05, 41A10, 65D05, 65D17, Keywords: Microwave radiometry, Aperture synthesis, Image reconstruction, Hurricane winds

  4. A high temperature superconductor notch filter for the Sardinia Radio Telescope

    Science.gov (United States)

    Bolli, Pietro; Cresci, Luca; Huang, Frederick; Mariotti, Sergio; Panella, Dario

    2018-04-01

    A High Temperature Superconductor filter operating in the C-band between 4200 and 5600 MHz has been developed for one of the radio astronomical receivers of the Sardinia Radio Telescope. The motivation was to attenuate an interference from a weather radar at 5640 MHz, whose power level exceeds the linear region of the first active stages of the receiver. A very sharp transition after the nominal maximum passband frequency is reached by combining a 6th order band-pass filter with a 6th order stop-band. This solution is competitive with an alternative layout based on a cascaded triplet filter. Three units of the filter have been measured with two different calibration approaches to investigate pros and cons of each, and data repeatability. The final performance figures of the filters are: ohmic losses of the order of 0.15-0.25 dB, matching better than -15 dB, and -30 dB attenuation at 5640 MHz. Finally, a more accurate model of the connection between external connector and microstrip shows a better agreement between simulations and experimental data.

  5. On the Merging Cluster Abell 578 and Its Central Radio Galaxy 4C+67.13

    Science.gov (United States)

    Hagino, K.; Stawarz, Ł.; Siemiginowska, A.; Cheung, C. C.; Kozieł-Wierzbowska, D.; Szostek, A.; Madejski, G.; Harris, D. E.; Simionescu, A.; Takahashi, T.

    2015-06-01

    Here we analyze radio, optical, and X-ray data for the peculiar cluster Abell 578. This cluster is not fully relaxed and consists of two merging sub-systems. The brightest cluster galaxy (BCG), CGPG 0719.8+6704, is a pair of interacting ellipticals with projected separation ˜10 kpc, the brighter of which hosts the radio source 4C+67.13. The Fanaroff-Riley type-II radio morphology of 4C+67.13 is unusual for central radio galaxies in local Abell clusters. Our new optical spectroscopy revealed that both nuclei of the CGPG 0719.8+6704 pair are active, albeit at low accretion rates corresponding to the Eddington ratio ˜ {{10}-4} (for the estimated black hole masses of ˜ 3× {{10}8} {{M}⊙ } and ˜ {{10}9} {{M}⊙ }). The gathered X-ray (Chandra) data allowed us to confirm and to quantify robustly the previously noted elongation of the gaseous atmosphere in the dominant sub-cluster, as well as a large spatial offset (˜60 kpc projected) between the position of the BCG and the cluster center inferred from the modeling of the X-ray surface brightness distribution. Detailed analysis of the brightness profiles and temperature revealed also that the cluster gas in the vicinity of 4C+67.13 is compressed (by a factor of about ˜1.4) and heated (from ≃ 2.0 keV up to 2.7 keV), consistent with the presence of a weak shock (Mach number ˜1.3) driven by the expanding jet cocoon. This would then require the jet kinetic power of the order of ˜ {{10}45} erg s-1, implying either a very high efficiency of the jet production for the current accretion rate, or a highly modulated jet/accretion activity in the system. Based on service observations made with the WHT operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias.

  6. Interstellar scintillation as the origin of the rapid radio variability of the quasar J1819+3845.

    Science.gov (United States)

    Dennett-Thorpe, J; de Bruyn, A G

    2002-01-03

    The liberation of gravitational energy as matter falls onto a supermassive black hole at the centre of a galaxy is believed to explain the high luminosity of quasars. The variability of this emission from quasars and other types of active galactic nuclei can provide information on the size of the emitting regions and the physical process of fuelling the black hole. Some active galactic nuclei are variable at optical (and shorter) wavelengths, and display radio outbursts over years and decades. These active galactic nuclei often also show faster intraday variability at radio wavelengths. The origin of this rapid variability has been extensively debated, but a correlation between optical and radio variations in some sources suggests that both are intrinsic. This would, however, require radiation brightness temperatures that seem physically implausible, leading to the suggestion that the rapid variations are caused by scattering of the emission by the interstellar medium inside our Galaxy. Here we show that the rapid variations in the extreme case of quasar J1819+3845 (ref. 10) indeed arise from interstellar scintillation. The transverse velocity of the scattering material reveals the presence of plasma with a surprisingly high velocity close to the Solar System.

  7. A bright-rimmed cloud sculpted by the H ii region Sh2-48

    Science.gov (United States)

    Ortega, M. E.; Paron, S.; Giacani, E.; Rubio, M.; Dubner, G.

    2013-08-01

    Aims: We characterize a bright-rimmed cloud embedded in the H ii region Sh2-48 while searching for evidence of triggered star formation. Methods: We carried out observations towards a region of 2' × 2' centered at RA = 18h22m11.39s, Dec = -14°35'24.81''(J2000) using the Atacama Submillimeter Telescope Experiment (ASTE; Chile) in the 12CO J = 3-2, 13CO J = 3-2, HCO+J = 4-3, and CS J = 7-6 lines with an angular resolution of about 22''. We also present radio continuum observations at 5 GHz carried out with the Jansky Very Large Array (JVLA; EEUU) interferometer with a synthetized beam of 7'' × 5''. The molecular transitions were used to study the distribution and kinematics of the molecular gas of the bright-rimmed cloud. The radio continuum data was used to characterize the ionized gas located on the illuminated border of this molecular condensation. Combining these observations with infrared public data allowed us to build up a comprehensive picture of the current state of star formation within this cloud. Results: The analysis of our molecular observations reveals a relatively dense clump with n(H2) ~ 3 × 103cm-3, located in projection onto the interior of the H ii region Sh2-48. The emission distribution of the four observed molecular transitions has, at VLSR ~ 38 km s-1, morphological anticorrelation with the bright-rimmed cloud as seen in the optical emission. From the new radio continuum observations, we identify a thin layer of ionized gas located on the border of the clump that is facing the ionizing star. The ionized gas has an electron density of about 73 cm-3, which is a factor three higher than the typical critical density (nc ~ 25 cm-3), above which an ionized boundary layer can be formed and maintained. This supports the hypothesis that the clump is being photoionized by the nearby O9.5V star, BD-14 5014. From the evaluation of the pressure balance between the ionized and molecular gas, we conclude that the clump would be in a prepressure balance

  8. Discovery of a radio nebula around PSR J0855-4644

    Science.gov (United States)

    Maitra, C.; Roy, S.; Acero, F.; Gupta, Y.

    2018-03-01

    We report the discovery of a diffuse radio emission around PSR J0855-4644 using an upgraded GMRT (uGMRT) observation at 1.35 GHz. The radio emission is spatially coincident with the diffuse X-ray pulsar wind nebula (PWN) seen with XMM-Newton but is much larger in extent compared to the compact axisymmetric PWN seen with Chandra. The morphology of the emission, with a bright partial ring-like structure and two faint tail-like features strongly resembles a bow shock nebula, and indicates a velocity of 100 km/s through the ambient medium. We conclude that the emission is most likely to be associated with the radio PWN of PSR J0855-4644. From the integrated flux density, we estimate the energetics of the PWN.

  9. The bright-bright and bright-dark mode coupling-based planar metamaterial for plasmonic EIT-like effect

    Science.gov (United States)

    Yu, Wei; Meng, Hongyun; Chen, Zhangjie; Li, Xianping; Zhang, Xing; Wang, Faqiang; Wei, Zhongchao; Tan, Chunhua; Huang, Xuguang; Li, Shuti

    2018-05-01

    In this paper, we propose a novel planar metamaterial structure for the electromagnetically induced transparency (EIT)-like effect, which consists of a split-ring resonator (SRR) and a pair of metal strips. The simulated results indicate that a single transparency window can be realized in the symmetry situation, which originates from the bright-bright mode coupling. Further, a dual-band EIT-like effect can be achieved in the asymmetry situation, which is due to the bright-bright mode coupling and bright-dark mode coupling, respectively. Different EIT-like effect can be simultaneously achieved in the proposed structure with the different situations. It is of certain significance for the study of EIT-like effect.

  10. The Engineering Development Array: A Low Frequency Radio Telescope Utilising SKA Precursor Technology

    Science.gov (United States)

    Wayth, Randall; Sokolowski, Marcin; Booler, Tom; Crosse, Brian; Emrich, David; Grootjans, Robert; Hall, Peter J.; Horsley, Luke; Juswardy, Budi; Kenney, David; Steele, Kim; Sutinjo, Adrian; Tingay, Steven J.; Ung, Daniel; Walker, Mia; Williams, Andrew; Beardsley, A.; Franzen, T. M. O.; Johnston-Hollitt, M.; Kaplan, D. L.; Morales, M. F.; Pallot, D.; Trott, C. M.; Wu, C.

    2017-08-01

    We describe the design and performance of the Engineering Development Array, which is a low-frequency radio telescope comprising 256 dual-polarisation dipole antennas working as a phased array. The Engineering Development Array was conceived of, developed, and deployed in just 18 months via re-use of Square Kilometre Array precursor technology and expertise, specifically from the Murchison Widefield Array radio telescope. Using drift scans and a model for the sky brightness temperature at low frequencies, we have derived the Engineering Development Array's receiver temperature as a function of frequency. The Engineering Development Array is shown to be sky-noise limited over most of the frequency range measured between 60 and 240 MHz. By using the Engineering Development Array in interferometric mode with the Murchison Widefield Array, we used calibrated visibilities to measure the absolute sensitivity of the array. The measured array sensitivity matches very well with a model based on the array layout and measured receiver temperature. The results demonstrate the practicality and feasibility of using Murchison Widefield Array-style precursor technology for Square Kilometre Array-scale stations. The modular architecture of the Engineering Development Array allows upgrades to the array to be rolled out in a staged approach. Future improvements to the Engineering Development Array include replacing the second stage beamformer with a fully digital system, and to transition to using RF-over-fibre for the signal output from first stage beamformers.

  11. Bright radio emission from an ultraluminous stellar-mass microquasar in M 31

    NARCIS (Netherlands)

    Middleton, M.J.; Miller Jones, J.C.A.; Markoff, S.; Fender, R.; Henze, M.; Hurley-Walker, N.; Scaife, A.M.M.; Roberts, T.P.; Walton, D.; Carpenter, J.; Macquart, J.-P.; Bower, G.C.; Gurwell, G.; Pietsch, W.; Haberl, F.; Harris, J.; Daniel, M.; Miah, J.; Done, C.; Morgan, J.S.; Dickinson, H.; Charles, P.; Burwitz, V.; Della Valle, M.; Freyberg, M.; Greiner, J.; Hernanz, M.; Hartmann, D.H.; Hatzidimitriou, D.; Riffeser, A.; Sala, G.; Seitz, S.; Reig, P.; Rau, A.; Orio, M.; Titterington, D.; Grainge, K.

    2013-01-01

    A subset of ultraluminous X-ray sources (those with luminosities of less than 1040 erg s−1; ref. 1) are thought to be powered by the accretion of gas onto black holes with masses of ~5-20 , probably by means of an accretion disk2, 3. The X-ray and radio emission are coupled in such Galactic sources;

  12. Radio emissions from pulsar companions: a refutable explanation for galactic transients and fast radio bursts

    Science.gov (United States)

    Mottez, F.; Zarka, P.

    2014-09-01

    Context. The six known highly dispersed fast radio bursts are attributed to extragalactic radio sources that are of unknown origin but extremely energetic. We propose here a new explanation that does not require an extreme release of energy and involves a body (planet, asteroid, white dwarf) orbiting an extragalactic pulsar. Aims: We investigate a theory of radio waves associated with such pulsar-orbiting bodies. We focus our analysis on the waves emitted from the magnetic wake of the body in the pulsar wind. After deriving their properties, we compare them with the observations of various transient radio signals to determine whether they could originate from pulsar-orbiting bodies. Methods: The analysis is based on the theory of Alfvén wings: for a body immersed in a pulsar wind, a system of two stationary Alfvén waves is attached to the body, provided that the wind is highly magnetised. When they are destabilised through plasma instabilities, Alfvén wings can be the locus of strong radio sources that are convected with the pulsar wind. By assuming a cyclotron maser instability operating in the Alfvén wings, we make predictions about the shape, frequencies, and brightness of the resulting radio emissions. Results: Because of the beaming by relativistic aberration, the signal is seen only when the companion is perfectly aligned between its parent pulsar and the observer, as is the case for occultations. For pulsar winds with a high Lorentz factor (≥104), the whole duration of the radio event does not exceed a few seconds, and it is composed of one to four peaks that last a few milliseconds each and are detectable up to distances of several Mpc. The Lorimer burst, the three isolated pulses of PSR J1928+15, and the recently detected fast radio bursts are all compatible with our model. According to it, these transient signals should repeat periodically with the companion's orbital period. Conclusions: The search of pulsar-orbiting bodies could be an exploration

  13. Search for low-frequency diffuse radio emission around a shock in the massive galaxy cluster MACS J0744.9+3927

    Science.gov (United States)

    Wilber, A.; Brüggen, M.; Bonafede, A.; Rafferty, D.; Savini, F.; Shimwell, T.; van Weeren, R. J.; Botteon, A.; Cassano, R.; Brunetti, G.; De Gasperin, F.; Wittor, D.; Hoeft, M.; Birzan, L.

    2018-05-01

    Merging galaxy clusters produce low-Mach-number shocks in the intracluster medium. These shocks can accelerate electrons to relativistic energies that are detectable at radio frequencies. MACS J0744.9+3927 is a massive [M500 = (11.8 ± 2.8) × 1014 M⊙], high-redshift (z = 0.6976) cluster where a Bullet-type merger is presumed to have taken place. Sunyaev-Zel'dovich maps from MUSTANG indicate that a shock, with Mach number M = 1.0-2.9 and an extension of ˜200 kpc, sits near the centre of the cluster. The shock is also detected as a brightness and temperature discontinuity in X-ray observations. To search for diffuse radio emission associated with the merger, we have imaged the cluster with the LOw Frequency ARray (LOFAR) at 120-165 MHz. Our LOFAR radio images reveal previously undetected AGN emission, but do not show clear cluster-scale diffuse emission in the form of a radio relic nor a radio halo. The region of the shock is on the western edge of AGN lobe emission from the brightest cluster galaxy. Correlating the flux of known shock-induced radio relics versus their size, we find that the radio emission overlapping the shocked region in MACS J0744.9+3927 is likely of AGN origin. We argue against the presence of a relic caused by diffusive shock acceleration and suggest that the shock is too weak to accelerate electrons from the intracluster medium.

  14. Optical spectra of radio planetary nebulae in the large Magellanic Cloud

    Directory of Open Access Journals (Sweden)

    Payne J.L.

    2008-01-01

    Full Text Available We present 11 spectra from 12 candidate radio sources co-identified with known planetary nebulae (PNe in the Large Magellanic Cloud (LMC. Originally found in Australia Telescope Compact Array (ATCA LMC surveys at 1.4, 4.8 and 8.64 GHz and confirmed by new high resolution ATCA images at 6 and 3 cm (4' /2' , these complement data recently presented for candidate radio PNe in the Small Magellanic Cloud (SMC. Their spectra were obtained using the Radcliff 1.9-meter telescope in Sutherland (South Africa. All of the optical PNe and radio candidates are within 2' and may represent a population of selected radio bright sample only. Nebular ionized masses of these objects are estimated to be as high as 1.8 Mfi, supporting the idea that massive PNe progenitor central stars lose much of their mass in the asymptotic giant branch (AGB phase or prior. We also identify a sub-population (33% of radio PNe candidates with prominent ionized iron emission lines.

  15. Aperture synthesis observations of solar and stellar radio emission

    International Nuclear Information System (INIS)

    Bastian, T.S.

    1987-01-01

    The work presented in this thesis relied upon the radio astronomical instrument, The Very Large Array. The thesis is divided into three major sections. In the first the author applied maximum entropy-type image reconstruction techniques, using both single dish and iterferometer data, to generate full disk images of the Sun at a wavelength λ ∼ 21 cm. Using a set of six such images obtained during the Sun's decline from sunspot maximum to minimum, he has noted a number of previously unreported phenomena. Among these: (1) a systematic decrease in quiet Sun's brightness temperature as it declined to minimum; (2) a systematic decrease in the Sun's radius at 21 cm; (3) evidence for the evolution of polar coronal holes during the course of the solar cycle. The observed variation, though not noted previously at radio wavelengths, is entirely consistent with white light K coronagraph data. The results reported here explain the conflicting nature of a number of past observations. In the second section of the thesis, he presents the results of a long term survey of magnetic cataclysmic variables (CVs). Cataclysmic variables are close binary systems which contain a white dwarf accreting mass from a late-type secondary, typically a dwarf of spectral type, G, K, or M. The survey resulted in the detection of two out of the eighteen systems observed. In the third section of the thesis, he presents new results on flare stars in the solar neighborhood and in the Pleiades. He has successfully employed the technique of dynamic spectroscopy to constrain the mechanisms(s) for radio flaring on other stars. The second part of section three is devoted to a search for radio emission from flare stars in the Pleiades which was motivated by the evolutionary questions raised by flare stars and the Pleiades lower main sequence

  16. The New Horizons Radio Science Experiment: Performance and Measurements of Pluto's Atmospheric Structure, Surface Pressure, and Surface Temperature

    Science.gov (United States)

    Linscott, I.; Hinson, D. P.; Bird, M. K.; Stern, A.; Weaver, H. A., Jr.; Olkin, C.; Young, L. A.; Ennico Smith, K.

    2015-12-01

    The New Horizons (NH) spacecraft payload contained the Radio Science Experiment (REX) for determining key characteristics of Pluto and Charon during the July 14, 2015, flyby of the Pluto/Charon system. The REX flight equipment augments the NH X-band radio transceiver by providing a high precision, narrow band recording of high power uplink transmissions from Earth stations, as well as a record of broadband radiometric power. This presentation will review the performance and initial results of two high- priority observations. First, REX received two pair of 20-kW signals, one pair per polarization, transmitted from the DSN at 4.2-cm wavelength during a diametric radio occultation by Pluto. REX recorded these uplink signals and determined precise measurement of the surface pressure, the temperature structure of the lower atmosphere, and the surface radius of Pluto. The ingress portion of one polarization was played back from the spacecraft in July and processed to obtain the pressure and temperature structure of Pluto's atmosphere. Second, REX measured the thermal emission from Pluto at 4.2- cm wavelength during two linear scans across the disk at close range when both the dayside and the night side are visible. Both scans extend from limb to limb with a resolution of one-tenth Pluto's disk and temperature resolution of 0.1 K. Occultation and radiometric temperature results presented here will encompass additional data scheduled for playback in September.

  17. Very bright, near-infrared single photon emitters in diamond

    Directory of Open Access Journals (Sweden)

    D. W. M. Lau

    2013-09-01

    Full Text Available We demonstrate activation of bright diamond single photon emitters in the near infrared range by thermal annealing alone, i.e., without ion implantation. The activation is crucially dependent on the annealing ambient. The activation of the single photon emitters is only observed when the sample is annealed in forming gas (4% H2 in Ar above temperatures of 1000 °C. By contrast, no emitters are activated by annealing in vacuum, oxygen, argon or deuterium. The emitters activated by annealing in forming gas exhibit very bright emission in the 730-760 nm wavelength range and have linewidths of ∼1.5-2.5 nm at room temperature.

  18. Incorporation of Passive Microwave Brightness Temperatures in the ECMWF Soil Moisture Analysis

    Directory of Open Access Journals (Sweden)

    Joaquín Muñoz-Sabater

    2015-05-01

    Full Text Available For more than a decade, the European Centre for Medium-Range Weather Forecasts (ECMWF has used in-situ observations of 2 m temperature and 2 m relative humidity to operationally constrain the temporal evolution of model soil moisture. These observations are not available everywhere and they are indirectly linked to the state of the surface, so under various circumstances, such as weak radiative forcing or strong advection, they cannot be used as a proxy for soil moisture reinitialization in numerical weather prediction. Recently, the ECMWF soil moisture analysis has been updated to be able to account for the information provided by microwave brightness temperatures from the Soil Moisture and Ocean Salinity (SMOS mission of the European Space Agency (ESA. This is the first time that ECMWF uses direct information of the soil emission from passive microwave data to globally adjust the estimation of soil moisture by a land-surface model. This paper presents a novel version of the ECMWF Extended Kalman Filter soil moisture analysis to account for remotely sensed passive microwave data. It also discusses the advantages of assimilating direct satellite radiances compared to current soil moisture products, with a view to an operational implementation. A simple assimilation case study at global scale highlights the potential benefits and obstacles of using this new type of information in a global coupled land-atmospheric model.

  19. RADIO EMISSION FROM RED-GIANT HOT JUPITERS

    International Nuclear Information System (INIS)

    Fujii, Yuka; Spiegel, David S.; Mroczkowski, Tony; Nordhaus, Jason; Zimmerman, Neil T.; Parsons, Aaron R.; Mirbabayi, Mehrdad; Madhusudhan, Nikku

    2016-01-01

    When planet-hosting stars evolve off the main sequence and go through the red-giant branch, the stars become orders of magnitudes more luminous and, at the same time, lose mass at much higher rates than their main-sequence counterparts. Accordingly, if planetary companions exist around these stars at orbital distances of a few au, they will be heated up to the level of canonical hot Jupiters and also be subjected to a dense stellar wind. Given that magnetized planets interacting with stellar winds emit radio waves, such “Red-Giant Hot Jupiters” (RGHJs) may also be candidate radio emitters. We estimate the spectral auroral radio intensity of RGHJs based on the empirical relation with the stellar wind as well as a proposed scaling for planetary magnetic fields. RGHJs might be intrinsically as bright as or brighter than canonical hot Jupiters and about 100 times brighter than equivalent objects around main-sequence stars. We examine the capabilities of low-frequency radio observatories to detect this emission and find that the signal from an RGHJ may be detectable at distances up to a few hundred parsecs with the Square Kilometer Array

  20. RADIO EMISSION FROM RED-GIANT HOT JUPITERS

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Yuka [Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, 152-8550 (Japan); Spiegel, David S. [Analytics and Algorithms, Stitch Fix, San Francisco, CA 94103 (United States); Mroczkowski, Tony [Naval Research Laboratory, 4555 Overlook Ave SW, Washington, DC 20375 (United States); Nordhaus, Jason [Department of Science and Mathematics, National Technical Institute for the Deaf, Rochester Institute of Technology, Rochester, NY 14623 (United States); Zimmerman, Neil T. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Parsons, Aaron R. [Astronomy Department, University of California, Berkeley, CA (United States); Mirbabayi, Mehrdad [Astrophysics Department, Institute for Advanced Study, Princeton, NJ 08540 (United States); Madhusudhan, Nikku, E-mail: yuka.fujii@elsi.jp [Astronomy Department, University of Cambridge (United Kingdom)

    2016-04-01

    When planet-hosting stars evolve off the main sequence and go through the red-giant branch, the stars become orders of magnitudes more luminous and, at the same time, lose mass at much higher rates than their main-sequence counterparts. Accordingly, if planetary companions exist around these stars at orbital distances of a few au, they will be heated up to the level of canonical hot Jupiters and also be subjected to a dense stellar wind. Given that magnetized planets interacting with stellar winds emit radio waves, such “Red-Giant Hot Jupiters” (RGHJs) may also be candidate radio emitters. We estimate the spectral auroral radio intensity of RGHJs based on the empirical relation with the stellar wind as well as a proposed scaling for planetary magnetic fields. RGHJs might be intrinsically as bright as or brighter than canonical hot Jupiters and about 100 times brighter than equivalent objects around main-sequence stars. We examine the capabilities of low-frequency radio observatories to detect this emission and find that the signal from an RGHJ may be detectable at distances up to a few hundred parsecs with the Square Kilometer Array.

  1. Radio Emission from Red-Giant Hot Jupiters

    Science.gov (United States)

    Fujii, Yuka; Spiegel, David S.; Mroczkowski, Tony; Nordhaus, Jason; Zimmerman, Neil T.; Parsons, Aaron R.; Mirbabayi, Mehrdad; Madhusudhan, Nikku

    2016-01-01

    When planet-hosting stars evolve off the main sequence and go through the red-giant branch, the stars become orders of magnitudes more luminous and, at the same time, lose mass at much higher rates than their main sequence counterparts. Accordingly, if planetary companions exist around these stars at orbital distances of a few au, they will be heated up to the level of canonical hot Jupiters and also be subjected to a dense stellar wind. Given that magnetized planets interacting with stellar winds emit radio waves, such "Red-Giant Hot Jupiters" (RGHJs) may also be candidate radio emitters. We estimate the spectral auroral radio intensity of RGHJs based on the empirical relation with the stellar wind as well as a proposed scaling for planetary magnetic fields. RGHJs might be intrinsically as bright as or brighter than canonical hot Jupiters and about 100 times brighter than equivalent objects around main-sequence stars. We examine the capabilities of low-frequency radio observatories to detect this emission and find that the signal from an RGHJ may be detectable at distances up to a few hundred parsecs with the Square Kilometer Array.

  2. Energy and Emission Characteristics of a Short-Arc Xenon Flash Lamp Under "Saturated" Optical Brightness Conditions

    Science.gov (United States)

    Kamrukov, A. S.; Kireev, S. G.; Kozlov, N. P.; Shashkovskii, S. G.

    2017-09-01

    We present the results of a study of the electrical, energy, and spectral brightness characteristics of an experimental three-electrode high-pressure xenon flash lamp under conditions ensuring close to maximum possible spectral brightness for the xenon emission. We show that under saturated optical brightness conditions (brightness temperature in the visible region of the spectrum 30,000 K), emission of a pulsed discharge in xenon is quite different from the emission from an ideal blackbody: the maximum brightness temperatures are 24,000 K in the short-wavelength UV region and 19,000 K in the near IR range. The relative fraction of UV radiation in the emission spectrum of the lamp is >50%, which lets us consider such lamps as promising broadband sources of radiation with high spectral brightness for many important practical applications.

  3. Rayleigh beacon for measuring the surface profile of a radio telescope.

    Science.gov (United States)

    Padin, S

    2014-12-01

    Millimeter-wavelength Rayleigh scattering from water droplets in a cloud is proposed as a means of generating a bright beacon for measuring the surface profile of a radio telescope. A λ=3  mm transmitter, with an output power of a few watts, illuminating a stratiform cloud, can generate a beacon with the same flux as Mars in 10 GHz bandwidth, but the beacon has a narrow line width, so it is extremely bright. The key advantage of the beacon is that it can be used at any time, and positioned anywhere in the sky, as long as there are clouds.

  4. The effect of a change in sleep-wakefulness timing, bright light and physical exercise interventions on 24-hour patterns of performance, mood and body temperature.

    Science.gov (United States)

    Iskra-Golec, I; Fafrowicz, M; Marek, T; Costa, G; Folkard, S; Foret, J; Kundi, M; Smith, L

    2001-12-01

    Experiments consisting of baseline, bright light and physical exercise studies were carried out to compare the effect of a 9-hour delay in sleep-wakefulness timing, and the effects of bright light and physical exercise interventions on 24-hour patterns of performance, mood and body temperature were examined. Each study comprised a 24-hour constant routine at the beginning followed by 3 night shifts and 24-hour constant routine at the end. Performance on tasks differing in cognitive load, mood and body temperature was measured during each constant routine and the interventions were applied during the night shifts. The 24-hour pattern of alertness and performance on the tasks with low cognitive load in post-treatment conditions followed the change in sleep-wakefulness timing while more cognitively loaded tasks tended to show a reverse trend when compared to pre-treatment conditions. There was a phase delay around 4 hours in circadian rhythms of body temperature in post-treatment conditions.

  5. A radio monitoring survey of ultra-luminous X-ray sources

    Science.gov (United States)

    Körding, E.; Colbert, E.; Falcke, H.

    2005-06-01

    We present the results of a radio monitoring campaign to search for radio emission from nearby ultra-luminous X-ray sources (ULXs). These sources are bright off-nuclear X-ray point sources with luminosities exceeding LX > 1039 erg s-1. A well-defined sample of the 9 nearest ULXs has been monitored eight times over 5 months with the Very Large Array in A and B configuration. Our limiting sensitivity is ≈0.15 mJy (4σ) for radio flares and ≈60 μJy for continuous emission. In M 82 two ULXs seem to have coincident compact radio sources, which are probably supernova remnants. No continuous or flaring radio emission has been detected from any other ULX. Thus, ULXs do not generally emit steady-state radio emission above radio powers of 1.5 × 1017 W/Hz. The non-detections of the continuous emission are consistent with beamed or unbeamed radio emission from accreting black holes of ≤ 103 M⊙ based on the radio/X-ray correlation. Other published radio detections (M 82, NGC 5408) are also discussed in this context. Both detections are significantly above our detection limit. If ULXs have flaring radio emission above 4 × 1017 W/Hz we can give an upper limit on the duty cycle of the flares of 6%. This upper limit is in agreement with the observed number of flares in Galactic radio transients. Additionally we present a yet unreported radio double structure in the nearby low-luminosity AGN NGC 4736.

  6. CHROMOSPHERIC SUNSPOTS IN THE MILLIMETER RANGE AS OBSERVED BY THE NOBEYAMA RADIOHELIOGRAPH

    Energy Technology Data Exchange (ETDEWEB)

    Iwai, Kazumasa [National Institute of Information and Communications Technology, Koganei 184-8795, Tokyo (Japan); Koshiishi, Hideki [Aerospace Research and Development Directorate, Japan Aerospace Exploration Agency, Tsukuba 305-8505 (Japan); Shibasaki, Kiyoto [Nobeyama Solar Radio Observatory, National Astronomical Observatory of Japan, Minamimaki, Nagano 384-1305 (Japan); Nozawa, Satoshi; Miyawaki, Shun; Yoneya, Takuro, E-mail: kazumasa.iwai@nict.go.jp [Department of Science, Ibaraki University, Mito, Ibaraki 310-8512 (Japan)

    2016-01-10

    We investigate the upper chromosphere and the transition region of the sunspot umbra using the radio brightness temperature at 34 GHz (corresponding to 8.8 mm observations) as observed by the Nobeyama Radioheliograph (NoRH). Radio free–free emission in the longer millimeter range is generated around the transition region, and its brightness temperature yields the region's temperature and density distribution. We use the NoRH data at 34 GHz by applying the Steer-CLEAN image synthesis. These data and the analysis method enable us to investigate the chromospheric structures in the longer millimeter range with high spatial resolution and sufficient visibilities. We also perform simultaneous observations of one sunspot using the NoRH and the Nobeyama 45 m telescope operating at 115 GHz. We determine that 115 GHz emission mainly originates from the lower chromosphere while 34 GHz emission mainly originates from the upper chromosphere and transition region. These observational results are consistent with the radio emission characteristics estimated from current atmospheric models of the chromosphere. On the other hand, the observed brightness temperature of the umbral region is almost the same as that of the quiet region. This result is inconsistent with current sunspot models, which predict a considerably higher brightness temperature of the sunspot umbra at 34 GHz. This inconsistency suggests that the temperature of the region at which the 34 GHz radio emission becomes optically thick should be lower than that predicted by the models.

  7. A multiwavelength view of the galaxy cluster Abell 523 and its peculiar diffuse radio source

    Science.gov (United States)

    Girardi, M.; Boschin, W.; Gastaldello, F.; Giovannini, G.; Govoni, F.; Murgia, M.; Barrena, R.; Ettori, S.; Trasatti, M.; Vacca, V.

    2016-03-01

    We study the structure of the galaxy cluster Abell 523 (A523) at z = 0.104 using new spectroscopic data for 132 galaxies acquired at the Telescopio Nazionale Galileo, new photometric data from the Isaac Newton Telescope, and X-ray and radio data from the Chandra and Very Large Array archives. We estimate the velocity dispersion of the galaxy population, σ _V=949_{-60}^{+80} km s-1, and the X-ray temperature of the hot intracluster medium, kT = 5.3 ± 0.3 keV. We infer that A523 is a massive system: M200 ˜ 7-9 × 1014 M⊙. The analysis of the optical data confirms the presence of two subclusters, 0.75 Mpc apart, tracing the SSW-NNE direction and dominated by the two brightest cluster galaxies (BCG1 and BCG2). The X-ray surface brightness is strongly elongated towards the NNE direction, and its peak is clearly offset from both the brightest cluster galaxies (BCGs). We confirm the presence of a 1.3 Mpc large radio halo, elongated in the ESE-WNW direction and perpendicular to the optical/X-ray elongation. We detect a significant radio/X-ray offset and radio polarization, two features which might be the result of a magnetic field energy spread on large spatial scales. A523 is found consistent with most scaling relations followed by clusters hosting radio haloes, but quite peculiar in the Pradio-LX relation: it is underluminous in the X-rays or overluminous in radio. A523 can be described as a binary head-on merger caught after a collision along the SSW-NNE direction. However, minor optical and radio features suggest a more complex cluster structure, with A523 forming at the crossing of two filaments along the SSW-NNE and ESE-WNW directions.

  8. Comparison between linear and nonlinear trends in NOAA-15 AMSU-A brightness temperatures during 1998-2010

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Z. [Nanjing University of Information Science and Technology, Center of Data Assimilation for Research and Application, Nanjing (China); Zou, X. [Nanjing University of Information Science and Technology, Center of Data Assimilation for Research and Application, Nanjing (China); Florida State University, Department of Earth, Ocean and Atmospheric Sciences, Tallahassee, FL (United States); Weng, F. [NOAA/NESDIS, Center for Satellite Applications and Research, Camp Springs, MD (United States)

    2012-10-15

    Brightness temperature observations from Microwave Sounding Unit and Advanced Microwave Sounding Unit-A (AMSU-A) on board National Oceanic and Atmospheric Administration (NOAA) satellites have been widely utilized for estimating the global climate trend in the troposphere and stratosphere. A common approach for deriving the trend is linear regression, which implicitly assumes the trend being a straight line over the whole length of a time series and is often highly sensitive to the data record length. This study explores a new adaptive and temporally local data analysis method - Ensemble Empirical Mode Decomposition (EEMD) - for estimating the global trends. In EEMD, a non-stationary time series is decomposed adaptively and locally into a sequence of amplitude-frequency modulated oscillatory components and a time-varying trend. The AMSU-A data from the NOAA-15 satellite over the time period from October 26, 1998 to August 7, 2010 are employed for this study. Using data over Amazon rainforest areas, it is shown that channel 3 is least sensitive to the orbital drift among four AMSU-A surface sensitive channels. The decadal trends of AMSU-A channel 3 and other eight channels in the troposphere and stratosphere are deduced and compared using both methods. It is shown that the decadal climate trends of most AMSU-A channels are nonlinear except for channels 3-4 in Northern Hemisphere only and channels 12-13. Although the decadal trend variation of the global average brightness temperature is no more than 0.2 K, the regional decadal trend variation could be more (less) than 3 K (-3 K) in high latitudes and over high terrains. (orig.)

  9. Bright upconversion luminescence and increased Tc in CaBi2Ta2O9:Er high temperature piezoelectric ceramics

    International Nuclear Information System (INIS)

    Peng Dengfeng; Wang Xusheng; Yao Xi; Xu Chaonan; Lin Jian; Sun Tiantuo

    2012-01-01

    Er 3+ doped CaBi 2 Ta 2 O 9 (CBT) bismuth layered-structure high temperature piezoelectric ceramics were synthesized by the traditional solid state method. The upconversion (UC) emission properties of Er 3+ doped CBT ceramics were investigated as a function of Er 3+ concentration and incident pump power. A bright green upconverted emission was obtained under excitation 980 nm at room temperature. The observed strong green and weak red emission bands corresponded to the transitions from 4 S 3/2 and 4 F 9/2 to 4 I 15/2 , respectively. The dependence of UC emission intensity on pumping power indicated that a three-photon process was involved in UC emissions. Studies of dielectric with temperature have also been carried out. Introduction of Er increased the Curie temperature of CBT, thus, making this ceramic suitable for sensor applications at higher temperatures. Because of its strong up-converted emission and increased Tc, the multifunctional high temperature piezoelectric ceramic may be useful in high temperature sensor, fluorescence thermometry, and optical-electro integration applications.

  10. ALMA Discovery of Solar Umbral Brightness Enhancement at λ = 3 mm

    Energy Technology Data Exchange (ETDEWEB)

    Iwai, Kazumasa [Institute for Space-Earth Environmental Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601 (Japan); Loukitcheva, Maria [Center for Solar-Terrestrial Research, New Jersey Institute of Technology, 323 Martin Luther King Boulevard, Newark, NJ 07102 (United States); Shimojo, Masumi [Chile Observatory, National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588 (Japan); Solanki, Sami K. [Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, D-37073 Göttingen (Germany); White, Stephen M., E-mail: k.iwai@isee.nagoya-u.ac.jp [Space Vehicles Directorate, Air Force Research Laboratory, Albuquerque, NM (United States)

    2017-06-01

    We report the discovery of a brightness enhancement in the center of a large sunspot umbra at a wavelength of 3 mm using the Atacama Large Millimeter/sub-millimeter Array (ALMA). Sunspots are among the most prominent features on the solar surface, but many of their aspects are surprisingly poorly understood. We analyzed a λ = 3 mm (100 GHz) mosaic image obtained by ALMA that includes a large sunspot within the active region AR12470, on 2015 December 16. The 3 mm map has a 300″ × 300″ field of view and 4.″9 × 2.″2 spatial resolution, which is the highest spatial resolution map of an entire sunspot in this frequency range. We find a gradient of 3 mm brightness from a high value in the outer penumbra to a low value in the inner penumbra/outer umbra. Within the inner umbra, there is a marked increase in 3 mm brightness temperature, which we call an umbral brightness enhancement. This enhanced emission corresponds to a temperature excess of 800 K relative to the surrounding inner penumbral region and coincides with excess brightness in the 1330 and 1400 Å slit-jaw images of the Interface Region Imaging Spectrograph ( IRIS ), adjacent to a partial lightbridge. This λ = 3 mm brightness enhancement may be an intrinsic feature of the sunspot umbra at chromospheric heights, such as a manifestation of umbral flashes, or it could be related to a coronal plume, since the brightness enhancement was coincident with the footpoint of a coronal loop observed at 171 Å.

  11. On the radio source scintillations caused by plasma inhomogeneities behind a shock wave

    International Nuclear Information System (INIS)

    Pimenov, S.F.

    1984-01-01

    The turbulence in the interplanetary and interstellar medium is shown to become anisotropic and statistically inhomogeneous after a shock wave passing. Scintillation intensity spectra of radio sources are estimated. The possibilities to derive the inhomogeneity spectra and source brightness distribution from scintillation changes are discussed

  12. RADIO TRANSIENTS FROM ACCRETION-INDUCED COLLAPSE OF WHITE DWARFS

    International Nuclear Information System (INIS)

    Moriya, Takashi J.

    2016-01-01

    We investigate observational properties of accretion-induced collapse (AIC) of white dwarfs (WDs) in radio frequencies. If AIC is triggered by accretion from a companion star, a dense circumstellar medium can be formed around the progenitor system. Then, the ejecta from AIC collide with the dense circumstellar medium, creating a strong shock. The strong shock can produce synchrotron emission that can be observed in radio frequencies. Even if AIC occurs as a result of WD mergers, we argue that AIC may cause fast radio bursts (FRBs) if a certain condition is satisfied. If AIC forms neutron stars (NSs) that are so massive that rotation is required to support themselves (i.e., supramassive NSs), the supramassive NSs may immediately lose their rotational energy by the r-mode instability and collapse to black holes. If the collapsing supramassive NSs are strongly magnetized, they may emit FRBs, as previously proposed. The AIC radio transients from single-degenerate systems may be detected in future radio transient surveys like the Very Large Array Sky Survey or the Square Kilometer Array transient survey. Because AIC has been proposed as a source of gravitational waves (GWs), GWs from AIC may be accompanied by radio-bright transients that can be used to confirm the AIC origin of observed GWs.

  13. RADIO TRANSIENTS FROM ACCRETION-INDUCED COLLAPSE OF WHITE DWARFS

    Energy Technology Data Exchange (ETDEWEB)

    Moriya, Takashi J., E-mail: takashi.moriya@nao.ac.jp [Division of Theoretical Astronomy, National Astronomical Observatory of Japan, National Institutes of Natural Sciences, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2016-10-20

    We investigate observational properties of accretion-induced collapse (AIC) of white dwarfs (WDs) in radio frequencies. If AIC is triggered by accretion from a companion star, a dense circumstellar medium can be formed around the progenitor system. Then, the ejecta from AIC collide with the dense circumstellar medium, creating a strong shock. The strong shock can produce synchrotron emission that can be observed in radio frequencies. Even if AIC occurs as a result of WD mergers, we argue that AIC may cause fast radio bursts (FRBs) if a certain condition is satisfied. If AIC forms neutron stars (NSs) that are so massive that rotation is required to support themselves (i.e., supramassive NSs), the supramassive NSs may immediately lose their rotational energy by the r-mode instability and collapse to black holes. If the collapsing supramassive NSs are strongly magnetized, they may emit FRBs, as previously proposed. The AIC radio transients from single-degenerate systems may be detected in future radio transient surveys like the Very Large Array Sky Survey or the Square Kilometer Array transient survey. Because AIC has been proposed as a source of gravitational waves (GWs), GWs from AIC may be accompanied by radio-bright transients that can be used to confirm the AIC origin of observed GWs.

  14. Workshop on Satellite Power Systems (SPS) effects on optical and radio astronomy

    International Nuclear Information System (INIS)

    Stokes, G.M.; Ekstrom, P.A.

    1980-04-01

    The impacts of the SPS on astronomy were concluded to be: increased sky brightness, reducing the effective aperture of terrestrial telescopes; microwave leakage radiation causing erroneous radioastronomical signals; direct overload of radioastronomical receivers at centimeter wavelengths; and unintentional radio emissions associated with massive amounts of microwave power or with the presence of large, warm structures in orbit causing the satellites to appear as individual stationary radio sources; finally, the fixed location of the geostationary satellite orbits would result in fixed regions of the sky being unusable for observations

  15. Integrated radio continuum spectra of galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Marvil, Joshua; Owen, Frazer [National Radio Astronomy Observatory, 1003 Lopezville Rd, Socorro, NM 87801 (United States); Eilek, Jean, E-mail: josh.marvil@csiro.au [New Mexico Tech, Socorro, NM 87801 (United States)

    2015-01-01

    We investigate the spectral shape of the total continuum radiation, between 74 MHz and 5 GHz (400-6 cm in wavelength), for a large sample of bright galaxies. We take advantage of the overlapping survey coverage of the VLA Low-Frequency Sky Survey, the Westerbork Northern Sky Survey, the NRAO VLA Sky Survey, and the Green Bank 6 cm Survey to achieve significantly better resolution, sensitivity, and sample size compared to prior efforts of this nature. For our sample of 250 bright galaxies we measure a mean spectral index, α, of –0.69 between 1.4 and 4.85 GHz, –0.55 between 325 MHz and 1.4 GHz, and –0.45 between 74 and 325 MHz, which amounts to a detection of curvature in the mean spectrum. The magnitude of this curvature is approximately Δα = –0.2 per logarithmic frequency decade when fit with a generalized function having constant curvature. No trend in low-frequency spectral flattening versus galaxy inclination is evident in our data, suggesting that free-free absorption is not a satisfying explanation for the observed curvature. The ratio of thermal to non-thermal emission is estimated through two independent methods: (1) using the IRAS far-IR fluxes and (2) with the value of the total spectral index. Method (1) results in a distribution of 1.4 GHz thermal fractions of 9% ± 3%, which is consistent with previous studies, while method (2) produces a mean 1.4 GHz thermal fraction of 51% with dispersion 26%. The highly implausible values produced by method (2) indicate that the sum of typical power-law thermal and non-thermal components is not a viable model for the total spectral index between 325 and 1.4 GHz. An investigation into relationships between spectral index, infrared-derived quantities, and additional source properties reveals that galaxies with high radio luminosity in our sample are found to have, on average, a flatter radio spectral index, and early types tend to have excess radio emission when compared to the radio-infrared ratio of later

  16. The SDSS view of the Palomar-Green bright quasar survey

    Energy Technology Data Exchange (ETDEWEB)

    Jester, Sebastian; Schneider, Donald P.; Richards, Gordon T.; Green, Richard F.; Schmidt, Maarten; Hall, Patrick B.; Strauss, Michael A.; Vanden Berk, Daniel E.; Stoughton, Chris; Gunn, James E.; Brinkmann, Jon; Kent, Stephen M.; Smith, J.Allyn; Tucker, Douglas, L.; Yanny, Brian; /Fermilab /Penn State U., Astron. Astrophys. /Princeton U.

    2005-02-01

    The author investigates the extent to which the Palomar-Green (PG) Bright Quasar Survey (BQS) is complete and representative of the general quasar population by comparing with imaging and spectroscopy from the Sloan Digital Sky Survey. A comparison of SDSS and PG photometry of both stars and quasars reveals the need to apply a color and magnitude recalibration to the PG data. Using the SDSS photometric catalog, they define the PG's parent sample of objects that are not main-sequence stars and simulate the selection of objects from this parent sample using the PG photometric criteria and errors. This simulation shows that the effective U-B cut in the PG survey is U-B < -0.71, implying a color-related incompleteness. As the color distribution of bright quasars peaks near U-B = -0.7 and the 2-{sigma} error in U-B is comparable to the full width of the color distribution of quasars, the color incompleteness of the BQS is approximately 50% and essentially random with respect to U-B color for z < 0.5. There is however, a bias against bright quasars at 0.5 < z < 1, which is induced by the color-redshift relation of quasars (although quasars at z > 0.5 are inherently rare in bright surveys in any case). They find no evidence for any other systematic incompleteness when comparing the distributions in color, redshift, and FIRST radio properties of the BQS and a BQS-like subsample of the SDSS quasar sample. However, the application of a bright magnitude limit biases the BQS toward the inclusion of objects which are blue in g-i, in particular compared to the full range of g-i colors found among the i-band limited SDSS quasars, and even at i-band magnitudes comparable to those of the BQS objects.

  17. A transient, flat spectrum radio pulsar near the Galactic Centre

    Science.gov (United States)

    Dexter, J.; Degenaar, N.; Kerr, M.; Deller, A.; Deneva, J.; Lazarus, P.; Kramer, M.; Champion, D.; Karuppusamy, R.

    2017-06-01

    Recent studies have shown possible connections between highly magnetized neutron stars ('magnetars'), whose X-ray emission is too bright to be powered by rotational energy, and ordinary radio pulsars. In addition to the magnetar SGR J1745-2900, one of the radio pulsars in the Galactic Centre (GC) region, PSR J1746-2850, had timing properties implying a large magnetic field strength and young age, as well as a flat spectrum. All characteristics are similar to those of rare, transient, radio-loud magnetars. Using several deep non-detections from the literature and two new detections, we show that this pulsar is also transient in the radio. Both the flat spectrum and large amplitude variability are inconsistent with the light curves and spectral indices of three radio pulsars with high magnetic field strengths. We further use frequent, deep archival imaging observations of the GC in the past 15 yr to rule out a possible X-ray outburst with a luminosity exceeding the rotational spin-down rate. This source, either a transient magnetar without any detected X-ray counterpart or a young, strongly magnetized radio pulsar producing magnetar-like radio emission, further blurs the line between the two categories. We discuss the implications of this object for the radio emission mechanism in magnetars and for star and compact object formation in the GC.

  18. Plasmonic EIT-like switching in bright-dark-bright plasmon resonators.

    Science.gov (United States)

    Chen, Junxue; Wang, Pei; Chen, Chuncong; Lu, Yonghua; Ming, Hai; Zhan, Qiwen

    2011-03-28

    In this paper we report the study of the electromagnetically induced transparency (EIT)-like transmission in the bright-dark-bright plasmon resonators. It is demonstrated that the interferences between the dark plasmons excited by two bright plasmon resonators can be controlled by the incident light polarization. The constructive interference strengthens the coupling between the bright and dark resonators, leading to a more prominent EIT-like transparency window of the metamaterial. In contrary, destructive interference suppresses the coupling between the bright and dark resonators, destroying the interference pathway that forms the EIT-like transmission. Based on this observation, the plasmonic EIT switching can be realized by changing the polarization of incident light. This phenomenon may find applications in optical switching and plasmon-based information processing.

  19. Diode lasers optimized in brightness for fiber laser pumping

    Science.gov (United States)

    Kelemen, M.; Gilly, J.; Friedmann, P.; Hilzensauer, S.; Ogrodowski, L.; Kissel, H.; Biesenbach, J.

    2018-02-01

    In diode laser applications for fiber laser pumping and fiber-coupled direct diode laser systems high brightness becomes essential in the last years. Fiber coupled modules benefit from continuous improvements of high-power diode lasers on chip level regarding output power, efficiency and beam characteristics resulting in record highbrightness values and increased pump power. To gain high brightness not only output power must be increased, but also near field widths and far field angles have to be below a certain value for higher power levels because brightness is proportional to output power divided by beam quality. While fast axis far fields typically show a current independent behaviour, for broadarea lasers far-fields in the slow axis suffer from a strong current and temperature dependence, limiting the brightness and therefore their use in fibre coupled modules. These limitations can be overcome by carefully optimizing chip temperature, thermal lensing and lateral mode structure by epitaxial and lateral resonator designs and processing. We present our latest results for InGaAs/AlGaAs broad-area single emitters with resonator lengths of 4mm emitting at 976nm and illustrate the improvements in beam quality over the last years. By optimizing the diode laser design a record value of the brightness for broad-area lasers with 4mm resonator length of 126 MW/cm2sr has been demonstrated with a maximum wall-plug efficiency of more than 70%. From these design also pump modules based on 9 mini-bars consisting of 5 emitters each have been realized with 360W pump power.

  20. Low temperature laser scanning microscopy of a superconducting radio-frequency cavity

    Science.gov (United States)

    Ciovati, G.; Anlage, Steven M.; Baldwin, C.; Cheng, G.; Flood, R.; Jordan, K.; Kneisel, P.; Morrone, M.; Nemes, G.; Turlington, L.; Wang, H.; Wilson, K.; Zhang, S.

    2012-03-01

    An apparatus was developed to obtain, for the first time, 2D maps of the surface resistance of the inner surface of an operating superconducting radio-frequency niobium cavity by a low-temperature laser scanning microscopy technique. This allows identifying non-uniformities of the surface resistance with a spatial resolution of about 2.4 mm and surface resistance resolution of ˜1 μΩ at 3.3 GHz. A signal-to-noise ratio of about 10 dB was obtained with 240 mW laser power and 1 Hz modulation frequency. The various components of the apparatus, the experimental procedure and results are discussed in detail in this contribution.

  1. Low temperature laser scanning microscopy of a superconducting radio-frequency cavity.

    Science.gov (United States)

    Ciovati, G; Anlage, Steven M; Baldwin, C; Cheng, G; Flood, R; Jordan, K; Kneisel, P; Morrone, M; Nemes, G; Turlington, L; Wang, H; Wilson, K; Zhang, S

    2012-03-01

    An apparatus was developed to obtain, for the first time, 2D maps of the surface resistance of the inner surface of an operating superconducting radio-frequency niobium cavity by a low-temperature laser scanning microscopy technique. This allows identifying non-uniformities of the surface resistance with a spatial resolution of about 2.4 mm and surface resistance resolution of ~1 μΩ at 3.3 GHz. A signal-to-noise ratio of about 10 dB was obtained with 240 mW laser power and 1 Hz modulation frequency. The various components of the apparatus, the experimental procedure and results are discussed in detail in this contribution.

  2. The New Horizons Radio Science Experiment: Expected Performance in Measurements of Pluto's Atmospheric Structure, Surface Pressure, and Surface Temperature

    Science.gov (United States)

    Hinson, D. P.; Linscott, I.; Woods, W. W.; Tyler, G. L.; Bird, M. K.; Paetzold, M.; Strobel, D. F.

    2014-12-01

    The New Horizons (NH) payload includes a Radio Science Experiment (REX) for investigating key characteristics of Pluto and Charon during the upcoming flyby in July 2015. REX flight equipment augments the NH radio transceiver used for spacecraft communications and tracking. The REX hardware implementation requires 1.6 W and 160 g. This presentation will focus on the final design and the predicted performance of two high-priority observations. First, REX will receive signals from a pair of 70-m antennas on Earth - each transmitting 20 kW at 4.2-cm wavelength - during a diametric radio occultation by Pluto. The data recorded by REX will reveal the surface pressure, the temperature structure of the lower atmosphere, and the surface radius. Second, REX will measure the thermal emission from Pluto at 4.2-cm wavelength during two linear scans across the disk at close range when both the dayside and the nightside are visible, allowing the surface temperature and its spatial variations to be determined. Both scans extend from limb to limb with a resolution of about 10 pixels; one bisects Pluto whereas the second crosses the winter pole. We will illustrate the capabilities of REX by reviewing the method of analysis and the precision achieved in a lunar occultation observed by New Horizons in May 2011. Re-analysis of radio occultation measurements by Voyager 2 at Triton is also under way. More generally, REX objectives include a radio occultation search for Pluto's ionosphere; examination of Charon through both radio occultation and radiometry; a search for a radar echo from Pluto's surface; and improved knowledge of the Pluto system mass and the Pluto-Charon mass ratio from a combination of two-way and one-way Doppler frequency measurements.

  3. Blue optical continuum associated with a radio knot in 3C346

    Science.gov (United States)

    Dey, Arjun; van Breugel, Wil J. M.

    1994-06-01

    We report the discovery of extremely luminous near-UV continuum emission associated with a bright radio knot in the radio galaxy 3C346 (zeta = 0.162). Photometric measurements from U and r' band images and longslit spectra show a spectral energy distribution that steepens at higher frequencies, with radio and optical spectral indices alphar = -0.37 +/- 0.02 and alphao = -1.8 +/- 0.2, respectively. Based on a comparison of the optical properties of this knot with other known cases of optical emission associated with radio structures, we conclude that the continuum emission is optical synchrotron radiation. Our observations are consistent with the suggestion that 3C346 is a foreshortened FR-II radio galaxy with its radio axis oriented close to the line of sight. The optical and radio emission from the knot appear to be associated with a hotspot (at the end of a jet) on the near side. Finally, our U and r' images of 3C346 provide a striking illustration that the optical morphologies of nearby radio galaxies also depend upon wavelength and that studies of these objects are relevant to the interpretation of the alignment effect seen in the high redshift radio galaxies.

  4. Assimilation of Global Radar Backscatter and Radiometer Brightness Temperature Observations to Improve Soil Moisture and Land Evaporation Estimates

    Science.gov (United States)

    Lievens, H.; Martens, B.; Verhoest, N. E. C.; Hahn, S.; Reichle, R. H.; Miralles, D. G.

    2017-01-01

    Active radar backscatter (s?) observations from the Advanced Scatterometer (ASCAT) and passive radiometer brightness temperature (TB) observations from the Soil Moisture Ocean Salinity (SMOS) mission are assimilated either individually or jointly into the Global Land Evaporation Amsterdam Model (GLEAM) to improve its simulations of soil moisture and land evaporation. To enable s? and TB assimilation, GLEAM is coupled to the Water Cloud Model and the L-band Microwave Emission from the Biosphere (L-MEB) model. The innovations, i.e. differences between observations and simulations, are mapped onto the model soil moisture states through an Ensemble Kalman Filter. The validation of surface (0-10 cm) soil moisture simulations over the period 2010-2014 against in situ measurements from the International Soil Moisture Network (ISMN) shows that assimilating s? or TB alone improves the average correlation of seasonal anomalies (Ran) from 0.514 to 0.547 and 0.548, respectively. The joint assimilation further improves Ran to 0.559. Associated enhancements in daily evaporative flux simulations by GLEAM are validated based on measurements from 22 FLUXNET stations. Again, the singular assimilation improves Ran from 0.502 to 0.536 and 0.533, respectively for s? and TB, whereas the best performance is observed for the joint assimilation (Ran = 0.546). These results demonstrate the complementary value of assimilating radar backscatter observations together with brightness temperatures for improving estimates of hydrological variables, as their joint assimilation outperforms the assimilation of each observation type separately.

  5. Comparison Between AQUARIUS and SMOS brightness temperatures for Heterogeneous Land Areas

    Science.gov (United States)

    Benlloch, Amparo; Lopez-Baeza, Ernesto; Tenjo, Carolina; Navarro, Enrique

    2016-07-01

    Intercomparison between Aquarius and SMOS brightness temperatures (TBs) over land surfaces is more challenging than over oceans because land footprints are more heterogeneous. In this work we are comparing Aquarius and SMOS TBs under coherente conditions obtained both by considering similar areas, according to land uses and by stratifying by means of TVDI (Temperature Vegetation Dryness Index) that accounts for the dynamics of the vegetation instead of assuming static characteristics as in the previous approches. The area of study was chosen in central Spain where we could get a significant number of matches between both instruments. The study period corresponded to 2012-2014. SMOS level-3 data were obtained from the Centre Aval de Traitement des Données SMOS (CATDS) and Aquarius' from the Physical Oceanography Distributed Active Archive Center (PODAAC). Land uses were obtained from the Spanish SIOSE facility (Sistema de Informacion de Ocupacion del Suelo en España) that uses a scale of 1:25.000 and polygon geometrical structure layer. SIOSE is based on panchromatic and multispectral 2.5 m resolution SPOT-5 images together with Landsat-5 images and orthophotos from the Spanish Nacional Plan of Aerial Orthophotography (PNOA). TVDI values were obtained from MODIS operational products of land surface temperature and NDVI. SMOS ascending TBs were compared to inner-beam Aquarius descending half-orbit TBs coinciding over the study area at 06:00 h. The Aquarius inner beam has an incidence angle of 28,7º and SMOS data were considered for the 27,5º incidence angle. The SMOS products corresponded to version 2.6x (data before 31st Oct 2013) and version 2.7x (data after 1st Jan 2014). Intersections between both footprints were analysed under conditions of similar areas, land uses and TVDI values. For the latter (land uses/TVDI), a linear combination of SMOS land uses/TVDI was obtained to match the larger Aquarius footprint. A more physical approach is also under way

  6. The impact of melt ponds on summertime microwave brightness temperatures and sea-ice concentrations

    DEFF Research Database (Denmark)

    Kern, Stefan; Rösel, Anja; Pedersen, Leif Toudal

    2016-01-01

    % sea-ice concentration. None of the algorithms investigated performs best based on our investigation of data from summer 2009. We suggest that those algorithms which are more sensitive to melt ponds could be optimized more easily because the influence of unknown snow and sea-ice surface property...... of eight sea-ice concentration retrieval algorithms to melt ponds by comparing sea-ice concentration with the melt-pond fraction. We derive gridded daily sea-ice concentrations from microwave brightness temperatures of summer 2009. We derive the daily fraction of melt ponds, open water between ice floes......, and the ice-surface fraction from contemporary Moderate Resolution Spectroradiometer (MODIS) reflectance data. We only use grid cells where the MODIS sea ice concentration, which is the melt-pond fraction plus the ice-surface fraction, exceeds 90 %. For one group of algorithms, e.g., Bristol and Comiso...

  7. Optical Spectra of Radio Planetary Nebulae in the Large Magellanic Cloud

    Directory of Open Access Journals (Sweden)

    Payne, J. L.

    2008-12-01

    Full Text Available We present 11 spectra from 12 candidate radio sources co-identified with known planetary nebulae (PNe in the Large Magellanic Cloud (LMC. Originally found in Australia Telescope Compact Array (ATCA LMC surveys at 1.4, 4.8 and 8.64~GHz and confirmed by new high resolution ATCA images at 6 and 3~cm (4arcsec/2arcsec, these complement data recently presented for candidate radio PNe in the Small Magellanic Cloud (SMC. Their spectra were obtained using the Radcliffe 1.9-meter telescope in Sutherland (South Africa. All of the optical PNe and radio candidates are within 2arcsec and may represent a population of selected radio bright sample only. Nebular ionized masses of these objects are estimated to be as high as 1.8~$M_odot$, supporting the idea that massive PNe progenitor central stars lose much of their mass in the asymptotic giant branch (AGB phase or prior. We also identify a sub-population (33\\% of radio PNe candidates with prominent ionized iron emission lines.

  8. Nanosecond radio bursts from strong plasma turbulence in the Crab pulsar.

    Science.gov (United States)

    Hankins, T H; Kern, J S; Weatherall, J C; Eilek, J A

    2003-03-13

    The Crab pulsar was discovered by the occasional exceptionally bright radio pulses it emits, subsequently dubbed 'giant' pulses. Only two other pulsars are known to emit giant pulses. There is no satisfactory explanation for the occurrence of giant pulses, nor is there a complete theory of the pulsar emission mechanism in general. Competing models for the radio emission mechanism can be distinguished by the temporal structure of their coherent emission. Here we report the discovery of isolated, highly polarized, two-nanosecond subpulses within the giant radio pulses from the Crab pulsar. The plasma structures responsible for these emissions must be smaller than one metre in size, making them by far the smallest objects ever detected and resolved outside the Solar System, and the brightest transient radio sources in the sky. Only one of the current models--the collapse of plasma-turbulent wave packets in the pulsar magnetosphere--can account for the nanopulses we observe.

  9. Preliminary results of radiometric measurements of clear air and cloud brightness (antenna) temperatures at 37GHz

    Science.gov (United States)

    Arakelyan, A. K.; Hambaryan, A. K.; Arakelyan, A. A.

    2012-05-01

    In this paper the results of polarization measurements of clear air and clouds brightness temperatures at 37GHz are presented. The results were obtained during the measurements carried out in Armenia from the measuring complex built under the framework of ISTC Projects A-872 and A-1524. The measurements were carried out at vertical and horizontal polarizations, under various angles of sensing by Ka-band combined scatterometric-radiometric system (ArtAr-37) developed and built by ECOSERV Remote Observation Centre Co.Ltd. under the framework of the above Projects. In the paper structural and operational features of the utilized system and the whole measuring complex will be considered and discussed as well.

  10. Radio emission in the Virgo cluster and in SO galaxies

    International Nuclear Information System (INIS)

    Kotanyi, C.

    1981-01-01

    A survey of the radio continuum emission from the galaxies in the Virgo Cluster is presented. The sample of 274 galaxies in total contains a subsample of 188 galaxies complete down to magntiude msub(p) = 14. The observations consisted mostly of short (10 minutes) observations providing one-dimensional (East-West) strip distributions of the radio brightness at 1.4 GHz, with an East-West resolution of 23'' allowing separation of central sources from extended emission, and an r.m.s. noise level of 2 mJy. The radio emission of SO galaxies is examined. A sample of 145 SO galaxies is obtained by combining the Virgo cluster SO's with the nearby non-cluster SO's. The radio data, mainly from short observations, are used to derive the RLF. The radio emission in SO galaxies is at least three times weaker than that in ellipticals and spirals. Flat-spectrum compact nuclear sources are found in SO galaxies but they are at least 10 times weaker than in elliptical galaxies, which is attributed to the small mass of the bulges in SO's as compared to the mass of elliptical galaxies. The absence of steep-spectrum, extended central sources and of disk radio emission in SO's is attributed to their low neutral hydrogen content. (Auth.)

  11. RAPID INFRARED VARIABILITY OF THREE RADIO-LOUD NARROW-LINE SEYFERT 1 GALAXIES: A VIEW FROM THE WIDE-FIELD INFRARED SURVEY EXPLORER

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Ning; Zhou Hongyan; Wang Tinggui; Dong Xiaobo; Jiang Peng [Key Laboratory for Research in Galaxies and Cosmology, University of Science and Technology of China, Chinese Academy of Science, Hefei, Anhui 230026 (China); Ho, Luis C. [The Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Yuan Weimin [National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Ji Tuo; Tian Qiguo, E-mail: jnac@mail.ustc.edu.cn [Polar Research Institute of China, 451 Jinqiao Road, Pudong, Shanghai 200136 (China)

    2012-11-10

    Using newly released data from the Wide-field Infrared Survey Explorer, we report the discovery of rapid infrared variability in three radio-loud narrow-line Seyfert 1 galaxies (NLS1s) selected from the 23 sources in the sample of Yuan et al. J0849+5108 and J0948+0022 clearly show intraday variability, while J1505+0326 has a longer measurable timescale within 180 days. Their variability amplitudes, corrected for measurement errors, are {approx}0.1-0.2 mag. The detection of intraday variability restricts the size of the infrared-emitting region to {approx}10{sup -3} pc, significantly smaller than the scale of the torus but consistent with the base of a jet. The three variable sources are exceptionally radio-loud, have the highest radio brightness temperature among the whole sample, and all show detected {gamma}-ray emission in Fermi/LAT observations. Their spectral energy distributions resemble those of low-energy-peaked blazars, with a synchrotron peak around infrared wavelengths. This result strongly confirms the view that at least some radio-loud NLS1s are blazars with a relativistic jet close to our line of sight. The beamed synchrotron emission from the jet contributes significantly to and probably dominates the spectra in the infrared and even optical bands.

  12. The global SMOS Level 3 daily soil moisture and brightness temperature maps

    Directory of Open Access Journals (Sweden)

    A. Al Bitar

    2017-06-01

    Full Text Available The objective of this paper is to present the multi-orbit (MO surface soil moisture (SM and angle-binned brightness temperature (TB products for the SMOS (Soil Moisture and Ocean Salinity mission based on a new multi-orbit algorithm. The Level 3 algorithm at CATDS (Centre Aval de Traitement des Données SMOS makes use of MO retrieval to enhance the robustness and quality of SM retrievals. The motivation of the approach is to make use of the longer temporal autocorrelation length of the vegetation optical depth (VOD compared to the corresponding SM autocorrelation in order to enhance the retrievals when an acquisition occurs at the border of the swath. The retrieval algorithm is implemented in a unique operational processor delivering multiple parameters (e.g. SM and VOD using multi-angular dual-polarisation TB from MO. A subsidiary angle-binned TB product is provided. In this study the Level 3 TB V310 product is showcased and compared to SMAP (Soil Moisture Active Passive TB. The Level 3 SM V300 product is compared to the single-orbit (SO retrievals from the Level 2 SM processor from ESA with aligned configuration. The advantages and drawbacks of the Level 3 SM product (L3SM are discussed. The comparison is done on a global scale between the two datasets and on the local scale with respect to in situ data from AMMA-CATCH and USDA ARS Watershed networks. The results obtained from the global analysis show that the MO implementation enhances the number of retrievals: up to 9 % over certain areas. The comparison with the in situ data shows that the increase in the number of retrievals does not come with a decrease in quality, but rather at the expense of an increased time lag in product availability from 6 h to 3.5 days, which can be a limiting factor for applications like flood forecast but reasonable for drought monitoring and climate change studies. The SMOS L3 soil moisture and L3 brightness temperature products are delivered using an

  13. On the nature of emission of the star-gas-dust complex of the W1 radio source

    International Nuclear Information System (INIS)

    Udal'tsov, V.A.; Kovalenko, A.V.

    1982-01-01

    The brightness distribution of the radio source W 1 at 102 MHz has been investigated with the 187x384 m radio telescope in Pushchino. It is shown that W 1 is genetically connected with the stellar association Ceph IV as well as with the extended emission nebula GS 285 which consists of numerous nebulae, including two bright ones, Sharpless (S) 171 and NGC 7822. The radio emission of the nebula S 171 is shown to be thermal, and there is no Supernova remnant in it, in contrast with the other authors' suggestion. By two independent methods, the distance to S 171 has been evaluated to be 840 pc. The emission of NGC 7822 is mainly thermal. The extended nebula GS 285 is a thermal source, not a remnant of a Supernova that had exploded in a dense gas - dust medium, as was believed by other authors. Attention is drawn to the wrong identification by many authors of the radio source in the S 171 region with the nebula NGC 7822. It is shown that when measuring the difference of spectral indices of two sources, the calibration error may be eliminated if their calibration at given frequency is made by means of the same source [ru

  14. Global spiral structure of M81 - radio continuum maps

    International Nuclear Information System (INIS)

    Bash, F.N.; Kaufman, M.; Ohio State Univ., Columbus)

    1986-01-01

    VLA observations of the radio continuum emission from M81 at 6 and 20 cm are presented and used to check the predictions of density-wave theories. Both thermal and nonthermal radiation from the spiral arms are detected. Most of the bright knots along the radio arms are giant radio H II regions. The nonthermal emission defines spiral arms that are patchy and well-resolved, with a width of 1-2 kpc. The observed nonthermal arms are too broad to agree with the continuum gasdynamical calculations of Roberts (1969), Shu et al. (1972), and Visser (1978, 1980) for a classical density wave model. The observed arm widths appear consistent with the predictions of density-wave models that emphasize the clumpy nature of the ISM. The 20 cm arms appear to spiral outward from a faint inner H I ring, suggesting that the ring is produced by the inner Lindblad resonance. 36 references

  15. A Radio-Frequency-over-Fiber link for large-array radio astronomy applications

    International Nuclear Information System (INIS)

    Mena, J; Bandura, K; Cliche, J-F; Dobbs, M; Gilbert, A; Tang, Q Y

    2013-01-01

    A prototype 425-850 MHz Radio-Frequency-over-Fiber (RFoF) link for the Canadian Hydrogen Intensity Mapping Experiment (CHIME) is presented. The design is based on a directly modulated Fabry-Perot (FP) laser, operating at ambient temperature, and a single-mode fiber. The dynamic performance, gain stability, and phase stability of the RFoF link are characterized. Tests on a two-element interferometer built at the Dominion Radio Astrophysical Observatory for CHIME prototyping demonstrate that RFoF can be successfully used as a cost-effective solution for analog signal transport on the CHIME telescope and other large-array radio astronomy applications

  16. Exploring anti-correlated radio/X-ray modes in transitional millisecond pulsars

    Science.gov (United States)

    Jaodand, Amruta

    2017-09-01

    Recently, using coordinated VLA+Chandra observations, Bogdanov et al.(2017) have uncovered a stunning anti-correlation in the LMXB state of the tMSP PSR J1023+0038. They see that radio luminosity consistently peaks during the X-ray `low' luminosity modes. Also, we have found a promising candidate tMSP, 3FGL J1544-1125(J1544) (Bogdanov and Halpern 2015; currently only tMSP candidate apart from J1023 in a persistent LMXB state). Using VLA and simultaneous Swift observations we see that it lies on the proposed tMSP track in radio vs. X-ray luminosity (L_ R/L_X) diagram. This finding strengthens its classification as a tMSP and provides an excellent opportunity to a)determine universality of radio/X-ray brightness anti-correlatio and b)understand jet/outflow formation in tMSPs.

  17. A 5-GHz survey of bright southern elliptical and SO galaxies

    International Nuclear Information System (INIS)

    Disney, M.J.; Wall, J.V.

    1977-01-01

    The Parkes 64-m telescope has been used in a 5.0 GHz survey of 181 Southern E and SO galaxies from the Reference catalogue of bright galaxies. Of the 39 detections above the nominal limit of 12 mJy, 15 are new, several have radio spectra indicating membership in the active class, and two have shown intensity variations at centimetre wavelengths. The results of this survey combined with results from earlier surveys of lower sensitivity suggest that only about 40 per cent of the E/SO galaxies in the Reference catalogue have Ssub(5GHz)>1 mJy. (author)

  18. Synchronous x-ray and radio mode switches: a rapid global transformation of the pulsar magnetosphere.

    Science.gov (United States)

    Hermsen, W; Hessels, J W T; Kuiper, L; van Leeuwen, J; Mitra, D; de Plaa, J; Rankin, J M; Stappers, B W; Wright, G A E; Basu, R; Alexov, A; Coenen, T; Grießmeier, J-M; Hassall, T E; Karastergiou, A; Keane, E; Kondratiev, V I; Kramer, M; Kuniyoshi, M; Noutsos, A; Serylak, M; Pilia, M; Sobey, C; Weltevrede, P; Zagkouris, K; Asgekar, A; Avruch, I M; Batejat, F; Bell, M E; Bell, M R; Bentum, M J; Bernardi, G; Best, P; Bîrzan, L; Bonafede, A; Breitling, F; Broderick, J; Brüggen, M; Butcher, H R; Ciardi, B; Duscha, S; Eislöffel, J; Falcke, H; Fender, R; Ferrari, C; Frieswijk, W; Garrett, M A; de Gasperin, F; de Geus, E; Gunst, A W; Heald, G; Hoeft, M; Horneffer, A; Iacobelli, M; Kuper, G; Maat, P; Macario, G; Markoff, S; McKean, J P; Mevius, M; Miller-Jones, J C A; Morganti, R; Munk, H; Orrú, E; Paas, H; Pandey-Pommier, M; Pandey, V N; Pizzo, R; Polatidis, A G; Rawlings, S; Reich, W; Röttgering, H; Scaife, A M M; Schoenmakers, A; Shulevski, A; Sluman, J; Steinmetz, M; Tagger, M; Tang, Y; Tasse, C; ter Veen, S; Vermeulen, R; van de Brink, R H; van Weeren, R J; Wijers, R A M J; Wise, M W; Wucknitz, O; Yatawatta, S; Zarka, P

    2013-01-25

    Pulsars emit from low-frequency radio waves up to high-energy gamma-rays, generated anywhere from the stellar surface out to the edge of the magnetosphere. Detecting correlated mode changes across the electromagnetic spectrum is therefore key to understanding the physical relationship among the emission sites. Through simultaneous observations, we detected synchronous switching in the radio and x-ray emission properties of PSR B0943+10. When the pulsar is in a sustained radio-"bright" mode, the x-rays show only an unpulsed, nonthermal component. Conversely, when the pulsar is in a radio-"quiet" mode, the x-ray luminosity more than doubles and a 100% pulsed thermal component is observed along with the nonthermal component. This indicates rapid, global changes to the conditions in the magnetosphere, which challenge all proposed pulsar emission theories.

  19. First detection of thermal radio emission from solar-type stars with the Karl G. Jansky very large array

    Energy Technology Data Exchange (ETDEWEB)

    Villadsen, Jackie; Hallinan, Gregg; Bourke, Stephen [Department of Astronomy, California Institute of Technology, 1200 E. California Ave., Pasadena, CA 91125 (United States); Güdel, Manuel [Department of Astrophysics, University of Vienna, Türkenschanzstrasse 17, A-1180 Vienna (Austria); Rupen, Michael, E-mail: jrv@astro.caltech.edu [National Radio Astronomy Observatory, Socorro, NM 87801 (United States)

    2014-06-20

    We present the first detections of thermal radio emission from the atmospheres of solar-type stars τ Cet, η Cas A, and 40 Eri A. These stars all resemble the Sun in age and level of magnetic activity, as indicated by X-ray luminosity and chromospheric emission in Ca II H and K lines. We observed these stars with the Karl G. Jansky Very Large Array with sensitivities of a few μJy at combinations of 10.0, 15.0, and 34.5 GHz. τ Cet, η Cas A, and 40 Eri A are all detected at 34.5 GHz with signal-to-noise ratios of 6.5, 5.2, and 4.5, respectively. 15.0 GHz upper limits imply a rising spectral index greater than 1.0 for τ Cet and 1.6 for η Cas A, at the 95% confidence level. The measured 34.5 GHz flux densities correspond to stellar disk-averaged brightness temperatures of roughly 10,000 K, similar to the solar brightness temperature at the same frequency. We explain this emission as optically thick thermal free-free emission from the chromosphere, with possible contributions from coronal gyroresonance emission above active regions and coronal free-free emission. These and similar quality data on other nearby solar-type stars, when combined with Atacama Large Millimeter/Submillimeter Array observations, will enable the construction of temperature profiles of their chromospheres and lower transition regions.

  20. First detection of thermal radio emission from solar-type stars with the Karl G. Jansky very large array

    International Nuclear Information System (INIS)

    Villadsen, Jackie; Hallinan, Gregg; Bourke, Stephen; Güdel, Manuel; Rupen, Michael

    2014-01-01

    We present the first detections of thermal radio emission from the atmospheres of solar-type stars τ Cet, η Cas A, and 40 Eri A. These stars all resemble the Sun in age and level of magnetic activity, as indicated by X-ray luminosity and chromospheric emission in Ca II H and K lines. We observed these stars with the Karl G. Jansky Very Large Array with sensitivities of a few μJy at combinations of 10.0, 15.0, and 34.5 GHz. τ Cet, η Cas A, and 40 Eri A are all detected at 34.5 GHz with signal-to-noise ratios of 6.5, 5.2, and 4.5, respectively. 15.0 GHz upper limits imply a rising spectral index greater than 1.0 for τ Cet and 1.6 for η Cas A, at the 95% confidence level. The measured 34.5 GHz flux densities correspond to stellar disk-averaged brightness temperatures of roughly 10,000 K, similar to the solar brightness temperature at the same frequency. We explain this emission as optically thick thermal free-free emission from the chromosphere, with possible contributions from coronal gyroresonance emission above active regions and coronal free-free emission. These and similar quality data on other nearby solar-type stars, when combined with Atacama Large Millimeter/Submillimeter Array observations, will enable the construction of temperature profiles of their chromospheres and lower transition regions.

  1. Bright triplet excitons in caesium lead halide perovskites

    Science.gov (United States)

    Becker, Michael A.; Vaxenburg, Roman; Nedelcu, Georgian; Sercel, Peter C.; Shabaev, Andrew; Mehl, Michael J.; Michopoulos, John G.; Lambrakos, Samuel G.; Bernstein, Noam; Lyons, John L.; Stöferle, Thilo; Mahrt, Rainer F.; Kovalenko, Maksym V.; Norris, David J.; Rainò, Gabriele; Efros, Alexander L.

    2018-01-01

    Nanostructured semiconductors emit light from electronic states known as excitons. For organic materials, Hund’s rules state that the lowest-energy exciton is a poorly emitting triplet state. For inorganic semiconductors, similar rules predict an analogue of this triplet state known as the ‘dark exciton’. Because dark excitons release photons slowly, hindering emission from inorganic nanostructures, materials that disobey these rules have been sought. However, despite considerable experimental and theoretical efforts, no inorganic semiconductors have been identified in which the lowest exciton is bright. Here we show that the lowest exciton in caesium lead halide perovskites (CsPbX3, with X = Cl, Br or I) involves a highly emissive triplet state. We first use an effective-mass model and group theory to demonstrate the possibility of such a state existing, which can occur when the strong spin-orbit coupling in the conduction band of a perovskite is combined with the Rashba effect. We then apply our model to CsPbX3 nanocrystals, and measure size- and composition-dependent fluorescence at the single-nanocrystal level. The bright triplet character of the lowest exciton explains the anomalous photon-emission rates of these materials, which emit about 20 and 1,000 times faster than any other semiconductor nanocrystal at room and cryogenic temperatures, respectively. The existence of this bright triplet exciton is further confirmed by analysis of the fine structure in low-temperature fluorescence spectra. For semiconductor nanocrystals, which are already used in lighting, lasers and displays, these excitons could lead to materials with brighter emission. More generally, our results provide criteria for identifying other semiconductors that exhibit bright excitons, with potential implications for optoelectronic devices.

  2. Properties of nickel films growth by radio frequency magnetron sputtering at elevated substrate temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Muslim, Noormariah, E-mail: 14h8702@ubd.edu.bn [Centre for Advanced Material and Energy Sciences, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410 (Brunei Darussalam); Soon, Ying Woan [Centre for Advanced Material and Energy Sciences, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410 (Brunei Darussalam); Physical and Geological Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410 (Brunei Darussalam); Lim, Chee Ming; Voo, Nyuk Yoong [Centre for Advanced Material and Energy Sciences, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410 (Brunei Darussalam)

    2016-08-01

    Pure nickel (Ni) thin films of thicknesses of 100 nm were deposited on glass substrates by radio frequency magnetron sputtering at a power of 100 W and at various substrate temperatures i.e., room temperature, 100, 200, and 300 °C. The crystalline structure, surface topography, surface morphology, electrical resistivity, and optical properties of the deposited films were studied. The properties of the Ni films could be controlled by altering the substrate temperature. Specifically, the films featured a face-centered cubic crystalline structure with predominant (111) crystallite orientation at all the substrate temperatures employed, as observed from the X-ray diffraction analysis. Films deposited at substrate temperatures greater than 200 °C additionally displayed crystalline (200) and (220) diffraction peaks. The surface morphology analysis revealed that the grain size of the Ni thin films increased with increasing substrate temperatures employed. This increase was accompanied with a decrease in the resistivity of the Ni films. The surface roughness of the films increased with increasing substrate temperatures employed, as observed from the atomic force microscopy analysis. - Highlights: • RF magnetron sputtering is a good alternative method to deposit Ni films. • Properties of Ni films could be controlled simply by tuning substrate temperatures. • Crystallite size and surface roughness increased with substrate temperatures. • Electrical resistivity reduced with increasing substrate temperatures. • Optical properties also changed with substrate temperatures.

  3. Measurement of bovine body and scrotal temperature using implanted temperature sensitive radio transmitters, data loggers and infrared thermography

    Science.gov (United States)

    Wallage, A. L.; Gaughan, J. B.; Lisle, A. T.; Beard, L.; Collins, C. W.; Johnston, S. D.

    2017-07-01

    Synchronous and continuous measurement of body (BT) and scrotal temperature (ST) without adverse welfare or behavioural interference is essential for understanding thermoregulation of the bull testis. This study compared three technologies for their efficacy for long-term measurement of the relationship between BT and ST by means of (1) temperature sensitive radio transmitters (RT), (2) data loggers (DL) and (3) infrared imaging (IRI). After an initial pilot study on two bulls to establish a surgical protocol, RTs and DLs were implanted into the flank and mid-scrotum of six Wagyu bulls for between 29 and 49 days. RT frequencies were scanned every 15 min, whilst DLs logged every 30 min. Infrared imaging of the body (flank) and scrotum of each bull was recorded hourly for one 24-h period and compared to RT and DL data. After a series of subsequent heat stress studies, bulls were castrated and testicular tissue samples processed for evidence of histopathology. Radio transmitters were less reliable than DLs; RTs lost >11 % of data, whilst 11 of the 12 DLs had 0 % data loss. IRI was only interpretable in 35.8 % of images recorded. Pearson correlations between DL and RT were strong for both BT ( r > 0.94, P 0.80, P animals post-surgery. Whilst scar tissue was observed at all surgical sutured sites when bulls were castrated, there was no evidence of testicular adhesion and normal active spermatogenesis was observed in six of the eight implanted testicles. There was no significant correlation of IRI with either DL or RT. We conclude that DLs provided to be a reliable continuous source of data for synchronous measurement of BT and ST.

  4. HIGH-RESOLUTION IMAGING OF THE ATLBS REGIONS: THE RADIO SOURCE COUNTS

    Energy Technology Data Exchange (ETDEWEB)

    Thorat, K.; Subrahmanyan, R.; Saripalli, L.; Ekers, R. D., E-mail: kshitij@rri.res.in [Raman Research Institute, C. V. Raman Avenue, Sadashivanagar, Bangalore 560080 (India)

    2013-01-01

    The Australia Telescope Low-brightness Survey (ATLBS) regions have been mosaic imaged at a radio frequency of 1.4 GHz with 6'' angular resolution and 72 {mu}Jy beam{sup -1} rms noise. The images (centered at R.A. 00{sup h}35{sup m}00{sup s}, decl. -67 Degree-Sign 00'00'' and R.A. 00{sup h}59{sup m}17{sup s}, decl. -67 Degree-Sign 00'00'', J2000 epoch) cover 8.42 deg{sup 2} sky area and have no artifacts or imaging errors above the image thermal noise. Multi-resolution radio and optical r-band images (made using the 4 m CTIO Blanco telescope) were used to recognize multi-component sources and prepare a source list; the detection threshold was 0.38 mJy in a low-resolution radio image made with beam FWHM of 50''. Radio source counts in the flux density range 0.4-8.7 mJy are estimated, with corrections applied for noise bias, effective area correction, and resolution bias. The resolution bias is mitigated using low-resolution radio images, while effects of source confusion are removed by using high-resolution images for identifying blended sources. Below 1 mJy the ATLBS counts are systematically lower than the previous estimates. Showing no evidence for an upturn down to 0.4 mJy, they do not require any changes in the radio source population down to the limit of the survey. The work suggests that automated image analysis for counts may be dependent on the ability of the imaging to reproduce connecting emission with low surface brightness and on the ability of the algorithm to recognize sources, which may require that source finding algorithms effectively work with multi-resolution and multi-wavelength data. The work underscores the importance of using source lists-as opposed to component lists-and correcting for the noise bias in order to precisely estimate counts close to the image noise and determine the upturn at sub-mJy flux density.

  5. Radio Emission from Pulsar Wind Nebulae without Surrounding Supernova Ejecta: Application to FRB 121102

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Z. G.; Wang, J. S. [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China); Yu, Y. W., E-mail: dzg@nju.edu.cn [Institute of Astrophysics, Central China Normal University, Wuhan 430079 (China)

    2017-03-20

    In this paper, we propose a new scenario in which a rapidly rotating strongly magnetized pulsar without any surrounding supernova ejecta repeatedly produces fast radio bursts (FRBs) via a range of possible mechanisms; simultaneously, an ultra-relativistic electron/positron pair wind from the pulsar sweeps up its ambient dense interstellar medium, giving rise to a non-relativistic pulsar wind nebula (PWN). We show that the synchrotron radio emission from such a PWN is bright enough to account for the recently discovered persistent radio source associated with the repeating FRB 121102 within reasonable ranges of the model parameters. Our PWN scenario is consistent with the non-evolution of the dispersion measure inferred from all of the repeating bursts observed in four years.

  6. Radio Emission from Pulsar Wind Nebulae without Surrounding Supernova Ejecta: Application to FRB 121102

    International Nuclear Information System (INIS)

    Dai, Z. G.; Wang, J. S.; Yu, Y. W.

    2017-01-01

    In this paper, we propose a new scenario in which a rapidly rotating strongly magnetized pulsar without any surrounding supernova ejecta repeatedly produces fast radio bursts (FRBs) via a range of possible mechanisms; simultaneously, an ultra-relativistic electron/positron pair wind from the pulsar sweeps up its ambient dense interstellar medium, giving rise to a non-relativistic pulsar wind nebula (PWN). We show that the synchrotron radio emission from such a PWN is bright enough to account for the recently discovered persistent radio source associated with the repeating FRB 121102 within reasonable ranges of the model parameters. Our PWN scenario is consistent with the non-evolution of the dispersion measure inferred from all of the repeating bursts observed in four years.

  7. Circadian Phase-Shifting Effects of Bright Light, Exercise, and Bright Light + Exercise.

    Science.gov (United States)

    Youngstedt, Shawn D; Kline, Christopher E; Elliott, Jeffrey A; Zielinski, Mark R; Devlin, Tina M; Moore, Teresa A

    2016-02-26

    Limited research has compared the circadian phase-shifting effects of bright light and exercise and additive effects of these stimuli. The aim of this study was to compare the phase-delaying effects of late night bright light, late night exercise, and late evening bright light followed by early morning exercise. In a within-subjects, counterbalanced design, 6 young adults completed each of three 2.5-day protocols. Participants followed a 3-h ultra-short sleep-wake cycle, involving wakefulness in dim light for 2h, followed by attempted sleep in darkness for 1 h, repeated throughout each protocol. On night 2 of each protocol, participants received either (1) bright light alone (5,000 lux) from 2210-2340 h, (2) treadmill exercise alone from 2210-2340 h, or (3) bright light (2210-2340 h) followed by exercise from 0410-0540 h. Urine was collected every 90 min. Shifts in the 6-sulphatoxymelatonin (aMT6s) cosine acrophase from baseline to post-treatment were compared between treatments. Analyses revealed a significant additive phase-delaying effect of bright light + exercise (80.8 ± 11.6 [SD] min) compared with exercise alone (47.3 ± 21.6 min), and a similar phase delay following bright light alone (56.6 ± 15.2 min) and exercise alone administered for the same duration and at the same time of night. Thus, the data suggest that late night bright light followed by early morning exercise can have an additive circadian phase-shifting effect.

  8. Radio frequency-induced temperature elevations in the human head considering small anatomical structures

    International Nuclear Information System (INIS)

    Schmid, G.; Ueberbacher, R.; Samaras, T.

    2007-01-01

    In order to enable a detailed numerical radio frequency (RF) dosimetry and the computations of RF-induced temperature elevations, high-resolution (0.1 mm) numerical models of the human eye, the inner ear organs and the pineal gland were developed and inserted into a commercially available head model. As radiation sources, generic models of handsets at 400, 900 and 1850 MHz operating in close proximity to the head were considered. The results, obtained by finite-difference time domain-based computations, showed a highly heterogeneous specific absorption rate (SAR) distribution and SAR-peaks inside the inner ear structures; however, the corresponding RF-induced temperature elevations were well below 0.1 deg. C, when considering typical output power values of hand-held devices. In case of frontal exposure, with the radiation sources ∼2.5 cm in front of the closed eye, maximum temperature elevations in the eye in the range of ∼0.2-0.6 deg. C were found for typical device output powers. A reduction in tissue perfusion mainly affected the maximum RF-induced temperature elevation of tissues deep inside the head. Similarly, worst-case considerations regarding pulsed irradiation affected temperature elevations in deep tissue significantly more than in superficial tissues. (authors)

  9. A Search for Millisecond-pulsar Radio Emission from the Faint Quiescent Soft X-Ray Transient 1H 1905+000

    Energy Technology Data Exchange (ETDEWEB)

    Mikhailov, K.; Van Leeuwen, J. [Anton Pannekoek Institute for Astronomy, University of Amsterdam, Science Park 904, P.O. Box 94249, 1090 GE Amsterdam (Netherlands); Jonker, P. G., E-mail: K.Mikhailov@uva.nl [SRON, the Netherlands Institute for Space Research, Sorbonnelaan 2, 3584 CA, Utrecht (Netherlands)

    2017-05-01

    Transitional millisecond pulsars (tMSPs) switch between an accretion-powered state without radio pulsations and a rotation-powered state with radio pulsations. In the former state, tMSPs are X-ray bright, while in the latter state, they are X-ray dim. Soft X-ray transients (SXTs) undergo similar switches in X-ray, between “high” states with bright X-ray outbursts and “low” states of quiescence. The upper limit on the quiescent X-ray luminosity of SXT 1H 1905+000 suggests that its luminosity might be similar to that of the known tMSPs. A detection of radio pulsations would link SXTs more strongly with tMSPs; and thus, e.g., put stricter constraints on tMSP transitional timescales through the connection with the well-known SXT periods of quiescence. A nondetection allows us, based on the telescope sensitivity, to estimate how likely these sources are to pulsate in radio. Over a 10-year span, 2006–2015, we carried out targeted radio observations at 400/800 MHz with Arecibo, and searched for radio pulsations from the quiescent SXT 1H 1905+000. None of the observations have revealed radio pulsations from the targeted SXT. For a 1 ms pulsar, our flux density upper limit is 10.3 μ Jy. At an assumed distance of 10 kpc this translates to a pseudo-luminosity upper limit of 1.0 mJy kpc{sup 2}, which makes our search complete to ∼85% of the known MSP population. Given the high sensitivity, and the generally large beaming fraction of millisecond pulsars, we conclude that SXT 1H 1905+000 is unlikely to emit in radio as a tMSP.

  10. Influence of substrate temperature on structural, morphological and electrical properties of PbSe film deposited by radio frequency sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Wenran, E-mail: fengwenran@bipt.edu.cn [College of Materials Science and Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617 (China); Beijing Key Lab of Special Elastomer Composite Materials, Beijing 102617 (China); Wang, Xiaoyang [College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Chen, Fei [College of Materials Science and Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617 (China); Beijing Key Lab of Special Elastomer Composite Materials, Beijing 102617 (China); Liu, Wan [College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Zhou, Hai; Wang, Shuo; Li, Haoran [College of Materials Science and Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617 (China); Beijing Key Lab of Special Elastomer Composite Materials, Beijing 102617 (China)

    2015-03-02

    PbSe films were prepared by radio frequency magnetron sputtering from PbSe slices target under different substrate temperatures (from room temperature to 300 °C). The effect of substrate temperature on structural properties of PbSe thin film was investigated. The surface morphology and the crystal structure of film were determined using field emission scanning electron microscopy and X-ray diffractometry, respectively. It was found that the grain shape changed with substrate temperature. When the substrate temperature was below 250 °C, most of the crystal grains were spherical in shape. For temperatures above 250 °C, the grains transformed to triangle or prismatic ones. Meanwhile, with increasing substrate temperature, the preferential orientation of the film changed from (200) to (220). To figure out the intrinsic mechanisms for this behavior, the texture coefficient, as well as the comparison between surface energy and elastic strain energy was performed. At lower temperature, the film growth was determined by surface energy, which was replaced by strain energy at higher temperature. Therefore, the diversity of crystal structure and morphology of the films at different substrate temperatures occurred. Moreover, the electrical properties of the p-type PbSe films are also quite dependent on substrate temperature. With substrate temperature increased, the electrical resistivity decreased from 1.88 to 0.14 Ω cm, while the carrier concentration increased from 1.74 × 10{sup 18} to 4.08 × 10{sup 19} cm{sup −3} as the mobility was enhanced from 0.54 to 2.21 cm{sup 2}/Vs. - Highlights: • PbSe thin films were deposited by radio frequency magnetron sputtering. • Substrate temperature determines crystal structure of PbSe films. • Transformation behaviors of PbSe films were explained by energy calculations.

  11. Low Latency Workflow Scheduling and an Application of Hyperspectral Brightness Temperatures

    Science.gov (United States)

    Nguyen, P. T.; Chapman, D. R.; Halem, M.

    2012-12-01

    New system analytics for Big Data computing holds the promise of major scientific breakthroughs and discoveries from the exploration and mining of the massive data sets becoming available to the science community. However, such data intensive scientific applications face severe challenges in accessing, managing and analyzing petabytes of data. While the Hadoop MapReduce environment has been successfully applied to data intensive problems arising in business, there are still many scientific problem domains where limitations in the functionality of MapReduce systems prevent its wide adoption by those communities. This is mainly because MapReduce does not readily support the unique science discipline needs such as special science data formats, graphic and computational data analysis tools, maintaining high degrees of computational accuracies, and interfacing with application's existing components across heterogeneous computing processors. We address some of these limitations by exploiting the MapReduce programming model for satellite data intensive scientific problems and address scalability, reliability, scheduling, and data management issues when dealing with climate data records and their complex observational challenges. In addition, we will present techniques to support the unique Earth science discipline needs such as dealing with special science data formats (HDF and NetCDF). We have developed a Hadoop task scheduling algorithm that improves latency by 2x for a scientific workflow including the gridding of the EOS AIRS hyperspectral Brightness Temperatures (BT). This workflow processing algorithm has been tested at the Multicore Computing Center private Hadoop based Intel Nehalem cluster, as well as in a virtual mode under the Open Source Eucalyptus cloud. The 55TB AIRS hyperspectral L1b Brightness Temperature record has been gridded at the resolution of 0.5x1.0 degrees, and we have computed a 0.9 annual anti-correlation to the El Nino Southern oscillation in

  12. ULTRA STEEP SPECTRUM RADIO SOURCES IN THE LOCKMAN HOLE: SERVS IDENTIFICATIONS AND REDSHIFT DISTRIBUTION AT THE FAINTEST RADIO FLUXES

    Energy Technology Data Exchange (ETDEWEB)

    Afonso, J.; Bizzocchi, L.; Grossi, M.; Messias, H.; Fernandes, C. A. C. [Observatorio Astronomico de Lisboa, Faculdade de Ciencias, Universidade de Lisboa, Tapada da Ajuda, 1349-018 Lisbon (Portugal); Ibar, E.; Ivison, R. J. [UK Astronomy Technology Centre, Royal Observatory, Edinburgh EH9 3HJ (United Kingdom); Simpson, C. [Astrophysics Research Institute, Liverpool John Moores University, Twelve Quays House, Egerton Wharf, Birkenhead CH41 1LD (United Kingdom); Chapman, S.; Gonzalez-Solares, E. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Jarvis, M. J. [Centre for Astrophysics, Science and Technology Research Institute, University of Hertfordshire, Hatfield, Herts AL10 9AB (United Kingdom); Rottgering, H. [Leiden Observatory, Leiden University, Oort Gebouw, P.O. Box 9513, 2300 RA Leiden (Netherlands); Norris, R. P. [CSIRO Astronomy and Space Science, P.O. Box 76, Epping, NSW 1710 (Australia); Dunlop, J.; Best, P. [SUPA, Institute for Astronomy, University of Edinburgh, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Pforr, J. [Institute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Burnaby Road, Portsmouth PO1 3FX (United Kingdom); Vaccari, M. [Department of Astronomy, University of Padova, vicolo Osservatorio 3, 35122 Padova (Italy); Seymour, N. [Mullard Space Science Laboratory, UCL, Holmbury St Mary, Dorking, Surrey RH5 6NT (United Kingdom); Farrah, D. [Astronomy Centre, Department of Physics and Astronomy, University of Sussex, Brighton BN1 9QH (United Kingdom); Huang, J.-S., E-mail: jafonso@oal.ul.pt [Department of Astrophysics, Oxford University, Keble Road, Oxford OX1 3RH (United Kingdom); and others

    2011-12-20

    Ultra steep spectrum (USS) radio sources have been successfully used to select powerful radio sources at high redshifts (z {approx}> 2). Typically restricted to large-sky surveys and relatively bright radio flux densities, it has gradually become possible to extend the USS search to sub-mJy levels, thanks to the recent appearance of sensitive low-frequency radio facilities. Here a first detailed analysis of the nature of the faintest USS sources is presented. By using Giant Metrewave Radio Telescope and Very Large Array radio observations of the Lockman Hole at 610 MHz and 1.4 GHz, a sample of 58 USS sources, with 610 MHz integrated fluxes above 100 {mu}Jy, is assembled. Deep infrared data at 3.6 and 4.5 {mu}m from the Spitzer Extragalactic Representative Volume Survey (SERVS) are used to reliably identify counterparts for 48 (83%) of these sources, showing an average total magnitude of [3.6]{sub AB} = 19.8 mag. Spectroscopic redshifts for 14 USS sources, together with photometric redshift estimates, improved by the use of the deep SERVS data, for a further 19 objects, show redshifts ranging from z = 0.1 to z = 2.8, peaking at z {approx} 0.6 and tailing off at high redshifts. The remaining 25 USS sources, with no redshift estimate, include the faintest [3.6] magnitudes, with 10 sources undetected at 3.6 and 4.5 {mu}m (typically [3.6] {approx}> 22-23 mag from local measurements), which suggests the likely existence of higher redshifts among the sub-mJy USS population. The comparison with the Square Kilometre Array Design Studies Simulated Skies models indicates that Fanaroff-Riley type I radio sources and radio-quiet active galactic nuclei may constitute the bulk of the faintest USS population, and raises the possibility that the high efficiency of the USS technique for the selection of high-redshift sources remains even at the sub-mJy level.

  13. Probing the Innermost Regions of AGN Jets and Their Magnetic Fields with RadioAstron. I. Imaging BL Lacertae at 21 Microarcsecond Resolution

    Science.gov (United States)

    Gómez, José L.; Lobanov, Andrei P.; Bruni, Gabriele; Kovalev, Yuri Y.; Marscher, Alan P.; Jorstad, Svetlana G.; Mizuno, Yosuke; Bach, Uwe; Sokolovsky, Kirill V.; Anderson, James M.; Galindo, Pablo; Kardashev, Nikolay S.; Lisakov, Mikhail M.

    2016-02-01

    We present the first polarimetric space very long baseline interferometry (VLBI) imaging observations at 22 GHz. BL Lacertae was observed in 2013 November 10 with the RadioAstron space VLBI mission, including a ground array of 15 radio telescopes. The instrumental polarization of the space radio telescope is found to be less than 9%, demonstrating the polarimetric imaging capabilities of RadioAstron at 22 GHz. Ground-space fringes were obtained up to a projected baseline distance of 7.9 Earth diameters in length, allowing us to image the jet in BL Lacertae with a maximum angular resolution of 21 μas, the highest achieved to date. We find evidence for emission upstream of the radio core, which may correspond to a recollimation shock at about 40 μas from the jet apex, in a pattern that includes other recollimation shocks at approximately 100 and 250 μas from the jet apex. Polarized emission is detected in two components within the innermost 0.5 mas from the core, as well as in some knots 3 mas downstream. Faraday rotation analysis, obtained from combining RadioAstron 22 GHz and ground-based 15 and 43 GHz images, shows a gradient in rotation measure and Faraday-corrected polarization vector as a function of position angle with respect to the core, suggesting that the jet in BL Lacertae is threaded by a helical magnetic field. The intrinsic de-boosted brightness temperature in the unresolved core exceeds 3× {10}12 K, suggesting, at the very least, departure from equipartition of energy between the magnetic field and radiating particles.

  14. XMM-Newton and Chandra Observations of the Remarkable Dynamics of the Intracluster Medium and Radio Sources in the Clusters Abell 2061 and 3667

    Science.gov (United States)

    Sarazin, C.; Hogge, T.; Chatzikos, M.; Wik, D.; Giacintucci, S.; Clarke, T.; Wong, K.; Gitti, M.; Finoguenov, A.

    2014-07-01

    XMM-Newton and Chandra observations of remarkable dynamic structures in the X-ray gas and connected radio sources in three clusters are presented. Abell 2061 is a highly irregular, merging cluster in the Corona Borealis supercluster. X-ray observations show that there is a plume of very cool gas (˜1 keV) to the NE of the cluster, and a hot (7.6 keV) shock region just NE of the center. There is a very bright radio relic to the far SW of the cluster, and a central radio halo/relic with an extension to the NE. Comparison to SLAM simulations show that this is an offset merger of a ˜5 × 10^{13} M⊙ subcluster with a ˜2.5 × 10^{14} M⊙ cluster seen after first core passage. The plume is the cool-core gas from the subcluster, which has been ``slingshot'' to the NE of the cluster. The plume gas is now falling back into the cluster center, and shocks when it hits the central gas. The model predicts a strong shock to the SW at the location of the bright radio relic, and another shock at the NE radio extension. Time permitting, the observations of Abell 2626 and Abell 3667 will also be presented.

  15. The 136 MHZ/400 MHz earth station antenna-noise temperature prediction program for RAE-B

    Science.gov (United States)

    Taylor, R. E.; Fee, J. J.; Chin, M.

    1972-01-01

    A simulation study was undertaken to determine the 136 MHz and 400 MHz noise temperature of the ground network antennas which will track the RAE-B satellite during data transmission periods. Since the noise temperature of the antenna effectively sets the signal-to-noise ratio of the received signal, a knowledge of SNR will be helpful in locating the optimum time windows for data transmission during low noise periods. Antenna noise temperatures will be predicted for selected earth-based ground stations which will support RAE-B. Telemetry data acquisition will be at 400 MHz; tracking support at 136 MHz will be provided by the Goddard Range and Range Rate (RARR) stations. The antenna-noise temperature predictions will include the effects of galactic-brightness temperature, the sun, and the brightest radio stars. Predictions will cover the ten-month period from March 1, 1973 to December 31, 1973.

  16. The First ALMA Observation of a Solar Plasmoid Ejection from an X-Ray Bright Point

    Science.gov (United States)

    Shimojo, M.; Hudson, H. S.; White, S. M.; Bastian, T.; Iwai, K.

    2017-12-01

    Eruptive phenomena are important features of energy releases events, such solar flares, and have the potential to improve our understanding of the dynamics of the solar atmosphere. The 304 A EUV line of helium, formed at around 10^5 K, is found to be a reliable tracer of such phenomena, but the determination of physical parameters from such observations is not straightforward. We have observed a plasmoid ejection from an X-ray bright point simultaneously with ALMA, SDO/AIA, and Hinode/XRT. This paper reports the physical parameters of the plasmoid obtained by combining the radio, EUV, and X-ray data. As a result, we conclude that the plasmoid can consist either of (approximately) isothermal ˜10^5 K plasma that is optically thin at 100 GHz, or a ˜10^4 K core with a hot envelope. The analysis demonstrates the value of the additional temperature and density constraints that ALMA provides, and future science observations with ALMA will be able to match the spatial resolution of space-borne and other high-resolution telescopes.

  17. Possible Bright Starspots on TRAPPIST-1

    Science.gov (United States)

    Morris, Brett M.; Agol, Eric; Davenport, James R. A.; Hawley, Suzanne L.

    2018-04-01

    The M8V star TRAPPIST-1 hosts seven roughly Earth-sized planets and is a promising target for exoplanet characterization. Kepler/K2 Campaign 12 observations of TRAPPIST-1 in the optical show an apparent rotational modulation with a 3.3-day period, though that rotational signal is not readily detected in the Spitzer light curve at 4.5 μm. If the rotational modulation is due to starspots, persistent dark spots can be excluded from the lack of photometric variability in the Spitzer light curve. We construct a photometric model for rotational modulation due to photospheric bright spots on TRAPPIST-1 that is consistent with both the Kepler and Spitzer light curves. The maximum-likelihood model with three spots has typical spot sizes of R spot/R ⋆ ≈ 0.004 at temperature T spot ≳ 5300 ± 200 K. We also find that large flares are observed more often when the brightest spot is facing the observer, suggesting a correlation between the position of the bright spots and flare events. In addition, these flares may occur preferentially when the spots are increasing in brightness, which suggests that the 3.3-day periodicity may not be a rotational signal, but rather a characteristic timescale of active regions.

  18. Study of Temperature Wave Propagation in Superfluid Helium Focusing on Radio-Frequency Cavity Cooling

    CERN Document Server

    Koettig, T; Avellino, S; Junginger, T; Bremer, J

    2015-01-01

    Oscillating Superleak Transducers (OSTs) can be used to localize quenches of superconducting radio-frequency cavities. Local hot spots at the cavity surface initiate temperature waves in the surrounding superfluid helium that acts as cooling fluid at typical temperatures in the range of 1.6 K to 2 K. The temperature wave is characterised by the properties of superfluid helium such as the second sound velocity. For high heat load densities second sound velocities greater than the standard literature values are observed. This fast propagation has been verified in dedicated small scale experiments. Resistors were used to simulate the quench spots under controlled conditions. The three dimensional propagation of second sound is linked to OST signals. The aim of this study is to improve the understanding of the OST signal especially the incident angle dependency. The characterised OSTs are used as a tool for quench localisation on a real size cavity. Their sensitivity as well as the time resolution was proven to b...

  19. Cosmological radio emission induced by WIMP Dark Matter

    International Nuclear Information System (INIS)

    Fornengo, N.; Regis, M.; Lineros, R.; Taoso, M.

    2012-01-01

    We present a detailed analysis of the radio synchrotron emission induced by WIMP dark matter annihilations and decays in extragalactic halos. We compute intensity, angular correlation, and source counts and discuss the impact on the expected signals of dark matter clustering, as well as of other astrophysical uncertainties as magnetic fields and spatial diffusion. Bounds on dark matter microscopic properties are then derived, and, depending on the specific set of assumptions, they are competitive with constraints from other indirect dark matter searches. At GHz frequencies, dark matter sources can become a significant fraction of the total number of sources with brightness below the microJansky level. We show that, at this level of fluxes (which are within the reach of the next-generation radio surveys), properties of the faint edge of differential source counts, as well as angular correlation data, can become an important probe for WIMPs

  20. Cosmological radio emission induced by WIMP Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Fornengo, N.; Regis, M. [Dipartimento di Fisica Teorica, Università di Torino, via P. Giuria 1, I-10125 Torino (Italy); Lineros, R.; Taoso, M., E-mail: fornengo@to.infn.it, E-mail: rlineros@ific.uv.es, E-mail: regis@to.infn.it, E-mail: mtaoso@phas.ubc.ca [IFIC, CSIC-Universidad de Valencia, Ed. Institutos, Apdo. Correos 22085, E-46071 Valencia (Spain)

    2012-03-01

    We present a detailed analysis of the radio synchrotron emission induced by WIMP dark matter annihilations and decays in extragalactic halos. We compute intensity, angular correlation, and source counts and discuss the impact on the expected signals of dark matter clustering, as well as of other astrophysical uncertainties as magnetic fields and spatial diffusion. Bounds on dark matter microscopic properties are then derived, and, depending on the specific set of assumptions, they are competitive with constraints from other indirect dark matter searches. At GHz frequencies, dark matter sources can become a significant fraction of the total number of sources with brightness below the microJansky level. We show that, at this level of fluxes (which are within the reach of the next-generation radio surveys), properties of the faint edge of differential source counts, as well as angular correlation data, can become an important probe for WIMPs.

  1. Kiloamp high-brightness beams

    International Nuclear Information System (INIS)

    Caporaso, G.J.

    1987-01-01

    Brightness preservation of high-current relativistic electron beams under two different types of transport is discussed. Recent progress in improving the brightness of laser-guided beams in the Advanced Test Accelerator is reviewed. A strategy for the preservation of the brightness of space-charge-dominated beams in a solenoidal transport system is presented

  2. Star formation in the inner galaxy: a far-infrared and radio study of two H2 regions

    International Nuclear Information System (INIS)

    Lester, D.F.; Dinerstein, H.L.; Werner, M.W.; Harvey, P.M.; Evans, N.J.II; Brown, R.L.

    1985-12-01

    Far-infrared and radio continuum maps have been made of the central 6' of the inner-galaxy H II regions G30.8-0.0 (in the W43 complex) and G25.4-02., along with radio and molecular line measurements at selected positions. An effort is made to understand far infrared wavelingths allow the dust temperature structures and total far infrared fluxes to be determined. Comparison of the radio and infrared maps shows a close relationship between the ionized gas and the infrared-emitting material. There is evidence that parts of G30.8 are substantially affected by extinction, even at far-infrared wavelengths. For G25.4-0.2, the radio recombination line and CO line data permit resolution of the distance ambiguity for this source. The confusion in distance determination is found to result from an extraordinary near-superposition of two bright H II regions. Using revised distances of 4.3 kpc for G26.4SE and 12 kpc for G25.4NW, that the latter, which is apparently the fainter of the two sources, is actually the more luminous. Though it is not seen on the Palomar Sky Survey, G25.4SE is easily visible in the 9532A line of S III and is mapped in this line. The ratio of total luminosity to ionizing luminosity is very similar to that of H II regions in the solar circle. Assuming a coeval population of ionizing stars, a normal initial mass function is indicated

  3. Star formation in the inner galaxy: a far-infrared and radio study of two H2 regions

    International Nuclear Information System (INIS)

    Lester, D.F.; Dinerstein, H.L.; Werner, M.W.; Harvey, P.M.; Evans, N.J.; Brown, R.L.

    1985-09-01

    Far-infrared and radio continuum maps have been made of the central 6' of the inner-galaxy HII regions G30.8-0.0 (in the W43 complex) and G25.4-0.2, along with radio and molecular line measurements at selected positions. The purpose of this study is an effort to understand star formation in the molecular ring at 5 kpc in galactic radius. Measurements at several far infrared wavelengths allow the dust temperature structures and total far infrared fluxes to be determined. Comparison of the radio and infrared maps shows a close relationship between the ionized gas and the infrared-emitting material. There is evidence that parts of G30.8 are substantially affected by extinction, even at far-infrared wavelengths. Using radio recombination line and CO line data for G25.4-0.2, the distance ambiguity for this source is resolved. The large distance previously ascribed to the entire complex is found to apply to only one of the two main components. The confusion in distance determination is found to result from an extraordinary near-superposition of two bright HII regions. Using the revised distances of 4.3 kpc for G25.4SE and 12 kpc for G25.4NW, it is found that the latter, which is apparently the fainter of the two sources, is actually the more luminous. The ratio of total luminosity to ionizing luminosity is very similar to that of HII regions in the solar circle. Assuming a coeval population of ionizing stars, a normal initial mass function is indicated

  4. The 136 MHz/400 MHz earth station antenna-noise temperature prediction program documentation for RAE-B

    Science.gov (United States)

    Chin, M.

    1972-01-01

    A simulation study to determine the 136 MHz and 400 MHz noise temperature of the ground network antennas which will track the RAE-B satellite during data transmission periods is described. Since the noise temperature of the antenna effectively sets the signal-to-noise ratio (SNR) of the received signal, a knowledge of SNR will be helpful in locating the optimum time windows for data transmission during low-noise periods. Antenna-noise temperatures at 136 MHz and 400 MHz will be predicted for selected earth-based ground stations which will support RAE-B. The antenna-noise temperature predictions will include the effects of galactic-brightness temperature, the sun, and the brightest radio stars. Predictions will cover the ten-month period from March 1, 1973 to December 31, 1973. The RAE-B mission will be expecially susceptible to SNR degradation during the two eclipses of the Sun occurring in this period.

  5. The changing source of X-ray reflection in the radio-intermediate Seyfert 1 galaxy III Zw 2

    Science.gov (United States)

    Gonzalez, A. G.; Waddell, S. G. H.; Gallo, L. C.

    2018-03-01

    We report on X-ray observations of the radio-intermediate, X-ray bright Seyfert 1 galaxy, III Zw 2, obtained with XMM-Newton, Suzaku, and Swift over the past 17 yr. The source brightness varies significantly over yearly time-scales, but more modestly over periods of days. Pointed observations with XMM-Newton in 2000 and Suzaku in 2011 show spectral differences despite comparable X-ray fluxes. The Suzaku spectra are consistent with a power-law continuum and a narrow Gaussian emission feature at ˜6.4 keV, whereas the earlier XMM-Newton spectrum requires a broader Gaussian profile and soft-excess below ˜2 keV. A potential interpretation is that the primary power-law emission, perhaps from a jet base, preferentially illuminates the inner accretion disc in 2000, but the distant torus in 2011. The interpretation could be consistent with the hypothesized precessing radio jet in III Zw 2 that may have originated from disc instabilities due to an ongoing merging event.

  6. A selective deficit in the appreciation and recognition of brightness: brightness agnosia?

    Science.gov (United States)

    Nijboer, Tanja C W; Nys, Gudrun M S; van der Smagt, Maarten J; de Haan, Edward H F

    2009-01-01

    We report a patient with extensive brain damage in the right hemisphere who demonstrated a severe impairment in the appreciation of brightness. Acuity, contrast sensitivity as well as luminance discrimination were normal, suggesting her brightness impairment is not a mere consequence of low-level sensory impairments. The patient was not able to indicate the darker or the lighter of two grey squares, even though she was able to see that they differed. In addition, she could not indicate whether the lights in a room were switched on or off, nor was she able to differentiate between normal greyscale images and inverted greyscale images. As the patient recognised objects, colours, and shapes correctly, the impairment is specific for brightness. As low-level, sensory processing is normal, this specific deficit in the recognition and appreciation of brightness appears to be of a higher, cognitive level, the level of semantic knowledge. This appears to be the first report of 'brightness agnosia'.

  7. Radio Telescopes Reveal Youngest Stellar Corpse

    Science.gov (United States)

    2004-06-01

    Astronomers using a global combination of radio telescopes to study a stellar explosion some 30 million light-years from Earth have likely discovered either the youngest black hole or the youngest neutron star known in the Universe. Their discovery also marks the first time that a black hole or neutron star has been found associated with a supernova that has been seen to explode since the invention of the telescope nearly 400 years ago. M51 An artist's impression of Supernova 1986J. The newly discovered nebula around the black hole or neutron star in the center is shown in blue, and is in the center of the expanding, fragmented shell of material thrown off in the supernova explosion, which is shown in red. CREDIT: Norbert Bartel and Michael F. Bietenholz, York University; Artist: G. Arguner (Click on image for larger version) Image Files Artist's Conception (above image, 836K) Galaxy and Supernova (47K) A VLA image (left) of the galaxy NGC 891, showing the bright supernova explosion below the galaxy's center. At right, a closer view of the supernova, made with a global array of radio telescopes. CREDIT: Miguel A. Perez-Torres, Antxon Alberdi and Lucas Lara, Instituto de Astrofisica de Andalucia - CSIC, Spain, Jon Marcaide and Jose C. Guirado, Universidad de Valencia, Spain Franco Mantovani, IRA-CNR, Italy, Eduardo Ros, MPIfR, Germany, and Kurt W. Weiler, Naval Research Laboratory, USA Multi-Frequency Closeup View (201K) Blue and white area shows the nebula surrounding the black hole or neutron star lurking in the center of the supernova. This nebula is apparent at a higher radio frequency (15 GHz). The red and also the contours show the distorted, expanding shell of material thrown off in the supernova explosion. This shell is seen at a lower radio frequency (5 GHz). CREDIT: Michael F. Bietenholz and Norbert Bartel, York University, Michael Rupen, NRAO, NRAO/AUI/NSF A supernova is the explosion of a massive star after it exhausts its supply of nuclear fuel and

  8. THE SCALING RELATIONS AND THE FUNDAMENTAL PLANE FOR RADIO HALOS AND RELICS OF GALAXY CLUSTERS

    International Nuclear Information System (INIS)

    Yuan, Z. S.; Han, J. L.; Wen, Z. L.

    2015-01-01

    Diffuse radio emission in galaxy clusters is known to be related to cluster mass and cluster dynamical state. We collect the observed fluxes of radio halos, relics, and mini-halos for a sample of galaxy clusters from the literature, and calculate their radio powers. We then obtain the values of cluster mass or mass proxies from previous observations, and also obtain the various dynamical parameters of these galaxy clusters from optical and X-ray data. The radio powers of relics, halos, and mini-halos are correlated with the cluster masses or mass proxies, as found by previous authors, while the correlations concerning giant radio halos are in general the strongest. We found that the inclusion of dynamical parameters as the third dimension can significantly reduce the data scatter for the scaling relations, especially for radio halos. We therefore conclude that the substructures in X-ray images of galaxy clusters and the irregular distributions of optical brightness of member galaxies can be used to quantitatively characterize the shock waves and turbulence in the intracluster medium responsible for re-accelerating particles to generate the observed diffuse radio emission. The power of radio halos and relics is correlated with cluster mass proxies and dynamical parameters in the form of a fundamental plane

  9. On the Lack of a Radio Afterglow from Some Gamma-Ray Bursts - Insight into Their Progenitors?

    International Nuclear Information System (INIS)

    Lloyd-Ronning, Nicole Marie; Fryer, Christopher L.

    2017-01-01

    We investigate the intrinsic properties of a sample of bright (with isotropic equivalent energy Eiso > 10 52 erg) gamma-ray bursts (GRBs), comparing those with and without radio afterglow. We find that the sample of bursts with no radio afterglows has a significantly shorter mean intrinsic duration of the prompt gamma-ray radiation, and the distribution of this duration is significantly different from those bursts with a radio afterglow. Although the sample with no radio afterglow has on average lower isotropic energy, the lack of radio afterglow does not appear to be a result of simply energetics of the burst, but a reflection of a separate physical phenomenon likely related to the circumburst density profile. We also find a weak correlation between the isotropic gamma-ray energy and intrinsic duration in the sample with no radio afterglow, but not in the sample that have observed radio afterglows. We give possible explanations for why there may exist a sample of GRBs with no radio afterglow depending on whether the radio emission comes from the forward or reverse shock, and why these bursts appear to have intrinsically shorter prompt emission durations. Lastly, we discuss how our results may have implications for progenitor models of GRBs.

  10. BrightFocus Foundation

    Science.gov (United States)

    ... About BrightFocus Foundation Featured Content BrightFocus: Investing in Science to Save Mind and Sight We're here to help. Explore ... recognition is very important. Monday, November 6, 2017 New Diagnosis? Managing a mind and sight disease is a journey. And you’ ...

  11. Thermal Design and Thermal Behaviour of Radio Telescopes and their Enclosures

    CERN Document Server

    Greve, Albert

    2010-01-01

    Radio telescopes as well as communication antennas operate under the influence of gravity, temperature and wind. Among those, temperature influences may degrade the performance of a radio telescope through transient changes of the focus, pointing, path length and sensitivity, often in an unpredictable way. Thermal Design and Thermal Behaviour of Radio Telescopes and their Enclosures reviews the design and construction principles of radio telescopes in view of thermal aspects and heat transfer with the variable thermal environment; it explains supporting thermal model calculations and the application and efficiency of thermal protection and temperature control; it presents many measurements illustrating the thermal behaviour of telescopes in the environment of their observatory sites. The book benefits scientists and radio/communication engineers, telescope designers and construction firms as well as telescope operators, observatory staff, but also the observing astronomer who is directly confronted with the t...

  12. The symmetry, misalignment and kinematic evolution of double radio sources

    International Nuclear Information System (INIS)

    Macklin, J.T.

    1981-01-01

    The symmetry properties of a carefully selected sample of 76 double radio sources have been examined. It is found that: (1) The average intrinsic misalignment (the ratio of the displacement of the optical object to the source size, before projection) of these sources is 0.038, independent of the intrinsic size; (2) sources which are most misaligned tend to have the highest values of D, the ratio of hot-spot separations from the nucleus; (3) hot spots are more asymmetric in brightness than are tails; and (4) the relative brightness of hot spots is not correlated with D, but the relation between D and F, the ratio of total flux densities in components, implies that most of the diffuse structure tends to be associated with the hot spot closer to the optical identification. Computer simulations have been used to examine (2); this is best explained if the major contribution to the D distribution is independent of orientation and is correlated with the intrinsic misalignment. It is shown that (2) is in conflict with the hypothesis that motion of the parent galaxy relative to the intergalactic medium makes the dominant contribution to the observed misalignment. (3) and (4) can be explained in terms of a beam model of double radio sources which includes the effects of the external environment. (author)

  13. 3C 220.3: A radio galaxy lensing a submillimeter galaxy

    Energy Technology Data Exchange (ETDEWEB)

    Haas, Martin; Westhues, Christian; Chini, Rolf [Astronomisches Institut, Ruhr Universität, Bochum (Germany); Leipski, Christian; Klaas, Ulrich; Meisenheimer, Klaus [Max-Planck-Institut für Astronomie, Heidelberg (Germany); Barthel, Peter; Koopmans, Léon V. E. [Kapteyn Astronomical Institute, University of Groningen (Netherlands); Wilkes, Belinda J.; Bussmann, R. Shane; Willner, S. P.; Ashby, Matthew L. N.; Kuraszkiewicz, Joanna [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States); Vegetti, Simona [Max-Planck-Institut für Astrophysik, Garching (Germany); Clements, David L. [Imperial College, London (United Kingdom); Fassnacht, Christopher D. [University of California, Davis, CA (United States); Horesh, Assaf [Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, CA (United States); Lagattuta, David J. [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn (Australia); Stern, Daniel; Wylezalek, Dominika, E-mail: haas@astro.rub.de [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA (United States)

    2014-07-20

    Herschel Space Observatory photometry and extensive multiwavelength follow-up have revealed that the powerful radio galaxy (PRG) 3C 220.3 at z = 0.685 acts as a gravitational lens for a background submillimeter galaxy (SMG) at z = 2.221. At an observed wavelength of 1 mm, the SMG is lensed into three distinct images. In the observed near infrared, these images are connected by an arc of ∼1''.8 radius forming an Einstein half-ring centered near the radio galaxy. In visible light, only the arc is apparent. 3C 220.3 is the only known instance of strong galaxy-scale lensing by a PRG not located in a galaxy cluster and therefore it offers the potential to probe the dark matter content of the radio galaxy host. Lens modeling rejects a single lens, but two lenses centered on the radio galaxy host A and a companion B, separated by 1''.5, provide a fit consistent with all data and reveal faint candidates for the predicted fourth and fifth images. The model does not require an extended common dark matter halo, consistent with the absence of extended bright X-ray emission on our Chandra image. The projected dark matter fractions within the Einstein radii of A (1''.02) and B (0''.61) are about 0.4 ± 0.3 and 0.55 ± 0.3. The mass to i-band light ratios of A and B, M/L{sub i}∼8±4 M{sub ⊙} L{sub ⊙}{sup −1}, appear comparable to those of radio-quiet lensing galaxies at the same redshift in the CfA-Arizona Space Telescope LEns Survey, Lenses Structure and Dynamics, and Strong Lenses in the Legacy Survey samples. The lensed SMG is extremely bright with observed f(250 μm) = 440 mJy owing to a magnification factor μ ∼ 10. The SMG spectrum shows luminous, narrow C IV λ1549 Å emission, revealing that the SMG houses a hidden quasar in addition to a violent starburst. Multicolor image reconstruction of the SMG indicates a bipolar morphology of the emitted ultraviolet (UV) light suggestive of cones through which UV light escapes a

  14. Effects of electromagnetic radiation (bright light, extremely low-frequency magnetic fields, infrared radiation) on the circadian rhythm of melatonin synthesis, rectal temperature, and heart rate.

    Science.gov (United States)

    Griefahn, Barbara; Künemund, Christa; Blaszkewicz, Meinolf; Lerchl, Alexander; Degen, Gisela H

    2002-10-01

    Electromagnetic spectra reduce melatonin production and delay the nadirs of rectal temperature and heart rate. Seven healthy men (16-22 yrs) completed 4 permuted sessions. The control session consisted of a 24-hours bedrest at infrared radiation (65 degrees C) was applied from 5 pm to 1 am. Salivary melatonin level was determined hourly, rectal temperature and heart rate were continuously recorded. Melatonin synthesis was completely suppressed by light but resumed thereafter. The nadirs of rectal temperature and heart rate were delayed. The magnetic field had no effect. Infrared radiation elevated rectal temperature and heart rate. Only bright light affected the circadian rhythms of melatonin synthesis, rectal temperature, and heart rate, however, differently thus causing a dissociation, which might enhance the adverse effects of shiftwork in the long run.

  15. Fast radio bursts: the observational case for a Galactic origin

    OpenAIRE

    Maoz, Dan; Loeb, Abraham; Shvartzvald, Yossi; Sitek, Monika; Engel, Michael; Kiefer, Flavien; Kiraga, Marcin; Levi, Amir; Mazeh, Tsevi; Pawlak, Michal; Rich, R. Michael; Tal-Or, Lev; Wyrzykowski, Lukasz

    2015-01-01

    There are by now ten published detections of fast radio bursts (FRBs), single bright GHz-band millisecond pulses of unknown origin. Proposed explanations cover a broad range from exotic processes at cosmological distances to atmospheric and terrestrial sources. Loeb et al. have previously suggested that FRB sources could be nearby flare stars, and pointed out the presence of a W-UMa-type contact binary within the beam of one out of three FRB fields that they examined. Using time-domain optica...

  16. Vela X: A plerion or part of a shell?

    Science.gov (United States)

    Gvaramadze, V. V.

    1998-03-01

    An analysis of the radio, optical, and X-ray observations of the supernova remnant (SNR) in Vela has led us to conclude that the radio source Vela X is part of the SNR shell. The high brightness of this radio source is assumed to be a result of the interaction of dome-shaped deformations (bubbles) on the SNR shell, which gives rise to bright radio filaments. The deformations could be produced by Richtmaier-Meshkov's instability, which develops during the impulsive acceleration of a shell of gas (swept up from the interstellar medium by the wind from a presupernova) by a shock wave (generated by a supernova explosion). The brightest radio filament and the X-ray jet extending along it are shown to be located in the region of interaction of two prominent bubbles on the SNR shell. We conclude that the X-ray jet, like Vela X, is part of the shell, and that it has its origin in the Mach reflection of two semispherical shock waves. Our estimate of the plasma temperature behind the front of the Mach wave matches the jet temperature. We also show that the large spread in the estimates of the spectral index for Vela X could be caused by the instrumental effect which arises during observations of extended radio sources with a nonuniform surface-brightness distribution.

  17. Testing Snow Melt Algorithms in High Relief Topography Using Calibrated Enhanced-Resolution Brightness Temperatures, Hunza River Basin, Pakistan

    Science.gov (United States)

    Ramage, J. M.; Brodzik, M. J.; Hardman, M.; Troy, T. J.

    2017-12-01

    Snow is a vital part of the terrestrial hydrological cycle, a crucial resource for people and ecosystems. In mountainous regions snow is extensive, variable, and challenging to document. Snow melt timing and duration are important factors affecting the transfer of snow mass to soil moisture and runoff. Passive microwave brightness temperature (Tb) changes at 36 and 18 GHz are a sensitive way to detect snow melt onset due to their sensitivity to the abrupt change in emissivity. They are widely used on large icefields and high latitude watersheds. The coarse resolution ( 25 km) of historically available data has precluded effective use in high relief, heterogeneous regions, and gaps between swaths also create temporal data gaps at lower latitudes. New enhanced resolution data products generated from a scatterometer image reconstruction for radiometer (rSIR) technique are available at the original frequencies. We use these Calibrated Enhanced-resolution Brightness (CETB) Temperatures Earth System Data Records (ESDR) to evaluate existing snow melt detection algorithms that have been used in other environments, including the cross polarized gradient ratio (XPGR) and the diurnal amplitude variations (DAV) approaches. We use the 36/37 GHz (3.125 km resolution) and 18/19 GHz (6.25 km resolution) vertically and horizontally polarized datasets from the Special Sensor Microwave Imager (SSM/I) and Advanced Microwave Radiometer for EOS (AMSR-E) and evaluate them for use in this high relief environment. The new data are used to assess glacier and snow melt records in the Hunza River Basin [area 13,000 sq. km, located at 36N, 74E], a tributary to the Upper Indus Basin, Pakistan. We compare the melt timing results visually and quantitatively to the corresponding EASE-Grid 2.0 25-km dataset, SRTM topography, and surface temperatures from station and reanalysis data. The new dataset is coarser than the topography, but is able to differentiate signals of melt/refreeze timing for

  18. Preparation of single-crystal TiC (111) by radio frequency magnetron sputtering at low temperature

    International Nuclear Information System (INIS)

    Qi, Q.; Zhang, W.Z.; Shi, L.Q.; Zhang, W.Y.; Zhang, W.; Zhang, B.

    2012-01-01

    Single-crystal films of TiC (111) have been synthesized at room temperature on Al 2 O 3 (0001) substrates by radio frequency magnetron sputtering using a compound Ti–C target. The substrate temperature and bias were varied to explore the influence of deposition parameters on the crystal structure. Both Al 2 O 3 (0001) and Si (100) substrates were used for epitaxial growth of TiC films. A series of characterizations of TiC films were carried out, including Rutherford backscattering spectroscopy, X-ray diffraction, Raman and X-ray photoelectron spectroscopy. Single-crystal films of TiC (111) on the Al 2 O 3 (0001) were demonstrated. - Highlights: ► Single-crystal films of TiC (111) have been synthesized by RF magnetron sputtering. ► Both temperature and bias affect greatly the TiC crystal structure. ► Al 2 O 3 substrate is much better than Si substrate for TiC epitaxial growth. ► TiC (111) epitaxial film can be grown on Al 2 O 3 (0001) at room temperature.

  19. Simulation of temperature field for temperature-controlled radio frequency ablation using a hyperbolic bioheat equation and temperature-varied voltage calibration: a liver-mimicking phantom study.

    Science.gov (United States)

    Zhang, Man; Zhou, Zhuhuang; Wu, Shuicai; Lin, Lan; Gao, Hongjian; Feng, Yusheng

    2015-12-21

    This study aims at improving the accuracy of temperature simulation for temperature-controlled radio frequency ablation (RFA). We proposed a new voltage-calibration method in the simulation and investigated the feasibility of a hyperbolic bioheat equation (HBE) in the RFA simulation with longer durations and higher power. A total of 40 RFA experiments was conducted in a liver-mimicking phantom. Four mathematical models with multipolar electrodes were developed by the finite element method in COMSOL software: HBE with/without voltage calibration, and the Pennes bioheat equation (PBE) with/without voltage calibration. The temperature-varied voltage calibration used in the simulation was calculated from an experimental power output and temperature-dependent resistance of liver tissue. We employed the HBE in simulation by considering the delay time τ of 16 s. First, for simulations by each kind of bioheat equation (PBE or HBE), we compared the differences between the temperature-varied voltage-calibration and the fixed-voltage values used in the simulations. Then, the comparisons were conducted between the PBE and the HBE in the simulations with temperature-varied voltage calibration. We verified the simulation results by experimental temperature measurements on nine specific points of the tissue phantom. The results showed that: (1) the proposed voltage-calibration method improved the simulation accuracy of temperature-controlled RFA for both the PBE and the HBE, and (2) for temperature-controlled RFA simulation with the temperature-varied voltage calibration, the HBE method was 0.55 °C more accurate than the PBE method. The proposed temperature-varied voltage calibration may be useful in temperature field simulations of temperature-controlled RFA. Besides, the HBE may be used as an alternative in the simulation of long-duration high-power RFA.

  20. Bright upconversion luminescence and increased Tc in CaBi{sub 2}Ta{sub 2}O{sub 9}:Er high temperature piezoelectric ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Peng Dengfeng [Functional Materials Research Laboratory, Tongji University, 1239 Siping Road, Shanghai 200092 (China); National Institute of Advanced Industrial Science and Technology, Kyushu, 807-1 Shuku, Tosu, Saga 841-0052 (Japan); Wang Xusheng; Yao Xi [Functional Materials Research Laboratory, Tongji University, 1239 Siping Road, Shanghai 200092 (China); Xu Chaonan [National Institute of Advanced Industrial Science and Technology, Kyushu, 807-1 Shuku, Tosu, Saga 841-0052 (Japan); Lin Jian; Sun Tiantuo [College of Material Science and Engineering, Tongji University, 4800 Cao' an Highway, Shanghai 201804 (China)

    2012-05-15

    Er{sup 3+} doped CaBi{sub 2}Ta{sub 2}O{sub 9} (CBT) bismuth layered-structure high temperature piezoelectric ceramics were synthesized by the traditional solid state method. The upconversion (UC) emission properties of Er{sup 3+} doped CBT ceramics were investigated as a function of Er{sup 3+} concentration and incident pump power. A bright green upconverted emission was obtained under excitation 980 nm at room temperature. The observed strong green and weak red emission bands corresponded to the transitions from {sup 4}S{sub 3/2} and {sup 4}F{sub 9/2} to {sup 4}I{sub 15/2}, respectively. The dependence of UC emission intensity on pumping power indicated that a three-photon process was involved in UC emissions. Studies of dielectric with temperature have also been carried out. Introduction of Er increased the Curie temperature of CBT, thus, making this ceramic suitable for sensor applications at higher temperatures. Because of its strong up-converted emission and increased Tc, the multifunctional high temperature piezoelectric ceramic may be useful in high temperature sensor, fluorescence thermometry, and optical-electro integration applications.

  1. In-situ Microwave Brightness Temperature Variability from Ground-based Radiometer Measurements at Dome C in Antarctica Induced by Wind-formed Features

    Science.gov (United States)

    Royer, A.; Picard, G.; Arnaud, L.; Brucker, L.; Fily, M..

    2014-01-01

    Space-borne microwave radiometers are among the most useful tools to study snow and to collect information on the Antarctic climate. They have several advantages over other remote sensing techniques: high sensitivity to snow properties of interest (temperature, grain size, density), subdaily coverage in the polar regions, and their observations are independent of cloud conditions and solar illumination. Thus, microwave radiometers are widely used to retrieve information over snow-covered regions. For the Antarctic Plateau, many studies presenting retrieval algorithms or numerical simulations have assumed, explicitly or not, that the subpixel-scale heterogeneity is negligible and that the retrieved properties were representative of whole pixels. In this presentation, we investigate the spatial variations of brightness temperature over arange of a few kilometers in the Dome C area (Antarctic Plateau).

  2. Intermittent episodes of bright light suppress myopia in the chicken more than continuous bright light.

    Directory of Open Access Journals (Sweden)

    Weizhong Lan

    Full Text Available PURPOSE: Bright light has been shown a powerful inhibitor of myopia development in animal models. We studied which temporal patterns of bright light are the most potent in suppressing deprivation myopia in chickens. METHODS: Eight-day-old chickens wore diffusers over one eye to induce deprivation myopia. A reference group (n = 8 was kept under office-like illuminance (500 lux at a 10:14 light:dark cycle. Episodes of bright light (15 000 lux were super-imposed on this background as follows. Paradigm I: exposure to constant bright light for either 1 hour (n = 5, 2 hours (n = 5, 5 hours (n = 4 or 10 hours (n = 4. Paradigm II: exposure to repeated cycles of bright light with 50% duty cycle and either 60 minutes (n = 7, 30 minutes (n = 8, 15 minutes (n = 6, 7 minutes (n = 7 or 1 minute (n = 7 periods, provided for 10 hours. Refraction and axial length were measured prior to and immediately after the 5-day experiment. Relative changes were analyzed by paired t-tests, and differences among groups were tested by one-way ANOVA. RESULTS: Compared with the reference group, exposure to continuous bright light for 1 or 2 hours every day had no significant protective effect against deprivation myopia. Inhibition of myopia became significant after 5 hours of bright light exposure but extending the duration to 10 hours did not offer an additional benefit. In comparison, repeated cycles of 1:1 or 7:7 minutes of bright light enhanced the protective effect against myopia and could fully suppress its development. CONCLUSIONS: The protective effect of bright light depends on the exposure duration and, to the intermittent form, the frequency cycle. Compared to the saturation effect of continuous bright light, low frequency cycles of bright light (1:1 min provided the strongest inhibition effect. However, our quantitative results probably might not be directly translated into humans, but rather need further amendments in clinical studies.

  3. Intermittent episodes of bright light suppress myopia in the chicken more than continuous bright light.

    Science.gov (United States)

    Lan, Weizhong; Feldkaemper, Marita; Schaeffel, Frank

    2014-01-01

    Bright light has been shown a powerful inhibitor of myopia development in animal models. We studied which temporal patterns of bright light are the most potent in suppressing deprivation myopia in chickens. Eight-day-old chickens wore diffusers over one eye to induce deprivation myopia. A reference group (n = 8) was kept under office-like illuminance (500 lux) at a 10:14 light:dark cycle. Episodes of bright light (15 000 lux) were super-imposed on this background as follows. Paradigm I: exposure to constant bright light for either 1 hour (n = 5), 2 hours (n = 5), 5 hours (n = 4) or 10 hours (n = 4). Paradigm II: exposure to repeated cycles of bright light with 50% duty cycle and either 60 minutes (n = 7), 30 minutes (n = 8), 15 minutes (n = 6), 7 minutes (n = 7) or 1 minute (n = 7) periods, provided for 10 hours. Refraction and axial length were measured prior to and immediately after the 5-day experiment. Relative changes were analyzed by paired t-tests, and differences among groups were tested by one-way ANOVA. Compared with the reference group, exposure to continuous bright light for 1 or 2 hours every day had no significant protective effect against deprivation myopia. Inhibition of myopia became significant after 5 hours of bright light exposure but extending the duration to 10 hours did not offer an additional benefit. In comparison, repeated cycles of 1:1 or 7:7 minutes of bright light enhanced the protective effect against myopia and could fully suppress its development. The protective effect of bright light depends on the exposure duration and, to the intermittent form, the frequency cycle. Compared to the saturation effect of continuous bright light, low frequency cycles of bright light (1:1 min) provided the strongest inhibition effect. However, our quantitative results probably might not be directly translated into humans, but rather need further amendments in clinical studies.

  4. Real-Time Measurements for Adaptive and Cognitive Radio Systems

    Directory of Open Access Journals (Sweden)

    Hüseyin Arslan

    2009-01-01

    Full Text Available Adaptive and cognitive radios (CR have been becoming popular for optimizing mobile radio system transmission and reception. One of the most important elements of the adaptive radio and CR concepts is the ability to measure, sense, learn about, and be aware of parameters related to the radio channel characteristics, availability of spectrum and power, interference and noise temperature, operational environment of radio, user requirements and applications, available networks and infrastructures, local policies, other operating restrictions, and so on. This paper discusses some of the important measurement parameters for enabling adaptive radio and CR systems along with their relationships and impacts on the performance including relevant challenges.

  5. Large Instrument Development for Radio Astronomy

    Science.gov (United States)

    Fisher, J. Richard; Warnick, Karl F.; Jeffs, Brian D.; Norrod, Roger D.; Lockman, Felix J.; Cordes, James M.; Giovanelli, Riccardo

    2009-03-01

    This white paper offers cautionary observations about the planning and development of new, large radio astronomy instruments. Complexity is a strong cost driver so every effort should be made to assign differing science requirements to different instruments and probably different sites. The appeal of shared resources is generally not realized in practice and can often be counterproductive. Instrument optimization is much more difficult with longer lists of requirements, and the development process is longer and less efficient. More complex instruments are necessarily further behind the technology state of the art because of longer development times. Including technology R&D in the construction phase of projects is a growing trend that leads to higher risks, cost overruns, schedule delays, and project de-scoping. There are no technology breakthroughs just over the horizon that will suddenly bring down the cost of collecting area. Advances come largely through careful attention to detail in the adoption of new technology provided by industry and the commercial market. Radio astronomy instrumentation has a very bright future, but a vigorous long-term R&D program not tied directly to specific projects needs to be restored, fostered, and preserved.

  6. Azimuthal Signature of Coincidental Brightness Temperature and Normalized Radar Cross-Section Obtained Using Airborne PALS Instrument

    Science.gov (United States)

    Colliander, Andreas; Kim, Seungbum; Yueh, Simon; Cosh, Mike; Jackson, Tom; Njoku, Eni

    2010-01-01

    Coincidental airborne brightness temperature (TB) and normalized radar-cross section (NRCS) measurements were carried out with the PALS (Passive and Active L- and S-band) instrument in the SMAPVEX08 (SMAP Validation Experiment 2008) field campaign. This paper describes results obtained from a set of flights which measured a field in 45(sup o) steps over the azimuth angle. The field contained mature soy beans with distinct row structure. The measurement shows that both TB and NRCS experience modulation effects over the azimuth as expected based on the theory. The result is useful in development and validation of land surface parameter forward models and retrieval algorithms, such as the soil moisture algorithm for NASA's SMAP (Soil Moisture Active and Passive) mission. Although the footprint of the SMAP will not be sensitive to the small resolution scale effects as the one presented in this paper, it is nevertheless important to understand the effects at smaller scale.

  7. A selective deficit in the appreciation and recognition of brightness: brightness agnosia?

    NARCIS (Netherlands)

    Nijboer, T.C.W.; Nys, G.M.S.; van der Smagt, M.J.; de Haan, E.H.F.

    2009-01-01

    We report a patient with extensive brain damage in the right hemisphere who demonstrated a severe impairment in the appreciation of brightness. Acuity, contrast sensitivity as well as luminance discrimination were normal, suggesting her brightness impairment is not a mere consequence of low-level

  8. POWERFUL RADIO EMISSION FROM LOW-MASS SUPERMASSIVE BLACK HOLES FAVORS DISK-LIKE BULGES

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J.; Xu, Y.; Xu, D. W.; Wei, J. Y., E-mail: wj@bao.ac.cn [CAS Key Laboratory of Space Astronomy and Technology, National Astronomical Observatories, Chinese Academy of Sciences, Beijing (China)

    2016-12-10

    The origin of spin of low-mass supermassive black holes (SMBHs) is still a puzzle at present. We report here a study on the host galaxies of a sample of radio-selected nearby ( z < 0.05) Seyfert 2 galaxies with a BH mass of 10{sup 6–7} M{sub ⊙}. By modeling the SDSS r -band images of these galaxies through a two-dimensional bulge+disk decomposition, we identify a new dependence of SMBH's radio power on host bulge surface brightness profiles, in which more powerful radio emission comes from an SMBH associated with a more disk-like bulge. This result means low-mass and high-mass SMBHs are spun up by two entirely different modes that correspond to two different evolutionary paths. A low-mass SMBH is spun up by a gas accretion with significant disk-like rotational dynamics of the host galaxy in the secular evolution, while a high-mass one by a BH–BH merger in the merger evolution.

  9. The effects of variability on the number-flux-density relationship for radio sources

    International Nuclear Information System (INIS)

    Schuch, N.J.

    1981-01-01

    It has been known for some time that the number-flux-density relationship for radio sources requires a population of sources whose properties evolve with cosmological epoch, at least in models where the redshifts are all taken to be cosmological. In particular, the surveys made at metre wavelengths show, for bright sources, a slope of the log N -log S curve which is steeper than the value -1.5 expected in a static, non-evolving Euclidean universe. Here, N is the number of radio sources brighter than flux density S. Expansion without evolution in conventional geometrical models predicts slopes flatter than -1.5. If the radio survey is carried out at higher frequencies (typically 2.7 or 5 GHz - 11 or 6 cm wavelength), the slope of the log N -log S curve is steeper than -1.5 but not so steep as the slopes found for the low-frequency surveys. Many of the sources found in high-frequency surveys have radio spectra with relatively higher flux-densities in the centimetre range; these sources are frequently variable at high frequencies, with time-scales from a month or two upwards. Some possible effects of the variations on the observed counts of radio sources are considered. (author)

  10. Retrieval of an ice water path over the ocean from ISMAR and MARSS millimeter and submillimeter brightness temperatures

    Science.gov (United States)

    Brath, Manfred; Fox, Stuart; Eriksson, Patrick; Chawn Harlow, R.; Burgdorf, Martin; Buehler, Stefan A.

    2018-02-01

    A neural-network-based retrieval method to determine the snow ice water path (SIWP), liquid water path (LWP), and integrated water vapor (IWV) from millimeter and submillimeter brightness temperatures, measured by using airborne radiometers (ISMAR and MARSS), is presented. The neural networks were trained by using atmospheric profiles from the ICON numerical weather prediction (NWP) model and by radiative transfer simulations using the Atmospheric Radiative Transfer Simulator (ARTS). The basic performance of the retrieval method was analyzed in terms of offset (bias) and the median fractional error (MFE), and the benefit of using submillimeter channels was studied in comparison to pure microwave retrievals. The retrieval is offset-free for SIWP > 0.01 kg m-2, LWP > 0.1 kg m-2, and IWV > 3 kg m-2. The MFE of SIWP decreases from 100 % at SIWP = 0.01 kg m-2 to 20 % at SIWP = 1 kg m-2 and the MFE of LWP from 100 % at LWP = 0.05 kg m-2 to 30 % at LWP = 1 kg m-2. The MFE of IWV for IWV > 3 kg m-2 is 5 to 8 %. The SIWP retrieval strongly benefits from submillimeter channels, which reduce the MFE by a factor of 2, compared to pure microwave retrievals. The IWV and the LWP retrievals also benefit from submillimeter channels, albeit to a lesser degree. The retrieval was applied to ISMAR and MARSS brightness temperatures from FAAM flight B897 on 18 March 2015 of a precipitating frontal system west of the coast of Iceland. Considering the given uncertainties, the retrieval is in reasonable agreement with the SIWP, LWP, and IWV values simulated by the ICON NWP model for that flight. A comparison of the retrieved IWV with IWV from 12 dropsonde measurements shows an offset of 0.5 kg m-2 and an RMS difference of 0.8 kg m-2, showing that the retrieval of IWV is highly effective even under cloudy conditions.

  11. The impact of morning light intensity and environmental temperature on body temperatures and alertness.

    Science.gov (United States)

    Te Kulve, Marije; Schlangen, Luc J M; Schellen, Lisje; Frijns, Arjan J H; van Marken Lichtenbelt, Wouter D

    2017-06-01

    Indoor temperature and light exposure are known to affect body temperature, productivity and alertness of building occupants. However, not much is known about the interaction between light and temperature exposure and the relationship between morning light induced alertness and its effect on body temperature. Light intensity and room temperature during morning office hours were investigated under strictly controlled conditions. In a randomized crossover study, two white light conditions (4000K, either bright 1200lx or dim 5lx) under three different room temperatures (26, 29 and 32°C) were investigated. A lower room temperature increased the core body temperature (CBT) and lowered skin temperature and the distal-proximal temperature gradient (DPG). Moreover, a lower room temperature reduced the subjective sleepiness and reaction time on an auditory psychomotor vigilance task (PVT), irrespective of the light condition. Interestingly, the morning bright light exposure did affect thermophysiological parameters, i.e. it decreased plasma cortisol, CBT and proximal skin temperature and increased the DPG, irrespective of the room temperature. During the bright light session, subjective sleepiness decreased irrespective of the room temperature. However, the change in sleepiness due to the light exposure was not related to these physiological changes. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. RESOLVING THE BRIGHT HCN(1–0) EMISSION TOWARD THE SEYFERT 2 NUCLEUS OF M51: SHOCK ENHANCEMENT BY RADIO JETS AND WEAK MASING BY INFRARED PUMPING?

    International Nuclear Information System (INIS)

    Matsushita, Satoki; Trung, Dinh-V-; Boone, Frédéric; Krips, Melanie; Lim, Jeremy; Muller, Sebastien

    2015-01-01

    We present high angular resolution observations of the HCN(1-0) emission (at ∼1'' or ∼34 pc), together with CO J = 1-0, 2-1, and 3-2 observations, toward the Seyfert 2 nucleus of M51 (NGC 5194). The overall HCN(1-0) distribution and kinematics are very similar to that of the CO lines, which have been indicated as the jet-entrained molecular gas in our past observations. In addition, high HCN(1-0)/CO(1-0) brightness temperature ratio of about unity is observed along the jets, similar to that observed at the shocked molecular gas in our Galaxy. These results strongly indicate that both diffuse and dense gases are entrained by the jets and outflowing from the active galactic nucleus. The channel map of HCN(1-0) at the systemic velocity shows a strong emission right at the nucleus, where no obvious emission has been detected in the CO lines. The HCN(1-0)/CO(1-0) brightness temperature ratio at this region reaches >2, a value that cannot be explained considering standard physical/chemical conditions. Based on our calculations, we suggest infrared pumping and possibly weak HCN masing, but still requiring an enhanced HCN abundance for the cause of this high ratio. This suggests the presence of a compact dense obscuring molecular gas in front of the nucleus of M51, which remains unresolved at our ∼1'' (∼34 pc) resolution, and consistent with the Seyfert 2 classification picture

  13. RESOLVING THE BRIGHT HCN(1–0) EMISSION TOWARD THE SEYFERT 2 NUCLEUS OF M51: SHOCK ENHANCEMENT BY RADIO JETS AND WEAK MASING BY INFRARED PUMPING?

    Energy Technology Data Exchange (ETDEWEB)

    Matsushita, Satoki [Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 10617, Taiwan (China); Trung, Dinh-V- [Institute of Physics, Vietnamese Academy of Science and Technology, 10, Daotan, BaDinh, Hanoi (Viet Nam); Boone, Frédéric [Université de Toulouse, UPS-OMP, IRAP, F-31400 Toulouse (France); Krips, Melanie [Institute de Radio Astronomie Millimétrique, 300 Rue de la Piscine, F-38406 Saint Martin d' Hères (France); Lim, Jeremy [Department of Physics, University of Hong Kong, Pokfulam Road (Hong Kong); Muller, Sebastien [Department of Earth and Space Sciences, Chalmers University of Technology, Onsala Space Observatory, SE-43992 Onsala (Sweden)

    2015-01-20

    We present high angular resolution observations of the HCN(1-0) emission (at ∼1'' or ∼34 pc), together with CO J = 1-0, 2-1, and 3-2 observations, toward the Seyfert 2 nucleus of M51 (NGC 5194). The overall HCN(1-0) distribution and kinematics are very similar to that of the CO lines, which have been indicated as the jet-entrained molecular gas in our past observations. In addition, high HCN(1-0)/CO(1-0) brightness temperature ratio of about unity is observed along the jets, similar to that observed at the shocked molecular gas in our Galaxy. These results strongly indicate that both diffuse and dense gases are entrained by the jets and outflowing from the active galactic nucleus. The channel map of HCN(1-0) at the systemic velocity shows a strong emission right at the nucleus, where no obvious emission has been detected in the CO lines. The HCN(1-0)/CO(1-0) brightness temperature ratio at this region reaches >2, a value that cannot be explained considering standard physical/chemical conditions. Based on our calculations, we suggest infrared pumping and possibly weak HCN masing, but still requiring an enhanced HCN abundance for the cause of this high ratio. This suggests the presence of a compact dense obscuring molecular gas in front of the nucleus of M51, which remains unresolved at our ∼1'' (∼34 pc) resolution, and consistent with the Seyfert 2 classification picture.

  14. Mechanical design and fabrication of the VHF-gun, the Berkeley normal-conducting continuous-wave high-brightness electron source

    Science.gov (United States)

    Wells, R. P.; Ghiorso, W.; Staples, J.; Huang, T. M.; Sannibale, F.; Kramasz, T. D.

    2016-02-01

    A high repetition rate, MHz-class, high-brightness electron source is a key element in future high-repetition-rate x-ray free electron laser-based light sources. The VHF-gun, a novel low frequency radio-frequency gun, is the Lawrence Berkeley National Laboratory (LBNL) response to that need. The gun design is based on a normal conducting, single cell cavity resonating at 186 MHz in the VHF band and capable of continuous wave operation while still delivering the high accelerating fields at the cathode required for the high brightness performance. The VHF-gun was fabricated and successfully commissioned in the framework of the Advanced Photo-injector EXperiment, an injector built at LBNL to demonstrate the capability of the gun to deliver the required beam quality. The basis for the selection of the VHF-gun technology, novel design features, and fabrication techniques are described.

  15. Antarctic Iceberg Tracking Based on Time Series of Aqua AMSRE Microwave Brightness Temperature Measurements

    Science.gov (United States)

    Blonski, Slawomir; Peterson, Craig

    2006-01-01

    Observations of icebergs are identified as one of the requirements for the GEOSS (Global Earth Observation System of Systems) in the area of reducing loss of life and property from natural and human-induced disasters. However, iceberg observations are not included among targets in the GEOSS 10-Year Implementation Plan, and thus there is an unfulfilled need for iceberg detection and tracking in the near future. Large Antarctic icebergs have been tracked by the National Ice Center and by the academic community using a variety of satellite sensors including both passive and active microwave imagers, such as SSM/I (Special Sensor Microwave/Imager) deployed on the DMSP (Defense Meteorological Satellite Program) spacecraft. Improvements provided in recent years by NASA and non-NASA satellite radars, scatterometers, and radiometers resulted in an increased number of observed icebergs and even prompted a question: Is The Number of Antarctic Icebergs Really Increasing? [D.G. Long, J. Ballantyne, and C. Bertoia, Eos, Transactions of the American Geophysical Union 83 (42): 469 & 474, 15 October 2002]. AMSR-E (Advanced Microwave Scanning Radiometer for the Earth Observing System) represents an improvement over SSM/I, its predecessor. AMSR-E has more measurement channels and higher spatial resolution than SSM/I. For example, the instantaneous field of view of the AMSR-E s 89-GHz channels is 6 km by 4 km versus 16 km by 14 km for SSM/I s comparable 85-GHz channels. AMSR-E, deployed on the Aqua satellite, scans across a 1450-km swath and provides brightness temperature measurements with nearglobal coverage every one or two days. In polar regions, overlapping swaths generate coverage up to multiple times per day and allow for creation of image time series with high temporal resolution. Despite these advantages, only incidental usage of AMSR-E data for iceberg tracking has been reported so far, none in an operational environment. Therefore, an experiment was undertaken in the RPC

  16. Infrared-faint radio sources in the SERVS deep fields. Pinpointing AGNs at high redshift

    Science.gov (United States)

    Maini, A.; Prandoni, I.; Norris, R. P.; Spitler, L. R.; Mignano, A.; Lacy, M.; Morganti, R.

    2016-12-01

    Context. Infrared-faint radio sources (IFRS) represent an unexpected class of objects which are relatively bright at radio wavelength, but unusually faint at infrared (IR) and optical wavelengths. A recent and extensive campaign on the radio-brightest IFRSs (S1.4 GHz≳ 10 mJy) has provided evidence that most of them (if not all) contain an active galactic nuclei (AGN). Still uncertain is the nature of the radio-faintest IFRSs (S1.4 GHz≲ 1 mJy). Aims: The scope of this paper is to assess the nature of the radio-faintest IFRSs, testing their classification and improving the knowledge of their IR properties by making use of the most sensitive IR survey available so far: the Spitzer Extragalactic Representative Volume Survey (SERVS). We also explore how the criteria of IFRSs can be fine-tuned to pinpoint radio-loud AGNs at very high redshift (z > 4). Methods: We analysed a number of IFRS samples identified in SERVS fields, including a new sample (21 sources) extracted from the Lockman Hole. 3.6 and 4.5 μm IR counterparts of the 64 sources located in the SERVS fields were searched for and, when detected, their IR properties were studied. Results: We compared the radio/IR properties of the IR-detected IFRSs with those expected for a number of known classes of objects. We found that IR-detected IFRSs are mostly consistent with a mixture of high-redshift (z ≳ 3) radio-loud AGNs. The faintest ones (S1.4 GHz 100 μJy), however, could be also associated with nearer (z 2) dust-enshrouded star-burst galaxies. We also argue that, while IFRSs with radio-to-IR ratios >500 can very efficiently pinpoint radio-loud AGNs at redshift 2 < z < 4, lower radio-to-IR ratios ( 100-200) are expected for higher redshift radio-loud AGNs.

  17. Enhanced-Resolution Satellite Microwave Brightness Temperature Records for Mapping Boreal-Arctic Landscape Freeze-Thaw Heterogeneity

    Science.gov (United States)

    Kim, Y.; Du, J.; Kimball, J. S.

    2017-12-01

    The landscape freeze-thaw (FT) status derived from satellite microwave remote sensing is closely linked to vegetation phenology and productivity, surface energy exchange, evapotranspiration, snow/ice melt dynamics, and trace gas fluxes over land areas affected by seasonally frozen temperatures. A long-term global satellite microwave Earth System Data Record of daily landscape freeze-thaw status (FT-ESDR) was developed using similar calibrated 37GHz, vertically-polarized (V-pol) brightness temperatures (Tb) from SMMR, SSM/I, and SSMIS sensors. The FT-ESDR shows mean annual spatial classification accuracies of 90.3 and 84.3 % for PM and AM overpass retrievals relative surface air temperature (SAT) measurement based FT estimates from global weather stations. However, the coarse FT-ESDR gridding (25-km) is insufficient to distinguish finer scale FT heterogeneity. In this study, we tested alternative finer scale FT estimates derived from two enhanced polar-grid (3.125-km and 6-km resolution), 36.5 GHz V-pol Tb records derived from calibrated AMSR-E and AMSR2 sensor observations. The daily FT estimates are derived using a modified seasonal threshold algorithm that classifies daily Tb variations in relation to grid cell-wise FT thresholds calibrated using ERA-Interim reanalysis based SAT, downscaled using a digital terrain map and estimated temperature lapse rates. The resulting polar-grid FT records for a selected study year (2004) show mean annual spatial classification accuracies of 90.1% (84.2%) and 93.1% (85.8%) for respective PM (AM) 3.125km and 6-km Tb retrievals relative to in situ SAT measurement based FT estimates from regional weather stations. Areas with enhanced FT accuracy include water-land boundaries and mountainous terrain. Differences in FT patterns and relative accuracy obtained from the enhanced grid Tb records were attributed to several factors, including different noise contributions from underlying Tb processing and spatial mismatches between Tb

  18. A model of fast radio bursts: collisions between episodic magnetic blobs

    Science.gov (United States)

    Li, Long-Biao; Huang, Yong-Feng; Geng, Jin-Jun; Li, Bing

    2018-06-01

    Fast radio bursts (FRBs) are bright radio pulses from the sky with millisecond durations and Jansky-level flux densities. Their origins are still largely uncertain. Here we suggest a new model for FRBs. We argue that the collision of a white dwarf with a black hole can generate a transient accretion disk, from which powerful episodicmagnetic blobs will be launched. The collision between two consecutive magnetic blobs can result in a catastrophic magnetic reconnection, which releases a large amount of free magnetic energy and forms a forward shock. The shock propagates through the cold magnetized plasma within the blob in the collision region, radiating through the synchrotron maser mechanism, which is responsible for a non-repeating FRB signal. Our calculations show that the theoretical energetics, radiation frequency, duration timescale and event rate can be very consistent with the observational characteristics of FRBs.

  19. Bright and photostable nitrogen-vacancy fluorescence from unprocessed detonation nanodiamond.

    Science.gov (United States)

    Reineck, P; Capelli, M; Lau, D W M; Jeske, J; Field, M R; Ohshima, T; Greentree, A D; Gibson, B C

    2017-01-05

    Bright and photostable fluorescence from nitrogen-vacancy (NV) centers is demonstrated in unprocessed detonation nanodiamond particle aggregates. The optical properties of these particles is analyzed using confocal fluorescence microscopy and spectroscopy, time resolved fluorescence decay measurements, and optically detected magnetic resonance experiments. Two particle populations with distinct optical properties are identified and compared to high-pressure high-temperature (HPHT) fluorescent nanodiamonds. We find that the brightness of one detonation nanodiamond particle population is on the same order as that of highly processed fluorescent 100 nm HPHT nanodiamonds. Our results may open the path to a simple and up-scalable route for the production of fluorescent NV nanodiamonds for use in bioimaging applications.

  20. Jets, arcs, and shocks: NGC 5195 at radio wavelengths

    Science.gov (United States)

    Rampadarath, H.; Soria, R.; Urquhart, R.; Argo, M. K.; Brightman, M.; Lacey, C. K.; Schlegel, E. M.; Beswick, R. J.; Baldi, R. D.; Muxlow, T. W. B.; McHardy, I. M.; Williams, D. R. A.; Dumas, G.

    2018-05-01

    We studied the nearby, interacting galaxy NGC 5195 (M 51b) in the radio, optical and X-ray bands. We mapped the extended, low-surface-brightness features of its radio-continuum emission; determined the energy content of its complex structure of shock-ionized gas; constrained the current activity level of its supermassive nuclear black hole. In particular, we combined data from the European Very Long Baseline Interferometry Network (˜1-pc scale), from our new e-MERLIN observations (˜10-pc scale), and from the Very Large Array (˜100-1000-pc scale), to obtain a global picture of energy injection in this galaxy. We put an upper limit to the luminosity of the (undetected) flat-spectrum radio core. We find steep-spectrum, extended emission within 10 pc of the nuclear position, consistent with optically thin synchrotron emission from nuclear star formation or from an outflow powered by an active galactic nucleus (AGN). A linear spur of radio emission juts out of the nuclear source towards the kpc-scale arcs (detected in radio, Hα and X-ray bands). From the size, shock velocity, and Balmer line luminosity of the kpc-scale bubble, we estimate that it was inflated by a long-term-average mechanical power ˜3-6 × 1041 erg s-1 over the last 3-6 Myr. This is an order of magnitude more power than can be provided by the current level of star formation, and by the current accretion power of the supermassive black hole. We argue that a jet-inflated bubble scenario associated with previous episodes of AGN activity is the most likely explanation for the kpc-scale structures.

  1. Global Observations of the 630-nm Nightglow and Patterns of Brightness Measured by ISUAL

    Directory of Open Access Journals (Sweden)

    Chih-Yu Chiang

    2013-01-01

    Full Text Available This study investigates the distributions and occurrence mechanisms of the global local-midnight airglow brightness through FORMOSAT-2/ISUAL satellite imaging observations. We focus on the OI 630.0 nm nightglow emission at altitudes of ~250 km along equatorial space. The database used in this study included data from 2007 to 2008 under solar minimum conditions. The data were classified into four specified types in the statistical study. We found that the occurrence of equatorial brightness was often in the vicinity of the geographic equator and mostly at equinoxes with a tendency to move toward the summer hemisphere as the season changes. Conjugate brightness occurring simultaneously on both sides of the geomagnetic equator was observed predominantly in the northern winter. Furthermore, midnight brightness appeared to have lower luminosity from May to July. We suggest that the global midnight brightness associated with the locations and seasons was the result of several effects which include the influence of the thermospheric midnight temperature maximum (MTM, summer-to-winter neutral wind, and ionospheric anomalies.

  2. STUDY OF CALIBRATION OF SOLAR RADIO SPECTROMETERS AND THE QUIET-SUN RADIO EMISSION

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Chengming; Yan, Yihua; Tan, Baolin; Fu, Qijun; Liu, Yuying [Key Laboratory of Solar Activity, National Astronomical Observatories of Chinese Academy of Sciences, Datun Road A20, Chaoyang District, Beijing 100012 (China); Xu, Guirong [Hubei Key Laboratory for Heavy Rain Monitoring and Warning Research, Institute of Heavy Rain, China Meteorological Administration, Wuhan 430205 (China)

    2015-07-20

    This work presents a systematic investigation of the influence of weather conditions on the calibration errors by using Gaussian fitness, least chi-square linear fitness, and wavelet transform to analyze the calibration coefficients from observations of the Chinese Solar Broadband Radio Spectrometers (at frequency bands of 1.0–2.0 GHz, 2.6–3.8 GHz, and 5.2–7.6 GHz) during 1997–2007. We found that calibration coefficients are influenced by the local air temperature. Considering the temperature correction, the calibration error will reduce by about 10%–20% at 2800 MHz. Based on the above investigation and the calibration corrections, we further study the radio emission of the quiet Sun by using an appropriate hybrid model of the quiet-Sun atmosphere. The results indicate that the numerical flux of the hybrid model is much closer to the observation flux than that of other ones.

  3. Degree of polarization and source counts of faint radio sources from Stacking Polarized intensity

    International Nuclear Information System (INIS)

    Stil, J. M.; George, S. J.; Keller, B. W.; Taylor, A. R.

    2014-01-01

    We present stacking polarized intensity as a means to study the polarization of sources that are too faint to be detected individually in surveys of polarized radio sources. Stacking offers not only high sensitivity to the median signal of a class of radio sources, but also avoids a detection threshold in polarized intensity, and therefore an arbitrary exclusion of sources with a low percentage of polarization. Correction for polarization bias is done through a Monte Carlo analysis and tested on a simulated survey. We show that the nonlinear relation between the real polarized signal and the detected signal requires knowledge of the shape of the distribution of fractional polarization, which we constrain using the ratio of the upper quartile to the lower quartile of the distribution of stacked polarized intensities. Stacking polarized intensity for NRAO VLA Sky Survey (NVSS) sources down to the detection limit in Stokes I, we find a gradual increase in median fractional polarization that is consistent with a trend that was noticed before for bright NVSS sources, but is much more gradual than found by previous deep surveys of radio polarization. Consequently, the polarized radio source counts derived from our stacking experiment predict fewer polarized radio sources for future surveys with the Square Kilometre Array and its pathfinders.

  4. Do Low Surface Brightness Galaxies Host Stellar Bars?

    International Nuclear Information System (INIS)

    Cervantes Sodi, Bernardo; Sánchez García, Osbaldo

    2017-01-01

    With the aim of assessing if low surface brightness galaxies host stellar bars and by studying the dependence of the occurrence of bars as a function of surface brightness, we use the Galaxy Zoo 2 data set to construct a large volume-limited sample of galaxies and then segregate these galaxies as having low or high surface brightness in terms of their central surface brightness. We find that the fraction of low surface brightness galaxies hosting strong bars is systematically lower than that found for high surface brightness galaxies. The dependence of the bar fraction on the central surface brightness is mostly driven by a correlation of the surface brightness with the spin and the gas richness of the galaxies, showing only a minor dependence on the surface brightness. We also find that the length of the bars is strongly dependent on the surface brightness, and although some of this dependence is attributed to the gas content, even at a fixed gas-to-stellar mass ratio, high surface brightness galaxies host longer bars than their low surface brightness counterparts, which we attribute to an anticorrelation of the surface brightness with the spin.

  5. Do Low Surface Brightness Galaxies Host Stellar Bars?

    Energy Technology Data Exchange (ETDEWEB)

    Cervantes Sodi, Bernardo; Sánchez García, Osbaldo, E-mail: b.cervantes@irya.unam.mx, E-mail: o.sanchez@irya.unam.mx [Instituto de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, Campus Morelia, A.P. 3-72, C.P. 58089 Michoacán, México (Mexico)

    2017-09-20

    With the aim of assessing if low surface brightness galaxies host stellar bars and by studying the dependence of the occurrence of bars as a function of surface brightness, we use the Galaxy Zoo 2 data set to construct a large volume-limited sample of galaxies and then segregate these galaxies as having low or high surface brightness in terms of their central surface brightness. We find that the fraction of low surface brightness galaxies hosting strong bars is systematically lower than that found for high surface brightness galaxies. The dependence of the bar fraction on the central surface brightness is mostly driven by a correlation of the surface brightness with the spin and the gas richness of the galaxies, showing only a minor dependence on the surface brightness. We also find that the length of the bars is strongly dependent on the surface brightness, and although some of this dependence is attributed to the gas content, even at a fixed gas-to-stellar mass ratio, high surface brightness galaxies host longer bars than their low surface brightness counterparts, which we attribute to an anticorrelation of the surface brightness with the spin.

  6. Space Telecommunications Radio System STRS Cognitive Radio

    Science.gov (United States)

    Briones, Janette C.; Handler, Louis M.

    2013-01-01

    Radios today are evolving from awareness toward cognition. A software defined radio (SDR) provides the most capability for integrating autonomic decision making ability and allows the incremental evolution toward a cognitive radio. This cognitive radio technology will impact NASA space communications in areas such as spectrum utilization, interoperability, network operations, and radio resource management over a wide range of operating conditions. NASAs cognitive radio will build upon the infrastructure being developed by Space Telecommunication Radio System (STRS) SDR technology. This paper explores the feasibility of inserting cognitive capabilities in the NASA STRS architecture and the interfaces between the cognitive engine and the STRS radio. The STRS architecture defines methods that can inform the cognitive engine about the radio environment so that the cognitive engine can learn autonomously from experience, and take appropriate actions to adapt the radio operating characteristics and optimize performance.

  7. Compact features in radio galaxies and quasars

    International Nuclear Information System (INIS)

    Purvis, A.

    1981-05-01

    The structure of compact features ('hotspots') in the outer lobes of classical double radio sources over a large flux density interval at 81.5 MHz is investigated in order to understand more fully the structural evolution of radio sources with both luminosity and redshift. The technique of interplanetary scintillations is used. An account is given of the development of a new telescope, the 3.6-hectare Array. A method for eliminating zero level and phase drifts from interferometric records and a method for analysing data scattered according to a skewed probability distribution are described. New observations of hotspots in complete samples of bright 3CR sources and 4C quasars having an intermediate flux density are then presented. The problems of interpreting scintillation data are then considered and three methods are suggested to reduce the difficulties imposed by the observational limitation known as 'blending', whereby the whole outer lobe may scintillate and distort the measured hotspot size. Finally, all the new observational data are assimilated and this leads to models for (a) the dependence of source structure on luminosity and (b) for the dependence of observed hotspot size on both luminosity and redshift. (author)

  8. Statistical studies of powerful extragalactic radio sources

    Energy Technology Data Exchange (ETDEWEB)

    Macklin, J T

    1981-01-01

    This dissertation is mainly about the use of efficient statistical tests to study the properties of powerful extragalactic radio sources. Most of the analysis is based on subsets of a sample of 166 bright (3CR) sources selected at 178 MHz. The first chapter is introductory and it is followed by three on the misalignment and symmetry of double radio sources. The properties of nuclear components in extragalactic sources are discussed in the next chapter, using statistical tests which make efficient use of upper limits, often the only available information on the flux density from the nuclear component. Multifrequency observations of four 3CR sources are presented in the next chapter. The penultimate chapter is about the analysis of correlations involving more than two variables. The Spearman partial rank correlation coefficient is shown to be the most powerful test available which is based on non-parametric statistics. It is therefore used to study the dependences of the properties of sources on their size at constant redshift, and the results are interpreted in terms of source evolution. Correlations of source properties with luminosity and redshift are then examined.

  9. Proxy magnetometry of the photosphere: why are G-band bright points so bright?

    NARCIS (Netherlands)

    Rutten, R.J.; Kiselman, Dan; Voort, Luc Rouppe van der; Plez, Bertrand

    2000-01-01

    We discuss the formation of G-band bright points in terms of standard uxtube modeling, in particular the 1D LTE models constructed by Solanki and coworkers. Combined with LTE spectral synthesis they explain observed G-band bright point contrasts quite well. The G-band contrast increase over the

  10. Opacity in compact extragalactic radio sources and the core shift effect

    International Nuclear Information System (INIS)

    Kovalev, Y Y; Lobanov, A P; Pushkarev, A B; Zensus, J A

    2008-01-01

    The apparent position of the 'core' in a parsec-scale radio jet (a compact, bright emitting region at the narrow end of the jet) depends on the observing frequency, owing to synchrotron self-absorption and external absorption. This dependency both provides a tool to probe physical conditions in the vicinity of the core and poses problems for astrometric studies using compact radio sources. We investigate the frequency-dependent shift of the positions of the cores (core shift) observed with very long baseline interferometry (VLBI) in parsec-scale jets. We present results for 29 selected active galactic nuclei (AGN). In these AGN, the magnitude of the measured core shift between 2.3 and 8.6 GHz reaches 1.4 mas, with a median value for the sample of 0.44 mas. We discuss related physics as well as astrometry applications and plans for further studies.

  11. A Climate Benchmark of Upper Air Temperature Observations from GNSS Radio Occultation

    Science.gov (United States)

    Ao, C. O.; Mannucci, A. J.; Leroy, S. S.; Verkhoglyadova, O. P.

    2017-12-01

    GPS (Global Positioning System), or more generally Global Navigation Satellite System (GNSS), radio occultation (RO) is a remote sensing technique that produces highly accurate temperature in the upper troposphere and lower stratosphere across the globe with fine vertical resolution. Its fundamental measurement is the time delay of the microwave signal as it travels from a GNSS satellite to the receiver in low Earth orbit. With a relatively simple physical retrieval, the uncertainty in the derived temperature can be traced rigorously through the retrieval chain back to the raw measurements. The high absolute accuracy of RO allows these observations to be assimilated without bias correction in numerical weather prediction models and provides an anchor for assimilating other types of observations. The high accuracy, coupled with long-term stability, makes RO valuable in detecting decadal temperature trends. In this presentation, we will summarize the current state of RO observations and show temperature trends derived from 15 years of RO data in the upper troposphere and lower stratosphere. We will discuss our recent efforts in developing retrieval algorithms that are more tailored towards climate applications. Despite the relatively robust "self-calibrating" nature of RO observations, disparity in receiver hardware and software may introduce subtle differences that need to be carefully addressed. While the historic RO data record came from relatively homogeneous hardware based largely on NASA/JPL design (e.g., CHAMP and COSMIC), the future data will likely be comprised of a diverse set of observations from Europe, China, and various commercial data providers. In addition, the use of non-GPS navigation systems will become more prevalent. We will discuss the challenges involved in establishing a long-term RO climate data record from a suite of research and operational weather satellites with changes in instrumentation and coverage.

  12. THE XMM-NEWTON X-RAY SPECTRA OF THE MOST X-RAY LUMINOUS RADIO-QUIET ROSAT BRIGHT SURVEY-QSOs: A REFERENCE SAMPLE FOR THE INTERPRETATION OF HIGH-REDSHIFT QSO SPECTRA

    International Nuclear Information System (INIS)

    Krumpe, M.; Markowitz, A.; Lamer, G.; Corral, A.

    2010-01-01

    We present the broadband X-ray properties of four of the most X-ray luminous (L X ≥ 10 45 erg s -1 in the 0.5-2 keV band) radio-quiet QSOs found in the ROSAT Bright Survey. This uniform sample class, which explores the extreme end of the QSO luminosity function, exhibits surprisingly homogenous X-ray spectral properties: a soft excess with an extremely smooth shape containing no obvious discrete features, a hard power law above 2 keV, and a weak narrow/barely resolved Fe Kα fluorescence line for the three high signal-to-noise ratio (S/N) spectra. The soft excess can be well fitted with only a soft power law. No signatures of warm or cold intrinsic absorbers are found. The Fe Kα centroids and the line widths indicate emission from neutral Fe (E = 6.4 keV) originating from cold material from distances of only a few light days or further out. The well-constrained equivalent widths (EW) of the neutral Fe lines are higher than expected from the X-ray Baldwin effect which has been only poorly constrained at very high luminosities. Taking into account our individual EW measurements, we show that the X-ray Baldwin effect flattens above L X ∼ 10 44 erg s -1 (2-10 keV band) where an almost constant (EW) of ∼100 eV is found. We confirm the assumption of having very similar X-ray active galactic nucleus properties when interpreting stacked X-ray spectra. Our stacked spectrum serves as a superb reference for the interpretation of low S/N spectra of radio-quiet QSOs with similar luminosities at higher redshifts routinely detected by XMM-Newton and Chandra surveys.

  13. Low temperature radio-chemical energy conversion processes

    International Nuclear Information System (INIS)

    Gomberg, H.J.

    1986-01-01

    This patent describes a radio-chemical method of converting radiated energy into chemical energy form comprising the steps of: (a) establishing a starting chemical compound in the liquid phase that chemically reacts endothermically to radiation and heat energy to produce a gaseous and a solid constituent of the compound, (b) irradiating the compound in its liquid phase free of solvents to chemically release therefrom in response to the radiation the gaseous and solid constituents, (c) physically separating the solid and gaseous phase constituents from the liquid, and (d) chemically processing the constituents to recover therefrom energy stored therein by the irradiation step (b)

  14. Automatic tuning of Bragg condition in a radio-acoustic system for PBL temperature profile measurement

    Energy Technology Data Exchange (ETDEWEB)

    Bonino, G; Trivero, P

    1985-01-01

    A Radio-Acoustic Sounding System (RASS) with acoustic wavelength lambda/sub a/ approx. 1m was designed and successfully tested. The system proved to be capable of measuring the vertical temperature profile in the Planetary Boundary Layer (PBL) with an accuracy and vertical resolution comparable to that of traditional apparatus (radiothermosondes borne by tethered or disposable balloons, thermosondes borne by aircraft and so on), yet combined with the advantages typical of remote sensing techniques. Up to the summer of 1983 the system needed attendance by an operator who had to identify the acoustic sounding frequency affording the fundamental condition of Bragg resonance between acoustic and radio wavelengths. Features and performance of the new completely automatic RASS arrangement are presented. These include the possibility of obtaining average thermal vertical profiles at preset time intervals. Maximum range of the possibility of obtaining average thermal vertical profiles at preset time intervals. Maximum range of measurements obtained in about 1000 1/2-h averages was: in 90% of cases greater than or equal to 600 m; in 50% of cases greater than or equal to 1100m. Such results indicate the usefulness of automatic RASS as a tool for meteorological purposes and for the application of air pollution control strategies.

  15. Retrieval of an ice water path over the ocean from ISMAR and MARSS millimeter and submillimeter brightness temperatures

    Directory of Open Access Journals (Sweden)

    M. Brath

    2018-02-01

    Full Text Available A neural-network-based retrieval method to determine the snow ice water path (SIWP, liquid water path (LWP, and integrated water vapor (IWV from millimeter and submillimeter brightness temperatures, measured by using airborne radiometers (ISMAR and MARSS, is presented. The neural networks were trained by using atmospheric profiles from the ICON numerical weather prediction (NWP model and by radiative transfer simulations using the Atmospheric Radiative Transfer Simulator (ARTS. The basic performance of the retrieval method was analyzed in terms of offset (bias and the median fractional error (MFE, and the benefit of using submillimeter channels was studied in comparison to pure microwave retrievals. The retrieval is offset-free for SIWP  > 0.01 kg m−2, LWP  > 0.1 kg m−2, and IWV  > 3 kg m−2. The MFE of SIWP decreases from 100 % at SIWP  =  0.01 kg m−2 to 20 % at SIWP  =  1 kg m−2 and the MFE of LWP from 100 % at LWP  = 0.05 kg m−2 to 30 % at LWP  =  1 kg m−2. The MFE of IWV for IWV  > 3 kg m−2 is 5 to 8 %. The SIWP retrieval strongly benefits from submillimeter channels, which reduce the MFE by a factor of 2, compared to pure microwave retrievals. The IWV and the LWP retrievals also benefit from submillimeter channels, albeit to a lesser degree. The retrieval was applied to ISMAR and MARSS brightness temperatures from FAAM flight B897 on 18 March 2015 of a precipitating frontal system west of the coast of Iceland. Considering the given uncertainties, the retrieval is in reasonable agreement with the SIWP, LWP, and IWV values simulated by the ICON NWP model for that flight. A comparison of the retrieved IWV with IWV from 12 dropsonde measurements shows an offset of 0.5 kg m−2 and an RMS difference of 0.8 kg m−2, showing that the retrieval of IWV is highly effective even under cloudy conditions.

  16. POWERFUL ACTIVITY IN THE BRIGHT AGES. I. A VISIBLE/IR SURVEY OF HIGH REDSHIFT 3C RADIO GALAXIES AND QUASARS

    Energy Technology Data Exchange (ETDEWEB)

    Hilbert, B.; Chiaberge, M.; Kotyla, J. P.; Sparks, W. B.; Macchetto, F. D. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Tremblay, G. R. [Yale University, Department of Astronomy, 260 Whitney Avenue, New Haven, CT 06511 (United States); Stanghellini, C. [INAF—Istituto di Radioastronomia, Via P. Gobetti, 101 I-40129 Bologna (Italy); Baum, S.; O’Dea, C. P. [University of Manitoba, Dept of Physics and Astronomy, 66 Chancellors Circle, Winnipeg, MB R3T 2N2 (Canada); Capetti, A. [Osservatorio Astronomico de Torino, Corso Savona, I-10024 Moncalieri TO (Italy); Miley, G. K. [Universiteit Leiden, Rapenburg 70, 2311 EZ Leiden (Netherlands); Perlman, E. S. [Florida Institute of Technology, 150 W University Boulevard, Melbourne, FL 32901 (United States); Quillen, A. [Rochester Institute of Technology, School of Physics and Astronomy, 84 Lomb Memorial Drive, Rochester, NY 14623 (United States)

    2016-07-01

    We present new rest-frame UV and visible observations of 22 high- z (1 < z < 2.5) 3C radio galaxies and QSOs obtained with the Hubble Space Telescope ’s Wide Field Camera 3 instrument. Using a custom data reduction strategy in order to assure the removal of cosmic rays, persistence signal, and other data artifacts, we have produced high-quality science-ready images of the targets and their local environments. We observe targets with regions of UV emission suggestive of active star formation. In addition, several targets exhibit highly distorted host galaxy morphologies in the rest frame visible images. Photometric analyses reveal that brighter QSOs generally tend to be redder than their dimmer counterparts. Using emission line fluxes from the literature, we estimate that emission line contamination is relatively small in the rest frame UV images for the QSOs. Using archival VLA data, we have also created radio map overlays for each of our targets, allowing for analysis of the optical and radio axes alignment.

  17. Cyclotron Line in Solar Microwave Radiation by Radio Telescope RATAN-600 Observations of the Solar Active Region NOAA 12182

    Science.gov (United States)

    Peterova, N. G.; Topchilo, N. A.

    2017-12-01

    This paper presents the results of observation of a rare phenomenon—a narrowband increase in the brightness of cyclotron radiation of one of the structural details of a radio source located in the solar corona above the solar active region NOAA 12182 in October 2014 at a frequency of 4.2 ± 0.1 GHz. The brightness of radiation in the maximum of the phenomenon has reached 10 MK; its duration was equal to 3 s. The exact location of the source of the narrowband cyclotron radiation is indicated: it is a corona above a fragmented (4-nuclear) sunspot, on which a small UV flare loop was closed.

  18. Coma cluster ultradiffuse galaxies are not standard radio galaxies

    Science.gov (United States)

    Struble, Mitchell F.

    2018-02-01

    Matching members in the Coma cluster catalogue of ultradiffuse galaxies (UDGs) from SUBARU imaging with a very deep radio continuum survey source catalogue of the cluster using the Karl G. Jansky Very Large Array (VLA) within a rectangular region of ∼1.19 deg2 centred on the cluster core reveals matches consistent with random. An overlapping set of 470 UDGs and 696 VLA radio sources in this rectangular area finds 33 matches within a separation of 25 arcsec; dividing the sample into bins with separations bounded by 5, 10, 20 and 25 arcsec finds 1, 4, 17 and 11 matches. An analytical model estimate, based on the Poisson probability distribution, of the number of randomly expected matches within these same separation bounds is 1.7, 4.9, 19.4 and 14.2, each, respectively, consistent with the 95 per cent Poisson confidence intervals of the observed values. Dividing the data into five clustercentric annuli of 0.1° and into the four separation bins, finds the same result. This random match of UDGs with VLA sources implies that UDGs are not radio galaxies by the standard definition. Those VLA sources having integrated flux >1 mJy at 1.4 GHz in Miller, Hornschemeier and Mobasher without SDSS galaxy matches are consistent with the known surface density of background radio sources. We briefly explore the possibility that some unresolved VLA sources near UDGs could be young, compact, bright, supernova remnants of Type Ia events, possibly in the intracluster volume.

  19. Double-peaked Emission Lines Due to a Radio Outflow in KISSR 1219

    Energy Technology Data Exchange (ETDEWEB)

    Kharb, P.; Vaddi, S. [National Centre for Radio Astrophysics—Tata Institute of Fundamental Research, Postbag 3, Ganeshkhind, Pune 411007 (India); Subramanian, S. [Kavli Institute for Astronomy and Astrophysics, Peking University, 5 Yiheyuan Road, Haidian District, Beijing 100871 (China); Das, M. [Indian Institute of Astrophysics, II Block, Koramangala, Bangalore 560034 (India); Paragi, Z., E-mail: kharb@ncra.tifr.res.in [Joint Institute for VLBI in Europe, Postbus 2, 7990 AA Dwingeloo (Netherlands)

    2017-09-01

    We present the results from 1.5 and 5 GHz phase-referenced VLBA and 1.5 GHz Karl G. Jansky Very Large Array (VLA) observations of the Seyfert 2 galaxy KISSR 1219, which exhibits double-peaked emission lines in its optical spectrum. The VLA and VLBA data reveal a one-sided core-jet structure at roughly the same position angles, providing evidence of an active galactic nucleus outflow. The absence of dual parsec-scale radio cores puts the binary black-hole picture in doubt for the case of KISSR 1219. The high brightness temperatures of the parsec-scale core and jet components (>10{sup 6} K) are consistent with this interpretation. Doppler boosting with jet speeds of ≳0.55 c to ≳0.25 c , going from parsec to kiloparsec scales, at a jet inclination ≳50° can explain the jet one-sidedness in this Seyfert 2 galaxy. A blueshifted broad emission line component in [O iii] is also indicative of an outflow in the emission line gas at a velocity of ∼350 km s{sup −1}, while the [O i] doublet lines suggest the presence of shock-heated gas. A detailed line ratio study using the MAPPINGS III code further suggests that a shock+precursor model can explain the line ionization data well. Overall, our data suggest that the radio outflow in KISSR 1219 is pushing the emission line clouds, both ahead of the jet and in a lateral direction, giving rise to the double peak emission line spectra.

  20. EGRET Unidentified Source Radio Observations and Performance of Receiver Gain Calibration

    International Nuclear Information System (INIS)

    Niinuma, Kotaro; Asuma, Kuniyuki; Kuniyoshi, Masaya; Matsumura, Nobuo; Takefuji, Kazuhiro; Kida, Sumiko; Takeuchi, Akihiko; Ichikawa, Hajime; Sawano, Akihiro; Yoshimura, Naoya; Suzuki, Shigehiro; Nakamura, Ryosuke; Nakayama, Yu; Daishido, Tsuneaki

    2006-01-01

    Last year, we have developed the receiver gain calibration system by using Johnson-Nyquist noise, for accuracy flux measurement, because we have been starting radio identification program of transient radio sources, blazars and radio counterpart of The Energetic Gamma Ray Experiment Telescope (EGRET) unidentified γ-ray sources in Waseda Nasu Pulsar Observatory. It is shown that there are a few low correlation data between receiver gain and ambient temperature around receiver for anything troubles of receiver, because we can detect gain and ambient temperature through a day by developed system. Estimated fluctuations of daily data of steady sources decrease by removing low correlation data before analysing. As the result of our analysis by using above system, radio counterpart of EGRET identified source showed fading light-curve for a week

  1. MULTIFREQUENCY RADIO MEASUREMENTS OF SUPERNOVA 1987A OVER 22 YEARS

    International Nuclear Information System (INIS)

    Zanardo, G.; Staveley-Smith, L.; Potter, T. M.; Ball, Lewis; Kesteven, M. J.; Manchester, R. N.; Tzioumis, A. K.; Gaensler, B. M.; Ng, C.-Y.

    2010-01-01

    We present extensive observations of the radio emission from the remnant of supernova (SN) 1987A made with the Australia Telescope Compact Array (ATCA), since the first detection of the remnant in 1990. The radio emission has evolved in time providing unique information on the interaction of the SN shock with the circumstellar medium. We particularly focus on the monitoring observations at 1.4, 2.4, 4.8, and 8.6 GHz, which have been made at intervals of 4-6 weeks. The flux density data show that the remnant brightness is now increasing exponentially, while the radio spectrum is flattening. The current spectral index value of -0.68 represents an 18 ± 3% increase over the last eight years. The exponential trend in the flux is also found in the ATCA imaging observations at 9 GHz, which have been made since 1992, approximately twice a year, as well as in the 843 MHz data set from the Molonglo Observatory Synthesis Telescope from 1987 to 2007 March. Comparisons with data at different wavelengths (X-ray, Hα) are made. The rich data set that has been assembled in the last 22 years forms a basis for a better understanding of the evolution of the supernova remnant.

  2. Comparison of the X-Ray and Radio Light Curves of Quasar PKS 1510--089

    Science.gov (United States)

    Aller, M. F.; Marscher, A. P.; Marchenko-Jorstad, S. G.; McHardy, I. M.; Aller, H. D.

    1998-01-01

    We present results for the X-ray-bright superluminal AGN PKS 1510-089 (z=0.36) monitored weekly with the Rossi X-Ray Timing Explorer for the past four years in order to study the origin of X-ray emission from this extremely variable blazer. These RXTE data are compared with weekly cm-band flux and polarization observations from the Michigan Diameter telescope, to identify correlated activity and associated frequency-dependent time delays for constraining X-ray emission models; and bimonthly 7mm VLBA total and linearly polarized intensity imaging to identify temporal associations between X-ray events and the ejection of superluminal components and disturbances in the magnetic field, to test if the X-ray energy release is related to changes in the inner jet flow. Both the X-ray (2-20 keV) and radio flux are highly variable on timescales of weeks. The VLBA mas structure is dominated by a bright core with a weak jet; both the ejection of very fast superluminal knots and changes in the fractional polarization and EVPA of the core on timescales of one to four months are identified. Two outbursts in 1997 are well-resolved in both the centimeter and X-ray bands. Both the strong temporal association and the similar outburst shape support a causal relation, and a discrete cross-correlation analysis identifies that the X-ray lags the radio by 16 days during the bursts. Starting in 1998 the behavior changes: the correlation is weaker with the X-ray possibly leading the radio by six days. During the full time window there is a correlation between bands as expected if the radio photons are upscattered to X-ray energies. The time correlations and difference between the flat X-ray spectral index (0.0 <= alpha <= 0.5 where F(sub v) is proportional to v(exp -alpha)), and the mm-wave synchrotron spectrum (alpha = 0.8) are discussed within the framework of viable SSC models.

  3. The First ALMA Observation of a Solar Plasmoid Ejection from an X-Ray Bright Point

    Energy Technology Data Exchange (ETDEWEB)

    Shimojo, Masumi [National Astronomical Observatory of Japan, Tokyo, 181-8588 (Japan); Hudson, Hugh S. [School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ (United Kingdom); White, Stephen M. [Space Vehicles Directorate, Air Force Research Laboratory, Kirtland AFB, NM 87117-5776 (United States); Bastian, Timothy S. [National Radio Astronomy Observatory, Charlottesville, VA 22903 (United States); Iwai, Kazumasa, E-mail: masumi.shimojo@nao.ac.jp [Institute for Space-Earth Environmental Research, Nagoya University, Nagoya, 464-8601 (Japan)

    2017-05-20

    Eruptive phenomena such as plasmoid ejections or jets are important features of solar activity and have the potential to improve our understanding of the dynamics of the solar atmosphere. Such ejections are often thought to be signatures of the outflows expected in regions of fast magnetic reconnection. The 304 Å EUV line of helium, formed at around 10{sup 5} K, is found to be a reliable tracer of such phenomena, but the determination of physical parameters from such observations is not straightforward. We have observed a plasmoid ejection from an X-ray bright point simultaneously at millimeter wavelengths with ALMA, at EUV wavelengths with SDO /AIA, and in soft X-rays with Hinode /XRT. This paper reports the physical parameters of the plasmoid obtained by combining the radio, EUV, and X-ray data. As a result, we conclude that the plasmoid can consist either of (approximately) isothermal ∼10{sup 5} K plasma that is optically thin at 100 GHz, or a ∼10{sup 4} K core with a hot envelope. The analysis demonstrates the value of the additional temperature and density constraints that ALMA provides, and future science observations with ALMA will be able to match the spatial resolution of space-borne and other high-resolution telescopes.

  4. Intermittent Episodes of Bright Light Suppress Myopia in the Chicken More than Continuous Bright Light

    OpenAIRE

    Lan, Weizhong; Feldkaemper, Marita; Schaeffel, Frank

    2014-01-01

    PURPOSE: Bright light has been shown a powerful inhibitor of myopia development in animal models. We studied which temporal patterns of bright light are the most potent in suppressing deprivation myopia in chickens. METHODS: Eight-day-old chickens wore diffusers over one eye to induce deprivation myopia. A reference group (n = 8) was kept under office-like illuminance (500 lux) at a 10:14 light:dark cycle. Episodes of bright light (15 000 lux) were super-imposed on this background as follows....

  5. Radio Observations of Ultra-Luminous X-Ray Sources and their Implication for Models

    Science.gov (United States)

    Koerding, E. G.; Colbert, E. J. M.; Falcke, H.

    2004-05-01

    We present the results of a radio monitoring campaign to search for radio emission from nearby ultra-luminous X-ray sources (ULXs). These intriguing sources are bright off-nuclear X-ray point sources with luminosities exceeding LX > 1039 erg/sec. Assuming isotropic emission the Eddington Limit suggests that they harbor intermediate mass black holes. Due to the problems of this explanation also other possibilities are currently discussed, among them are anisotropic emission, super-Eddington accretion flows or relativistically beamed emission from microquasars. Detections of compact radio cores at the positions of ULXs would be a direct hint to jet-emission. However, as the ULX phenomenom is connected to star formation we have to assume that they are strongly accreting objects. Thus, similar to their nearest Galactic cousins, the very high state X-ray binaries (see e.g., GRS 1915), ULXs may show radio flares. A well-defined sample of the 9 nearest ULXs has been monitored eight times during 5 months with the Very Large Array in A and B configuration. Our limiting sensitivity is 0.15 mJy (4 σ ) for flares and 68 μ Jy for continuous emission. In M82 some ULXs seem to be connected to radio supernova remnants. Besides that no flare or continuous emission has been detected. As the timescales of radio flares in ULXs are highly uncertain, it could well be that we have undersampled the lightcurve. However, upper bounds for the probability to detect a flare can be given. The upper limits for the continuous emission are compared with the emission found in NGC 5408 X-1 and with quasars and microquasars. We show that these limits are well in agreement with the microblazar model using the Radio/X-ray correlation of XRBs and AGN. Thus, it could well be that ULXs are microblazers which may be radio loud.

  6. Application of a transverse phase-space measurement technique for high-brightness, H- beams to the GTA H- beam

    International Nuclear Information System (INIS)

    Johnson, K.F.; Garcia, R.C.; Rusthoi, D.P.; Sander, O.R.; Sandoval, D.P.; Shinas, M.A.; Smith, M.; Yuan, V.W.; Connolly, R.C.

    1995-01-01

    The Ground Test Accelerator (GTA) had the objective Of Producing a high-brightness, high-current H-beam. The major components were a 35 keV injector, a Radio Frequency Quadrupole (RFQ), an intertank matching section (IMS), and a drift tube linac (DTL), consisting of 10 modules. A technique for measuring the transverse phase-space of high-power density beams has been developed and tested. This diagnostic has been applied to the GTA H-beam. Experimental results are compared to the slit and collector technique for transverse phase-space measurements and to simulations

  7. HOW SOFT GAMMA REPEATERS MIGHT MAKE FAST RADIO BURSTS

    Energy Technology Data Exchange (ETDEWEB)

    Katz, J. I., E-mail: katz@wuphys.wustl.edu [Department of Physics and McDonnell Center for the Space Sciences, Washington University, St. Louis, Mo. 63130 (United States)

    2016-08-01

    There are several phenomenological similarities between soft gamma repeaters (SGRs) and fast radio bursts (FRBs), including duty factors, timescales, and repetition. The sudden release of magnetic energy in a neutron star magnetosphere, as in popular models of SGRs, can meet the energy requirements of FRBs, but requires both the presence of magnetospheric plasma, in order for dissipation to occur in a transparent region, and a mechanism for releasing much of that energy quickly. FRB sources and SGRs are distinguished by long-lived (up to thousands of years) current-carrying coronal arches remaining from the formation of the young neutron star, and their decay ends the phase of SGR/AXP/FRB activity even though “magnetar” fields may persist. Runaway increases in resistance when the current density exceeds a threshold, releases magnetostatic energy in a sudden burst, and produces high brightness GHz emission of FRB by a coherent process. SGRs are produced when released energy thermalizes as an equlibrium pair plasma. The failures of some alternative FRB models and the non-detection of SGR 1806-20 at radio frequencies are discussed in the appendices.

  8. HOW SOFT GAMMA REPEATERS MIGHT MAKE FAST RADIO BURSTS

    International Nuclear Information System (INIS)

    Katz, J. I.

    2016-01-01

    There are several phenomenological similarities between soft gamma repeaters (SGRs) and fast radio bursts (FRBs), including duty factors, timescales, and repetition. The sudden release of magnetic energy in a neutron star magnetosphere, as in popular models of SGRs, can meet the energy requirements of FRBs, but requires both the presence of magnetospheric plasma, in order for dissipation to occur in a transparent region, and a mechanism for releasing much of that energy quickly. FRB sources and SGRs are distinguished by long-lived (up to thousands of years) current-carrying coronal arches remaining from the formation of the young neutron star, and their decay ends the phase of SGR/AXP/FRB activity even though “magnetar” fields may persist. Runaway increases in resistance when the current density exceeds a threshold, releases magnetostatic energy in a sudden burst, and produces high brightness GHz emission of FRB by a coherent process. SGRs are produced when released energy thermalizes as an equlibrium pair plasma. The failures of some alternative FRB models and the non-detection of SGR 1806-20 at radio frequencies are discussed in the appendices.

  9. Atmospheric QBO and ENSO indices with high vertical resolution from GNSS radio occultation temperature measurements

    Science.gov (United States)

    Wilhelmsen, Hallgeir; Ladstädter, Florian; Scherllin-Pirscher, Barbara; Steiner, Andrea K.

    2018-03-01

    We provide atmospheric temperature variability indices for the tropical troposphere and stratosphere based on global navigation satellite system (GNSS) radio occultation (RO) temperature measurements. By exploiting the high vertical resolution and the uniform distribution of the GNSS RO temperature soundings we introduce two approaches, both based on an empirical orthogonal function (EOF) analysis. The first method utilizes the whole vertical and horizontal RO temperature field from 30° S to 30° N and from 2 to 35 km altitude. The resulting indices, the leading principal components, resemble the well-known patterns of the Quasi-Biennial Oscillation (QBO) and the El Niño-Southern Oscillation (ENSO) in the tropics. They provide some information on the vertical structure; however, they are not vertically resolved. The second method applies the EOF analysis on each altitude level separately and the resulting indices contain information on the horizontal variability at each densely available altitude level. They capture more variability than the indices from the first method and present a mixture of all variability modes contributing at the respective altitude level, including the QBO and ENSO. Compared to commonly used variability indices from QBO winds or ENSO sea surface temperature, these new indices cover the vertical details of the atmospheric variability. Using them as proxies for temperature variability is also of advantage because there is no further need to account for response time lags. Atmospheric variability indices as novel products from RO are expected to be of great benefit for studies on atmospheric dynamics and variability, for climate trend analysis, as well as for climate model evaluation.

  10. Sky-distribution of intensity of synchrotron radio emission of relativistic electrons trapped in Earth’s magnetic field

    Directory of Open Access Journals (Sweden)

    Klimenko V.V.

    2017-12-01

    Full Text Available This paper presents the calculations of synchrotron radio emission intensity from Van Allen belts with Gaussian space distribution of electron density across L-shells of a dipole magnetic field, and with Maxwell’s relativistic electron energy distribution. The results of these calculations come to a good agreement with measurements of the synchrotron emission intensity of the artificial radiation belt’s electrons during the Starfish nuclear test. We have obtained two-dimensional distributions of radio brightness in azimuth — zenith angle coordinates for an observer on Earth’s surface. The westside and eastside intensity maxima exceed several times the maximum level of emission in the meridian plane. We have also constructed two-dimensional distributions of the radio emission intensity in decibels related to the background galactic radio noise level. Isotropic fluxes of relativistic electrons (Е~1 MeV should be more than 107 cm–2s–1 for the synchrotron emission intensity in the meridian plane to exceed the cosmic noise level by 0.1 dB (riometer sensitivity threshold.

  11. An Updated Geophysical Model for AMSR-E and SSMIS Brightness Temperature Simulations over Oceans

    Directory of Open Access Journals (Sweden)

    Elizaveta Zabolotskikh

    2014-03-01

    Full Text Available In this study, we considered the geophysical model for microwave brightness temperature (BT simulation for the Atmosphere-Ocean System under non-precipitating conditions. The model is presented as a combination of atmospheric absorption and ocean emission models. We validated this model for two satellite instruments—for Advanced Microwave Sounding Radiometer-Earth Observing System (AMSR-E onboard Aqua satellite and for Special Sensor Microwave Imager/Sounder (SSMIS onboard F16 satellite of Defense Meteorological Satellite Program (DMSP series. We compared simulated BT values with satellite BT measurements for different combinations of various water vapor and oxygen absorption models and wind induced ocean emission models. A dataset of clear sky atmospheric and oceanic parameters, collocated in time and space with satellite measurements, was used for the comparison. We found the best model combination, providing the least root mean square error between calculations and measurements. A single combination of models ensured the best results for all considered radiometric channels. We also obtained the adjustments to simulated BT values, as averaged differences between the model simulations and satellite measurements. These adjustments can be used in any research based on modeling data for removing model/calibration inconsistencies. We demonstrated the application of the model by means of the development of the new algorithm for sea surface wind speed retrieval from AMSR-E data.

  12. Ultra-High Temperature Distributed Wireless Sensors

    Energy Technology Data Exchange (ETDEWEB)

    May, Russell; Rumpf, Raymond; Coggin, John; Davis, Williams; Yang, Taeyoung; O' Donnell, Alan; Bresnahan, Peter

    2013-03-31

    Research was conducted towards the development of a passive wireless sensor for measurement of temperature in coal gasifiers and coal-fired boiler plants. Approaches investigated included metamaterial sensors based on guided mode resonance filters, and temperature-sensitive antennas that modulate the frequency of incident radio waves as they are re-radiated by the antenna. In the guided mode resonant filter metamaterial approach, temperature is encoded as changes in the sharpness of the filter response, which changes with temperature because the dielectric loss of the guided mode resonance filter is temperature-dependent. In the mechanically modulated antenna approach, the resonant frequency of a vibrating cantilever beam attached to the antenna changes with temperature. The vibration of the beam perturbs the electrical impedance of the antenna, so that incident radio waves are phase modulated at a frequency equal to the resonant frequency of the vibrating beam. Since the beam resonant frequency depends on temperature, a Doppler radar can be used to remotely measure the temperature of the antenna. Laboratory testing of the guided mode resonance filter failed to produce the spectral response predicted by simulations. It was concluded that the spectral response was dominated by spectral reflections of radio waves incident on the filter. Laboratory testing of the mechanically modulated antenna demonstrated that the device frequency shifted incident radio waves, and that the frequency of the re-radiated waves varied linearly with temperature. Radio wave propagation tests in the convection pass of a small research boiler plant identified a spectral window between 10 and 13 GHz for low loss propagation of radio waves in the interior of the boiler.

  13. SYNCHROTRON HEATING BY A FAST RADIO BURST IN A SELF-ABSORBED SYNCHROTRON NEBULA AND ITS OBSERVATIONAL SIGNATURE

    International Nuclear Information System (INIS)

    Yang, Yuan-Pei; Dai, Zi-Gao; Zhang, Bing

    2016-01-01

    Fast radio bursts (FRBs) are mysterious transient sources. If extragalactic, as suggested by their relative large dispersion measures, their brightness temperatures must be extremely high. Some FRB models (e.g., young pulsar model, magnetar giant flare model, or supra-massive neutron star collapse model) suggest that they may be associated with a synchrotron nebula. Here we study a synchrotron-heating process by an FRB in a self-absorbed synchrotron nebula. If the FRB frequency is below the synchrotron self-absorption frequency of the nebula, electrons in the nebula would absorb FRB photons, leading to a harder electron spectrum and enhanced self-absorbed synchrotron emission. In the meantime, the FRB flux is absorbed by the nebula electrons. We calculate the spectra of FRB-heated synchrotron nebulae, and show that the nebula spectra would show a significant hump in several decades near the self-absorption frequency. Identifying such a spectral feature would reveal an embedded FRB in a synchrotron nebula

  14. SYNCHROTRON HEATING BY A FAST RADIO BURST IN A SELF-ABSORBED SYNCHROTRON NEBULA AND ITS OBSERVATIONAL SIGNATURE

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yuan-Pei; Dai, Zi-Gao [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China); Zhang, Bing, E-mail: zhang@physics.unlv.edu [Department of Physics and Astronomy, University of Nevada, Las Vegas, NV 89154 (United States)

    2016-03-01

    Fast radio bursts (FRBs) are mysterious transient sources. If extragalactic, as suggested by their relative large dispersion measures, their brightness temperatures must be extremely high. Some FRB models (e.g., young pulsar model, magnetar giant flare model, or supra-massive neutron star collapse model) suggest that they may be associated with a synchrotron nebula. Here we study a synchrotron-heating process by an FRB in a self-absorbed synchrotron nebula. If the FRB frequency is below the synchrotron self-absorption frequency of the nebula, electrons in the nebula would absorb FRB photons, leading to a harder electron spectrum and enhanced self-absorbed synchrotron emission. In the meantime, the FRB flux is absorbed by the nebula electrons. We calculate the spectra of FRB-heated synchrotron nebulae, and show that the nebula spectra would show a significant hump in several decades near the self-absorption frequency. Identifying such a spectral feature would reveal an embedded FRB in a synchrotron nebula.

  15. A discrepancy observed in the dipole anisotropy in the radio sky at 1.4 GHz and that in the CMBR – A threat to the cosmological principle?

    International Nuclear Information System (INIS)

    Singal, Ashok K

    2014-01-01

    According to the cosmological principle, the sky brightness at any frequency should appear uniform in all directions to an observer considered to be fixed in the co-moving coordinate system of the expanding universe. However a peculiar motion of the observer introduces a dipole anisotropy in the observed sky brightness, which should be independent of the observing frequency. We have examined the angular distribution in the radio-sky brightness, i.e., an integrated emission from discrete sources per unit solid angle, from the NVSS sample containing 1.8 million discrete radio sources at 1.4 GHz. Our results give a dipole anisotropy which is in the same direction as that of the CMBR from the COBE or WMAP, but the magnitude we find is about 4 times larger at a statistically significant (about 3σ) level. A genuine difference between the two dipoles cannot arise from the observer's motion alone, and it would imply intrinsically anisotropic universe, with anisotropy changing with the epoch. This would violate the cosmological principle where isotropy of the universe is assumed for all epochs, and on which the whole modern cosmology is based upon

  16. BrightStat.com: free statistics online.

    Science.gov (United States)

    Stricker, Daniel

    2008-10-01

    Powerful software for statistical analysis is expensive. Here I present BrightStat, a statistical software running on the Internet which is free of charge. BrightStat's goals, its main capabilities and functionalities are outlined. Three different sample runs, a Friedman test, a chi-square test, and a step-wise multiple regression are presented. The results obtained by BrightStat are compared with results computed by SPSS, one of the global leader in providing statistical software, and VassarStats, a collection of scripts for data analysis running on the Internet. Elementary statistics is an inherent part of academic education and BrightStat is an alternative to commercial products.

  17. Radio Evolution of Supernova Remnants Including Nonlinear Particle Acceleration: Insights from Hydrodynamic Simulations

    Science.gov (United States)

    Pavlović, Marko Z.; Urošević, Dejan; Arbutina, Bojan; Orlando, Salvatore; Maxted, Nigel; Filipović, Miroslav D.

    2018-01-01

    We present a model for the radio evolution of supernova remnants (SNRs) obtained by using three-dimensional hydrodynamic simulations coupled with nonlinear kinetic theory of cosmic-ray (CR) acceleration in SNRs. We model the radio evolution of SNRs on a global level by performing simulations for a wide range of the relevant physical parameters, such as the ambient density, supernova (SN) explosion energy, acceleration efficiency, and magnetic field amplification (MFA) efficiency. We attribute the observed spread of radio surface brightnesses for corresponding SNR diameters to the spread of these parameters. In addition to our simulations of Type Ia SNRs, we also considered SNR radio evolution in denser, nonuniform circumstellar environments modified by the progenitor star wind. These simulations start with the mass of the ejecta substantially higher than in the case of a Type Ia SN and presumably lower shock speed. The magnetic field is understandably seen as very important for the radio evolution of SNRs. In terms of MFA, we include both resonant and nonresonant modes in our large-scale simulations by implementing models obtained from first-principles, particle-in-cell simulations and nonlinear magnetohydrodynamical simulations. We test the quality and reliability of our models on a sample consisting of Galactic and extragalactic SNRs. Our simulations give Σ ‑ D slopes between ‑4 and ‑6 for the full Sedov regime. Recent empirical slopes obtained for the Galactic samples are around ‑5, while those for the extragalactic samples are around ‑4.

  18. Multifrequency radio observations of SNR J0536-6735 (N 59B with associated pulsar

    Directory of Open Access Journals (Sweden)

    Bozzetto L.M.

    2012-01-01

    Full Text Available We present a study of new Australian Telescope Compact Array (ATCA observations of supernova remnant, SNR J0536-6735. This remnant appears to follow a shell morphology with a diameter of D=36x29 pc (with 1 pc uncertainty in each direction. There is an embedded HII region on the northern limb of the remnant which made various analysis and measurements (such as flux density, spectral index and polarisation difficult. The radio-continuum emission followed the same structure as the optical emission, allowing for extent and flux density estimates at 20 cm. We estimate the surface brightness at 1 GHz of 2.55x10−21 Wm−2 Hz−1 sr−1 for the SNR. Also, we detect a distinctive radio-continuum point source which confirms the previous suggestion of this remnant being associated with pulsar wind nebula (PWN. The tail of this remnant is not seen in the radio-continuum images and is only seen in the optical and X-ray images.

  19. Low-frequency excited-carbon radio lines toward Cassiopeia A

    International Nuclear Information System (INIS)

    Ershov, A.A.; Lekht, E.E.; Rudnitskii, G.M.; Sorochenko, R.L.

    1982-01-01

    A search for the C400α radio line in the direction of Cas A indicates that it is absent: in terms of antenna temperature the upper limit T/sub L//T/sub C/ -3 . Comparison of this negative result against successful measurements of the C630α, C63lα, C640α yields parameters for the C II region formed by a hypothetical B star. Nonthermal radio emission is the fundamental factor restricting galactic recombination radio lines to quantum numbers n< or approx. =900

  20. Very-Long-Baseline Radio Interferometry: The Mark III System for Geodesy, Astrometry, and Aperture Synthesis.

    Science.gov (United States)

    Rogers, A E; Cappallo, R J; Hinteregger, H F; Levine, J I; Nesman, E F; Webber, J C; Whitney, A R; Clark, T A; Ma, C; Ryan, J; Corey, B E; Counselman, C C; Herring, T A; Shapiro, I I; Knight, C A; Shaffer, D B; Vandenberg, N R; Lacasse, R; Mauzy, R; Rayhrer, B; Schupler, B R; Pigg, J C

    1983-01-07

    The Mark III very-long-baseline interferometry (VLBI) system allows recording and later processing of up to 112 megabits per second from each radio telescope of an interferometer array. For astrometric and geodetic measurements, signals from two radio-frequency bands (2.2 to 2.3 and 8.2 to 8.6 gigahertz) are sampled and recorded simultaneously at all antenna sites. From these dual-band recordings the relative group delays of signals arriving at each pair of sites can be corrected for the contributions due to the ionosphere. For many radio sources for which the signals are sufficiently intense, these group delays can be determined with uncertainties under 50 picoseconds. Relative positions of widely separated antennas and celestial coordinates of radio sources have been determined from such measurements with 1 standard deviation uncertainties of about 5 centimeters and 3 milliseconds of arc, respectively. Sample results are given for the lengths of baselines between three antennas in the United States and three in Europe as well as for the arc lengths between the positions of six extragalactic radio sources. There is no significant evidence of change in any of these quantities. For mapping the brightness distribution of such compact radio sources, signals of a given polarization, or of pairs of orthogonal polarizations, can be recorded in up to 28 contiguous bands each nearly 2 megahertz wide. The ability to record large bandwidths and to link together many large radio telescopes allows detection and study of compact sources with flux densities under 1 millijansky.

  1. Brightness and transparency in the early visual cortex.

    Science.gov (United States)

    Salmela, Viljami R; Vanni, Simo

    2013-06-24

    Several psychophysical studies have shown that transparency can have drastic effects on brightness and lightness. However, the neural processes generating these effects have remained unresolved. Several lines of evidence suggest that the early visual cortex is important for brightness perception. While single cell recordings suggest that surface brightness is represented in the primary visual cortex, the results of functional magnetic resonance imaging (fMRI) studies have been discrepant. In addition, the location of the neural representation of transparency is not yet known. We investigated whether the fMRI responses in areas V1, V2, and V3 correlate with brightness and transparency. To dissociate the blood oxygen level-dependent (BOLD) response to brightness from the response to local border contrast and mean luminance, we used variants of White's brightness illusion, both opaque and transparent, in which luminance increments and decrements cancel each other out. The stimuli consisted of a target surface and a surround. The surround luminance was always sinusoidally modulated at 0.5 Hz to induce brightness modulation to the target. The target luminance was constant or modulated in counterphase to null brightness modulation. The mean signal changes were calculated from the voxels in V1, V2, and V3 corresponding to the retinotopic location of the target surface. The BOLD responses were significantly stronger for modulating brightness than for stimuli with constant brightness. In addition, the responses were stronger for transparent than for opaque stimuli, but there was more individual variation. No interaction between brightness and transparency was found. The results show that the early visual areas V1-V3 are sensitive to surface brightness and transparency and suggest that brightness and transparency are represented separately.

  2. Comparisons of Brightness Temperatures of Landsat-7/ETM+ and Terra/MODIS around Hotien Oasis in the Taklimakan Desert

    International Nuclear Information System (INIS)

    Oguro, Y; Ito, S; Tsuchiya, K

    2011-01-01

    The brightness temperature (BT) of Taklimakan Desert retrieved from the data of Landsat-7/ETM+ band 6 and Terra/MODIS band 31 and 32 indicates the following features: (1) good linear relationship between the BT of ETM+ and that of MODIS, (2) the observation time adjusted BT of ETM+ is almost equal to that of MODIS, (3) the BT of Terra/MODIS band 31 is slightly higher than that of band 32 over a reservoir while opposite feature is recognized over desert area, (4) the statistical analysis of 225 sample data of ETM+ in one pixel of MODIS for different land covers indicates that the standard deviation and range of BT of ETM+ corresponding to one pixel of MODIS are 0.45 degree C, 2.25 degree C for a flat area of desert, while respective values of the oasis farmland and shading side of rocky hill amount to 2.88 degree C, 14.04 degree C, and 2.80 degree C, 16.04 degree C.

  3. A Reverse Shock and Unusual Radio Properties in GRB 160625B

    Science.gov (United States)

    Alexander, K. D.; Laskar, T.; Berger, E.; Guidorzi, C.; Dichiara, S.; Fong, W.; Gomboc, A.; Kobayashi, S.; Kopac, D.; Mundell, C. G.; Tanvir, N. R.; Williams, P. K. G.

    2017-10-01

    We present multi-wavelength observations and modeling of the exceptionally bright long γ-ray burst GRB 160625B. The optical and X-ray data are well fit by synchrotron emission from a collimated blastwave with an opening angle of {θ }j≈ 3\\buildrel{\\circ}\\over{.} 6 and kinetic energy of {E}K≈ 2× {10}51 erg, propagating into a low-density (n≈ 5× {10}-5 cm-3) medium with a uniform profile. The forward shock is sub-dominant in the radio band; instead, the radio emission is dominated by two additional components. The first component is consistent with emission from a reverse shock, indicating an initial Lorentz factor of {{{Γ }}}0≳ 100 and an ejecta magnetization of {R}B≈ 1{--}100. The second component exhibits peculiar spectral and temporal evolution and is most likely the result of scattering of the radio emission by the turbulent Milky Way interstellar medium (ISM). Such scattering is expected in any sufficiently compact extragalactic source and has been seen in GRBs before, but the large amplitude and long duration of the variability seen here are qualitatively more similar to extreme scattering events previously observed in quasars, rather than normal interstellar scintillation effects. High-cadence, broadband radio observations of future GRBs are needed to fully characterize such effects, which can sensitively probe the properties of the ISM and must be taken into account before variability intrinsic to the GRB can be interpreted correctly.

  4. Comparison of three methods of restoration of cosmic radio source profiles

    International Nuclear Information System (INIS)

    Malov, I.F.; Frolov, V.A.

    1986-01-01

    Effectiveness of three methods for restoration of radio brightness distribution over the source: main solution, fitting and minimal - phase method (MPM) - was compared on the basis of data on module and phase of luminosity function (LF) of 15 cosmic radiosources. It is concluded that MPM can soccessfully compete with other known methods. Its obvious advantages in comparison with the fitting method consist in that it gives unambigous and direct restoration and a main advantage as compared with the main solution is the feasibility of restoration in the absence of data on LF phase which reduces restoration errors

  5. Increasing the Brightness of Light Sources

    OpenAIRE

    Fu, Ling

    2006-01-01

    In modern illumination systems, compact size and high brightness are important features. Light recycling allows an increase of the spectral radiance (brightness) emitted by a light source for the price of reducing the total radiant power. Light recycling means returning part of the emitted light to the source where part of it will escape absorption. As a result, the output brightness can be increased in a restricted phase space, ...

  6. Radio continuum, far infrared and star formation

    International Nuclear Information System (INIS)

    Wielebinski, R.; Wunderlich, E.; Klein, U.; Hummel, E.

    1987-01-01

    A very tight correlation was found between the radio emission and the far infrared emission from galaxies. This has been found for various samples of galaxies and is explained in terms of recent star formation. The tight correlation would imply that the total radio emission is a good tracer of star formation. The correlation between the radio power at 5 GHz and the far infrared luminosity is shown. The galaxies are of various morphological types and were selected from the various IRAS circulars, hence the sample is an infrared selected sample. The far infrared luminosities were corrected for the dust temperature. This is significant because it decreases the dispersion in the correlation

  7. Surface-plasmon resonance-enhanced multiphoton emission of high-brightness electron beams from a nanostructured copper cathode.

    Science.gov (United States)

    Li, R K; To, H; Andonian, G; Feng, J; Polyakov, A; Scoby, C M; Thompson, K; Wan, W; Padmore, H A; Musumeci, P

    2013-02-15

    We experimentally investigate surface-plasmon assisted photoemission to enhance the efficiency of metallic photocathodes for high-brightness electron sources. A nanohole array-based copper surface was designed to exhibit a plasmonic response at 800 nm, fabricated using the focused ion beam milling technique, optically characterized and tested as a photocathode in a high power radio frequency photoinjector. Because of the larger absorption and localization of the optical field intensity, the charge yield observed under ultrashort laser pulse illumination is increased by more than 100 times compared to a flat surface. We also present the first beam characterization results (intrinsic emittance and bunch length) from a nanostructured photocathode.

  8. Ground and satellite-based remote sensing of mineral dust using AERI spectra and MODIS thermal infrared window brightness temperatures

    Science.gov (United States)

    Hansell, Richard Allen, Jr.

    The radiative effects of dust aerosol on our climate system have yet to be fully understood and remain a topic of contemporary research. To investigate these effects, detection/retrieval methods for dust events over major dust outbreak and transport areas have been developed using satellite and ground-based approaches. To this end, both the shortwave and longwave surface radiative forcing of dust aerosol were investigated. The ground-based remote sensing approach uses the Atmospheric Emitted Radiance Interferometer brightness temperature spectra to detect mineral dust events and to retrieve their properties. Taking advantage of the high spectral resolution of the AERI instrument, absorptive differences in prescribed thermal IR window sub-band channels were exploited to differentiate dust from cirrus clouds. AERI data collected during the UAE2 at Al-Ain UAE was employed for dust retrieval. Assuming a specified dust composition model a priori and using the light scattering programs of T-matrix and the finite difference time domain methods for oblate spheroids and hexagonal plates, respectively, dust optical depths have been retrieved and compared to those inferred from a collocated and coincident AERONET sun-photometer dataset. The retrieved optical depths were then used to determine the dust longwave surface forcing during the UAE2. Likewise, dust shortwave surface forcing is investigated employing a differential technique from previous field studies. The satellite-based approach uses MODIS thermal infrared brightness temperature window data for the simultaneous detection/separation of mineral dust and cirrus clouds. Based on the spectral variability of dust emissivity at the 3.75, 8.6, 11 and 12 mum wavelengths, the D*-parameter, BTD-slope and BTD3-11 tests are combined to identify dust and cirrus. MODIS data for the three dust-laden scenes have been analyzed to demonstrate the effectiveness of this detection/separation method. Detected daytime dust and cloud

  9. SPECTRAL PROPERTIES OF BRIGHT FERMI-DETECTED BLAZARS IN THE GAMMA-RAY BAND

    International Nuclear Information System (INIS)

    Abdo, A. A.; Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Bouvier, A.; Atwood, W. B.; Axelsson, M.; Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bonamente, E.; Brigida, M.

    2010-01-01

    The gamma-ray energy spectra of bright blazars of the LAT Bright AGN Sample (LBAS) are investigated using Fermi-LAT data. Spectral properties (hardness, curvature, and variability) established using a data set accumulated over 6 months of operation are presented and discussed for different blazar classes and subclasses: flat spectrum radio quasars (FSRQs), low-synchrotron peaked BLLacs (LSP-BLLacs), intermediate-synchrotron peaked BLLacs (ISP-BLLacs), and high-synchrotron peaked BLLacs (HSP-BLLacs). The distribution of photon index (Γ, obtained from a power-law fit above 100 MeV) is found to correlate strongly with blazar subclass. The change in spectral index from that averaged over the 6 months observing period is < 0.2-0.3 when the flux varies by about an order of magnitude, with a tendency toward harder spectra when the flux is brighter for FSRQs and LSP-BLLacs. A strong departure from a single power-law spectrum appears to be a common feature for FSRQs. This feature is also present for some high-luminosity LSP-BLLacs, and a small number of ISP-BLLacs. It is absent in all LBAS HSP-BLLacs. For 3C 454.3 and AO 0235+164, the two brightest FSRQ source and LSP-BLLac source, respectively, a broken power law (BPL) gives the most acceptable of power law, BPL, and curved forms. The consequences of these findings are discussed.

  10. Does low surface brightness mean low density?

    NARCIS (Netherlands)

    deBlok, WJG; McGaugh, SS

    1996-01-01

    We compare the dynamical properties of two galaxies at identical positions on the Tully-Fisher relation, but with different surface brightnesses. We find that the low surface brightness galaxy UGC 128 has a higher mass-to-light ratio, and yet has lower mass densities than the high surface brightness

  11. Suzaku observations of low surface brightness cluster Abell 1631

    Science.gov (United States)

    Babazaki, Yasunori; Mitsuishi, Ikuyuki; Ota, Naomi; Sasaki, Shin; Böhringer, Hans; Chon, Gayoung; Pratt, Gabriel W.; Matsumoto, Hironori

    2018-04-01

    We present analysis results for a nearby galaxy cluster Abell 1631 at z = 0.046 using the X-ray observatory Suzaku. This cluster is categorized as a low X-ray surface brightness cluster. To study the dynamical state of the cluster, we conduct four-pointed Suzaku observations and investigate physical properties of the Mpc-scale hot gas associated with the A 1631 cluster for the first time. Unlike relaxed clusters, the X-ray image shows no strong peak at the center and an irregular morphology. We perform spectral analysis and investigate the radial profiles of the gas temperature, density, and entropy out to approximately 1.5 Mpc in the east, north, west, and south directions by combining with the XMM-Newton data archive. The measured gas density in the central region is relatively low (a few ×10-4 cm-3) at the given temperature (˜2.9 keV) compared with X-ray-selected clusters. The entropy profile and value within the central region (r < 0.1 r200) are found to be flatter and higher (≳400 keV cm2). The observed bolometric luminosity is approximately three times lower than that expected from the luminosity-temperature relation in previous studies of relaxed clusters. These features are also observed in another low surface brightness cluster, Abell 76. The spatial distributions of galaxies and the hot gas appear to be different. The X-ray luminosity is relatively lower than that expected from the velocity dispersion. A post-merger scenario may explain the observed results.

  12. PG 1553 + 11 - A bright optically selected BL Lacertae object

    International Nuclear Information System (INIS)

    Falomo, R.; Treves, A.

    1990-01-01

    A detailed study of the bright optically selected BL Lac object PG 1553 + 11 is presented. UV observations, obtained during a high state of the source, together with simultaneous optical spectrophotometry and near-IR photometry, allow the spectral flux distribution to be examined from 8 x 10 to the 13th to 2.5 x 10 to the 15th Hz. This distribution is compared with that derived from quasi-simultaneous observations obtained when the source was a factor of about 3 fainter. It is found that, in the higher state, the spectrum can be described by two power laws connected by a break at about 10 to the 15th Hz, while in the low state the shape is more complex. The overall spectrum of the object is compared with the average energy distribution of X-ray and radio-selected BL Lac objects, showing that it is closer to the former class. 25 refs

  13. Radio recombination lines from H II regions

    International Nuclear Information System (INIS)

    Silverglate, P.R.

    1978-01-01

    Radio recombination lines have been observed from forty-six H II regions. The Arecibo 1000-foot radio telescope was used to provide high sensitivity and high angular resolution at 1400 MHz (gain approx. 7.7 0 K/Jy, HPBW = 3:2) and 2372 MHZ (gain approx. 6.3 0 K/Jy, HPBW = 2'). Observations were made at 1400 MHz in the frequency switching mode, and at 2372 MHz in the total power mode. Gaussians were fit to be observed lines to derive velocities, line widths, and line temperatures. From the velocities kinematic distances were derived. For eleven sources H I absorption measurements were also made. The absorption spectra enabled the kinematic distance ambiguity to be resolved for some sources. The absorption spectra themselves were found to have extremely sharp, non-gaussian edges. One explanation for these is a model where the interstellar medium contains many H I cloudlets with T/sub s/less than or equal to 100 0 K and turbulent velocities less than or equal to 3 km/s. The H I absorption spectrum is then a superposition of many narrow gaussian profiles. It was also found from a comparison of H I absorption velocities with radio recombination line velocities that peculiar motions exist in the interstellar medium with velocities of up to 10 km/s. Using the measured line temperatures and continuum temperatures, estimates were desired of emission measures, electron temperatures, and electron densities, using a non-LTE analysis. Non-LTE effects were important only for the hottest and densest H II regions. The non-LTE calculations were checked through a comparison derivation of electron temperatures using hydrogen beta lines

  14. Time-resolved brightness measurements by streaking

    Science.gov (United States)

    Torrance, Joshua S.; Speirs, Rory W.; McCulloch, Andrew J.; Scholten, Robert E.

    2018-03-01

    Brightness is a key figure of merit for charged particle beams, and time-resolved brightness measurements can elucidate the processes involved in beam creation and manipulation. Here we report on a simple, robust, and widely applicable method for the measurement of beam brightness with temporal resolution by streaking one-dimensional pepperpots, and demonstrate the technique to characterize electron bunches produced from a cold-atom electron source. We demonstrate brightness measurements with 145 ps temporal resolution and a minimum resolvable emittance of 40 nm rad. This technique provides an efficient method of exploring source parameters and will prove useful for examining the efficacy of techniques to counter space-charge expansion, a critical hurdle to achieving single-shot imaging of atomic scale targets.

  15. Development of radio acoustic sounding method in Kharkov National University of Radio Electronics

    International Nuclear Information System (INIS)

    Proshkin, Y G; Kartashov, V M; Babkin, S I

    2008-01-01

    The analysis of the role of Kharkov National University of Radio Electronics in developing the atmosphere radio acoustic sounding (RAS) method within the period from 1968 to 2008 was carried out. As a part of the investigation program six experimental models of the sounding radio equipment were developed and manufactured. The atmosphere sounding methods were developed for measuring the base meteorological values. For the first time in the world practice, relevant comparative measurements of air temperature, wind velocity and direction were performed on a short base (about 150 m) using the centimetre RAS equipment and standard sensors of a high (300 m) meteorological mast. The RAS equipment was used for the purpose of meteorological support to investigations in the field of the atmosphere physics and applied problems. All instrumental, atmosphere and social factors, affecting operation the RAS systems, were generalized. It is shown that compact and mobile systems for remote monitoring of the atmospheric boundary layer with possible prompt obtaining of relevant information about base meteorological values in large volumes can be based on the RAS equipment

  16. The Radio JOVE Project - Shoestring Radio Astronomy

    Science.gov (United States)

    Thieman, J.; Flagg, R.; Greenman, W.; Higgins, C.; Reyes, F.; Sky, J.

    2010-01-01

    Radio JOVE is an education and outreach project intended to give students and other interested individuals hands-on experience in learning radio astronomy. They can do this through building a radio telescope from a relatively inexpensive kit that includes the parts for a receiver and an antenna as well as software for a computer chart recorder emulator (Radio Skypipe) and other reference materials

  17. Physical Models of Layered Polar Firn Brightness Temperatures from 0.5 to 2 GHz

    Science.gov (United States)

    Tan, Shurun; Aksoy, Mustafa; Brogioni, Marco; Macelloni, Giovanni; Durand, Michael; Jezek, Kenneth C.; Wang, Tian-Lin; Tsang, Leung; Johnson, Joel T.; Drinkwater, Mark R.; hide

    2015-01-01

    We investigate physical effects influencing 0.5-2 GHz brightness temperatures of layered polar firn to support the Ultra Wide Band Software Defined Radiometer (UWBRAD) experiment to be conducted in Greenland and in Antarctica. We find that because ice particle grain sizes are very small compared to the 0.5-2 GHz wavelengths, volume scattering effects are small. Variations in firn density over cm- to m-length scales, however, cause significant effects. Both incoherent and coherent models are used to examine these effects. Incoherent models include a 'cloud model' that neglects any reflections internal to the ice sheet, and the DMRT-ML and MEMLS radiative transfer codes that are publicly available. The coherent model is based on the layered medium implementation of the fluctuation dissipation theorem for thermal microwave radiation from a medium having a nonuniform temperature. Density profiles are modeled using a stochastic approach, and model predictions are averaged over a large number of realizations to take into account an averaging over the radiometer footprint. Density profiles are described by combining a smooth average density profile with a spatially correlated random process to model density fluctuations. It is shown that coherent model results after ensemble averaging depend on the correlation lengths of the vertical density fluctuations. If the correlation length is moderate or long compared with the wavelength (approximately 0.6x longer or greater for Gaussian correlation function without regard for layer thinning due to compaction), coherent and incoherent model results are similar (within approximately 1 K). However, when the correlation length is short compared to the wavelength, coherent model results are significantly different from the incoherent model by several tens of kelvins. For a 10-cm correlation length, the differences are significant between 0.5 and 1.1 GHz, and less for 1.1-2 GHz. Model results are shown to be able to match the v

  18. Correlation of rectal temperature and peripheral temperature from implantable radio-frequency microchips in Holstein steers challenged with lipopolysaccharide under thermoneutral and high ambient temperatures.

    Science.gov (United States)

    Reid, E D; Fried, K; Velasco, J M; Dahl, G E

    2012-12-01

    Early detection of disease can speed treatment, slow spread of disease in a herd, and improve health status of animals. Immune stimulation increases rectal temperature (RT). Injectable radio-frequency implants (RFI) can provide temperature at the site of implantation. The fidelity of peripheral site temperature, determined by RFI, relative to RT is unknown in cattle. We hypothesized that during lipopolysaccharide (LPS) challenge, temperature at 3 peripheral sites would be similar to RT in steers (n = 4; BW 77 ± 2.1 kg). The 3 sites were 1) subcutaneous (SC) at the base of the ear (ET); 2) SC posterior to the poll (PT); and 3) SC beneath the umbilical fold (UT). Steers were housed in controlled temperature (CT) rooms (between 18 and 21°C; n = 2/room). Rectal temperature, ET, PT, and UT were recorded every 8 h daily. On d 7, 21, 22, 36, and 37, RT and RFI were taken every 5 min for 6 h, every 15 min for 3 h, and every 30 min for 15 h. To test RFI during a simulated immune challenge, LPS (E. coli 055:B5) was injected intravenously (i.v.) at 1000 h on d 22 and 37. Basal temperatures (°C) were RT (38.7 ± 0.20), ET (37.1 ± 0.86), PT (36.7 ± 0.57), and UT (36.3 ± 0.97). Rectal temperature increased to 39.9 ± 0.30°C after LPS, but ET, PT, and UT decreased. Heat stress also increases RT, which makes it difficult to identify sick animals using RT. The second hypothesis tested was that ET positively correlates to RT and negatively correlates to RT during LPS under heat stress. Four steers (127 ± 7.3 kg) were housed in CT chambers (n = 2/chamber), implanted with a RFI, and allowed 2 wk to acclimate. One chamber remained at 20°C, the other was increased to 34°C starting at 0800 h for a period of 48 h. The LPS was administered i.v. to all steers at 1000 h on d 2. After a 2-wk recovery at 20°C, the temperature was increased in the other chamber, resulting in a crossover design with each steer serving as its own control. Pearson's correlation coefficients for ET and

  19. The Curious Molecular Gas Conditions in a z=2.6 Radio-loud Quasar

    Science.gov (United States)

    Sharon, Chelsea; Riechers, Dominik A.; Kuk Leung, Tsz; Weiss, Axel; Walter, Fabian; Carilli, Chris; Kraiburg Knudsen, Kirsten; Hodge, Jacqueline

    2018-01-01

    Theoretical work suggests that AGN play an important role in quenching star formation in massive galaxies. In addition to molecular outflows observed in the local universe, emission from very high-J CO rotational transitions has been one of the key pieces of evidence for AGN directly affecting the molecular gas reservoirs that fuel star formation. However, very few observations of Jupper>9 transitions exist for galaxies in the early universe. Here we will present the peculiar molecular gas conditions in MG 0414+0534 (MG 0414 hereafter), one of the few high-z galaxies with very high-J CO detections. MG 0414 is a strongly lensed IR-bright radio-loud quasar with broad Hα emission at z=2.6390. We recently confirmed the CO(3–2) detection from Barvainis et al. (1998), but were unable to detect the CO(1–0) line. The 3σ lower limit on the 3–2/1–0 line ratio (in units of brightness temperature) is r3,1>5.72, which is significantly higher than the r3,1≤1 typical for thermalized optically thick emission in other z˜2–3 AGN host galaxies. In addition, the CO(11–10) line was detected to high significance using the Atacama Large Millimeter/submillimeter Array, and the CO(11–10) line FWHM is nearly double that of the CO(3–2) line. We will discuss possible explanations for the peculiar line ratios in MG 0414 (such as optically thin emission, molecular outflows, and differential lensing) and what the origin of these ratios imply for molecular gas observations of other high-z AGN host galaxies.

  20. Brightness enhancement of a multi-mode ribbon fiber using transmitting Bragg gratings

    Science.gov (United States)

    Anderson, B. M.; Venus, G.; Ott, D.; Divliansky, I.; Dawson, J. W.; Drachenberg, D. R.; Messerly, M. J.; Pax, P. H.; Tassano, J. B.; Glebov, L. B.

    2015-03-01

    Increasing the dimensions of a waveguide provides the simplest means of reducing detrimental nonlinear effects, but such systems are inherently multi-mode, reducing the brightness of the system. Furthermore, using rectangular dimensions allows for improved heat extraction, as well as uniform temperature profile within the core. We propose a method of using the angular acceptance of a transmitting Bragg grating (TBG) to filter the fundamental mode of a fiber laser resonator, and as a means to increase the brightness of multi-mode fiber laser. Numerical modeling is used to calculate the diffraction losses needed to suppress the higher order modes in a laser system with saturable gain. The model is tested by constructing an external cavity resonator using an ytterbium doped ribbon fiber with core dimensions of 107.8μm by 8.3μm as the active medium. We show that the TBG increases the beam quality of the system from M2 = 11.3 to M2 = 1.45, while reducing the slope efficiency from 76% to 53%, overall increasing the brightness by 5.1 times.

  1. Electromagnetically induced transparency control in terahertz metasurfaces based on bright-bright mode coupling

    Science.gov (United States)

    Yahiaoui, R.; Burrow, J. A.; Mekonen, S. M.; Sarangan, A.; Mathews, J.; Agha, I.; Searles, T. A.

    2018-04-01

    We demonstrate a classical analog of electromagnetically induced transparency (EIT) in a highly flexible planar terahertz metamaterial (MM) comprised of three-gap split-ring resonators. The keys to achieve EIT in this system are the frequency detuning and hybridization processes between two bright modes coexisting in the same unit cell as opposed to bright-dark modes. We present experimental verification of two bright modes coupling for a terahertz EIT-MM in the context of numerical results and theoretical analysis based on a coupled Lorentz oscillator model. In addition, a hybrid variation of the EIT-MM is proposed and implemented numerically to dynamically tune the EIT window by incorporating photosensitive silicon pads in the split gap region of the resonators. As a result, this hybrid MM enables the active optical control of a transition from the on state (EIT mode) to the off state (dipole mode).

  2. CHANDRA OBSERVATIONS OF 3C RADIO SOURCES WITH z < 0.3. II. COMPLETING THE SNAPSHOT SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Massaro, F. [SLAC National Laboratory and Kavli Institute for Particle Astrophysics and Cosmology, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Tremblay, G. R. [European Southern Observatory, Karl-Schwarzschild-Str. 2, D-85748 Garching bei Muenchen (Germany); Harris, D. E.; O' Dea, C. P. [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Kharb, P.; Axon, D. [Department of Physics, Rochester Institute of Technology, Carlson Center for Imaging Science 76-3144, 84 Lomb Memorial Dr., Rochester, NY 14623 (United States); Balmaverde, B.; Capetti, A. [INAF-Osservatorio Astrofisico di Torino, Strada Osservatorio 20, I-10025 Pino Torinese (Italy); Baum, S. A. [Carlson Center for Imaging Science 76-3144, 84 Lomb Memorial Dr., Rochester, NY 14623 (United States); Chiaberge, M.; Macchetto, F. D.; Sparks, W. [Space Telescope Science Institute, 3700 San Martine Drive, Baltimore, MD 21218 (United States); Gilli, R. [INAF-Osservatorio Astronomico di Bologna, Via Ranzani 1, I-40127 Bologna (Italy); Giovannini, G. [INAF-Istituto di Radioastronomia di Bologna, Via Gobetti 101, I-40129 Bologna (Italy); Grandi, P.; Torresi, E. [INAF-IASF-Istituto di Astrofisica Spaziale e fisica Cosmica di Bologna, Via P. Gobetti 101, I-40129 Bologna (Italy); Risaliti, G. [INAF-Osservatorio Astronomico di Arcetri, Largo E. Fermi 5, I-50125 Firenze (Italy)

    2012-12-15

    We report on the second round of Chandra observations of the 3C snapshot survey developed to observe the complete sample of 3C radio sources with z < 0.3 for 8 ks each. In the first paper, we illustrated the basic data reduction and analysis procedures performed for the 30 sources of the 3C sample observed during Chandra Cycle 9, while here we present the data for the remaining 27 sources observed during Cycle 12. We measured the X-ray intensity of the nuclei and of any radio hot spots and jet features with associated X-ray emission. X-ray fluxes in three energy bands, i.e., soft, medium, and hard, for all the sources analyzed are also reported. For the stronger nuclei, we also applied the standard spectral analysis, which provides the best-fit values of the X-ray spectral index and absorbing column density. In addition, a detailed analysis of bright X-ray nuclei that could be affected by pile-up has been performed. X-ray emission was detected for all the nuclei of the radio sources in our sample except for 3C 319. Among the current sample, there are two compact steep spectrum radio sources, two broad-line radio galaxies, and one wide angle tail radio galaxy, 3C 89, hosted in a cluster of galaxies clearly visible in our Chandra snapshot observation. In addition, we also detected soft X-ray emission arising from the galaxy cluster surrounding 3C 196.1. Finally, X-ray emission from hot spots has been found in three FR II radio sources and, in the case of 3C 459, we also report the detection of X-ray emission associated with the eastern radio lobe as well as X-ray emission cospatial with radio jets in 3C 29 and 3C 402.

  3. Suzaku observations of low surface brightness cluster Abell 1631

    Science.gov (United States)

    Babazaki, Yasunori; Mitsuishi, Ikuyuki; Ota, Naomi; Sasaki, Shin; Böhringer, Hans; Chon, Gayoung; Pratt, Gabriel W.; Matsumoto, Hironori

    2018-06-01

    We present analysis results for a nearby galaxy cluster Abell 1631 at z = 0.046 using the X-ray observatory Suzaku. This cluster is categorized as a low X-ray surface brightness cluster. To study the dynamical state of the cluster, we conduct four-pointed Suzaku observations and investigate physical properties of the Mpc-scale hot gas associated with the A 1631 cluster for the first time. Unlike relaxed clusters, the X-ray image shows no strong peak at the center and an irregular morphology. We perform spectral analysis and investigate the radial profiles of the gas temperature, density, and entropy out to approximately 1.5 Mpc in the east, north, west, and south directions by combining with the XMM-Newton data archive. The measured gas density in the central region is relatively low (a few ×10-4 cm-3) at the given temperature (˜2.9 keV) compared with X-ray-selected clusters. The entropy profile and value within the central region (r clusters. These features are also observed in another low surface brightness cluster, Abell 76. The spatial distributions of galaxies and the hot gas appear to be different. The X-ray luminosity is relatively lower than that expected from the velocity dispersion. A post-merger scenario may explain the observed results.

  4. Modeling the Distributions of Brightness Temperatures of a Cropland Study Area Using a Model that Combines Fast Radiosity and Energy Budget Methods

    Directory of Open Access Journals (Sweden)

    Zunjian Bian

    2018-05-01

    Full Text Available Land surface temperatures (LSTs obtained from remote sensing data are crucial in monitoring the conditions of crops and urban heat islands. However, since retrieved LSTs represent only the average temperature states of pixels, the distributions of temperatures within individual pixels remain unknown. Such data cannot satisfy the requirements of applications such as precision agriculture. Therefore, in this paper, we propose a model that combines a fast radiosity model, the Radiosity Applicable to Porous IndiviDual Objects (RAPID model, and energy budget methods to dynamically simulate brightness temperatures (BTs over complex surfaces. This model represents a model-based tool that can be used to estimate temperature distributions using fine-scale visible as well as near-infrared (VNIR data and temporal variations in meteorological conditions. The proposed model is tested over a study area in an artificial oasis in Northwestern China. The simulated BTs agree well with those measured with the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER. The results reflect root mean squared errors (RMSEs less than 1.6 °C and coefficients of determination (R2 greater than 0.7. In addition, compared to the leaf area index (LAI, this model displays high sensitivity to wind speed during validation. Although simplifications may be adopted for use in specific simulations, this proposed model can be used to support in situ measurements and to provide reference data over heterogeneous vegetation surfaces.

  5. Estimating effective particle size of tropical deep convective clouds with a look-up table method using satellite measurements of brightness temperature differences

    Science.gov (United States)

    Hong, Gang; Minnis, Patrick; Doelling, David; Ayers, J. Kirk; Sun-Mack, Szedung

    2012-03-01

    A method for estimating effective ice particle radius Re at the tops of tropical deep convective clouds (DCC) is developed on the basis of precomputed look-up tables (LUTs) of brightness temperature differences (BTDs) between the 3.7 and 11.0 μm bands. A combination of discrete ordinates radiative transfer and correlated k distribution programs, which account for the multiple scattering and monochromatic molecular absorption in the atmosphere, is utilized to compute the LUTs as functions of solar zenith angle, satellite zenith angle, relative azimuth angle, Re, cloud top temperature (CTT), and cloud visible optical thickness τ. The LUT-estimated DCC Re agrees well with the cloud retrievals of the Moderate Resolution Imaging Spectroradiometer (MODIS) for the NASA Clouds and Earth's Radiant Energy System with a correlation coefficient of 0.988 and differences of less than 10%. The LUTs are applied to 1 year of measurements taken from MODIS aboard Aqua in 2007 to estimate DCC Re and are compared to a similar quantity from CloudSat over the region bounded by 140°E, 180°E, 0°N, and 20°N in the Western Pacific Warm Pool. The estimated DCC Re values are mainly concentrated in the range of 25-45 μm and decrease with CTT. Matching the LUT-estimated Re with ice cloud Re retrieved by CloudSat, it is found that the ice cloud τ values from DCC top to the vertical location where LUT-estimated Re is located at the CloudSat-retrieved Re profile are mostly less than 2.5 with a mean value of about 1.3. Changes in the DCC τ can result in differences of less than 10% for Re estimated from LUTs. The LUTs of 0.65 μm bidirectional reflectance distribution function (BRDF) are built as functions of viewing geometry and column amount of ozone above upper troposphere. The 0.65 μm BRDF can eliminate some noncore portions of the DCCs detected using only 11 μm brightness temperature thresholds, which result in a mean difference of only 0.6 μm for DCC Re estimated from BTD LUTs.

  6. Hurricane Wind Speed Estimation Using WindSat 6 and 10 GHz Brightness Temperatures

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    2016-08-01

    Full Text Available The realistic and accurate estimation of hurricane intensity is highly desired in many scientific and operational applications. With the advance of passive microwave polarimetry, an alternative opportunity for retrieving wind speed in hurricanes has become available. A wind speed retrieval algorithm for wind speeds above 20 m/s in hurricanes has been developed by using the 6.8 and 10.7 GHz vertically and horizontally polarized brightness temperatures of WindSat. The WindSat measurements for 15 category 4 and category 5 hurricanes from 2003 to 2010 and the corresponding H*wind analysis data are used to develop and validate the retrieval model. In addition, the retrieved wind speeds are also compared to the Remote Sensing Systems (RSS global all-weather product and stepped-frequency microwave radiometer (SFMR measurements. The statistical results show that the mean bias and the overall root-mean-square (RMS difference of the retrieved wind speeds with respect to the H*wind analysis data are 0.04 and 2.75 m/s, respectively, which provides an encouraging result for retrieving hurricane wind speeds over the ocean surface. The retrieved wind speeds show good agreement with the SFMR measurements. Two case studies demonstrate that the mean bias and RMS difference are 0.79 m/s and 1.79 m/s for hurricane Rita-1 and 0.63 m/s and 2.38 m/s for hurricane Rita-2, respectively. In general, the wind speed retrieval accuracy of the new model in hurricanes ranges from 2.0 m/s in light rain to 3.9 m/s in heavy rain.

  7. Radio astronomy

    Energy Technology Data Exchange (ETDEWEB)

    Nagnibeda, V.G.

    1981-01-01

    The history of radio astronomical observations at the Astronomical Observatory of Leningrad State University is reviewed. Various facilities are described, and methods and instruments used are discussed. Some results are summarized for radio observations of the sun, including observations of local sources of solar radio emission, the absolute solar radio flux, and radio emission from filaments and prominences.

  8. VERY LARGE ARRAY OBSERVATIONS OF DG TAU'S RADIO JET: A HIGHLY COLLIMATED THERMAL OUTFLOW

    Energy Technology Data Exchange (ETDEWEB)

    Lynch, C.; Mutel, R. L.; Gayley, K. G. [Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa 52240 (United States); Guedel, M. [Department of Astrophysics, University of Vienna, A-1180 Vienna (Austria); Ray, T. [Astronomy and Astrophysics Section, Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, Dublin 2 (Ireland); Skinner, S. L. [Center for Astrophysics and Space Astronomy, University of Colorado, Boulder, CO 80309 (United States); Schneider, P. C. [Hamburger Sternwarte, Gojenbergsweg 112, D-21029 Hamburg (Germany)

    2013-03-20

    The active young protostar DG Tau has an extended jet that has been well studied at radio, optical, and X-ray wavelengths. We report sensitive new Very Large Array (VLA) full-polarization observations of the core and jet between 5 GHz and 8 GHz. Our high angular resolution observation at 8 GHz clearly shows an unpolarized inner jet with a size of 42 AU (0.''35) extending along a position angle similar to the optical-X ray outer jet. Using our nearly coeval 2012 VLA observations, we find a spectral index {alpha} = +0.46 {+-} 0.05, which combined with the lack of polarization is consistent with bremsstrahlung (free-free) emission, with no evidence for a non-thermal coronal component. By identifying the end of the radio jet as the optical depth unity surface, and calculating the resulting emission measure, we find that our radio results are in agreement with previous optical line studies of electron density and consequent mass-loss rate. We also detect a weak radio knot at 5 GHz located 7'' from the base of the jet, coincident with the inner radio knot detected by Rodriguez et al. in 2009 but at lower surface brightness. We interpret this as due to expansion of post-shock ionized gas in the three years between observations.

  9. Physics of the Solar Active Regions from Radio Observations

    Science.gov (United States)

    Gelfreikh, G. B.

    1999-12-01

    umbra. 2. Magnetography of the solar active regions presenting the weak magnetic fields (with the sensitivity of several G) reflecting longitude component of the magnetic field in chromosphere and corona and solar faculae structure. The method is based on an analysis of the weak polarization (of the order of 1% or less). 3. An analysis of the structure, temperature, and density of arches seen above neutral magnetic field lines (seen in most ARs with spots and without ones). 4. Study of temporal and spatial behavior of inversion of the sign of the circular polarization with the result of magnetography of the solar corona. 5. An analysis of the solar activity at high heliographic latitudes, observed mostly as polar faculae (increased brightness structures having counterparts in optical white light observations). In modern study of the solar activity analysis of the activity of polar zones are of principal importance. Nobeyama probably presents the most reliable way to study this. The above points present not exactly completed results but rather the directions for future studies. These should use full time coverage of observations at different phases of the solar activity and combination of observations with other radio, optical, EUV and X-ray observations whenever possible.

  10. NIGHT SKY BRIGHTNESS ABOVE ZAGREB 2012.-2017.

    Directory of Open Access Journals (Sweden)

    Željko Andreić

    2018-01-01

    Full Text Available The night sky brightness at the RGN site (near the centre of Zagreb, Croatia was monitored form January 2012. to December 2017. The gathered data show that the average night sky brightness in this period did not change significantly, apart from differences caused by yearly variations in meteorological parameters. The nightly minima, maxima and mean values of the sky brightness do change considerably due to changes in meteorological conditions, often being between 2 and 3 magnitudes. The seasonal probability curves and histograms are constructed and are used to obtain additional information on the light pollution at the RGN site. They reveal that the night sky brightness clutters around two peaks, at about 15.0 mag/arcsec2 and at about 18.2 mag/arcsec2. The tendency to slightly lower brightness values in spring and summer can also be seen in the data. Two peaks correspond to cloudy and clear nights respectively, the difference in brightness between them being about 3 magnitudes. A crude clear/cloudy criterion can be defined too: the minimum between two peaks is around 16.7 mag/arcsec2. The brightness values smaller than thisare attributed to clear nights and vice-versa. Comparison with Vienna and Hong-Kong indicates that the light pollution of Zagreb is a few times larger.

  11. Electron beam brightness with field immersed emission

    International Nuclear Information System (INIS)

    Boyd, J.K.; Neil, V.K.

    1985-01-01

    The beam quality or brightness of an electron beam produced with field immersed emission is studied with two models. First, an envelope formulation is used to determine the scaling of brightness with current, magnetic field and cathode radius, and examine the equilibrium beam radius. Second, the DPC computer code is used to calculate the brightness of two electron beam sources

  12. Multi-epoch intranight optical monitoring of eight radio-quiet BL Lac candidates

    Science.gov (United States)

    Kumar, P.; Gopal-Krishna; Stalin, C. S.; Chand, H.; Srianand, R.; Petitjean, P.

    2017-10-01

    For a new sample of eight weak-line quasars (WLQs) we report a sensitive search in 20 intranight monitoring sessions, for blazar-like optical flux variations on hour-like and longer time-scale (day/month/year-like). The sample consists exclusively of the WLQs that are not radio-loud and either have been classified as 'radio-weak probable BL Lac candidates' and/or are known to have exhibited at least one episode of large, blazar-like optical variability. Whereas only a hint of intranight variability is seen for two of these WLQs, J104833.5+620305.0 (z = 0.219) and J133219.6+622715.9 (z = 3.15), statistically significant internight variability at a few per cent level is detected for three of the sources, including the radio-intermediate WLQ J133219.6+622715.9 (z = 3.15) and the well-known bona fide radio-quiet WLQs J121221.5+534128.0 (z = 3.10) and WLQ J153259.9-003944.1 (z = 4.62). In the rest frame, this variability is intraday and in the far-ultraviolet band. On the time-scale of a decade, we find for three of the WLQs large brightness changes, amounting to 1.655 ± 0.009, 0.163 ± 0.010 and 0.144 ± 0.018 mag, for J104833.5+620305.0, J123743.1+630144.9 and J232428.4+144324.4, respectively. Whereas the latter two are confirmed radio-quiet WLQs, the extragalactic nature of J104833.5+620305.0 remains to be well established, thanks to the absence of any feature(s) in its available optical spectra. This study forms a part of our ongoing campaign of intranight optical monitoring of radio-quiet WLQs, in order to improve the understanding of this enigmatic class of active galactic nuclei and to look among them for a possible tiny, elusive population of radio-quiet BL Lacs.

  13. The seasonal variation in skin hydration, sebum, scaliness, brightness and elasticity in Korean females.

    Science.gov (United States)

    Nam, G W; Baek, J H; Koh, J S; Hwang, J-K

    2015-02-01

    Age, gender, regional, and ethnic differences influence skin conditions. The purpose of this study was to observe the effects of environments, especially the air temperature, relative humidity, air pressure, duration of sunshine, and precipitation on skin, and the seasonal variation in skin hydration, sebum, scales, brightness, and elasticity in Korean females. The study included 89 Korean subjects, aged 29.7 ± 6.2 years. The five skin biophysical parameters (skin hydration, sebum, scales, brightness, and elasticity) were measured at six sites: forehead, under the eye, frontal cheek, crow's foot, lateral cheek, and inner forearm. Skin hydration was measured using the Corneometer® CM 825. Skin sebum was measured with Sebumeter® SM 815. Skin scaliness was measured with Visioscan® VC 98. Skin brightness (L* value) was measured by using Spectrophotometer. A suction chamber device, Cutometer® MPA 580, was used to measure the skin elasticity. The measurements were performed every month for 13 months, from April 2007 to April 2008. There were significantly seasonal variations in environmental factors. The air temperature was the lowest in January (-1.7°C), and the highest in August (26.5°C). The relative humidity was the lowest in February (46%), and the highest in July and August (75%). There was a negative correlation between skin scaliness and three environmental factors such as air temperature, relative humidity, and highest precipitation. There was a positive correlation between skin scaliness and two environmental factors such as air pressure and duration of sunshine. Elasticity was correlated with air temperature positively and with air pressure negatively. The correlations shown between the skin biophysical parameters and environmental factors demonstrate that the skin biophysical parameters are affected by environmental factors. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Teradiode's high brightness semiconductor lasers

    Science.gov (United States)

    Huang, Robin K.; Chann, Bien; Burgess, James; Lochman, Bryan; Zhou, Wang; Cruz, Mike; Cook, Rob; Dugmore, Dan; Shattuck, Jeff; Tayebati, Parviz

    2016-03-01

    TeraDiode is manufacturing multi-kW-class ultra-high brightness fiber-coupled direct diode lasers for industrial applications. A fiber-coupled direct diode laser with a power level of 4,680 W from a 100 μm core diameter, BPP) of 3.5 mm-mrad and is the lowest BPP multi-kW-class direct diode laser yet reported. This laser is suitable for industrial materials processing applications, including sheet metal cutting and welding. This 4-kW fiber-coupled direct diode laser has comparable brightness to that of industrial fiber lasers and CO2 lasers, and is over 10x brighter than state-of-the-art direct diode lasers. We have also demonstrated novel high peak power lasers and high brightness Mid-Infrared Lasers.

  15. New complete sample of identified radio sources. Part 2. Statistical study

    International Nuclear Information System (INIS)

    Soltan, A.

    1978-01-01

    Complete sample of radio sources with known redshifts selected in Paper I is studied. Source counts in the sample and the luminosity - volume test show that both quasars and galaxies are subject to the evolution. Luminosity functions for different ranges of redshifts are obtained. Due to many uncertainties only simplified models of the evolution are tested. Exponential decline of the liminosity with time of all the bright sources is in a good agreement both with the luminosity- volume test and N(S) realtion in the entire range of observed flux densities. It is shown that sources in the sample are randomly distributed in scales greater than about 17 Mpc. (author)

  16. Dense magnetized plasma associated with a fast radio burst.

    Science.gov (United States)

    Masui, Kiyoshi; Lin, Hsiu-Hsien; Sievers, Jonathan; Anderson, Christopher J; Chang, Tzu-Ching; Chen, Xuelei; Ganguly, Apratim; Jarvis, Miranda; Kuo, Cheng-Yu; Li, Yi-Chao; Liao, Yu-Wei; McLaughlin, Maura; Pen, Ue-Li; Peterson, Jeffrey B; Roman, Alexander; Timbie, Peter T; Voytek, Tabitha; Yadav, Jaswant K

    2015-12-24

    Fast radio bursts are bright, unresolved, non-repeating, broadband, millisecond flashes, found primarily at high Galactic latitudes, with dispersion measures much larger than expected for a Galactic source. The inferred all-sky burst rate is comparable to the core-collapse supernova rate out to redshift 0.5. If the observed dispersion measures are assumed to be dominated by the intergalactic medium, the sources are at cosmological distances with redshifts of 0.2 to 1 (refs 10 and 11). These parameters are consistent with a wide range of source models. One fast burst revealed circular polarization of the radio emission, but no linear polarization was detected, and hence no Faraday rotation measure could be determined. Here we report the examination of archival data revealing Faraday rotation in the fast radio burst FRB 110523. Its radio flux and dispersion measure are consistent with values from previously reported bursts and, accounting for a Galactic contribution to the dispersion and using a model of intergalactic electron density, we place the source at a maximum redshift of 0.5. The burst has a much higher rotation measure than expected for this line of sight through the Milky Way and the intergalactic medium, indicating magnetization in the vicinity of the source itself or within a host galaxy. The pulse was scattered by two distinct plasma screens during propagation, which requires either a dense nebula associated with the source or a location within the central region of its host galaxy. The detection in this instance of magnetization and scattering that are both local to the source favours models involving young stellar populations such as magnetars over models involving the mergers of older neutron stars, which are more likely to be located in low-density regions of the host galaxy.

  17. Exploring the Variability of the Flat-spectrum Radio Source 1633+382. II. Physical Properties

    Science.gov (United States)

    Algaba, Juan-Carlos; Lee, Sang-Sung; Rani, Bindu; Kim, Dae-Won; Kino, Motoki; Hodgson, Jeffrey; Zhao, Guang-Yao; Byun, Do-Young; Gurwell, Mark; Kang, Sin-Cheol; Kim, Jae-Young; Kim, Jeong-Sook; Kim, Soon-Wook; Park, Jong-Ho; Trippe, Sascha; Wajima, Kiyoaki

    2018-06-01

    The flat-spectrum radio quasar 1633+382 (4C 38.41) showed a significant increase of its radio flux density during the period 2012 March–2015 August, which correlates with γ-ray flaring activity. Multi-frequency simultaneous very long baseline interferometry (VLBI) observations were conducted as part of the interferometric monitoring of gamma-ray bright active galactic nuclei (iMOGABA) program and supplemented with additional radio monitoring observations with the OVRO 40 m telescope, the Boston University VLBI program, and the Submillimeter Array. The epochs of the maxima for the two largest γ-ray flares coincide with the ejection of two respective new VLBI components. Analysis of the spectral energy distribution indicates a higher turnover frequency after the flaring events. The evolution of the flare in the turnover frequency-turnover flux density plane probes the adiabatic losses in agreement with the shock-in-jet model. The derived synchrotron self-absorption magnetic fields, of the order of 0.1 mG, do not seem to change dramatically during the flares, and are much weaker, by a factor 104, than the estimated equipartition magnetic fields, indicating that the source of the flare may be associated with a particle-dominated emitting region.

  18. Ultraviolet spectra of planetary nebulae

    International Nuclear Information System (INIS)

    Harrington, J.P.; Seaton, M.J.; Adams, S.; Lutz, J.H.

    1982-01-01

    A detailed study of NGC 7662 is based on UV results obtained from 15 IUE spectra and on observations of other workers at optical, IR and radio wavelengths. Improved techniques are used to extract IUE data for an extended source. Relative fluxes in the different apertures which have been used are obtained using the brightness contours of Coleman, Reay and Worswick. There is close agreement between the reddening deduced from the ratios He II (lambda 1640)/(lambda 4686) and (radio)/(Hβ) and the nebular continuum emission observed with the IUE large slots agrees closely with that predicted using absolute radio and Hβ fluxes. The fluxes in nebular emission lines observed with the small slots are smaller than expected from brightness distributions; it is concluded that, for an extended source, the small slots have aperture transmission factors of 0.85 for SWP and 0.46 for LWR. The central star is fainter than has been previously supposed (by more than two magnitudes). The blackbody He II Zanstra temperature of 113 000 K is consistent with the UV colour temperature. Previous work on colour temperatures of central stars is discussed critically. Two models are discussed. (author)

  19. GREEN BANK TELESCOPE AND SWIFT X-RAY TELESCOPE OBSERVATIONS OF THE GALACTIC CENTER RADIO MAGNETAR SGR J1745–2900

    Energy Technology Data Exchange (ETDEWEB)

    Lynch, Ryan S.; Archibald, Robert F.; Kaspi, Victoria M.; Scholz, Paul, E-mail: rlynch@physics.mcgill.ca [Department of Physics, McGill University, 3600 University Street, Montreal, Quebec, H3A 2T8 (Canada)

    2015-06-20

    We present results from eight months of Green Bank Telescope 8.7 GHz observations and nearly 18 months of Swift X-ray telescope observations of the radio magnetar SGR J1745–2900. We tracked the radio and X-ray flux density, polarization properties, profile evolution, rotation, and single-pulse behavior. We identified two main periods of activity. The first is characterized by approximately 5.5 months of relatively stable evolution in radio flux density, rotation, and profile shape, while in the second these properties varied substantially. Specifically, a third profile component emerged and the radio flux also became more variable. The single pulse properties also changed, most notably with a larger fraction of pulses with pulse widths ∼5–20 ms in the erratic state. Bright single pulses are well described by a log-normal energy distribution at low energies, but with an excess at high energies. The 2–10 keV flux decayed steadily since the initial X-ray outburst, while the radio flux remained stable to within ∼20% during the stable state. A joint pulsar timing analysis of the radio and X-ray data shows a level of timing noise unprecedented in a radio magnetar, though during the time covered by the radio data alone the timing noise was at a level similar to that observed in other radio magnetars. While SGR J1745–2900 is similar to other radio magnetars in many regards, it differs by having experienced a period of relative stability in the radio that now appears to have ended, while the X-ray properties evolved independently.

  20. Frequency, moisture content, and temperature dependent dielectric properties of potato starch related to drying with radio-frequency/microwave energy.

    Science.gov (United States)

    Zhu, Zhuozhuo; Guo, Wenchuan

    2017-08-24

    To develop advanced drying methods using radio-frequency (RF) or microwave (MW) energy, dielectric properties of potato starch were determined using an open-ended coaxial-line probe and network analyzer at frequencies between 20 and 4,500 MHz, moisture contents between 15.1% and 43.1% wet basis (w.b.), and temperatures between 25 and 75 °C. The results showed that both dielectric constant (ε') and loss factor (ε″) were dependent on frequency, moisture content, and temperature. ε' decreased with increasing frequency at a given moisture content or temperature. At low moisture contents (≤25.4% w.b.) or low temperatures (≤45 °C), ε″ increased with increasing frequency. However, ε″ changed from decrease to increase with increasing frequency at high moisture contents or temperatures. At low temperatures (25-35 °C), both ε' and ε″ increased with increasing moisture content. At low moisture contents (15.1-19.5% w.b.), they increased with increasing temperature. The change trends of ε' and ε″ were different and dependent on temperature and moisture content at their high levels. The penetration depth (d p ) decreased with increasing frequency. RF treatments may provide potential large-scale industrial drying application for potato starch. This research offers useful information on dielectric properties of potato starch related to drying with electromagnetic energy.

  1. Effect of terrestrial radiation on brightness temperature at lunar nearside: Based on theoretical calculation and data analysis

    Science.gov (United States)

    Wei, Guangfei; Li, Xiongyao; Wang, Shijie

    2015-02-01

    Terrestrial radiation is another possible source of heat in lunar thermal environment at its nearside besides the solar illumination. On the basis of Clouds and the Earth's Radiant Energy System (CERES) data products, the effect of terrestrial radiation on the brightness temperature (TBe) of the lunar nearside has been theoretically calculated. It shows that the mafic lunar mare with high TBe is more sensitive to terrestrial radiation than the feldspathic highland with low TBe value. According to the synchronous rotation of the Moon, we extract TBe on lunar nearside using the microwave radiometer data from the first Chinese lunar probe Chang'E-1 (CE-1). Consistently, the average TBe at Mare Serenitatis is about 1.2 K while the highland around the Geber crater (19.4°S, 13.9°E) is relatively small at ∼0.4 K. Our results indicate that there is no significant effect of terrestrial radiation on TBe at the lunar nearside. However, to extract TBe accurately, effects of heat flow, rock abundance and subsurface rock fragments which are more significant should be considered in the future work.

  2. Improving Soil Moisture Estimation with a Dual Ensemble Kalman Smoother by Jointly Assimilating AMSR-E Brightness Temperature and MODIS LST

    Directory of Open Access Journals (Sweden)

    Weijing Chen

    2017-03-01

    Full Text Available Uncertainties in model parameters can easily result in systematic differences between model states and observations, which significantly affect the accuracy of soil moisture estimation in data assimilation systems. In this research, a soil moisture assimilation scheme is developed to jointly assimilate AMSR-E (Advanced Microwave Scanning Radiometer-Earth Observing System brightness temperature (TB and MODIS (Moderate Resolution Imaging Spectroradiometer Land Surface Temperature (LST products, which also corrects model bias by simultaneously updating model states and parameters with a dual ensemble Kalman filter (DEnKS. Common Land Model (CoLM and a Radiative Transfer Model (RTM are adopted as model and observation operator, respectively. The assimilation experiment was conducted in Naqu on the Tibet Plateau from 31 May to 27 September 2011. The updated soil temperature at surface obtained by assimilating MODIS LST serving as inputs of RTM is to reduce the differences between the simulated and observed TB, then AMSR-E TB is assimilated to update soil moisture and model parameters. Compared with in situ measurements, the accuracy of soil moisture estimation derived from the assimilation experiment has been tremendously improved at a variety of scales. The updated parameters effectively reduce the states bias of CoLM. The results demonstrate the potential of assimilating AMSR-E TB and MODIS LST to improve the estimation of soil moisture and related parameters. Furthermore, this study indicates that the developed scheme is an effective way to retrieve downscaled soil moisture when assimilating the coarse-scale microwave TB.

  3. Study of Three-Dimensional Image Brightness Loss in Stereoscopy

    Directory of Open Access Journals (Sweden)

    Hsing-Cheng Yu

    2015-10-01

    Full Text Available When viewing three-dimensional (3D images, whether in cinemas or on stereoscopic televisions, viewers experience the same problem of image brightness loss. This study aims to investigate image brightness loss in 3D displays, with the primary aim being to quantify the image brightness degradation in the 3D mode. A further aim is to determine the image brightness relationship to the corresponding two-dimensional (2D images in order to adjust the 3D-image brightness values. In addition, the photographic principle is used in this study to measure metering values by capturing 2D and 3D images on television screens. By analyzing these images with statistical product and service solutions (SPSS software, the image brightness values can be estimated using the statistical regression model, which can also indicate the impact of various environmental factors or hardware on the image brightness. In analysis of the experimental results, comparison of the image brightness between 2D and 3D images indicates 60.8% degradation in the 3D image brightness amplitude. The experimental values, from 52.4% to 69.2%, are within the 95% confidence interval

  4. Solar observations with a low frequency radio telescope

    Science.gov (United States)

    Myserlis, I.; Seiradakis, J.; Dogramatzidis, M.

    2012-01-01

    We have set up a low frequency radio monitoring station for solar bursts at the Observatory of the Aristotle University in Thessaloniki. The station consists of a dual dipole phased array, a radio receiver and a dedicated computer with the necessary software installed. The constructed radio receiver is based on NASA's Radio Jove project. It operates continuously, since July 2010, at 20.1 MHz (close to the long-wavelength ionospheric cut-off of the radio window) with a narrow bandwidth (~5 kHz). The system is properly calibrated, so that the recorded data are expressed in antenna temperature. Despite the high interference level of an urban region like Thessaloniki (strong broadcasting shortwave radio stations, periodic experimental signals, CBs, etc), we have detected several low frequency solar radio bursts and correlated them with solar flares, X-ray events and other low frequency solar observations. The received signal is monitored in ordinary ASCII format and as audio signal, in order to investigate and exclude man-made radio interference. In order to exclude narrow band interference and calculate the spectral indices of the observed events, a second monitoring station, working at 36 MHz, is under construction at the village of Nikiforos near the town of Drama, about 130 km away of Thessaloniki. Finally, we plan to construct a third monitoring station at 58 MHz, in Thessaloniki. This frequency was revealed to be relatively free of interference, after a thorough investigation of the region.

  5. Assessment of NOAA NUCAPS upper air temperature profiles using COSMIC GPS radio occultation and ARM radiosondes

    Science.gov (United States)

    Feltz, M. L.; Borg, L.; Knuteson, R. O.; Tobin, D.; Revercomb, H.; Gambacorta, A.

    2017-09-01

    The U.S. National Oceanic and Atmospheric Administration (NOAA) recently began operational processing to derive vertical temperature profiles from two new sensors, Cross-Track Infrared Sounder and Advanced Technology Microwave Sounder, which were developed for the next generation of U.S. weather satellites. The NOAA-Unique Combined Atmospheric Processing System (NUCAPS) has been developed by NOAA to routinely process data from future Joint Polar Satellite System operational satellites and the preparatory Suomi-NPP satellite. This paper assesses the NUCAPS vertical temperature profile product from the upper troposphere into the middle stratosphere using radiosonde and GPS radio occultation (RO) data. Radiosonde data from the Department of Energy Atmospheric Radiation Measurement (ARM) program are=] compared to both the NUCAPS and GPS RO temperature products to evaluate bias and RMS errors. At all three fixed ARM sites for time periods investigated the NUCAPS temperature in the 100-40 hPa range is found to have an average bias to the radiosondes of less than 0.45 K and an RMS error of less than 1 K when temperature averaging kernels are applied. At a 95% confidence level, the radiosondes and RO were found to agree within 0.4 K at the North Slope of Alaska site and within 0.83 K at Southern Great Plains and Tropical Western Pacific. The GPS RO-derived dry temperatures, obtained from the University Corporation for Atmospheric Research Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) mission, are used as a common reference for the intercomparison of NUCAPS temperature products to similar products produced by NASA from Atmospheric Infrared Sounder (AIRS) and by European Organisation for the Exploitation of Meteorological Satellites from MetOp-B Infrared Atmospheric Sounding Interferometer (IASI). For seasonal and zonal scales, the NUCAPS agreement with AIRS and IASI is less than 0.5 K after application of averaging kernels.

  6. The lowest surface brightness disc galaxy known

    International Nuclear Information System (INIS)

    Davies, J.I.; Phillipps, S.; Disney, M.J.

    1988-01-01

    The discovery of a galaxy with a prominent bulge and a dominant extremely low surface brightness disc component is reported. The profile of this galaxy is very similar to the recently discovered giant low surface brightness galaxy Malin 1. The disc central surface brightness is found to be ∼ 26.4 Rμ, some 1.5 mag fainter than Malin 1 and thus by far the lowest yet observed. (author)

  7. Radio stars

    International Nuclear Information System (INIS)

    Hjellming, R.M.

    1976-01-01

    Any discussion of the radio emission from stars should begin by emphasizing certain unique problems. First of all, one must clarify a semantic confusion introduced into radio astronomy in the late 1950's when most new radio sources were described as radio stars. All of these early 'radio stars' were eventually identified with other galactic and extra-galactic objects. The study of true radio stars, where the radio emission is produced in the atmosphere of a star, began only in the 1960's. Most of the work on the subject has, in fact, been carried out in only the last few years. Because the real information about radio stars is quite new, it is not surprising that major aspects of the subject are not at all understood. For this reason this paper is organized mainly around three questions: what is the available observational information; what physical processes seem to be involved; and what working hypotheses look potentially fruitful. (Auth.)

  8. Ultra-Fast Outflows in Radio-Loud AGN: New Constraints on Jet-Disk Connection

    Science.gov (United States)

    Sambruna, Rita

    There is strong observational and theoretical evidence that outflows/jets are coupled to accretion disks in black hole accreting systems, from Galactic to extragalactic sizes. While in radio-quiet AGN there is ample evidence for the presence of Ultra-Fast Outflows (UFOs) from the presence of blue-shifted absorption features in their 4-10~keV spectra, sub-relativistic winds are expected on theoretical basis in radio-loud AGN but have not been observed until now. Our recent Suzaku observations of 5 bright Broad- Line Radio Galaxies (BLRGs, the radio-loud counterparts of Seyferts) has started to change this picture. We found strong evidence for UFOs in 3 out of 5 BLRGs, with ionization parameters, column densities, and velocities of the absorber similar to Seyferts. Moreover, the outflows in BLRGs are likely to be energetically very significant: from the Suzaku data of the three sources, outflow masses similar to the accretion masses and kinetic energies of the wind similar to the X-ray luminosity and radio power of the jet are inferred. Clearly, UFOs in radio-loud AGN represent a new key ingredient to understand their central engines and in particular, the jet-disk linkage. Our discovery of UFOs in a handful of BLRGs raises the questions of how common disk winds are in radio-loud AGN, what the absorber physical and dynamical characteristics are, and what is the outflow role in broader picture of galaxy-black hole connection for radio sources, i.e., for large-scale feedback models. To address these and other issues, we propose to use archival XMM-Newton and Suzaku spectra to search for Ultra-Fast Outflows in a large number of radio sources. Over a period of two years, we will conduct a systematic, uniform analysis of the archival X-ray data, building on our extensive experience with a similar previous project for Seyferts, and using robust analysis and statistical methodologies. As an important side product, we will also obtain accurate, self- consistent measurements

  9. IRAS surface brightness maps of reflection nebulae in the Pleiades

    Science.gov (United States)

    Castelaz, Michael W.; Werner, M. W.; Sellgren, K.

    1987-01-01

    Surface brightness maps at 12, 25, 60, and 100 microns were made of a 2.5 deg x 2.5 deg area of the reflection nebulae in the Pleiades by coadding IRAS scans of this region. Emission is seen surrounding 17 Tau, 20 Tau, 23 Tau, and 25 Tau in all four bands, coextensive with the visible reflection nebulosity, and extending as far as 30 arcminutes from the illuminating stars. The infrared energy distributions of the nebulae peak in the 100 micron band, but up to 40 percent of the total infrared power lies in the 12 and 25 micron bands. The brightness of the 12 and 25 micron emission and the absence of temperature gradients at these wavelengths are inconsistent with the predictions of equilibrium thermal emission models. The emission at these wavelengths appears to be the result of micron nonequilibrium emission from very small grains, or from molecules consisting of 10-100 carbon atoms, which have been excited by ultraviolet radiation from the illuminating stars.

  10. Brightness masking is modulated by disparity structure.

    Science.gov (United States)

    Pelekanos, Vassilis; Ban, Hiroshi; Welchman, Andrew E

    2015-05-01

    The luminance contrast at the borders of a surface strongly influences surface's apparent brightness, as demonstrated by a number of classic visual illusions. Such phenomena are compatible with a propagation mechanism believed to spread contrast information from borders to the interior. This process is disrupted by masking, where the perceived brightness of a target is reduced by the brief presentation of a mask (Paradiso & Nakayama, 1991), but the exact visual stage that this happens remains unclear. In the present study, we examined whether brightness masking occurs at a monocular-, or a binocular-level of the visual hierarchy. We used backward masking, whereby a briefly presented target stimulus is disrupted by a mask coming soon afterwards, to show that brightness masking is affected by binocular stages of the visual processing. We manipulated the 3-D configurations (slant direction) of the target and mask and measured the differential disruption that masking causes on brightness estimation. We found that the masking effect was weaker when stimuli had a different slant. We suggest that brightness masking is partly mediated by mid-level neuronal mechanisms, at a stage where binocular disparity edge structure has been extracted. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Brightness and darkness as perceptual dimensions

    NARCIS (Netherlands)

    Vladusich, T.; Lucassen, M.P.; Cornelissen, F.W.

    2007-01-01

    A common-sense assumption concerning visual perception states that brightness and darkness cannot coexist at a given spatial location. One corollary of this assumption is that achromatic colors, or perceived grey shades, are contained in a one-dimensional (1-D) space varying from bright to dark. The

  12. Redesign of the low energy section of the Fermilab linac to improve beam brightness

    International Nuclear Information System (INIS)

    Schmidt, C.; Noble, R.; Palkovic, J.; Mills, F.E.

    1988-10-01

    The critical parameters which limit the luminosity of the Fermilab Tevatron Collider are the beam emittances, both longitudinal and transverse, at each stage in the acceleration sequence. Improvements to reduce invariant emittance growth at earlier acceleration stages necessarily encourage improvements in all downstream stages. Recent advances in linac technology should permit a significant increase in the beam brightness of the Fermilab linac. A redesign of the low energy section of the linac is envisioned to include a circular aperture H/sup /minus// source, a short 30-keV transport line (solenoids, Gabor lenses or einzel lenses) for matching to a radio frequency quadrupole linac (RFQ), and injection at approximately 2 MeV into a new 200 MHz Alvarez linac tank for acceleration to 10 MeV. 9 refs., 1 fig

  13. Effect of evening exposure to bright or dim light after daytime bright light on absorption of dietary carbohydrates the following morning.

    Science.gov (United States)

    Hirota, Naoko; Sone, Yoshiaki; Tokura, Hiromi

    2010-01-01

    We had previously reported on the effect of exposure to light on the human digestive system: daytime bright light exposure has a positive effect, whereas, evening bright light exposure has a negative effect on the efficiency of dietary carbohydrate absorption from the evening meal. These results prompted us to examine whether the light intensity to which subjects are exposed in the evening affects the efficiency of dietary carbohydrate absorption the following morning. In this study, subjects were exposed to either 50 lux (dim light conditions) or 2,000 lux (bright light conditions) in the evening for 9 h (from 15:00 to 24:00) after staying under bright light in the daytime (under 2,000 lux from 07:00 to 15:00). We measured unabsorbed dietary carbohydrates using the breath-hydrogen test the morning after exposure to either bright light or dim light the previous evening. Results showed that there was no significant difference between the two conditions in the amount of breath hydrogen. This indicates that evening exposure to bright or dim light after bright light exposure in the daytime has no varying effect on digestion or absorption of dietary carbohydrates in the following morning's breakfast.

  14. GPU-Based High-performance Imaging for Mingantu Spectral RadioHeliograph

    Science.gov (United States)

    Mei, Ying; Wang, Feng; Wang, Wei; Chen, Linjie; Liu, Yingbo; Deng, Hui; Dai, Wei; Liu, Cuiyin; Yan, Yihua

    2018-01-01

    As a dedicated solar radio interferometer, the MingantU SpEctral RadioHeliograph (MUSER) generates massive observational data in the frequency range of 400 MHz-15 GHz. High-performance imaging forms a significantly important aspect of MUSER’s massive data processing requirements. In this study, we implement a practical high-performance imaging pipeline for MUSER data processing. At first, the specifications of the MUSER are introduced and its imaging requirements are analyzed. Referring to the most commonly used radio astronomy software such as CASA and MIRIAD, we then implement a high-performance imaging pipeline based on the Graphics Processing Unit technology with respect to the current operational status of the MUSER. A series of critical algorithms and their pseudo codes, i.e., detection of the solar disk and sky brightness, automatic centering of the solar disk and estimation of the number of iterations for clean algorithms, are proposed in detail. The preliminary experimental results indicate that the proposed imaging approach significantly increases the processing performance of MUSER and generates images with high-quality, which can meet the requirements of the MUSER data processing. Supported by the National Key Research and Development Program of China (2016YFE0100300), the Joint Research Fund in Astronomy (No. U1531132, U1631129, U1231205) under cooperative agreement between the National Natural Science Foundation of China (NSFC) and the Chinese Academy of Sciences (CAS), the National Natural Science Foundation of China (Nos. 11403009 and 11463003).

  15. Inversion methods for analysis of neutron brightness measurements in tokamaks

    International Nuclear Information System (INIS)

    Gorini, G.; Gottardi, N.

    1990-02-01

    The problem of determining neutron emissivity from neutron brightness measurements in magnetic fusion plasmas is addressed. In the case of two-dimensional measurements with two orthogonal cameras, a complete, tomographic analysis of the data can in principle be performed. The results depend critically on the accuracy of the measurements and alternative solutions can be sought under the assumption of a known emissivity topology (Generalized Abel Inversion). In this work, neutron brightness data from the JET tokamak have been studied with both methods. We find that with the present experimental uncertainty (levels 10-20%) the Abel inversion method works best, while two-dimensional information cannot in general be deduced. This is confirmed by studies of the error propagation in the inversion using artificial data, which are also presented here. An important application of emissivity profile information is the determination of the plasma deuterium temperature profile, T D (R). Results are presented here from the analysis of JET data and the errors in T D (R) are discussed in some detail. It is found that, for typical JET plasma conditions, the dominant source of uncertainty arises from the high plasma impurity level and the fact that it is poorly known; these problems can be expected to be remedied and neutron brightness measurements would be expected to be very effective (especially in high density plasmas) as a T D (R) diagnostics. (author)

  16. Unperturbed moderator brightness in pulsed neutron sources

    International Nuclear Information System (INIS)

    Batkov, K.; Takibayev, A.; Zanini, L.; Mezei, F.

    2013-01-01

    The unperturbed neutron brightness of a moderator can be defined from the number of neutrons leaving the surface of a moderator completely surrounded by a reflector. Without openings for beam extraction, it is the maximum brightness that can be theoretically achieved in a moderator. The unperturbed brightness of a cylindrical cold moderator filled with pure para-H 2 was calculated using MCNPX; the moderator dimensions were optimised, for a fixed target and reflector geometry corresponding to the present concept for the ESS spallation source. This quantity does not depend on openings for beam extraction and therefore can be used for a first-round optimisation of a moderator, before effects due to beam openings are considered. We find that such an optimisation yields to a factor of 2 increase with respect to a conventional volume moderator, large enough to accommodate a viewed surface of 12×12 cm 2 : the unperturbed neutron brightness is maximum for a disc-shaped moderator of 15 cm diameter, 1.4 cm height. The reasons for this increase can be related to the properties of the scattering cross-section of para-H 2 , to the added reflector around the exit surface in the case of a compact moderator, and to a directionality effect. This large optimisation gain in the unperturbed brightness hints towards similar potentials for the perturbed neutron brightness, in particular in conjunction with advancing the optical quality of neutron delivery from the moderator to the sample, where by Liouville theorem the brightness is conserved over the beam trajectory, except for absorption and similar type losses

  17. A radio-pulsing white dwarf binary star.

    Science.gov (United States)

    Marsh, T R; Gänsicke, B T; Hümmerich, S; Hambsch, F-J; Bernhard, K; Lloyd, C; Breedt, E; Stanway, E R; Steeghs, D T; Parsons, S G; Toloza, O; Schreiber, M R; Jonker, P G; van Roestel, J; Kupfer, T; Pala, A F; Dhillon, V S; Hardy, L K; Littlefair, S P; Aungwerojwit, A; Arjyotha, S; Koester, D; Bochinski, J J; Haswell, C A; Frank, P; Wheatley, P J

    2016-09-15

    White dwarfs are compact stars, similar in size to Earth but approximately 200,000 times more massive. Isolated white dwarfs emit most of their power from ultraviolet to near-infrared wavelengths, but when in close orbits with less dense stars, white dwarfs can strip material from their companions and the resulting mass transfer can generate atomic line and X-ray emission, as well as near- and mid-infrared radiation if the white dwarf is magnetic. However, even in binaries, white dwarfs are rarely detected at far-infrared or radio frequencies. Here we report the discovery of a white dwarf/cool star binary that emits from X-ray to radio wavelengths. The star, AR Scorpii (henceforth AR Sco), was classified in the early 1970s as a δ-Scuti star, a common variety of periodic variable star. Our observations reveal instead a 3.56-hour period close binary, pulsing in brightness on a period of 1.97 minutes. The pulses are so intense that AR Sco's optical flux can increase by a factor of four within 30 seconds, and they are also detectable at radio frequencies. They reflect the spin of a magnetic white dwarf, which we find to be slowing down on a 10 7 -year timescale. The spin-down power is an order of magnitude larger than that seen in electromagnetic radiation, which, together with an absence of obvious signs of accretion, suggests that AR Sco is primarily spin-powered. Although the pulsations are driven by the white dwarf's spin, they mainly originate from the cool star. AR Sco's broadband spectrum is characteristic of synchrotron radiation, requiring relativistic electrons. These must either originate from near the white dwarf or be generated in situ at the M star through direct interaction with the white dwarf's magnetosphere.

  18. The brightness of colour.

    Directory of Open Access Journals (Sweden)

    David Corney

    Full Text Available The perception of brightness depends on spatial context: the same stimulus can appear light or dark depending on what surrounds it. A less well-known but equally important contextual phenomenon is that the colour of a stimulus can also alter its brightness. Specifically, stimuli that are more saturated (i.e. purer in colour appear brighter than stimuli that are less saturated at the same luminance. Similarly, stimuli that are red or blue appear brighter than equiluminant yellow and green stimuli. This non-linear relationship between stimulus intensity and brightness, called the Helmholtz-Kohlrausch (HK effect, was first described in the nineteenth century but has never been explained. Here, we take advantage of the relative simplicity of this 'illusion' to explain it and contextual effects more generally, by using a simple Bayesian ideal observer model of the human visual ecology. We also use fMRI brain scans to identify the neural correlates of brightness without changing the spatial context of the stimulus, which has complicated the interpretation of related fMRI studies.Rather than modelling human vision directly, we use a Bayesian ideal observer to model human visual ecology. We show that the HK effect is a result of encoding the non-linear statistical relationship between retinal images and natural scenes that would have been experienced by the human visual system in the past. We further show that the complexity of this relationship is due to the response functions of the cone photoreceptors, which themselves are thought to represent an efficient solution to encoding the statistics of images. Finally, we show that the locus of the response to the relationship between images and scenes lies in the primary visual cortex (V1, if not earlier in the visual system, since the brightness of colours (as opposed to their luminance accords with activity in V1 as measured with fMRI.The data suggest that perceptions of brightness represent a robust

  19. Radio and X-ray properties of the source G29.37+0.1 linked to HESS J1844-030

    Science.gov (United States)

    Castelletti, G.; Supan, L.; Petriella, A.; Giacani, E.; Joshi, B. C.

    2017-06-01

    Aims: We report on the first detailed multiwavelength study of the radio source G29.37+0.1, which is an as-yet-unclassified object linked to the very-high-energy γ-emitting source HESS J1844-030. The origin of the multiwavelength emission toward G29.37+0.1 has not been clarified so far, leaving open the question about the physical relationship between these sources. Methods: Using observations carried out with the Giant Metrewave Radio Telescope (GMRT), we performed high-quality full-synthesis imaging at 610 MHz of the field containing G29.37+0.1. The obtained data, combined with observations at 1400 MHz from The Multi-Array Galactic Plane Imaging Survey (MAGPIS) were used to investigate in detail the properties of its radio emission. Additionally, we reprocessed archival data obtained with the XMM-Newton and Chandra observatories in order to get a multiwavelength view of this unusual source. Results: The radio source G29.37+0.1 mainly consists of a bright twisted structure, named the S-shaped feature. The high sensitivity of the new GMRT observations allowed the identification of potential lobes, jets, and a nuclear central region in the S-shaped morphology of G29.37+0.1. We also highlight the detection of diffuse and low surface brightness emission enveloping the brightest emitting regions. The brightest emission in G29.37+0.1 has a radio synchrotron spectral index α = 0.59 ± 0.09. Variations in the spectral behaviour are observed across the whole radio source with the flattest spectral features in the central nuclear and jets components (α 0.3). These results lead us to conclude that the brightest radio emission from G29.37+0.1 likely represents a newly recognized radio galaxy. The identification of optical and infrared counterparts to the emission arising from the core of G29.37+0.1 strengthens our interpretation of an extragalactic origin of the radio emission. We performed several tests to explain the physical mechanism responsible for the observed X

  20. Radio Occultation Experiments with Venus Express and Mars Express using the Planetary Radio Interferometry and Doppler Experiment (PRIDE) Technique

    Science.gov (United States)

    Bocanegra Bahamon, T.; Gurvits, L.; Molera Calves, G.; Cimo, G.; Duev, D.; Pogrebenko, S.; Dirkx, D.; Rosenblatt, P.

    2017-12-01

    The Planetary Radio Interferometry and Doppler Experiment (PRIDE) is a technique that can be used to enhance multiple radio science experiments of planetary missions. By 'eavesdropping' on the spacecraft signal using radio telescopes from different VLBI networks around the world, the PRIDE technique provides precise open-loop Doppler and VLBI observables to able to reconstruct the spacecraft's orbit. The application of this technique for atmospheric studies has been assessed by observing ESA's Venus Express (VEX) and Mars Express (MEX) during multiple Venus and Mars occultation events between 2012 and 2014. From these observing sessions density, temperature and pressure profiles of Venus and Mars neutral atmosphere and ionosphere have been retrieved. We present an error propagation analysis where the uncertainties of the atmospheric properties measured with this technique have been derived. These activities serve as demonstration of the applicability of the PRIDE technique for radio occultation studies, and provides a benchmark against the traditional Doppler tracking provided by the NASA's DSN and ESA's Estrack networks for these same purposes, in the framework of the upcoming ESA JUICE mission to the Jovian system.

  1. Glacier Melt Detection in Complex Terrain Using New AMSR-E Calibrated Enhanced Daily EASE-Grid 2.0 Brightness Temperature (CETB) Earth System Data Record

    Science.gov (United States)

    Ramage, J. M.; Brodzik, M. J.; Hardman, M.

    2016-12-01

    Passive microwave (PM) 18 GHz and 36 GHz horizontally- and vertically-polarized brightness temperatures (Tb) channels from the Advanced Microwave Scanning Radiometer for EOS (AMSR-E) have been important sources of information about snow melt status in glacial environments, particularly at high latitudes. PM data are sensitive to the changes in near-surface liquid water that accompany melt onset, melt intensification, and refreezing. Overpasses are frequent enough that in most areas multiple (2-8) observations per day are possible, yielding the potential for determining the dynamic state of the snow pack during transition seasons. AMSR-E Tb data have been used effectively to determine melt onset and melt intensification using daily Tb and diurnal amplitude variation (DAV) thresholds. Due to mixed pixels in historically coarse spatial resolution Tb data, melt analysis has been impractical in ice-marginal zones where pixels may be only fractionally snow/ice covered, and in areas where the glacier is near large bodies of water: even small regions of open water in a pixel severely impact the microwave signal. We use the new enhanced-resolution Calibrated Passive Microwave Daily EASE-Grid 2.0 Brightness Temperature (CETB) Earth System Data Record product's twice daily obserations to test and update existing snow melt algorithms by determining appropriate melt thresholds for both Tb and DAV for the CETB 18 and 36 GHz channels. We use the enhanced resolution data to evaluate melt characteristics along glacier margins and melt transition zones during the melt seasons in locations spanning a wide range of melt scenarios, including the Patagonian Andes, the Alaskan Coast Range, and the Russian High Arctic icecaps. We quantify how improvement of spatial resolution from the original 12.5 - 25 km-scale pixels to the enhanced resolution of 3.125 - 6.25 km improves the ability to evaluate melt timing across boundaries and transition zones in diverse glacial environments.

  2. A Fast Radio Burst Every Second?

    Science.gov (United States)

    Kohler, Susanna

    2017-09-01

    far. [Fialkov Loeb 2017]The FRB luminosity functionFRBs may all have the same intrinsic brightness (like Type Ia supernovae, for instance). Alternatively, there may be many more faint and dim FRBs than bright ones (like the distribution of galaxy luminosities). Thisdifference affects the number of FRBs we could detect.The host galaxy populationAre FRBs most commonly hosted by low-mass galaxies like FRB 121102? Or do they occur in high-mass galaxies as well? This affects the number of FRBs we would expect to observe at different redshifts.Future HopeBy exploring a range of models that vary these three factors, Fialkov and Loeb find estimates for the rate of FRBs that would appear inthe 500 MHz3.5 GHz frequency band probed by observatories like Parkes, Arecibo, and the Australian Square Kilometre Array Pathfinder (ASKAP).Fialkov and Loeb find that, when we account for faint sources, one FRB may occur per second across the sky in this band. The authors show that future low-frequency radio telescopes with higher sensitivity, such as the Square Kilometre Array, should be able to detect many more of these sources, helping us to differentiate between the models and narrow down the properties of the bursts and their hosts. This, in turn, may finally reveal what causes these mysterious signals.CitationAnastasia Fialkov and Abraham Loeb 2017 ApJL 846 L27. doi:10.3847/2041-8213/aa8905

  3. INTERFEROMETRIC MONITORING OF GAMMA-RAY BRIGHT AGNs. I. THE RESULTS OF SINGLE-EPOCH MULTIFREQUENCY OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang-Sung; Wajima, Kiyoaki; Algaba, Juan-Carlos; Zhao, Guang-Yao; Hodgson, Jeffrey A.; Byun, Do-Young; Kang, Sincheol; Kim, Soon-Wook; Kino, Motoki [Korea Astronomy and Space Science Institute, 776 Daedeok-daero, Yuseong-gu, Daejeon 34055 (Korea, Republic of); Kim, Dae-Won; Park, Jongho; Kim, Jae-Young; Trippe, Sascha [Department of Physics and Astronomy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826 (Korea, Republic of); Miyazaki, Atsushi [Japan Space Forum, 3-2-1, Kandasurugadai, Chiyoda-ku, Tokyo 101-0062 Japan (Japan); Kim, Jeong-Sook, E-mail: sslee@kasi.re.kr [National Astronomical Observatory of Japan, 2211 Osawa, Mitaka, Tokyo 1818588 (Japan)

    2016-11-01

    We present results of single-epoch very long baseline interferometry (VLBI) observations of gamma-ray bright active galactic nuclei (AGNs) using the Korean VLBI Network (KVN) at the 22, 43, 86, and 129 GHz bands, which are part of a KVN key science program, Interferometric Monitoring of Gamma-Ray Bright AGNs. We selected a total of 34 radio-loud AGNs of which 30 sources are gamma-ray bright AGNs with flux densities of >6 × 10{sup −10} ph cm{sup −2} s{sup −1}. Single-epoch multifrequency VLBI observations of the target sources were conducted during a 24 hr session on 2013 November 19 and 20. All observed sources were detected and imaged at all frequency bands, with or without a frequency phase transfer technique, which enabled the imaging of 12 faint sources at 129 GHz, except for one source. Many of the target sources are resolved on milliarcsecond scales, yielding a core-jet structure, with the VLBI core dominating the synchrotron emission on a milliarcsecond scale. CLEAN flux densities of the target sources are 0.43–28 Jy, 0.32–21 Jy, 0.18–11 Jy, and 0.35–8.0 Jy in the 22, 43, 86, and 129 GHz bands, respectively. Spectra of the target sources become steeper at higher frequency, with spectral index means of −0.40, −0.62, and −1.00 in the 22–43 GHz, 43–86 GHz and 86–129 GHz bands, respectively, implying that the target sources become optically thin at higher frequencies (e.g., 86–129 GHz).

  4. Subjective time runs faster under the influence of bright rather than dim light conditions during the forenoon.

    Science.gov (United States)

    Morita, Takeshi; Fukui, Tomoe; Morofushi, Masayo; Tokura, Hiromi

    2007-05-16

    The study investigated if 6 h morning bright light exposure, compared with dim light exposure, could influence time sense (range: 5-15 s). Eight women served as participants. The participant entered a bioclimatic chamber at 10:00 h on the day before the test day, where an ambient temperature and relative humidity were controlled at 25 degrees C and 60%RH. She sat quietly in a sofa in 50 lx until 22:00 h, retired at 22:00 h and then slept in total darkness. She rose at 07:00 h the following morning and again sat quietly in a sofa till 13:00 h, either in bright (2500 lx) or dim light (50 lx), the order of light intensities between the two occasions being randomized. The time-estimation test was performed from 13:00 to 13:10 h in 200 lx. The participant estimated the time that had elapsed between two buzzers, ranging over 5-15 s, and inputting the estimate into a computer. The test was carried out separately upon each individual. Results showed that the participants estimated higher durations of the given time intervals after previous exposure to 6 h of bright rather than dim light. The finding is discussed in terms of different load errors (difference between the actual core temperature and its thermoregulatory set-point) following 6-h exposure to bright or dim light in the morning.

  5. Bright and durable field emission source derived from refractory taylor cones

    Science.gov (United States)

    Hirsch, Gregory

    2016-12-20

    A method of producing field emitters having improved brightness and durability relying on the creation of a liquid Taylor cone from electrically conductive materials having high melting points. The method calls for melting the end of a wire substrate with a focused laser beam, while imposing a high positive potential on the material. The resulting molten Taylor cone is subsequently rapidly quenched by cessation of the laser power. Rapid quenching is facilitated in large part by radiative cooling, resulting in structures having characteristics closely matching that of the original liquid Taylor cone. Frozen Taylor cones thus obtained yield desirable tip end forms for field emission sources in electron beam applications. Regeneration of the frozen Taylor cones in-situ is readily accomplished by repeating the initial formation procedures. The high temperature liquid Taylor cones can also be employed as bright ion sources with chemical elements previously considered impractical to implement.

  6. Radio stars

    International Nuclear Information System (INIS)

    Hjellming, R.M.; Gibson, D.M.

    1985-01-01

    Studies of stellar radio emission became an important field of research in the 1970's and have now expanded to become a major area of radio astronomy with the advent of new instruments such as the Very Large Array in New Mexico and transcontinental telescope arrays. This volume contains papers from the workshop on stellar continuum radio astronomy held in Boulder, Colorado, and is the first book on the rapidly expanding field of radio emission from stars and stellar systems. Subjects covered include the observational and theoretical aspects of stellar winds from both hot and cool stars, radio flares from active double star systems and red dwarf stars, bipolar flows from star-forming regions, and the radio emission from X-ray binaries. (orig.)

  7. Preparation of rhenium-186 tin colloid as radio synovectomy agent

    International Nuclear Information System (INIS)

    Cecep T Rustendi; Martalena Ramli; M Subur

    2010-01-01

    Radio synovectomy is an alternative therapy besides surgery whereby a beta-emitting radiopharmaceutical is delivered into the affected synovial compartment in order to threat rheumatoid arthritis. One of radiopharmaceuticals that could be applied as radio synovectomy agent is 186 Re-Sn colloid. Preparation of 186 Re-Sn colloid has been carried out by searching the best condition of the reaction to obtain a high labeling efficiency (>95%), appropriate particle size and stable at room temperature. Preparation of 186 Re-Sn colloid has been done successfully using a mol ratio of Sn to Re with value 1000:1 (~50 mg SnCl 2 .2H 2 O) by heating for 90 minutes and resulting >95% labeling efficiency. Stability of 186 Re-Sn colloid was found to be good enough when it was stored at room temperature for 24 hours. The 186 Re-Sn colloid was also found to have an appropriate particle size for radiopharmaceutical agent for radio synovectomy. (author)

  8. IRAS observations of radio-quiet and radio-loud quasars

    Science.gov (United States)

    Neugebauer, G.; Soifer, B. T.; Miley, G.; Habing, H. J.; Young, E.; Low, F. J.; Beichman, C. A.; Clegg, P. E.; Harris, S.; Rowan-Robinson, M.

    1984-01-01

    Observations from 12 to 100 microns are presented of two radio-quiet and three radio-loud quasars. Over this wavelength range, all five have grossly similar continuum energy distributions. The continua of the radio-loud quasars are consistent with synchrotron radiation. There is an indication, however, of excess 100 micron emission in the two radio-quiet quasars.

  9. LOFAR discovery of a double radio halo system in Abell 1758 and radio/X-ray study of the cluster pair

    Science.gov (United States)

    Botteon, A.; Shimwell, T. W.; Bonafede, A.; Dallacasa, D.; Brunetti, G.; Mandal, S.; van Weeren, R. J.; Brüggen, M.; Cassano, R.; de Gasperin, F.; Hoang, D. N.; Hoeft, M.; Röttgering, H. J. A.; Savini, F.; White, G. J.; Wilber, A.; Venturi, T.

    2018-05-01

    Radio halos and radio relics are diffuse synchrotron sources that extend over Mpc-scales and are found in a number of merger galaxy clusters. They are believed to form as a consequence of the energy that is dissipated by turbulence and shocks in the intra-cluster medium (ICM). However, the precise physical processes that generate these steep synchrotron spectrum sources are still poorly constrained. We present a new LOFAR observation of the double galaxy cluster Abell 1758. This system is composed of A1758N, a massive cluster hosting a known giant radio halo, and A1758S, which is a less massive cluster whose diffuse radio emission is confirmed here for the first time. Our observations have revealed a radio halo and a candidate radio relic in A1758S, and a suggestion of emission along the bridge connecting the two systems which deserves confirmation. We combined the LOFAR data with archival VLA and GMRT observations to constrain the spectral properties of the diffuse emission. We also analyzed a deep archival Chandra observation and used this to provide evidence that A1758N and A1758S are in a pre-merger phase. The ICM temperature across the bridge that connects the two systems shows a jump which might indicate the presence of a transversal shock generated in the initial stage of the merger.

  10. The ZTF Bright Transient Survey

    Science.gov (United States)

    Fremling, C.; Sharma, Y.; Kulkarni, S. R.; Miller, A. A.; Taggart, K.; Perley, D. A.; Gooba, A.

    2018-06-01

    As a supplement to the Zwicky Transient Facility (ZTF; ATel #11266) public alerts (ATel #11685) we plan to report (following ATel #11615) bright probable supernovae identified in the raw alert stream from the ZTF Northern Sky Survey ("Celestial Cinematography"; see Bellm & Kulkarni, 2017, Nature Astronomy 1, 71) to the Transient Name Server (https://wis-tns.weizmann.ac.il) on a daily basis; the ZTF Bright Transient Survey (BTS; see Kulkarni et al., 2018; arXiv:1710.04223).

  11. Compact continuum radio sources in the Orion Nebula

    International Nuclear Information System (INIS)

    Garay, G.; Moran, J.M.; Reid, M.J.; European Southern Observatory, Garching, West Germany)

    1987-01-01

    The Orion Nebula was observed with the VLA in order to search for radio emission from compact H II regions indicative of embedded OB stars or from winds associated with pre-main sequence, low-mass stars. Fourteen of the 21 detected radio sources are within 30 arcsec of Omega 1 Orionis C; 13 of these objects are probably neutral condensations surrounded by ionized envelopes that are excited by the star. If the temperature of the ionized envelopes is 10,000 K and their electron densities decrease as the square of the distance from the core center, then a typical neutral condensation has a radius of 10 to the 15th cm and a peak electron density of 400,000/cu cm. Seven sources are in or near the Orion molecular cloud. Four of the sources have optical counterparts. Two are highly variable radio sources associated with X-ray sources, and two have radio spectra indicative of thermal emission. Two of the three optically invisible sources have radio emission likely to arise in a dense ionized envelope surrounding and excited by an early B-type star. 46 references

  12. The night sky brightness at McDonald Observatory

    Science.gov (United States)

    Kalinowski, J. K.; Roosen, R. G.; Brandt, J. C.

    1975-01-01

    Baseline observations of the night sky brightness in B and V are presented for McDonald Observatory. In agreement with earlier work by Elvey and Rudnick (1937) and Elvey (1943), significant night-to-night and same-night variations in sky brightness are found. Possible causes for these variations are discussed. The largest variation in sky brightness found during a single night is approximately a factor of two, a value which corresponds to a factor-of-four variation in airglow brightness. The data are used to comment on the accuracy of previously published surface photometry of M 81.

  13. Atmospheric stability index using radio occultation refractivity profiles

    Indian Academy of Sciences (India)

    A new stability index based on atmospheric refractivity at ∼500 hPa level and surface measurements of temperature ... able at different heights rather than pressure levels. However ..... the radio occultation technique being a limb sound-.

  14. Selection effects in the bivariate brightness distribution for spiral galaxies

    International Nuclear Information System (INIS)

    Phillipps, S.; Disney, M.

    1986-01-01

    The joint distribution of total luminosity and characteristic surface brightness (the bivariate brightness distribution) is investigated for a complete sample of spiral galaxies in the Virgo cluster. The influence of selection and physical limits of various kinds on the apparent distribution are detailed. While the distribution of surface brightness for bright galaxies may be genuinely fairly narrow, faint galaxies exist right across the (quite small) range of accessible surface brightnesses so no statement can be made about the true extent of the distribution. The lack of high surface brightness bright galaxies in the Virgo sample relative to an overall RC2 sample (mostly field galaxies) supports the contention that the star-formation rate is reduced in the inner region of the cluster for environmental reasons. (author)

  15. Antarctic Iceberg Tracking Based on Time Series of Aqua AMSR-E Microwave Brightness Temperature Measurements

    Science.gov (United States)

    Blonski, S.; Peterson, C. A.

    2006-12-01

    Observations of icebergs are identified as one of the requirements for the GEOSS (Global Earth Observation System of Systems) in the area of reducing loss of life and property from natural and human-induced disasters. However, iceberg observations are not included among targets in the GEOSS 10-Year Implementation Plan, and thus there is an unfulfilled need for iceberg detection and tracking in the near future. Large Antarctic icebergs have been tracked by the National Ice Center and by the academic community using a variety of satellite sensors including both passive and active microwave imagers, such as SSM/I (Special Sensor Microwave/Imager) deployed on the DMSP (Defense Meteorological Satellite Program) spacecraft. Improvements provided in recent years by NASA and non-NASA satellite radars, scatterometers, and radiometers resulted in an increased number of observed icebergs and even prompted a question: `Is The Number of Antarctic Icebergs Really Increasing?' [D.G. Long, J. Ballantyne, and C. Bertoia, Eos, AGU Transactions 83(42):469&474, 15 October 2002]. AMSR-E (Advanced Microwave Scanning Radiometer for the Earth Observing System) represents an improvement over SSM/I, its predecessor. AMSR-E has more measurement channels and higher spatial resolution than SSM/I. For example, the instantaneous field of view of the AMSR-E's 89-GHz channels is 6 km by 4 km versus 16 km by 14 km for SSM/I's comparable 85-GHz channels. AMSR-E, deployed on the Aqua satellite, scans across a 1450-km swath and provides brightness temperature measurements with near-global coverage every one or two days. In polar regions, overlapping swaths generate coverage up to multiple times per day and allow for creation of image time series with high temporal resolution. Despite these advantages, only incidental usage of AMSR-E data for iceberg tracking has been reported so far, none in an operational environment. Therefore, an experiment was undertaken in the RPC (Rapid Prototyping Capability

  16. Geometry of the chromosphere-corona transition region inferred from the center-to-limb variation of the radio emission

    Energy Technology Data Exchange (ETDEWEB)

    Kanno, M [Kyoto Univ. (Japan); Tanaka, R [Niigata Univ. (Japan)

    1975-07-01

    Based on the observations of the EUV spectroheliograms, the effective chromosphere-corona transition region is assumed to be restricted in a small volume element in the boundaries of the supergranular network. The center-to-limb variation of the quiet Sun at cm and dm wavelengths is analyzed to determine where the transition region is located in the network boundaries. Expressions are derived for the theoretical center-to-limb variation of the hypothetical brightness temperature only from the transition region, taking into account the orientation of the spicules. Comparison with the observations shows that the spicule-sheath model (Brueckner and Nicolas, 1973) and the hot plagette model (Foukal, 1974) are not compatible with the observations, because the limb brighening predicted by these models is too great. A new picture is therefore proposed that thin platelet transition regions are placed on top of the chromosphere and scattered between the network boundaries (platlet transition-region model). This model is in accord with the observed center to limb variation of the radio emission.

  17. Dark-Bright Soliton Dynamics Beyond the Mean-Field Approximation

    Science.gov (United States)

    Katsimiga, Garyfallia; Koutentakis, Georgios; Mistakidis, Simeon; Kevrekidis, Panagiotis; Schmelcher, Peter; Theory Group of Fundamental Processes in Quantum Physics Team

    2017-04-01

    The dynamics of dark bright solitons beyond the mean-field approximation is investigated. We first examine the case of a single dark-bright soliton and its oscillations within a parabolic trap. Subsequently, we move to the setting of collisions, comparing the mean-field approximation to that involving multiple orbitals in both the dark and the bright component. Fragmentation is present and significantly affects the dynamics, especially in the case of slower solitons and in that of lower atom numbers. It is shown that the presence of fragmentation allows for bipartite entanglement between the distinguishable species. Most importantly the interplay between fragmentation and entanglement leads to the decay of each of the initial mean-field dark-bright solitons into fast and slow fragmented dark-bright structures. A variety of excitations including dark-bright solitons in multiple (concurrently populated) orbitals is observed. Dark-antidark states and domain-wall-bright soliton complexes can also be observed to arise spontaneously in the beyond mean-field dynamics. Deutsche Forschungsgemeinschaft (DFG) in the framework of the SFB 925 ``Light induced dynamics and control of correlated quantum systems''.

  18. On the radiation mechanism of repeating fast radio bursts

    Science.gov (United States)

    Lu, Wenbin; Kumar, Pawan

    2018-06-01

    Recent observations show that fast radio bursts (FRBs) are energetic but probably non-catastrophic events occurring at cosmological distances. The properties of their progenitors are largely unknown in spite of many attempts to determine them using the event rate, duration, and energetics. Understanding the radiation mechanism for FRBs should provide the missing insights regarding their progenitors, which is investigated in this paper. The high brightness temperatures (≳1035 K) of FRBs mean that the emission process must be coherent. Two general classes of coherent radiation mechanisms are considered - maser and the antenna mechanism. We use the observed properties of the repeater FRB 121102 to constrain the plasma conditions needed for these two mechanisms. We have looked into a wide variety of maser mechanisms operating in either vacuum or plasma and find that none of them can explain the high luminosity of FRBs without invoking unrealistic or fine-tuned plasma conditions. The most favourable mechanism is antenna curvature emission by coherent charge bunches where the burst is powered by magnetic reconnection near the surface of a magnetar (B ≳ 1014 G). We show that the plasma in the twisted magnetosphere of a magnetar may be clumpy due to two-stream instability. When magnetic reconnection occurs, the pre-existing density clumps may provide charge bunches for the antenna mechanism to operate. This model should be applicable to all FRBs that have multiple outbursts like FRB 121102.

  19. ON THE RADIO POLARIZATION SIGNATURE OF EFFICIENT AND INEFFICIENT PARTICLE ACCELERATION IN SUPERNOVA REMNANT SN 1006

    Energy Technology Data Exchange (ETDEWEB)

    Reynoso, Estela M. [Instituto de Astronomia y Fisica del Espacio (IAFE), C. C. 67, Suc. 28, 1428 Buenos Aires (Argentina); Hughes, John P. [Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854-8019 (United States); Moffett, David A., E-mail: ereynoso@iafe.uba.ar, E-mail: jph@physics.rutgers.edu, E-mail: david.moffett@furman.edu [Department of Physics, Furman University, Greenville, SC 29613 (United States)

    2013-04-15

    Radio polarization observations provide essential information on the degree of order and orientation of magnetic fields, which themselves play a key role in the particle acceleration processes that take place in supernova remnants (SNRs). Here we present a radio polarization study of SN 1006, based on combined Very Large Array and Australia Telescope Compact Array observations at 20 cm that resulted in sensitive images with an angular resolution of 10 arcsec. The fractional polarization in the two bright radio and X-ray lobes of the SNR is measured to be 0.17, while in the southeastern sector, where the radio and non-thermal X-ray emission are much weaker, the polarization fraction reaches a value of 0.6 {+-} 0.2, close to the theoretical limit of 0.7. We interpret this result as evidence of a disordered, turbulent magnetic field in the lobes, where particle acceleration is believed to be efficient, and a highly ordered field in the southeast, where the acceleration efficiency has been shown to be very low. Utilizing the frequency coverage of our observations, an average rotation measure of {approx}12 rad m{sup -2} is determined from the combined data set, which is then used to obtain the intrinsic direction of the magnetic field vectors. While the orientation of magnetic field vectors across the SNR shell appear to be radial, a large fraction of the magnetic vectors lie parallel to the Galactic plane. Along the highly polarized southeastern rim, the field is aligned tangent to the shock, and therefore also nearly parallel to the Galactic plane. These results strongly suggest that the ambient field surrounding SN 1006 is aligned with this direction (i.e., from northeast to southwest) and that the bright lobes are due to a polar cap geometry. Our study establishes that the most efficient particle acceleration and generation of magnetic turbulence in SN 1006 is attained for shocks in which the magnetic field direction and shock normal are quasi-parallel, while

  20. ON THE RADIO POLARIZATION SIGNATURE OF EFFICIENT AND INEFFICIENT PARTICLE ACCELERATION IN SUPERNOVA REMNANT SN 1006

    International Nuclear Information System (INIS)

    Reynoso, Estela M.; Hughes, John P.; Moffett, David A.

    2013-01-01

    Radio polarization observations provide essential information on the degree of order and orientation of magnetic fields, which themselves play a key role in the particle acceleration processes that take place in supernova remnants (SNRs). Here we present a radio polarization study of SN 1006, based on combined Very Large Array and Australia Telescope Compact Array observations at 20 cm that resulted in sensitive images with an angular resolution of 10 arcsec. The fractional polarization in the two bright radio and X-ray lobes of the SNR is measured to be 0.17, while in the southeastern sector, where the radio and non-thermal X-ray emission are much weaker, the polarization fraction reaches a value of 0.6 ± 0.2, close to the theoretical limit of 0.7. We interpret this result as evidence of a disordered, turbulent magnetic field in the lobes, where particle acceleration is believed to be efficient, and a highly ordered field in the southeast, where the acceleration efficiency has been shown to be very low. Utilizing the frequency coverage of our observations, an average rotation measure of ∼12 rad m –2 is determined from the combined data set, which is then used to obtain the intrinsic direction of the magnetic field vectors. While the orientation of magnetic field vectors across the SNR shell appear to be radial, a large fraction of the magnetic vectors lie parallel to the Galactic plane. Along the highly polarized southeastern rim, the field is aligned tangent to the shock, and therefore also nearly parallel to the Galactic plane. These results strongly suggest that the ambient field surrounding SN 1006 is aligned with this direction (i.e., from northeast to southwest) and that the bright lobes are due to a polar cap geometry. Our study establishes that the most efficient particle acceleration and generation of magnetic turbulence in SN 1006 is attained for shocks in which the magnetic field direction and shock normal are quasi-parallel, while inefficient

  1. Diagnostics for high-brightness beams

    International Nuclear Information System (INIS)

    Shafer, R.E.

    1990-01-01

    Special techniques are required for beam diagnostics on high-brightness particle beams. Examples of high-brightness beams include low-emittance proton linacs (either pulsed or CW), electron linacs suitable for free-electron-laser applications, and future linear colliders. Non-interceptive and minimally-interceptive techniques for measuring beam current, position, profile, and transverse and longitudinal emittance will be reviewed. Included will be stripline, wire scanner, laser neutralization, beam-beam scattering, interceptive microgratings, spontaneous emission, optical transition radiation, and other techniques. 24 refs

  2. Relics in galaxy clusters at high radio frequencies

    Science.gov (United States)

    Kierdorf, M.; Beck, R.; Hoeft, M.; Klein, U.; van Weeren, R. J.; Forman, W. R.; Jones, C.

    2017-04-01

    fronts that are observed edge-on. The polarization degrees correspond to Mach numbers of >2.2. Polarized emission is also detected in the radio relics in ZwCl 0008+52 and, for the first time, in Abell 1612. The smaller sizes and lower degrees of polarizations of the latter relics indicate a weaker shock and/or an inclination between the relic and the sky plane. Abell 1612 shows a complex X-ray surface brightness distribution, indicating a recent major merger and supporting the classification of the radio emission as a radio relic. In our cluster sample, no wavelength-dependent Faraday depolarization is detected between 4.85 GHz and 8.35 GHz, except for one component of the Toothbrush relic. Faraday depolarization between 1.38 GHz and 8.35 GHz varies with distance from the center of the host cluster 1RXS 06+42, which can be explained by a decrease in electron density and/or in strength of a turbulent (or tangled) magnetic field. Faraday rotation measures show large-scale gradients along the relics, which cannot be explained by variations in the Milky Way foreground. Conclusions: Single-dish telescopes are ideal tools to confirm relic candidates and search for new relic candidates. Measurement of the wavelength-dependent depolarization along the Toothbrush relic shows that the electron density of the intra-cluster medium (ICM) and strength of the tangled magnetic field decrease with distance from the center of the foreground cluster. Large-scale regular fields appear to be present in intergalactic space around galaxy clusters. Based on observations with the 100-m telescope at Effelsberg, operated by the Max-Planck-Institut für Radioastronomie (MPIfR) on behalf of the Max-Planck-Gesellschaft.The reduced Stokes parameter images (FITS files) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/600/A18

  3. The importance of Radio Quiet Zone (RQZ) for radio astronomy

    Science.gov (United States)

    Umar, Roslan; Abidin, Zamri Zainal; Ibrahim, Zainol Abidin

    2013-05-01

    Most of radio observatories are located in isolated areas. Since radio sources from the universe is very weak, astronomer need to avoid radio frequency interference (RFI) from active spectrum users and radio noise produced by human made (telecommunication, mobile phone, microwave user and many more. There are many observatories around the world are surrounded by a Radio Quiet Zone (RQZ), which is it was set up using public or state laws. A Radio Quiet Zone normally consists of two areas: an exclusive area in which totally radio emissions are forbidden, with restrictions for residents and business developments, and a larger (radius up to 100 km above) coordination area where the power of radio transmission limits to threshold levels. Geographical Information System (GIS) can be used as a powerful tool in mapping large areas with varying RQZ profiles. In this paper, we report the initial testing of the usage of this system in order to identify the areas were suitable for Radio Quiet Zone. Among the important parameters used to develop the database for our GIS are population density, information on TV and telecommunication (mobile phones) transmitters, road networks (highway), and contour shielding. We will also use other information gathered from on-site RFI level measurements on selected 'best' areas generated by the GIS. The intention is to find the best site for the purpose of establishing first radio quiet zones for radio telescope in Malaysia.

  4. LIMITS ON THE EVENT RATES OF FAST RADIO TRANSIENTS FROM THE V-FASTR EXPERIMENT

    International Nuclear Information System (INIS)

    Wayth, Randall B.; Tingay, Steven J.; Deller, Adam T.; Brisken, Walter F.; Thompson, David R.; Wagstaff, Kiri L.; Majid, Walid A.

    2012-01-01

    We present the first results from the V-FASTR experiment, a commensal search for fast transient radio bursts using the Very Long Baseline Array (VLBA). V-FASTR is unique in that the widely spaced VLBA antennas provide a discriminant against non-astronomical signals and a mechanism for the localization and identification of events that is not possible with single dishes or short baseline interferometers. Thus, far V-FASTR has accumulated over 1300 hr of observation time with the VLBA, between 90 cm and 3 mm wavelength (327 MHz-86 GHz), providing the first limits on fast transient event rates at high radio frequencies (>1.4 GHz). V-FASTR has blindly detected bright individual pulses from seven known pulsars but has not detected any single-pulse events that would indicate high-redshift impulsive bursts of radio emission. At 1.4 GHz, V-FASTR puts limits on fast transient event rates comparable with the PALFA survey at the Arecibo telescope, but generally at lower sensitivities, and comparable to the 'fly's eye' survey at the Allen Telescope Array, but with less sky coverage. We also illustrate the likely performance of the Phase 1 SKA dish array for an incoherent fast transient search fashioned on V-FASTR.

  5. High brightness semiconductor lasers with reduced filamentation

    DEFF Research Database (Denmark)

    McInerney, John; O'Brien, Peter.; Skovgaard, Peter M. W.

    1999-01-01

    High brightness semiconductor lasers have applications in spectroscopy, fiber lasers, manufacturing and materials processing, medicine and free space communication or energy transfer. The main difficulty associated with high brightness is that, because of COD, high power requires a large aperture...

  6. [Multispectral Radiation Algorithm Based on Emissivity Model Constraints for True Temperature Measurement].

    Science.gov (United States)

    Liang, Mei; Sun, Xiao-gang; Luan, Mei-sheng

    2015-10-01

    Temperature measurement is one of the important factors for ensuring product quality, reducing production cost and ensuring experiment safety in industrial manufacture and scientific experiment. Radiation thermometry is the main method for non-contact temperature measurement. The second measurement (SM) method is one of the common methods in the multispectral radiation thermometry. However, the SM method cannot be applied to on-line data processing. To solve the problems, a rapid inversion method for multispectral radiation true temperature measurement is proposed and constraint conditions of emissivity model are introduced based on the multispectral brightness temperature model. For non-blackbody, it can be drawn that emissivity is an increasing function in the interval if the brightness temperature is an increasing function or a constant function in a range and emissivity satisfies an inequality of emissivity and wavelength in that interval if the brightness temperature is a decreasing function in a range, according to the relationship of brightness temperatures at different wavelengths. The construction of emissivity assumption values is reduced from multiclass to one class and avoiding the unnecessary emissivity construction with emissivity model constraint conditions on the basis of brightness temperature information. Simulation experiments and comparisons for two different temperature points are carried out based on five measured targets with five representative variation trends of real emissivity. decreasing monotonically, increasing monotonically, first decreasing with wavelength and then increasing, first increasing and then decreasing and fluctuating with wavelength randomly. The simulation results show that compared with the SM method, for the same target under the same initial temperature and emissivity search range, the processing speed of the proposed algorithm is increased by 19.16%-43.45% with the same precision and the same calculation results.

  7. Photometric behavior of spectral parameters in Vesta dark and bright regions as inferred by the Dawn VIR spectrometer

    Science.gov (United States)

    Longobardo, Andrea; Palomba, Ernesto; Capaccioni, Fabrizio; De Sanctis, Maria Cristina; Tosi, Federico; Ammannito, Eleonora; Schröder, Stefan E.; Zambon, Francesca; Raymond, Carol A.; Russell, Christopher T.

    2014-09-01

    NASA’s Dawn spacecraft orbited Vesta for approximately one year, collecting thousands of hyperspectral images of its surface. The mission revealed that Vesta’s surface shows the largest variations in surface albedo on asteroids visited thus far, due to the presence of dark and bright materials at the local scale (i.e. 0.1-10 km). The aim of this work is to characterize the photometric properties of bright and dark regions, and thus derive and apply an empirical photometric correction to all the hyperspectral observations of Vesta. The very large dataset (i.e. more than 20 million spectra) provided by the VIR imaging spectrometer onboard Dawn enabled accurate statistical analysis of the spectral dataset, aimed at retrieving empirical relations between several spectral parameters (i.e. visible and infrared reflectance, band depths, band centers, Band Area Ratio) and the illumination/viewing angles. The derived relations made it possible to derive photometrically corrected maps of these spectral parameters and to infer information on the regolith shadowing effect in the Vestan dark and bright regions. As an additional analysis, we also evaluated the correlation between surface temperature and band center position. A general conclusion of this analysis is that, from a photometric point of view, the distinction between bright and dark material units lies mainly in the larger contribution due to multiple scattering in the bright units. We observed reflectance and band depth variations over Vesta’s entire surface, but these variations were much larger in the dark regions than in the bright ones. Band centers have been found to shift to longer wavelengths at increasing temperatures, with a trend that is the same observed for HED meteorites (Reddy et al. [2012]. Icarus 217, 153-158). Finally, the Band Area Ratio (i.e. the ratio between areas of the main pyroxene absorption bands located at 1.9 μm and at 0.9 μm, respectively) did not show any dependence on

  8. A Measurement of the Millimeter Emission and the Sunyaev-Zel'dovich Effect Associated with Low-Frequency Radio Sources

    Science.gov (United States)

    Gralla, Megan B.; Crichton, Devin; Marriage, Tobias; Mo, Wenli; Aguirre, Paula; Addison, Graeme E.; Asboth, V.; Battaglia, Nick; Bock, James; Bond, J. Richard; hide

    2014-01-01

    We present a statistical analysis of the millimeter-wavelength properties of 1.4 GHz-selected sources and a detection of the Sunyaev-Zel'dovich effect associated with the halos that host them. We stack data at 148, 218 and 277 GHz from the Atacama Cosmology Telescope at the positions of a large sample of radio AGN selected at 1.4 GHz. The thermal Sunyaev-Zel'dovich (SZ) effect associated with the halos that host the AGN is detected at the 5 sigma level through its spectral signature, representing a statistical detection of the SZ effect in some of the lowest mass halos (average M(sub 200) approximately equals 10(sup 13) solar mass h(sub 70)(exp -1) ) studied to date. The relation between the SZ effect and mass (based on weak lensing measurements of radio galaxies) is consistent with that measured by Planck for local bright galaxies. In the context of galaxy evolution models, this study confirms that galaxies with radio AGN also typically support hot gaseous halos. Adding Herschel observations allows us to show that the SZ signal is not significantly contaminated by dust emission. Finally, we analyze the contribution of radio sources to the angular power spectrum of the cosmic microwave background.

  9. Burkina Faso - BRIGHT II

    Data.gov (United States)

    Millennium Challenge Corporation — Millennium Challenge Corporation hired Mathematica Policy Research to conduct an independent evaluation of the BRIGHT II program. The three main research questions...

  10. RESOLUTION OF THE COMPACT RADIO CONTINUUM SOURCES IN Arp220

    International Nuclear Information System (INIS)

    Batejat, Fabien; Conway, John E.; Hurley, Rossa; Parra, Rodrigo; Diamond, Philip J.; Lonsdale, Colin J.; Lonsdale, Carol J.

    2011-01-01

    We present 2 cm and 3.6 cm wavelength very long baseline interferometry images of the compact radio continuum sources in the nearby ultra-luminous infrared galaxy Arp220. Based on their radio spectra and variability properties, we confirm these sources to be a mixture of supernovae (SNe) and supernova remnants (SNRs). Of the 17 detected sources we resolve 7 at both wavelengths. The SNe generally only have upper size limits. In contrast all the SNRs are resolved with diameters ≥0.27 pc. This size limit is consistent with them having just entered their Sedov phase while embedded in an interstellar medium (ISM) of density 10 4 cm -3 . These objects lie on the diameter-luminosity correlation for SNRs (and so also on the diameter-surface brightness relation) and extend these correlations to very small sources. The data are consistent with the relation L∝D -9/4 . Revised equipartition arguments adjusted to a magnetic field to a relativistic particle energy density ratio of 1% combined with a reasonable synchrotron-emitting volume filling factor of 10% give estimated magnetic field strengths in the SNR shells of ∼15-50 mG. The SNR shell magnetic fields are unlikely to come from compression of ambient ISM fields and must instead be internally generated. We set an upper limit of 7 mG for the ISM magnetic field. The estimated energy in relativistic particles, 2%-20% of the explosion kinetic energy, is consistent with estimates from models that fit the IR-radio correlation in compact starburst galaxies.

  11. Fast radio burst discovered in the Arecibo pulsar ALFA survey

    International Nuclear Information System (INIS)

    Spitler, L. G.; Freire, P. C. C.; Lazarus, P.; Lee, K. J.; Cordes, J. M.; Chatterjee, S.; Wharton, R. S.; Brazier, A.; Hessels, J. W. T.; Lorimer, D. R.; McLaughlin, M. A.; Crawford, F.; Deneva, J. S.; Kaspi, V. M.; Karako-Argaman, C.; Allen, B.; Bogdanov, S.; Camilo, F.; Jenet, F. A.; Knispel, B.

    2014-01-01

    Recent work has exploited pulsar survey data to identify temporally isolated, millisecond-duration radio bursts with large dispersion measures (DMs). These bursts have been interpreted as arising from a population of extragalactic sources, in which case they would provide unprecedented opportunities for probing the intergalactic medium; they may also be linked to new source classes. Until now, however, all so-called fast radio bursts (FRBs) have been detected with the Parkes radio telescope and its 13-beam receiver, casting some concern about the astrophysical nature of these signals. Here we present FRB 121102, the first FRB discovery from a geographic location other than Parkes. FRB 121102 was found in the Galactic anti-center region in the 1.4 GHz Pulsar Arecibo L-band Feed Array (ALFA) survey with the Arecibo Observatory with a DM = 557.4 ± 2.0 pc cm –3 , pulse width of 3.0 ± 0.5 ms, and no evidence of interstellar scattering. The observed delay of the signal arrival time with frequency agrees precisely with the expectation of dispersion through an ionized medium. Despite its low Galactic latitude (b = –0.°2), the burst has three times the maximum Galactic DM expected along this particular line of sight, suggesting an extragalactic origin. A peculiar aspect of the signal is an inverted spectrum; we interpret this as a consequence of being detected in a sidelobe of the ALFA receiver. FRB 121102's brightness, duration, and the inferred event rate are all consistent with the properties of the previously detected Parkes bursts.

  12. Fast radio burst discovered in the Arecibo pulsar ALFA survey

    Energy Technology Data Exchange (ETDEWEB)

    Spitler, L. G.; Freire, P. C. C.; Lazarus, P.; Lee, K. J. [Max-Planck-Institut für Radioastronomie, D-53121 Bonn (Germany); Cordes, J. M.; Chatterjee, S.; Wharton, R. S.; Brazier, A. [Department of Astronomy and Space Sciences, Cornell University, Ithaca, NY 14853 (United States); Hessels, J. W. T. [ASTRON, Netherlands Institute for Radio Astronomy, Postbus 2, 7990 AA, Dwingeloo (Netherlands); Lorimer, D. R.; McLaughlin, M. A. [Department of Physics and Astronomy, West Virginia University, Morgantown, WV 26506 (United States); Crawford, F. [Department of Physics and Astronomy, Franklin and Marshall College, Lancaster, PA 17604-3003 (United States); Deneva, J. S. [Naval Research Laboratory, 4555 Overlook Ave SW, Washington, DC 20375 (United States); Kaspi, V. M.; Karako-Argaman, C. [Department of Physics, McGill University, Montreal, QC H3A 2T8 (Canada); Allen, B. [Physics Department, University of Wisconsin-Milwaukee, Milwaukee, WI 53211 (United States); Bogdanov, S.; Camilo, F. [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Jenet, F. A. [Center for Gravitational Wave Astronomy, University of Texas at Brownsville, Brownsville, TX 78520 (United States); Knispel, B., E-mail: lspitler@mpifr-bonn.mpg.de [Leibniz Universität, Hannover, D-30167 Hannover (Germany); and others

    2014-08-01

    Recent work has exploited pulsar survey data to identify temporally isolated, millisecond-duration radio bursts with large dispersion measures (DMs). These bursts have been interpreted as arising from a population of extragalactic sources, in which case they would provide unprecedented opportunities for probing the intergalactic medium; they may also be linked to new source classes. Until now, however, all so-called fast radio bursts (FRBs) have been detected with the Parkes radio telescope and its 13-beam receiver, casting some concern about the astrophysical nature of these signals. Here we present FRB 121102, the first FRB discovery from a geographic location other than Parkes. FRB 121102 was found in the Galactic anti-center region in the 1.4 GHz Pulsar Arecibo L-band Feed Array (ALFA) survey with the Arecibo Observatory with a DM = 557.4 ± 2.0 pc cm{sup –3}, pulse width of 3.0 ± 0.5 ms, and no evidence of interstellar scattering. The observed delay of the signal arrival time with frequency agrees precisely with the expectation of dispersion through an ionized medium. Despite its low Galactic latitude (b = –0.°2), the burst has three times the maximum Galactic DM expected along this particular line of sight, suggesting an extragalactic origin. A peculiar aspect of the signal is an inverted spectrum; we interpret this as a consequence of being detected in a sidelobe of the ALFA receiver. FRB 121102's brightness, duration, and the inferred event rate are all consistent with the properties of the previously detected Parkes bursts.

  13. Increasing the brightness of light sources

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Ling

    2006-11-16

    In this work the principle of light recycling is applied to artificial light sources in order to achieve brightness enhancement. Firstly, the feasibilities of increasing the brightness of light sources via light recycling are examined theoretically, based on the fundamental laws of thermodynamics including Kirchhoff's law on radiation, Planck's law, Lambert-Beer's law, the etendue conservation and the brightness theorem. From an experimental viewpoint, the radiation properties of three different kinds of light sources including short-arc lamps, incandescent lamps and LEDs characterized by their light-generating mechanisms are investigated. These three types of sources are used in light recycling experiments, for the purpose of 1. validating the intrinsic light recycling effect in light sources, e. g. the intrinsic light recycling effect in incandescent lamps stemming from the coiled filament structure. 2. acquiring the required parameters for establishing physical models, e.g. the emissivity/absorptivity of the short-arc lamps, the intrinsic reflectivity and the external quantum efficiency of LEDs. 3. laying the foundations for designing optics aimed at brightness enhancement according to the characteristics of the sources and applications. Based on the fundamental laws and experiments, two physical models for simulating the radiance distribution of light sources are established, one for thermal filament lamps, the other for luminescent sources, LEDs. As validation of the theoretical and experimental investigation of the light recycling effect, an optical device, the Carambola, is designed for achieving deterministic and multiple light recycling. The Carambola has the function of a concentrator. In order to achieve the maximum possible brightness enhancement with the Carambola, several combinations of sources and Carambolas are modelled in ray-tracing simulations. Sources with different light-emitting mechanisms and different radiation properties

  14. Life-threatening motor vehicle crashes in bright sunlight

    OpenAIRE

    Redelmeier, Donald A.; Raza, Sheharyar

    2017-01-01

    Abstract Bright sunlight may create visual illusions that lead to driver error, including fallible distance judgment from aerial perspective. We tested whether the risk of a life-threatening motor vehicle crash was increased when driving in bright sunlight. This longitudinal, case-only, paired-comparison analysis evaluated patients hospitalized because of a motor vehicle crash between January 1, 1995 and December 31, 2014. The relative risk of a crash associated with bright sunlight was estim...

  15. The Effect of Solar Radiation on Radio Signal for Radio Astronomy Purposes

    International Nuclear Information System (INIS)

    Nor Hazmin Sabri; Atiq Wahidah Azlan; Roslan Umar; Roslan Umar; Shahirah Syafa Sulan; Zainol Abidin Ibrahim; Wan Zul Adli Wan Mokhtar

    2015-01-01

    Radio astronomy is a subfields of astronomy which is discovers the celestial objects at radio frequencies. Observation in radio astronomy is conducted using single antenna or array of antennas, known as radio telescope. Other than that, radio astronomy also holds an advantage over other alternatives to optical astronomy due to its capability of observing from the ground level. In this study, the effect of solar radiation that contributes the Radio Frequency Interferences (RFI) is reviewed. The low RFI level is required to set up the radio telescope for radio astronomy observation. The effect of solar radiation on radio signal was investigated by determining the RFI pattern using spectrum analyzer. The solar radiation data was obtained from weather station located at KUSZA Observatory, East Coast Environmental Research Institute (ESERI), UniSZA. We can conclude that the solar radiation factor give the minimum significant effect to radio signal. (author)

  16. Impact of land convection on temperature diurnal variation in the tropical lower stratosphere inferred from COSMIC GPS radio occultations

    Directory of Open Access Journals (Sweden)

    S. M. Khaykin

    2013-07-01

    Full Text Available Following recent studies evidencing the influence of deep convection on the chemical composition and thermal structure of the tropical lower stratosphere, we explore its impact on the temperature diurnal variation in the upper troposphere and lower stratosphere using the high-resolution COSMIC GPS radio-occultation temperature measurements spanning from 2006 through 2011. The temperature in the lowermost stratosphere over land during summer displays a marked diurnal cycle characterized by an afternoon cooling. This diurnal cycle is shown collocated with most intense land convective areas observed by the Tropical Rainfall Measurement Mission (TRMM precipitation radar and in phase with the maximum overshooting occurrence frequency in late afternoon. Two processes potentially responsible for that are identified: (i non-migrating tides, whose physical nature is internal gravity waves, and (ii local cross-tropopause mass transport of adiabatically cooled air by overshooting turrets. Although both processes can contribute, only the lofting of adiabatically cooled air is well captured by models, making it difficult to characterize the contribution of non-migrating tides. The impact of deep convection on the temperature diurnal cycle is found larger in the southern tropics, suggesting more vigorous convection over clean rain forest continents than desert areas and polluted continents in the northern tropics.

  17. High-brightness fiber-coupled pump laser development

    Science.gov (United States)

    Price, Kirk; Karlsen, Scott; Leisher, Paul; Martinsen, Robert

    2010-02-01

    We report on the continued development of high brightness laser diode modules at nLIGHT Photonics. These modules, based on nLIGHT's PearlTM product platform, demonstrate excellence in output power, brightness, wavelength stabilization, and long wavelength performance. This system, based on 14 single emitters, is designed to couple diode laser light into a 105 μm fiber at an excitation NA of under 0.14. We demonstrate over 100W of optical power at 9xx nm with a diode brightness exceeding 20 MW/cm2-str with an operating efficiency of approximately 50%. Additional results show over 70W of optical coupled at 8xx nm. Record brilliance at wavelengths 14xx nm and longer will also be demonstrated, with over 15 W of optical power with a beam quality of 7.5 mm-mrad. These results of high brightness, high efficiency, and wavelength stabilization demonstrate the pump technology required for next generation solid state and fiber lasers.

  18. Radio-Frequency-Based NH₃-Selective Catalytic Reduction Catalyst Control: Studies on Temperature Dependency and Humidity Influences.

    Science.gov (United States)

    Dietrich, Markus; Hagen, Gunter; Reitmeier, Willibald; Burger, Katharina; Hien, Markus; Grass, Philippe; Kubinski, David; Visser, Jaco; Moos, Ralf

    2017-07-12

    The upcoming more stringent automotive emission legislations and current developments have promoted new technologies for more precise and reliable catalyst control. For this purpose, radio-frequency-based (RF) catalyst state determination offers the only approach for directly measuring the NH₃ loading on selective catalytic reduction (SCR) catalysts and the state of other catalysts and filter systems. Recently, the ability of this technique to directly control the urea dosing on a current NH₃ storing zeolite catalyst has been demonstrated on an engine dynamometer for the first time and this paper continues that work. Therefore, a well-known serial-type and zeolite-based SCR catalyst (Cu-SSZ-13) was investigated under deliberately chosen high space velocities. At first, the full functionality of the RF system with Cu-SSZ-13 as sample was tested successfully. By direct RF-based NH₃ storage control, the influence of the storage degree on the catalyst performance, i.e., on NO x conversion and NH₃ slip, was investigated in a temperature range between 250 and 400 °C. For each operation point, an ideal and a critical NH₃ storage degree was found and analyzed in the whole temperature range. Based on the data of all experimental runs, temperature dependent calibration functions were developed as a basis for upcoming tests under transient conditions. Additionally, the influence of exhaust humidity was observed with special focus on cold start water and its effects to the RF signals.

  19. Assimilation of SMOS Brightness Temperatures or Soil Moisture Retrievals into a Land Surface Model

    Science.gov (United States)

    De Lannoy, Gabrielle J. M.; Reichle, Rolf H.

    2016-01-01

    Three different data products from the Soil Moisture Ocean Salinity (SMOS) mission are assimilated separately into the Goddard Earth Observing System Model, version 5 (GEOS-5) to improve estimates of surface and root-zone soil moisture. The first product consists of multi-angle, dual-polarization brightness temperature (Tb) observations at the bottom of the atmosphere extracted from Level 1 data. The second product is a derived SMOS Tb product that mimics the data at a 40 degree incidence angle from the Soil Moisture Active Passive (SMAP) mission. The third product is the operational SMOS Level 2 surface soil moisture (SM) retrieval product. The assimilation system uses a spatially distributed ensemble Kalman filter (EnKF) with seasonally varying climatological bias mitigation for Tb assimilation, whereas a time-invariant cumulative density function matching is used for SM retrieval assimilation. All assimilation experiments improve the soil moisture estimates compared to model-only simulations in terms of unbiased root-mean-square differences and anomaly correlations during the period from 1 July 2010 to 1 May 2015 and for 187 sites across the US. Especially in areas where the satellite data are most sensitive to surface soil moisture, large skill improvements (e.g., an increase in the anomaly correlation by 0.1) are found in the surface soil moisture. The domain-average surface and root-zone skill metrics are similar among the various assimilation experiments, but large differences in skill are found locally. The observation-minus-forecast residuals and analysis increments reveal large differences in how the observations add value in the Tb and SM retrieval assimilation systems. The distinct patterns of these diagnostics in the two systems reflect observation and model errors patterns that are not well captured in the assigned EnKF error parameters. Consequently, a localized optimization of the EnKF error parameters is needed to further improve Tb or SM retrieval

  20. Radio frequency integrated circuit design for cognitive radio systems

    CERN Document Server

    Fahim, Amr

    2015-01-01

    This book fills a disconnect in the literature between Cognitive Radio systems and a detailed account of the circuit implementation and architectures required to implement such systems.  Throughout the book, requirements and constraints imposed by cognitive radio systems are emphasized when discussing the circuit implementation details.  In addition, this book details several novel concepts that advance state-of-the-art cognitive radio systems.  This is a valuable reference for anybody with background in analog and radio frequency (RF) integrated circuit design, needing to learn more about integrated circuits requirements and implementation for cognitive radio systems. ·         Describes in detail cognitive radio systems, as well as the circuit implementation and architectures required to implement them; ·         Serves as an excellent reference to state-of-the-art wideband transceiver design; ·         Emphasizes practical requirements and constraints imposed by cognitive radi...

  1. A dynamo theory prediction for solar cycle 22: Sunspot number, radio flux, exospheric temperature, and total density at 400 km

    Science.gov (United States)

    Schatten, K. H.; Hedin, A. E.

    1986-01-01

    Using the dynamo theory method to predict solar activity, a value for the smoothed sunspot number of 109 + or - 20 is obtained for solar cycle 22. The predicted cycle is expected to peak near December, 1990 + or - 1 year. Concommitantly, F(10.7) radio flux is expected to reach a smoothed value of 158 + or - 18 flux units. Global mean exospheric temperature is expected to reach 1060 + or - 50 K and global total average total thermospheric density at 400 km is expected to reach 4.3 x 10 to the -15th gm/cu cm + or - 25 percent.

  2. A dynamo theory prediction for solar cycle 22 - Sunspot number, radio flux, exospheric temperature, and total density at 400 km

    Science.gov (United States)

    Schatten, K. H.; Hedin, A. E.

    1984-01-01

    Using the 'dynamo theory' method to predict solar activity, a value for the smoothed sunspot number of 109 + or - 20 is obtained for solar cycle 22. The predicted cycle is expected to peak near December, 1990 + or - 1 year. Concommitantly, F(10.7) radio flux is expected to reach a smoothed value of 158 + or - 18 flux units. Global mean exospheric temperature is expected to reach 1060 + or - 50 K and global total average total thermospheric density at 400 km is expected to reach 4.3 x 10 to the -15th gm/cu cm + or - 25 percent.

  3. Sub-seasonal temperature variability in the tropical upper troposphere and lower stratosphere observed with GPS radio occultation

    Science.gov (United States)

    Scherllin-Pirscher, Barbara; Randel, William J.; Kim, Joowan

    2017-04-01

    We investigate sub-seasonal temperature variability in the tropical upper troposphere and lower stratosphere (UTLS) region using daily gridded fields of GPS radio occultation measurements. The unprecedented vertical resolution (from about 100 m in the troposphere to about 1.5 km in the stratosphere) and high accuracy and precision (0.7 K to 1 K between 8 km and 25 km) make these data ideal for characterizing temperature oscillations with short vertical wavelengths. Long-term behavior of sub-seasonal temperature variability is investigated using the entire RO record from January 2002 to December 2014 (13 years of data). Transient sub-seasonal waves including eastward-propagating Kelvin waves (isolated with space-time spectral analysis) dominate large-scale zonal temperature variability in the tropical tropopause region and in the lower stratosphere. Above 20 km, Kelvin waves are strongly modulated by the quasi-biennial oscillation (QBO). Enhanced wave activity can be found during the westerly shear phase of the QBO. In the tropical tropopause region, however, sub-seasonal waves are highly transient in time. Several peaks of Kelvin-wave activity coincide with short-term fluctuations in tropospheric deep convection, but other episodes are not evidently related. Also, there are no obvious relationships with zonal winds or stability fields near the tropical tropopause. Further investigations of convective forcing and atmospheric background conditions along the waves' trajectories are needed to better understand sub-seasonal temperature variability near the tropopause. For more details, see Scherllin-Pirscher, B., Randel, W. J., and Kim, J.: Tropical temperature variability and Kelvin-wave activity in the UTLS from GPS RO measurements, Atmos. Chem. Phys., 17, 793-806, doi:10.5194/acp-17-793-2017, 2017. http://www.atmos-chem-phys.net/17/793/2017/acp-17-793-2017.html

  4. The surface brightness of spiral galaxies

    International Nuclear Information System (INIS)

    Phillipps, S.; Disney, M.

    1983-01-01

    It is proposed that Freeman's discovery that the extrapolated central surface brightness of spiral galaxies is approximately constant can be simply explained if the galaxies contain a spheroidal component which dominates the light in their outer isophotes. Calculations of an effective central surface brightness indicate a wide spread of values. This requires either a wide spread in disc properties or significant spheroidal components or, most probably, both. (author)

  5. A BROADBAND RADIO STUDY OF THE AVERAGE PROFILE AND GIANT PULSES FROM PSR B1821-24A

    Energy Technology Data Exchange (ETDEWEB)

    Bilous, A. V. [Department of Astrophysics/IMAPP, Radboud University Nijmegen, P.O. Box 9010, 6500 GL Nijmegen (Netherlands); Pennucci, T. T. [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904 (United States); Demorest, P. [National Radio Astronomy Observatory, P.O. Box O, Socorro, NM 87801 (United States); Ransom, S. M., E-mail: a.bilous@science.ru.nl [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States)

    2015-04-20

    We present the results of a wideband (720–2400 MHz) study of PSR B1821–24A (J1824–2452A, M28A), an energetic millisecond pulsar (MSP) visible in radio, X-rays and γ-rays. In radio, the pulsar has a complex average profile that spans ≳85% of the spin period and exhibits strong evolution with observing frequency. For the first time we measure phase-resolved polarization properties and spectral indices of radio emission throughout almost all of the on-pulse window. We synthesize our findings with high-energy information to compare M28A to other known γ-ray MSPs and to speculate that M28A’s radio emission originates in multiple regions within its magnetosphere (i.e., both in the slot or outer gaps near the light cylinder and at lower altitudes above the polar cap). M28A is one of a handful of pulsars that are known to emit giant radio pulses (GRPs)—short, bright radio pulses of unknown nature. We report a drop in the linear polarization of the average profile in both windows of GRP generation and also a “W”-shaped absorption feature (resembling a double notch), partly overlapping with one of the GRP windows. The GRPs themselves have broadband spectra consisting of multiple patches with Δν/ν ∼ 0.07. Although our time resolution was not sufficient to resolve the GRP structure on the μs scale, we argue that GRPs from this pulsar most closely resemble the GRPs from the main pulse of the Crab pulsar, which consist of a series of narrowband nanoshots.

  6. GALARIO: a GPU accelerated library for analysing radio interferometer observations

    Science.gov (United States)

    Tazzari, Marco; Beaujean, Frederik; Testi, Leonardo

    2018-06-01

    We present GALARIO, a computational library that exploits the power of modern graphical processing units (GPUs) to accelerate the analysis of observations from radio interferometers like Atacama Large Millimeter and sub-millimeter Array or the Karl G. Jansky Very Large Array. GALARIO speeds up the computation of synthetic visibilities from a generic 2D model image or a radial brightness profile (for axisymmetric sources). On a GPU, GALARIO is 150 faster than standard PYTHON and 10 times faster than serial C++ code on a CPU. Highly modular, easy to use, and to adopt in existing code, GALARIO comes as two compiled libraries, one for Nvidia GPUs and one for multicore CPUs, where both have the same functions with identical interfaces. GALARIO comes with PYTHON bindings but can also be directly used in C or C++. The versatility and the speed of GALARIO open new analysis pathways that otherwise would be prohibitively time consuming, e.g. fitting high-resolution observations of large number of objects, or entire spectral cubes of molecular gas emission. It is a general tool that can be applied to any field that uses radio interferometer observations. The source code is available online at http://github.com/mtazzari/galario under the open source GNU Lesser General Public License v3.

  7. Preliminary Evaluation of Influence of Aerosols on the Simulation of Brightness Temperature in the NASA's Goddard Earth Observing System Atmospheric Data Assimilation System

    Science.gov (United States)

    Kim, Jong; Akella, Santha; da Silva, Arlindo M.; Todling, Ricardo; McCarty, William

    2018-01-01

    This document reports on preliminary results obtained when studying the impact of aerosols on the calculation of brightness temperature (BT) for satellite infrared (IR) instruments that are currently assimilated in a 3DVAR configuration of Goddard Earth Observing System (GEOS)-atmospheric data assimilation system (ADAS). A set of fifteen aerosol species simulated by the Goddard Chemistry Aerosol Radiation and Transport (GOCART) model is used to evaluate the influence of the aerosol fields on the Community Radiative Transfer Model (CRTM) calculations taking place in the observation operators of the Gridpoint Statistical Interpolation (GSI) analysis system of GEOSADAS. Results indicate that taking aerosols into account in the BT calculation improves the fit to observations over regions with significant amounts of dust. The cooling effect obtained with the aerosol-affected BT leads to a slight warming of the analyzed surface temperature (by about 0:5oK) in the tropical Atlantic ocean (off northwest Africa), whereas the effect on the air temperature aloft is negligible. In addition, this study identifies a few technical issues to be addressed in future work if aerosol-affected BT are to be implemented in reanalysis and operational settings. The computational cost of applying CRTM aerosol absorption and scattering options is too high to justify their use, given the size of the benefits obtained. Furthermore, the differentiation between clouds and aerosols in GSI cloud detection procedures needs satisfactory revision.

  8. The extreme behavior of the radio-loud narrow-line Seyfert 1 galaxy J0849+5108

    International Nuclear Information System (INIS)

    Maune, Jeremy D.; Eggen, Joseph R.; Miller, H. Richard; Marshall, Kevin; Readhead, Anthony C. S.; Hovatta, Talvikki; King, Oliver

    2014-01-01

    Simultaneous radio, optical (both photometry and polarimetry), X-ray, and γ-ray observations of the radio-loud narrow-line Seyfert 1 (RL-NLSy1) galaxy J0849+5108 are presented. A massive three-magnitude optical flare across five nights in 2013 April is detected, along with associated flux increases in the γ-ray, infrared, and radio regimes; no comparable event was detected in the X-rays, though this may be due to poor coverage. A spectral energy distribution (SED) for the object using quasi-simultaneous data centered on the optical flare is compared to the previously published SEDs for the object by D'Ammando et al. The flare event coincided with a high degree of optical polarization. High amplitude optical microvariability is clearly detected, and is found to be of comparable amplitude when the object is observed in both faint and bright states. The object is also seen to undergo rapid shifts in polarization in both degree and electric vector position angle within a single night. J0849+5108 appears to show even more extreme variability than that previously reported for the similar object J0948+0022. These observations appear to support the growing claim that some RL-NLSy1 galaxies constitute a sub-class of blazar-like active galactic nuclei.

  9. The extreme behavior of the radio-loud narrow-line Seyfert 1 galaxy J0849+5108

    Energy Technology Data Exchange (ETDEWEB)

    Maune, Jeremy D.; Eggen, Joseph R.; Miller, H. Richard [Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303-3083 (United States); Marshall, Kevin [Department of Physics and Astronomy, Widener University, Chester, PA 19013 (United States); Readhead, Anthony C. S.; Hovatta, Talvikki; King, Oliver, E-mail: maune@chara.gsu.edu [Cahill Laboratory of Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States)

    2014-10-10

    Simultaneous radio, optical (both photometry and polarimetry), X-ray, and γ-ray observations of the radio-loud narrow-line Seyfert 1 (RL-NLSy1) galaxy J0849+5108 are presented. A massive three-magnitude optical flare across five nights in 2013 April is detected, along with associated flux increases in the γ-ray, infrared, and radio regimes; no comparable event was detected in the X-rays, though this may be due to poor coverage. A spectral energy distribution (SED) for the object using quasi-simultaneous data centered on the optical flare is compared to the previously published SEDs for the object by D'Ammando et al. The flare event coincided with a high degree of optical polarization. High amplitude optical microvariability is clearly detected, and is found to be of comparable amplitude when the object is observed in both faint and bright states. The object is also seen to undergo rapid shifts in polarization in both degree and electric vector position angle within a single night. J0849+5108 appears to show even more extreme variability than that previously reported for the similar object J0948+0022. These observations appear to support the growing claim that some RL-NLSy1 galaxies constitute a sub-class of blazar-like active galactic nuclei.

  10. The effect of bright lines in environmental risk communication

    International Nuclear Information System (INIS)

    Wilson, K.N.; Desvousges, W.H.; Smith, K.V.; Payne, J.

    1993-01-01

    Bright lines in environmental risk communication refer to the specific levels at which an environmental risk becomes a serious health threat and action should be taken to mitigate its effects. This study examined the effect of ''bright lines'' in risk communication by emphasizing the radon exposure threshold level of 4 picocuries per liter. Specifically, the authors developed a computer-assisted interview containing bright-line versions of risk information. The bright-line version contained a range of possible radon levels, the corresponding number of estimated lung cancer cases, the relative health risk from radon compared to other health risks, and the EPA guidelines for mitigating levels above 4 picocuries in the home. The non-bright line version was identical to the bright-line version, except it did not include the EPA's mitigation recommendations. Effect measures included respondents' change in perceived risk after reading their materials, intended testing behavior, and advice to their neighbor for a specified radon level either above or below the 4 picocury threshold level. This paper discusses broader policy implications for designing effective risk communication programs

  11. The Growth, Polarization, and Motion of the Radio Afterglow from the Giant Flare from SGR 1806-20

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, G

    2005-04-20

    The extraordinary giant flare (GF) of 2004 December 27 from the soft gamma repeater (SGR) 1806-20 was followed by a bright radio afterglow. We present an analysis of VLA observations of this radio afterglow from SGR1806-20, consisting of previously reported 8.5 GHz data covering days 7 to 20 after the GF, plus new observations at 8.5 and 22 GHz from day 24 to 81. For a symmetric outflow, we find a deceleration in the expansion, from {approx}4.5 mas/day to <2.5 mas/day. The time of deceleration is roughly coincident with the rebrightening in the radio light curve, as expected to result when the ejecta from the GF sweeps up enough of the external medium, and transitions from a coasting phase to the Sedov-Taylor regime. The radio afterglow is elongated and maintains a 2:1 axis ratio with an average position angle of -40{sup o} (north through east), oriented perpendicular to the average intrinsic linear polarization angle. We also report on the discovery of motion in the flux centroid of the afterglow, at an average velocity of 0.26 {+-} 0.03 c (assuming a distance of 15 kpc) at a position angle of -45{sup o}. This motion, in combination with the growth and polarization measurements, suggests an initially asymmetric outflow, mainly from one side of the magnetar.

  12. Radio observations reveal a smooth circumstellar environment around the extraordinary type Ib supernova 2012au

    Energy Technology Data Exchange (ETDEWEB)

    Kamble, Atish; Soderberg, Alicia M.; Margutti, Raffaella; Milisavljevic, Dan; Chakraborti, Sayan; Dittmann, Jason; Drout, Maria; Sanders, Nathan [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Chomiuk, Laura [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Medvedev, Mikhail [The Department of Physics and Astronomy, University of Kansas, Lawrence, KS 66045 (United States); Chevalier, Roger [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904-4325 (United States); Chugai, Nikolai [Institute of Astronomy, Russian Academy of Sciences, Pyatnitskaya 48, 109017 Moscow (Russian Federation); Fransson, Claes [Department of Astronomy, The Oskar Klein Centre, Stockholm University, AlbaNova University Centre, SE-106 91 Stockholm (Sweden); Nakar, Ehud, E-mail: atish.vyas@gmail.com [Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978 (Israel)

    2014-12-10

    We present extensive radio and X-ray observations of SN 2012au, an energetic, radio-luminous supernova of Type Ib that exhibits multi-wavelength properties bridging subsets of hydrogen-poor superluminous supernovae, hypernovae, and normal core-collapse supernovae. The observations closely follow models of synchrotron emission from a shock-heated circumburst medium that has a wind density profile (ρ∝r {sup –2}). We infer a sub-relativistic velocity for the shock wave v ≈ 0.2 c and a radius of r ≈ 1.4 × 10{sup 16}cm at 25 days after the estimated date of explosion. For a wind velocity of 1000 km s{sup –1}, we determine the mass-loss rate of the progenitor to be M-dot =3.6×10{sup −6} M{sub ⊙} yr{sup −1}, consistent with the estimates from X-ray observations. We estimate the total internal energy of the radio-emitting material to be E ≈ 10{sup 47} erg, which is intermediate to SN 1998bw and SN 2002ap. The evolution of the radio light curve of SN 2012au is in agreement with its interaction with a smoothly distributed circumburst medium and the absence of stellar shells ejected from previous outbursts out to r ≈ 10{sup 17} cm from the supernova site. We conclude that the bright radio emission from SN 2012au was not dissimilar from other core-collapse supernovae despite its extraordinary optical properties, and that the evolution of the SN 2012au progenitor star was relatively quiet, marked with a steady mass loss, during the final years preceding explosion.

  13. EPISODIC STAR FORMATION COUPLED TO REIGNITION OF RADIO ACTIVITY IN 3C 236

    International Nuclear Information System (INIS)

    Tremblay, Grant R.; O'Dea, Christopher P.; Baum, Stefi A.; Koekemoer, Anton M.; Sparks, William B.; De Bruyn, Ger; Schoenmakers, Arno P.

    2010-01-01

    We present Hubble Space Telescope Advanced Camera for Surveys and STIS FUV/NUV/optical imaging of the radio galaxy 3C 236, whose relic ∼4 Mpc radio jet lobes and inner 2 kpc compact steep spectrum (CSS) radio source are evidence of multiple epochs of active galactic nucleus (AGN) activity. Consistent with previous results, our data confirm the presence of four bright knots of FUV emission in an arc along the edge of the inner circumnuclear dust disk in the galaxy's nucleus, as well as FUV emission cospatial with the nucleus itself. We interpret these to be sites of recent or ongoing star formation. We present photometry of these knots, as well as an estimate for the internal extinction in the source using line ratios from archival ground-based spectroscopy. We estimate the ages of the knots by comparing our extinction-corrected photometry with stellar population synthesis models. We find the four knots cospatial with the dusty disk to be young, of order ∼10 7 yr old. The FUV emission in the nucleus, to which we do not expect scattered light from the AGN to contribute significantly, is likely due to an episode of star formation triggered ∼10 9 yr ago. We argue that the young ∼10 7 yr old knots stem from an episode of star formation that was roughly coeval with the event resulting in reignition of radio activity, creating the CSS source. The ∼10 9 yr old stars in the nucleus may be associated with the previous epoch of radio activity that generated the 4 Mpc relic source, before being cut off by exhaustion or interruption. The ages of the knots, considered in the context of both the disturbed morphology of the nuclear dust and the double-double morphology of the 'old' and 'young' radio sources, present evidence for an AGN/starburst connection that is possibly episodic in nature. We suggest that the AGN fuel supply was interrupted for ∼10 7 yr due to a minor merger event and has now been restored. The resultant nonsteady flow of gas in the disk is likely

  14. Bright boys the making of information technology

    CERN Document Server

    Green, Tom

    2010-01-01

    Everything has a beginning. None was more profound-and quite as unexpected-than Information Technology. Here for the first time is the untold story of how our new age came to be and the bright boys who made it happen. What began on the bare floor of an old laundry building eventually grew to rival in size the Manhattan Project. The unexpected consequence of that journey was huge---what we now know as Information Technology. For sixty years the bright boys have been totally anonymous while their achievements have become a way of life for all of us. "Bright Boys" brings them home. By 1950 they'd

  15. Modeling the effect of adverse environmental conditions and clothing on temperature rise in a human body exposed to radio frequency electromagnetic fields.

    Science.gov (United States)

    Moore, Stephen M; McIntosh, Robert L; Iskra, Steve; Wood, Andrew W

    2015-02-01

    This study considers the computationally determined thermal profile of a fully clothed, finely discretized, heterogeneous human body model, subject to the maximum allowable reference level for a 1-GHz radio frequency electromagnetic field for a worker, and also subject to adverse environmental conditions, including high humidity and high ambient temperature. An initial observation is that while electromagnetic fields at the occupational safety limit will contribute an additional thermal load to the tissues, and subsequently, cause an elevated temperature, the magnitude of this effect is far outweighed by that due to the conditions including the ambient temperature, relative humidity, and the type of clothing worn. It is envisaged that the computational modeling approach outlined in this paper will be suitably modified in future studies to evaluate the thermal response of a body at elevated metabolic rates, and for different body shapes and sizes including children and pregnant women.

  16. Star formation and the surface brightness of spiral galaxies

    International Nuclear Information System (INIS)

    Phillipps, S.; Disney, M.

    1985-01-01

    The (blue) surface brightness of spiral galaxies is significantly correlated with their Hα linewidth. This can be most plausibly interpreted as a correlation of surface brightness with star formation rate. There is also a significant difference in surface brightness between galaxies forming stars in a grand design spiral pattern and those with floc star formation regions. (author)

  17. Introduction to solar radio astronomy and radio physics

    International Nuclear Information System (INIS)

    Krueger, A.

    1979-01-01

    A systematic summary is presented of the work done during the last thirty years in the field of solar radio astronomy from the standpoint of general solar physics. Instrumental aspects, observations and theory are covered. A brief introduction is given to the matter consisting of the history of solar radio astronomy and some fundamentals of astronomy and solar physics are outlined. Some topics of the instrumental background of solar radio astronomy and the main results of observations are presented. The elements of a theoretical interpretation of solar radio observations are reported and a synthesis of both observation and theory contributing to a general picture of solar and solar-terrestrial physics is outlined. (C.F./Auth)

  18. MISALIGNMENT OF THE JET AND THE NORMAL TO THE DUSTY TORUS IN THE BROAD ABSORPTION LINE QSO FIRST J155633.8+351758

    International Nuclear Information System (INIS)

    Reynolds, Cormac; Punsly, Brian; O'Dea, Christopher P.

    2013-01-01

    We performed Very Long Baseline Array observations of the broad absorption line quasar FIRST J155633.8+351758, ''the first radio loud BALQSO''. Our observations at 15.3 GHz partially resolved a secondary component at position angle (P.A.) ≈35°. We combine this determination of the radio jet projection on the sky plane, with the constraint that the jet is viewed within 14.°3 of the line of sight (as implied by the high variability brightness temperature) and with the P.A. of the optical/UV continuum polarization in order to study the quasar geometry. Within the context of the standard model, the data indicates a ''dusty torus'' (scattering surface) with a symmetry axis tilted relative to the accretion disk normal and a polar broad absorption line outflow aligned with the accretion disk normal. We compare this geometry to that indicated by the higher resolution radio data, brightness temperature, and optical/UV continuum polarization P.A. of a similar high optical polarization BALQSO, Mrk 231. A qualitatively similar geometry is found in these two polar BALQSOs; the continuum polarization is determined primarily by the tilt of the dusty torus

  19. Radio Telescopes Reveal Unseen Galactic Cannibalism

    Science.gov (United States)

    2008-06-01

    Radio-telescope images have revealed previously-unseen galactic cannibalism -- a triggering event that leads to feeding frenzies by gigantic black holes at the cores of galaxies. Astronomers have long suspected that the extra-bright cores of spiral galaxies called Seyfert galaxies are powered by supermassive black holes consuming material. However, they could not see how the material is started on its journey toward the black hole. Optical/Radio Comparison Visible-light (left) and radio (right) image of galaxy pair: Radio image shows gas streaming between galaxies. CREDIT: Kuo et al., NRAO/AUI/NSF Click on image for more graphics. One leading theory said that Seyfert galaxies have been disturbed by close encounters with neighboring galaxies, thus stirring up their gas and bringing more of it within the gravitational reach of the black hole. However, when astronomers looked at Seyferts with visible-light telescopes, only a small fraction showed any evidence of such an encounter. Now, new images of hydrogen gas in Seyferts made using the National Science Foundation's Very Large Array (VLA) radio telescope show the majority of them are, in fact, disturbed by ongoing encounters with neighbor galaxies. "The VLA lifted the veil on what's really happening with these galaxies," said Cheng-Yu Kuo, a graduate student at the University of Virginia. "Looking at the gas in these galaxies clearly showed that they are snacking on their neighbors. This is a dramatic contrast with their appearance in visible starlight," he added. The effect of the galactic encounters is to send gas and dust toward the black hole and produce energy as the material ultimately is consumed. Black holes, concentrations of matter so dense that not even light can escape their gravitational pull, reside at the cores of many galaxies. Depending on how rapidly the black hole is eating, the galaxy can show a wide range of energetic activity. Seyfert galaxies have the mildest version of this activity, while

  20. The surface brightness of spiral galaxies

    International Nuclear Information System (INIS)

    Disney, M.; Phillipps, S.

    1985-01-01

    The intrinsic surface brightness Ssub(e) of 500 disc galaxies (0<=T<=9) drawn from the Second Reference Catalogue is computed and it is shown that Ssub(e) does not correlate significantly with Msub(B), (B-V) or type. This is consistent with the notion that there is a heavy selection bias in favour of disc galaxies with that particular surface brightness which allows inclusion in the catalogue over the largest volume of space. (author)

  1. SURFACE PHOTOMETRY OF LOW SURFACE BRIGHTNESS GALAXIES

    NARCIS (Netherlands)

    DEBLOK, WJG; VANDERHULST, JM; BOTHUN, GD

    1995-01-01

    Low surface brightness (LSB) galaxies are galaxies dominated by an exponential disc whose central surface brightness is much fainter than the value of mu(B)(0) = 21.65 +/- 0.30 mag arcsec(-2) found by Freeman. In this paper we present broadband photometry of a sample of 21 late-type LSB galaxies.

  2. Impact of cognitive radio on radio astronomy

    NARCIS (Netherlands)

    Bentum, Marinus Jan; Boonstra, A.J.; Baan, W.A.

    2010-01-01

    The introduction of new communication techniques requires an increase in the efficiency of spectrum usage. Cognitive radio is one of the new techniques that fosters spectrum efficiency by using unoccupied frequency spectrum for communications. However, cognitive radio will increase the transmission

  3. Evidence for a Multiphase ISM in Early Type Galaxies and Elliptical Galaxies with Strong Radio Continuum

    Science.gov (United States)

    Kim, Dong Woo

    1997-01-01

    We have observed NGC 1316 (Fornax A) with the ROSAT HRI. In this paper, we present the results of these observations and we complement them with the spectral analysis of the archival PSPC data. The spectral properties suggest the presence of a significant component of thermal X-ray emission (greater than 60%), amounting to approx. 10(exp 9) solar mass of hot ISM. Within 3 feet from the nucleus of NGC 1316, the HRI X-ray surface brightness falls as r(exp -2) following the stellar light. In the inner approx. 30 inch., however, the X-ray surface brightness is significantly elongated, contrary to the distribution of stellar light, which is significantly rounder within 10 inch. This again argues for a non-stellar origin of the X-ray emission. This flattened X-ray feature is suggestive of either the disk-like geometry of a rotating cooling flow and/or the presence of extended, elongated dark matter. By comparing the morphology of the X-ray emission with the distribution of optical dust patches, we find that the X-ray emission is significantly reduced at the locations where the dust patches are more pronounced, indicating that at least some of the X-ray photons are absorbed by the cold ISM. We also compare the distribution of the hot and cold ISM with that of the ionized gas, using recently obtained H(sub alpha) CCD data. We find that the ionized gas is distributed roughly along the dust patches and follows the large scale X-ray distribution at r greater than 1 foot from the nucleus. However, there is no one-to-one correspondence between ionized gas and hot gas. Both morphological relations and kinematics suggest different origins for hot and cold ISM. The radio jets in projection appear to pass perpendicularly through the central X-ray ellipsoid. Comparison of thermal and radio pressures suggests that the radio jets are confined by the surrounding hot gaseous medium.

  4. La radio en África. Una radio para el desarrollo

    Directory of Open Access Journals (Sweden)

    Jean-Paul Lafrance

    2015-01-01

    Full Text Available La radio de tipo comunitario, tal como la conocemos en Norteamérica y Europa (no-comercial, no-estatal y particípatíva, no existe en Africa. Sin embargo, la situación histórica y el contexto socio-político particulares de Africa han precedido la instauración de una radio que, dentro del marco del presente estudio, nos ha resultado interesante. Se trata de la radio educativa rural. Aunque enmarcada dentro del molde estatal de regímenes que en su mayoría son dictaduras, la radio rural africana, al igual que las radios de tipo comunitario, utiliza la radio con otros fines además de los convencionales. En este caso, la radio es un instrumento al servicio del desarrollo, por no decir al servicio del campesino, en una relación con éste último que probablemente dejará cada vez más de ser uni-direccional. La experiencia africana nos proporcionará en esta perspectiva nuevos elementos de reflexión en lo que respecta al rol de la radio dentro de la comunidad y sobre las condiciones incluso del éxito o no-éxito de la participación popular.

  5. Giant Metrewave Radio Telescope Observations of Head–Tail Radio Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Sebastian, Biny; Lal, Dharam V.; Rao, A. Pramesh, E-mail: biny@ncra.tifr.res.in [National Center for Radio Astrophysics—Tata Institute of Fundamental Research Post Box 3, Ganeshkhind P.O., Pune 41007 (India)

    2017-10-01

    We present results from a study of seven large known head–tail radio galaxies based on observations using the Giant Metrewave Radio Telescope at 240 and 610 MHz. These observations are used to study the radio morphologies and distribution of the spectral indices across the sources. The overall morphology of the radio tails of these sources is suggestive of random motions of the optical host around the cluster potential. The presence of multiple bends and wiggles in several head–tail sources is possibly due to the precessing radio jets. We find steepening of the spectral index along the radio tails. The prevailing equipartition magnetic field also decreases along the radio tails of these sources. These steepening trends are attributed to the synchrotron aging of plasma toward the ends of the tails. The dynamical ages of these sample sources have been estimated to be ∼10{sup 8} yr, which is a factor of six more than the age estimates from the radiative losses due to synchrotron cooling.

  6. A Radio Astronomy Science Education Partnership - GAVRT and Radio JOVE

    Science.gov (United States)

    Higgins, C. A.; Thieman, J. R.; Bunnell, K.; Soholt, G.

    2009-12-01

    The planet Jupiter provides an excellent subject to educate, engage, and inspire students and teachers to learn science. The Goldstone Apple-Valley Radio Telescope (GAVRT) program (http://www.lewiscenter.org/gavrt) and The Radio JOVE project (http://radiojove.gsfc.nasa.gov) each have a long history of allowing students and teachers to interact with scientists and real radio telescopes. The upcoming Juno mission to Jupiter (2011 launch) allows both GAVRT and Radio JOVE to combine efforts and engage with the NASA Juno mission, thus increasing the excitement and learning potential for teachers, students, and the general public. Teachers can attend workshops for training to operate a 34-meter radio telescope and/or build their own simple radio telescope, both of which can be used directly in the classroom. We will overview some classroom activities and highlight some teacher-student experiences. In addition, we will update our efforts on greater Web-based control of the radio telescopes, as well as highlight our upcoming workshops to allow better access for teachers in different parts of the Country.

  7. "Movie Star" Acting Strangely, Radio Astronomers Find

    Science.gov (United States)

    1999-01-01

    is the first time anyone has been able to follow the motions of gas in the atmosphere of any star other than the sun. Our results raise a lot of questions that we can't answer yet, but this will give the theorists new information to work with," said Diamond. The star, called TX Cam, in the constellation Camelopardalis, is a variable star whose brightness changes regularly over a period of 557 days. In 1997, the NRAO astronomers began a series of observations aimed at tracking gas motions in the star's outer atmosphere through a full pulsation cycle. Observing with the VLBA every two weeks, they now have accumulated 37 separate images, which they combined to make the "movie." They were able to measure the gas motions because one of the gases in the star's atmosphere, Silicon Monoxide (SiO), can act as a natural amplifier of radio signals. Such cosmic masers amplify radio emission similar to the way that a laser amplifies light emission. Regions where this maser activity occurs appear as bright spots on radio telescope images when the telescope's receivers are tuned to the specific frequency emitted by the masers. With the extremely high resolving power, or ability to see detail, of the VLBA, the astronomers were able to follow the motions of individual maser regions within the star's atmosphere. These served as tracers of overall gas motions. "Such a study only became possible when the VLBA became operational, and with the availability of computers able to handle the quantity of data produced," Kemball said. The SiO maser regions appear to form a ring around the star. The ring's diameter is greater than the distance from the Sun to Saturn, and has expanded from 10 to 20 percent over the course of the VLBA observations. "The continued expansion was our first surprise, but we've only scratched the surface of the immense amount of data our observations have produced," Diamond said. "Since we think that magnetic fields are playing a large role in how this gas behaves, we

  8. Radio emission in peculiar galaxies

    Science.gov (United States)

    Demellorabaca, Dulia F.; Abraham, Zulema

    1990-01-01

    During the last decades a number of surveys of peculiar galaxies have been carried out and accurate positions become available. Since peculiarities are a possible evidence of radio emission (Wright, 1974; Sulentic, 1976; Stocke et al., 1978), the authors selected a sample of 24 peculiar galaxies with optical jet-like features or extensions in different optical catalogues, mainly the Catalogue of Southern Peculiar Galaxies and Associations (Arp and Madore, 1987) and the ESO/Uppsala Survey of the ESO(B) Atlas (Lauberts, 1982) for observation at the radio continuum frequency of 22 GHz. The sample is listed in a table. Sol (1987) studied this sample and concluded that the majority of the jet-like features seem to admit an explanation in terms of interactive galaxies with bridges and/or tails due to tidal effects. Only in a few cases do the jets seem to be possibly linked to some nuclear activity of the host galaxy. The observations were made with the 13.7m-radome enclosed Itapetinga Radiotelescope (HPBW of 4.3 arcmin), in Brazil. The receiver was a 1 GHz d.s.b. super-heterodine mixer operated in total-power mode, with a system temperature of approximately 800 K. The observational technique consisted in scans in right ascention, centralized in the optical position of the galaxy. The amplitude of one scan was 43 arcmin, and its duration time was 20 seconds. The integration time was at least 2 hours (12 ten-minute observations) and the sensibility limit adopted was an antenna temperature greater than 3 times the r.m.s. error of the baseline determination. Virgo A was used as the calibrator source. Three galaxies were detected for the first time as radio sources and four other known galaxies at low frequencies had their flux densities measured at 22 GHz. The results for these sources are presented.

  9. Amateur Planetary Radio Data Archived for Science and Education: Radio Jove

    Science.gov (United States)

    Thieman, J.; Cecconi, B.; Sky, J.; Garcia, L. N.; King, T. A.; Higgins, C. A.; Fung, S. F.

    2015-12-01

    The Radio Jove Project is a hands-on educational activity in which students, teachers, and the general public build simple radio telescopes, usually from a kit, to observe single frequency decameter wavelength radio emissions from Jupiter, the Sun, the galaxy, and the Earth usually with simple dipole antennas. Some of the amateur observers have upgraded their receivers to spectrographs and their antennas have become more sophisticated as well. The data records compare favorably to more sophisticated professional radio telescopes such as the Long Wavelength Array (LWA) and the Nancay Decametric Array. Since these data are often carefully calibrated and recorded around the clock in widely scattered locations they represent a valuable database useful not only to amateur radio astronomers but to the professional science community as well. Some interesting phenomena have been noted in the data that are of interest to the professionals familiar with such records. The continuous monitoring of radio emissions from Jupiter could serve as useful "ground truth" data during the coming Juno mission's radio observations of Jupiter. Radio Jove has long maintained an archive for thousands of Radio Jove observations, but the database was intended for use by the Radio Jove participants only. Now, increased scientific interest in the use of these data has resulted in several proposals to translate the data into a science community data format standard and store the data in professional archives. Progress is being made in translating Radio Jove data to the Common Data Format (CDF) and also in generating new observations in that format as well. Metadata describing the Radio Jove data would follow the Space Physics Archive Search and Extract (SPASE) standard. The proposed archive to be used for long term preservation would be the Planetary Data System (PDS). Data sharing would be achieved through the PDS and the Paris Astronomical Data Centre (PADC) and the Virtual Wave Observatory (VWO

  10. Ultra-bright emission from hexagonal boron nitride defects as a new platform for bio-imaging and bio-labelling

    Science.gov (United States)

    Elbadawi, Christopher; Tran, Trong Toan; Shimoni, Olga; Totonjian, Daniel; Lobo, Charlene J.; Grosso, Gabriele; Moon, Hyowan; Englund, Dirk R.; Ford, Michael J.; Aharonovich, Igor; Toth, Milos

    2016-12-01

    Bio-imaging requires robust ultra-bright probes without causing any toxicity to the cellular environment, maintain their stability and are chemically inert. In this work we present hexagonal boron nitride (hBN) nanoflakes which exhibit narrowband ultra-bright single photon emitters1. The emitters are optically stable at room temperature and under ambient environment. hBN has also been noted to be noncytotoxic and seen significant advances in functionalization with biomolecules2,3. We further demonstrate two methods of engineering this new range of extremely robust multicolour emitters across the visible and near infrared spectral ranges for large scale sensing and biolabeling applications.

  11. La radio digital

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo Cortés S.

    2015-01-01

    Full Text Available La radio digital es un producto de la llamada convergencia digital. Las nuevas tecnologías interconectadas permiten la aparición de nuevos modos de audiencia y la implementación de herramientas versátiles. Habla del problema de los estándares, de la radio satelital, la radio digital terrestre, las radios internacionales, la interactividad.

  12. Spectrum management and radio resource management considering cognitive radio systems

    NARCIS (Netherlands)

    Haartsen, J.C.; Wieweg, Lasse; Huschke, Jörg

    2005-01-01

    International fora and some national administrations define a cognitive radio (CR) as a pioneering radio communication system that would be capable of altering and adapting its transmitter and receiver parameters based on communication and the exchange of information with related detectable radio

  13. THE 5 GHz ARECIBO SEARCH FOR RADIO FLARES FROM ULTRACOOL DWARFS

    Energy Technology Data Exchange (ETDEWEB)

    Route, Matthew; Wolszczan, Alexander, E-mail: mroute@astro.psu.edu, E-mail: alex@astro.psu.edu [Department of Astronomy and Astrophysics, Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802 (United States)

    2013-08-10

    We present the results of a 4.75 GHz survey of 33 brown dwarfs and one young exoplanetary system for flaring radio emission, conducted with the 305 m Arecibo radio telescope. The goal of this program was to detect and characterize the magnetic fields of objects cooler than spectral type L3.5, the coolest brown dwarf detected prior to our survey. We have also attempted to detect flaring radio emission from the HR 8799 planetary system, guided by theoretical work indicating that hot, massive exoplanets may have strong magnetic fields capable of generating radio emission at GHz frequencies. We have detected and confirmed radio flares from the T6.5 dwarf 2MASS J10475385+2124234. This detection dramatically extends the temperature range over which brown dwarfs appear to be at least sporadic radio-emitters, from 1900 K (L3.5) down to 900 K (T6.5). It also demonstrates that the utility of radio detection as a unique tool to study the magnetic fields of substellar objects extends to the coolest dwarfs, and, plausibly to hot, massive exoplanets. We have also identified a single, 3.6{sigma} flare from the L1 dwarf, 2MASS J1439284+192915. This detection is tentative and requires confirmation by additional monitoring observations.

  14. Giant Metrewave Radio Telescope Monitoring of the Black Hole X-Ray Binary, V404 Cygni during Its 2015 June Outburst

    Energy Technology Data Exchange (ETDEWEB)

    Chandra, Poonam; Kanekar, Nissim [National Centre for Radio Astrophysics, TIFR, Pune University Campus, Pune 411007 (India)

    2017-09-10

    We report results from a Giant Metrewave Radio Telescope (GMRT) monitoring campaign of the black hole X-ray binary V404 Cygni during its 2015 June outburst. The GMRT observations were carried out at observing frequencies of 1280, 610, 325, and 235 MHz, and extended from June 26.89 UT (a day after the strongest radio/X-ray outburst) to July 12.93 UT. We find the low-frequency radio emission of V404 Cygni to be extremely bright and fast-decaying in the outburst phase, with an inverted spectrum below 1.5 GHz and an intermediate X-ray state. The radio emission settles to a weak, quiescent state ≈11 days after the outburst, with a flat radio spectrum and a soft X-ray state. Combining the GMRT measurements with flux density estimates from the literature, we identify a spectral turnover in the radio spectrum at ≈1.5 GHz on ≈ June 26.9 UT, indicating the presence of a synchrotron self-absorbed emitting region. We use the measured flux density at the turnover frequency with the assumption of equipartition of energy between the particles and the magnetic field to infer the jet radius (≈4.0 × 10{sup 13} cm), magnetic field (≈0.5 G), minimum total energy (≈7 × 10{sup 39} erg), and transient jet power (≈8 × 10{sup 34} erg s{sup −1}). The relatively low value of the jet power, despite V404 Cygni’s high black hole spin parameter, suggests that the radio jet power does not correlate with the spin parameter.

  15. In situ probing of temperature in radio frequency thermal plasma using Yttrium ion emission lines during synthesis of yttria nanoparticles

    Science.gov (United States)

    Dhamale, G. D.; Tiwari, N.; Mathe, V. L.; Bhoraskar, S. V.; Ghorui, S.

    2017-07-01

    Particle feeding is used in the most important applications of radio frequency (r.f.) thermal plasmas like synthesis of nanoparticles and particle spheroidization. The study reports an in-situ investigation of radial distribution of temperature in such devices using yttrium ion emission lines under different rates of particle loading during synthesis of yttria nanoparticles. A number of interesting facts about the response of r.f. plasma to the rate of particle loading, hitherto unknown, are revealed. Observed phenomena are supported with experimental data from fast photographic experiments and actual synthesis results. The use of the Abel inversion technique together with simultaneous multi-track acquisition of emission spectra from different spatial locations using a CCD based spectrometer allowed us to extract accurate distribution of temperature inside the plasma in the presence of inherent instabilities. The temperature profiles of this type of plasma have been measured possibly for the first time while particles are being fed into the plasma. Observed changes in the temperature profiles as the particle feed rate increases are very significant. Reaction forces resulting from particle evaporation, and increased skin depth owing to the decrease in electrical conductivity in the edge region are proposed as the two different mechanisms to account for the observed changes in the temperature profile as the powder feed rate is increased. Quantitative analyses supporting the proposed mechanisms are presented.

  16. Bright point study

    International Nuclear Information System (INIS)

    Tang, F.; Harvey, K.; Bruner, M.; Kent, B.; Antonucci, E.

    1982-01-01

    Transition region and coronal observations of bright points by instruments aboard the Solar Maximum Mission and high resolution photospheric magnetograph observations on September 11, 1980 are presented. A total of 31 bipolar ephemeral regions were found in the photosphere from birth in 9.3 hours of combined magnetograph observations from three observatories. Two of the three ephemeral regions present in the field of view of the Ultraviolet Spectrometer-Polarimeter were observed in the C IV 1548 line. The unobserved ephemeral region was determined to be the shortest-lived (2.5 hr) and lowest in magnetic flux density (13G) of the three regions. The Flat Crystal Spectrometer observed only low level signals in the O VIII 18.969 A line, which were not statistically significant to be positively identified with any of the 16 ephemeral regions detected in the photosphere. In addition, the data indicate that at any given time there lacked a one-to-one correspondence between observable bright points and photospheric ephemeral regions, while more ephemeral regions were observed than their counterparts in the transition region and the corona

  17. Helmholtz bright and boundary solitons

    International Nuclear Information System (INIS)

    Christian, J M; McDonald, G S; Chamorro-Posada, P

    2007-01-01

    We report, for the first time, exact analytical boundary solitons of a generalized cubic-quintic nonlinear Helmholtz (NLH) equation. These solutions have a linked-plateau topology that is distinct from conventional dark soliton solutions; their amplitude and intensity distributions are spatially delocalized and connect regions of finite and zero wave-field disturbances (suggesting also the classification as 'edge solitons'). Extensive numerical simulations compare the stability properties of recently derived Helmholtz bright solitons, for this type of polynomial nonlinearity, to those of the new boundary solitons. The latter are found to possess a remarkable stability characteristic, exhibiting robustness against perturbations that would otherwise lead to the destabilizing of their bright-soliton counterparts

  18. Bright focused ion beam sources based on laser-cooled atoms

    Science.gov (United States)

    McClelland, J. J.; Steele, A. V.; Knuffman, B.; Twedt, K. A.; Schwarzkopf, A.; Wilson, T. M.

    2016-01-01

    Nanoscale focused ion beams (FIBs) represent one of the most useful tools in nanotechnology, enabling nanofabrication via milling and gas-assisted deposition, microscopy and microanalysis, and selective, spatially resolved doping of materials. Recently, a new type of FIB source has emerged, which uses ionization of laser cooled neutral atoms to produce the ion beam. The extremely cold temperatures attainable with laser cooling (in the range of 100 μK or below) result in a beam of ions with a very small transverse velocity distribution. This corresponds to a source with extremely high brightness that rivals or may even exceed the brightness of the industry standard Ga+ liquid metal ion source. In this review we discuss the context of ion beam technology in which these new ion sources can play a role, their principles of operation, and some examples of recent demonstrations. The field is relatively new, so only a few applications have been demonstrated, most notably low energy ion microscopy with Li ions. Nevertheless, a number of promising new approaches have been proposed and/or demonstrated, suggesting that a rapid evolution of this type of source is likely in the near future. PMID:27239245

  19. Bright focused ion beam sources based on laser-cooled atoms

    Energy Technology Data Exchange (ETDEWEB)

    McClelland, J. J.; Wilson, T. M. [Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Steele, A. V.; Knuffman, B.; Schwarzkopf, A. [Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); zeroK NanoTech, Gaithersburg, Maryland 20878 (United States); Twedt, K. A. [Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Maryland Nanocenter, University of Maryland, College Park, Maryland 20742 (United States)

    2016-03-15

    Nanoscale focused ion beams (FIBs) represent one of the most useful tools in nanotechnology, enabling nanofabrication via milling and gas-assisted deposition, microscopy and microanalysis, and selective, spatially resolved doping of materials. Recently, a new type of FIB source has emerged, which uses ionization of laser cooled neutral atoms to produce the ion beam. The extremely cold temperatures attainable with laser cooling (in the range of 100 μK or below) result in a beam of ions with a very small transverse velocity distribution. This corresponds to a source with extremely high brightness that rivals or may even exceed the brightness of the industry standard Ga{sup +} liquid metal ion source. In this review, we discuss the context of ion beam technology in which these new ion sources can play a role, their principles of operation, and some examples of recent demonstrations. The field is relatively new, so only a few applications have been demonstrated, most notably low energy ion microscopy with Li ions. Nevertheless, a number of promising new approaches have been proposed and/or demonstrated, suggesting that a rapid evolution of this type of source is likely in the near future.

  20. High-brightness injector modeling

    International Nuclear Information System (INIS)

    Lewellen, J.W.

    2004-01-01

    There are many aspects to the successful conception, design, fabrication, and operation of high-brightness electron beam sources. Accurate and efficient modeling of the injector are critical to all phases of the process, from evaluating initial ideas to successful diagnosis of problems during routine operation. The basic modeling tasks will vary from design to design, according to the basic nature of the injector (dc, rf, hybrid, etc.), the type of cathode used (thermionic, photo, field emitter, etc.), and 'macro' factors such as average beam current and duty factor, as well as the usual list of desired beam properties. The injector designer must be at least aware of, if not proficient at addressing, the multitude of issues that arise from these considerations; and, as high-brightness injectors continue to move out of the laboratory, the number of such issues will continue to expand.