WorldWideScience

Sample records for radiative habitable zones

  1. Ultraviolet Radiation Constraints around the Circumstellar Habitable Zones

    CERN Document Server

    Buccino, A P; Mauas, P J D; Buccino, Andrea P.; Lemarchand, Guillermo A.; Mauas, Pablo J. D.

    2005-01-01

    Ultraviolet radiation is known to inhibit photosynthesis, induce DNA destruction and cause damage to a wide variety of proteins and lipids. In particular, UV radiation between 200-300 nm becomes energetically very damaging to most of the terrestrial biological systems. On the other hand, UV radiation is usually considered one of the most important energy source on the primitive Earth for the synthesis of many biochemical compounds and, therefore, essential for several biogenesis processes. In this work, we use these properties of the UV radiation to define the bounderies of an ultraviolet habitable zone. We also analyze the evolution of the UV habitable zone during the main sequence stage of the star. We apply these criteria to study the UV habitable zone for those extrasolar planetary systems that were observed by the International Ultraviolet Explorer (IUE). We analyze the possibility that extrasolar planets and moons could be suitable for life, according to the UV constrains presented in this work and othe...

  2. Constraining the Radiation and Plasma Environment of the Kepler Circumbinary Habitable Zone Planets

    CERN Document Server

    Zuluaga, Jorge I; Cuartas, Pablo A

    2015-01-01

    The remarkable discovery of many planets and candidates using the Kepler telescope even includes ten planets orbiting eight binaries. Three out of the eight, Kepler 16, Kepler 47, and KIC 9632895, have at least one planet in the circumbinary habitable zone (BHZ). In previous work (Mason et al. 2013), we investigated the potential habitability of Earth-like circumbinary planets. In particular, we highlighted the role of mutual stellar tidal interaction and the resulting impact on terrestrial planet habitability. The Kepler binaries with planets in the BHZ are studied in order to constrain the high energy radiation and plasma environment of potentially habitable circumbinary planets. The limits of the BHZ in these binaries as a function of time are estimated and the habitability lifetime is calculated. A self-consistent model of the evolution of stellar rotation including the effect of tidal interaction is key to establishing the plasma and radiation environment. A comprehensive model of the evolution of stella...

  3. CONSTRAINING THE RADIATION AND PLASMA ENVIRONMENT OF THE KEPLER CIRCUMBINARY HABITABLE-ZONE PLANETS

    Energy Technology Data Exchange (ETDEWEB)

    Zuluaga, Jorge I. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Mason, Paul A. [New Mexico State University—DACC, Las Cruces, NM 88003 (United States); Cuartas-Restrepo, Pablo A. [FACom—Instituto de Física—FCEN, Universidad de Antioquia, Calle 70 No. 52-21, Medellín (Colombia)

    2016-02-20

    The discovery of many planets using the Kepler telescope includes 10 planets orbiting eight binary stars. Three binaries, Kepler-16, Kepler-47, and Kepler-453, have at least one planet in the circumbinary habitable zone (BHZ). We constrain the level of high-energy radiation and the plasma environment in the BHZ of these systems. With this aim, BHZ limits in these Kepler binaries are calculated as a function of time, and the habitability lifetimes are estimated for hypothetical terrestrial planets and/or moons within the BHZ. With the time-dependent BHZ limits established, a self-consistent model is developed describing the evolution of stellar activity and radiation properties as proxies for stellar aggression toward planetary atmospheres. Modeling binary stellar rotation evolution, including the effect of tidal interaction between stars in binaries, is key to establishing the environment around these systems. We find that Kepler-16 and its binary analogs provide a plasma environment favorable for the survival of atmospheres of putative Mars-sized planets and exomoons. Tides have modified the rotation of the stars in Kepler-47, making its radiation environment less harsh in comparison to the solar system. This is a good example of the mechanism first proposed by Mason et al. Kepler-453 has an environment similar to that of the solar system with slightly better than Earth radiation conditions at the inner edge of the BHZ. These results can be reproduced and even reparameterized as stellar evolution and binary tidal models progress, using our online tool http://bhmcalc.net.

  4. Constraining the Radiation and Plasma Environment of the Kepler Circumbinary Habitable-zone Planets

    Science.gov (United States)

    Zuluaga, Jorge I.; Mason, Paul A.; Cuartas-Restrepo, Pablo A.

    2016-02-01

    The discovery of many planets using the Kepler telescope includes 10 planets orbiting eight binary stars. Three binaries, Kepler-16, Kepler-47, and Kepler-453, have at least one planet in the circumbinary habitable zone (BHZ). We constrain the level of high-energy radiation and the plasma environment in the BHZ of these systems. With this aim, BHZ limits in these Kepler binaries are calculated as a function of time, and the habitability lifetimes are estimated for hypothetical terrestrial planets and/or moons within the BHZ. With the time-dependent BHZ limits established, a self-consistent model is developed describing the evolution of stellar activity and radiation properties as proxies for stellar aggression toward planetary atmospheres. Modeling binary stellar rotation evolution, including the effect of tidal interaction between stars in binaries, is key to establishing the environment around these systems. We find that Kepler-16 and its binary analogs provide a plasma environment favorable for the survival of atmospheres of putative Mars-sized planets and exomoons. Tides have modified the rotation of the stars in Kepler-47, making its radiation environment less harsh in comparison to the solar system. This is a good example of the mechanism first proposed by Mason et al. Kepler-453 has an environment similar to that of the solar system with slightly better than Earth radiation conditions at the inner edge of the BHZ. These results can be reproduced and even reparameterized as stellar evolution and binary tidal models progress, using our online tool http://bhmcalc.net.

  5. Radiative Convective Transfer Calculations for Effective Stellar Fluxes of Habitable and Life Supporting Zones

    Science.gov (United States)

    Ludwig, Wolfgang; Eggl, Siegfried; Neubauer, David; Leitner, Johannes; Firneis, Maria; Hitzenberger, Regina

    2014-05-01

    Recent fields of interest in exoplanetary research include studies of potentially habitable planets orbiting stars outside of our Solar System. Habitable Zones (HZs) are currently defined by calculating the inner and the outer limits of the mean distance between exoplanets and their central stars based on effective solar fluxes that allow for maintaining liquid water on the planet's surface. Kasting et al. (1993), Selsis et al. (2007), and recently Kopparapu et al. (2013) provided stellar flux limits for such scenarios. We compute effective solar fluxes for Earth-like planets using Earth-like and other atmospheric scenarios including atmospheres with high level and low level clouds. Furthermore we provide habitability limits for solvents other than water, i.e. limits for the so called Life Supporting Zone, introduced by Leitner et al. (2010). The Life Supporting Zone (LSZ) encompasses many habitable zones based on a variety of liquid solvents. Solvents like ammonia and sulfuric acid have been identified for instance by Leitner et al (2012) as possibly life supporting. Assuming planets on circular orbits, the extent of the individual HZ is then calculated via the following equation, d(i,o) = [L/Lsun*1/S(i,o)]**0.5 au, where L is the star's luminosity, and d(i,o) and S(i,o) are the distances to the central star for the inner and the outer edge and effective insolation for inner and the outer edge of the HZ, respectively. After generating S(i,o) values for a selection of solvents, we provide the means to determine LSZ boundaries for main sequence stars. Effective flux calculations are done using a one dimensional radiative convective model (Neubauer et al. 2011) based on a modified version of the open source radiative transfer software Streamer (Key and Schweiger, 1998). Modifications include convective adjustments, additional gases for absorption and the use of an offline cloud model, which allow us to observe the influence of clouds on effective stellar fluxes

  6. The Habitable Zone Gallery

    CERN Document Server

    Kane, Stephen R

    2012-01-01

    The Habitable Zone Gallery (www.hzgallery.org) is a new service to the exoplanet community which provides Habitable Zone (HZ) information for each of the exoplanetary systems with known planetary orbital parameters. The service includes a sortable table with information on the percentage of orbital phase spent within the HZ, planetary effective temperatures, and other basic planetary properties. In addition to the table, we also plot the period and eccentricity of the planets with respect to their time spent in the HZ. The service includes a gallery of known systems which plot the orbits and the location of the HZ with respect to those orbits. Also provided are animations which aid in orbit visualization and provide the changing effective temperature for those planets in eccentric orbits. Here we describe the science motivation, the under-lying calculations, and the structure of the web site.

  7. UV Habitable Zones Further Constrain Possible Life

    Science.gov (United States)

    Kohler, Susanna

    2017-02-01

    Where should we search for life in the universe? Habitable zones are traditionallydetermined based on the possibility of liquid water existing on a planet but ultraviolet (UV) radiation also plays a key role.The UV Habitable ZoneSchematic showing how the traditional habitable zones location and width changes around different types of stars. The UV habitable zone also hasdifferent locations and widths depending on the mass and metallicity of the star. [NASA/Kepler Mission/Dana Berry]Besides the presence of liquid water, there are other things life may need to persist. For life as we know it, one important elementis moderate UV radiation: if a planet receives too little UV flux, many biological compounds cant be synthesized. If it receives too much, however, then terrestrial biological systems (e.g. DNA) can be damaged.To determinethe most likely place to findpersistent life, we should therefore look for the region where a stars traditional habitable zone, within which liquid water is possible, overlaps with its UV habitable zone, within which the UV flux is at the right level to support life.Relationship between the stellar mass and location of the boundaries of the traditional and UV habitable zones for a solar-metallicity star. din and dout denote inner and outer boundaries, respectively. ZAMS and TMS denote when the star joins and leaves the main sequence, respectively. The traditional and UV habitable zones overlap only for stars of 11.5 solar masses. [Adapted from Oishi and Kamaya 2016]Looking for OverlapIn a recent study, two scientists from the National Defense Academy of Japan, Midori Oishi and Hideyuki Kamaya, explored howthe location of this UV habitable zone and that of its overlap with the traditional habitable zone might be affected by a stars mass and metallicity.Oishi and Kamaya developed a simple evolutional model of the UV habitable zone in stars in the mass range of 0.084 solar masses with metallicities of roughly solar metallicity (Z=0.02), a

  8. A Volcanic Hydrogen Habitable Zone

    Science.gov (United States)

    Ramirez, Ramses M.; Kaltenegger, Lisa

    2017-03-01

    The classical habitable zone (HZ) is the circular region around a star in which liquid water could exist on the surface of a rocky planet. The outer edge of the traditional N2–CO2–H2O HZ extends out to nearly ∼1.7 au in our solar system, beyond which condensation and scattering by CO2 outstrips its greenhouse capacity. Here, we show that volcanic outgassing of atmospheric H2 can extend the outer edge of the HZ to ∼2.4 au in our solar system. This wider volcanic-hydrogen HZ (N2–CO2–H2O–H2) can be sustained as long as volcanic H2 output offsets its escape from the top of the atmosphere. We use a single-column radiative-convective climate model to compute the HZ limits of this volcanic hydrogen HZ for hydrogen concentrations between 1% and 50%, assuming diffusion-limited atmospheric escape. At a hydrogen concentration of 50%, the effective stellar flux required to support the outer edge decreases by ∼35%–60% for M–A stars. The corresponding orbital distances increase by ∼30%–60%. The inner edge of this HZ only moves out ∼0.1%–4% relative to the classical HZ because H2 warming is reduced in dense H2O atmospheres. The atmospheric scale heights of such volcanic H2 atmospheres near the outer edge of the HZ also increase, facilitating remote detection of atmospheric signatures.

  9. UV habitable zones around M stars

    CERN Document Server

    Buccino, Andrea P; Mauas, Pablo J D

    2007-01-01

    During the last decade, there was a paradigm-shift in order to consider terrestrial planets within liquid-water habitable zones (LW-HZ) around M stars, as suitable places for the emergence and evolution of life. Here we analyze the influence of UV boundary conditions to three planetary systems around dM (HIP 74995, HIP 109388 and HIP 113020). We apply our model of UV habitable zone (UV-HZ) (Buccino et al. 2006) to these cases and show that during the quiescent UV output there would not be enough UV radiation within the LW-HZ in order to trigger biogenic processes. We also analyze the cases of two other M flare stars and show that the flares of moderate intensity could provide the necessary energy to trigger those biogenic processes, while the strong flares not necessary rule-out the possibility of life-bearing planets.

  10. Habitable zone limits for dry planets.

    Science.gov (United States)

    Abe, Yutaka; Abe-Ouchi, Ayako; Sleep, Norman H; Zahnle, Kevin J

    2011-06-01

    Most discussion of habitable planets has focused on Earth-like planets with globally abundant liquid water. For an "aqua planet" like Earth, the surface freezes if far from its sun, and the water vapor greenhouse effect runs away if too close. Here we show that "land planets" (desert worlds with limited surface water) have wider habitable zones than aqua planets. For planets at the inner edge of the habitable zone, a land planet has two advantages over an aqua planet: (i) the tropics can emit longwave radiation at rates above the traditional runaway limit because the air is unsaturated and (ii) the dry air creates a dry stratosphere that limits hydrogen escape. At the outer limits of the habitable zone, the land planet better resists global freezing because there is less water for clouds, snow, and ice. Here we describe a series of numerical experiments using a simple three-dimensional global climate model for Earth-sized planets. Other things (CO(2), rotation rate, surface pressure) unchanged, we found that liquid water remains stable at the poles of a low-obliquity land planet until net insolation exceeds 415 W/m(2) (170% that of modern Earth), compared to 330 W/m(2) (135%) for the aqua planet. At the outer limits, we found that a low-obliquity land planet freezes at 77%, while the aqua planet freezes at 90%. High-obliquity land and aqua planets freeze at 58% and 72%, respectively, with the poles offering the last refuge. We show that it is possible that, as the Sun brightens, an aqua planet like Earth can lose most of its hydrogen and become a land planet without first passing through a sterilizing runaway greenhouse. It is possible that Venus was a habitable land planet as recently as 1 billion years ago.

  11. UV habitable zones around M stars

    Science.gov (United States)

    Buccino, Andrea P.; Lemarchand, Guillermo A.; Mauas, Pablo J. D.

    2007-12-01

    During the last decade there was a change in paradigm, which led to consider that terrestrial-type planets within liquid-water habitable zones (LW-HZ) around M stars can also be suitable places for the emergence and evolution of life. Since many dMe stars emit large amount of UV radiation during flares, in this work we analyze the UV constrains for living systems on Earth-like planets around dM stars. We apply our model of UV habitable zone (UV-HZ; Buccino, A.P., Lemarchand, G.A., Mauas, P.J.D., 2006. Icarus 183, 491-503) to the three planetary systems around dM stars (HIP 74995, HIP 109388 and HIP 113020) observed by IUE and to two M-flare stars (AD Leo and EV Lac). In particular, HIP 74995 hosts a terrestrial planet in the LW-HZ, which is the exoplanet that most resembles our own Earth. We show, in general, that during the quiescent state there would not be enough UV radiation within the LW-HZ to trigger the biogenic processes and that this energy could be provided by flares of moderate intensity, while strong flares do not necessarily rule-out the possibility of life-bearing planets.

  12. Atmospheric Habitable Zones in Y Dwarf Atmospheres

    Science.gov (United States)

    Yates, Jack S.; Palmer, Paul I.; Biller, Beth; Cockell, Charles S.

    2017-02-01

    We use a simple organism lifecycle model to explore the viability of an atmospheric habitable zone (AHZ), with temperatures that could support Earth-centric life, which sits above an environment that does not support life. To illustrate our model, we use a cool Y dwarf atmosphere, such as WISE J085510.83-0714442.5, whose 4.5-5.2 μm spectrum shows absorption features consistent with water vapor and clouds. We allow organisms to adapt to their atmospheric environment (described by temperature, convection, and gravity) by adopting different growth strategies that maximize their chance of survival and proliferation. We assume a constant upward vertical velocity through the AHZ. We found that the organism growth strategy is most sensitive to the magnitude of the atmospheric convection. Stronger convection supports the evolution of more massive organisms. For a purely radiative environment, we find that evolved organisms have a mass that is an order of magnitude smaller than terrestrial microbes, thereby defining a dynamical constraint on the dimensions of life that an AHZ can support. Based on a previously defined statistical approach, we infer that there are of the order of 109 cool Y brown dwarfs in the Milky Way, and likely a few tens of these objects are within 10 pc from Earth. Our work also has implications for exploring life in the atmospheres of temperate gas giants. Consideration of the habitable volumes in planetary atmospheres significantly increases the volume of habitable space in the galaxy.

  13. Atmospheric Habitable Zones in Y Dwarf Atmospheres

    CERN Document Server

    Yates, Jack S; Biller, Beth; Cockell, Charles S

    2016-01-01

    We use a simple organism lifecycle model to explore the viability of an atmospheric habitable zone (AHZ), with temperatures that could support Earth-centric life, which sits above an environment that does not support life. We illustrate this idea using the object WISE J085510.83-0714442.5, which is a cool, free-floating brown dwarf. We allow organisms to adapt to their atmospheric environment (described by temperature, convection, and gravity) by adopting different growth strategies that maximize their chance of survival and proliferation. We assume a constant upward vertical velocity through the AHZ. We found that the organism growth strategy is most sensitive to the magnitude of the atmospheric convection. Stronger convection supports the evolution of more massive organisms. For a purely radiative environment we find that evolved organisms have a mass that is an order of magnitude smaller than terrestrial microbes, thereby defining a dynamical constraint on the dimensions of life that an AHZ can support. Ba...

  14. The Habitable Zone of the Binary System Kepler-16

    Science.gov (United States)

    Moorman, Sarah; Cuntz, Manfred

    2017-01-01

    We report on the current results and envisioned future work from our study of the binary star system Kepler-16, which consists of a K-type main-sequence star and an M dwarf as well as a circumbinary Saturnian planet, Kepler-16b. We focus on the calculation of the location and extent of the habitable zone while considering several criteria for both the inner and outer boundaries previously given in the literature. In particular, we investigate the impact of the two stellar components (especially Kepler-16A) as well as of the system’s binarity regarding the provision of circumbinary habitability. Another aspect of our work consists in a careful assessment of how the extent of the system’s habitable zone is impacted by the relative uncertainties of the stellar and system parameters. Finally, we comment on the likelihood of habitable objects in the system by taking into account both radiative criteria and the need of orbital stability.

  15. Hydrogen Greenhouse Planets Beyond the Habitable Zone

    CERN Document Server

    Pierrehumbert, Raymond

    2011-01-01

    We show that collision-induced absorption allows molecular hydrogen to act as an incondensible greenhouse gas, and that bars or tens of bars of primordial H2-He mixtures can maintain surface temperatures above the freezing point of water well beyond the "classical" habitable zone defined for CO2 greenhouse atmospheres. Using a 1-D radiative-convective model we find that 40 bars of pure H2 on a 3 Earth-mass planet can maintain a surface temperature of 280K out to 1.5AU from an early-type M dwarf star and 10 AU from a G-type star. Neglecting the effects of clouds and of gaseous absorbers besides H2, the flux at the surface would be sufficient for photosynthesis by cyanobacteria (in the G star case) or anoxygenic phototrophs (in the M star case). We argue that primordial atmospheres of one to several hundred bars of H2-He are possible, and use a model of hydrogen escape to show that such atmospheres are likely to persist further than 1.5 AU from M stars, and 2 AU from G stars, assuming these planets have protect...

  16. Assessing Circumbinary Habitable Zones using Latitudinal Energy Balance Modelling

    CERN Document Server

    Forgan, Duncan

    2013-01-01

    Previous attempts to describe circumbinary habitable zones have been concerned with the spatial extent of the zone, calculated analytically according to the combined radiation field of both stars. By contrast to these "spatial HZs", we present a numerical analysis of the "orbital HZ", a habitable zone defined as a function of planet orbital elements. This orbital HZ is better equipped to handle (for example) eccentric planet orbits, and is more directly connected to the data returned by exoplanet observations. Producing an orbital HZ requires a large number of climate simulations to be run to investigate the parameter space - we achieve this using Latitudinal Energy Balance Models (LEBMs), which handle the insolation of the planet by both stars (including mutual eclipses), as well as the planetary atmosphere's ability to absorb, transfer and lose heat. We present orbital HZs for several known circumbinary planetary systems: Kepler-16, Kepler-34, Kepler-35, Kepler-47 and PH-1. Generally, the orbital HZs at zer...

  17. Cellular Automation of Galactic Habitable Zone

    CERN Document Server

    Vukotic, Branislav

    2010-01-01

    We present a preliminary results of our Galactic Habitable Zone (GHZ) 2D probabilistic cellular automata models. The relevant time-scales (emergence of life, it's diversification and evolution influenced with the global risk function) are modeled as the probability matrix elements and are chosen in accordance with the Copernican principle to be well-represented by the data inferred from the Earth's fossil record. With Fermi's paradox as a main boundary condition the resulting histories of astrobiological landscape are discussed.

  18. A population-based Habitable Zone perspective

    CERN Document Server

    Zsom, Andras

    2015-01-01

    What can we tell about exoplanet habitability if currently only the stellar properties, planet radius, and the incoming stellar flux are known? A planet is in the Habitable Zone (HZ) if it harbors liquid water on its surface. The HZ is traditionally conceived as a sharp region around stars because it is calculated for one planet with specific properties. Such an approach is limiting because the planets' atmospheric and geophysical properties, which influence the presence of liquid water on the surface, are currently unknown but expected to be diverse. A statistical HZ description is outlined which does not favor one planet type. Instead the stellar and planet properties are treated as random variables and a continuous range of planet scenarios are considered. Various probability density functions are assigned to each random variable, and a combination of Monte Carlo sampling and climate modeling is used to generate synthetic exoplanet populations with known surface climates. Then, the properties of the liquid...

  19. The Habitable Zone of Inhabited Planets

    CERN Document Server

    Zuluaga, Jorge I; Cuartas-Restrepo, Pablo; Poveda, German

    2014-01-01

    In this paper we discuss and illustrate the hypothesis that life substantially alters the state of a planetary environment and therefore, modifies the limits of the HZ as estimated for an uninhabited planet. This hypothesis lead to the introduction of the Habitable Zone for Inhabited planets (hereafter InHZ), defined here as the region where the complex interaction between life and its abiotic environment is able to produce plausible equilibrium states with the necessary physical conditions for the existence and persistence of life itself. We support our hypothesis of an InHZ with three theoretical arguments, multiple evidences coming from observations of the Earth system, several conceptual experiments and illustrative numerical simulations. Conceptually the diference between the InHZ and the Abiotic HZ (AHZ) depends on unique and robust properties of life as an emergent physical phenomenon and not necesarily on the particular life forms bearing in the planet. Our aim here is to provide conceptual basis for ...

  20. THE HABITABLE ZONES OF PRE-MAIN-SEQUENCE STARS

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez, Ramses M.; Kaltenegger, Lisa [Institute for Pale Blue Dots, Cornell University, Ithaca, NY (United States)

    2014-12-20

    We calculate the pre-main-sequence habitable zone (HZ) for stars of spectral classes F-M. The spatial distribution of liquid water and its change during the pre-main-sequence phase of protoplanetary systems is important for understanding how planets become habitable. Such worlds are interesting targets for future missions because the coolest stars could provide habitable conditions for up to 2.5 billion years post-accretion. Moreover, for a given star type, planetary systems are more easily resolved because of higher pre-main-sequence stellar luminosities, resulting in larger planet-star separation for cool stars than is the case for the traditional main-sequence (MS) HZ. We use one-dimensional radiative-convective climate and stellar evolutionary models to calculate pre-main-sequence HZ distances for F1-M8 stellar types. We also show that accreting planets that are later located in the traditional MS HZ orbiting stars cooler than a K5 (including the full range of M stars) receive stellar fluxes that exceed the runaway greenhouse threshold, and thus may lose substantial amounts of water initially delivered to them. We predict that M-star planets need to initially accrete more water than Earth did, or, alternatively, have additional water delivered later during the long pre-MS phase to remain habitable. Our findings are also consistent with recent claims that Venus lost its water during accretion.

  1. The Habitable Zone of Inhabited Planets

    Science.gov (United States)

    Zuluaga, J. I.; Salazar, J. F.; Cuartas-Restrepo, P.; Poveda, G.

    2014-06-01

    In this paper we discuss and illustrate the hypothesis that life substantially alters the state of a planetary environment and therefore, modifies the limits of the HZ as estimated for an uninhabited planet. This hypothesis lead to the introduction of the Habitable Zone for Inhabited Planets (hereafter InHZ), defined here as the region where the complex interaction between life and its abiotic environment is able to produce plausible equilibrium states with the necessary physical conditions for the existence and persistence of life itself. We support our hypothesis of an InHZ with three theoretical arguments, multiple evidences coming from observations of the Earth system, several conceptual experiments and illustrative numerical simulations. Conceptually the diference between the InHZ and the Abiotic HZ (AHZ) depends on unique and robust properties of life as an emergent physical phenomenon and not necesarily on the particular life forms bearing in the planet. Our aim here is to provide conceptual basis for the development of InHZ models incorporating consistently life-environment interactions. Although previous authors have explored the effects of life on habitability there is a gap in research developing the reasons why life should be systematically included at determining the HZ limits. We do not provide here definitive limits to the InHZ but we show through simple numerical models (as a parable of an inhabited planet) how the limits of the AHZ could be modified by including plausible interactions between biota and its environment. These examples aim also at posing the question that if limits of the HZ could be modified by the presence of life in those simple dynamical systems how will those limits change if life is included in established models of the AHZ.

  2. The Habitable Zone of Inhabited Planets

    Directory of Open Access Journals (Sweden)

    J. I. Zuluaga

    2014-06-01

    Full Text Available In this paper we discuss and illustrate the hypothesis that life substantially alters the state of a planetary environment and therefore, modifies the limits of the HZ as estimated for an uninhabited planet. This hypothesis lead to the introduction of the Habitable Zone for Inhabited Planets (hereafter InHZ, defined here as the region where the complex interaction between life and its abiotic environment is able to produce plausible equilibrium states with the necessary physical conditions for the existence and persistence of life itself. We support our hypothesis of an InHZ with three theoretical arguments, multiple evidences coming from observations of the Earth system, several conceptual experiments and illustrative numerical simulations. Conceptually the diference between the InHZ and the Abiotic HZ (AHZ depends on unique and robust properties of life as an emergent physical phenomenon and not necesarily on the particular life forms bearing in the planet. Our aim here is to provide conceptual basis for the development of InHZ models incorporating consistently life-environment interactions. Although previous authors have explored the effects of life on habitability there is a gap in research developing the reasons why life should be systematically included at determining the HZ limits. We do not provide here definitive limits to the InHZ but we show through simple numerical models (as a parable of an inhabited planet how the limits of the AHZ could be modified by including plausible interactions between biota and its environment. These examples aim also at posing the question that if limits of the HZ could be modified by the presence of life in those simple dynamical systems how will those limits change if life is included in established models of the AHZ.

  3. Prospects for Extrasolar "Earths" in Habitable Zones

    CERN Document Server

    Jones, B W; Sleep, P N

    2005-01-01

    We have shown that Earth-mass planets could survive in variously restricted regions of the habitable zones (HZs) of most of a sample of nine of the 102 main-sequence exoplanetary systems confirmed by 19 November 2003. In a preliminary extrapolation of our results to the other systems, we estimate that roughly a half of these systems could have had an Earth-mass planet confined to the HZ for at least the most recent 1000 Ma. The HZ migrates outwards during the main-sequence lifetime, and so this proportion varies with stellar age. About two thirds of the systems could have such a planet confined to the HZ for at least 1000 Ma at sometime during the main-sequence lifetime. Clearly, these systems should be high on the target list for exploration for terrestrial planets. We have reached this conclusion by launching putative Earth-mass planets in various orbits and following their fate with mixed-variable symplectic and hybrid integrators. Whether the Earth-mass planets could form in the HZs of the exoplanetary sy...

  4. Tides, planetary companions, and habitability: Habitability in the habitable zone of low-mass stars

    CERN Document Server

    Van Laerhoven, Christa; Greenberg, Richard

    2014-01-01

    Earth-scale planets in the classical habitable zone (HZ) are more likely to be habitable if they possess active geophysics. Without a constant internal energy source, planets cool as they age, eventually terminating tectonic activity and rendering the planet sterile to life. However, for planets orbiting low-mass stars, the presence of an outer companion could generate enough tidal heat in the HZ planet to prevent such cooling. The range of mass and orbital parameters for the companion that give adequate long-term heating of the inner HZ planet, while avoiding very early total desiccation, is probably substantial. We locate the ideal location for the outer of a pair of planets, under the assumption that the inner planet has the same incident flux as Earth, orbiting example stars: a generic late M dwarf ($T_{eff}=2670 K$) and the M9V/L0 dwarf DEN1048. Thus discoveries of Earth-scale planets in the HZ zone of old small stars should be followed by searches for outer companion planets that might be essential for ...

  5. The Habitable Zones of Pre-Main-Sequence Stars

    CERN Document Server

    Ramirez, Ramses M

    2014-01-01

    We calculate the pre-main-sequence HZ for stars of spectral classes F to M. The spatial distribution of liquid water and its change during the pre-main-sequence phase of protoplanetary systems is important in understanding how planets become habitable. Such worlds are interesting targets for future missions because the coolest stars could provide habitable conditions for up to 2.5 billion years post-accretion. Moreover, for a given star type, planetary systems are more easily resolved because of higher pre-main-sequence stellar luminosities, resulting in larger planet to star separation for cool stars than is the case for the traditional main-sequence (MS) habitable zone (HZ). We use 1D radiative-convective climate and stellar evolutionary models to calculate pre-main-sequence HZ distances for F1 to M8 stellar types. We also show that accreting planets that are later located in the traditional MS HZ orbiting stars cooler than a K5 (including the full range of M-stars) receive stellar fluxes that exceed the ru...

  6. Habitable Zones of Post-Main Sequence Stars

    CERN Document Server

    Ramirez, Ramses

    2016-01-01

    Once a star leaves the main sequence and becomes a red giant, its Habitable Zone (HZ) moves outward, promoting detectable habitable conditions at larger orbital distances. We use a one-dimensional radiative-convective climate and stellar evolutionary models to calculate post-MS HZ distances for a grid of stars from 3,700K to 10,000K (~M1 to A5 stellar types) for different stellar metallicities. The post-MS HZ limits are comparable to the distances of known directly imaged planets. We model the stellar as well as planetary atmospheric mass loss during the Red Giant Branch (RGB) and Asymptotic Giant Branch (AGB) phases for super-Moons to super-Earths. A planet can stay between 200 million years up to 9 Gyr in the post-MS HZ for our hottest and coldest grid stars, respectively, assuming solar metallicity. These numbers increase for increased stellar metallicity. Total atmospheric erosion only occurs for planets in close-in orbits. The post-MS HZ orbital distances are within detection capabilities of direct imagi...

  7. Planetary science: Bypassing the habitable zone

    Science.gov (United States)

    Ingersoll, Andrew P.

    2017-08-01

    In our own solar system, Venus is too hot, Mars is too cold and Earth is just right. Simulations show that making an icy planet habitable is not as simple as melting its ice: many icy bodies swing from too cold to too hot, bypassing just right.

  8. Limit cycles can reduce the width of the habitable zone

    CERN Document Server

    Haqq-Misra, Jacob; Batalha, Natasha E; Harman, Chester E; Kasting, James F

    2016-01-01

    The liquid water habitable zone (HZ) describes the orbital distance at which a terrestrial planet can maintain above-freezing conditions through regulation by the carbonate-silicate cycle. Recent calculations have suggested that planets in the outer regions of the habitable zone cannot maintain stable, warm climates, but rather should oscillate between long, globally glaciated states and shorter periods of climatic warmth. Such conditions, similar to 'Snowball Earth' episodes experienced on Earth, would be inimical to the development of complex land life, including intelligent life. Here, we build upon previous studies with an updated an energy balance climate model to calculate this 'limit cycle' region of the habitable zone where such cycling would occur. We argue that an abiotic Earth would have a greater CO$_2$ partial pressure than today because plants and other biota help to enhance the storage of CO$_2$ in soil. When we tune our abiotic model accordingly, we find that limit cycles can occur but that pr...

  9. The First Atmospheric Characterization of a Habitable-Zone Exoplanet

    Science.gov (United States)

    Stevenson, Kevin; Bean, Jacob; Charbonneau, David; Desert, Jean-Michel; Fortney, Jonathan; Irwin, Jonathan; Kreidberg, Laura; Line, Michael; Montet, Ben; Morley, Caroline

    2015-10-01

    Exoplanet surveys have recently revealed nearby planets orbiting within stellar habitable zones. This highly-anticipated breakthrough brings us one step closer in our quest to identify cosmic biosignatures, the indicators of extrasolar life. To achieve our goal, we must first study the atmospheres of these temperate worlds to measure their compositions and determine the prevalence of obscuring clouds. Using observations from the K2 mission, Co-I Montet recently announced the discovery of a 2.2 Earth-radii planet within the habitable zone of its relatively bright, nearby M dwarf parent star, K2-18. This temperate world is currently the best habitable-zone target for atmospheric characterization. Congruent with currently planned HST observations, we propose a Spitzer program to measure the transmission spectrum of the first habitable-zone exoplanet. Both telescopes are essential to revealing K2-18b's chemical composition. In a cloud-free, hydrogen-dominated atmosphere, the precision achieved by these measurements will be sufficient to detect methane, ammonia, and water vapor, which are the dominant C, N, and O bearing species at these temperatures. In turn, elemental abundance constraints from a primordial atmosphere can tell us about the composition of a protoplanetary disk in which Earth-like planets could have formed. Conversely, if the atmosphere contains thick clouds then the multi-wavelength observations from K2, HST, and Spitzer will constrain the clouds' properties. Because temperature plays a key role in the formation of clouds, their detection within the atmosphere of this habitable-zone exoplanet would be an important signpost that serves as a guide to future investigations of smaller, rocky exoplanets. As K2 continues discovering more habitable-zone planets, it is imperative that we perform spectral reconnaissance with Spitzer to determine their physical characteristics and begin understanding the prevalence of potentially-obscuring clouds prior to the

  10. The Effect of Carbon Dioxide (CO 2) Ice Cloud Condensation on the Habitable Zone

    Science.gov (United States)

    Lincowski, Andrew; Meadows, Victoria; Robinson, Tyler D.; Crisp, David

    2016-10-01

    The currently accepted outer limit of the habitable zone (OHZ) is defined by the "maximum greenhouse" limit, where Rayleigh scattering from additional CO2 gas overwhelms greenhouse warming. However, this long-standing definition neglects the radiative effects of CO2 clouds (Kopparapu, 2013); this omission was justified based on studies using the two-stream approximation, which found CO2 clouds to be highly likely to produce a net warming. However, recent comparisons of the radiative effect of CO2 clouds using both a two-stream and multi-stream radiative transfer model (Kitzmann et al, 2013; Kitzmann, 2016) found that the warming effect was reduced when the more sophisticated multi-stream models were used. In many cases CO2 clouds caused a cooling effect, meaning that their impact on climate could not be neglected when calculating the outer edge of the habitable zone. To better understand the impact of CO2 ice clouds on the OHZ, we have integrated CO2 cloud condensation into a versatile 1-D climate model for terrestrial planets (Robinson et al, 2012) that uses the validated multi-stream SMART radiative transfer code (Meadows & Crisp, 1996; Crisp, 1997) with a simple microphysical model. We present preliminary results on the habitable zone with self-consistent CO2 clouds for a range of atmospheric masses, compositions and host star spectra, and the subsequent effect on surface temperature. In particular, we evaluate the habitable zone for TRAPPIST-1d (Gillon et al, 2016) with a variety of atmospheric compositions and masses. We present reflectance and transit spectra of these cold terrestrial planets. We identify any consequences for the OHZ in general and TRAPPIST-1d in particular. This more comprehensive treatment of the OHZ could impact our understanding of the distribution of habitable planets in the universe, and provide better constraints for statistical target selection techniques, such as the habitability index (Barnes et al, 2015), for missions like JWST

  11. Chemical Evolution and the Galactic Habitable Zone of M31

    NARCIS (Netherlands)

    Carigi, Leticia; Garcia-Rojas, Jorge; Meneses-Goytia, Sofia

    2013-01-01

    We have computed the Galactic Habitable Zones (GHZs) of the Andromeda galaxy (M31) based on the probability of terrestrial planet formation, which depends on the metallicity (Z) of the interstellar medium, and the number of stars formed per unit surface area. The GHZ was obtained from a chemical evo

  12. Chemical Evolution and the Galactic Habitable Zone of M31

    NARCIS (Netherlands)

    Carigi, Leticia; Garcia-Rojas, Jorge; Meneses-Goytia, Sofia

    2013-01-01

    We have computed the Galactic Habitable Zones (GHZs) of the Andromeda galaxy (M31) based on the probability of terrestrial planet formation, which depends on the metallicity (Z) of the interstellar medium, and the number of stars formed per unit surface area. The GHZ was obtained from a chemical evo

  13. Chemical Evolution and the Galactic Habitable Zone of M31

    NARCIS (Netherlands)

    Carigi, Leticia; Garcia-Rojas, Jorge; Meneses-Goytia, Sofia

    2013-01-01

    We have computed the Galactic Habitable Zones (GHZs) of the Andromeda galaxy (M31) based on the probability of terrestrial planet formation, which depends on the metallicity (Z) of the interstellar medium, and the number of stars formed per unit surface area. The GHZ was obtained from a chemical

  14. Habitable Zones Around Main-Sequence Stars: New Estimates

    CERN Document Server

    Kopparapu, Ravi kumar; Kasting, James F; Eymet, Vincent; Robinson, Tyler D; Mahadevan, Suvrath; Terrien, Ryan C; Domagal-Goldman, Shawn; Meadows, Victoria; Deshpande, Rohit

    2013-01-01

    Identifying terrestrial planets in the habitable zones (HZs) of other stars is one of the primary goals of ongoing radial velocity and transit exoplanet surveys and proposed future space missions. Most current estimates of the boundaries of the HZ are based on 1-D, cloud-free, climate model calculations by Kasting et al.(1993). The inner edge of the HZ in Kasting et al.(1993) model was determined by loss of water, and the outer edge was determined by the maximum greenhouse provided by a CO2 atmosphere. A conservative estimate for the width of the HZ from this model in our Solar system is 0.95-1.67 AU. Here, an updated 1-D radiative-convective, cloud-free climate model is used to obtain new estimates for HZ widths around F, G, K and M stars. New H2O and CO2 absorption coefficients, derived from the HITRAN 2008 and HITEMP 2010 line-by-line databases, are important improvements to the climate model. According to the new model, the water loss (inner HZ) and maximum greenhouse (outer HZ) limits for our Solar Syste...

  15. HABITABLE ZONES AROUND MAIN-SEQUENCE STARS: NEW ESTIMATES

    Energy Technology Data Exchange (ETDEWEB)

    Kopparapu, Ravi Kumar; Ramirez, Ramses; Kasting, James F. [Department of Geosciences, Penn State University, 443 Deike Building, University Park, PA 16802 (United States); Eymet, Vincent [Laboratoire d' Astrophysique de Bordeaux, Universite de Bordeaux 1, UMR 5804, F-33270 Floirac (France); Robinson, Tyler D.; Domagal-Goldman, Shawn; Meadows, Victoria [NASA Astrobiology Institute' s Virtual Planetary Laboratory (United States); Mahadevan, Suvrath; Terrien, Ryan C.; Deshpande, Rohit [Center for Exoplanets and Habitable Worlds, The Pennsylvania State University, University Park, PA 16802 (United States)

    2013-03-10

    Identifying terrestrial planets in the habitable zones (HZs) of other stars is one of the primary goals of ongoing radial velocity (RV) and transit exoplanet surveys and proposed future space missions. Most current estimates of the boundaries of the HZ are based on one-dimensional (1D), cloud-free, climate model calculations by Kasting et al. However, this model used band models that were based on older HITRAN and HITEMP line-by-line databases. The inner edge of the HZ in the Kasting et al. model was determined by loss of water, and the outer edge was determined by the maximum greenhouse provided by a CO{sub 2} atmosphere. A conservative estimate for the width of the HZ from this model in our solar system is 0.95-1.67 AU. Here an updated 1D radiative-convective, cloud-free climate model is used to obtain new estimates for HZ widths around F, G, K, and M stars. New H{sub 2}O and CO{sub 2} absorption coefficients, derived from the HITRAN 2008 and HITEMP 2010 line-by-line databases, are important improvements to the climate model. According to the new model, the water-loss (inner HZ) and maximum greenhouse (outer HZ) limits for our solar system are at 0.99 and 1.70 AU, respectively, suggesting that the present Earth lies near the inner edge. Additional calculations are performed for stars with effective temperatures between 2600 and 7200 K, and the results are presented in parametric form, making them easy to apply to actual stars. The new model indicates that, near the inner edge of the HZ, there is no clear distinction between runaway greenhouse and water-loss limits for stars with T{sub eff} {approx}< 5000 K, which has implications for ongoing planet searches around K and M stars. To assess the potential habitability of extrasolar terrestrial planets, we propose using stellar flux incident on a planet rather than equilibrium temperature. This removes the dependence on planetary (Bond) albedo, which varies depending on the host star's spectral type. We suggest

  16. Habitable zone lifetimes of exoplanets around main sequence stars.

    Science.gov (United States)

    Rushby, Andrew J; Claire, Mark W; Osborn, Hugh; Watson, Andrew J

    2013-09-01

    The potential habitability of newly discovered exoplanets is initially assessed by determining whether their orbits fall within the circumstellar habitable zone of their star. However, the habitable zone (HZ) is not static in time or space, and its boundaries migrate outward at a rate proportional to the increase in luminosity of a star undergoing stellar evolution, possibly including or excluding planets over the course of the star's main sequence lifetime. We describe the time that a planet spends within the HZ as its "habitable zone lifetime." The HZ lifetime of a planet has strong astrobiological implications and is especially important when considering the evolution of complex life, which is likely to require a longer residence time within the HZ. Here, we present results from a simple model built to investigate the evolution of the "classic" HZ over time, while also providing estimates for the evolution of stellar luminosity over time in order to develop a "hybrid" HZ model. These models return estimates for the HZ lifetimes of Earth and 7 confirmed HZ exoplanets and 27 unconfirmed Kepler candidates. The HZ lifetime for Earth ranges between 6.29 and 7.79×10⁹ years (Gyr). The 7 exoplanets fall in a range between ∼1 and 54.72 Gyr, while the 27 Kepler candidate planets' HZ lifetimes range between 0.43 and 18.8 Gyr. Our results show that exoplanet HD 85512b is no longer within the HZ, assuming it has an Earth analog atmosphere. The HZ lifetime should be considered in future models of planetary habitability as setting an upper limit on the lifetime of any potential exoplanetary biosphere, and also for identifying planets of high astrobiological potential for continued observational or modeling campaigns.

  17. Stabilizing Cloud Feedback Dramatically Expands the Habitable Zone of Tidally Locked Planets

    CERN Document Server

    Yang, Jun; Abbot, Dorian S

    2013-01-01

    The habitable zone (HZ) is the circumstellar region where a planet can sustain surface liquid water. Searching for terrestrial planets in the HZ of nearby stars is the stated goal of ongoing and planned extrasolar planet surveys. Previous estimates of the inner edge of the HZ were based on one-dimensional radiative-convective models. The most serious limitation of these models is the inability to predict cloud behavior. Here we use global climate models with sophisticated cloud schemes to show that due to a stabilizing cloud feedback, tidally locked planets can be habitable at twice the stellar flux found by previous studies. This dramatically expands the HZ and roughly doubles the frequency of habitable planets orbiting red dwarf stars. At high stellar flux, strong convection produces thick water clouds near the substellar location that greatly increase the planetary albedo and reduce surface temperatures. Higher insolation produces stronger substellar convection and therefore higher albedo, making this phen...

  18. AN ANALYTIC METHOD TO DETERMINE HABITABLE ZONES FOR S-TYPE PLANETARY ORBITS IN BINARY STAR SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Eggl, Siegfried; Pilat-Lohinger, Elke; Gyergyovits, Markus; Funk, Barbara [Institute for Astronomy, University of Vienna, Tuerkenschanzstr. 17, A-1180 Vienna (Austria); Georgakarakos, Nikolaos, E-mail: siegfried.eggl@univie.ac.at, E-mail: elke.pilat-lohinger@univie.ac.at [128 V. Olgas str., Thessaloniki 546 45 (Greece)

    2012-06-10

    With more and more extrasolar planets discovered in and around binary star systems, questions concerning the determination of the classical habitable zone have arisen. Do the radiative and gravitational perturbations of the second star influence the extent of the habitable zone significantly, or is it sufficient to consider the host star only? In this article, we investigate the implications of stellar companions with different spectral types on the insolation a terrestrial planet receives orbiting a Sun-like primary. We present time-independent analytical estimates and compare them to insolation statistics gained via high precision numerical orbit calculations. Results suggest a strong dependence of permanent habitability on the binary's eccentricity, as well as a possible extension of habitable zones toward the secondary in close binary systems.

  19. An Analytic Method to determine Habitable Zones for S-Type Planetary Orbits in Binary Star Systems

    CERN Document Server

    Eggl, Siegfried; Georgakarakos, Nikolaos; Gyergyovits, Markus; Funk, Barbara

    2012-01-01

    With more and more extrasolar planets discovered in and around binary star systems, questions concerning the determination of the classical Habitable Zone arise. Do the radiative and gravitational perturbations of the second star influence the extent of the Habitable Zone significantly, or is it sufficient to consider the host-star only? In this article we investigate the implications of stellar companions with different spectral types on the insolation a terrestrial planet receives orbiting a Sun-like primary. We present time independent analytical estimates and compare these to insolation statistics gained via high precision numerical orbit calculations. Results suggest a strong dependence of permanent habitability on the binary's eccentricity, as well as a possible extension of Habitable Zones towards the secondary in close binary systems.

  20. The Galactic Habitable Zone I. Galactic Chemical Evolution

    CERN Document Server

    González, G; Ward, P; Gonzalez, Guillermo; Brownlee, Donald; Ward, Peter

    2001-01-01

    We propose the concept of a "Galactic Habitable Zone" (GHZ). Analogous to the Circumstellar Habitable Zone (CHZ), the GHZ is that region in the Milky Way where an Earth-like planet can retain liquid water on its surface and provide a long-term habitat for animal-like aerobic life. In this paper we examine the dependence of the GHZ on Galactic chemical evolution. The single most important factor is likely the dependence of terrestrial planet mass on the metallicity of its birth cloud. We estimate, very approximately, that a metallicity at least half that of the Sun is required to build a habitable terrestrial planet. The mass of a terrestrial planet has important consequences for interior heat loss, volatile inventory, and loss of atmosphere. A key issue is the production of planets that sustain plate tectonics, a critical recycling process that provides feedback to stabilize atmospheric temperatures on planets with oceans and atmospheres. Due to the more recent decline from the early intense star formation ac...

  1. A New Method for the Quick Determination of S-Type and P-Type Habitable Zones in Binary Systems

    Science.gov (United States)

    Wang, Zhaopeng; Cuntz, Manfred

    2017-01-01

    More than 3500 exoplanets have been confirmed nowadays, including a very large number of planets discovered by the Kepler mission. Additional exoplanets are expected to be found by ongoing missions as, e.g., K2 as well as future missions such as TESS. Exoplanets, especially terrestrial planets, located in stellar habitable zones are drawing great attention from the community and the public at large due to their potential for hosting alien life - a prospect that makes the adequate determination of stellar habitable zones an important goal of exoplanetary research. In the local Galactic neighborhood, binary systems occur relatively frequently. Thus, it is the aim of my presentation to offer a method for the quick determination for the existence of habitable zones in binaries. Therefore, fitting formulas for binary habitable zones regarding both S-type and P-type star-planet configurations are provided. Based on previous work in the literature, a joint constraint regarding radiative habitable zones and planetary orbital stability limits is used. Models of stellar habitable zones utilize updated computations for planetary climate models as given by Kopparapu et al. (2013, 2014) [ApJ 765, 131; ApJL 787, L29]. Cases studies showing the quality of the fit formulas, as well as applications to observed systems, are presented as well.

  2. THESIS: the terrestrial habitable-zone exoplanet spectroscopy infrared spacecraft

    Science.gov (United States)

    Swain, Mark R.; Vasisht, Gautam; Henning, Thomas; Tinetti, Giovanna; Beaulieu, Jean-Phillippe

    2010-07-01

    THESIS, the Transiting Habitable-zone Exoplanet Spectroscopy Infrared Spacecraft, is a concept for a medium/Probe class exoplanet mission. Building on the recent Spitzer successes in exoplanet characterization, THESIS would extend these types of measurements to super-Earth-like planets. A strength of the THESIS concept is simplicity, low technical risk, and modest cost. The mission concept has the potential to dramatically advance our understanding of conditions on extrasolar worlds and could serve as a stepping stone to more ambitious future missions. We envision this mission as a joint US-European effort with science objectives that resonate with both the traditional astronomy and planetary science communities.

  3. THESIS: terrestrial and habitable zone infrared spectroscopy spacecraft

    Science.gov (United States)

    Vasisht, G.; Swain, M. R.; Akeson, R. L.; Burrows, A.; Deming, D.; Grillmair, C. J.; Greene, T. P.

    2008-07-01

    THESIS is a concept for a medium class mission designed for spectroscopic characterization of extrasolar planets between 2-14 microns. The concept leverages off the recent first-steps made by Spitzer and Hubble in characterizing the atmospheres of alien gas giants. Under favourable circumstances, THESIS is capable of identifying biogenic molecules in habitable-zone planets, thereby determining conditions on worlds where life might exist. By systematically characterizing many worlds, from rocky planets to gas-giants, THESIS would deliver transformational science of profound interest to astronomers and the general public.

  4. Towards the Minimum Inner Edge Distance of the Habitable Zone

    CERN Document Server

    Zsom, Andras; de Wit, Julien

    2013-01-01

    We explore the minimum distance from a host star for an exoplanet to be potentially habitable, in order to maximize future chances of finding other habitable worlds. We find that the inner edge of the Habitable Zone (HZ) for hot desert worlds is at 0.5 AU around a solar-like star (well within the orbit of Venus). The relative humidity is the key controlling factor in determining the inner edge distance because water vapor has a strong impact on the greenhouse warming of the atmosphere, yet too little water vapor will deactivate precipitation and enable CO2 to accumulate. We estimate that a relative humidity as low as 1% can be sufficient to maintain a liquid water cycle and wash out CO2 from the atmosphere. If the surface pressure is too low (~0.1 bar), the water loss timescale of the planet is too short to support life. If the surface pressure is too high (~100 bars), we show using atmospheric circulation arguments, that the day-night side temperature difference on slow rotators and tidally locked planets is...

  5. A Catalog of Kepler Habitable Zone Exoplanet Candidates

    CERN Document Server

    Kane, Stephen R; Kasting, James F; Kopparapu, Ravi Kumar; Quintana, Elisa V; Barclay, Thomas; Batalha, Natalie M; Borucki, William J; Ciardi, David R; Haghighipour, Nader; Hinkel, Natalie R; Kaltenegger, Lisa; Selsis, Franck; Torres, Guillermo

    2016-01-01

    The NASA Kepler mission has discovered thousands of new planetary candidates, many of which have been confirmed through follow-up observations. A primary goal of the mission is to determine the occurrance rate of terrestrial-size planets within the Habitable Zone (HZ) of their host stars. Here we provide a list of HZ exoplanet candidates from the Kepler Data Release 24 Q1-Q17 data vetting process. This work was undertaken as part of the Kepler Habitable Zone Working Group. We use a variety of criteria regarding HZ boundaries and planetary sizes to produce complete lists of HZ candidates, including a catalog of 104 candidates within the optimistic HZ and 20 candidates with radii less than two Earth radii within the conservative HZ. We cross-match our HZ candidates with the Data Release 25 stellar properties and confirmed planet properties to provide robust stellar parameters and candidate dispositions. We also include false positive probabilities recently calculated by Morton et al. (2016) for each of the cand...

  6. Habitable Zones of Host Stars During the Post-MS Phase

    CERN Document Server

    Guo, Jianpo; Han, Zhanwen; 10.1007/s10509-010-0321-2

    2010-01-01

    A star will become brighter and brighter with stellar evolution, and the distance of its habitable zone will become farther and farther. Some planets outside the habitable zone of a host star during the main sequence phase may enter the habitable zone of the host star during other evolutionary phases. A terrestrial planet within the habitable zone of its host star is generally thought to be suited to life existence. Furthermore, a rocky moon around a giant planet may be also suited to life survive, provided that the planet-moon system is within the habitable zone of its host star. Using Eggleton's code and the boundary flux of habitable zone, we calculate the habitable zone of our Solar after the main sequence phase. It is found that Mars' orbit and Jupiter's orbit will enter the habitable zone of Solar during the subgiant branch phase and the red giant branch phase, respectively. And the orbit of Saturn will enter the habitable zone of Solar during the He-burning phase for about 137 million years. Life is un...

  7. The Inner Boundary of the Habitable Zone: Loss Processes of Liquid Water from Terrestrial Planet Surfaces

    Science.gov (United States)

    Stracke, B.; Godolt, M.; Grenfell, J. L.; von Paris, P.; Patzer, B.; Rauer, H.

    2012-04-01

    The question of habitability is very important in the context of terrestrial extrasolar planets. Generally, the Habitable Zone (HZ) is defined as the orbital region around a star, in which life-supporting (habitable) planets can exist. Taking into account that liquid water is a commonly accepted, fundamental requirement for the development of life - as we know it - the habitable region around a star is mainly determined by the stellar insolation of radiation, which is sufficient to maintain liquid water at the planetary surface. This study focuses on different processes that can lead to the complete loss of a liquid water reservoir from the surface of a terrestrial planet to determine the inner boundary of the HZ. The investigated criteria are, for example, reaching the temperature of the critical point of water at the planetary surface, the runaway greenhouse effect and the diffusion-limited escape of water from the atmosphere, which could lead to the loss of the complete water reservoir within the lifetime of a planet. We investigate these criteria, which determine the inner boundary of the HZ, with a one-dimensional radiative-convective model of a planetary atmosphere, which extends from the surface to the mid-mesosphere. Our modelling approach involves the step-by-step increase of the incoming stellar flux and the subsequent iterative calculation of resulting changes in the temperature profiles, the atmospheric water vapour content and the radiative properties. Therefore, this climate model had to be adapted to account for high temperatures and water mixing ratios. For example, the infrared radiative transfer scheme was improved to be suitable for such high temperature and pressure conditions. Modelling results are presented determining the inner boundary of the HZ affected by these processes, which can result in no liquid water on the planetary surface. In this context, especially the role of the runaway greenhouse effect is discussed in detail.

  8. Toward the minimum inner edge distance of the habitable zone

    Energy Technology Data Exchange (ETDEWEB)

    Zsom, Andras; Seager, Sara; De Wit, Julien; Stamenković, Vlada, E-mail: zsom@mit.edu [Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2013-12-01

    We explore the minimum distance from a host star where an exoplanet could potentially be habitable in order not to discard close-in rocky exoplanets for follow-up observations. We find that the inner edge of the Habitable Zone for hot desert worlds can be as close as 0.38 AU around a solar-like star, if the greenhouse effect is reduced (∼1% relative humidity) and the surface albedo is increased. We consider a wide range of atmospheric and planetary parameters such as the mixing ratios of greenhouse gases (water vapor and CO{sub 2}), surface albedo, pressure, and gravity. Intermediate surface pressure (∼1-10 bars) is necessary to limit water loss and to simultaneously sustain an active water cycle. We additionally find that the water loss timescale is influenced by the atmospheric CO{sub 2} level, because it indirectly influences the stratospheric water mixing ratio. If the CO{sub 2} mixing ratio of dry planets at the inner edge is smaller than 10{sup –4}, the water loss timescale is ∼1 billion years, which is considered here too short for life to evolve. We also show that the expected transmission spectra of hot desert worlds are similar to an Earth-like planet. Therefore, an instrument designed to identify biosignature gases in an Earth-like atmosphere can also identify similarly abundant gases in the atmospheres of dry planets. Our inner edge limit is closer to the host star than previous estimates. As a consequence, the occurrence rate of potentially habitable planets is larger than previously thought.

  9. CHEMICAL EVOLUTION AND THE GALACTIC HABITABLE ZONE OF M31

    Directory of Open Access Journals (Sweden)

    Leticia Carigi

    2013-01-01

    Full Text Available We have computed the Galactic Habitable Zones (GHZs of the Andromeda galaxy (M31 based on the probability of terrestrial planet formation, which depends on the metallicity (Z of the interstellar medium, and the number of stars formed per unit surface area. The GHZ was obtained from a chemical evolution model built to reproduce a metallicity gradient in the galactic disk, [O/H](r=−0.015 dex kpc−1 × r(kpc + 0.44 dex. If we assume that Earth-like planets form with a probability law that follows the Z distribution shown by stars with detected planets, the most probable GHZ per pc2 is located between 3 and 7 kpc for planets with ages between 6 and 7 Gyr. However, the highest number of stars with habitable planets is located in a ring between 12 and 14 kpc with a mean age of 7 Gyr. 11% and 6.5% of the all formed stars in M31 may have planets capable of hosting basic and complex life, respectively.

  10. Stability analysis of single planet systems and their habitable zones

    CERN Document Server

    Kopparapu, Ravi kumar

    2010-01-01

    We study the dynamical stability of planetary systems consisting of one hypothetical terrestrial mass planet ($1 $ or $10 \\mearth$) and one massive planet ($10 \\mearth - 10 \\mjup$). We consider masses and orbits that cover the range of observed planetary system architectures (including non-zero initial eccentricities), determine the stability limit through N-body simulations, and compare it to the analytic Hill stability boundary. We show that for given masses and orbits of a two planet system, a single parameter, which can be calculated analytically, describes the Lagrange stability boundary (no ejections or exchanges) but which diverges significantly from the Hill stability boundary. However, we do find that the actual boundary is fractal, and therefore we also identify a second parameter which demarcates the transition from stable to unstable evolution. We show the portions of the habitable zones of $\\rho$ CrB, HD 164922, GJ 674, and HD 7924 which can support a terrestrial planet. These analyses clarify th...

  11. Abiotic oxygen-dominated atmospheres on terrestrial habitable zone planets

    CERN Document Server

    Wordsworth, Robin

    2014-01-01

    Detection of life on other planets requires identification of biosignatures, i.e., observable planetary properties that robustly indicate the presence of a biosphere. One of the most widely accepted biosignatures for an Earth-like planet is an atmosphere where oxygen is a major constituent. Here we show that lifeless habitable zone terrestrial planets around any star type may develop oxygen-dominated atmospheres as a result of water photolysis, because the cold trap mechanism that protects H2O on Earth is ineffective when the atmospheric inventory of non-condensing gases (e.g., N2, Ar) is low. Hence the spectral features of O2 and O3 alone cannot be regarded as robust signs of extraterrestrial life.

  12. STABILIZING CLOUD FEEDBACK DRAMATICALLY EXPANDS THE HABITABLE ZONE OF TIDALLY LOCKED PLANETS

    Energy Technology Data Exchange (ETDEWEB)

    Yang Jun; Abbot, Dorian S. [Department of the Geophysical Sciences, University of Chicago, 5734 South Ellis Avenue, Chicago, IL 60637 (United States); Cowan, Nicolas B., E-mail: abbot@uchicago.edu [Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) and Department of Physics and Astronomy, Northwestern University, 2131 Tech Drive, Evanston, IL 60208 (United States)

    2013-07-10

    The habitable zone (HZ) is the circumstellar region where a planet can sustain surface liquid water. Searching for terrestrial planets in the HZ of nearby stars is the stated goal of ongoing and planned extrasolar planet surveys. Previous estimates of the inner edge of the HZ were based on one-dimensional radiative-convective models. The most serious limitation of these models is the inability to predict cloud behavior. Here we use global climate models with sophisticated cloud schemes to show that due to a stabilizing cloud feedback, tidally locked planets can be habitable at twice the stellar flux found by previous studies. This dramatically expands the HZ and roughly doubles the frequency of habitable planets orbiting red dwarf stars. At high stellar flux, strong convection produces thick water clouds near the substellar location that greatly increase the planetary albedo and reduce surface temperatures. Higher insolation produces stronger substellar convection and therefore higher albedo, making this phenomenon a stabilizing climate feedback. Substellar clouds also effectively block outgoing radiation from the surface, reducing or even completely reversing the thermal emission contrast between dayside and nightside. The presence of substellar water clouds and the resulting clement surface conditions will therefore be detectable with the James Webb Space Telescope.

  13. Circumstellar Habitable Zones of Binary Star Systems in the Solar Neighborhood

    CERN Document Server

    Eggl, Siegfried; Funk, Barbara; Georgakarakos, Nikolaos; Haghighipour, Nader

    2012-01-01

    Binary and multiple systems constitute more than half of the total stellar population in the Solar neighborhood (Kiseleva-Eggleton and Eggleton 2001). Their frequent occurrence as well as the fact that more than 70 (Schneider et al. 2011) planets have already been discovered in such configurations - most noteably the telluric companion of alpha Centauri B (Dumusque et al. 2012) - make them interesting targets in the search for habitable worlds. Recent studies (Eggl et al. 2012b, Forgan 2012) have shown, that despite the variations in gravitational and radiative environment, there are indeed circumstellar regions where planets can stay within habitable insolation limits on secular dynamical timescales. In this article we provide habitable zones for 19 near S-Type binary systems from the Hipparchos and WDS catalogues with semimajor axes between 1 and 100 AU. Hereby, we accounted for the combined dynamical and radiative influence of the second star on the Earth-like planet. Out of the 19 systems presented, 17 of...

  14. Extrasolar "Earths" in habitable zones- targets of opportunity

    CERN Document Server

    Jones, B W; Sleep, P N

    2003-01-01

    We have shown that Earth-mass planets could survive in variously restricted regions of the habitable zones (HZs) of most of a sample of nine of the 102 main-sequence exoplanetary systems confirmed by 25 September 2003. In a preliminary extrapolation of our results to the other systems, we estimate that roughly a half of these systems could have had an Earth-mass planet confined to the HZ for at least the most recent 1000 Ma. The HZ migrates outwards during the main-sequence lifetime, and so this proportion varies with stellar age; about two thirds of the systems could have such a planet confined to the HZ for at least 1000 Ma at sometime during the main-sequence lifetime. Clearly, these systems should be high on the target list for exploration for terrestrial planets. We have reached this conclusion by launching putative Earth-mass planets in various orbits and following their fate with mixed-variable symplectic and hybrid integrators. Whether the Earth-mass planets could form in the HZs of the exoplanetary s...

  15. A Catalog of Kepler Habitable Zone Exoplanet Candidates

    Science.gov (United States)

    Kane, Stephen R.; Hill, Michelle L.; Kasting, James F.; Kopparapu, Ravi Kumar; Quintana, Elisa V.; Barclay, Thomas; Batalha, Natalie M.; Borucki, William J.; Ciardi, David R.; Haghighipour, Nader; Hinkel, Natalie R.; Kaltenegger, Lisa; Selsis, Franck; Torres, Guillermo

    2016-10-01

    The NASA Kepler mission ha s discovered thousands of new planetary candidates, many of which have been confirmed through follow-up observations. A primary goal of the mission is to determine the occurrence rate of terrestrial-size planets within the Habitable Zone (HZ) of their host stars. Here we provide a list of HZ exoplanet candidates from the Kepler Q1–Q17 Data Release 24 data-vetting process. This work was undertaken as part of the Kepler HZ Working Group. We use a variety of criteria regarding HZ boundaries and planetary sizes to produce complete lists of HZ candidates, including a catalog of 104 candidates within the optimistic HZ and 20 candidates with radii less than two Earth radii within the conservative HZ. We cross-match our HZ candidates with the stellar properties and confirmed planet properties from Data Release 25 to provide robust stellar parameters and candidate dispositions. We also include false-positive probabilities recently calculated by Morton et al. for each of the candidates within our catalogs to aid in their validation. Finally, we performed dynamical analysis simulations for multi-planet systems that contain candidates with radii less than two Earth radii as a step toward validation of those systems.

  16. The Habitable-zone Planet Finder Calibration System

    CERN Document Server

    Halverson, Samuel; Ramsey, Lawrence; Terrien, Ryan; Roy, Arpita; Schwab, Christian; Bender, Chad; Hearty, Fred; Levi, Eric; Osterman, Steve; Ycas, Gabe; Diddams, Scott

    2014-01-01

    We present the design concept of the wavelength calibration system for the Habitable-zone Planet Finder instrument (HPF), a precision radial velocity (RV) spectrograph designed to detect terrestrial-mass planets around M-dwarfs. HPF is a stabilized, fiber-fed, R$\\sim$50,000 spectrograph operating in the near-infrared (NIR) z/Y/J bands from 0.84 to 1.3 microns. For HPF to achieve 1 m s$^{-1}$ or better measurement precision, a unique calibration system, stable to several times better precision, will be needed to accurately remove instrumental effects at an unprecedented level in the NIR. The primary wavelength calibration source is a laser frequency comb (LFC), currently in development at NIST Boulder, discussed separately in these proceedings. The LFC will be supplemented by a stabilized single-mode fiber Fabry-Perot interferometer reference source and Uranium-Neon lamp. The HPF calibration system will combine several other new technologies developed by the Penn State Optical-Infrared instrumentation group to...

  17. The Orbits of Terrestrial Planets in the Habitable Zones of Known Exoplanetary Systems

    CERN Document Server

    Jones, B W; Jones, Barrie W

    2002-01-01

    We show that terrestrial planets could survive in variously restricted regions of the habitable zones of 47 Ursae Majoris, Epsilon Eridani, and Rho Coronae Borealis, but nowhere in the habitable zones of Gliese 876 and Upsilon Andromedae. The first three systems between them are representative of a large proportion of the 90 or so extrasolar planetary systems discovered by mid-2002, and thus there are many known systems worth searching for terrestrial planets in habitable zones. We reach our conclusions by launching putative Earth-mass planets in various orbits and following their fate with a mixed-variable symplectic integrator.

  18. Limit Cycles Can Reduce the Width of the Habitable Zone

    Science.gov (United States)

    Haqq-Misra, Jacob; Kopparapu, Ravi Kumar; Batalha, Natasha E.; Harman, Chester E.; Kasting, James F.

    2016-08-01

    The liquid water habitable zone (HZ) describes the orbital distance at which a terrestrial planet can maintain above-freezing conditions through regulation by the carbonate-silicate cycle. Recent calculations have suggested that planets in the outer regions of the HZ cannot maintain stable, warm climates, but rather should oscillate between long, globally glaciated states and shorter periods of climatic warmth. Such conditions, similar to “Snowball Earth” episodes experienced on Earth, would be inimical to the development of complex land life, including intelligent life. Here, we build on previous studies with an updated energy balance climate model to calculate this “limit cycle” region of the HZ where such cycling would occur. We argue that an abiotic Earth would have a greater CO2 partial pressure than today because plants and other biota help to enhance the storage of CO2 in soil. When we tune our abiotic model accordingly, we find that limit cycles can occur but that previous calculations have overestimated their importance. For G stars like the Sun, limit cycles occur only for planets with CO2 outgassing rates less than that on modern Earth. For K- and M-star planets, limit cycles should not occur; however, M-star planets may be inhospitable to life for other reasons. Planets orbiting late G-type and early K-type stars retain the greatest potential for maintaining warm, stable conditions. Our results suggest that host star type, planetary volcanic activity, and seafloor weathering are all important factors in determining whether planets will be prone to limit cycling.

  19. Indication of insensitivity of planetary weathering behavior and habitable zone to surface land fraction

    CERN Document Server

    Abbot, Dorian S; Ciesla, Fred J

    2012-01-01

    It is likely that unambiguous habitable zone terrestrial planets of unknown water content will soon be discovered. Water content helps determine surface land fraction, which influences planetary weathering behavior. This is important because the silicate weathering feedback determines the width of the habitable zone in space and time. Here a low-order model of weathering and climate, useful for gaining qualitative understanding, is developed to examine climate evolution for planets of various land-ocean fractions. It is pointed out that, if seafloor weathering does not depend directly on surface temperature, there can be no weathering-climate feedback on a waterworld. This would dramatically narrow the habitable zone of a waterworld. Results from our model indicate that weathering behavior does not depend strongly on land fraction for partially ocean-covered planets. This is powerful because it suggests that previous habitable zone theory is robust to changes in land fraction, as long as there is some land. F...

  20. An Earth-sized planet in the habitable zone of a cool star.

    Science.gov (United States)

    Quintana, Elisa V; Barclay, Thomas; Raymond, Sean N; Rowe, Jason F; Bolmont, Emeline; Caldwell, Douglas A; Howell, Steve B; Kane, Stephen R; Huber, Daniel; Crepp, Justin R; Lissauer, Jack J; Ciardi, David R; Coughlin, Jeffrey L; Everett, Mark E; Henze, Christopher E; Horch, Elliott; Isaacson, Howard; Ford, Eric B; Adams, Fred C; Still, Martin; Hunter, Roger C; Quarles, Billy; Selsis, Franck

    2014-04-18

    The quest for Earth-like planets is a major focus of current exoplanet research. Although planets that are Earth-sized and smaller have been detected, these planets reside in orbits that are too close to their host star to allow liquid water on their surfaces. We present the detection of Kepler-186f, a 1.11 ± 0.14 Earth-radius planet that is the outermost of five planets, all roughly Earth-sized, that transit a 0.47 ± 0.05 solar-radius star. The intensity and spectrum of the star's radiation place Kepler-186f in the stellar habitable zone, implying that if Kepler-186f has an Earth-like atmosphere and water at its surface, then some of this water is likely to be in liquid form.

  1. An Earth-sized Planet in the Habitable Zone of a Cool Star

    CERN Document Server

    Quintana, Elisa V; Raymond, Sean N; Rowe, Jason F; Bolmont, Emeline; Caldwell, Douglas A; Howell, Steve B; Kane, Stephen R; Huber, Daniel; Crepp, Justin R; Lissauer, Jack J; Ciardi, David R; Coughlin, Jeffrey L; Everett, Mark E; Henze, Christopher E; Horch, Elliott; Isaacson, Howard; Ford, Eric B; Adams, Fred C; Still, Martin; Hunter, Roger C; Quarles, Billy; Selsis, Franck

    2014-01-01

    The quest for Earth-like planets represents a major focus of current exoplanet research. While planets that are Earth-sized and smaller have been detected, these planets reside in orbits that are too close to their host star to allow liquid water on their surface. We present the detection of Kepler-186f, a 1.11+\\-0.14 Earth radius planet that is the outermost of five planets - all roughly Earth-sized - that transit a 0.47+\\-0.05 Rsun star. The intensity and spectrum of the star's radiation places Kepler-186f in the stellar habitable zone, implying that if Kepler-186f has an Earth-like atmosphere and H2O at its surface, then some of this H2O is likely to be in liquid form.

  2. Habitable Zone Boundaries: Implications for our Solar System and Beyond

    Science.gov (United States)

    Kasting, J. F.; Kopparapu, R.; Harman, C.; Batalha, N. E.; Haqq-Misra, J. D.

    2015-12-01

    The successful completion of NASA's Kepler Mission has led to renewed interest in the definition and boundaries of the circumstellar habitable zone (HZ), where liquid water can be stable on a planet's surface. Goldblatt et al. [1] showed that the runaway greenhouse effect, which defines the inner edge of the HZ, depends critically on absorption coefficients of H2O obtained from the new HITEMP database. Kopparapu et al. [2,3] followed up on this observation by recalculating HZ boundaries using HITEMP coefficients. This caused the inner edge to move out to 0.99 AU in their (fully saturated, cloud-free) 1-D climate model. Leconte et al. [4] then used a 3-D climate model to show that the inner edge moves back in to 0.95 AU when relative humidity and clouds are taken into account. In their model, however, the upper stratosphere remained cold and dry, making it difficult to explain how Venus lost its water. But Leconte et al. only looked at surface temperatures up to ~330 K. At somewhat higher surface temperatures (350 K), our own 1-D model predicts that the stratosphere should indeed become wet [5]. Towards the outer edge of the HZ, it now appears that planets should undergo limit cycles involving global glaciation, CO2 buildup from volcanism, and CO2 drawdown from weathering [6,7]. If supplemented with volcanic H2 [8], such cycles could explain how early Mars could have been cold much of the time and yet have experienced enough warm periods to carve the observed fluvial features. Results from a new model of this process will be discussed. Refs: 1. Goldblatt, C., Robinson, T. D., Zahnle, K. J., & Crisp, D. 2013, Nature Geoscience, 6, 661 2. Kopparapu, R. K., et al. 2013, Astrophysical Journal, 765 3. ---. 2013, Astrophysical Journal, 770 4. Leconte, J., Forget, F., Charnay, B., Wordsworth, R., & Pottier, A. 2013, Nature, 504, 268 5. Kasting, J. F., Chen, H., & Kopparapu, R. K. in prep., Ap J Lett 6. Kadoya, S., & Tajika, E. 2014, Astrophysical Journal, 790 7. Menou, K

  3. Circumstellar Habitable Zones to Ecodynamic Domains: A Preliminary Review and Suggested Future Directions

    CERN Document Server

    Heath, Martin J

    2009-01-01

    The concept of the Circumstellar Habitable Zone has served the scientific community well for some decades. It slips easily off the tongue, and it would be hard to replace. Recently, however, several workers have postulated types of habitable bodies which might exist outside the classic circumstellar habitable zone (HZ). These include not only bodies which orbit at substantial distances from their parent stars, but also snowball worlds with geothermally-maintained internal oceans and even densely-atmosphered worlds with geothermally-maintained surface oceans, which have been ejected from unstable planetary systems into interstellar space. If habitability is not a unique and diagnostic property of the HZ, then the value of the term has been compromised in a fundamental way. At the same time, it has become evident that multiple environmental states, differing in important ways in their habitability, are possible even for geophysically similar planets subject to similar levels of insolation, within the classic HZ...

  4. Gliese 581d is the first discovered terrestrial-mass exoplanet in the habitable zone

    CERN Document Server

    Wordsworth, Robin; Selsis, Franck; Millour, Ehouarn; Charnay, Benjamin; Madeleine, Jean-Baptiste

    2011-01-01

    It has been suggested that the recently discovered exoplanet GJ581d might be able to support liquid water due to its relatively low mass and orbital distance. However, GJ581d receives 35% less stellar energy than Mars and is probably locked in tidal resonance, with extremely low insolation at the poles and possibly a permanent night side. Under such conditions, it is unknown whether any habitable climate on the planet would be able to withstand global glaciation and / or atmospheric collapse. Here we present three-dimensional climate simulations that demonstrate GJ581d will have a stable atmosphere and surface liquid water for a wide range of plausible cases, making it the first confirmed super-Earth (exoplanet of 2-10 Earth masses) in the habitable zone. We find that atmospheres with over 10 bar CO2 and varying amounts of background gas (e.g., N2) yield global mean temperatures above 0 degrees Celsius for both land and ocean-covered surfaces. Based on the emitted IR radiation calculated by the model, we prop...

  5. Characterizing the Habitable Zone Planets of Kepler Stars

    Science.gov (United States)

    Fischer, Debra

    Planet Hunters (PH) is a well-established and successful web interface that allows citizen scientists to search for transiting planets in the NASA Kepler public archive data. Over the past 3 years, our users have made more than 20 million light curve classifications. We now have more than 300,000 users around the world. However, more than half of the Kepler data has not yet been displayed to our volunteers. In June 2014 we are launching Planet Hunters v2.0. The backend of the site has been completely redesigned. The new website is more intuitive and faster; we have improved the real-time weighting algorithm that assigns transit scores for faster and more accurate extraction of the transit events from the database. With Planet Hunters v2.0, we expect that assessments will be ten times faster, so that we have the opportunity to complete the classifications for the backlog of Kepler light curve in the next three years. There are three goals for this project. First, we will data-mine the PH classifications to search for long period planets with fewer than 5 transit events. We have demonstrated that our volunteers are efficient at detecting planets with long periods and radii greater than a few REARTH. This region of parameter space is optimal for characterizing larger planets orbiting close to the habitable zone. To build upon the citizen science efforts, we will model the light curves, search for evidence of false positives, and contribute observations of stellar spectra to refine both the stellar and orbital parameters. Second, we will carry out a careful analysis of the fraction of transits that are missed (a function of planet radius and orbital period) to derive observational incompleteness factors. The incompleteness factors will be combined with geometrical detection factors to assess the planet occurrence rate for wide separations. This is a unique scientific contribution current studies of planet occurrence rate are either restricted to orbital periods shorter

  6. Radiation danger of exclusion zone objects

    Energy Technology Data Exchange (ETDEWEB)

    Kholosha, V.I.; Proskura, N.I.; Ivanov, Yu.A.; Kazakov, S.V.; Arkhipov, A.N. [Ministry of Ukraine of Emergencies and Affairs of Population Protection from the Consequences of Chornobyl Catastrophe (Ukraine)

    2001-03-01

    The analysis of radiation danger of the Exclusion Zone objects was made. Here, the Zone is defined as the territory from which the population has been evacuated in 1986 owing to the Chernobyl accident and possible outflow of the contaminated substances out of the borders is potentially dangerous to the Ukraine. In the present work were analyzed such problems as sources of radiation danger in the Zone, ways of radionuclide migration out of the borders of the Zone in normal and emergency situations, the non-radiation (ecological) danger factors of the Zone objects, doses (individual and collective) from various sources and on separate ways of their formation, and the characteristics of radiation danger of the Zone objects. The conclusions are: (1) Radionuclide flows both from technologic and natural sources exceed those from Shelter objects, (2) Under emergency conditions, radionuclide flows and doze loading remain comparable with those from emergency sources, (3) To solve some management tasks in radiation situation, the basic works on the Shelter objects should be oriented to decrease probability of emergency occurrence and to reduce radiation influence (prevention wash-outs during high waters, fire-prevention measures in forests and strengthening of the control behind non-authorized use of objects in the Zone). (S. Ohno)

  7. Habitable evaporated cores: transforming mini-Neptunes into super-Earths in the habitable zones of M dwarfs.

    Science.gov (United States)

    Luger, R; Barnes, R; Lopez, E; Fortney, J; Jackson, B; Meadows, V

    2015-01-01

    We show that photoevaporation of small gaseous exoplanets ("mini-Neptunes") in the habitable zones of M dwarfs can remove several Earth masses of hydrogen and helium from these planets and transform them into potentially habitable worlds. We couple X-ray/extreme ultraviolet (XUV)-driven escape, thermal evolution, tidal evolution, and orbital migration to explore the types of systems that may harbor such "habitable evaporated cores" (HECs). We find that HECs are most likely to form from planets with ∼1 M⊕ solid cores with up to about 50% H/He by mass, though whether or not a given mini-Neptune forms a HEC is highly dependent on the early XUV evolution of the host star. As terrestrial planet formation around M dwarfs by accumulation of local material is likely to form planets that are small and dry, evaporation of small migrating mini-Neptunes could be one of the dominant formation mechanisms for volatile-rich Earths around these stars.

  8. Habitable Evaporated Cores: Transforming Mini-Neptunes into Super-Earths in the Habitable Zones of M Dwarfs

    CERN Document Server

    Luger, Rodrigo; Lopez, Eric; Fortney, Jonathan; Jackson, Brian; Meadows, Victoria

    2015-01-01

    We show that photoevaporation of small gaseous exoplanets ("mini-Neptunes") in the habitable zones of M dwarfs can remove several Earth masses of hydrogen and helium from these planets and transform them into potentially habitable worlds. We couple X-ray/extreme ultraviolet (XUV)-driven escape, thermal evolution, tidal evolution and orbital migration to explore the types of systems that may harbor such "habitable evaporated cores" (HECs). We find that HECs are most likely to form from planets with $\\sim 1 M_\\oplus$ solid cores with up to about 50% H/He by mass, though whether or not a given mini-Neptune forms a HEC is highly dependent on the early XUV evolution of the host star. As terrestrial planet formation around M dwarfs by accumulation of local material is likely to form planets that are small and dry, evaporation of small migrating mini-Neptunes could be one of the dominant formation mechanisms for volatile-rich Earths around these stars.

  9. Volcanism and outgassing of stagnant-lid planets: Implications for the habitable zone

    Science.gov (United States)

    Noack, L.; Rivoldini, A.; Van Hoolst, T.

    2017-08-01

    Rocky exoplanets are typically classified as potentially habitable planets, if liquid water exists at the surface. The latter depends on several factors like the abundance of water but also on the amount of available solar energy and greenhouse gases in the atmosphere for a sufficiently long time for life to evolve. The range of distances to the star, where surface water might exist, is called the habitable zone. Here we study the effect of the planet interior of stagnant-lid planets on the formation of a secondary atmosphere through outgassing that would be needed to preserve surface water. We find that volcanic activity and associated outgassing in one-plate planets is strongly reduced after the magma ocean outgassing phase for Earth-like mantle compositions, if their mass and/or core-mass fraction exceeds a critical value. As a consequence, the effective outer boundary of the habitable zone is then closer to the host star than suggested by the classical habitable zone definition, setting an important restriction to the possible surface habitability of massive rocky exoplanets, assuming that they did not keep a substantial amount of their primary atmosphere and that they are not in the plate tectonics regime.

  10. Habitable Zones Around Main-Sequence Stars: Dependence on Planetary Mass

    CERN Document Server

    Kopparapu, Ravi kumar; SchottelKotte, James; Kasting, James F; Domagal-Goldman, Shawn; Eymet, Vincent

    2014-01-01

    The ongoing discoveries of extrasolar planets are unveiling a wide range of terrestrial mass (size) planets around their host stars. In this letter, we present estimates of habitable zones (HZs) around stars with stellar effective temperatures in the range 2600 K - 7200 K, for planetary masses between 0.1 ME and 5 ME. Assuming H2O (inner HZ) and CO2 (outer HZ) dominated atmospheres, and scaling the background N2 atmospheric pressure with the radius of the planet, our results indicate that larger planets have wider HZs than do smaller ones. Specifically, with the assumption that smaller planets will have less dense atmospheres, the inner edge of the HZ (runaway greenhouse limit) moves outward (~10% lower than Earth flux) for low mass planets due to larger greenhouse effect arising from the increased H2O column depth. For larger planets, the H2O column depth is smaller, and higher temperatures are needed before water vapor completely dominates the outgoing longwave radiation. Hence the inner edge moves inward (...

  11. The Catalog of Earth-Like Exoplanet Survey TArgets (CELESTA): A Database of Habitable Zones around Nearby Stars

    CERN Document Server

    Chandler, Colin Orion; Kane, Stephen R

    2015-01-01

    Locating planets in circumstellar Habitable Zones is a priority for many exoplanet surveys. Space-based and ground-based surveys alike require robust toolsets to aid in target selection and mission planning. We present the Catalog of Earth-Like Exoplanet Survey Targets (CELESTA), a database of Habitable Zones around 36,000 nearby stars. We calculated stellar parameters, including effective temperatures, masses, and radii, and we quantified the orbital distances and periods corresponding to the circumstellar Habitable Zones. We gauged the accuracy of our predictions by contrasting CELESTA's computed parameters to observational data. We ascertain a potential return on investment by computing the number of Habitable Zones probed for a given survey duration. A versatile framework for extending the functionality of CELESTA into the future enables ongoing comparisons to new observations, and recalculations when updates to Habitable Zone models, stellar temperatures, or parallax data become available. We expect to u...

  12. Terrestrial Planets Formation around Circumbinary Habitable Zone: Inward Migration in the Planetesimal Swarm

    CERN Document Server

    Gong, Yan-Xiang; Xie, Ji-Wei

    2012-01-01

    According to the core accretion theory, circumbinary embryos can form only beyond a critical semimajor axis (CSMA). However, due to the relatively high density of solid materials in the inner disk, significant amount of small planetesimals must exist in the inner zone when embryos were forming outside this CSMA. So embryos migration induced by the planetesimal swarm is possible after the gas disk depletion. Through numerical simulations, we found (i) the scattering-driven inward migration of embryos is robust, planets can form in the habitable zone if we adopt a mass distribution of MMSN-like disk; (ii) the total mass of the planetesimals in the inner region and continuous embryo-embryo scattering are two key factors that cause significant embryo migrations; (iii) the scattering-driven migration of embryos is a natural water-deliver mechanism. We propose that planet detections should focus on the close binary with its habitable zone near CSMA.

  13. Impacts of stellar evolution and dynamics on the habitable zone: The role of rotation and magnetic activity

    CERN Document Server

    Florian, Gallet; Louis, Amard; Sacha, Brun; Ana, Palacios; Stephane, Mathis

    2016-01-01

    In this article, we aim to provide the community with the dependence of the habitable zone upon the stellar mass, metallicity, rotation, and for various prescriptions of the limits of the habitable zone. We use the STAREVOL code to study the evolution of the habitable zone and of the continuously habitable zone limits. Mass and metallicity are the stellar parameters that have the most dramatic effects on the habitable zone limits. Conversely, for a given stellar mass and metallicity, stellar rotation has only a marginal effect on these limits and does not modify the width of the habitable zone. The evolution of the habitable zone limits is also correlated to the evolution of the stellar activity (through the Rossby number) that depends on the stellar mass considered. While the magnetic activity has negligible consequence in the case of more massive stars, these effects may have a strong impact on the habitability of a planet around M dwarf stars. Thus, stellar activity cannot be neglected and may have strong ...

  14. Impacts of stellar evolution and dynamics on the habitable zone: The role of rotation and magnetic activity

    Science.gov (United States)

    Gallet, F.; Charbonnel, C.; Amard, L.; Brun, S.; Palacios, A.; Mathis, S.

    2017-01-01

    Context. With the ever growing number of detected and confirmed exoplanets, the probability of finding a planet that looks like the Earth increases continuously. While it is clear that the presence of a planet in the habitable zone does not imply the planet is habitable, a systematic study of the evolution of the habitable zone is required to account for its dependence on stellar parameters. Aims: In this article, we aim to provide the community with the dependence of the habitable zone upon the stellar mass, metallicity, rotation, and for various prescriptions of the limits of the habitable zone. Methods: We use stellar evolution models computed with the code STAREVOL, which includes the most current physical mechanisms of internal transport of angular momentum and external wind braking, to study the evolution of the habitable zone and the continuously habitable zone limits. Results: The stellar parameters mass and metallicity affect the habitable zone limits most dramatically. Conversely, for a given stellar mass and metallicity, stellar rotation has only a marginal effect on these limits and does not modify the width of the habitable zone. Moreover, and as expected in the main-sequence phase and for a given stellar mass and metallicity, the habitable zone limits remain almost constant, and this confirms the usual assumptions of a relative constancy of these limits during that phase. The evolution of the habitable zone limits is also correlated to the evolution of the stellar activity (through the Rossby number), which depends on the stellar mass considered. While the magnetic activity has negligible consequence in the case of more massive stars, these effects may have a strong impact on the habitability of a planet around M-dwarf stars. Thus, stellar activity cannot be neglected and may have a strong impact on the development of life during the early stage of the continuously habitable zone phase of low-mass stars. Using observed trends of stellar magnetic field

  15. Habitable Moist Atmospheres on Terrestrial Planets near the Inner Edge of the Habitable Zone around M Dwarfs

    Science.gov (United States)

    Kopparapu, Ravi kumar; Wolf, Eric T.; Arney, Giada; Batalha, Natasha E.; Haqq-Misra, Jacob; Grimm, Simon L.; Heng, Kevin

    2017-08-01

    Terrestrial planets in the habitable zones (HZs) of low-mass stars and cool dwarfs have received significant scrutiny recently. Transit spectroscopy of such planets with the James Webb Space Telescope (JWST) represents our best shot at obtaining the spectrum of a habitable planet within the next decade. As these planets are likely tidally locked, improved 3D numerical simulations of such planetary atmospheres are needed to guide target selection. Here we use a 3D climate system model, updated with new water-vapor absorption coefficients derived from the HITRAN 2012 database, to study ocean-covered planets at the inner edge of the HZ around late M to mid-K stars (2600 {{K}}≤slant {T}{eff}≤slant 4500 {{K}}). Our results indicate that these updated water-vapor coefficients result in significant warming compared to previous studies, so the inner HZ around M dwarfs is not as close as suggested by earlier work. Assuming synchronously rotating Earth-sized and Earth-mass planets with background 1 bar {{{N}}}2 atmospheres, we find that planets at the inner HZ of stars with {T}{eff}> 3000 {{K}} undergo the classical “moist greenhouse” ({{{H}}}2{{O}} mixing ratio > {10}-3 in the stratosphere) at significantly lower surface temperature (∼280 K) in our 3D model compared with 1D climate models (∼340 K). This implies that some planets around low-mass stars can simultaneously undergo water loss and remain habitable. However, for stars with {T}{eff}≤slant 3000 {{K}}, planets at the inner HZ may directly transition to a runaway state, while bypassing the moist greenhouse water loss entirely. We analyze transmission spectra of planets in a moist greenhouse regime and find that there are several prominent {{{H}}}2{{O}} features, including a broad feature between 5 and 8 μm, within JWST MIRI instrument range. Thus, relying only on standard Earth-analog spectra with 24 hr rotation period around M dwarfs for habitability studies will miss the strong {{{H}}}2{{O}} features

  16. The galactic habitable zone of the Milky Way and M31 from chemical evolution models with gas radial flows

    CERN Document Server

    Spitoni, E; Sozzetti, A

    2014-01-01

    The galactic habitable zone is defined as the region with sufficient abundance of heavy elements to form planetary systems in which Earth-like planets could be born and might be capable of sustaining life, after surviving to close supernova explosion events. Galactic chemical evolution models can be useful for studying the galactic habitable zones in different systems. We apply detailed chemical evolution models including radial gas flows to study the galactic habitable zones in our Galaxy and M31. We compare the results to the relative galactic habitable zones found with "classical" (independent ring) models, where no gas inflows were included. For both the Milky Way and Andromeda, the main effect of the gas radial inflows is to enhance the number of stars hosting a habitable planet with respect to the "classical" model results, in the region of maximum probability for this occurrence, relative to the classical model results. These results are obtained by taking into account the supernova destruction process...

  17. A dynamical test for terrestrial planets in the habitable zone of HD 204313

    CERN Document Server

    Thilliez, E; Maddison, S T; Horner, J

    2014-01-01

    With improvements in exoplanet detection techniques, the number of multiple planet systems discovered is increasing, while the detection of potentially habitable Earth-mass planets remains complicated and thus requires new search strategies. Dynamical studies of known multiple planet systems are therefore a vital tool in the search for stable and habitable planet candidates. Here, we present a dynamical study of the three-planet system HD 204313 to determine whether it could harbour an Earth-like planet within its habitable zone for a sufficient time to develop life. We found two semi-stable regions in the system, but neither prove stable for long enough for a terrestrial planet to develop life. Our investigations suggest that overlapping weak and high order resonances may be responsible for these semi-stable regions. This study established a framework for a larger project that will study the dynamical stability of the habitable zone of multiple planet systems, providing a list of interesting targets for futu...

  18. Galactic habitable zone around M and FGK stars with chemical evolution models that include dust

    Science.gov (United States)

    Spitoni, E.; Gioannini, L.; Matteucci, F.

    2017-09-01

    Context. The Galactic habitable zone is defined as the region with a metallicity that is high enough to form planetary systems in which Earth-like planets could be born and might be capable of sustaining life. Life in this zone needs to survive the destructive effects of nearby supernova explosion events. Aims: Galactic chemical evolution models can be useful tools for studying the galactic habitable zones in different systems. Our aim here is to find the Galactic habitable zone using chemical evolution models for the Milky Way disk, adopting the most recent prescriptions for the evolution of dust and for the probability of finding planetary systems around M and FGK stars. Moreover, for the first time, we express these probabilities in terms of the dust-to-gas ratio of the interstellar medium in the solar neighborhood as computed by detailed chemical evolution models. Methods: At a fixed Galactic time and Galactocentric distance, we determined the number of M and FGK stars that host earths (but no gas giant planets) that survived supernova explosions, using the formalism of our Paper I. Results: The probabilities of finding terrestrial planets but not gas giant planets around M stars deviate substantially from the probabilities around FGK stars for supersolar values of [Fe/H]. For both FGK and M stars, the maximum number of stars hosting habitable planets is at 8 kpc from the Galactic Center when destructive effects by supernova explosions are taken into account. Currently, M stars with habitable planets are ≃10 times more frequent than FGK stars. Moreover, we provide a sixth-order polynomial fit (and a linear fit, but that is more approximated) for the relation found with chemical evolution models in the solar neighborhood between the [Fe/H] abundances and the dust-to-gas ratio. Conclusions: The most likely Galactic zone in which to find terrestrial habitable planets around M and FGK stars is the annular 2 kpc wide region that is centered at 8 kpc from the

  19. Stellar Activity Masquerading as Planets in the Habitable Zone of the M dwarf Gliese 581

    CERN Document Server

    Robertson, Paul; Endl, Michael; Roy, Arpita

    2014-01-01

    The M dwarf Gliese 581 is believed to host four planets, including one (GJ 581d) near the habitable zone that could possibly support liquid water on its surface if it is a rocky planet. The detection of another habitable-zone planet--GJ 581g--is disputed, as its significance depends on the eccentricity assumed for d. Analyzing stellar activity using the H-alpha line, we measure a stellar rotation period of 130+/-2 days and a correlation for H-alpha modulation with radial velocity. Correcting for activity greatly diminishes the signal of GJ 581d (to 1.5 sigma), while significantly boosting the signals of the other known super-Earth planets. GJ 581d does not exist, but is an artifact of stellar activity which, when incompletely corrected, causes the false detection of planet g.

  20. The habitable zone of Earth-like planets with different levels of atmospheric pressure

    CERN Document Server

    Vladilo, Giovanni; Silva, Laura; Provenzale, Antonello; Ferri, Gaia; Ragazzini, Gregorio

    2013-01-01

    As a contribution to the study of the habitability of extrasolar planets, we implemented a 1-D Energy Balance Model (EBM), the simplest seasonal model of planetary climate, with new prescriptions for most physical quantities. Here we apply our EBM to investigate the surface habitability of planets with an Earth-like atmospheric composition but different levels of surface pressure. The habitability, defined as the mean fraction of the planet's surface on which liquid water could exist, is estimated from the pressure-dependent liquid water temperature range, taking into account seasonal and latitudinal variations of surface temperature. By running several thousands of EBM simulations we generated a map of the habitable zone (HZ) in the plane of the orbital semi-major axis, a, and surface pressure, p, for planets in circular orbits around a Sun-like star. As pressure increases, the HZ becomes broader, with an increase of 0.25 AU in its radial extent from p=1/3 bar to p=3 bar. At low pressure, the habitability is...

  1. A simple evolutional model of Habitable Zone around host stars with various mass and low metallicity

    Science.gov (United States)

    Oishi, Midori; Kamaya, Hideyuki

    2016-02-01

    Habitable Zone (HZ) is defined as a life existence area, where water at the surface of the terrestrial planet is in liquid phase. This is caused by the balance of flux from the host star and effective radiative cooling with greenhouse effect of the planet. However, the flux varies according to evolutional phase of the host star. So, a simple but newest HZ model considering stellar mass range from 0.08 to 4.00 M⊙ has been proposed. It studies both at zero-age main sequence (ZAMS) and terminal-age main sequence (TMS) phases to examine persistence of HZ. By the way, it discusses the case of the metallicity like the Sun. Actually, it is interesting to study a HZ model considering host stars with low metallicity. So, we examine the effect of metallicity, following the precedent simple model. In our analysis, metallicity affects little for HZ orbital range at ZAMS, while it affects clearly in case of TMS. Since the inner and outer HZ boundaries at TMS are shifted outward especially in the mass range from 1.5 to 2.0 M⊙, we find persistent HZ is allowed above about 1.8 M⊙. The age of the universe is 13.8 Gyr, which is comparable to main sequence life time of about 0.8 M⊙ for the low metallicity case. Then, the effect of metallicity to estimate HZ of low metallicity host stars is important for the mass range from 0.8 to 1.8 M⊙.

  2. Habitable Zones Around Main-Sequence Stars: Dependence on Planetary Mass

    Science.gov (United States)

    Kopparapu, Ravi Kumar; Ramirez, Ramses M.; Kotte, James Schottel; Kasting, James F.; Domagal-Goldman, Shawn; Eymet, Vincent

    2014-01-01

    The ongoing discoveries of extra-solar planets are unveiling a wide range of terrestrial mass (size) planets around their host stars. In this Letter, we present estimates of habitable zones (HZs) around stars with stellar effective temperatures in the range 2600 K-7200 K, for planetary masses between 0.1M and 5M. Assuming H2O-(inner HZ) and CO2-(outer HZ) dominated atmospheres, and scaling the background N2 atmospheric pressure with the radius of the planet, our results indicate that larger planets have wider HZs than do smaller ones. Specifically, with the assumption that smaller planets will have less dense atmospheres, the inner edge of the HZ (runaway greenhouse limit) moves outward (approx.10% lower than Earth flux) for low mass planets due to larger greenhouse effect arising from the increased H2O column depth. For larger planets, the H2O column depth is smaller, and higher temperatures are needed before water vapor completely dominates the outgoing long-wave radiation. Hence the inner edge moves inward (approx.7% higher than Earth's flux). The outer HZ changes little due to the competing effects of the greenhouse effect and an increase in albedo. New, three-dimensional climate model results from other groups are also summarized, and we argue that further, independent studies are needed to verify their predictions. Combined with our previous work, the results presented here provide refined estimates of HZs around main-sequence stars and provide a step toward a more comprehensive analysis of HZs.

  3. HABITABLE ZONES AROUND MAIN-SEQUENCE STARS: DEPENDENCE ON PLANETARY MASS

    Energy Technology Data Exchange (ETDEWEB)

    Kopparapu, Ravi Kumar; Ramirez, Ramses M.; Kasting, James F. [Department of Geosciences, Penn State University, 443 Deike Building, University Park, PA 16802 (United States); SchottelKotte, James [Department of Astronomy and Astrophysics, The Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802 (United States); Domagal-Goldman, Shawn [NASA Astrobiology Institute' s Virtual Planetary Laboratory, P.O. Box 351580, Seattle, WA 98195 (United States); Eymet, Vincent, E-mail: ruk15@psu.edu [Laboratoire d' Astrophysique de Bordeaux, Universite de Bordeaux 1, UMR 5804, F-33270 Floirac (France)

    2014-06-01

    The ongoing discoveries of extra-solar planets are unveiling a wide range of terrestrial mass (size) planets around their host stars. In this Letter, we present estimates of habitable zones (HZs) around stars with stellar effective temperatures in the range 2600 K-7200 K, for planetary masses between 0.1 M {sub ⊕} and 5 M {sub ⊕}. Assuming H{sub 2}O-(inner HZ) and CO{sub 2}-(outer HZ) dominated atmospheres, and scaling the background N{sub 2} atmospheric pressure with the radius of the planet, our results indicate that larger planets have wider HZs than do smaller ones. Specifically, with the assumption that smaller planets will have less dense atmospheres, the inner edge of the HZ (runaway greenhouse limit) moves outward (∼10% lower than Earth flux) for low mass planets due to larger greenhouse effect arising from the increased H{sub 2}O column depth. For larger planets, the H{sub 2}O column depth is smaller, and higher temperatures are needed before water vapor completely dominates the outgoing longwave radiation. Hence the inner edge moves inward (∼7% higher than Earth's flux). The outer HZ changes little due to the competing effects of the greenhouse effect and an increase in albedo. New, three-dimensional climate model results from other groups are also summarized, and we argue that further, independent studies are needed to verify their predictions. Combined with our previous work, the results presented here provide refined estimates of HZs around main-sequence stars and provide a step toward a more comprehensive analysis of HZs.

  4. Water Planets in the Habitable Zone: Atmospheric Chemistry, Observable Features, and the case of Kepler-62e and -62f

    CERN Document Server

    Kaltenegger, L; Rugheimer, S

    2013-01-01

    Water planets in the habitable zone are expected to have distinct geophysics and geochemistry of their surfaces and atmospheres. We explore these properties motivated by two key questions: whether such planets could provide habitable conditions and whether they exhibit discernable spectral features that distinguish a water planet from a rocky Earth-like planet. We show that the recently discovered planets Kepler-62e and -62f are the first viable candidates for habitable zone water planet. We use these planets as test cases for discussing those differences in detail. We generate atmospheric spectral models and find that potentially habitable water planets show a distinctive spectral fingerprint in transit depending on their position in the habitable zone.

  5. THE HABITABLE ZONE OF EARTH-LIKE PLANETS WITH DIFFERENT LEVELS OF ATMOSPHERIC PRESSURE

    Energy Technology Data Exchange (ETDEWEB)

    Vladilo, Giovanni; Murante, Giuseppe; Silva, Laura [INAF-Trieste Astronomical Observatory, Trieste (Italy); Provenzale, Antonello [Institute of Atmospheric Sciences and Climate-CNR, Torino (Italy); Ferri, Gaia; Ragazzini, Gregorio, E-mail: vladilo@oats.inaf.it [Department of Physics, University of Trieste, Trieste (Italy)

    2013-04-10

    As a contribution to the study of the habitability of extrasolar planets, we implemented a one-dimensional energy balance model (EBM), the simplest seasonal model of planetary climate, with new prescriptions for most physical quantities. Here we apply our EBM to investigate the surface habitability of planets with an Earth-like atmospheric composition but different levels of surface pressure. The habitability, defined as the mean fraction of the planet's surface on which liquid water could exist, is estimated from the pressure-dependent liquid water temperature range, taking into account seasonal and latitudinal variations of surface temperature. By running several thousands of EBM simulations we generated a map of the habitable zone (HZ) in the plane of the orbital semi-major axis, a, and surface pressure, p, for planets in circular orbits around a Sun-like star. As pressure increases, the HZ becomes broader, with an increase of 0.25 AU in its radial extent from p = 1/3 to 3 bar. At low pressure, the habitability is low and varies with a; at high pressure, the habitability is high and relatively constant inside the HZ. We interpret these results in terms of the pressure dependence of the greenhouse effect, the efficiency of horizontal heat transport, and the extent of the liquid water temperature range. Within the limits discussed in the paper, the results can be extended to planets in eccentric orbits around non-solar-type stars. The main characteristics of the pressure-dependent HZ are modestly affected by variations of planetary properties, particularly at high pressure.

  6. MOA-2011-BLG-293LB: First microlensing planet possibly in the habitable zone

    Energy Technology Data Exchange (ETDEWEB)

    Batista, V.; Gould, A.; Yee, J. C.; Gaudi, B. S. [Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Beaulieu, J.-P. [Institut d' Astrophysique de Paris, 98 Bis Boulevard Arago, F-75014 Paris (France); Bennett, D. P. [Department of Physics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556-5670 (United States); Fukui, A. [Okayama Astrophysical Observatory, National Astronomical Observatory of Japan, Asakuchi, Okayama 719-0232 (Japan); Sumi, T. [Department of Earth and Space Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Udalski, A., E-mail: virginie@astronomy.ohio-state.edu, E-mail: gould@astronomy.ohio-state.edu, E-mail: jyee@astronomy.ohio-state.edu, E-mail: beaulieu@iap.fr, E-mail: bennett@nd.edu, E-mail: afukui@oao.nao.ac.jp, E-mail: sumi@ess.sci.osaka-u.ac.jp, E-mail: udalski@astrouw.edu.pl [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa (Poland)

    2014-01-01

    We used Keck adaptive optics observations to identify the first planet discovered by microlensing to lie in or near the habitable zone, i.e., at projected separation r = 1.1 ± 0.1 AU from its M{sub L} = 0.86 ± 0.06 M {sub ☉} host, being the highest microlensing mass definitely identified. The planet has a mass m{sub p} = 4.8 ± 0.3 M {sub Jup}, and could in principle have habitable moons. This is also the first planet to be identified as being in the Galactic bulge with good confidence: D{sub L} = 7.72 ± 0.44 kpc. The planet/host masses and distance were previously not known, but only estimated using Bayesian priors based on a Galactic model. These estimates had suggested that the planet might be a super-Jupiter orbiting an M dwarf, a very rare class of planets. We obtained high-resolution JHK images using Keck adaptive optics to detect the lens and so test this hypothesis. We clearly detect light from a G dwarf at the position of the event, and exclude all interpretations other than that this is the lens with high confidence (95%), using a new astrometric technique. The calibrated magnitude of the planet host star is H{sub L} = 19.16 ± 0.13. We infer the following probabilities for the three possible orbital configurations of the gas giant planet: 53% to be in the habitable zone, 35% to be near the habitable zone, and 12% to be beyond the snow line, depending on the atmospherical conditions and the uncertainties on the semimajor axis.

  7. Atmospheres and Oceans of Rocky Planets In and Beyond the Habitable Zones of M dwarfs

    Science.gov (United States)

    Tian, Feng

    2015-12-01

    he evolution of M dwarfs during their pre-main-sequence phase causes rocky planets in and beyond the habitable zones these stars to be in the runaway and moist greenhouse states. This scenario has been studied by three groups of researchers recently (Ramirez and Kaltenegger 2014, Tian and Ida 2015, Luger and Barnes 2015), and their consensus is that massive amount of water could have been lost during this time -- early evolution of M dwarfs could have changed the water contents of rocky planets around them, which could strongly influence the habitability of rocky planets around low mass stars. It has been proposed that dense oxygen dominant atmospheres (up to 2000 bars, Luger and Barnes 2015) because of rapid water loss. Is this true? If so, what's the condition for such atmospheres to exist and can they be maintained? On the other hand, what's the likelihood for sub-Neptunes to shrink into habitable planets under such environment? In general how is the habitability of planets around M dwarfs different from those around Sun-type stars? These are the questions we will attempt to address in this work.

  8. Transit surveys for Earths in the habitable zones of white dwarfs

    CERN Document Server

    Agol, Eric

    2011-01-01

    To date the search for habitable Earth-like planets has primarily focused on nuclear burning stars. I propose that this search should be expanded to cool white dwarf stars that have expended their nuclear fuel. I define the continuously habitable zone of white dwarfs, and show that it extends from ~0.005 to 0.02 AU for white dwarfs with masses from 0.4-0.9 solar masses, temperatures less than 10,000 K, and habitable durations of at least 3 Gyr. As they are similar in size to Earth, white dwarfs may be completely eclipsed by terrestrial planets that orbit edge-on, which can easily be detected with ground-based telescopes. If planets can migrate inward or reform near white dwarfs, I show that a global robotic telescope network could carry out a transit survey of nearby white dwarfs placing interesting constraints on the presence of habitable Earths. If planets were detected, I show that the survey would favor detection of planets similar to Earth: similar size, temperature, rotation period, and host star temper...

  9. Atmospheric expansion in runaway greenhouse atmospheres: the inner edge of the habitable zone depends on planet mass

    Science.gov (United States)

    Goldblatt, C.; Zahnle, K. J.

    2014-12-01

    As a wet planet becomes hot, evaporation of the ocean provides a thick steam atmosphere. As the atmosphere thickens, the level at which optical depth is unity (whence radiative emission and absorption dominantly occur) rises into the atmosphere, first for thermal wavelengths and later for solar wavelengths. Consequently, two radiation limits emerge. First, an asymptotic limit on the thermal radiation, as the level at which thermal emission occurs tends towards a fixed temperature, decoupled from surface temperature. Next, a limit the albedo of the planet, as all incoming sunlight is either reflected or absorbed in the atmosphere and almost none reaches the surface. A runaway greenhouse occurs when the product of co-albedo and area-averaged incoming sunlight exceeds the thermal radiation limit. Earth today is perilously close to this [1].Returning to the first sentence, we generate a thick atmosphere: the height of optical depth of unity becomes a non-trivial fraction of the planetary radius. Hence the area of the absorbing and emitting surfaces increase. Thermal emission wins slightly, as this occurs higher, increasing thermal emission in all cases. The underlying tendency is for a larger thermal limit for heavier planets due to pressure effects, making these appear more resistant to a runaway. However, atmospheric expansion affects light planets more, making these seem much more resilient. The least resilient planet would be between Mars-size and Venus-size (Figure 1). It would be foolish to regard small planets as habitable. As the atmospheres become large, so does the problem of atmospheric escape. Theoretical considerations show hydrodynamic escape to happen disastrously for a Europa-size planet. The observation is that Mars is too feeble to hold on to any hefty atmosphere, even far from the Sun as it is, is probably relevant too. The take home points for habitable zone nerds are: (1) planet size matters (2) for small planets, atmospheric escape from a "moist

  10. A New Paradigm for Habitability in Planetary Systems: the Extremophilic Zone

    Science.gov (United States)

    Janot-Pacheco, E., Bernardes, L., Lage, C. A. S.

    2014-03-01

    More than a thousand exoplanets have been discovered so far. Planetary surface temperature may strongly depends on its albedo and geodynamic conditions. We have fed exoplanets from the Encyclopedia database with a comprehensive model of Earth's atmosphere and plate tectonics. As CO2 is the main agent responsible for the greenhouse effect, its partial pressure has been taken as a free parameter to estimate the surface temperature of some known planets. We also investigated the possible presence of "exomoons" belonging to giant planets in the Habitable Zone capable of harbour dynamic stability, to retain an atmosphere and to keep geodynamic activity for long time spans. Biological data on earthly micro-organisms classified as "extremophiles" indicate that such kind of microbial species could dwell on the surface of many exoplanets and exomoons. We thus propose an extension of the mainly astronomically defined "Habitable Zone" concept into the more astrobiologically one, the "Extremophililic Zone", that takes into account other parameters allowing survival of more robust life forms. This contribution comes from an ongoing project developed by a French-Brazilian colaboration in Astrophysics and Biophysics to search for living fingerprints in astrobiologically promising exoplanets.

  11. Analytical Investigation of the Decrease in the Size of the Habitable Zone Due to a Limited CO2 Outgassing Rate

    Science.gov (United States)

    Abbot, Dorian S.

    2016-08-01

    The habitable zone concept is important because it focuses the scientific search for extraterrestrial life and aids the planning of future telescopes. Recent work has shown that planets near the outer edge of the habitable zone might not actually be able to stay warm and habitable if CO2 outgassing rates are not large enough to maintain high CO2 partial pressures against removal by silicate weathering. In this paper, I use simple equations for the climate and CO2 budget of a planet in the habitable zone that can capture the qualitative behavior of the system. With these equations I derive an analytical formula for an effective outer edge of the habitable zone, including limitations imposed by the CO2 outgassing rate. I then show that climate cycles between a snowball state and a warm climate are only possible beyond this limit if the weathering rate in the snowball climate is smaller than the CO2 outgassing rate (otherwise stable snowball states result). I derive an analytical solution for the climate cycles including a formula for their period in this limit. This work allows us to explore the qualitative effects of weathering processes on the effective outer edge of the habitable zone, which is important because weathering parameterizations are uncertain.

  12. How Hospitable Are Space Weather Affected Habitable Zones? The Role of Ion Escape

    Science.gov (United States)

    Airapetian, Vladimir S.; Glocer, Alex; Khazanov, George V.; Loyd, R. O. P.; France, Kevin; Sojka, Jan; Danchi, William C.; Liemohn, Michael W.

    2017-02-01

    Atmospheres of exoplanets in the habitable zones around active young G-K-M stars are subject to extreme X-ray and EUV (XUV) fluxes from their host stars that can initiate atmospheric erosion. Atmospheric loss affects exoplanetary habitability in terms of surface water inventory, atmospheric pressure, the efficiency of greenhouse warming, and the dosage of the UV surface irradiation. Thermal escape models suggest that exoplanetary atmospheres around active K-M stars should undergo massive hydrogen escape, while heavier species including oxygen will accumulate forming an oxidizing atmosphere. Here, we show that non-thermal oxygen ion escape could be as important as thermal, hydrodynamic H escape in removing the constituents of water from exoplanetary atmospheres under supersolar XUV irradiation. Our models suggest that the atmospheres of a significant fraction of Earth-like exoplanets around M dwarfs and active K stars exposed to high XUV fluxes will incur a significant atmospheric loss rate of oxygen and nitrogen, which will make them uninhabitable within a few tens to hundreds of Myr, given a low replenishment rate from volcanism or cometary bombardment. Our non-thermal escape models have important implications for the habitability of the Proxima Centauri’s terrestrial planet.

  13. Radiation -- A Cosmic Hazard to Human Habitation in Space

    Science.gov (United States)

    Lewis, Ruthan; Pellish, Jonathan

    2017-01-01

    Radiation exposure is one of the greatest environmental threats to the performance and success of human and robotic space missions. Radiation permeates all space and aeronautical systems, challenges optimal and reliable performance, and tests survival and survivability. We will discuss the broad scope of research, technological, and operational considerations to forecast and mitigate the effects of the radiation environment for deep space and planetary exploration.

  14. Gj 832c: A super-Earth in the habitable zone

    Energy Technology Data Exchange (ETDEWEB)

    Wittenmyer, Robert A.; Horner, Jonathan; Tinney, C. G.; Marshall, J. P.; Bailey, J.; Salter, G. S.; Wright, D. [School of Physics, UNSW Australia, Sydney, NSW 2052 (Australia); Tuomi, Mikko; Jones, H. R. A. [Centre for Astrophysics Research, Science and Technology Research Institute, University of Hertfordshire, College Lane, Hatfield AL10 9AB (United Kingdom); Butler, R. P.; Arriagada, P. [Department of Terrestrial Magnetism, Carnegie Institution of Washington, 5241 Broad Branch Road, NW, Washington, DC 20015-1305 (United States); Anglada-Escudé, Guillem [Astronomy Unit, School of Mathematical Sciences, Queen Mary, University of London, London (United Kingdom); Carter, B. D. [Computational Engineering and Science Research Centre, University of Southern Queensland, Toowoomba, Queensland 4350 (Australia); O' Toole, S. J. [Australian Astronomical Observatory, P.O. Box 915, North Ryde, NSW 1670 (Australia); Crane, J. D.; Schectman, S. A.; Thompson, I. [The Observatories of the Carnegie Institution of Washington, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Minniti, D. [Institute of Astrophysics, Pontificia Universidad Catolica de Chile, Casilla 306, Santiago 22 (Chile); Jenkins, J. S.; Diaz, M., E-mail: rob@phys.unsw.edu.au [Departamento de Astronomía, Universidad de Chile, Camino el Observatorio 1515, Casilla 36-D, Las Condes, Santiago (Chile)

    2014-08-20

    We report the detection of GJ 832c, a super-Earth orbiting near the inner edge of the habitable zone of GJ 832, an M dwarf previously known to host a Jupiter analog in a nearly circular 9.4 yr orbit. The combination of precise radial-velocity measurements from three telescopes reveals the presence of a planet with a period of 35.68 ± 0.03 days and minimum mass (m sin i) of 5.4 ± 1.0 Earth masses. GJ 832c moves on a low-eccentricity orbit (e = 0.18 ± 0.13) toward the inner edge of the habitable zone. However, given the large mass of the planet, it seems likely that it would possess a massive atmosphere, which may well render the planet inhospitable. Indeed, it is perhaps more likely that GJ 832c is a 'super-Venus', featuring significant greenhouse forcing. With an outer giant planet and an interior, potentially rocky planet, the GJ 832 planetary system can be thought of as a miniature version of our own solar system.

  15. GJ 832c: A super-earth in the habitable zone

    CERN Document Server

    Wittenmyer, R A; Butler, R P; Jones, H R A; Anglada-Escude, Guillem; Horner, Jonathan; Tinney, C G; Marshall, J P; Carter, B D; Bailey, J; Salter, G S; O'Toole, S J; Wright, D; Crane, J D; Schectman, S A; Arriagada, P; Thompson, I; Minniti, D; Jenkins, J S; Diaz, M

    2014-01-01

    We report the detection of GJ 832c, a super-Earth orbiting near the inner edge of the habitable zone of GJ 832, an M dwarf previously known to host a Jupiter analog in a nearly-circular 9.4-year orbit. The combination of precise radial-velocity measurements from three telescopes reveals the presence of a planet with a period of 35.68+/-0.03 days and minimum mass (m sin i) of 5.4+/-1.0 Earth masses. GJ 832c moves on a low-eccentricity orbit (e=0.18+/-0.13) towards the inner edge of the habitable zone. However, given the large mass of the planet, it seems likely that it would possess a massive atmosphere, which may well render the planet inhospitable. Indeed, it is perhaps more likely that GJ 832c is a "super-Venus," featuring significant greenhouse forcing. With an outer giant planet and an interior, potentially rocky planet, the GJ 832 planetary system can be thought of as a miniature version of our own Solar system.

  16. Space telescope design to directly image the habitable zone of Alpha Centauri

    CERN Document Server

    Bendek, Eduardo; Lozi, Julien; Thomas, Sandrine; Males, Jared; Weston, Sasha; McElwain, Michael

    2015-01-01

    The scientific interest in directly image and identifying Earth-like planets within the Habitable Zone (HZ) around nearby stars is driving the design of specialized direct imaging mission such as ACESAT, EXO-C, EXO-S and AFTA-C. The inner edge of Alpha Cen A and B Habitable Zone is found at exceptionally large angular separations of 0.7 and 0.4 arcseconds respectively. This enables direct imaging of the system with a 0.3m class telescope. Contrast ratios in the order of 1e-10 are needed to image Earth-brightness planets. Low-resolution (5-band) spectra of all planets, will allow establishing the presence and amount of an atmosphere. This star system configuration is optimal for a specialized small, and stable space telescope, that can achieve high-contrast but has limited resolution. This paper describes an innovative instrument design and a mission concept based on a full Silicon Carbide off-axis telescope, which has a Phase Induce Amplitude Apodization coronagraph embedded in the telescope. This architectur...

  17. Stellar activity mimics a habitable-zone planet around Kapteyn's star

    CERN Document Server

    Robertson, Paul; Mahadevan, Suvrath

    2015-01-01

    Kapteyn's star is an old M subdwarf believed to be a member of the Galactic halo population of stars. A recent study has claimed the existence of two super-Earth planets around the star based on radial velocity (RV) observations. The innermost of these candidate planets--Kapteyn b (P = 48 days)--resides within the circumstellar habitable zone. Given recent progress in understanding the impact of stellar activity in detecting planetary signals, we have analyzed the observed HARPS data for signatures of stellar activity. We find that while Kapteyn's star is photometrically very stable, a suite of spectral activity indices reveals a large-amplitude rotation signal, and we determine the stellar rotation period to be 143 days. The spectral activity tracers are strongly correlated with the purported RV signal of "planet b," and the 48-day period is an integer fraction (1/3) of the stellar rotation period. We conclude that Kapteyn b is not a planet in the Habitable Zone, but an artifact of stellar activity.

  18. Habitable Zones for Earth-Like Planets in the 47UMa Planetary System

    Science.gov (United States)

    Ji, Jianghui; Liu, Lin

    The Habitable zones are usually believed to be appropriate environment for terrestrial planets that can provide the liquid-water, subtle temperature, atmosphere components of CO2, H2O, and N2 [Kasting et al., Icarus 101 (1993) 108], supporting the development and biological evolution of life on their surfaces. In this work [see an accompanied paper, Ji et al., Astrophysical Journal 631 (2005) 1191 for details], we investigated the dynamical architecture of 47 UMa with the planetary configuration of the best-fit orbital solutions by Fischer et al. [Astrophysical Journal 586 (2003) 1394], to study the existence of the Earth-like planets in the region for 0.05 AU ≤ a ≤ 2.0 AU for 47 UMa by numerical simulations. In the study, we found that the “hot Earths” at 0.05 AU ≤ a ≤ 0.4 AU can dynamically survive at least for 1 Myr. The Earth-like planets can eventually remain in the system for 10 Myr at the areas involved in mean motion resonance (MMR) (e.g., 3:2 MMR and 9:5 MMR) with the inner companion. Moreover, we showed that the 2:1 and 3:1 resonances could be marginally stable, but the 5:2 MMR is unstable. In a dynamical sense, we point out that the most possible candidate habitable environment is that the Earth-like planets may bear the orbits of 0.8 AU ≤ a ≤ 1.0 AU and 1.0 AU ≤ a ≤ 1.30 AU (except 5:2 MMR) for relatively lower eccentricities. We also conducted similar studies in other multi-planet systems and found the potential existence of the Earth-like planets in habitable zones.

  19. Analytical investigation of the decrease in the size of the habitable zone due to limited CO$_2$ outgassing rate

    CERN Document Server

    Abbot, Dorian S

    2016-01-01

    The habitable zone concept is important because it focuses the scientific search for extraterrestrial life and aids the planning of future telescopes. Recent work has shown that planets near the outer edge of the habitable zone might not actually be able to stay warm and habitable if CO$_2$ outgassing rates are not large enough to maintain high CO$_2$ partial pressures against removal by silicate weathering. In this paper I use simple equations for the climate and CO$_2$ budget of a planet in the habitable zone that can capture the qualitative behavior of the system. With these equations I derive an analytical formula for an effective outer edge of the habitable zone, including limitations imposed by the CO$_2$ outgassing rate. I then show that climate cycles between a Snowball state and a warm climate are only possible beyond this limit if the weathering rate in the Snowball climate is smaller than the CO$_2$ outgassing rate (otherwise stable Snowball states result). I derive an analytical solution for the c...

  20. Stability Analysis of Single-planet Systems and Their Habitable Zones

    Science.gov (United States)

    Kopparapu, Ravi Kumar; Barnes, Rory

    2010-06-01

    We study the dynamical stability of planetary systems consisting of one hypothetical terrestrial-mass planet (1 or 10 M ⊕) and one massive planet (10 M ⊕-10 M jup). We consider masses and orbits that cover the range of observed planetary system architectures (including non-zero initial eccentricities), determine the stability limit through N-body simulations, and compare it to the analytic Hill stability boundary. We show that for given masses and orbits of a two-planet system, a single parameter, which can be calculated analytically, describes the Lagrange stability boundary (no ejections or exchanges) but diverges significantly from the Hill stability boundary. However, we do find that the actual boundary is fractal, and therefore we also identify a second parameter which demarcates the transition from stable to unstable evolution. We show the portions of the habitable zones (HZs) of ρ CrB, HD 164922, GJ 674, and HD 7924 that can support a terrestrial planet. These analyses clarify the stability boundaries in exoplanetary systems and demonstrate that, for most exoplanetary systems, numerical simulations of the stability of potentially habitable planets are only necessary over a narrow region of the parameter space. Finally, we also identify and provide a catalog of known systems that can host terrestrial planets in their HZs.

  1. MOA-2011-BLG-293Lb: First Microlensing Planet possibly in the Habitable Zone

    CERN Document Server

    Batista, V; Gould, A; Bennett, D P; Yee, J C; Fukui, A; Gaudi, B S; Sumi, T; Udalski, A

    2013-01-01

    We used Keck adaptive optics observations to identify the first planet discovered by microlensing to lie in or near the habitable zone, i.e., at projected separation $r_\\perp=1.1\\pm 0.1\\,$AU from its $M_{L}=0.86\\pm 0.06\\,M_\\odot$ host, being the highest microlensing mass definitely identified. The planet has a mass $m_p = 4.8\\pm 0.3\\,M_{\\rm Jup}$, and could in principle have habitable moons. This is also the first planet to be identified as being in the Galactic bulge with good confidence: $D_L=7.7\\pm 0.44$ kpc. The planet/host masses and distance were previously not known, but only estimated using Bayesian priors based on a Galactic model (Yee et al. 2012). These estimates had suggested that the planet might be a super-Jupiter orbiting an M dwarf, a very rare class of planets. We obtained high-resolution $JHK$ images using Keck adaptive optics to detect the lens and so test this hypothesis. We clearly detect light from a G dwarf at the position of the event, and exclude all interpretations other than that th...

  2. Dynamical Effects on the Habitable Zone for Earth-like Exomoons

    CERN Document Server

    Forgan, Duncan

    2013-01-01

    With the detection of extrasolar moons (exomoons) on the horizon, it is important to consider their potential for habitability. If we consider the circumstellar Habitable Zone (HZ, often described in terms of planet semi-major axis and orbital eccentricity), we can ask, "How does the HZ for an Earth-like exomoon differ from the HZ for an Earth-like exoplanet?" For the first time, we use 1D latitudinal energy balance modelling to address this question. The model places an Earth-like exomoon in orbit around a Jupiter mass planet, which in turn orbits a Sun-like star. The exomoon's surface temperature is evolved under the action of stellar insolation, atmospheric cooling, heat diffusion, eclipses and tidal heating. We use this model to carry out two separate investigations. In the first, four test cases are run to investigate in detail the dependence of the exomoon climate on orbital direction, orbital inclination, and on the frequency of stellar eclipse by the host planet. We find that lunar orbits which are re...

  3. The Galactic Habitable Zone and the Age Distribution of Complex Life in the Milky Way

    CERN Document Server

    Lineweaver, C H; Gibson, B K; Lineweaver, Charles H.; Fenner, Yeshe; Gibson, Brad K.

    2004-01-01

    We modeled the evolution of the Milky Way to trace the distribution in space and time of four prerequisites for complex life: the presence of a host star, enough heavy elements to form terrestrial planets, sufficient time for biological evolution and an environment free of life-extinguishing supernovae. We identified the Galactic habitable zone (GHZ) as an annular region between 7 and 9 kiloparsecs from the Galactic center that widens with time and is composed of stars that formed between 8 and 4 billion years ago. This GHZ yields an age distribution for the complex life that may inhabit our Galaxy. We found that 75% of the stars in the GHZ are older than the Sun.

  4. Using Kepler Candidates to Examine the Properties of Habitable Zone Exoplanets

    CERN Document Server

    Adams, Arthur D

    2016-01-01

    An analysis of the currently known exoplanets in the habitable zones (HZs) of their host stars is of interest in both the wake of the NASA Kepler mission and with prospects for expanding the known planet population through future ground- and space-based projects. In this paper we compare the empirical distributions of the properties of stellar systems with transiting planets to those with transiting HZ planets. This comparison includes two categories: confirmed/validated transiting planet systems, and Kepler planet and candidate planet systems. These two categories allow us to present quantitative analyses on both a conservative dataset of known planets and a more optimistic and numerous sample of Kepler candidates. Both are subject to similar instrumental and detection biases, and vetted against false positive detections. We examine whether the HZ distributions vary from the overall distributions in the Kepler sample with respect to planetary radius as well as stellar mass, effective temperature, and metalli...

  5. CALCULATING THE HABITABLE ZONE OF BINARY STAR SYSTEMS. II. P-TYPE BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Haghighipour, Nader [Institute for Astronomy and NASA Astrobiology Institute, University of Hawaii-Manoa, Honolulu, HI 96822 (United States); Kaltenegger, Lisa [MPIA, Koenigstuhl 17, Heidelberg, D-69117 (Germany)

    2013-11-10

    We have developed a comprehensive methodology for calculating the circumbinary habitable zone (HZ) in planet-hosting P-type binary star systems. We present a general formalism for determining the contribution of each star of the binary to the total flux received at the top of the atmosphere of an Earth-like planet and use the Sun's HZ to calculate the inner and outer boundaries of the HZ around a binary star system. We apply our calculations to the Kepler's currently known circumbinary planetary systems and show the combined stellar flux that determines the boundaries of their HZs. We also show that the HZ in P-type systems is dynamic and, depending on the luminosity of the binary stars, their spectral types, and the binary eccentricity, its boundaries vary as the stars of the binary undergo their orbital motion. We present the details of our calculations and discuss the implications of the results.

  6. Space Telescope Design to Directly Image the Habitable Zone of Alpha Centauri

    Science.gov (United States)

    Bendek, Eduardo A.; Belikov, Ruslan; Lozi, Julien; Thomas, Sandrine; Males, Jared; Weston, Sasha; McElwain, Michael

    2015-01-01

    The scientific interest in directly imaging and identifying Earth-like planets within the Habitable Zone (HZ) around nearby stars is driving the design of specialized direct imaging missions such as ACESAT, EXO-C, EXO-S and AFTA-C. The inner edge of Alpha Cen A&B Habitable Zone is found at exceptionally large angular separations of 0.7" and 0.4" respectively. This enables direct imaging of the system with a 0.3m class telescope. Contrast ratios on the order of 10(exp 10) are needed to image Earth-brightness planets. Low-resolution (5-band) spectra of all planets may allow establishing the presence and amount of an atmosphere. This star system configuration is optimal for a specialized small, and stable space telescope that can achieve high-contrast but has limited resolution. This paper describes an innovative instrument design and a mission concept based on a full Silicon Carbide off-axis telescope, which has a Phase Induced Amplitude Apodization coronagraph embedded in the telescope. This architecture maximizes stability and throughput. A Multi-Star Wave Front algorithm is implemented to drive a deformable mirror controlling simultaneously diffracted light from the on-axis and binary companion star. The instrument has a Focal Plane Occulter to reject starlight into a high precision pointing control camera. Finally we utilize a Orbital Differential Imaging (ODI) post-processing method that takes advantage of a highly stable environment (Earth-trailing orbit) and a continuous sequence of images spanning 2 years, to reduce the final noise floor in post processing to approximately 2e-11 levels, enabling high confidence and at least 90% completeness detections of Earth-like planets.

  7. Space Telescope Design to Directly Image the Habitable Zone of Alpha Centauri

    Science.gov (United States)

    Bendek, Eduardo A.; Belikov, Ruslan; Lozi, Julien; Thomas, Sandrine; Males, Jared; Weston, Sasha; McElwain, Michael

    2015-01-01

    The scientific interest in directly imaging and identifying Earth-like planets within the Habitable Zone (HZ) around nearby stars is driving the design of specialized direct imaging missions such as ACESAT, EXO-C, EXO-S and AFTA-C. The inner edge of Alpha Cen A&B Habitable Zone is found at exceptionally large angular separations of 0.7" and 0.4" respectively. This enables direct imaging of the system with a 0.3m class telescope. Contrast ratios on the order of 10(exp 10) are needed to image Earth-brightness planets. Low-resolution (5-band) spectra of all planets may allow establishing the presence and amount of an atmosphere. This star system configuration is optimal for a specialized small, and stable space telescope that can achieve high-contrast but has limited resolution. This paper describes an innovative instrument design and a mission concept based on a full Silicon Carbide off-axis telescope, which has a Phase Induced Amplitude Apodization coronagraph embedded in the telescope. This architecture maximizes stability and throughput. A Multi-Star Wave Front algorithm is implemented to drive a deformable mirror controlling simultaneously diffracted light from the on-axis and binary companion star. The instrument has a Focal Plane Occulter to reject starlight into a high precision pointing control camera. Finally we utilize a Orbital Differential Imaging (ODI) post-processing method that takes advantage of a highly stable environment (Earth-trailing orbit) and a continuous sequence of images spanning 2 years, to reduce the final noise floor in post processing to approximately 2e-11 levels, enabling high confidence and at least 90% completeness detections of Earth-like planets.

  8. STRONG DEPENDENCE OF THE INNER EDGE OF THE HABITABLE ZONE ON PLANETARY ROTATION RATE

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jun; Abbot, Dorian S. [Department of Geophysical Sciences, University of Chicago, Chicago, IL 60637 (United States); Boué, Gwenaël; Fabrycky, Daniel C., E-mail: abbot@uchicago.edu [Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637 (United States)

    2014-05-20

    Planetary rotation rate is a key parameter in determining atmospheric circulation and hence the spatial pattern of clouds. Since clouds can exert a dominant control on planetary radiation balance, rotation rate could be critical for determining the mean planetary climate. Here we investigate this idea using a three-dimensional general circulation model with a sophisticated cloud scheme. We find that slowly rotating planets (like Venus) can maintain an Earth-like climate at nearly twice the stellar flux as rapidly rotating planets (like Earth). This suggests that many exoplanets previously believed to be too hot may actually be habitable, depending on their rotation rate. The explanation for this behavior is that slowly rotating planets have a weak Coriolis force and long daytime illumination, which promotes strong convergence and convection in the substellar region. This produces a large area of optically thick clouds, which greatly increases the planetary albedo. In contrast, on rapidly rotating planets a much narrower belt of clouds form in the deep tropics, leading to a relatively low albedo. A particularly striking example of the importance of rotation rate suggested by our simulations is that a planet with modern Earth's atmosphere, in Venus' orbit, and with modern Venus' (slow) rotation rate would be habitable. This would imply that if Venus went through a runaway greenhouse, it had a higher rotation rate at that time.

  9. Strong Dependence of the Inner Edge of the Habitable Zone on Planetary Rotation Rate

    CERN Document Server

    Yang, Jun; Fabrycky, Daniel C; Abbot, Dorian S

    2014-01-01

    Planetary rotation rate is a key parameter in determining atmospheric circulation and hence the spatial pattern of clouds. Since clouds can exert a dominant control on planetary radiation balance, rotation rate could be critical for determining mean planetary climate. Here we investigate this idea using a three-dimensional general circulation model with a sophisticated cloud scheme. We find that slowly rotating planets (like Venus) can maintain an Earth-like climate at nearly twice the stellar flux as rapidly rotating planets (like Earth). This suggests that many exoplanets previously believed to be too hot may actually be habitable, depending on their rotation rate. The explanation for this behavior is that slowly rotating planets have a weak Coriolis force and long daytime illumination, which promotes strong convergence and convection in the substellar region. This produces a large area of optically thick clouds, which greatly increases the planetary albedo. In contrast, on rapidly rotating planets a much n...

  10. Clouds in the atmospheres of extrasolar planets. V. The impact of CO2 ice clouds on the outer boundary of the habitable zone

    Science.gov (United States)

    Kitzmann, D.

    2017-04-01

    Clouds have a strong impact on the climate of planetary atmospheres. The potential scattering greenhouse effect of CO2 ice clouds in the atmospheres of terrestrial extrasolar planets is of particular interest because it might influence the position and thus the extension of the outer boundary of the classic habitable zone around main sequence stars. Here, the impact of CO2 ice clouds on the surface temperatures of terrestrial planets with CO2 dominated atmospheres, orbiting different types of stars is studied. Additionally, their corresponding effect on the position of the outer habitable zone boundary is evaluated. For this study, a radiative-convective atmospheric model is used the calculate the surface temperatures influenced by CO2 ice particles. The clouds are included using a parametrised cloud model. The atmospheric model includes a general discrete ordinate radiative transfer that can describe the anisotropic scattering by the cloud particles accurately. A net scattering greenhouse effect caused by CO2 clouds is only obtained in a rather limited parameter range which also strongly depends on the stellar effective temperature. For cool M-stars, CO2 clouds only provide about 6 K of additional greenhouse heating in the best case scenario. On the other hand, the surface temperature for a planet around an F-type star can be increased by 30 K if carbon dioxide clouds are present. Accordingly, the extension of the habitable zone due to clouds is quite small for late-type stars. Higher stellar effective temperatures, on the other hand, can lead to outer HZ boundaries about 0.5 au farther out than the corresponding clear-sky values.

  11. Triaxial deformation and asynchronous rotation of rocky planets in the habitable zone of low-mass stars

    Science.gov (United States)

    Zanazzi, J. J.; Lai, Dong

    2017-08-01

    Rocky planets orbiting M-dwarf stars in the habitable zone tend to be driven to synchronous rotation by tidal dissipation, potentially causing difficulties for maintaining a habitable climate on the planet. However, the planet may be captured into asynchronous spin-orbit resonances, and this capture may be more likely if the planet has a sufficiently large intrinsic triaxial deformation. We derive the analytic expression for the maximum triaxiality of a rocky planet, with and without a liquid envelope, as a function of the planet's radius, density, rigidity and critical strain of fracture. The derived maximum triaxiality is consistent with the observed triaxialities for terrestrial planets in the Solar system, and indicates that rocky planets in the habitable zone of M-dwarfs can in principle be in a state of asynchronous spin-orbit resonances.

  12. Direct Imaging in the Habitable Zone and the Problem of Orbital Motion

    CERN Document Server

    Males, Jared R; Close, Laird M

    2013-01-01

    High contrast imaging searches for exoplanets have been conducted on 2.4-10 m telescopes, typically at H band (1.6 microns) and used exposure times of ~1 hr to search for planets with semi-major axes of > ~10 AU. We are beginning to plan for surveys using extreme-AO systems on the next generation of 30-meter class telescopes, where we hope to begin probing the habitable zones (HZs) of nearby stars. Here we highlight a heretofore ignorable problem in direct imaging: planets orbit their stars. Under the parameters of current surveys, orbital motion is negligible over the duration of a typical observation. However, this motion is not negligible when using large diameter telescopes to observe at relatively close stellar distances (1-10pc), over the long exposure times (10-20 hrs) necessary for direct detection of older planets in the HZ. We show that this motion will limit our achievable signal-to-noise ratio and degrade observational completeness. Even on current 8m class telescopes, orbital motion will need to ...

  13. The impact of secular resonances on habitable zones in circumstellar planetary systems of known binary stars

    CERN Document Server

    Bazsó, Ákos; Eggl, Siegfried; Funk, Barbara; Bancelin, David

    2016-01-01

    We present a survey on binary star systems with stellar separations less than 100 astronomical units. For a selection of 11 binaries with a detected (giant) planet in circumstellar motion we determine the conditions that would allow additional planets to be present inside or nearby the habitable zone (HZ) of the host star. First we calculate the three-body HZ for these systems, in order to investigate the dynamics of bodies in those regions. After adding the giant planet's influence the final HZ is considerably modified in particular by mean motion and secular resonances. We apply a semi-analytical method to determine the locations of linear secular resonances, which is based on finding the apsidal precession frequencies of the massive bodies. For very close-in giant planets we also take the general relativistic precession of the pericenter into account. Our results demonstrate that there is a qualitative difference in the dynamics whether the giant planet is located exterior or interior to the HZ. An exterio...

  14. Chemical evolution and the galactic habitable zone of M31 (the Andromeda Galaxy)

    CERN Document Server

    Carigi, L; Garcia-Rojas, J

    2012-01-01

    We have computed the Galactic Habitable Zones (GHZs) of the Andromeda galaxy (M31) based mainly, but not exclusively, on the probability of terrestrial planet formation, which depends on the metallicity (Z) of the interstellar medium. The GHZ was therefore obtained from a chemical evolution model built to reproduce a precise metallicity gradient in the galactic disk, [O/H](r) $ = -0.015 \\pm 0.003 dex kpc^{-1} x r(kpc) + 0.44 \\pm 0.04 dex $. This gradient is the most probable when intrinsic scatter is present in the observational data. The chemical evolution model predicted a higher star formation history in both the halo and disk components of M31 and a less efficient inside-out galactic formation, compared to those of the Milky Way. If we assumed that Earth-like planets form with a probability law that follows the Z distribution shown by stars with detected planets, the most probable GHZ with basic life is located between 6 and 17 kpc on planets with ages between 4.5 and 1 Gy, and the most probable GHZ with ...

  15. Transit and radial velocity survey efficiency comparison for a habitable zone Earth

    Energy Technology Data Exchange (ETDEWEB)

    Burke, Christopher J. [SETI Institute/NASA Ames Research Center, Moffett Field, CA 94035 (United States); McCullough, P. R., E-mail: christopher.j.burke@nasa.gov [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2014-09-01

    Transit and radial velocity searches are two techniques for identifying nearby extrasolar planets to Earth that transit bright stars. Identifying a robust sample of these exoplanets around bright stars for detailed atmospheric characterization is a major observational undertaking. In this study we describe a framework that answers the question of whether a transit or radial velocity survey is more efficient at finding transiting exoplanets given the same amount of observing time. Within the framework we show that a transit survey's window function can be approximated using the hypergeometric probability distribution. We estimate the observing time required for a transit survey to find a transiting Earth-sized exoplanet in the habitable zone (HZ) with an emphasis on late-type stars. We also estimate the radial velocity precision necessary to detect the equivalent HZ Earth-mass exoplanet that also transits when using an equal amount of observing time as the transit survey. We find that a radial velocity survey with σ{sub rv} ∼ 0.6 m s{sup –1} precision has comparable efficiency in terms of observing time to a transit survey with the requisite photometric precision σ{sub phot} ∼ 300 ppm to find a transiting Earth-sized exoplanet in the HZ of late M dwarfs. For super-Earths, a σ{sub rv} ∼ 2.0 m s{sup –1} precision radial velocity survey has comparable efficiency to a transit survey with σ{sub phot} ∼ 2300 ppm.

  16. Validation of Twelve Small Kepler Transiting Planets in the Habitable Zone

    CERN Document Server

    Torres, Guillermo; Fressin, Francois; Caldwell, Douglas A; Twicken, Joseph D; Ballard, Sarah; Batalha, Natalie M; Bryson, Stephen T; Ciardi, David R; Henze, Christopher E; Howell, Steve B; Isaacson, Howard T; Jenkins, Jon M; Muirhead, Philip S; Newton, Elisabeth R; Petigura, Erik A; Barclay, Thomas; Borucki, William J; Crepp, Justin R; Everett, Mark E; Horch, Elliott P; Howard, Andrew W; Kolbl, Rea; Marcy, Geoffrey W; McCauliff, Sean; Quintana, Elisa V

    2015-01-01

    We present an investigation of twelve candidate transiting planets from Kepler with orbital periods ranging from 34 to 207 days, selected from initial indications that they are small and potentially in the habitable zone (HZ) of their parent stars. The expected Doppler signals are too small to confirm them by demonstrating that their masses are in the planetary regime. Here we verify their planetary nature by validating them statistically using the BLENDER technique, which simulates large numbers of false positives and compares the resulting light curves with the Kepler photometry. This analysis was supplemented with new follow-up observations (high-resolution optical and near-infrared spectroscopy, adaptive optics imaging, and speckle interferometry), as well as an analysis of the flux centroids. For eleven of them (KOI-0571.05, 1422.04, 1422.05, 2529.02, 3255.01, 3284.01, 4005.01, 4087.01, 4622.01, 4742.01, and 4745.01) we show that the likelihood they are true planets is far greater than that of a false po...

  17. Maximizing Kepler science return per telemetered pixel: Searching the habitable zones of the brightest stars

    CERN Document Server

    Montet, Benjamin T; Barclay, Tom; Dawson, Rebekah; Fergus, Rob; Foreman-Mackey, Dan; Harmeling, Stefan; Hirsch, Michael; Hogg, David W; Lang, Dustin; Schiminovich, David; Scholkopf, Bernhard

    2013-01-01

    In today's mailing, Hogg et al. propose image modeling techniques to maintain 10-ppm-level precision photometry in Kepler data with only two working reaction wheels. While these results are relevant to many scientific goals for the repurposed mission, all modeling efforts so far have used a toy model of the Kepler telescope. Because the two-wheel performance of Kepler remains to be determined, we advocate for the consideration of an alternate strategy for a >1 year program that maximizes the science return from the "low-torque" fields across the ecliptic plane. Assuming we can reach the precision of the original Kepler mission, we expect to detect 800 new planet candidates in the first year of such a mission. Our proposed strategy has benefits for transit timing variation and transit duration variation studies, especially when considered in concert with the future TESS mission. We also expect to help address the first key science goal of Kepler: the frequency of planets in the habitable zone as a function of ...

  18. The instrument control software package for the Habitable-Zone Planet Finder spectrometer

    Science.gov (United States)

    Bender, Chad F.; Robertson, Paul; Stefansson, Gudmundur Kari; Monson, Andrew; Anderson, Tyler; Halverson, Samuel; Hearty, Frederick; Levi, Eric; Mahadevan, Suvrath; Nelson, Matthew; Ramsey, Larry; Roy, Arpita; Schwab, Christian; Shetrone, Matthew; Terrien, Ryan

    2016-08-01

    We describe the Instrument Control Software (ICS) package that we have built for The Habitable-Zone Planet Finder (HPF) spectrometer. The ICS controls and monitors instrument subsystems, facilitates communication with the Hobby-Eberly Telescope facility, and provides user interfaces for observers and telescope operators. The backend is built around the asynchronous network software stack provided by the Python Twisted engine, and is linked to a suite of custom hardware communication protocols. This backend is accessed through Python-based command-line and PyQt graphical frontends. In this paper we describe several of the customized subsystem communication protocols that provide access to and help maintain the hardware systems that comprise HPF, and show how asynchronous communication benefits the numerous hardware components. We also discuss our Detector Control Subsystem, built as a set of custom Python wrappers around a C-library that provides native Linux access to the SIDECAR ASIC and Hawaii-2RG detector system used by HPF. HPF will be one of the first astronomical instruments on sky to utilize this native Linux capability through the SIDECAR Acquisition Module (SAM) electronics. The ICS we have created is very flexible, and we are adapting it for NEID, NASA's Extreme Precision Doppler Spectrometer for the WIYN telescope; we will describe this adaptation, and describe the potential for use in other astronomical instruments.

  19. Which Type of Planets do We Expect to Observe in the Habitable Zone?

    Science.gov (United States)

    Adibekyan, Vardan; Figueira, Pedro; Santos, Nuno C.

    2016-11-01

    We used a sample of super-Earth-like planets detected by the Doppler spectroscopy and transit techniques to explore the dependence of orbital parameters of the planets on the metallicity of their host stars. We confirm the previous results (although still based on small samples of planets) that super-Earths orbiting around metal-rich stars are not observed to be as distant from their host stars as we observe their metal-poor counterparts to be. The orbits of these super-Earths with metal-rich hosts usually do not reach into the Habitable Zone (HZ), keeping them very hot and inhabitable. We found that most of the known planets in the HZ are orbiting their GK-type hosts which are metal-poor. The metal-poor nature of planets in the HZ suggests a high Mg abundance relative to Si and high Si abundance relative to Fe. These results lead us to speculate that HZ planets might be more frequent in the ancient Galaxy and had compositions different from that of our Earth.

  20. Which type of planets do we expect to observe in the Habitable Zone?

    CERN Document Server

    Adibekyan, Vardan; Santos, Nuno C

    2015-01-01

    We used a sample of super-Earth-like planets detected by the Doppler spectroscopy and transit techniques to explore the dependence of orbital parameters of the planets on the metallicity of their host stars. We confirm the previous results that super-Earths orbiting around metal-rich stars are not observed to be as distant from their host stars as we observe their metal-poor counterparts to be. The orbits of these super-Earths with metal-rich hosts usually do not reach into the Habitable Zone (HZ), keeping them very hot and inhabitable. We found that most of the known planets in the HZ are orbiting their GK-type hosts which are metal-poor. The metal-poor nature of planets in the HZ suggests a high Mg abundance relative to Si and high Si abundance relative to Fe. These results lead us to speculate that HZ planets might be more frequent in the ancient Galaxy and had compositions different from that of our Earth.

  1. Asteroid flux towards circumprimary habitable zones in binary star systems: II. Dynamics

    CERN Document Server

    Bancelin, D; Bazso, A

    2015-01-01

    Secular and mean motion resonances (hearafter MMR) are effective perturbations to shape planetary systems. In binary star systems, they play a key role during the early and late phases of planetary formation as well as the dynamical stability of a planetary system. In this study, we aim to correlate the presence of orbital resonances with the rate of icy asteroids crossing the habitable zone (hearafter HZ), from a circumprimary disk of planetesimals in various binary star systems. We modelled a belt of small bodies in the inner and outer regions, respectively below and beyond the orbit of a gas giant planet. The planetesimals are equally placed around a primary G-type star and move under the gravitational influence of the two stars and the gas giant. We numerically integrated the system for 50 Myr considering various parameters for the secondary star. Its stellar type varies from a M- to F-type; its semimajor axis is either 50 au or 100 au and its eccentricity is either 0.1 or 0.3. Our simulations highlight t...

  2. Exploring the Inner Edge of the Habitable Zone with Fully Coupled Oceans

    CERN Document Server

    Way, M J; Kelley, M; Aleinov, I; Clune, T

    2015-01-01

    Rotation in planetary atmospheres plays an important role in regulating atmospheric and oceanic heat flow, cloud formation and precipitation. Using the Goddard Institute for Space Studies (GISS) three dimension General Circulation Model (3D-GCM) we investigate how the effects of varying rotation rate and increasing the incident stellar flux on a planet set bounds on a planet's habitable zone with its parent star. From ensemble climate simulations we identify which factors are the primary controllers of uncertainty in setting these bounds. This is shown in particular for fully coupled ocean (FCO) runs -- some of the first that have been utilized in this context. Results with a Slab Ocean (SO) of 100m mixed layer depth are compared with a similar study by Yang et al. 2014, which demonstrates consistency across models. However, there are clear differences for rotations rates of 1-16x present Earth sidereal day lengths between the 100m SO and FCO models, which points to the necessity of using FCOs whenever possib...

  3. The Dynamical Architecture and Habitable Zones of the Quintuplet Planetary System 55 Cancri

    CERN Document Server

    Jianghui, Ji; Lin, Liu; Guangyu, Li

    2009-01-01

    We perform numerical simulations to study the secular orbital evolution and dynamical structure in the quintuplet planetary system 55 Cancri with the self-consistent orbital solutions by Fischer and coworkers (2008). In the simulations, we show that this system can be stable at least for $10^{8}$ yr. In addition, we extensively investigate the planetary configuration of four outer companions with one terrestrial planet in the wide region of 0.790 AU $\\leq a \\leq $ 5.900 AU to examine the existence of potential asteroid structure and Habitable Zones (HZs). We show that there are unstable regions for the orbits about 4:1, 3:1 and 5:2 mean motion resonances (MMRs) with the outermost planet in the system, and several stable orbits can remain at 3:2 and 1:1 MMRs, which is resemblance to the asteroidal belt in solar system. In a dynamical point, the proper candidate HZs for the existence of more potential terrestrial planets reside in the wide area between 1.0 AU and 2.3 AU for relatively low eccentricities.

  4. Which Type of Planets do We Expect to Observe in the Habitable Zone?

    Science.gov (United States)

    Adibekyan, Vardan; Figueira, Pedro; Santos, Nuno C

    2016-11-01

    We used a sample of super-Earth-like planets detected by the Doppler spectroscopy and transit techniques to explore the dependence of orbital parameters of the planets on the metallicity of their host stars. We confirm the previous results (although still based on small samples of planets) that super-Earths orbiting around metal-rich stars are not observed to be as distant from their host stars as we observe their metal-poor counterparts to be. The orbits of these super-Earths with metal-rich hosts usually do not reach into the Habitable Zone (HZ), keeping them very hot and inhabitable. We found that most of the known planets in the HZ are orbiting their GK-type hosts which are metal-poor. The metal-poor nature of planets in the HZ suggests a high Mg abundance relative to Si and high Si abundance relative to Fe. These results lead us to speculate that HZ planets might be more frequent in the ancient Galaxy and had compositions different from that of our Earth.

  5. The dynamical architecture and habitable zones of the quintuplet planetary system 55 Cancri

    Institute of Scientific and Technical Information of China (English)

    Jiang-Hui Ji; Hiroshi Kinoshita; Lin Liu; Guang-Yu Li

    2009-01-01

    We perform numerical simulations to study the secular orbital evolution and dynamical structure of the quintuplet planetary system 55 Cancri with the self-consistent orbital solutions by Fischer and coworkers. In the simulations, we show that this sys-tem can be stable for at least 108 yr. In addition, we extensively investigate the planetary configuration of four outer companions with one terrestrial planet in the wide region of 0.790 AU ≤ a ≤ 5.900 AU to examine the existence of potential asteroid structure and Habitable Zones (HZs). We show that there are unstable regions for orbits about 4:1, 3:1 and 5:2 mean motion resonances (MMRs) of the outermost planet in the system, and sev-eral stable orbits can remain at 3:2 and 1:1 MMRs, which resembles the asteroid belt in the solar system. From a dynamical viewpoint, proper HZ candidates for the existence of more potential terrestrial planets reside in the wide area between 1.0 AU and 2.3 AU with relatively low eccentricities.

  6. Asteroid flux towards circumprimary habitable zones in binary star systems: I. Statistical Overview

    CERN Document Server

    Bancelin, D; Eggl, S; Maindl, T I; Schäfer, C; Speith, R; Dvorak, R

    2015-01-01

    So far, multiple stellar systems harbor more than 130 extra solar planets. Dynamical simulations show that the outcome of planetary formation process can lead to various planetary architecture (i.e. location, size, mass and water content) when the star system is single or double. In the late phase of planetary formation, when embryo-sized objects dominate the inner region of the system, asteroids are also present and can provide additional material for objects inside the habitable zone (hereafter HZ). In this study, we make a comparison of several binary star systems and their efficiency to move icy asteroids from beyond the snow-line into orbits crossing the HZ. We modeled a belt of 10000 asteroids (remnants from the late phase of planetary formation process) beyond the snow-line. The planetesimals are placed randomly around the primary star and move under the gravitational influence of the two stars and a gas giant. As the planetesimals do not interact with each other, we divided the belt into 100 subrings ...

  7. CALCULATING THE HABITABLE ZONE OF BINARY STAR SYSTEMS. I. S-TYPE BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Kaltenegger, Lisa [MPIA, Koenigstuhl 17, D-69117 Heidelberg (Germany); Haghighipour, Nader, E-mail: kaltenegger@mpia.de [Institute for Astronomy and NASA Astrobiology Institute, University of Hawaii-Manoa, Honolulu, HI 96822 (United States)

    2013-11-10

    We have developed a comprehensive methodology for calculating the boundaries of the habitable zone (HZ) of planet-hosting S-type binary star systems. Our approach is general and takes into account the contribution of both stars to the location and extent of the binary HZ with different stellar spectral types. We have studied how the binary eccentricity and stellar energy distribution affect the extent of the HZ. Results indicate that in binaries where the combination of mass-ratio and orbital eccentricity allows planet formation around a star of the system to proceed successfully, the effect of a less luminous secondary on the location of the primary's HZ is generally negligible. However, when the secondary is more luminous, it can influence the extent of the HZ. We present the details of the derivations of our methodology and discuss its application to the binary HZ around the primary and secondary main-sequence stars of an FF, MM, and FM binary, as well as two known planet-hosting binaries α Cen AB and HD 196886.

  8. Bistability of the climate around the habitable zone: a thermodynamic investigation

    CERN Document Server

    Boschi, Robert; Pascale, Salvatore

    2012-01-01

    The goal of this paper is to explore the potential multistability of the climate of a planet around the habitable zone. A thorough investigation of the thermodynamics of the climate system is performed for very diverse conditions of energy input and infrared atmosphere opacity. Using PlaSim, an Earth-like general circulation model, the solar constant S* is modulated between 1160 and 1510 Wm-2 and the CO2 concentration, [CO2], from 90 to 2880 ppm. It is observed that in such a parameter range the climate is bistable, i.e. there are two coexisting attractors, one characterised by warm, moist climates (W) and one by completely frozen sea surface (Snowball Earth, SB). Linear relationships are found for the two transition lines (W\\rightarrowSB and SB\\rightarrowW) in (S*,[CO2]) between S* and the logarithm of [CO2]. The dynamical and thermodynamical properties - energy fluxes, Lorenz energy cycle, Carnot efficiency, material entropy production - of the W and SB states are very different: W states are dominated by t...

  9. Comparative Habitability of Transiting Exoplanets

    CERN Document Server

    Barnes, Rory; Evans, Nicole

    2015-01-01

    Exoplanet habitability is traditionally assessed by comparing a planet's semi-major axis to the location of its host star's "habitable zone," the shell around a star for which Earth-like planets can possess liquid surface water. The Kepler space telescope has discovered numerous planet candidates near the habitable zone, and many more are expected from missions such as K2, TESS and PLATO. These candidates often require significant follow-up observations for validation, so prioritizing planets for habitability from transit data has become an important aspect of the search for life in the universe. We propose a method to compare transiting planets for their potential to support life based on transit data, stellar properties and previously reported limits on planetary emitted flux. For a planet in radiative equilibrium, the emitted flux increases with eccentricity, but decreases with albedo. As these parameters are often unconstrained, there is an "eccentricity-albedo degeneracy" for the habitability of transiti...

  10. Exoplanet dynamics. Asynchronous rotation of Earth-mass planets in the habitable zone of lower-mass stars.

    Science.gov (United States)

    Leconte, Jérémy; Wu, Hanbo; Menou, Kristen; Murray, Norman

    2015-02-06

    Planets in the habitable zone of lower-mass stars are often assumed to be in a state of tidally synchronized rotation, which would considerably affect their putative habitability. Although thermal tides cause Venus to rotate retrogradely, simple scaling arguments tend to attribute this peculiarity to the massive Venusian atmosphere. Using a global climate model, we show that even a relatively thin atmosphere can drive terrestrial planets' rotation away from synchronicity. We derive a more realistic atmospheric tide model that predicts four asynchronous equilibrium spin states, two being stable, when the amplitude of the thermal tide exceeds a threshold that is met for habitable Earth-like planets with a 1-bar atmosphere around stars more massive than ~0.5 to 0.7 solar mass. Thus, many recently discovered terrestrial planets could exhibit asynchronous spin-orbit rotation, even with a thin atmosphere.

  11. Astrometric Detection of Terrestrial Planets in the Habitable Zones of Nearby Stars with SIM PlanetQuest

    CERN Document Server

    Catanzarite, J; Tanner, A; Unwin, S; Yu, J; Catanzarite, Joseph; Shao, Michael; Tanner, Angelle; Unwin, Stephen; Yu, Jeffrey

    2006-01-01

    SIM PlanetQuest (Space Interferometry Mission) is a space-borne Michelson interferometer for precision stellar astrometry, with a nine meter baseline, currently slated for launch in 2015. One of the principal science goals is the astrometric detection and orbit characterization of terrestrial planets in the habitable zones of nearby stars. Differential astrometry of the target star against a set of reference stars lying within a degree will allow measurement of the target star's reflex motion with astrometric accuracy of 1 micro-arcsecond in a single measurement. We assess SIM's capability for detection (as opposed to characterization by orbit determination) of terrestrial planets in the habitable zones of nearby solar-type stars. We compare SIM's performance on target lists optimized for the SIM and Terrestrial Planet Finder Coronograph (TPF-C) missions. Performance is quantified by three metrics: minimum detectable planet mass, number and mass distribution of detected planets, and completeness of detections...

  12. Exoplanet detection. Stellar activity masquerading as planets in the habitable zone of the M dwarf Gliese 581.

    Science.gov (United States)

    Robertson, Paul; Mahadevan, Suvrath; Endl, Michael; Roy, Arpita

    2014-07-25

    The M dwarf star Gliese 581 is believed to host four planets, including one (GJ 581d) near the habitable zone that could possibly support liquid water on its surface if it is a rocky planet. The detection of another habitable-zone planet--GJ 581g--is disputed, as its significance depends on the eccentricity assumed for d. Analyzing stellar activity using the Hα line, we measure a stellar rotation period of 130 ± 2 days and a correlation for Hα modulation with radial velocity. Correcting for activity greatly diminishes the signal of GJ 581d (to 1.5 standard deviations) while significantly boosting the signals of the other known super-Earth planets. GJ 581d does not exist, but is an artifact of stellar activity which, when incompletely corrected, causes the false detection of planet g.

  13. Can there be additional rocky planets in the Habitable Zone of tight binary stars with a known gas giant?

    CERN Document Server

    Funk, Barbara; Eggl, Siegfried

    2015-01-01

    Locating planets in HabitableZones (HZs) around other stars is a growing field in contemporary astronomy. Since a large percentage of all G-M stars in the solar neighbourhood are expected to be part of binary or multiple stellar systems, investigations of whether habitable planets are likely to be discovered in such environments are of prime interest to the scientific community. As current exoplanet statistics predicts that the chances are higher to find new worlds in systems that are already known to have planets, we examine four known extrasolar planetary systems in tight binaries in order to determine their capacity to host additional habitable terrestrial planets. Those systems are Gliese 86, gamma Cephei, HD 41004 and HD 196885. In the case of gamma Cephei, our results suggest that only the M dwarf companion could host additional potentially habitable worlds. Neither could we identify stable, potentially habitable regions around HD 196885 A. HD 196885 B can be considered a slightly more promising target ...

  14. A Joint Approach to the Study of S-Type and P-Type Habitable Zones in Binary Systems: New Results in the View of 3-D Planetary Climate Models

    Science.gov (United States)

    Cuntz, Manfred

    2015-01-01

    In two previous papers, given by Cuntz (2014a,b) [ApJ 780, A14 (19 pages); arXiv:1409.3796], a comprehensive approach has been provided for the study of S-type and P-type habitable zones in stellar binary systems, P-type orbits occur when the planet orbits both binary components, whereas in case of S-type orbits, the planet orbits only one of the binary components with the second component considered a perturbator. The selected approach considers a variety of aspects, including (1) the consideration of a joint constraint including orbital stability and a habitable region for a possible system planet through the stellar radiative energy fluxes; (2) the treatment of conservative (CHZ), general (GHZ) and extended zones of habitability (EHZ) [see Paper I for definitions] for the systems as previously defined for the Solar System; (3) the provision of a combined formalism for the assessment of both S-type and P-type habitability; in particular, mathematical criteria are devised for which kind of system S-type and P-type habitability is realized; and (4) the applications of the theoretical approach to systems with the stars in different kinds of orbits, including elliptical orbits (the most expected case). Particularly, an algebraic formalism for the assessment of both S-type and P-type habitability is given based on a higher-order polynomial expression. Thus, an a prior specification for the presence or absence of S-type or P-type radiative habitable zones is - from a mathematical point of view - neither necessary nor possible, as those are determined by the adopted formalism. Previously, numerous applications of the method have been given encompassing theoretical star-panet systems and and observations. Most recently, this method has been upgraded to include recent studies of 3-D planetary climate models. Originally, this type of work affects the extent and position of habitable zones around single stars; however, it has also profound consequence for the habitable

  15. A Simple Evolutional Model of the UV Habitable Zone and the Possibility of the Persistent Life Existence: The Effects of Mass and Metallicity

    Science.gov (United States)

    Oishi, Midori; Kamaya, Hideyuki

    2016-12-01

    In addition to the habitable zone (HZ), the UV habitable zone (UV-HZ) is important when considering the existence of persistent life in the universe. The UV-HZ is defined as the area where the UV radiation field from a host star is moderate for persistent life existence. This is because UV is necessary for the synthesis of biochemical compounds. The UV-HZ must overlap the HZ when life appears and evolves. In this paper, following our previous study of the HZ, we examine the UV-HZ in cases with a stellar mass range from 0.08 to 4.00 M ⊙ with various metallicities during the main sequence phase. This mass range was chosen because we are interested in an environment similar to that of Earth. The effect of metallicity is reflected in the spectrum of the host stars, and we reexamine it in the context of the UV-HZ. The present work shows the effect of metallicity when that in the UV-HZ is less than that in the HZ. Furthermore, we find that the chance of persistent life existence declines as the metallicity decreases, as long as the UV radiation is not protected and/or boosted by any mechanisms. This is because the overlapped region of a persistent HZ and UV-HZ decreases. We find that the most appropriate stellar mass for the persistence of life existence is from 1.0 to 1.5 M ⊙ with metallicity Z = 0.02, and only about 1.2 M ⊙ with Z = 0.002. When Z = 0.0002, the chance of persistent life existence is very low, assuming that the ocean does not protect the life from UV radiation.

  16. A super-Earth-sized planet orbiting in or near the habitable zone around Sun-like star

    CERN Document Server

    Barclay, Thomas; Howell, Steve B; Rowe, Jason F; Huber, Daniel; Isaacson, Howard; Jenkins, Jon M; Kolbl, Rea; Marcy, Geoffrey W; Quintana, Elisa V; Still, Martin; Twicken, Joseph D; Bryson, Stephen T; Borucki, William J; Caldwell, Douglas A; Ciardi, David; Clarke, Bruce D; Christiansen, Jessie L; Coughlin, Jeffrey L; Fischer, Debra A; Li, Jie; Haas, Michael R; Hunter, Roger; Lissauer, Jack J; Mullally, Fergal; Sabale, Anima; Seader, Shawn E; Smith, Jeffrey C; Tenenbaum, Peter; Uddin, AKM Kamal; Thompson, Susan E

    2013-01-01

    We present the discovery of a super-earth-sized planet in or near the habitable zone of a sun-like star. The host is Kepler-69, a 13.7 mag G4V-type star. We detect two periodic sets of transit signals in the three-year flux time series of Kepler-69, obtained with the Kepler spacecraft. Using the very high precision Kepler photometry, and follow-up observations, our confidence that these signals represent planetary transits is >99.1%. The inner planet, Kepler-69b, has a radius of 2.24+/-0.4 Rearth and orbits the host star every 13.7 days. The outer planet, Kepler-69c, is a super-Earth-size object with a radius of 1.7+/-0.3 Rearth and an orbital period of 242.5 days. Assuming an Earth-like Bond albedo, Kepler-69c has an equilibrium temperature of 299 +/- 19 K, which places the planet close to the habitable zone around the host star. This is the smallest planet found by Kepler to be orbiting in or near habitable zone of a Sun-like star and represents an important step on the path to finding the first true Earth ...

  17. Effect of land fraction on weathering and tenure in the habitable zone of terrestrial planets around main-sequence stars

    Science.gov (United States)

    Abbot, D. S.; Ciesla, F. J.; Pierrehumbert, R.; Archer, D. E.

    2011-12-01

    According to current models of volatile delivery, the water fraction of terrestrial planets in the habitable zone of main-sequence stars is likely to be highly variable. This will affect the continental land fraction, and consequently the functioning of weathering and the carbon cycle. We construct a low-order analytical model of climate, continental silicate weathering, and seafloor weathering to investigate, in a general sense, the effect of land fraction on the long-term carbon cycle. This model is useful for gaining physical insight, rather than for making specific predictions. Using our model, we reach the following conclusions: (1) The surface temperature increases with decreasing land fraction, with waterworlds 10's of K warmer than planets with 50% continental coverage. (2) There can be no weathering feedback on a waterworld. The tenure of a waterworld in the habitable zone is therefore likely to be much shorter than the tenure of a planet with some continent in the habitable zone. (3) The silicate weathering feedback is effective even at very low land fractions. The rate of change of a planet's surface temperature as the star it orbits evolves on the main sequence is similar if the land fraction is 0.3 or 0.01.

  18. VALIDATION OF 12 SMALL KEPLER TRANSITING PLANETS IN THE HABITABLE ZONE

    Energy Technology Data Exchange (ETDEWEB)

    Torres, Guillermo; Kipping, David M.; Fressin, Francois; Newton, Elisabeth R. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Caldwell, Douglas A.; Twicken, Joseph D. [SETI Institute/NASA Ames Research Center, Moffett Field, CA 94035 (United States); Ballard, Sarah [University of Washington, Seattle, WA 98195 (United States); Batalha, Natalie M.; Bryson, Stephen T.; Henze, Christopher E.; Howell, Steve B.; Jenkins, Jon M.; Barclay, Thomas; Borucki, William J. [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Ciardi, David R. [NASA Exoplanet Science Institute/Caltech, Pasadena, CA 91125 (United States); Isaacson, Howard T.; Petigura, Erik A. [Astronomy Department, University of California, Berkeley, CA 94720 (United States); Muirhead, Philip S. [Department of Astronomy, Boston University, Boston, MA 02215 (United States); Crepp, Justin R. [University of Notre Dame, Notre Dame, IN 46556 (United States); Everett, Mark E., E-mail: gtorres@cfa.harvard.edu [National Optical Astronomy Observatory, Tucson, AZ 85719 (United States); and others

    2015-02-20

    We present an investigation of 12 candidate transiting planets from Kepler with orbital periods ranging from 34 to 207 days, selected from initial indications that they are small and potentially in the habitable zone (HZ) of their parent stars. Few of these objects are known. The expected Doppler signals are too small to confirm them by demonstrating that their masses are in the planetary regime. Here we verify their planetary nature by validating them statistically using the BLENDER technique, which simulates large numbers of false positives and compares the resulting light curves with the Kepler photometry. This analysis was supplemented with new follow-up observations (high-resolution optical and near-infrared spectroscopy, adaptive optics imaging, and speckle interferometry), as well as an analysis of the flux centroids. For 11 of them (KOI-0571.05, 1422.04, 1422.05, 2529.02, 3255.01, 3284.01, 4005.01, 4087.01, 4622.01, 4742.01, and 4745.01) we show that the likelihood they are true planets is far greater than that of a false positive, to a confidence level of 99.73% (3σ) or higher. For KOI-4427.01 the confidence level is about 99.2% (2.6σ). With our accurate characterization of the GKM host stars, the derived planetary radii range from 1.1 to 2.7 R {sub ⊕}. All 12 objects are confirmed to be in the HZ, and nine are small enough to be rocky. Excluding three of them that have been previously validated by others, our study doubles the number of known rocky planets in the HZ. KOI-3284.01 (Kepler-438b) and KOI-4742.01 (Kepler-442b) are the planets most similar to the Earth discovered to date when considering their size and incident flux jointly.

  19. Observations of interstellar formamide: availability of a prebiotic precursor in the galactic habitable zone.

    Science.gov (United States)

    Adande, Gilles R; Woolf, Neville J; Ziurys, Lucy M

    2013-05-01

    We conducted a study on interstellar formamide, NH2CHO, toward star-forming regions of dense molecular clouds, using the telescopes of the Arizona Radio Observatory (ARO). The Kitt Peak 12 m antenna and the Submillimeter Telescope (SMT) were used to measure multiple rotational transitions of this molecule between 100 and 250 GHz. Four new sources of formamide were found [W51M, M17 SW, G34.3, and DR21(OH)], and complementary data were obtained toward Orion-KL, W3(OH), and NGC 7538. From these observations, column densities for formamide were determined to be in the range of 1.1×10(12) to 9.1×10(13) cm(-2), with rotational temperatures of 70-177 K. The molecule is thus present in warm gas, with abundances relative to H2 of 1×10(-11) to 1×10(-10). It appears to be a common constituent of star-forming regions that foster planetary systems within the galactic habitable zone, with abundances comparable to that found in comet Hale-Bopp. Formamide's presence in comets and molecular clouds suggests that the compound could have been brought to Earth by exogenous delivery, perhaps with an infall flux as high as ~0.1 mol/km(2)/yr or 0.18 mmol/m(2) in a single impact. Formamide has recently been proposed as a single-carbon, prebiotic source of nucleobases and nucleic acids. This study suggests that a sufficient amount of NH2CHO could have been available for such chemistry.

  20. Cosmic ray impact on extrasolar earth-like planets in close-in habitable zones.

    Science.gov (United States)

    Griessmeier, J-M; Stadelmann, A; Motschmann, U; Belisheva, N K; Lammer, H; Biernat, H K

    2005-10-01

    Because of their different origins, cosmic rays can be subdivided into galactic cosmic rays and solar/stellar cosmic rays. The flux of cosmic rays to planetary surfaces is mainly determined by two planetary parameters: the atmospheric density and the strength of the internal magnetic moment. If a planet exhibits an extended magnetosphere, its surface will be protected from high-energy cosmic ray particles. We show that close-in extrasolar planets in the habitable zone of M stars are synchronously rotating with their host star because of the tidal interaction. For gravitationally locked planets the rotation period is equal to the orbital period, which is much longer than the rotation period expected for planets not subject to tidal locking. This results in a relatively small magnetic moment. We found that an Earth-like extrasolar planet, tidally locked in an orbit of 0.2 AU around an M star of 0.5 solar masses, has a rotation rate of 2% of that of the Earth. This results in a magnetic moment of less than 15% of the Earth's current magnetic moment. Therefore, close-in extrasolar planets seem not to be protected by extended Earth-like magnetospheres, and cosmic rays can reach almost the whole surface area of the upper atmosphere. Primary cosmic ray particles that interact with the atmosphere generate secondary energetic particles, a so-called cosmic ray shower. Some of the secondary particles can reach the surface of terrestrial planets when the surface pressure of the atmosphere is on the order of 1 bar or less. We propose that, depending on atmospheric pressure, biological systems on the surface of Earth-like extrasolar planets at close-in orbital distances can be strongly influenced by secondary cosmic rays.

  1. Water transport to circumprimary habitable zones from icy planetesimal disks in binary star systems

    Science.gov (United States)

    Bancelin, D.; Pilat-Lohinger, E.; Maindl, T. I.; Bazsó, Á.

    2017-03-01

    So far, more than 130 extrasolar planets have been found in multiple stellar systems. Dynamical simulations show that the outcome of the planetary formation process can lead to different planetary architectures (i.e. location, size, mass, and water content) when the star system is single or double. In the late phase of planetary formation, when embryo-sized objects dominate the inner region of the system, asteroids are also present and can provide additional material for objects inside the habitable zone (HZ). In this study, we make a comparison of several binary star systems and aim to show how efficient they are at moving icy asteroids from beyond the snow line into orbits crossing the HZ. We also analyze the influence of secular and mean motion resonances on the water transport towards the HZ. Our study shows that small bodies also participate in bearing a non-negligible amount of water to the HZ. The proximity of a companion moving on an eccentric orbit increases the flux of asteroids to the HZ, which could result in a more efficient water transport on a short timescale, causing a heavy bombardment. In contrast to asteroids moving under the gravitational perturbations of one G-type star and a gas giant, we show that the presence of a companion star not only favors a faster depletion of our disk of planetesimals, but can also bring 4-5 times more water into the whole HZ. However, due to the secular resonance located either inside the HZ or inside the asteroid belt, impacts between icy planetesimals from the disk and big objects in the HZ can occur at high impact speed. Therefore, real collision modeling using a GPU 3D-SPH code show that in reality, the water content of the projectile is greatly reduced and therefore, also the water transported to planets or embryos initially inside the HZ.

  2. Extreme water loss and abiotic O2 buildup on planets throughout the habitable zones of M dwarfs.

    Science.gov (United States)

    Luger, R; Barnes, R

    2015-02-01

    We show that terrestrial planets in the habitable zones of M dwarfs older than ∼1 Gyr could have been in runaway greenhouses for several hundred million years following their formation due to the star's extended pre-main sequence phase, provided they form with abundant surface water. Such prolonged runaway greenhouses can lead to planetary evolution divergent from that of Earth. During this early runaway phase, photolysis of water vapor and hydrogen/oxygen escape to space can lead to the loss of several Earth oceans of water from planets throughout the habitable zone, regardless of whether the escape is energy-limited or diffusion-limited. We find that the amount of water lost scales with the planet mass, since the diffusion-limited hydrogen escape flux is proportional to the planet surface gravity. In addition to undergoing potential desiccation, planets with inefficient oxygen sinks at the surface may build up hundreds to thousands of bar of abiotically produced O2, resulting in potential false positives for life. The amount of O2 that builds up also scales with the planet mass; we find that O2 builds up at a constant rate that is controlled by diffusion: ∼5 bar/Myr on Earth-mass planets and up to ∼25 bar/Myr on super-Earths. As a result, some recently discovered super-Earths in the habitable zone such as GJ 667Cc could have built up as many as 2000 bar of O2 due to the loss of up to 10 Earth oceans of water. The fate of a given planet strongly depends on the extreme ultraviolet flux, the duration of the runaway regime, the initial water content, and the rate at which oxygen is absorbed by the surface. In general, we find that the initial phase of high luminosity may compromise the habitability of many terrestrial planets orbiting low-mass stars.

  3. Stability of the toroidal magnetic field in stellar radiation zones

    CERN Document Server

    Bonanno, Alfio

    2011-01-01

    Understanding the stability of the magnetic field in radiation zones is of crucial importance for various processes in stellar interior like mixing, circulation and angular momentum transport. The stability properties of a star containing a prominent toroidal field in a radiation zone is investigated by means of a linear stability analysis in the Boussinesq approximation taking into account the effect of thermal conductivity. The growth rate of the instability is explicitly calculated and the effects of stable stratification and heat transport are discussed in detail. It is argued that the stabilizing influence of gravity can never entirely suppress the instability caused by electric currents in radiation zones although the stable stratification can significantly decrease the growth rate of instability

  4. The dynamics of the radiative zone of the Sun

    Energy Technology Data Exchange (ETDEWEB)

    Turck-Chieze, S; Mathis, S; Piau, L [IRFU/ CEA/ CE Saclay, Gif sur Yvette (France); Couvidat, S [HEPL, Stanford (United States); Duez, V [Argelander-Institut fur Astronomie, Universitat Bonn (Germany); Marques, J [Observatoire de Meudon, Meudon (France); Palacios, A, E-mail: sylvaine.turck-chieze@cea.fr [GRAAL Montpellier (France)

    2011-01-01

    Helioseismology puts strong constraints on the internal sound speed and on the rotation profile in the radiative zone. Young stars of solar type are more active and faster rotators than the Sun. So we begin to build models which include different rotation histories and compare the results with all the solar observations. The profiles of the rotation we get have interesting consequence for the introduction of magnetic field in the radiative zone. We discuss also the impact of mass loss deduced from measured flux of young stars. We deduce from these comparisons some quantitative effect of the dynamical processes (rotation, magnetic field and mass loss) of these early stages on the present sound speed and density. We show finally how we can improve our present knowledge of the radiative zone with PICARD and GOLFNG.

  5. Modeling the Martian neutral particle radiation - predictions for ExoMars/IRAS and implications for Martian habitability during the Noachian

    Energy Technology Data Exchange (ETDEWEB)

    Ehresmann, Bent; Wimmer-Schweingruber, Robert; Burmeister, Soenke; Koehler, Jan; Kulkarni, Shri [Christian-Albrechts-Universitaet, Kiel (Germany); Reitz, Guenther [Deutsches Zentrum fuer Luft- und Raumfahrt (Germany)

    2009-07-01

    The exciting results of recent Mars exploration missions indicate that water existed on the Martian surface, which provides a possibility for life on Mars. Thus, there is an enhanced interest in analyzing the conditions for habitability on Mars, especially in the Noachian epoch. An important aspect of habitability is the radiation level of charged and neutral particles in possible habitats. Using Planetocosmics, we calculate particle radiation in the Martian atmosphere and at ground level for present-day conditions. These calculations allow us to make predictions for the measurements of the Ionizing Radiation Sensor (IRAS) on ExoMars. By changing atmosphere conditions and varying the water-content of the Martian soil, we can derive radiation levels expected during the Noachian period. We will discuss the implications of these model results in terms of Noachian habitability.

  6. The Mt John University Observatory Search For Earth-mass Planets In The Habitable Zone Of Alpha Centauri

    CERN Document Server

    Endl, M; Hearnshaw, J; Barnes, S I; Wittenmyer, R A; Ramm, D; Kilmartin, P; Gunn, F; Brogt, E

    2014-01-01

    The "holy grail" in planet hunting is the detection of an Earth-analog: a planet with similar mass as the Earth and an orbit inside the habitable zone. If we can find such an Earth-analog around one of the stars in the immediate solar neighborhood, we could potentially even study it in such great detail to address the question of its potential habitability. Several groups have focused their planet detection efforts on the nearest stars. Our team is currently performing an intensive observing campaign on the alpha Centauri system using the Hercules spectrograph at the 1-m McLellan telescope at Mt John University Observatory (MJUO) in New Zealand. The goal of our project is to obtain such a large number of radial velocity measurements with sufficiently high temporal sampling to become sensitive to signals of Earth-mass planets in the habitable zones of the two stars in this binary system. Over the past years, we have collected more than 45,000 spectra for both stars combined. These data are currently processed ...

  7. Fitting Formulas for Determining the Existence of S-type and P-type Habitable Zones in Binary Systems: First Results

    CERN Document Server

    Wang, Zhaopeng

    2016-01-01

    We present initial work about attaining fitting formulas for the quick determination of the existence of S-type and P-type habitable zones in binary systems. Following previous work, we calculate the limits of the climatological habitable zone in binary systems (which sensitively depend on the system parameters) based on a joint constraint encompassing planetary orbital stability and a habitable region for a possible system planet. We also consider updated results on planetary climate models previously obtained by Kopparapu and collaborators. Fitting equations based on our work are presented for selected cases.

  8. Astrophysical Conditions for Planetary Habitability

    CERN Document Server

    Guedel, M; Erkaev, N; Kasting, J; Khodachenko, M; Lammer, H; Pilat-Lohinger, E; Rauer, H; Ribas, I; Wood, B E

    2014-01-01

    With the discovery of hundreds of exoplanets and a potentially huge number of Earth-like planets waiting to be discovered, the conditions for their habitability have become a focal point in exoplanetary research. The classical picture of habitable zones primarily relies on the stellar flux allowing liquid water to exist on the surface of an Earth-like planet with a suitable atmosphere. However, numerous further stellar and planetary properties constrain habitability. Apart from "geophysical" processes depending on the internal structure and composition of a planet, a complex array of astrophysical factors additionally determine habitability. Among these, variable stellar UV, EUV, and X-ray radiation, stellar and interplanetary magnetic fields, ionized winds, and energetic particles control the constitution of upper planetary atmospheres and their physical and chemical evolution. Short- and long-term stellar variability necessitates full time-dependent studies to understand planetary habitability at any point ...

  9. Suppression of the water ice and snow albedo feedback on planets orbiting red dwarf stars and the subsequent widening of the habitable zone.

    Science.gov (United States)

    Joshi, Manoj M; Haberle, Robert M

    2012-01-01

    M stars comprise 80% of main sequence stars, so their planetary systems provide the best chance for finding habitable planets, that is, those with surface liquid water. We have modeled the broadband albedo or reflectivity of water ice and snow for simulated planetary surfaces orbiting two observed red dwarf stars (or M stars), using spectrally resolved data of Earth's cryosphere. The gradual reduction of the albedos of snow and ice at wavelengths greater than 1 μm, combined with M stars emitting a significant fraction of their radiation at these same longer wavelengths, means that the albedos of ice and snow on planets orbiting M stars are much lower than their values on Earth. Our results imply that the ice/snow albedo climate feedback is significantly weaker for planets orbiting M stars than for planets orbiting G-type stars such as the Sun. In addition, planets with significant ice and snow cover will have significantly higher surface temperatures for a given stellar flux if the spectral variation of cryospheric albedo is considered, which in turn implies that the outer edge of the habitable zone around M stars may be 10-30% farther away from the parent star than previously thought.

  10. Is Gliese 581d habitable? Some constraints from radiative-convective climate modeling

    CERN Document Server

    Wordsworth, R; Selsis, F; Madeleine, J -B; Millour, E; Eymet, V

    2010-01-01

    The recently discovered exoplanet Gl581d is extremely close to the outer edge of its system's habitable zone, which has led to much speculation on its possible climate. We have performed a range of simulations to assess whether, given simple combinations of chemically stable greenhouse gases, the planet could sustain liquid water on its surface. For best estimates of the surface gravity, surface albedo and cloud coverage, we find that less than 10 bars of CO2 is sufficient to maintain a global mean temperature above the melting point of water. Furthermore, even with the most conservative choices of these parameters, we calculate temperatures above the water melting point for CO2 partial pressures greater than about 30 bar. However, we note that as Gl581d is probably in a tidally resonant orbit, further simulations in 3D are required to test whether such atmospheric conditions are stable against the collapse of CO2 on the surface.

  11. DETECTABILITY OF EARTH-LIKE PLANETS IN CIRCUMSTELLAR HABITABLE ZONES OF BINARY STAR SYSTEMS WITH SUN-LIKE COMPONENTS

    Energy Technology Data Exchange (ETDEWEB)

    Eggl, Siegfried; Pilat-Lohinger, Elke [University of Vienna, Institute for Astrophysics, Tuerkenschanzstr. 17, A-1180 Vienna (Austria); Haghighipour, Nader, E-mail: siegfried.eggl@univie.ac.at [Institute for Astronomy and NASA Astrobiology Institute, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States)

    2013-02-20

    Given the considerable percentage of stars that are members of binaries or stellar multiples in the solar neighborhood, it is expected that many of these binaries host planets, possibly even habitable ones. The discovery of a terrestrial planet in the {alpha} Centauri system supports this notion. Due to the potentially strong gravitational interaction that an Earth-like planet may experience in such systems, classical approaches to determining habitable zones (HZ), especially in close S-type binary systems, can be rather inaccurate. Recent progress in this field, however, allows us to identify regions around the star permitting permanent habitability. While the discovery of {alpha} Cen Bb has shown that terrestrial planets can be detected in solar-type binary stars using current observational facilities, it remains to be shown whether this is also the case for Earth analogs in HZs. We provide analytical expressions for the maximum and rms values of radial velocity and astrometric signals, as well as transit probabilities of terrestrial planets in such systems, showing that the dynamical interaction of the second star with the planet may indeed facilitate the planets' detection. As an example, we discuss the detectability of additional Earth-like planets in the averaged, extended, and permanent HZs around both stars of the {alpha} Centauri system.

  12. Radiative and precipitation controls on root zone soil moisture spectra

    Science.gov (United States)

    Nakai, Taro; Katul, Gabriel G.; Kotani, Ayumi; Igarashi, Yasunori; Ohta, Takeshi; Suzuki, Masakazu; Kumagai, Tomo'omi

    2014-11-01

    Temporal variability in root zone soil moisture content (w) exhibits a Lorentzian spectrum with memory dictated by a damping term when forced with white-noise precipitation. In the context of regional dimming, radiation and precipitation variability are needed to reproduce w trends prompting interest in how the w memory is altered by radiative forcing. A hierarchy of models that sequentially introduce the spectrum of precipitation, net radiation, and the effect of w on evaporative and drainage losses was used to analyze the spectrum of w at subtropical and temperate forested sites. Reproducing the w spectra at long time scales necessitated simultaneous precipitation and net radiation measurements depending on site conditions. The w memory inferred from observed w spectra was 25-38 days, larger than that determined from maximum wet evapotranspiration and field capacity. The w memory can be reasonably inferred from the Lorentzian spectrum when precipitation and evapotranspiration are in phase.

  13. Reflected light from giant planets in habitable zones: Tapping into the power of the Cross-Correlation Function

    CERN Document Server

    Martins, Jorge H C; Figueira, Pedro; Melo, Claudio

    2016-01-01

    The direct detection of reflected light from exoplanets is an excellent probe for the characterization of their atmospheres. The greatest challenge for this task is the low planet-to-star flux ratio, which even in the most favourable case is of the order of $10^{-4}$ in the optical. This ratio decreases even more for planets in their host habitable zone, typically lower than $10^{-7}$. To reach the signal-to-noise level required for such detections, we propose to unleash the power of the Cross Correlation Function in combination with the collecting power of next generation observing facilities. The technique we propose has already yielded positive results by detecting the reflected spectral signature of 51 Pegasi b (see Martins et al. 2015). In this work, we attempted to infer the number of hours required for the detection of several planets in their host habitable zone using the aforementioned technique from theoretical EELT observations. Our results show that for 5 of the selected planets it should be possi...

  14. A relook on using the Earth Similarity Index for searching habitable zones around solar and extrasolar planets

    Science.gov (United States)

    Biswas, S.; Shome, A.; Raha, B.; Bhattacharya, A. B.

    2017-01-01

    To study the distribution of Earth-like planets and to locate the habitable zone around extrasolar planets and their known satellites, we have emphasized in this paper the consideration of Earth similarity index (ESI) as a multi parameter quick assessment of Earth-likeness with a value between zero and one. Weight exponent values for four planetary properties have been taken into account to determine the ESI. A plot of surface ESI against the interior ESI exhibits some interesting results which provide further information when confirmed planets are examined. From the analysis of the available catalog and existing theory, none of the solar planets achieves an ESI value greater than 0.8. Though the planet Mercury has a value of 0.6, Mars exhibits a value between 0.6 and 0.8 and the planet Venus shows a value near 0.5. Finally, the locations of the habitable zone around different type of stars are critically examined and discussed.

  15. The inner edge of the habitable zone for synchronously rotating planets around low-mass stars using general circulation models

    CERN Document Server

    Kopparapu, Ravi kumar; Haqq-Misra, Jacob; Yang, Jun; Kasting, James F; Meadows, Victoria; Terrien, Ryan; Mahadevan, Suvrath

    2016-01-01

    Terrestrial planets at the inner edge of the habitable zone of late-K and M-dwarf stars are expected to be in synchronous rotation, as a consequence of strong tidal interactions with their host stars. Previous global climate model (GCM) studies have shown that, for slowly-rotating planets, strong convection at the substellar point can create optically thick water clouds, increasing the planetary albedo, and thus stabilizing the climate against a thermal runaway. However these studies did not use self-consistent orbital/rotational periods for synchronously rotating planets placed at different distances from the host star. Here we provide new estimates of the inner edge of the habitable zone for synchronously rotating terrestrial planets around late-K and M-dwarf stars using a 3-D Earth-analog GCM with self-consistent relationships between stellar metallicity, stellar effective temperature, and the planetary orbital/rotational period. We find that both atmospheric dynamics and the efficacy of the substellar clo...

  16. Reflected Light from Giant Planets in Habitable Zones: Tapping into the Power of the Cross-Correlation Function.

    Science.gov (United States)

    Martins, J H C; Santos, N C; Figueira, P; Melo, C

    2016-11-01

    The direct detection of reflected light from exoplanets is an excellent probe for the characterization of their atmospheres. The greatest challenge for this task is the low planet-to-star flux ratio, which even in the most favourable case is of the order of 10(-4) in the optical. This ratio decreases even more for planets in their host's habitable zone, typically lower than 10(-7). To reach the signal-to-noise level required for such detections, we propose to unleash the power of the Cross Correlation Function in combination with the collecting power of next generation observing facilities. The technique we propose has already yielded positive results by detecting the reflected spectral signature of 51 Pegasi b (see Martins et al. 2015). In this work, we attempted to infer the number of hours required for the detection of several planets in their host's habitable zone using the aforementioned technique from theoretical EELT observations. Our results show that for 5 of the selected planets it should be possible to directly recover their reflected spectral signature.

  17. Spitzer Observations Confirm and Rescue the Habitable-Zone Super-Earth K2-18b for Future Characterization

    CERN Document Server

    Benneke, Björn; Petigura, Erik; Knutson, Heather; Dressing, Courtney; Crossfield, Ian J M; Schlieder, Joshua E; Livingston, John; Beichman, Charles; Christiansen, Jessie; Krick, Jessica; Gorjian, Varoujan; Howard, Andrew W; Sinukoff, Evan; Ciardi, David R; Akeson, Rachel L

    2016-01-01

    The recent detections of two transit events attributed to the super-Earth candidate K2-18b have provided the unprecedented prospect of spectroscopically studying a habitable-zone planet outside the Solar System. Orbiting a nearby M2.5 dwarf and receiving virtually the same stellar insolation as Earth, K2-18b would be a prime candidate for the first detailed atmospheric characterization of a habitable-zone exoplanet using HST and JWST. Here, we report the detection of a third transit of K2-18b near the predicted transit time using the Spitzer Space Telescope. The Spitzer detection demonstrates the periodic nature of the two transit events discovered by K2, confirming that K2-18 is indeed orbited by a super-Earth in a 33-day orbit and ruling out the alternative scenario of two similarly-sized, long-period planets transiting only once within the 75-day K2 observation. We also find, however, that the transit event detected by Spitzer occurred 1.85 hours (7-sigma) before the predicted transit time. Our joint analy...

  18. The Hunt for Exomoons with Kepler (HEK): III. The First Search for an Exomoon around a Habitable-Zone Planet

    CERN Document Server

    Kipping, David M; Hartman, Joel; Nesvorny, David; Bakos, Gáspár Á; Schmitt, Allan R; Buchhave, Lars A

    2013-01-01

    Kepler-22b is the first transiting planet to have been detected in the habitable-zone of its host star. At 2.4 Earth radii, Kepler-22b is too large to be considered an Earth-analog, but should the planet host a moon large enough to maintain an atmosphere, then the Kepler-22 system may yet possess a telluric world. Aside from being within the habitable-zone, the target is attractive due to the availability of previously measured precise radial velocities and low intrinsic photometric noise, which has also enabled asteroseismology studies of the star. For these reasons, Kepler-22b was selected as a target-of-opportunity by the 'Hunt for Exomoons with Kepler' (HEK) project. In this work, we conduct a photodynamical search for an exomoon around Kepler-22b leveraging the transits, radial velocities and asteroseismology plus several new tools developed by the HEK project to improve exomoon searches. We find no evidence for an exomoon around the planet and exclude moons of mass >0.5 Earth masses to 95% confidence. B...

  19. Extreme Water Loss and Abiotic O$_2$ Buildup On Planets Throughout the Habitable Zones of M Dwarfs

    CERN Document Server

    Luger, Rodrigo

    2014-01-01

    We show that terrestrial planets in the habitable zones of M dwarfs older than $\\sim$ 1 Gyr could have been in runaway greenhouses for several hundred Myr following their formation due to the star's extended pre-main sequence phase, provided they form with abundant surface water. Such prolonged runaway greenhouses can lead to planetary evolution divergent from that of Earth. During this early runaway phase, photolysis of water vapor and hydrogen/oxygen escape to space can lead to the loss of several Earth oceans of water from planets throughout the habitable zone, regardless of whether the escape is energy-limited or diffusion-limited. We find that the amount of water lost scales with the planet mass, since the diffusion-limited hydrogen escape flux is proportional to the planet surface gravity. In addition to undergoing potential desiccation, planets with inefficient oxygen sinks at the surface may build up hundreds to thousands of bars of abiotically produced O$_2$, resulting in potential false positives fo...

  20. `Grandeur in this view of life': N-body simulation models of the Galactic habitable zone

    Science.gov (United States)

    Vukotić, B.; Steinhauser, D.; Martinez-Aviles, G.; Ćirković, M. M.; Micic, M.; Schindler, S.

    2016-07-01

    We present an isolated Milky-Way-like simulation in the GADGET2 N-body smoothed particle hydrodynamics (SPH) code. The Galactic disc star formation rate (SFR) surface densities and a stellar mass indicative of the Solar neighbourhood are used as thresholds to model the distribution of stellar mass in life-friendly environments. SFR and stellar component density are calculated by averaging the GADGET2 particle properties on a 2D grid mapped on the Galactic plane. The peak values for possibly habitable stellar mass surface density move from 10 to 15 kpc cylindrical galactocentric distance in a 10-Gyr simulated time span. At 10 Gyr, the simulation results imply the following. Stellar particles that have spent almost all of their lifetime in habitable-friendly conditions typically reside at ˜16 kpc from the Galactic Centre and are ˜3 Gyr old. Stellar particles that have spent ≥90 per cent of their 4-5 Gyr long lifetime in habitable-friendly conditions are also predominantly found in the outskirts of the Galactic disc. Fewer than 1 per cent of these particles can be found at a typical Solar system galactocentric distance of 8-10 kpc. Our results imply that the evolution of an isolated spiral galaxy is likely to result in galactic civilizations emerging at the outskirts of the galactic disc around stellar hosts younger than the Sun.

  1. "Grandeur in this view of life": N-body simulation models of the Galactic habitable zone

    CERN Document Server

    Vukotić, B; Martinez-Aviles, G; Ćirković, M M; Micic, M; Schindler, S

    2016-01-01

    We present an isolated Milky Way-like simulation in GADGET2 N-body SPH code. The Galactic disk star formation rate (SFR) surface densities and stellar mass indicative of Solar neighbourhood are used as thresholds to model the distribution of stellar mass in life friendly environments. SFR and stellar component density are calculated averaging the GADGET2 particle properties on a 2D grid mapped on the Galactic plane. The peak values for possibly habitable stellar mass surface density move from $10$ to $15$ kpc cylindrical galactocentric distance in $10$ Gyr simulated time span. At $10$ Gyr the simulation results imply the following. Stellar particles which have spent almost all of their life time in habitable friendly conditions reside typically at $\\sim16$ kpc from Galactic centre and are $\\sim 3$ Gyr old. Stellar particles that have spent $\\ge 90 \\%$ of their $4-5$ Gyr long life time in habitable friendly conditions, are also predominantly found in the outskirts of the Galactic disk. Less then $1 \\%$ of thes...

  2. Evolution of the habitable zone of low-mass stars. Detailed stellar models and analytical relationships for different masses and chemical compositions

    CERN Document Server

    Valle, G; Moroni, P G Prada; Degl'Innocenti, S

    2014-01-01

    We study the temporal evolution of the habitable zone (HZ) of low-mass stars - only due to stellar evolution - and evaluate the related uncertainties. These uncertainties are then compared with those due to the adoption of different climate models. We computed stellar evolutionary tracks from the pre-main sequence phase to the helium flash at the red-giant branch tip for stars with masses in the range [0.70 - 1.10] Msun, metallicity Z in the range [0.005 - 0.04], and various initial helium contents. We evaluated several characteristics of the HZ, such as the distance from the host star at which the habitability is longest, the duration of this habitability, the width of the zone for which the habitability lasts one half of the maximum, and the boundaries of the continuously habitable zone (CHZ) for which the habitability lasts at least 4 Gyr. We developed analytical models, accurate to the percent level or lower, which allowed to obtain these characteristics in dependence on the mass and the chemical composit...

  3. The Stability of the Orbits of Earth-mass Planets in and near the Habitable Zones of Known Exoplanetary Systems

    CERN Document Server

    Jones, B W; Sleep, P N; Underwood, David R

    2003-01-01

    We have shown that Earth-mass planets could survive in variously restricted regions of the habitable zones (HZs) of most of a sample of nine of the 93 main-sequence exoplanetary systems confirmed by May 2003. In a preliminary extrapolation of our results to the other systems, we estimate that roughly a third of the 93 systems might be able to have Earth-mass planets in stable, confined orbits somewhere in their HZs. Clearly, these systems should be high on the target list for exploration for terrestrial planets. We have reached this conclusion by launching putative Earth-mass planets in various orbits and following their fate with a mixed-variable symplectic integrator.

  4. Spitzer Observations Confirm and Rescue the Habitable-zone Super-Earth K2-18b for Future Characterization

    Science.gov (United States)

    Benneke, Björn; Werner, Michael; Petigura, Erik; Knutson, Heather; Dressing, Courtney; Crossfield, Ian J. M.; Schlieder, Joshua E.; Livingston, John; Beichman, Charles; Christiansen, Jessie; Krick, Jessica; Gorjian, Varoujan; Howard, Andrew W.; Sinukoff, Evan; Ciardi, David R.; Akeson, Rachel L.

    2017-01-01

    The recent detections of two transit events attributed to the super-Earth candidate K2-18b have provided the unprecedented prospect of spectroscopically studying a habitable-zone planet outside the solar system. Orbiting a nearby M2.5 dwarf and receiving virtually the same stellar insolation as Earth, K2-18b would be a prime candidate for the first detailed atmospheric characterization of a habitable-zone exoplanet using the Hubble Space Telescope (HST)and James Webb Space Telescope (JWST). Here, we report the detection of a third transit of K2-18b near the predicted transit time using the Spitzer Space Telescope. The Spitzer detection demonstrates the periodic nature of the two transit events discovered by K2, confirming that K2-18 is indeed orbited by a super-Earth in a 33 day orbit, ruling out the alternative scenario of two similarly sized, long-period planets transiting only once within the 75 day Kepler Space Telescope (K2) observation. We also find, however, that the transit event detected by Spitzer occurred 1.85 hr (7σ ) before the predicted transit time. Our joint analysis of the Spitzer and K2 photometry reveals that this early occurrence of the transit is not caused by transit timing variations, but the result of an inaccurate ephemeris due to a previously undetected data anomaly in the K2 photometry. We refit the ephemeris and find that K2-18b would have been lost for future atmospheric characterizations with HST and JWST if we had not secured its ephemeris shortly after the discovery. We caution that immediate follow-up observations as presented here will also be critical for confirming and securing future planets discovered by the Transiting Exoplanet Survey Satellite (TESS), in particular if only two transit events are covered by the relatively short 27-day TESS campaigns.

  5. Radiation damage effects in standard float zone silicon diodes

    Energy Technology Data Exchange (ETDEWEB)

    Pascoalino, Kelly C.; Camargo, Fabio; Barbosa, Renata F.; Goncalves, Josemary A.C.; Tobias, Carmen C.B., E-mail: ccbueno@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2009-07-01

    The aim of this work was to study the radiation damage effects on the electrical properties of standard float zone diodes (STFZ). Such effects were evaluated by measuring the current and capacitance of these devices as a function of the reverse voltage. For comparison, current and capacitance measurements were carried out with a non-irradiated STFZ device. The irradiation was performed in the Radiation Technology Center (CTR) at IPEN/CNEN-SP using a {sup 60}Co irradiator (Gammacell 220 - Nordion) with a dose rate of about 2.2 kGy/h. Samples were irradiated at room temperature in steps variable from 50 kGy up 140 kGy which lead to an accumulated dose of 460 kGy. The results obtained have shown that the upper dose limit for a 'damageless' STFZ diode is about 50 kGy. (author)

  6. Climatic zones of solar radiation of Galicia; Zonas climaticas de radiacion solar de Galicia

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez, M.; Izquierdo, P.; Pose, M.; Prado, M. T.; Santos, J.

    2008-07-01

    The paper shows the results of a research on the solar radiation received in Galicia that allows assigning each one of the 315 Galician municipalities to one of the Climatic Zones of solar radiation, defined in the Spanish Building Technical Code (BTC). It is proposed to complete the assignment of climatic Zones in the BTC with a new zone, named Climatic Zone 0, with the objective to differentiate the geographical areas in Galicia with less than 3.4 kWh/m{sup 2}.day of yearly daily average solar radiation. The study is completed with the realization of a map of the Climate Zones of solar radiation of Galicia. (Author)

  7. The Snow Line in Viscous Disks around Low-mass Stars: Implications for Water Delivery to Terrestrial Planets in the Habitable Zone

    NARCIS (Netherlands)

    Mulders, G.D.; Ciesla, F.J.; Min, M.; Pascucci, I.

    2015-01-01

    The water-ice or snow line is one of the key properties of protoplanetary disks that determines the water content of terrestrial planets in the habitable zone. Its location is determined by the properties of the star, the mass accretion rate through the disk, and the size distribution of dust suspen

  8. Kepler-22b: A 2.4 Earth-radius Planet in the Habitable Zone of a Sun-like Star

    DEFF Research Database (Denmark)

    Borucki, W.J.; Koch, D.G.; Batalha, N.

    2012-01-01

    A search of the time-series photometry from NASA's Kepler spacecraft reveals a transiting planet candidate orbiting the 11th magnitude G5 dwarf KIC 10593626 with a period of 290 days. The characteristics of the host star are well constrained by high-resolution spectroscopy combined with an astero......A search of the time-series photometry from NASA's Kepler spacecraft reveals a transiting planet candidate orbiting the 11th magnitude G5 dwarf KIC 10593626 with a period of 290 days. The characteristics of the host star are well constrained by high-resolution spectroscopy combined...... with an asteroseismic analysis of the Kepler photometry, leading to an estimated mass and radius of 0.970 ± 0.060 M sun and 0.979 ± 0.020 R sun. The depth of 492 ± 10 ppm for the three observed transits yields a radius of 2.38 ± 0.13 Re for the planet. The system passes a battery of tests for false positives, including...... masses, thus earning the designation Kepler-22b. The radiative equilibrium temperature is 262 K for a planet in Kepler-22b's orbit. Although there is no evidence that Kepler-22b is a rocky planet, it is the first confirmed planet with a measured radius to orbit in the habitable zone of any star other...

  9. Water loss from Earth-sized planets in the habitable zones of ultracool dwarfs: Implications for the planets of TRAPPIST-1

    CERN Document Server

    Bolmont, Emeline; Owen, James E; Ribas, Ignasi; Raymond, Sean N; Leconte, Jérémy; Gillon, Michael

    2016-01-01

    Ultracool dwarfs (UCD) encompass the population of extremely low mass stars (later than M6-type) and brown dwarfs. Because UCDs cool monotonically, their habitable zone (HZ) sweeps inward in time. Assuming they possess water, planets found in the HZ of UCDs have experienced a runaway greenhouse phase too hot for liquid water prior to entering the HZ. It has been proposed that such planets are desiccated by this hot early phase and enter the HZ as dry, inhospitable worlds. Here we model the water loss during this pre-HZ hot phase taking into account recent upper limits on the XUV emission of UCDs and using 1D radiation-hydrodynamic simulations. We address the whole range of UCDs but also focus on the planets b, c and d recently found around the $0.08~M_\\odot$ dwarf TRAPPIST-1. Despite assumptions maximizing the FUV-photolysis of water and the XUV-driven escape of hydrogen, we find that planets can retain significant amounts of water in the HZ of UCDs, with a sweet spot in the $0.04$-$0.06~M_\\odot$ range. With ...

  10. Multilayer Bragg Fresnel zone plate for coherent HHG radiation

    Energy Technology Data Exchange (ETDEWEB)

    Spaeth, Christian; Schmidt, Juergen [Fakultaet fuer Physik, Ludwig Maximilians Universitaet Muenchen, Garching (Germany); Hofstetter, Michael [Max Planck Institut fuer Quantenoptik, Garching (Germany); Krausz, Ferenc; Kleineberg, Ulf [Fakultaet fuer Physik, Ludwig Maximilians Universitaet Muenchen, Garching (Germany); Max Planck Institut fuer Quantenoptik, Garching (Germany)

    2010-07-01

    Coherent diffractive imaging in the (soft) X-ray regime is an emerging new lens-less X-ray microscopy technique with the future potential of molecular or even atomic resolution, because it is ultimately limited by the wavelength of the illuminating radiation and not by the imaging quality of the X-ray lens. However, this technique depends on the availability of coherent x-ray sources as well as optics for spectral filtering and focusing. We describe the development fabrication and testing of a reflective multilayer Bragg Fresnel phase zone plate for focusing coherent XUV radiation at 13 nm wavelength from a High Harmonic Generation source. This X-ray optical device serves for spectral filtering as well as sub-micron focusing of the HH spectrum in a single element for largely reduced losses. Large zone plate structures (conventional, spiral) matching the HH beam size are recorded by e-beam lithography in ultrathin HSQ e-beam resist and over-coated with a reflective Mo/Si multilayer by ion beam deposition. By accurately matching the groove depth of the diffractive structure to odd multiples of the quarter Bragg wavelength, the total diffraction efficiency can be improved by a factor of 4 theoretically compared to amplitude structures.

  11. Estimation of Solar Radiation Incident on Horizontal and Tilted Surfaces For 7 Colombian Zones

    OpenAIRE

    Corredor, L.M

    2013-01-01

    This paper discusses a procedure that was adopted for the development of a linear regression model for estimating solar radiation on horizontal surfaces for 7 Colombian zones. The correlations, the simulated global solar radiation on tilted surface and the simulated diffuse solar radiation on a horizontal surface for each zone are shown. The values of sunshine-hours and the solar radiation were taken from January 2012 to January 2013. The solar radiation values...

  12. The effect of planets beyond the ice line on the accretion of volatiles by habitable-zone rocky planets

    Energy Technology Data Exchange (ETDEWEB)

    Quintana, Elisa V. [SETI Institute, 189 Bernardo Avenue, Suite 100, Mountain View, CA 94043 (United States); Lissauer, Jack J., E-mail: elisa.quintana@nasa.gov [Space Science and Astrobiology Division 245-3, NASA Ames Research Center, Moffett Field, CA 94035 (United States)

    2014-05-01

    Models of planet formation have shown that giant planets have a large impact on the number, masses, and orbits of terrestrial planets that form. In addition, they play an important role in delivering volatiles from material that formed exterior to the snow line (the region in the disk beyond which water ice can condense) to the inner region of the disk where terrestrial planets can maintain liquid water on their surfaces. We present simulations of the late stages of terrestrial planet formation from a disk of protoplanets around a solar-type star and we include a massive planet (from 1 M {sub ⊕} to 1 M {sub J}) in Jupiter's orbit at ∼5.2 AU in all but one set of simulations. Two initial disk models are examined with the same mass distribution and total initial water content, but with different distributions of water content. We compare the accretion rates and final water mass fraction of the planets that form. Remarkably, all of the planets that formed in our simulations without giant planets were water-rich, showing that giant planet companions are not required to deliver volatiles to terrestrial planets in the habitable zone. In contrast, an outer planet at least several times the mass of Earth may be needed to clear distant regions of debris truncating the epoch of frequent large impacts. Observations of exoplanets from radial velocity surveys suggest that outer Jupiter-like planets may be scarce, therefore, the results presented here suggest that there may be more habitable planets residing in our galaxy than previously thought.

  13. Comparative Habitability of Transiting Exoplanets

    Science.gov (United States)

    Barnes, Rory; Meadows, Victoria S.; Evans, Nicole

    2015-12-01

    Exoplanet habitability is traditionally assessed by comparing a planet’s semimajor axis to the location of its host star’s “habitable zone,” the shell around a star for which Earth-like planets can possess liquid surface water. The Kepler space telescope has discovered numerous planet candidates near the habitable zone, and many more are expected from missions such as K2, TESS, and PLATO. These candidates often require significant follow-up observations for validation, so prioritizing planets for habitability from transit data has become an important aspect of the search for life in the universe. We propose a method to compare transiting planets for their potential to support life based on transit data, stellar properties and previously reported limits on planetary emitted flux. For a planet in radiative equilibrium, the emitted flux increases with eccentricity, but decreases with albedo. As these parameters are often unconstrained, there is an “eccentricity-albedo degeneracy” for the habitability of transiting exoplanets. Our method mitigates this degeneracy, includes a penalty for large-radius planets, uses terrestrial mass-radius relationships, and, when available, constraints on eccentricity to compute a number we call the “habitability index for transiting exoplanets” that represents the relative probability that an exoplanet could support liquid surface water. We calculate it for Kepler objects of interest and find that planets that receive between 60% and 90% of the Earth’s incident radiation, assuming circular orbits, are most likely to be habitable. Finally, we make predictions for the upcoming TESS and James Webb Space Telescope missions.

  14. COMPARATIVE HABITABILITY OF TRANSITING EXOPLANETS

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, Rory; Meadows, Victoria S.; Evans, Nicole, E-mail: rory@astro.washington.edu [Astronomy Department, University of Washington, Box 951580, Seattle, WA 98195 (United States)

    2015-12-01

    Exoplanet habitability is traditionally assessed by comparing a planet’s semimajor axis to the location of its host star’s “habitable zone,” the shell around a star for which Earth-like planets can possess liquid surface water. The Kepler space telescope has discovered numerous planet candidates near the habitable zone, and many more are expected from missions such as K2, TESS, and PLATO. These candidates often require significant follow-up observations for validation, so prioritizing planets for habitability from transit data has become an important aspect of the search for life in the universe. We propose a method to compare transiting planets for their potential to support life based on transit data, stellar properties and previously reported limits on planetary emitted flux. For a planet in radiative equilibrium, the emitted flux increases with eccentricity, but decreases with albedo. As these parameters are often unconstrained, there is an “eccentricity-albedo degeneracy” for the habitability of transiting exoplanets. Our method mitigates this degeneracy, includes a penalty for large-radius planets, uses terrestrial mass–radius relationships, and, when available, constraints on eccentricity to compute a number we call the “habitability index for transiting exoplanets” that represents the relative probability that an exoplanet could support liquid surface water. We calculate it for Kepler objects of interest and find that planets that receive between 60% and 90% of the Earth’s incident radiation, assuming circular orbits, are most likely to be habitable. Finally, we make predictions for the upcoming TESS and James Webb Space Telescope missions.

  15. Habitability in High Radiation Environments: The Case for Gaia at Europa

    Science.gov (United States)

    Cooper, J. F.

    2004-12-01

    thin and support more direct and rapid chemical exchange between the highly irradiated surface and the ocean, but this is not required for life since deep convection can accomplish the same exchange over thousands to millions of years. Hydrocarbons are likely present both from moon formation and later delivery to the surface by impacts of cometary bodies. More recent work from Galileo suggests strong associations between spatial distributions of brine-like materials on Europa's surface and geologic structures related to convection in the ice crust, tidal heating, and the underlying ocean. The effect of the brines on convection may be analogous to thermahaline circulation in the terrestrial oceans. The detected hydrated sulfates (including briny salts and sulfuric acid hydrates) on Europa's surface can at least in part be attributed to input of iogenic sulfur from the Jovian magnetosphere and radiolytic processing. The needed conveyer belt process within Europa could then be substantially driven by surface interaction with the magnetosphere, i.e. there could be radiation-driven geology, and this could make a critical contribution to astrobiological habitability within Europa. In the sense of Gaia and with reference to Edgar Allan Poe's famous work, Europa may have a tell-tale beating heart, and future missions such as the Jupiter icy Moons Orbiter (JIMO) will need to survive, look through, and exploit the local magnetospheric, ionospheric, and atmospheric environments to sense its physical, chemical, and electromagnetic presence. References: Cooper, J. F., et al., Icarus, 149, 133-159, 2001; Chyba, C. F., Nature, 403, 381, 2000.

  16. The Habitable-Zone Planet Finder: A Stabilized Fiber-Fed NIR Spectrograph for the Hobby-Eberly Telescope

    CERN Document Server

    Mahadevan, Suvrath; Bender, Chad; Terrien, Ryan; Wright, Jason T; Halverson, Sam; Hearty, Fred; Nelson, Matt; Burton, Adam; Redman, Stephen; Osterman, Steven; Diddams, Scott; Kasting, James; Endl, Michael; Deshpande, Rohit

    2012-01-01

    We present the scientific motivation and conceptual design for the recently funded Habitable-zone Planet Finder (HPF), a stabilized fiber-fed near-infrared (NIR) spectrograph for the 10 meter class Hobby-Eberly Telescope (HET) that will be capable of discovering low mass planets around M dwarfs. The HPF will cover the NIR Y & J bands to enable precise radial velocities to be obtained on mid M dwarfs, and enable the detection of low mass planets around these stars. The conceptual design is comprised of a cryostat cooled to 200K, a dual fiber-feed with a science and calibration fiber, a gold coated mosaic echelle grating, and a Teledyne Hawaii-2RG (H2RG) NIR detector with a 1.7$\\mu$m cutoff. A uranium-neon hollow-cathode lamp is the baseline wavelength calibration source, and we are actively testing laser frequency combs to enable even higher radial velocity precision. We will present the overall instrument system design and integration with the HET, and discuss major system challenges, key choices, and ong...

  17. Characterizing the Habitable Zones of Exoplanetary Systems with a Large Ultraviolet/Visible/Near-IR Space Observatory

    CERN Document Server

    France, Kevin; Linsky, Jeffrey; Roberge, Aki; Ayres, Thomas; Barman, Travis; Brown, Alexander; Davenport, James; Desert, Jean-Michel; Domagal-Goldman, Shawn; Fleming, Brian; Fontenla, Juan; Fossati, Luca; Froning, Cynthia; Hallinan, Gregg; Hawley, Suzanne; Hu, Renyu; Kaltenegger, Lisa; Kasting, James; Kowlaski, Adam; Loyd, Parke; Mauas, Pablo; Miguel, Yamila; Osten, Rachel; Redfield, Seth; Rugheimer, Sarah; Schneider, Christian; Segura, Antigona; Stocke, John; Tian, Feng; Tumlinson, Jason; Vieytes, Mariela; Walkowicz, Lucianne; Wood, Brian; Youngblood, Allison

    2015-01-01

    Understanding the surface and atmospheric conditions of Earth-size, rocky planets in the habitable zones (HZs) of low-mass stars is currently one of the greatest astronomical endeavors. Knowledge of the planetary effective surface temperature alone is insufficient to accurately interpret biosignature gases when they are observed in the coming decades. The UV stellar spectrum drives and regulates the upper atmospheric heating and chemistry on Earth-like planets, is critical to the definition and interpretation of biosignature gases, and may even produce false-positives in our search for biologic activity. This white paper briefly describes the scientific motivation for panchromatic observations of exoplanetary systems as a whole (star and planet), argues that a future NASA UV/Vis/near-IR space observatory is well-suited to carry out this work, and describes technology development goals that can be achieved in the next decade to support the development of a UV/Vis/near-IR flagship mission in the 2020s.

  18. Remote Life Detection Criteria, Habitable Zone Boundaries, and the Frequency of Earthlike Planets around M and Late-K Stars

    CERN Document Server

    Kasting, James F; Ramirez, Ramses R; Harman, Chester

    2013-01-01

    The habitable zone (HZ) around a star is typically defined as the region where a rocky planet can maintain liquid water on its surface. That definition is appropriate, because this allows for the possibility that carbon-based, photosynthetic life exists on the planet in sufficient abundance to modify the planet's atmosphere in a way that might be remotely detected. Exactly what conditions are needed, however, to maintain liquid water remains a topic for debate. Historically, modelers have restricted themselves to water-rich planets with CO2 and H2O as the only important greenhouse gases. More recently, some researchers have suggested broadening the definition to include arid, 'Dune' planets on the inner edge and planets with captured H2 atmospheres on the outer edge, thereby greatly increasing the HZ width. Such planets could exist, but we demonstrate that an inner edge limit of 0.59 AU or less is physically unrealistic. We further argue that conservative HZ definitions should be used for designing future spa...

  19. Ground-based Transit Observation of the Habitable-zone super-Earth K2-3d

    CERN Document Server

    Fukui, Akihiko; Narita, Norio; Hirano, Teruyuki; Onitsuka, Masahiro; Ryu, Tsuguru; Kusakabe, Nobuhiko

    2016-01-01

    We report the first ground-based transit observation of K2-3d, a 1.5 R_Earth planet supposedly within the habitable zone around a bright M-dwarf host star, using the Okayama 188-cm telescope and the multi(grz)-band imager MuSCAT. Although the depth of the transit (0.7 mmag) is smaller than the photometric precisions (1.2, 0.9, and 1.2 mmag per 60 s for g, r, and z bands, respectively), we marginally but consistently identify the transit signal in all three bands, by taking advantage of the transit parameters from K2, and by introducing a novel technique that leverages multi-band information to reduce the systematics caused by second-order extinction. We also revisit previously analyzed Spitzer transit observations of K2-3d to investigate the possibility of systematic offsets in transit timing, and find that all the timing data can be explained well by a linear ephemeris. We revise the orbital period of K2-3d to be 44.55612 \\pm 0.00021 days, which corrects the predicted transit times in 2019, i.e., the JWST er...

  20. Development of Radiation Hard Radiation Detectors, Differences between Czochralski Silicon and Float Zone Silicon

    CERN Document Server

    Tuominen, Eija

    2012-01-01

    The purpose of this work was to develop radiation hard silicon detectors. Radiation detectors made ofsilicon are cost effective and have excellent position resolution. Therefore, they are widely used fortrack finding and particle analysis in large high-energy physics experiments. Silicon detectors willalso be used in the CMS (Compact Muon Solenoid) experiment that is being built at the LHC (LargeHadron Collider) accelerator at CERN (European Organisation for Nuclear Research). This work wasdone in the CMS programme of Helsinki Institute of Physics (HIP).Exposure of the silicon material to particle radiation causes irreversible defects that deteriorate theperformance of the silicon detectors. In HIP CMS Programme, our approach was to improve theradiation hardness of the silicon material with increased oxygen concentration in silicon material. Westudied two different methods: diffusion oxygenation of Float Zone silicon and use of high resistivityCzochralski silicon.We processed, characterised, tested in a parti...

  1. Kepler-22b: A 2.4 EARTH-RADIUS PLANET IN THE HABITABLE ZONE OF A SUN-LIKE STAR

    Energy Technology Data Exchange (ETDEWEB)

    Borucki, William J.; Koch, David G.; Bryson, Stephen T.; Howell, Steve B.; Lissauer, Jack J. [NASA-Ames Research Center, Moffett Field, CA 94035-0001 (United States); Batalha, Natalie [Department of Physics and Astronomy, San Jose State University, San Jose, CA, 95192 (United States); Rowe, Jason; Caldwell, Douglas A.; DeVore, Edna; Jenkins, Jon M. [SETI Institute, Mountain View, CA 94043 (United States); Fressin, Francois; Torres, Guillermo; Geary, John C.; Latham, David W. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Christensen-Dalsgaard, Jorgen [Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C (Denmark); Cochran, William D. [McDonald Observatory, University of Texas at Austin, Austin, TX 78712 (United States); Gautier, Thomas N. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena CA, 91109 (United States); Gilliland, Ronald [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Gould, Alan [Lawrence Hall of Science, University of California, Berkeley, CA 94720 (United States); Marcy, Geoffrey W., E-mail: William.J.Borucki@nasa.gov [Department of Astronomy, University of California, Berkeley, CA 94720 (United States); and others

    2012-02-01

    A search of the time-series photometry from NASA's Kepler spacecraft reveals a transiting planet candidate orbiting the 11th magnitude G5 dwarf KIC 10593626 with a period of 290 days. The characteristics of the host star are well constrained by high-resolution spectroscopy combined with an asteroseismic analysis of the Kepler photometry, leading to an estimated mass and radius of 0.970 {+-} 0.060 M{sub Sun} and 0.979 {+-} 0.020 R{sub Sun }. The depth of 492 {+-} 10 ppm for the three observed transits yields a radius of 2.38 {+-} 0.13 Re for the planet. The system passes a battery of tests for false positives, including reconnaissance spectroscopy, high-resolution imaging, and centroid motion. A full BLENDER analysis provides further validation of the planet interpretation by showing that contamination of the target by an eclipsing system would rarely mimic the observed shape of the transits. The final validation of the planet is provided by 16 radial velocities (RVs) obtained with the High Resolution Echelle Spectrometer on Keck I over a one-year span. Although the velocities do not lead to a reliable orbit and mass determination, they are able to constrain the mass to a 3{sigma} upper limit of 124 M{sub Circled-Plus }, safely in the regime of planetary masses, thus earning the designation Kepler-22b. The radiative equilibrium temperature is 262 K for a planet in Kepler-22b's orbit. Although there is no evidence that Kepler-22b is a rocky planet, it is the first confirmed planet with a measured radius to orbit in the habitable zone of any star other than the Sun.

  2. Dynamical Accretion of Primordial Atmospheres around Planets with Masses between 0.1 and 5 M ⊕ in the Habitable Zone

    Science.gov (United States)

    Stökl, Alexander; Dorfi, Ernst A.; Johnstone, Colin P.; Lammer, Helmut

    2016-07-01

    In the early, disk-embedded phase of evolution of terrestrial planets, a protoplanetary core can accumulate gas from the circumstellar disk into a planetary envelope. In order to relate the accumulation and structure of this primordial atmosphere to the thermal evolution of the planetary core, we calculated atmosphere models characterized by the surface temperature of the core. We considered cores with masses between 0.1 and 5 M ⊕ situated in the habitable zone around a solar-like star. The time-dependent simulations in 1D-spherical symmetry include the hydrodynamics equations, gray radiative transport, and convective energy transport. Using an implicit time integration scheme, we can use large time steps and and thus efficiently cover evolutionary timescales. Our results show that planetary atmospheres, when considered with reference to a fixed core temperature, are not necessarily stable, and multiple solutions may exist for one core temperature. As the structure and properties of nebula-embedded planetary atmospheres are an inherently time-dependent problem, we calculated estimates for the amount of primordial atmosphere by simulating the accretion process of disk gas onto planetary cores and the subsequent evolution of the embedded atmospheres. The temperature of the planetary core is thereby determined from the computation of the internal energy budget of the core. For cores more massive than about one Earth mass, we obtain that a comparatively short duration of the disk-embedded phase (˜105 years) is sufficient for the accumulation of significant amounts of hydrogen atmosphere that are unlikely to be removed by later atmospheric escape processes.

  3. Planet Hunters. V. A Confirmed Jupiter-Size Planet in the Habitable Zone and 42 Planet Candidates from the Kepler Archive Data

    CERN Document Server

    Wang, Ji; Barclay, Thomas; Boyajian, Tabetha S; Crepp, Justin R; Schwamb, Megan E; Lintott, Chris; Jek, Kian J; Smith, Arfon M; Parrish, Michael; Schawinski, Kevin; Schmitt, Joseph; Giguere, Matthew J; Brewer, John M; Lynn, Stuart; Simpson, Robert; Hoekstra, Abe J; Jacobs, Thomas Lee; LaCourse, Daryll; Schwengeler, Hans Martin; Chopin, Mike

    2013-01-01

    We report the latest Planet Hunter results, including PH2 b, a Jupiter-size (R_PL = 10.12 \\pm 0.56 R_E) planet orbiting in the habitable zone of a solar-type star. PH2 b was elevated from candidate status when a series of false positive tests yielded a 99.9% confidence level that transit events detected around the star KIC 12735740 had a planetary origin. Planet Hunter volunteers have also discovered 42 new planet candidates in the Kepler public archive data, of which 33 have at least three transits recorded. Most of these transit candidates have orbital periods longer than 100 days and 20 are potentially located in the habitable zones of their host stars. Nine candidates were detected with only two transit events and the prospective periods are longer than 400 days. The photometric models suggest that these objects have radii that range between Neptune to Jupiter. These detections nearly double the number of gas giant planet candidates orbiting at habitable zone distances. We conducted spectroscopic observat...

  4. Ground-based Transit Observation of the Habitable-zone Super-Earth K2-3d

    Science.gov (United States)

    Fukui, Akihiko; Livingston, John; Narita, Norio; Hirano, Teruyuki; Onitsuka, Masahiro; Ryu, Tsuguru; Kusakabe, Nobuhiko

    2016-12-01

    We report the first ground-based transit observation of K2-3d, a 1.5 R ⊕ planet supposedly within the habitable zone around a bright M-dwarf host star, using the Okayama 188 cm telescope and the multi(grz)-band imager MuSCAT. Although the depth of the transit (0.7 mmag) is smaller than the photometric precisions (1.2, 0.9, and 1.2 mmag per 60 s for the g, r, and z bands, respectively), we marginally but consistently identify the transit signal in all three bands, by taking advantage of the transit parameters from K2, and by introducing a novel technique that leverages multi-band information to reduce the systematics caused by second-order extinction. We also revisit previously analyzed Spitzer transit observations of K2-3d to investigate the possibility of systematic offsets in transit timing, and find that all the timing data can be explained well by a linear ephemeris. We revise the orbital period of K2-3d to be 44.55612 ± 0.00021 days, which corrects the predicted transit times for 2019, i.e., the era of the James Webb Space Telescope, by ∼80 minutes. Our observation demonstrates that (1) even ground-based, 2 m class telescopes can play an important role in refining the transit ephemeris of small-sized, long-period planets, and (2) a multi-band imager is useful to reduce the systematics of atmospheric origin, in particular for bluer bands and for observations conducted at low-altitude observatories.

  5. Experimental observation and investigation of the prewave zone effect in optical diffraction radiation

    Directory of Open Access Journals (Sweden)

    P. Karataev

    2008-03-01

    Full Text Available Transition radiation (TR and diffraction radiation (DR has widely been used for both electron beam diagnostics and generation of intense radiation beams in the millimeter and the submillimeter wavelength range. Recently, it was theoretically predicted that TR and DR properties change either at extremely high energies of electrons or at long radiation wavelengths. This phenomenon was called a prewave zone effect. We have performed the first observation and detailed investigation of the prewave zone effect in optical diffraction radiation at 1.28 GeV electron beam at the KEK-Accelerator Test Facility (KEK-ATF. The beam energy at KEK-ATF is definitely not the highest one achieved in the world. Since we could easily observe the effect, at higher energies it might cause serious problems. We developed and applied a method for prewave zone suppression valid for optical wavelengths. Furthermore, a method for prewave zone suppression applicable for longer radiation wavelengths is discussed.

  6. Magnetic pinch-type instability in stellar radiative zones

    CERN Document Server

    Rüdiger, G; Gellert, M

    2009-01-01

    The solar tachocline is shown as hydrodynamically stable against nonaxisymmetric disturbances if it is true that no cos^{4}\\theta term exists in its rotation law. We also show that the toroidal field of 200 Gauss amplitude which produces the tachocline in the magnetic theory of Ruediger & Kitchatinov (1997) is stable against nonaxisymmetric MHD disturbances -- but it becomes unstable for rotation periods slightly slower than 25 days. The instability of such weak fields lives from the high thermal diffusivity of stellar radiation zones compared with the magnetic diffusivity. The growth times, however, result as very long (of order of 10\\^5 rotation times). With estimations of the chemical mixing we find the maximal possible field amplitude to be ~500 Gauss in order to explain the observed lithium abundance of the Sun. Dynamos with such low field amplitudes should not be relevant for the solar activity cycle. With nonlinear simulations of MHD Taylor-Couette flows it is shown that for the rotation-dominated ...

  7. On magnetic instabilities and dynamo action in stellar radiation zones

    CERN Document Server

    Zahn, J -P; Mathis, S

    2007-01-01

    We examine the MHD instabilities arising in the radiation zone of a differentially rotating star, in which a poloidal field of fossil origin is sheared into a toroidal field. We focus on the non-axisymmetric instability that affects the toroidal magnetic field in a rotating star, which was first studied by Pitts and Tayler in the non-dissipative limit. According to Spruit, it could also drive a dynamo. The Pitts & Tayler instability is manifestly present in our simulations, with its conspicuous m=1 dependence in azimuth. But its analytic treatment used so far is too simplified to be applied to the real stellar situation. Although the instability generated field reaches an energy comparable to that of the mean poloidal field, that field seems unaffected by the instability: it undergoes Ohmic decline, and is neither eroded nor regenerated by the instability. The toroidal field is produced by shearing the poloidal field and it draws its energy from the differential rotation. The small scale motions behave as...

  8. The Goldreich-Schubert-Fricke instability in stellar radiative zones

    Science.gov (United States)

    Caleo, Andrea; Balbus, Steven A.; Tognelli, Emanuele

    2016-07-01

    The Goldreich-Schubert-Fricke (GSF) instability is a rotational instability that is thought to contribute to the transfer of angular momentum in differentially rotating stars. It has been included in recent codes of stellar evolution in a diffusion-like approximation, under the assumption that the kinematic viscosity ν is unimportant for the development of the instability. As noted previously by other authors, for most stellar applications, this may not be a valid approximation. We discuss this issue in detail, solving the dispersion relation of the perturbed modes for realistic values of ν in the bulk of the radiative zone of the Sun and of three red giant stars at various evolutionary stages. We find that the GSF instability is triggered only in layers of an extremely strong shear. In a simple case study, we also investigate the effect of a small deviation from axisymmetry or a small background magnetic field. We find that, like the viscosity, these have a stabilizing effect. We conclude that this instability is probably far less efficient in transporting angular momentum than is often assumed, and may not even be present.

  9. Evolution of galaxy habitability

    OpenAIRE

    Gobat, R.; Hong, S. E.

    2016-01-01

    We combine a semi-analytic model of galaxy evolution with constraints on circumstellar habitable zones and the distribution of terrestrial planets to probe the suitability of galaxies of different mass and type to host habitable planets, and how it evolves with time. We find that the fraction of stars with terrestrial planets in their habitable zone (known as habitability) depends only weakly on galaxy mass, with a maximum around 4e10 Msun. We estimate that 0.7% of all stars in Milky Way type...

  10. Geophysical and atmospheric evolution of habitable planets.

    Science.gov (United States)

    Lammer, Helmut; Selsis, Frank; Chassefière, Eric; Breuer, Doris; Griessmeier, Jean-Mathias; Kulikov, Yuri N; Erkaev, Nikolai V; Khodachenko, Maxim L; Biernat, Helfried K; Leblanc, Francois; Kallio, Esa; Lundin, Richard; Westall, Frances; Bauer, Siegfried J; Beichman, Charles; Danchi, William; Eiroa, Carlos; Fridlund, Malcolm; Gröller, Hannes; Hanslmeier, Arnold; Hausleitner, Walter; Henning, Thomas; Herbst, Tom; Kaltenegger, Lisa; Léger, Alain; Leitzinger, Martin; Lichtenegger, Herbert I M; Liseau, René; Lunine, Jonathan; Motschmann, Uwe; Odert, Petra; Paresce, Francesco; Parnell, John; Penny, Alan; Quirrenbach, Andreas; Rauer, Heike; Röttgering, Huub; Schneider, Jean; Spohn, Tilman; Stadelmann, Anja; Stangl, Günter; Stam, Daphne; Tinetti, Giovanna; White, Glenn J

    2010-01-01

    The evolution of Earth-like habitable planets is a complex process that depends on the geodynamical and geophysical environments. In particular, it is necessary that plate tectonics remain active over billions of years. These geophysically active environments are strongly coupled to a planet's host star parameters, such as mass, luminosity and activity, orbit location of the habitable zone, and the planet's initial water inventory. Depending on the host star's radiation and particle flux evolution, the composition in the thermosphere, and the availability of an active magnetic dynamo, the atmospheres of Earth-like planets within their habitable zones are differently affected due to thermal and nonthermal escape processes. For some planets, strong atmospheric escape could even effect the stability of the atmosphere.

  11. Influence of zone purification process on TlBr crystals for radiation detector fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Hitomi, Keitaro [Department of Electronics, Tohoku Institute of Technology, 35-1 Yagiyama Kasumi-cho, Taihaku-ku, Sendai 982-8577 (Japan)], E-mail: hitomi@tohtech.ac.jp; Onodera, Toshiyuki; Shoji, Tadayoshi [Department of Electronics, Tohoku Institute of Technology, 35-1 Yagiyama Kasumi-cho, Taihaku-ku, Sendai 982-8577 (Japan)

    2007-08-21

    Thallium bromide (TlBr) is a wide gap compound semiconductor and is a promising material for fabrication of nuclear radiation detectors. In this study, the conventional zone refining method was employed to reduce the concentration of impurities in the TlBr crystals. In order to evaluate the efficiency of the zone purification, the zone purification process was repeated up to 300 times. The resistivity, the charge transport properties, and the spectroscopic performance of TlBr detectors fabricated from the crystals zone purified 1 time, 100 times, and 300 times were compared in this study in order to clarify the effectiveness of the zone purification process.

  12. Planet Hunters. V. A Confirmed Jupiter-size Planet in the Habitable Zone and 42 Planet Candidates from the Kepler Archive Data

    Science.gov (United States)

    Wang, Ji; Fischer, Debra A.; Barclay, Thomas; Boyajian, Tabetha S.; Crepp, Justin R.; Schwamb, Megan E.; Lintott, Chris; Jek, Kian J.; Smith, Arfon M.; Parrish, Michael; Schawinski, Kevin; Schmitt, Joseph R.; Giguere, Matthew J.; Brewer, John M.; Lynn, Stuart; Simpson, Robert; Hoekstra, Abe J.; Jacobs, Thomas Lee; LaCourse, Daryll; Schwengeler, Hans Martin; Chopin, Mike; Herszkowicz, Rafal

    2013-10-01

    We report the latest Planet Hunter results, including PH2 b, a Jupiter-size (R PL = 10.12 ± 0.56 R ⊕) planet orbiting in the habitable zone of a solar-type star. PH2 b was elevated from candidate status when a series of false-positive tests yielded a 99.9% confidence level that transit events detected around the star KIC 12735740 had a planetary origin. Planet Hunter volunteers have also discovered 42 new planet candidates in the Kepler public archive data, of which 33 have at least 3 transits recorded. Most of these transit candidates have orbital periods longer than 100 days and 20 are potentially located in the habitable zones of their host stars. Nine candidates were detected with only two transit events and the prospective periods are longer than 400 days. The photometric models suggest that these objects have radii that range between those of Neptune and Jupiter. These detections nearly double the number of gas-giant planet candidates orbiting at habitable-zone distances. We conducted spectroscopic observations for nine of the brighter targets to improve the stellar parameters and we obtained adaptive optics imaging for four of the stars to search for blended background or foreground stars that could confuse our photometric modeling. We present an iterative analysis method to derive the stellar and planet properties and uncertainties by combining the available spectroscopic parameters, stellar evolution models, and transiting light curve parameters, weighted by the measurement errors. Planet Hunters is a citizen science project that crowd sources the assessment of NASA Kepler light curves. The discovery of these 43 planet candidates demonstrates the success of citizen scientists at identifying planet candidates, even in longer period orbits with only two or three transit events. .

  13. PLANET HUNTERS. V. A CONFIRMED JUPITER-SIZE PLANET IN THE HABITABLE ZONE AND 42 PLANET CANDIDATES FROM THE KEPLER ARCHIVE DATA

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ji; Fischer, Debra A.; Boyajian, Tabetha S.; Schmitt, Joseph R.; Giguere, Matthew J.; Brewer, John M. [Department of Astronomy, Yale University, New Haven, CT 06511 (United States); Barclay, Thomas [NASA Ames Research Center, M/S 244-30, Moffett Field, CA 94035 (United States); Crepp, Justin R. [Department of Physics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556 (United States); Schwamb, Megan E. [Department of Physics, Yale University, P.O. Box 208121, New Haven, CT 06520 (United States); Lintott, Chris; Simpson, Robert [Oxford Astrophysics, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom); Jek, Kian J.; Hoekstra, Abe J.; Jacobs, Thomas Lee; LaCourse, Daryll; Schwengeler, Hans Martin; Smith, Arfon M.; Parrish, Michael; Lynn, Stuart [Adler Planetarium, 1300 South Lake Shore Drive, Chicago, IL 60605 (United States); Schawinski, Kevin, E-mail: ji.wang@yale.edu [Institute for Astronomy, Department of Physics, ETH Zurich, Wolfgang-Pauli-Strasse 16, CH-8093 Zurich (Switzerland); and others

    2013-10-10

    We report the latest Planet Hunter results, including PH2 b, a Jupiter-size (R{sub PL} = 10.12 ± 0.56 R{sub ⊕}) planet orbiting in the habitable zone of a solar-type star. PH2 b was elevated from candidate status when a series of false-positive tests yielded a 99.9% confidence level that transit events detected around the star KIC 12735740 had a planetary origin. Planet Hunter volunteers have also discovered 42 new planet candidates in the Kepler public archive data, of which 33 have at least 3 transits recorded. Most of these transit candidates have orbital periods longer than 100 days and 20 are potentially located in the habitable zones of their host stars. Nine candidates were detected with only two transit events and the prospective periods are longer than 400 days. The photometric models suggest that these objects have radii that range between those of Neptune and Jupiter. These detections nearly double the number of gas-giant planet candidates orbiting at habitable-zone distances. We conducted spectroscopic observations for nine of the brighter targets to improve the stellar parameters and we obtained adaptive optics imaging for four of the stars to search for blended background or foreground stars that could confuse our photometric modeling. We present an iterative analysis method to derive the stellar and planet properties and uncertainties by combining the available spectroscopic parameters, stellar evolution models, and transiting light curve parameters, weighted by the measurement errors. Planet Hunters is a citizen science project that crowd sources the assessment of NASA Kepler light curves. The discovery of these 43 planet candidates demonstrates the success of citizen scientists at identifying planet candidates, even in longer period orbits with only two or three transit events.

  14. Estimation of Solar Radiation Incident on Horizontal and Tilted Surfaces For 7 Colombian Zones

    Directory of Open Access Journals (Sweden)

    Corredor, L.M

    2013-09-01

    Full Text Available This paper discusses a procedure that was adopted for the development of a linear regression model for estimating solar radiation on horizontal surfaces for 7 Colombian zones. The correlations, the simulated global solar radiation on tilted surface and the simulated diffuse solar radiation on a horizontal surface for each zone are shown. The values of sunshine-hours and the solar radiation were taken from January 2012 to January 2013. The solar radiation values obtained were compared with the measured values. The obtained mean absolute percentage error was below 5%. The results of the global solarradiation show that the areas of greatest solar potential areTibú> Baranoa> ICP> GRB> Morichal> Castilla> Guamues and the months of the year with the highest solar radiation are June, July and August.

  15. The Habitable Zone Planet Finder: A Proposed High Resolution NIR Spectrograph for the Hobby Eberly Telescope to Discover Low Mass Exoplanets around M Dwarfs

    CERN Document Server

    Mahadevan, Suvrath; Wright, Jason; Endl, Michael; Redman, Stephen; Bender, Chad; Roy, Arpita; Zonak, Stephanie; Troupe, Nathaniel; Engel, Leland; Sigurdsson, Steinn; Wolszczan, Alex; Zhao, Bo

    2010-01-01

    The Habitable Zone Planet Finder (HZPF) is a proposed instrument for the 10m class Hobby Eberly telescope that will be capable of discovering low mass planets around M dwarfs. HZPF will be fiber-fed, provide a spectral resolution R~ 50,000 and cover the wavelength range 0.9-1.65{\\mu}m, the Y, J and H NIR bands where most of the flux is emitted by mid-late type M stars, and where most of the radial velocity information is concentrated. Enclosed in a chilled vacuum vessel with active temperature control, fiber scrambling and mechanical agitation, HZPF is designed to achieve a radial velocity precision < 3m/s, with a desire to obtain <1m/s for the brightest targets. This instrument will enable a study of the properties of low mass planets around M dwarfs; discover planets in the habitable zones around these stars, as well serve as an essential radial velocity confirmation tool for astrometric and transit detections around late M dwarfs. Radial velocity observation in the near-infrared (NIR) will also enabl...

  16. Discovery and Validation of Kepler-452b: A 1.6-Re Super Earth Exoplanet in the Habitable Zone of a G2 Star

    CERN Document Server

    Jenkins, Jon M; Batalha, Natalie M; Caldwell, Douglas A; Cochran, William D; Endl, Michael; Latham, David W; Esquerdo, Gilbert A; Seader, Shawn; Bieryla, Allyson; Petigura, Erik; Ciardi, David R; Marcy, Geoffrey W; Isaacson, Howard; Huber, Daniel; Rowe, Jason F; Torres, Guillermo; Bryson, Stephen T; Buchhave, Lars; Ramirez, Ivan; Wolfgang, Angie; Li, Jie; Campbell, Jennifer R; Tenenbaum, Peter; Sanderfer, Dwight; Henze, Christopher E; Catanzarite, Joseph H; Gilliland, Ronald L; Borucki, William J

    2015-01-01

    We report on the discovery and validation of Kepler-452b, a transiting planet identified by a search through the 4 years of data collected by NASA's Kepler Mission. This possibly rocky 1.63$^{+0.23}_{-0.20}$ R$_\\oplus$ planet orbits its G2 host star every 384.843$^{+0.007}_{0.012}$ days, the longest orbital period for a small (R$_p$ < 2 R$_\\oplus$) transiting exoplanet to date. The likelihood that this planet has a rocky composition lies between 49% and 62%. The star has an effective temperature of 5757$\\pm$85 K and a log g of 4.32$\\pm$0.09. At a mean orbital separation of 1.046$^{+0.019}_{-0.015}$ AU, this small planet is well within the optimistic habitable zone of its star (recent Venus/early Mars), experiencing only 10% more flux than Earth receives from the Sun today, and slightly outside the conservative habitable zone (runaway greenhouse/maximum greenhouse). The star is slightly larger and older than the Sun, with a present radius of 1.11$^{+0.15}_{-0.09}$ R$_\\odot$ and an estimated age of 3 Gyr. Th...

  17. Rotational Synchronization May Enhance Habitability for Circumbinary Planets: Kepler Binary Case Studies

    CERN Document Server

    Mason, Paul A; Clark, Joni; Cuartas, Pablo A

    2013-01-01

    We report a mechanism capable of reducing (or increasing) stellar activity in binary stars, thereby potentially enhancing (or destroying) circumbinary habitability. In single stars, stellar aggression towards planetary atmospheres causes mass-loss, which is especially detrimental for late-type stars, because habitable zones are very close and activity is long lasting. In binaries, tidal rotational breaking reduces magnetic activity, thus reducing harmful levels of XUV radiation and stellar mass-loss that are able to erode planetary atmospheres. We study this mechanism for all confirmed circumbinary (p-type) planets. We find that main sequence twins provide minimal flux variation and in some cases improved environments, if the stars rotationally synchronize within the first Gyr. Solar-like twins, like Kepler 34 and Kepler 35, provide low habitable zone XUV fluxes and stellar wind pressures. These wide, moist, habitable zones may potentially support multiple habitable planets. Solar-type stars with lower mass c...

  18. MAGNETIC SHIELDING OF EXOMOONS BEYOND THE CIRCUMPLANETARY HABITABLE EDGE

    Energy Technology Data Exchange (ETDEWEB)

    Heller, René [McMaster University, Department of Physics and Astronomy, Hamilton, ON L8S 4M1 (Canada); Zuluaga, Jorge I., E-mail: rheller@physics.mcmaster.ca, E-mail: jzuluaga@fisica.udea.edu.co [FACom - Instituto de Física - FCEN, Universidad de Antioquia, Calle 70 No. 52-21, Medellín (Colombia)

    2013-10-20

    With most planets and planetary candidates detected in the stellar habitable zone (HZ) being super-Earths and gas giants rather than Earth-like planets, we naturally wonder if their moons could be habitable. The first detection of such an exomoon has now become feasible, and due to observational biases it will be at least twice as massive as Mars. However, formation models predict that moons can hardly be as massive as Earth. Hence, a giant planet's magnetosphere could be the only possibility for such a moon to be shielded from cosmic and stellar high-energy radiation. Yet, the planetary radiation belt could also have detrimental effects on exomoon habitability. Here we synthesize models for the evolution of the magnetic environment of giant planets with thresholds from the runaway greenhouse (RG) effect to assess the habitability of exomoons. For modest eccentricities, we find that satellites around Neptune-sized planets in the center of the HZ around K dwarf stars will either be in an RG state and not be habitable, or they will be in wide orbits where they will not be affected by the planetary magnetosphere. Saturn-like planets have stronger fields, and Jupiter-like planets could coat close-in habitable moons soon after formation. Moons at distances between about 5 and 20 planetary radii from a giant planet can be habitable from an illumination and tidal heating point of view, but still the planetary magnetosphere would critically influence their habitability.

  19. Habitable Climates: The Influence of Eccentricity

    CERN Document Server

    Dressing, Courtney D; Scharf, Caleb A; Raymond, Sean N

    2010-01-01

    Radiative equilibrium studies that place Earth-like exoplanets on different circular orbits from the parent star do not fully sample the range of plausible habitability conditions in planetary systems. In the outer regions of the habitable zone, the risk of transitioning into a globally frozen "snowball" state poses a threat to the habitability. Here, we use a one-dimensional energy balance climate model (EBM) to examine how obliquity, spin rate, orbital eccentricity, and the fraction of the surface covered by ocean might influence the onset of such a snowball state. Since, for constant semimajor axis, the annual mean stellar irradiation scales with (1-e^2)^(-1/2), one might expect the greatest habitable semimajor axis to scale as (1-e^2)^(-1/4). We find that this standard simple ansatz provides a reasonable lower bound on the outer boundary of the habitable zone, but the influence of both obliquity and ocean fraction can be profound in the context of planets on eccentric orbits. For planets with eccentricity...

  20. Orbital stability zones about asteroids. II - The destabilizing effects of eccentric orbits and of solar radiation

    Science.gov (United States)

    Hamilton, Douglas P.; Burns, Joseph A.

    1992-03-01

    Recently, Hamilton and Burns (1991) characterized the size and shape of a stability zone around an asteroid on a circular heliocentric orbit within which asteroid material could remain bound for an extended period of time. The present paper considers two additional effects: the asteroid's nonzero heliocentric eccentricity and solar radiation pressure. Results of numerical analyses show that, for an asteroid on an eccentric orbit, the stability zone scales roughly as the size of the Hill sphere calculated at the asteroid's pericenter. It was also found that solar radiation pressure is a very efficient mechanism for removing small (on the order of 0.1 mm) particles from circular asteroidal zone. Particles larger than a few centimeters are only slightly affected by radiation pressure. The results are applied to the Gaspra 951 asteroid.

  1. Stability of Terrestrial Planets in the Habitable Zone of Gl 777 A, HD 72659, Gl 614, 47 Uma and HD 4208

    CERN Document Server

    Asghari, N; Carone, L; Casas-Miranda, R; Palacio, J C C; Csillik, I; Dvorak, R F; Freistetter, F; Hadjivantsides, G; Hussmann, H; Khramova, A; Khristoforova, M; Khromova, I; Kitiashivilli, I; Kozlowski, S; Laakso, T; Laczkowski, T; Lytvinenko, D; Miloni, O; Morishima, R; Moro-Martin, A; Paksyutov, V; Pal, A; Patidar, V; Pecnik, B; Peles, O; Pyo, J; Quinn, T; Rodríguez, A; Romano, C; Saikia, E; Stadel, J; Thiel, M; Todorovic, N; Veras, D; Neto, E V; Vilagi, J; Von Bloh, W; Zechner, R; Zhuchkova, E

    2004-01-01

    We have undertaken a thorough dynamical investigation of five extrasolar planetary systems using extensive numerical experiments. The systems Gl 777 A, HD 72659, Gl 614, 47 Uma and HD 4208 were examined concerning the question of whether they could host terrestrial like planets in their habitable zones (=HZ). First we investigated the mean motion resonances between fictitious terrestrial planets and the existing gas giants in these five extrasolar systems. Then a fine grid of initial conditions for a potential terrestrial planet within the HZ was chosen for each system, from which the stability of orbits was then assessed by direct integrations over a time interval of 1 million years. The computations were carried out using a Lie-series integration method with an adaptive step size control. This integration method achieves machine precision accuracy in a highly efficient and robust way, requiring no special adjustments when the orbits have large eccentricities. The stability of orbits was examined with a dete...

  2. Kepler-62: A five-planet system with planets of 1.4 and 1.6 Earth radii in the Habitable Zone

    CERN Document Server

    Borucki, W J; Fressin, F; Kaltenegger, L; Rowe, J; Isaacson, H; Fischer, D; Batalha, N; Lissauer, J J; Marcy, G W; Fabrycky, D; Désert, J -M; Bryson, S T; Barclay, T; Bastien, F; Boss, A; Brugamyer, E; Buchhave, L A; Burke, Chris; Caldwell, D A; Carter, J; Charbonneau, D; Crepp, J R; Christensen-Dalsgaard, J; Christiansen, J L; Ciardi, D; Cochran, W D; DeVore, E; Doyle, L; Dupree, A K; Endl, M; Everett, M E; Ford, E B; Fortney, J; Gautier, T N; Geary, J C; Gould, A; Haas, M; Henze, C; Howard, A W; Howell, S B; Huber, D; Jenkins, J M; Kjeldsen, H; Kolbl, R; Kolodziejczak, J; Latham, D W; Lee, B L; Lopez, E; Mullally, F; Orosz, J A; Prsa, A; Quintana, E V; Sanchez-Ojeda, R; Sasselov, D; Seader, S; Shporer, A; Steffen, J H; Still, M; Tenenbaum, P; Thompson, S E; Torres, G; Twicken, J D; Welsh, W F; Winn, J N; 10.1126/science.1234702

    2013-01-01

    We present the detection of five planets -- Kepler-62b, c, d, e, and f -- of size 1.31, 0.54, 1.95, 1.61 and 1.41 Earth radii, orbiting a K2V star at periods of 5.7, 12.4, 18.2, 122.4 and 267.3 days, respectively. The outermost planets (Kepler-62e & -62f) are super-Earth-size (1.25 < planet radius/earth radius < 2.0) planets in the habitable zone (HZ) of their host star, receiving 1.2 +- 0.2 and 0.41 +- 0.05 times the solar flux at Earth's orbit. Theoretical models of Kepler-62e and -62f for a stellar age of ~7 Gyr suggest that both planets could be solid: either with a rocky composition or composed of mostly solid water in their bulk.

  3. Kepler-62: a five-planet system with planets of 1.4 and 1.6 Earth radii in the habitable zone.

    Science.gov (United States)

    Borucki, William J; Agol, Eric; Fressin, Francois; Kaltenegger, Lisa; Rowe, Jason; Isaacson, Howard; Fischer, Debra; Batalha, Natalie; Lissauer, Jack J; Marcy, Geoffrey W; Fabrycky, Daniel; Désert, Jean-Michel; Bryson, Stephen T; Barclay, Thomas; Bastien, Fabienne; Boss, Alan; Brugamyer, Erik; Buchhave, Lars A; Burke, Chris; Caldwell, Douglas A; Carter, Josh; Charbonneau, David; Crepp, Justin R; Christensen-Dalsgaard, Jørgen; Christiansen, Jessie L; Ciardi, David; Cochran, William D; DeVore, Edna; Doyle, Laurance; Dupree, Andrea K; Endl, Michael; Everett, Mark E; Ford, Eric B; Fortney, Jonathan; Gautier, Thomas N; Geary, John C; Gould, Alan; Haas, Michael; Henze, Christopher; Howard, Andrew W; Howell, Steve B; Huber, Daniel; Jenkins, Jon M; Kjeldsen, Hans; Kolbl, Rea; Kolodziejczak, Jeffery; Latham, David W; Lee, Brian L; Lopez, Eric; Mullally, Fergal; Orosz, Jerome A; Prsa, Andrej; Quintana, Elisa V; Sanchis-Ojeda, Roberto; Sasselov, Dimitar; Seader, Shawn; Shporer, Avi; Steffen, Jason H; Still, Martin; Tenenbaum, Peter; Thompson, Susan E; Torres, Guillermo; Twicken, Joseph D; Welsh, William F; Winn, Joshua N

    2013-05-03

    We present the detection of five planets--Kepler-62b, c, d, e, and f--of size 1.31, 0.54, 1.95, 1.61 and 1.41 Earth radii (R⊕), orbiting a K2V star at periods of 5.7, 12.4, 18.2, 122.4, and 267.3 days, respectively. The outermost planets, Kepler-62e and -62f, are super-Earth-size (1.25 R⊕ < planet radius ≤ 2.0 R⊕) planets in the habitable zone of their host star, respectively receiving 1.2 ± 0.2 times and 0.41 ± 0.05 times the solar flux at Earth's orbit. Theoretical models of Kepler-62e and -62f for a stellar age of ~7 billion years suggest that both planets could be solid, either with a rocky composition or composed of mostly solid water in their bulk.

  4. [Some adaptations of Monodonta turbinata (born, 1780) (Gastropoda, Prosobranchia, Trochidae) to feeding and habitation in the littoral zone].

    Science.gov (United States)

    Aliakrinskaia, I O

    2010-01-01

    The basic morphological, ethological, and physiological-biochemical adaptations of Monodonta turbinata to survival in the littoral zone were investigated in this work. Quantitative estimation of myoglobin content in radular tissues of mollusks inhabiting the Mediterranean Sea Basin has been carried out.

  5. The HARPS search for Earth-like planets in the habitable zone. I. Very low-mass planets around HD 20794, HD 85512, and HD 192310

    Science.gov (United States)

    Pepe, F.; Lovis, C.; Ségransan, D.; Benz, W.; Bouchy, F.; Dumusque, X.; Mayor, M.; Queloz, D.; Santos, N. C.; Udry, S.

    2011-10-01

    Context. In 2009 we started an intense radial-velocity monitoring of a few nearby, slowly-rotating and quiet solar-type stars within the dedicated HARPS-Upgrade GTO program. Aims: The goal of this campaign is to gather very-precise radial-velocity data with high cadence and continuity to detect tiny signatures of very-low-mass stars that are potentially present in the habitable zone of their parent stars. Methods: Ten stars were selected among the most stable stars of the original HARPS high-precision program that are uniformly spread in hour angle, such that three to four of them are observable at any time of the year. For each star we recorded 50 data points spread over the observing season. The data points consist of three nightly observations with a total integration time of 10 min each and are separated by two hours. This is an observational strategy adopted to minimize stellar pulsation and granulation noise. Results: We present the first results of this ambitious program. The radial-velocity data and the orbital parameters of five new and one confirmed low-mass planets around the stars HD 20794, HD 85512, and HD 192310 are reported and discussed, among which is a system of three super-Earths and one that harbors a 3.6 M⊕-planet at the inner edge of the habitable zone. Conclusions: This result already confirms previous indications that low-mass planets seem to be very frequent around solar-type stars and that this may occur with a frequency higher than 30%. Based on observations made with the HARPS instrument on ESO's 3.6 m telescope at the La Silla Observatory in the frame of the HARPS-Upgrade GTO program ID 086.C-0230.Tables 7-9 (RV data) are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/534/A58

  6. The radiative zone of the Sun and the tachocline: stability of baroclinic patterns of differential rotation

    CERN Document Server

    Caleo, Andrea

    2016-01-01

    Barotropic rotation and radiative equilibrium are mutually incompatible in stars. The issue is often addressed by allowing for a meridional circulation, but this is not devoid of theoretical complications. Models of rotation in the Sun which maintain strict radiative equilibrium, making use of the observation that the Sun is not in a state of barotropic rotation, have recently been suggested. To investigate the dynamical behaviour of these solutions, we study the local stability of stratified, weakly magnetized, differentially rotating fluids to non-axisymmetric perturbations. Finite heat conductivity, kinematic viscosity, and resistivity are present. The evolution of local embedded perturbations is governed by a set of coupled, ordinary differential equations with time-dependent coefficients. Two baroclinic models of rotation for the upper radiative zone and tachocline are studied: (i) an interpolation based on helioseismology data, (ii) a theoretical solution directly compatible with radiative equilibrium. ...

  7. ENVIRONMENTAL RADIATION MONITORING IN THE CHERNOBYL EXCLUSION ZONE - HISTORY AND RESULTS 25 YEARS AFTER

    Energy Technology Data Exchange (ETDEWEB)

    Farfan, E.; Jannik, T.

    2011-10-01

    This article describes results of the radiation environmental monitoring performed in the Chernobyl Exclusion Zone (ChEZ) during the period following the 1986 Chernobyl Nuclear Power Plant accident. This article presents a brief overview of five comprehensive reports generated under Contract No. DE-AC09-96SR18500 (Washington Savannah River Company LLC, Subcontract No. AC55559N, SOW No. ON8778) and summarizes characteristics of the ChEZ and its post-accident status and the history of development of the radiation monitoring research in the ChEZ is described. This article addresses characteristics of the radiation monitoring in the ChEZ, its major goals and objectives, and changes of these goals and objectives in the course of time, depending on the tasks associated with the phase of mitigation of the ChNPP accident consequences. The results of the radiation monitoring in the ChEZ during the last 25 years are also provided.

  8. Modelling the CO2 atmosphere-ocean flux in the upwelling zones using radiative transfer tools

    Science.gov (United States)

    Krapivin, Vladimir F.; Varotsos, Costas A.

    2016-12-01

    An advanced mathematical model of the radiation forcing on the ocean surface is proposed for the assessment of the CO2 fluxes between atmosphere and ocean boundary in the upwelling zones. Two types of the upwelling are considered: coastal and local in the open ocean that are closely associated with changes in solar irradiance. The proposed model takes into account the maximal number of the carbon fluxes in the upwelling ecosystem considering that in the latter the only original source of energy and matter for all forms of life is the energy of the solar radiation. The vertical structure of the upwelling zone is represented by four levels: the upper mixed layer above the thermocline, the intermediate photic layer below the thermocline, the deep ocean and the near-bottom layer. Peruvian upwelling and typical local upwelling of tropical pelagic region are considered as examples for the model calculations.

  9. A Versatile Technique to Enable sub-milli-Kelvin Instrument Stability for Precise Radial Velocity Measurements: Tests with the Habitable-zone Planet Finder

    CERN Document Server

    Stefansson, Gudmundur; Robertson, Paul; Mahadevan, Suvrath; Anderson, Tyler; Levi, Eric; Bender, Chad; Nelson, Matthew; Monson, Andrew; Blank, Basil; Halverson, Samuel; Henderson, Chuck; Ramsey, Lawrence; Roy, Arpita; Schwab, Christian; Terrien, Ryan

    2016-01-01

    Insufficient instrument thermo-mechanical stability is one of the many roadblocks for achieving 10cm/s Doppler radial velocity (RV) precision, the precision needed to detect Earth-twins orbiting Solar-type stars. Highly temperature and pressure stabilized spectrographs allow us to better calibrate out instrumental drifts, thereby helping in distinguishing instrumental noise from astrophysical stellar signals. We present the design and performance of the Environmental Control System (ECS) for the Habitable-zone Planet Finder (HPF), a high-resolution (R=50,000) fiber-fed near infrared (NIR) spectrograph for the 10m Hobby Eberly Telescope at McDonald Observatory. HPF will operate at 180K, driven by the choice of an H2RG NIR detector array with a 1.7micron cutoff. This ECS has demonstrated 0.6mK RMS stability over 15 days at both 180K and 300K, and maintained high quality vacuum (<$10^{-7}$Torr) over months, during long-term stability tests conducted without a planned passive thermal enclosure surrounding the ...

  10. The snow line in viscous disks around low-mass stars: implications for water delivery to terrestrial planets in the habitable zone

    CERN Document Server

    Mulders, Gijs D; Min, Michiel; Pascucci, Ilaria

    2015-01-01

    The water ice or snow line is one of the key properties of protoplanetary disks that determines the water content of terrestrial planets in the habitable zone. Its location is determined by the properties of the star, the mass accretion rate through the disk, and the size distribution of dust suspended in the disk. We calculate the snow line location from recent observations of mass accretion rates and as a function of stellar mass. By taking the observed dispersion in mass accretion rates as a measure of the dispersion in initial disk mass, we find that stars of a given mass will exhibit a range of snow line locations. At a given age and stellar mass, the observed dispersion in mass accretion rates of 0.4 dex naturally leads to a dispersion in snow line locations of 0.2 dex. For ISM-like dust sizes, the one-sigma snow line location among solar mass stars of the same age ranges from 2 to 5 au. For more realistic dust opacities that include larger grains, the snow line is located up to two times closer to the ...

  11. EFFECT OF CHRONIC RADIATION ON PLANT-PATHOGEN INTERACTIONS IN 30-KM CHERNOBYL ZONE

    Directory of Open Access Journals (Sweden)

    Dmitriev A.

    2012-08-01

    Full Text Available It was established in pot experiments that infection with powdery mildew (Erysiphe graminis DC. f. sp. tritici Em. Marchal and brown rust (Puccinia triticana Erikss. & Henn. of three wheat (Triticum aestivum L. cultivars ('Mironovskaya 808', 'Polesskay 70', and 'Kiyanka' grown from seeds, collected in the Chernobyl exclusion zone, was 1.5–2.0 times higher than that of plants grown from control seeds. On filed plots in the Chernobyl zone, wheat plant resistance to biotic stress was reduced. At artificial infection with brown rusts, the disease development was enhanced on plots with increased radiation background. One of the mechanisms of declined phytoimmunity potential under the action of low doses of chronic irradiation is evidently a reduced activity of plant proteinase inhibitors. Thus, in wheat and rye (Secale cereale L., cv. ‘Saratovskaya’ kernels, their activity reduced by 35–60% as compared to control. Active form and race formation in the population of the grass stem rust causal agent (Puccinia graminis Pers. was observed in the Chernobyl zone. A “new” population of this fungus with high frequency of more virulent clones than in other Ukraine regions was distinguished. The results obtained independently in greenhouse and field trials performed in the Chernobyl zone demonstrated radiation stress influence on the pathogen–plant system. They indicate a necessity of monitoring the microevolutionary processes occurring in both plants and their pathogens under conditions of technogenic stresses.

  12. Evidence for selection in response to radiation exposure: Pinus sylvestris in the Chernobyl exclusion zone

    Energy Technology Data Exchange (ETDEWEB)

    Kuchma, Oleksandra, E-mail: oleksandra.kuchma@googlemail.com [Forest Genetics and Forest Tree Breeding, Buesgen Institute, Georg-August University Goettingen, Buesgenweg 2, Goettingen 37077 (Germany); Finkeldey, Reiner, E-mail: rfinkel@gwdg.de [Forest Genetics and Forest Tree Breeding, Buesgen Institute, Georg-August University Goettingen, Buesgenweg 2, Goettingen 37077 (Germany)

    2011-06-15

    Changes of genetic structures due to viability selection are likely to occur in populations exposed to rapidly and extremely changing environmental conditions after catastrophic events. However, very little is known about the extent of selective responses and in particular the proportion of the genome involved in putatively adaptive reactions for non-model plants. We used amplified fragment length polymorphisms (AFLPs) in order to investigate genetic differences between pine (Pinus sylvestris) trees which were partially exposed to extreme environmental conditions. Genetic variation patterns of pines exposed to high radiation in the Chernobyl exclusion zone with or without phenotypic stress symptoms were compared to control trees with a similar origin. Six percent of the investigated loci (15 of 222 loci) were identified as candidates for selective responses. Moderate differentiation was observed between groups of trees showing either weak or strong phenotypic responses to high radiation levels. - Highlights: > Genetic variation patterns of pines exposed to high radiation were investigated. > Pines with or without phenotypic stress symptoms were compared to control trees. > AFLP markers were used to reveal evidences of selection processes. > 15 of 222 loci are identified as candidates for selective responses. > Moderate differentiation is observed between irradiated and control trees. - Genetic responses to the exposure of trees to radiation in the Chernobyl zone may involve adaptive changes at a comparatively large part of the genome.

  13. Suppression of the water ice and snow albedo feedback on planets orbiting red dwarf stars and the subsequent widening of the habitable zone

    CERN Document Server

    Joshi, M

    2012-01-01

    M-stars comprise 80% of main-sequence stars, and so their planetary systems provide the best chance for finding habitable planets, i.e.: those with surface liquid water. We have modelled the broadband albedo or reflectivity of water ice and snow for simulated planetary surfaces orbiting two observed red dwarf stars (or M-stars) using spectrally resolved data of the Earth's cryosphere. The gradual reduction of the albedos of snow and ice at wavelengths greater than 1 ?m, combined with M-stars emitting a significant fraction of their radiation at these same longer wavelengths, mean that the albedos of ice and snow on planets orbiting M-stars are much lower than their values on Earth. Our results imply that the ice/snow albedo climate feedback is significantly weaker for planets orbiting M-stars than for planets orbiting G-type stars such as the Sun. In addition, planets with significant ice and snow cover will have significantly higher surface temperatures for a given stellar flux if the spectral variation of c...

  14. Age aspects of habitability

    Science.gov (United States)

    Safonova, M.; Murthy, J.; Shchekinov, Yu. A.

    2016-04-01

    A `habitable zone' of a star is defined as a range of orbits within which a rocky planet can support liquid water on its surface. The most intriguing question driving the search for habitable planets is whether they host life. But is the age of the planet important for its habitability? If we define habitability as the ability of a planet to beget life, then probably it is not. After all, life on Earth has developed within only ~800 Myr after its formation - the carbon isotope change detected in the oldest rocks indicates the existence of already active life at least 3.8 Gyr ago. If, however, we define habitability as our ability to detect life on the surface of exoplanets, then age becomes a crucial parameter. Only after life had evolved sufficiently complex to change its environment on a planetary scale, can we detect it remotely through its imprint on the atmosphere - the so-called biosignatures, out of which the photosynthetic oxygen is the most prominent indicator of developed (complex) life as we know it. Thus, photosynthesis is a powerful biogenic engine that is known to have changed our planet's global atmospheric properties. The importance of planetary age for the detectability of life as we know it follows from the fact that this primary process, photosynthesis, is endothermic with an activation energy higher than temperatures in habitable zones, and is sensitive to the particular thermal conditions of the planet. Therefore, the onset of photosynthesis on planets in habitable zones may take much longer time than the planetary age. The knowledge of the age of a planet is necessary for developing a strategy to search for exoplanets carrying complex (developed) life - many confirmed potentially habitable planets are too young (orbiting Population I stars) and may not have had enough time to develop and/or sustain detectable life. In the last decade, many planets orbiting old (9-13 Gyr) metal-poor Population II stars have been discovered. Such planets had had

  15. Timeframe of speciation inferred from secondary contact zones in the European tree frog radiation (Hyla arborea group)

    OpenAIRE

    Dufresnes, Christophe; Brelsford, Alan; Crnobrnja-Isailović, Jelka; Tzankov, Nikolay; Lymberakis, Petros; Perrin, Nicolas

    2015-01-01

    Background Hybridization between incipient species is expected to become progressively limited as their genetic divergence increases and reproductive isolation proceeds. Amphibian radiations and their secondary contact zones are useful models to infer the timeframes of speciation, but empirical data from natural systems remains extremely scarce. Here we follow this approach in the European radiation of tree frogs (Hyla arborea group). We investigated a natural hybrid zone between two lineages...

  16. Learning Habits Status and Intervention Policy of Rural-urban Fringe Zone Middle School Students%城乡结合部初中学生学习习惯现状分析及干预策略初探

    Institute of Scientific and Technical Information of China (English)

    胡丽萍

    2012-01-01

    The learning habits of the rural-urban fringe zone students' is the choke point of quality of academic input.This article tries to analyze the reason of the restraint factors to form good habits through blow aspects:complicated social environment in the rural-urban fringe zone,especial home education,hysteretic educational mode,etc.Also,this article offers some intervention policies which can help the students to improve their learning habits.Hope this article is helpful to the teachers of junior high schools in the rural-urban fringe zone.%城乡结合部学生的学习习惯是制约教学质量提升的瓶颈。本文试着从城乡结合部复杂的社会环境、特殊的家庭教育、较滞后教育方式等方面来分析影响学生良好学习习惯形成的制约因素,并根据自己的教学实践提出一些促进学生良好学习习惯养成的干预策略,希望能对城乡结合部初中教师有一定的启示作用。

  17. A PLANETARY SYSTEM AROUND THE NEARBY M DWARF GJ 667C WITH AT LEAST ONE SUPER-EARTH IN ITS HABITABLE ZONE

    Energy Technology Data Exchange (ETDEWEB)

    Anglada-Escude, Guillem; Butler, R. Paul [Carnegie Institution of Washington, Department of Terrestrial Magnetism, 5241 Broad Branch Rd. NW, Washington, DC 20015 (United States); Arriagada, Pamela; Minniti, Dante [Department of Astronomy, Pontificia Universidad Catolica de Chile, Casilla 306, Santiago 22 (Chile); Vogt, Steven S.; Rivera, Eugenio J. [UCO/Lick Observatory, University of California, Santa Cruz, CA 95064 (United States); Crane, Jeffrey D.; Shectman, Stephen A.; Thompson, Ian B. [Carnegie Observatories, 813 Santa Barbara St., Pasadena, CA 91101-1292 (United States); Haghighipour, Nader [Institute for Astronomy and NASA Astrobiology Institute, University of Hawaii-Monoa, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Carter, Brad D. [Faculty of Sciences, University of Southern Queensland, Toowoomba 4350 (Australia); Tinney, C. G.; Wittenmyer, Robert A.; Bailey, Jeremy A. [Department of Astrophysics, School of Physics, University of New South Wales, Sydney 2052 (Australia); O' Toole, Simon J. [Australian Astronomical Observatory, P.O. Box 296, Epping 1710 (Australia); Jones, Hugh R. A. [Centre for Astrophysics Research, University of Hertfordshire, College Lane, Hatfield, Herts, AL10 9AB (United Kingdom); Jenkins, James S., E-mail: anglada@dtm.ciw.edu [Departamento de Astronomia, Universidad de Chile, Camino El Observatorio 1515, Las Condes, Santiago (Chile)

    2012-05-20

    We re-analyze 4 years of HARPS spectra of the nearby M1.5 dwarf GJ 667C available through the European Southern Observatory public archive. The new radial velocity (RV) measurements were obtained using a new data analysis technique that derives the Doppler measurement and other instrumental effects using a least-squares approach. Combining these new 143 measurements with 41 additional RVs from the Magellan/Planet Finder Spectrograph and Keck/High Resolution Echelle Spectrometer spectrometers reveals three additional signals beyond the previously reported 7.2 day candidate, with periods of 28 days, 75 days, and a secular trend consistent with the presence of a gas giant (period {approx}10 years). The 28 day signal implies a planet candidate with a minimum mass of 4.5 M{sub Circled-Plus} orbiting well within the canonical definition of the star's liquid water habitable zone (HZ), that is, the region around the star at which an Earth-like planet could sustain liquid water on its surface. Still, the ultimate water supporting capability of this candidate depends on properties that are unknown such as its albedo, atmospheric composition, and interior dynamics. The 75 day signal is less certain, being significantly affected by aliasing interactions among a potential 91 day signal, and the likely rotation period of the star at 105 days detected in two activity indices. GJ 667C is the common proper motion companion to the GJ 667AB binary, which is metal-poor compared to the Sun. The presence of a super-Earth in the HZ of a metal-poor M dwarf in a triple star system supports the evidence that such worlds should be ubiquitous in the Galaxy.

  18. Remote life-detection criteria, habitable zone boundaries, and the frequency of Earth-like planets around M and late K stars.

    Science.gov (United States)

    Kasting, James F; Kopparapu, Ravikumar; Ramirez, Ramses M; Harman, Chester E

    2014-09-02

    The habitable zone (HZ) around a star is typically defined as the region where a rocky planet can maintain liquid water on its surface. That definition is appropriate, because this allows for the possibility that carbon-based, photosynthetic life exists on the planet in sufficient abundance to modify the planet's atmosphere in a way that might be remotely detected. Exactly what conditions are needed, however, to maintain liquid water remains a topic for debate. In the past, modelers have restricted themselves to water-rich planets with CO2 and H2O as the only important greenhouse gases. More recently, some researchers have suggested broadening the definition to include arid, "Dune" planets on the inner edge and planets with captured H2 atmospheres on the outer edge, thereby greatly increasing the HZ width. Such planets could exist, but we demonstrate that an inner edge limit of 0.59 AU or less is physically unrealistic. We further argue that conservative HZ definitions should be used for designing future space-based telescopes, but that optimistic definitions may be useful in interpreting the data from such missions. In terms of effective solar flux, S(eff), the recently recalculated HZ boundaries are: recent Venus--1.78; runaway greenhouse--1.04; moist greenhouse--1.01; maximum greenhouse--0.35; and early Mars--0.32. Based on a combination of different HZ definitions, the frequency of potentially Earth-like planets around late K and M stars observed by Kepler is in the range of 0.4-0.5.

  19. Remote life-detection criteria, habitable zone boundaries, and the frequency of Earth-like planets around M and late K stars

    Science.gov (United States)

    Kasting, James F.; Kopparapu, Ravikumar; Ramirez, Ramses M.; Harman, Chester E.

    2014-09-01

    The habitable zone (HZ) around a star is typically defined as the region where a rocky planet can maintain liquid water on its surface. That definition is appropriate, because this allows for the possibility that carbon-based, photosynthetic life exists on the planet in sufficient abundance to modify the planet's atmosphere in a way that might be remotely detected. Exactly what conditions are needed, however, to maintain liquid water remains a topic for debate. In the past, modelers have restricted themselves to water-rich planets with CO2 and H2O as the only important greenhouse gases. More recently, some researchers have suggested broadening the definition to include arid, "Dune" planets on the inner edge and planets with captured H2 atmospheres on the outer edge, thereby greatly increasing the HZ width. Such planets could exist, but we demonstrate that an inner edge limit of 0.59 AU or less is physically unrealistic. We further argue that conservative HZ definitions should be used for designing future space-based telescopes, but that optimistic definitions may be useful in interpreting the data from such missions. In terms of effective solar flux, Seff, the recently recalculated HZ boundaries are: recent Venus-1.78; runaway greenhouse-1.04; moist greenhouse-1.01; maximum greenhouse-0.35; and early Mars-0.32. Based on a combination of different HZ definitions, the frequency of potentially Earth-like planets around late K and M stars observed by Kepler is in the range of 0.4-0.5.

  20. The SOPHIE search for northern extrasolar planets. XI. Three new companions and an orbit update: Giant planets in the habitable zone

    Science.gov (United States)

    Díaz, R. F.; Rey, J.; Demangeon, O.; Hébrard, G.; Boisse, I.; Arnold, L.; Astudillo-Defru, N.; Beuzit, J.-L.; Bonfils, X.; Borgniet, S.; Bouchy, F.; Bourrier, V.; Courcol, B.; Deleuil, M.; Delfosse, X.; Ehrenreich, D.; Forveille, T.; Lagrange, A.-M.; Mayor, M.; Moutou, C.; Pepe, F.; Queloz, D.; Santerne, A.; Santos, N. C.; Sahlmann, J.; Ségransan, D.; Udry, S.; Wilson, P. A.

    2016-07-01

    We report the discovery of three new substellar companions to solar-type stars, HD 191806, HD 214823, and HD 221585, based on radial velocity measurements obtained at the Haute-Provence Observatory. Data from the SOPHIE spectrograph are combined with observations acquired with its predecessor, ELODIE, to detect and characterise the orbital parameters of three new gaseous giant and brown dwarf candidates. Additionally, we combine SOPHIE data with velocities obtained at the Lick Observatory to improve the parameters of an already known giant planet companion, HD 16175 b. Thanks to the use of different instruments, the data sets of all four targets span more than ten years. Zero-point offsets between instruments are dealt with using Bayesian priors to incorporate the information we possess on the SOPHIE/ELODIE offset based on previous studies. The reported companions have orbital periods between three and five years and minimum masses between 1.6 MJup and 19 MJup. Additionally, we find that the star HD 191806 is experiencing a secular acceleration of over 11 m s-1 per year, potentially due to an additional stellar or substellar companion. A search for the astrometric signature of these companions was carried out using Hipparcos data. No orbit was detected, but a significant upper limit to the companion mass can be set for HD 221585, whose companion must be substellar. With the exception of HD 191806 b, the companions are located within the habitable zone of their host star. Therefore, satellites orbiting these objects could be a propitious place for life to develop. Based on observations collected with the SOPHIE spectrograph on the 1.93-m telescope at Observatoire de Haute-Provence (CNRS), France by the SOPHIE Consortium (programme 07A.PNP.CONS to 15A.PNP.CONS).

  1. Tidal Constraints on Planetary Habitability

    CERN Document Server

    Barnes, Rory; Greenberg, Richard; Raymond, Sean N; Heller, Rene

    2009-01-01

    We review how tides may impact the habitability of terrestrial-like planets. If such planets form around low-mass stars, then planets in the circumstellar habitable zone will be close enough to their host stars to experience strong tidal forces. We discuss 1) decay of semi-major axis, 2) circularization of eccentric orbits, 3) evolution toward zero obliquity, 4) fixed rotation rates (not necessarily synchronous), and 5) internal heating. We briefly describe these effects using the example of a 0.25 solar mass star with a 10 Earth-mass companion. We suggest that the concept of a habitable zone should be modified to include the effects of tides.

  2. The Habitability of Proxima Centauri b: II: Environmental States and Observational Discriminants

    CERN Document Server

    Meadows, Victoria S; Schwieterman, Edward W; Lustig-Yaeger, Jacob; Lincowski, Andrew P; Robinson, Tyler; Domagal-Goldman, Shawn D; Barnes, Rory K; Fleming, David P; Deitrick, Russell; Luger, Rodrigo; Driscoll, Peter E; Quinn, Thomas R; Crisp, David

    2016-01-01

    Proxima Centauri b provides an unprecedented opportunity to understand the evolution and nature of terrestrial planets orbiting M dwarfs. Although Proxima Cen b orbits within its star's habitable zone, multiple plausible evolutionary paths could have generated different environments that may or may not be habitable. Here we use 1D coupled climate-photochemical models to generate self-consistent atmospheres for evolutionary scenarios predicted in our companion paper (Barnes et al., 2016). These include high-O2, high-CO2, and more Earth-like atmospheres, with either oxidizing or reducing compositions. We show that these modeled environments can be habitable or uninhabitable at Proxima Cen b's position in the habitable zone. We use radiative transfer models to generate synthetic spectra and thermal phase curves for these simulated environments, and instrument models to explore our ability to discriminate between possible planetary states. These results are applicable not only to Proxima Cen b, but to other terre...

  3. The evolution of galaxy habitability

    CERN Document Server

    Gobat, R

    2016-01-01

    We combine a semi-analytic model of galaxy evolution with constraints on circumstellar habitable zones and the distribution of terrestrial planets to probe the suitability of galaxies of different mass and type to host habitable planets, as well as its evolution with time. We find that the fraction of stars with terrestrial planets in their habitable zone ("habitability") depends only weakly on galaxy mass, with a maximum around 4e10 Msun. We estimate that 0.7% of all stars in Milky Way type galaxies to host a terrestrial planet within their habitable zone, consistent with the value derived from Kepler observations. On the other hand, the habitability of passive galaxies is slightly but systematically higher, unless we assume an unrealistically high sensitivity of planets to supernovae. We find that the overall habitability of galaxies has not changed significantly in the last ~8 Gyr, with most of the habitable planets in local disk galaxies having formed ~1.5 Gyr before our own solar system. Finally, we expe...

  4. Habitable planets around the star Gl 581?

    CERN Document Server

    Selsis, Franck; Levrard, B; Paillet, J; Ribas, I; Delfosse, X

    2007-01-01

    Radial velocity surveys are now able to detect terrestrial planets at habitable distance from M-type stars. Recently, two planets with minimum masses below 10 Earth masses were reported in a triple system around the M-type star Gliese 581. Using results from atmospheric models and constraints from the evolution of Venus and Mars, we assess the habitability of planets Gl 581c and Gl 581d and we discuss the uncertainties affecting the habitable zone (HZ) boundaries determination. We provide simplified formulae to estimate the HZ limits that may be used to evaluate the astrobiological potential of terrestrial exoplanets that will hopefully be discovered in the near future. Planets Gl 581c and 'd' are near, but outside, what can be considered as the conservative HZ. Planet 'c' receives 30% more energy from its star than Venus from the Sun, with an increased radiative forcing caused by the spectral energy distribution of Gl 581. Its habitability cannot however be positively ruled out by theoretical models due to u...

  5. ROTATIONAL SYNCHRONIZATION MAY ENHANCE HABITABILITY FOR CIRCUMBINARY PLANETS: KEPLER BINARY CASE STUDIES

    Energy Technology Data Exchange (ETDEWEB)

    Mason, Paul A. [Department of Physics, University of Texas at El Paso, El Paso, TX 79968 (United States); Zuluaga, Jorge I.; Cuartas-Restrepo, Pablo A. [FACom-Instituto de Fisica-FCEN, Universidad de Antioquia, Calle 70 No. 52-21, Medellin (Colombia); Clark, Joni M. [Department of Mathematics and Physical Sciences, New Mexico State University-DACC, Las Cruces, NM 88003 (United States)

    2013-09-10

    We report a mechanism capable of reducing (or increasing) stellar activity in binary stars, thereby potentially enhancing (or destroying) circumbinary habitability. In single stars, stellar aggression toward planetary atmospheres causes mass-loss, which is especially detrimental for late-type stars, because habitable zones are very close and activity is long lasting. In binaries, tidal rotational breaking reduces magnetic activity, thus reducing harmful levels of X-ray and ultraviolet (XUV) radiation and stellar mass-loss that are able to erode planetary atmospheres. We study this mechanism for all confirmed circumbinary (p-type) planets. We find that main sequence twins provide minimal flux variation and in some cases improved environments if the stars rotationally synchronize within the first Gyr. Solar-like twins, like Kepler 34 and Kepler 35, provide low habitable zone XUV fluxes and stellar wind pressures. These wide, moist, habitable zones may potentially support multiple habitable planets. Solar-type stars with lower mass companions, like Kepler 47, allow for protected planets over a wide range of secondary masses and binary periods. Kepler 38 and related binaries are marginal cases. Kepler 64 and analogs have dramatically reduced stellar aggression due to synchronization of the primary, but are limited by the short lifetime. Kepler 16 appears to be inhospitable to planets due to extreme XUV flux. These results have important implications for estimates of the number of stellar systems containing habitable planets in the Galaxy and allow for the selection of binaries suitable for follow-up searches for habitable planets.

  6. Evaluating Galactic Habitability Using High Resolution Cosmological Simulations of Galaxy Formation

    CERN Document Server

    Forgan, Duncan; Cockell, Charles; Libeskind, Noam

    2015-01-01

    We present the first model that couples high-resolution simulations of the formation of Local Group galaxies with calculations of the galactic habitable zone (GHZ), a region of space which has sufficient metallicity to form terrestrial planets without being subject to hazardous radiation. These simulations allow us to make substantial progress in mapping out the asymmetric three-dimensional GHZ and its time evolution for the Milky Way (MW) and Triangulum (M33) galaxies, as opposed to works that generally assume an azimuthally symmetric GHZ. Applying typical habitability metrics to MW and M33, we find that while a large number of habitable planets exist as close as a few kiloparsecs from the galactic centre, the probability of individual planetary systems being habitable rises as one approaches the edge of the stellar disc. Tidal streams and satellite galaxies also appear to be fertile grounds for habitable planet formation. In short, we find that both galaxies arrive at similar GHZs by different evolutionary ...

  7. Assessment of Radiation Exposure Levels and Associated Health Risks in Calabar Free Trade Zone, Nigeria

    Directory of Open Access Journals (Sweden)

    Samuel Inyang

    2017-03-01

    Full Text Available Introduction Exposure to chronic levels of ionizing radiation could be detrimental to health even at very low doses. Calabar free trade zone (CFTZ was established to promote export business in Nigeria and it is yet to produce exposure data of the Zone. Materials and Methods The Zone was divided into three categories depending on the type of business. Category A had facilities with manufacturing businesses, Category B was service providers while Category C was oil and gas businesses. Exposure levels within the CFTZ were measured with exposure meter and results obtained were converted to annual effective dose in mSv/yr. The evaluated doses were used to estimate health risks to workers in the Zone in terms of lifetime cancer incidence and mortality for persons aged between 18 – 65 years using the conversion factors in BEIR VII. Results Category B facilities had dose values between 0.21 – 0.31 mSv/yr followed by Category A with dose values between 0.23 – 0.35 mSv/yr. Category C facilities had the highest dose values between 0.33 – 0.40 mSv/yr. The evaluated cancer incidence and mortality rates were generally less than 2 persons in 1,000 persons for both male and female workers. Conclusion The study shows that the exposure levels in business facilities within the CFTZ were higher than the background radiation level. The effective doses were not uniform for the different categories. The estimated cancer incidence and mortality were low, and simple linear equations were generated to relate cancer incidence to mortality.

  8. 2D dynamics of the radiation zone of low mass stars

    CERN Document Server

    Hypolite, Delphine; Rieutord, Michel

    2016-01-01

    The internal rotation of low mass stars all along their evolution is of primary interest when studying their rotational dynamics, internal mixing and magnetic fields generation. In this context, helio- and asteroseismology probe angular velocity gradients deep within solar type stars. Still the rotation of the close center of such stars on the main sequence is hardly detectable and the dynamical interactions of the radiative core with the surface convective envelope is not well understood. Among them, the influence of the differential rotation profile sustained by convection and applied as a boundary condition to the radiation zone may be very important leading to the formation of tachoclines. In the solar convective region, the equator is rotating faster than the pole while numerical simulations predict either a solar or an anti-solar rotation in other low mass stars envelopes depending on their convective Rossby number. In this work, we therefore build for the first time 2D steady hydrodynamical models of l...

  9. Magnetic shielding of exomoons beyond the circumplanetary habitable edge

    CERN Document Server

    Heller, René

    2013-01-01

    With most planets and planetary candidates detected in the stellar habitable zone (HZ) being super-Earths and gas giants, rather than Earth-like planets, we naturally wonder if their moons could be habitable. The first detection of such an exomoon has now become feasible, and due to observational biases it will be at least twice as massive as Mars. But formation models predict moons can hardly be as massive as Earth. Hence, a giant planet's magnetosphere could be the only possibility for such a moon to be shielded from cosmic and stellar high-energy radiation. Yet, the planetary radiation belt could also have detrimental effects on exomoon habitability. We here synthesize models for the evolution of the magnetic environment of giant planets with thresholds from the runaway greenhouse (RG) effect to assess the habitability of exomoons. For modest eccentricities, we find that satellites around Neptune-sized planets in the center of the HZ around K dwarf stars will either be in an RG state and not be habitable, ...

  10. Habitable Trinity

    Directory of Open Access Journals (Sweden)

    James M. Dohm

    2015-01-01

    Full Text Available Habitable Trinity is a newly proposed concept of a habitable environment. This concept indicates that the coexistence of an atmosphere (consisting largely of C and N, an ocean (H and O, and a landmass (supplier of nutrients accompanying continuous material circulation between these three components driven by the Sun is one of the minimum requirements for life to emerge and evolve. The life body consists of C, O, H, N and other various nutrients, and therefore, the presence of water, only, is not a sufficient condition. Habitable Trinity environment must be maintained to supply necessary components for life body. Our Habitable Trinity concept can also be applied to other planets and moons such as Mars, Europa, Titan, and even exoplanets as a useful index in the quest for life-containing planetary bodies.

  11. Habitable Trinity

    Institute of Scientific and Technical Information of China (English)

    James M. Dohm; Shigenori Maruyama

    2015-01-01

    Habitable Trinity is a newly proposed concept of a habitable environment. This concept indicates that the coexistence of an atmosphere (consisting largely of C and N), an ocean (H and O), and a landmass (supplier of nutrients) accompanying continuous material circulation between these three components driven by the Sun is one of the minimum requirements for life to emerge and evolve. The life body consists of C, O, H, N and other various nutrients, and therefore, the presence of water, only, is not a sufficient condition. Habitable Trinity environment must be maintained to supply necessary components for life body. Our Habitable Trinity concept can also be applied to other planets and moons such as Mars, Europa, Titan, and even exoplanets as a useful index in the quest for life-containing planetary bodies.

  12. Habitable-zone super-Earth candidate in a six-planet system around the K2.5V star HD 40307

    Science.gov (United States)

    Tuomi, M.; Anglada-Escudé, G.; Gerlach, E.; Jones, H. R. A.; Reiners, A.; Rivera, E. J.; Vogt, S. S.; Butler, R. P.

    2013-01-01

    water on its surface according to the current definition of the liquid water habitable zone around a star and is not likely to suffer from tidal locking. Also, at an angular separation of ~46 mas, HD 40307 g would be a primary target for a future space-based direct-imaging mission. Appendix A is available in electronic form at http://www.aanda.org

  13. A Versatile Technique to Enable Sub-milli-Kelvin Instrument Stability for Precise Radial Velocity Measurements: Tests with the Habitable-zone Planet Finder

    Science.gov (United States)

    Stefansson, Gudmundur; Hearty, Frederick; Robertson, Paul; Mahadevan, Suvrath; Anderson, Tyler; Levi, Eric; Bender, Chad; Nelson, Matthew; Monson, Andrew; Blank, Basil; Halverson, Samuel; Henderson, Chuck; Ramsey, Lawrence; Roy, Arpita; Schwab, Christian; Terrien, Ryan

    2016-12-01

    Insufficient instrument thermomechanical stability is one of the many roadblocks for achieving 10 cm s-1 Doppler radial velocity precision, the precision needed to detect Earth-twins orbiting solar-type stars. Highly temperature and pressure stabilized spectrographs allow us to better calibrate out instrumental drifts, thereby helping in distinguishing instrumental noise from astrophysical stellar signals. We present the design and performance of the Environmental Control System (ECS) for the Habitable-zone Planet Finder (HPF), a high-resolution (R = 50,000) fiber-fed near-infrared (NIR) spectrograph for the 10 {{m}} Hobby-Eberly Telescope at McDonald Observatory. HPF will operate at 180 {{K}}, driven by the choice of an H2RG NIR detector array with a 1.7 μ {{m}} cutoff. This ECS has demonstrated 0.6 {mK} rms stability over 15 days at both 180 and 300 {{K}}, and maintained high-quality vacuum (\\lt {10}-7 {Torr}) over months, during long-term stability tests conducted without a planned passive thermal enclosure surrounding the vacuum chamber. This control scheme is versatile and can be applied as a blueprint to stabilize future NIR and optical high-precision Doppler instruments over a wide temperature range from ˜77 {{K}} to elevated room temperatures. A similar ECS is being implemented to stabilize NEID, the NASA/NSF NN-EXPLORE spectrograph for the 3.5 {{m}} WIYN telescope at Kitt Peak, operating at 300 {{K}}. A [full SolidWorks 3D-CAD model] and a comprehensive parts list of the HPF ECS are included with this manuscript to facilitate the adaptation of this versatile environmental control scheme in the broader astronomical community. Certain commercial equipment, instruments, or materials are identified in this paper in order to specify the experimental procedure adequately. Such identification is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the materials or equipment

  14. Cosmological aspects of planetary habitability

    CERN Document Server

    Shchekinov, Yu A; Murthy, J

    2014-01-01

    The habitable zone (HZ) is defined as the region around a star where a planet can support liquid water on its surface, which, together with an oxygen atmosphere, is presumed to be necessary (and sufficient) to develop and sustain life on the planet. Currently, about twenty potentially habitable planets are listed. The most intriguing question driving all these studies is whether planets within habitable zones host extraterrestrial life. It is implicitly assumed that a planet in the habitable zone bears biota. However along with the two usual indicators of habitability, an oxygen atmosphere and liquid water on the surface, an additional one -- the age --- has to be taken into account when the question of the existence of life (or even a simple biota) on a planet is addressed. The importance of planetary age for the existence of life as we know it follows from the fact that the primary process, the photosynthesis, is endothermic with an activation energy higher than temperatures in habitable zones. Therefore on...

  15. Response of atmospheric biomarkers to NO(x)-induced photochemistry generated by stellar cosmic rays for earth-like planets in the habitable zone of M dwarf stars.

    Science.gov (United States)

    Grenfell, John Lee; Grießmeier, Jean-Mathias; von Paris, Philip; Patzer, A Beate C; Lammer, Helmut; Stracke, Barbara; Gebauer, Stefanie; Schreier, Franz; Rauer, Heike

    2012-12-01

    Understanding whether M dwarf stars may host habitable planets with Earth-like atmospheres and biospheres is a major goal in exoplanet research. If such planets exist, the question remains as to whether they could be identified via spectral signatures of biomarkers. Such planets may be exposed to extreme intensities of cosmic rays that could perturb their atmospheric photochemistry. Here, we consider stellar activity of M dwarfs ranging from quiet up to strong flaring conditions and investigate one particular effect upon biomarkers, namely, the ability of secondary electrons caused by stellar cosmic rays to break up atmospheric molecular nitrogen (N(2)), which leads to production of nitrogen oxides (NO(x)) in the planetary atmosphere, hence affecting biomarkers such as ozone (O(3)). We apply a stationary model, that is, without a time dependence; hence we are calculating the limiting case where the atmospheric chemistry response time of the biomarkers is assumed to be slow and remains constant compared with rapid forcing by the impinging stellar flares. This point should be further explored in future work with time-dependent models. We estimate the NO(x) production using an air shower approach and evaluate the implications using a climate-chemical model of the planetary atmosphere. O(3) formation proceeds via the reaction O+O(2)+M→O(3)+M. At high NO(x) abundances, the O atoms arise mainly from NO(2) photolysis, whereas on Earth this occurs via the photolysis of molecular oxygen (O(2)). For the flaring case, O(3) is mainly destroyed via direct titration, NO+O(3)→NO(2)+O(2), and not via the familiar catalytic cycle photochemistry, which occurs on Earth. For scenarios with low O(3), Rayleigh scattering by the main atmospheric gases (O(2), N(2), and CO(2)) became more important for shielding the planetary surface from UV radiation. A major result of this work is that the biomarker O(3) survived all the stellar-activity scenarios considered except for the strong

  16. Characterizing Habitable Exo-Moons

    CERN Document Server

    Kaltenegger, L

    2009-01-01

    We discuss the possibility of screening the atmosphere of exomoons for habitability. We concentrate on Earth-like satellites of extrasolar giant planets (EGP) which orbit in the Habitable Zone of their host stars. The detectability of exomoons for EGP in the Habitable Zone has recently been shown to be feasible with the Kepler Mission or equivalent photometry using transit duration observations. Using the Earth itself as a proxy we show the potential and limits of spectroscopy to detect biomarkers on an Earth-like exomoon and discuss effects of tidal locking for such potential habitats. Transmission spectroscopy of exomoons is a unique potential tool to screen them for habitability in the near future.

  17. Magnetic constraints on the habitability of exoearths and exomoons

    Science.gov (United States)

    Zuluaga, J. I.

    2013-05-01

    Surface habitability of planetary environments is essentially constrained by two basic and related conditions: 1) the existence of a thick enough atmosphere and 2) proper levels of insolation or other sources of energy able to guarantee the right temperatures required for the existence of surface liquid water. It is customary to assume that the first condition (an atmosphere) is always fulfilled and to focus on the physical factors limiting the second one (insolation or energy sources). Now it is widely accepted that magnetic fields play a central role into determining if a planet is able to preserve a dense enough atmosphere or the right content of volatiles required for habitability. Hence the fulfillment of the first condition could strongly depend on the existence of a relatively strong intrinsic or extrinsic magnetic field. In the Solar System Venus and Mars provide examples of planets that, though located inside the Radiative Habitable Zone (RHZ), lack a protective magnetic field and have lost their inventory of water or most of their early atmospheric content by a combination of thermal and non-thermal atmospheric losses. We present here a review of the role that magnetic fields would have at constraining the habitability of planetary environments, both in the case of Earth-like planets and super-Earths (exoearths) and for the case of exomoons around giant planets in the RHZ of their host stars. In the first case we found that magnetic properties constraining habitability strongly dependent on planetary mass and composition. We present preliminary results of the case of already discovered potentially habitable exoearths and Kepler candidates. In the case of potentially habitable exomoons we found that magnetic protection together with conditions of tidal heating and illumination, constraints the possible range of exomoons planetocentric orbits. Also in this case we present results concerning the magnetic constraints to habitability of hypotetical exomoons of

  18. The radiative zone of the Sun and the tachocline: stability of baroclinic patterns of differential rotation

    Science.gov (United States)

    Caleo, Andrea; Balbus, Steven A.

    2016-04-01

    Barotropic rotation and radiative equilibrium are mutually incompatible in stars. The issue is often addressed by allowing for a meridional circulation, but this is not devoid of theoretical complications. Models of rotation in the Sun which maintain strict radiative equilibrium, making use of the observation that the Sun is not in a state of barotropic rotation, have recently been suggested. To investigate the dynamical behaviour of these solutions, we study the local stability of stratified, weakly magnetized, differentially rotating fluids to non-axisymmetric perturbations. Finite heat conductivity, kinematic viscosity, and resistivity are present. The evolution of local embedded perturbations is governed by a set of coupled, ordinary differential equations with time-dependent coefficients. Two baroclinic models of rotation for the upper radiative zone and tachocline are studied: (i) an interpolation based on helioseismology data, (ii) a theoretical solution directly compatible with radiative equilibrium. The growth of the local Goldreich-Schubert-Fricke instability appears to be suppressed, largely because of the viscosity. An extensive exploration of wavenumber space is carried out, with and without a magnetic field. Although we easily find classical local instabilities when they ought formally to be present, for the Sun the analysis reveals neither unstable solutions, nor even solutions featuring a large transient growth. We have not ruled out larger scale or non-linear instabilities, nor have we rigorously proven local stability. But rotational configurations in close agreement with observations, generally thought to be vulnerable to the classic local Goldreich-Schubert-Fricke instability, do appear to be locally stable under rather general circumstances.

  19. Shear mixing in stellar radiative zones I. Effect of thermal diffusion and chemical stratification

    CERN Document Server

    Prat, Vincent

    2014-01-01

    Turbulent transport of chemical elements in radiative zones of stars is taken into account in current stellar evolution codes thanks to phenomenologically derived diffusion coefficients. Recent local numerical simulations (Prat & Ligni\\`eres 2013, A&A, 551, L3) suggest that the coefficient for radial turbulent diffusion due to radial differential rotation satisfies $D_{\\rm t}\\simeq0.058\\kappa/Ri$, in qualitative agreement with Zahn's model. However, this model does not apply when differential rotation is strong with respect to stable thermal stratification or when chemical stratification has a significant dynamical effect, a situation encountered at the outer boundary of nuclear burning convective cores. We extend our numerical study to consider the effects of chemical stratification and of strong shear, and compare with prescriptions used in stellar evolution codes. We perform local, direct numerical simulations of stably stratified, homogeneous, sheared turbulence in the Boussinesq approximation. Th...

  20. Radiation ecology issues associated with murine rodents and shrews in the Chernobyl exclusion zone.

    Science.gov (United States)

    Gaschak, Sergey P; Maklyuk, Yulia A; Maksimenko, Andrey M; Bondarkov, Mikhail D; Jannik, G Timothy; Farfán, Eduardo B

    2011-10-01

    This article describes major studies performed by the Chernobyl Center's International Radioecology Laboratory (Slavutich, Ukraine) on radioecology of murine rodents and shrews inhabiting the Chernobyl Exclusion Zone. The article addresses the long-term (1986-2005) and seasonal dynamics of radioactive contamination of animals and reviews interspecies differences in radionuclide accumulations and factors affecting the radionuclide accumulations. It is shown that bioavailability of radionuclides in the "soil-to-plant" chain and a trophic specialization of animals play key roles in determining their actual contamination levels. The total absorbed dose rates in small mammals significantly reduced during the years following the Chernobyl Nuclear Power Plant accident. In 1986, the absorbed dose rate reached 1.3-6.0 Gy h(-1) in the central areas of the Chernobyl Exclusion Zone (the "Red Forest"). In 1988 and 1990, the total absorbed dose rates were 1.3 and 0.42 Gy h(-1), respectively. In 1995, 2000, and 2005, according to the present study, the total absorbed dose rates rarely exceeded 0.00023, 0.00018, and 0.00015 Gy h(-1), respectively. Contributions of individual radiation sources into the total absorbed dose are described.

  1. RADIATION ECOLOGY ISSUES ASSOCIATED WITH MURINE RODENTS AND SHREWS IN THE CHERNOBYL EXCLUSION ZONE

    Energy Technology Data Exchange (ETDEWEB)

    Farfan, E.; Jannik, T.

    2011-10-01

    This article describes major studies performed by the Chernobyl Center's International Radioecology Laboratory (Slavutich, Ukraine) on radioecology of murine rodents and shrews inhabiting the Chernobyl Exclusion Zone. The article addresses the long-term (1986-2005) and seasonal dynamics of radioactive contamination of animals, and reviews interspecies differences in radionuclide accumulations and factors affecting the radionuclide accumulations. It is shown that bioavailability of radionuclides in the 'soil-to-plant' chain and a trophic specialization of animals play key roles in determining their actual contamination levels. The total absorbed dose rates in small mammals significantly reduced during the years following the Chernobyl Nuclear Power Plant accident. In 1986, the absorbed dose rate reached 1.3-6.0 Gy hr{sup -1} in the central areas of the Chernobyl Exclusion Zone (the 'Red Forest'). In 1988 and 1990, the total absorbed dose rates were 1.3 and 0.42 Gy hr{sup -1}, respectively. In 1995, 2000, and 2005, according to the present study, the total absorbed dose rates rarely exceeded 0.00023, 0.00018, and 0.00015 Gy hr{sup -1}, respectively. Contributions of individual radiation sources into the total absorbed dose are described.

  2. Habit persistence

    DEFF Research Database (Denmark)

    Vinther Møller, Stig

    2009-01-01

    This paper uses an iterated GMM approach to estimate and test the consumption based habit persistence model of Campbell and Cochrane (1999) on the US stock market. The empirical evidence shows that the model is able to explain the size premium, but fails to explain the value premium. Further...

  3. Radiation and Polarization Signatures of 3D Multi-zone Time-dependent Hadronic Blazar Model

    CERN Document Server

    Zhang, Haocheng; Böttcher, Markus

    2016-01-01

    We present a newly developed time-dependent three-dimensional multi-zone hadronic blazar emission model. By coupling a Fokker-Planck based lepto-hadronic particle evolution code 3DHad with a polarization-dependent radiation transfer code, 3DPol, we are able to study the time-dependent radiation and polarization signatures of a hadronic blazar model for the first time. Our current code is limited to parameter regimes in which the hadronic $\\gamma$-ray output is dominated by proton synchrotron emission, neglecting pion production. Our results demonstrate that the time-dependent flux and polarization signatures are generally dominated by the relation between the synchrotron cooling and the light crossing time scale, which is largely independent of the exact model parameters. We find that unlike the low-energy polarization signatures, which can vary rapidly in time, the high-energy polarization signatures appear stable. As a result, future high-energy polarimeters may be able to distinguish such signatures from t...

  4. Increased Subventricular Zone Radiation Dose Correlates With Survival in Glioblastoma Patients After Gross Total Resection

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Linda [Department of Neurosurgery, The Johns Hopkins University, Baltimore, Maryland (United States); Duke University School of Medicine, Durham, North Carolina (United States); Guerrero-Cazares, Hugo [Department of Neurosurgery, The Johns Hopkins University, Baltimore, Maryland (United States); Ye, Xiaobu [Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University, Baltimore, Maryland (United States); Ford, Eric [Department of Radiation Oncology, University of Washington, Seattle, Washington (United States); McNutt, Todd; Kleinberg, Lawrence [Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University, Baltimore, Maryland (United States); Lim, Michael; Chaichana, Kaisorn [Department of Neurosurgery, The Johns Hopkins University, Baltimore, Maryland (United States); Quinones-Hinojosa, Alfredo, E-mail: aquinon2@jhmi.edu [Department of Neurosurgery, The Johns Hopkins University, Baltimore, Maryland (United States); Redmond, Kristin, E-mail: kjanson3@jhmi.edu [Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University, Baltimore, Maryland (United States)

    2013-07-15

    Purpose: Neural progenitor cells in the subventricular zone (SVZ) have a controversial role in glioblastoma multiforme (GBM) as potential tumor-initiating cells. The purpose of this study was to examine the relationship between radiation dose to the SVZ and survival in GBM patients. Methods and Materials: The study included 116 patients with primary GBM treated at the Johns Hopkins Hospital between 2006 and 2009. All patients underwent surgical resection followed by adjuvant radiation therapy with intensity modulated radiation therapy (60 Gy/30 fractions) and concomitant temozolomide. Ipsilateral, contralateral, and bilateral SVZs were contoured on treatment plans by use of coregistered magnetic resonance imaging and computed tomography. Multivariate Cox regression was used to examine the relationship between mean SVZ dose and progression-free survival (PFS), as well as overall survival (OS). Age, Karnofsky Performance Status score, and extent of resection were used as covariates. The median age was 58 years (range, 29-80 years). Results: Of the patients, 12% underwent biopsy, 53% had subtotal resection (STR), and 35% had gross total resection (GTR). The Karnofsky Performance Status score was less than 90 in 54 patients and was 90 or greater in 62 patients. The median ipsilateral, contralateral, and bilateral mean SVZ doses were 48.7 Gy, 34.4 Gy, and 41.5 Gy, respectively. Among patients who underwent GTR, a mean ipsilateral SVZ dose of 40 Gy or greater was associated with a significantly improved PFS compared with patients who received less than 40 Gy (15.1 months vs 10.3 months; P=.028; hazard ratio, 0.385 [95% confidence interval, 0.165-0.901]) but not in patients undergoing STR or biopsy. The subgroup of GTR patients who received an ipsilateral dose of 40 Gy or greater also had a significantly improved OS (17.5 months vs 15.6 months; P=.027; hazard ratio, 0.385 [95% confidence interval, 0.165-0.895]). No association was found between SVZ radiation dose and PFS

  5. Functional traits drive the contribution of solar radiation to leaf litter decomposition among multiple arid-zone species.

    Science.gov (United States)

    Pan, Xu; Song, Yao-Bin; Liu, Guo-Fang; Hu, Yu-Kun; Ye, Xue-Hua; Cornwell, William K; Prinzing, Andreas; Dong, Ming; Cornelissen, Johannes H C

    2015-08-18

    In arid zones, strong solar radiation has important consequences for ecosystem processes. To better understand carbon and nutrient dynamics, it is important to know the contribution of solar radiation to leaf litter decomposition of different arid-zone species. Here we investigated: (1) whether such contribution varies among plant species at given irradiance regime, (2) whether interspecific variation in such contribution correlates with interspecific variation in the decomposition rate under shade; and (3) whether this correlation can be explained by leaf traits. We conducted a factorial experiment to determine the effects of solar radiation and environmental moisture for the mass loss and the decomposition constant k-values of 13 species litters collected in Northern China. The contribution of solar radiation to leaf litter decomposition varied significantly among species. Solar radiation accelerated decomposition in particular in the species that already decompose quickly under shade. Functional traits, notably specific leaf area, might predict the interspecific variation in that contribution. Our results provide the first empirical evidence for how the effect of solar radiation on decomposition varies among multiple species. Thus, the effect of solar radiation on the carbon flux between biosphere and atmosphere may depend on the species composition of the vegetation.

  6. Pathways Towards Habitable Moons

    CERN Document Server

    Kipping, David M; Campanella, Giammarco; Schneider, Jean; Tinetti, Giovanna

    2009-01-01

    The search for life outside of the Solar System should not be restricted to exclusively planetary bodies; large moons of extrasolar planets may also be common habitable environments throughout the Galaxy. Extrasolar moons, or exomoons, may be detected through transit timing effects induced onto the host planet as a result of mutual gravitational interaction. In particular, transit timing variations (TTV) and transit duration variations (TDV) are predicted to produce a unique exomoon signature, which is not only easily distinguished from other gravitational perturbations, but also provides both the period and mass of an exomoon. Using these timing effects, photometry greater or equal to that of the Kepler Mission is readily able to detect habitable-zone exomoons down to 0.2 Earth masses and could survey up to 25,000 stars for 1 Earth-mass satellites. We discuss future possibilities for spectral retrieval of such bodies and show that transmission spectroscopy with JWST should be able to detect molecular species...

  7. The habitability of the Universe through 13 billion years of cosmic time

    CERN Document Server

    Dayal, Pratika; Cockell, Charles

    2016-01-01

    The field of astrobiology has made tremendous progress in modelling galactic-scale habitable zones which offer a stable environment for life to form and evolve in complexity. Recently, this idea has been extended to cosmological scales by studies modelling the habitability of the local Universe in its entirety (e.g. Dayal et al. 2015; Li & Zhang 2015). However, all of these studies have solely focused on estimating the potentially detrimental effects of either Type II supernovae (SNII) or Gamma Ray Bursts (GRBs), ignoring the contributions from Type Ia supernovae (SNIa) and active galactic nuclei (AGN). In this study we follow two different approaches, based on (i) the amplitude of deleterious radiation and (ii) the total planet-hosting volume irradiated by deleterious radiation. We simultaneously track the contributions from the key astrophysical sources (SNII, SNIa, AGN and GRBs) for the entire Universe, for both scenarios, to determine its habitability through 13.8 billion years of cosmic time. We find...

  8. Dynamics and Habitability in Binary Star Systems

    CERN Document Server

    Eggl, Siegfried; Pilat-Lohinger, Elke

    2014-01-01

    Determining planetary habitability is a complex matter, as the interplay between a planet's physical and atmospheric properties with stellar insolation has to be studied in a self consistent manner. Standardized atmospheric models for Earth-like planets exist and are commonly accepted as a reference for estimates of Habitable Zones. In order to define Habitable Zone boundaries, circular orbital configurations around main sequence stars are generally assumed. In gravitationally interacting multibody systems, such as double stars, however, planetary orbits are forcibly becoming non circular with time. Especially in binary star systems even relatively small changes in a planet's orbit can have a large impact on habitability. Hence, we argue that a minimum model for calculating Habitable Zones in binary star systems has to include dynamical interactions.

  9. Star Masses and Star-Planet Distances for Earth-like Habitability.

    Science.gov (United States)

    Waltham, David

    2017-01-01

    This paper presents statistical estimates for the location and duration of habitable zones (HZs) around stars of different mass. The approach is based upon the assumption that Earth's location, and the Sun's mass, should not be highly atypical of inhabited planets. The results support climate-model-based estimates for the location of the Sun's HZ except models giving a present-day outer-edge beyond 1.64 AU. The statistical approach also demonstrates that there is a habitability issue for stars smaller than 0.65 solar masses since, otherwise, Earth would be an extremely atypical inhabited world. It is difficult to remove this anomaly using the assumption that poor habitability of planets orbiting low-mass stars results from unfavorable radiation regimes either before, or after, their stars enter the main sequence. However, the anomaly is well explained if poor habitability results from tidal locking of planets in the HZs of small stars. The expected host-star mass for planets with intelligent life then has a 95% confidence range of 0.78 M⊙ < M < 1.04 M⊙, and the range for planets with at least simple life is 0.57 M⊙ < M < 1.64 M⊙. Key Words: Habitability-Habitable zone-Anthropic-Red dwarfs-Initial mass function. Astrobiology 17, 61-77.

  10. Evolution of a magnetic field in a differentially rotating radiative zone

    CERN Document Server

    Gaurat, Mathieu; Lignières, François; Gastine, Thomas

    2015-01-01

    Recent spectropolarimetric surveys of main-sequence intermediate-mass stars have exhibited a dichotomy in the distribution of the observed magnetic field between the kG dipoles of Ap/Bp stars and the sub-Gauss magnetism of Vega and Sirius. We would like to test whether this dichotomy is linked to the stability versus instability of large-scale magnetic configurations in differentially rotating radiative zones. We computed the axisymmetric magnetic field obtained from the evolution of a dipolar field threading a differentially rotating shell. A full parameter study including various density profiles and initial and boundary conditions was performed with a 2D numerical code. We then focused on the ratio between the toroidal and poloidal components of the magnetic field and discuss the stability of the configurations dominated by the toroidal component using local stability criteria and insights from recent 3D numerical simulations. The numerical results and a simple model show that the ratio between the toroida...

  11. Astrophysical, Geochemical, Geophysical and Biological Limits on Planet Habitability

    Science.gov (United States)

    Lineweaver, C.

    2014-03-01

    For life forms like us, the most important feature of the Earth is its habitability. Understanding habitability and using that knowledge to locate the nearest habitable planet may be crucial for our survival as a species. Over the past decade, expectations that the universe could be filled with habitable planets have been bolstered by the increasingly large overlap between terrestrial environments known to harbor life and the variety of environments on newly detected rocky exoplanets. The inhabited and uninhabited regions on Earth tell us that temperature and the presence of water are the main constraints that can be used in a habitability classification scheme for rocky planets. Our compilation and review of recent exoplanet detections suggests that the fraction of stars with planets is ~ 100%, and that the fraction with rocky planets may be comparably large. We review extensions to the circumstellar habitable zone including an abiogenesis habitable zone and the galactic habitable zone.

  12. Exoplanet habitability.

    Science.gov (United States)

    Seager, Sara

    2013-05-01

    The search for exoplanets includes the promise to eventually find and identify habitable worlds. The thousands of known exoplanets and planet candidates are extremely diverse in terms of their masses or sizes, orbits, and host star type. The diversity extends to new kinds of planets, which are very common yet have no solar system counterparts. Even with the requirement that a planet's surface temperature must be compatible with liquid water (because all life on Earth requires liquid water), a new emerging view is that planets very different from Earth may have the right conditions for life. The broadened possibilities will increase the future chances of discovering an inhabited world.

  13. Exoplanet Habitability

    Science.gov (United States)

    Seager, Sara

    2013-05-01

    The search for exoplanets includes the promise to eventually find and identify habitable worlds. The thousands of known exoplanets and planet candidates are extremely diverse in terms of their masses or sizes, orbits, and host star type. The diversity extends to new kinds of planets, which are very common yet have no solar system counterparts. Even with the requirement that a planet’s surface temperature must be compatible with liquid water (because all life on Earth requires liquid water), a new emerging view is that planets very different from Earth may have the right conditions for life. The broadened possibilities will increase the future chances of discovering an inhabited world.

  14. Soil nematode assemblages as bioindicators of radiation impact in the Chernobyl Exclusion Zone

    Energy Technology Data Exchange (ETDEWEB)

    Lecomte-Pradines, C., E-mail: catherine.lecomte-pradines@irsn.fr [Institute for Radioprotection and Nuclear Safety, IRSN/PRP-ENV/SERIS, LECO, Building 186, Cadarache 13115 Saint Paul lez Durance cedex (France); Bonzom, J.-M. [Institute for Radioprotection and Nuclear Safety, IRSN/PRP-ENV/SERIS, LECO, Building 186, Cadarache 13115 Saint Paul lez Durance cedex (France); Della-Vedova, C. [Magelis, 6, rue Frederic Mistral, 84160 Cadenet (France); Beaugelin-Seiller, K. [Institute for Radioprotection and Nuclear Safety, IRSN/PRP-ENV/SERIS, LM2E, Building 159, Cadarache 13115 Saint Paul lez Durance cedex (France); Villenave, C. [ELISOL Environment, Building 12, Campus de la Gaillarde, 2 place Viala, 34060 Montpellier cedex 2 (France); Gaschak, S. [Chernobyl Center for Nuclear Safety, Radioactive Waste and Radioecology, International Radioecology Laboratory, 07100 Slavutych (Ukraine); Coppin, F. [Institute for Radioprotection and Nuclear Safety, IRSN/PRP-ENV/SERIS, L2BT, Building 186, Cadarache 13115 Saint Paul lez Durance cedex (France); Dubourg, N. [Institute for Radioprotection and Nuclear Safety, IRSN/PRP-ENV/SERIS, GARM Building 186, Cadarache 13115 Saint Paul lez Durance cedex (France); Maksimenko, A. [Chernobyl Center for Nuclear Safety, Radioactive Waste and Radioecology, International Radioecology Laboratory, 07100 Slavutych (Ukraine); Adam-Guillermin, C. [Institute for Radioprotection and Nuclear Safety, IRSN/PRP-ENV/SERIS, LECO, Building 186, Cadarache 13115 Saint Paul lez Durance cedex (France); Garnier-Laplace, J. [Institute for Radioprotection and Nuclear Safety, IRSN/PRP-ENV/SERIS, Building 159, Cadarache 13115 Saint Paul lez Durance cedex (France)

    2014-08-15

    . This might result from a selection at the expense of sensitive species after the accident. - Highlights: • First characterisation of nematode assemblages in the Chernobyl Exclusion Zone • An accurate estimation of total dose rate absorbed by nematodes was conducted. • The total dose rate to nematodes mainly depends on external alpha and beta radiation. • Nematodes have low sensitivity to chronic exposure to radioactive contamination.

  15. Habitability of extrasolar planets and tidal spin evolution

    CERN Document Server

    Heller, René; Leconte, Jérémy

    2011-01-01

    Stellar radiation has conservatively been used as the key constraint to planetary habitability. We review here the effects of tides, exerted by the host star on the planet, on the evolution of the planetary spin. Tides initially drive the rotation period and the orientation of the rotation axis into an equilibrium state but do not necessarily lead to synchronous rotation. As tides also circularize the orbit, eventually the rotation period does equal the orbital period and one hemisphere will be permanently irradiated by the star. Furthermore, the rotational axis will become perpendicular to the orbit, i.e. the planetary surface will not experience seasonal variations of the insolation. We illustrate here how tides alter the spins of planets in the traditional habitable zone. As an example, we show that, neglecting perturbations due to other companions, the Super-Earth Gl581d performs two rotations per orbit and that any primordial obliquity has been eroded.

  16. Habitability of extrasolar planets and tidal spin evolution.

    Science.gov (United States)

    Heller, René; Barnes, Rory; Leconte, Jérémy

    2011-12-01

    Stellar radiation has conservatively been used as the key constraint to planetary habitability. We review here the effects of tides, exerted by the host star on the planet, on the evolution of the planetary spin. Tides initially drive the rotation period and the orientation of the rotation axis into an equilibrium state but do not necessarily lead to synchronous rotation. As tides also circularize the orbit, eventually the rotation period does equal the orbital period and one hemisphere will be permanently irradiated by the star. Furthermore, the rotational axis will become perpendicular to the orbit, i.e. the planetary surface will not experience seasonal variations of the insolation. We illustrate here how tides alter the spins of planets in the traditional habitable zone. As an example, we show that, neglecting perturbations due to other companions, the Super-Earth Gl581d performs two rotations per orbit and that any primordial obliquity has been eroded.

  17. Response of Atmospheric Biomarkers to NOx-induced Photochemistry Generated by Stellar Cosmic Rays for Earth-like Planets in the Habitable Zone of M-Dwarf Stars

    CERN Document Server

    Grenfell, John Lee; von Paris, Philip; Patzer, Beate; Lammer, Helmut; Stracke, Barbara; Gebauer, Stefanie; Schreier, Franz; Rauer, Heike

    2015-01-01

    Understanding whether M-dwarf stars may host habitable planets with Earth-like atmospheres and biospheres is a major goal in exoplanet research. If such planets exist, the question remains as to whether they could be identified via spectral signatures of biomarkers. Such planets may be exposed to extreme intensities of cosmic rays that could perturb their atmospheric photochemistry. Here, we consider stellar activity of M-dwarfs ranging from quiet up to strong flaring conditions and investigate one particular effect upon biomarkers, namely, the ability of secondary electrons caused by stellar cosmic rays to break up atmospheric molecular nitrogen (N2), which leads to production of nitrogen oxides in the planetary atmosphere, hence affecting biomarkers such as ozone. We apply a stationary model, that is, without a time-dependence, hence we are calculating the limiting case where the atmospheric chemistry response time of the biomarkers is assumed to be slow and remains constant compared with rapid forcing by t...

  18. Glioblastoma Recurrence Patterns After Radiation Therapy With Regard to the Subventricular Zone

    Energy Technology Data Exchange (ETDEWEB)

    Adeberg, Sebastian, E-mail: Sebastian.adeberg@med.uni-heidelberg [Department of Radiation Oncology, University Hospital of Heidelberg, Heidelberg (Germany); König, Laila; Bostel, Tilman; Harrabi, Semi; Welzel, Thomas [Department of Radiation Oncology, University Hospital of Heidelberg, Heidelberg (Germany); Debus, Jürgen [Department of Radiation Oncology, University Hospital of Heidelberg, Heidelberg (Germany); Heidelberg Ion Therapy Center, Heidelberg (Germany); DKFZ Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center Heidelberg (Germany); Combs, Stephanie E. [Department of Radiation Oncology, University Hospital of Heidelberg, Heidelberg (Germany); Heidelberg Ion Therapy Center, Heidelberg (Germany)

    2014-11-15

    Purpose: We evaluated the influence of tumor location and tumor spread in primary glioblastoma (GBM), with respect to the subventricular zone (SVZ), on recurrence behavior, progression-free survival (PFS), and overall survival (OS). Methods and Materials: 607 patients (376 male and 231 female) with a median age of 61.3 years (range, 3.0-87.9 years) and primary GBM treated with radiation therapy (RT) from 2004 to 2012 at a single institution were included in this retrospective study. Preoperative images and follow-up examination results were assessed to evaluate tumor location. Tumors were classified according to the tumor location in relation to the SVZ. Results: The median PFS of the study population was 5.2 months (range, 1-91 months), and the median OS was 13.8 months (range, 1-102 months). Kaplan-Meier analysis showed that tumor location in close proximity to the SVZ was associated with a significant decline in PFS and OS (4.8 and 12.3 months, respectively; each P<.001). Furthermore, in cases where tumors were involved with the SVZ, distant cerebral progression (43.8%; P=.005) and multifocal progression (39.8%; P=.008) were more common. Interestingly, opening of the ventricle during the previous surgery showed no impact on PFS and OS. Conclusion: GBM in close proximity to the SVZ was associated with decreased survival and had a higher risk of multifocal or distant progression. Ventricle opening during surgery had no effect on survival rates.

  19. Host Star Evolution for Planet Habitability

    Science.gov (United States)

    Gallet, Florian; Charbonnel, Corinne; Amard, Louis

    2016-11-01

    With about 2000 exoplanets discovered within a large range of different configurations of distance from the star, size, mass, and atmospheric conditions, the concept of habitability cannot rely only on the stellar effective temperature anymore. In addition to the natural evolution of habitability with the intrinsic stellar parameters, tidal, magnetic, and atmospheric interactions are believed to have strong impact on the relative position of the planets inside the so-called habitable zone. Moreover, the notion of habitability itself strongly depends on the definition we give to the term "habitable". The aim of this contribution is to provide a global and up-to-date overview of the work done during the last few years about the description and the modelling of the habitability, and to present the physical processes currently includes in this description.

  20. Timeframe of speciation inferred from secondary contact zones in the European tree frog radiation (Hyla arborea group).

    Science.gov (United States)

    Dufresnes, Christophe; Brelsford, Alan; Crnobrnja-Isailović, Jelka; Tzankov, Nikolay; Lymberakis, Petros; Perrin, Nicolas

    2015-08-08

    Hybridization between incipient species is expected to become progressively limited as their genetic divergence increases and reproductive isolation proceeds. Amphibian radiations and their secondary contact zones are useful models to infer the timeframes of speciation, but empirical data from natural systems remains extremely scarce. Here we follow this approach in the European radiation of tree frogs (Hyla arborea group). We investigated a natural hybrid zone between two lineages (Hyla arborea and Hyla orientalis) of Mio-Pliocene divergence (~5 My) for comparison with other hybrid systems from this group. We found concordant geographic distributions of nuclear and mitochondrial gene pools, and replicated narrow transitions (~30 km) across two independent transects, indicating an advanced state of reproductive isolation and potential local barriers to dispersal. This result parallels the situation between H. arborea and H. intermedia, which share the same amount of divergence with H. orientalis. In contrast, younger lineages show much stronger admixture at secondary contacts. Our findings corroborate the negative relationship between hybridizability and divergence time in European tree frogs, where 5 My are necessary to achieve almost complete reproductive isolation. Speciation seems to progress homogeneously in this radiation, and might thus be driven by gradual genome-wide changes rather than single speciation genes. However, the timescale differs greatly from that of other well-studied amphibians. General assumptions on the time necessary for speciation based on evidence from unrelated taxa may thus be unreliable. In contrast, comparative hybrid zone analyses within single radiations such as our case study are useful to appreciate the advance of speciation in space and time.

  1. First use of soil nematode communities as bioindicator of radiation impact in the Chernobyl exclusion zone

    Energy Technology Data Exchange (ETDEWEB)

    Lecomte, C.; Bonzom, J.M.; Adam-Guillermin, C. [Institute for Radioprotection and Nuclear Safety, IRSN/PRP-ENV/SERIS, LECO (France); Della-Vedova, C. [Magelis, Cadenet (France); Beaugelin-Seiller, K. [Institute for Radioprotection and Nuclear Safety, IRSN/PRP-ENV/SERIS, LM2E (France); Gaschak, S. [Chernobyl Center for Nuclear safety, Radioactive waste and Radioecology, International Radioecology Laboratory (Ukraine); Coppin, F. [Institute for Radioprotection and Nuclear Safety, IRSN/PRP-ENV/SERIS, L2BT (France); Garnier-Laplace, J. [Institute for Radioprotection and Nuclear Safety, IRSN/PRP-ENV/SERIS (France)

    2014-07-01

    The aim of the study was to assess the effects of former radioactive contamination on the structure of the nematode community in sites affected by the fallout from the Chernobyl accident that occurred on 26, April 1986. Nematodes were collected in spring 2011 from 18 forest sites of the Chernobyl Exclusion Zone (CEZ). The external gamma dose rates, measured from radiophotoluminescent dosimeters (RPL) varied from 0.2 to 22 μGy h{sup -1} between sites. In parallel, the Total dose rates (TDR) absorbed by nematodes were predicted from measured soil activity concentrations, Dose Conversion Coefficients (DCC, calculated by the EDEN software) and Soil-to-biota concentration ratios (from the ERICA tool database). Results showed that TDR were one order of magnitude above the external gamma dose rate measured from RPL. This is mainly due to the contribution of alpha ({sup 241}Am,{sup 238,239,240}Pu) and beta ({sup 90}Sr, and {sup 137}Cs) emitters in the external dose rate. The small size (in the order of mm) of nematodes promoted a high energy deposition throughout the organisms without fading, giving more weight to external dose rate induced by alpha-and beta-emitters, relatively to gamma-emitters. Analysis of the nematode community showed a majority of bacterial-, plant-, and fungal- feeder nematodes and almost none of the disturbance sensitive families whatever the level of radioactive contamination. Multiple regression analysis was used to establish relationships between ecological features (nematodes abundance and family diversity, indices of ecosystem structure and function) to the environmental characteristics (TDR and soil physico-chemical properties). No evidence was found that nematode total abundance and family diversity were impaired by the radiological contamination. However, the Nematode Channel Ratio (defining the relative abundance of bacterial- versus fungal-feeding nematodes) decreased significantly with increasing TDR suggesting that the radioactive

  2. Measurement of zone plate efficiencies in the extreme ultraviolet and applications to radiation monitors for absolute spectral emission

    Science.gov (United States)

    Seely, John; Holland, Glenn; Bremer, James C.; Zukowski, Tim; Feser, Michael; Feng, Yan; Kjornrattanawanich, Benjawan; Goray, Leonid

    2006-08-01

    The diffraction efficiencies of a Fresnel zone plate (ZP), fabricated by Xradia Inc. using the electron-beam writing technique, were measured using polarized, monochromatic synchrotron radiation in the extreme ultraviolet wavelength range 3.4-22 nm. The ZP had 2 mm diameter, 3330 zones, 150 nm outer zone width, and a 1 mm central occulter. The ZP was supported by a 100 nm thick Si 3N 4 membrane. The diffraction patterns were recorded by CMOS imagers with phosphor coatings and with 5.2 μm or 48 μm pixels. The focused +n orders (n=1-4), the diverging -1 order, and the undiffracted 0 order were observed as functions of wavelength and off-axis tilt angle. Sub-pixel focusing of the +n orders was achieved. The measured efficiency in the +1 order was in the 5% to 30% range with the phase-shift enhanced efficiency occurring at 8.3 nm where the gold bars are partially transmitting. The +2 and higher order efficiencies were much lower than the +1 order efficiency. The efficiencies were constant when the zone plate was tilted by angles up to +/-1° from the incident radiation beam. This work indicates the feasibility and benefits of using zone plates to measure the absolute EUV spectral emissions from solar and laboratory sources: relatively high EUV efficiency in the focused +1 order, good out-of-band rejection resulting from the low higher-order efficiencies and the ZP focusing properties, insensitivity to (unfocused) visible light scattered by the ZP, flat response with off-axis angle, and insensitivity to the polarization of the radiation based on the ZP circular symmetry. EUV sensors with Fresnel zone plates potentially have many advantages over existing sensors intended to accurately measure absolute EUV emission levels, such as those implemented on the GOES N-P satellites that use transmission gratings which have off-axis sensitivity variations and poor out-of-band EUV and visible light rejection, and other solar and laboratory sensors using reflection gratings which

  3. External doses to 350 m zone residents due to anisotropic radiation from the JCO criticality accident in Tokai-mura

    Energy Technology Data Exchange (ETDEWEB)

    Takada, Jun [Hiroshima Univ., Research Institute for Radiation Biology and Medicine, International Radiation Information Center, Kasumi, Hiroshima (Japan)

    2001-11-01

    The validity of method on the individual dose reconstruction based on the anisotropic radiation distribution was confirmed by comparison with dose from Na-24 whole body counting for the seven persons in the western side neighbor company of JCO campus. The successful coincidence between D{sub i} (Na-24) and D{sub i} (Present) also supports the validity of the second version of D(r) reported by Head Office of Countermeasure. The present dose reconstruction for the 350 m zone in the western side showed average value of 0.7 mSv and maximal value of 3.1 mSv, as indoor-dose under the assumption of effective transmittance of 0.4 for all the houses. If all the residents in 350 m zone were indoors during the accident, 83% of them might have received external doses of less than 1 mSv. Radiation exposure to the nearest residential area in the southern west direction was significantly reduced with I(O{sub j}) between 0.4 and 0.2 by several buildings in JCO campus. The present study on public dose confirms that the official report on public dose (the maximal value of 21 mSv for individual dose) from Head Office of Countermeasure is significantly overestimated due to their isotropic treatment of radiation from the source. (author)

  4. External doses to 350 m zone residents due to anisotropic radiation from the JCO criticality accident in Tokai-mura.

    Science.gov (United States)

    Takada, J

    2001-09-01

    The validity of a method for individual dose reconstruction based on the anisotropic radiation distribution was confirmed by a comparison with the dose from Na-24 whole-body counting for seven persons at a neighboring company located on the western side of the JCO campus. The successful coincidence between Di (Na-24) and Di (present) also supports the validity of the second version of D(r) reported by the Head Office of Countermeasure. The present dose reconstruction for the 350 m zone at the western side showed an average value of 0.7 mSv and a maximal value of 3.1 mSv, as indoor-dose under the assumption of an effective transmittance of 0.4 for all of the houses. If all of the residents in 350 m zone were indoors during the accident, 83% of them might have received external doses of less than 1 mSv. The radiation exposure to the nearest residential area in the southern-west direction was significantly reduced with phi(theta(i)) between 0.4 and 0.2 by several buildings on the JCO campus. The present study on the public dose confirms that the official report on the public dose (the maximal value of 21 mSv for individual doses) from Head Office of Countermeasure is significantly overestimated due to their isotropic treatment of radiation from the source.

  5. S-Type and P-Type Habitability in Stellar Binary Systems: A Comprehensive Approach. I. Method and Applications

    CERN Document Server

    Cuntz, Manfred

    2013-01-01

    A comprehensive approach is provided to the study of both S-type and P-type habitability in stellar binary systems, which in principle can also be expanded to systems of higher order. P-type orbits occur when the planet orbits both binary components, whereas in case of S-type orbits the planet orbits only one of the binary components with the second component considered a perturbator. The selected approach encapsulates a variety of different aspects, which include: (1) The consideration of a joint constraint including orbital stability and a habitable environment for a putative system planet through the stellar radiative energy fluxes ("radiative habitable zone"; RHZ) needs to be met. (2) The treatment of conservative, general and extended zones of habitability for the various systems as defined for the Solar System and beyond. (3) The providing of a combined formalism for the assessment of both S-type and P-type habitability; in particular, mathematical criteria are presented for which kind of system S-type ...

  6. S-Type and P-Type Habitability in Stellar Binary Systems: A Comprehensive Approach. II. Elliptical Orbits

    CERN Document Server

    Cuntz, Manfred

    2014-01-01

    In the first paper of this series, a comprehensive approach has been provided for the study of S-type and P-type habitable regions in stellar binary systems, which was, however, restricted to circular orbits of the stellar components. Fortunately, a modest modification of the method also allows for the consideration of elliptical orbits, which of course entails a much broader range of applicability. This augmented method is presented here, and numerous applications are conveyed. In alignment with Paper I, the selected approach considers a variety of aspects, which comprise the consideration of a joint constraint including orbital stability and a habitable region for a putative system planet through the stellar radiative energy fluxes (radiative habitable zone; RHZ). The devised method is based on a combined formalism for the assessment of both S-type and P-type habitability; in particular, mathematical criteria are deduced for which kinds of systems S-type and P-type habitable zones are realized. If the RHZs ...

  7. SMEs’ Purchasing Habits

    Directory of Open Access Journals (Sweden)

    Emre S. Ozmen

    2014-05-01

    Full Text Available Although micro companies overpower the small and medium enterprise (SME segment, generalizations are often with medium size companies, and therefore, there are many unknowns, especially when it comes to its buying behavior. Conformist studies and industry practices assume SMEs to be “normative” or “conservative” buyers; however, this hypothesis is untested. This article aims to scrutinize the reality, and proposes a unified model that rejects pre-containerization in buying behavior typologies, as well as selectiveness in terms of audience type, whether it is corporate, SME, or consumer. While replacing researchers’ perceptions with the audience’s, the model yields actual knowledge that can lead to audience’s beliefs in lieu of the opposite, which is used to mislead stakeholders. The study shows that SMEs also buy like individuals and spend in a similar way to consumers’, including not only “normative” and “conservative” but also “negligent” and “impulse” zones. From the research-implications perspective, future studies by behaviorists can explore why SMEs purchase in this way. Marketers may benefit from the finding that SMEs buy like individuals. In addition, SMEs may want to be conscious of their purchasing habits, and—utilizing the newly introduced “risk score” frontier—policymakers should assess the consequences of these habits at the macro level.

  8. Habitable planet finder

    Science.gov (United States)

    Ditto, Thomas D.

    2012-09-01

    A notional space telescope configuration is presented that addresses issues of angular resolution, spectral bandwidth and rejection of host star glare by means of a double dispersion architecture. The telescope resolves angle by wavelength. In an earlier embodiment for surveys, a primary objective grating telescope architecture was shown to acquire millions of objects in one observation cycle, one wave length at a time. The proposed HPF can detect exquisite spectral signatures out of millions of wavelengths in albedos - one exoplanetary system at a time. Like its predecessor, the new HPF telescope has a ribbon-shaped flat gossamer membrane primary objective that lends itself to space deployment, but the preferred embodiment uses a holographic optical element rather than a plane grating. The HOE provides an improvement in efficiency at select wavelength bands. The considerable length of the membrane can be in the 100 meter class providing angular resolution sufficient to resolve planets in the habitable zone and also spectral resolution sufficient to earmark habitability. A novel interferometric secondary spectrograph rejects host star glare. However, the architecture cannot disambiguate multiple stellar sources and may require unprecedented focal lengths in the primary objective to isolate one system at a time.

  9. Empirical Model for Estimating Global Solar Radiation on Horizontal Surfaces for Selected Cities in the Six Geopolitical Zones in Nigeria

    Directory of Open Access Journals (Sweden)

    Okundamiya, Michael Stephen

    2010-12-01

    Full Text Available This study proposes a temperature-based model of monthly mean daily global solar radiation on horizontal surfaces for selected cities, representing the six geopolitical zones in N igeria. The modelling was based on linear regression theory and was computed using monthly mean daily data set for minimum and maximum ambient temperatures. The results of three statistical indicators: Mean Bias Error (MBE, Root Mean Square Error (RMSE and t-statistic (TS; performed on the model along with practical comparison of the estimated and observed data validate the excellent performance accuracy of the proposed model.

  10. Empirical Model for Estimating Global Solar Radiation on Horizontal Surfaces for Selected Cities in the Six Geopolitical Zones in Nigeria

    Directory of Open Access Journals (Sweden)

    M. S. Okundamiya

    2011-01-01

    Full Text Available This study proposes a temperature-based model of monthly mean daily global solar radiation on horizontal surfaces for selected cities, representing the six geopolitical zones in Nigeria. The modelling was based on linear regression theory and was computed using monthly mean daily data set for minimum and maximum ambient temperatures. The results of three statistical indicators: Mean Bias Error (MBE, Root Mean Square Error (RMSE, and t-statistic (TS, performed on the model along with practical comparison of the estimated and observed data, validate the excellent performance accuracy of the proposed model.

  11. The Possibility of Multiple Habitable Worlds Orbiting Binary Stars

    Science.gov (United States)

    Mason, P. A.

    2014-03-01

    Are there planetary systems for which there is life on multiple worlds? Where are these fruitful planetary systems and how do we detect them? In order to address these questions; conditions which enable life and those that prevent or destroy it must be considered. Many constraints are specific to planetary systems, independent of the number of worlds in habitable zones. For instance, life on rocky planets or moons likely requires the right abundance of volatiles and radiogenic elements for prolonged geologic activity. Catastrophic sterilization events such as nearby supernovae and gamma-ray bursts affect entire planetary systems not just specific worlds. Giant planets may either enhance or disrupt the development of complex life within a given system. It might be rare for planetary systems to possess qualities that promote life and lucky enough to avoid cataclysm. However, multiple habitable planets may provide enhanced chances for advanced life to develop. The best predictor of life on one habitable zone planet might be the presence of life on its neighbor as panspermia may occur in planetary systems with several habitable worlds. Circumbinary habitability may go hand in hand with habitability of multiple worlds. The circumstances in which the Binary Habitability Mechanism (BHM) operates are reviewed. In some cases, the early synchronization of the primary's rotation with the binary period results in a reduction of XUV flux and stellar winds. Main sequence binaries with periods in the 10-50 days provide excellent habitable environments, within which multiple worlds may thrive. Planets and moons in these habitable zones need less magnetic protection than their single star counterparts. Exomoons orbiting a Neptune-like planet, within a BHM protected habitable zone, are expected to be habitable over a wide range of semimajor axes due to a larger planetary Hill radius. A result confirmed by numerical orbital calculations. Binaries containing a solar type star with a

  12. Radiation-induced cytogenetic and hematologic effects on aquatic biota within the Chernobyl exclusion zone

    Energy Technology Data Exchange (ETDEWEB)

    Gudkov, Dmitri I.; Shevtsova, Natalia L.; Pomortseva, Natalia A.; Kaglyan, Alexander Ye. [Institute of Hydrobiology, Geroyev Stalingrada Ave. 12, UA-04210 Kiev (Ukraine); Dzyubenko, Elena V. [G. Skovoroda Pereyaslav-Khmelnitsk State Teacher Training University, Sukhomlinskogo Str. 30, UA-08401 Pereyaslav-Khmelnitsk (Ukraine); Rodionova, Natalia K. [R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, Vasilkovskaya Str. 45, UA-04073 Kiev (Ukraine); Nazarov, Alexander B. [Chernobyl Specialized Enterprise, Radyanska Str. 70, UA-07270 Chernobyl (Ukraine)

    2014-07-01

    During 1998-2013 we studied the rate of chromosomal aberrations in embryo tissues of the pond snails and root meristems of higher aquatic plants, and also hematologic indexes of mantle liquid of the snails and peripheral blood of fishes in water bodies with different levels of radioactive contamination within the Chernobyl exclusion zone (ChEZ). The absorbed dose rate for hydrobionts from water bodies of the ChEZ during the period of researches registered in a range of 4.6.10{sup -3} - 3.4 Gy year{sup -1}, and in the control water bodies - up to 1.7.10{sup -3} Gy year{sup -1}. Cytogenetic analysis of embryos of the pond snail Lymnaea stagnalis testifies the increased level of chromosomal aberrations in the mollusks from stagnant water bodies of the ChEZ in comparison with control reservoirs. During the period of studies the highest values were registered for the snails of closed reservoirs of the ChEZ (Glubokoye Lake, Dalyokoe Lake, Azbuchin Lake etc.) where the rate of chromosomal aberrations was registered within range of 18-27%, that on the average more than in 10 times exceeds the spontaneous mutagenesis level for aquatic species. The pond snails of river ecosystems were characterized by the low level of aberrant cells - 2.5-3.5%. For the mollusks from the control lakes this index was reached on the average 1.5% with the maximal values 2.3%. The positive correlation between chromosomal aberration rate and absorbed dose rate in the pond snails' embryos in water bodies of the ChEZ was registered. The rate of chromosomal aberrations in root meristematic cells of higher aquatic plants (Phragmites australis, Stratiotes aloides, Glyceria maxima, Butomus umbellatus, Sparganium erectum and Sagittaria sagittifolia) from the most contaminated lakes of the ChEZ was in range of 7-17%. In the plants of rivers this index was on the average 3.5-5.0%, and was not exceed 2.6% in control water bodies. Thus, the rate of chromosomal aberrations in hydrobionts of the stagnant

  13. Vadose-zone moisture dynamics under radiation boundary conditions during a drying process

    Institute of Scientific and Technical Information of China (English)

    韩江波; 周志芳; 傅志敏; 王锦国

    2014-01-01

    In order to better understand the soil moisture dynamics during a drying process, a soil column experiment is conducted in the laboratory, followed by the numerical modeling with consideration of the coupled liquid water, water vapor and heat transport in the vadose zone. Results show that there are three distinct subzones above the water table according to the temporally dynamic variation of the water content profiles. Zone 1 sees a decrease in the water contents in the upper profiles (0 m-0.05 m) due to a negative net water flux in this zone where the upward isothermal water vapor flux becomes the main flow mechanism in the soils. In contrast, the water content within Zone 2 in the depth ranging from 0.05 m to 0.37 m sees an apparent increase over time, resulting from the positive net thermal water-vapor and isothermal liquid-water fluxes into this layer. Zone 3 (0.37 m-0.65 m) also sees an apparent decrease in the water content since the isothermal liquid water flux carries the liquid water either upward out of this region for vaporization or downward to the water table as a recharge to the groundwater.

  14. Habitability of Planets Orbiting Cool Stars

    CERN Document Server

    Barnes, Rory; Domagal-Goldman, Shawn D; Heller, Rene; Jackson, Brian; Lopez-Morales, Mercedes; Tanner, Angelle; Gomez-Perez, Natalia; Ruedas, Thomas

    2010-01-01

    Terrestrial planets are more likely to be detected if they orbit M dwarfs due to the favorable planet/star size and mass ratios. However, M dwarf habitable zones are significantly closer to the star than the one around our Sun, which leads to different requirements for planetary habitability and its detection. We review 1) the current limits to detection, 2) the role of M dwarf spectral energy distributions on atmospheric chemistry, 3) tidal effects, stressing that tidal locking is not synonymous with synchronous rotation, 4) the role of atmospheric mass loss and propose that some habitable worlds may be the volatile-rich, evaporated cores of giant planets, and 5) the role of planetary rotation and magnetic field generation, emphasizing that slow rotation does not preclude strong magnetic fields and their shielding of the surface from stellar activity. Finally we present preliminary findings of the NASA Astrobiology Institute's workshop "Revisiting the Habitable Zone." We assess the recently-announced planet ...

  15. Implementation and modification of a three-dimensional radiation stress formulation for surf zone and rip-current applications

    Science.gov (United States)

    Kumar, N.; Voulgaris, G.; Warner, J.C.

    2011-01-01

    Regional Ocean Modeling System (ROMS v 3.0), a three-dimensional numerical ocean model, was previously enhanced for shallow water applications by including wave-induced radiation stress forcing provided through coupling to wave propagation models (SWAN, REF/DIF). This enhancement made it suitable for surf zone applications as demonstrated using examples of obliquely incident waves on a planar beach and rip current formation in longshore bar trough morphology (Haas and Warner, 2009). In this contribution, we present an update to the coupled model which implements a wave roller model and also a modified method of the radiation stress term based on Mellor (2008, 2011a,b,in press) that includes a vertical distribution which better simulates non-conservative (i.e., wave breaking) processes and appears to be more appropriate for sigma coordinates in very shallow waters where wave breaking conditions dominate. The improvements of the modified model are shown through simulations of several cases that include: (a) obliquely incident spectral waves on a planar beach; (b) obliquely incident spectral waves on a natural barred beach (DUCK'94 experiment); (c) alongshore variable offshore wave forcing on a planar beach; (d) alongshore varying bathymetry with constant offshore wave forcing; and (e) nearshore barred morphology with rip-channels. Quantitative and qualitative comparisons to previous analytical, numerical, laboratory studies and field measurements show that the modified model replicates surf zone recirculation patterns (onshore drift at the surface and undertow at the bottom) more accurately than previous formulations based on radiation stress (Haas and Warner, 2009). The results of the model and test cases are further explored for identifying the forces operating in rip current development and the potential implication for sediment transport and rip channel development. Also, model analysis showed that rip current strength is higher when waves approach at angles of 5

  16. Low Mach and Peclet number limit for a model of stellar tachocline and upper radiative zones

    Directory of Open Access Journals (Sweden)

    Donatella Donatelli

    2016-09-01

    Full Text Available We study a hydrodynamical model describing the motion of internal stellar layers based on compressible Navier-Stokes-Fourier-Poisson system. We suppose that the medium is electrically charged, we include energy exchanges through radiative transfer and we assume that the system is rotating. We analyze the singular limit of this system when the Mach number, the Alfven number, the Peclet number and the Froude number approache zero in a certain way and prove convergence to a 3D incompressible MHD system with a stationary linear transport equation for transport of radiation intensity. Finally, we show that the energy equation reduces to a steady equation for the temperature corrector.

  17. UV surface habitability of the TRAPPIST-1 system

    Science.gov (United States)

    O'Malley-James, Jack T.; Kaltenegger, L.

    2017-07-01

    With the discovery of rocky planets in the temperate habitable zone (HZ) of the close-by cool star TRAPPIST-1, the question of whether such planets could harbour life arises. Habitable planets around red dwarf stars can orbit in radiation environments that can be life-sterilizing. Ultraviolet (UV) flares from these stars are more frequent and intense than solar flares. Additionally, their temperate HZs are closer to the star. Here we present UV surface environment models for TRAPPIST-1's HZ planets and explore the implications for life. TRAPPIST-1 has high X-ray/extreme-ultraviolet activity, placing planetary atmospheres at risk from erosion. If a dense Earth-like atmosphere with a protective ozone layer existed on planets in the HZ of TRAPPIST-1, UV surface environments would be similar to the present-day Earth. However, an eroded or an anoxic atmosphere would allow more UV to reach the surface, making surface environments hostile even to highly UV tolerant terrestrial extremophiles. If future observations detect ozone in the atmospheres of any of the planets in the HZ of TRAPPIST-1, these would be interesting targets for the search for surface life. We anticipate our assay to be a starting point for in-depth exploration of stellar and atmospheric observations of the TRAPPIST-1 planets to constrain their UV surface habitability.

  18. Development of laser deposited multilayer zone plate structures for soft X-ray radiation

    Energy Technology Data Exchange (ETDEWEB)

    Liese, Tobias; Radisch, Volker; Knorr, Inga [Institut fuer Materialphysik, University of Goettingen, Friedrich-Hund-Platz 1, 37077 Goettingen (Germany); Reese, Michael; Grossmann, Peter; Mann, Klaus [Laser-Laboratorium Goettingen e.V., Hans-Adolf-Krebs-Weg 1, 37077 Goettingen (Germany); Krebs, Hans-Ulrich, E-mail: krebs@ump.gwdg.de [Institut fuer Materialphysik, University of Goettingen, Friedrich-Hund-Platz 1, 37077 Goettingen (Germany)

    2011-04-01

    As a novel approach, the combination of pulsed laser deposition and focused ion beam was applied to fabricate different types of multilayer zone plate structures for soft X-ray applications. For this purpose, high quality non-periodic ZrO{sub 2}/Ti multilayers were deposited by pulsed laser deposition on planar Si substrates and on rotating steel wires with layer thicknesses according to the Fresnel zone plate law. Linear focusing optics were fabricated by cutting slices out of the multilayers by focused ion beam and placing them directly over pinholes within Si{sub 3}N{sub 4} substrates. Additionally, it was shown that laser deposition of depth-graded multilayers on a wire is also a promising way for building up multilayer zone plates with point focus. First experiments using a table-top X-ray source based on a laser-induced plasma show that the determined focal length and spatial resolution of the fabricated multilayer Laue lens corresponds to the designed optic.

  19. The bovine tuberculosis burden in cattle herds in zones with low dose radiation pollution in Ukraine

    Directory of Open Access Journals (Sweden)

    Svitlana Pozmogova

    2009-06-01

    Full Text Available The authors describe a study of the tuberculosis (TB incidence in cattle exposed to low doses of radiation resulting from the Chernobyl (pronounced ‘Chornobyl’ in Ukrainian nuclear plant catastrophe in 1986. The purpose of the study was to determine if ionising radiation influences the number of outbreaks of bovine TB and their severity on farms in the Kyiv, Cherkasy and Chernigiv regions of Ukraine. These farms are all located within a 200 km radius of Chernobyl and have had low-dose radiation pollution. Pathological and blood samples were taken from cattle in those regions that had positive TB skin tests. Mycobacterium spp. were isolated, differentiated by PCR, analysed and tested in guinea-pigs and rabbits. Species differentiation showed a significant percentage of atypical mycobacteria, which resulted in the allergic reactions to tuberculin antigen in the skin test. Mixed infection of M. bovis and M. avium subsp. hominissuis was found in three cases. The results concluded that low-dose radiation plays a major role in the occurrence of bovine TB in regions affected by the Chernobyl nuclear disaster.

  20. Star Masses and Star-Planet Distances for Earth-like Habitability

    Science.gov (United States)

    2017-01-01

    Abstract This paper presents statistical estimates for the location and duration of habitable zones (HZs) around stars of different mass. The approach is based upon the assumption that Earth's location, and the Sun's mass, should not be highly atypical of inhabited planets. The results support climate-model-based estimates for the location of the Sun's HZ except models giving a present-day outer-edge beyond 1.64 AU. The statistical approach also demonstrates that there is a habitability issue for stars smaller than 0.65 solar masses since, otherwise, Earth would be an extremely atypical inhabited world. It is difficult to remove this anomaly using the assumption that poor habitability of planets orbiting low-mass stars results from unfavorable radiation regimes either before, or after, their stars enter the main sequence. However, the anomaly is well explained if poor habitability results from tidal locking of planets in the HZs of small stars. The expected host-star mass for planets with intelligent life then has a 95% confidence range of 0.78 M⊙ planets with at least simple life is 0.57 M⊙ < M < 1.64 M⊙. Key Words: Habitability—Habitable zone—Anthropic—Red dwarfs—Initial mass function. Astrobiology 17, 61–77. PMID:28103107

  1. Psychology of Habit.

    Science.gov (United States)

    Wood, Wendy; Rünger, Dennis

    2016-01-01

    As the proverbial creatures of habit, people tend to repeat the same behaviors in recurring contexts. This review characterizes habits in terms of their cognitive, motivational, and neurobiological properties. In so doing, we identify three ways that habits interface with deliberate goal pursuit: First, habits form as people pursue goals by repeating the same responses in a given context. Second, as outlined in computational models, habits and deliberate goal pursuit guide actions synergistically, although habits are the efficient, default mode of response. Third, people tend to infer from the frequency of habit performance that the behavior must have been intended. We conclude by applying insights from habit research to understand stress and addiction as well as the design of effective interventions to change health and consumer behaviors.

  2. Healthy Sleep Habits

    Science.gov (United States)

    ... Sleep Apnea Testing CPAP Healthy Sleep Habits Healthy Sleep Habits Your behaviors during the day, and especially ... team at an AASM accredited sleep center . Quick Sleep Tips Follow these tips to establish healthy sleep ...

  3. Effects of ionizing radiation on the antioxidant system of microscopic fungi with radioadaptive properties found in the Chernobyl exclusion zone.

    Science.gov (United States)

    Tugay, Tatyana I; Zheltonozhskaya, Marina V; Sadovnikov, Leonid V; Tugay, Andrei V; Farfán, Eduardo B

    2011-10-01

    Some microscopic fungi found in the area of the Chernobyl Exclusion Zone appear to have unique radioadaptive properties associated with their capability to respond positively to the effects of ionizing irradiation. On the one hand, this capability can be used potentially in bio-remediation technologies, and on the other hand, it requires additional, more thorough studies to identify its underlying mechanisms. Practically, no data are currently available on mechanisms for implementation of these radioadaptive properties by microscopic fungi. The objective of the completed study was to evaluate the functioning of the antioxidant system of a microscopic fungus as one of potential mechanisms for implementation of its radioadaptive properties. The study was performed using a model system simulating the soil radioactivity in the 5-km zone around the Chernobyl Nuclear Power Plant, with the ratio of the radioactive isotopes matching the radionuclide content in the fuel component of the Chernobyl fallout. The completed study was the first ever performed to identify a comprehensive response of the major components of the antioxidant system of the microscopic fungi to ionizing radiation, resulting in an induced melanin synthesis and increased activity of the known enzymes of antioxidant protection. Their response to ionizing radiation depended on the presence or absence of radioadaptive properties and phase of the fungal growth. Fungi with radioadaptive properties have a much higher susceptibility for inducing synthesis of melanin and antioxidant enzymes than fungi without radioadaptive properties (hereinafter referred to as the reference species or strains), which illustrates the contribution of these processes to "radiophilia" of the fungi.

  4. Habitability in the Local Universe

    Science.gov (United States)

    Mason, Paul A.

    2017-01-01

    Long term habitability on the surface of planets has as a prerequisite a minimum availability of elements to build rocky planets, their atmospheres, and for life sustaining water. They must be within the habitable zone and avoid circumstances that cause them to lose their atmospheres and water. However, many astrophysical sources are hazardous to life on the surfaces of planets. Planets in harsh environments may require strong magnetic fields to protect their biospheres from high energy particles from the host star(s). Planets in harsh environments may additionally require a strong astrosphere to be sufficiently able to deflect galactic cosmic-rays. Supernovae (SNe) play a central role in the habitability of planets in the disks of star forming galaxies. Currently, the SNe rate maintains a relativistic galactic wind shielding planets in the disk from extragalactic cosmic rays. However, if the density of SNe in the disk of the galaxy were significantly higher, as it was 6-8 GYA, the frequency of nearby catastrophic events and often prolonged harsh environment may have strongly constrained life in the early history of the Milky Way. Active galactic nuclei (AGN) may remain quiescent for hundreds of millions of years only to activate for some time due extraordinary accretion episode due to for instance a galactic merger. The starburst galaxy M82 is currently undergoing a merger, probably strongly compromising habitability within that galaxy. The giant elliptical M87 resides in the center of the Virgo supercluster and has probably consumed many such spiral galaxies. We show that super-Eddington accretion onto the supermassive black hole in M87, even for a short while, could compromise the habitability for a large portion of the central supercluster. We discuss environments where these effects may be mitigated.

  5. Radiative transfer model for satellite remote sensing of ocean color in coastal zones

    Science.gov (United States)

    Kobayashi, Hiroshi; Ohta, Sachio; Murao, Naoto; Tachibana, Harukuni; Yamagata, Sadamu

    2001-01-01

    A radiative transfer model for a coupled atmosphere-ocean system was developed for satellite remote sensing of costal pollution to estimate water-leaving radiance from polluted sea surfaces. The optical properties of suspended substances in the ocean such as phytoplankton (Skeletonema costatum and Heterosigma akashiwo), detritus, submicron particles, and inorganic particles were measured or estimated. The equation of radiative transfer in the coupled atmosphere-ocean system was solved by using the invariance imbedding method. The water-leaving radiance in clear and Case II waters, turbid waters with soil particles, and red tide waters, were calculated. It was possible to estimate the soil particle concentration of water by using the ratio of the upward radiance at different wavelengths with a high resolution sensor for the land like the Landsat TM. However, estimating the red tide phytoplankton concentration using Landsat TM was difficult, because the water-leaving radiance varies little with phytoplankton concentration, and is affected by assumed amounts of detritus.

  6. On the habitability of exoplanets orbiting Proxima Centauri

    CERN Document Server

    Lopez, Madeleine; Rodriguez, Lien

    2014-01-01

    We apply a mathematical model for photosynthesis to quantitatively assess the habitability of a hypothetical planet orbiting Proxima Centauri, inside the so called habitability zone. Results suggest significant viability for primary biological productivity, provided living organisms have evolved to reach the ability of using infrared light for photosynthesis.

  7. The habitability of a stagnant-lid Earth

    Science.gov (United States)

    Tosi, N.; Godolt, M.; Stracke, B.; Ruedas, T.; Grenfell, J. L.; Höning, D.; Nikolaou, A.; Plesa, A.-C.; Breuer, D.; Spohn, T.

    2017-09-01

    Context. Plate tectonics is considered a fundamental component for the habitability of the Earth. Yet whether it is a recurrent feature of terrestrial bodies orbiting other stars or unique to the Earth is unknown. The stagnant lid may rather be the most common tectonic expression on such bodies. Aims: To understand whether a stagnant-lid planet can be habitable, i.e. host liquid water at its surface, we model the thermal evolution of the mantle, volcanic outgassing of H2O and CO2, and resulting climate of an Earth-like planet lacking plate tectonics. Methods: We used a 1D model of parameterized convection to simulate the evolution of melt generation and the build-up of an atmosphere of H2O and CO2 over 4.5 Gyr. We then employed a 1D radiative-convective atmosphere model to calculate the global mean atmospheric temperature and the boundaries of the habitable zone (HZ). Results: The evolution of the interior is characterized by the initial production of a large amount of partial melt accompanied by a rapid outgassing of H2O and CO2. The maximal partial pressure of H2O is limited to a few tens of bars by the high solubility of water in basaltic melts. The low solubility of CO2 instead causes most of the carbon to be outgassed, with partial pressures that vary from 1 bar or less if reducing conditions are assumed for the mantle to 100-200 bar for oxidizing conditions. At 1 au, the obtained temperatures generally allow for liquid water on the surface nearly over the entire evolution. While the outer edge of the HZ is mostly influenced by the amount of outgassed CO2, the inner edge presents a more complex behaviour that is dependent on the partial pressures of both gases. Conclusions: At 1 au, the stagnant-lid planet considered would be regarded as habitable. The width of the HZ at the end of the evolution, albeit influenced by the amount of outgassed CO2, can vary in a non-monotonic way depending on the extent of the outgassed H2O reservoir. Our results suggest that

  8. Soil nematode assemblages as bioindicators of radiation impact in the Chernobyl Exclusion Zone.

    Science.gov (United States)

    Lecomte-Pradines, C; Bonzom, J-M; Della-Vedova, C; Beaugelin-Seiller, K; Villenave, C; Gaschak, S; Coppin, F; Dubourg, N; Maksimenko, A; Adam-Guillermin, C; Garnier-Laplace, J

    2014-08-15

    In radioecology, the need to understand the long-term ecological effects of radioactive contamination has been emphasised. This requires that the health of field populations is evaluated and linked to an accurate estimate of received radiological dose. The aim of the present study was to assess the effects of current radioactive contamination on nematode assemblages at sites affected by the fallout from the Chernobyl accident. First, we estimated the total dose rates (TDRs) absorbed by nematodes, from measured current soil activity concentrations, Dose Conversion Coefficients (DCCs, calculated using EDEN software) and soil-to-biota concentration ratios (from the ERICA tool database). The impact of current TDRs on nematode assemblages was then evaluated. Nematodes were collected in spring 2011 from 18 forest sites in the Chernobyl Exclusion Zone (CEZ) with external gamma dose rates, measured using radiophotoluminescent dosimeters, varying from 0.2 to 22 μGy h(-1). These values were one order of magnitude below the TDRs. A majority of bacterial-, plant-, and fungal-feeding nematodes and very few of the disturbance sensitive families were identified. No statistically significant association was observed between TDR values and nematode total abundance or the Shannon diversity index (H'). The Nematode Channel Ratio (which defines the relative abundance of bacterial- versus fungal-feeding nematodes) decreased significantly with increasing TDR, suggesting that radioactive contamination may influence nematode assemblages either directly or indirectly by modifying their food resources. A greater Maturity Index (MI), usually characterising better soil quality, was associated with higher pH and TDR values. These results suggest that in the CEZ, nematode assemblages from the forest sites were slightly impacted by chronic exposure at a predicted TDR of 200 μGy h(-1). This may be imputable to a dominant proportion of pollutant resistant nematodes in all sites. This might

  9. Sensitivity of Biosignatures on Earth-like Planets orbiting in the Habitable Zone of Cool M-Dwarf Stars to varying Stellar UV Radiation and Surface Biomass Emissions

    CERN Document Server

    Grenfell, John Lee; von Paris, Philip; Godolt, Mareike; Rauer, Heike

    2015-01-01

    We find that variations in the UV emissions of cool M-dwarf stars have a potentially large impact upon atmospheric biosignatures in simulations of Earth-like exoplanets i.e. planets with Earths development, and biomass and a molecular nitrogen-oxygen dominated atmosphere. Starting with an assumed black-body stellar emission for an M7 class dwarf star, the stellar UV irradiation was increased stepwise and the resulting climate-photochemical response of the planetary atmosphere was calculated. Results suggest a Goldilocks effect with respect to the spectral detection of ozone. At weak UV levels, the ozone column was weak (due to weaker production from the Chapman mechanism) hence its spectral detection was challenging. At strong UV levels, ozone formation is stronger but its associated stratospheric heating leads to a weakening in temperature gradients between the stratosphere and troposphere, which results in weakened spectral bands. Also, increased UV levels can lead to enhanced abundances of hydrogen oxides ...

  10. Galactic Habitable Orbits

    Science.gov (United States)

    Rahimi, A.; Mao, S.; Kawata, D.

    2014-03-01

    The fossil record shows that the Earth has experienced several mass extinctions over the past 500 million years1, and it has been suggested that there is a periodicity in extinction events on timescales of tens1 and/or hundreds of millions of years. Various hypotheses have been proposed to explain the cause of the mass extinctions, including the suggestion that the Earth's ozone layer may have been destroyed by intense radiation from a nearby supernovae2- 3, exposing the Earth's surface to damaging UV radiation. Recent observations of cores taken from the ocean floor revealed atoms of a very rare isotope of iron (60Fe) believed to have arrived on Earth around 2 million years ago as fallout from a nearby supernovae4. Astronomical evidence for that past supernovae was recently found in the debris of a young cluster of massive stars5, by tracing its past orbit, putting it at the right place at the right time to explain the mild extinction event. Here we report new high-resolution (both in space and time) N-body chemodynamical simulations (carried out with our novel code GCD+6) of the evolution of a model Milky Way Galaxy, tracing the orbit of èsun-like' stars over a 500 million year period, checking the proximity to supernovae throughout the history of the orbit and comparing the times when this occurs with past mass extinctions on Earth. We additionally explain the important effects of the spiral arm pattern, radial migration of stars and Galactic chemistry on habitability.

  11. Megaphylogeny, cell body plans, adaptive zones: causes and timing of eukaryote basal radiations.

    Science.gov (United States)

    Cavalier-Smith, Thomas

    2009-01-01

    I discuss eukaryote megaphylogeny and the timing of major innovations in the light of multigene trees and the rarity of marine/freshwater evolutionary transitions. The first eukaryotes were aerobic phagotrophs, probably substratum-associated heterotrophic amoeboflagellates. The primary eukaryote bifurcation generated unikonts (ancestrally probably unicentriolar, with a conical microtubular [MT] cytoskeleton) and bikonts (ciliary transformation from anterior cilium to ancestrally gliding posterior cilium; cytoskeleton of ventral MT bands). Unikonts diverged into Amoebozoa with anterior cilia, lost when lobosan broad pseudopods evolved for locomotion, and Choanozoa with posterior cilium and filose pseudopods that became unbranched tentacles/microvilli in holozoa and eventually the choanoflagellate/choanocyte collar. Of choanozoan ancestry, animals evolved epithelia, fibroblasts, eggs, and sperm. Fungi and Ichthyosporea evolved walls. Bikonts, ancestrally with ventral grooves, include three adaptively divergent megagroups: Rhizaria (Retaria and Cercozoa, ancestrally reticulofilose soft-surfaced gliding amoeboflagellates), and the originally planktonic Excavata, and the corticates (Plantae and chromalveolates) that suppressed pseudopodia. Excavata evolved cilia-generated feeding currents for grooval ingestion; corticates evolved cortical alveoli and ciliary hairs. Symbiogenetic origin and transfers of chloroplasts stimulated an explosive radiation of corticates--hard to resolve on multigene trees--and opisthokonts, and ensuing Cambrian explosions of animals and protists. Plantae lost phagotrophy and multiply evolved walls and macroalgae. Apusozoa, with dorsal pellicle and ventral pseudopods, are probably the most divergent bikonts or related to opisthokonts. Eukaryotes probably originated 800-850 My ago. Amoebozoa, Apusozoa, Loukozoa, and Metamonada may be the only extant eukaryote phyla pre-dating Neoproterozoic snowball earth. New subphyla are established for

  12. HADES RV Programme with HARPS-N at TNG. V. A super-Earth on the inner edge of the habitable zone of the nearby M dwarf GJ 625

    Science.gov (United States)

    Suárez Mascareño, A.; González Hernández, J. I.; Rebolo, R.; Velasco, S.; Toledo-Padrón, B.; Affer, L.; Perger, M.; Micela, G.; Ribas, I.; Maldonado, J.; Leto, G.; Zanmar Sanchez, R.; Scandariato, G.; Damasso, M.; Sozzetti, A.; Esposito, M.; Covino, E.; Maggio, A.; Lanza, A. F.; Desidera, S.; Rosich, A.; Bignamini, A.; Claudi, R.; Benatti, S.; Borsa, F.; Pedani, M.; Molinari, E.; Morales, J. C.; Herrero, E.; Lafarga, M.

    2017-09-01

    We report the discovery of a super-Earth orbiting at the inner edge of the habitable zone of the star GJ 625 based on the analysis of the radial-velocity (RV) time series from the HARPS-N spectrograph, consisting of 151 HARPS-N measurements taken over 3.5 yr. GJ 625 b is a planet with a minimum mass Msini of 2.82 ± 0.51 M⊕ with an orbital period of 14.628 ± 0.013 days at a distance of 0.078 AU from its parent star. The host star is the quiet M2 V star GJ 625, located at 6.5 pc from the Sun. We find the presence of a second radial-velocity signal in the range 74-85 days that we relate to stellar rotation after analysing the time series of Ca II H&K and Hα spectroscopic indicators, the variations of the FWHM of the CCF, and the APT2 photometric light curves. We find no evidence linking the short-period radial-velocity signal to any activity proxy. Based on observations made with the Italian Telescopio Nazionale Galileo (TNG), operated on the island of La Palma by the INAF - Fundación Galileo Galilei at the Roche de Los Muchachos Observatory of the Instituto de Astrofísica de Canarias (IAC); photometric observations made with the robotic telescope APT2 (within the EXORAP programme) located at Serra La Nave on Mt. Etna; and lucky imaging observations made with the Telescopio Carlos Sánchez operated on the island of Tenerife by the Instituto de Astrofísica de Canarias in the Spanish Observatorio del Teide.Tables A.1-A.5 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/605/A92

  13. On the possibility of habitable Trojan planets in binary star systems

    CERN Document Server

    Schwarz, Richard; Bazsó, Ákos

    2016-01-01

    Approximately 60 percent of all stars in the solar neighbourhood (up to 80 percent in our Milky Way) are members of binary or multiple star systems. This fact led to the speculations that many more planets may exist in binary systems than are currently known. To estimate the habitability of exoplanetary systems, we have to define the so-called habitable zone (HZ). The HZ is defined as a region around a star where a planet would receive enough radiation to maintain liquid water on its surface and to be able to build a stable atmosphere. We search for new dynamical configurations - where planets may stay in stable orbits - to increase the probability to find a planet like the Earth. Therefore we investigated five candidates and found that two systems (HD 41004 and HD 196885) which have small stable regions.

  14. On the Possibility of Habitable Trojan Planets in Binary Star Systems.

    Science.gov (United States)

    Schwarz, Richard; Funk, Barbara; Bazsó, Ákos

    2015-12-01

    Approximately 60% of all stars in the solar neighbourhood (up to 80% in our Milky Way) are members of binary or multiple star systems. This fact led to the speculations that many more planets may exist in binary systems than are currently known. To estimate the habitability of exoplanetary systems, we have to define the so-called habitable zone (HZ). The HZ is defined as a region around a star where a planet would receive enough radiation to maintain liquid water on its surface and to be able to build a stable atmosphere. We search for new dynamical configurations-where planets may stay in stable orbits-to increase the probability to find a planet like the Earth.

  15. Tidal Limits to Planetary Habitability

    CERN Document Server

    Barnes, Rory; Greenberg, Richard; Raymond, Sean N

    2009-01-01

    The habitable zones of main sequence stars have traditionally been defined as the range of orbits that intercept the appropriate amount of stellar flux to permit surface water on a planet. Terrestrial exoplanets discovered to orbit M stars in these zones, which are close-in due to decreased stellar luminosity, may also undergo significant tidal heating. Tidal heating may span a wide range for terrestrial exoplanets and may significantly affect conditions near the surface. For example, if heating rates on an exoplanet are near or greater than that on Io (where tides drive volcanism that resurface the planet at least every 1 Myr) and produce similar surface conditions, then the development of life seems unlikely. On the other hand, if the tidal heating rate is less than the minimum to initiate plate tectonics, then CO_2 may not be recycled through subduction, leading to a runaway greenhouse that sterilizes the planet. These two cases represent potential boundaries to habitability and are presented along with th...

  16. Evaluating galactic habitability using high-resolution cosmological simulations of galaxy formation

    Science.gov (United States)

    Forgan, Duncan; Dayal, Pratika; Cockell, Charles; Libeskind, Noam

    2017-01-01

    We present the first model that couples high-resolution simulations of the formation of local group galaxies with calculations of the galactic habitable zone (GHZ), a region of space which has sufficient metallicity to form terrestrial planets without being subject to hazardous radiation. These simulations allow us to make substantial progress in mapping out the asymmetric three-dimensional GHZ and its time evolution for the Milky Way (MW) and Triangulum (M33) galaxies, as opposed to works that generally assume an azimuthally symmetric GHZ. Applying typical habitability metrics to MW and M33, we find that while a large number of habitable planets exist as close as a few kiloparsecs from the galactic centre, the probability of individual planetary systems being habitable rises as one approaches the edge of the stellar disc. Tidal streams and satellite galaxies also appear to be fertile grounds for habitable planet formation. In short, we find that both galaxies arrive at similar GHZs by different evolutionary paths, as measured by the first and third quartiles of surviving biospheres. For the MW, this interquartile range begins as a narrow band at large radii, expanding to encompass much of the Galaxy at intermediate times before settling at a range of 2-13 kpc. In the case of M33, the opposite behaviour occurs - the initial and final interquartile ranges are quite similar, showing gradual evolution. This suggests that Galaxy assembly history strongly influences the time evolution of the GHZ, which will affect the relative time lag between biospheres in different galactic locations. We end by noting the caveats involved in such studies and demonstrate that high-resolution cosmological simulations will play a vital role in understanding habitability on galactic scales, provided that these simulations accurately resolve chemical evolution.

  17. Star Masses and Star-Planet Distances for Earth-like Habitability

    Science.gov (United States)

    Waltham, David

    2017-01-01

    This paper presents statistical estimates for the location and duration of habitable zones (HZs) around stars of different mass. The approach is based upon the assumption that Earth's location, and the Sun's mass, should not be highly atypical of inhabited planets. The results support climate-model-based estimates for the location of the Sun's HZ except models giving a present-day outer-edge beyond 1.64 AU. The statistical approach also demonstrates that there is a habitability issue for stars smaller than 0.65 solar masses since, otherwise, Earth would be an extremely atypical inhabited world. It is difficult to remove this anomaly using the assumption that poor habitability of planets orbiting low-mass stars results from unfavorable radiation regimes either before, or after, their stars enter the main sequence. However, the anomaly is well explained if poor habitability results from tidal locking of planets in the HZs of small stars. The expected host-star mass for planets with intelligent life then has a 95% confidence range of 0.78 M⊙ planets with at least simple life is 0.57 M⊙ < M < 1.64 M⊙.

  18. On the Habitability of Aquaplanets

    Directory of Open Access Journals (Sweden)

    Rolando Cardenas

    2014-08-01

    Full Text Available An Aquatic Habitability Index is proposed, based on Quantitative Habitability Theory, and considering a very general model for life. It is a primary habitability index, measuring habitability for phytoplankton in the first place. The index is applied to some case studies, such as the habitability changes in Earth due to environmental perturbations caused by asteroid impacts.

  19. Teenagers Media Habits.

    Science.gov (United States)

    Campbell, Laurence R.

    This study attempted to determine what media most effectively communicated to teenagers, how the media habits of Florida teenagers compared with those in other states, and how the media habits of journalism students compared with those not in journalism. A total of 430 students from Florida high schools and 457 from high schools in other states…

  20. Habitability of planets around red dwarf stars.

    Science.gov (United States)

    Heath, M J; Doyle, L R; Joshi, M M; Haberle, R M

    1999-08-01

    Recent models indicate that relatively moderate climates could exist on Earth-sized planets in synchronous rotation around red dwarf stars. Investigation of the global water cycle, availability of photosynthetically active radiation in red dwarf sunlight, and the biological implications of stellar flares, which can be frequent for red dwarfs, suggests that higher plant habitability of red dwarf planets may be possible.

  1. Changing circumstances, disrupting habits.

    Science.gov (United States)

    Wood, Wendy; Witt, Melissa Guerrero; Tam, Leona

    2005-06-01

    The present research investigated the mechanisms guiding habitual behavior, specifically, the stimulus cues that trigger habit performance. When usual contexts for performance change, habits cannot be cued by recurring stimuli, and performance should be disrupted. Thus, the exercising, newspaper reading, and TV watching habits of students transferring to a new university were found to survive the transfer only when aspects of the performance context did not change (e.g., participants continued to read the paper with others). In some cases, the disruption in habits also placed behavior under intentional control so that participants acted on their current intentions. Changes in circumstances also affected the favorability of intentions, but changes in intentions alone could not explain the disruption of habits. Furthermore, regardless of whether contexts changed, nonhabitual behavior was guided by intentions.

  2. THE HABITABILITY AND DETECTION OF EARTH-LIKE PLANETS ORBITING COOL WHITE DWARFS

    Energy Technology Data Exchange (ETDEWEB)

    Fossati, L.; Haswell, C. A.; Patel, M. R.; Busuttil, R. [Department of Physical Sciences, Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Bagnulo, S. [Armagh Observatory, College Hill, Armagh BT61 9DG (United Kingdom); Kowalski, P. M. [GFZ German Research Centre for Geosciences, Telegrafenberg, D-14473 Potsdam (Germany); Shulyak, D. V. [Institute of Astrophysics, Georg-August-University, Friedrich-Hund-Platz 1, D-37077 Goettingen (Germany); Sterzik, M. F., E-mail: l.fossati@open.ac.uk, E-mail: C.A.Haswell@open.ac.uk, E-mail: M.R.Patel@open.ac.uk, E-mail: r.busuttil@open.ac.uk, E-mail: sba@arm.ac.uk, E-mail: kowalski@gfz-potsdam.de, E-mail: denis.shulyak@gmail.com, E-mail: msterzik@eso.org [European Southern Observatory, Casilla 19001, Santiago 19 (Chile)

    2012-09-20

    Since there are several ways planets can survive the giant phase of the host star, we examine the habitability and detection of planets orbiting white dwarfs. As a white dwarf cools from 6000 K to 4000 K, a planet orbiting at 0.01 AU would remain in the continuous habitable zone (CHZ) for {approx}8 Gyr. We show that photosynthetic processes can be sustained on such planets. The DNA-weighted UV radiation dose for an Earth-like planet in the CHZ is less than the maxima encountered on Earth, and hence non-magnetic white dwarfs are compatible with the persistence of complex life. Polarization due to a terrestrial planet in the CHZ of a cool white dwarf (CWD) is 10{sup 2} (10{sup 4}) times larger than it would be in the habitable zone of a typical M-dwarf (Sun-like star). Polarimetry is thus a viable way to detect close-in rocky planets around white dwarfs. Multi-band polarimetry would also allow us to reveal the presence of a planet atmosphere, providing a first characterization. Planets in the CHZ of a 0.6 M{sub Sun} white dwarf will be distorted by Roche geometry, and a Kepler-11d analog would overfill its Roche lobe. With current facilities a super-Earth-sized atmosphereless planet is detectable with polarimetry around the brightest known CWD. Planned future facilities render smaller planets detectable, in particular by increasing the instrumental sensitivity in the blue.

  3. UV Habitability of Possible Exomoons in Observed F-star Planetary Systems

    CERN Document Server

    Sato, Satoko

    2015-01-01

    In the present study we explore the astrobiological significance of F-type stars of spectral type between F5 V and F9.5 V, which possess Jupiter-type planets within or close to their climatological habitable zones. These planets, or at least a subset of them, may also possess rocky exomoons, which potentially offer habitable environments. Our work considers eight selected systems. The Jupiter-type planets in these systems are in notably different orbits with eccentricities ranging from 0.08 to 0.72. Particularly, we consider the stellar UV environments provided by the photospheric stellar radiation in regard to the circumstellar habitability of the system. According to previous studies, DNA is taken as a proxy for carbon-based macromolecules following the paradigm that extraterrestrial biology might be based on hydrocarbons. Thus, the DNA action spectrum is utilized to represent the impact of the stellar UV radiation. Atmospheric attenuation is taken into account based on parameterized attenuation functions. ...

  4. Radiation Therapy Administration and Survival in Stage I/II Extranodal Marginal Zone B-Cell Lymphoma of Mucosa-Associated Lymphoid Tissue

    Energy Technology Data Exchange (ETDEWEB)

    Olszewski, Adam J., E-mail: adam_olszewski@brown.edu; Desai, Amrita

    2014-03-01

    Purpose: To determine the factors associated with the use of radiation therapy and associated survival outcomes in early-stage marginal zone lymphoma of the mucosa-associated lymphoid tissue (MALT). Methods and Materials: We extracted data on adult patients with stage I/II MALT lymphoma diagnoses between 1998 and 2010 recorded in the Surveillance, Epidemiology, and End Results (SEER) database. We studied factors associated with radiation therapy administration in a logistic regression model and described the cumulative incidence of lymphoma-related death (LRD) according to receipt of the treatment. The association of radiation therapy with survival was explored in multivariate models with adjustment for immortal time bias. Results: Of the 7774 identified patients, 36% received radiation therapy as part of the initial course of treatment. Older patients; black or Hispanic men; white, Hispanic, and black women; and socioeconomically disadvantaged and underinsured patients had a significantly lower chance of receiving radiation therapy. Radiation therapy administration was associated with a lower chance of LRD in most sites. In cutaneous, ocular, and salivary MALT lymphomas, the 5-year estimate of LRD after radiation therapy was 0%. The association of radiation therapy with overall survival in different lymphoma sites was heterogeneous, and statistically significant in cutaneous (hazard ratio 0.45, P=.009) and ocular (hazard ratio 0.47, P<.0001) locations after multivariate adjustment. Conclusions: Demographic factors are associated with the use of radiation therapy in MALT lymphoma. Clinicians should be sensitive to those disparities because the administration of radiation therapy may be associated with improved survival, particularly in cutaneous and ocular lymphomas.

  5. Ecomorphology and food habits of teleost fishes Trachinotus carolinus (Teleostei: Carangidae and Menticirrhus littoralis (Teleostei: Sciaenidae, inhabiting the surf zone off Niterói, Rio de Janeiro, Brazil

    Directory of Open Access Journals (Sweden)

    Luana Prestrelo Palmeira

    2010-01-01

    Full Text Available The ecomorphology and food habits of juvenile Trachinotus carolinus and Menticirrhus littoralis caught in the surf zone of sandy beaches in Niterói, RJ, were investigated between July 2006 and May 2007. These fish species differ morphologically, but present similarities in their diet composition suggest some slight overlapping in their diet. The importance of food items was assessed using Kawakami and Vazzoler's feeding index. Morphometric variables were recorded to correlate with the diet composition of the different size classes for each species. A total of 210 fishes (Trachinotus carolinus - 122, Menticirrhus littoralis - 88, ranging between 24.2 mm and 112 mm total length, were analyzed, but the stomachs of only 84.8% of them contained food. Trachinotus carolinus presented mysids, Polychaetes and Emerita spp. as the predominant items in their diet. Formicidae and Isopoda were the most important items for class I individuals, whereas mysids and Emerita spp. were important for classes II and III. Class I individuals also showed smaller sized prey (amphipods and isopods and clupeid fish larvae in their diet. Emerita spp. dominated the food items of Menticirrhus littoralis regardless of the size class. Polychaetes, the second most important item was better represented in class sizes II and III. The main morphometric variable correlated with such differences included mouth position and diameter of the eye.A ecomorfologia e os hábitos alimentares de juvenis de Trachinotus carolinus e Menticirrhus littoralis capturados na zona de arrebentação de praias arenosas em Niterói, RJ, foram investigados entre julho de 2006 e Maio de 2007. Ambas as espécies diferem morfologicamente, mas apresentam semelhanças em sua dieta, sugerindo uma possível sobreposição alimentar. A importância dos itens alimentares foi avaliada utilizando o índice alimentar de Kawakami e Vazzoler. Variáveis morfométricas foram correlacionadas à dieta observada para

  6. Etiology of oral habits.

    Science.gov (United States)

    Bayardo, R E; Mejia, J J; Orozco, S; Montoya, K

    1996-01-01

    The pedodontic admission histories of 1600 Mexican children were analyzed, to determine general epidemiologic factors or oral habits, as well as their relationship with identifiable biopsychosociologic factors. Fifty-six percent of the children gave evidence of an oral habit, with significant predisposition among female patients, single children, subjects in poor physical health (particularly from allergies), as well as children with histories of chronic health problems. Oral habits should be considered a major health hazard because of their high incidence. Successful treatment requires a multidisciplinary approach to the basic cause of the problem.

  7. Generalized models for estimation of diffuse solar radiation based on clearness index and sunshine duration in India: Applicability under different climatic zones

    Science.gov (United States)

    Jamil, Basharat; Siddiqui, Abid T.

    2017-05-01

    Generalized models for assessment of monthly average diffuse solar radiation over India were established using long-term solar radiation data available for 15 years (1986-2000) obtained from Indian Meteorological Department (IMD), Pune. Regression analysis was employed to correlate the diffuse fraction (K̅d) with clearness index (K̅t) and relative sunshine period (S̅/S̅o) together. Seven new models (with two input variables i.e. global solar radiation and relative sunshine period) were developed using data of the measurement sites. Well-established models from literature were also compared with the proposed models. Statistical tests used to evaluate the accuracy of models were mean bias error, root mean square error, mean percentage error, coefficient of determination, t-statistics and normalized median absolute deviation. Global performance indicator (GPI) was used to rank the models. Further, the empirical models were applied on the five representative locations under diverse climatic zones (i.e. Hot & Dry, Warm & Humid, Temperate, Cold and Composite climates) prescribed by the Energy Conservation Building Code (ECBC) for India. Proposed models were also compared within each climatic zone and best model was recommended. Developed models were found to have good performance on collective data as well as under each climatic zone individually.

  8. Your Child's Habits

    Science.gov (United States)

    ... such as before falling to sleep or quietly listening to music. Some habits may be leftovers from ... THIS TOPIC First Aid: Nosebleeds Obsessive-Compulsive Disorder Teaching Your Child Self-Control Temper Tantrums How Can ...

  9. Habitability: CAMELOT 4

    Science.gov (United States)

    Alequin, W.; Barragan, A.; Carro, M.; Garcia, F.; Gonzalez, I.; Mercado, J. A.; Negron, N.; Lopez, D.; Rivera, L. A.; Rivera, M.

    1990-01-01

    During 1988 to 1989 the NASA/USRA Advanced Design Program sponsored research and design efforts aimed at developing habitability criteria and at defining a habitability concept as a useful tool in understanding and evaluating dwellings for prolonged stays in extraterrestrial space. The Circulating Auto sufficient Mars-Earth Luxurious Orbital Transport (CAMELOT) was studied as a case in which the students would try to enhance the quality of life of the inhabitants by applying architectural design methodology. The study proposed 14 habitability criteria considered necessary to fulfill the defined habitability concept, which is that state of equilibrium that results from the interaction between components of the Individual Architecture Mission Complex, which allows a person to sustain physiological homeostatis, adequate performance, and acceptable social relationships. Architecture, design development, refinements and revisions to improve the quality of life, new insights on artificial gravity, form and constitution problems, and the final design concept are covered.

  10. Damaging oral habits.

    Science.gov (United States)

    Kamdar, Rajesh J; Al-Shahrani, Ibrahim

    2015-04-01

    Oral habits, if persist beyond certain developmental age, can pose great harm to the developing teeth, occlusion, and surrounding oral tissues. In the formative years, almost all children engage in some non-nutritive sucking habits. Clinicians, by proper differential diagnosis and thorough understanding of natural growth and developmental processes, should take a decision for intervening. This article describes case series reports of thumb sucking, finger sucking, and tongue thrusting habits, which have been successfully treated by both removable and fixed orthodontic appliances. The cases shown are ranging from the age group of 9-19 years presenting combination of both mixed and permanent dentition development. All cases show satisfactory correction of habits and stable results.

  11. Food Habits Database (FHDBS)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NEFSC Food Habits Database has two major sources of data. The first, and most extensive, is the standard NEFSC Bottom Trawl Surveys Program. During these...

  12. Consumption Habits and Humps

    DEFF Research Database (Denmark)

    Kraft, Holger; Munk, Claus; Seifried, Frank Thomas

    We show that the optimal consumption of an individual over the life cycle can have the hump shape (inverted U-shape) observed empirically if the preferences of the individual exhibit internal habit formation. In the absence of habit formation, an impatient individual would prefer a decreasing...... consumption path over life. However, because of habit formation, a high initial consumption would lead to high required consumption in the future. To cover the future required consumption, wealth is set aside, but the necessary amount decreases with age which allows consumption to increase in the early part...... of life. At some age, the impatience outweighs the habit concerns so that consumption starts to decrease. We derive the optimal consumption strategy in closed form, deduce sufficient conditions for the presence of a consumption hump, and characterize the age at which the hump occurs. Numerical examples...

  13. Consumption Habits and Humps

    DEFF Research Database (Denmark)

    Kraft, Holger; Munk, Claus; Seifried, Frank Thomas

    2017-01-01

    We show that the optimal consumption of an individual over the life cycle can have the hump shape (inverted U-shape) observed empirically if the preferences of the individual exhibit internal habit formation. In the absence of habit formation, an impatient individual would prefer a decreasing...... consumption path over life. However, because of habit formation, a high initial consumption would lead to high required consumption in the future. To cover the future required consumption, wealth is set aside, but the necessary amount decreases with age which allows consumption to increase in the early part...... of life. At some age, the impatience outweighs the habit concerns so that consumption starts to decrease. We derive the optimal consumption strategy in closed form, deduce sufficient conditions for the presence of a consumption hump, and characterize the age at which the hump occurs. Numerical examples...

  14. Survival of habitable planets in unstable planetary systems

    CERN Document Server

    Carrera, Daniel; Johansen, Anders

    2016-01-01

    Many observed giant planets lie on eccentric orbits. Such orbits could be the result of strong scatterings with other giant planets. The same dynamical instability that produces giant planet scatterings can also alter the orbits of terrestrial planets. For example, a habitable rocky planet in the system can be ejected or transported to an orbit outside the habitable zone. Therefore, there is a link between observed giant planets and the habitability of smaller planets in the system. We say that a habitable planet has resilient habitability if it is able to avoid ejections and collisions and its orbit remains inside the habitable zone. Here we model the orbital evolution of rocky planets in planetary systems where giant planets become dynamically unstable. We measure the resilience of habitable planets as a function of the observed, present-day masses and orbits of the giant planets. We find that the survival rate of habitable planets depends strongly on the giant planet architecture. Systems with three Jupite...

  15. The Radiation Environment of Exoplanet Atmospheres

    Directory of Open Access Journals (Sweden)

    Jeffrey L. Linsky

    2014-10-01

    Full Text Available Exoplanets are born and evolve in the radiation and particle environment created by their host star. The host star’s optical and infrared radiation heats the exoplanet’s lower atmosphere and surface, while the ultraviolet, extreme ultraviolet and X-radiation control the photochemistry and mass loss from the exoplanet’s upper atmosphere. Stellar radiation, especially at the shorter wavelengths, changes dramatically as a host star evolves leading to changes in the planet’s atmosphere and habitability. This paper reviews the present state of our knowledge concerning the time-dependent radiation emitted by stars with convective zones, that is stars with spectral types F, G, K, and M, which comprise nearly all of the host stars of detected exoplanets.

  16. Hábitos alimenticios del pargo rayado, Lutjanus synagris (Perciformes: Lutjanidae, en la zona norte del Caribe colombiano Food habits of the lane snapper, Lutjanus synagris (Perciformes: Lutjanidae, in the north zone of the Colombian Caribbean

    Directory of Open Access Journals (Sweden)

    Oscar Doncel

    2010-01-01

    Full Text Available Se describen los hábitos alimenticios de Lutjanus synagris, mediante el análisis de contenido estomacal, considerando el espectro trófico a nivel general, por sexo y talla, los aspectos ecológicos de las presas, su distribución espacial y la relación de la dieta con las condiciones del habitat. Se analizaron 148 estómagos, de los cuales el 45,3% estaba lleno y el 54,7% vacío. Las presas más representativas (%N fueron: Portunus spp. (27,3%; n = 44 y Squilla intermedia (10,6%; n = 17. El análisis gravimétrico (%P mostró que entre las categorías con mayor peso se encontraron: Gastropoda (31,8%; 51,7 g y Farfantepenaeus spp. (17,5%o; 28,5 g. La frecuencia de ocurrencia (%>FO mostró que: Portunus spp. (25,8%>; 17 estómagos y S. intermedia (10,5%>; 7 estómagos fueron las presas más frecuentes. Según el %>IIR, las categorías más representativas en la dieta fueron Portunus spp. (43,0%> y Gastropoda (13,4%>. Se identificaron cuatro categorías como presas principales: Portunidae (837,06, Gastropoda (260,29, Squillidae (234,66 y Penaeidae (218,05, dos como presas secundarias: Sicyoniidae (126,35 y Trichiuridae (75,64 y las demás como presas circunstanciales. La distribución espacial de la amplitud del nicho trófico y de las tallas de L. synagris, permitió identificar dos zonas: la primera entre Riohacha y Dibulla con los valores más altos de amplitud del nicho trófico (0,64 a 1,00 denotando predadores generalista y donde se registraron las tallas menores y la segunda, entre Riohacha y Punta Gallinas con los valores más bajos de amplitud del nicho trófico (0,00 a 0,23, donde los individuos mostraron alto grado de especialización en la dieta y las tallas mayores.This work describes the food habits of Lutjanus synagris by means of stomach content analysis, considering the trophic spectrum in general as well as by sex and size, the ecological aspeets of the preys, their spatial distribution, and the relationship of the diet with

  17. High on habits

    Directory of Open Access Journals (Sweden)

    Monica R. F Hilário

    2008-12-01

    Full Text Available The neural circuits involved in learning and executing goal-directed actions, which are governed by action-outcome contingencies and sensitive to changes in the expected value of the outcome, have been shown to be different from those mediating habits, which are less dependent on action-outcome relations and changes in outcome value. Extended training, different reinforcement schedules, and substances of abuse have been shown to induce a shift from goal-directed performance to habitual performance. This shift can be beneficial in everyday life, but can also lead to loss of voluntary control and compulsive behavior, namely during drug seeking in addiction. Although the brain circuits underlying habit formation are becoming clearer, the molecular mechanisms underlying habit formation are still not understood. Here, we review a recent study where Hilario et al. established behavioral procedures to investigate habit formation in mice in order to investigate the molecular mechanisms underlying habit formation. Using those procedures, and a combination of genetic and pharmacological tools, the authors showed that endocannabinoid signaling is critical for habit formation.

  18. Tidal obliquity evolution of potentially habitable planets

    CERN Document Server

    Heller, René; Barnes, Rory

    2011-01-01

    Stellar insolation has been used as the main constraint on a planet's habitability. However, as more Earth-like planets are discovered around low-mass stars (LMSs), a re-examination of the role of tides on the habitability of exoplanets has begun. Those studies have yet to consider the misalignment between a planet's rotational axis and the orbital plane normal, i.e. the planetary obliquity. We apply two equilibrium tide theories to compute the obliquity evolution of terrestrial planets orbiting in the habitable zones around LMSs. The time for the obliquity to decrease from an Earth-like obliquity of 23.5 deg to 5 deg, the 'tilt erosion time', is compared to the traditional insolation habitable zone (IHZ) as a function of semi-major axis, eccentricity, and stellar mass. We also compute tidal heating and equilibrium rotation caused by obliquity tides. The Super-Earth Gl581d and the planet candidate Gl581g are studied as examples for tidal processes. Earth-like obliquities of terrestrial planets in the IHZ arou...

  19. Environmental Signatures for Habitability: What to Measure and How to Rank the Habitability Potential of Mars

    Science.gov (United States)

    Conrad, Pamela G.; Eigenbrode, Jennifer L.; Mahaffy, Paul M.; Steele, Andrew

    2011-01-01

    The environmental signatures for habitability are not necessarily biosignatures, even though on Earth, they are definitive proof of habitability. It is the constant overprint of the chemical signatures of life that makes it difficult to recognize the chemical and physical properties of a potentially habitable environment as distinct from an inhabited one. Mars Science Laboratory (MSL) will soon embark on a mission to Mars to assess its past or present habitability, so it is useful to examine how we measure habitability on Earth and prepare for how that approach may differ for Mars. This exercise includes: (a) articulation of fundamental assumptions about habitability, (b) an inventory of factors that affect habitability, (c) development of metrics, measurement approach and implementation, and (d) a new classification scheme for planetary habitability that goes beyond the binary "yes" or "no." There may be dozens of factors that affect habitability and they can be weighted as a function of specific environment. However a robotic, in situ investigation even on Earth has constraints that prevent the measurement of every environmental factor, so metrics must be reduced to the most relevant subset, given available time, cost, technical feasibility and scientific importance. Many of the factors could be measured with a combination of orbital data and the MSL payload. We propose that, at a minimum, a designation of high habitability potential requires the following conditions be met: (a) thermally stable with respect to extremes and frequency of fluctuation, (b) has more than one energy source, (c) sufficient chemical diversity to make compounds with covalent and hydrogen bonding, (d) can moderate ionizing radiation enough to allow a stable or evolving pool of organic molecules, (e) must have water or other high quality polar solvent, (f) must be able to renew chemical resources (e.g., plate tectonics, volcanism or something else we haven't envisioned). A measurement

  20. The Inhabitance Paradox: how habitability and inhabitancy are inseparable

    Science.gov (United States)

    Goldblatt, C.

    2015-12-01

    The dominant paradigm in assigning "habitability" to terrestrial planets is to define a circumstellar habitable zone: the locus of orbital radii in which the planet is neither too hot nor too cold for life as we know it. One dimensional climate models have put theoretically impressive boundaries on this: a runaway greenhouse or water loss at the inner edge (Venus), and low-latitude glaciation followed by formation of CO2 clouds at the outer edge. A cottage industry now exists to "refine" the definition of these boundaries each year to the third decimal place of an AU. Using exactly that kind of model, I'll show that the different climate states can overlap very substantially and that "snowball Earth", temperate climate and a post-runaway climate can all be stable under the same solar flux. Furthermore, the radial extent of the temperature climate band is very narrow for pure water atmospheres. The width of the habitable zone is determined by the atmospheric inventories of di-nitrogen and carbon dioxide. Yet Earth teaches us that these abundances are very heavily influenced (perhaps even controlled) by biology. This is paradoxical: the habitable zone seeks to define the region a planet should be capable of harbouring life; yet whether the planet is inhabited will determine whether the climate may be habitable at any given distance from the star. This matters, because future life detection missions may use habitable zone boundaries in mission design. A historical view of solar system exploration helps frame the problem; robotic exploration of the outer solar system revealed the un-imagined nature of the Jovian and Saturnian moons, whilst showing that the Venusian jungle died long ago. Prediction will fall to data but the unexpected may emerge. To soften that fall we should revise the paradigm of habitability to acknowledge that habitability depends on inhabitance; for life as we know it is a planetary scale--and planet dominating--phenomenon.

  1. Narrow zone heating by a new radiation focusing technique - Toroidal ellipsoid furnace. [for zone leveling and crystal growth in advanced multicomponent semiconductors

    Science.gov (United States)

    Davidson, M. C.; Holland, L. R.

    1978-01-01

    The paper describes the design of a toroidal ellipsoid furnace for narrow zone heating of materials in sealed transparent ampoules. The heater is a toroid flattened to an elliptical cross section like a partially inflated inner tube resting on a horizontal surface. The foci of the ellipsoid are two concentric rings. The outer focus is occupied by a heater wire, and the inner focus is arranged to fall on the surface of the cylindrical ingot within its transparent capsule. One advantage of the new furnace is that the wire heater closely approximates the ideal shape, lying along an extended line focus, as opposed to the elusive point source of the Costello furnace. Also, the ingot is heated uniformly around its circumference.

  2. Origin and Stability of Exomoon Atmospheres - Implications for Habitability

    CERN Document Server

    Lammer, H; Juvan, I; Odert, P; Erkaev, N V; Weber, C; Kislyakova, K G; Güdel, M; Kirchengast, G; Hanslmeier, A

    2015-01-01

    We study the origin and escape of catastrophically outgassed volatiles (H$_2$O, CO$_2$) from exomoons with Earth-like densities and masses of $0.1M_{\\oplus}$, $0.5M_{\\oplus}$ and $1M_{\\oplus}$ orbiting an extra-solar gas giant inside the habitable zone of a young active solar-like star. We apply a radiation absorption and hydrodynamic upper atmosphere model to the three studied exomoon cases. We model the escape of hydrogen and dragged dissociation products O and C during the activity saturation phase of the young host star. Because the soft X-ray and EUV radiation of the young host star may be up to $\\sim$100 times higher compared to today's solar value during the first 100 Myr after the system's origin, an exomoon with a mass $ 0.5M_{\\oplus}$, however, may evolve to habitats that are a mixture of Mars-like and Earth-analogue habitats, so that life may originate and evolve at the exomoon's surface.

  3. Effects of long-term radiation exposure on the higher aquatic plants in the Chernobyl exclusion zone

    Energy Technology Data Exchange (ETDEWEB)

    Shevtsova, N.; Gudkov, D. [Institute of Hydrobiology (Russian Federation)

    2014-07-01

    From the earliest years after the Chernobyl accident in 1986 the radioecological study on freshwater plant communities in the water-bodies within the Chernobyl exclusion zone (ChEZ) has been held. At first stages it was the research on plant species collection and radionuclide contamination of aquatic ecosystems. Now, it is the seasonal monitoring with several groups of data deals with different areas of plant communities investigation: (1) the data characterized the level of radionuclides contamination of the abiotic and biotic components of phyto-coenosis and connected absorbed dose rates for various species of aquatic plants; (2) indexes of plant reproduction, including productivity, sterility, seed germination indexes and different abnormalities of ontogenesis; (3) indexes of morphological deviations (radiomorphoses) of aquatic plant's reproduction organs such as panicle and seeds; (4) cytogenetic indexes including the rate and spectrum of chromosome aberrations in cells of apical root meristem of air-aquatic plants; (5) the group of indexes, connected with plant's immunity. The calculated absorbed dose rate for littoral emergent plants in sampling water bodies was varied from 0.7 to 1.4 Gy/year in dependence of radioactive contamination of bottom sediments, plant tissues and level of gamma-background. There were registered rather low rate of plant productivity (hundred times lower than normal), high percentage of sterility (20-80%), low germinating ability (14-48 %) and germinating power (40-50%) of seeds from all sampling water bodies within the ChEZ. Against the general suppressed background the effect of relative stimulation of more affected seeds was observed. With increase of internal absorbed dose in range of 0.2-5.3 mGy/year the number of germinated seeds was increased. At the same time the number of different abnormalities of seeds was increased as well. The highest rate of the morphological damages (up to 25 % of the total number of

  4. X-ray holographic microscopy with zone plates applied to biological samples in the water window using 3rd harmonic radiation from the free-electron laser FLASH.

    Science.gov (United States)

    Gorniak, T; Heine, R; Mancuso, A P; Staier, F; Christophis, C; Pettitt, M E; Sakdinawat, A; Treusch, R; Guerassimova, N; Feldhaus, J; Gutt, C; Grübel, G; Eisebitt, S; Beyer, A; Gölzhäuser, A; Weckert, E; Grunze, M; Vartanyants, I A; Rosenhahn, A

    2011-06-06

    The imaging of hydrated biological samples - especially in the energy window of 284-540 eV, where water does not obscure the signal of soft organic matter and biologically relevant elements - is of tremendous interest for life sciences. Free-electron lasers can provide highly intense and coherent pulses, which allow single pulse imaging to overcome resolution limits set by radiation damage. One current challenge is to match both the desired energy and the intensity of the light source. We present the first images of dehydrated biological material acquired with 3rd harmonic radiation from FLASH by digital in-line zone plate holography as one step towards the vision of imaging hydrated biological material with photons in the water window. We also demonstrate the first application of ultrathin molecular sheets as suitable substrates for future free-electron laser experiments with biological samples in the form of a rat fibroblast cell and marine biofouling bacteria Cobetia marina.

  5. Changing your sleep habits

    Science.gov (United States)

    ... effects they may have on your sleep. Find ways to manage stress. Learn about relaxation techniques, such as guided imagery, listening to music, or practicing yoga or meditation. Listen to your body when it tells you to slow down or take a break. Change Your Bedtime Habits Your bed is for sleeping. ...

  6. FIRST HABITABLE PLANET DISCOVEREO

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    20 light years away from our solar system, there is a planet called "Gliese 581d" which has conditions that could support Earth-like life, including possible oceans and rainfall. On May. 19, 20l 1, the planet has been the first to be officially declared habitable by French scientists.

  7. Car-use habits

    DEFF Research Database (Denmark)

    Møller, Berit Thorup; Thøgersen, John

    2008-01-01

    It is often claimed that many drivers use their private car rather habitually. The claim gains credibility from the fact that travelling to many everyday destinations fulfils all the prerequisites for habit formation: it is recurring, performed under stable circumstances and produces rewarding co...

  8. Stability of habitable exomoons of circumbinary planets

    Science.gov (United States)

    Satyal, Suman; Haghighipour, Nader; Quarles, Billy

    2015-12-01

    Among the currently known Kepler circumbinary planets, three, namely Kepler-453b, Kepler-16b, and Kepler-47c are in the binary habitable zone (HZ). Given the large sizes of these planets, it is unlikely that they would be habitable. However, similar to the giant planets in our solar system, these planets may have large moons, which orbit their host planets while in the HZ. These exomoons, if exist, present viable candidates for habitability. As a condition for habitability, the planet-moon system has to maintain its orbital stability for long time. Usually, the empirical formula by Holeman & Wiegert (1999) is used as a measure of orbital stability in circumbinary systems. However, this formula was obtained by assuming planets to be test particles and therefore does not include possible perturbation of the planet on the binary. In this work, we present results of more realistic calculations of stability of circumbinary planets where the interactions between planets and their central binaries are taken into account. We map the region of stability, which in this case will be specific to each system, and determine the range of the orbital parameters of the moons for which their orbits will be long-term stable.

  9. Healthy habits for weight loss

    Science.gov (United States)

    ... gov/ency/patientinstructions/000733.htm Healthy habits for weight loss To use the sharing features on this page, ... to think about it. People who succeed at weight loss, turn healthy eating into a habit. These healthy ...

  10. Effects of extreme obliquity variations on the habitability of exoplanets.

    Science.gov (United States)

    Armstrong, J C; Barnes, R; Domagal-Goldman, S; Breiner, J; Quinn, T R; Meadows, V S

    2014-04-01

    We explore the impact of obliquity variations on planetary habitability in hypothetical systems with high mutual inclination. We show that large-amplitude, high-frequency obliquity oscillations on Earth-like exoplanets can suppress the ice-albedo feedback, increasing the outer edge of the habitable zone. We restricted our exploration to hypothetical systems consisting of a solar-mass star, an Earth-mass planet at 1 AU, and 1 or 2 larger planets. We verified that these systems are stable for 10(8) years with N-body simulations and calculated the obliquity variations induced by the orbital evolution of the Earth-mass planet and a torque from the host star. We ran a simplified energy balance model on the terrestrial planet to assess surface temperature and ice coverage on the planet's surface, and we calculated differences in the outer edge of the habitable zone for planets with rapid obliquity variations. For each hypothetical system, we calculated the outer edge of habitability for two conditions: (1) the full evolution of the planetary spin and orbit and (2) the eccentricity and obliquity fixed at their average values. We recovered previous results that higher values of fixed obliquity and eccentricity expand the habitable zone, but we also found that obliquity oscillations further expand habitable orbits in all cases. Terrestrial planets near the outer edge of the habitable zone may be more likely to support life in systems that induce rapid obliquity oscillations as opposed to fixed-spin planets. Such planets may be the easiest to directly characterize with space-borne telescopes.

  11. Effects of Extreme Obliquity Variations on the Habitability of Exoplanets

    Science.gov (United States)

    Armstrong, J. C.; Barnes, R.; Domagal-Goldman, S.; Breiner, J.; Quinn, T. R.; Meadows, V. S.

    2014-01-01

    We explore the impact of obliquity variations on planetary habitability in hypothetical systems with high mutual inclination. We show that large-amplitude, high-frequency obliquity oscillations on Earth-like exoplanets can suppress the ice-albedo feedback, increasing the outer edge of the habitable zone. We restricted our exploration to hypothetical systems consisting of a solar-mass star, an Earth-mass planet at 1 AU, and 1 or 2 larger planets. We verified that these systems are stable for 108 years with N-body simulations and calculated the obliquity variations induced by the orbital evolution of the Earth-mass planet and a torque from the host star. We ran a simplified energy balance model on the terrestrial planet to assess surface temperature and ice coverage on the planet's surface, and we calculated differences in the outer edge of the habitable zone for planets with rapid obliquity variations. For each hypothetical system, we calculated the outer edge of habitability for two conditions: (1) the full evolution of the planetary spin and orbit and (2) the eccentricity and obliquity fixed at their average values. We recovered previous results that higher values of fixed obliquity and eccentricity expand the habitable zone, but we also found that obliquity oscillations further expand habitable orbits in all cases. Terrestrial planets near the outer edge of the habitable zone may be more likely to support life in systems that induce rapid obliquity oscillations as opposed to fixed-spin planets. Such planets may be the easiest to directly characterize with space-borne telescopes.

  12. HABITABILITY OF EXOMOONS AT THE HILL OR TIDAL LOCKING RADIUS

    Energy Technology Data Exchange (ETDEWEB)

    Hinkel, Natalie R.; Kane, Stephen R., E-mail: natalie.hinkel@gmail.com [NASA Exoplanet Science Institute, Caltech, MS 100-22, 770 South Wilson Avenue, Pasadena, CA 91125 (United States)

    2013-09-01

    Moons orbiting extrasolar planets are the next class of object to be observed and characterized for possible habitability. Like the host-planets to their host-star, exomoons have a limiting radius at which they may be gravitationally bound, or the Hill radius. In addition, they also have a distance at which they will become tidally locked and therefore in synchronous rotation with the planet. We have examined the flux phase profile of a simulated, hypothetical moon orbiting at a distant radius around the confirmed exoplanets {mu} Ara b, HD 28185 b, BD +14 4559 b, and HD 73534 b. The irradiated flux on a moon at its furthest, stable distance from the planet achieves its largest flux gradient, which places a limit on the flux ranges expected for subsequent (observed) moons closer in orbit to the planet. We have also analyzed the effect of planetary eccentricity on the flux on the moon, examining planets that traverse the habitable zone either fully or partially during their orbit. Looking solely at the stellar contributions, we find that moons around planets that are totally within the habitable zone experience thermal equilibrium temperatures above the runaway greenhouse limit, requiring a small heat redistribution efficiency. In contrast, exomoons orbiting planets that only spend a fraction of their time within the habitable zone require a heat redistribution efficiency near 100% in order to achieve temperatures suitable for habitability. This means that a planet does not need to spend its entire orbit within the habitable zone in order for the exomoon to be habitable. Because the applied systems comprise giant planets around bright stars, we believe that the transit detection method is most likely to yield an exomoon discovery.

  13. On the Coupling between Helium Settling and Rotation-Induced Mixing in Stellar Radiative Zones II- Application to light elements in population I main-sequence stars

    CERN Document Server

    Théado, S; Theado, Sylvie; Vauclair, Sylvie

    2003-01-01

    In the two previous papers of this series, we have discussed the importance of t he $\\mu$-gradients due to helium settling on rotation-induced mixing, first in a n approximate analytical way, second in a 2D numerical simulation. We have found that, for slowly rotating low mass stars, a process of ``creeping paralysis" in which the circulation and the diffusion are nearly frozen may take place below the convective zone. Here we apply this theory to the case of lithium and beryll ium in galactic clusters and specially the Hyades. We take into account the rota tional braking with rotation velocities adjusted to the present observations. We find that two different cells of meridional circulation appear on the hot side of the "lithium dip" and that the "creeping paralysis" process occurs, not dir ectly below the convective zone, but deeper inside the radiative zone, at the to p of the second cell. As a consequence, the two cells are disconnected, which ma y be the basic reason for the lithium increase with effecti...

  14. The quest for cradles of life: using the fundamental metallicity relation to hunt for the most habitable type of galaxy

    CERN Document Server

    Dayal, Pratika; Rice, Ken; Mazumdar, Anupam

    2015-01-01

    The field of astrobiology has made huge strides in understanding the habitable zones around stars (Stellar Habitable Zones) where life can begin, sustain its existence and evolve into complex forms. A few studies have extended this idea by modelling galactic-scale habitable zones (Galactic Habitable Zones) for our Milky Way and specific elliptical galaxies. However, estimating the habitability for galaxies spanning a wide range of physical properties has so far remained an outstanding issue. Here, we present a "cosmobiological" framework that allows us to sift through the entire galaxy population in the local Universe and answer the question "Which type of galaxy is most likely to host complex life in the cosmos"? Interestingly, the three key astrophysical criteria governing habitability (total mass in stars, total metal mass and ongoing star formation rate) are found to be intricately linked through the "fundamental metallicity relation" as shown by SDSS (Sloan Digital Sky Survey) observations of more than a...

  15. Formation, Habitability, and Detection of Extrasolar Moons

    CERN Document Server

    Heller, René; Kipping, David; Limbach, Mary Anne; Turner, Edwin; Greenberg, Richard; Sasaki, Takanori; Bolmont, Émeline; Grasset, Olivier; Lewis, Karen; Barnes, Rory; Zuluaga, Jorge I

    2014-01-01

    The diversity and quantity of moons in the Solar System suggest a manifold population of natural satellites exist around extrasolar planets. Of peculiar interest from an astrobiological perspective, the number of sizable moons in the stellar habitable zones may outnumber planets in these circumstellar regions. With technological and theoretical methods now allowing for the detection of sub-Earth-sized extrasolar planets, the first detection of an extrasolar moon appears feasible. In this review, we summarize formation channels of massive exomoons that are potentially detectable with current or near-future instruments. We discuss the orbital effects that govern exomoon evolution, we present a framework to characterize an exomoon's stellar plus planetary illumination as well as its tidal heating, and we address the techniques that have been proposed to search for exomoons. Most notably, we show that natural satellites in the range of 0.1 - 0.5 Earth mass (i) are potentially habitable, (ii) can form within the c...

  16. Effective Physics Study Habits

    Science.gov (United States)

    Zettili, Nouredine

    2011-04-01

    We discuss the methods of efficient study habits and how they can be used by students to help them improve learning physics. In particular, we deal with ideas pertaining to the most effective techniques needed to help students improve their physics study skills. These ideas were developed as part of Project IMPACTSEED (IMproving Physics And Chemistry Teaching in SEcondary Education), an outreach grant funded by the Alabama Commission on Higher Education. This project is motivated by a major pressing local need: A large number of high school physics teachers teach out of field. In the presentation, focus on topics such as the skills of how to develop long term memory, how to improve concentration power, how to take class notes, how to prepare for and take exams, how to study scientific subjects such as physics. We argue that the student who conscientiously uses the methods of efficient study habits will be able to achieve higher results than the student who does not; moreover, a student equipped with the proper study skills will spend much less time to learn a subject than a student who has no good study habits. The underlying issue here is not the quantity of time allocated to the study efforts by the student, but the efficiency and quality of actions. This work is supported by the Alabama Commission on Higher Education as part of IMPACTSEED grant.

  17. Tidal Effects on the Habitability of Exoplanets: The Case of GJ 581 d

    CERN Document Server

    Barnes, Rory; Heller, René; Greenberg, Richard; Raymond, Sean N

    2010-01-01

    Tides may be crucial to the habitability of exoplanets. If such planets form around low-mass stars, then those in the circumstellar habitable zone will be close enough to their host stars to experience strong tidal forces. Tides may result in orbital decay and circularization, evolution toward zero obliquity, a fixed rotation rate (not necessarily synchronous), and substantial internal heating. Due to tidal effects, the range of habitable orbital locations may be quite different from that defined by the traditional concept of a habitable zone (HZ) based on stellar insolation, atmospheric effects, and liquid water on a planet's surface. Tidal heating may make locations within the traditional HZ too hot, while planets outside the traditional zone could be rendered quite habitable due to tides. Here we consider these effects on the exoplanet GJ 581 d.

  18. The habitability of super-Earths in Gliese 581

    CERN Document Server

    Von Bloh, W; Cuntz, M; Franck, S

    2007-01-01

    Aims: The planetary system around the M star Gliese 581 consists of a hot Neptune (Gl 581b) and two super-Earths (Gl 581c and Gl 581d). The habitability of this system with respect to the super-Earths is investigated following a concept that studies the long-term possibility of photosynthetic biomass production on a dynamically active planet. Methods: A thermal evolution model for a super-Earth is used to calculate the sources and sinks of atmospheric carbon dioxide. The habitable zone is determined by the limits of biological productivity on the planetary surface. Models with different ratios of land / ocean coverage are investigated. Results: The super-Earth Gl 581c is clearly outside the habitable zone, since it is too close to the star. In contrast, Gl 581d is a tidally locked habitable super-Earth near the outer edge of the habitable zone. Despite the adverse conditions on this planet, at least some primitive forms of life may be able to exist on its surface.

  19. The bovine tuberculosis burden in cattle herds in zones with low dose radiation pollution in the Ukraine

    Energy Technology Data Exchange (ETDEWEB)

    Weller, Richard E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Skrypnyk, Artem [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zavgorodniy, Andriy [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Stegniy, Borys [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gerilovych, Anton [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kutsan, Oleksandr [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Pozmogova, Svitlana [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sapko, Svitlana [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2009-02-01

    The authors describe a study of the tuberculosis (TB) incidence in cattle exposed to low doses of radiation resulting from the Chernobyl (pronounced ‘Chornobyl’ in Ukrainian) nuclear plant catastrophe in 1986. The purpose of the study was to determine if ionising radiation influences the number of outbreaks of bovine TB and their severity on farms in the Kyiv, Cherkasy and Chernigiv regions of the Ukraine. These farms are all located within a 200 km radius of Chernobyl and have had low-dose radiation pollution. Pathological and blood samples were taken from cattle in those regions that had positive TB skin tests. Mycobacterium spp. were isolated, differentiated by PCR, analysed and tested in guinea pigs and rabbits. Species differentiation showed a significant percentage of atypical mycobacteria, which resulted in the allergic reactions to tuberculin antigen in the skin test. Mixed infection of M. bovis and M. avium subsp. hominissuis was found in three cases. The results concluded that low-dose radiation plays a major role in the occurrence of bovine TB in regions affected by the Chernobyl nuclear disaster.

  20. Identification of Native Bacteria of the Candelaria and Tatacoa Semiarid Zone, Capable of Withstanding a Mars UV Radiation Simulation

    Science.gov (United States)

    Mendez, Y.; Vives, M.

    2017-07-01

    This work is the first study to describe native bacteria from the semi-arid areas in Candelaria and Tatacoa in Colombia, able to withstand a simulation of UV radiation, in order to draw an analogy with microbial growth on the surface of Mars. Sampling was carried out in the areas mentioned taking 50 samples of sediment divided into 25 samples of surface and 25 deep samples. As soon as the samples were transferred, they were subjected to a test of UV radiation in an atmospheric simulation chamber designed for the experiment, for periods of 1, 6 and 12 hours of exposure. Microbiological analysis as a method of plate dilution and isolation were performed using the modified AIS growth medium, macroscopic and microscopic description of morphotypes, biochemical identification of the morphotypes found, extraction of the feasible mycelium, DNA extraction and amplification of the gene 16 S by PCR. 13 morphotypes of bacteria resistant to UV radiation were found, mostly compatible with the gender of Streptomyces. One of the morphotypes found resisted 12 hours exposure. Molecular analyzes did not produce any results, because it was not possible to amplify the 16S by PCR, this may be due to that the exposure to UV radiation can degrade the DNA in existence, a affecting the results. The finding of native bacteria capable of withstanding conditions UV radiation can give us an approximation of microbial growth, mechanisms of resistance and survival under extreme conditions such as those found on Mars, in order to develop biotechnological applications and establish planetary analogues to understand the origin and evolution of the universe.

  1. The Influence of Volcanic Aerosols on Planetary Habitability

    Science.gov (United States)

    Chen, Howard; Horton, Daniel Ethan

    2017-01-01

    On rocky planetary bodies such as Proxima Centuri b, the detection of sulphate aerosols may indicate volcanism and tectonic activity; ingredients hypothesized to be necessary for planetary habitability. However, due to the effect of atmospheric aerosols on a planet’s energy balance, coupled with eruption constituent and frequency uncertainties, the potential impact of volcanic activity on planetary habitability remains unresolved. Here, we employ multi-column climate models in conjunction with a parameter space approach to test the effect of volcanic aerosols on planetary climate with various climate sensitivities. Preliminary results indicate that volcanic activity could provide a means of extending the inner edge of the habitable zone (IHZ), depending on eruption constituents and frequency. Previous work using transit spectra simulations have demonstrated the possibility of detecting transient aerosols of volcanic origin. Our work investigates the range of habitability implications detection of such aerosols would imply.

  2. Breaking car use habits

    DEFF Research Database (Denmark)

    Thøgersen, John; Møller, Berit Thorup

    2008-01-01

    and consider using-or at least trying-public transport instead. About 1,000 car drivers participated in the experiment either as experimental subjects, receiving a free one-month travelcard, or as control subjects. As predicted, the intervention had a significant impact on drivers' use of public transport...... and it also neutralized the impact of car driving habits on mode choice. However, in the longer run (i.e., four months after the experiment) experimental subjects did not use public transport more than control subjects. Hence, it seems that although many car drivers choose travel mode habitually, their final...

  3. Habitability of waterworlds: runaway greenhouses, atmospheric expansion, and multiple climate states of pure water atmospheres.

    Science.gov (United States)

    Goldblatt, Colin

    2015-05-01

    There are four different stable climate states for pure water atmospheres, as might exist on so-called "waterworlds." I map these as a function of solar constant for planets ranging in size from Mars-sized to 10 Earth-mass. The states are as follows: globally ice covered (Ts ⪅ 245 K), cold and damp (270 ⪅ Ts ⪅ 290 K), hot and moist (350 ⪅ Ts ⪅ 550 K), and very hot and dry (Tsx2A86;900 K). No stable climate exists for 290 ⪅ T s ⪅ 350 K or 550 ⪅ Ts ⪅ 900 K. The union of hot moist and cold damp climates describes the liquid water habitable zone, the width and location of which depends on planet mass. At each solar constant, two or three different climate states are stable. This is a consequence of strong nonlinearities in both thermal emission and the net absorption of sunlight. Across the range of planet sizes, I account for the atmospheres expanding to high altitudes as they warm. The emitting and absorbing surfaces (optical depth of unity) move to high altitude, making their area larger than the planet surface, so more thermal radiation is emitted and more sunlight absorbed (the former dominates). The atmospheres of small planets expand more due to weaker gravity; the effective runaway greenhouse threshold is about 35 W m(-2) higher for Mars, 10 W m(-2) higher for Earth or Venus, but only a few W m(-2) higher for a 10 Earth-mass planet. There is an underlying (expansion-neglected) trend of increasing runaway greenhouse threshold with planetary size (40 W m(-2) higher for a 10 Earth-mass planet than for Mars). Summing these opposing trends means that Venus-sized (or slightly smaller) planets are most susceptible to a runaway greenhouse. The habitable zone for pure water atmospheres is very narrow, with an insolation range of 0.07 times the solar constant. A wider habitable zone requires background gas and greenhouse gas: N2 and CO2 on Earth, which are biologically controlled. Thus, habitability depends on inhabitance.

  4. Computer codes for evaluation of control room habitability (HABIT)

    Energy Technology Data Exchange (ETDEWEB)

    Stage, S.A. [Pacific Northwest Lab., Richland, WA (United States)

    1996-06-01

    This report describes the Computer Codes for Evaluation of Control Room Habitability (HABIT). HABIT is a package of computer codes designed to be used for the evaluation of control room habitability in the event of an accidental release of toxic chemicals or radioactive materials. Given information about the design of a nuclear power plant, a scenario for the release of toxic chemicals or radionuclides, and information about the air flows and protection systems of the control room, HABIT can be used to estimate the chemical exposure or radiological dose to control room personnel. HABIT is an integrated package of several programs that previously needed to be run separately and required considerable user intervention. This report discusses the theoretical basis and physical assumptions made by each of the modules in HABIT and gives detailed information about the data entry windows. Sample runs are given for each of the modules. A brief section of programming notes is included. A set of computer disks will accompany this report if the report is ordered from the Energy Science and Technology Software Center. The disks contain the files needed to run HABIT on a personal computer running DOS. Source codes for the various HABIT routines are on the disks. Also included are input and output files for three demonstration runs.

  5. Circumbinary Habitability Niches

    CERN Document Server

    Mason, Paul A; Cuartas-Restrepo, Pablo A; Clark, Joni M

    2014-01-01

    Binaries could provide the best niches for life in the galaxy. Though counterintuitive, this assertion follows directly from stellar tidal interaction theory and the evolution of lower mass stars. There is strong evidence that chromospheric activity of rapidly rotating young stars may be high enough to cause mass loss from atmospheres of potentially habitable planets. The removal of atmospheric water is most critical. Tidal breaking in binaries could help reduce magnetic dynamo action and thereby chromospheric activity in favor of life. We call this the Binary Habitability Mechanism (BHM), that we suggest allows for water retention at levels comparable to or better than Earth. We discuss novel advantages that life may exploit, in these cases, and suggest that life may even thrive on some circumbinary planets. We find that while many binaries do not benefit from BHM, high quality niches do exist for various combinations of stars between 0.55 and 1.0 solar masses. For a given pair of stellar masses, BHM operate...

  6. On the probability of habitable planets

    CERN Document Server

    Forget, Francois

    2012-01-01

    In the past 15 years, astronomers have revealed that a significant fraction of the stars should harbor planets and that it is likely that terrestrial planets are abundant in our galaxy. Among these planets, how many are habitable, i.e. suitable for life and its evolution? These questions have been discussed for years and we are slowly making progress. Liquid water remains the key criterion for habitability. It can exist in the interior of a variety of planetary bodies, but it is usually assumed that liquid water at the surface interacting with rocks and light is necessary for the emergence of a life able to modify its environment and evolve. A first key issue is thus to understand the climatic conditions allowing surface liquid water assuming a suitable atmosphere. This have been studied with global mean 1D models which has defined the "classical habitable zone", the range of orbital distances within which worlds can maintain liquid water on their surfaces (Kasting et al. 1993). A new generation of 3D climate...

  7. No Snowball on Habitable Tidally Locked Planets

    Science.gov (United States)

    Checlair, Jade; Menou, Kristen; Abbot, Dorian S.

    2017-08-01

    The TRAPPIST-1, Proxima Centauri, and LHS 1140 systems are the most exciting prospects for future follow-up observations of potentially inhabited planets. All of the planets orbit nearby M-stars and are likely tidally locked in 1:1 spin-orbit states, which motivates the consideration of the effects that tidal locking might have on planetary habitability. On Earth, periods of global glaciation (snowballs) may have been essential for habitability and remote signs of life (biosignatures) because they are correlated with increases in the complexity of life and in the atmospheric oxygen concentration. In this paper, we investigate the snowball bifurcation (sudden onset of global glaciation) on tidally locked planets using both an energy balance model and an intermediate-complexity global climate model. We show that tidally locked planets are unlikely to exhibit a snowball bifurcation as a direct result of the spatial pattern of insolation they receive. Instead, they will smoothly transition from partial to complete ice coverage and back. A major implication of this work is that tidally locked planets with an active carbon cycle should not be found in a snowball state. Moreover, this work implies that tidally locked planets near the outer edge of the habitable zone with low CO2 outgassing fluxes will equilibrate with a small unglaciated substellar region rather than cycling between warm and snowball states. More work is needed to determine how the lack of a snowball bifurcation might affect the development of life on a tidally locked planet.

  8. The detectability of habitable exomoons with Kepler

    CERN Document Server

    Awiphan, Supachai

    2013-01-01

    In this paper, the detectability of habitable exomoons orbiting around giant planets in M-dwarf systems using Transit Timing Variations (TTVs) and Transit Timing Durations (TDVs) with Kepler-class photometry is investigated. Light curves of systems with various configurations were simulated around M-dwarf hosts of mass 0.5 Msun and radius 0.55 Rsun. Jupiter-like giant planets which offer the best potential for hosting habitable exomoons were considered with rocky super-Earth-mass moons. The detectability is measured by using the phase-correlation between TTV and TDV signals. Since the TDV signal is typically weaker than the TTV signal, confirmation of an exomoon detection will depend on being able to detect a TDV signal. We find that exomoons around planets orbiting within the habitable zone of an M-dwarf host star can produce both detectable TTV and TDV signatures with Kepler-class photometry. While aliasing between the planet period and moon period may hinder exomoon detection, we also find some strong corr...

  9. Predicting the radiation exposure of terrestrial wildlife in the Chernobyl exclusion zone : an international comparison of approaches.

    Energy Technology Data Exchange (ETDEWEB)

    Beresford, N. A.; Barnett, C. L.; Brown, J. E.; Cheng, J.-J.; Copplestone, D.; Gaschak, S.; Hosseini, A.; Howard, B. J.; Kamboj, S.; Nedveckaite, T.; Olyslaegers, G.; Smith, J. T.; Vives i Batlle, J.; Vives-Lynch, S.; Yu, C.; Environmental Science Division; Centre for Ecology and Hydrology; Norwegian Radiation Protection Authority; England and Wales Environment Agency; International Radioecology Lab.; Inst. of Physics, Radiation Protection,; Belgian Nuclear Research Centre; Univ. of Portsmouth; Westlakes Research Inst.

    2010-06-09

    There is now general acknowledgement that there is a requirement to demonstrate that species other than humans are protected from anthropogenic releases of radioactivity. A number of approaches have been developed for estimating the exposure of wildlife and some of these are being used to conduct regulatory assessments. There is a requirement to compare the outputs of such approaches against available data sets to ensure that they are robust and fit for purpose. In this paper we describe the application of seven approaches for predicting the whole-body ({sup 90}Sr, {sup 137}Cs, {sup 241}Am and Pu isotope) activity concentrations and absorbed dose rates for a range of terrestrial species within the Chernobyl exclusion zone. Predictions are compared against available measurement data, including estimates of external dose rate recorded by thermoluminescent dosimeters attached to rodent species. Potential reasons for differences between predictions between the various approaches and the available data are explored.

  10. Predicting the radiation exposure of terrestrial wildlife in the Chernobyl exclusion zone: an international comparison of approaches

    Energy Technology Data Exchange (ETDEWEB)

    Beresford, N A; Barnett, C L; Howard, B J [Centre for Ecology and Hydrology Lancaster, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster LA1 4AP (United Kingdom); Brown, J E; Hosseini, A [Norwegian Radiation Protection Authority, Department of Emergency Preparedness and Environmental Radioactivity, Grini naeringspark 13, Postbox 55, No-1332 Oesteras (Norway); Cheng, J-J; Kamboj, S; Yu, C [Argonne National Laboratory, Building 900, 9700 South Cass Avenue, Argonne, IL 60439-4832 (United States); Copplestone, D [England and Wales Environment Agency, Richard Fairclough House, Knutsford Road, Warrington, Cheshire WA4 1HG (United Kingdom); Gaschak, S [International Radioecology Laboratory (Ukraine); Nedveckaite, T [Institute of Physics, Radiation Protection, Savanoriu Avenue 231, LT-02053 Vilnius (Lithuania); Olyslaegers, G [Belgian Nuclear Research Centre, SCK.CEN, Radioecology Section, Radiation Protection Department, Boeretang 200, B-2400, Mol (Belgium); Smith, J T [School of Earth and Environmental Sciences, University of Portsmouth, Burnaby Building, Burnaby Road, Portsmouth PO1 3QL (United Kingdom); Vives i Batlle, J; Vives-Lynch, S, E-mail: nab@ceh.ac.u [Westlakes Research Institute, Westlakes Scientific Consulting Ltd., The Princess Royal Building, Westlakes Science and Technology Park, Moor Row, Cumbria, CA24 3LN (United Kingdom)

    2010-06-15

    There is now general acknowledgement that there is a requirement to demonstrate that species other than humans are protected from anthropogenic releases of radioactivity. A number of approaches have been developed for estimating the exposure of wildlife and some of these are being used to conduct regulatory assessments. There is a requirement to compare the outputs of such approaches against available data sets to ensure that they are robust and fit for purpose. In this paper we describe the application of seven approaches for predicting the whole-body ({sup 90}Sr, {sup 137}Cs, {sup 241}Am and Pu isotope) activity concentrations and absorbed dose rates for a range of terrestrial species within the Chernobyl exclusion zone. Predictions are compared against available measurement data, including estimates of external dose rate recorded by thermoluminescent dosimeters attached to rodent species. Potential reasons for differences between predictions between the various approaches and the available data are explored.

  11. The coupling between internal waves and shear-induced turbulence in stellar radiation zones: the critical layer

    CERN Document Server

    Alvan, Lucie; Decressin, Thibaut

    2013-01-01

    Internal gravity waves (hereafter IGWs) are known as one of the candidates for explaining the angular velocity profile in the Sun and in solar-type main-sequence and evolved stars, due to their role in the transport of angular momentum. Our bringing concerns critical layers, a process poorly explored in stellar physics, defined as the location where the local relative frequency of a given wave to the rotational frequency of the fluid tends to zero (i.e that corresponds to co-rotation resonances). IGW propagate through stably-stratified radiative regions, where they extract or deposit angular momentum through two processes: radiative and viscous dampings and critical layers. Our goal is to obtain a complete picture of the effects of this latters. First, we expose a mathematical resolution of the equation of propagation for IGWs in adiabatic and non-adiabatic cases near critical layers. Then, the use of a dynamical stellar evolution code, which treats the secular transport of angular momentum, allows us to appl...

  12. Computer system for the assessment of radiation situation in the cases of radiological accidents and extreme weather conditions in the Chernobyl exclusion zone

    Energy Technology Data Exchange (ETDEWEB)

    Talerko, M.; Garger, E.; Kuzmenko, A. [Institute for Safety Problems of Nuclear Power Plants (Ukraine)

    2014-07-01

    Radiation situation within the Chernobyl Exclusion Zone (ChEZ) is determined by high radionuclides contamination of the land surface formed after the 1986 accident, as well as the presence of a number of potentially hazardous objects (the 'Shelter' object, the Interim Spent Nuclear Fuel Dry Storage Facility ISF-1, radioactive waste disposal sites, radioactive waste temporary localization sites etc.). The air concentration of radionuclides over the ChEZ territory and radiation exposure of personnel are influenced by natural and anthropogenic factors: variable weather conditions, forest fires, construction and excavation activity etc. The comprehensive radiation monitoring and early warning system in the ChEZ was established under financial support of European Commission in 2011. It involves the computer system developed for assessment and prediction of radiological emergencies consequences in the ChEZ ensuring the protection of personnel and the population living near its borders. The system assesses radiation situation under both normal conditions in the ChEZ and radiological emergencies which result in considerable radionuclides emission into the air (accidents at radiation hazardous objects, extreme weather conditions). Three different types of radionuclides release sources can be considered in the software package. So it is based on a set of different models of emission, atmospheric transport and deposition of radionuclides: 1) mesoscale model of radionuclide atmospheric transport LEDI for calculations of the radionuclides emission from stacks and buildings; 2) model of atmospheric transport and deposition of radionuclides due to anthropogenic resuspension from contaminated area (area surface source model) as a result of construction and excavation activity, heavy traffic etc.; 3) model of resuspension, atmospheric transport and deposition of radionuclides during grassland and forest fires in the ChEZ. The system calculates the volume and surface

  13. Natural Radiation for Identification and Evaluation of Risk Zones for Affectation of Activated Faults in Aquifer Overexploited.

    Science.gov (United States)

    Ramos-Leal, J.; Lopez-Loera, H.; Carbajal-Perez, N.

    2007-05-01

    of the fault trend and evolution and elevation of the piezometric level in the aquifer, detecting high values of Radon-222, anomalies of radiation gamma and the presence of grooves in the basalts. Anomalies of radiation gamma were detected in the shears area. The profile of the anomalies of radiation gamma evidences and it confirms the high fracturing grade and permeability in the shears area.

  14. Implications of outer-zone radiations on operations in the geostationary region utilizing the AE4 environmental model

    Science.gov (United States)

    Wilson, J. W.; Denn, F. M.

    1977-01-01

    The radiation exposure in the region of geostationary orbits is examined in search for means of optimizing human performance. It is found that the use of slightly inclined circular orbits is one means by which exposure and spacesuit thickness requirements can be reduced. Another effective technique is to limit the extravehicular activity to those days when the short term fluctuations result in low exposure. Space-suit shielding approaching 1/2 sq cm or less may be possible by utilizing work stoppages and inclined orbits. If aluminum and other low-atomic-number materials are used to construct the habitat, then excessive wall thicknesses are required. If special bremsstrahlung shielding is used, then the habitat shield may be reduced to as low as 2 g/sq cm. Numerous tables and graphs are presented for future analysis of dose in the geostationary region.

  15. Habit and context

    DEFF Research Database (Denmark)

    Mueller Loose, Simone; Jaeger, S. R.

    Although research into contextual influences on food/beverage choices is increasing, limited knowledge exists about the relative impact context variables and to which degree these factors interact with each other. Habit is also acknowledged as being important in shaping food/beverage choices......, but like the influence of context, quantification of its importance is lacking. To contribute to a closing of this gap, we analyse food dairy data from 100+ New Zealand consumers quantitatively with a variance component analysis. Food diaries, recording the eating occasion, beverages and meal food...... among the context factors studied. For instance hot beverages were more likely to be consumed at breakfast, while alcoholic beverages were strongly related to dinner meals. Beer/wine was considerably more likely to be consumed outside home or in on-premise locations in the presence of friends or family...

  16. Breaking car use habits

    DEFF Research Database (Denmark)

    Thøgersen, John; Møller, Berit Thorup

    2008-01-01

    Based on calls for innovative ways of reducing car traffic and research indicating that car driving is often the result of habitual decision-making and choice processes, this paper reports on a field experiment designed to test a tool aimed to entice drivers to skip the habitual choice of the car...... and consider using-or at least trying-public transport instead. About 1,000 car drivers participated in the experiment either as experimental subjects, receiving a free one-month travelcard, or as control subjects. As predicted, the intervention had a significant impact on drivers' use of public transport...... and it also neutralized the impact of car driving habits on mode choice. However, in the longer run (i.e., four months after the experiment) experimental subjects did not use public transport more than control subjects. Hence, it seems that although many car drivers choose travel mode habitually, their final...

  17. Apoptosis-inducing factor deficiency decreases the proliferation rate and protects the subventricular zone against ionizing radiation.

    Science.gov (United States)

    Osato, K; Sato, Y; Ochiishi, T; Osato, A; Zhu, C; Sato, M; Swanpalmer, J; Modjtahedi, N; Kroemer, G; Kuhn, H G; Blomgren, K

    2010-10-21

    Cranial radiotherapy in children often leads to progressive cognitive decline. We have established a rodent model of irradiation-induced injury to the young brain. A single dose of 8 Gy was administered to the left hemisphere of postnatal day 10 (P10) mice. Harlequin (Hq) mice, carrying the hypomorphic apoptosis-inducing factor AIF(Hq) mutation, express 60% less AIF at P10 and displayed significantly fewer dying cells in the subventricular zone (SVZ) 6 h after IR, compared with wild type (Wt) littermates. Irradiated cyclophilin A-deficient (CypA(-/-)) mice confirmed that CypA has an essential role in AIF-induced apoptosis after IR. Hq mice displayed no reduction in SVZ size 7 days after IR, whereas 48% of the SVZ was lost in Wt mice. The proliferation rate was lower in the SVZ of Hq mice. Cultured neural precursor cells from the SVZ of Hq mice displayed a slower proliferation rate and were more resistant to IR. IR preferentially kills proliferating cells, and the slower proliferation rate in the SVZ of Hq mice may, at least partly, explain the protective effect of the Hq mutation. Together, these results indicate that targeting AIF may provide a fruitful strategy for protection of normal brain tissue against the detrimental side effects of IR.

  18. Habitability of Terrestrial-Mass Planets in the HZ of M Dwarfs. I. H/He-Dominated Atmospheres

    CERN Document Server

    Owen, James E

    2016-01-01

    The ubiquity of M dwarfs, combined with the relative ease of detecting terrestrial-mass planets around them, has made them prime targets for finding and characterising planets in the "Habitable Zone" (HZ). However, Kepler has revealed that terrestrial-mass exoplanets are often born with voluminous H/He envelopes, comprising mass-fractions ($M_{env}/M_{core}$) $\\gtrsim 1$\\%. If these planets retain such envelopes over Gyr timescales, they will not be "habitable" even within the HZ. Given the strong X-ray/UV fluxes of M dwarfs, we study whether these planets can lose sufficient envelope-mass through photoevaporation to become habitable. We improve upon previous work by using hydrodynamic models that account for radiative cooling as well as the transition from hydrodynamic to ballistic escape. Adopting the XUV spectrum of the active M dwarf AD Leo as a template, including stellar evolution, and considering both evaporation and thermal evolution, we show that: (1) the envelope-mass lost is significantly lower tha...

  19. An Upper Limit on the Ratio Between the Extreme Ultraviolet and the Bolometric Luminosities of Stars Hosting Habitable Planets

    Indian Academy of Sciences (India)

    Sujan Sengupta

    2016-06-01

    A large number of terrestrial planets in the classical habitable zone of stars of different spectral types have already been discovered and many are expected to be discovered in the near future. However, owing to the lack of knowledge on the atmospheric properties, the ambient environment of such planets are unknown. It is known that sufficient amount of Extreme Ultraviolet (EUV) radiation from the star can drive hydrodynamic outflow of hydrogen that may drag heavier species from the atmosphere of the planet. If the rate of mass loss is sufficiently high, then substantial amount of volatiles would escape causing the planet to become uninhabitable. Considering energy-limited hydrodynamical mass loss with an escape rate that causes oxygen to escape alongwith hydrogen, an upper limit for the ratio between the EUV and the bolometric luminosities of stars which constrains the habitability of planets around them is presented here. Application of the limit to planet-hosting stars with known EUV luminosities implies that many M-type of stars should not have habitable planets around them.

  20. Habitable Planets Eclipsing Brown Dwarfs: Strategies for Detection and Characterization

    CERN Document Server

    Belu, Adrian R; Raymond, Sean N; Pallé, Enric; Street, Rachel; Sahu, D K; Von Braun, Kaspar; Bolmont, Emeline; Figueira, Pedro; Anupama, G C; Ribas, Ignasi

    2013-01-01

    Given the very close proximity of their habitable zones, brown dwarfs represent high-value targets in the search for nearby transiting habitable planets that may be suitable for follow-up occultation spectroscopy. In this paper we develop search strategies to find habitable planets transiting brown dwarfs depending on their maximum habitable orbital period (PHZ out). Habitable planets with PHZ out shorter than the useful duration of a night (e.g. 8-10 hrs) can be screened with 100 percent completeness from a single location and in a single night (near-IR). More luminous brown dwarfs require continuous monitoring for longer duration, e.g. from space or from a longitude-distributed network (one test scheduling achieved - 3 telescopes, 13.5 contiguous hours). Using a simulated survey of the 21 closest known brown dwarfs (within 7 pc) we find that the probability of detecting at least one transiting habitable planet is between 4.5 +5.6-1.4 and 56 +31-13 percent, depending on our assumptions. We calculate that bro...

  1. Habitable Planets Eclipsing Brown Dwarfs: Strategies for Detection and Characterization

    Science.gov (United States)

    Belu, Adrian R.; Selsis, Franck; Raymond, Sean N.; Pallé, Enric; Street, Rachel; Sahu, D. K.; von Braun, Kaspar; Bolmont, Emeline; Figueira, Pedro; Anupama, G. C.; Ribas, Ignasi

    2013-05-01

    Given the very close proximity of their habitable zones, brown dwarfs (BDs) represent high-value targets in the search for nearby transiting habitable planets that may be suitable for follow-up occultation spectroscopy. In this paper, we develop search strategies to find habitable planets transiting BDs depending on their maximum habitable orbital period (P HZ out). Habitable planets with P HZ out shorter than the useful duration of a night (e.g., 8-10 hr) can be screened with 100% completeness from a single location and in a single night (near-IR). More luminous BDs require continuous monitoring for longer duration, e.g., from space or from a longitude-distributed network (one test scheduling achieved three telescopes, 13.5 contiguous hours). Using a simulated survey of the 21 closest known BDs (within 7 pc) we find that the probability of detecting at least one transiting habitable planet is between 4.5^{+5.6}_{-1.4}% and 56^{+31}_{-13}%, depending on our assumptions. We calculate that BDs within 5-10 pc are characterizable for potential biosignatures with a 6.5 m space telescope using ~1% of a five-year mission's lifetime spread over a contiguous segment only one-fifth to one-tenth of this duration.

  2. HABITABLE PLANETS ECLIPSING BROWN DWARFS: STRATEGIES FOR DETECTION AND CHARACTERIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Belu, Adrian R.; Selsis, Franck; Raymond, Sean N.; Bolmont, Emeline [Universite de Bordeaux, LAB, UMR 5804, F-33270, Floirac (France); Palle, Enric [Instituto de Astrofisica de Canarias, E-38205 La Laguna (Spain); Street, Rachel [Las Cumbres Observatory Global Telescope Network, 6740 Cortona Drive, Suite 102, Goleta, CA 93117 (United States); Sahu, D. K.; Anupama, G. C. [Indian Institute of Astrophysics, Koramangala, Bangalore 560034 (India); Von Braun, Kaspar [NASA Exoplanet Science Institute, California Institute of Technology, MC 100-22, Pasadena, CA 91125 (United States); Figueira, Pedro [Centro de Astrofisica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Ribas, Ignasi, E-mail: belu@obs.u-bordeaux1.fr [Institut de Ciencies de l' Espai (CSIC-IEEC), Campus UAB, Facultat de Ciencies, Torre C5, parell, 2a pl., E-08193 Bellaterra (Spain)

    2013-05-10

    Given the very close proximity of their habitable zones, brown dwarfs (BDs) represent high-value targets in the search for nearby transiting habitable planets that may be suitable for follow-up occultation spectroscopy. In this paper, we develop search strategies to find habitable planets transiting BDs depending on their maximum habitable orbital period (P{sub HZ{sub out}}). Habitable planets with P{sub HZ{sub out}} shorter than the useful duration of a night (e.g., 8-10 hr) can be screened with 100% completeness from a single location and in a single night (near-IR). More luminous BDs require continuous monitoring for longer duration, e.g., from space or from a longitude-distributed network (one test scheduling achieved three telescopes, 13.5 contiguous hours). Using a simulated survey of the 21 closest known BDs (within 7 pc) we find that the probability of detecting at least one transiting habitable planet is between 4.5{sup +5.6}{sub -1.4}% and 56{sup +31}{sub -13}%, depending on our assumptions. We calculate that BDs within 5-10 pc are characterizable for potential biosignatures with a 6.5 m space telescope using {approx}1% of a five-year mission's lifetime spread over a contiguous segment only one-fifth to one-tenth of this duration.

  3. The effect of temperature and pressure on optical absorption spectra of transition zone minerals - Implications for the radiative conductivity of the Earth's interior

    Science.gov (United States)

    Thomas, S.; Jacobsen, S. D.; Bina, C. R.; Goncharov, A. F.; Frost, D. J.; McCammon, C. A.

    2010-12-01

    Optical absorption spectra of high-pressure minerals can be used as indirect tools to calculate radiative conductivities of the Earth’s interior [e.g., 1]. Recent high-pressure studies imply that e.g. ringwoodite, γ-(Mg,Fe)2SiO4, does not become opaque in the near infrared and visible region, as previously assumed, but remains transparent to 21.5 GPa [2]. Therefore, it has been concluded that radiative heat transfer does not necessarily become blocked at high pressures of the mantle and ferromagnesian minerals actually might contribute to the heat flow in the Earth’s interior [2]. However, experimental results on temperature effects on radiative heat transfer are not available. We studied the effect of both, pressure and temperature, on the optical absorption of hydrous Fe-bearing ringwoodite, γ-(Mg,Fe)2SiO4, and hydrous Fe-bearing wadsleyite, β-(Mg,Fe)2SiO4, which are the main components of the Earth’s transition zone. Gem-quality single-crystals were synthesized at 18 GPa and 1400 °C in a 5000t multianvil apparatus. Crystals were analyzed by Mössbauer and Raman spectroscopy, electron microprobe analysis and single-crystal X-ray diffraction. For optical absorption measurements in the IR - VIS - UV spectral range (400 - 50000 cm-1) 50 µm sized single-crystals of ringwoodite and wadsleyite were double polished to thicknesses of 13 µm and 18 µm, respectively, and loaded in resistively heated diamond-anvil cells with argon as pressure medium. After taking measurements at high pressure and room temperature, ringwoodite was studied at 26 GPa up to 650 °C and wadsleyite spectra were recorded at 16 GPa up to 450 °C. At ambient pressure the absorption spectrum of ringwoodite reveals a crystal field band (Fe2+) at 12075 cm-1, an intervalence charge transfer band (Fe2+ to Fe3+) at 16491 cm-1, and an absorption edge due to ligand-metal charge transfer close to 30000 cm-1. The wadsleyite spectrum is characterized by a similar absorption edge in the VIS-UV range

  4. Health Habit: A Concept Analysis.

    Science.gov (United States)

    Opalinski, Andra S; Weglicki, Linda S; Gropper, Sareen S

    2017-05-25

    The aim of this article is to provide clarity of the concept of health habit. Using Walker and Avant's (1983; 2010) method for conducting a concept analysis, the authors identify the attributes and characteristics of health habit, its theoretical and practical application to nursing, and sample cases to further illustrate the concept. Empirical and conceptual literature was used to inform this concept analysis. Articles and one book from 1977 to 2014 were reviewed from PsycINFO, Medline, Cumulative Index to Nursing Health Literature (CINAHL), Science Direct, EBSCOhost and Web of Science. Offering a clear definition and conceptual model of health habit provide the foundation to identify/develop appropriate measures of the concept and guide further investigation of understanding the development and sustainability of healthy habits. Additional research is needed to test the conceptual relationships between health habits and outcome variables as they apply to different groups across the age continuum. © 2017 Wiley Periodicals, Inc.

  5. Portfolio Optimization under Habit Formation

    CERN Document Server

    Naryshkin, Roman

    2008-01-01

    The "standard" Merton formulation of optimal investment and consumption involves optimizing the integrated lifetime utility of consumption, suitably discounted, together with the discounted future bequest. In this formulation the utility of consumption at any given time depends only on the amount consumed at that time. However, it is both theoretically and empirically reasonable that an individuals utility of consumption would depend on past consumption history. Economists term this "Habit Formation". We introduce a new formulation of habit formation which allows non-addictive consumption patterns for a wide variety of utility specification. In this paper we construct a simple mathematical description of this habit formation and present numerical solutions. We compare the results with the standard ones and draw insights obtained from the habit formation. The consumption path tends to increase with time and be less sensitive to the market fluctuations, which perfectly reflects the existence of habit persistenc...

  6. Water in Extrasolar Planets and Implications for Habitability

    Science.gov (United States)

    Noack, Lena; Snellen, Ignas; Rauer, Heike

    2017-09-01

    Exoplanet detection missions have found thousands of planets or planet candidates outside of the Solar System—some of which are in the habitable zone, where liquid water is possible at the surface. We give an overview of the recent progress in observations of water-rich exoplanets, detection of water in the atmosphere of gas giants and less-massive targets, and modelling of the interior and evolution of water layers in exoplanets. We summarise the possible habitability of water-rich planets and discuss the potential of future missions and telescopes towards the detection of water in the atmosphere of low-mass exoplanets or on their surface.

  7. Habitability of the TRAPPIST-1 System

    Science.gov (United States)

    Kohler, Susanna

    2017-04-01

    The recent discovery of seven Earth-sized, terrestrial planets around an M dwarf star was met with excitement and optimism. But how habitable are these planets actually likely to be? A recent study of these planets likely climates may provide an answer to this question.An Optimistic OutlookIn February of this year, the TRAPPIST-1 system was announced: seven roughly Earth-sized, transiting, terrestrial planets all orbiting their host ultracool dwarf star within a distance the size of Mercurys orbit. Three of the planets were initially declared to be in the stars habitable zone and scientists speculated that even those outside the habitable zone could potentially still harbor liquid water making the system especially exciting.In Wolfs simulations, the surface temperature (solid lines) of TRAPPIST-1d grows to more than 380K in just 40 years. [Adapted from Wolf 2017]The planets were labeled as temperate because all seven have equilibrium temperatures that are under 400K. Since liquid water requires a surface temperature of 273-373K, this certainly seems promising!Finding Realistic TemperaturesBut theres a catch: equilibrium temperatures are not actual measurements of the planets surface temperature, theyre just very rudimentary estimates based on how much light the planet receives. To get a better estimate of the real temperature of the planet and therefore assess its habitability you need advanced climate modeling of the planet that include factors like the greenhouse effect and planetary albedo.In Wolfs simulations, the surface temperature of TRAPPIST-1f plummets rapidly even when modeled with dense carbon dioxide atmosphere (purple line). The bottom panel shows the corresponding rapid growth of sea-ice on the surface oceans for the different atmospheric models. [Wolf 2017]To that end, scientist Eric Wolf (University of Colorado Boulder) has conducted state-of-the-art 3D climate calculations for the three center-most planets planets d, e, and f in the TRAPPIST-1

  8. Habitable Climates: The Influence of Obliquity

    CERN Document Server

    Spiegel, David S; Scharf, Caleb A

    2008-01-01

    Without the stabilizing influence of the Moon, the Earth's obliquity could vary significantly. Extrasolar terrestrial planets with the potential to host life may therefore have large obliquities or be subject to strong obliquity variations. We revisit the habitability of oblique planets with an energy balance climate model (EBM) allowing for dynamical transitions to ice-covered snowball states as a result of ice-albedo feedback. Despite the great simplicity of our EBM, it captures reasonably well the seasonal cycle of global energetic fluxes at Earth's surface. It also performs satisfactorily against a full-physics climate model of a highly oblique Earth, in an unusual regime of circulation dominated by heat transport from the poles to the equator. Climates on oblique terrestrial planets can violate global radiative balance through much of their seasonal cycle, which limits the usefulness of simple radiative equilibrium arguments. High obliquity planets have severe climates, with large amplitude seasonal vari...

  9. Characterization of calcium and zinc spatial distributions at the fibrocartilage zone of bone–tendon junction by synchrotron radiation-based micro X-ray fluorescence analysis combined with backscattered electron imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Hongbin; Chen, Can; Wang, Zhanwen; Qu, Jin; Xu, Daqi [Department of Sports Medicine, Research Center of Sports Medicine, Xiangya Hospital, Central South University, Changsha 410008 (China); Wu, Tianding; Cao, Yong [Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008 (China); Zhou, Jingyong; Zheng, Cheng [Department of Sports Medicine, Research Center of Sports Medicine, Xiangya Hospital, Central South University, Changsha 410008 (China); Hu, Jianzhong, E-mail: jianzhonghu@hotmail.com [Department of Sports Medicine, Research Center of Sports Medicine, Xiangya Hospital, Central South University, Changsha 410008 (China); Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008 (China)

    2015-09-01

    Tendon attaches to bone through a functionally graded fibrocartilage zone, including uncalcified fibrocartilage (UF), tidemark (TM) and calcified fibrocartilage (CF). This transition zone plays a pivotal role in relaxing load transfer between tendon and bone, and serves as a boundary between otherwise structurally and functionally distinct tissue types. Calcium and zinc are believed to play important roles in the normal growth, mineralization, and repair of the fibrocartilage zone of bone–tendon junction (BTJ). However, spatial distributions of calcium and zinc at the fibrocartilage zone of BTJ and their distribution–function relationship are not totally understood. Thus, synchrotron radiation-based micro X-ray fluorescence analysis (SR-μXRF) in combination with backscattered electron imaging (BEI) was employed to characterize the distributions of calcium and zinc at the fibrocartilage zone of rabbit patella–patellar tendon complex (PPTC). For the first time, the unique distributions of calcium and zinc at the fibrocartilage zone of the PPTC were clearly mapped by this method. The distributions of calcium and zinc at the fibrocartilage zone of the PPTC were inhomogeneous. A significant accumulation of zinc was exhibited in the transition region between UF and CF. The highest zinc content (3.17 times of that of patellar tendon) was found in the TM of fibrocartilage zone. The calcium content began to increase near the TM and increased exponentially across the calcified fibrocartilage region towards the patella. The highest calcium content (43.14 times of that of patellar tendon) was in the transitional zone of calcified fibrocartilage region and the patella, approximately 69 μm from the location with the highest zinc content. This study indicated, for the first time, that there is a differential distribution of calcium and zinc at the fibrocartilage zone of PPTC. These observations reveal new insights into region-dependent changes across the fibrocartilage

  10. THE HABIT OF CURIOSITY

    Directory of Open Access Journals (Sweden)

    CARLA CESARE

    2014-05-01

    Full Text Available Curiosity is commonly referred to as a way of being, or an object of curiosity. How curiosity is part of our daily lives, how we engage with curiosity intellectually has a long and interesting history. Since the sixteenth century it has been manifest in cabinets of curiosity, museums and curio cabinets; exercises in collecting, self-reflection and discovery. However, the end of the twentieth-century has altered our sense of the world, through the speed and accessibility of information leaving a changed relationship with wonder. This paper discusses the role of curiosity in research as a “habit of curiosity”, (Benedict 2001, 2 a method for discovery. It reviews its historical manifestations and concerns, locating it through objects and actions, and questions what new meanings the twenty-first century brings with it. Is curiosity at risk? Is it still risky? The relationship between the individual and their interior and exterior socio-cultural landscape continually creates new meanings for knowledge and how we achieve it. This shadowy landscape of our curiosity has not lost meaning intellectually, but it in our shrinking, globalized world how we engage with it requires a new investigation.

  11. Assessing Habitability: Lessons from the Phoenix Mission

    Science.gov (United States)

    Stoker, Carol R.

    2013-01-01

    The Phoenix mission's key objective was to search for a habitable zone. The Phoenix lander carried a robotic arm with digging scoop to collect soil and icy material for analysis with an instrument payload that included volatile mineral and organic analysis(3) and soil ionic chemistry analysis (4). Results from Phoenix along with theoretical modeling and other previous mission results were used to evaluate the habitability of the landing site by considering four factors that characterize the environments ability to support life as we know it: the presence of liquid water, the presence of an energy source to support metabolism, the presence of nutrients containing the fundamental building blocks of life, and the absence of environmental conditions that are toxic to or preclude life. Phoenix observational evidence for the presence of liquid water (past or present) includes clean segregated ice, chemical etching of soil grains, calcite minerals in the soil and variable concentrations of soluble salts5. The maximum surface temperature measured was 260K so unfrozen water can form only in adsorbed films or saline brines but warmer climates occur cyclically on geologically short time scales due to variations in orbital parameters. During high obliquity periods, temperatures allowing metabolism extend nearly a meter into the subsurface. Phoenix discovered 1%w/w perchlorate salt in the soil, a chemical energy source utilized by a wide range of microbes. Nutrient sources including C, H, N, O, P and S compounds are supplied by known atmospheric sources or global dust. Environmental conditions are within growth tolerance for terrestrial microbes. Summer daytime temperatures are sufficient for metabolic activity, the pH is 7.8 and is well buffered and the projected water activity of a wet soil will allow growth. In summary, martian permafrost in the north polar region is a viable location for modern life. Stoker et al. presented a formalism for comparing the habitability of

  12. [Oral habits. Etiology and treatment].

    Science.gov (United States)

    Romanou-Kouvelas, K; Kouvelas, N

    1988-01-01

    Oral habits have been described by psychologists and psychyatrists as psychodynamic phenomena. Dentists are concerned with oral habits because of the detrimental consequences they have in the oral facial system. The dentist who is in a position to confront a child with an oral habit in order to treat his dentinofacial problems is required to be aware of the psychological background of his patient as well as of the conditions under which the children do the habit in order to overcome emotional difficulties. The dentist should also search into the child's family to find out what the causes of the child's oral habit maybe. For the treatment of an oral habit the dentist should ensure both the child's and the family's cooperation and he should be aware of the advantages and disadvantages of every available method for treatment. Methods of treatment are: Use of orthodontic appliances: This method has the disadvantage that disturbs the child's psychological need for the habit, it can be interpreted as a punishment, it is visible and it causes speaking difficulties. It should be applied only in cooperation with the child. Behavioristic technique: This method aims to reinforce the child's positive behavior according to the Skinnerian principle: stimulus-response-reward. It has fast results but it is a conditioned treatment. Psychoanalytic method: It could solve the problem of the child's primary need for the oral habit in a radical manner. However it is practically impossible to be applied in Dentistry. Behavior modification according to ego psychology. With this method we attempt to analyse and understand the psychological cause of an oral habit.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Study Habits on English Education

    Institute of Scientific and Technical Information of China (English)

    Gao Feng

    2013-01-01

    Currently, China gradual y focuses on the development of local English education in order to expand its influence to the world. The essay wil analyze the situation of English education in China and explain the importance of study habits to English education. Meanwhile, some advices for Chinese education changes wil be given. According to the essay, it can be found that study habit is essential for further English education. China cannot be stick to its English education strategy al the time because Chinese students rely too much on the teaching strategies instead of their own study habits.

  14. El dispositivo habitable

    Directory of Open Access Journals (Sweden)

    La Roche, P. M.

    1999-04-01

    Full Text Available This paper explains the main concepts supporting the project "Habitar el Dispositivo" which was awarded a prize in the International Competition "25 Bioclimatical Houses" promoted by the "Instituto Tecnológico de Energías Renovables of Tenerife " and organized by the "Colegio de Arquitectos de Canarias" and sponsored by the "International Union of Architects". As opposed to bioclimatical houses which are the result of adding bioclimatical devices to an architectural project, the integration of bioclimatical and architectural concepts in a livable device is proposed. A digital model of the project was built to analyze sunlight and shadow behavior and computer simulations permitted to determine thermal performance. Average thermal satisfaction was 89.75 % during typical summer and winter 24 hour periods.

    Se presentan los conceptos fundamentales que respaldan la propuesta "Habitar el Dispositivo", premiada en el Concurso Internacional "25 Viviendas Bioclimáticas" promovido por el "Instituto Tecnológico de Energías Renovables del Cabildo de Tenerife", organizado por el "Colegio de Arquitectos de Canarias" y homologado por la "Unión Internacional de Arquitectos". Al contrario de la solución de añadir dispositivos a un proyecto de arquitectura, la propuesta integra conceptos bioclimáticos y arquitectónicos en un dispositivo habitable. Un modelo digital de la edificación permitió estudiar su volumetría y soleamiento en diferentes períodos del año, mientras que su comportamiento térmico se analizó con un programa de simulación en régimen dinámico. El promedio de personas satisfechas en días típicos de verano e invierno fue del 89,75 %.

  15. Northern Fur Seal Food Habits

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains food habits samples, usually scats, collected opportunistically on northern fur seal rookeries and haulouts in Alaska from 1987 to present....

  16. 8 HABITS OF INFLUENTIAL PEOPLE

    National Research Council Canada - National Science Library

    Travis Bradberry

    2017-01-01

    .... It's a labour of love that influential people pursue behind the scenes, every single day. And while what people are influenced by changes with the season, the unique habits of influential people remain constant...

  17. Growth habit of polar crystals

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Using coordination polyhedron rule, growth habit of polar crystals such as ZnO, ZnS and SiO2 is investigated. It shows that the growth rates in the positive and negative polar axis directions are different. The theoretical growth habit of ZnO crystal is hexagonal prism and the growth rates of its various faces are:V{0001}>V{0111}-->V{0110}->V{0111}->V{0001}-. The growth habit of ZnS crystal is tetrahedron and its growth rates of different crystal faces are: V{111}>V{001}>V{001} =V{100} =. The growth rate relationship between positive and negative polar axis directions of SiO2 crystal V[1120]-->V[1120]-.is These results are in agreement with the growth habits observed under hydrothermal conditions. The different growth rates between positive and negative polar axis directions cannot be explained by PBC theory.

  18. Liquid Water Restricts Habitability in Extreme Deserts.

    Science.gov (United States)

    Cockell, Charles S; Brown, Sarah; Landenmark, Hanna; Samuels, Toby; Siddall, Rebecca; Wadsworth, Jennifer

    2017-04-01

    Liquid water is a requirement for biochemistry, yet under some circumstances it is deleterious to life. Here, we show that liquid water reduces the upper temperature survival limit for two extremophilic photosynthetic microorganisms (Gloeocapsa and Chroococcidiopsis spp.) by greater than 40°C under hydrated conditions compared to desiccated conditions. Under hydrated conditions, thermal stress causes protein inactivation as shown by the fluorescein diacetate assay. The presence of water was also found to enhance the deleterious effects of freeze-thaw in Chroococcidiopsis sp. In the presence of water, short-wavelength UV radiation more effectively kills Gloeocapsa sp. colonies, which we hypothesize is caused by factors including the greater penetration of UV radiation into hydrated colonies compared to desiccated colonies. The data predict that deserts where maximum thermal stress or irradiation occurs in conjunction with the presence of liquid water may be less habitable to some organisms than more extreme arid deserts where organisms can dehydrate prior to being exposed to these extremes, thus minimizing thermal and radiation damage. Life in extreme deserts is poised between the deleterious effects of the presence and the lack of liquid water. Key Words: Deserts-Extremophiles-Stress-High temperatures-UV radiation-Desiccation. Astrobiology 17, 309-318.

  19. The Habitability of Planets Orbiting M-dwarf Stars

    CERN Document Server

    Shields, Aomawa L; Johnson, John A

    2016-01-01

    The prospects for the habitability of M-dwarf planets have long been debated, due to key differences between the unique stellar and planetary environments around these low-mass stars, as compared to hotter, more luminous Sun-like stars. Over the past decade, significant progress has been made by both space- and ground-based observatories to measure the likelihood of small planets to orbit in the habitable zones of M-dwarf stars. We now know that most M dwarfs are hosts to closely-packed planetary systems characterized by a paucity of Jupiter-mass planets and the presence of multiple rocky planets, with roughly a third of these rocky M-dwarf planets orbiting within the habitable zone, where they have the potential to support liquid water on their surfaces. Theoretical studies have also quantified the effect on climate and habitability of the interaction between the spectral energy distribution of M-dwarf stars and the atmospheres and surfaces of their planets. These and other recent results fill in knowledge g...

  20. Quantitative estimates of the surface habitability of Kepler-452b

    Science.gov (United States)

    Silva, Laura; Vladilo, Giovanni; Murante, Giuseppe; Provenzale, Antonello

    2017-09-01

    Kepler-452b is currently the best example of an Earth-size planet in the habitable zone of a sun-like star, a type of planet whose number of detections is expected to increase in the future. Searching for biosignatures in the supposedly thin atmospheres of these planets is a challenging goal that requires a careful selection of the targets. Under the assumption of a rocky-dominated nature for Kepler-452b, we considered it as a test case to calculate a temperature-dependent habitability index, h050, designed to maximize the potential presence of biosignature-producing activity. The surface temperature has been computed for a broad range of climate factors using a climate model designed for terrestrial-type exoplanets. After fixing the planetary data according to the experimental results, we changed the surface gravity, CO2 abundance, surface pressure, orbital eccentricity, rotation period, axis obliquity and ocean fraction within the range of validity of our model. For most choices of parameters, we find habitable solutions with h050 > 0.2 only for CO2 partial pressure p_CO_2 ≲ 0.04 bar. At this limiting value of CO2 abundance, the planet is still habitable if the total pressure is p ≲ 2 bar. In all cases, the habitability drops for eccentricity e ≳ 0.3. Changes of rotation period and obliquity affect the habitability through their impact on the equator-pole temperature difference rather than on the mean global temperature. We calculated the variation of h050 resulting from the luminosity evolution of the host star for a wide range of input parameters. Only a small combination of parameters yields habitability-weighted lifetimes ≳2 Gyr, sufficiently long to develop atmospheric biosignatures still detectable at the present time.

  1. On the inclination and habitability of the HD 10180 system

    Energy Technology Data Exchange (ETDEWEB)

    Kane, Stephen R. [Department of Physics and Astronomy, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132 (United States); Gelino, Dawn M., E-mail: skane@sfsu.edu [NASA Exoplanet Science Institute, Caltech, MS 100-22, 770 South Wilson Avenue, Pasadena, CA 91125 (United States)

    2014-09-10

    There are numerous multi-planet systems that have now been detected via a variety of techniques. These systems exhibit a range of both planetary properties and orbital configurations. For those systems without detected planetary transits, a significant unknown factor is the orbital inclination. This produces an uncertainty in the mass of the planets and their related properties, such as atmospheric scale height. Here we investigate the HD 10180 system, which was discovered using the radial velocity technique. We provide a new orbital solution for the system which allows for eccentric orbits for all planets. We show how the inclination of the system affects the mass/radius properties of the planets and how the detection of phase signatures may resolve the inclination ambiguity. We finally evaluate the Habitable Zone properties of the system and show that the g planet spends 100% of an eccentric orbit within the Habitable Zone.

  2. Habitable Exoplanet Imager Optical Telescope Concept Design

    Science.gov (United States)

    Stahl, H Philip

    2017-01-01

    The Habitable Exoplanet Imaging Mission (HabEx) is one of four missions under study for the 2020 Astrophysics Decadal Survey. Its goal is to directly image and spectroscopically characterize planetary systems in the habitable zone of Sun-like stars. Additionally, HabEx will perform a broad range of general astrophysics science enabled by 100 to 2500 nm spectral range and 3 x 3 arc-minute FOV. Critical to achieving the HabEx science goals is a large, ultra-stable UV/Optical/Near-IR (UVOIR) telescope. The baseline HabEx telescope is a 4-meter off-axis unobscured three-mirror-anastigmatic, diffraction limited at 400 nm with wavefront stability on the order of a few 10s of picometers. This paper summarizes the opto-mechanical design of the HabEx baseline optical telescope assembly, including a discussion of how science requirements drive the telescope's specifications, and presents analysis that the baseline telescope structure meets its specified tolerances.

  3. Exotic Earths: Forming Habitable Worlds with Giant Planet Migration

    CERN Document Server

    Raymond, S N; Sigurdsson, S; Raymond, Sean N.; Mandell, Avi M.; Sigurdsson, Steinn

    2006-01-01

    Close-in giant planets (e.g. ``Hot Jupiters'') are thought to form far from their host stars and migrate inward, through the terrestrial planet zone, via torques with a massive gaseous disk. Here we simulate terrestrial planet growth during and after giant planet migration. Several-Earth mass planets also form interior to the migrating Jovian planet, analogous to recently-discovered ``Hot Earths''. Very water-rich, Earth-mass planets form from surviving material outside the giant planet's orbit, often in the Habitable Zone and with low orbital eccentricities. More than a third of the known systems of giant planets may harbor Earth-like planets.

  4. Exotic Earths: forming habitable worlds with giant planet migration.

    Science.gov (United States)

    Raymond, Sean N; Mandell, Avi M; Sigurdsson, Steinn

    2006-09-08

    Close-in giant planets (e.g., "hot Jupiters") are thought to form far from their host stars and migrate inward, through the terrestrial planet zone, via torques with a massive gaseous disk. Here we simulate terrestrial planet growth during and after giant planet migration. Several-Earth-mass planets also form interior to the migrating jovian planet, analogous to recently discovered "hot Earths." Very-water-rich, Earth-mass planets form from surviving material outside the giant planet's orbit, often in the habitable zone and with low orbital eccentricities. More than a third of the known systems of giant planets may harbor Earth-like planets.

  5. Mapping α Centauri AB for Possible Habitable Planets

    Science.gov (United States)

    Quarles, Billy L.; Lissauer, Jack J.

    2016-06-01

    The alpha Centauri AB star system, our closest stellar neighbors, has been studied for many decades and ACESat (Belikov et al. AAS Meeting #225, #311.01, 2015) is a proposed space mission designed to directly image Earth-sized planets in the habitable zones of both of these stars. The alpha Centauri system is older than our Sun, so any resident planets are expected to occupy long-lived orbits. We evaluate the extent of these trajectories where planets are able to orbit for billion-year timescales. The distribution of long-lived orbits is mapped to the sky plane to indicate regions where planets may appear relative to each stellar component. Our results confirm qualitatively those of Wiegert & Holman (Astron. J. 113, 1445, 1997) regarding the approximate size of the regions of stable orbits, which are larger for retrograde orbits relative to the binary than for prograde orbits. Moreover, we find that orbits beyond each star’s habitable zone are affected by a dynamical imprint from the binary orbit due to mean motion resonances and the Lidov-Kozai Mechanism. Stable planets can exist near the plane of the binary orbit within each stellar habitable zone, whereas highly inclined orbits are typically short-lived. These results are of special interest as they can guide the search process of our stellar neighbors in future missions.

  6. The inhabitance paradox: how habitability and inhabitancy are inseparable

    CERN Document Server

    Goldblatt, Colin

    2016-01-01

    The dominant paradigm in assigning "habitability"' to terrestrial planets is to define a circumstellar habitable zone: the locus of orbital radii in which the planet is neither too hot nor too cold for life as we know it. One dimensional climate models have identified theoretically impressive boundaries for this zone: a runaway greenhouse or water loss at the inner edge (Venus), and low-latitude glaciation followed by formation of CO2 clouds at the outer edge. A cottage industry now exists to "refine" the definition of these boundaries each year to the third decimal place of an AU. Using the same class of climate model, I show that the different climate states can overlap very substantially and that "snowball Earth", moist temperate climate, hot moist climate and a post-runaway dry climate can all be stable under the same solar flux. The radial extent of the temperate climate band is very narrow for pure water atmospheres, but can be widened with di-nitrogen and carbon dioxide. The width of the habitable zone...

  7. Long-Term Outcomes and Patterns of Relapse of Early-Stage Extranodal Marginal Zone Lymphoma Treated With Radiation Therapy With Curative Intent

    Energy Technology Data Exchange (ETDEWEB)

    Teckie, Sewit; Qi, Shunan; Lovie, Shona [Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York (United States); Navarrett, Scott [Weill Cornell Medical College, New York, New York (United States); Hsu, Meier [Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York (United States); Noy, Ariela; Portlock, Carol [Lymphoma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York (United States); Yahalom, Joachim, E-mail: yahalomj@mskcc.org [Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York (United States)

    2015-05-01

    Purpose: To report the long-term outcome and patterns of relapse of a large cohort of marginal zone lymphoma (MZL) patients treated with curative-intent radiation therapy (RT) alone. Patients and Methods: We reviewed the charts of 490 consecutive patients with stage IE or IIE MZL referred between 1992 and 2012 to our institution. Of those, 244 patients (50%) were treated with RT alone. Pathology was confirmed by hematopathologists at our institution. Patient and disease factors were analyzed for association with relapse-free survival (RFS) and overall survival (OS). Results: Median age of the cohort was 59 years, and median follow-up was 5.2 years. Ann Arbor stage was IE in 92%. Most common disease sites were stomach (50%), orbit (18%), non-thyroid head-and-neck (8%), skin (8%), and breast (5%). Median RT dose was 30 Gy. Five-year OS and RFS were 92% and 74%, respectively. Cumulative incidence of disease-specific death was just 1.1% by 5 years. Sixty patients (24%) developed relapse of disease; 10 were in the RT field. Crude rate of transformation to pathologically confirmed large-cell lymphoma was 1.6%. On multivariable analysis, primary disease site (P=.007) was independently associated with RFS, along with age (P=.04), presence of B-symptoms (P=.02), and International Prognostic Index risk group (P=.03). All disease sites except for head-and-neck had worse RFS relative to stomach. Conclusion: Overall and cause-specific survival are high in early-stage extra-nodal MZL treated with curative RT alone. In this large cohort of 244 patients, most patients did not experience relapse of MZL after curative RT; when relapses did occur, the majority were in distant sites. Stomach cases were less likely to relapse than other anatomic sites. Transformation to large-cell lymphoma was rare.

  8. Contribution of oral habits to dental disorders.

    Science.gov (United States)

    Ehrlich, J; Hochman, N; Yaffe, A

    1992-04-01

    Oral habits or parafunction may contribute to dental, periodontal, or neuromuscular damage. Such habits, of which the patient is often unaware, may cause considerable damage. Habits may be occlusal or non-occlusal, and may affect the dentition and/or the oral soft tissues. Drawing a patient's attention to the damage caused by some habits of which he or she is unaware often leads to cessation, whereas with certain conscious habits, such as nail or finger biting, success is much more limited.

  9. Intermittent Jolts of Galactic UV Radiation Mutagenetic Effects

    CERN Document Server

    Scalo, J M; Williams, P; Scalo, John M.; Williams, Peter

    2001-01-01

    We estimate the frequency of intermittent hypermutation events and disruptions of planetary/satellite photochemistry due to ultraviolet radiation from core collapse supernova explosions. Calculations are presented for planetary systems in the local Milky Way, including the important moderating effects of vertical Galactic structure and UV absorption by interstellar dust. The events are particularly frequent for satellites of giant gas planets at \\gtrsim 5-10 AU distance from solar-type parent stars, or in the conventional habitable zones for planets orbiting spectral type K and M parent stars, with rates of significant jolts about 10^3 - 10^4 per Gyr. The steep source spectra and existing data on UVA and longer-wavelength radiation damage in terrestrial organisms suggest that the mutational effects may operate even on planets with ozone shields. We argue that the mutation doubling dose for UV radiation should be much smaller than the mean lethal dose, using terrestrial prokaryotic organisms as our model, and ...

  10. Review on the Role of Planetary Factors on Habitability

    Science.gov (United States)

    Kereszturi, A.; Noack, L.

    2016-11-01

    In this work various factors on the habitability were considered, focusing on conditions irrespective of the central star's radiation, to see the role of specific planetary body related effects. These so called planetary factors were evaluated to identify those trans-domain issues where important information is missing but good chance exit to be filled by new knowledge that might be gained in the next decade(s). Among these strategic knowledge gaps, specific issues are listed, like occurrence of radioactive nucleides in star forming regions, models to estimate the existence of subsurface liquid water from bulk parameters plus evolutionary context of the given system, estimation on the existence of redox gradient depending on the environment type etc. These issues require substantial improvement of modelling and statistical handling of various cases, as "planetary environment types". Based on our current knowledge it is probable that subsurface habitability is at least as frequent, or more frequent than surface habitability. Unfortunately it is more difficult from observations to infer conditions for subsurface habitability, but specific argumentation might help with indirect ways, which might result in new methods to approach habitability in general.

  11. How habitable zones and super-Earths lead us astray

    Science.gov (United States)

    Moore, William B.; Lenardic, A.; Jellinek, A. M.; Johnson, C. L.; Goldblatt, C.; Lorenz, R. D.

    2017-02-01

    As scientists, the terminology we choose influences our thinking as it carries our messages to colleagues and the public. In the face of pressure to turn science into clickbait, maintaining precision in the language we use is critical to dispel misinformation and, more broadly, to enable scientific progress.

  12. A decreased probability of habitable planet formation around low-mass stars

    CERN Document Server

    Raymond, Sean N; Meadows, Victoria

    2007-01-01

    Smaller terrestrial planets ( 0.3 Earth mass habitable planets decreases for low-mass stars for every realistic combination of parameters. This "habitable fraction" is small for stellar masses below a mass in the interval 0.5 to 0.8 Solar masses, depending on disk parameters, an interval that excludes most M stars. Radial mixing and therefore water delivery are inefficient in lower-mass disks commonly found around low-mass stars, such that terrestrial planets in the habitable zones of most low-mass stars are likely to be small and dry.

  13. Radiation Response of Forward Biased Float Zone and Magnetic Czochralski Silicon Detectors of Different Geometry for 1-MeV Neutron Equivalent Fluence Monitoring

    CERN Document Server

    Mekki, J; Dusseau, Laurent; Roche, Nicolas Jean-Henri; Saigne, Frederic; Mekki, Julien; Glaser, Maurice

    2010-01-01

    Aiming at evaluating new options for radiation monitoring sensors in LHC/SLHC experiments, the radiation responses of FZ and MCz custom made silicon detectors of different geometry have been studied up to about 4 x 10(14) n(eq)/cm(2). The radiation response of the devices under investigation is discussed in terms of material type, thickness and active area influence.

  14. From climate models to planetary habitability: temperature constraints for complex life

    Science.gov (United States)

    Silva, Laura; Vladilo, Giovanni; Schulte, Patricia M.; Murante, Giuseppe; Provenzale, Antonello

    2017-07-01

    In an effort to derive temperature-based criteria of habitability for multicellular life, we investigated the thermal limits of terrestrial poikilotherms, i.e. organisms whose body temperature and the functioning of all vital processes is directly affected by the ambient temperature. Multicellular poikilotherms are the most common and evolutionarily ancient form of complex life on earth. The thermal limits for the active metabolism and reproduction of multicellular poikilotherms on earth are approximately bracketed by the temperature interval 0°C life, and for the generation of atmospheric biosignatures observable in exoplanets. Analysis of the main mechanisms responsible for the thermal thresholds of terrestrial life suggests that the same mechanisms would apply to other forms of chemical life. We therefore propose a habitability index for complex life, h 050, representing the mean orbital fraction of planetary surface that satisfies the temperature limits 0°C planets, we calculated h 050 as a function of planet insolation, S, and atmospheric columnar mass, N atm, for a few earth-like atmospheric compositions with trace levels of CO2. By displaying h 050 as a function of S and N atm, we built up an atmospheric mass habitable zone (AMHZ) for complex life. At variance with the classic habitable zone, the inner edge of the complex life habitable zone is not affected by the uncertainties inherent to the calculation of the runaway greenhouse limit. The complex life habitable zone is significantly narrower than the habitable zone of dry planets. Our calculations illustrate how changes in ambient conditions dependent on S and N atm, such as temperature excursions and surface dose of secondary particles of cosmic rays, may influence the type of life potentially present at different epochs of planetary evolution inside the AMHZ.

  15. The Quest for Cradles of Life: Using the Fundamental Metallicity Relation to Hunt for the Most Habitable Type of Galaxy

    Science.gov (United States)

    Dayal, Pratika; Cockell, Charles; Rice, Ken; Mazumdar, Anupam

    2015-09-01

    The field of astrobiology has made huge strides in understanding the habitable zones around stars (stellar habitable zones) where life can begin, sustain its existence and evolve into complex forms. A few studies have extended this idea by modeling galactic-scale habitable zones (galactic habitable zones) for our Milky Way (MW) and specific elliptical galaxies. However, estimating the habitability for galaxies spanning a wide range of physical properties has so far remained an outstanding issue. Here, we present a “cosmobiological” framework that allows us to sift through the entire galaxy population in the local universe and answer the question, “Which type of galaxy is most likely to host complex life in the cosmos?” Interestingly, the three key astrophysical criteria governing habitability (total mass in stars, total metal mass and ongoing star formation rate) are found to be intricately linked through the “fundamental metallicity relation” as shown by Sloan Digital Sky Survey observations of more than a hundred thousand galaxies in the local universe. Using this relation we show that metal-rich, shapeless giant elliptical galaxies at least twice as massive as the MW (with a tenth of its star formation rate) can potentially host ten thousand times as many habitable (Earth-like) planets, making them the most probable “cradles of life” in the universe.

  16. THE QUEST FOR CRADLES OF LIFE: USING THE FUNDAMENTAL METALLICITY RELATION TO HUNT FOR THE MOST HABITABLE TYPE OF GALAXY

    Energy Technology Data Exchange (ETDEWEB)

    Dayal, Pratika [Institute for Computational Cosmology, Department of Physics, University of Durham, South Road, Durham DH1 3LE (United Kingdom); Cockell, Charles [UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3HJ (United Kingdom); Rice, Ken [Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh EH9 3HJ (United Kingdom); Mazumdar, Anupam [Consortium for Fundamental Physics, Lancaster University, Lancaster LA1 4 YB (United Kingdom)

    2015-09-01

    The field of astrobiology has made huge strides in understanding the habitable zones around stars (stellar habitable zones) where life can begin, sustain its existence and evolve into complex forms. A few studies have extended this idea by modeling galactic-scale habitable zones (galactic habitable zones) for our Milky Way (MW) and specific elliptical galaxies. However, estimating the habitability for galaxies spanning a wide range of physical properties has so far remained an outstanding issue. Here, we present a “cosmobiological” framework that allows us to sift through the entire galaxy population in the local universe and answer the question, “Which type of galaxy is most likely to host complex life in the cosmos?” Interestingly, the three key astrophysical criteria governing habitability (total mass in stars, total metal mass and ongoing star formation rate) are found to be intricately linked through the “fundamental metallicity relation” as shown by Sloan Digital Sky Survey observations of more than a hundred thousand galaxies in the local universe. Using this relation we show that metal-rich, shapeless giant elliptical galaxies at least twice as massive as the MW (with a tenth of its star formation rate) can potentially host ten thousand times as many habitable (Earth-like) planets, making them the most probable “cradles of life” in the universe.

  17. Habitability of enceladus: planetary conditions for life.

    Science.gov (United States)

    Parkinson, Christopher D; Liang, Mao-Chang; Yung, Yuk L; Kirschivnk, Joseph L

    2008-08-01

    The prolific activity and presence of a plume on Saturn's tiny moon Enceladus offers us a unique opportunity to sample the interior composition of an icy satellite, and to look for interesting chemistry and possible signs of life. Based on studies of the potential habitability of Jupiter's moon Europa, icy satellite oceans can be habitable if they are chemically mixed with the overlying ice shell on Myr time scales. We hypothesize that Enceladus' plume, tectonic processes, and possible liquid water ocean may create a complete and sustainable geochemical cycle that may allow it to support life. We discuss evidence for surface/ocean material exchange on Enceladus based on the amounts of silicate dust material present in the Enceladus' plume particles. Microphysical cloud modeling of Enceladus' plume shows that the particles originate from a region of Enceladus' near surface where the temperature exceeds 190 K. This could be consistent with a shear-heating origin of Enceladus' tiger stripes, which would indicate extremely high temperatures ( approximately 250-273 K) in the subsurface shear fault zone, leading to the generation of subsurface liquid water, chemical equilibration between surface and subsurface ices, and crustal recycling on a time scale of 1 to 5 Myr. Alternatively, if the tiger stripes form in a mid-ocean-ridge-type mechanism, a half-spreading rate of 1 m/year is consistent with the observed regional heat flux of 250 mW m(-2) and recycling of south polar terrain crust on a 1 to 5 Myr time scale as well.

  18. Assessing the habitability of planets with Earth-like atmospheres with 1D and 3D climate modeling

    CERN Document Server

    Godolt, M; Kitzmann, D; Kunze, M; Langematz, U; Patzer, A B C; Rauer, H; Stracke, B

    2016-01-01

    The habitable zone (HZ) describes the range of orbital distances around a star where the existence of liquid water on the surface of an Earth-like planet is in principle possible. While 3D climate studies can calculate the water vapor, ice albedo, and cloud feedback self-consistently and therefore allow for a deeper understanding and the identification of relevant climate processes, 1D model studies rely on fewer model assumptions and can be more easily applied to the large parameter space possible for exoplanets. We evaluate the applicability of 1D climate models to estimate the potential habitability of Earth-like exoplanets by comparing our 1D model results to those of 3D climate studies in the literature. We applied a cloud-free 1D radiative-convective climate model to calculate the climate of Earth-like planets around different types of main-sequence stars with varying surface albedo and relative humidity profile. These parameters depend on climate feedbacks that are not treated self-consistently in most...

  19. The habitability of Proxima Centauri b. I. Irradiation, rotation and volatile inventory from formation to the present

    CERN Document Server

    Ribas, Ignasi; Selsis, Franck; Reiners, Ansgar; Leconte, Jeremy; Raymond, Sean N; Engle, Scott G; Guinan, Edward F; Morin, Julien; Turbet, Martin; Forget, Francois; Anglada-Escude, Guillem

    2016-01-01

    Proxima b is a planet with a minimum mass of 1.3 MEarth orbiting within the habitable zone (HZ) of Proxima Centauri, a very low-mass, active star and the Sun's closest neighbor. Here we investigate a number of factors related to the potential habitability of Proxima b and its ability to maintain liquid water on its surface. We set the stage by estimating the current high-energy irradiance of the planet and show that the planet currently receives 30 times more EUV radiation than Earth and 250 times more X-rays. We compute the time evolution of the star's spectrum, which is essential for modeling the flux received over Proxima b's lifetime. We also show that Proxima b's obliquity is likely null and its spin is either synchronous or in a 3:2 spin-orbit resonance, depending on the planet's eccentricity and level of triaxiality. Next we consider the evolution of Proxima b's water inventory. We use our spectral energy distribution to compute the hydrogen loss from the planet with an improved energy-limited escape f...

  20. The rules of coherence and other habits

    CERN Document Server

    Solis, M R C

    2003-01-01

    Physics and mathematics are difficult enough without the aditional burden of bad habits. In this article, we examine some helpful habits that tend to be underemphasized by many physics teachers (mainly because they seem so obvious!).

  1. Exoplanet Habitability: Effects of Planetesimal Carbon Chemistry

    Science.gov (United States)

    Johnson, Torrence; Mousis, Olivier; Lunine, Jonathan; Madhusudhan, Nikku

    2014-05-01

    We explore the effects of reported differences in C/O values for exoplanet host stars on the composition of planetesimals formed beyond the snow line in these systems. Since the value of C/O in a planet forming nebula has a strong effect on amount of oxygen available for water ice in an oxidizing nebula, exoplanet systems for host stars with C/O greater than the solar value may have planetesimals with very little or no water ice. We have estimated the composition of volatile and refractory material in extrasolar planetesimals using a set of stars with a wide range of measured C/O abundances (Johnson et al. ApJ. 757(2), 192, 2012). The volatile ice content of planetesimals in these systems varies significantly with C/O, controlled primarily by the availability of O for H2O ice condensation. Systems with C/O less than the solar value (C/O = 0.55) should have very water ice rich planetesimals, while water ice mass fraction decreases rapidly with increasing C/O until only ices of CO and CO2 are left in significant proportions. If a significant fraction of C is in the form of refractory CHON particles, C and O are removed from the gas phase and the condensates for super-solar C/O values will be water-poor mixtures of silicates and metal, carbon, and carbon-bearing volatile ices, depending on temperature. For very carbon-rich systems, oxidizing conditions cannot be sustained beyond about C/O=1, due to the oxygen sequestered in solid silicates, oxides and CHON, for refractory C fractions within the Pollack et al. range of 0.4 - 0.7 (ApJ. 421, 615, 1994). These results have implications for assessing the habitability of exoplanets since they constrain the amount of water available beyond the snow line for dynamical delivery to inner planets, depending on the host star's C/O in the circumstellar nebula. Thus one the key chemical ingredients for habitability may be in short supply in carbon-rich, oxygen-poor systems even if planets exist in the 'habitable zone'. TVJ

  2. Galactic cosmic ray-induced radiation dose on terrestrial exoplanets.

    Science.gov (United States)

    Atri, Dimitra; Hariharan, B; Grießmeier, Jean-Mathias

    2013-10-01

    This past decade has seen tremendous advancements in the study of extrasolar planets. Observations are now made with increasing sophistication from both ground- and space-based instruments, and exoplanets are characterized with increasing precision. There is a class of particularly interesting exoplanets that reside in the habitable zone, which is defined as the area around a star where the planet is capable of supporting liquid water on its surface. Planetary systems around M dwarfs are considered to be prime candidates to search for life beyond the Solar System. Such planets are likely to be tidally locked and have close-in habitable zones. Theoretical calculations also suggest that close-in exoplanets are more likely to have weaker planetary magnetic fields, especially in the case of super-Earths. Such exoplanets are subjected to a high flux of galactic cosmic rays (GCRs) due to their weak magnetic moments. GCRs are energetic particles of astrophysical origin that strike the planetary atmosphere and produce secondary particles, including muons, which are highly penetrating. Some of these particles reach the planetary surface and contribute to the radiation dose. Along with the magnetic field, another factor governing the radiation dose is the depth of the planetary atmosphere. The higher the depth of the planetary atmosphere, the lower the flux of secondary particles will be on the surface. If the secondary particles are energetic enough, and their flux is sufficiently high, the radiation from muons can also impact the subsurface regions, such as in the case of Mars. If the radiation dose is too high, the chances of sustaining a long-term biosphere on the planet are very low. We have examined the dependence of the GCR-induced radiation dose on the strength of the planetary magnetic field and its atmospheric depth, and found that the latter is the decisive factor for the protection of a planetary biosphere.

  3. Habit Breaking Appliance for Multiple Corrections

    OpenAIRE

    Reji Abraham; Geetha Kamath; Jasmeet Singh Sodhi; Sonia Sodhi; Chandki Rita; Sai Kalyan, S.

    2013-01-01

    Tongue thrusting and thumb sucking are the most commonly seen oral habits which act as the major etiological factors in the development of dental malocclusion. This case report describes a fixed habit correcting appliance, Hybrid Habit Correcting Appliance (HHCA), designed to eliminate these habits. This hybrid appliance is effective in less compliant patients and if desired can be used along with the fixed orthodontic appliance. Its components can act as mechanical restrainers and muscle ret...

  4. Bowel habits after bariatric surgery.

    Science.gov (United States)

    Potoczna, Natascha; Harfmann, Susanne; Steffen, Rudolf; Briggs, Ruth; Bieri, Norman; Horber, Fritz F

    2008-10-01

    Disordered bowel habits might influence quality of life after bariatric surgery. Different types of bariatric operations-gastric banding (AGB), Roux-en-Y gastric bypass (RYGB), or biliopancreatic diversion (BPD)-might alter bowel habits as a consequence of the surgical procedure used. Whether change in bowel habits affects quality of life after AGB, RYGB, or BPD differently is unknown. The study group contained 290 severely obese patients undergoing bariatric surgery between August 1996 and September 2004 [BPD: n = 103, 64.1% women, age 43 +/- 1 years (mean +/- SEM), BMI 53.9 +/- 0.9 kg/m(2), weight 153.4 +/- 2.9 kg; Roux-en-Y gastric bypass: n = 126, 73.0% women, age 43 +/- 1 years, BMI 44.2 +/- 0.3 kg/m(2), weight 123.8 +/- 1.5 kg; adjustable gastric banding (AGB): n = 61, 57.4% women, age 44 +/- 1 years, BMI 49.9 +/- 0.5 kg/m(2), weight 146.1 +/- 2.0 kg). Changes in bowel habits, flatulence, flatus odor, and effects on social life were estimated at least 4 months after surgery using a self-administered questionnaire. Fecal consistency changed significantly after surgery. Loose stools and diarrhea were more frequent after BPD and RYGB (P flatus affecting social life was more frequent after BPD than after either RYGB or AGB (P flatus frequency increased after BPD and RYGB, and patients were more bothered by their malodorous flatus than after AGB (all P Flatus severity score was highest in BPD, intermediate in RYGB, and lowest in AGB patients (all P < 0.001), a difference that was not influenced by frequency of metabolic syndrome before and after surgery. Moreover, observation period after surgery had no influence on overall results of bowel habits. Subsore quality of life bariatric analysis and reporting outcome system (BAROS) scores were largely similar between all three groups. However, flatulence severity score correlated inversely with quality of life estimated by BAROS in BPD and RYGB, but not in AGB patients. The type of bariatric surgery affects bowel

  5. Assessing the habitability of planets with Earth-like atmospheres with 1D and 3D climate modeling

    Science.gov (United States)

    Godolt, M.; Grenfell, J. L.; Kitzmann, D.; Kunze, M.; Langematz, U.; Patzer, A. B. C.; Rauer, H.; Stracke, B.

    2016-07-01

    Context. The habitable zone (HZ) describes the range of orbital distances around a star where the existence of liquid water on the surface of an Earth-like planet is in principle possible. The applicability of one-dimensional (1D) climate models for the estimation of the HZ boundaries has been questioned by recent three-dimensional (3D) climate studies. While 3D studies can calculate the water vapor, ice albedo, and cloud feedback self-consistently and therefore allow for a deeper understanding and the identification of relevant climate processes, 1D model studies rely on fewer model assumptions and can be more easily applied to the large parameter space possible for extrasolar planets. Aims: We evaluate the applicability of 1D climate models to estimate the potential habitability of Earth-like extrasolar planets by comparing our 1D model results to those of 3D climate studies in the literature. We vary the two important planetary properties, surface albedo and relative humidity, in the 1D model. These depend on climate feedbacks that are not treated self-consistently in most 1D models. Methods: We applied a cloud-free 1D radiative-convective climate model to calculate the climate of Earth-like planets around different types of main-sequence stars with varying surface albedo and relative humidity profile. We compared the results to those of 3D model calculations available in the literature and investigated to what extent the 1D model can approximate the surface temperatures calculated by the 3D models. Results: The 1D parameter study results in a large range of climates possible for an Earth-sized planet with an Earth-like atmosphere and water reservoir at a certain stellar insolation. At some stellar insolations the full spectrum of climate states could be realized, i.e., uninhabitable conditions due to surface temperatures that are too high or too low as well as habitable surface conditions, depending only on the relative humidity and surface albedo assumed. When

  6. Climate Stability of Habitable Earth-like Planets

    CERN Document Server

    Menou, Kristen

    2014-01-01

    The carbon-silicate cycle regulates the atmospheric $CO_2$ content of terrestrial planets on geological timescales through a balance between the rates of $CO_2$ volcanic outgassing and planetary intake from rock weathering. It is thought to act as an efficient climatic thermostat on Earth and, by extension, on other habitable planets. If, however, the weathering rate increases with the atmospheric $CO_2$ content, as expected on planets lacking land vascular plants, the carbon-silicate cycle feedback can become severely limited. Here we show that Earth-like planets receiving less sunlight than current Earth may no longer possess a stable warm climate but instead repeatedly cycle between unstable glaciated and deglaciated climatic states. This has implications for the search for life on exoplanets in the habitable zone of nearby stars.

  7. Climate stability of habitable Earth-like planets

    Science.gov (United States)

    Menou, Kristen

    2015-11-01

    The carbon-silicate cycle regulates the atmospheric CO2 content of terrestrial planets on geological timescales through a balance between the rates of CO2 volcanic outgassing and planetary intake from rock weathering. It is thought to act as an efficient climatic thermostat on Earth and, by extension, on other habitable planets. If, however, the weathering rate increases with the atmospheric CO2 content, as expected on planets lacking land vascular plants, the carbon-silicate cycle feedback can become severely limited. Here we show that Earth-like planets receiving less sunlight than current Earth may no longer possess a stable warm climate but instead repeatedly cycle between unstable glaciated and deglaciated climatic states. This has implications for the search for life on exoplanets in the habitable zone of nearby stars.

  8. M Star Astrosphere Size Fluctuations and Habitable Planet Descreening

    CERN Document Server

    Smith, David S

    2009-01-01

    Stellar astrospheres--the plasma cocoons carved out of the interstellar medium by stellar winds--are continually influenced by their passage through the fluctuating interstellar medium (ISM). Inside dense interstellar regions, an astrosphere may be compressed to a size smaller than the liquid-water habitable zone distance. Habitable planets then enjoy no astrospheric buffering from the full flux of Galactic cosmic rays and interstellar dust and gas, a situation we call ``descreening.'' Recent papers (Yeghikyan and Fahr, Pavlov et al.) have suggested such global consequences as severe ozone depletion and glaciation. Using a ram-pressure balance model that includes gravitational focusing of the interstellar flow, we compute the size of the astrosphere in the apex direction as a function of parent star mass. We derive a dependence on the parent-star mass M due to gravitational focusing for densities larger than about 100 (M/M_\\odot)^{-2} cm^{-3}. We calculate the interstellar densities required to descreen plane...

  9. Was Venus the first Habitable World of our Solar System?

    Science.gov (United States)

    Way, Michael; Del Genio, Anthony; Kiang, Nancy; Sohl, Linda; Grinspoon, David; Aleinov, Igor; Kelley, Maxwell; Clune, Thomas

    2016-10-01

    Recent simulations have been completed with the Goddard Institute for Space Studies 3-D General Circulation Model of paleo Venus for a range of early solar system ages from 3Gya to 0.7Gya when the sun was less luminous than today. We use this and Magellan topography to provide Venus an ocean of average depth 310m and an atmosphere similar to present day Earth. A combination of a less luminous Sun and a slow rotation rate reveal that Venus could have had conditions on its surface amenable to surface liquid water in its early history. It is possible that fewer assumptions have to be made to make Venus an early habitable world of our solar system than have to be made for Mars or Earth, even though Venus is a much tougher world on which to confirm this hypothesis. These results could have implications in the search for planets within the habitable zones of stars.

  10. Vertical Transport through Europa's Crust: Implications for Oxidant Delivery and Habitability

    Science.gov (United States)

    Greenberg, Richard

    2009-09-01

    Bombardment of the surface of Europa by energetic charged particles produces oxidants and other biologically useful substances, but they can only contribute to the habitability of the ocean if they are delivered down through the icy crust. The thickness of the oxygenated layer of ice has previously been estimated (e.g. by Chyba and Phillips) to be only a few meters, assuming that impact gardening is the dominant factor that distributes oxidants below the radiation zone. Such a layer could contribute significantly to the habitability of the ocean only if it were delivered frequently enough, via undefined mechanisms, as shown by Hand et al. However, consideration of the types of processes that continually resurface Europa (e.g. crack dilation, emplacement of new material on the old surface as in ridge formation, or melt) suggests that the oxygenated layer thickness is greater than 300 m, possibly as thick as the entire ice crust, and certainly far more than the few meters indicated by impact gardening alone. The estimated delivery rate to the ocean is enough that the oxygen levels could now be high enough to support macrofauna and, at 3×1011 moles/yr of oxygen, it could support the respiration rates of 3 million tons of fish, or their Europan equivalents. These values are independent of any additional contributions due to possible photosynthesis. Initial formation of life would be difficult with so much oxygen, but the start of oxidant delivery into the ocean would have been delayed by 1 - 2 billion years while the crust became loaded with oxidants. In the ocean, this delay would have allowed time for prebiotic assemblages and anaerobic biological development, prior to the increasing oxygen concentration, which could then have been harnessed for development of more plentiful and complex life.

  11. A Pragmatic Path to Investigating Europa's Habitability

    Science.gov (United States)

    Pappalardo, R. T.; Bagenal, F.; Barr, A. C.; Bills, B. G.; Blaney, D. L.; Blankenship, D. D.; Connerney, J. E.; Kurth, W. S.; McGrath, M. A.; Moore, J. M.; Prockter, L. M.; Senske, D. A.; Smith, D. E.; Garner, G. J.; Magner, T. J.; Cooke, B. C.; Mallder, V.; Crum, R.

    2011-12-01

    Assessment of Europa's habitability will progress via a comprehensive investigation of Europa's subsurface ocean, chemical composition, and internal dynamical processes. The National Research Council's Planetary Decadal Survey placed an extremely high priority on Europa science but noted that the budget profile for the Jupiter Europa Orbiter (JEO) mission concept is incompatible with NASA's projected planetary science budget. Thus, NASA enlisted a small Europa Science Definition Team (ESDT) to consider more pragmatic Europa mission options. In its preliminary findings, the ESDT embraces a science scope and instrument complement comparable to the science "floor" for JEO, but with a radically different mission implementation. The ESDT is studying a two-element mission architecture, in which two relatively low-cost spacecraft would fulfill the Europa science objectives. An envisioned Europa orbital element would carry only a very small geophysics payload, addressing those investigations that are best carried out from Europa orbit. An envisioned separate multiple Europa flyby element (in orbit about Jupiter) would emphasize remote sensing. This mission architecture would provide for a subset of radiation-shielded instruments (all relatively low mass, power, and data rate) to be delivered into Europa orbit by a modest spacecraft, saving on propellant and other spacecraft resources. More resource-intensive remote sensing instruments would achieve their science objectives through a conservative multiple-flyby approach, which is better suited to handle larger masses and higher data volumes. Separation of the payload into two spacecraft elements, phased in time, would permit costs to be spread more uniformly over multiple years, avoiding an excessively high peak in the funding profile. Implementation of each spacecraft would be greatly simplified compared to previous Europa mission concepts, minimizing new development while achieving the key Europa science objectives. We

  12. Widen the Belt of Habitability!

    Science.gov (United States)

    Möhlmann, D.

    2012-06-01

    Among the key-parameters to characterize habitability are presence or availability of liquid water, an appropriate temperature range, and the time scale of reference. These criteria for habitability are discussed and described from the point of view of water- and ice-physics, and it is shown that liquid water may exist in the sub-surfaces of planetary bodies like Mars, and possibly of inner asteroids and internally heated ice-moons. Water can remain fluid there also at temperatures far below the "canonical" 0 °C. This behaviour is made possible as a consequence of the freezing point depression due to salty solutes in water or "brines", as they can be expected to exist in nature more frequently than pure liquid water. On the other hand, low temperatures cause a slowing down of chemical processes, as can be described by Arrhenius's relation. The resulting smaller reaction rates probably will have the consequence to complicate the detection of low-temperature life processes, if they exist. Furthermore, the adaptation potential of life is to be mentioned in this context as a yet partially unknown process. Resulting recommendations are given to improve the use of criteria to characterize habitable conditions.

  13. Do habits always override intentions? Pitting unhealthy snacking habits against snack-avoidance intentions

    OpenAIRE

    Gardner, Benjamin; Corbridge, Sharon; McGowan, Laura

    2015-01-01

    Background Habit is defined as a process whereby an impulse towards behaviour is automatically initiated upon encountering a setting in which the behaviour has been performed in the past. A central tenet of habit theory is that habit overrides intentional tendencies in directing behaviour, such that as habit strength increases, intention becomes less predictive of behaviour. Yet, evidence of this effect has been methodologically limited by modelling the impact of positively-correlated habits ...

  14. A model of habitability within the Milky Way galaxy.

    Science.gov (United States)

    Gowanlock, M G; Patton, D R; McConnell, S M

    2011-11-01

    We present a model of the galactic habitable zone (GHZ), described in terms of the spatial and temporal dimensions of the Galaxy that may favor the development of complex life. The Milky Way galaxy was modeled using a computational approach by populating stars and their planetary systems on an individual basis by employing Monte Carlo methods. We began with well-established properties of the disk of the Milky Way, such as the stellar number density distribution, the initial mass function, the star formation history, and the metallicity gradient as a function of radial position and time. We varied some of these properties and created four models to test the sensitivity of our assumptions. To assess habitability on the galactic scale, we modeled supernova rates, planet formation, and the time required for complex life to evolve. Our study has improved on other literature on the GHZ by populating stars on an individual basis and modeling Type II supernova (SNII) and Type Ia supernova (SNIa) sterilizations by selecting their progenitors from within this preexisting stellar population. Furthermore, we considered habitability on tidally locked and non-tidally locked planets separately and studied habitability as a function of height above and below the galactic midplane. In the model that most accurately reproduces the properties of the Galaxy, the results indicate that an individual SNIa is ∼5.6× more lethal than an individual SNII on average. In addition, we predict that ∼1.2% of all stars host a planet that may have been capable of supporting complex life at some point in the history of the Galaxy. Of those stars with a habitable planet, ∼75% of planets are predicted to be in a tidally locked configuration with their host star. The majority of these planets that may support complex life are found toward the inner Galaxy, distributed within, and significantly above and below, the galactic midplane.

  15. A Catalog of Stellar Evolution Profiles and the Effects of Variable Composition on Habitable Systems

    CERN Document Server

    Truitt, Amanda; Spacek, Alexander; Probst, Luke; Dietrich, Jeremy

    2015-01-01

    We present stellar evolution models for 0.5 - 1.2 \\Msol at scaled metallicities of 0.1 - 1.5 Z\\sol and O/Fe values of 0.44 - 2.28 O/Fe\\sol. The time dependent evolution of habitable zone boundaries are calculated for each stellar evolution track based on stellar mass, effective temperature, and luminosity parameterizations. The rate of change of stellar surface quantities and the surrounding habitable zone position are strong functions of all three quantities explored. The range of orbits that remain continuously habitable, or habitable for at least 2 Gyr, are provided. The results show that the detailed chemical characterization of exoplanet host stars and a consideration of their evolutionary history are necessary to assess the likelihood that a planet found in the instantaneous habitable zone has had sufficient time to develop a biosphere capable of producing detectable biosignatures. This model grid is designed for use by the astrobiology and exoplanet communities to efficiently characterize the time evol...

  16. Beyond Proxima b: Investigating the next nearest Potentially Habitable Exoplanets: Kapteyn b (13 LY) and Wolf 1061 c (14 LY) - Assessing their Suitabilty for Life

    Science.gov (United States)

    Guinan, Edward F.; Engle, Scott G.

    2017-01-01

    The discovery of an Earth-size (~1.3 Me) planet, Proxima b, orbiting in the Habitable Zone (HZ) of the nearest star (d = 4.25 LY), has provided great impetus for the study of the potential habitability of other nearby HZ planets. Ribas et al. (2016, A&A in press) have shown, that in spite of the relatively high levels of magnetic-dynamo generated X-ray & UV radiation from its M5.5 V host star that the planet endures, there are pathways for the Proxima b to possess an atmosphere, water and climate conditions to be potentially habitable. At a distance of 13 LY, the old (11.5 Gyr) Pop II M1.5 star, Kapteyn Star, has been found to hosts two large earth mass planets, one of which - Kapteyn b (M= 4.8 Me; a = 0.17 AU) is located near the mid-HZ of host star (see Englada-Escude’ et al. 2014). Unlike Proxima b, the Kapteyn b planet receives significantly less high energy radiation from its host star due the star’s lower magnetic activity and the planet’s greater distance from its host star (see Guinan et al. 2016). Recently three large earth size planets have been found orbiting the nearby (14 LY) solar-age M3 V star - Wolf 1061 (Wright et al. 2016). One of these planets, Wolf 1061 c (M = 4.6 Me; a = 0.084 AU) is located in the star’s HZ. As in the case of Kapteyn b, Wolf 1061 appears to receive less high energy radiation than Proxima b. Here we provide preliminary assessments of the effects of the host star’s high energy X-ray and UV photo-ionization radiation on the atmospheres and water inventories of the hosted planets. We compare the suitability of these three nearest planets for potential habitability and suitability for life.This research is supported by grants from NSF (RUI) and NASA.

  17. Maximum number of habitable planets at the time of Earth's origin: new hints for panspermia?

    Science.gov (United States)

    von Bloh, Werner; Franck, Siegfried; Bounama, Christine; Schellnhuber, Hans-Joachim

    2003-04-01

    New discoveries have fuelled the ongoing discussion of panspermia, i.e. the transport of life from one planet to another within the solar system (interplanetary panspermia) or even between different planetary systems (interstellar panspermia). The main factor for the probability of interstellar panspermia is the average density of stellar systems containing habitable planets. The combination of recent results for the formation rate of Earth-like planets with our estimations of extrasolar habitable zones allows us to determine the number of habitable planets in the Milky Way over cosmological time scales. We find that there was a maximum number of habitable planets around the time of Earth's origin. If at all, interstellar panspermia was most probable at that time and may have kick-started life on our planet.

  18. A Pragmatic Path to Investigating Europa's Habitability

    Science.gov (United States)

    Pappalardo; Bengenal; Bar; Bills; Blankenship; Connerney; Kurth; McGrath; Moore; Prockter; Senske; Smith; Garner; Magner; Hibbard; Cooke

    2011-01-01

    Assessment of Europa's habitability, as an overarching science goal, will progress via a comprehensive investigation of Europa's subsurface ocean, chemical composition, and internal dynamical processes, The National Research Council's Planetary Decadal Survey placed an extremely high priority on Europa science but noted that the budget profile for the Jupiter Europa Orbiter (1EO) mission concept is incompatible with NASA's projected planetary science budget Thus, NASA enlisted a small Europa Science Definition Team (ESDT) to consider more pragmatic Europa mission options, In its preliminary findings (May, 2011), the ESDT embraces a science scope and instrument complement comparable to the science "floor" for JEO, but with a radically different mission implementation. The ESDT is studying a two-element mission architecture, in which two relatively low-cost spacecraft would fulfill the Europa science objectives, An envisioned Europa orbital element would carry only a very small geophysics payload, addressing those investigations that are best carried out from Europa orbit An envisioned separate multiple Europa flyby element (in orbit about Jupiter) would emphasize remote sensing, This mission architecture would provide for a subset of radiation-shielded instruments (all relatively low mass, power, and data rate) to be delivered into Europa orbit by a modest spacecraft, saving on propellant and other spacecraft resources, More resource-intensive remote sensing instruments would achieve their science objectives through a conservative multiple-flyby approach, that is better situated to handle larger masses and higher data volumes, and which aims to limit radiation exposure, Separation of the payload into two spacecraft elements, phased in time, would permit costs to be spread more uniformly over mUltiple years, avoiding an excessively high peak in the funding profile, Implementation of each spacecraft would be greatly simplified compared to previous Europa mission

  19. Formando planetas habitables en estrellas M3

    Science.gov (United States)

    Dugaro, A.; de Elía, G. C.; Brunini, A.

    2016-08-01

    Studies of stellar evolution allow us to infer that the low-mass stars are the most abundant in the galaxy. In the present investigation, we analyze the formation of planetary systems without gas giants around M3-type stars, which have a mass of 0.29 M. In particular, we are interested in studying the terrestrial-like planet formation processes and water delivery in the Habitable Zone (HZ) of those systems. To develop this investigation, we assume massive protoplanetary disks for such stars, which have 5 of the mass of the central star. Once defined the working disk, we use a semi-analytical model, which is able to determine the distribution of planetary embryos and planetesimals at the end of the gaseous phase. Then, these distributions are used as initial conditions for running -body simulations. Due to the stochastic nature of the accretion process, we carry out ten -body simulations in order to analyze the evolution of the planetary systems after the gas dissipation. Our results suggest the efficient formation of terrestrial-like planets in the HZ with a wide range of masses and water contents. The planets formed in the HZ of the system have masses between 0.07 M and 0.15 M and final water contents between 5.4 and 29 by mass. The physical properties of the terrestrial-like planets formed in the HZ of our simulations suggest that they should be able to retain a permanent and substantial atmosphere.

  20. On the habitability of a stagnant-lid Earth

    Science.gov (United States)

    Tosi, Nicola; Stracke, Barbara; Godolt, Mareike; Ruedas, Thomas; Grenfell, John Lee; Höning, Dennis; Nikolaou, Athanasia; Plesa, Ana-Catalina; Breuer, Doris; Spohn, Tilman

    2016-04-01

    Whether plate tectonics is a recurrent feature of terrestrial bodies orbiting other stars or is unique to the Earth is unknown. The stagnant-lid may rather be the most common tectonic mode through which terrestrial bodies operate. Here we model the thermal history of the mantle, the outgassing evolution of H2O and CO2, and the resulting climate of a hypothetical planet with the same mass, radius, and composition as the Earth, but lacking plate tectonics. We employ a 1-D model of parameterized stagnant-lid convection to simulate the evolution of melt generation, crust production, and volatile extraction over a timespan of 4.5 Gyr, focusing on the effects of three key mantle parameters: the initial temperature, which controls the overall volume of partial melt produced; the initial water content, which affects the mantle rheology and solidus temperature; and the oxygen fugacity, which is employed in a model of redox melting to determine the amount of carbon stored in partial melts. We assume that the planet lost its primordial atmosphere and use the H2O and CO2 outgassed from the interior to build up a secondary atmosphere over time. Furthermore, we assume that the planet may possess an Earth-like ocean. We calculate the atmospheric pressure based on the solubility of H2O and CO2 in basaltic magmas at the evolving surface pressure conditions. We then employ a 1-D radiative-convective, cloud-free stationary atmospheric model to calculate the resulting atmospheric temperature, pressure and water content, and the corresponding boundaries of the habitable zone (HZ) accounting for the evolution of the Sun's luminosity with time but neglecting escape processes. The interior evolution is characterized by a large initial production of partial melt accompanied by the formation of crust that rapidly grows until its thickness matches that of the stagnant lid so that the convecting sublithospheric mantle prevents further crustal growth. Even for initial water concentrations in

  1. Habitable worlds with no signs of life

    CERN Document Server

    Cockell, Charles S

    2013-01-01

    'Most habitable worlds in the cosmos will have no remotely detectable signs of life' is proposed as a biological hypothesis to be tested in studies of exoplanets. Habitable planets could be discovered elsewhere in the Universe, yet there are many hypothetical scenarios whereby the search for life on them could yield negative results. Scenarios for habitable worlds with no remotely detectable signatures of life include: planets that are habitable, but have no biosphere (Uninhabited Habitable Worlds); planets with life, but lacking any detectable surface signatures of that life (laboratory examples are provided) and planets with life, where the concentration of atmospheric gases produced or removed by biota are impossible to disentangle from abiotic processes because of the lack of detailed knowledge of planetary conditions (the 'problem of exoplanet thermodynamic uncertainty'). A rejection of the hypothesis would require that the origin of life usually occurs on habitable planets, that spectrally detectable pi...

  2. Dietary habits and esophageal cancer.

    Science.gov (United States)

    Palladino-Davis, A G; Mendez, B M; Fisichella, P M; Davis, C S

    2015-01-01

    Cancer of the esophagus is an underestimated, poorly understood, and changing disease. Its overall 5-year survival is less than 20%, even in the United States, which is largely a function of a delay in diagnosis until its more advanced stages. Additionally, the epidemiologic complexities of esophageal cancer are vast, rendering screening and prevention limited at best. First, the prevalence of esophageal cancer is unevenly distributed throughout the world. Second, the two histological forms (squamous cell and adenocarcinoma) vary in terms of their geographic prevalence and associated risk factors. Third, some populations appear at particular risk for esophageal cancer. And fourth, the incidence of esophageal cancer is in continuous flux among groups. Despite the varied prevalence and risks among populations, some factors have emerged as consistent associations while others are only now becoming more fully recognized. The most prominent, scientifically supported, and long-regarded risk factors for esophageal cancer are tobacco, alcohol, and reflux esophagitis. Inasmuch as the above are regarded as important risk factors for esophageal cancer, they are not the sole contributors. Dietary habits, nutrition, local customs, and the environment may be contributory. Along these lines, vitamins, minerals, fruits, vegetables, meats, fats, salted foods, nitrogen compounds, carcinogens, mycotoxins, and even the temperature of what we consume are increasingly regarded as potential etiologies for this deadly although potentially preventable disease. The goal of this review is to shed light on the less known role of nutrition and dietary habits in esophageal cancer.

  3. Atmospheric escape, redox evolution, and planetary habitability

    Science.gov (United States)

    Catling, D. C.; Zahnle, K. J.

    2011-12-01

    Through the greenhouse effect, the presence and composition of an atmosphere is critical for defining a (conventional) circumstellar habitable zone in terms of planetary surface temperatures suitable for liquid water. Lack of knowledge of planetary atmospheres is likely to frustrate attempts to say with any certainty whether detected terrestrial-sized exoplanets may or may not be habitable. Perhaps an underappreciated role in such considerations is the evolutionary effect of atmospheric escape for determining atmospheric composition or whether an atmosphere exists in the first place. Whether atmospheres exist at all on planets is demonstrably connected to the effect of integrated atmospheric escape. When we observe our own Solar System and transiting exoplanets, the existence of an atmosphere is clearly delineated by a relative vulnerability to thermal escape and impact erosion. The prevalence of thermal escape as a key evolutionary determinant for the presence of planetary atmosphere is shown by a relationship between the relative solar (or stellar) heating and the escape velocity. Those bodies with too much stellar heating and too smaller escape velocity end up devoid of atmospheres. Impact erosion is evident in the relationship between impact velocity and escape velocity. Escape due to impacts is particularly important for understanding the large differences in the atmospheres of giant planet moons, such as Ganymede versus Titan. It is also significant for Mars-sized planets. The oxidation state of atmospheres is important for some theories of the origin of life (where an early reducing atmosphere is helpful for organic synthesis) and the evolution of advanced life (where free molecular oxygen is the best source of high energy metabolism). Surfaces on some relatively small planets and moons are observed to have evolved to an oxidized state, which theory and observation can explain through atmospheric escape. There are several examples in the Solar System where a

  4. ISS Habitability Data Collection and Preliminary Findings

    Science.gov (United States)

    Thaxton, Sherry (Principal Investigator); Greene, Maya; Schuh, Susan; Williams, Thomas; Archer, Ronald; Vasser, Katie

    2017-01-01

    Habitability is the relationship between an individual and their surroundings (i.e. the interplay of the person, machines, environment, and mission). The purpose of this study is to assess habitability and human factors on the ISS to better prepare for future long-duration space flights. Scheduled data collection sessions primarily require the use of iSHORT (iPad app) to capture near real-time habitability feedback and analyze vehicle layout and space utilization.

  5. Habitability of planets on eccentric orbits: limits of the mean flux approximation

    Science.gov (United States)

    Bolmont, Emeline; Libert, Anne-Sophie; Leconte, Jérémy; Selsis, Franck; Turbet, Martin; Forget, François

    2016-04-01

    A few of the planets found in the insolation habitable zone (region in which a planet with an atmosphere can sustain surface liquid water, Kasting et al. 1993) are on eccentric orbits, such as GJ 667Cc (eccentricity of < 0.3, Anglada-Escude et al. 2012) or HD 16175 b (eccentricity of 0.6, Peek et al. 2009). This raises the question of the potential habitability of planets that only spend a fraction of their orbit in the habitable zone. Usually for a planet of semi-major axis a and eccentricity e, the averaged flux over one orbit received by the planet is considered. This averaged flux corresponds to the flux received by a planet on a circular orbit of radius r = a(1 -e2)1/4. If this orbital distance is within the habitable zone, the planet is said "habitable". However, for a hot star, for which the habitable zone is far from the star, the climate can be degraded when the planet is temporarily outside the habitable zone. We investigate here the limits of validity of the mean flux approximation used to assess the potential habitability of eccentric planets. For this study, we consider ocean planets in synchronized rotation and planets with a rotation period of 24 hr. We investigate the influence of the type of host star and the eccentricity of the orbit on the climate of a planet. We do so by scaling the duration of its orbital period and its apastron and periastron distance to ensure that it receives in average the same incoming flux as Earth's. We performed sets of 3D simulations using the Global Climate Model LMDz (Wordsworth et al. 2011, Forget et al. 2013, Leconte et al. 2013). The atmosphere is composed of N2, CO2 and H2O (gas, liquid, solid) in Earth-like proportions. First, we do not take into account the spectral difference between a low luminosity star and a Sun-like star. Second, the dependence of the albedo of ice and snow on the spectra of the host star is taken into account. This influences the positive ice-albedo feedback and can lead to a different

  6. Exploring Europa's Habitability: Science achieved from the Europa Orbiter and Clipper Mission Concepts

    Science.gov (United States)

    Senske, D. A.; Prockter, L. M.; Pappalardo, R. T.; Patterson, G. W.; Vance, S.

    2012-12-01

    Europa is a prime candidate in the search for present-day habitable environments in our solar system. Europa is unique among the large icy satellites because it probably has a saltwater ocean today beneath an ice shell that is geodynamically active. The combination of irradiation of its surface and tidal heating of its interior could make Europa a rich source of chemical energy for life. Perhaps most importantly, Europa's ocean is believed to be in direct contact with its rocky mantle, where conditions could be similar to those on Earth's biologically rich sea floor. Hydrothermal zones on Earth's seafloor are known to be rich with life, powered by energy and nutrients that result from reactions between the seawater and the warm rocky ocean floor. Life as we know it depends on three principal "ingredients": 1) a sustained liquid water environment; 2) essential chemical elements that are critical for building life; and 3) a source of energy that could be utilized by life. Europa's habitability requires understanding whether it possesses these three ingredients. NASA has enlisted a study team to consider Europa mission options feasible over the next decade, compatible with NASA's projected planetary science budget and addressing Planetary Decadal Survey priorities. Two Europa mission concepts (Orbiter and multiple flyby—call the "Clipper") are undergoing continued study with the goal to "Explore Europa to investigate its habitability." Each mission would address this goal in complementary ways, with high science value of its own. The Orbiter and Clipper architectures lend themselves to specific types of scientific measurements. The Orbiter concept is tailored to the unique geophysical science that requires being in orbit at Europa. This includes confirming the existence of an ocean and characterizing that ocean through geophysical measurements of Europa's gravitational tides and magnetic induction response. It also includes mapping of the global morphology and

  7. Habit Breaking Appliance for Multiple Corrections

    Directory of Open Access Journals (Sweden)

    Reji Abraham

    2013-01-01

    Full Text Available Tongue thrusting and thumb sucking are the most commonly seen oral habits which act as the major etiological factors in the development of dental malocclusion. This case report describes a fixed habit correcting appliance, Hybrid Habit Correcting Appliance (HHCA, designed to eliminate these habits. This hybrid appliance is effective in less compliant patients and if desired can be used along with the fixed orthodontic appliance. Its components can act as mechanical restrainers and muscle retraining devices. It is also effective in cases with mild posterior crossbites.

  8. Obliquity Variations of a Potentially Habitable Early Venus

    Science.gov (United States)

    Barnes, Jason W.; Quarles, Billy L.; Lissauer, Jack J.; Chambers, John E.; Hedman, Matthew M.

    2016-06-01

    Planetary obliquity (axis tilt) and its variations can have strong effects on climate. Earth's glacial cycles, for instance, are driven in part by variations in Earth's obliquity of order ±1.5o. Direct observations of the obliquity of habitable zone rocky exoplanets is likely a long way off. Therefore we investigate the long-term obliquity variations expected for Venus as it might have existed in the early Solar System. Although Venus presently rotates slowly owing to tidal despinning, it must have had a different rotation state early in Solar System history. At the same time, Venus was the Solar System's habitable zone under a Faint Young Sun. Because of our extensive knowledge of the Solar System's constituents, we therefore use Venus' obliquity variations as a proxy for what we might find in exoplanetary systems. We find that the obliquity variation structure is simpler for early Venus than it would be for a Moonless Earth, but that large, chaotic variability can occur for high initial obliquity values. Interestingly retrograde-rotating Venuses show higher variability than do retrograde Moonless Earths.

  9. 上海自贸区扩容强化制度变迁辐射能力研究%Research on Expansion of Shanghai Free Trade Zone Strengthening Radiation Ability of Institutional Change

    Institute of Scientific and Technical Information of China (English)

    赖庆晟; 郭晓合

    2015-01-01

    of the transport hub cities along the second and third Eurasian Continental Bridge on "The Belt", in order to implement national strategy of "One Belt One Road". Also, it is necessary to promote coordinated development of regional economy , and enhance the radiation of institutional change of China (Shanghai) Pilot Free Trade Zone.

  10. By force of habit: On the formation and maintenance of goal-directed habits

    NARCIS (Netherlands)

    Danner, U.N.

    2007-01-01

    The aim of this thesis was to examine how goal-directed habits are formed and established. Specifically, the focus was on the cognitive mechanism underlying habits and the role of habits in guiding goal-directed behavior. In daily life we perform all kinds of behaviors to attain specific goals in

  11. By force of habit: On the formation and maintenance of goal-directed habits

    NARCIS (Netherlands)

    Danner, U.N.

    2007-01-01

    The aim of this thesis was to examine how goal-directed habits are formed and established. Specifically, the focus was on the cognitive mechanism underlying habits and the role of habits in guiding goal-directed behavior. In daily life we perform all kinds of behaviors to attain specific goals in ab

  12. Plate tectonics, habitability and life

    Science.gov (United States)

    Spohn, Tilman; Breuer, Doris

    2016-04-01

    The role of plate tectonics in defining habitability of terrestrial planets is being increasingly discussed (e.g., Elkins-Tanton, 2015). Plate tectonics is a significantly evolved concept with a large variety of aspects. In the present context, cycling of material between near surface and mantle reservoirs is most important. But increased heat transport through mixing of cold lithosphere with the deep interior and formation of continental crust may also matter. An alternative mechanism of material cycling between these reservoirs is hot-spot volcanism combined with crust delamination. Hot-spot volcanism will transport volatiles to the atmosphere while delamination will mix crust, possibly altered by sedimentation and chemical reactions, with the mantle. The mechanism works as long as the stagnant lithosphere plate has not grown thicker than the crust and as long as volcanic material is added onto the crust. Thermal evolution studies suggest that the mechanism could work for the first 1-2 Ga of planetary evolution. The efficiency of the mechanism is limited by the ratio of extrusive to intrusive volcanism, which is thought to be less than 0.25. Plate tectonics would certainly have an advantage by working even for more evolved planets. A simple, most-used concept of habitability requires the thermodynamic stability of liquid water on the surface of a planet. Cycling of CO2between the atmosphere, oceans and interior through subduction and surface volcanism is an important element of the carbonate-silicate cycle, a thermostat feedback cycle that will keep the atmosphere from entering into a runaway greenhouse. Calculations for a model Earth lacking plate tectonics but degassing CO2, N, and H2O to form a surface ocean and a secondary atmosphere (Tosi et al, 2016) suggest that liquid water can be maintained on the surface for 4.5Ga. The model planet would then qualify as habitable. It is conceivable that the CO2 buffering capability of its ocean together with silicate

  13. Exoplanets Detection, Formation, Properties, Habitability

    CERN Document Server

    Mason, John W

    2008-01-01

    This edited, multi-author volume will be an invaluable introduction and reference to all key aspects in the field of exoplanet research. The reviews cover: Detection methods and properties of known exoplanets, Detection of extrasolar planets by gravitational microlensing. The formation and evolution of terrestrial planets in protoplanetary and debris disks. The brown dwarf-exoplanet connection. Formation, migration mechanisms and properties of hot Jupiters. Dynamics of multiple exoplanet systems. Doppler exoplanet surveys. Searching for exoplanets in the stellar graveyard. Formation and habitability of extra solar planets in multiple star systems. Exoplanet habitats and the possibilities for life. Moons of exoplanets: habitats for life. Contributing authors: •Rory Barnes •David P. Bennett •Jian Ge •Nader Haghighipour •Patrick Irwin •Hugh Jones •Victoria Meadows •Stanimir Metchev •I. Neill Reid •George Rieke •Caleb Scharf •Steinn Sigurdsson

  14. Habitability Properties of Circumbinary Planets

    Science.gov (United States)

    Shevchenko, Ivan I.

    2017-06-01

    It is shown that several habitability conditions (in fact, at least seven such conditions) appear to be fulfilled automatically by circumbinary planets of main-sequence stars (CBP-MS), whereas on Earth, these conditions are fulfilled only by chance. Therefore, it looks natural that most of the production of replicating biopolymers in the Galaxy is concentrated on particular classes of CBP-MS, and life on Earth is an outlier, in this sense. In this scenario, Lathe’s mechanism for the tidal “chain reaction” abiogenesis on Earth is favored as generic for CBP-MS, due to photo-tidal synchronization inherent to them. Problems with this scenario are discussed in detail.

  15. Disrupting the habit of interviewing

    Directory of Open Access Journals (Sweden)

    Eileen Honan

    2014-06-01

    Full Text Available This paper contributes to the growing domain of ‘post-qualitative’ research and experiments with a new (representational form to move away from traditional and clichéd descriptions of research methods. In this paper, I want to interrogate the category of interview, and the habit of interviewing, to disrupt the clichés, so as to allow thinking of different ways of writing/speaking/representing the interactions between researcher and researched that will breathe new life into qualitative inquiries. I will attempt to flatten and shred, destabilise and disrupt our common-sense ideas about interview, including those held most sacred to the qualitative community, that of anonymity and confidentiality, as well as the privilege of the ‘transcript’ in re-presenting interview data.

  16. The Feeding Habits of Mesosauridae

    Science.gov (United States)

    Silva, Rivaldo R.; Ferigolo, Jorge; Bajdek, Piotr; Piñeiro, Graciela

    2017-03-01

    Mesosauridae comprises the oldest known aquatic amniotes which lived in Gondwana during the Early Permian. Previous work in the Uruguayan mesosaur-bearing Mangrullo Formation suggested that mesosaurids lived in an inland water body, inferred as moderately hypersaline, with exceptional preservational conditions that justified describing these strata as a Fossil-Lagerstätte. Exquisitely preserved articulated mesosaur skeletons, including gastric content and associated coprolites, from the Brazilian Iratí Formation in the State of Goiás (central-western Brazil) indicate excellent conditions of preservation, extending the Konservat-Lagerstätte designation to both units in the Paraná Basin. The near-absence of more resistant fossil remains, like actinopterygian and temnospondyl bones, demonstrates the faunistic poverty of the mesosaur-bearing “salty sea”. Our studies of the alimentary habits of mesosaurids through the use of stereoscopic microscopy, light and electronic microscopy, and X-ray diffractometry suggest that the diet of mesosaurids was predominantly composed of pygocephalomorph crustaceans (possibly not exceeding 20 mm in length). However, the presence of bones and bone fragments of small mesosaurs in the gastric content, cololites, coprolites, and possible regurgitalites may also indicate cannibalistic and/or scavenging habits. Cannibalism is relatively common among vertebrates, particularly during conditions of environmental stress, like food shortage. Likewise, the apparent abundance of pygocephalomorph crustacean fossils in the Iratí and Mangrullo Formations, outside and within the studied gastric, cololite, and coprolite contents, might have to do with environmental stress possibly caused by volcanic activity, in particular ash spread into the basin during the Early Permian. In this context, casual necrophagy on the dead bodies of small mesosaurs and large pygocephalomorphs might have been an alternative alimentary behavior adopted for survival

  17. Tidal Timelines: Evolution of Terrestrial Exoplanet Habitability Around Low Mass Stars

    Science.gov (United States)

    Mullins, K.; Barnes, R.

    2009-12-01

    The range of orbits for planetary habitability have traditionally been based on the stellar flux that allows liquid water to persist on a planetary surface. However, when considering terrestrial (rocky) planets close to a low mass star (≤0.35M⊙), tidal effects must be considered because of the additional energy input from tidal heating. Of further interest is the time over which habitable conditions are generated by tidal interaction. Tides cause orbital evolution, during which the heat flux varies, which may cause the planet to migrate in and out of habitable zones and possibly result in sterilization. So, the heating history of a planet should be a consideration when searching for life-supporting planets. We apply heat flux limitations on habitability (based on observations within our solar system) and tidally evolve planets across a range of initial conditions of orbits and masses. Our results provide a visualization of the time a planet has spent with a favorable amount of tidal heat for habitability and/or the amount of time until the heating is no longer conducive to habitability. As a greater number of close in terrestrial planets are found, these results can provide a method for identifying those planets with the highest potential for life.

  18. The Online Reading Habits of Malaysian Students

    Science.gov (United States)

    Abidin, Mohammad Jafre Bin Zainol; Pourmohammadi, Majid; Varasingam, Nalini A/P; Lean, Ooi Choon

    2014-01-01

    The purpose of this study is to ascertain the differences in online reading habits between genders and investigate the relationship between socio-economic status and online reading habits. Using a questionnaire, a quantitative approach was administered to 240 Form-Four students from four secondary schools in Penang Island, Malaysia. Findings…

  19. The Online Reading Habits of Malaysian Students

    Science.gov (United States)

    Abidin, Mohammad Jafre Bin Zainol; Pourmohammadi, Majid; Varasingam, Nalini A/P; Lean, Ooi Choon

    2014-01-01

    The purpose of this study is to ascertain the differences in online reading habits between genders and investigate the relationship between socio-economic status and online reading habits. Using a questionnaire, a quantitative approach was administered to 240 Form-Four students from four secondary schools in Penang Island, Malaysia. Findings…

  20. The 5 Habits of Effective PLCs

    Science.gov (United States)

    Easton, Lois Brown

    2015-01-01

    This article describes the knowledge and skills that professional learning community members need to create a habit out of their desire. Habits serve educators as signposts of progress toward achieving their desires. They are interim indicators of a professional learning community's success. Ultimately, of course, professional learning communities…

  1. Genetic Influences on Adolescent Eating Habits

    Science.gov (United States)

    Beaver, Kevin M.; Flores, Tori; Boutwell, Brian B.; Gibson, Chris L.

    2012-01-01

    Behavioral genetic research shows that variation in eating habits and food consumption is due to genetic and environmental factors. The current study extends this line of research by examining the genetic contribution to adolescent eating habits. Analysis of sibling pairs drawn from the National Longitudinal Study of Adolescent Health (Add Health)…

  2. The Leisure Reading Habits of Urban Adolescents

    Science.gov (United States)

    Hughes-Hassell, Sandra; Rodge, Pradnya

    2007-01-01

    Research indicates that there is a strong relationship between leisure reading and school achievement, but the leisure reading habits of urban adolescents have rarely been studied. From their investigation of the leisure reading habits of 584 urban minority middle school students, the authors identify these key findings: (1) More than two-thirds…

  3. Cosmological Aspects of Habitability of Exoplanets

    Science.gov (United States)

    Shchekinov, Yu. A.; Safonova, M.; Murphy, J.

    2014-10-01

    Habitable zone (HZ) defines the region around a start within which planets may support liquid water at their surfaces, which is supposed to be the necessary factor for origination and development of life on the planet. Currently we know about 30 planets inside HZ. The most interesting question is that of possibility of existence of complex life on the planets. As several space-based project aimed at searching of traces of life at exoplanets are presently being worked out, the problem of elaboration of criteria for selection out of the list of planets inside HZ those which most probably host life acquires supreme importance. It is usually implicitly assumed that planets inside HZ may host life, not taking into consideration such an important factor as the planet age. On the other hand the crucial importance of the factor meets the eye immediately. In fact, if we consider a life similar to that on the Earth, it is obvious, that planets younger than 1 Gyr can hardly bear even primitive life-forms because life needs time to originate and develop. Moreover, as a part of biochemical and metabolic processes are endothermic, and, therefore, threshold, the process of life origination may prove extremely sensitive even to tiny HZ parameter variations. Still a most of the discovered planets are known to orbit young stars (stellar population I), no older than several mullions of years. So a considerable number of planets sure HZ inhabitants may prove too young to be really inhabitable. On the other hand, 12-13 Gyr old planetary systems (population II) may happen to be more probable bearers of life. In spite of the fact that such systems are, in the average more distant from us that the population I stars, estimations of possibility of direct detection of traces of metabolism on those systems are quite optimistic, if we bear in mind planetary systems of old law-mass K-stars.

  4. Experiences of habit formation: a qualitative study.

    Science.gov (United States)

    Lally, Phillippa; Wardle, Jane; Gardner, Benjamin

    2011-08-01

    Habit formation is an important goal for behaviour change interventions because habitual behaviours are elicited automatically and are therefore likely to be maintained. This study documented experiences of habit development in 10 participants enrolled on a weight loss intervention explicitly based on habit-formation principles. Thematic analysis revealed three themes: Strategies used to support initial engagement in a novel behaviour; development of behavioural automaticity; and selecting effective cues to support repeated behaviour. Results showed that behaviour change was initially experienced as cognitively effortful but as automaticity increased, enactment became easier. Habits were typically formed in work-based contexts. Weekends and vacations temporarily disrupted performance due to absence of associated cues, but habits were reinstated on return to work. Implications for theory and practice are discussed.

  5. Habitable worlds with JWST: transit spectroscopy of the TRAPPIST-1 system?

    Science.gov (United States)

    Barstow, J. K.; Irwin, P. G. J.

    2016-09-01

    The recent discovery of three Earth-sized, potentially habitable planets around a nearby cool star, TRAPPIST-1, has provided three key targets for the upcoming James Webb Space Telescope (JWST). Depending on their atmospheric characteristics and precise orbit configurations, it is possible that any of the three planets may be in the liquid water habitable zone, meaning that they may be capable of supporting life. We find that present-day Earth levels of ozone, if present, would be detectable if JWST observes 60 transits for innermost planet 1b and 30 transits for 1c and 1d.

  6. Habitable worlds with JWST: transit spectroscopy of the TRAPPIST-1 system?

    CERN Document Server

    Barstow, Joanna K

    2016-01-01

    The recent discovery of three Earth-sized, potentially habitable planets around a nearby cool star, TRAPPIST-1, has provided three key targets for the upcoming James Webb Space Telescope (JWST). Depending on their atmospheric characteristics and precise orbit configurations, it is possible that any of the three planets may be in the liquid water habitable zone, meaning that they may be capable of supporting life. We find that present-day Earth levels of ozone, if present, would be detectable if JWST observes 60 transits for innermost planet 1b and 30 transits for 1c and 1d.

  7. [Comparative analysis of semiotic shifts, established by LCS of blood plasma from random samples of studied subjects from the zone of the Chernobyl accident, "Ural Radiation Trace", and collaborators from St. Petersburg Institute of Nuclear Physics of the Russian Academy of Sciences].

    Science.gov (United States)

    Ternovoĭ, K S; Selezneva, T N; Akleev, A V; Pashkov, I A; Noskin, L A; Klopov, N V; Noskin, V A; Starodub, N F

    1998-01-01

    Using the developed "semiotic" classifier of laser correlation spectra of blood plasma the authors have carried out the verification of organism states of patients from the zone of Chernobyl accident, "Ural radiation trace" and collaborators from Sanct-Petersbourg Institute of Nuclear Physics. An analysis of results obtained using accidental selections which differed as to the character of radiation injury evidences for high informativeness of "semiotic" classifier of laser correlation spectra of blood plasma.

  8. A Reinforcement for Multifunctional Composites for Non-Parasitic Radiation Shielding Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Innovative lightweight radiation shielding materials are enabling to shield humans in aerospace transportation vehicles and other human habited spaces....

  9. Morpho-anatomical, physiological and biochemical adjustments in response to root zone salinity stress and high solar radiation in two Mediterranean evergreen shrubs, Myrtus communis and Pistacia lentiscus.

    Science.gov (United States)

    Tattini, Massimiliano; Remorini, Damiano; Pinelli, Patrizia; Agati, Giovanni; Saracini, Erica; Traversi, Maria Laura; Massai, Rossano

    2006-01-01

    Salt- and light-induced changes in morpho-anatomical, physiological and biochemical traits were analysed in Myrtus communis and Pistacia lentiscus with a view to explaining their ecological distribution in the Mediterranean basin. In plants exposed to 20 or 100% solar radiation and supplied with 0 or 200 mm NaCl, measurements were conducted for ionic and water relations and photosynthetic performance, leaf morpho-anatomical and optical properties and tissue-specific accumulation of tannins and flavonoids. Net carbon gain and photosystem II (PSII) efficiency decreased less in P. lentiscus than in M. communis when exposed to salinity stress, the former having a superior ability to use Na(+) and Cl(-) for osmotic adjustment. Morpho-anatomical traits also allowed P. lentiscus to protect sensitive targets in the leaf from the combined action of salinity stress and high solar radiation to a greater degree than M. communis. Salt and light-induced increases in carbon allocated to polyphenols, particularly to flavonoids, were greater in M. communis than in P. lentiscus, and appeared to be related to leaf oxidative damage. Our data may conclusively explain the negligible distribution of M. communis in open Mediterranean areas suffering from salinity stress, and suggest a key antioxidant function of flavonoids in response to different stressful conditions.

  10. Healthy eating habits protect against temptations.

    Science.gov (United States)

    Lin, Pei-Ying; Wood, Wendy; Monterosso, John

    2016-08-01

    Can healthy food-choice habits protect people against temptations of consuming large portion sizes and unhealthy foods? In two studies, we show that the answer is yes, good habits serve this protective role, at least in contexts in which people are not deliberating and thus fall back on habitual responses. In the first study, participants trained with unhealthy habits to approach eating chocolate, but not those trained with healthy habits, succumbed to temptation and ate more chocolates when their self-control resources were depleted. Study 2 extended and clarified these findings by demonstrating the role of environmental cues in eliciting healthy habits when self-control resources are depleted. Participants who had been trained to choose carrots habitually to a pictorial stimulus (i.e., habit cue) subsequently resisted choosing M&Ms as long as the cue was present. This effect of habit cues on healthy food choices suggests the usefulness of manipulating such cues as a means of meeting self-regulatory goals such as portion control. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. The role of habit in compulsivity.

    Science.gov (United States)

    Gillan, Claire M; Robbins, Trevor W; Sahakian, Barbara J; van den Heuvel, Odile A; van Wingen, Guido

    2016-05-01

    Compulsivity has been recently characterized as a manifestation of an imbalance between the brain׳s goal-directed and habit-learning systems. Habits are perhaps the most fundamental building block of animal learning, and it is therefore unsurprising that there are multiple ways in which the development and execution of habits can be promoted/discouraged. Delineating these neurocognitive routes may be critical to understanding if and how habits contribute to the many faces of compulsivity observed across a range of psychiatric disorders. In this review, we distinguish the contribution of excessive stimulus-response habit learning from that of deficient goal-directed control over action and response inhibition, and discuss the role of stress and anxiety as likely contributors to the transition from goal-directed action to habit. To this end, behavioural, pharmacological, neurobiological and clinical evidence are synthesised and a hypothesis is formulated to capture how habits fit into a model of compulsivity as a trans-diagnostic psychiatric trait.

  12. Diapering habits: a global perspective.

    Science.gov (United States)

    Thaman, Lauren A; Eichenfield, Lawrence F

    2014-11-01

    There are tremendous variations in diapering practices, reflecting varying cultural practices and regional difference. Around the world, more than 134 million babies are born each year, a rate of 255 births per minute or 4.3 births each second. While global population growth has been steadily declining from its peak in 1963, several regions, including the Middle East and Sub-Saharan Africa, continue to maintain high birth rates. Though the essential needs of infants are largely similar, family habits and practices during early years of life vary dramatically. This article surveys data documenting variations in diaper frequency, types, and duration of use internationally, including age of toilet training. These factors may influence diaper rash and skin health of infants and young children. Much of this data was collected as part of analysis of the international commercial diaper market, evaluated and organized as part of an international initiative on Global Infant Skin Care, and presented to a panel of experts for critique and commentary in a symposium held in December, 2013. © 2014 Wiley Periodicals, Inc.

  13. Habitability from a microbial point of view

    Science.gov (United States)

    Westall, Frances; Loizeau, Damien; Foucher, Frédéric; Bost, Nicolas; Bertrand, Marylène; Vago, Jorge; Kminek, Gerhard

    2014-05-01

    We examine here the definition of habitability from the point of view of primitive, anaerobic microorganisms noting that the conditions of habitability are different for the appearance of life, for established life, and for life in dormant mode [1]. Habitability in this sense is clearly distinguished from the 'prebiotic world' that precedes the appearance of life. The differences in the conditions of habitability necessary for life to appear, for life to flourish and for dormant life entrain differences in spatial and temporal scales of habitability. For the origin of life, the ingredients carbon molecules, water, nutrients and energy need to be present on time scales applicable for the origin of life (105 to a few 106 y ?), necessitating the spatial scales of a minimum of ~100 km. Established life can take advantage of short-lived habitats (hours, days) to much longer lived ones on spatial scales of 100s μm to cm-m, whereas dormant life can survive (but not metabolise) in extreme environments for very long periods (perhaps up to millions of years) at microbial spatial scales (100s μm - mms). Thus, it is not necessary for the whole of a planet of satellite to be habitable. But the degree of continued habitability will have a strong influence on the possibility of organisms to evolve. For a planet such as Mars, for instance, microbial habitability was (perhaps still is) at different times and in different places. Habitable conditions conducive to the appearance of life, established life and possibly even dormant life could co-exist at different locations. Reference: [1] F. Westall, D. Loizeau, F. Foucher, N. Bost, M. Bertrand, J. Vago, & G. Kminek, Astrobiology 13:9, 887-897 (2013).

  14. Exopolysaccharide production by nitrogen-fixing bacteria within nodules of Medicago plants exposed to chronic radiation in the Chernobyl exclusion zone.

    Science.gov (United States)

    Pawlicki-Jullian, Nathalie; Courtois, Bernard; Pillon, Michelle; Lesur, David; Le Flèche-Mateos, Anne; Laberche, Jean-Claude; Goncharova, Nadia; Courtois, Josiane

    2010-03-01

    Nitrogen-fixing bacteria isolated from root nodules of Medicago plants growing in the 10 km zone around the Chernobyl nuclear power plant were screened for the production of new water-soluble acidic exopolysaccharides (EPSs). The different strains belonged to the Enteriobacteriaceae family (Enterobacter ludwigii, Raoultella terrigena, Klebsiella oxytoca), except for one which belonged to the Rhizobiaceae family (Sinorhizobium meliloti). All of the bacteria produced highly viscous EPS with an average molecular weight comprised between 1 x 10(6) and 3 x 10(6) Da. Five different compositions of EPS were characterized by physico-chemical analyses and (1)H NMR spectroscopy: galactose/mannose (2/1), galactose/glucose (1/1), galactose/glucose/mannose (1/2/1), fucose/galactose/glucose (2/1/1) and fucose/galactose/glucose/mannose (2/2/1/1 or 1/1/2/4). Glucuronic acid, a charged monosaccharide, was also recovered in most of the different EPSs. Copyright 2010 Elsevier Masson SAS. All rights reserved.

  15. Origins of Water in the Solar System Leading to Habitable Worlds

    Science.gov (United States)

    Meech, Karen J.

    2015-08-01

    Life on Earth depends on an aqueous biochemistry, and water is a key component of habitability on Earth and for likely other habitable environments in the solar system. While water is ubiquitous in the interstellar medium, and plays a key role in protoplanetary disk chemistry, the inner solar system is relatively dry. We now have evidence for potentially thousands of extrasolar planets, dozens of which may be located in their host star’s habitable zones. Understanding how planets in the habitable zone accrete their water, is key to understanding the likelihood for habitability. Given that many disk models show that Earth formed inside the water-ice snow line of our solar system, understanding how the inner solar system received its water is important for understanding the potential for other planetary systems to host habitable worlds. Boundaries for the timing of the water delivery are constrained by cosmochemistry and geochemistry. Possible scenarios for the delivery of water to the inner solar system include adsorption on dust from protoplanetary disk gas, chemical reactions on the early earth, and delivery from planetesimals forming outside the water-ice snow line. This talk will set the stage for understanding the isotopic and geochemical markers along with the dynamical delivery mechanisms that will help uncover the origins of Earths water. This introduction will provide an overview for understanding the distribution of water in the solar system, in particular for the inner solar system and terrestrial planets—and the details will be developed in the subsequent talks. Additionally information will be presented regarding new inner solar system reservoirs of water that can shed light on origins (the main belt comets), and new research about water in the Earth.

  16. On the Habitability of Our Universe

    CERN Document Server

    Loeb, Abraham

    2016-01-01

    Is life most likely to emerge at the present cosmic time near a star like the Sun? We consider the habitability of the Universe throughout cosmic history, and conservatively restrict our attention to the context of "life as we know it" and the standard cosmological model, LCDM. The habitable cosmic epoch started shortly after the first stars formed, about 30 Myr after the Big Bang, and will end about 10 Tyr from now, when all stars will die. We review the formation history of habitable planets and find that unless habitability around low mass stars is suppressed, life is most likely to exist near 0.1 solar mass stars ten trillion years from now. Spectroscopic searches for biosignatures in the atmospheres of transiting Earth-mass planets around low mass stars will determine whether present-day life is indeed premature or typical from a cosmic perspective.

  17. Alaska Steller Sea Lion Food Habits Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains food habits samples, usually scats, collected opportunistically on Steller sea lion rookeries and haulouts in Alaska from 1985 to present....

  18. Marine Mammal Food Habits Reference Collections

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Marine Mammal Laboratory (NMML) Food Habits Reference Collection, containing over 8000 specimens of cephalopod beaks and fish bones and otoliths, is...

  19. Setting the Stage for Habitable Planets

    Directory of Open Access Journals (Sweden)

    Guillermo Gonzalez

    2014-02-01

    Full Text Available Our understanding of the processes that are relevant to the formation and maintenance of habitable planetary systems is advancing at a rapid pace, both from observation and theory. The present review focuses on recent research that bears on this topic and includes discussions of processes occurring in astrophysical, geophysical and climatic contexts, as well as the temporal evolution of planetary habitability. Special attention is given to recent observations of exoplanets and their host stars and the theories proposed to explain the observed trends. Recent theories about the early evolution of the Solar System and how they relate to its habitability are also summarized. Unresolved issues requiring additional research are pointed out, and a framework is provided for estimating the number of habitable planets in the Universe.

  20. Women Reaching Equality in Dubious Habit: Drinking

    Science.gov (United States)

    ... page: https://medlineplus.gov/news/fullstory_161640.html Women Reaching Equality in Dubious Habit: Drinking Females also ... 25, 2016 MONDAY, Oct. 24, 2016 (HealthDay News) -- Women have made major strides towards equality with men, ...

  1. The basic principles of habit formation

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    Everything you ever achieve in life is up to yon. The only limits you actually have are those placed by your own imagination. Therefore, take complete control of your life by consciously choosing the habits you develop.

  2. Setting the Stage for Habitable Planets

    Science.gov (United States)

    Gonzalez, Guillermo

    2014-01-01

    Our understanding of the processes that are relevant to the formation and maintenance of habitable planetary systems is advancing at a rapid pace, both from observation and theory. The present review focuses on recent research that bears on this topic and includes discussions of processes occurring in astrophysical, geophysical and climatic contexts, as well as the temporal evolution of planetary habitability. Special attention is given to recent observations of exoplanets and their host stars and the theories proposed to explain the observed trends. Recent theories about the early evolution of the Solar System and how they relate to its habitability are also summarized. Unresolved issues requiring additional research are pointed out, and a framework is provided for estimating the number of habitable planets in the Universe. PMID:25370028

  3. Canvasback Food Habits in Chesapeake Bay

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Food habits analyses were conducted on the gullet and gizzards of 153 canvasbacks (Aythya valisineria) collected at night from eight major wintering areas in...

  4. Teaching Your Child Healthy Hair Care Habits

    Science.gov (United States)

    ... public", "mcat1=de12", ]; for (var c = 0; c Teaching your child healthy hair care habits Many common ... your hair. Damaged hair looks and feels unhealthy. Teaching your child how to shampoo Healthy hair care ...

  5. How to Directly Image a Habitable Planet Around Alpha Centauri with a ~30-45cm Space Telescope

    CERN Document Server

    Belikov, Ruslan; Thomas, Sandrine; Males, Jared; Lozi, Julien

    2015-01-01

    Several mission concepts are being studied to directly image planets around nearby stars. It is commonly thought that directly imaging a potentially habitable exoplanet around a Sun-like star requires space telescopes with apertures of at least 1m. A notable exception to this is Alpha Centauri (A and B), which is an extreme outlier among FGKM stars in terms of apparent habitable zone size: the habitable zones are ~3x wider in apparent size than around any other FGKM star. This enables a ~30-45cm visible light space telescope equipped with a modern high performance coronagraph or starshade to resolve the habitable zone at high contrast and directly image any potentially habitable planet that may exist in the system. We presents a brief analysis of the astrophysical and technical challenges involved with direct imaging of Alpha Centauri with a small telescope and describe two new technologies that address some of the key technical challenges. In particular, the raw contrast requirements for such an instrument c...

  6. Exploring snacking habits of college students

    OpenAIRE

    Hanania, Jihane W.

    1989-01-01

    Previous research has revealed that adolescents have the highest prevalence of unsatisfactory nutritional status and unstructured eating patterns. They also recognized the importance of snacks in the eating habits of this population group. The purpose of this study was to investigate the snacking habits of undergraduate college students, and their correlations with the populationâ s general eating practices and response to nutrition education Two hundred eighty four students taking a nutr...

  7. Exploring snacking habits of college students

    OpenAIRE

    Hanania, Jihane W.

    1989-01-01

    Previous research has revealed that adolescents have the highest prevalence of unsatisfactory nutritional status and unstructured eating patterns. They also recognized the importance of snacks in the eating habits of this population group. The purpose of this study was to investigate the snacking habits of undergraduate college students, and their correlations with the populationâ s general eating practices and response to nutrition education Two hundred eighty four students taking a nutr...

  8. Nutritional habits in Italian university students

    OpenAIRE

    2015-01-01

    INTRODUCTION: Dietary habits have been indicated by research as key elements in both disease pathogenesis and prevention and health promotion. MATERIALS AND METHODS: We analyzed data collected from Italian university students regarding consumption of fruits, vegetables, fast-foods, sweets, energizing drinks, and coffee, average number of eating episodes per day and regularity of breakfast habits. RESULTS: 44% of the university student population eats in average at least 1 portion of fruit per...

  9. Galactic cosmic ray induced radiation dose on terrestrial exoplanets

    CERN Document Server

    Atri, Dimitra; Griessmeier, Jean-Mathias

    2013-01-01

    This past decade has seen tremendous advancements in the study of extrasolar planets. Observations are now made with increasing sophistication from both ground and space based instruments, and exoplanets are characterized with increasing precision. There is a class of particularly interesting exoplanets, falling in the habitable zone, which is defined as the area around a star where the planet is capable of supporting liquid water on its surface. Theoretical calculations also suggest that close-in exoplanets are more likely to have weaker planetary magnetic fields, especially in case of super earths. Such exoplanets are subjected to a high flux of Galactic Cosmic Rays (GCRs) due to their weak magnetic moments. GCRs are energetic particles of astrophysical origin, which strike the planetary atmosphere and produce secondary particles, including muons, which are highly penetrating. Some of these particles reach the planetary surface and contribute to the radiation dose. Along with the magnetic field, another fac...

  10. Radiation dose assessment for the biota of terrestrial ecosystems in the shoreline zone of the Chernobyl nuclear power plant cooling pond.

    Science.gov (United States)

    Oskolkov, Boris Ya; Bondarkov, Mikhail D; Gaschak, Sergey P; Maksimenko, Andrey M; Hinton, Thomas G; Coughlin, Daniel; Jannik, G Timothy; Farfán, Eduardo B

    2011-10-01

    Radiation exposure of the biota in the shoreline area of the Chernobyl Nuclear Power Plant Cooling Pond was assessed to evaluate radiological consequences from the decommissioning of the Cooling Pond. This paper addresses studies of radioactive contamination of the terrestrial faunal complex and radionuclide concentration ratios in bodies of small birds, small mammals, amphibians, and reptiles living in the area. The data were used to calculate doses to biota using the ERICA Tool software. Doses from 90Sr and 137Cs were calculated using the default parameters of the ERICA Tool and were shown to be consistent with biota doses calculated from the field data. However, the ERICA dose calculations for plutonium isotopes were much higher (2-5 times for small mammals and 10-14 times for birds) than the doses calculated using the experimental data. Currently, the total doses for the terrestrial biota do not exceed maximum recommended levels. However, if the Cooling Pond is allowed to draw down naturally and the contaminants of the bottom sediments are exposed and enter the biological cycle, the calculated doses to biota may exceed the maximum recommended values. The study is important in establishing the current exposure conditions such that a baseline exists from which changes can be documented following the lowering of the reservoir water. Additionally, the study provided useful radioecological data on biota concentration ratios for some species that are poorly represented in the literature.

  11. RADIATION DOSE ASSESSMENT FOR THE BIOTA OF TERRESTRIAL ECOSYSTEMS IN THE SHORELINE ZONE OF THE CHERNOBYL NUCLEAR POWER PLANT COOLING POND

    Energy Technology Data Exchange (ETDEWEB)

    Farfan, E.; Jannik, T.

    2011-10-01

    Radiation exposure of the biota in the shoreline area of the Chernobyl Nuclear Power Plant Cooling Pond was assessed to evaluate radiological consequences from the decommissioning of the Cooling Pond. The article addresses studies of radioactive contamination of the terrestrial faunal complex and radionuclide concentration ratios in bodies of small birds, small mammals, amphibians, and reptiles living in the area. The data were used to calculate doses to biota using the ERICA Tool software. Doses from {sup 90}Sr and {sup 137}Cs were calculated using the default parameters of the ERICA Tool and were shown to be consistent with biota doses calculated from the field data. However, the ERICA dose calculations for plutonium isotopes were much higher (2-5 times for small mammals and 10-14 times for birds) than the doses calculated using the experimental data. Currently, the total doses for the terrestrial biota do not exceed maximum recommended levels. However, if the Cooling Pond is allowed to drawdown naturally and the contaminants of the bottom sediments are exposed and enter the biological cycle, the calculated doses to biota may exceed the maximum recommended values. The study is important in establishing the current exposure conditions such that a baseline exists from which changes can be documented following the lowering of the reservoir water. Additionally, the study provided useful radioecological data on biota concentration ratios for some species that are poorly represented in the literature.

  12. Habitable worlds with no signs of life.

    Science.gov (United States)

    Cockell, Charles S

    2014-04-28

    'Most habitable worlds in the cosmos will have no remotely detectable signs of life' is proposed as a biological hypothesis to be tested in the study of exoplanets. Habitable planets could be discovered elsewhere in the Universe, yet there are many hypothetical scenarios whereby the search for life on them could yield negative results. Scenarios for habitable worlds with no remotely detectable signatures of life include: planets that are habitable, but have no biosphere (Uninhabited Habitable Worlds); planets with life, but lacking any detectable surface signatures of that life (laboratory examples are provided); and planets with life, where the concentrations of atmospheric gases produced or removed by biota are impossible to disentangle from abiotic processes because of the lack of detailed knowledge of planetary conditions (the 'problem of exoplanet thermodynamic uncertainty'). A rejection of the hypothesis would require that the origin of life usually occurs on habitable planets, that spectrally detectable pigments and/or metabolisms that produce unequivocal biosignature gases (e.g. oxygenic photosynthesis) usually evolve and that the organisms that harbour them usually achieve a sufficient biomass to produce biosignatures detectable to alien astronomers.

  13. Habitability of the Goldilocks Planet Gliese 581g: Results from Geodynamic Models

    CERN Document Server

    von Bloh, W; Franck, S; Bounama, C

    2011-01-01

    Aims: In 2010, detailed observations have been published that seem to indicate another super-Earth planet in the system of Gliese 581 located in the midst of the stellar climatological habitable zone. The mass of the planet, known as Gl 581g, has been estimated as between 3.1 and 4.3 Earth masses. In this study, we investigate the habitability of Gl 581g based on a previously used concept that explores its long-term possibility of photosynthetic biomass production, which has already been used to gauge the principal possibility of life regarding the super-Earths Gl 581c and Gl 581d. Methods: A thermal evolution model for super-Earths is used to calculate the sources and sinks of atmospheric carbon dioxide. The habitable zone is determined by the limits of photosynthetic biological productivity on the planetary surface. Models with different ratios of land / ocean coverage are pursued. Results: The maximum time span for habitable conditions is attained for water worlds at a position of about 0.14+/-0.015 AU, wh...

  14. Habitability potential of icy moons: a comparative study

    Science.gov (United States)

    Solomonidou, Anezina; Coustenis, Athena; Encrenaz, Thérèse; Sohl, Frank; Hussmann, Hauke; Bampasidis, Georgios; Wagner, Frank; Raulin, François; Schulze-Makuch, Dirk; Lopes, Rosaly

    2014-05-01

    Looking for habitable conditions in the outer solar system our research focuses on the natural satellites rather than the planets themselves. Indeed, the habitable zone as traditionally defined may be larger than originally con-ceived. The strong gravitational pull caused by the giant planets may produce enough energy to sufficiently heat the interiors of orbiting icy moons. The outer solar system satellites then provide a conceptual basis within which new theories for understanding habitability can be constructed. Measurements from the ground but also by the Voyager, Galileo and the Cassini spacecrafts revealed the potential of these satellites in this context, and our understanding of habitability in the solar system and beyond can be greatly enhanced by investigating several of these bodies together [1]. Their environments seem to satisfy many of the "classical" criteria for habitability (liquid water, energy sources to sustain metabolism and chemical compounds that can be used as nutrients over a period of time long enough to allow the development of life). Indeed, several of the moons show promising conditions for habitability and the de-velopment and/or maintenance of life. Europa, Callisto and Ganymede may be hiding, under their icy crust, putative undersurface liquid water oceans [3] which, in the case of Europa [2], may be in direct contact with a silicate mantle floor and kept warm by tidally generated heat [4]. Titan and Enceladus, Saturn's satellites, were found by the Cassini-Huygens mission to possess active organic chemistries with seasonal variations, unique geological features and possibly internal liquid water oceans. Titan's rigid crust and the probable existence of a subsurface ocean create an analogy with terrestrial-type plate tectonics, at least surficial [5], while Enceladus' plumes find an analogue in gey-sers. As revealed by Cassini the liquid hydrocarbon lakes [6] distributed mainly at polar latitudes on Titan are ideal isolated

  15. Habitability potential of satellites around Jupiter and Saturn

    Science.gov (United States)

    Coustenis, Athena; Raulin, Francois; Encrenaz, Therese; Grasset, Olivier; Solomonidou, Anezina

    2016-07-01

    In looking for habitable conditions in the outer solar system recent research focuses on the natural satellites rather than the planets themselves. Indeed, the habitable zone as traditionally defined may be larger than originally conceived. The outer solar system satellites provide a conceptual basis within which new theories for understanding habitability can be constructed. Measurements from the ground but also by the Voyager, Galileo and the Cassini spacecrafts revealed the potential of these satellites in this context, and our understanding of habitability in the solar system and beyond can be greatly enhanced by investigating several of these bodies together [1]. Their environments seem to satisfy many of the "classical" criteria for habitability (liquid water, energy sources to sustain metabolism and chemical compounds that can be used as nutrients over a period of time long enough to allow the development of life). Indeed, several of the moons show promising conditions for habitability and the development and/or maintenance of life. The strong gravitational pull caused by the giant planets may produce enough energy to sufficiently heat the cores of orbiting icy moons. Europa and Ganymede may be hiding, under their icy crust, putative undersurface liquid water oceans [2] which, in the case of Europa [3], may be in direct contact with a silicate mantle floor and kept warm by tidally generated heat [4]. Titan and Enceladus, Saturn's satellites, were found by the Cassini-Huygens mission to possess active organic chemistries with seasonal variations, unique geological features and possibly internal liquid water oceans. Titan's rigid crust and the probable existence of a subsurface ocean create an analogy with terrestrial-type plate tectonics, at least surficial [5], while Enceladus' plumes find an analogue in geysers. As revealed by Cassini the liquid hydrocarbon lakes [6] distributed mainly at polar latitudes on Titan are ideal isolated environments to look for

  16. Educational intervention applied in children from 5 to 11 years of age with deforming oral habits

    Directory of Open Access Journals (Sweden)

    María de los Santos Haces Yanes

    2009-04-01

    Full Text Available Background: Habits are complex neuromuscular patterns learnt by frequent repetition and act as unnatural forces that may cause dental maxillofacial defects. Objective: To assess the intervention of educative measures applied to children with deforming buccal habits in the primary school Raúl Suárez Martínez from the zone “Rafaelito”. Methods: A cuasi-experimental study was developed, with before-after intervention without control group including 253 children from December 2006 to November 2007. We applied the program “To Happily Smile” with a weekly frequency. Surveys were applied to children, parents and teachers after the educational actions to achieve the reduction ofincorrect habits. The studied variables were: age, sex, deforming habits frequency before and after the intervention. Results: The knowledge level of children, parents and teachers was significantly improved. Risk factors were eradicated in more than 50% of the children being the most frequent: lingual protraction, baby bottle suction, mainly among females. Conclusions: The intervention was successful for the reduction of deforming oral habits, and the high level of knowledge acquired. After the intervention it was shown that the educative process is a key tool for the General Comprehensive Dentist.  

  17. Habitability of Exomoons at the Hill or Tidal Locking Radius

    CERN Document Server

    Hinkel, Natalie R

    2013-01-01

    Moons orbiting extrasolar planets are the next class of object to be observed and characterized for possible habitability. Like the host-planets to their host-star, exomoons have a limiting radius at which they may be gravitationally bound, or the Hill radius. In addition, they also have a distance at which they will become tidally locked and therefore in synchronous rotation with the planet. We have examined the flux phase profile of a simulated, hypothetical moon orbiting at a distant radius around the confirmed exoplanets mu Ara b, HD 28185 b, BD +14 4559 b, and HD 73534 b. The irradiated flux on a moon at it's furthest, stable distance from the planet achieves it's largest flux gradient, which places a limit on the flux ranges expected for subsequent (observed) moons closer in orbit to the planet. We have also analyzed the effect of planetary eccentricity on the flux on the moon, examining planets that traverse the habitable zone either fully or partially during their orbit. Looking solely at the stellar ...

  18. On the dynamical habitability of Trojan planets in exoplanetary systems

    Science.gov (United States)

    Schwarz, R.; Funk, B.; Bazsó, Á.; Eggl, S.

    2017-03-01

    Besides the hierarchical configurations exoplanets have been observed in so far, Earth-analogs can theoretically exist in co-orbital motion with giant planets. Those so-called Trojan planets share the same orbit as their Jovian hosts, trailing or leading by approximately 60 degrees in mean anomaly. If a giant planet was situated in the habitable zone (HZ) of an exoplanetary system coorbital terrestrial worlds could in principle also be habitable provided their orbits are "tame enough". In this paper, we study the dynamical properties of Earth-like Trojan planets in their host stars' respective HZs. We investigate the orbital stability of possible Trojan planets near the Lagrangian equilibrium points L_4 and L_5 for several candidate systems. Our numerical simulations have been carried out using the planar three-body problem, in case the extrasolar system contains only one known planet and the n-body problem with more than one planet in the system. We study the stability region around the equilibrium points and counted the number of stable orbits concentrating on the dependencies between the semimajor axis, the eccentricity and the argument of perihelion of the Trojan planet. We found that of the investigated 14 systems 6 support stable Trojan planets in the system's HZ, namely HD 5891, HD 28185, WASP-41, HD 11755, HD 221287 and HD 13908.

  19. Climate and Habitability of Kepler 452b Simulated with a Fully Coupled Atmosphere–Ocean General Circulation Model

    Science.gov (United States)

    Hu, Yongyun; Wang, Yuwei; Liu, Yonggang; Yang, Jun

    2017-01-01

    The discovery of Kepler 452b is a milestone in searching for habitable exoplanets. While it has been suggested that Kepler 452b is the first Earth-like exoplanet discovered in the habitable zone of a Sun-like star, its climate states and habitability require quantitative studies. Here, we first use a three-dimensional fully coupled atmosphere–ocean climate model to study the climate and habitability of an exoplanet around a Sun-like star. Our simulations show that Kepler 452b is habitable if CO2 concentrations in its atmosphere are comparable or lower than that in the present-day Earth atmosphere. However, our simulations also suggest that Kepler 452b can become too hot to be habitable if there is the lack of silicate weathering to limit CO2 concentrations in the atmosphere. We also address whether Kepler 452b could retain its water inventory after 6.0 billion years of lifetime. These results in the present Letter will provide insights about climate and habitability for other undiscovered exoplanets similar to Kepler 452b, which may be observable by future observational missions.

  20. Habitability and Multistability in Earth-like Planets

    CERN Document Server

    Lucarini, Valerio; Boschi, Robert; Kirk, Edilbert; Iro, Nicolas

    2013-01-01

    We explore the potential multistability of the climate for a planet around the habitable zone. We focus on conditions reminiscent to those of the Earth system, but our investigation aims at presenting a general methodology for dealing with exoplanets. We provide a thorough analysis of the non-equilibrium thermodynamical properties of the climate system and explore, using a a flexible climate model, how such properties depend on the energy input of the parent star, on the infrared atmospheric opacity, and on the rotation rate. It is possible to reproduce the multi-stability properties reminiscent of the paleoclimatologically relevant snowball (SB) - warm (W) conditions. We then study the thermodynamics of the W and SB states, clarifying the role of the hydrological cycle in shaping the irreversibility and the efficiency of the W states, and emphasizing the extreme diversity of the SB states, where dry conditions are realized. Thermodynamics provides the clue for studying the tipping points of the system and le...

  1. Make the High School Library a "Habit" for Students

    Science.gov (United States)

    Bowling, Barbara L.

    2012-01-01

    How long does it take to form a habit? Recent research done at the University College London by Phillippa Lally and colleagues suggest it takes an average of sixty-six days to form a new habit. Other research indicates that rewards make habits easier to form, but it takes repetition to form a habit. A literature review conducted for Pearson…

  2. Developing Good Habits of Learning English from Senior One

    Institute of Scientific and Technical Information of China (English)

    黄益琴

    2009-01-01

    Senior one is the most important period of the whole senior stage, it h necessary for students to form good habits of learning at the beginning. Based on the discussion of necessity of forming good habits, this paper talks about the methods of cultivating students' good habits of learning and concludes that good habits can benefit them a lot.

  3. Habitable Planets Around White Dwarfs: an Alternate Mission for the Kepler Spacecraft

    CERN Document Server

    Kilic, Mukremin; Loeb, Abraham; Maoz, Dan; Munn, Jeffrey A; Gianninas, Alexandros; Canton, Paul; Barber, Sara D

    2013-01-01

    A large fraction of white dwarfs (WDs) may host planets in their habitable zones. These planets may provide our best chance to detect bio-markers on a transiting exoplanet, thanks to the diminished contrast ratio between the Earth-sized WD and its Earth-sized planets. The JWST is capable of obtaining the first spectroscopic measurements of such planets, yet there are no known planets around WDs. Here we propose to take advantage of the unique capability of the Kepler spacecraft in the 2-Wheels mode to perform a transit survey that is capable of identifying the first planets in the habitable zone of a WD. We propose to obtain Kepler time-series photometry of 10,000 WDs in the SDSS imaging area to search for planets in the habitable zone. Thanks to the large field of view of Kepler, for the first time in history, a large number of WDs can be observed at the same time, which is essential for discovering transits. Our proposed survey requires a total of 200 days of observing time, and will find up to 100 planets ...

  4. The power of habits: Unhealthy snacking behaviour is primarily predicted by habit strength.

    NARCIS (Netherlands)

    Verhoeven, A.A.C.; Adriaanse, M.A.; Evers, C.; De Ridder, D.T.D.

    2012-01-01

    Objective. Although increasing evidence shows the importance of habits in explaining health behaviour, many studies still rely solely on predictors that emphasize the role of conscious intentions. The present study was designed to test the importance of habit strength in explaining unhealthy snackin

  5. A New Look at Habits and the Habit-Goal Interface

    Science.gov (United States)

    Wood, Wendy; Neal, David T.

    2007-01-01

    The present model outlines the mechanisms underlying habitual control of responding and the ways in which habits interface with goals. Habits emerge from the gradual learning of associations between responses and the features of performance contexts that have historically covaried with them (e.g., physical settings, preceding actions). Once a…

  6. Energy as a Constraint on Habitability in the Subsurface

    Science.gov (United States)

    Hoehler, T.

    2008-12-01

    All living things must obtain energy from the environment to grow, to maintain a metabolic steady state, or simply to preserve viability. The availability of energy sources in the environment thus represents a key factor in determining the size, distribution, and activity of biological populations, and ultimately constrains the possibility for life itself. Lacking the abundant energy provided by solar radiation or the products of oxygenic photosynthesis, life in subsurface environments may be limited by energy availability as much as any other factor. The biological requirement for energy is expressed in two dimensions - analogous to the power and voltage requirements of electrical devices - and consideration and quantification of these requirements establishes quantitative boundary conditions on subsurface habitability. The magnitude of these requirements depends significantly on physicochemical environment, as does the provision of biologically-accessible energy from subsurface sources. With this conceptual basis, we are developing an 'energy balance' model that is designed to ultimately predict the habitability of a given environment, with respect to a given metabolism, in quantitative terms (as 'biomass density potential'). The model will develop from conceptual to quantitative as experimental and observational work constrains and quantifies, in natural populations adapted to low energy conditions, the magnitude of the biological energy requirements and the impacts of physicochemical environmental conditions on energy demand and supply.

  7. Clouds in the atmospheres of extrasolar planets. IV. On the scattering greenhouse effect of CO2 ice particles: Numerical radiative transfer studies

    CERN Document Server

    Kitzmann, D; Rauer, H

    2013-01-01

    Owing to their wavelengths dependent absorption and scattering properties, clouds have a strong impact on the climate of planetary atmospheres. Especially, the potential greenhouse effect of CO2 ice clouds in the atmospheres of terrestrial extrasolar planets is of particular interest because it might influence the position and thus the extension of the outer boundary of the classic habitable zone around main sequence stars. We study the radiative effects of CO2 ice particles obtained by different numerical treatments to solve the radiative transfer equation. The comparison between the results of a high-order discrete ordinate method and simpler two-stream approaches reveals large deviations in terms of a potential scattering efficiency of the greenhouse effect. The two-stream methods overestimate the transmitted and reflected radiation, thereby yielding a higher scattering greenhouse effect. For the particular case of a cool M-type dwarf the CO2 ice particles show no strong effective scattering greenhouse eff...

  8. Deciphering spectral fingerprints of habitable exoplanets.

    Science.gov (United States)

    Kaltenegger, Lisa; Selsis, Frank; Fridlund, Malcolm; Lammer, Helmut; Beichman, Charles; Danchi, William; Eiroa, Carlos; Henning, Thomas; Herbst, Tom; Léger, Alain; Liseau, René; Lunine, Jonathan; Paresce, Francesco; Penny, Alan; Quirrenbach, Andreas; Röttgering, Huub; Schneider, Jean; Stam, Daphne; Tinetti, Giovanna; White, Glenn J

    2010-01-01

    We discuss how to read a planet's spectrum to assess its habitability and search for the signatures of a biosphere. After a decade rich in giant exoplanet detections, observation techniques have advanced to a level where we now have the capability to find planets of less than 10 Earth masses (M(Earth)) (so-called "super Earths"), which may be habitable. How can we characterize those planets and assess whether they are habitable? This new field of exoplanet search has shown an extraordinary capacity to combine research in astrophysics, chemistry, biology, and geophysics into a new and exciting interdisciplinary approach to understanding our place in the Universe. The results of a first-generation mission will most likely generate an amazing scope of diverse planets that will set planet formation, evolution, and our planet into an overall context.

  9. Deciphering Spectral Fingerprints of Habitable Extrasolar Planets

    CERN Document Server

    Kaltenegger, L; Fridlund, M; Lammer, H; Beichman, Ch; Danchi, W; Eiroa, C; Henning, T; Herbst, T; Léger, A; Liseau, R; Lunine, J; Paresce, F; Penny, A; Quirrenbach, A; Roettgering, H; Schneider, J; Stam, D; Tinetti, G; White, G J

    2009-01-01

    In this paper we discuss how we can read a planets spectrum to assess its habitability and search for the signatures of a biosphere. After a decade rich in giant exoplanet detections, observation techniques have now reached the ability to find planets of less than 10 MEarth (so called Super-Earths) that may potentially be habitable. How can we characterize those planets and assess if they are habitable? The new field of extrasolar planet search has shown an extraordinary ability to combine research by astrophysics, chemistry, biology and geophysics into a new and exciting interdisciplinary approach to understand our place in the universe. The results of a first generation mission will most likely result in an amazing scope of diverse planets that will set planet formation, evolution as well as our planet in an overall context.

  10. Tanning in solarium – knowledge, attitudes and Polish habits

    Directory of Open Access Journals (Sweden)

    Katarzyna Torzewska

    2014-03-01

    Full Text Available Introduction. Tanning devices are sources of UVA and UVB radiation. UV exposure can cause damage to the cornea of the eye, skin burns and even skin cancer. Appropriate use of solarium requires adequate knowledge of health effects resulting from the excessive use of sunbeds. The aim of the study was to examine knowledge, attitudes and habits in the solarium use. Material and methods. The study was based on our own questionnaire distributed among the citizens of a city located in Łódź Province. The study group consisted of 135 adults, mostly women and people with secondary and vocational education. Participants of the study were asked to answer specific questions included in the questionnaire concerning the knowledge of UV radiation, attitudes and the behaviour in the solarium. Results. 36% of the respondents were going to the solarium. 38% of the respondents weren’t going at all. Every fourth respondent used to go to the solarium in the past, however gave up this type of tanning for some reasons. Protecting goggles were used only by 18% of the respondents. 94% of the respondents never asked the service about CE certificates for the sunbeds intended for use. Conclusions. People tanning in the solarium, in comparison to those who do not use the artificial sun, enjoy better knowledge of the ultraviolet radiation. However they do not follow the requirements of the safe tanning. They are also not interested in technical conditions of the sunbeds. People who are not tanning in the solarium are more aware of health effects caused by UV radiation. Actions promoting public awareness on negative health effects of exposure to UV radiation in the solarium are needed.

  11. Stishovite: Thermal Dependence of the Crystal Habit.

    Science.gov (United States)

    Sclar, C B; Carrison, L C; Cocks, G G

    1964-05-15

    The crystal habit of stishovite changes with the temperature of crystallization at a pressure of about 120 kb. Below 600 degrees C it is bipyramidal; between 600 degrees and 900 degrees C it is granular; and above 900 degrees C it is acicular. This temperature dependence of the crystal habit of stishovite may constitute a highpressure geological thermometer which could indicate limiting values for the peak temperatures that prevailed at craters of meteoritic origin in highly siliceous rocks. It suggests that natural acicular stishovite from the rim sandstone at Meteor Crater, Arizona, crystallized at temperatures above 900 degrees C.

  12. The Five Habits of the Master Thinker

    Directory of Open Access Journals (Sweden)

    Randolph H. Pherson

    2013-08-01

    Full Text Available Often analysts will observe that they do not have enough time to use Structured Analytic Techniques. When presented with this challenge by analysts in the UK Cabinet Office, the author came up with the following response: Develop these five habits when you have time so that when time is short you have developed a capacity to use them instinctively. This article describes the Five Habits of the Master Thinker in detail, reviews how they were selected, and explores how they can most easily be inculcated into how an analyst processes information.

  13. Application of Advanced Radiation Shielding Materials to Inflatable Structures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This innovation is a weight-optimized, inflatable structure that incorporates radiation shielding materials into its construction, for use as a habitation module or...

  14. New electronic habit reminder for the management of thumb-sucking habit

    Directory of Open Access Journals (Sweden)

    Srinath Krishnappa

    2016-01-01

    Full Text Available Methods for intervention of nonnutritive sucking habits include counseling, positive reinforcement, calendar with rewards, adhesive bandage, bitter nail polish, long sleeves, and appliance therapy. All these methods have been reported in the literature with variable success rates. We present a case of an 8-year-old child with thumb-sucking habit successfully managed in a short period of 5 months by a new electronic habit reminder, an extraoral appliance which was designed to overcome the disadvantages associated with intraoral appliances.

  15. Reading Habit Promotion in ASEAN Libraries.

    Science.gov (United States)

    Sangkaeo, Somsong

    This paper describes the activities of the Association of Southeast Asian Nations (ASEAN) libraries have undertaken to promote reading by increasing awareness among their people. First, factors limiting reading habits in ASEAN libraries are addressed, including: we are not a reading society, but a chatting society; the management of "3…

  16. Newspaper Readership Habits in the Black Community.

    Science.gov (United States)

    Gibbons, R. Arnold

    This is a report of a survey conducted to determine newspaper readership habits of persons living within the circulation of the "Amsterdam News," a black weekly published in New York City. The survey was conducted with the purpose of increasing advertising revenues and assisting the management of the "Amsterdam News" with…

  17. Listening Habits of iPod Users

    Science.gov (United States)

    Epstein, Michael; Marozeau, Jeremy; Cleveland, Sandra

    2010-01-01

    Purpose: To estimate real-environment iPod listening levels for listeners in 4 environments to gain insight into whether average listeners receive dosages exceeding occupational noise exposure guidelines as a result of their listening habits. Method: The earbud outputs of iPods were connected directly into the inputs of a digital recorder to make…

  18. [Smoking habit among workers in Campania region].

    Science.gov (United States)

    Carbone, U; Napolano, F; Boggia, B; Esposito, A; Lettieri, M; Nigro, E; Visciglio, L; Farinaro, E

    2007-01-01

    Smoking is still now the main avoidable cause of disease, disability and mortality in industrialized countries. This habit is still very common in workplaces, where anti-smoke efforts seem to be less incisive than among general populations. The study analyzed the diffusion of smoke habit in 8111 male workers in Campania region, employed in different work activities (white collars, blue collars, drivers, cleaning civil servants, porters), so as to evaluate work related features, affecting its assumption and maintenance. Among all workers, smokers prevalence (42.7%) was higher than national male population. Percentages of smokers were highest among drivers (60.7%) and civil servants (52.5%), slightly lower among industry workers (47.3%) and lower among white collars (36.4%). The highest prevalence were found in 41-50 years age group (46.8%), but only among white collars aging was associated with higher smokers prevalence. Lower education degrees and two working variables, shifts and handwork, have been related with significantly smoking habit assumption. Results emphasized that health promotional programs are necessary to reduce smoke habit among workers, particularly among professionally and culturally unqualified subgroups.

  19. The fine structure constant and habitable planets

    DEFF Research Database (Denmark)

    Sandora, McCullen

    2016-01-01

    © 2016 IOP Publishing Ltd and Sissa Medialab srl .We use the existence of habitable planets to impose anthropic requirements on the fine structure constant, α. To this effect, we present two considerations that restrict its value to be very near the one observed. The first, that the end product...

  20. Relationship of Study Habits with Mathematics Achievement

    Science.gov (United States)

    Odiri, Onoshakpokaiye E.

    2015-01-01

    The study examined the relationship of study habits of students and their achievement in mathematics. The method used for the study was correlation design. A sample of 500 students were randomly selected from 25 public secondary schools in Delta Central Senatorial District, Delta State, Nigeria. Questionnaires were drawn to gather data on…