WorldWideScience

Sample records for radiation-induced pulmonary injury

  1. Radiologic observations on pulmonary radiation injury

    International Nuclear Information System (INIS)

    Liang Yong

    1992-01-01

    Based on the data of pulmonary radiation injury in 16 cases, the relationship among the radiation dosage and field, the development and onset time of the pulmonary radiation injury were discussed, and the dynamic changes of pulmonary radiation injury in X-ray films were analysed. The author found that: (1) there was a close relationship between the development of radiation injury and radiation dosages and the size of radiation fields, i.e. for the large radiation field, a relatively small dosage was needed for developing radiation injury ; (2) most off acute radiation injury of the lungs appeared within one month of postirradiation therapy, and the chronic pulmonary fibrosis appeared at 4.23 months after radiation therapy, with a fibrosis rate of about 85.7% within a half year; (3) the clinical manifestations of pulmonary radiation injury were not parallel to the X-ray signs, namely the X-ray changes were more severe than clinical manifestations. On the basis of X-ray signs and the dynamic changes of pulmonary radiation injury, the differentiation of radiation injury from interstitial pulmonary metastasis, primary tumor, common pneumonia, and tumor recurrence after radiation therapy were discussed

  2. Role of MMP-12 on tissue remodeling at early stage of radiation-induced pulmonary injury

    International Nuclear Information System (INIS)

    Li Ming; Song Liangwen; Diao Ruiying; Wang Shaoxia; Xu Xinping; Luo Qingliang

    2008-01-01

    Objective: To explore the role of MMP-12 on tissue remodeling at early stage of radiation- induced pulmonary injury. Methods: Wistar rats irradiated by 60 Co γ-rays to the whole lungs were sacrificed at 1, 2, 4 weeks. MMP-12 mRNA expression was detected by RT-PCR. MMP-2, MMP-9, MMP-12 activities were determined by zymography. The degradation and collapse of elastin were determined by tissue elastin particular staining; the 'cross talking' phenomenon between alveolar type II cells and mesenchymal cells was observed under electron microscope; the expression of TGF-β1 and TNF-α in BALF was detected by ELISA. The expression of α-SMA was determined by immunohistochemistry. Results: The mRNA expression of MMP-12 displayed a significant elevation at 1, 2, 4 weeks after irradiation. MMP-12 activity increased at 2, 4 weeks after irradiation. Elastin began to degrade and collapse at 1 week, which became worst 4 weeks after irradiation. The cross talking phenomenon was found under electron microscope. The expression of TGF-β1, TNF-α and α-SMA was increased gradually as time elapse after irradiation. Conclusions: 60 Co γ-ray irradiation can promote pulmonary MMP-12 expression, initiate pulmonary tissue remodeling by degradation of elastin, and make the pulmonary injury develop towards pulmonary fibrosis eventually. (authors)

  3. Cyclophosphamide-induced pulmonary toxicity

    International Nuclear Information System (INIS)

    Siemann, D.W.; Macler, L.; Penney, D.P.

    1986-01-01

    Unlike radiation effects, pulmonary toxicity following drug treatments may develop soon after exposure. The dose-response relationship between Cyclophosphamide and lung toxicity was investigated using increased breathing frequency assays used successfully for radiation induced injury. The data indicate that release of protein into the alveolus may play a significant role in Cy induced pulmonary toxicity. Although the mechanism responsible for the increased alveolar protein is as yet not identified, the present findings suggest that therapeutic intervention to inhibit protein release may be an approach to protect the lungs from toxic effects. (UK)

  4. Radiation and the lung: a reevaluation of the mechanisms mediating pulmonary injury

    International Nuclear Information System (INIS)

    Morgan, Graeme W.; Breit, Samuel N.

    1995-01-01

    Recent data from several investigators, including our unit, have provided additional information on the etiology of radiation-induced lung damage. These data suggest that there are two quite separate and distinct mechanisms involved: (a) classical radiation pneumonitis, which ultimately leads to pulmonary fibrosis is primarily due to radiation-induced local cytokine production confined to the field of irradiation; and (b) sporadic radiation pneumonitis, which is an immunologically mediated process resulting in a bilateral lymphocytic alveolitis that results in an 'out-of-field' response to localized pulmonary irradiation. Both animal experiments and human studies show that classical radiation pneumonitis has a threshold dose and a narrow sigmoid dose-response curve with increasing morbidity and mortality over a very small dose range. Clinical pneumonitis rarely causes death, whereas in the animal and human studies of classical radiation pneumonitis, all subjects will eventually suffer irreversible pulmonary damage and death. The description of classical radiation pneumonitis is that of an acute inflammatory response to lung irradiation, which is confined to the area of irradiation. Recent studies have also shown that irradiation induces gene transcription and results in the induction and release of proinflammatory cytokines and fibroblast mitogens in a similar fashion to other chronic inflammatory states, and which ultimately results in pulmonary fibrosis. The description of classical radiation pneumonitis does not adequately explain the following observed clinical characteristics: (a) the unpredictable and sporadic onset; (b) the occurrence in only a minority of patients; (c) the dyspnoea experienced, which is out of proportion to the volume of lung irradiated; and (d) the resolution of symptoms without sequelae in the majority of patients. We have demonstrated a bilateral lymphocytic alveolitis of activated T lymphocytes and a diffuse increase in gallium lung

  5. Radiation-induced heart injury

    International Nuclear Information System (INIS)

    Suzuki, Yoshihiko; Niibe, Hideo

    1975-01-01

    In order to identify radiation-induced heart injury and to differentiate it from heart disease, an attempt was made to clarify post-irradiation heart injury by investigating the histological changes which occur during the internal between the irradiation and the time of demonstrable histological changes. A study was made of 83 autopsies in which most of the primary neoplasms were breast cancers, lung cancers and mediastinal tumors. In 43 of these autopsies the heart had been irradiated. Sixty eight dd-strain mice were also used for microautoradiographic study. Histological changes in the heart were observed in 27 of the 43 cases receiving irradiation. The limit of the tolerance dose to the heart for indicating histological changes was 1220 ret in humans. The latent period without histological changes was 2.7 months after initiation of radiation therapy. Greater heart injury was observed after re-irradiation or after the combined therapy of radiation and chemotherapy especially mitomycin (MMC). The histological findings after treatment with MMC were similar to those of radiation-induced heart injury. Results of the study indicate that the damage is secondary to radiation-induced changes of the vascula connective tissue. (Evans, G.)

  6. Effect of collagen type IV, MMPs and TIMPs on remodeling of radiation pulmonary injury

    International Nuclear Information System (INIS)

    Diao Ruiying; Song Liangwen; Wang Shaoxia; Yin Jiye

    2007-01-01

    Objective: To explore the effect of collagen type IV, matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs(TIMPs) on early remodeling after radiation pulmonary injury. Methods: Right lungs of rats were irradiated by 60 Co γ-rays at a dose of 20 Gy to induce radiation pulmonary injury, and the lung specimens were taken at weeks 1, 2, 4 after irradiation. Quantitative analysis was performed on pulmonary collagen type IV, MMP-2, MMP-9, TIMP-2, TIMP-1 at the level of gene expression and protein synthesis using real-time PCR or immunohistochemistry. Results: Gene detection using real-time PCR: gene expression of collagen type IV increased at week 1 and decreased at week 2 after irradiation; MMP-2 reached peak at week 2 in which an opposed alteration trend was displayed; MMP-9 appeared a significant trend of elevation, then decrease and elevation again which was similar to those of collagen type IV; expression of TIMP-1 was lower, and there was no marked difference among all time points; TIMP-2 displayed a trend of slight elevation, then decrease and elevation again, which was opposed to MMP-2. Immunohistochemistry-image analysis: Pulmonary collagen type IV obviously increased at week 1, and began to decrease at week 2; MMP-2 decreased at week 2 and then increased; an opposed alteration trend to that of collagen type IV was displayed; alteration trend of MMP-9 was similar to that of collagen type IV but the extent was higher; gene expression of TIMP-1 slightly increased at 2 week and an opposed trend to of MMP-9 was displayed. Conclusions: Collagen type IV, MMP-2, MMP-9 and their tissue inhibitors were involved in ineffective remodeling in the early radiation pulmonary injury; MMP-2 and MMP-9 play an important role in degradation of collagen type IV; Disturbance of collagen type IV degradation might have relationship with the initiation of pulmonary fibrosis. (authors)

  7. Proteome analysis of Radiation-induced pulmonary fibrosis

    International Nuclear Information System (INIS)

    Song, Jie Young; Lim, Hee Soon; Kim, Hyung Doo; Shim, Ji Young; Han, Young Soo; Son, Hyeog Jin Son; Yun, Yeon Sook

    2005-01-01

    Pulmonary fibrosis is perhaps the most universal late effect of organ damage after both chemical insult and irradiation in the treatment of lung cancer. The use chemotherapy and radiation therapy, alone or combined, can be associated with clinically significant pulmonary toxicity, which leads to pneumonia and pulmonary fibrosis. It is also reported that about 100,000 people in the United States are suffered from pulmonary fibrosis. Therefore, pulmonary fibrosis will be more focused by medicinal researchers. Because current therapies, aimed at inhibiting pulmonary inflammation that often precedes fibrosis, are effective only in a minority of suffered patients, novel therapeutic methods are highly needed. Some researchers have used bleomycininduced pulmonary fibrosis as a basis for looking at the molecular mechanisms of fibrosis, and total gene expression was monitored using genomics method. However, radiation-induced pulmonary fibrosis has not been fully focused and investigated. Here, we have analyzed changes in gene expression in response to γ- irradiation by using proteomic analysis

  8. Acute adaptive immune response correlates with late radiation-induced pulmonary fibrosis in mice

    International Nuclear Information System (INIS)

    Paun, Alexandra; Kunwar, Amit; Haston, Christina K

    2015-01-01

    The lung response to radiation exposure can involve an immediate or early reaction to the radiation challenge, including cell death and an initial immune reaction, and can be followed by a tissue injury response, of pneumonitis or fibrosis, to this acute reaction. Herein, we aimed to determine whether markers of the initial immune response, measured within days of radiation exposure, are correlated with the lung tissue injury responses occurring weeks later. Inbred strains of mice known to be susceptible (KK/HIJ, C57BL/6J, 129S1/SvImJ) or resistant (C3H/HeJ, A/J, AKR/J) to radiation-induced pulmonary fibrosis and to vary in time to onset of respiratory distress post thoracic irradiation (from 10–23 weeks) were studied. Mice were untreated (controls) or received 18 Gy whole thorax irradiation and were euthanized at 6 h, 1d or 7 d after radiation treatment. Pulmonary CD4+ lymphocytes, bronchoalveolar cell profile & cytokine level, and serum cytokine levels were assayed. Thoracic irradiation and inbred strain background significantly affected the numbers of CD4+ cells in the lungs and the bronchoalveolar lavage cell differential of exposed mice. At the 7 day timepoint greater numbers of pulmonary Th1 and Th17 lymphocytes and reduced lavage interleukin17 and interferonγ levels were significant predictors of late stage fibrosis. Lavage levels of interleukin-10, measured at the 7 day timepoint, were inversely correlated with fibrosis score (R = −0.80, p = 0.05), while serum levels of interleukin-17 in control mice significantly correlated with post irradiation survival time (R = 0.81, p = 0.04). Lavage macrophage, lymphocyte or neutrophil counts were not significantly correlated with either of fibrosis score or time to respiratory distress in the six mouse strains. Specific cytokine and lymphocyte levels, but not strain dependent lavage cell profiles, were predictive of later radiation-induced lung injury in this panel of inbred strains. The online version of this

  9. Radiation-induced heart injury. Radiopathological study

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Y; Niibe, H [Gunma Univ., Maebashi (Japan). School of Medicine

    1975-11-01

    In order to identify radiation-induced heart injury and to differentiate it from heart disease, an attempt was made to clarify post-irradiation heart injury by investigating the histological changes which occur during the interval between the irradiation and the time of demonstrable histological changes. A study was made of 83 autopsies in which most of the primary neoplasms were breast cancers, lung cancers and mediastinal tumors. In 43 of these autopsies the heart had been irradiated. Sixty eight dd-strain mice were also used for microautoradiographic study. Histological changes in the heart were observed in 27 of the 43 cases receiving irradiation. The limit of the tolerance dose to the heart for indicating histological changes was 1220 ret in humans. The latent period without histological changes was 2.7 months after initiation of radiation therapy. Greater heart injury was observed after re-irradiation or after the combined therapy of radiation and chemotherapy especially mitomycin (MMC). The histological findings after treatment with MMC were similar to those of radiation-induced heart injury. Results of the study indicate that the damage is secondary to radiation-induced changes of the vascula connective tissue.

  10. Hypoxia-induced pulmonary arterial hypertension augments lung injury and airway reactivity caused by ozone exposure

    International Nuclear Information System (INIS)

    Zychowski, Katherine E.; Lucas, Selita N.; Sanchez, Bethany; Herbert, Guy; Campen, Matthew J.

    2016-01-01

    Ozone (O 3 )-related cardiorespiratory effects are a growing public health concern. Ground level O 3 can exacerbate pre-existing respiratory conditions; however, research regarding therapeutic interventions to reduce O 3 -induced lung injury is limited. In patients with chronic obstructive pulmonary disease, hypoxia-associated pulmonary hypertension (HPH) is a frequent comorbidity that is difficult to treat clinically, yet associated with increased mortality and frequency of exacerbations. In this study, we hypothesized that established HPH would confer vulnerability to acute O 3 pulmonary toxicity. Additionally, we tested whether improvement of pulmonary endothelial barrier integrity via rho-kinase inhibition could mitigate pulmonary inflammation and injury. To determine if O 3 exacerbated HPH, male C57BL/6 mice were subject to either 3 weeks continuous normoxia (20.9% O 2 ) or hypoxia (10.0% O 2 ), followed by a 4-h exposure to either 1 ppm O 3 or filtered air (FA). As an additional experimental intervention fasudil (20 mg/kg) was administered intraperitoneally prior to and after O 3 exposures. As expected, hypoxia significantly increased right ventricular pressure and hypertrophy. O 3 exposure in normoxic mice caused lung inflammation but not injury, as indicated by increased cellularity and edema in the lung. However, in hypoxic mice, O 3 exposure led to increased inflammation and edema, along with a profound increase in airway hyperresponsiveness to methacholine. Fasudil administration resulted in reduced O 3 -induced lung injury via the enhancement of pulmonary endothelial barrier integrity. These results indicate that increased pulmonary vascular pressure may enhance lung injury, inflammation and edema when exposed to pollutants, and that enhancement of pulmonary endothelial barrier integrity may alleviate such vulnerability. - Highlights: • Environmental exposures can exacerbate chronic obstructive pulmonary disease (COPD). • It is unknown if comorbid

  11. IL-6 is a potential marker for radiation pneumonitis: a prospective clinical study of circulating cytokines in predicting radiation pulmonary injury

    International Nuclear Information System (INIS)

    Chen Yuhchyau; Rubin, Philip; McDonald, Sandra; Finkelstein, Jacob; Smudzin, Therese; Hernady, Eric; Williams, Jacqueline

    1997-01-01

    Purpose/Objective: The use of radiotherapy in eradicating thoracic malignancy is limited by the normal lung tissue tolerance to ionizing radiation. Subacute and late radiation pulmonary toxicity manifests as radiation pneumonitis and ultimately lung fibrosis. Recently, the addition of chemotherapy or a biologic response modifier to radiation has become the standard therapy for inoperable lung cancer. The radiosensitizing effect of these agents is associated with an increased risk of radiation pulmonary injury and treatment related mortality. The search for a serum marker for predicting radiation pulmonary injury will help us understand the mechanism leading to such events and find possible interventions to prevent the adverse outcome. Unpublished data from our laboratory suggested that following a single dose of radiation, there was a dose-related elevation in IL-6 protein levels in the lung of radiation fibrosis prone mice. Based on this information, a prospective clinical study of circulating cytokine levels and its application to predict radiation induced pulmonary injury was conducted at University of Rochester. Preliminary results revealed promising information in identifying a circulating cytokine as a predictor for radiation pneumonitis. Materials and Methods: Eighteen patients receiving thoracic irradiation for primary thoracic malignancy were registered in the study. Radiation pneumonitis was determined by subjective respiratory symptoms assessed according to RTOG morbidity scoring criteria. Pretreatment and serial post-therapy chest X-ray, chest CT scan and pulmonary function tests were obtained. Radiation fibrosis was determined by radiographic changes in irradiated normal lung using a scoring system which quantified the extent of loss of air content, degree of opacification, anatomic extent of involvement, air bronchogram, pleural thickening, or effusion. Plasma levels of interleukin-6 (IL-6), tumor necrosis factor (TNF), transforming growth factor

  12. Hypoxia-induced pulmonary arterial hypertension augments lung injury and airway reactivity caused by ozone exposure

    Energy Technology Data Exchange (ETDEWEB)

    Zychowski, Katherine E.; Lucas, Selita N.; Sanchez, Bethany; Herbert, Guy; Campen, Matthew J., E-mail: mcampen@salud.unm.edu

    2016-08-15

    Ozone (O{sub 3})-related cardiorespiratory effects are a growing public health concern. Ground level O{sub 3} can exacerbate pre-existing respiratory conditions; however, research regarding therapeutic interventions to reduce O{sub 3}-induced lung injury is limited. In patients with chronic obstructive pulmonary disease, hypoxia-associated pulmonary hypertension (HPH) is a frequent comorbidity that is difficult to treat clinically, yet associated with increased mortality and frequency of exacerbations. In this study, we hypothesized that established HPH would confer vulnerability to acute O{sub 3} pulmonary toxicity. Additionally, we tested whether improvement of pulmonary endothelial barrier integrity via rho-kinase inhibition could mitigate pulmonary inflammation and injury. To determine if O{sub 3} exacerbated HPH, male C57BL/6 mice were subject to either 3 weeks continuous normoxia (20.9% O{sub 2}) or hypoxia (10.0% O{sub 2}), followed by a 4-h exposure to either 1 ppm O{sub 3} or filtered air (FA). As an additional experimental intervention fasudil (20 mg/kg) was administered intraperitoneally prior to and after O{sub 3} exposures. As expected, hypoxia significantly increased right ventricular pressure and hypertrophy. O{sub 3} exposure in normoxic mice caused lung inflammation but not injury, as indicated by increased cellularity and edema in the lung. However, in hypoxic mice, O{sub 3} exposure led to increased inflammation and edema, along with a profound increase in airway hyperresponsiveness to methacholine. Fasudil administration resulted in reduced O{sub 3}-induced lung injury via the enhancement of pulmonary endothelial barrier integrity. These results indicate that increased pulmonary vascular pressure may enhance lung injury, inflammation and edema when exposed to pollutants, and that enhancement of pulmonary endothelial barrier integrity may alleviate such vulnerability. - Highlights: • Environmental exposures can exacerbate chronic obstructive

  13. Inhibition of the CXCL12/CXCR4-axis as preventive therapy for radiation-induced pulmonary fibrosis.

    Science.gov (United States)

    Shu, Hui-Kuo G; Yoon, Younghyoun; Hong, Samuel; Xu, Kaiming; Gao, Huiying; Hao, Chunhai; Torres-Gonzalez, Edilson; Nayra, Cardenes; Rojas, Mauricio; Shim, Hyunsuk

    2013-01-01

    A devastating late injury caused by radiation is pulmonary fibrosis. This risk may limit the volume of irradiation and compromise potentially curative therapy. Therefore, development of a therapy to prevent this toxicity can be of great benefit for this patient population. Activation of the chemokine receptor CXCR4 by its ligand stromal cell-derived factor 1 (SDF-1/CXCL12) may be important in the development of radiation-induced pulmonary fibrosis. Here, we tested whether MSX-122, a novel small molecule and partial CXCR4 antagonist, can block development of this fibrotic process. The radiation-induced lung fibrosis model used was C57BL/6 mice irradiated to the entire thorax or right hemithorax to 20 Gy. Our parabiotic model involved joining a transgenic C57BL/6 mouse expressing GFP with a wild-type mouse that was subsequently irradiated to assess for migration of GFP+ bone marrow-derived progenitor cells to the irradiated lung. CXCL12 levels in the bronchoalveolar lavage fluid (BALF) and serum after irradiation were determined by ELISA. CXCR4 and CXCL12 mRNA in the irradiated lung was determined by RNase protection assay. Irradiated mice were treated daily with AMD3100, an established CXCR4 antagonist; MSX-122; and their corresponding vehicles to determine impact of drug treatment on fibrosis development. Fibrosis was assessed by serial CTs and histology. After irradiation, CXCL12 levels increased in BALF and serum with a corresponding rise in CXCR4 mRNA within irradiated lungs consistent with recruitment of a CXCR4+ cell population. Using our parabiotic model, we demonstrated recruitment of CXCR4+ bone marrow-derived mesenchymal stem cells, identified based on marker expression, to irradiated lungs. Finally, irradiated mice that received MSX-122 had significant reductions in development of pulmonary fibrosis while AMD3100 did not significantly suppress this fibrotic process. CXCR4 inhibition by drugs such as MSX-122 may alleviate potential radiation-induced lung

  14. Inhibition of the CXCL12/CXCR4-axis as preventive therapy for radiation-induced pulmonary fibrosis.

    Directory of Open Access Journals (Sweden)

    Hui-Kuo G Shu

    Full Text Available A devastating late injury caused by radiation is pulmonary fibrosis. This risk may limit the volume of irradiation and compromise potentially curative therapy. Therefore, development of a therapy to prevent this toxicity can be of great benefit for this patient population. Activation of the chemokine receptor CXCR4 by its ligand stromal cell-derived factor 1 (SDF-1/CXCL12 may be important in the development of radiation-induced pulmonary fibrosis. Here, we tested whether MSX-122, a novel small molecule and partial CXCR4 antagonist, can block development of this fibrotic process.The radiation-induced lung fibrosis model used was C57BL/6 mice irradiated to the entire thorax or right hemithorax to 20 Gy. Our parabiotic model involved joining a transgenic C57BL/6 mouse expressing GFP with a wild-type mouse that was subsequently irradiated to assess for migration of GFP+ bone marrow-derived progenitor cells to the irradiated lung. CXCL12 levels in the bronchoalveolar lavage fluid (BALF and serum after irradiation were determined by ELISA. CXCR4 and CXCL12 mRNA in the irradiated lung was determined by RNase protection assay. Irradiated mice were treated daily with AMD3100, an established CXCR4 antagonist; MSX-122; and their corresponding vehicles to determine impact of drug treatment on fibrosis development. Fibrosis was assessed by serial CTs and histology. After irradiation, CXCL12 levels increased in BALF and serum with a corresponding rise in CXCR4 mRNA within irradiated lungs consistent with recruitment of a CXCR4+ cell population. Using our parabiotic model, we demonstrated recruitment of CXCR4+ bone marrow-derived mesenchymal stem cells, identified based on marker expression, to irradiated lungs. Finally, irradiated mice that received MSX-122 had significant reductions in development of pulmonary fibrosis while AMD3100 did not significantly suppress this fibrotic process.CXCR4 inhibition by drugs such as MSX-122 may alleviate potential

  15. Radiation-induced pulmonary gene expression changes are attenuated by the CTGF antibody Pamrevlumab.

    Science.gov (United States)

    Sternlicht, Mark D; Wirkner, Ute; Bickelhaupt, Sebastian; Lopez Perez, Ramon; Tietz, Alexandra; Lipson, Kenneth E; Seeley, Todd W; Huber, Peter E

    2018-01-18

    Fibrosis is a delayed side effect of radiation therapy (RT). Connective tissue growth factor (CTGF) promotes the development of fibrosis in multiple settings, including pulmonary radiation injury. To better understand the cellular interactions involved in RT-induced lung injury and the role of CTGF in these responses, microarray expression profiling was performed on lungs of irradiated and non-irradiated mice, including mice treated with the anti-CTGF antibody pamrevlumab (FG-3019). Between group comparisons (Welch's t-tests) and principal components analyses were performed in Genespring. At the mRNA level, the ability of pamrevlumab to prolong survival and ameliorate RT-induced radiologic, histologic and functional lung deficits was correlated with the reversal of a clear enrichment in mast cell, macrophage, dendritic cell and mesenchymal gene signatures. Cytokine, growth factor and matrix remodeling genes that are likely to contribute to RT pneumonitis and fibrosis were elevated by RT and attenuated by pamrevlumab, and likely contribute to the cross-talk between enriched cell-types in injured lung. CTGF inhibition had a normalizing effect on select cell-types, including immune cells not typically regarded as being regulated by CTGF. These results suggest that interactions between RT-recruited cell-types are critical to maintaining the injured state; that CTGF plays a key role in this process; and that pamrevlumab can ameliorate RT-induced lung injury in mice and may provide therapeutic benefit in other immune and fibrotic disorders.

  16. The protective effect of Transhinone II A in radiation-induced pulmonary fibrosis

    International Nuclear Information System (INIS)

    Li Guanghu; Li Zhiping; Xu Yong; Xu Feng; Wang Jin

    2006-01-01

    Objective: To investigate the protective effect and it's possible mechanism of Tanshinone II A in radiation-induced pulmonary fibrosis. Methods: Having the right hemithorax of female Wistar rats irradiated 30 Gy in 10 fractions within 14 days by 6 MV photons, the radiation-induced pulmonary fibrosis animal model was established. In the treatment group, sodium Tanshinone II A sulfonate (15 mg/kg) was given by intraperitoneal injection 1 hour before each fraction of irradiation. Five months after irradiation, the difference of the histopathological changes, the hyckoxyproline content and expression of TGF-β1 between the radiation alone group, tanshinone plus radiation and control group were analyzed by HE stain, Massion stain, immunohistochemical methor and reverse transcriptase polymerase chain reaction(RT-PCR) method. Results: The histopathological comparison revealed the protective effect of Tanshinone II A. The content of hydroxyproline was (21.99±3.96), (38.25± 7.18), (28.94±4.29) μg/g in the control group, radiation alone group and radiation plus Tanshinone II A. The expression of TGF-β1 (mRNA and protein) was reduced by Tanshinone II A. Pathological changes of the pulmonary fibrosis was reduced by Tanshinone II A yet. Conclusions: Our study shows that Tanshinone II A can inhibit radiation-induced pulmonary fibrosis, and the possible mechanism of its may be made possible through down-regulating the expression of TGF-β1 in the irritated lung tissue. (authors)

  17. Regulatory T Cells Promote β-Catenin–Mediated Epithelium-to-Mesenchyme Transition During Radiation-Induced Pulmonary Fibrosis

    International Nuclear Information System (INIS)

    Xiong, Shanshan; Pan, Xiujie; Xu, Long; Yang, Zhihua; Guo, Renfeng; Gu, Yongqing; Li, Ruoxi; Wang, Qianjun; Xiao, Fengjun; Du, Li; Zhou, Pingkun; Zhu, Maoxiang

    2015-01-01

    Purpose: Radiation-induced pulmonary fibrosis results from thoracic radiation therapy and severely limits radiation therapy approaches. CD4 + CD25 + FoxP3 + regulatory T cells (Tregs) as well as epithelium-to-mesenchyme transition (EMT) cells are involved in pulmonary fibrosis induced by multiple factors. However, the mechanisms of Tregs and EMT cells in irradiation-induced pulmonary fibrosis remain unclear. In the present study, we investigated the influence of Tregs on EMT in radiation-induced pulmonary fibrosis. Methods and Materials: Mice thoraxes were irradiated (20 Gy), and Tregs were depleted by intraperitoneal injection of a monoclonal anti-CD25 antibody 2 hours after irradiation and every 7 days thereafter. Mice were treated on days 3, 7, and 14 and 1, 3, and 6 months post irradiation. The effectiveness of Treg depletion was assayed via flow cytometry. EMT and β-catenin in lung tissues were detected by immunohistochemistry. Tregs isolated from murine spleens were cultured with mouse lung epithelial (MLE) 12 cells, and short interfering RNA (siRNA) knockdown of β-catenin in MLE 12 cells was used to explore the effects of Tregs on EMT and β-catenin via flow cytometry and Western blotting. Results: Anti-CD25 antibody treatment depleted Tregs efficiently, attenuated the process of radiation-induced pulmonary fibrosis, hindered EMT, and reduced β-catenin accumulation in lung epithelial cells in vivo. The coculture of Tregs with irradiated MLE 12 cells showed that Tregs could promote EMT in MLE 12 cells and that the effect of Tregs on EMT was partially abrogated by β-catenin knockdown in vitro. Conclusions: Tregs can promote EMT in accelerating radiation-induced pulmonary fibrosis. This process is partially mediated through β-catenin. Our study suggests a new mechanism for EMT, promoted by Tregs, that accelerates radiation-induced pulmonary fibrosis

  18. Regulatory T Cells Promote β-Catenin–Mediated Epithelium-to-Mesenchyme Transition During Radiation-Induced Pulmonary Fibrosis

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Shanshan; Pan, Xiujie; Xu, Long; Yang, Zhihua [Beijing Institute of Radiation Medicine, Beijing (China); Guo, Renfeng [Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan (United States); Gu, Yongqing; Li, Ruoxi; Wang, Qianjun; Xiao, Fengjun; Du, Li; Zhou, Pingkun [Beijing Institute of Radiation Medicine, Beijing (China); Zhu, Maoxiang, E-mail: zhumx@nic.bmi.ac.cn [Beijing Institute of Radiation Medicine, Beijing (China)

    2015-10-01

    Purpose: Radiation-induced pulmonary fibrosis results from thoracic radiation therapy and severely limits radiation therapy approaches. CD4{sup +}CD25{sup +}FoxP3{sup +} regulatory T cells (Tregs) as well as epithelium-to-mesenchyme transition (EMT) cells are involved in pulmonary fibrosis induced by multiple factors. However, the mechanisms of Tregs and EMT cells in irradiation-induced pulmonary fibrosis remain unclear. In the present study, we investigated the influence of Tregs on EMT in radiation-induced pulmonary fibrosis. Methods and Materials: Mice thoraxes were irradiated (20 Gy), and Tregs were depleted by intraperitoneal injection of a monoclonal anti-CD25 antibody 2 hours after irradiation and every 7 days thereafter. Mice were treated on days 3, 7, and 14 and 1, 3, and 6 months post irradiation. The effectiveness of Treg depletion was assayed via flow cytometry. EMT and β-catenin in lung tissues were detected by immunohistochemistry. Tregs isolated from murine spleens were cultured with mouse lung epithelial (MLE) 12 cells, and short interfering RNA (siRNA) knockdown of β-catenin in MLE 12 cells was used to explore the effects of Tregs on EMT and β-catenin via flow cytometry and Western blotting. Results: Anti-CD25 antibody treatment depleted Tregs efficiently, attenuated the process of radiation-induced pulmonary fibrosis, hindered EMT, and reduced β-catenin accumulation in lung epithelial cells in vivo. The coculture of Tregs with irradiated MLE 12 cells showed that Tregs could promote EMT in MLE 12 cells and that the effect of Tregs on EMT was partially abrogated by β-catenin knockdown in vitro. Conclusions: Tregs can promote EMT in accelerating radiation-induced pulmonary fibrosis. This process is partially mediated through β-catenin. Our study suggests a new mechanism for EMT, promoted by Tregs, that accelerates radiation-induced pulmonary fibrosis.

  19. Radiation-induced brain injury: A review

    Directory of Open Access Journals (Sweden)

    Michael eRobbins

    2012-07-01

    Full Text Available Approximately 100,000 primary and metastatic brain tumor patients/year in the US survive long enough (> 6 months to experience radiation-induced brain injury. Prior to 1970, the human brain was thought to be highly radioresistant; the acute CNS syndrome occurs after single doses > 30 Gy; white matter necrosis occurs at fractionated doses > 60 Gy. Although white matter necrosis is uncommon with modern techniques, functional deficits, including progressive impairments in memory, attention, and executive function have become important, because they have profound effects on quality of life. Preclinical studies have provided valuable insights into the pathogenesis of radiation-induced cognitive impairment. Given its central role in memory and neurogenesis, the majority of these studies have focused on the hippocampus. Irradiating pediatric and young adult rodent brains leads to several hippocampal changes including neuroinflammation and a marked reduction in neurogenesis. These data have been interpreted to suggest that shielding the hippocampus will prevent clinical radiation-induced cognitive impairment. However, this interpretation may be overly simplistic. Studies using older rodents, that more closely match the adult human brain tumor population, indicate that, unlike pediatric and young adult rats, older rats fail to show a radiation-induced decrease in neurogenesis or a loss of mature neurons. Nevertheless, older rats still exhibit cognitive impairment. This occurs in the absence of demyelination and/or white matter necrosis similar to what is observed clinically, suggesting that more subtle molecular, cellular and/or microanatomic modifications are involved in this radiation-induced brain injury. Given that radiation-induced cognitive impairment likely reflects damage to both hippocampal- and non-hippocampal-dependent domains, there is a critical need to investigate the microanatomic and functional effects of radiation in various brain

  20. DNaseI Protects against Paraquat-Induced Acute Lung Injury and Pulmonary Fibrosis Mediated by Mitochondrial DNA

    Directory of Open Access Journals (Sweden)

    Guo Li

    2015-01-01

    Full Text Available Background. Paraquat (PQ poisoning is a lethal toxicological challenge that served as a disease model of acute lung injury and pulmonary fibrosis, but the mechanism is undetermined and no effective treatment has been discovered. Methods and Findings. We demonstrated that PQ injures mitochondria and leads to mtDNA release. The mtDNA mediated PBMC recruitment and stimulated the alveolar epithelial cell production of TGF-β1 in vitro. The levels of mtDNA in circulation and bronchial alveolar lavage fluid (BALF were elevated in a mouse of PQ-induced lung injury. DNaseI could protect PQ-induced lung injury and significantly improved survival. Acute lung injury markers, such as TNFα, IL-1β, and IL-6, and marker of fibrosis, collagen I, were downregulated in parallel with the elimination of mtDNA by DNaseI. These data indicate a possible mechanism for PQ-induced, mtDNA-mediated lung injury, which may be shared by other causes of lung injury, as suggested by the same protective effect of DNaseI in bleomycin-induced lung injury model. Interestingly, increased mtDNA in the BALF of patients with amyopathic dermatomyositis-interstitial lung disease can be appreciated. Conclusions. DNaseI targeting mtDNA may be a promising approach for the treatment of PQ-induced acute lung injury and pulmonary fibrosis that merits fast tracking through clinical trials.

  1. Loss of Matrix Metalloproteinase-13 Attenuates Murine Radiation-Induced Pulmonary Fibrosis

    International Nuclear Information System (INIS)

    Flechsig, Paul; Hartenstein, Bettina; Teurich, Sybille; Dadrich, Monika; Hauser, Kai; Abdollahi, Amir; Groene, Hermann-Josef; Angel, Peter; Huber, Peter E.

    2010-01-01

    Purpose: Pulmonary fibrosis is a disorder of the lungs with limited treatment options. Matrix metalloproteinases (MMPs) constitute a family of proteases that degrade extracellular matrix with roles in fibrosis. Here we studied the role of MMP13 in a radiation-induced lung fibrosis model using a MMP13 knockout mouse. Methods and Materials: We investigated the role of MMP13 in lung fibrosis by investigating the effects of MMP13 deficiency in C57Bl/6 mice after 20-Gy thoracic irradiation (6-MV Linac). The morphologic results in histology were correlated with qualitative and quantitative results of volume computed tomography (VCT), magnetic resonance imaging (MRI), and clinical outcome. Results: We found that MMP13 deficient mice developed less pulmonary fibrosis than their wildtype counterparts, showed attenuated acute pulmonary inflammation (days after irradiation), and a reduction of inflammation during the later fibrogenic phase (5-6 months after irradiation). The reduced fibrosis in MMP13 deficient mice was evident in histology with reduced thickening of alveolar septi and reduced remodeling of the lung architecture in good correlation with reduced features of lung fibrosis in qualitative and quantitative VCT and MRI studies. The partial resistance of MMP13-deficient mice to fibrosis was associated with a tendency towards a prolonged mouse survival. Conclusions: Our data indicate that MMP13 has a role in the development of radiation-induced pulmonary fibrosis. Further, our findings suggest that MMP13 constitutes a potential drug target to attenuate radiation-induced lung fibrosis.

  2. Radiation-induced brain injury: A review

    Energy Technology Data Exchange (ETDEWEB)

    Greene-Schloesser, Dana; Robbins, Mike E.; Peiffer, Ann M.; Shaw, Edward G. [Department of Radiation Oncology, Wake Forest School of Medicine,, Winston-Salem, NC (United States); Brain Tumor Center of Excellence, Wake Forest School of Medicine,, Winston-Salem, NC (United States); Wheeler, Kenneth T. [Brain Tumor Center of Excellence, Wake Forest School of Medicine,, Winston-Salem, NC (United States); Department of Radiology, Wake Forest School of Medicine,, Winston-Salem, NC (United States); Chan, Michael D., E-mail: mrobbins@wakehealth.edu [Department of Radiation Oncology, Wake Forest School of Medicine,, Winston-Salem, NC (United States); Brain Tumor Center of Excellence, Wake Forest School of Medicine,, Winston-Salem, NC (United States)

    2012-07-19

    Approximately 100,000 primary and metastatic brain tumor patients/year in the US survive long enough (>6 months) to experience radiation-induced brain injury. Prior to 1970, the human brain was thought to be highly radioresistant; the acute CNS syndrome occurs after single doses >30 Gy; white matter necrosis occurs at fractionated doses >60 Gy. Although white matter necrosis is uncommon with modern techniques, functional deficits, including progressive impairments in memory, attention, and executive function have become important, because they have profound effects on quality of life. Preclinical studies have provided valuable insights into the pathogenesis of radiation-induced cognitive impairment. Given its central role in memory and neurogenesis, the majority of these studies have focused on the hippocampus. Irradiating pediatric and young adult rodent brains leads to several hippocampal changes including neuroinflammation and a marked reduction in neurogenesis. These data have been interpreted to suggest that shielding the hippocampus will prevent clinical radiation-induced cognitive impairment. However, this interpretation may be overly simplistic. Studies using older rodents, that more closely match the adult human brain tumor population, indicate that, unlike pediatric and young adult rats, older rats fail to show a radiation-induced decrease in neurogenesis or a loss of mature neurons. Nevertheless, older rats still exhibit cognitive impairment. This occurs in the absence of demyelination and/or white matter necrosis similar to what is observed clinically, suggesting that more subtle molecular, cellular and/or microanatomic modifications are involved in this radiation-induced brain injury. Given that radiation-induced cognitive impairment likely reflects damage to both hippocampal- and non-hippocampal-dependent domains, there is a critical need to investigate the microanatomic and functional effects of radiation in various brain regions as well as their

  3. Radiation-induced brain injury: A review

    International Nuclear Information System (INIS)

    Greene-Schloesser, Dana; Robbins, Mike E.; Peiffer, Ann M.; Shaw, Edward G.; Wheeler, Kenneth T.; Chan, Michael D.

    2012-01-01

    Approximately 100,000 primary and metastatic brain tumor patients/year in the US survive long enough (>6 months) to experience radiation-induced brain injury. Prior to 1970, the human brain was thought to be highly radioresistant; the acute CNS syndrome occurs after single doses >30 Gy; white matter necrosis occurs at fractionated doses >60 Gy. Although white matter necrosis is uncommon with modern techniques, functional deficits, including progressive impairments in memory, attention, and executive function have become important, because they have profound effects on quality of life. Preclinical studies have provided valuable insights into the pathogenesis of radiation-induced cognitive impairment. Given its central role in memory and neurogenesis, the majority of these studies have focused on the hippocampus. Irradiating pediatric and young adult rodent brains leads to several hippocampal changes including neuroinflammation and a marked reduction in neurogenesis. These data have been interpreted to suggest that shielding the hippocampus will prevent clinical radiation-induced cognitive impairment. However, this interpretation may be overly simplistic. Studies using older rodents, that more closely match the adult human brain tumor population, indicate that, unlike pediatric and young adult rats, older rats fail to show a radiation-induced decrease in neurogenesis or a loss of mature neurons. Nevertheless, older rats still exhibit cognitive impairment. This occurs in the absence of demyelination and/or white matter necrosis similar to what is observed clinically, suggesting that more subtle molecular, cellular and/or microanatomic modifications are involved in this radiation-induced brain injury. Given that radiation-induced cognitive impairment likely reflects damage to both hippocampal- and non-hippocampal-dependent domains, there is a critical need to investigate the microanatomic and functional effects of radiation in various brain regions as well as their

  4. Ozone-Induced Pulmonary Injury and Inflammation are Modulated by Adrenal-Derived Stress Hormones

    Science.gov (United States)

    Ozone exposure promotes pulmonary injury and inflammation. Previously we have characterized systemic changes that occur immediately after acute ozone exposure and are mediated by neuro-hormonal stress response pathway. Both HPA axis and sympathetic tone alterations induce the rel...

  5. Vildagliptin ameliorates pulmonary fibrosis in lipopolysaccharide-induced lung injury by inhibiting endothelial-to-mesenchymal transition.

    Science.gov (United States)

    Suzuki, Toshio; Tada, Yuji; Gladson, Santhi; Nishimura, Rintaro; Shimomura, Iwao; Karasawa, Satoshi; Tatsumi, Koichiro; West, James

    2017-10-16

    Pulmonary fibrosis is a late manifestation of acute respiratory distress syndrome (ARDS). Sepsis is a major cause of ARDS, and its pathogenesis includes endotoxin-induced vascular injury. Recently, endothelial-to-mesenchymal transition (EndMT) was shown to play an important role in pulmonary fibrosis. On the other hand, dipeptidyl peptidase (DPP)-4 was reported to improve vascular dysfunction in an experimental sepsis model, although whether DPP-4 affects EndMT and fibrosis initiation during lipopolysaccharide (LPS)-induced lung injury is unclear. The aim of this study was to investigate the anti-EndMT effects of the DPP-4 inhibitor vildagliptin in pulmonary fibrosis after systemic endotoxemic injury. A septic lung injury model was established by intraperitoneal injection of lipopolysaccharide (LPS) in eight-week-old male mice (5 mg/kg for five consecutive days). The mice were then treated with vehicle or vildagliptin (intraperitoneally, 10 mg/kg, once daily for 14 consecutive days from 1 day before the first administration of LPS.). Flow cytometry, immunohistochemical staining, and quantitative polymerase chain reaction (qPCR) analysis was used to assess cell dynamics and EndMT function in lung samples from the mice. Lung tissue samples from treated mice revealed obvious inflammatory reactions and typical interstitial fibrosis 2 days and 28 days after LPS challenge. Quantitative flow cytometric analysis showed that the number of pulmonary vascular endothelial cells (PVECs) expressing alpha-smooth muscle actin (α-SMA) or S100 calcium-binding protein A4 (S100A4) increased 28 days after LPS challenge. Similar increases in expression were also confirmed by qPCR of mRNA from isolated PVECs. EndMT cells had higher proliferative activity and migration activity than mesenchymal cells. All of these changes were alleviated by intraperitoneal injection of vildagliptin. Interestingly, vildagliptin and linagliptin significantly attenuated EndMT in the absence of immune

  6. Pathophysiological Responses in Rat and Mouse Models of Radiation-Induced Brain Injury.

    Science.gov (United States)

    Yang, Lianhong; Yang, Jianhua; Li, Guoqian; Li, Yi; Wu, Rong; Cheng, Jinping; Tang, Yamei

    2017-03-01

    The brain is the major dose-limiting organ in patients undergoing radiotherapy for assorted conditions. Radiation-induced brain injury is common and mainly occurs in patients receiving radiotherapy for malignant head and neck tumors, arteriovenous malformations, or lung cancer-derived brain metastases. Nevertheless, the underlying mechanisms of radiation-induced brain injury are largely unknown. Although many treatment strategies are employed for affected individuals, the effects remain suboptimal. Accordingly, animal models are extremely important for elucidating pathogenic radiation-associated mechanisms and for developing more efficacious therapies. So far, models employing various animal species with different radiation dosages and fractions have been introduced to investigate the prevention, mechanisms, early detection, and management of radiation-induced brain injury. However, these models all have limitations, and none are widely accepted. This review summarizes the animal models currently set forth for studies of radiation-induced brain injury, especially rat and mouse, as well as radiation dosages, dose fractionation, and secondary pathophysiological responses.

  7. Evaluation of autophagy as a mechanism involved in air pollutant-induced pulmonary injury

    Science.gov (United States)

    Evaluation of autophagy as a mechanism involved in air pollutant-induced pulmonary injuryHenriquez, A.1, Snow, S.2, Miller, D1.,Schladweiler, M.2 and Kodavanti, U2.1 Curriculum in Toxicology, UNC, Chapel Hill, NC. 2 EPHD/NHEERL, US EPA, RTP, Durham, NC. ...

  8. Radiated-induced brain injury: advance of molecular mechanisms and neuroprotection strategies

    International Nuclear Information System (INIS)

    Gao Bo; Wang Xuejian

    2007-01-01

    The underlying mechanisms of radiated-induced brain injury (RBI) remain incompletely clear. Pathophysiological data indicate that the development of RBI involves complex and dynamic interactions between neurons, glia, and vascular endothelial cells within thecentral nervous system (CNS). Radiated-induced injury in the CNS can be modulated by the therapies directed at altering steps in the cascade of events leading to the clinical expression of normal tissue injury. Some neuroprotective strategies are also addressed in the review. (authors)

  9. Role of Cardiovascular Disease-associated iron overload in Libby amphibole-induced acute pulmonary injury and inflammation

    Science.gov (United States)

    Pulmonary toxicity induced by asbestos is thought to be mediated through redox-cycling of fiber-bound and bioavailable iron (Fe). We hypothesized that Libby amphibole (LA)-induced cute lung injury will be exacerbated in rat models of cardiovascular disease (CVD)-associated Fe-ove...

  10. Radiation-induced hypoxia may perpetuate late normal tissue injury

    International Nuclear Information System (INIS)

    Vujaskovic, Zeljko; Anscher, Mitchell S.; Feng, Q.-F.; Rabbani, Zahid N.; Amin, Khalid; Samulski, Thaddeus S.; Dewhirst, Mark W.; Haroon, Zishan A.

    2001-01-01

    Purpose: The purpose of this study was to determine whether or not hypoxia develops in rat lung tissue after radiation. Methods and Materials: Fisher-344 rats were irradiated to the right hemithorax using a single dose of 28 Gy. Pulmonary function was assessed by measuring the changes in respiratory rate every 2 weeks, for 6 months after irradiation. The hypoxia marker was administered 3 h before euthanasia. The tissues were harvested at 6 weeks and 6 months after irradiation and processed for immunohistochemistry. Results: A moderate hypoxia was detected in the rat lungs at 6 weeks after irradiation, before the onset of functional or histopathologic changes. The more severe hypoxia, that developed at the later time points (6 months) after irradiation, was associated with a significant increase in macrophage activity, collagen deposition, lung fibrosis, and elevation in the respiratory rate. Immunohistochemistry studies revealed an increase in TGF-β, VEGF, and CD-31 endothelial cell marker, suggesting a hypoxia-mediated activation of the profibrinogenic and proangiogenic pathways. Conclusion: A new paradigm of radiation-induced lung injury should consider postradiation hypoxia to be an important contributing factor mediating a continuous production of a number of inflammatory and fibrogenic cytokines

  11. Low-dose radiation-induced endothelial cell retraction

    International Nuclear Information System (INIS)

    Kantak, S.S.; Onoda, J.M.; Diglio, C.A.; Harper Hospital, Detroit, MI

    1993-01-01

    The data presented here are representative of a series of studies designed to characterize low-dose radiation effects on pulmonary microvascular endothelium. Data suggest that post-irradiation lung injuries (e.g. oedema) may be induced with only a single fraction of therapeutic radiation, and thus microscopic oedema may initiate prior to the lethal effects of radiation on the microvascular endothelium, and much earlier than would be suggested by the time course for clinically-detectable oedema. (author)

  12. Attenuation of pancreatitis-induced pulmonary injury by aerosolized hypertonic saline.

    LENUS (Irish Health Repository)

    Shields, C J

    2012-02-03

    BACKGROUND: The immunomodulatory effects of hypertonic saline (HTS) provide potential strategies to attenuate inappropriate inflammatory reactions. This study tested the hypothesis that administration of intratracheal aerosolized HTS modulates the development of lung injury in pancreatitis. METHODS: Pancreatitis was induced in 24 male Sprague-Dawley rats by intraperitoneal injection of 20% L-arginine (500 mg\\/100 g body weight). At 24 and 48 h, intratracheal aerosolized HTS (7.5% NaCl, 0.5 mL) was administered to 8 rats, while a further 8 received 0.5 mL of aerosolized normal saline (NS). At 72 hours, pulmonary neutrophil infiltration (myeloperoxidase activity) and endothelial permeability (bronchoalveolar lavage and wet:dry weight ratios) were assessed. In addition, histological assessment of representative lung tissue was performed by a blinded assessor. In a separate experiment, polymorphonucleocytes (PMN) were isolated from human donors, and exposed to increments of HTS. Neutrophil transmigration across an endothelial cell layer, VEGF release, and apoptosis at 1, 6, 12, 18, and 24 h were assessed. RESULTS: Histopathological lung injury scores were significantly reduced in the HTS group (4.78 +\\/- 1.43 vs. 8.64 +\\/- 0.86); p < 0.001). Pulmonary neutrophil sequestration (1.40 +\\/- 0.2) and increased endothelial permeability (6.77 +\\/- 1.14) were evident in the animals resuscitated with normal saline when compared with HTS (0.70 +\\/- 0.1 and 3.57 +\\/- 1.32), respectively; p < 0.04). HTS significantly reduced PMN transmigration (by 97.1, p = 0.002, and induced PMN apoptosis (p < 0.03). HTS did not impact significantly upon neutrophil VEGF release (p > 0.05). CONCLUSIONS: Intratracheal aerosolized HTS attenuates the neutrophil-mediated pulmonary insult subsequent to pancreatitis. This may represent a novel therapeutic strategy.

  13. Effect of heme oxygenase-1 on radiation-induced skin injury

    International Nuclear Information System (INIS)

    Song Chuanjun; Meng Xingjun; Xie Ling; Chen Qing; Zhou Jundong; Zhang Shuyu; Wu Jinchang

    2012-01-01

    Objective: To investigate the effect of heme oxygenase-1 (HO-1) on the acute radiation-induced skin injury by gene transfer. Methods: Thirty-three male SD rats were randomly divided into three groups as PBS-injected group, Ad-EGFP-injected group and Ad-HO-1-injected group (n=11). In each group, three rats were used for determining the expression of target gene and the other rats were irradiated on the buttock skin with 40 Gy electron beam generated by a linear accelerator. Immediately after irradiation, rats were administered with a subcutaneous injection of PBS, Ad-EGFP or Ad-HO-1, respectively. Subsequently, the skin reactions were measured twice a week using the semi-quantitative skin injury scale. Results: The strong positive expression of HO-1 was observed in subcutaneous dermal tissue after injection of Ad-HO-1. Compared to the PBS-injected group or the Ad-EGFP-injected group, a significant mitigation of skin injury was observed in Ad-HO-1-injected mice 14 d after irradiation (q=0.000-0.030, P<0.05). Conclusions: HO-1 could significantly mitigate radiation-induced acute skin injury and Ad-HO-1 could be used to treat radiation-induced skin injury. (authors)

  14. Mononuclear Phagocyte-Derived Microparticulate Caspase-1 Induces Pulmonary Vascular Endothelial Cell Injury.

    Directory of Open Access Journals (Sweden)

    Srabani Mitra

    Full Text Available Lung endothelial cell apoptosis and injury occurs throughout all stages of acute lung injury (ALI/ARDS and impacts disease progression. Lung endothelial injury has traditionally been focused on the role of neutrophil trafficking to lung vascular integrin receptors induced by proinflammatory cytokine expression. Although much is known about the pathogenesis of cell injury and death in ALI/ARDS, gaps remain in our knowledge; as a result of which there is currently no effective pharmacologic therapy. Enzymes known as caspases are essential for completion of the apoptotic program and secretion of pro-inflammatory cytokines. We hypothesized that caspase-1 may serve as a key regulator of human pulmonary microvascular endothelial cell (HPMVEC apoptosis in ALI/ARDS. Our recent experiments confirm that microparticles released from stimulated monocytic cells (THP1 induce lung endothelial cell apoptosis. Microparticles pretreated with the caspase-1 inhibitor, YVAD, or pan-caspase inhibitor, ZVAD, were unable to induce cell death of HPMVEC, suggesting the role of caspase-1 or its substrate in the induction of HPMVEC cell death. Neither un-induced microparticles (control nor direct treatment with LPS induced apoptosis of HPMVEC. Further experiments showed that caspase-1 uptake into HPMVEC and the induction of HPMVEC apoptosis was facilitated by caspase-1 interactions with microparticulate vesicles. Altering vesicle integrity completely abrogated apoptosis of HPMVEC suggesting an encapsulation requirement for target cell uptake of active caspase-1. Taken together, we confirm that microparticle centered caspase-1 can play a regulator role in endothelial cell injury.

  15. Appearance of radiation-induced lesions after radiotherapy for Hodgkin's disease of the mediastinum and lungs

    Energy Technology Data Exchange (ETDEWEB)

    Zomer-Drozda, J [Instytut Onkologii, Warsaw (Poland)

    1976-01-01

    The incidence of radiation-induced lesions of lung tissue adjacent to the mediastinum and covered by radiation was established on the basis of a retrospective analysis of radiograms of 245 patients treated at the Institute of Oncology in Warsaw in the years 1951-1968, who received radiotherapy to the mediastinal lymph nodes. The radiation-induced lesions were divided into 4 grades depending on their extent and intensity of pulmonary tissue damage. Criteria for classification of radiation-induced fibrosis into the above mentioned grades were established. The correlation between radiation-induced injury and the doses of X-rays applied to the mediastinal lymph nodes was analysed. The importance of radiation-induced changes in the mediastinum and lungs for the diagnosis of recurrences in the irradiated fields, in the marginal areas and granulomatous infiltrations in pulmonary tissue is discussed.

  16. The effect of vitamin D prophylaxis on radiation induced pulmonary damage

    International Nuclear Information System (INIS)

    Yazici, G.; Yildiz, F.; Iskit, A.; Surucu, S.; Firat, P.; Hayran, M.; Ozyigit, G.; Cengiz, M.; Erdemli, E.

    2011-01-01

    Vitamin D has a selective radio and chemosensitizing effect on tumor cells. In vitro and in vivo studies have shown that vitamin D inhibits collagen gel construction, induces type II pneumocyte proliferation and surfactant synthesis in the lungs, and decreases vascular permeability caused by radiation. The aim of this experimental study was to determine if vitamin D has a protective effect against radiation-induced pulmonary damage. Adult Wistar rats were divided into 4 groups. Group 1 was comprised of control animals. Group 2, which was administered 0.25 μg/kg/day of vitamin D3 for 8 weeks, was the vitamin D control group. Rats in groups 3 and 4 were given 20 Gy right hemithorax radiotherapy, and in addition group 4 was given vitamin D3 treatment, which began the day before the radiotherapy and continued for 8 weeks. At the 8 th and the 12 th weeks of the study 4 rats from each group were sacrificed. Right lungs were dissected for light and electron microscopic study. The electron microscopy examinations revealed statistically significant differences between group 3 and 4, and in group 4 there was less interstitial inflammation and collagen deposition, and the alveolar structure and the cells lining the alveolar walls were protected. These results confirm that vitamin D has a protective effect against radiation-induced pulmonary toxicity. These findings should be evaluated with further clinical studies. (author)

  17. Pyruvate metabolism: A therapeutic opportunity in radiation-induced skin injury

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Hyun; Kang, Jeong Wook [Department of Radiation Oncology, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Lee, Dong Won [Department of Plastic Surgery, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Oh, Sang Ho [Department of Dermatology, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Lee, Yun-Sil [College of Pharmacy & Division of Life and Pharmaceutical Sciences, Ewah Womans University, Seoul 120-750 (Korea, Republic of); Lee, Eun-Jung [Department of Radiation Oncology, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Cho, Jaeho, E-mail: jjhmd@yuhs.ac [Department of Radiation Oncology, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of)

    2015-05-08

    Ionizing radiation is used to treat a range of cancers. Despite recent technological progress, radiation therapy can damage the skin at the administration site. The specific molecular mechanisms involved in this effect have not been fully characterized. In this study, the effects of pyruvate, on radiation-induced skin injury were investigated, including the role of the pyruvate dehydrogenase kinase 2 (PDK2) signaling pathway. Next generation sequencing (NGS) identified a wide range of gene expression differences between the control and irradiated mice, including reduced expression of PDK2. This was confirmed using Q-PCR. Cell culture studies demonstrated that PDK2 overexpression and a high cellular pyruvate concentration inhibited radiation-induced cytokine expression. Immunohistochemical studies demonstrated radiation-induced skin thickening and gene expression changes. Oral pyruvate treatment markedly downregulated radiation-induced changes in skin thickness and inflammatory cytokine expression. These findings indicated that regulation of the pyruvate metabolic pathway could provide an effective approach to the control of radiation-induced skin damage. - Highlights: • The effects of radiation on skin thickness in mice. • Next generation sequencing revealed that radiation inhibited pyruvate dehydrogenase kinase 2 expression. • PDK2 inhibited irradiation-induced cytokine gene expression. • Oral pyruvate treatment markedly downregulated radiation-induced changes in skin thickness.

  18. Radiation-induced genomic instability and bystander effects: related inflammatory-type responses to radiation-induced stress and injury? A review.

    Science.gov (United States)

    Lorimore, S A; Wright, E G

    2003-01-01

    To review studies of radiation responses in the haemopoietic system in the context of radiation-induced genomic instability, bystander effects and inflammatory-type processes. There is considerable evidence that cells that themselves are not exposed to ionizing radiation but are the progeny of cells irradiated many cell divisions previously may express a high frequency of gene mutations, chromosomal aberrations and cell death. These effects are collectively known as radiation-induced genomic instability. A second untargeted effect results in non-irradiated cells exhibiting responses typically associated with direct radiation exposure but occurs as a consequence of contact with irradiated cells or by receiving soluble signals from irradiated cells. These effects are collectively known as radiation-induced bystander effects. Reported effects include increases or decreases in damage-inducible and stress-related proteins; increases or decreases in reactive oxygen species, cell death or cell proliferation, and induction of mutations and chromosome aberrations. This array of responses is reminiscent of effects mediated by cytokines and other similar regulatory factors that may involve, but do not necessarily require, gap junction-mediated transfer, have multiple inducers and a variety of context-dependent consequences in different cell systems. That chromosomal instability in haemopoietic cells can be induced by an indirect bystander-type mechanism both in vitro and in vivo provides a potential link between these two untargeted effects and there are radiation responses in vivo consistent with the microenvironment contributing secondary cell damage as a consequence of an inflammatory-type response to radiation-induced injury. Intercellular signalling, production of cytokines and free radicals are features of inflammatory responses that have the potential for both bystander-mediated and persisting damage as well as for conferring a predisposition to malignancy. The

  19. Radiation-Induced Skin Injuries to Patients: What the Interventional Radiologist Needs to Know.

    Science.gov (United States)

    Jaschke, Werner; Schmuth, Matthias; Trianni, Annalisa; Bartal, Gabriel

    2017-08-01

    For a long time, radiation-induced skin injuries were only encountered in patients undergoing radiation therapy. In diagnostic radiology, radiation exposures of patients causing skin injuries were extremely rare. The introduction of fast multislice CT scanners and fluoroscopically guided interventions (FGI) changed the situation. Both methods carry the risk of excessive high doses to the skin of patients resulting in skin injuries. In the early nineties, several reports of epilation and skin injuries following CT brain perfusion studies were published. During the same time, several papers reported skin injuries following FGI, especially after percutaneous coronary interventions and neuroembolisations. Thus, CT and FGI are of major concern regarding radiation safety since both methods can apply doses to patients exceeding 5 Gy (National Council on Radiation Protection and Measurements threshold for substantial radiation dose level). This paper reviews the problem of skin injuries observed after FGI. Also, some practical advices are given how to effectively avoid skin injuries. In addition, guidelines are discussed how to deal with patients who were exposed to a potentially dangerous radiation skin dose during medically justified interventional procedures.

  20. Amelioration of radiation-induced pulmonary fibrosis by a water-soluble bifunctional sulfoxide radiation mitigator (MMS350).

    Science.gov (United States)

    Kalash, Ronny; Epperly, Michael W; Goff, Julie; Dixon, Tracy; Sprachman, Melissa M; Zhang, Xichen; Shields, Donna; Cao, Shaonan; Franicola, Darcy; Wipf, Peter; Berhane, Hebist; Wang, Hong; Au, Jeremiah; Greenberger, Joel S

    2013-11-01

    A water-soluble ionizing radiation mitigator would have considerable advantages for the management of acute and chronic effects of ionizing radiation. We report that a novel oxetanyl sulfoxide (MMS350) is effective both as a protector and a mitigator of clonal mouse bone marrow stromal cell lines in vitro, and is an effective in vivo mitigator when administered 24 h after 9.5 Gy (LD100/30) total-body irradiation of C57BL/6NHsd mice, significantly improving survival (P = 0.0097). Furthermore, MMS350 (400 μM) added weekly to drinking water after 20 Gy thoracic irradiation significantly decreased: expression of pulmonary inflammatory and profibrotic gene transcripts and proteins; migration into the lungs of bone marrow origin luciferase+/GFP+ (luc+/GFP+) fibroblast progenitors (in both luc+ marrow chimeric and luc+ stromal cell line injected mouse models) and decreased radiation-induced pulmonary fibrosis (P < 0.0001). This nontoxic and orally administered small molecule may be an effective therapeutic in clinical radiotherapy and as a counter measure against the acute and chronic effects of ionizing radiation.

  1. Radiation-induced Pulmonary Damage in Lung Cancer Patients

    International Nuclear Information System (INIS)

    Chung, Su Mi; Choi, Ihl Bohng; Kang, Mi Mun; Kim, In Ah; Shinn, Kyung Sub

    1993-01-01

    Purpose: A retrospective analysis was performed to evaluate the incidence of radiation induced lung damage after the radiation therapy for the patients with carcinoma of the lung. Method and Materials: Sixty-six patients with lung cancer (squamous cell carcinoma 27, adenocarcinoma 14, large cell carcinoma 2, small cell carcinoma 13, unknown 10) were treated with definitive, postoperative or palliative radiation therapy with or without chemotherapy between July 1987 and December 1991. There were 50 males and 16 females with median age of 63 years(range: 33-80 years). Total lung doses ranged from 500 to 6,660 cGy (median 3960 cGy) given in 2 to 38 fractions (median 20) over a range of 2 to 150 days (median 40 days) using 6 MV or 15 MV linear accelerator. To represent different fractionation schedules of equivalent biological effect, the estimated single dose(ED) model, ED=D·N-0.377·T-0.058 was used in which D was the lung dose in cGy, N was the number of fractions, and T was the overall treatment time in days. The range of ED was 370 to 1357. The endpoint was a visible increase in lung density within the irradiated volume on chest X-ray as observed independently by three diagnostic radiologists. Patients were grouped according to ED, treatment duration, treatment modality and age, and the percent incidence of pulmonary damage for each group was determined. Result: In 40 of 66 patients, radiation induced change was seen on chest radiographs between 11 days and 314 days after initiation of radiation therapy. The incidence of radiation pneumonitis was increased according to increased ED, which was statistically significant (p=0.001). Roentgenographic charges consistent with radiation pneumonitis were seen in 100% of patients receiving radiotherapy after lobectomy or pneumonectomy, which was not statistically significant. In 32 patients who also received chemotherapy, there was no difference in the incidence of radiation induced charge between the group with radiation

  2. Ozone-Induced Vascular Contractility and Pulmonary Injury Are Differentially Impacted by Diets Enriched With Coconut Oil, Fish Oil, and Olive Oil.

    Science.gov (United States)

    Snow, Samantha J; Cheng, Wan-Yun; Henriquez, Andres; Hodge, Myles; Bass, Virgina; Nelson, Gail M; Carswell, Gleta; Richards, Judy E; Schladweiler, Mette C; Ledbetter, Allen D; Chorley, Brian; Gowdy, Kymberly M; Tong, Haiyan; Kodavanti, Urmila P

    2018-05-01

    Fish, olive, and coconut oil dietary supplementation have several cardioprotective benefits, but it is not established if they protect against air pollution-induced adverse effects. We hypothesized that these dietary supplements would attenuate ozone-induced systemic and pulmonary effects. Male Wistar Kyoto rats were fed either a normal diet, or a diet supplemented with fish, olive, or coconut oil for 8 weeks. Animals were then exposed to air or ozone (0.8 ppm), 4 h/day for 2 days. Ozone exposure increased phenylephrine-induced aortic vasocontraction, which was completely abolished in rats fed the fish oil diet. Despite this cardioprotective effect, the fish oil diet increased baseline levels of bronchoalveolar lavage fluid (BALF) markers of lung injury and inflammation. Ozone-induced pulmonary injury/inflammation were comparable in rats on normal, coconut oil, and olive oil diets with altered expression of markers in animals fed the fish oil diet. Fish oil, regardless of exposure, led to enlarged, foamy macrophages in the BALF that coincided with decreased pulmonary mRNA expression of cholesterol transporters, cholesterol receptors, and nuclear receptors. Serum microRNA profile was assessed and demonstrated marked depletion of a variety of microRNAs in animals fed the fish oil diet, several of which were of splenic origin. No ozone-specific changes were noted. Collectively, these data indicate that although fish oil offered vascular protection from ozone exposure, it increased pulmonary injury/inflammation and impaired lipid transport mechanisms resulting in foamy macrophage accumulation, demonstrating the need to be cognizant of potential off-target pulmonary effects that might offset the overall benefit of this vasoprotective supplement.

  3. Effect of ozone oxidative preconditioning in preventing early radiation-induced lung injury in rats

    Energy Technology Data Exchange (ETDEWEB)

    Bakkal, B.H. [Department of Radiation Oncology, School of Medicine, Bulent Ecevit University, Kozlu, Zonguldak (Turkey); Gultekin, F.A. [Department of General Surgery, School of Medicine, Bulent Ecevit University, Kozlu, Zonguldak (Turkey); Guven, B. [Department of Biochemistry, School of Medicine, Bulent Ecevit University, Kozlu, Zonguldak (Turkey); Turkcu, U.O. [Mugla School of Health Sciences, Mugla Sitki Kocman University, Mugla (Turkey); Bektas, S. [Department of Pathology, School of Medicine, Bulent Ecevit University, Kozlu, Zonguldak (Turkey); Can, M. [Department of Biochemistry, School of Medicine, Bulent Ecevit University, Kozlu, Zonguldak (Turkey)

    2013-09-27

    Ionizing radiation causes its biological effects mainly through oxidative damage induced by reactive oxygen species. Previous studies showed that ozone oxidative preconditioning attenuated pathophysiological events mediated by reactive oxygen species. As inhalation of ozone induces lung injury, the aim of this study was to examine whether ozone oxidative preconditioning potentiates or attenuates the effects of irradiation on the lung. Rats were subjected to total body irradiation, with or without treatment with ozone oxidative preconditioning (0.72 mg/kg). Serum proinflammatory cytokine levels, oxidative damage markers, and histopathological analysis were compared at 6 and 72 h after total body irradiation. Irradiation significantly increased lung malondialdehyde levels as an end-product of lipoperoxidation. Irradiation also significantly decreased lung superoxide dismutase activity, which is an indicator of the generation of oxidative stress and an early protective response to oxidative damage. Ozone oxidative preconditioning plus irradiation significantly decreased malondialdehyde levels and increased the activity of superoxide dismutase, which might indicate protection of the lung from radiation-induced lung injury. Serum tumor necrosis factor alpha and interleukin-1 beta levels, which increased significantly following total body irradiation, were decreased with ozone oxidative preconditioning. Moreover, ozone oxidative preconditioning was able to ameliorate radiation-induced lung injury assessed by histopathological evaluation. In conclusion, ozone oxidative preconditioning, repeated low-dose intraperitoneal administration of ozone, did not exacerbate radiation-induced lung injury, and, on the contrary, it provided protection against radiation-induced lung damage.

  4. Effect of ozone oxidative preconditioning in preventing early radiation-induced lung injury in rats

    International Nuclear Information System (INIS)

    Bakkal, B.H.; Gultekin, F.A.; Guven, B.; Turkcu, U.O.; Bektas, S.; Can, M.

    2013-01-01

    Ionizing radiation causes its biological effects mainly through oxidative damage induced by reactive oxygen species. Previous studies showed that ozone oxidative preconditioning attenuated pathophysiological events mediated by reactive oxygen species. As inhalation of ozone induces lung injury, the aim of this study was to examine whether ozone oxidative preconditioning potentiates or attenuates the effects of irradiation on the lung. Rats were subjected to total body irradiation, with or without treatment with ozone oxidative preconditioning (0.72 mg/kg). Serum proinflammatory cytokine levels, oxidative damage markers, and histopathological analysis were compared at 6 and 72 h after total body irradiation. Irradiation significantly increased lung malondialdehyde levels as an end-product of lipoperoxidation. Irradiation also significantly decreased lung superoxide dismutase activity, which is an indicator of the generation of oxidative stress and an early protective response to oxidative damage. Ozone oxidative preconditioning plus irradiation significantly decreased malondialdehyde levels and increased the activity of superoxide dismutase, which might indicate protection of the lung from radiation-induced lung injury. Serum tumor necrosis factor alpha and interleukin-1 beta levels, which increased significantly following total body irradiation, were decreased with ozone oxidative preconditioning. Moreover, ozone oxidative preconditioning was able to ameliorate radiation-induced lung injury assessed by histopathological evaluation. In conclusion, ozone oxidative preconditioning, repeated low-dose intraperitoneal administration of ozone, did not exacerbate radiation-induced lung injury, and, on the contrary, it provided protection against radiation-induced lung damage

  5. Thioredoxin mitigates radiation-induced hematopoietic stem cell injury in mice

    Directory of Open Access Journals (Sweden)

    Pasupathi Sundaramoorthy

    2017-11-01

    Full Text Available Abstract Background Radiation exposure poses a significant threat to public health. Hematopoietic injury is one of the major manifestations of acute radiation sickness. Protection and/or mitigation of hematopoietic stem cells (HSCs from radiation injury is an important goal in the development of medical countermeasure agents (MCM. We recently identified thioredoxin (TXN as a novel molecule that has marked protective and proliferative effects on HSCs. In the current study, we investigated the effectiveness of TXN in rescuing mice from a lethal dose of total body radiation (TBI and in enhancing hematopoietic reconstitution following a lethal dose of irradiation. Methods We used in-vivo and in-vitro methods to understand the biological and molecular mechanisms of TXN on radiation mitigation. BABL/c mice were used for the survival study and a flow cytometer was used to quantify the HSC population and cell senescence. A hematology analyzer was used for the peripheral blood cell count, including white blood cells (WBCs, red blood cells (RBCs, hemoglobin, and platelets. Colony forming unit (CFU assay was used to study the colongenic function of HSCs. Hematoxylin and eosin staining was used to determine the bone marrow cellularity. Senescence-associated β-galactosidase assay was used for cell senescence. Western blot analysis was used to evaluate the DNA damage and senescence protein expression. Immunofluorescence staining was used to measure the expression of γ-H2AX foci for DNA damage. Results We found that administration of TXN 24 h following irradiation significantly mitigates BALB/c mice from TBI-induced death: 70% of TXN-treated mice survived, whereas only 25% of saline-treated mice survived. TXN administration led to enhanced recovery of peripheral blood cell counts, bone marrow cellularity, and HSC population as measured by c-Kit+Sca-1+Lin– (KSL cells, SLAM + KSL cells and CFUs. TXN treatment reduced cell senescence and radiation-induced

  6. In vivo evidence for an endothelium-dependent mechanism in radiation-induced normal tissue injury

    Science.gov (United States)

    Rannou, Emilie; François, Agnès; Toullec, Aurore; Guipaud, Olivier; Buard, Valérie; Tarlet, Georges; Mintet, Elodie; Jaillet, Cyprien; Iruela-Arispe, Maria Luisa; Benderitter, Marc; Sabourin, Jean-Christophe; Milliat, Fabien

    2015-01-01

    The pathophysiological mechanism involved in side effects of radiation therapy, and especially the role of the endothelium remains unclear. Previous results showed that plasminogen activator inhibitor-type 1 (PAI-1) contributes to radiation-induced intestinal injury and suggested that this role could be driven by an endothelium-dependent mechanism. We investigated whether endothelial-specific PAI-1 deletion could affect radiation-induced intestinal injury. We created a mouse model with a specific deletion of PAI-1 in the endothelium (PAI-1KOendo) by a Cre-LoxP system. In a model of radiation enteropathy, survival and intestinal radiation injury were followed as well as intestinal gene transcriptional profile and inflammatory cells intestinal infiltration. Irradiated PAI-1KOendo mice exhibited increased survival, reduced acute enteritis severity and attenuated late fibrosis compared with irradiated PAI-1flx/flx mice. Double E-cadherin/TUNEL labeling confirmed a reduced epithelial cell apoptosis in irradiated PAI-1KOendo. High-throughput gene expression combined with bioinformatic analyses revealed a putative involvement of macrophages. We observed a decrease in CD68+cells in irradiated intestinal tissues from PAI-1KOendo mice as well as modifications associated with M1/M2 polarization. This work shows that PAI-1 plays a role in radiation-induced intestinal injury by an endothelium-dependent mechanism and demonstrates in vivo that the endothelium is directly involved in the progression of radiation-induced enteritis. PMID:26510580

  7. Attenuative effects of G-CSF in radiation induced intestinal injury

    International Nuclear Information System (INIS)

    Kim, Joong Sun; Gong, Eun Ji; Kim, Sung Dae; Heo, Kyu; Ryoo, Seung Bum; Yang, Kwang Mo

    2011-01-01

    Granulocyte colony stimulating factor (G-CSF) has been reported to protect from radiationinduced myelosuppression. Growing evidence suggests that G-CSF also has many important non-hematopoietic functions in other tissues, including the intestine (Kim et al., 2010; Kim et al., 2011). However, little is known about the influence of G-CSF on intestinal injury. Examination 12 hours after radiation (5 Gy) revealed that the G-CSF treated mice were significantly protected from apoptosis of jejunal crypt, compared with radiation controls. G-CSF treatment attenuated intestinal morphological changes such as decreased survival crypt, the number of villi, villous shortening, crypt depth and length of basal lamina of 10 enterocytes compared with the radiation control 3.5 days after radiation (10 Gy). G-CSF attenuated the change of peripheral blood from radiation-induced myelosuppression and displayed attenuation of mortality in lethally-irradiated (10 Gy) mice. The present results support the suggestion that G-CSF administrated prior to radiation plays an important role in the survival of irradiated mice, possibly due to the protection of hematopoietic cells and intestinal stem cells against radiation. The results indicate that G-CSF protects from radiation-mediated intestinal damage and from hematopoietic injury. G-CSF treatment may be useful clinically in the prevention of injury following radiation.

  8. Radiation-induced pneumothorax

    International Nuclear Information System (INIS)

    Epstein, D.M.; Littman, P.; Gefter, W.B.; Miller, W.T.; Raney, R.B. Jr.

    1983-01-01

    Pneumothorax is an uncommon complication of radiation therapy to the chest. The proposed pathogenesis is radiation-induced fibrosis promoting subpleural bleb formation that ruptures resulting in pneumothorax. We report on two young patients with primary sarcomas without pulmonary metastases who developed spontaneous pneumothorax after irradiation. Neither patient had antecedent radiographic evidence of pulmonary fibrosis

  9. Proinflammatory and anti-inflammatory cytokine balance in gasoline exhaust induced pulmonary injury in mice.

    Science.gov (United States)

    Sureshkumar, Veerapandian; Paul, Bholanath; Uthirappan, Mani; Pandey, Renu; Sahu, Anand Prakash; Lal, Kewal; Prasad, Arun Kumar; Srivastava, Suresh; Saxena, Ashok; Mathur, Neeraj; Gupta, Yogendra Kumar

    2005-03-01

    Proinflammatory and anti-inflammatory cytokine balance and associated changes in pulmonary bronchoalveolar lavage fluid (BALF) of unleaded gasoline exhaust (GE) exposed mice were investigated. Animals were exposed to GE (1 L/min of GE mixed with 14 L/min of compressed air) using a flow-past, nose-only, dynamic inhalation exposure chamber for different durations (7, 14, and 21 days). The particulate content of the GE was found to be 0.635, +/-0.10 mg PM/m3. Elevated levels of tumor necrosis factor-alpha (TNF-alpha) and interleukin-6 (IL-6) were observed in BALF of GE-exposed mice, but interleukin 1beta(IL-1beta) and the anti-inflammatory cytokine interleukin-10 (IL-10) remained unaffected. GE induced higher activities of alkaline phosphatase (ALP), gamma-glutamyl transferase (gammaGT), and lactate dehydrogenase (LDH) in the BALF, indicating Type II alveolar epithelial cell injury, Clara-cell injury, and general toxicity, respectively. Total protein in the BALF increased after 14 and 21 days of exposure, indicating enhanced alveolar-capillary permeability. However, the difference in the mean was found statistically insignificant in comparison to the compressed air control. Total cell count in the BALF of GE-exposed mice ranged between 0.898 and 0.813x10(6) cells/ml, whereas the compressed air control showed 0.65x10(6) cells/mL. The histopathological changes in GE-exposed lung includes perivascular, and peribronchiolar cuffing of mononuclear cells, migration of polymorphonuclear cells in the alveolar septa, alveolar thickening, and mild alveolar edematous changes indicating inflammation. The shift in pro- and anti-inflammatory cytokine balance and elevation of the pulmonary marker enzymes indicate toxic insult of GE. This study will help in our understanding of the mechanism of pulmonary injury by GE in the light of cytokine profiles, pulmonary marker enzymes, and lung architecture.

  10. PAI-1-dependent endothelial cell death determines severity of radiation-induced intestinal injury.

    Directory of Open Access Journals (Sweden)

    Rym Abderrahmani

    Full Text Available Normal tissue toxicity still remains a dose-limiting factor in clinical radiation therapy. Recently, plasminogen activator inhibitor type 1 (SERPINE1/PAI-1 was reported as an essential mediator of late radiation-induced intestinal injury. However, it is not clear whether PAI-1 plays a role in acute radiation-induced intestinal damage and we hypothesized that PAI-1 may play a role in the endothelium radiosensitivity. In vivo, in a model of radiation enteropathy in PAI-1 -/- mice, apoptosis of radiosensitive compartments, epithelial and microvascular endothelium was quantified. In vitro, the role of PAI-1 in the radiation-induced endothelial cells (ECs death was investigated. The level of apoptotic ECs is lower in PAI-1 -/- compared with Wt mice after irradiation. This is associated with a conserved microvascular density and consequently with a better mucosal integrity in PAI-1 -/- mice. In vitro, irradiation rapidly stimulates PAI-1 expression in ECs and radiation sensitivity is increased in ECs that stably overexpress PAI-1, whereas PAI-1 knockdown increases EC survival after irradiation. Moreover, ECs prepared from PAI-1 -/- mice are more resistant to radiation-induced cell death than Wt ECs and this is associated with activation of the Akt pathway. This study demonstrates that PAI-1 plays a key role in radiation-induced EC death in the intestine and suggests that this contributes strongly to the progression of radiation-induced intestinal injury.

  11. General aspects of radiation injury

    Energy Technology Data Exchange (ETDEWEB)

    Kitabatake, T [Niigata Univ. (Japan). School of Medicine

    1974-12-01

    Radiation injury in living organisms was discussed. Physical effects of nuclear irradiation fell into two categories: early effects and late effects. The former occurred invariably by nuclear irradiation above a certain dose, but the latter occurred according to the probability based on the exposure dosage. Late effects included cancer and leukemia which had no specific pathology as compared with non-irradiation induced or leukemia, and their latent periods were long. Because of difficulty in clarifying the cause-and-effect relationship, etiological studies such as McKenzie's or Myrden's, were required. In their studies on the relationship between fluoroscopy and thoracic malignant tumors, prognoses of pulmonary tuberculosis patients who had or had not received multiple fluoroscopies during artificial pneumothorax treatment were followed. The results showed no significant difference between the two groups of patients. Nuclear radiation induced leukemia corresponded to the exposure dose. According to that, exposure dosage of radiological workers was reduced yearly. The latent period of people having low exposure was comparatively prolonged. Medical exposure in radiation therapy was confined to the affected areas and to a small number of patients, although the exposure dose was high. On the other hand, exposure for medical diagnosis was criticized because in spite of its low exposure dose, the exposed population was extremely large.

  12. Inhibition of chlorine-induced pulmonary inflammation and edema by mometasone and budesonide

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jing; Mo, Yiqun; Schlueter, Connie F.; Hoyle, Gary W., E-mail: Gary.Hoyle@louisville.edu

    2013-10-15

    Chlorine gas is a widely used industrial compound that is highly toxic by inhalation and is considered a chemical threat agent. Inhalation of high levels of chlorine results in acute lung injury characterized by pneumonitis, pulmonary edema, and decrements in lung function. Because inflammatory processes can promote damage in the injured lung, anti-inflammatory therapy may be of potential benefit for treating chemical-induced acute lung injury. We previously developed a chlorine inhalation model in which mice develop epithelial injury, neutrophilic inflammation, pulmonary edema, and impaired pulmonary function. This model was used to evaluate nine corticosteroids for the ability to inhibit chlorine-induced neutrophilic inflammation. Two of the most potent corticosteroids in this assay, mometasone and budesonide, were investigated further. Mometasone or budesonide administered intraperitoneally 1 h after chlorine inhalation caused a dose-dependent inhibition of neutrophil influx in lung tissue sections and in the number of neutrophils in lung lavage fluid. Budesonide, but not mometasone, reduced the levels of the neutrophil attractant CXCL1 in lavage fluid 6 h after exposure. Mometasone or budesonide also significantly inhibited pulmonary edema assessed 1 day after chlorine exposure. Chlorine inhalation resulted in airway hyperreactivity to inhaled methacholine, but neither mometasone nor budesonide significantly affected this parameter. The results suggest that mometasone and budesonide may represent potential treatments for chemical-induced lung injury. - Highlights: • Chlorine causes lung injury when inhaled and is considered a chemical threat agent. • Corticosteroids may inhibit lung injury through their anti-inflammatory actions. • Corticosteroids inhibited chlorine-induced pneumonitis and pulmonary edema. • Mometasone and budesonide are potential rescue treatments for chlorine lung injury.

  13. Effects of Berberine Against Radiation-Induced Intestinal Injury in Mice

    International Nuclear Information System (INIS)

    Li Guanghui; Zhang Yaping; Tang Jinliang; Chen Zhengtang; Hu Yide; Wei Hong; Li Dezhi; Hao Ping; Wang Donglin

    2010-01-01

    Purpose: Radiation-induced intestinal injury is a significant clinical problem in patients undergoing abdominal radiotherapy (RT). Berberine has been used as an antimicrobial, anti-inflammatory, and antimotility agent. The present study investigated the protective effect of berberine against radiation-induced intestinal injury. Methods and Materials: The mice were administrated berberine or distilled water. A total of 144 mice underwent 0, 3, 6, 12, or 16 Gy single session whole-abdominal RT and 16 mice underwent 3 Gy/fraction/d for four fractions of fractionated abdominal RT. Tumor necrosis factor-α, interleukin-10, diamine oxidase, intestinal fatty acid-binding protein, malonaldehyde, and apoptosis were assayed in the mice after RT. The body weight and food intake of the mice receiving fractionated RT were recorded. Another 72 mice who had undergone 12, 16, or 20 Gy abdominal RT were monitored for mortality every 12 h. Results: The body weight and food intake of the mice administered with distilled water decreased significantly compared with before RT. After the same dose of abdominal RT, tumor necrosis factor-α, diamine oxidase, intestinal fatty acid-binding protein in plasma and malonalhehyde and apoptosis of the intestine were significantly greater in the control group than in the mice administered berberine (p < .05-.01). In contrast, interleukin-10 in the mice with berberine treatment was significantly greater than in the control group (p < .01). A similar result was found in the fractionated RT experiment and at different points after 16 Gy abdominal RT (p < .05-.01). Berberine treatment significantly delayed the point of death after 20 Gy, but not 16 Gy, abdominal RT (p < .01). Conclusion: Treatment with berberine can delay mortality and attenuated intestinal injury in mice undergoing whole abdominal RT. These findings could provide a useful therapeutic strategy for radiation-induced intestinal injury.

  14. Nicaraven attenuates radiation-induced injury in hematopoietic stem/progenitor cells in mice.

    Directory of Open Access Journals (Sweden)

    Miho Kawakatsu

    Full Text Available Nicaraven, a chemically synthesized hydroxyl radical-specific scavenger, has been demonstrated to protect against ischemia-reperfusion injury in various organs. We investigated whether nicaraven can attenuate radiation-induced injury in hematopoietic stem/progenitor cells, which is the conmen complication of radiotherapy and one of the major causes of death in sub-acute phase after accidental exposure to high dose radiation. C57BL/6 mice were exposed to 1 Gy γ-ray radiation daily for 5 days in succession (a total of 5 Gy, and given nicaraven or a placebo after each exposure. The mice were sacrificed 2 days after the last radiation treatment, and the protective effects and relevant mechanisms of nicaraven in hematopoietic stem/progenitor cells with radiation-induced damage were investigated by ex vivo examination. We found that post-radiation administration of nicaraven significantly increased the number, improved the colony-forming capacity, and decreased the DNA damage of hematopoietic stem/progenitor cells. The urinary levels of 8-oxo-2'-deoxyguanosine, a marker of DNA oxidation, were significantly lower in mice that were given nicaraven compared with those that received a placebo treatment, although the levels of intracellular and mitochondrial reactive oxygen species in the bone marrow cells did not differ significantly between the two groups. Interestingly, compared with the placebo treatment, the administration of nicaraven significantly decreased the levels of the inflammatory cytokines IL-6 and TNF-α in the plasma of mice. Our data suggest that nicaraven effectively diminished the effects of radiation-induced injury in hematopoietic stem/progenitor cells, which is likely associated with the anti-oxidative and anti-inflammatory properties of this compound.

  15. Glycyrrhizic acid alleviates bleomycin-induced pulmonary fibrosis in rats

    Directory of Open Access Journals (Sweden)

    Lili eGao

    2015-10-01

    Full Text Available Idiopathic pulmonary fibrosis is a progressive and lethal form of interstitial lung disease that lacks effective therapies at present. Glycyrrhizic acid (GA, a natural compound extracted from a traditional Chinese herbal medicine Glycyrrhiza glabra, was recently reported to benefit lung injury and liver fibrosis in animal models, yet whether GA has a therapeutic effect on pulmonary fibrosis is unknown. In this study, we investigated the potential therapeutic effect of GA on pulmonary fibrosis in a rat model with bleomycin (BLM-induced pulmonary fibrosis. The results indicated that GA treatment remarkably ameliorated BLM-induced pulmonary fibrosis and attenuated BLM-induced inflammation, oxidative stress, epithelial-mesenchymal transition and activation of tansforming growth factor-beta signaling pathway in the lungs. Further, we demonstrated that GA treatment inhibited proliferation of 3T6 fibroblast cells, induced cell cycle arrest and promoted apoptosis in vitro, implying that GA-mediated suppression of fibroproliferation may contribute to the anti-fibrotic effect against BLM-induced pulmonary fibrosis. In summary, our study suggests a therapeutic potential of GA in the treatment of pulmonary fibrosis.

  16. Pulmonary microvascular hyperpermeability and expression of vascular endothelial growth factor in smoke inhalation- and pneumonia-induced acute lung injury.

    Science.gov (United States)

    Lange, Matthias; Hamahata, Atsumori; Traber, Daniel L; Connelly, Rhykka; Nakano, Yoshimitsu; Traber, Lillian D; Schmalstieg, Frank C; Herndon, David N; Enkhbaatar, Perenlei

    2012-11-01

    Acute lung injury (ALI) and sepsis are major contributors to the morbidity and mortality of critically ill patients. The current study was designed further evaluate the mechanism of pulmonary vascular hyperpermeability in sheep with these injuries. Sheep were randomized to a sham-injured control group (n=6) or ALI/sepsis group (n=7). The sheep in the ALI/sepsis group received inhalation injury followed by instillation of Pseudomonas aeruginosa into the lungs. These groups were monitored for 24 h. Additional sheep (n=16) received the injury and lung tissue was harvested at different time points to measure lung wet/dry weight ratio, vascular endothelial growth factor (VEGF) mRNA and protein expression as well as 3-nitrotyrosine protein expression in lung homogenates. The injury induced severe deterioration in pulmonary gas exchange, increases in lung lymph flow and protein content, and lung water content (P<0.01 each). These alterations were associated with elevated lung and plasma nitrite/nitrate concentrations, increased tracheal blood flow, and enhanced VEGF mRNA and protein expression in lung tissue as well as enhanced 3-nitrotyrosine protein expression (P<0.05 each). This study describes the time course of pulmonary microvascular hyperpermeability in a clinical relevant large animal model and may improve the experimental design of future studies. Copyright © 2012 Elsevier Ltd and ISBI. All rights reserved.

  17. Different imaging methods in the assessment of radiation-induced lung injury following hemithorax irradiation for pleural mesothelioma

    International Nuclear Information System (INIS)

    Maasilta, P.; Kivisaari, L.; Mattson, K.

    1990-01-01

    The authors have characterized the radiation-induced lung-injury on serial chest X-rays, CTs and ultralow field MRs and evaluated the clinical value and cost/benefit ratio of the different imaging methods in 30 patients receiving high-dose hemithorax irradiation for pleural mesothelioma. Lung injury was severe in all patients, but non-specific and essentially as described in text-books. CT provided no clinically relevant, cost effective diagnostic advantage over conventional X-rays in the detection of early or late radiation-induced lung injury, but it was necessary for the evaluation of the disease status of the mesothelioma. The possible advantage of MR over CT could not be evaluated and needs further studies. Optimal time-points for imaging CTs or MRs to detect early radiation-induced lung injury following high dose hemithorax irradiation were during the latter part of the treatment or very shortly after the end of the irradiation. Late injury or irreversible fibrosis develop rapidly after 6 months and was clearly documented by chest X-rays. The authors recommend serial chest X-rays at 1-2, 6 and 12 months following radiotherapy as a cost-effective method for the detection of radiation-induced lung injury with additional CTs to document the stage of mesothelioma, when needed. (author). 31 refs.; 4 figs

  18. Pathogenesis pathways of idiopathic pulmonary fibrosis in bleomycin-induced lung injury model in mice.

    Science.gov (United States)

    Shi, Keyun; Jiang, Jianzhong; Ma, Tieliang; Xie, Jing; Duan, Lirong; Chen, Ruhua; Song, Ping; Yu, Zhixin; Liu, Chao; Zhu, Qin; Zheng, Jinxu

    2014-01-01

    Our objective was to investigate the pathogenesis pathways of idiopathic pulmonary fibrosis (IPF). Bleomycin (BLM) induced animal models of experimental lung fibrosis were used. CHIP assay was executed to find the link between Smad3 and IL-31, and the expressions of TGF-β1, Smad3, IL-31 and STAT1 were detected to find whether they were similar with each other. We found that in the early injury or inflammation of the animal model, BLM promoted the development of inflammation, leading to severe pulmonary fibrosis. Then the expression of TGF-β1 and Smad3 increased. Activated Smad3 bound to the IL-31 promoter region, followed by the activation of JAK-STAT pathways. The inhibitor of TGF-β1 receptor decreased the IL-31 expression and knocking-down of IL-31 also decreased the STAT1 expression. We conclude that there is a pathway of pathogenesis in BLM-induced mouse model that involves the TGF-β, IL-31 and JAKs/STATs pathway. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Thermal injury lowers the threshold for radiation-induced neuroinflammation and cognitive dysfunction.

    Science.gov (United States)

    Cherry, Jonathan D; Williams, Jacqueline P; O'Banion, M Kerry; Olschowka, John A

    2013-10-01

    The consequences of radiation exposure alone are relatively well understood, but in the wake of events such as the World War II nuclear detonations and accidents such as Chernobyl, other critical factors have emerged that can substantially affect patient outcome. For example, ~70% of radiation victims from Hiroshima and Nagasaki received some sort of additional traumatic injury, the most common being thermal burn. Animal data has shown that the addition of thermal insult to radiation results in increased morbidity and mortality. To explore possible synergism between thermal injury and radiation on brain, C57BL/6J female mice were exposed to either 0 or 5 Gy whole-body gamma irradiation. Irradiation was immediately followed by a 10% total-body surface area full thickness thermal burn. Mice were sacrificed 6 h, 1 week or 6 month post-injury and brains and plasma were harvested for histology, mRNA analysis and cytokine ELISA. Plasma analysis revealed that combined injury synergistically upregulates IL-6 at acute time points. Additionally, at 6 h, combined injury resulted in a greater upregulation of the vascular marker, ICAM-1 and TNF-α mRNA. Enhanced activation of glial cells was also observed by CD68 and Iba1 immunohistochemistry at all time points. Additionally, doublecortin staining at 6 months showed reduced neurogenesis in all injury conditions. Finally, using a novel object recognition test, we observed that only mice with combined injury had significant learning and memory deficits. These results demonstrate that thermal injury lowers the threshold for radiation-induced neuroinflammation and long-term cognitive dysfunction.

  20. Radiation-induced pulmonary fibrosis: examination of chemokine and chemokine receptor families.

    Science.gov (United States)

    Johnston, Carl J; Williams, Jacqueline P; Okunieff, Paul; Finkelstein, Jacob N

    2002-03-01

    Fibrosis is a common outcome of chronic inflammation or injury. Pulmonary fibrosis may be the result of abnormal repair after an acute inflammatory response. The process of repair initiated by a tissue insult is largely a function of the activation of cells to produce important biological mediators such as cytokines, growth factors and chemokines, which orchestrate most aspects of the inflammatory response. Consequently, altered regulation of the production of inflammatory cell cytokines and chemokines after injury and repair likely contributes to the fibrosis. Our hypothesis is that chronic expression of specific chemokine and chemokine receptors during the fibrotic phase induced by thoracic irradiation may perpetuate the recruitment and activation of lymphocytes and macrophages, which may contribute to the development of fibrosis. Fibrosis-sensitive (C57BL/6) and fibrosis-resistant (C3H/HeJ) mice were irradiated with a single dose of 12.5 Gy to the thorax. Total lung RNA was prepared and hybridized using microarray analysis and RNase protection assays. At 26 weeks postirradiation, messages encoding the chemokines BLC (now known as Scyb13), C10 (now known as Scya6), IP-10 (now known as Scyb10), MCP-1 (now known as Scya2), MCP-3 (now known as Scya7), MIP-1gamma (now known as Scya9), and RANTES (now known as Scya5) and the chemokine receptors Ccr1, Ccr2, Ccr5 and Ccr6 were elevated in fibrosis-sensitive (C57BL/6) mice. In contrast, only the messages encoding SDF-1alpha (now known as Sdf1) and Ccr1 were elevated 26 weeks postirradiation in fibrosis-resistant (C3H/HeJ) mice. Our results point to the CC and CCR family members as the predominant chemokine responders during the development of fibrosis. These studies suggest that monocyte/macrophage and lymphocyte recruitment and activation are key components of radiation-induced fibrosis.

  1. Localization of quantitative trait loci associated with radiation induced pulmonary fibrosis in the mouse

    International Nuclear Information System (INIS)

    Oas, L.G.; Haston, C.K.; Travis, E.L.

    1997-01-01

    Purpose/Objective: Pulmonary fibrosis is often a limiting factor in the planning of radiotherapy for thoracic neoplasms. Differences in the propensity to develop radiation induced pulmonary fibrosis have been noted between C3Hf/Kam (resistant) and C57BL/6J (susceptible) mouse strains. Bleomycin and radiation induced pulmonary fibrosis have been shown to be heritable traits in mice with significant linkage to the major histocompatibility complex on chromosome 17. The heritability of radiation induced damage was estimated to be 38%±11% with 1-2 genetic factors influencing expression. Only 6.6% of the phenotypic variance could be attributed to chromosome 17. A search of the genome was undertaken to identify loci which may be responsible for the remaining phenotypic variance. Materials and Methods: C3Hf/Kam and C57BL/6J mice were crosbred to yield F1 and F2 (F1 intercross) generations. Two hundred sixty eight males and females of the F2 generation were treated with orthovoltage radiation, 14 or 16 Gy, to the whole thorax. The mice were sacrificed after development of respiratory distress or at 33 weeks. Histologic sections were assessed with quantified image analysis to determine the percentage of fibrosis in both lungs. Genotyping was done on the pooled DNA of the mice who developed respiratory distress with 44 32 P labeled microsatellite markers having an average spacing of 24.5 cM. Correlation of the quantitative trait loci (QTLs) with the highest quartile of fibrosis revealed 10 out of 44 regions showing possible linkage. Individual DNA from 54 mice with the least fibrosis and 40 with the most fibrosis were probed using these markers. PCR and gel electrophoresis were performed and the results analysed. Results: Of the 10 markers analysed, one locus on chromosome 1 meets the criterion of suggestion of linkage. Conclusion: These findings point to regions on the mouse genome for which further investigation of fibrosis associated loci may be warranted

  2. Effects of Pharmacological Inhibition and Genetic Deficiency of Plasminogen Activator Inhibitor-1 in Radiation-Induced Intestinal Injury

    International Nuclear Information System (INIS)

    Abderrahmani, Rym; Francois, Agnes; Buard, Valerie; Benderitter, Marc; Sabourin, Jean-Christophe; Crandall, David L.; Milliat, Fabien

    2009-01-01

    Purpose: To investigate effects of plasminogen activator inhibitor 1 (PAI-1) genetic deficiency and pharmacological PAI-1 inhibition with PAI-039 in a mouse model of radiation-induced enteropathy. Methods and Materials: Wild-type (Wt) and PAI-1 -/- knockout mice received a single dose of 19 Gy to an exteriorized localized intestinal segment. Sham and irradiated Wt mice were treated orally with 1 mg/g of PAI-039. Histological modifications were quantified using a radiation injury score. Moreover, intestinal gene expression was monitored by real-time PCR. Results: At 3 days after irradiation, PAI-039 abolished the radiation-induced increase in the plasma active form of PAI-1 and limited the radiation-induced gene expression of transforming growth factor β1 (TGF-β1), CTGF, PAI-1, and COL1A2. Moreover, PAI-039 conferred temporary protection against early lethality. PAI-039 treatment limited the radiation-induced increase of CTGF and PAI-1 at 2 weeks after irradiation but had no effect at 6 weeks. Radiation injuries were less severe in PAI-1 -/- mice than in Wt mice, and despite the beneficial effect, 3 days after irradiation, PAI-039 had no effects on microscopic radiation injuries compared to untreated Wt mice. Conclusions: A genetic deficiency of PAI-1 is associated with amelioration of late radiation enteropathy. Pharmacological inhibition of PAI-1 by PAI-039 positively impacts the early, acute phase increase in plasma PAI-1 and the associated radiation-induced gene expression of inflammatory/extracellular matrix proteins. Since PAI-039 has been shown to inhibit the active form of PAI-1, as opposed to the complete loss of PAI-1 in the knockout animals, these data suggest that a PAI-1 inhibitor could be beneficial in treating radiation-induced tissue injury in acute settings where PAI-1 is elevated.

  3. Carbonic anhydrase inhibitor attenuates ischemia-reperfusion induced acute lung injury.

    Directory of Open Access Journals (Sweden)

    Chou-Chin Lan

    Full Text Available Ischemia-reperfusion (IR-induced acute lung injury (ALI is implicated in several clinical conditions including lung transplantation, cardiopulmonary bypass surgery, re-expansion of collapsed lung from pneumothorax or pleural effusion and etc. IR-induced ALI remains a challenge in the current treatment. Carbonic anhydrase has important physiological function and influences on transport of CO2. Some investigators suggest that CO2 influences lung injury. Therefore, carbonic anhydrase should have the role in ALI. This study was undertaken to define the effect of a carbonic anhydrase inhibitor, acetazolamide (AZA, in IR-induced ALI, that was conducted in a rat model of isolated-perfused lung with 30 minutes of ischemia and 90 minutes of reperfusion. The animals were divided into six groups (n = 6 per group: sham, sham + AZA 200 mg/kg body weight (BW, IR, IR + AZA 100 mg/kg BW, IR + AZA 200 mg/kg BW and IR+ AZA 400 mg/kg BW. IR caused significant pulmonary micro-vascular hyper-permeability, pulmonary edema, pulmonary hypertension, neutrophilic sequestration, and an increase in the expression of pro-inflammatory cytokines. Increases in carbonic anhydrase expression and perfusate pCO2 levels were noted, while decreased Na-K-ATPase expression was noted after IR. Administration of 200mg/kg BW and 400mg/kg BW AZA significantly suppressed the expression of pro-inflammatory cytokines (TNF-α, IL-1, IL-6 and IL-17 and attenuated IR-induced lung injury, represented by decreases in pulmonary hyper-permeability, pulmonary edema, pulmonary hypertension and neutrophilic sequestration. AZA attenuated IR-induced lung injury, associated with decreases in carbonic anhydrase expression and pCO2 levels, as well as restoration of Na-K-ATPase expression.

  4. Contribution to the pathogenesis of radiation-induced injury to large arteries

    International Nuclear Information System (INIS)

    Zidar, Nina; Ferluga, Dusan; Hvala, Asta; Popovic, Mara; Soba, Erika

    1997-01-01

    We report a case of a 35-year-old man who died of a brain infarct 20 months after radiotherapy for carcinoma of the tonsil with metastases to the cervical lymph nodes. Histology revealed mild atherosclerosis, necrotizing vasculitis, and occlusive thrombosis of the internal carotid artery. Significant changes were observed in the vasa vasorum; swelling and detachment of the endothelium, subendothelial oedema, hyaline change, fibrinoid necrosis of the vessel walls with mononuclear cellular infiltration, accompanied by focal haemorrhages and chronic inflammation in the periadventitial soft tissue. We believe that these changes of the vasa vasorum and necrotizing vasculitis are causally related and that vasculitis represents focal ischaemic necroses with inflammatory reaction. Our findings support the hypothesis, based on experimental studies, that injury to the vasa vasorum is an important mechanism in the development of radiation-induced vasculopathy of large arteries. They also suggest an evolution of the injury to the vasa vasorum and periadventitial tissue from the early lesions described in our patient, to late stages resulting in dense periadventitial fibrosis as reported previously. We suggest that injury to the vasa vasorum and the consequent ischaemic lesions of the arterial wall are morphological features distinguishing radiation-induced arterial injury from spontaneous atherosclerosis. (author)

  5. Lysophosphatidic acid generation by pulmonary NKT cell ENPP-2/autotaxin exacerbates hyperoxic lung injury.

    Science.gov (United States)

    Nowak-Machen, Martina; Lange, Martin; Exley, Mark; Wu, Sherry; Usheva, Anny; Robson, Simon C

    2015-12-01

    Hyperoxia is still broadly used in clinical practice in order to assure organ oxygenation in critically ill patients, albeit known toxic effects. In this present study, we hypothesize that lysophosphatidic acid (LPA) mediates NKT cell activation in a mouse model of hyperoxic lung injury. In vitro, pulmonary NKT cells were exposed to hyperoxia for 72 h, and the induction of the ectonucleotide pyrophosphatase/phosphodiesterase 2 (ENPP-2) was examined and production of lysophosphatidic acid (LPA) was measured. In vivo, animals were exposed to 100 % oxygen for 72 h and lungs and serum were harvested. Pulmonary NKT cells were then incubated with the LPA antagonist Brp-LPA. Animals received BrP-LPA prior to oxygen exposure. Autotaxin (ATX, ENPP-2) was significantly up-regulated on pulmonary NKT cells after hyperoxia (p NKT cells. LPA levels were significantly reduced by incubating NKT cells with LPA-BrP during oxygen exposure (p NKT cell numbers in vivo. BrP-LPA injection significantly improved survival as well as significantly decreased lung injury and lowered pulmonary NKT cell numbers. We conclude that NKT cell-induced hyperoxic lung injury is mediated by pro-inflammatory LPA generation, at least in part, secondary to ENPP-2 up-regulation on pulmonary NKT cells. Being a potent LPA antagonist, BrP-LPA prevents hyperoxia-induced lung injury in vitro and in vivo.

  6. A Nonhuman Primate Model of Human Radiation-Induced Venocclusive Liver Disease and Hepatocyte Injury

    Energy Technology Data Exchange (ETDEWEB)

    Yannam, Govardhana Rao [Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska (United States); Han, Bing [Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania (United States); Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi' an Jiaotong University, Xi' an, Shaanxi (China); Setoyama, Kentaro [Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania (United States); Yamamoto, Toshiyuki [Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska (United States); Ito, Ryotaro; Brooks, Jenna M. [Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania (United States); Guzman-Lepe, Jorge [Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania (United States); Department of Pathology, Children' s Hospital of Pittsburgh, Pittsburgh, Pennsylvania (United States); Galambos, Csaba [Department of Pathology, Children' s Hospital of Pittsburgh, Pittsburgh, Pennsylvania (United States); Fong, Jason V. [Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania (United States); Deutsch, Melvin; Quader, Mubina A. [Department of Radiation Oncology, Children' s Hospital of Pittsburgh, Pittsburgh, Pennsylvania (United States); Yamanouchi, Kosho [Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York (United States); Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, New York (United States); Kabarriti, Rafi; Mehta, Keyur [Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York (United States); Soto-Gutierrez, Alejandro [Department of Pathology, Children' s Hospital of Pittsburgh, Pittsburgh, Pennsylvania (United States); McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania (United States); and others

    2014-02-01

    Background: Human liver has an unusual sensitivity to radiation that limits its use in cancer therapy or in preconditioning for hepatocyte transplantation. Because the characteristic veno-occlusive lesions of radiation-induced liver disease do not occur in rodents, there has been no experimental model to investigate the limits of safe radiation therapy or explore the pathogenesis of hepatic veno-occlusive disease. Methods and Materials: We performed a dose-escalation study in a primate, the cynomolgus monkey, using hypofractionated stereotactic body radiotherapy in 13 animals. Results: At doses ≥40 Gy, animals developed a systemic syndrome resembling human radiation-induced liver disease, consisting of decreased albumin, elevated alkaline phosphatase, loss of appetite, ascites, and normal bilirubin. Higher radiation doses were lethal, causing severe disease that required euthanasia approximately 10 weeks after radiation. Even at lower doses in which radiation-induced liver disease was mild or nonexistent, latent and significant injury to hepatocytes was demonstrated by asialoglycoprotein-mediated functional imaging. These monkeys developed hepatic failure with encephalopathy when they received parenteral nutrition containing high concentrations of glucose. Histologically, livers showed central obstruction via an unusual intimal swelling that progressed to central fibrosis. Conclusions: The cynomolgus monkey, as the first animal model of human veno-occlusive radiation-induced liver disease, provides a resource for characterizing the early changes and pathogenesis of venocclusion, for establishing nonlethal therapeutic dosages, and for examining experimental therapies to minimize radiation injury.

  7. A Nonhuman Primate Model of Human Radiation-Induced Venocclusive Liver Disease and Hepatocyte Injury

    International Nuclear Information System (INIS)

    Yannam, Govardhana Rao; Han, Bing; Setoyama, Kentaro; Yamamoto, Toshiyuki; Ito, Ryotaro; Brooks, Jenna M.; Guzman-Lepe, Jorge; Galambos, Csaba; Fong, Jason V.; Deutsch, Melvin; Quader, Mubina A.; Yamanouchi, Kosho; Kabarriti, Rafi; Mehta, Keyur; Soto-Gutierrez, Alejandro

    2014-01-01

    Background: Human liver has an unusual sensitivity to radiation that limits its use in cancer therapy or in preconditioning for hepatocyte transplantation. Because the characteristic veno-occlusive lesions of radiation-induced liver disease do not occur in rodents, there has been no experimental model to investigate the limits of safe radiation therapy or explore the pathogenesis of hepatic veno-occlusive disease. Methods and Materials: We performed a dose-escalation study in a primate, the cynomolgus monkey, using hypofractionated stereotactic body radiotherapy in 13 animals. Results: At doses ≥40 Gy, animals developed a systemic syndrome resembling human radiation-induced liver disease, consisting of decreased albumin, elevated alkaline phosphatase, loss of appetite, ascites, and normal bilirubin. Higher radiation doses were lethal, causing severe disease that required euthanasia approximately 10 weeks after radiation. Even at lower doses in which radiation-induced liver disease was mild or nonexistent, latent and significant injury to hepatocytes was demonstrated by asialoglycoprotein-mediated functional imaging. These monkeys developed hepatic failure with encephalopathy when they received parenteral nutrition containing high concentrations of glucose. Histologically, livers showed central obstruction via an unusual intimal swelling that progressed to central fibrosis. Conclusions: The cynomolgus monkey, as the first animal model of human veno-occlusive radiation-induced liver disease, provides a resource for characterizing the early changes and pathogenesis of venocclusion, for establishing nonlethal therapeutic dosages, and for examining experimental therapies to minimize radiation injury

  8. Interleukin-22 Inhibits Bleomycin-Induced Pulmonary Fibrosis

    Directory of Open Access Journals (Sweden)

    Minrui Liang

    2013-01-01

    Full Text Available Pulmonary fibrosis is a progressive and fatal fibrotic disease of the lungs with unclear etiology. Recent insight has suggested that early injury/inflammation of alveolar epithelial cells could lead to dysregulation of tissue repair driven by multiple cytokines. Although dysregulation of interleukin- (IL- 22 is involved in various pulmonary pathophysiological processes, the role of IL-22 in fibrotic lung diseases is still unclear and needs to be further addressed. Here we investigated the effect of IL-22 on alveolar epithelial cells in the bleomycin- (BLM- induced pulmonary fibrosis. BLM-treated mice showed significantly decreased level of IL-22 in the lung. IL-22 produced γδT cells were also decreased significantly both in the tissues of lungs and spleens. Administration of recombinant human IL-22 to alveolar epithelial cell line A549 cells ameliorated epithelial to mesenchymal transition (EMT and partially reversed the impaired cell viability induced by BLM. Furthermore, blockage of IL-22 deteriorated pulmonary fibrosis, with elevated EMT marker (α-smooth muscle actin (α-SMA and overactivated Smad2. Our results indicate that IL-22 may play a protective role in the development of BLM-induced pulmonary fibrosis and may suggest IL-22 as a novel immunotherapy tool in treating pulmonary fibrosis.

  9. Rosiglitazone attenuates pulmonary fibrosis and radiation-induced intestinal damage

    International Nuclear Information System (INIS)

    Mangoni, M.; Gerini, C.; Sottili, M.; Cassani, S.; Stefania, G.; Biti, G.; Castiglione, F.; Vanzi, E.; Bottoncetti, A.; Pupi, A.

    2011-01-01

    Full text of publication follows: Purpose.-The aim of the study was to evaluate radioprotective effect of rosiglitazone (RGZ) on a murine model of late pulmonary damage and of acute intestinal damage. Methods.- Lung fibrosis: C57 mice were treated with the radiomimetic agent bleomycin, with or without rosiglitazone (5 mg/kg/day). To obtain an independent qualitative and quantitative measure for lung fibrosis we used high resolution CT, performed twice a week during the entire observation period. Hounsfield Units (HU) of section slides from the upper and lower lung region were determined. On day 31 lungs were collected for histological analysis. Acute intestinal damage: mice underwent 12 Gy total body irradiation with or without rosiglitazone. Mice were sacrificed 24 or 72 h after total body irradiation and ileum and colon were collected. Results.- Lung fibrosis: after bleomycin treatment, mice showed typical CT features of lung fibrosis, including irregular septal thickening and patchy peripheral reticular abnormalities. Accordingly, HU lung density was dramatically increased. Rosiglitazone markedly attenuated the radiological signs of fibrosis and strongly inhibited HU lung density increase (60% inhibition at the end of the observation period). Histological analysis revealed that in bleomycin-treated mice, fibrosis involved 50-55% of pulmonary parenchyma and caused an alteration of the alveolar structures in 10% of parenchyma, while in rosiglitazone-treated mice, fibrosis involved only 20-25% of pulmonary parenchyma, without alterations of the alveolar structures. Acute intestinal damage: 24 h after 12 Gy of total body irradiation intestinal mucosa showed villi shortening, mucosal thickness and crypt necrotic changes. Rosiglitazone showed a histological improvement of tissue structure, with villi and crypts normalization and oedema reduction. Conclusion.- These results demonstrate that rosiglitazone displays a protective effect on pulmonary fibrosis and radiation-induced

  10. Rosiglitazone attenuates pulmonary fibrosis and radiation-induced intestinal damage

    Energy Technology Data Exchange (ETDEWEB)

    Mangoni, M.; Gerini, C.; Sottili, M.; Cassani, S.; Stefania, G.; Biti, G. [Radiotherapy Unit, Clinical Physiopathology Department, University of Florence, Firenze (Italy); Castiglione, F. [Department of Human Pathology and Oncology, University of Florence, Firenze (Italy); Vanzi, E.; Bottoncetti, A.; Pupi, A. [Nuclear Medicine Unit, Clinical Physiopathology Department, University of Florence, Firenze (Italy)

    2011-10-15

    Full text of publication follows: Purpose.-The aim of the study was to evaluate radioprotective effect of rosiglitazone (RGZ) on a murine model of late pulmonary damage and of acute intestinal damage. Methods.- Lung fibrosis: C57 mice were treated with the radiomimetic agent bleomycin, with or without rosiglitazone (5 mg/kg/day). To obtain an independent qualitative and quantitative measure for lung fibrosis we used high resolution CT, performed twice a week during the entire observation period. Hounsfield Units (HU) of section slides from the upper and lower lung region were determined. On day 31 lungs were collected for histological analysis. Acute intestinal damage: mice underwent 12 Gy total body irradiation with or without rosiglitazone. Mice were sacrificed 24 or 72 h after total body irradiation and ileum and colon were collected. Results.- Lung fibrosis: after bleomycin treatment, mice showed typical CT features of lung fibrosis, including irregular septal thickening and patchy peripheral reticular abnormalities. Accordingly, HU lung density was dramatically increased. Rosiglitazone markedly attenuated the radiological signs of fibrosis and strongly inhibited HU lung density increase (60% inhibition at the end of the observation period). Histological analysis revealed that in bleomycin-treated mice, fibrosis involved 50-55% of pulmonary parenchyma and caused an alteration of the alveolar structures in 10% of parenchyma, while in rosiglitazone-treated mice, fibrosis involved only 20-25% of pulmonary parenchyma, without alterations of the alveolar structures. Acute intestinal damage: 24 h after 12 Gy of total body irradiation intestinal mucosa showed villi shortening, mucosal thickness and crypt necrotic changes. Rosiglitazone showed a histological improvement of tissue structure, with villi and crypts normalization and oedema reduction. Conclusion.- These results demonstrate that rosiglitazone displays a protective effect on pulmonary fibrosis and radiation-induced

  11. A study of radiation-induced cerebral vascular injury in nasopharyngeal carcinoma patients with radiation-induced temporal lobe necrosis.

    Directory of Open Access Journals (Sweden)

    Jianhong Ye

    Full Text Available To investigate radiation-induced carotid and cerebral vascular injury and its relationship with radiation-induced temporal lobe necrosis in nasopharyngeal carcinoma (NPC patients.Fifty eight NPC patients with radiation-induced temporal lobe necrosis (TLN were recruited in the study. Duplex ultrasonography was used to scan bilateral carotid arterials to evaluate the intima-media thickness (IMT and occurrence of plaque formation. Flow velocities of bilateral middle cerebral arteries (MCAs, internal carotid arteries (ICAs and basal artery (BA were estimated through Transcranial Color Doppler (TCD. The results were compared with data from 33 patients who were free from radiation-induced temporal lobe necrosis after radiotherapy and 29 healthy individuals.Significant differences in IMT, occurrence of plaques of ICAs and flow velocities of both MCAs and ICAs were found between patients after radiotherapy and healthy individuals (p<0.05. IMT had positive correlation with post radiation interval (p = 0.049. Compared with results from patients without radiation-induced TLN, the mean IMT was significantly thicker in patients with TLN (p<0.001. Plaques were more common in patients with TLN than patients without TLN (p = 0.038. In addition, flow velocities of MCAs and ICAs in patients with TLN were much faster (p<0.001, p<0.001. Among patients with unilateral TLN, flow velocity of MCAs was significantly different between ipsilateral and contralateral sides to the lesion (p = 0.001.Thickening of IMT, occurrence of plaque formation and hemodynamic abnormality are more common in patients after radiotherapy, especially in those with TLN, compared with healthy individuals.

  12. Expression of Angiotensin II and Aldosterone in Radiation-induced Lung Injury

    OpenAIRE

    Cao, Shuo; Wu, Rong

    2012-01-01

    Objective Radiation-induced lung injury (RILI) is the most common, dose-limiting complication in thoracic malignancy radiotherapy. Considering its negative impact on patients and restrictions to efficacy, the mechanism of RILI was studied. Methods Wistar rats were locally irradiated with a single dose of 0, 16, and 20 Gy to the right half of the lung to establish a lung injury model. Two and six months after irradiation, the right half of the rat lung tissue was removed, and the concentration...

  13. Development and Characterization of VEGF165-Chitosan Nanoparticles for the Treatment of Radiation-Induced Skin Injury in Rats

    Directory of Open Access Journals (Sweden)

    Daojiang Yu

    2016-10-01

    Full Text Available Radiation-induced skin injury, which remains a serious concern in radiation therapy, is currently believed to be the result of vascular endothelial cell injury and apoptosis. Here, we established a model of acute radiation-induced skin injury and compared the effect of different vascular growth factors on skin healing by observing the changes of microcirculation and cell apoptosis. Vascular endothelial growth factor (VEGF was more effective at inhibiting apoptosis and preventing injury progression than other factors. A new strategy for improving the bioavailability of vascular growth factors was developed by loading VEGF with chitosan nanoparticles. The VEGF-chitosan nanoparticles showed a protective effect on vascular endothelial cells, improved the local microcirculation, and delayed the development of radioactive skin damage.

  14. Comparative scintigraphy in oleic acid pulmonary microvascular injury

    International Nuclear Information System (INIS)

    Sugerman, H.J.; Hirsch, J.I.; Tatum, J.L.; Strash, A.M.; Sharp, D.E.; Greenfield, L.J.

    1982-01-01

    Computerized gamma scintigraphy revealed a significant (p less than 0.001) rising lung:heart radioactivity ratio, which has been called ''slope of injury'' or ''slope index'', with both 99mTechnetium-tagged human serum albumin (99mTc-HSA) and 99mTechnetium-tagged red blood cells (99Tc-RBC) after 0.05 or 0.2 ml/kg iv oleic acid administration to dogs. This slope index was significantly greater with 99mTc-HSA than 99mTc-RBC (p less than 0.001). These findings verify that the scintigraphic 99mTc-HSA slope of injury is a result of a pulmonary capillary protein leak and not oleic acid induced changes in pulmonary blood or air volume. The leak of red blood cells noted with scintigraphy was confirmed by light microscopy and examination of the tracheal edema fluid. The leak of albumin, however, was much greater than the leak of red blood cells by microscopy and tracheal fluid examination, confirming the scintigraphic data. This study provides further evidence that computerized gamma scintigraphy will be of value for the diagnosis of permeability pulmonary edema and its response to treatment

  15. Cerebrovascular Remodeling and Neuroinflammation is a Late Effect of Radiation-Induced Brain Injury in Non-Human Primates

    Science.gov (United States)

    Andrews, Rachel N.; Metheny-Barlow, Linda J.; Peiffer, Ann M.; Hanbury, David B.; Tooze, Janet A.; Bourland, J. Daniel; Hampson, Robert E.; Deadwyler, Samuel A.; Cline, J. Mark

    2017-01-01

    Andrews, R. N., Metheny-Barlow, L. J., Peiffer, A. M., Hanbury, D. B., Tooze, J. A., Bourland, J. D., Hampson, R. E., Deadwyler, S. A. and Cline, J. M. Cerebrovascular Remodeling and Neuroinflammation is a Late Effect of Radiation-Induced Brain Injury in Non-Human Primates. Radiat. Res. 187, 599–611 (2017). Fractionated whole-brain irradiation (fWBI) is a mainstay of treatment for patients with intracranial neoplasia; however late-delayed radiation-induced normal tissue injury remains a major adverse consequence of treatment, with deleterious effects on quality of life for affected patients. We hypothesize that cerebrovascular injury and remodeling after fWBI results in ischemic injury to dependent white matter, which contributes to the observed cognitive dysfunction. To evaluate molecular effectors of radiation-induced brain injury (RIBI), real-time quantitative polymerase chain reaction (RT-qPCR) was performed on the dorsolateral prefrontal cortex (DLPFC, Brodmann area 46), hippocampus and temporal white matter of 4 male Rhesus macaques (age 6–11 years), which had received 40 Gray (Gy) fWBI (8 fractions of 5 Gy each, twice per week), and 3 control comparators. All fWBI animals developed neurologic impairment; humane euthanasia was elected at a median of 6 months. Radiation-induced brain injury was confirmed histopathologically in all animals, characterized by white matter degeneration and necrosis, and multifocal cerebrovascular injury consisting of perivascular edema, abnormal angiogenesis and perivascular extracellular matrix deposition. Herein we demonstrate that RIBI is associated with white matter-specific up-regulation of hypoxia-associated lactate dehydrogenase A (LDHA) and that increased gene expression of fibronectin 1 (FN1), SERPINE1 and matrix metalloprotease 2 (MMP2) may contribute to cerebrovascular remodeling in late-delayed RIBI. Additionally, vascular stability and maturation associated tumor necrosis super family member 15 (TNFSF15) and

  16. PET-CT in the typification of unique pulmonary injuries

    International Nuclear Information System (INIS)

    Cobos, P.; San Roman, Jose L.; Dalurzo, L.

    2007-01-01

    The objective of this document is to evaluate the usefulness of the PET-CT for the characterization of the unique pulmonary injuries. Retrospective analysis was made to patients with unique pulmonary injuries who carried out a PET-CT in the Italian Hospital between May of 2003 - March of 2005. Those patients with pulmonary outlying nodule, or unique pulmonary mass that had pathological anatomy of injury or follow-up through a computed tomography of thorax made with an interval of time not minor at 2 years of the PET-CT were included [es

  17. Nebulized anticoagulants limit pulmonary coagulopathy, but not inflammation, in a model of experimental lung injury

    NARCIS (Netherlands)

    Hofstra, Jorrit J; Vlaar, Alexander P; Cornet, Alexander D; Dixon, Barry; Roelofs, Joris J; Choi, Goda; van der Poll, Tom; Levi, Marcel; Schultz, Marcus J

    BACKGROUND: Pulmonary coagulopathy may contribute to an adverse outcome in lung injury. We assessed the effects of local anticoagulant therapy on bronchoalveolar and systemic haemostasis in a rat model of endotoxemia-induced lung injury. METHODS: Male Sprague-Dawley rats were intravenously

  18. First Patagonian Course on 'Diagnosis and Therapy of Injuries Induced by Ionizing Radiation'

    International Nuclear Information System (INIS)

    Bellotti, Mariela I.

    2013-01-01

    In Patagonia there are academic centers, health and industrial facilities that use ionizing radiations in its usual practices. However, they do not have protocols that respond to local needs. For this reason was held from October 5 to November 10, 2012 in Bariloche Atomic Center, a training course for health personnel. The range of topics covered ranged from the definition of dosimetry quantities, types of radiation and biological dosimetry, biological effects, radiation acute syndrome, radiation-induced cutaneous syndrome, internal contamination, screening in radiological emergencies, etc.The course provided a theoretical and practical guide about how to recognize and treat people exposed to radiations, guidelines for acting in radiological emergencies and a perception of the psychosocial impact of the radiation accidents.The result was a pocket book for health personnel that will be used in case of having a patient with radiation induced injury

  19. Agmatine attenuates silica-induced pulmonary fibrosis.

    Science.gov (United States)

    El-Agamy, D S; Sharawy, M H; Ammar, E M

    2014-06-01

    There is a large body of evidence that nitric oxide (NO) formation is implicated in mediating silica-induced pulmonary fibrosis. As a reactive free radical, NO may not only contribute to lung parenchymal tissue injury but also has the ability to combine with superoxide and form a highly reactive toxic species peroxynitrite that can induce extensive cellular toxicity in the lung tissues. This study aimed to explore the effect of agmatine, a known NO synthase inhibitor, on silica-induced pulmonary fibrosis in rats. Male Sprague Dawley rats were treated with agmatine for 60 days following a single intranasal instillation of silica suspension (50 mg in 0.1 ml saline/rat). The results revealed that agmatine attenuated silica-induced lung inflammation as it decreased the lung wet/dry weight ratio, protein concentration, and the accumulation of the inflammatory cells in the bronchoalveolar lavage fluid. Agmatine showed antifibrotic activity as it decreased total hydroxyproline content of the lung and reduced silica-mediated lung inflammation and fibrosis in lung histopathological specimen. In addition, agmatine significantly increased superoxide dismutase (p Agmatine also reduced silica-induced overproduction of pulmonary nitrite/nitrate as well as tumor necrosis factor α. Collectively, these results demonstrate the protective effects of agmatine against the silica-induced lung fibrosis that may be attributed to its ability to counteract the NO production, lipid peroxidation, and regulate cytokine effects. © The Author(s) 2014.

  20. Acute Ozone (O3) Exposure Accelerates Diet-Induced Pulmonary Injury and Metabolic Alterations in a Rat Model of Type II Diabetes

    Science.gov (United States)

    Abstract for Society of Toxicology, March 22-25, 2015, San Diego, CAAcute Ozone (O3) Exposure Accelerates Diet-Induced Pulmonary Injury and Metabolic Alterations in a Rat Model of Type II DiabetesS.J. Snow1,3, D. Miller2, V. Bass2, M. Schladweiler3, A. Ledbetter3, J. Richards3, C...

  1. Mitigation of radiation-induced lung fibrosis by angiotensin converting enzyme inhibitors

    International Nuclear Information System (INIS)

    Kma, Lakhan; Gao, Feng; Jacobs, Elizabeth R.; Medhora, Meetha; Fish, Brian L.; Moulder, John E.

    2014-01-01

    The aim of this study was to test the mitigating potential of angiotensin converting enzyme inhibitors (ACEi) against radiation-induced pulmonary fibrosis, which could result from accidental exposure or radiological terrorism. Rats (WAG/RijCmcr) were exposed to a single dose of 13 Gy of X-irradiation to the whole thorax, at the dose rate of 1.43 Gy/min. Three structurally-different ACEi's, captopril (145-207 mg/m 2 /day), enalapril (19-28 mg/m 2 /day) and fosinopril (19-28 mg/m 2 /day) were administered in drinking water beginning 1 week after whole thoracic irradiation. Rats that survived acute pneumonitis (6-12 weeks) were accessed monthly after irradiation for the effects on lung structure and function. Endpoints included breathing rate, wet:dry weight ratio, collagen content and histolopathological studies. Treatment with captopril or enalapril, but not fosinopril, beginning 1 week after 13 Gy X-irradiation improved survival of rats. Mortality of 30-35% was observed with administration of captopril or enalapril compared to 70% for 13 Gy alone. All three ACEi's attenuated radiation-induced lung fibrosis at 7 months after irradiation based on histological indices and measurement of lung collagen. After whole-thoracic irradiation, ACEi's mitigate radiation induced pulmonary fibrosis based on histological and biochemical endpoints. These treatments were effective even when administration was not started until one week after irradiation. Our findings support the therapeutic potential of ACEi's against chronic radiation induced lung injury. (author)

  2. Effect of prophylactic hyperbaric oxygen treatment for radiation-induced brain injury after stereotactic radiosurgery of brain metastases

    International Nuclear Information System (INIS)

    Ohguri, Takayuki; Imada, Hajime; Kohshi, Kiyotaka; Kakeda, Shingo; Ohnari, Norihiro; Morioka, Tomoaki; Nakano, Keita; Konda, Nobuhide; Korogi, Yukunori

    2007-01-01

    Purpose: The purpose of the present study was to evaluate the prophylactic effect of hyperbaric oxygen (HBO) therapy for radiation-induced brain injury in patients with brain metastasis treated with stereotactic radiosurgery (SRS). Methods and Materials: The data of 78 patients presenting with 101 brain metastases treated with SRS between October 1994 and September 2003 were retrospectively analyzed. A total of 32 patients with 47 brain metastases were treated with prophylactic HBO (HBO group), which included all 21 patients who underwent subsequent or prior radiotherapy and 11 patients with common predictors of longer survival, such as inactive extracranial tumors and younger age. The other 46 patients with 54 brain metastases did not undergo HBO (non-HBO group). Radiation-induced brain injuries were divided into two categories, white matter injury (WMI) and radiation necrosis (RN), on the basis of imaging findings. Results: Radiation-induced brain injury occurred in 5 lesions (11%) in the HBO group (2 WMIs and 3 RNs) and in 11 (20%) in the non-HBO group (9 WMIs and 2 RNs). The WMI was less frequent for the HBO group than for the non-HBO group (p = 0.05), although multivariate analysis by logistic regression showed that WMI was not significantly correlated with HBO (p = 0.07). The 1-year actuarial probability of WMI was significantly better for the HBO group (2%) than for the non-HBO group (36%) (p < 0.05). Conclusions: The present study showed a potential value of prophylactic HBO for Radiation-induced WMIs, which justifies further evaluation to confirm its definite benefit

  3. Study on bone marrow mesenchymal stem cells in repairing of radiation induced acute liver injury of rats

    International Nuclear Information System (INIS)

    Bao Yongxing; Lou Fan; Zhao Huarong; Zhu Huhu; Ma Yan; Wen Hao

    2010-01-01

    Objective: To investigate the role of mesenchymal stem cells in the repair of radiation induced liver injury. Methods: 12 female SD rats were irradiated with 20 Gy 6 MV X-rays on the right lobe of the liver, to establish the model of radiation induced liver injury. The rats were divided randomly into two groups as invention group and control group, and transplanted with 1 ml male mesenchymal suspension or 1 ml normal saline in 4 hours after radiotherapy. The morphological changes of liver were observed. The existence of sex determining gene Y(SRY) and the level of alpha-smooth muscle actin (a-SMA) were detected. Results: Some injury of right lobe liver in two groups were observed, and the injury degree of right lobe liver in intervention group were lower than that of control group. The amount of SRY positive cells in the right lobe liver of intervention group was higher than that in the left lobe liver (t = 3.77, P <0.05). The positive expression rate of a-SMA in right lobe liver of intervention group was lower than that of control group. Conclusions: Acute radiation induced liver injury could lead BMSCs' homing in order to decrease the degree of liver fibrosis. (authors)

  4. Inhibition of chlorine-induced lung injury by the type 4 phosphodiesterase inhibitor rolipram

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Weiyuan; Chen, Jing; Schlueter, Connie F. [Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY (United States); Rando, Roy J. [Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University Health Sciences Center, New Orleans, LA (United States); Pathak, Yashwant V. [College of Pharmacy, University of South Florida, Tampa, FL (United States); Hoyle, Gary W., E-mail: Gary.Hoyle@louisville.edu [Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY (United States)

    2012-09-01

    Chlorine is a highly toxic respiratory irritant that when inhaled causes epithelial cell injury, alveolar-capillary barrier disruption, airway hyperreactivity, inflammation, and pulmonary edema. Chlorine is considered a chemical threat agent, and its release through accidental or intentional means has the potential to result in mass casualties from acute lung injury. The type 4 phosphodiesterase inhibitor rolipram was investigated as a rescue treatment for chlorine-induced lung injury. Rolipram inhibits degradation of the intracellular signaling molecule cyclic AMP. Potential beneficial effects of increased cyclic AMP levels include inhibition of pulmonary edema, inflammation, and airway hyperreactivity. Mice were exposed to chlorine (whole body exposure, 228–270 ppm for 1 h) and were treated with rolipram by intraperitoneal, intranasal, or intramuscular (either aqueous or nanoemulsion formulation) delivery starting 1 h after exposure. Rolipram administered intraperitoneally or intranasally inhibited chlorine-induced pulmonary edema. Minor or no effects were observed on lavage fluid IgM (indicative of plasma protein leakage), KC (Cxcl1, neutrophil chemoattractant), and neutrophils. All routes of administration inhibited chlorine-induced airway hyperreactivity assessed 1 day after exposure. The results of the study suggest that rolipram may be an effective rescue treatment for chlorine-induced lung injury and that both systemic and targeted administration to the respiratory tract were effective routes of delivery. -- Highlights: ► Chlorine causes lung injury when inhaled and is considered a chemical threat agent. ► Rolipram inhibited chlorine-induced pulmonary edema and airway hyperreactivity. ► Post-exposure rolipram treatments by both systemic and local delivery were effective. ► Rolipram shows promise as a rescue treatment for chlorine-induced lung injury.

  5. Oxidative stress-induced autophagy: Role in pulmonary toxicity

    International Nuclear Information System (INIS)

    Malaviya, Rama; Laskin, Jeffrey D.; Laskin, Debra L.

    2014-01-01

    Autophagy is an evolutionarily conserved catabolic process important in regulating the turnover of essential proteins and in elimination of damaged organelles and protein aggregates. Autophagy is observed in the lung in response to oxidative stress generated as a consequence of exposure to environmental toxicants. Whether autophagy plays role in promoting cell survival or cytotoxicity is unclear. In this article recent findings on oxidative stress-induced autophagy in the lung are reviewed; potential mechanisms initiating autophagy are also discussed. A better understanding of autophagy and its role in pulmonary toxicity may lead to the development of new strategies to treat lung injury associated with oxidative stress. - Highlights: • Exposure to pulmonary toxicants is associated with oxidative stress. • Oxidative stress is known to induce autophagy. • Autophagy is upregulated in the lung following exposure to pulmonary toxicants. • Autophagy may be protective or pathogenic

  6. Oxidative stress-induced autophagy: Role in pulmonary toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Malaviya, Rama [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States); Laskin, Jeffrey D. [Department of Environmental and Occupational Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854 (United States); Laskin, Debra L., E-mail: laskin@eohsi.rutgers.edu [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States)

    2014-03-01

    Autophagy is an evolutionarily conserved catabolic process important in regulating the turnover of essential proteins and in elimination of damaged organelles and protein aggregates. Autophagy is observed in the lung in response to oxidative stress generated as a consequence of exposure to environmental toxicants. Whether autophagy plays role in promoting cell survival or cytotoxicity is unclear. In this article recent findings on oxidative stress-induced autophagy in the lung are reviewed; potential mechanisms initiating autophagy are also discussed. A better understanding of autophagy and its role in pulmonary toxicity may lead to the development of new strategies to treat lung injury associated with oxidative stress. - Highlights: • Exposure to pulmonary toxicants is associated with oxidative stress. • Oxidative stress is known to induce autophagy. • Autophagy is upregulated in the lung following exposure to pulmonary toxicants. • Autophagy may be protective or pathogenic.

  7. A comparative study of the progression of radiation pulmonary injury in C57BL/6J and C3H/HeN mice

    International Nuclear Information System (INIS)

    Liu Ying; Li Yang; Peng Ruiyun; Wang Shuming; Gao Yabing; Ma Junjie; Song Liangwen

    2007-01-01

    Objective: To compare the course of radiation pulmonary injury in C57BL/6J and C3H/HeN mice. Methods: C57BL/6J and C3H/HeN mice irradiated with 20 Gy 60 Co gamma rays were used as animal models. Sirius red staining and hydroxyproline measurement were used to detect the distribution of type I and III collagens and the content of pulmonary hydroxyproline. Immunohistochemistry was used to observe the changes of the expressions of fibronectin (FN) and laminin (LN) and alpha-smooth muscle actin (α-SMA) in the lung. Results: The changes in the lungs in C57BL/6J mice were as follows: the pathological changes undergone interstitial pneumonia, proliferation and fibrosis; significant increase of collagen deposition; FN increased rapidly to a significantly higher level at 1 and 3 months after irradiation than that in the control (P<0.01), and then decreased gradually to a normal level at 6 month after irradiation; LN elevated gradually after irradiation; the expressions of α-SMA were more intense than that in C3H/HeN mice. The changes in the lungs in C3H/HeN mice were as follows: the pathological changes mainly developed institial pneumonitis; no significant changes of FN expression was observed after irradiation compared to that in the control; LN increased significantly at 1 and 3 months after irradiation, and then decreased gradually. Conclusions: The models of radiation pulmonary fibrosis-sensitive and-resistant were established by irradiation with gamma rays, C57BL/6J mice developed late radiation pulmonary fibrosis, and were characterized by the significant accumulation of collagen. C3H/HeN mice did not develop radiation pulmonary fibrosis. (authors)

  8. Salvianolic acid B protects against paraquat-induced pulmonary injury by mediating Nrf2/Nox4 redox balance and TGF-β1/Smad3 signaling

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Bin, E-mail: iamicehe@163.com [Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Logistic University of Chinese People' s Armed Police Force, Tianjin 300162 (China); Cao, Bo, E-mail: caobo19814@126.com [Logistics University of Chinese People' s Armed Police Force, Tianjin 300162 (China); Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Tianjin, 300162 (China); Zhang, Di, E-mail: zhangdibad@163.com [Department of Otorhinolaryngology Head and Neck Surgery, Institute of Otorhinolaryngology, Tianjin First Center Hospital, Tianjin 300192 (China); Xiao, Na [Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Logistic University of Chinese People' s Armed Police Force, Tianjin 300162 (China); Chen, Hong [Logistics University of Chinese People' s Armed Police Force, Tianjin 300162 (China); Li, Guo-qiang; Peng, Shou-chun [Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Logistic University of Chinese People' s Armed Police Force, Tianjin 300162 (China); Wei, Lu-qing, E-mail: luqing-wei@163.com [Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Logistic University of Chinese People' s Armed Police Force, Tianjin 300162 (China)

    2016-10-15

    The present study was aimed at exploring the protective effects of Salvianolic acid B (SalB) against paraquat (PQ)-induced lung injury in mice. Lung fibrotic injuries were induced in mice by a single intragastrical administration of 300 mg/kg PQ, then the mice were administrated with 200 mg/kg, 400 mg/kg SalB, 100 mg/kg vitamin C (Vit C) and dexamethasone (DXM) for 14 days. PQ-triggered structure distortion, collagen overproduction, excessive inflammatory infiltration, pro-inflammatory cytokine release, and oxidative stress damages in lung tissues and mortality of mice were attenuated by SalB in a dose-dependent manner. Furthermore, SalB was noted to enhance the expression and nuclear translocation of nuclear factor erythroid 2–related factor 2 (Nrf2) and reduce expression of the reactive oxygen species-generating enzyme Nox4 [NADPH (reduced form of nicotinamide adenine dinucleotide phosphate) oxidase-4]. SalB also inhibited the increasing expression of transforming growth factor (TGF)-β1 and the phosphorylation of its downstream target Smad3 which were enhanced by PQ. These results suggest that SalB may exert protective effects against PQ-induced lung injury and pulmonary fibrosis. Its mechanisms involve the mediation of Nrf2/Nox4 redox balance and TGF-β1/Smad3 signaling. - Highlights: • Salvianolic acid B (SalB) reduced Paraquat-induced mortality and pulmonary injury in mice. • SalB has anti-oxidation, anti-inflammatory and anti-fibrogenic effects simultaneously. • Its mechanisms were targeting Nrf2-Nox4 redox balance and TGF-β1/Smad3 signaling.

  9. Salvianolic acid B protects against paraquat-induced pulmonary injury by mediating Nrf2/Nox4 redox balance and TGF-β1/Smad3 signaling

    International Nuclear Information System (INIS)

    Liu, Bin; Cao, Bo; Zhang, Di; Xiao, Na; Chen, Hong; Li, Guo-qiang; Peng, Shou-chun; Wei, Lu-qing

    2016-01-01

    The present study was aimed at exploring the protective effects of Salvianolic acid B (SalB) against paraquat (PQ)-induced lung injury in mice. Lung fibrotic injuries were induced in mice by a single intragastrical administration of 300 mg/kg PQ, then the mice were administrated with 200 mg/kg, 400 mg/kg SalB, 100 mg/kg vitamin C (Vit C) and dexamethasone (DXM) for 14 days. PQ-triggered structure distortion, collagen overproduction, excessive inflammatory infiltration, pro-inflammatory cytokine release, and oxidative stress damages in lung tissues and mortality of mice were attenuated by SalB in a dose-dependent manner. Furthermore, SalB was noted to enhance the expression and nuclear translocation of nuclear factor erythroid 2–related factor 2 (Nrf2) and reduce expression of the reactive oxygen species-generating enzyme Nox4 [NADPH (reduced form of nicotinamide adenine dinucleotide phosphate) oxidase-4]. SalB also inhibited the increasing expression of transforming growth factor (TGF)-β1 and the phosphorylation of its downstream target Smad3 which were enhanced by PQ. These results suggest that SalB may exert protective effects against PQ-induced lung injury and pulmonary fibrosis. Its mechanisms involve the mediation of Nrf2/Nox4 redox balance and TGF-β1/Smad3 signaling. - Highlights: • Salvianolic acid B (SalB) reduced Paraquat-induced mortality and pulmonary injury in mice. • SalB has anti-oxidation, anti-inflammatory and anti-fibrogenic effects simultaneously. • Its mechanisms were targeting Nrf2-Nox4 redox balance and TGF-β1/Smad3 signaling.

  10. Poor Baseline Pulmonary Function May Not Increase the Risk of Radiation-Induced Lung Toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jingbo [Department of Radiation Oncology, University of Michigan/Ann Arbor Veterans Health System, Ann Arbor, Michigan (United States); Department of Radiation Oncology, Cancer Hospital, Chinese Academic Medical Sciences and Peking Union Medical College, Beijing (China); Cao, Jianzhong [Department of Radiation Oncology, Cancer Hospital, Chinese Academic Medical Sciences and Peking Union Medical College, Beijing (China); Yuan, Shuanghu [Department of Radiation Oncology, University of Michigan/Ann Arbor Veterans Health System, Ann Arbor, Michigan (United States); Ji, Wei [Department of Radiation Oncology, Cancer Hospital, Chinese Academic Medical Sciences and Peking Union Medical College, Beijing (China); Arenberg, Douglas [Department of Internal Medicine, University of Michigan/Ann Arbor Veterans Health System, Ann Arbor, Michigan (United States); Dai, Jianrong [Department of Radiation Oncology, Cancer Hospital, Chinese Academic Medical Sciences and Peking Union Medical College, Beijing (China); Stanton, Paul; Tatro, Daniel; Ten Haken, Randall K. [Department of Radiation Oncology, University of Michigan/Ann Arbor Veterans Health System, Ann Arbor, Michigan (United States); Wang, Luhua, E-mail: wlhwq@yahoo.com [Department of Radiation Oncology, Cancer Hospital, Chinese Academic Medical Sciences and Peking Union Medical College, Beijing (China); Kong, Feng-Ming, E-mail: fengkong@med.umich.edu [Department of Radiation Oncology, University of Michigan/Ann Arbor Veterans Health System, Ann Arbor, Michigan (United States)

    2013-03-01

    Purpose: Poor pulmonary function (PF) is often considered a contraindication to definitive radiation therapy for lung cancer. This study investigated whether baseline PF was associated with radiation-induced lung toxicity (RILT) in patients with non-small cell lung cancer (NSCLC) receiving conformal radiation therapy (CRT). Methods and Materials: NSCLC patients treated with CRT and tested for PF at baseline were eligible. Baseline predicted values of forced expiratory volume in 1 sec (FEV1), forced vital capacity (FVC), and diffusion capacity of lung for carbon monoxide (DLCO) were analyzed. Additional factors included age, gender, smoking status, Karnofsky performance status, coexisting chronic obstructive pulmonary disease (COPD), tumor location, histology, concurrent chemotherapy, radiation dose, and mean lung dose (MLD) were evaluated for RILT. The primary endpoint was symptomatic RILT (SRILT), including grade ≥2 radiation pneumonitis and fibrosis. Results: There was a total of 260 patients, and SRILT occurred in 58 (22.3%) of them. Mean FEV1 values for SRILT and non-SRILT patients were 71.7% and 65.9% (P=.077). Under univariate analysis, risk of SRILT increased with MLD (P=.008), the absence of COPD (P=.047), and FEV1 (P=.077). Age (65 split) and MLD were significantly associated with SRILT in multivariate analysis. The addition of FEV1 and age with the MLD-based model slightly improved the predictability of SRILT (area under curve from 0.63-0.70, P=.088). Conclusions: Poor baseline PF does not increase the risk of SRILT, and combining FEV1, age, and MLD may improve the predictive ability.

  11. Dose-dependency and reversibility of radiation-induced injury in cardiac explant-derived cells of mice

    Science.gov (United States)

    Luo, Lan; Yan, Chen; Urata, Yoshishige; Hasan, Al Shaimaa; Goto, Shinji; Guo, Chang-Ying; Zhang, Shouhua; Li, Tao-Sheng

    2017-01-01

    We evaluated the dose-dependency and reversibility of radiation-induced injury in cardiac explant-derived cells (CDCs), a mixed cell population grown from heart tissues. Adult C57BL/6 mice were exposed to 0, 10, 50 and 250 mGy γ-rays for 7 days and atrial tissues were collected for experiments 24 hours after last exposure. The number of CDCs was significantly decreased by daily exposure to over 250 mGy. Interestingly, daily exposure to over 50 mGy significantly decreased the c-kit expression and telomerase activity, increased 53BP1 foci in the nuclei of CDCs. However, CD90 expression and growth factors production in CDCs were not significantly changed even after daily exposure to 250 mGy. We further evaluated the reversibility of radiation-induced injury in CDCs at 1 week and 3 weeks after a single exposure to 3 Gy γ-rays. The number and growth factors production of CDCs were soon recovered at 1 week. However, the increased expression of CD90 were retained at 1 week, but recovered at 3 weeks. Moreover, the decreased expression of c-kit, impaired telomerase activity, and increased 53BP1 foci were poorly recovered even at 3 weeks. These data may help us to find the most sensitive and reliable bio-parameter(s) for evaluating radiation-induced injury in CDCs. PMID:28098222

  12. Experimental study on early detection of alloxan-induced pulmonary injury by magnetic resonance imaging

    International Nuclear Information System (INIS)

    Awai, Kazuo; Fukuda, Hiroshi; Nakamura, Susumu; Fujikawa, Koichi; Utsumi, Toshio; Kajima, Toshio; Azuma, Kazuyoshi; Ito, Katsuhide.

    1995-01-01

    We studied the early detection of alloxan-induced pulmonary injury by magnetic resonance imaging in vivo. Permeability edema was induced in ten rats by intravenous injection of alloxan at 100 mg/Kg. T1-and T2-weighted images were acquired in five rats every 30 min for 120 min after alloxan injection. Five rats served as controls. The rats were sacrificed immediately after imaging and examined microscopically. CT images were also acquired in five rats every 30 min for 120 min after alloxan injection. Five rats served as controls. The rats were sacrificed immediately after imaging, and the wet-to-dry ratio of the lung was measured. In T1-weighted images, relative signal intensity from the lung with permeability edema rose from 30 min to 120 min, and was greater than that from normal lung every time. In T2-weighted images, there was no statistically significant difference in relative signal intensity of the lung between permeability edema and the control during 120 min. In CT images, there was also no statistically significant difference in lung density between permeability edema and the control during 120 min. There was no statistically significant difference in the wet-to-dry lung ratio between edematous lung and normal lung. In histological study, mild congestion and interstitial edema were observed in edematous lung. These results suggest the potential capability of MR imaging in detecting the early phase of permeability pulmonary edema. (author)

  13. Mesenchymal stem cell-conditioned medium prevents radiation-induced liver injury by inhibiting inflammation and protecting sinusoidal endothelial cells

    International Nuclear Information System (INIS)

    Chen Yixing; Zeng Zhaochong; Sun Jing; Huang Yan; Zhang Zhenyu; Zeng Haiying

    2015-01-01

    Current management of radiation-induced liver injury is limited. Sinusoidal endothelial cell (SEC) apoptosis and inflammation are considered to be initiating events in hepatic damage. We hypothesized that mesenchymal stem cells (MSCs) possess anti-apoptotic and anti-inflammatory actions during hepatic irradiation, acting via paracrine mechanisms. This study aims to examine whether MSC-derived bioactive components are protective against radiation-induced liver injury in rats. MSC-conditioned medium (MSC-CM) was generated from rat bone marrow–derived MSCs. The effect of MSC-CM on the viability of irradiated SECs was examined by flow cytometric analysis. Activation of the Akt and ERK pathways was analyzed by western blot. MSC-CM was also delivered to Sprague–Dawley rats immediately before receiving liver irradiation, followed by testing for pathological features, changes in serum hyaluronic acid, ALT, and inflammatory cytokine levels, and liver cell apoptosis. MSC-CM enhanced the viability of irradiated SECs in vitro and induced Akt and ERK phosphorylation in these cells. Infusion of MSC-CM immediately before liver irradiation provided a significant anti-apoptotic effect on SECs and improved the histopathological features of injury in the irradiated liver. MSC-CM also reduced the secretion and expression of inflammatory cytokines and increased the expression of anti-inflammatory cytokines. MSC-derived bioactive components could be a novel therapeutic approach for treating radiation-induced liver injury. (author)

  14. Histopathology of cryoballoon ablation-induced phrenic nerve injury.

    Science.gov (United States)

    Andrade, Jason G; Dubuc, Marc; Ferreira, Jose; Guerra, Peter G; Landry, Evelyn; Coulombe, Nicolas; Rivard, Lena; Macle, Laurent; Thibault, Bernard; Talajic, Mario; Roy, Denis; Khairy, Paul

    2014-02-01

    Hemi-diaphragmatic paralysis is the most common complication associated with cryoballoon ablation for atrial fibrillation, yet the histopathology of phrenic nerve injury has not been well described. A preclinical randomized study was conducted to characterize the histopathology of phrenic nerve injury induced by cryoballoon ablation and assess the potential for electromyographic (EMG) monitoring to limit phrenic nerve damage. Thirty-two dogs underwent cryoballoon ablation of the right superior pulmonary vein with the objective of inducing phrenic nerve injury. Animals were randomized 1:1 to standard monitoring (i.e., interruption of ablation upon reduction in diaphragmatic motion) versus EMG guidance (i.e., cessation of ablation upon a 30% reduction in the diaphragmatic compound motor action potential [CMAP] amplitude). The acute procedural endpoint was achieved in all dogs. Phrenic nerve injury was characterized by Wallerian degeneration, with subperineural injury to large myelinated axons and evidence of axonal regeneration. The degree of phrenic nerve injury paralleled the reduction in CMAP amplitude (P = 0.007). Animals randomized to EMG guidance had a lower incidence of acute hemi-diaphragmatic paralysis (50% vs 100%; P = 0.001), persistent paralysis at 30 days (21% vs 75%; multivariate odds ratio 0.12, 95% confidence interval [0.02, 0.69], P = 0.017), and a lesser severity of histologic injury (P = 0.001). Mature pulmonary vein ablation lesion characteristics, including circumferentiality and transmurality, were similar in both groups. Phrenic nerve injury induced by cryoballoon ablation is axonal in nature and characterized by Wallerian degeneration, with potential for recovery. An EMG-guided approach is superior to standard monitoring in limiting phrenic nerve damage. © 2013 Wiley Periodicals, Inc.

  15. Pulmonary lesions induced by inhaled plutonium in beagles

    International Nuclear Information System (INIS)

    Dagle, G.E.; Lund, J.E.; Park, J.F.

    1975-01-01

    The histopathologic features of pulmonary fibrosis and bronchiolo-alveolar carcinoma in beagles exposed to aerosols of plutonium oxide were reviewed. A hypothesis of the pathogenesis of radiation pneumonitis induced by inhalation of plutonium oxide was presented; this hypothesis included phagocytosis of plutonium particles, fibrosis responding to the necrosis, and alveolar cell hyperplasia compensating for alveolar cells killed by alpha radiation. Histopathologic features of the epithelial changes suggest a progression from hyperplasia to metaplasia and, finally, to bronchiolo-alveolar carcinoma. The possibility of concurrent radiation-induced lymphopenia contributing to the development of bronchiolo-alveolar carcinoma through a loss of immunologic surveillance was discussed

  16. Overexpression of matrix metalloproteinase-12 (MMP-12) correlates with radiation-induced lung fibrosis

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Myung Gu; Jeong, Ye Ji; Lee, Haejune [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Lee, Sujae [Hanyang Univ., Seoul (Korea, Republic of)

    2014-05-15

    MMPs are classified into five subgroups: collagenases (MMP-1, MMP-8, MMP-13), gelatinases (MMP-2, MMP-9), stromelysins (MMP-3, MMP-10, MMP-11), as well as metalloelastase (MMP-12), the membrane-type MMPs (MMP14, MMP15), and other MMPS (e. g., MMP-19, and MMP20). MMP-12 (matrix metalloproteinase12), also known as macrophage metalloelastase, was first identified as an elastolytic metalloproteinase secreted by inflammatory macrophages 30 years ago. MMP-12 degrades extracellular matrix (ECM) components to facilitate tissue remodeling. It can degrade elastin and other substrates, such as type IV collagen, fibronectin, laminin, gelatin, vitronectin, entactin, heparin, and chondroitin sulfates. In the lung, MMP-12 is identified in alveolar macrophages of cigarette smokers as an elastolytic MMP. Inactivation of the MMP-12 gene in knockout mice demonstrates a critical role of MMP-12 in smoking-induced chronic obstructive pulmonary disease (COPD). The aim of the present study was to investigate the effects of MMP-12 by radiation in lung, so we evaluate that MMP-12 expression pattern in normal lung tissue and cancer cell following radiation. Radiation induced lung injury most commonly occurs as a result of radiation therapy administered to treat cancer. The present study demonstrates that MMP-12 was highly increased in the lung damaged by radiation Thus, MMP-12 might be of potential relevance as a clinically diagnostic tool and sensitive biomarker for radiation induced lung injury and fibrosis.

  17. Overexpression of matrix metalloproteinase-12 (MMP-12) correlates with radiation-induced lung fibrosis

    International Nuclear Information System (INIS)

    Jung, Myung Gu; Jeong, Ye Ji; Lee, Haejune; Lee, Sujae

    2014-01-01

    MMPs are classified into five subgroups: collagenases (MMP-1, MMP-8, MMP-13), gelatinases (MMP-2, MMP-9), stromelysins (MMP-3, MMP-10, MMP-11), as well as metalloelastase (MMP-12), the membrane-type MMPs (MMP14, MMP15), and other MMPS (e. g., MMP-19, and MMP20). MMP-12 (matrix metalloproteinase12), also known as macrophage metalloelastase, was first identified as an elastolytic metalloproteinase secreted by inflammatory macrophages 30 years ago. MMP-12 degrades extracellular matrix (ECM) components to facilitate tissue remodeling. It can degrade elastin and other substrates, such as type IV collagen, fibronectin, laminin, gelatin, vitronectin, entactin, heparin, and chondroitin sulfates. In the lung, MMP-12 is identified in alveolar macrophages of cigarette smokers as an elastolytic MMP. Inactivation of the MMP-12 gene in knockout mice demonstrates a critical role of MMP-12 in smoking-induced chronic obstructive pulmonary disease (COPD). The aim of the present study was to investigate the effects of MMP-12 by radiation in lung, so we evaluate that MMP-12 expression pattern in normal lung tissue and cancer cell following radiation. Radiation induced lung injury most commonly occurs as a result of radiation therapy administered to treat cancer. The present study demonstrates that MMP-12 was highly increased in the lung damaged by radiation Thus, MMP-12 might be of potential relevance as a clinically diagnostic tool and sensitive biomarker for radiation induced lung injury and fibrosis

  18. Hesperidin as radioprotector against radiation-induced lung damage in rat: A histopathological study

    Directory of Open Access Journals (Sweden)

    Gholam Hassan Haddadi

    2017-01-01

    Full Text Available Reactive oxygen species (ROS are generated by ionizing radiation, and one of the organs commonly affected by ROS is the lung. Radiation-induced lung injury including pneumonia and lung fibrosis is a dose-limiting factor in radiotherapy (RT of patients with thorax irradiation. Administration of antioxidants has been proved to protect against ROS. The present study was aimed to assess the protective effect of hesperidin (HES against radiation-induced lung injury of male rats. Fifty rats were divided into three groups. G1: Received no HES and radiation (sham. G2: Underwent γ-irradiation to the thorax. G3: Received HES and underwent γ-irradiation. The rats were exposed to a single dose of 18 Gy using cobalt-60 unit and were administered HES (100 mg/kg for 7 days before irradiation. Histopathological analysis was performed 24 h and 8 weeks after RT. Histopathological results in 24 h showed radiation-induced inflammation and presence of more inflammatory cells as compared to G1 (P < 0.05. Administration of HES significantly decreased such an effect when compared to G2 (P < 0.05. Histopathological evaluation in 8 weeks showed a significant increase in mast cells, inflammation, inflammatory cells, alveolar thickness, vascular thickness, pulmonary edema, and fibrosis in G2 when compared to G1 (P < 0.05. HES significantly decreased inflammatory response, fibrosis, and mast cells when compared to G2 (P < 0.05. Administration of HES resulted in decreased radiation pneumonitis and radiation fibrosis in the lung tissue. Thus, the present study showed HES to be an efficient radioprotector against radiation-induced damage in the lung of tissue rats.

  19. The effect of patient-specific factors on radiation-induced regional lung injury

    International Nuclear Information System (INIS)

    Garipagaoglu, Melahat; Munley, Michael T.; Hollis, Donna; Poulson, Jean M.; Bentel, Gunilla C.; Sibley, Gregory; Anscher, Mitchell S.; Fan Ming; Jaszczak, Ronald J.; Coleman, R. Edward; Marks, Lawrence B.

    1999-01-01

    Purpose: To assess the impact of patient-specific factors on radiation (RT)-induced reductions in regional lung perfusion. Methods: Fifty patients (32 lung carcinoma, 7 Hodgkin's disease, 9 breast carcinoma and 2 other thoracic tumors) had pre-RT and ≥24-week post-RT single photon emission computed tomography (SPECT) perfusion images to assess the dose dependence of RT-induced reductions in regional lung perfusion. The SPECT data were analyzed using a normalized and non-normalized approach. Furthermore, two different mathematical methods were used to assess the impact of patient-specific factors on the dose-response curve (DRC). First, DRCs for different patient subgroups were generated and compared. Second, in a more formal statistical approach, individual DRCs for regional lung injury for each patient were fit to a linear-quadratic model (reduction = coefficient 1 x dose + coefficient 2 x dose 2 ). Multiple patient-specific factors including tobacco history, pre-RT diffusion capacity to carbon monoxide (DLCO), transforming growth factor-beta (TGF-β), chemotherapy exposure, disease type, and mean lung dose were explored in a multivariate analysis to assess their impact on the coefficients. Results: None of the variables tested had a consistent impact on the radiation sensitivity of regional lung (i.e., the slope of the DRC). In the formal statistical analysis, there was a suggestion of a slight increase in radiation sensitivity in the dose range >40 Gy for nonsmokers (vs. smokers) and in those receiving chemotherapy (vs. no chemotherapy). However, this finding was very dependent on the specific statistical and normalization method used. Conclusion: Patient-specific factors do not have a dramatic effect on RT-induced reduction in regional lung perfusion. Additional studies are underway to better clarify this issue. We continue to postulate that patient-specific factors will impact on how the summation of regional injury translates into whole organ injury

  20. Ultrasound appearance of radiation-induced hepatic injury. Correlation with computed tomography and magnetic resonance imaging

    International Nuclear Information System (INIS)

    Garra, B.S.; Shawker, T.H.; Chang, R.; Kaplan, K.; White, R.D.

    1988-01-01

    The ultrasound findings in three cases of radiation-induced hepatic injury are described and compared with computed tomography and magnetic resonance imaging findings. Fatty infiltration of the liver was present in two of the cases in which concurrent chemotherapy was being administered. On ultrasound B-scans, the regions of radiation injury were hypoechoic relative to the remainder of the liver. This finding was more obvious in the patients with fatty livers. CT scans on the patients with fatty infiltrated livers showed higher attenuation in the irradiated region than in unexposed liver. In the patient where no fatty infiltration was present, the radiated section of liver had lower attenuation consistent with previous reports. Magnetic resonance imaging showed decreased signal in the exposed areas on T1 weighted images

  1. Indoxyl Sulfate as a Mediator Involved in Dysregulation of Pulmonary Aquaporin-5 in Acute Lung Injury Caused by Acute Kidney Injury

    Directory of Open Access Journals (Sweden)

    Nozomi Yabuuchi

    2016-12-01

    Full Text Available High mortality of acute kidney injury (AKI is associated with acute lung injury (ALI, which is a typical complication of AKI. Although it is suggested that dysregulation of lung salt and water channels following AKI plays a pivotal role in ALI, the mechanism of its dysregulation has not been elucidated. Here, we examined the involvement of a typical oxidative stress-inducing uremic toxin, indoxyl sulfate (IS, in the dysregulation of the pulmonary predominant water channel, aquaporin 5 (AQP-5, in bilateral nephrectomy (BNx-induced AKI model rats. BNx evoked AKI with the increases in serum creatinine (SCr, blood urea nitrogen (BUN and serum IS levels and exhibited thickening of interstitial tissue in the lung. Administration of AST-120, clinically-used oral spherical adsorptive carbon beads, resulted in a significant decrease in serum IS level and thickening of interstitial tissue, which was accompanied with the decreases in IS accumulation in various tissues, especially lung. Interestingly, a significant decrease in AQP-5 expression of lung was observed in BNx rats. Moreover, the BNx-induced decrease in pulmonary AQP-5 protein expression was markedly restored by oral administration of AST-120. These results suggest that BNx-induced AKI causes dysregulation of pulmonary AQP-5 expression, in which IS could play a toxico-physiological role as a mediator involved in renopulmonary crosstalk.

  2. Impact of a CXCL12/CXCR4 Antagonist in Bleomycin (BLM Induced Pulmonary Fibrosis and Carbon Tetrachloride (CCl4 Induced Hepatic Fibrosis in Mice.

    Directory of Open Access Journals (Sweden)

    Leola N Chow

    Full Text Available Modulation of chemokine CXCL12 and its receptor CXCR4 has been implicated in attenuation of bleomycin (BLM-induced pulmonary fibrosis and carbon tetrachloride (CCl4-induced hepatic injury. In pulmonary fibrosis, published reports suggest that collagen production in the injured lung is derived from fibrocytes recruited from the circulation in response to release of pulmonary CXCL12. Conversely, in hepatic fibrosis, resident hepatic stellate cells (HSC, the key cell type in progression of fibrosis, upregulate CXCR4 expression in response to activation. Further, CXCL12 induces HSC proliferation and subsequent production of collagen I. In the current study, we evaluated AMD070, an orally bioavailable inhibitor of CXCL12/CXCR4 in alleviating BLM-induced pulmonary and CCl4-induced hepatic fibrosis in mice. Similar to other CXCR4 antagonists, treatment with AMD070 significantly increased leukocyte mobilization. However, in these two models of fibrosis, AMD070 had a negligible impact on extracellular matrix deposition. Interestingly, our results indicated that CXCL12/CXCR4 signaling has a role in improving mortality associated with BLM induced pulmonary injury, likely through dampening an early inflammatory response and/or vascular leakage. Together, these findings indicate that the CXCL12-CXCR4 signaling axis is not an effective target for reducing fibrosis.

  3. Bilirubin treatment suppresses pulmonary inflammation in a rat model of smoke-induced emphysema.

    Science.gov (United States)

    Wei, Jingjing; Zhao, Hui; Fan, Guoquan; Li, Jianqiang

    2015-09-18

    Cigarette smoking is a significant risk factor for emphysema, which is characterized by airway inflammation and oxidative damage. To assess the capacity of bilirubin to protect against smoke-induced emphysema. Smoking status and bilirubin levels were recorded in 58 patients with chronic obstructive pulmonary diseases (COPD) and 71 non-COPD participants. The impact of smoking on serum bilirubin levels and exogenous bilirubin (20 mg/kg/day) on pulmonary injury was assessed in a rat model of smoking-induced emphysema. At sacrifice lung histology, airway leukocyte accumulation and cytokine and chemokine levels in serum, bronchoalveolar lavage fluid (BALF) and lung were analyzed. Oxidative lipid damage and anti-oxidative components was assessed by measuring malondialdehyde, superoxide dismutase (SOD) activity and glutathione. Total serum bilirubin levels were lower in smokers with or without COPD than non-smoking patients without COPD (P pulmonary injury by suppressing inflammatory cell recruitment and pro-inflammatory cytokine secretion, increasing anti-inflammatory cytokine levels, and anti-oxidant SOD activity in a rat model of smoke-induced emphysema. Copyright © 2015. Published by Elsevier Inc.

  4. Pulmonary lesions induced by inhaled plutonium in beagles

    International Nuclear Information System (INIS)

    Dagle, G.E.; Lund, J.E.; Park, J.F.

    1976-01-01

    The histopathologic features of pulmonary fibrosis and bronchiolo-alveolar carcinoma in beagles exposed to aerosols of 238 Pu or 239 Pu oxide are reviewed. A hypothesis of the pathogenesis of radiation pneumonitis induced by inhalation of plutonium oxide is presented; this hypothesis included phagocytosis of Pu particles, fibrosis responding to the necrosis, and alveolar cell hyperplasia compensating for alveolar cells killed by alpha radiation. Histopathologic features of the epithelial changes suggest a progression from hyperplasia to metaplasia and, finally, to bronchiolo-alveolar carcinoma. The possibility of concurrent radiation-induced lymphopenia contributing to the development of bronchiolo-alveolar carcinoma through a loss of immunologic surveillance is discussed

  5. Mustard vesicant-induced lung injury: Advances in therapy

    International Nuclear Information System (INIS)

    Weinberger, Barry; Malaviya, Rama; Sunil, Vasanthi R.; Venosa, Alessandro; Heck, Diane E.; Laskin, Jeffrey D.; Laskin, Debra L.

    2016-01-01

    Most mortality and morbidity following exposure to vesicants such as sulfur mustard is due to pulmonary toxicity. Acute injury is characterized by epithelial detachment and necrosis in the pharynx, trachea and bronchioles, while long-term consequences include fibrosis and, in some instances, cancer. Current therapies to treat mustard poisoning are primarily palliative and do not target underlying pathophysiologic mechanisms. New knowledge about vesicant-induced pulmonary disease pathogenesis has led to the identification of potentially efficacious strategies to reduce injury by targeting inflammatory cells and mediators including reactive oxygen and nitrogen species, proteases and proinflammatory/cytotoxic cytokines. Therapeutics under investigation include corticosteroids, N-acetyl cysteine, which has both mucolytic and antioxidant properties, inducible nitric oxide synthase inhibitors, liposomes containing superoxide dismutase, catalase, and/or tocopherols, protease inhibitors, and cytokine antagonists such as anti-tumor necrosis factor (TNF)-α antibody and pentoxifylline. Antifibrotic and fibrinolytic treatments may also prove beneficial in ameliorating airway obstruction and lung remodeling. More speculative approaches include inhibitors of transient receptor potential channels, which regulate pulmonary epithelial cell membrane permeability, non-coding RNAs and mesenchymal stem cells. As mustards represent high priority chemical threat agents, identification of effective therapeutics for mitigating toxicity is highly significant.

  6. Mustard vesicant-induced lung injury: Advances in therapy

    Energy Technology Data Exchange (ETDEWEB)

    Weinberger, Barry, E-mail: bweinberger@northwell.edu [Division of Neonatal and Perinatal Medicine, Hofstra Northwell School of Medicine, Cohen Children' s Medical Center of New York, New Hyde Park, NY 11040 (United States); Malaviya, Rama; Sunil, Vasanthi R.; Venosa, Alessandro [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States); Heck, Diane E. [Department of Environmental Health Science, New York Medical College, School of Public Health, Valhalla, NY 10595 (United States); Laskin, Jeffrey D. [Department of Environmental and Occupational Health, School of Public Health, Rutgers University, Piscataway, NJ 08854 (United States); Laskin, Debra L. [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States)

    2016-08-15

    Most mortality and morbidity following exposure to vesicants such as sulfur mustard is due to pulmonary toxicity. Acute injury is characterized by epithelial detachment and necrosis in the pharynx, trachea and bronchioles, while long-term consequences include fibrosis and, in some instances, cancer. Current therapies to treat mustard poisoning are primarily palliative and do not target underlying pathophysiologic mechanisms. New knowledge about vesicant-induced pulmonary disease pathogenesis has led to the identification of potentially efficacious strategies to reduce injury by targeting inflammatory cells and mediators including reactive oxygen and nitrogen species, proteases and proinflammatory/cytotoxic cytokines. Therapeutics under investigation include corticosteroids, N-acetyl cysteine, which has both mucolytic and antioxidant properties, inducible nitric oxide synthase inhibitors, liposomes containing superoxide dismutase, catalase, and/or tocopherols, protease inhibitors, and cytokine antagonists such as anti-tumor necrosis factor (TNF)-α antibody and pentoxifylline. Antifibrotic and fibrinolytic treatments may also prove beneficial in ameliorating airway obstruction and lung remodeling. More speculative approaches include inhibitors of transient receptor potential channels, which regulate pulmonary epithelial cell membrane permeability, non-coding RNAs and mesenchymal stem cells. As mustards represent high priority chemical threat agents, identification of effective therapeutics for mitigating toxicity is highly significant.

  7. Lack of effect of deferoxamine, dimethyl sulfoxide, and catalase on monocrotaline pyrrole pulmonary injury

    International Nuclear Information System (INIS)

    Bruner, L.H.; Johnson, K.; Carpenter, L.J.; Roth, R.A.

    1987-01-01

    Monocrotaline pyrrole (MCTP) is a reactive metabolite of the pyrrolizidine alkaloid monocrotaline. MCTP given intravenously to rats causes pulmonary hypertension and right ventricular hypertrophy. Lesions in lungs after MCTP treatment contain macrophages and neutrophils, which may contribute to the damage by generation of reactive oxygen metabolites. Rats were treated with MCTP and agents known to protect against oxygen radical-mediated damage in acute models of neutrophil-dependent lung injury. Rats received MCTP and deferoxamine mesylate (DF), dimethyl sulfoxide (DMSO), or polyethylene glycol-coupled catalase (PEG-CAT). MCTP/vehicle-treated controls developed lung injury manifested as increased lung weight, release of lactate dehydrogenase into the airway, and sequestration of 125 I-labeled bovine serum albumin in the lungs. Cotreatment of rats with DF, DMSO, or PEG-CAT did not protect against the injury due to MCTP. These results suggest that toxic oxygen metabolites do not play an important role in the pathogenesis of MCTP-induced pulmonary injury

  8. Lack of effect of deferoxamine, dimethyl sulfoxide, and catalase on monocrotaline pyrrole pulmonary injury

    Energy Technology Data Exchange (ETDEWEB)

    Bruner, L.H.; Johnson, K.; Carpenter, L.J.; Roth, R.A.

    1987-01-01

    Monocrotaline pyrrole (MCTP) is a reactive metabolite of the pyrrolizidine alkaloid monocrotaline. MCTP given intravenously to rats causes pulmonary hypertension and right ventricular hypertrophy. Lesions in lungs after MCTP treatment contain macrophages and neutrophils, which may contribute to the damage by generation of reactive oxygen metabolites. Rats were treated with MCTP and agents known to protect against oxygen radical-mediated damage in acute models of neutrophil-dependent lung injury. Rats received MCTP and deferoxamine mesylate (DF), dimethyl sulfoxide (DMSO), or polyethylene glycol-coupled catalase (PEG-CAT). MCTP/vehicle-treated controls developed lung injury manifested as increased lung weight, release of lactate dehydrogenase into the airway, and sequestration of SVI-labeled bovine serum albumin in the lungs. Cotreatment of rats with DF, DMSO, or PEG-CAT did not protect against the injury due to MCTP. These results suggest that toxic oxygen metabolites do not play an important role in the pathogenesis of MCTP-induced pulmonary injury.

  9. Protective effects of seabuckthorn pulp and seed oils against radiation-induced acute intestinal injury

    International Nuclear Information System (INIS)

    Shi, Jing; Wang, Lan; Lu, Yan; Ji, Yue; Wang, Yaqing; Dong, Ke; Kong, Xiangqing; Sun, Wei

    2017-01-01

    Radiation-induced gastrointestinal syndrome, including nausea, diarrhea and dehydration, contributes to morbidity and mortality after medical or industrial radiation exposure. No safe and effective radiation countermeasure has been approved for clinical therapy. In this study, we aimed to investigate the potential protective effects of seabuckthorn pulp and seed oils against radiation-induced acute intestinal injury. C57/BL6 mice were orally administered seabuckthorn pulp oil, seed oil and control olive oil once per day for 7 days before exposure to total-body X-ray irradiation of 7.5 Gy. Terminal deoxynucleotidyl transferase dUTP nick end labeling, quantitative real-time polymerase chain reaction and western blotting were used for the measurement of apoptotic cells and proteins, inflammation factors and mitogen-activated protein (MAP) kinases. Seabuckthorn oil pretreatment increased the post-radiation survival rate and reduced the damage area of the small intestine villi. Both the pulp and seed oil treatment significantly decreased the apoptotic cell numbers and cleaved caspase 3 expression. Seabuckthorn oil downregulated the mRNA level of inflammatory factors, including tumor necrosis factor-α, interleukin (IL)-1β, IL-6 and IL-8. Both the pulp and seed oils elevated the level of phosphorylated extracellular-signal-regulated kinase and reduced the levels of phosphorylated c-Jun N-terminal kinase and p38. Palmitoleic acid (PLA) and alpha linolenic acid (ALA) are the predominant components of pulp oil and seed oil, respectively. Pretreatment with PLA and ALA increased the post-radiation survival time. In conclusion, seabuckthorn pulp and seed oils protect against mouse intestinal injury from high-dose radiation by reducing cell apoptosis and inflammation. ALA and PLA are promising natural radiation countermeasure candidates.

  10. Andrographolide protects against radiation-induced lung injury in mice

    International Nuclear Information System (INIS)

    Kang Yahui; Wang Jinfeng; Zhang Qu; Huang Guanhong; Ma Jianxin; Yang Baixia; He Xiangfeng; Wang Zhongming

    2014-01-01

    Objective: To investigate the protective effect of andrographolide against radiation-induced lung injury (RILI) in C57BL/6 mice. Methods: Eighty C57BL mice were randomly divided into four groups: un-irradiated and normal saline-treated group (n = 20, control group), un-irradiated and andrographolide-treated group (n = 20, drug group), radiation plus normal saline-treated group (n = 20, radiation group) and radiation plus andrographolide-treated group (n = 20, treatment group). Before radiation, the mice in drug group and treatment group were administered daily via gavage with andrographolide (20 mg·kg -1 ·d -1 )) for 30 d, while the same volume of normal saline solution was given daily in the control and radiation groups. The model of RILI in C57BL mice was established by irradiating whole mouse chest with a single dose of 15 Gy of 6 MV X-rays. The pathological changes of the lung stained with HE/Masson were observed with a light microscope. The transforming growth factor-β1 (TGF-β1) and tumor necrosis factor-α (TNF-α) in serum were examined by enzyme-linked immunosorbent assay. The activities of malondialdehyde (MDA) and superoxide dismutase (SOD) and the content of hydroxyproline in lung tissues were examined by corresponding kits. Results: Compared with radiation group, there was an obvious amelioration in pathological injury of lung tissue in the treatment group. The lung coefficient, the activities of lung tissue MDA, the content of Hyp, the serum content of hydroxide free radical, and the serum levels of TGF-β1 and TNF-α in the treatment group were significantly lower than those in radiation group at 24 th week, (t lung coefficient = 1.60, t MDA = 7.06, t Hyp = 17.44, t TGF-β1 = 16.67, t TNF-α = 14.03, P < 0.05), while slightly higher than those in control group. The activity of SOD was significantly higher in the treatment group than that in radiation group (t = 60.81, P < 0.05), while lower than those in control group and drug group. There were no

  11. Pulmonary endothelial dysfunction induced by unilateral as compared to bilateral thoracic irradiation in rats

    International Nuclear Information System (INIS)

    Ward, W.F.; Molteni, A.; Ts'Ao, C.H.; Solliday, N.H.

    1987-01-01

    Rats were sacrificed 2 months after a single dose of 10-30 Gy of 60 Co gamma rays delivered to either a right unilateral or a bilateral thoracic port. Four indices of lung endothelial function were measured: the activities of angiotensin-converting enzyme (ACE) and plasminogen activator (PLA) and the production of prostacyclin (PGI2) and thromboxane (TXA2). The number of macrophages recovered by bronchoalveolar lavage (BAL) and the degree of right ventricular hypertrophy (an index of pulmonary hypertension) also were determined. Right lung ACE and PLA activity decreased linearly, and PGI2 and TXA2 production increased linearly with increasing radiation dose. The response curves for right unilateral and bilateral thoracic irradiation were not significantly different. In contrast, bilateral irradiation was more toxic than unilateral, since rats exposed to the former exhibited decreased body weight, an increased incidence of pleural effusions, an increase in the number of macrophages recovered by BAL, and right ventricular hypertrophy. These data demonstrate that pulmonary endothelial dysfunction induced by hemithorax irradiation represents a direct response of the endothelium to radiation injury and is not secondary to other phenomena such as shunting of function to the shielded lung

  12. Reduction in radiation-induced brain injury by use of pentobarbital or lidocaine protection

    International Nuclear Information System (INIS)

    Oldfield, E.H.; Friedman, R.; Kinsella, T.; Moquin, R.; Olson, J.J.; Orr, K.; DeLuca, A.M.

    1990-01-01

    To determine if barbiturates would protect brain at high doses of radiation, survival rates in rats that received whole-brain x-irradiation during pentobarbital- or lidocaine-induced anesthesia were compared with those of control animals that received no medication and of animals anesthetized with ketamine. The animals were shielded so that respiratory and digestive tissues would not be damaged by the radiation. Survival rates in rats that received whole-brain irradiation as a single 7500-rad dose under pentobarbital- or lidocaine-induced anesthesia was increased from between from 0% and 20% to between 45% and 69% over the 40 days of observation compared with the other two groups (p less than 0.007). Ketamine anesthesia provided no protection. There were no notable differential effects upon non-neural tissues, suggesting that pentobarbital afforded protection through modulation of ambient neural activity during radiation exposure. Neural suppression during high-dose cranial irradiation protects brain from acute and early delayed radiation injury. Further development and application of this knowledge may reduce the incidence of radiation toxicity of the central nervous system (CNS) and may permit the safe use of otherwise unsafe doses of radiation in patients with CNS neoplasms

  13. Preventive effect of interferon-γ of Chinese genotype on radiation pulmonary fibrosis

    International Nuclear Information System (INIS)

    Sun Li; Song Liangwen; Liu Tao; Zhang Yong; Yin Jiye; Diao Ruiying

    2006-01-01

    Objective: To investigate the inhibitive effect of Interferon-γ (γ-IFN) of Chinese genotype on proliferation of human lung fibroblast (HLF) induced by radiation, and examine its possible mechanism and role in prevention and treatment of radiation pulmonary fibrosis. Methods: The proliferation of HLF was determined by MTT assay, the expression of γ-smooth muscle actin (αa-SMA) and the synthesis of collagen type IV by immunocytochemistry assays. Results: Chinese α-IFN was observed to inhibit, proportionally to irradiation dose, the proliferation of HLF induced by 60 Co γ-irradiation. The expression of γ-SMA was remarkable in cytoplasmic matrix after the irradiation, suggesting that irradiation could induce the transformation from fibroblast (FB) to myofibroblast (MFB). The expression of collagen IV was increased with irradiation. Compared with the irradiated group, the expression of collagen IV was lower when γ-IFN was administered before being irradiated. Conclusion: 60 Co γ irradiation can induce pulmonary fibrosis by promoting the proliferation of HLF, inducing the transformation from FB to MFB, and increasing the excreting of collagen type IV. γ-IFN can prevent pulmonary fibrosis by effectively inhibiting the abnormal proliferation of HLF and the excessive synthesis of collagen IV after irradiation. (authors)

  14. Relation between radiation-induced tissue injury and its carcinogenesis of the rat small intestine

    Energy Technology Data Exchange (ETDEWEB)

    Tsubouchi, S [Aichi Cancer Center, Nagoya (Japan). Research Inst.; Matsuzawa, T

    1975-06-01

    This study was undertaken to make clear the relationships between radiation-induced tissue injury and its carcinogenesis in the rat small intestine. The abdomens of Wistar rats were irradiated locally with 1000 to 2000 rads. Approximately 2 months following irradiation, visible nodules were found in the intestines of the groups receiving irradiation. Nodule incidence was 80 to 100% in groups that received 1750 or 2000 rads, 50% in the 1500-rad groups, and 3% in the 1000-rad groups, respectively. The histology of the nodules within 70 days postirradiation, revealed adenomatous hyperplasia, including invasion of submucosa, muscle layers, and serosa of the small intestine accompanied by an area of fibrous tissue resulting from desmoplastic reaction by irradiation injury. The nodule within 140 to 300 days postirradiation induced advanced tissue injuried, that is, a polypoid lesion in histology and intestinal nodular adhesion in macroscopic anatomy. Running parallel with the advance of the above mentioned tissue injuries, the nodules in 3 out of 18 rat during 200 to 300 days postirradiation showed mucoid adenocarcinoma.

  15. Relation between radiation-induced tissue injury and its carcinogenesis of the rat small intestine

    International Nuclear Information System (INIS)

    Tsubouchi, Susumu; Matsuzawa, Taiju.

    1975-01-01

    This study was undertaken to make clear the relationships between radiation-induced tissue injury and its carcinogenesis in the rat small intestine. The abdomens of Wistar rats were irradiated locally with 1000 to 2000 rads. Approximately 2 months following irradiation, visible nodules were found in the intestines of the groups receiving irradiation. Nodule incidence was 80 to 100% in groups that received 1750 or 2000 rads, 50% in the 1500-rad groups, and 3% in the 1000-rad groups, respectively. The histology of the nodules within 70 days postirradiation, revealed adenomatous hyperplasia, including invasion of submucosa, muscle layers, and serosa of the small intestine accompanied by an area of fibrous tissue resulting from desmoplastic reaction by irradiation injury. The nodule within 140-300 days postirradiation induced advanced tissue injuried, that is, a polypoid lesion in histology and intestinal nodular adhesion in macroscopic anatomy. Running parallel with the advance of the above mentioned tissue injuries, the nodules in 3 out of 18 rat during 200-300 days postirradiation showed mucoid adenocarcinoma. (author)

  16. Amifostine Analog, DRDE-30, Attenuates Bleomycin-Induced Pulmonary Fibrosis in Mice

    Directory of Open Access Journals (Sweden)

    Aastha Arora

    2018-04-01

    Full Text Available Bleomycin (BLM is an effective curative option in the management of several malignancies including pleural effusions; but pulmonary toxicity, comprising of pneumonitis and fibrosis, poses challenge in its use as a front-line chemotherapeutic. Although Amifostine has been found to protect lungs from the toxic effects of radiation and BLM, its application is limited due to associated toxicity and unfavorable route of administration. Therefore, there is a need for selective, potent, and safe anti-fibrotic drugs. The current study was undertaken to assess the protective effects of DRDE-30, an analog of Amifostine, on BLM-induced lung injury in C57BL/6 mice. Whole body micro- computed tomography (CT was used to non-invasively observe tissue damage, while broncheo-alveolar lavage fluid (BALF and lung tissues were assessed for oxidative damage, inflammation and fibrosis. Changes in the lung density revealed by micro-CT suggested protection against BLM-induced lung injury by DRDE-30, which correlated well with changes in lung morphology and histopathology. DRDE-30 significantly blunted BLM-induced oxidative stress, inflammation and fibrosis in the lungs evidenced by reduced oxidative damage, endothelial barrier dysfunction, Myeloperoxidase (MPO activity, pro-inflammatory cytokine release and protection of tissue architecture, that could be linked to enhanced anti-oxidant defense system and suppression of redox-sensitive pro-inflammatory signaling cascades. DRDE-30 decreased the BLM-induced augmentation in BALF TGF-β and lung hydroxyproline levels, as well as reduced the expression of the mesenchymal marker α-smooth muscle actin (α-SMA, suggesting the suppression of epithelial to mesenchymal transition (EMT as one of its anti-fibrotic effects. The results demonstrate that the Amifostine analog, DRDE-30, ameliorates the oxidative injury and lung fibrosis induced by BLM and strengthen its potential use as an adjuvant in alleviating the side effects of

  17. Down-regulation of NF-κB DNA binding activity by Angelica Sinensis to ameliorate radiation-induced pulmonary injury in mouse model

    International Nuclear Information System (INIS)

    Cao Zhen; Xie Conghua; Zhou Fuxiang; Luo Zhiguo; Zhou Yunfeng; Hang Guang

    2008-01-01

    Objective: To study the trend of NF-kB binding activity during the course of radiation-induced pulmonary injury (RPI), and to evaluate the intervention effect of Angelica Sinensis on it. Methods: Adult female C57BL/6J mice were randomly divided into 4 groups: blank control group (N group), Angelica Sinensis control group (A group), irradiation group (NX group) and irradiation group with Angelica Sinensis intervention (AX group). All mice from the NX and AX groups underwent single fraction of 12 Gy γ-ray delivered to the whole thorax. All mice were intraperitoneally injected 25% Angelica Sinensis injection (20 ml/kg) or identical volume Normal Sodiumdaily injection initiated 1 week before irradiation, lasted till 2 weeks after irradiation. Mice were sacrificed at designated time points (1, 24, 72 h, 1, 2, 4, 8, 16 and 24 weeks), and the whole lungs were removed freshly. HE and Masson staining were performed to provide histopathologic evidence and to evaluate the collagen deposit situation respectively. The immunohistochemical staining of NF-κB P65 protein was performed to identify the location as well as the relative content of P65 protein. The DNA binding activity of NF-κB was detected by TransAM TM ELISA assay. Results: HE and Masson staining manifested that visible pathological alterations began at 2 weeks, typical interstitial pneumonitis were showed at 4 and 8 weeks, collagen deposition was visible from 16 weeks. The NF-κB binding activity detection and the immunohistochemical half-quantity analysis showed two-phase elevation, at 24 h and 8 weeks. Preventive application of Angelica Sinensis revealed prominently ameliorative effect for RPI, with pathological improvement, decreased immunohistochemical staining and lower NF-κB binding activity in both peaks. Conclusions: During the development process of RPI, NF-κB binding activity shows two-phase elevation. Chinese medicine Angelica Sinensis can down-regulate the elevation, showing noted ameliorative effect

  18. Polyhexamethylene guanidine phosphate aerosol particles induce pulmonary inflammatory and fibrotic responses.

    Science.gov (United States)

    Kim, Ha Ryong; Lee, Kyuhong; Park, Chang We; Song, Jeong Ah; Shin, Da Young; Park, Yong Joo; Chung, Kyu Hyuck

    2016-03-01

    Polyhexamethylene guanidine (PHMG) phosphate was used as a disinfectant for the prevention of microorganism growth in humidifiers, without recognizing that a change of exposure route might cause significant health effects. Epidemiological studies reported that the use of humidifier disinfectant containing PHMG-phosphate can provoke pulmonary fibrosis. However, the pulmonary toxicity of PHMG-phosphate aerosol particles is unknown yet. This study aimed to elucidate the toxicological relationship between PHMG-phosphate aerosol particles and pulmonary fibrosis. An in vivo nose-only exposure system and an in vitro air-liquid interface (ALI) co-culture model were applied to confirm whether PHMG-phosphate induces inflammatory and fibrotic responses in the respiratory tract. Seven-week-old male Sprague-Dawley rats were exposed to PHMG-phosphate aerosol particles for 3 weeks and recovered for 3 weeks in a nose-only exposure chamber. In addition, three human lung cells (Calu-3, differentiated THP-1 and HMC-1 cells) were cultured at ALI condition for 12 days and were treated with PHMG-phosphate at set concentrations and times. The reactive oxygen species (ROS) generation, airway barrier injuries and inflammatory and fibrotic responses were evaluated in vivo and in vitro. The rats exposed to PHMG-phosphate aerosol particles in nanometer size showed pulmonary inflammation and fibrosis including inflammatory cytokines and fibronectin mRNA increase, as well as histopathological changes. In addition, PHMG-phosphate triggered the ROS generation, airway barrier injuries and inflammatory responses in a bronchial ALI co-culture model. Those results demonstrated that PHMG-phosphate aerosol particles cause pulmonary inflammatory and fibrotic responses. All features of fibrogenesis by PHMG-phosphate aerosol particles closely resembled the pathology of fibrosis that was reported in epidemiological studies. Finally, we expected that PHMG-phosphate infiltrated into the lungs in the form of

  19. Production site of radiation-induced pulmonary fibrosis

    International Nuclear Information System (INIS)

    Song Liangwen; Cui Xuemei; Gao Yabing; Yang Ruibiao; Xia Guowei; Wang Dewen

    1997-01-01

    Production site development and alterations of early pulmonary fibrosis were studied. Single irradiation was made at right thorax of rats with 0, 15 and 30 Gy of γ-irradiation, respectively. The rats were divided into three groups which were sacrificed 1, 3, 5 months post irradiation. Hydroxyproline in lungs was measured by biochemical method. Pulmonary type I and III collagens were measured by polarization method. Distribution of angiotensin II (A II) in pulmonary tissues was displayed by immunohistochemical method. Extent of pulmonary fibrosis relatively increased with irradiation dose and time elapse after irradiation. Ratio of type I to type III collagens increased with increasing fibrosis. Proliferating collagen fibers mainly came from fibroblasts of pulmonary bronchial and arterial adventitia, and extended into pulmonary parenchyma. Meanwhile, type I collagen substituted for type III collagen in interstitium of pulmonary alveoli. A II was positive for fibroblasts and macrophages in pulmonary interstitium. Irradiation can stimulate fibroblasts in interstitium proliferation, and type I collagen substitutes for type III collagen. Expression and synthesis of A II in interstitium may promote the course of pulmonary fibrosis

  20. Correlation of the acute oxidative stress markers with radiation induced late lung disease response of pneumonitis and/or fibrosis

    International Nuclear Information System (INIS)

    Kunwar, Amit

    2016-01-01

    Biomarkers which predict for the occurrence of radiation-induced lung responses of pneumonitis and/or fibrosis are largely unknown. Herein, we investigated whether markers of oxidative stress and intracellular antioxidants, measured within days of radiation exposure, correlated with the lung tissue injury response occurring weeks later. Inbred strains of mice (KK/HIJ, C57BL/6J, 129S1/SvImJ, C3H/HeJ, A/J, AKR/J, CBA/J, NZW/LacJ) known to differ in their susceptibility to radiation induced pulmonary fibrosis, and to vary in time to onset of respiratory distress post thoracic irradiation (from 10-23 weeks) were studied. Mice were unirradiated (controls) or received whole thorax irradiation (18 Gy) and were euthanized at 6h, 1d, 7d, 8w and upon presentation of respiratory distress. Pulmonary levels of antioxidants superoxide dismutase, catalase, glutathione peroxidase (GPx) and glutathione, and of oxidative damage (reactive oxygen species (ROS), 8-hydroxydeoxyguanosine (8-OHdG) and numbers of γH2AX foci), were assessed

  1. The primary study on protective effects of vallinin derivative on cell injury induced by radiation

    International Nuclear Information System (INIS)

    Zheng Hong; Wang Siying; Yan Yuqian; Wang Lin; Xu Qinzhi; Cong Jianbo; Zhou Pingkun

    2008-01-01

    In this paper, the protective effects of vallinin derivative VND3207 on cell injury induced by radiation were studied by the methods of methyl thiazolyl tetrazolium colorimetric assay (MTT) and electron spin resonance (ESR). At first, MTF method was used to evaluate the cytotoxicity of vallinin derivatives (VND3202-VND3209) in HFS cells. Then, MTT method was used to measure the proliferation activity of HeLa cells with 2 Gy irradiation treated with vallinin derivatives and measure the proliferation of AHH-1 cells treated with VND3207 before exposed to 4 Gy irradiation. And ESR detected the antioxidation activity of vallinin and VND3207. The results showed that VND3207 and VND3206 presented no toxin within 50 panol/L, and VND3207 and VND3209 had no proliferous effects on HeLa cells while VND3206 could expedite the tumor cell proliferation at 30 μmol/L, and by comrades VND3208 showed increased radiosensitivity of the HeLa cells. For the AHH1 cells exposed to 4 Gy irradiation, VND3207 presented the protective effects against radiation injury. ESR results also suggested that VND3207 could clean out free radicals. Its effect was far more potent than that of vanillin. From this study we primarily screened out the vallinin derivative VND3207 which has protective effects on cell injury induced by radiation and provided data for future research work. (authors)

  2. Radiation-Induced Differentiation in Human Lung Fibroblast

    International Nuclear Information System (INIS)

    Park, Sa-Rah; Ahn, Ji-Yeon; Han, Young-Soo; Shim, Jie-Young; Yun, Yeon-Sook; Song, Jie-Young

    2007-01-01

    One of the most common tumors in many countries is lung cancer and patients with lung cancer may take radiotherapy. Although radiotherapy may have its own advantages, it can also induce serious problems such as acute radiation pneumonitis and pulmonary fibrosis. Pulmonary fibrosis is characterized by excessive production of α-SMA and accumulation of extracellular matrix (ECM) such as collagen and fibronectin. There has been a great amount of research about fibrosis but the exact mechanism causing the reaction is not elucidated especially in radiation-induced fibrosis. Until now it has been known that several factors such as transforming growth factor (TGF-β), tumor necrosis factor (TNF), interleukin (IL)-1, IL-6, platelet-derived growth factor (PDGF) and fibroblast growth factor (FGF) are related to fibrosis. Among them TGF-β with Smad signaling is known to be the main stream and other signaling molecules such as MAPK, ERK and JNK (3) also participates in the process. In addition to those above factors, it is thought that more diverse and complicate mechanisms may involve in the radiationinduced fibrosis. Therefore, to investigate the underlying mechanisms in radiation induced fibrosis, first of all, we confirmed whether radiation induces trans differentiation in human normal lung fibroblasts. Here, we suggest that not only TGF-β but also radiation can induce trans differentiation in human lung fibroblast WI-38 and IMR-90

  3. The effect of adhesion molecule blockade on pulmonary reperfusion injury.

    Science.gov (United States)

    Levine, Adrian J; Parkes, Karen; Rooney, Stephen J; Bonser, Robert S

    2002-04-01

    Selectins are the molecules involved in the initial adhesion of the activated neutrophil on pulmonary endothelium. We investigated the efficacy of selectin blockade in a selective (monoclonal antibody RMP-1) and nonselective (Fucoidin) manner in pulmonary reperfusion injury. Groups of six rat lungs were flushed with University of Wisconsin solution then stored at 4 degrees C for 4 hours. They then underwent sanguinous reperfusion for 30 minutes during which functional measures (gas exchange, pulmonary artery pressure, and airway pressure) of lung performance were made. After reperfusion we estimated their capillary filtration coefficient (Kfc units g/cm water/minute/g wet lung tissue) using a gravimetric technique. Four groups were studied: group I had no reperfusion, group II had 30 minutes of reperfusion, group III had infusion of 20 mg/kg Fucoidin before reperfusion, and group IV had infusion of 20 microg/mL RMP-1 before reperfusion. Reperfusion injury was found between groups I and II by an increase in capillary filtration coefficient (1.048 +/- 0.316 to 3.063 +/- 0.466, p Kfc than group II (0.967 +/- 0.134 and 1.205 +/- 0.164, respectively, p < 0.01). There was no significant functional difference between groups II, III, and IV. Reperfusion-induced hyperpermeability was ameliorated by selective (RMP-1) and nonselective (Fucoidin) selectin blockade.

  4. Inhibitory effect of magnesium sulfate on reaction of lipid hyperoxidation after radiation-induced acute brain injuries

    International Nuclear Information System (INIS)

    Wang Lili; Zhou Juying; Yu Zhiying; Qin Songbing; Xu Xiaoting; Li Li; Tu Yu

    2007-01-01

    Objective: To explore the protection of magnesium sulfate (MgSO 4 ) on radiation-induced acute brain injuries. Methods: 60 maturity Sprague-Dawley (SD) rats were randomly divided into 3 groups: blank control group, experimental control group and experimental-therapeutic group. The whole brain of SD rats of experimental control group and experimental-therapeutic group was irradiated to a dose of 20 Gy using 6 MeV electron. MgSO 4 was injected intraperitoneally into the rats of experimental-therapeutic group before and after irradiation for five times. At different time points ranging from the 1 d, 7 d, 14 d, 30 d after irradiation, the brain tissue were taken. The xanthine oxidase and colorimetric examination were used to measure the superoxide dismutase (SOD) and malonyldialdehyde (MDA) respectively in the rat brain respectively. Results: Compared with blank control group, the SOD in brain of experimental control group decreased significantly (P 4 used in early stage can inhibit the lipid peroxidation after radiation-induced acute brain injuries and alleviate the damage induced by free radicals to brain tissue. (authors)

  5. Role of endothelium in radiation-induced normal tissue damages

    International Nuclear Information System (INIS)

    Milliat, F.

    2007-05-01

    More than half of cancers are treated with radiation therapy alone or in combination with surgery and/or chemotherapy. The goal of radiation therapy is to deliver enough ionising radiation to destroy cancer cells without exceeding the level that the surrounding healthy cells can tolerate. Unfortunately, radiation-induced normal tissue injury is still a dose limiting factor in the treatment of cancer with radiotherapy. The knowledge of normal tissue radiobiology is needed to determine molecular mechanisms involved in normal tissue pathogenic pathways in order to identify therapeutic targets and develop strategies to prevent and /or reduce side effects of radiation therapy. The endothelium is known to play a critical role in radiation-induced injury. Our work shows that endothelial cells promote vascular smooth muscle cell proliferation, migration and fibro-genic phenotype after irradiation. Moreover, we demonstrate for the first time the importance of PAI-1 in radiation-induced normal tissue damage suggesting that PAI-1 may represent a molecular target to limit injury following radiotherapy. We describe a new role for the TGF-b/Smad pathway in the pathogenesis of radiation-induced damages. TGF-b/Smad pathway is involved in the fibro-genic phenotype of VSMC induced by irradiated EC as well as in the radiation-induced PAI-1 expression in endothelial cells. (author)

  6. International spinal cord injury pulmonary function basic data set

    DEFF Research Database (Denmark)

    Biering-Sørensen, Fin; Krassioukov, A; Alexander, M S

    2012-01-01

    To develop the International Spinal Cord Injury (SCI) Pulmonary Function Basic Data Set within the framework of the International SCI Data Sets in order to facilitate consistent collection and reporting of basic bronchopulmonary findings in the SCI population.......To develop the International Spinal Cord Injury (SCI) Pulmonary Function Basic Data Set within the framework of the International SCI Data Sets in order to facilitate consistent collection and reporting of basic bronchopulmonary findings in the SCI population....

  7. Thrombomodulin and von Willebrand factor as markers of radiation-induced endothelial injury

    International Nuclear Information System (INIS)

    Zhou Quansheng; Zhao Yimin; Li Peixia; Bai Xia; Ruan Changgeng

    1992-02-01

    Cultured confluent human umbilical vein endothelial cells were irradiated in vitro by 60 Co-gamma ray at doses from 0 to 50 Gy. After irradiation Thrombomodulin in the supernatants of endothelial cell culture medium, on the surface of the cells and within the cells was measured at different times over six days. At twenty-four hours after irradiation, an increase in the release of Thrombomodulin and von Willebrand factor from irradiated endothelial cells and an increase in the number of molecules and the activity of Thrombomodulin on the surface of the cells were observed, which were radiation-dose dependent. The capacity of the cells to produce and release Thrombomodulin was decreased from two to six days after exposure to 60 Co-gamma ray. Our data indicate that radiation can injure endothelial cells and that Thrombomodulin may be as a marker of radiation-induced endothelial cell injury. The relationship between dysfunction of irradiated endothelial cells and the pathological mechanisms of acute radiation sickness are discussed

  8. Mitigation of radiation induced hematopoietic injury via regulation of Nrf-2 and increasing hematopoietic stem cells

    International Nuclear Information System (INIS)

    Patwardhan, R.S.; Sharma, Deepak; Checker, Rahul; Santosh Kumar, S.

    2014-01-01

    Therapeutic doses of ionizing radiation (IR) that can be delivered to tumors are restricted due to radiation induced damage to surrounding normal tissues thereby limiting the effectiveness of radiotherapy. Strategies to develop agents that selectively protect normal cells yielded limited success in the past. There is pressing need to develop safe, syndrome specific and effective radiation countermeasures to prevent or mitigate the harmful consequences of radiation exposure. Survival of bone marrow stem cells (HSCs) play a key role in protecting against IR induced hematopoietic injury. Many studies have shown manipulation of HSC frequency and/or survival as principal mechanism of radioprotection. It is known that, Nrf-2 plays crucial role in HSC survival and maintenance under oxidative stress conditions. In the present study, we have investigated the radioprotective ability of a flavonoid baicalein (5,6,7-trihydroxyflavone), extracted from the root of Scutellaria baicalensis Georgi, a medicinal plant traditionally used in Oriental medicine. There are numerous reports showing anti-inflammatory, anti-apoptotic, anti-oxidant, anti-cancer, anti-microbial, anti-mutagenic and neuroprotective properties of baicalein. Based on these reports, we have investigated the ability of baicalein to protect against radiation induced hematopoietic injury. Baicalein administration to mice protected against WBI induced mortality. Interestingly, the stem cell frequency increased in bone marrow cells obtained from baicalein administered mice as compared to vehicle treated mice. Baicalein treatment led to increased phospho-Nrf-2 levels in lineage negative BM-MNC. Administration of mice with Nrf-2 inhibitor prior to baicalein treatment led to significant abrogation of radioprotective ability of baicalein. This result suggests that, Nrf-2 may be playing a key role in baicalein mediated radioprotection. Here, we have shown that baicalein administration augments stem cell frequency, induces

  9. Expression of Angiotensin II and Aldosterone in Radiation-induced Lung Injury.

    Science.gov (United States)

    Cao, Shuo; Wu, Rong

    2012-12-01

    Radiation-induced lung injury (RILI) is the most common, dose-limiting complication in thoracic malignancy radiotherapy. Considering its negative impact on patients and restrictions to efficacy, the mechanism of RILI was studied. Wistar rats were locally irradiated with a single dose of 0, 16, and 20 Gy to the right half of the lung to establish a lung injury model. Two and six months after irradiation, the right half of the rat lung tissue was removed, and the concentrations of TGF-β1, angiotensin II, and aldosterone were determined via enzyme-linked immunosorbent assay. Statistical differences were observed in the expression levels of angiotensin II and aldosterone between the non-irradiation and irradiation groups. Moreover, the expression level of the angiotensin II-aldosterone system increased with increasing doses, and the difference was still observed as time progressed. Angiotensin II-aldosterone system has an important pathophysiological function in the progression of RILI.

  10. Expression of Angiotensin II and Aldosterone in Radiation-induced Lung Injury

    International Nuclear Information System (INIS)

    Cao, Shuo; Wu, Rong

    2012-01-01

    Radiation-induced lung injury (RILI) is the most common, dose-limiting complication in thoracic malignancy radiotherapy. Considering its negative impact on patients and restrictions to efficacy, the mechanism of RILI was studied. Wistar rats were locally irradiated with a single dose of 0, 16, and 20 Gy to the right half of the lung to establish a lung injury model. Two and six months after irradiation, the right half of the rat lung tissue was removed, and the concentrations of TGF-β1, angiotensin II, and aldosterone were determined via enzyme-linked immunosorbent assay. Statistical differences were observed in the expression levels of angiotensin II and aldosterone between the non-irradiation and irradiation groups. Moreover, the expression level of the angiotensin II-aldosterone system increased with increasing doses, and the difference was still observed as time progressed. Angiotensin II-aldosterone system has an important pathophysiological function in the progression of RILI

  11. Enhancement of the acrolein-induced production of reactive oxygen species and lung injury by GADD34.

    Science.gov (United States)

    Sun, Yang; Ito, Sachiko; Nishio, Naomi; Tanaka, Yuriko; Chen, Nana; Liu, Lintao; Isobe, Ken-ichi

    2015-01-01

    Chronic obstructive pulmonary disease (COPD) is characterized by lung destruction and inflammation. As a major compound of cigarette smoke, acrolein plays a critical role in the induction of respiratory diseases. GADD34 is known as a growth arrest and DNA damage-related gene, which can be overexpressed in adverse environmental conditions. Here we investigated the effects of GADD34 on acrolein-induced lung injury. The intranasal exposure of acrolein induced the expression of GADD34, developing the pulmonary damage with inflammation and increase of reactive oxygen species (ROS). Conversely, the integrality of pulmonary structure was preserved and the generation of ROS was reduced in GADD34-knockout mice. Acrolein-induced phosphorylation of eIF2α in GADD34-knockout epithelial cells by shRNA protected cell death by reducing misfolded protein-caused oxidative stress. These data indicate that GADD34 participates in the development of acrolein-induced lung injury.

  12. Pulmonary lymphatics and radiation

    International Nuclear Information System (INIS)

    Leeds, S.E.

    1976-01-01

    Knowledge of the anatomy and physiology of the respiratory system has been more difficult to acquire than that of other organ systems owing to the complexity of the respiratory function of the lungs and to the technical difficulties involved. This is especially true of the lymphatics of the lung and is illustrated by the fact that the first measurement of pulmonary lymph flow was in 1942 by Warren and Drinker. A review of the literature reveals that few experiments have been designed to study the pulmonary lymphatics per se in relation to the effects of external radiation or after the inhalation of radioactive particles. However, the documented involvement of hilar lymph nodes implies that the lung lymphatics have a role in transporting particles from the alveoli or malignant cells from the parenchyma. Information from clinical and experimental sources, though scattered, is fairly abundant and of value in assessing the role of the pulmonary lymphatics. Our method for collecting pulmonary lymph is presented. Studies on the pulmonary lymph flow in normal dogs and in dogs with experimental congestive heart failure are described. We irradiated (4000 to 5000 R) the medial one-third of both lungs of a series of dogs. The lymph flow of the lungs was measured immediately after the course of irradiation and after a period of about 5 months. Although lung biopsies showed characteristic radiation pneumonitis in many areas, alterations in the lung parenchyma were not quantitatively reflected in the pulmonary lymph flow either in the acute stage or after fibrosis had time to develop

  13. Does granulocyte colony-stimulating factor exacerbate radiation-induced acute lung injury in rats?

    International Nuclear Information System (INIS)

    Miura, Gouji; Awaya, Hitomi; Matsumoto, Tsuneo; Tanaka, Nobuyuki; Matsunaga, Naofumi

    2000-01-01

    Radiation pneumonitis (RP) frequently occurs as a complication of thoracic irradiation. However, the mechanism of RP is not well known. Activated neutrophils are a possible pathogenesis of RP. Neutrophil activation induced by granulocyte colony-stimulating factor (G-CSF) may exacerbate RP. We studied the effects of recombinant human G-CSF on acute lung injury induced by thoracic irradiation using rats. Animals were divided into three groups: sham irradiation with saline control, irradiation alone, and irradiation with G-CSF. Actual irradiation was given as a single fraction of 16 Gy delivered to the right hemithorax. G-CSF at a dose of 12 μg/body was administered subcutaneously once a day from 14 to 18 days after actual irradiation. Lung injury was evaluated 21 days after irradiation by bronchoalveolar lavage (BAL) fluid findings and the lung wet/dry weight (W/D) ratio. Neutrophil and lymphocyte counts in BAL fluid and the W/D ratio were significantly increased in the irradiation alone and the irradiation with G-CSF groups compared with those of the sham irradiation+saline control group. However, there was no significant difference observed between the irradiation alone and irradiation with G-CSF groups. In conclusion, this study suggests that postradiation administration of G-CSF does not exacerbate acute lung injury induced by thoracic irradiation in rats. (author)

  14. Does granulocyte colony-stimulating factor exacerbate radiation-induced acute lung injury in rats?

    Energy Technology Data Exchange (ETDEWEB)

    Miura, Gouji; Awaya, Hitomi; Matsumoto, Tsuneo; Tanaka, Nobuyuki; Matsunaga, Naofumi [Yamaguchi Univ., Ube (Japan). School of Medicine

    2000-08-01

    Radiation pneumonitis (RP) frequently occurs as a complication of thoracic irradiation. However, the mechanism of RP is not well known. Activated neutrophils are a possible pathogenesis of RP. Neutrophil activation induced by granulocyte colony-stimulating factor (G-CSF) may exacerbate RP. We studied the effects of recombinant human G-CSF on acute lung injury induced by thoracic irradiation using rats. Animals were divided into three groups: sham irradiation with saline control, irradiation alone, and irradiation with G-CSF. Actual irradiation was given as a single fraction of 16 Gy delivered to the right hemithorax. G-CSF at a dose of 12 {mu}g/body was administered subcutaneously once a day from 14 to 18 days after actual irradiation. Lung injury was evaluated 21 days after irradiation by bronchoalveolar lavage (BAL) fluid findings and the lung wet/dry weight (W/D) ratio. Neutrophil and lymphocyte counts in BAL fluid and the W/D ratio were significantly increased in the irradiation alone and the irradiation with G-CSF groups compared with those of the sham irradiation+saline control group. However, there was no significant difference observed between the irradiation alone and irradiation with G-CSF groups. In conclusion, this study suggests that postradiation administration of G-CSF does not exacerbate acute lung injury induced by thoracic irradiation in rats. (author)

  15. Idh2 Deficiency Exacerbates Acrolein-Induced Lung Injury through Mitochondrial Redox Environment Deterioration

    OpenAIRE

    Park, Jung Hyun; Ku, Hyeong Jun; Lee, Jin Hyup; Park, Jeen-Woo

    2017-01-01

    Acrolein is known to be involved in acute lung injury and other pulmonary diseases. A number of studies have suggested that acrolein-induced toxic effects are associated with depletion of antioxidants, such as reduced glutathione and protein thiols, and production of reactive oxygen species. Mitochondrial NADP+-dependent isocitrate dehydrogenase (idh2) regulates mitochondrial redox balance and reduces oxidative stress-induced cell injury via generation of NADPH. Therefore, we evaluated the ro...

  16. Adrenergic and steroid hormone modulation of ozone-induced pulmonary injury and inflammation

    Science.gov (United States)

    Rationale: We have shown that acute ozone inhalation promotes activation of the sympathetic and hypothalamic-pituitary-adrenal (HPA) axis leading to release of cortisol and epinephrine from the adrenals. Adrenalectomy (ADREX) inhibits ozone-induced pulmonary vascular leakage and ...

  17. Experimental study of pulmonary thromboembolism ischemia-reperfusion injury in canine model

    International Nuclear Information System (INIS)

    Li Jianjun; Zhai Renyou; Zhang Dongpo; Huang Qiang; Yu Ping; Dai Dingke; Bao Na

    2009-01-01

    Objective: To establish a canine model of pulmonary thromboembolism ischemia- reperfusion injury (PTE IRI) that may be used for imaging study. Methods: Ten male and 10 female healthy mongrel canines with (18.6±0.8) kg/body weight, were used. A Swan-Ganz catheter was introduced into the right internal jugular vein via a preset percutaneous sheath using the Seldinger technique, and then was with further insertion the pulmonary artery. Balloon occlusion of the right inferior lobe pulmonary artery for 4 hours was followed by removing the catheter and ending with 4 hours of reperfusion. CT was performed before ischemia, 4 h after ischemia and 4 h after reperfusion. At last, dogs were killed and the bilateral inferior lung tissues were prepared for the examination by light and electronic microscopy. Results: All canine models were successfully developed pulmonary thromboembolism ischemia-reperfusion injury. The examination of CT, light and electron microscopy consistently indicated the presence of permeability pulmonary edema after reperfusion. Conclusions: A closed-chest canine model in vivo of pulmonary thromboembolism ischemia-reperfusion injury can be established with virtual pathophysiological process in human and be as well as for imaging experimental study. (authors)

  18. Differential diagnosis of radiation injury

    Energy Technology Data Exchange (ETDEWEB)

    Wendt, F

    1971-04-01

    A single haematological alteration is not sufficient to diagnose whether it is a radiation-induced change or not. For the differential diagnosis of possibly radiation-induced changes in the peripheral blood and blood-forming organs, information on the radiation exposure in terms of time, quality, quantity and localization, and the clinical symptoms have to be taken into account. Ionizing radiation within the dosage range considered here produces cell division delay, mitotic inhibition, chromosomal damage or interphase cell death; it thereby interferes with the steady-state equilibria in the cell-renewal systems of the organism (Bond et al., 1965; Little, 1968). The cause of haematological changes appearing immediately after a short-term, external whole-body radiation exposure has been described and analysed elsewhere in this Manual. The critical cell component is the 'stem cell compartment' which is highly radiosensitive and suffers damage but, because stem cells cannot be identified morphologically, a direct study of stem cell injury is not possible.

  19. Enhancement of the Acrolein-Induced Production of Reactive Oxygen Species and Lung Injury by GADD34

    Science.gov (United States)

    Sun, Yang; Ito, Sachiko; Nishio, Naomi; Tanaka, Yuriko; Chen, Nana; Isobe, Ken-ichi

    2015-01-01

    Chronic obstructive pulmonary disease (COPD) is characterized by lung destruction and inflammation. As a major compound of cigarette smoke, acrolein plays a critical role in the induction of respiratory diseases. GADD34 is known as a growth arrest and DNA damage-related gene, which can be overexpressed in adverse environmental conditions. Here we investigated the effects of GADD34 on acrolein-induced lung injury. The intranasal exposure of acrolein induced the expression of GADD34, developing the pulmonary damage with inflammation and increase of reactive oxygen species (ROS). Conversely, the integrality of pulmonary structure was preserved and the generation of ROS was reduced in GADD34-knockout mice. Acrolein-induced phosphorylation of eIF2α in GADD34-knockout epithelial cells by shRNA protected cell death by reducing misfolded protein-caused oxidative stress. These data indicate that GADD34 participates in the development of acrolein-induced lung injury. PMID:25821552

  20. Enhancement of the Acrolein-Induced Production of Reactive Oxygen Species and Lung Injury by GADD34

    Directory of Open Access Journals (Sweden)

    Yang Sun

    2015-01-01

    Full Text Available Chronic obstructive pulmonary disease (COPD is characterized by lung destruction and inflammation. As a major compound of cigarette smoke, acrolein plays a critical role in the induction of respiratory diseases. GADD34 is known as a growth arrest and DNA damage-related gene, which can be overexpressed in adverse environmental conditions. Here we investigated the effects of GADD34 on acrolein-induced lung injury. The intranasal exposure of acrolein induced the expression of GADD34, developing the pulmonary damage with inflammation and increase of reactive oxygen species (ROS. Conversely, the integrality of pulmonary structure was preserved and the generation of ROS was reduced in GADD34-knockout mice. Acrolein-induced phosphorylation of eIF2α in GADD34-knockout epithelial cells by shRNA protected cell death by reducing misfolded protein-caused oxidative stress. These data indicate that GADD34 participates in the development of acrolein-induced lung injury.

  1. Physiological gas exchange mapping of hyperpolarized 129 Xe using spiral-IDEAL and MOXE in a model of regional radiation-induced lung injury.

    Science.gov (United States)

    Zanette, Brandon; Stirrat, Elaine; Jelveh, Salomeh; Hope, Andrew; Santyr, Giles

    2018-02-01

    To map physiological gas exchange parameters using dissolved hyperpolarized (HP) 129 Xe in a rat model of regional radiation-induced lung injury (RILI) with spiral-IDEAL and the model of xenon exchange (MOXE). Results are compared to quantitative histology of pulmonary tissue and red blood cell (RBC) distribution. Two cohorts (n = 6 each) of age-matched rats were used. One was irradiated in the right-medial lung, producing regional injury. Gas exchange was mapped 4 weeks postirradiation by imaging dissolved-phase HP 129 Xe using spiral-IDEAL at five gas exchange timepoints using a clinical 1.5 T scanner. Physiological lung parameters were extracted regionally on a voxel-wise basis using MOXE. Mean gas exchange parameters, specifically air-capillary barrier thickness (δ) and hematocrit (HCT) in the right-medial lung were compared to the contralateral lung as well as nonirradiated control animals. Whole-lung spectroscopic analysis of gas exchange was also performed. δ was significantly increased (1.43 ± 0.12 μm from 1.07 ± 0.09 μm) and HCT was significantly decreased (17.2 ± 1.2% from 23.6 ± 1.9%) in the right-medial lung (i.e., irradiated region) compared to the contralateral lung of the irradiated rats. These changes were not observed in healthy controls. δ and HCT correlated with histologically measured increases in pulmonary tissue heterogeneity (r = 0.77) and decreases in RBC distribution (r = 0.91), respectively. No changes were observed using whole-lung analysis. This work demonstrates the feasibility of mapping gas exchange using HP 129 Xe in an animal model of RILI 4 weeks postirradiation. Spatially resolved gas exchange mapping is sensitive to regional injury between cohorts that was undetected with whole-lung gas exchange analysis, in agreement with histology. Gas exchange mapping holds promise for assessing regional lung function in RILI and other pulmonary diseases. © 2017 The Authors. Medical Physics published by Wiley

  2. The protective effect of lycopene against radiation injury to the small intestine of abdominally radiated mice

    International Nuclear Information System (INIS)

    Itoh, Youko; Kurabe, Teruhisa; Ishiguchi, Tsuneo

    2004-01-01

    To reduce the side effects of radiotherapy, radioprotective effects of lycopene on villi and crypts in the small intestine of abdominally radiated mice (15 Gy) were examined with administration pre-, continuous and post-radiation. In the lycopene group, the ratio of the villus length to the crypt was significantly increased in comparison with the radiation only group at 2 days after radiation. At 7 days after radiation, the ratio of necrotic cells in crypt/total was significantly decreased and the ratio of necrotic cells in villus/total was significantly increased by lycopene administration, which indicated an acceleration of the recovery from the radiation injury with lycopene. Each lycopene administered group showed a significant radioprotective effect, with the pre-radiation administration inducing a smaller effect than that of continuous and post-radiation administration. Radiation induced apoptosis was also decreased by lycopene administration. It is concluded that pre-, continuous and post-radiation administration of lycopene protects against radiation injury of the small intestine and accelerate the recovery. (author)

  3. Hypoxia-preconditioned mesenchymal stem cells ameliorate ischemia/reperfusion-induced lung injury.

    Directory of Open Access Journals (Sweden)

    Yung-Yang Liu

    Full Text Available Hypoxia preconditioning has been proven to be an effective method to enhance the therapeutic action of mesenchymal stem cells (MSCs. However, the beneficial effects of hypoxic MSCs in ischemia/reperfusion (I/R lung injury have yet to be investigated. In this study, we hypothesized that the administration of hypoxic MSCs would have a positive therapeutic impact on I/R lung injury at molecular, cellular, and functional levels.I/R lung injury was induced in isolated and perfused rat lungs. Hypoxic MSCs were administered in perfusate at a low (2.5×105 cells and high (1×106 cells dose. Rats ventilated with a low tidal volume of 6 ml/kg served as controls. Hemodynamics, lung injury indices, inflammatory responses and activation of apoptotic pathways were determined.I/R induced permeability pulmonary edema with capillary leakage and increased levels of reactive oxygen species (ROS, pro-inflammatory cytokines, adhesion molecules, cytosolic cytochrome C, and activated MAPK, NF-κB, and apoptotic pathways. The administration of a low dose of hypoxic MSCs effectively attenuated I/R pathologic lung injury score by inhibiting inflammatory responses associated with the generation of ROS and anti-apoptosis effect, however this effect was not observed with a high dose of hypoxic MSCs. Mechanistically, a low dose of hypoxic MSCs down-regulated P38 MAPK and NF-κB signaling but upregulated glutathione, prostaglandin E2, IL-10, mitochondrial cytochrome C and Bcl-2. MSCs infused at a low dose migrated into interstitial and alveolar spaces and bronchial trees, while MSCs infused at a high dose aggregated in the microcirculation and induced pulmonary embolism.Hypoxic MSCs can quickly migrate into extravascular lung tissue and adhere to other inflammatory or structure cells and attenuate I/R lung injury through anti-oxidant, anti-inflammatory and anti-apoptotic mechanisms. However, the dose of MSCs needs to be optimized to prevent pulmonary embolism and thrombosis.

  4. Treatment for unstable pulmonary sequestration injury in patient with severe blunt trauma: A case report.

    Science.gov (United States)

    Hiraki, Sakiko; Okada, Yohei; Arai, Yusuke; Ishii, Wataru; Iiduka, Ryoji

    2017-08-01

    Pulmonary sequestration is a congenital malformation characterized by nonfunctioning tissue not communicating with the tracheobronchial tree. As the blood pressure in the artery feeding the sequestrated lung tissue is higher than that in the normal pulmonary artery, the risk of massive hemorrhage in pulmonary sequestration is high. We herein present the first case of a severe blunt trauma patient with unstable pulmonary sequestration injury. The mechanism of pulmonary sequestration injury is vastly different than that of injury to normal lung. We suggest that proximal feeding artery embolization should be performed before surgical intervention in patients with massive hemorrhage of pulmonary sequestration due to severe chest trauma.

  5. Chemical and radiation injuries

    International Nuclear Information System (INIS)

    Hugo, M.J.

    1981-01-01

    The paper is a discussion of radiation injuries and the treatment thereof. Radiation injuries are mainly caused as a result of nuclear leaks or nuclear bomb explosions. Such an explosion is usually accompanied by a light flash, noise, heat radiation and nuclear radiation which can all caurse various types of injuries. The general effect of radioactive radiation is discussed. The seriousness of the situation where the whole body was exposed to nuclear radiation, depends on the total radiation dose received and varies from person to person. The progress of radiation sickness is described. Mention is also made of long term radiation effects. The emergency treatment of the injured before specialised aid is available, is discussed. The primary aim of treatment is to save life and to prevent further injuries and complications. Injured people must be removed as far as possible from the point of maximum radiation. Attention must also be given to decontamination

  6. Drug- and radiation-induced pulmonary fibrosis

    International Nuclear Information System (INIS)

    Uthgenannt, H.

    1976-01-01

    These two forms of pulmonary fibrosis which according to their type have nothing to do with one another, are presented as they are well suited to clarify the problems of the diagnosis of pulmonary fibrosis which is not a fixed concept for the pathologists. The frequent discrepancy found between the subjective clinical symptoms, clinical findings and X-ray and morphological pictures is indicated. (MG) [de

  7. Treatment for unstable pulmonary sequestration injury in patient with severe blunt trauma: A case report

    Directory of Open Access Journals (Sweden)

    Sakiko Hiraki

    2017-08-01

    Full Text Available Case: Pulmonary sequestration is a congenital malformation characterized by nonfunctioning tissue not communicating with the tracheobronchial tree. As the blood pressure in the artery feeding the sequestrated lung tissue is higher than that in the normal pulmonary artery, the risk of massive hemorrhage in pulmonary sequestration is high. We herein present the first case of a severe blunt trauma patient with unstable pulmonary sequestration injury. Outcome and conclusion: The mechanism of pulmonary sequestration injury is vastly different than that of injury to normal lung. We suggest that proximal feeding artery embolization should be performed before surgical intervention in patients with massive hemorrhage of pulmonary sequestration due to severe chest trauma. Keywords: Blunt trauma, Coil embolization, Massive hemorrhage, Pulmonary sequestration

  8. Selenoprotein P Inhibits Radiation-Induced Late Reactive Oxygen Species Accumulation and Normal Cell Injury

    Energy Technology Data Exchange (ETDEWEB)

    Eckers, Jaimee C.; Kalen, Amanda L.; Xiao, Wusheng; Sarsour, Ehab H.; Goswami, Prabhat C., E-mail: prabhat-goswami@uiowa.edu

    2013-11-01

    Purpose: Radiation is a common mode of cancer therapy whose outcome is often limited because of normal tissue toxicity. We have shown previously that the accumulation of radiation-induced late reactive oxygen species (ROS) precedes cell death, suggesting that metabolic oxidative stress could regulate cellular radiation response. The purpose of this study was to investigate whether selenoprotein P (SEPP1), a major supplier of selenium to tissues and an antioxidant, regulates late ROS accumulation and toxicity in irradiated normal human fibroblasts (NHFs). Methods and Materials: Flow cytometry analysis of cell viability, cell cycle phase distribution, and dihydroethidium oxidation, along with clonogenic assays, were used to measure oxidative stress and toxicity. Human antioxidant mechanisms array and quantitative real-time polymerase chain reaction assays were used to measure gene expression during late ROS accumulation in irradiated NHFs. Sodium selenite addition and SEPP1 overexpression were used to determine the causality of SEPP1 regulating late ROS accumulation and toxicity in irradiated NHFs. Results: Irradiated NHFs showed late ROS accumulation (4.5-fold increase from control; P<.05) that occurs after activation of the cell cycle checkpoint pathways and precedes cell death. The mRNA levels of CuZn- and Mn-superoxide dismutase, catalase, peroxiredoxin 3, and thioredoxin reductase 1 increased approximately 2- to 3-fold, whereas mRNA levels of cold shock domain containing E1 and SEPP1 increased more than 6-fold (P<.05). The addition of sodium selenite before the radiation treatment suppressed toxicity (45%; P<.05). SEPP1 overexpression suppressed radiation-induced late ROS accumulation (35%; P<.05) and protected NHFs from radiation-induced toxicity (58%; P<.05). Conclusion: SEPP1 mitigates radiation-induced late ROS accumulation and normal cell injury.

  9. OWN EXPERIENCE OF LASER THERAPY FOR THE PREVENTION AND TREATMENT OF EARLY AND LATE RADIATION-INDUCED SKIN INJURIES IN PATIENTS WITH BREAST CANCER AFTER SIMULTANEOUS RECONSTRUCTIVE PLASTIC SURGERY

    Directory of Open Access Journals (Sweden)

    S. I. Tkachev

    2017-01-01

    Full Text Available Low-energy laser radiation has a good anti-inflammatory and stimulating effect on the damaged tissues; therefore, it can be used for the prevention and treatment of both early and late radiation-induced skin injuries in patients receiving radiotherapy. So far, the effect of low-energy laser radiation in the prevention of radiation-induced skin damage remains poorly understood. This article presents a brief overview of the results obtained in the latest foreign studies as well as own experience of laser therapy for the prevention and treatment of both early and late radiation-induced skin injuries in patients with breast cancer after simultaneous reconstructive plastic surgery.

  10. Bio-molecular alterations induced by a chemical or radiating stress in isolated human cells

    International Nuclear Information System (INIS)

    Gault, N.

    2004-01-01

    After having recalled some aspects of radiobiology (effects of ionizing radiations, molecular targets of radiations, cellular responses with respect to the radiation), the author discusses various aspects of radio-sensitivity: intrinsic radio-sensitivity of tumoral and normal cells, DNA injuries and in vitro radio-sensitivity, genes of susceptibility to ionizing radiations, clustered injuries. Then she reports investigations performed by infrared micro-spectroscopy: characterization of pathological lines, of biological processes, of oxidative injuries induced by xenobiotics, of injuries induced by ionizing radiations

  11. The potential benefits of nicaraven to protect against radiation-induced injury in hematopoietic stem/progenitor cells with relative low dose exposures

    International Nuclear Information System (INIS)

    Ali, Haytham; Galal, Omima; Urata, Yoshishige; Goto, Shinji; Guo, Chang-Ying; Luo, Lan; Abdelrahim, Eman; Ono, Yusuke; Mostafa, Emtethal; Li, Tao-Sheng

    2014-01-01

    Highlights: • Nicaraven mitigated the radiation-induced reduction of c-kit + stem cells. • Nicaraven enhanced the function of hematopoietic stem/progenitor cells. • Complex mechanisms involved in the protection of nicaraven to radiation injury. - Abstract: Nicaraven, a hydroxyl radical-specific scavenger has been demonstrated to attenuate radiation injury in hematopoietic stem cells with 5 Gy γ-ray exposures. We explored the effect and related mechanisms of nicaraven for protecting radiation injury induced by sequential exposures to a relatively lower dose γ-ray. C57BL/6 mice were given nicaraven or placebo within 30 min before exposure to 50 mGy γ-ray daily for 30 days in sequences (cumulative dose of 1.5 Gy). Mice were victimized 24 h after the last radiation exposure, and the number, function and oxidative stress of hematopoietic stem cells were quantitatively estimated. We also compared the gene expression in these purified stem cells from mice received nicaraven and placebo treatment. Nicaraven increased the number of c-kit + stem/progenitor cells in bone marrow and peripheral blood, with a recovery rate around 60–90% of age-matched non-irradiated healthy mice. The potency of colony forming from hematopoietic stem/progenitor cells as indicator of function was completely protected with nicaraven treatment. Furthermore, nicaraven treatment changed the expression of many genes associated to DNA repair, inflammatory response, and immunomodulation in c-kit + stem/progenitor cells. Nicaraven effectively protected against damages of hematopoietic stem/progenitor cells induced by sequential exposures to a relatively low dose radiation, via complex mechanisms

  12. The potential benefits of nicaraven to protect against radiation-induced injury in hematopoietic stem/progenitor cells with relative low dose exposures

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Haytham [Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523 (Japan); Department of Medical Physiology and Cell Biology, Qena Faculty of Medicine, South Valley University (Egypt); Galal, Omima [Department of Medical Physiology and Cell Biology, Qena Faculty of Medicine, South Valley University (Egypt); Urata, Yoshishige; Goto, Shinji; Guo, Chang-Ying; Luo, Lan [Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523 (Japan); Abdelrahim, Eman [Department of Medical Histology, Qena Faculty of Medicine, South Valley University (Egypt); Ono, Yusuke [Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523 (Japan); Mostafa, Emtethal [Department of Medical Physiology and Cell Biology, Qena Faculty of Medicine, South Valley University (Egypt); Li, Tao-Sheng, E-mail: litaoshe@nagasaki-u.ac.jp [Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523 (Japan)

    2014-09-26

    Highlights: • Nicaraven mitigated the radiation-induced reduction of c-kit{sup +} stem cells. • Nicaraven enhanced the function of hematopoietic stem/progenitor cells. • Complex mechanisms involved in the protection of nicaraven to radiation injury. - Abstract: Nicaraven, a hydroxyl radical-specific scavenger has been demonstrated to attenuate radiation injury in hematopoietic stem cells with 5 Gy γ-ray exposures. We explored the effect and related mechanisms of nicaraven for protecting radiation injury induced by sequential exposures to a relatively lower dose γ-ray. C57BL/6 mice were given nicaraven or placebo within 30 min before exposure to 50 mGy γ-ray daily for 30 days in sequences (cumulative dose of 1.5 Gy). Mice were victimized 24 h after the last radiation exposure, and the number, function and oxidative stress of hematopoietic stem cells were quantitatively estimated. We also compared the gene expression in these purified stem cells from mice received nicaraven and placebo treatment. Nicaraven increased the number of c-kit{sup +} stem/progenitor cells in bone marrow and peripheral blood, with a recovery rate around 60–90% of age-matched non-irradiated healthy mice. The potency of colony forming from hematopoietic stem/progenitor cells as indicator of function was completely protected with nicaraven treatment. Furthermore, nicaraven treatment changed the expression of many genes associated to DNA repair, inflammatory response, and immunomodulation in c-kit{sup +} stem/progenitor cells. Nicaraven effectively protected against damages of hematopoietic stem/progenitor cells induced by sequential exposures to a relatively low dose radiation, via complex mechanisms.

  13. Differences in correlation of mRNA gene expression in mice sensitive and resistant to radiation-induced pulmonary fibrosis

    International Nuclear Information System (INIS)

    Johnston, C.J.; Piedboeuf, B.; Finkelstein, J.N.; Baggs, R.; Rubin, P.

    1995-01-01

    Fibrosis, characterized by the accumulation of collagen, is a late result of thoracic irradiation. The purpose of this study was to determine if extracellular matrix protein and transforming growth factor β mRNA expression are altered late in the course of pulmonary fibrosis after irradiation, and then to determine if these changes differ between two strains of mice which vary in their sensitivity to radiation. Radiation-sensitive (C57BL/6) and radiation-resistant (C3H/HeJ) mice were irradiated with a single dose of 5 or 12.5 Gy to the thorax. Total lung RNA was prepared and immobilized by Northern and slot blotting and hybridized with radiolabeled cDNA probes for collagens I, III and IV, fibronectin, and transforming growth factor β 1 and β 3 . Autoradiographic data were quantified by video densitometry and results normalized to a control probe encoding for glyceralde-hyde-3-phosphate dehydrogenase. Alterations in mRNA abundance were observed in the sensitive mice at all times, while levels in the resistant mice were unaffected until 26 weeks after irradiation. The relationship between extracellular matrix protein per se and increased mRNA abundance suggests that late matrix protein accumulation may be a function of gene expression. Differences in levels of transforming growth factor βmRNA may lead to strain-dependent variation in fibrotic response and may also contribute to the radiation-induced component of pulmonary fibrosis. 32 refs., 5 figs

  14. Mitotic delay of irradiated cells and its connection with quantity of radiation injuries

    International Nuclear Information System (INIS)

    Lobachevskij, P.N.; Fominykh, E.V.

    1989-01-01

    The study is dedicated to development of mathematical approach to interpret radiation-induced mitosic delay. An assumption is made that mitotic delay is conditioned by discrete injuries distributed in cells according to stochasticity of interaction of radiation and target substance. It is supposed to consider the problem on injuries nature causing mitotic delay and to use the developed method for accounting the effect of radiation-induced mitotic delay on registered chromosomal aberration yield. 10 refs.; 2 figs.; 3 tabs

  15. Exposure to nickel oxide nanoparticles induces pulmonary inflammation through NLRP3 inflammasome activation in rats.

    Science.gov (United States)

    Cao, Zhengwang; Fang, Yiliang; Lu, Yonghui; Qian, Fenghua; Ma, Qinglong; He, Mingdi; Pi, Huifeng; Yu, Zhengping; Zhou, Zhou

    2016-01-01

    With recent advances in the manufacture and application of nickel oxide nanoparticles (NiONPs), concerns about their adverse effects on the respiratory system are increasing. However, the underlying cellular and molecular mechanisms of NiONP-induced pulmonary toxicity remain unclear. In this study, we focused on the impacts of NiONPs on pulmonary inflammation and investigated whether the NLRP3 inflammasome is involved in NiONP-induced pulmonary inflammation and injury. NiONP suspensions were administered by single intratracheal instillation to rats, and inflammatory responses were evaluated at 3 days, 7 days, or 28 days after treatment. NiONP exposure resulted in sustained pulmonary inflammation accompanied by inflammatory cell infiltration, alveolar proteinosis, and cytokine secretion. Expression of Nlrp3 was markedly upregulated by the NiONPs, which was accompanied by overexpression of the active form of caspase-1 (p20) and interleukin (IL)-1β secretion in vivo. NiONP-induced IL-1β secretion was partially prevented by co-treatment with a caspase-1 inhibitor in macrophages. Moreover, siRNA-mediated Nlrp3 knockdown completely attenuated NiONP-induced cytokine release and caspase-1 activity in macrophages in vitro. In addition, NiONP-induced NLRP3 inflammasome activation requires particle uptake and reactive oxygen species production. Collectively, our findings suggest that the NLRP3 inflammasome participates in NiONP-induced pulmonary inflammation and offer new strategies to combat the pulmonary toxicity induced by NiONPs.

  16. Role of sphingolipids in murine radiation-induced lung injury: protection by sphingosine 1-phosphate analogs

    OpenAIRE

    Mathew, Biji; Jacobson, Jeffrey R.; Berdyshev, Evgeny; Huang, Yong; Sun, Xiaoguang; Zhao, Yutong; Gerhold, Lynnette M.; Siegler, Jessica; Evenoski, Carrie; Wang, Ting; Zhou, Tong; Zaidi, Rafe; Moreno-Vinasco, Liliana; Bittman, Robert; Chen, Chin Tu

    2011-01-01

    Clinically significant radiation-induced lung injury (RILI) is a common toxicity in patients administered thoracic radiotherapy. Although the molecular etiology is poorly understood, we previously characterized a murine model of RILI in which alterations in lung barrier integrity surfaced as a potentially important pathobiological event and genome-wide lung gene mRNA levels identified dysregulation of sphingolipid metabolic pathway genes. We hypothesized that sphingolipid signaling components...

  17. ROS Mediates Radiation-Induced Differentiation in Human Lung Fibroblast

    International Nuclear Information System (INIS)

    Park, Sa Rah; Ahn, Ji Yeon; Kim, Mi Hyeung; Lim, Min Jin; Yun, Yeon Sook; Song, Jie Young

    2009-01-01

    One of the most common tumors worldwide is lung cancer and the number of patients with lung cancer received radiotherapy is increasing rapidly. Although radiotherapy may have lots of advantages, it can also induce serious adverse effects such as acute radiation pneumonitis and pulmonary fibrosis. Pulmonary fibrosis is characterized by excessive production of smooth muscle actin-alpha (a-SMA) and accumulation of extracellular matrix (ECM) such as collagen and fibronectin. There has been a great amount of research about fibrosis but the exact mechanism causing the reaction is not elucidated especially in radiation-induced fibrosis. Until now it has been known that several factors such as transforming growth factor (TGF-b), tumor necrosis factor (TNF), IL-6, platelet-derived growth factor (PDGF) and reactive oxygen species are related to fibrosis. It is also reported that reactive oxygen species (ROS) can be induced by radiation and can act as a second messenger in various signaling pathways. Therefore we focused on the role of ROS in radiation induced fibrosis. Here, we suggest that irradiation generate ROS mainly through NOX4, result in differentiation of lung fibroblast into myofibroblast

  18. Inhibition of intestinal epithelial apoptosis improves survival in a murine model of radiation combined injury.

    Directory of Open Access Journals (Sweden)

    Enjae Jung

    Full Text Available World conditions place large populations at risk from ionizing radiation (IR from detonation of dirty bombs or nuclear devices. In a subgroup of patients, ionizing radiation exposure would be followed by a secondary infection. The effects of radiation combined injury are potentially more lethal than either insult in isolation. The purpose of this study was to determine mechanisms of mortality and possible therapeutic targets in radiation combined injury. Mice were exposed to IR with 2.5 Gray (Gy followed four days later by intratracheal methicillin-resistant Staphylococcus aureus (MRSA. While either IR or MRSA alone yielded 100% survival, animals with radiation combined injury had 53% survival (p = 0.01. Compared to IR or MRSA alone, mice with radiation combined injury had increased gut apoptosis, local and systemic bacterial burden, decreased splenic CD4 T cells, CD8 T cells, B cells, NK cells, and dendritic cells, and increased BAL and systemic IL-6 and G-CSF. In contrast, radiation combined injury did not alter lymphocyte apoptosis, pulmonary injury, or intestinal proliferation compared to IR or MRSA alone. In light of the synergistic increase in gut apoptosis following radiation combined injury, transgenic mice that overexpress Bcl-2 in their intestine and wild type mice were subjected to IR followed by MRSA. Bcl-2 mice had decreased gut apoptosis and improved survival compared to WT mice (92% vs. 42%; p<0.01. These data demonstrate that radiation combined injury results in significantly higher mortality than could be predicted based upon either IR or MRSA infection alone, and that preventing gut apoptosis may be a potential therapeutic target.

  19. Inhibition of intestinal epithelial apoptosis improves survival in a murine model of radiation combined injury.

    Science.gov (United States)

    Jung, Enjae; Perrone, Erin E; Brahmamdan, Pavan; McDonough, Jacquelyn S; Leathersich, Ann M; Dominguez, Jessica A; Clark, Andrew T; Fox, Amy C; Dunne, W Michael; Hotchkiss, Richard S; Coopersmith, Craig M

    2013-01-01

    World conditions place large populations at risk from ionizing radiation (IR) from detonation of dirty bombs or nuclear devices. In a subgroup of patients, ionizing radiation exposure would be followed by a secondary infection. The effects of radiation combined injury are potentially more lethal than either insult in isolation. The purpose of this study was to determine mechanisms of mortality and possible therapeutic targets in radiation combined injury. Mice were exposed to IR with 2.5 Gray (Gy) followed four days later by intratracheal methicillin-resistant Staphylococcus aureus (MRSA). While either IR or MRSA alone yielded 100% survival, animals with radiation combined injury had 53% survival (p = 0.01). Compared to IR or MRSA alone, mice with radiation combined injury had increased gut apoptosis, local and systemic bacterial burden, decreased splenic CD4 T cells, CD8 T cells, B cells, NK cells, and dendritic cells, and increased BAL and systemic IL-6 and G-CSF. In contrast, radiation combined injury did not alter lymphocyte apoptosis, pulmonary injury, or intestinal proliferation compared to IR or MRSA alone. In light of the synergistic increase in gut apoptosis following radiation combined injury, transgenic mice that overexpress Bcl-2 in their intestine and wild type mice were subjected to IR followed by MRSA. Bcl-2 mice had decreased gut apoptosis and improved survival compared to WT mice (92% vs. 42%; p<0.01). These data demonstrate that radiation combined injury results in significantly higher mortality than could be predicted based upon either IR or MRSA infection alone, and that preventing gut apoptosis may be a potential therapeutic target.

  20. Carnosine may reduce lung injury caused by radiation therapy.

    Science.gov (United States)

    Guney, Yildiz; Turkcu, Ummuhani Ozel; Hicsonmez, Ayse; Andrieu, Meltem Nalca; Guney, H Zafer; Bilgihan, Ayse; Kurtman, Cengiz

    2006-01-01

    Ionising radiation is known one of the most effective tools in the therapy of cancer but in many thoracic cancers, the total prescribed dose of radiation that can be safely administered to the target volume is limited by the risk of complications arising in the normal lung tissue. One of the major reasons for cellular injury after radiation is the formation of reactive oxygen species (ROS). Radiation pneumonitis is an acute phase side-effect which generally subsides after a few weeks and is followed by a chronic phase characterized by inflammation and fibrosis, that can develop months or years after irradiation. Carnosine is a dipeptide composed by the amino acids beta-histidine and l-alanine. The exact biological role of carnosine is not totally understood, but several studies have demonstrated that it possesses strong and specific antioxidant properties, protects against radiation damage,and promotes wound healing. The antioxidant mechanism of carnosine is attributed to its chelating effect against metal ions, superoxide dismutase (SOD)-like activity, ROS and free radicals scavenging ability . Either its antioxidant or anti-inflammatuar properties, we propose that carnosine ameliorates irradiation-induced lung injury. Thus, supplementing cancer patients to whom applied radiation therapy with carnosine, may provide an alleviation of the symptoms due to radiation-induced lung injury. This issue warrants further studies.

  1. Role of sphingolipids in murine radiation-induced lung injury: protection by sphingosine 1-phosphate analogs

    Science.gov (United States)

    Mathew, Biji; Jacobson, Jeffrey R.; Berdyshev, Evgeny; Huang, Yong; Sun, Xiaoguang; Zhao, Yutong; Gerhold, Lynnette M.; Siegler, Jessica; Evenoski, Carrie; Wang, Ting; Zhou, Tong; Zaidi, Rafe; Moreno-Vinasco, Liliana; Bittman, Robert; Chen, Chin Tu; LaRiviere, Patrick J.; Sammani, Saad; Lussier, Yves A.; Dudek, Steven M.; Natarajan, Viswanathan; Weichselbaum, Ralph R.; Garcia, Joe G. N.

    2011-01-01

    Clinically significant radiation-induced lung injury (RILI) is a common toxicity in patients administered thoracic radiotherapy. Although the molecular etiology is poorly understood, we previously characterized a murine model of RILI in which alterations in lung barrier integrity surfaced as a potentially important pathobiological event and genome-wide lung gene mRNA levels identified dysregulation of sphingolipid metabolic pathway genes. We hypothesized that sphingolipid signaling components serve as modulators and novel therapeutic targets of RILI. Sphingolipid involvement in murine RILI was confirmed by radiation-induced increases in lung expression of sphingosine kinase (SphK) isoforms 1 and 2 and increases in the ratio of ceramide to sphingosine 1-phosphate (S1P) and dihydro-S1P (DHS1P) levels in plasma, bronchoalveolar lavage fluid, and lung tissue. Mice with a targeted deletion of SphK1 (SphK1−/−) or with reduced expression of S1P receptors (S1PR1+/−, S1PR2−/−, and S1PR3−/−) exhibited marked RILI susceptibility. Finally, studies of 3 potent vascular barrier-protective S1P analogs, FTY720, (S)-FTY720-phosphonate (fTyS), and SEW-2871, identified significant RILI attenuation and radiation-induced gene dysregulation by the phosphonate analog, fTyS (0.1 and 1 mg/kg i.p., 2×/wk) and to a lesser degree by SEW-2871 (1 mg/kg i.p., 2×/wk), compared with those in controls. These results support the targeting of S1P signaling as a novel therapeutic strategy in RILI.—Mathew, B., Jacobson, J. R., Berdyshev, E., Huang, Y., Sun, X., Zhao, Y., Gerhold, L. M., Siegler, J., Evenoski, C., Wang, T., Zhou, T., Zaidi, R., Moreno-Vinasco, L., Bittman, R., Chen, C. T., LaRiviere, P. J., Sammani, S., Lussier, Y. A., Dudek, S. M., Natarajan, V., Weichselbaum, R. R., Garcia, J. G. N. Role of sphingolipids in murine radiation-induced lung injury: protection by sphingosine 1-phosphate analogs. PMID:21712494

  2. CT analysis of pulmonary injuries from blunt chest trauma

    International Nuclear Information System (INIS)

    Konno, Shoko

    1996-01-01

    The purpose of this paper is to analyze the CT findings of pulmonary parenchymal injuries due to blunt chest trauma and to categorize CT findings on the basis of their outcome. The materials of this study consist of 62 patients who had pulmonary injuries on CT obtained within 6 hours after blunt chest trauma. CT findings were analysed with regards to the shape, size, and distribution of the lesions. Follow-up CT scans were obtained in 35 patients at intervals from 1 day to 1 month after the initial CT study. CT showed ill-defined opacities in 59 patients (64 lesions in the peripheral area and 95 in the non-peripheral area) and pulmonary nodules with or without cavitary lesions in 30 patients (7 lesions in the peripheral area and 31 in the non-peripheral area). Follow-up CT allowed the classification of these pulmonary injuries into 3 types; the non-peripheral, ill-defined opacities showing immediate clearing, nodules with or without cavitary lesions over 1 cm in diameter showing prolongation, and the peripheral ill-defined opacities adjacent to the thoracic cage, and small nodules with or without cavitary lesions within 1 cm in diameter, showing various courses. CT has marked advantage over plain chest radiographs not only in the detection rate but in accurate estimation of the prognosis of the lesions. (author)

  3. Correlation factor analysis between radiation pneumonitis and chemo-radiotherapy in breast cancer patients

    International Nuclear Information System (INIS)

    Li Huiping; Wang Junjie; Ma Liwen; Zhang Shulan; Deng Huijing; Jia Tingzhen

    2004-01-01

    Objective: To investigate the relationship between radiotherapy-induced lung injury and chemotherapy agents as well as other factors. Methods: A total of 85 breast cancer patients received radiotherapy with sequential or concurrent chemotherapy after surgery were analysed for radiation dose, chemotherapy schedule, age, and lung disease history. Results: Five patients had clinical symptoms of radiation pneumonitis, one of them was necessary to treat and 16 patients developed radiological changes (18.8%). Close relationship was noted between incidence of radiation pneumonitis and radiation dose, timing and drugs used in chemotherapy and lung disease history. Conclusion: High irradiation dose, concurrent chemotherapy, and lung disease history can increase the rate of radiotherapy-induced pulmonary injury in breast cancer patients. (authors)

  4. Radiation injury of the skin following diagnostic and interventional fluoroscopic procedures

    International Nuclear Information System (INIS)

    Koenig, T.R.; Wagner, L.K.; Mettler, F.A.

    2001-01-01

    Many radiation injuries to the skin, resulting from diagnostic and interventional fluoroscopic procedures, have been reported in recent years. In some cases skin damage was severe and debilitating. We analyzed 72 reports of skin injuries for progression and location of injury, type and number of procedures, and contributing patient and operator factors. Most cases (46) were related to coronary angiography and percutaneous transluminal coronary angioplasty (PTCA). A smaller number was documented after cardiac radiofrequency catheter ablation (12), transjugular intrahepatic portosystemic shunt (TIPS) placement (7), neuroradiological interventions (3) and other procedures (4). Important factors leading to skin injuries were long exposure times over the same skin area, use of high dose rates, irradiation through thick tissue masses, hypersensitivity to radiation, and positioning of arms or breasts into the radiation entrance beam. Physicians were frequently unaware of the high radiation doses involved and did not recognize the injuries as radiation induced. Based on these findings, recommendations to reduce dose and improve patient care are provided. (author)

  5. Small-for-Size Liver Transplantation Increases Pulmonary Injury in Rats: Prevention by NIM811

    Directory of Open Access Journals (Sweden)

    Qinlong Liu

    2012-01-01

    Full Text Available Pulmonary complications after liver transplantation (LT often cause mortality. This study investigated whether small-for-size LT increases acute pulmonary injury and whether NIM811 which improves small-for-size liver graft survival attenuates LT-associated lung injury. Rat livers were reduced to 50% of original size, stored in UW-solution with and without NIM811 (5 μM for 6 h, and implanted into recipients of the same or about twice the donor weight, resulting in half-size (HSG and quarter-size grafts (QSG, respectively. Liver injury increased and regeneration was suppressed after QSG transplantation as expected. NIM811 blunted these alterations >75%. Pulmonary histological alterations were minimal at 5–18 h after LT. At 38 h, neutrophils and monocytes/macrophage infiltration, alveolar space exudation, alveolar septal thickening, oxidative/nitrosative protein adduct formation, and alveolar epithelial cell/capillary endothelial apoptosis became overt in the lungs of QSG recipients, but these alterations were mild in full-size and HSG recipients. Liver pretreatment with NIM811 markedly decreased pulmonary injury in QSG recipients. Hepatic TNFα and IL-1β mRNAs and pulmonary ICAM-1 expression were markedly higher after QSG transplantation, which were all decreased by NIM811. Together, dysfunctional small-for-size grafts produce toxic cytokines, leading to lung inflammation and injury. NIM811 decreased toxic cytokine formation, thus attenuating pulmonary injury after small-for-size LT.

  6. Mesenchymal Stem Cells Alleviate LPS-Induced Acute Lung Injury in Mice by MiR-142a-5p-Controlled Pulmonary Endothelial Cell Autophagy

    Directory of Open Access Journals (Sweden)

    Zichao Zhou

    2016-01-01

    Full Text Available Background/Aims: Damages of pulmonary endothelial cells (PECs represent a critical pathological process during acute lung injury (ALI, and precede pulmonary epithelial cell injury, and long-term lung dysfunction. Transplantation of mesenchymal stem cells (MSCs has proven therapeutic effects on ALI, whereas the underlying mechanisms remain ill-defined. Method: We transplanted MSCs in mice and then induced ALI using Lipopolysaccharides (LPS. We analyzed the changes in permeability index and lung histology. Mouse PECs were isolated by flow cytometry based on CD31 expression and then analyzed for autophagy-associated factors LC3 and Beclin-1 by Western blot. Beclin-1 mRNA was determined by RT-qPCR. In vitro, we performed bioinformatics analyses to identify the MSCs-regulated miRNAs that target Beclin-1, and confirmed that the binding was functional by 3'-UTR luciferase reporter assay. Results: We found that MSCs transplantation significantly reduced the severity of LPS-induced ALI in mice. MSCs increased autophagy of PECs to promote PEC survival. MSCs increased Beclin-1 protein but not mRNA. MiR-142a-5p was found to target the 3'-UTR of Beclin-1 mRNA to inhibit its protein translation in PECs. MSCs reduced the levels of miR-142a-5p in PECs from LPS-treated mice. Conclusion: MSCs may alleviate LPS-ALI through downregulation of miR-142a-5p, which allows PECs to increase Beclin-1-mediated cell autophagy.

  7. CT evaluation of pulmonary parenchymal injury due to blunt chest trauma and its clinical significance

    International Nuclear Information System (INIS)

    Niimi, Hiroshi

    1990-01-01

    The CT findings of pulmonary parenchymal injury due to blunt chest trauma in 73 patients and their clinical significance were analyzed. CT was obtained within 6 hours after trauma. Findings were analyzed according to the number of injured segments and severity which was classified into three grades. A correlation was also made with arterial blood PaO 2 and thoracic complications. Pulmonary parenchymal injury was identified in multisegmental portions bilaterally in most cases. It was most frequently observed in the posterior portion of the lung such as segment 6. More than 50% of lesions were classified as Grade 1. Pulmonary laceration, defined as patchy density with the cavitary lesion (Grade 3), was noted in 9.2%. There was a good correlation between extent of pulmonary injury and degree of hypoxia. The correlation of pneumothorax was also found with extensive lesion and frequency of Grade 3 lesion. Cases with pulmonary laceration tend to have extensive injury, and be related to the degree of hypoxia. In conclusion, CT evaluation of pulmonary parenchymal injury is valuable not only for morphological evaluation but also for estimation of hypoxia. (author)

  8. CT evaluation of pulmonary parenchymal injury due to blunt chest trauma and its clinical significance

    Energy Technology Data Exchange (ETDEWEB)

    Niimi, Hiroshi (St. Marianna University School of Medicine, Kawasaki, Kanagawa (Japan))

    1990-10-01

    The CT findings of pulmonary parenchymal injury due to blunt chest trauma in 73 patients and their clinical significance were analyzed. CT was obtained within 6 hours after trauma. Findings were analyzed according to the number of injured segments and severity which was classified into three grades. A correlation was also made with arterial blood PaO{sub 2} and thoracic complications. Pulmonary parenchymal injury was identified in multisegmental portions bilaterally in most cases. It was most frequently observed in the posterior portion of the lung such as segment 6. More than 50% of lesions were classified as Grade 1. Pulmonary laceration, defined as patchy density with the cavitary lesion (Grade 3), was noted in 9.2%. There was a good correlation between extent of pulmonary injury and degree of hypoxia. The correlation of pneumothorax was also found with extensive lesion and frequency of Grade 3 lesion. Cases with pulmonary laceration tend to have extensive injury, and be related to the degree of hypoxia. In conclusion, CT evaluation of pulmonary parenchymal injury is valuable not only for morphological evaluation but also for estimation of hypoxia. (author).

  9. Reversible alterations in cultured pulmonary artery endothelial cell monolayer morphology and albumin permeability induced by ionizing radiation

    International Nuclear Information System (INIS)

    Friedman, M.; Ryan, U.S.; Davenport, W.C.; Chaney, E.L.; Strickland, D.L.; Kwock, L.

    1986-01-01

    The effects of ionizing irradiation (0, 600, 1500, or 3000 rads) on the permeability of pulmonary endothelial monolayers to albumin were studied. Pulmonary endothelial cells were grown to confluence on gelatin-coated polycarbonate filters, placed in serum-free medium, and exposed to a 60 Co source. The monolayers were placed in modified flux chambers 24 hours after irradiation; 125 I-albumin was added to the upper well, and both the upper and lower wells were serially sampled over 4 hours. The amount of albumin transferred from the upper well/hour over the period of steady-state clearance (90-240 min after addition of 125 I-albumin) was 2.8 +/- 0.2% in control monolayers and was increased in monolayers exposed to 1500 or 3000 rads (increase of 63 +/- 10% and 61 +/- 10%, respectively, P less than 0.01). No increase was found in monolayers exposed to 600 rads. The increases in endothelial albumin transfer rates were associated with morphologic evidence of monolayer disruption and endothelial injury which paralleled the changes in albumin permeability. Dose-dependent alterations in endothelial actin filament organization were also found. Incubation of the monolayers exposed to 3000 rads with medium supplemented with 10% fetal calf serum for 24 hours resulted in normalization of albumin permeability, improvement in morphologic appearance of the monolayers, and reorganization of the actin filament structure. These studies demonstrate that ionizing radiation is an active principle in the reversible disorganization of cultured pulmonary endothelial cell monolayers without the need of other cell types or serum components

  10. Overexpression of IL-38 protein in anticancer drug-induced lung injury and acute exacerbation of idiopathic pulmonary fibrosis.

    Science.gov (United States)

    Tominaga, Masaki; Okamoto, Masaki; Kawayama, Tomotaka; Matsuoka, Masanobu; Kaieda, Shinjiro; Sakazaki, Yuki; Kinoshita, Takashi; Mori, Daisuke; Inoue, Akira; Hoshino, Tomoaki

    2017-09-01

    Interleukin (IL)-38, a member of the IL-1 family, shows high homology to IL-1 receptor antagonist (IL-1Ra) and IL-36 receptor antagonist (IL-36Ra). Its function in interstitial lung disease (ILD) is still unknown. To determine the expression pattern of IL-38 mRNA, a panel of cDNAs derived from various tissues was analyzed by quantitative real-time PCR. Immunohistochemical reactivity with anti-human IL-38 monoclonal antibody (clone H127C) was evaluated semi-quantitatively in lung tissue samples from 12 patients with idiopathic pulmonary fibrosis/usual interstitial pneumonia (IPF/UIP), 5 with acute exacerbation of IPF, and 10 with anticancer drug-induced ILD (bleomycin in 5 and epidermal growth factor receptor-tyrosine kinase inhibitor in 5). Control lung tissues were obtained from areas of normal lung in 22 lung cancer patients who underwent extirpation surgery. IL-38 transcripts were strongly expressed in the lung, spleen, synoviocytes, and peripheral blood mononuclear cells, and at a lower level in pancreas and muscle. IL-38 protein was not strongly expressed in normal pulmonary alveolar tissues in all 22 control lungs. In contrast, IL-38 was overexpressed in the lungs of 4 of 5 (80%) patients with acute IPF exacerbation and 100% (10/10) of the patients with drug-induced ILD. IL-38 overexpression was limited to hyperplastic type II pneumocytes, which are considered to reflect regenerative change following diffuse alveolar damage in ILD. IL-38 may play an important role in acute and/or chronic inflammation in anticancer drug-induced lung injury and acute exacerbation of IPF. Copyright © 2017 The Japanese Respiratory Society. Published by Elsevier B.V. All rights reserved.

  11. Radiation-induced skin injury in the animal model of scleroderma: implications for post-radiotherapy fibrosis

    International Nuclear Information System (INIS)

    Kumar, Sanath; Kolozsvary, Andrew; Kohl, Robert; Lu, Mei; Brown, Stephen; Kim, Jae Ho

    2008-01-01

    Radiation therapy is generally contraindicated for cancer patients with collagen vascular diseases (CVD) such as scleroderma due to an increased risk of fibrosis. The tight skin (TSK) mouse has skin which, in some respects, mimics that of patients with scleroderma. The skin radiation response of TSK mice has not been previously reported. If TSK mice are shown to have radiation sensitive skin, they may prove to be a useful model to examine the mechanisms underlying skin radiation injury, protection, mitigation and treatment. The hind limbs of TSK and parental control C57BL/6 mice received a radiation exposure sufficient to cause approximately the same level of acute injury. Endpoints included skin damage scored using a non-linear, semi-quantitative scale and tissue fibrosis assessed by measuring passive leg extension. In addition, TGF-β1 cytokine levels were measured monthly in skin tissue. Contrary to our expectations, TSK mice were more resistant (i.e. 20%) to radiation than parental control mice. Although acute skin reactions were similar in both mouse strains, radiation injury in TSK mice continued to decrease with time such that several months after radiation there was significantly less skin damage and leg contraction compared to C57BL/6 mice (p < 0.05). Consistent with the expected association of transforming growth factor beta-1 (TGF-β1) with late tissue injury, levels of the cytokine were significantly higher in the skin of the C57BL/6 mouse compared to TSK mouse at all time points (p < 0.05). TSK mice are not recommended as a model of scleroderma involving radiation injury. The genetic and molecular basis for reduced radiation injury observed in TSK mice warrants further investigation particularly to identify mechanisms capable of reducing tissue fibrosis after radiation injury

  12. Melatonin as Protection Against Radiation Injury

    DEFF Research Database (Denmark)

    Zetner, D.; Andersen, L. P H; Rosenberg, J.

    2016-01-01

    Introduction: Radiation is widely used in the treatment of various cancers and in radiological imaging procedures. Ionizing radiation causes adverse effects, leading to decreased quality of life in patients, by releasing free radicals that cause oxidative stress and tissue damage. The sleep......-hormone melatonin is a free radical scavenger, and induces several anti-oxidative enzymes. This review investigates the scientific literature on the protective effects of melatonin against exposure to ionizing radiation, and discusses the clinical potential of melatonin as prophylactic treatment against ionizing...... and protected against radiation enteritis. These protective effects were only documented when melatonin was administered prior to exposure to ionizing radiation. Discussion: This review documents that melatonin effectively protects animals against injury to healthy tissues from ionizing radiation. However...

  13. International spinal cord injury pulmonary function basic data set.

    Science.gov (United States)

    Biering-Sørensen, F; Krassioukov, A; Alexander, M S; Donovan, W; Karlsson, A-K; Mueller, G; Perkash, I; Sheel, A William; Wecht, J; Schilero, G J

    2012-06-01

    To develop the International Spinal Cord Injury (SCI) Pulmonary Function Basic Data Set within the framework of the International SCI Data Sets in order to facilitate consistent collection and reporting of basic bronchopulmonary findings in the SCI population. International. The SCI Pulmonary Function Data Set was developed by an international working group. The initial data set document was revised on the basis of suggestions from members of the Executive Committee of the International SCI Standards and Data Sets, the International Spinal Cord Society (ISCoS) Executive and Scientific Committees, American Spinal Injury Association (ASIA) Board, other interested organizations and societies and individual reviewers. In addition, the data set was posted for 2 months on ISCoS and ASIA websites for comments. The final International SCI Pulmonary Function Data Set contains questions on the pulmonary conditions diagnosed before spinal cord lesion,if available, to be obtained only once; smoking history; pulmonary complications and conditions after the spinal cord lesion, which may be collected at any time. These data include information on pneumonia, asthma, chronic obstructive pulmonary disease and sleep apnea. Current utilization of ventilator assistance including mechanical ventilation, diaphragmatic pacing, phrenic nerve stimulation and Bi-level positive airway pressure can be reported, as well as results from pulmonary function testing includes: forced vital capacity, forced expiratory volume in one second and peak expiratory flow. The complete instructions for data collection and the data sheet itself are freely available on the website of ISCoS (http://www.iscos.org.uk).

  14. Trauma hemorrhagic shock-induced lung injury involves a gut-lymph-induced TLR4 pathway in mice.

    Directory of Open Access Journals (Sweden)

    Diego C Reino

    Full Text Available Injurious non-microbial factors released from the stressed gut during shocked states contribute to the development of acute lung injury (ALI and multiple organ dysfunction syndrome (MODS. Since Toll-like receptors (TLR act as sensors of tissue injury as well as microbial invasion and TLR4 signaling occurs in both sepsis and noninfectious models of ischemia/reperfusion (I/R injury, we hypothesized that factors in the intestinal mesenteric lymph after trauma hemorrhagic shock (T/HS mediate gut-induced lung injury via TLR4 activation.The concept that factors in T/HS lymph exiting the gut recreates ALI is evidenced by our findings that the infusion of porcine lymph, collected from animals subjected to global T/HS injury, into naïve wildtype (WT mice induced lung injury. Using C3H/HeJ mice that harbor a TLR4 mutation, we found that TLR4 activation was necessary for the development of T/HS porcine lymph-induced lung injury as determined by Evan's blue dye (EBD lung permeability and myeloperoxidase (MPO levels as well as the induction of the injurious pulmonary iNOS response. TRIF and Myd88 deficiency fully and partially attenuated T/HS lymph-induced increases in lung permeability respectively. Additional studies in TLR2 deficient mice showed that TLR2 activation was not involved in the pathology of T/HS lymph-induced lung injury. Lastly, the lymph samples were devoid of bacteria, endotoxin and bacterial DNA and passage of lymph through an endotoxin removal column did not abrogate the ability of T/HS lymph to cause lung injury in naïve mice.Our findings suggest that non-microbial factors in the intestinal mesenteric lymph after T/HS are capable of recreating T/HS-induced lung injury via TLR4 activation.

  15. Relative Tissue Factor Deficiency Attenuates Ventilator-Induced Coagulopathy but Does Not Protect against Ventilator-Induced Lung Injury in Mice

    Directory of Open Access Journals (Sweden)

    Esther K. Wolthuis

    2012-01-01

    Full Text Available Preventing tissue-factor-(TF- mediated systemic coagulopathy improves outcome in models of sepsis. Preventing TF-mediated pulmonary coagulopathy could attenuate ventilator-induced lung injury (VILI. We investigated the effect of relative TF deficiency on pulmonary coagulopathy and inflammation in a murine model of VILI. Heterozygous TF knockout (TF+/− mice and their wild-type (TF+/+ littermates were sedated (controls or sedated, tracheotomized, and mechanically ventilated with either low or high tidal volumes for 5 hours. Mechanical ventilation resulted in pulmonary coagulopathy and inflammation, with more injury after mechanical ventilation with higher tidal volumes. Compared with TF+/+ mice, TF+/− mice demonstrated significantly lower pulmonary thrombin-antithrombin complex levels in both ventilation groups. There were, however, no differences in lung wet-to-dry ratio, BALF total protein levels, neutrophil influx, and lung histopathology scores between TF+/− and TF+/+ mice. Notably, pulmonary levels of cytokines were significantly higher in TF+/− as compared to TF+/+ mice. Systemic levels of cytokines were not altered by the relative absence of TF. TF deficiency is associated with decreased pulmonary coagulation independent of the ventilation strategy. However, relative TF deficiency does not reduce VILI and actually results in higher pulmonary levels of inflammatory mediators.

  16. Obesity-Induced Endoplasmic Reticulum Stress Causes Lung Endothelial Dysfunction and Promotes Acute Lung Injury.

    Science.gov (United States)

    Shah, Dilip; Romero, Freddy; Guo, Zhi; Sun, Jianxin; Li, Jonathan; Kallen, Caleb B; Naik, Ulhas P; Summer, Ross

    2017-08-01

    Obesity is a significant risk factor for acute respiratory distress syndrome. The mechanisms underlying this association are unknown. We recently showed that diet-induced obese mice exhibit pulmonary vascular endothelial dysfunction, which is associated with enhanced susceptibility to LPS-induced acute lung injury. Here, we demonstrate that lung endothelial dysfunction in diet-induced obese mice coincides with increased endoplasmic reticulum (ER) stress. Specifically, we observed enhanced expression of the major sensors of misfolded proteins, including protein kinase R-like ER kinase, inositol-requiring enzyme α, and activating transcription factor 6, in whole lung and in primary lung endothelial cells isolated from diet-induced obese mice. Furthermore, we found that primary lung endothelial cells exposed to serum from obese mice, or to saturated fatty acids that mimic obese serum, resulted in enhanced expression of markers of ER stress and the induction of other biological responses that typify the lung endothelium of diet-induced obese mice, including an increase in expression of endothelial adhesion molecules and a decrease in expression of endothelial cell-cell junctional proteins. Similar changes were observed in lung endothelial cells and in whole-lung tissue after exposure to tunicamycin, a compound that causes ER stress by blocking N-linked glycosylation, indicating that ER stress causes endothelial dysfunction in the lung. Treatment with 4-phenylbutyric acid, a chemical protein chaperone that reduces ER stress, restored vascular endothelial cell expression of adhesion molecules and protected against LPS-induced acute lung injury in diet-induced obese mice. Our work indicates that fatty acids in obese serum induce ER stress in the pulmonary endothelium, leading to pulmonary endothelial cell dysfunction. Our work suggests that reducing protein load in the ER of pulmonary endothelial cells might protect against acute respiratory distress syndrome in obese

  17. Connective tissue growth factor stimulates the proliferation, migration and differentiation of lung fibroblasts during paraquat-induced pulmonary fibrosis.

    Science.gov (United States)

    Yang, Zhizhou; Sun, Zhaorui; Liu, Hongmei; Ren, Yi; Shao, Danbing; Zhang, Wei; Lin, Jinfeng; Wolfram, Joy; Wang, Feng; Nie, Shinan

    2015-07-01

    It is well established that paraquat (PQ) poisoning can cause severe lung injury during the early stages of exposure, finally leading to irreversible pulmonary fibrosis. Connective tissue growth factor (CTGF) is an essential growth factor that is involved in tissue repair and pulmonary fibrogenesis. In the present study, the role of CTGF was examined in a rat model of pulmonary fibrosis induced by PQ poisoning. Histological examination revealed interstitial edema and extensive cellular thickening of interalveolar septa at the early stages of poisoning. At 2 weeks after PQ administration, lung tissue sections exhibited a marked thickening of the alveolar walls with an accumulation of interstitial cells with a fibroblastic appearance. Masson's trichrome staining revealed a patchy distribution of collagen deposition, indicating pulmonary fibrogenesis. Western blot analysis and immunohistochemical staining of tissue samples demonstrated that CTGF expression was significantly upregulated in the PQ-treated group. Similarly, PQ treatment of MRC-5 human lung fibroblast cells caused an increase in CTGF in a dose-dependent manner. Furthermore, the addition of CTGF to MRC-5 cells triggered cellular proliferation and migration. In addition, CTGF induced the differentiation of fibroblasts to myofibroblasts, as was evident from increased expression of α-smooth muscle actin (α-SMA) and collagen. These findings demonstrate that PQ causes increased CTGF expression, which triggers proliferation, migration and differentiation of lung fibroblasts. Therefore, CTGF may be important in PQ-induced pulmonary fibrogenesis, rendering this growth factor a potential pharmacological target for reducing lung injury.

  18. Nicotinamide exacerbates hypoxemia in ventilator-induced lung injury independent of neutrophil infiltration.

    Directory of Open Access Journals (Sweden)

    Heather D Jones

    development of significant hypoxemia. These findings suggest that pulmonary neutrophilia is not linked to hypoxemia in ventilator-induced lung injury, and that nicotinamide exacerbates hypoxemia during VILI.

  19. Attenuation of acute nitrogen mustard-induced lung injury, inflammation and fibrogenesis by a nitric oxide synthase inhibitor

    Energy Technology Data Exchange (ETDEWEB)

    Malaviya, Rama; Venosa, Alessandro [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States); Hall, LeRoy [Drug Safety Sciences, Johnson and Johnson, Raritan, NJ 08869 (United States); Gow, Andrew J. [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States); Sinko, Patrick J. [Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States); Laskin, Jeffrey D. [Department of Environmental and Occupational Medicine, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ 08854 (United States); Laskin, Debra L., E-mail: laskin@eohsi.rutgers.edu [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States)

    2012-12-15

    Nitrogen mustard (NM) is a toxic vesicant known to cause damage to the respiratory tract. Injury is associated with increased expression of inducible nitric oxide synthase (iNOS). In these studies we analyzed the effects of transient inhibition of iNOS using aminoguanidine (AG) on NM-induced pulmonary toxicity. Rats were treated intratracheally with 0.125 mg/kg NM or control. Bronchoalveolar lavage fluid (BAL) and lung tissue were collected 1 d–28 d later and lung injury, oxidative stress and fibrosis assessed. NM exposure resulted in progressive histopathological changes in the lung including multifocal lesions, perivascular and peribronchial edema, inflammatory cell accumulation, alveolar fibrin deposition, bronchiolization of alveolar septal walls, and fibrosis. This was correlated with trichrome staining and expression of proliferating cell nuclear antigen (PCNA). Expression of heme oxygenase (HO)-1 and manganese superoxide dismutase (Mn-SOD) was also increased in the lung following NM exposure, along with levels of protein and inflammatory cells in BAL, consistent with oxidative stress and alveolar-epithelial injury. Both classically activated proinflammatory (iNOS{sup +} and cyclooxygenase-2{sup +}) and alternatively activated profibrotic (YM-1{sup +} and galectin-3{sup +}) macrophages appeared in the lung following NM administration; this was evident within 1 d, and persisted for 28 d. AG administration (50 mg/kg, 2 ×/day, 1 d–3 d) abrogated NM-induced injury, oxidative stress and inflammation at 1 d and 3 d post exposure, with no effects at 7 d or 28 d. These findings indicate that nitric oxide generated via iNOS contributes to acute NM-induced lung toxicity, however, transient inhibition of iNOS is not sufficient to protect against pulmonary fibrosis. -- Highlights: ► Nitrogen mustard (NM) induces acute lung injury and fibrosis. ► Pulmonary toxicity is associated with increased expression of iNOS. ► Transient inhibition of iNOS attenuates acute

  20. Seawater-drowning-induced acute lung injury: From molecular mechanisms to potential treatments.

    Science.gov (United States)

    Jin, Faguang; Li, Congcong

    2017-06-01

    Drowning is a crucial public safety problem and is the third leading cause of accidental fatality, claiming ~372,000 lives annually, worldwide. In near-drowning patients, acute lung injury (ALI) or acute respiratory distress syndrome (ARDS) is one of the most common complications. Approximately 1/3 of near-drowning patients fulfill the criteria for ALI or ARDS. In the present article, the current literature of near-drowning, pathophysiologic changes and the molecular mechanisms of seawater-drowning-induced ALI and ARDS was reviewed. Seawater is three times more hyperosmolar than plasma, and following inhalation of seawater the hyperosmotic seawater may cause serious injury in the lung and alveoli. The perturbing effects of seawater may be primarily categorized into insufficiency of pulmonary surfactant, blood-air barrier disruption, formation of pulmonary edema, inflammation, oxidative stress, autophagy, apoptosis and various other hypertonic stimulation. Potential treatments for seawater-induced ALI/ARDS were also presented, in addition to suggestions for further studies. A total of nine therapeutic strategies had been tested and all had focused on modulating the over-activated immunoreactions. In conclusion, seawater drowning is a complex injury process and the exact mechanisms and potential treatments require further exploration.

  1. Seawater-drowning-induced acute lung injury: From molecular mechanisms to potential treatments

    Science.gov (United States)

    Jin, Faguang; Li, Congcong

    2017-01-01

    Drowning is a crucial public safety problem and is the third leading cause of accidental fatality, claiming ~372,000 lives annually, worldwide. In near-drowning patients, acute lung injury (ALI) or acute respiratory distress syndrome (ARDS) is one of the most common complications. Approximately 1/3 of near-drowning patients fulfill the criteria for ALI or ARDS. In the present article, the current literature of near-drowning, pathophysiologic changes and the molecular mechanisms of seawater-drowning-induced ALI and ARDS was reviewed. Seawater is three times more hyperosmolar than plasma, and following inhalation of seawater the hyperosmotic seawater may cause serious injury in the lung and alveoli. The perturbing effects of seawater may be primarily categorized into insufficiency of pulmonary surfactant, blood-air barrier disruption, formation of pulmonary edema, inflammation, oxidative stress, autophagy, apoptosis and various other hypertonic stimulation. Potential treatments for seawater-induced ALI/ARDS were also presented, in addition to suggestions for further studies. A total of nine therapeutic strategies had been tested and all had focused on modulating the over-activated immunoreactions. In conclusion, seawater drowning is a complex injury process and the exact mechanisms and potential treatments require further exploration. PMID:28587319

  2. Reversal of reflex pulmonary vasoconstriction induced by main pulmonary arterial distension.

    Science.gov (United States)

    Juratsch, C E; Grover, R F; Rose, C E; Reeves, J T; Walby, W F; Laks, M M

    1985-04-01

    Distension of the main pulmonary artery (MPA) induces pulmonary hypertension, most probably by neurogenic reflex pulmonary vasoconstriction, although constriction of the pulmonary vessels has not actually been demonstrated. In previous studies in dogs with increased pulmonary vascular resistance produced by airway hypoxia, exogenous arachidonic acid has led to the production of pulmonary vasodilator prostaglandins. Hence, in the present study, we investigated the effect of arachidonic acid in seven intact anesthetized dogs after pulmonary vascular resistance was increased by MPA distention. After steady-state pulmonary hypertension was established, arachidonic acid (1.0 mg/min) was infused into the right ventricle for 16 min; 15-20 min later a 16-mg bolus of arachidonic acid was injected. MPA distension was maintained throughout the study. Although the infusion of arachidonic acid significantly lowered the elevated pulmonary vascular resistance induced by MPA distension, the pulmonary vascular resistance returned to control levels only after the bolus injection of arachidonic acid. Notably, the bolus injection caused a biphasic response which first increased the pulmonary vascular resistance transiently before lowering it to control levels. In dogs with resting levels of pulmonary vascular resistance, administration of arachidonic acid in the same manner did not alter the pulmonary vascular resistance. It is concluded that MPA distension does indeed cause reflex pulmonary vasoconstriction which can be reversed by vasodilator metabolites of arachidonic acid. Even though this reflex may help maintain high pulmonary vascular resistance in the fetus, its function in the adult is obscure.

  3. Mesenchymal stromal cell treatment prevents H9N2 avian influenza virus-induced acute lung injury in mice

    Directory of Open Access Journals (Sweden)

    Yan Li

    2016-10-01

    Full Text Available Abstract Background The avian influenza virus (AIV can cross species barriers and expand its host range from birds to mammals, even humans. Avian influenza is characterized by pronounced activation of the proinflammatory cytokine cascade, which perpetuates the inflammatory response, leading to persistent systemic inflammatory response syndrome and pulmonary infection in animals and humans. There are currently no specific treatment strategies for avian influenza. Methods We hypothesized that mesenchymal stromal cells (MSCs would have beneficial effects in the treatment of H9N2 AIV-induced acute lung injury in mice. Six- to 8-week-old C57BL/6 mice were infected intranasally with 1 × 104 MID50 of A/HONG KONG/2108/2003 [H9N2 (HK] H9N2 virus to induce acute lung injury. After 30 min, syngeneic MSCs were delivered through the caudal vein. Three days after infection, we measured the survival rate, lung weight, arterial blood gas, and cytokines in both bronchoalveolar lavage fluid (BALF and serum, and assessed pathological changes to the lungs. Results MSC administration significantly palliated H9N2 AIV-induced pulmonary inflammation by reducing chemokines and proinflammatory cytokines levels, as well as reducing inflammatory cell recruit into the lungs. Thus, H9N2 AIV-induced lung injury was markedly alleviated in mice treated with MSCs. Lung histopathology and arterial blood gas analysis were improved in mice with H9N2 AIV-induced lung injury following MSC treatment. Conclusions MSC treatment significantly reduces H9N2 AIV-induced acute lung injury in mice and is associated with reduced pulmonary inflammation. These results indicate a potential role for MSC therapy in the treatment of clinical avian influenza.

  4. Avoidance of radiation injuries from medical interventional procedures, ICRP Publication 85

    Energy Technology Data Exchange (ETDEWEB)

    Valentin, J

    2000-06-01

    Interventional radiology (fluoroscopically-guided) techniques are being used by an increasing number of clinicians not adequately trained in radiation safety or radiobiology. Many of these interventionists are not aware of the potential for injury from these procedures or the simple methods for decreasing their incidence. Many patients are not being counselled on the radiation risks, nor followed up when radiation doses from difficult procedures may lead to injury. Some patients are suffering radiation-induced skin injuries and younger patients may face an increased risk of future cancer. Interventionists are having their practice limited or suffering injury, and are exposing their staff to high doses. In some interventional procedures, skin doses to patients approach those experienced in some cancer radiotherapy fractions. Radiation-induced skin injuries are occurring in patients due to the use of inappropriate equipment and, more often, poor operational technique. Injuries to physicians and staff performing interventional procedures have also been observed. Acute radiation doses (to patients) may cause erythema at 2 Gy, cataract at 2 Gy, permanent epilation at 7 Gy, and delayed skin necrosis at 12 Gy. Protracted (occupational) exposures to the eye may cause cataract at 4 Gy if the dose is received in less than 3 months, at 5.5 Gy if received over a period exceeding 3 months. Practical actions to control dose to the patient and to the staff are listed. The absorbed dose to the patient in the area of skin that receives the maximum dose is of priority concern. Each local clinical protocol should include, for each type of interventional procedure, a statement on the cumulative skin doses and skin sites associated with the various parts of the procedure. Interventionists should be trained to use information on skin dose and on practical techniques to control dose. Maximum cumulative absorbed doses that appear to approach or exceed 1 Gy (for procedures that may be

  5. Avoidance of radiation injuries from medical interventional procedures, ICRP Publication 85

    International Nuclear Information System (INIS)

    Valentin, J.

    2000-01-01

    Interventional radiology (fluoroscopically-guided) techniques are being used by an increasing number of clinicians not adequately trained in radiation safety or radiobiology. Many of these interventionists are not aware of the potential for injury from these procedures or the simple methods for decreasing their incidence. Many patients are not being counselled on the radiation risks, nor followed up when radiation doses from difficult procedures may lead to injury. Some patients are suffering radiation-induced skin injuries and younger patients may face an increased risk of future cancer. Interventionists are having their practice limited or suffering injury, and are exposing their staff to high doses. In some interventional procedures, skin doses to patients approach those experienced in some cancer radiotherapy fractions. Radiation-induced skin injuries are occurring in patients due to the use of inappropriate equipment and, more often, poor operational technique. Injuries to physicians and staff performing interventional procedures have also been observed. Acute radiation doses (to patients) may cause erythema at 2 Gy, cataract at 2 Gy, permanent epilation at 7 Gy, and delayed skin necrosis at 12 Gy. Protracted (occupational) exposures to the eye may cause cataract at 4 Gy if the dose is received in less than 3 months, at 5.5 Gy if received over a period exceeding 3 months. Practical actions to control dose to the patient and to the staff are listed. The absorbed dose to the patient in the area of skin that receives the maximum dose is of priority concern. Each local clinical protocol should include, for each type of interventional procedure, a statement on the cumulative skin doses and skin sites associated with the various parts of the procedure. Interventionists should be trained to use information on skin dose and on practical techniques to control dose. Maximum cumulative absorbed doses that appear to approach or exceed 1 Gy (for procedures that may be

  6. Role of macrophages and oxygen radicals in IgA induced lung injury in the rat

    International Nuclear Information System (INIS)

    Johnson, K.J.; Ward, P.A.; Kunkel, R.G.; Wilson, B.S.

    1986-01-01

    Acute lung injury in the rat has been induced by the instillation of affinity-purified mouse monoclonal IgA antibody with specific reactivity to dinitrophenol (DNP) coupled to albumin. This model of lung injury requires an intact complement system but not neutrophils, and evidence suggests that pulmonary macrophages are the critical effector cell. Macrophages retrievable from the lungs of the IgA immune complex treated rats are considerably increased in number as compared to control animals which received only the antibody. In addition these cells show evidence of activation in vivo with greater spontaneous generation of the superoxide anion (O 2 - ) as well as significantly enhanced O 2 - response in the presence of a second stimulus. Inhibition studies in vivo suggest that the lung injury is mediated by oxygen radical generation by the pulmonary macrophages. Pretreatment of rats with superoxide dismutase (SOD), catalase, the iron chelator deferoxamine or the hydroxyl radical scavenger dimethyl sulfoxide (DMSO) all markedly suppressed the development of the lung injury. In summary, these studies suggest that IgA immune complex injury in the rat lung is mediated by oxygen radical formation from pulmonary macrophages

  7. Modulation by Blood-cooling and Blood Flow-promoting Herbs to the expression of TNF-α and bFGF in radiation induced lung damage of rats

    International Nuclear Information System (INIS)

    Yang Minghui; Zang Qian; Dou Yongqi; Feng Linchun

    2007-01-01

    Objective: To observe the modulation by Blood-cooling and Blood Flow-promoting Herbs to expressions of tumor necrosis factor α (TNF-α) and basic fibroblast growth factors (bFGF) in radiation-induced lung injury of rats at different radiation times, and explore the mechanism of prevention and curative effect of the herbs on radiation lung injury. Methods: 160 wistar rats were randomly allocated into irradiation group, treatment group, herb-fracture group and control group. The first two groups were irradiated to right hemithorax with a dose of 30 Gy/10 fraction/5 weeks. Animals were sacrificed at weeks 3,5,8,12 and 26 post irradiation. The level of immunoreactivity of cytokine TNF-α and bFGF was evaluated. Results: The acute radiation-induced pneumonia occurred at weeks 3 and was most serious at weeks 5 and pulmonary fibrosis was remarkable at the late phase in irradiation group. The pneumonia and fibrosis of treatment group were lighter than that of irradiation group. Expressions of TNF-α and bFGF reached their peaks at weeks 5 and 26 of respectively. The expressions in treatment group was significantly lower than that the irradiation group( P<0.01). Conclusions: Blood-cooling and Blood Flow-promoting Herbs can prevent and treat the radiation-reduced lung injury by restraining the expression of TNF-α and bFGF. (authors)

  8. Prevention of ionizing radiation injuries

    International Nuclear Information System (INIS)

    Suzuki, Masashi

    1976-01-01

    In the first age (1895 - 1940), radiation injuries of skin (75% of death caused by RI injury) and chronic radiation injury of heamatopoietic organs (almost remains) appeared in radiologist and people engaged in RI treatment for medical use, and Ra poisoning appeared in workers who treated aluminous paint. As prevention of radiation injuries in this age, measurement of radiation dose, shelter effect and finding of injuries were studied, and internal radiation allowed level was determined. From 1942 to 1960, acute RI injuries due to exposure of large amount of RI by an accident and secondary leukemia appeared to workers of atomic-bomb industries and researcher of atomic energy. U and Pu poisoning accompanied with development of nuclear fuel industry appeared. This expanded industrial hygiene of this age together with epidemiological data of atomic-bomb exposed people. From 1960 onward, it is an age of industry for peaceful use of atomic energy, and manifestation of various kinds of delayed injuries, especially malignant tumor due to RI exposure, is recognized. Labourer has many opportunity to encounter dangerously with pollution and injuries by RI, and regional examination of RI enterprise and countermeasure to decrease exposure dose were mentioned as future theme from a viewpoint of exposure dose of nation. (Kanao, N.)

  9. Protective effect of U74500A on phorbol myristate acetate-induced acute lung injury.

    Science.gov (United States)

    Chu, Shi-Jye; Chang, Deh-Ming; Wang, David; Lin, Hen-I; Lin, Shih-Hua; Hsu, Kang

    2004-08-01

    1. The present study was designed to determine whether U74500A could ameliorate acute lung injury (ALI) induced by phorbol myristate acetate (PMA) in our rat isolated lung model compared with any amelioration induced by dimethylthiourea (DMTU), superoxide dismutase (SOD) and catalase. 2. Acute lung injury was induced successfully by PMA during 60 min of observation. At 2 microg/kg, PMA elicited a significant increase in microvascular permeability (measured using the capillary filtration coefficient Kfc), lung weight gain, the lung weight/bodyweight ratio, pulmonary arterial pressure and protein concentration of the bronchoalveolar lavage fluid. 3. Pretreatment with 1.5 mg/kg U74500A significantly attenuated ALI; there was no significant increase in any parameters measured, except for pulmonary arterial pressure. The protective effect of U74500A was approximately the same as that of 600 mg/kg DMTU. However, 6000 U/kg SOD, 50,000 U/kg catalase and 6000 U/kg SOD + 50,000 U/kg catalase had no protective effect. 4. These experimental data suggest that U74500A significantly ameliorates ALI induced by PMA in rats.

  10. Radioprotective effect of Rapana thomasiana hemocyanin in gamma induced acute radiation syndrome

    International Nuclear Information System (INIS)

    Kindekov, Ivan; Vassilieva, Vladimir; Aljakova, Mitko; Mileva, Milka; Krastev, Dimo; Raynova, Yuliana; Idakieva, Krassimira; Doumanov, Lyuba

    2014-01-01

    The radioprotective effect of Rapana thomasiana hemocyanin (RtH) against radiation-induced injuries (stomach ulcers, survival time and endogenous haemopoiesis) and post-radiation recovery was investigated in male albino mice (C3H strain). Radiation course was in a dose of 7.5 Gy (LD 100/30 - dose that kills 100% of the mice at 30 days) from "1"3"7Cs with a dose of 2.05 Gy/ min. Radiation injuries were manifested by inducing 2 hematopoietic form of acute radiation syndrome. RtH was administered intraperitoneally in a single dose of 50, 100, 150 and 200 mg/kg body weight (b. w.) once a day for five consecutive days before irradiation. The results obtained showed that radiation exposure led to (1) 100% mortality rate, (2) ulceration in the stomach mucosa and (3) decrease formation of spleen colonies as a marker of endogenous haemopoiesis. Administration of RtH at a dose of 200 mg/kg provided better protection against radiation-induced stomach ulceration, mitigated the lethal effects of radiation exposure and recovered endogenous haemopoiesis versus irradiated but not supplemented mice. It could be expected that RtH will find a use in mitigating radiation induced injury and enhanced radiorecovery. Keywords: Rapana thomasiana hemocyanin; acute radiation syndrome; radioprotective effect; spleen colony assay; stomach ulcerations

  11. Protective effects of edaravone combined puerarin on inhalation lung injury induced by black gunpowder smog.

    Science.gov (United States)

    Wang, Zhengguan; Li, Ruibing; Liu, Yifan; Liu, Xiaoting; Chen, Wenyan; Xu, Shumin; Guo, Yuni; Duan, Jinyang; Chen, Yihong; Wang, Chengbin

    2015-05-01

    The present study aimed to investigate the combined effects of puerarin with edaravone on inhalation lung injury induced by black gunpowder smog. Male Wistar rats were divided into five groups (control group, edaravone group, puerarin group, edaravone combined with puerarin group and inhalation group). The severity of pulmonary injuries was evaluated after inducing acute lung injury. Arterial blood gas, inflammatory cytokines, biochemical, parameters, cell counting, W/D weight ratio and histopathology were analyzed. Results in lung tissues, either edaravone or puerarin treatment alone showed significant protective effects against neutrophil infiltration and tissue injury, as demonstrated by myeloperoxidase activity and histopathological analysis (all pedaravone and puerarin demonstrated additive protective effects on smog-induced lung injury, compared with single treatment. Combination of edaravone and puerarin shows promise as a new treatment option for acute lung injury/acute respiratory distress syndrome patients. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Radiation-induced liver injury showing low intensity on T2-weighted images noted in Budd-Chiari syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Harushi [Tokyo Univ. (Japan). Graduate School of Medicine; Yoshioka, Hiroshi; Saida, Yukihisa; Itai, Yuji [Tsukuba Univ., Ibaraki (Japan). Inst. of Clinical Medicine; Mori, Kensaku [Tsukuba Univ., Ibaraki (Japan). Hospital; Ahmadi, T. [Shahid Beheshti Univ. of Medical Sciences, Teheran (Iran, Islamic Republic of); Okumura, Toshiyuki [Ibaraki Prefectural Central Hospital, Tomobe (Japan)

    2002-04-01

    Although it is documented that radiation can cause density or intensity changes on computed tomography or MR imaging in the irradiated hepatic parenchyma, few researchers have reported or understood the MR presentation of changes in hepatic parenchyma following radiotherapy in the patient with Budd-Chiari syndrome. The purpose of this study was to investigate the MR appearance of hepatic radiation injury in Budd-Chiari syndrome and to consider the underlying pathophysiology. The MR examinations of two patients with Budd-Chiari syndrome was compared with those of 11 patients without Budd-Chiari syndrome. The two groups, both of which suffered from hepatocellular carcinoma, underwent 50-72 Gy of proton-beam irradiation during a period of 14-43 days. Examinations including T1- and T2-weighted imaging, superparamagnetic iron oxide-enhanced imaging, and dynamic study were performed 3-10 weeks after the end of irradiation. Radiation-induced hepatic injury was observed as a low-intensity area on T2-weighted images and on delayed phase images of dynamic study in the Budd-Chiari patients, and as iso- or high-intensity areas on both images in the patients without Budd-Chiari syndrome. US-guided needle biopsy from the irradiated area in one patient with Budd-Chiari syndrome revealed mostly necrotic tissue and fibrous tissue. These MR features of hepatic radiation injury in Budd-Chiari syndrome were considered to be due to severe hepatic fibrosis. (author)

  13. Increased radiosensitivity and radiation-induced apoptosis in SRC-3 knockout mice

    International Nuclear Information System (INIS)

    Jin Jie; Wang Yu; Xu Yang; Chen Shilei; Wang Junping; Ran Xinze; Su Yongping; Wang Jin

    2014-01-01

    Steroid receptor coactivator-3 (SRC-3), a multifunctional transcriptional coactivator, plays an important role in regulation of cell apoptosis in chemoresistant cancer cells. However, its role in radiation-induced apoptosis in hematopoietic cells is still unclear. In this study, we used SRC-3 knockout (SRC-3 -/- ) mice to assess the role of SRC-3 in radiation-induced hematopoietic injury in vivo. After a range of doses of irradiation, SRC-3 -/- mice exhibited lower counts of peripheral blood cells and bone marrow (BM) mononuclear cells and excessive BM depression, which resulted in a significantly higher mortality compared with wildtype mice. Moreover, BM mononuclear cells obtained from SRC-3 -/- mice showed a remarkable increase in radiation-induced apoptosis. Collectively, our data demonstrate that SRC-3 plays a role in radiation-induced apoptosis of BM hematopoietic cells. Regulation of SRC-3 might influence the radiosensitivity of hematopoietic cells, which highlights a potential therapeutic target for radiation-induced hematopoietic injury. (author)

  14. Chemical warfare agent and biological toxin-induced pulmonary toxicity: could stem cells provide potential therapies?

    Science.gov (United States)

    Angelini, Daniel J; Dorsey, Russell M; Willis, Kristen L; Hong, Charles; Moyer, Robert A; Oyler, Jonathan; Jensen, Neil S; Salem, Harry

    2013-01-01

    Chemical warfare agents (CWAs) as well as biological toxins present a significant inhalation injury risk to both deployed warfighters and civilian targets of terrorist attacks. Inhalation of many CWAs and biological toxins can induce severe pulmonary toxicity leading to the development of acute lung injury (ALI) as well as acute respiratory distress syndrome (ARDS). The therapeutic options currently used to treat these conditions are very limited and mortality rates remain high. Recent evidence suggests that human stem cells may provide significant therapeutic options for ALI and ARDS in the near future. The threat posed by CWAs and biological toxins for both civilian populations and military personnel is growing, thus understanding the mechanisms of toxicity and potential therapies is critical. This review will outline the pulmonary toxic effects of some of the most common CWAs and biological toxins as well as the potential role of stem cells in treating these types of toxic lung injuries.

  15. Radiation injury to the nervous system

    International Nuclear Information System (INIS)

    Gutin, P.H.; Leibel, S.A.; Sneline, G.E.

    1991-01-01

    This book is designed to describe to the radiation biologist, radiation oncologist, neurologist, neurosurgeon, medical oncologist, and neuro-oncologist, the current state of knowledge about the tolerance of the nervous system to various kinds of radiation, the mechanisms of radiation injury, and how nervous system tolerance and injury are related to the more general problem of radiation damage to normal tissue of all types. The information collected here should stimulate interest in and facilitate the growing research effort into radiation injury to the nervous system

  16. Soluble TGF-β type II receptor gene therapy reduces TGF-β activity in irradiated lung tissue and protects lungs from radiation-induced injury

    International Nuclear Information System (INIS)

    Vujaskovic, Z.; Rabbani, Z.; Zhang, X.; Samulski, T.V.; Li, C.-Y.; Anscher, M.S.

    2003-01-01

    Full text: The objective was to determine whether administration of recombinant human adenoviral vector carrying soluble TGF-β1 type II receptor (TβR-II) gene reduces availability of active TGFβ1 and protects lung from radiation-induced injury. Female Fisher-344 rats were randomized into four groups to receive: 1) Control 2) Adenoviral green fluorescent protein vector (AdGFP) alone 3) Radiation (RT) + Adenoviral vector with TGF-β1 type II receptor gene (AdexTβR-II-Fc) 4) RT alone. Animals were irradiated to right hemithorax using a single dose of 30 Gy. The packaging and production of a recombinant adenovirus carrying the fused human TβR-II-IgG1 Fc gene was achieved by use of the AdEasy system. The treatment vector AdexTbR-II-Fc (1.5*1010 PFU) and control vector AdGFP (1*109 PFU) were injected i.v. 24 hrs after RT. Respiratory rate was measured as an index of pulmonary function weekly for 5 weeks post RT. Structural damage was scored histologically. Immunohistochemistry was performed to identify activated macrophages. ELISA was used to quantify active TGF-β1 in tissue homogenate. Western blot was used to determine TβR-II expression in plasma and lung tissue. Animals receiving treatment vector AdexTbR-II-Fc have elevated plasma levels of soluble TβR-II at 24 and 48 hours after injection. In the RT+AdexTbR-II-Fc group, there was a significant reduction in respiratory rate (p = 0.002) at four weeks after treatment compared to RT alone group. Histology revealed a significant reduction in lung structural damage in animals receiving gene therapy after RT vs RT alone (p=0.0013). There was also a decrease in the number of activated macrophage (p= 0.02) in RT+AdexTbR-II-Fc group vs RT alone. The tissue protein expression of active TGF-β1 was significantly reduced in rats receiving RT+AdexTbR-II-Fc treatment (p<0.05). This study shows the ability of adenovirus mediated soluble TβR-II gene therapy to reduce tissue levels of active TGF-β1 and ameliorate radiation-induced

  17. Mechanisms of radiation-induced normal tissue toxicity and implications for future clinical trials

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Ho; Jenrow, Kenneth A.; Brown, Stephen L. [Dept.of Radiation Oncology, Henry Ford Health System, Detroit (United States)

    2014-09-15

    To summarize current knowledge regarding mechanisms of radiation-induced normal tissue injury and medical countermeasures available to reduce its severity. Advances in radiation delivery using megavoltage and intensity-modulated radiation therapy have permitted delivery of higher doses of radiation to well-defined tumor target tissues. Injury to critical normal tissues and organs, however, poses substantial risks in the curative treatment of cancers, especially when radiation is administered in combination with chemotherapy. The principal pathogenesis is initiated by depletion of tissue stem cells and progenitor cells and damage to vascular endothelial microvessels. Emerging concepts of radiation-induced normal tissue toxicity suggest that the recovery and repopulation of stromal stem cells remain chronically impaired by long-lived free radicals, reactive oxygen species, and pro-inflammatory cytokines/chemokines resulting in progressive damage after radiation exposure. Better understanding the mechanisms mediating interactions among excessive generation of reactive oxygen species, production of pro-inflammatory cytokines and activated macrophages, and role of bone marrow-derived progenitor and stem cells may provide novel insight on the pathogenesis of radiation-induced injury of tissues. Further understanding the molecular signaling pathways of cytokines and chemokines would reveal novel targets for protecting or mitigating radiation injury of tissues and organs.

  18. Mechanisms of radiation-induced normal tissue toxicity and implications for future clinical trials

    International Nuclear Information System (INIS)

    Kim, Jae Ho; Jenrow, Kenneth A.; Brown, Stephen L.

    2014-01-01

    To summarize current knowledge regarding mechanisms of radiation-induced normal tissue injury and medical countermeasures available to reduce its severity. Advances in radiation delivery using megavoltage and intensity-modulated radiation therapy have permitted delivery of higher doses of radiation to well-defined tumor target tissues. Injury to critical normal tissues and organs, however, poses substantial risks in the curative treatment of cancers, especially when radiation is administered in combination with chemotherapy. The principal pathogenesis is initiated by depletion of tissue stem cells and progenitor cells and damage to vascular endothelial microvessels. Emerging concepts of radiation-induced normal tissue toxicity suggest that the recovery and repopulation of stromal stem cells remain chronically impaired by long-lived free radicals, reactive oxygen species, and pro-inflammatory cytokines/chemokines resulting in progressive damage after radiation exposure. Better understanding the mechanisms mediating interactions among excessive generation of reactive oxygen species, production of pro-inflammatory cytokines and activated macrophages, and role of bone marrow-derived progenitor and stem cells may provide novel insight on the pathogenesis of radiation-induced injury of tissues. Further understanding the molecular signaling pathways of cytokines and chemokines would reveal novel targets for protecting or mitigating radiation injury of tissues and organs.

  19. Chemotherapy of radiation injuries: research perspectives

    International Nuclear Information System (INIS)

    Mynchev, N.

    1993-01-01

    The therapy of radiation injuries - single and combined with other physical trauma (burn or wound) - are considered. Anti-bacterial therapy of infections in irradiated mice, rats and dogs and in irradiated dogs inflicted with burns has been applied. The results demonstrate that radiation induced exogenous and endogenous infections can be treated successfully with proper antimicrobial agents. Some immunomodulators also are effective in treating endogenous infection. The synergy between antimicrobial and immuno-modulator therapy holds promise for increasing the survival of irradiated victims. The improvement of managing infections in immuno-compromised (irradiated and injured) hosts will require further research using these therapeutic modalities. (author)

  20. Radiation-induced brain damage in children

    International Nuclear Information System (INIS)

    Oi, Shizuo; Kokunai, Takashi; Ijichi, Akihiro; Matsumoto, Satoshi; Raimondi, A.J.

    1990-01-01

    The nature and sequence of the radiation-induced changes in the brain were studied postmortem in 34 children with glioma, 22 of whom underwent central nervous system radiation therapy. Twenty received whole-brain or whole-neuroaxis radiation at a total mean dosage of 4063 cGy. Brain tissue alternations were analyzed histologically by means of various staining methods, including immunohistochemical techniques. The histological features of irradiated brains were compared with those of non-irradiated brains. Microscopic findings included demyelination (seven cases), focal necrosis (six cases), cortical atrophy (four cases), endothelial proliferation (four cases), and telangiectatic vascular proliferation with vascular thickening and oozing of a thick fluid (one case). Such findings were rare in non-irradiated patients. Demyelination was observed earliest in a patient who died 5 months after radiation therapy and was more common after 9 months. Focal necrosis was first observed 9 months post-irradiation but was more advanced and extensive after 1 year. Calcified foci were found only after 60 months. Various vascular changes such as vascular thickening and thrombosis suggested ischemic insult to the brain as a late effect of radiation injury. The results of this study suggest that the immature brain may be more sensitive to radiation than is the adult brain, and that the manifestations of radiation-induced injury depend on the time elapsed after irradiation. (author)

  1. Radiation Injury to the Brain

    Science.gov (United States)

    ... Hits since January 2003 RADIATION INJURY TO THE BRAIN Radiation treatments affect all cells that are targeted. ... fractions, duration of therapy, and volume of [healthy brain] nervous tissue irradiated influence the likelihood of injury. ...

  2. Radiation-induced lung damage promotes breast cancer lung-metastasis through CXCR4 signaling.

    Science.gov (United States)

    Feys, Lynn; Descamps, Benedicte; Vanhove, Christian; Vral, Anne; Veldeman, Liv; Vermeulen, Stefan; De Wagter, Carlos; Bracke, Marc; De Wever, Olivier

    2015-09-29

    Radiotherapy is a mainstay in the postoperative treatment of breast cancer as it reduces the risks of local recurrence and mortality after both conservative surgery and mastectomy. Despite recent efforts to decrease irradiation volumes through accelerated partial irradiation techniques, late cardiac and pulmonary toxicity still occurs after breast irradiation. The importance of this pulmonary injury towards lung metastasis is unclear. Preirradiation of lung epithelial cells induces DNA damage, p53 activation and a secretome enriched in the chemokines SDF-1/CXCL12 and MIF. Irradiated lung epithelial cells stimulate adhesion, spreading, growth, and (transendothelial) migration of human MDA-MB-231 and murine 4T1 breast cancer cells. These metastasis-associated cellular activities were largely mimicked by recombinant CXCL12 and MIF. Moreover, an allosteric inhibitor of the CXCR4 receptor prevented the metastasis-associated cellular activities stimulated by the secretome of irradiated lung epithelial cells. Furthermore, partial (10%) irradiation of the right lung significantly stimulated breast cancer lung-specific metastasis in the syngeneic, orthotopic 4T1 breast cancer model.Our results warrant further investigation of the potential pro-metastatic effects of radiation and indicate the need to develop efficient drugs that will be successful in combination with radiotherapy to prevent therapy-induced spread of cancer cells.

  3. Edaravone protects rats and human pulmonary alveolar epithelial cells against hyperoxia injury: heme oxygenase-1 and PI3K/Akt pathway may be involved.

    Science.gov (United States)

    Cao, Huifang; Feng, Ying; Ning, Yunye; Zhang, Zinan; Li, Weihao; Li, Qiang

    2015-01-01

    Hyperoxic acute lung injury (HALI) is a clinical syndrome as a result of prolonged supplement of high concentrations of oxygen. As yet, no specific treatment is available for HALI. The present study aims to investigate the effects of edaravone on hyperoxia-induced oxidative injury and the underlying mechanism. We treated rats and human pulmonary alveolar epithelial cells with hyperoxia and different concentration of edaravone, then examined the effects of edaravone on cell viability, cell injury and two oxidative products. The roles of heme oxygenase-1 (HO-1) and PI3K/Akt pathway were explored using Western blot and corresponding inhibitors. The results showed that edaravone reduced lung biochemical alterations induced by hyperoxia and mortality of rats, dose-dependently alleviated cell mortality, cell injury, and peroxidation of cellular lipid and DNA oxidative damage. It upregulated cellular HO-1 expression and activity, which was reversed by PI3K/Akt pathway inhibition. The administration of zinc protoporphyrin-IX, a HO-1 inhibitor, and LY249002, a PI3K/Akt pathway inhibitor, abolished the protective effects of edaravone in cells. This study indicates that edaravone protects rats and human pulmonary alveolar epithelial cells against hyperoxia-induced injury and the antioxidant effect may be related to upregulation of HO-1, which is regulated by PI3K/Akt pathway.

  4. Effects of an Amifostine analogue on radiation induced lung inflammation and fibrosis

    International Nuclear Information System (INIS)

    Arora, Aastha; Bhuria, Vikas; Soni, Ravi; Singh, Saurabh; Hazari, Puja Panwar; Bhatt, Anant Narayan; Dwarakanath, B.S.; Pathak, Uma; Mathur, Shweta; Sandhir, Rajat

    2014-01-01

    Radiation-induced pulmonary toxicity causes significant morbidity and mortality in patients irradiated for thoracic malignancies as well as in victims of accidental radiation exposure. We have recently established the efficacy of an analogue of Amifostine (DRDE-30) in reducing the mortality of whole body irradiated mice. The widely used radioprotector Amifostine has been found to reduce the incidence of radiation induced pneumonitis during radiation therapy for non small cell lung carcinoma. In the present study, we investigated the potential of DRDE-30 in ameliorating the radiation induced lung damage. Intra-peritoneal administration of DRDE-30 at 220 mg/kg b.wt 30 min. prior to 13.5 Gy thoracic radiation enhanced the 24-month survival of C57BL/6 mice to 80% compared to 0% with radiation alone. Reduced protein content and cell number in the broncheo-alveolar lavage fluid suggested reduction in radiation induced vascular permeability in DRDE-30 treated mice. Higher levels of MnSOD and Catalase observed under these conditions indicated that strengthening of the anti-oxidant defense system by DRDE-30 could also contribute to the protection against radiation induced lung damage. Reduced levels of p-p38 observed under these conditions suggested down-regulation of the p38/MAP kinase pathway as one of the plausible mechanisms underlying anti-inflammatory effects of DRDE-30, while lower levels of Vimentin seen, indicated inhibition of epithelial to mesenchymal transition revealing its anti-fibrotic effect as well. Structural analysis with X-ray CT indicated comparable lung architecture in control and drug treated mice in terms of reduced opacity, which correlated well with the lung morphology (H and E staining) and reduced collagen deposition (trichrome staining). These results demonstrate the potential of DRDE-30 in reducing radiation induced pulmonary toxicity by attenuating the inflammatory and fibrotic responses. (author)

  5. M3 receptor is involved in the effect of penehyclidine hydrochloride reduced endothelial injury in LPS-stimulated human pulmonary microvascular endothelial cell.

    Science.gov (United States)

    Yuan, Qinghong; Xiao, Fei; Liu, Qiangsheng; Zheng, Fei; Shen, Shiwen; He, Qianwen; Chen, Kai; Wang, Yanlin; Zhang, Zongze; Zhan, Jia

    2018-02-01

    LPS has been recently shown to induce muscarinic acetylcholine 3 receptor (M 3 receptor) expression and penehyclidine hydrochloride (PHC) is an anticholinergic drug which could block the expression of M 3 receptor. PHC has been demonstrated to perform protective effect on cell injury. This study is to investigate whether the effect of PHC on microvascular endothelial injury is related to its inhibition of M 3 receptor or not. HPMVECs were treated with specific M 3 receptor shRNA or PBS, and randomly divided into LPS group (A group), LPS+PHC group (B group), LPS + M 3 shRNA group (C group) and LPS + PHC + M 3 shRNA group (D group). Cells were collected at 60 min after LPS treatment to measure levels of LDH, endothelial permeability, TNF-α and IL-6 levels, NF-κB p65 activation, I-κB protein expression, p38MAPK, and ERK1/2 activations as well as M 3 mRNA expression. PHC could decrease LDH levels, cell permeability, TNF-α and IL-6 levels, p38 MAPK, ERK1/2, NF-κB p65 activations and M 3 mRNA expressions compared with LPS group. When M 3 receptor was silence, the changes of these indices were much more obvious. These findings suggest that M 3 receptor plays an important role in LPS-induced pulmonary microvascular endothelial injury, which is regulated through NF-κB p65 and MAPK activation. And knockout of M 3 receptor could attenuate LPS-induced pulmonary microvascular endothelial injury. Regulative effects of PHC on pulmonary microvascular permeability and NF-κB p65 as well as MAPK activations are including but not limited to inhibition of M 3 receptor. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Histomorphologic change of radiation pneumonitis in rat lungs: captopril reduces rat lung injury induced by irradiation

    International Nuclear Information System (INIS)

    Kim, Jin Hee

    1999-01-01

    To assess the histomorphologic changes in the rat lung injury induced by radiation, to determine whether captopril reduces the rat lung injury and to evaluate change in TNF-α and TGF β and rat lung damage by radiation and captopril. Right lungs in male Sprague-Dawley rats were divided irradiation alone (10, 20, 30 Gy) or radiation (same dose with radiation alone group) with captopril (500 mg/L). Radiation alone group were sacrificed at twelve hours and eleven weeks after radiation and radiation with captopril group (captopril group) were sacrificed at eleven weeks after radiation with captopril. We examined the light microscope and electron microscopic features in the groups. In radiation alone group, there were patch parenchymal collapse and consolidation at twelve hours after radiation. The increase of radiation dose shows more prominent the severity and broader the affected areas. Eleven weeks after radiation, the severity and areas of fibrosis had increased in proportion to radiation dose given in the radiation alone group. There was notable decrease of lung fibrosis in captopril group than in radiation alone group. The number of mast cells rapidly increased with increase of radiation dose in radiation alone group and the degree of increase of mast cell number and severity of collagen accumulation more decreased in captopril group than in radiation alone group. In radiation alone group expression of TNF-α and TGF-β] increased according to increase of radiation dose at twelve hours after radiation in both group. At eleven weeks after radiation, expression of TGF- P increased according to increase of radiation dose in radiation group but somewhat decreased in captopril group. In the captopril group the collagen deposition increased but less dense than those of radiation alone group. The severity of perivascular thickening, capillary change, the number and degranulation of mast cells more decreased in the captopril group than in the radiation alone group. It

  7. An experimental study on the radiation-induced injury of the rabbit lung: Correlation of soft-tissue radiograph and high- resolution CT findings with pathologic findings

    International Nuclear Information System (INIS)

    Lee, Ki Nam; Nam, Kyung Jin; Park, Byeoung Ho; Jeong, Jin Sook; Lee, Hyung Sik

    1994-01-01

    To describe soft-tissue radiographic and high-resolution CT findings of radiation-induced lung injury of rabbit over time and to correlate them with pathologic findings. 15 rabbits were irradiated in the right lung with one fracture of 2000 cGy. After 4, 6, 12, 20, 24 weeks 3 rabbits in each group were sacrificed and soft-tissue radiographs and high-resolution CT of their lung tissue were obtained. Radiological findings were correlated with pathologic findings. On soft-tissue radiogram, radiation pneumonitis shown as consolidation with air- bronchogram occurred in 3 cases after 6 weeks , and in 1 case after 12 weeks of irradiation. In addition, pneumonic consolidation with adjacent pleural contraction was seen in 2 cases after 12 weeks of irradiation. Fibrotic changes indicated by decreased volume occurred after 20 weeks and combined bronchiectatic change and bronchial wall thickening appeared after 20 weeks(N=1), and 24 weeks(N=3). HRCT findings of radiation pneumonitis were homogeneous, increased attention after 4 weeks(N=3), 6 and 12 weeks(each N=1), patchy consolidation after 6 and 12 weeks(each N=2), discrete consolidation after 12, 20 and 24 weeks(each N=1) and solid consolidation after 20 and 24 weeks(each N=2). Pathologically radiation pneumonitis and pulmonary congestion were seen after 4 and 6 weeks. After 6 weeks, collagen and reticulin fibers were detected along alveolar wall. Mixed radiation pneumonitis and fibrosis were detected after 12 weeks. 20 weeks after irradiation, fibrosis was well defined in interstitium and in 24 weeks, decreased number of alveoli and thickening of bronchial wall were defined. Radiation pneumonitis was provoked 4 weeks after irradiation on rabbit lung and progressed into radiation fibrosis 20 weeks after irradiation on soft-tissue radiographs and high-resolution CT. High-resolution CT is more precise in detecting early radiation pneumonitis and detailed pathologic findings

  8. Poor outcome in radiation-induced constrictive pericarditis

    International Nuclear Information System (INIS)

    Karram, T.; Rinkevitch, D.; Markiewicz, W.

    1993-01-01

    The purpose was to compare the outcome of patients with radiation-induced constrictive pericarditis versus patients with constiction due to another etiology. Twenty patients with constrictive pericarditis were seen during 1975-1986 at a single medical center. Six had radiation-induced constrictive pericarditis (Group A). The etiology was idiopathic in ten subjects and secondary to carcinomatous encasement, chronic renal failure, purulent infection and tuberculosis in one patient each (Group B, N = 14). Meang age was 53.4 ± 15.5 years. Extensive pericardiectomy was performed in 3/6 Group A and 13/14 Group B patients. All Group A patients died, 4 weeks - 11 years post-diagnosis (median = 10 months). Two Group A patients died suddenly, one died post-operatively of respiratory failure, another of pneumonia and two of recurrent carcinoma. Thirteen Group B patients are alive (median follow-up = 72 months). The only death in this group was due to metastatic cancer. The poor outcome with radiation-induced constriction is probably multi-factorial. Poor surgical outcome is to be expected in patients with evidence of recurrent tumor, high-dose irradiation, pulmonary fibrosis or associated radiation-induced myocardinal, valvular or coronary damage

  9. Poor outcome in radiation-induced constrictive pericarditis

    Energy Technology Data Exchange (ETDEWEB)

    Karram, T.; Rinkevitch, D.; Markiewicz, W. (Technion Medical School, Haifa (Israel))

    1993-01-15

    The purpose was to compare the outcome of patients with radiation-induced constrictive pericarditis versus patients with constiction due to another etiology. Twenty patients with constrictive pericarditis were seen during 1975-1986 at a single medical center. Six had radiation-induced constrictive pericarditis (Group A). The etiology was idiopathic in ten subjects and secondary to carcinomatous encasement, chronic renal failure, purulent infection and tuberculosis in one patient each (Group B, N = 14). Meang age was 53.4 [+-] 15.5 years. Extensive pericardiectomy was performed in 3/6 Group A and 13/14 Group B patients. All Group A patients died, 4 weeks - 11 years post-diagnosis (median = 10 months). Two Group A patients died suddenly, one died post-operatively of respiratory failure, another of pneumonia and two of recurrent carcinoma. Thirteen Group B patients are alive (median follow-up = 72 months). The only death in this group was due to metastatic cancer. The poor outcome with radiation-induced constriction is probably multi-factorial. Poor surgical outcome is to be expected in patients with evidence of recurrent tumor, high-dose irradiation, pulmonary fibrosis or associated radiation-induced myocardinal, valvular or coronary damage.

  10. Radiation-induced valvular heart disease.

    Science.gov (United States)

    Gujral, Dorothy M; Lloyd, Guy; Bhattacharyya, Sanjeev

    2016-02-15

    Radiation to the mediastinum is a key component of treatment with curative intent for a range of cancers including Hodgkin's lymphoma and breast cancer. Exposure to radiation is associated with a risk of radiation-induced heart valve damage characterised by valve fibrosis and calcification. There is a latent interval of 10-20 years between radiation exposure and development of clinically significant heart valve disease. Risk is related to radiation dose received, interval from exposure and use of concomitant chemotherapy. Long-term outlook and the risk of valve surgery are related to the effects of radiation on mediastinal structures including pulmonary fibrosis and pericardial constriction. Dose prediction models to predict the risk of heart valve disease in the future and newer radiation techniques to reduce the radiation dose to the heart are being developed. Surveillance strategies for this cohort of cancer survivors at risk of developing significant heart valve complications are required. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  11. Protection of CpG ODN 1826 against radiation pulmonary fibrosis in rats

    International Nuclear Information System (INIS)

    Li Xuan; Qiao Tiankui; Zhuang Xibing; Zhang Jihong

    2014-01-01

    Objective: To explore the protectional function of CpG ODN 1826 against radiation pulmonary fibrosis in rats. Methods: The rat left lung was exposed to 20 Gy of 6 MV X-rays for establishing a radiation pulmonary fibrosis model. SD rats were randomly divided into control group, irradiated group and intervention group, with 30 rats in each group. CpG ODN 1826 was intraperitoneally injected into rats at 0, 1, 2, 5 and 7 d post-irradiation. The rats were terminated at 5, 15, 30 and 90 d post-irradiation, and the lung indexes were recorded. Paraffin sections of the radiated lung were conducted with HE staining and Masson staining, the pulmonary fibrosis scores were recorded. The serum concentrations of TGF-β1 and hydroxyproline (Hyp) were measured. Results: The radiation pulmonary fibrosis rat model was successfully established. The lung indexes of the control group were lower than those of the irradiated and intervention groups at 5 d post-irradiation (t = 3.046, 2.252, P < 0.05). The lung indexes of the intervention group were lower than those of the irradiated group (t = 4.120, 5.226, 5.719, P < 0.05). Pulmonary fibrosis scores of intervention group were lower than those of irradiated group (t = 3.212, 4.959, P < 0.05). The serum concentrations of TGF-β1 of irradiated group were higher than those of the intervention group (t = 4.138, 5.924, 4.138, 5.924, P < 0.05). The Hyp in the lung of irradiated group was higher than that of intervention group (t = 7.527, 8.416, P < 0.05). Conclusions: CpG ODN1826 will not worse the radiation pulmonary fibrosis, on the contrary, it could reduce the serum concentrations of TGF-β1 and the lung content of Hyp in radiation pulmonary fibrosis, and protects rat against radiation pulmonary fibrosis. (authors)

  12. Low-voltage electricity-induced lung injury.

    Science.gov (United States)

    Truong, Thai; Le, Thuong Vu; Smith, David L; Kantrow, Stephen P; Tran, Van Ngoc

    2018-02-01

    We report a case of bilateral pulmonary infiltrates and haemoptysis following low-voltage electricity exposure in an agricultural worker. A 58-year-old man standing in water reached for an electric watering machine and sustained an exposure to 220 V circuit for an uncertain duration. The electricity was turned off by another worker, and the patient was asymptomatic for the next 10 h until he developed haemoptysis. A chest radiograph demonstrated bilateral infiltrates, and chest computed tomography (CT) revealed ground-glass opacities with interstitial thickening. Evaluations, including electrocardiogram, serum troponin, N-terminal pro-B-type natriuretic peptide (NT-pro BNP), coagulation studies, and echocardiogram, found no abnormality. The patient was treated for suspected electricity-induced lung injury and bleeding with tranexamic acid and for rhabdomyolysis with volume resuscitation. He recovered with complete resolution of chest radiograph abnormalities by Day 7. This is the first reported case of bilateral lung oedema and/or injury after electricity exposure without cardiac arrest.

  13. Radiation injury

    International Nuclear Information System (INIS)

    Hubner, K.F.

    1988-01-01

    Radiation accidents and incidents continue to be of great interest and concern to the public. Issues such as the threat of nuclear war, the Chernobyl reactor accident, or reports of sporadic incidences of accidental radiation exposure keep this interest up and maintain a high level of fear among the public. In this climate of real concern and radiation phobia, physicians should not only be prepared to answer questions about acute or late effects of ionizing radiation, but also be able to participate in the initial assessment and management of individuals who have been exposed to ionizing radiation or contaminated with radioactive material. Some of the key facts about radiation injury and its medical treatment are discussed by the author

  14. The Urine Proteome as a Biomarker of Radiation Injury

    Science.gov (United States)

    Sharma, Mukut; Halligan, Brian D.; Wakim, Bassam T.; Savin, Virginia J.; Cohen, Eric P.; Moulder, John E.

    2009-01-01

    Terrorist attacks or nuclear accidents could expose large numbers of people to ionizing radiation, and early biomarkers of radiation injury would be critical for triage, treatment and follow-up of such individuals. However, no such biomarkers have yet been proven to exist. We tested the potential of high throughput proteomics to identify protein biomarkers of radiation injury after total body X-ray irradiation in a rat model. Subtle functional changes in the kidney are suggested by an increased glomerular permeability for macromolecules measured within 24 hours after TBI. Ultrastructural changes in glomerular podocytes include partial loss of the interdigitating organization of foot processes. Analysis of urine by LC-MS/MS and 2D-GE showed significant changes in the urine proteome within 24 hours after TBI. Tissue kallikrein 1-related peptidase, cysteine proteinase inhibitor cystatin C and oxidized histidine were found to be increased while a number of proteinase inhibitors including kallikrein-binding protein and albumin were found to be decreased post-irradiation. Thus, TBI causes immediately detectable changes in renal structure and function and in the urinary protein profile. This suggests that both systemic and renal changes are induced by radiation and it may be possible to identify a set of biomarkers unique to radiation injury. PMID:19746194

  15. The pathogenesis of bleomycin-induced lung injury in animals and its applicability to human idiopathic pulmonary fibrosis.

    Science.gov (United States)

    Williamson, James D; Sadofsky, Laura R; Hart, Simon P

    2015-03-01

    Idiopathic pulmonary fibrosis (IPF) is a devastating disease of unknown etiology, for which there is no curative pharmacological therapy. Bleomycin, an anti-neoplastic agent that causes lung fibrosis in human patients has been used extensively in rodent models to mimic IPF. In this review, we compare the pathogenesis and histological features of human IPF and bleomycin-induced pulmonary fibrosis (BPF) induced in rodents by intratracheal delivery. We discuss the current understanding of IPF and BPF disease development, from the contribution of alveolar epithelial cells and inflammation to the role of fibroblasts and cytokines, and draw conclusions about what we have learned from the intratracheal bleomycin model of lung fibrosis.

  16. Role of oxidative stress in thuringiensin-induced pulmonary toxicity

    International Nuclear Information System (INIS)

    Tsai, S.-F.; Yang Chi; Liu, B.-L.; Hwang, J.-S.; Ho, S.-P.

    2006-01-01

    To understand the effect of thuringiensin on the lungs tissues, male Sprague-Dawley rats were administrated with thuringiensin by intratracheal instillation at doses 0.8, 1.6 and 3.2 mg/kg of body weight, respectively. The rats were sacrificed 4 h after treatment, and lungs were isolated and examined. Subsequently, an effective dose of 1.6 mg/kg was selected for the time course study (4, 8, 12, and 24 h). Intratracheal instillation of thuringiensin resulted in lung damage, as evidenced by increase in lung weight and decrease in alkaline phosphatase (10-54%), an enzyme localized primarily in pulmonary alveolar type II epithelial cells. Furthermore, the administration of thuringiensin caused increases in lipid peroxidation (21-105%), the indices of lung injury. In addition, the superoxide dismutase (SOD) and glutathione (GSH) activities of lung tissue extracts were measured to evaluate the effect of thuringiensin on antioxidant defense system. The SOD activity and GSH content in lung showed significant decreases in a dose-related manner with 11-21% and 15-37%, respectively. Those were further supported by the release of proinflammatory cytokines, as indicated by increases in IL-1β (229-1017%) and TNF-α (234%) levels. Therefore, the results demonstrated that changes in the pulmonary oxidative-antioxidative status might play an important role in the thuringiensin-induced lung injury

  17. Idh2 Deficiency Exacerbates Acrolein-Induced Lung Injury through Mitochondrial Redox Environment Deterioration

    Directory of Open Access Journals (Sweden)

    Jung Hyun Park

    2017-01-01

    Full Text Available Acrolein is known to be involved in acute lung injury and other pulmonary diseases. A number of studies have suggested that acrolein-induced toxic effects are associated with depletion of antioxidants, such as reduced glutathione and protein thiols, and production of reactive oxygen species. Mitochondrial NADP+-dependent isocitrate dehydrogenase (idh2 regulates mitochondrial redox balance and reduces oxidative stress-induced cell injury via generation of NADPH. Therefore, we evaluated the role of idh2 in acrolein-induced lung injury using idh2 short hairpin RNA- (shRNA- transfected Lewis lung carcinoma (LLC cells and idh2-deficient (idh2−/− mice. Downregulation of idh2 expression increased susceptibility to acrolein via induction of apoptotic cell death due to elevated mitochondrial oxidative stress. Idh2 deficiency also promoted acrolein-induced lung injury in idh2 knockout mice through the disruption of mitochondrial redox status. In addition, acrolein-induced toxicity in idh2 shRNA-transfected LLC cells and in idh2 knockout mice was ameliorated by the antioxidant, N-acetylcysteine, through attenuation of oxidative stress resulting from idh2 deficiency. In conclusion, idh2 deficiency leads to mitochondrial redox environment deterioration, which causes acrolein-mediated apoptosis of LLC cells and acrolein-induced lung injury in idh2−/− mice. The present study supports the central role of idh2 deficiency in inducing oxidative stress resulting from acrolein-induced disruption of mitochondrial redox status in the lung.

  18. Idh2 Deficiency Exacerbates Acrolein-Induced Lung Injury through Mitochondrial Redox Environment Deterioration.

    Science.gov (United States)

    Park, Jung Hyun; Ku, Hyeong Jun; Lee, Jin Hyup; Park, Jeen-Woo

    2017-01-01

    Acrolein is known to be involved in acute lung injury and other pulmonary diseases. A number of studies have suggested that acrolein-induced toxic effects are associated with depletion of antioxidants, such as reduced glutathione and protein thiols, and production of reactive oxygen species. Mitochondrial NADP + -dependent isocitrate dehydrogenase ( idh2 ) regulates mitochondrial redox balance and reduces oxidative stress-induced cell injury via generation of NADPH. Therefore, we evaluated the role of idh2 in acrolein-induced lung injury using idh2 short hairpin RNA- (shRNA-) transfected Lewis lung carcinoma (LLC) cells and idh2 -deficient ( idh2 -/- ) mice. Downregulation of idh2 expression increased susceptibility to acrolein via induction of apoptotic cell death due to elevated mitochondrial oxidative stress. Idh2 deficiency also promoted acrolein-induced lung injury in idh2 knockout mice through the disruption of mitochondrial redox status. In addition, acrolein-induced toxicity in idh2 shRNA-transfected LLC cells and in idh2 knockout mice was ameliorated by the antioxidant, N-acetylcysteine, through attenuation of oxidative stress resulting from idh2 deficiency. In conclusion, idh2 deficiency leads to mitochondrial redox environment deterioration, which causes acrolein-mediated apoptosis of LLC cells and acrolein-induced lung injury in idh2 -/- mice. The present study supports the central role of idh2 deficiency in inducing oxidative stress resulting from acrolein-induced disruption of mitochondrial redox status in the lung.

  19. Effects of radiation, burn and combined radiation-burn injury on hemodynamics

    International Nuclear Information System (INIS)

    Ye Benlan; Cheng Tianming; Xiao Jiasi

    1996-01-01

    Changes in hemodynamics after radiation, burn and combined radiation burn injury within eight hours post injury were studied. The results indicate: (1) Shock of rats in the combined injury group is more severe than that in the burn group. One of the reasons is that the blood volume in the combined injury group is less than that in the burn group. Radiation injury plays an important role in this effect, which enhances the increase in vascular permeability and causes the loss of plasma. (2) Decrease in cardiac output and stroke work and increase in vascular resistance in the combined radiation burn group are more drastic than those in the burn group, which may cause and enhance shock. Replenishing fluid is useful for recovery of hemodynamics. (3) Rb uptake is increased in the radiation group which indicates that compensated increase of myocardial nutritional blood flow may take place before the changes of hemodynamics and shock. Changes of Rb uptake in the combined injury group is different from that in the radiation groups and in the burn group. The results also suggest that changes of ion channel activities may occur to a different extent after injury. (4) Verapamil is helpful to the recovery of hemodynamics post injury. It is better to combine verapamil with replenishing fluid

  20. Analysis of radiation pneumonitis outside the radiation field in breast conserving therapy for early breast cancer

    International Nuclear Information System (INIS)

    Ogo, Etsuyo; Fujimoto, Kiminori; Hayabuchi, Naofumi

    2002-01-01

    In a retrospective study of radiation-induced pulmonary changes for patients with breast conserving therapy for early breast cancer, we sent questionnaires to the main hospitals in Japan. In this study, we analyzed pulmonary changes after tangential whole-breast irradiation. The purpose of this study was to determine the incidence and risk factors for radiation pneumonitis outside the radiation field. The questionnaires included patients data, therapy data, and lung injury information between August 1999 and May 2000. On the first questionnaires, answer letters were received from 107 institutions out of 158 (67.7%). On the second questionnaires, response rate (hospitals which had radiation pneumonitis outside the radiation field) was 21.7% (23/106). We could find no risk factors of this type of pneumonitis. We suggested that lung irradiation might trigger this type of pneumonitis which is clinically similar to BOOP (bronchiolitis obliterans organizing pneumonia). It developed in 1.5-2.1% among the patients with breast conserving surgery and tangential whole-breast irradiation. And it is likely appeared within 6 months after radiotherapy. (author)

  1. Mild hypothermia increases pulmonary anti-inflammatory response during protective mechanical ventilation in a piglet model of acute lung injury.

    Science.gov (United States)

    Cruces, Pablo; Erranz, Benjamín; Donoso, Alejandro; Carvajal, Cristóbal; Salomón, Tatiana; Torres, María Fernanda; Díaz, Franco

    2013-11-01

    The effects of mild hypothermia (HT) on acute lung injury (ALI) are unknown in species with metabolic rate similar to that of humans, receiving protective mechanical ventilation (MV). We hypothesized that mild hypothermia would attenuate pulmonary and systemic inflammatory responses in piglets with ALI managed with a protective MV. Acute lung injury (ALI) was induced with surfactant deactivation in 38 piglets. The animals were then ventilated with low tidal volume, moderate positive end-expiratory pressure (PEEP), and permissive hypercapnia throughout the experiment. Subjects were randomized to HT (33.5°C) or normothermia (37°C) groups over 4 h. Plasma and tissue cytokines, tissue apoptosis, lung mechanics, pulmonary vascular permeability, hemodynamic, and coagulation were evaluated. Lung interleukin-10 concentrations were higher in subjects that underwent HT after ALI induction than in those that maintained normothermia. No difference was found in other systemic and tissue cytokines. HT did not induce lung or kidney tissue apoptosis or influence lung mechanics or markers of pulmonary vascular permeability. Heart rate, cardiac output, oxygen uptake, and delivery were significantly lower in subjects that underwent HT, but no difference in arterial lactate, central venous oxygen saturation, and coagulation test was observed. Mild hypothermia induced a local anti-inflammatory response in the lungs, without affecting lung function or coagulation, in this piglet model of ALI. The HT group had lower cardiac output without signs of global dysoxia, suggesting an adaptation to the decrease in oxygen uptake and delivery. Studies are needed to determine the therapeutic role of HT in ALI. © 2013 John Wiley & Sons Ltd.

  2. Role of p-aminobenzoic acid in the repair of injuries induced by UV- and. gamma. -radiation

    Energy Technology Data Exchange (ETDEWEB)

    Rapoport, I A; Vasil' eva, S V; Davnichenko, L S [AN SSSR, Moscow. Inst. Khimicheskoj Fiziki

    1979-07-01

    For the first time it was proved that low doses of p-aminobenzoic acid (PABA) were capable of sharply decreasing lethal mutational effects of UV light and less significantly-gamma effect on a bacterial cell. The experiments were carried out on E.Coli strains which differed in the activity of ferment system of DNA UV-induced injuries reparation. UV radiation dose equaled 10-1500 erd/mm/sup 2/. PABA capability to intensify the reparative process under mutagenic effects of 3 main types: chemical, UV as a representative of non-penetrating radiation, and penetrating radiation permitted to characterize this compound as ''reparagen''. It was emphasized that the application of reparagens capable of intensifying or weakening the reparative process permitted to observe different effects of reparation dependence on the concentration of a chemical agent being introduced from outside and localize the process of reparagen effect in time.

  3. Endothelial Semaphorin 7A promotes inflammation in seawater aspiration-induced acute lung injury.

    Science.gov (United States)

    Zhang, Minlong; Wang, Li; Dong, Mingqing; Li, Zhichao; Jin, Faguang

    2014-10-28

    Inflammation is involved in the pathogenesis of seawater aspiration-induced acute lung injury (ALI). Although several studies have shown that Semaphorin 7A (SEMA7A) promotes inflammation, there are limited reports regarding immunological function of SEMA7A in seawater aspiration-induced ALI. Therefore, we investigated the role of SEMA7A during seawater aspiration-induced ALI. Male Sprague-Dawley rats were underwent seawater instillation. Then, lung samples were collected at an indicated time for analysis. In addition, rat pulmonary microvascular endothelial cells (RPMVECs) were cultured and then stimulated with 25% seawater for indicated time point. After these treatments, cells samples were collected for analysis. In vivo, seawater instillation induced lung histopathologic changes, pro-inflammation cytokines release and increased expression of SEMA7A. In vitro, seawater stimulation led to pro-inflammation cytokine release, cytoskeleton remodeling and increased monolayer permeability in pulmonary microvascular endothelial cells. In addition, knockdown of hypoxia-inducible factor (HIF)-1α inhibited the seawater induced increase expression of SEMA7A. Meanwhile, knockdown of SEMA7A by specific siRNA inhibited the seawater induced aberrant inflammation, endothelial cytoskeleton remodeling and endothelial permeability. These results suggest that SEMA7A is critical in the development of lung inflammation and pulmonary edema in seawater aspiration-induced ALI, and may be a therapeutic target for this disease.

  4. Impact of an angiotensin analogue in treating thermal and combined radiation injuries

    Science.gov (United States)

    Jadhav, Sachin Suresh

    Background: In recent years there has been a growing concern regarding the use of nuclear weapons by terrorists. Such incidents in the past have shown that radiation exposure is often accompanied by other forms of trauma such as burns, wounds or infection; leading to increased mortality rates among the affected individuals. This increased risk with combined radiation injury has been attributed to the delayed wound healing observed in this injury. The Renin-Angiotensin System (RAS) has emerged as a critical regulator of wound healing. Angiotensin II (A-II) and Angiotensin (1-7) [A(1-7)] have been shown to accelerate the rate of wound healing in different animal models of cutaneous injury. Nor-Leu3-Angiotensin (1-7) [Nor-Leu3-A (1-7)], an analogue of A(1-7), is more efficient than both A-II and A(1-7) in its ability to improve wound healing and is currently in phase III clinical trials for the treatment of diabetic foot ulcers. Aims: The three main goals of this study were to; 1) Develop a combined radiation and burn injury (CRBI) model and a radiation-induced cutaneous injury model to study the pathophysiological effects of these injuries on dermal wound healing; 2) To treat thermal and CRBI injuries using Nor-Leu 3-A (1-7) and decipher the mechanism of action of this peptide and 3) Develop an in-vitro model of CRBI using dermal cells in order to study the effect of CRBI on individual cell types involved in wound healing. Results: CRBI results in delayed and exacerbated apoptosis, necrosis and inflammation in injured skin as compared to thermal injury by itself. Radiation-induced cutaneous injury shows a radiation-dose dependent increase in inflammation as well as a chronic inflammatory response in the higher radiation exposure groups. Nor-Leu3-A (1-7) can mitigate thermal and CRBI injuries by reducing inflammation, oxidative stress and DNA damage while increasing the rate of proliferation of dermal stem cells and re-epithelialization of injured skin. The in

  5. Potential protection of green tea polyphenols against 1800 MHz electromagnetic radiation-induced injury on rat cortical neurons.

    Science.gov (United States)

    Liu, Mei-Li; Wen, Jian-Qiang; Fan, Yu-Bo

    2011-10-01

    Radiofrequency electromagnetic fields (EMF) are harmful to public health, but the certain anti-irradiation mechanism is not clear yet. The present study was performed to investigate the possible protective effects of green tea polyphenols against electromagnetic radiation-induced injury in the cultured rat cortical neurons. In this study, green tea polyphenols were used in the cultured cortical neurons exposed to 1800 MHz EMFs by the mobile phone. We found that the mobile phone irradiation for 24 h induced marked neuronal cell death in the MTT (3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyl-tetrazolium bromide) and TUNEL (TdT mediated biotin-dUTP nicked-end labeling) assay, and protective effects of green tea polyphenols on the injured cortical neurons were demonstrated by testing the content of Bcl-2 Assaciated X protein (Bax) in the immunoprecipitation assay and Western blot assay. In our study results, the mobile phone irradiation-induced increases in the content of active Bax were inhibited significantly by green tea polyphenols, while the contents of total Bax had no marked changes after the treatment of green tea polyphenols. Our results suggested a neuroprotective effect of green tea polyphenols against the mobile phone irradiation-induced injury on the cultured rat cortical neurons.

  6. Finding of CT and clinical in paraquat poisoning pulmonary injury

    International Nuclear Information System (INIS)

    He Zaifang; Li Hongbing; Cheng Shoulin; Li Qixiang; Huang Zhen; Zeng Jianguo

    2012-01-01

    Objective: To investigate the CT features of pulmonary injury in paraquat poisoning. Methods: The chest CT image of lung injury in 6 cases of paraquat poisoning were analyzed retrospectively. According to different period of poisoning, the 6 cases were divided into 3 types:the early stage of poisoning (within 2 d), the middle stage of poisoning (3-14 d), the late stage of poisoning (>14 d). A comparison between CT signs and the pathological features of patients was made. Results: Among this 6 cases, 3 cases died, 2 cases pulmonary fibrosis was noted, 1 cases recovered. According to different period of poisoning, the 6 cases were divided into 3 stages: in the early stage of poisoning (within 2 d), 3 cases of all patients showed nothing remarkable, 2 cases showed ground-glass opacity, 1 case showed fuzzy lung-marking.In the middle stage of poisoning (3-14 d), all 6 cases showed ground-glass opacity, mosaic attenuation; 6 cases showed pulmonary consolidation; 4 cases showed subpleural lines; 4 cases showed bronchiectasis; 2 cases showed mid-lower pleural effusion. In the late stage of poisoning (>14 d), 4 cases showed pulmonary consolidation and pulmonary fibrosis, 3 cases showed ground-glass opacity and mosaic attenuation, 1 case showed mid-lower pleural effusion; 1 case showed mediastinal emphysema. Conclusion: The clinical pathology process of paraquat poisoning was in line with CT finding which was related with clinical stage and was helpful for clinical assessment of paraquat poisoning promptly and to guide the clinical treatment. (authors)

  7. Molecular Mechanisms of Nanosized Titanium Dioxide–Induced Pulmonary Injury in Mice

    Science.gov (United States)

    Sang, Xuezi; Cui, Yaling; Wang, Xiaochun; Gui, Suxin; Tan, Danlin; Zhu, Min; Zhao, Xiaoyang; Sheng, Lei; Wang, Ling; Hong, Fashui; Tang, Meng

    2013-01-01

    The pulmonary damage induced by nanosized titanium dioxide (nano-TiO2) is of great concern, but the mechanism of how this damage may be incurred has yet to be elucidated. Here, we examined how multiple genes may be affected by nano-TiO2 exposure to contribute to the observed damage. The results suggest that long-term exposure to nano-TiO2 led to significant increases in inflammatory cells, and levels of lactate dehydrogenase, alkaline phosphate, and total protein, and promoted production of reactive oxygen species and peroxidation of lipid, protein and DNA in mouse lung tissue. We also observed nano-TiO2 deposition in lung tissue via light and confocal Raman microscopy, which in turn led to severe pulmonary inflammation and pneumonocytic apoptosis in mice. Specifically, microarray analysis showed significant alterations in the expression of 847 genes in the nano-TiO2-exposed lung tissues. Of 521 genes with known functions, 361 were up-regulated and 160 down-regulated, which were associated with the immune/inflammatory responses, apoptosis, oxidative stress, the cell cycle, stress responses, cell proliferation, the cytoskeleton, signal transduction, and metabolic processes. Therefore, the application of nano-TiO2 should be carried out cautiously, especially in humans. PMID:23409001

  8. Diseases induced by ionising radiation

    International Nuclear Information System (INIS)

    1984-11-01

    An interim report is presented by the Industrial Injuries Advisory Council in accordance with Section 141 of the Social Security Act 1975 on the question whether the terms of prescription for occupational diseases induced by ionising radiation should be amended to cover a wider range of conditions. A lack of persuasive statistical data has prevented reliable estimates of health risks of radiation workers in the UK to be made. However the report gives details of the progress made so far and the difficulties encountered. (U.K.)

  9. Assessment of radiation injuries: role of nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Khushu, Subhash; Rana, Poonam

    2014-01-01

    In the event of an intentional or accidental release of ionizing radiation, timely assessment of the radiation exposure is critical for the triage and to facilitate timely and optimal medical care to the effected population. In addition to mild to severe injuries to tissues and organs, radiation injury can also cause cognitive decline, depressive behavior and affective state disturbances following exposure to both high and low doses of radiation. These may be even seen without evident tissue injury within hours to days or months to years after exposure to low doses of radiation. In this study, we exploited the multi-parametric contrast of NMR/MRI and its potential to assess radiation dose absorbed and radiation sickness thereof. High resolution NMR spectroscopy experiments were conducted on urine and serum samples collected from mice irradiated (whole body and focal irradiation) with 3, 5 and 8 Gray of γ-radiation at different time points post irradiation. Irradiated mice serum and urine showed distinct metabolic phenotypes and revealed dose and time dependent clustering of irradiated groups depicting different phases of radiation sickness. Increased concentration of urine metabolites related to gut microflora and energy metabolism were observed during different phases of radiation sickness. On the other hand serum spectra reflected changes associated with lipid, energy and membrane metabolism during radiation sickness. In vivo NMR spectroscopy and Diffusion Tensor Imaging (DTI) was also performed in different regions of brain post irradiation in animal model, which showed radiation induced metabolite changes in hippocampus region. Fractional anisotropy (FA) and mean diffusivity (MD) also demonstrated dose related changes in various brain regions which corroborated well with the behavioral parameters. The results of the present work lay a scientific foundation for development of high throughput radiation bio-dosimetry. This could further be useful in development

  10. Radiation pancreatic death. A new radiation injury and its pathologic physiology

    Energy Technology Data Exchange (ETDEWEB)

    Tsubouchi, Susumu [Fukui Medical School, Fukui (Japan)

    1982-03-01

    In lethal radiation injury, the organ which is responsible for gastrointestinal death was sought from the relationship between radiation dose and survival length of hamsters. In this research, a new plateau was found in the range of radiation dose from 30,000 to 60,000 rad. Histological examination revealed that the organ responsible to the survival of the animals in the plateau was Langerhans's (L.'s) island of the pancreas. Acute necrotic changes of L.'s islands was disclosed by blood glucose level, changes in granules of ..cap alpha.. and ..beta.. cells, atrophy of L.'s islands, and by deficiency of blood insulin. The death of hamsters in the plateau is probably due to diabetic syndrome which was induced by the necrosis of L.'s island.

  11. Association Between Pulmonary Uptake of Fluorodeoxyglucose Detected by Positron Emission Tomography Scanning After Radiation Therapy for Non-Small-Cell Lung Cancer and Radiation Pneumonitis

    International Nuclear Information System (INIS)

    Mac Manus, Michael P.; Ding Zhe; Hogg, Annette; Herschtal, Alan; Binns, David; Ball, David L.; Hicks, Rodney J.

    2011-01-01

    Purpose: To study the relationship between fluorodeoxyglucose (FDG) uptake in pulmonary tissue after radical radiation therapy (RT) and the presence and severity of radiation pneumonitis. Methods and Materials: In 88 consecutive patients, 18 F-FDG-positron emission tomography was performed at a median of 70 days after completion of RT. Patients received 60 Gy in 30 fractions, and all but 15 had concurrent platinum-based chemotherapy. RT-induced pulmonary inflammatory changes occurring within the radiation treatment volume were scored, using a visual (0 to 3) radiotoxicity grading scale, by an observer blinded to the presence or absence of clinical radiation pneumonitis. Radiation pneumonitis was retrospectively graded using the Radiation Therapy Oncology Group (RTOG) scale by an observer blinded to the PET radiotoxicity score. Results: There was a significant association between the worst RTOG pneumonitis grade occurring at any time after RT and the positron emission tomograph (PET) radiotoxicity grade (one-sided p = 0.033). The worst RTOG pneumonitis grade occurring after the PET scan was also associated with the PET radiotoxicity grade (one-sided p = 0.035). For every one-level increase in the PET toxicity scale, the risk of a higher RTOG radiation pneumonitis score increased by approximately 40%. The PET radiotoxicity score showed no significant correlation with the duration of radiation pneumonitis. Conclusions: The intensity of FDG uptake in pulmonary tissue after RT determined using a simple visual scoring system showed significant correlation with the presence and severity of radiation pneumonitis. 18 F-FDG-PET may be useful in the prediction, diagnosis and therapeutic monitoring of radiation pneumonitis.

  12. Radiation induced liver disease: A clinical update

    International Nuclear Information System (INIS)

    Benson, R.; Madan, R.; Chander, S.; Kilambi, R.

    2016-01-01

    Radiation-induced liver disease (RILD) or radiation hepatitis is a sub-acute form of liver injury due to radiation. It is one of the most dreaded complications of radiation which prevents radiation dose escalation and re irradiation for hepatobiliary or upper gastrointestinal malignancies. This complication should be kept in mind whenever a patient is planned for irradiation of these malignancies. Although, incidence of RILD is decreasing due to better knowledge of liver tolerance, improved investigation modalities and modern radiation delivery techniques, treatment options are still limited. In this review article, we have focussed on pathophysiology, risk factors, prevention and management of RILD

  13. The Protective Role of Ginkgo Biloba against Radiation Induced Injury on Rat Gastro-intestinal Tract

    International Nuclear Information System (INIS)

    El-Ghazaly, M.A.; Gharib, O.A.; El-Sheikh, M.M.; Khayyal, M.T.

    2015-01-01

    Ginkgo Biloba extract (EGb 761) is an antioxidant substance exhibits a wide variety of biological activities. The present study was performed to evaluate oxidative stress and inflammatory parameters of gastrointestinal injury induced by exposing rats to acute doses of γ-rays and the potential value of EGb 761 in preventing changes in these parameters. Male albino rats were treated orally with the extract in a dose of 100 mg/ kg for 7 successive days before whole body exposure to acute radiation levels of 2 and 6 Gray (Gy). Control groups were run concurrently. The rats were sacrificed 3 days after irradiation. Various inflammatory mediators and biochemical parameters were determined in the stomach and intestine. Both tissues were also examined histopathologically. Exposure to radiation led to dose dependent changes in the level of oxidative stress biomarkers (elevation of thiobarbituric acid reactive substance (TBARS) and nitrite associated with a glutathione (GSH) decrease as well as in the level of inflammatory parameters (elevation of Tumour necrosis factorα (TNF-α) and myeloperoxidase (MPO) associated with depletion of prostaglandin E 2 (PGE 2 ). Pre-treatment with EGb 761 protected against the changes in both oxidative stress biomarkers and inflammatory mediators. EGb 761 exerted a protective effect against the radiation induced gastrointestinal damage, possibly through its anti-inflammatory and anti-oxidant properties.

  14. Late radiation injury of the colon and rectum. Surgical management and outcome

    International Nuclear Information System (INIS)

    Kimose, H.H.; Fischer, L.; Spjeldnaes, N.; Wara, P.

    1989-01-01

    After a median latency of 2 years, the initial late colorectal radiation injuries in 182 patients were: stricture (37 percent), minor lesions (36 percent), rectovaginal fistula (22 percent), and gangrene or other fistulas (5 percent). Due to progression, new colorectal injuries, primarily stricture (55 percent) and fistula (42 percent), occurred in 68 patients (37 percent). Resection provided the best results. However, the resectability rate was low (46 percent) and resection was primarily performed in patients with a circumscript well-defined stricture of the proximal rectum or sigmoid colon with an anastomotic leakage rate of 5 percent. The prevailing management of 78 patients with fistula or stricture with synchronous fistula was defunctioning colostomy, primarily end-sigmoidostomy, providing fair results in half of the patients. Stomal complications occurred in 15 percent. The radiation-induced colorectal mortality was 8 percent. Colorectal fistula and associated radiation injuries of the urinary tract, and especially of the small bowel, were the major determinants of fatal outcome, yielding an overall radiation-induced mortality of 25 percent. After a median observation time of 13 years, half of the patients were alive at follow-up; 56 percent of these had a fair outcome whereas the remaining patients continued to have mild symptoms responding to conservative measures (34 percent) or disabling symptoms (10 percent)

  15. Delayed radiation injury of brain stem after radiotherapy in nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Yang Yunli; Liu Yingxin; Xie Dong; Su Danke; Chen Mingzhong

    2002-01-01

    Objective: To study the clinical characteristics, MRI findings, diagnosis, treatment and prognostic factors of patients with radiation induced brain stem injury in nasopharyngeal carcinoma. Methods: From January 1991 to January 2001, 24 patients with radiation injury of brain stem were treated, 14 males and 10 females. The latency ranged from 6 to 38 months, with a median of 18 months. The lesions were located in the pons in 10 patients, mesencephalon + pons in 4, pons + medulla oblongata in 5, medulla oblongata in 2 and mesencephalon + pons + medulla oblongata in 3. MRI findings showed that the injury was chiefly presented as hypointensity foci on T 1 WI and hyperintensity foci on T 2 WI. Results: Eighteen patients were treated with dexamethasone in the early phase, with symptoms relieved in 12 patients but unimproved in 6 patients. Eight 44% patients died within the 8-38 months, leaving 16 patients surviving for 0.5 to 6.0 years. Conclusions: Radiation injury of brain stem has a short latency with severe symptoms, signifying poor prognosis. It is suggested that adequate reduction of irradiation volume and dose at the brain stem should be able to lower the incidence of brain stem injury

  16. The history of knowledge on radiation injuries

    International Nuclear Information System (INIS)

    Schuettmann, W.

    1988-01-01

    The possible endangering with the peaceful utilization of nuclear energy and the fateful threat of mankind by nuclear weapons in a world-wide extent keep the discussion on problems of radiation injuries and the national and international activities to avoid them as well running. In view of the burning discussions, the impression may rise that radiation injuries became aware to the human-being only recently. Actually this knowledge dats back to the turn of the century. The development of the knowledge on radiation injuries originating immediately after discovery of W.C. Roentgen in 1895 is presented concisely. The application of radiotherapy is taken into consideration. A historical retrospect in various sections deals with the initial period of radiogenic skin injuries, with the recognition of radiation injuries at the internal organs, the proof of carcinogenic effects of ionizing radiations and its mutagenic influence. Finally it is presented how experience gained during decades, is used as a basis for the conception of present radiation protection. (author)

  17. The influence of infrared radiation on short-term ultraviolet-radiation-induced injuries

    International Nuclear Information System (INIS)

    Kaidbey, K.H.; Witkowski, T.A.; Kligman, A.M.

    1982-01-01

    Because heat has been reported to influence adversely short- and long-term ultraviolet (UV)-radiation-induced skin damage in animals, we investigated the short-term effects of infrared radiation on sunburn and on phototoxic reactions to topical methoxsalen and anthracene in human volunteers. Prior heating of the skin caused suppression of the phototoxic response to methoxsalen as evidenced by an increase in the threshold erythema dose. Heat administered either before or after exposure to UV radiation had no detectable influence on sunburn erythema or on phototoxic reactions provoked by anthracene

  18. Methylene Blue in Ventilator-Induced Lung Injury after Pneumonectomy: an Experimental Study

    Directory of Open Access Journals (Sweden)

    Ye. V Suborov

    2007-01-01

    Full Text Available Objective: to study the expediency and efficiency of using methylene blue (MB on a model of pneumectomy (PE and subsequent ventilator-induced lung injury (VILI in sheep. Materials and methods. The study was conducted at the Research Laboratory of University of Tromse. The experiment included 23 sheep weighing 41.0±4.9 kg. Thoracotomy and right-sided pneumonectomy were performed in the animals under general anesthesia and controlled artificial ventilation. After measurement of the parameters of systemic hemodynamics and extravascular water of the lung (EVWL, the animals were divided into 3 groups: 1 a control group (CG, n=7 with a tidal volume (TV of 6 ml/kg and an end-expiratory positive pressure (PEEP of 2 cm H2O; 2 a VILI group (n=9 with a TV of 12 ml/kg and a PEEP of 0 cm H2O; 3 a group of MB (n=7 that was given in parallel with a damaging ventilation mode. The thermodilution technique (using a Cold Z-021 monitor, (Pulsion, Germany was employed to measure volumetric parameters and EVWL. The parameters of pulmonary hemodynamics, respiratory mechanics, and blood gas composition were recorded. Results: After its reduction at PE, EVWL index increased during damaging ventilation in the VILI and MB groups. In addition, there was an increase in pulmonary artery wedge pressure after PE in the MB and VILI groups. In the latter group, arterial hypoxemia was observed at the end of the experiment. Along with this, after PE pulmonary compliance decreased and airway pressure elevated in the VILI and MB groups. Conclusion: In the presented model of VILI, MB does not prevent the development of postp-neumectomic edema of the lung. Key words: thermochromodilution, acute lung injury, pneumectomy, ventilator-induced lung injury, postpneumectomic edema of the lung, methylene blue.

  19. Medical treatment of radiation injuries-Current US status

    Energy Technology Data Exchange (ETDEWEB)

    Jarrett, D.G. [OSA - CBD and CDP, 3050 Defense Pentagon, Room 3C257, Washington, DC 20301-3050 (United States)], E-mail: david.jarrett@us.army.mil; Sedlak, R.G.; Dickerson, W.E. [Uniformed Services University, Armed Forces Radiobiology Research Institute, 8901 Wisconsin Avenue, Bethesda, MD 20889-5603 (United States); Reeves, G.I. [Northrop Grumman IT, 8211 Terminal Road, Lorton, VA 22079-1421 (United States)

    2007-07-15

    A nuclear incident or major release of radioactive materials likely would result in vast numbers of patients, many of whom would require novel therapy. Fortunately, the numbers of radiation victims in the United States (USA) have been limited to date. If a mass-casualty situation occurs, there will be a need to perform rapid, accurate dose estimates and to provide appropriate medications and other treatment to ameliorate radiation injury. The medical management of radiation injury is complex. Radiation injury may include acute radiation sickness (ARS) from external and/or internal radiation exposure, internal organ damage from incorporated radioactive isotopes, and cutaneous injury. Human and animal data have shown that optimal medical care may nearly double the survivable dose of ionizing radiation. Current treatment strategies for radiation injuries are discussed with concentration on the medical management of the hematopoietic syndrome. In addition, priority areas for continuing and future research into both acute deterministic injuries and also long-term stochastic sequelae of radiation exposure have been identified. There are several near-term novel therapies that appear to offer excellent prognosis for radiation casualties, and these are also described.

  20. Radiation injuries/ionizing radiation

    International Nuclear Information System (INIS)

    Gooden, D.S.

    1991-01-01

    This book was written to aid trial attorneys involved in radiation litigation. Radiologists and medical physicists will also find it helpful as they prepare for trial, either as a litigant or an expert witness. Two chapters present checklists to guide attorneys for both plaintiffs and defendants. Gooden titles these checklists Elements of Damages and Elements of Proof and leads the reader to conclusions about each of these. One section that will be particularly helpful to attorneys contains sample interrogatories associated with a case of alleged radiation exposure resulting in a late radiation injury. There are interrogatories for the plaintiff to ask the defendant and for the defendant to ask the plaintiff

  1. Atomic bomb injury: radiation

    Energy Technology Data Exchange (ETDEWEB)

    Dunham, C L; Cronkite, E P; Le Roy, G V; Warren, S

    1959-01-01

    This document contains 3 reports. In the first report, the clinical diagnosis and treatment of radiation syndrome in survivors of the atomic explosions in Hiroshima and Nagasaki are described. The syndrome of acute radiation injury is applied to the symptom complex, or diseased state, which results from exposure of the whole body to the initial nuclear radiation of an atomic bomb. It is applied to injuries of the skin and subcutaneous tissues resulting from x-radiation or from contact with radioactive material. Internal radiation injury may result from the selective deposition, such as in bone or thyroid, of radioactive material that has been inhaled or absorbed through the gastrointestinal tract or wounds. Radiation syndrome is classified as very severe, severe, and mild. In the second report, a brief discussion is presented on the question of genetic effects in atomic bomb survivors in Hiroshima and Nagasaki. In the third report, a study was carried out on 205 4-1/2 year old children who had been exposed to the atomic bomb blast during the first half of intra-uterine life. Correlation between head size and mental development of the child with distance from the hypocenter, symptoms of radiation effect and type of shielding of the mother is discussed. The conclusion drawn from the present study is that central nervous system defects can be produced in the fetus by atomic bomb radiation, provided that exposure occurs within approximately 1200 meters of the hypocenter and that no effective shielding, such as concrete, protects the fetus from direct irradiation.

  2. Molecular epidemiology of radiation-induced carcinogenesis

    International Nuclear Information System (INIS)

    Trosko, J.E.

    1996-01-01

    The role of ionizing radiation in carcinogenesis is discussed. Every cell contains proto-oncogenes, which if damaged may lead to cell transformation. Every cell also contains tumor suppressor genes, which guard against transformation. Thus, transformation would seem to require a double injury to the DNA in a cell. Ionizing radiation is known to be a relatively weak mutagen, but a good clastogen (inducer of chromosome breaks, deletions and rearrangements). Ionizing radiation may therefore be a 'promoter' of cancer, i.e. a stimulant of the clonal expansion of transformed cells, if it kills enough cells to induce compensatory hyperplasia - i.e. rapid growth of cells. Ionizing radiation may be a 'progressor', if it deactivates tumor suppressor genes tending to suppress the growth of existing clones of transformed cells resulting from any of numerous causes. It may therefore be an oversimplification to say that radiation causes cancer; rather, it seems to be a weak initiator, an indirect promoter, and a late-stage progressor. 2 figs

  3. Radiological-morphological synopsis of radiation-induced lung fibrosis

    International Nuclear Information System (INIS)

    Bublitz, G.

    1977-01-01

    As delayed radiation damage after treatment of bronchial carcinoma and mamma carcinoma, fibroses occur as a reaction of the tissues. They have become a clinical-functional syndrome because of their uniform clinicaL-radiological symptomatology and pathophysiology. Pulmonary fibrosis as delayed radiation damage has a special importance with its two different radiation effects on connective tissue: a) on existing structures, b) delayed alterations of the connective tissue. As seen from experiments on lungs of men and rats, radiation-induced alterations can be measured by testing the different solubilities of the collagen types. In addition to the pathologically disordered collagen production, 9 weeks after the irradiation the radiation fibrosis leads to an isolated increase of insoluble collagen corresponding to the formation of metabolism-resistant fibrils. (MG) [de

  4. Effect of MgSO4 on the contents of Ca2+ in brain cell and NO in brain tissue of rats with radiation-induced acute brain injury

    International Nuclear Information System (INIS)

    Yuan Wenjia; Cui Fengmei; Liu Ping; He Chao; Tu Yu; Wang Lili

    2009-01-01

    The work is to explore the protection of magnesium sulfate(MgSO 4 ) on radiation-induced acute brain injury. Thirty six mature Sprague-Dawley(SD) rats were randomly divided into 3 groups of control, experimental control and experimental therapy group. The whole brains of SD rats of experimental control and experimental therapy group were irradiated with a dose of 20 Gy using 6 MeV electron beam. MgSO 4 was injected into the abdomen of experimental therapy rats group 1 day before, immediately and continue for 5 days after irradiation respectively. The brain tissues were taken on 3, 10, 17 and 24 d after irradiation. Ca 2+ content in brain cell was measured by laser scanning confocal microscopy, and the NO content in brain tissue was detected by the method of nitric acid reductase. Compared with the blank control group, the contents of Ca 2+ in brain cell and NO in brain tissue of the experimental control group increase (P 4 used in early stage can inhibit the contents of Ca 2+ in brain cell and NO in brain tissue after radiation-induced acute brain injury. It means that MgSO 4 has a protective effect on radiation-induced acute brain injury. (authors)

  5. Spinal Cord Glioblastoma Induced by Radiation Therapy of Nasopharyngeal Rhabdomyosarcoma with MRI Findings: Case Report

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Se Jin; Kim, In One [Dept. of Radiology, Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2012-09-15

    Radiation-induced spinal cord gliomas are extremely rare. Since the first case was reported in 1980, only six additional cases have been reported.; The radiation-induced gliomas were related to the treatment of Hodgkin's lymphoma, thyroid cancer, and medullomyoblastoma, and to multiple chest fluoroscopic examinations in pulmonary tuberculosis patient. We report a case of radiation-induced spinal cord glioblastoma developed in a 17-year-old girl after a 13-year latency period following radiotherapy for nasopharyngeal rhabdomyosarcoma. MRI findings of our case are described.

  6. Cocaine-induced pulmonary changes: HRCT findings

    Directory of Open Access Journals (Sweden)

    Renata Rocha de Almeida

    2015-08-01

    Full Text Available AbstractObjective: To evaluate HRCT scans of the chest in 22 patients with cocaine-induced pulmonary disease.Methods: We included patients between 19 and 52 years of age. The HRCT scans were evaluated by two radiologists independently, discordant results being resolved by consensus. The inclusion criterion was an HRCT scan showing abnormalities that were temporally related to cocaine use, with no other apparent causal factors.Results:In 8 patients (36.4%, the clinical and tomographic findings were consistent with "crack lung", those cases being studied separately. The major HRCT findings in that subgroup of patients included ground-glass opacities, in 100% of the cases; consolidations, in 50%; and the halo sign, in 25%. In 12.5% of the cases, smooth septal thickening, paraseptal emphysema, centrilobular nodules, and the tree-in-bud pattern were identified. Among the remaining 14 patients (63.6%, barotrauma was identified in 3 cases, presenting as pneumomediastinum, pneumothorax, and hemopneumothorax, respectively. Talcosis, characterized as perihilar conglomerate masses, architectural distortion, and emphysema, was diagnosed in 3 patients. Other patterns were found less frequently: organizing pneumonia and bullous emphysema, in 2 patients each; and pulmonary infarction, septic embolism, eosinophilic pneumonia, and cardiogenic pulmonary edema, in 1 patient each.Conclusions: Pulmonary changes induced by cocaine use are varied and nonspecific. The diagnostic suspicion of cocaine-induced pulmonary disease depends, in most of the cases, on a careful drawing of correlations between clinical and radiological findings.

  7. Cocaine-induced pulmonary changes: HRCT findings

    International Nuclear Information System (INIS)

    Almeida, Renata Rocha de; Zanetti, Glaucia; Marchiori, Edson; Souza, Luciana Soares de; Silva, Jorge Luiz Pereira e; Mancano, Alexandre Dias; Nobre, Luiz Felipe; Hochhegger, Bruno; Marchiori, Edson

    2015-01-01

    Objective: To evaluate HRCT scans of the chest in 22 patients with cocaine-induced pulmonary disease. Methods: We included patients between 19 and 52 years of age. The HRCT scans were evaluated by two radiologists independently, discordant results being resolved by consensus. The inclusion criterion was an HRCT scan showing abnormalities that were temporally related to cocaine use, with no other apparent causal factors. Results: In 8 patients (36.4%), the clinical and tomographic findings were consistent with 'crack lung', those cases being studied separately. The major HRCT findings in that subgroup of patients included ground-glass opacities, in 100% of the cases; consolidations, in 50%; and the halo sign, in 25%. In 12.5% of the cases, smooth septal thickening, paraseptal emphysema, centrilobular nodules, and the tree-in-bud pattern were identified. Among the remaining 14 patients (63.6%), barotrauma was identified in 3 cases, presenting as pneumomediastinum, pneumothorax, and hemopneumothorax, respectively. Talcosis, characterized as perihilar conglomerate masses, architectural distortion, and emphysema, was diagnosed in 3 patients. Other patterns were found less frequently: organizing pneumonia and bullous emphysema, in 2 patients each; and pulmonary infarction, septic embolism, eosinophilic pneumonia, and cardiogenic pulmonary edema, in 1 patient each. Conclusions: Pulmonary changes induced by cocaine use are varied and nonspecific. The diagnostic suspicion of cocaine-induced pulmonary disease depends, in most of the cases, on a careful drawing of correlations between clinical and radiological findings. (author)

  8. Cocaine-induced pulmonary changes: HRCT findings

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Renata Rocha de; Zanetti, Glaucia; Marchiori, Edson, E-mail: edmarchiori@gmail.com [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Programa de Pos-Graduacao em Radiologia; Souza Junior, Arthur Soares [Faculdade de Medicina de Petropolis, Petropolis, RJ (Brazil); Souza, Luciana Soares de [Ultra-X, Sao Jose do Rio Preto, SP (Brazil); Silva, Jorge Luiz Pereira e [Universidade Federal da Bahia (UFBA), Salvador (Brazil). Dep. de Medicina e Apoio Diagnostico; Escuissato, Dante Luiz [Universidade Federal do Parana (UFPR), Curitiba (Brazil). Dept. de Clinica Medica; Irion, Klaus Loureiro [Liverpool Heart and Chest Hospital NHS Foundation Trust, Liverpool (United Kingdom); Mancano, Alexandre Dias [Hospital Anchieta, Taguatinga, DF (Brazil); Nobre, Luiz Felipe [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil); Hochhegger, Bruno [Universidade Federal de Ciencias da Saude de Porto Alegre, Porto Alegre, RS (Brazil); Marchiori, Edson [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil)

    2015-07-15

    Objective: To evaluate HRCT scans of the chest in 22 patients with cocaine-induced pulmonary disease. Methods: We included patients between 19 and 52 years of age. The HRCT scans were evaluated by two radiologists independently, discordant results being resolved by consensus. The inclusion criterion was an HRCT scan showing abnormalities that were temporally related to cocaine use, with no other apparent causal factors. Results: In 8 patients (36.4%), the clinical and tomographic findings were consistent with 'crack lung', those cases being studied separately. The major HRCT findings in that subgroup of patients included ground-glass opacities, in 100% of the cases; consolidations, in 50%; and the halo sign, in 25%. In 12.5% of the cases, smooth septal thickening, paraseptal emphysema, centrilobular nodules, and the tree-in-bud pattern were identified. Among the remaining 14 patients (63.6%), barotrauma was identified in 3 cases, presenting as pneumomediastinum, pneumothorax, and hemopneumothorax, respectively. Talcosis, characterized as perihilar conglomerate masses, architectural distortion, and emphysema, was diagnosed in 3 patients. Other patterns were found less frequently: organizing pneumonia and bullous emphysema, in 2 patients each; and pulmonary infarction, septic embolism, eosinophilic pneumonia, and cardiogenic pulmonary edema, in 1 patient each. Conclusions: Pulmonary changes induced by cocaine use are varied and nonspecific. The diagnostic suspicion of cocaine-induced pulmonary disease depends, in most of the cases, on a careful drawing of correlations between clinical and radiological findings. (author)

  9. Nanoencapsulation of coenzyme Q10 and vitamin E acetate protects against UVB radiation-induced skin injury in mice.

    Science.gov (United States)

    Pegoraro, Natháli S; Barbieri, Allanna V; Camponogara, Camila; Mattiazzi, Juliane; Brum, Evelyne S; Marchiori, Marila C L; Oliveira, Sara M; Cruz, Letícia

    2017-02-01

    This study aimed to investigate the feasibility of producing semisolid formulations based on nanocapsule suspensions containing the association of the coenzyme Q10 and vitamin E acetate by adding gellan gum (2%) to the suspensions. Furthermore, we studied their application as an alternative for the treatment of inflammation induced by ultraviolet B (UVB) radiation. For this, an animal model of injury induced by UVB-radiation was employed. All semisolids presented pH close to 5.5, drug content above 95% and mean diameter on the nanometric range, after redispersion in water. Besides, the semisolids presented non-Newtonian flow with pseudoplastic behavior and suitable spreadability factor values. The results also showed that the semisolid containing coenzyme Q10-loaded nanocapsules with higher vitamin E acetate concentration reduced in 73±8% the UVB radiation-induced ear edema. Moreover, all formulations tested were able to reduce inflammation parameters evaluated through MPO activity and histological procedure on injured tissue and the semisolids containing the nanoencapsulated coenzyme Q10 reduced oxidative parameters assessment through the non-protein thiols levels and lipid peroxidation. This way, the semisolids based on nanocapsules may be considered a promising approach for the treatment and prevention of skin inflammation diseases. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Acute fibrinous and organising pneumonia: a rare histopathological variant of chemotherapy-induced lung injury.

    Science.gov (United States)

    Gupta, Arjun; Sen, Shiraj; Naina, Harris

    2016-04-06

    Bleomycin-induced lung injury is the most common chemotherapy-associated lung disease, and is linked with several histopathological patterns. Acute fibrinous and organising pneumonia (AFOP) is a relatively new and rare histological pattern of diffuse lung injury. We report the first known case of bleomycin-induced AFOP. A 36-year-old man with metastatic testicular cancer received three cycles of bleomycin, etoposide and cisplatin, before being transitioned to paclitaxel, ifosfamide and cisplatin. He subsequently presented with exertional dyspnoea, cough and pleuritic chest pain. CT of the chest demonstrated bilateral ground glass opacities with peribronchovascular distribution and pulmonary function tests demonstrated a restrictive pattern of lung disease with impaired diffusion. Transbronchial biopsy revealed intra-alveolar fibrin deposits with organising pneumonia, consisting of intraluminal loose connective tissue consistent with AFOP. The patient received high-dose corticosteroids with symptomatic and radiographic improvement. AFOP should be recognised as a histopathological variant of bleomycin-induced lung injury. 2016 BMJ Publishing Group Ltd.

  11. Ghrelin ameliorates acute lung injury induced by oleic acid via inhibition of endoplasmic reticulum stress.

    Science.gov (United States)

    Tian, Xiuli; Liu, Zhijun; Yu, Ting; Yang, Haitao; Feng, Linlin

    2018-03-01

    Acute lung injury (ALI) is associated with excessive mortality and lacks appropriate therapy. Ghrelin is a novel peptide that protects the lung against ALI. This study aimed to investigate whether endoplasmic reticulum stress (ERS) mediates the protective effect of ghrelin on ALI. We used a rat oleic acid (OA)-induced ALI model. Pulmonary impairment was detected by hematoxylin and eosin (HE) staining, lung mechanics, wet/dry weight ratio, and arterial blood gas analysis. Plasma and lung content of ghrelin was examined by ELISA, and mRNA expression was measured by quantitative real-time PCR. Protein levels were detected by western blot. Rats with OA treatment showed significant pulmonary injury, edema, inflammatory cellular infiltration, cytokine release, hypoxia and CO 2 retention as compared with controls. Plasma and pulmonary content of ghrelin was reduced in rats with ALI, and mRNA expression was downregulated. Ghrelin (10nmol/kg) treatment ameliorated the above symptoms, but treatment with the ghrelin antagonists D-Lys 3 GHRP-6 (1μmol/kg) and JMV 2959 (6mg/kg) exacerbated the symptoms. ERS induced by OA was prevented by ghrelin and augmented by ghrelin antagonist treatment. The ERS inducer, tunicamycin (Tm) prevented the ameliorative effect of ghrelin on ALI. The decreased ratio of p-Akt and Akt induced by OA was improved by ghrelin treatment, and was further exacerbated by ghrelin antagonists. Ghrelin protects against ALI by inhibiting ERS. These results provide a new target for prevention and therapy of ALI. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Pathophysiology of Radiation-Induced Dysphagia in Head and Neck Cancer.

    Science.gov (United States)

    King, Suzanne N; Dunlap, Neal E; Tennant, Paul A; Pitts, Teresa

    2016-06-01

    Oncologic treatments, such as curative radiotherapy and chemoradiation, for head and neck cancer can cause long-term swallowing impairments (dysphagia) that negatively impact quality of life. Radiation-induced dysphagia comprised a broad spectrum of structural, mechanical, and neurologic deficits. An understanding of the biomolecular effects of radiation on the time course of wound healing and underlying morphological tissue responses that precede radiation damage will improve options available for dysphagia treatment. The goal of this review is to discuss the pathophysiology of radiation-induced injury and elucidate areas that need further exploration.

  13. The role of p-aminobenzoic acid in the repair of injuries induced by UV- and γ-radiation

    International Nuclear Information System (INIS)

    Rapoport, I.A.; Vasil'eva, S.V.; Davnichenko, L.S.

    1979-01-01

    For the first time it was proved that low doses of p-aminobenzoic acid (PABA) were capable of sharply decreasing lethal mutational effects of UV light and less significantly-gamma effect on a bacterial cell. The experiments were carried out on E.Coli strains which differed in the activity of ferment system of DNA UV-induced injuries reparation. VV radiation dose equaled 10-1500 erd/mm 2 . PABA capability to intensify the reparative process under mutagenic effects of 3 main types: chemical, UV as a representative of non-penetrating radiation, and penetrating radiation permitted to characterize this compound as ''reparagen''. It was emphasized that the application of reparagens capable of intensifying or weakening the reparative process permitted to observe different effects of reparation dependence on the concentration of a chemical agent being introduced from outside and localize the process of reparagen effect in time

  14. Quantification of regional early stage gas exchange changes using hyperpolarized {sup 129}Xe MRI in a rat model of radiation-induced lung injury

    Energy Technology Data Exchange (ETDEWEB)

    Doganay, Ozkan, E-mail: ozkan.doganay@oncology.ox.ac.uk [Department of Medical Biophysics, Western University, London, Ontario N6A5C1 (Canada); Imaging Research Laboratories, Robarts Research Institute, London, Ontario N6A5C1 (Canada); Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ (United Kingdom); Stirrat, Elaine [Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G1X8 (Canada); McKenzie, Charles [Department of Medical Biophysics, Western University, London, Ontario N6A5C1 (Canada); Imaging Research Laboratories, Robarts Research Institute, London, Ontario N6A5C1 (Canada); Schulte, Rolf F. [General Electric Global Research, Munich 85748 (Germany); Santyr, Giles E. [Department of Medical Biophysics, Western University, London, Ontario N6A5C1 (Canada); Imaging Research Laboratories, Robarts Research Institute, London, Ontario N6A5C1 (Canada); Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G1X8 (Canada); Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G1L7 (Canada)

    2016-05-15

    Purpose: To assess the feasibility of hyperpolarized (HP) {sup 129}Xe MRI for detection of early stage radiation-induced lung injury (RILI) in a rat model involving unilateral irradiation by assessing differences in gas exchange dynamics between irradiated and unirradiated lungs. Methods: The dynamics of gas exchange between alveolar air space and pulmonary tissue (PT), PT and red blood cells (RBCs) was measured using single-shot spiral iterative decomposition of water and fat with echo asymmetry and least-squares estimation images of the right and left lungs of two age-matched cohorts of Sprague Dawley rats. The first cohort (n = 5) received 18 Gy irradiation to the right lung using a {sup 60}Co source and the second cohort (n = 5) was not irradiated and served as the healthy control. Both groups were imaged two weeks following irradiation when radiation pneumonitis (RP) was expected to be present. The gas exchange data were fit to a theoretical gas exchange model to extract measurements of pulmonary tissue thickness (L{sub PT}) and relative blood volume (V{sub RBC}) from each of the right and left lungs of both cohorts. Following imaging, lung specimens were retrieved and percent tissue area (PTA) was assessed histologically to confirm RP and correlate with MRI measurements. Results: Statistically significant differences in L{sub PT} and V{sub RBC} were observed between the irradiated and non-irradiated cohorts. In particular, L{sub PT} of the right and left lungs was increased approximately 8.2% and 5.0% respectively in the irradiated cohort. Additionally, V{sub RBC} of the right and left lungs was decreased approximately 36.1% and 11.7% respectively for the irradiated cohort compared to the non-irradiated cohort. PTA measurements in both right and left lungs were increased in the irradiated group compared to the non-irradiated cohort for both the left (P < 0.05) and right lungs (P < 0.01) confirming the presence of RP. PTA measurements also correlated with the

  15. Molecular targets in radiation-induced blood-brain barrier disruption

    International Nuclear Information System (INIS)

    Nordal, Robert A.; Wong, C. Shun

    2005-01-01

    Disruption of the blood-brain barrier (BBB) is a key feature of radiation injury to the central nervous system. Studies suggest that endothelial cell apoptosis, gene expression changes, and alteration of the microenvironment are important in initiation and progression of injury. Although substantial effort has been directed at understanding the impact of radiation on endothelial cells and oligodendrocytes, growing evidence suggests that other cell types, including astrocytes, are important in responses that include induced gene expression and microenvironmental changes. Endothelial apoptosis is important in early BBB disruption. Hypoxia and oxidative stress in the later period that precedes tissue damage might lead to astrocytic responses that impact cell survival and cell interactions. Cell death, gene expression changes, and a toxic microenvironment can be viewed as interacting elements in a model of radiation-induced disruption of the BBB. These processes implicate particular genes and proteins as targets in potential strategies for neuroprotection

  16. CT appearance of radiation injury of the lung and clinical symptoms after stereotactic body radiation therapy (SBRT) for lung cancers: Are patients with pulmonary emphysema also candidates for SBRT for lung cancers?

    International Nuclear Information System (INIS)

    Kimura, Tomoki; Matsuura, Kanji; Murakami, Yuji; Hashimoto, Yasutoshi; Kenjo, Masahiro; Kaneyasu, Yuko; Wadasaki, Koichi; Hirokawa, Yutaka; Ito, Katsuhide; Okawa, Motoomi

    2006-01-01

    Purpose: The purpose of this study was to analyze the computed tomographic (CT) appearance of radiation injury to the lung and clinical symptoms after stereotactic body radiation therapy (SBRT) and evaluate the difference by the presence of pulmonary emphysema (PE) for small lung cancers. Methods and Materials: In this analysis, 45 patients with 52 primary or metastatic lung cancers were enrolled. We evaluated the CT appearance of acute radiation pneumonitis (within 6 months) and radiation fibrosis (after 6 months) after SBRT. Clinical symptoms were evaluated by Common Terminology Criteria for Adverse Events, version 3.0. We also evaluated the relationship between CT appearance, clinical symptoms, and PE. Results: CT appearance of acute radiation pneumonitis was classified as follows: (1) diffuse consolidation, 38.5%; (2) patchy consolidation and ground-glass opacities (GGO), 15.4%; (3) diffuse GGO, 11.5%; (4) patchy GGO, 2.0%; (5) no evidence of increasing density, 32.6%. CT appearance of radiation fibrosis was classified as follows: (1) modified conventional pattern, 61.5%; (2) mass-like pattern, 17.3%; (3) scar-like pattern, 21.2%. Patients who were diagnosed with more than Grade 2 pneumonitis showed significantly less no evidence of increased density pattern and scar-like pattern than any other pattern (p = 0.0314, 0.0297, respectively). Significantly, most of these patients with no evidence of increased density pattern and scar-like pattern had PE (p = 0.00038, 0.00044, respectively). Conclusion: Computed tomographic appearance after SBRT was classified into five patterns of acute radiation pneumonitis and three patterns of radiation fibrosis. Our results suggest that SBRT can be also safely performed even in patients with PE

  17. Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury

    Science.gov (United States)

    Azzam, Edouard I.; Jay-Gerin, Jean-Paul; Pain, Debkumar

    2013-01-01

    Cellular exposure to ionizing radiation leads to oxidizing events that alter atomic structure through direct interactions of radiation with target macromolecules or via products of water radiolysis. Further, the oxidative damage may spread from the targeted to neighboring, non-targeted bystander cells through redox-modulated intercellular communication mechanisms. To cope with the induced stress and the changes in the redox environment, organisms elicit transient responses at the molecular, cellular and tissue levels to counteract toxic effects of radiation. Metabolic pathways are induced during and shortly after the exposure. Depending on radiation dose, dose-rate and quality, these protective mechanisms may or may not be sufficient to cope with the stress. When the harmful effects exceed those of homeostatic biochemical processes, induced biological changes persist and may be propagated to progeny cells. Physiological levels of reactive oxygen and nitrogen species play critical roles in many cellular functions. In irradiated cells, levels of these reactive species may be increased due to perturbations in oxidative metabolism and chronic inflammatory responses, thereby contributing to the long-term effects of exposure to ionizing radiation on genomic stability. Here, in addition to immediate biological effects of water radiolysis on DNA damage, we also discuss the role of mitochondria in the delayed outcomes of ionization radiation. Defects in mitochondrial functions lead to accelerated aging and numerous pathological conditions. Different types of radiation vary in their linear energy transfer (LET) properties, and we discuss their effects on various aspects of mitochondrial physiology. These include short and long-term in vitro and in vivo effects on mitochondrial DNA, mitochondrial protein import and metabolic and antioxidant enzymes. PMID:22182453

  18. Sodium butyrate protects against severe burn-induced remote acute lung injury in rats.

    Directory of Open Access Journals (Sweden)

    Xun Liang

    Full Text Available High-mobility group box 1 protein (HMGB1, a ubiquitous nuclear protein, drives proinflammatory responses when released extracellularly. It plays a key role as a distal mediator in the development of acute lung injury (ALI. Sodium butyrate, an inhibitor of histone deacetylase, has been demonstrated to inhibit HMGB1 expression. This study investigates the effect of sodium butyrate on burn-induced lung injury. Sprague-Dawley rats were divided into three groups: 1 sham group, sham burn treatment; 2 burn group, third-degree burns over 30% total body surface area (TBSA with lactated Ringer's solution for resuscitation; 3 burn plus sodium butyrate group, third-degree burns over 30% TBSA with lactated Ringer's solution containing sodium butyrate for resuscitation. The burned animals were sacrificed at 12, 24, and 48 h after burn injury. Lung injury was assessed in terms of histologic changes and wet weight to dry weight (W/D ratio. Tumor necrosis factor (TNF-α and interleukin (IL-8 protein concentrations in bronchoalveolar lavage fluid (BALF and serum were measured by enzyme-linked immunosorbent assay, and HMGB1 expression in the lung was determined by Western blot analysis. Pulmonary myeloperoxidase (MPO activity and malondialdehyde (MDA concentration were measured to reflect neutrophil infiltration and oxidative stress in the lung, respectively. As a result, sodium butyrate significantly inhibited the HMGB1 expressions in the lungs, reduced the lung W/D ratio, and improved the pulmonary histologic changes induced by burn trauma. Furthermore, sodium butyrate administration decreased the TNF-α and IL-8 concentrations in BALF and serum, suppressed MPO activity, and reduced the MDA content in the lungs after severe burn. These results suggest that sodium butyrate attenuates inflammatory responses, neutrophil infiltration, and oxidative stress in the lungs, and protects against remote ALI induced by severe burn, which is associated with inhibiting HMGB1

  19. The lazaroid U74389G protects normal brain from stereotactic radiosurgery-induced radiation injury

    International Nuclear Information System (INIS)

    Buatti, John M.; Friedman, William A.; Theele, Daniel P.; Bova, Francis J.; Mendenhall, William M.

    1996-01-01

    Purpose: To test an established model of stereotactic radiosurgery-induced radiation injury with pretreatments of either methylprednisolone or the lazaroid U74389G. Methods and Materials: Nine cats received stereotactic radiosurgery with a linear accelerator using an animal radiosurgery device. Each received a dose of 125.0 Gy prescribed to the 84% isodose shell to the anterior limb of the right internal capsule. One animal received no pretreatment, two received citrate vehicle, three received 30 mg/kg of methylprednisolone, and three received 5 mg/kg of U74389G. After irradiation, the animals had frequent neurologic examinations, and neurologic deficits developed in all of them. Six months after the radiation treatment, the animals were anesthetized, and had gadolinium-enhanced magnetic resonance (MR) scans, followed by Evans blue dye perfusion, euthanasia, and brain fixation. Results: Magnetic resonance scans revealed a decrease in the size of the lesions from a mean volume of 0.45 ± 0.06 cm 3 in the control, vehicle-treated, and methylprednisolone-treated animals to 0.22 ± 0.14 cm 3 in the U74389G-treated group. The scans also suggested the absence of necrosis and ventricular dilatation in the lazaroid-treated group. Gross pathology revealed that lesions produced in the untreated, vehicle-treated, and methylprednisolone-treated cats were similar and were characterized by a peripheral zone of Evans blue dye staining with a central zone of a mature coagulative necrosis and focal hemorrhage. However, in the U74389G-treated animals, the lesions were found to have an area of Evans blue dye staining, but lacked discrete areas of necrosis and hemorrhage. Conclusion: These results suggest that the lazaroid U74389G protects the normal brain from radiation injury produced by stereotactic radiosurgery

  20. [Protective effect of Liuweidihuang Pills against cellphone electromagnetic radiation-induced histomorphological abnormality, oxidative injury, and cell apoptosis in rat testes].

    Science.gov (United States)

    Ma, Hui-rong; Cao, Xiao-hui; Ma, Xue-lian; Chen, Jin-jin; Chen, Jing-wei; Yang, Hui; Liu, Yun-xiao

    2015-08-01

    To observe the effect of Liuweidihuang Pills in relieving cellphone electromagnetic radiation-induced histomorphological abnormality, oxidative injury, and cell apoptosis in the rat testis. Thirty adult male SD rats were equally randomized into a normal, a radiated, and a Liuweidihuang group, the animals in the latter two groups exposed to electromagnetic radiation of 900 MHz cellphone frequency 4 hours a day for 18 days. Meanwhile, the rats in the Liuweidihuang group were treated with the suspension of Liuweidihuang Pills at 1 ml/100 g body weight and the other rats intragastrically with the equal volume of purified water. Then all the rats were killed for observation of testicular histomorphology by routine HE staining, measurement of testicular malondialdehyde (MDA) and glutathione (GSH) levels by colorimetry, and determination of the expressions of bax and bcl-2 proteins in the testis tissue by immunohistochemistry. Compared with the normal controls, the radiated rats showed obviously loose structure, reduced layers of spermatocytes, and cavitation in the seminiferous tubules. Significant increases were observed in the MDA level (P radiated rats. In comparison with the radiated rats, those of the Liuweidihuang group exhibited nearly normal testicular structure, significantly lower MDA level (P electromagnetic radiation-induced histomorphological abnormality of the testis tissue and reduce its oxidative damage and cell apoptosis.

  1. First Patagonian Course on 'Diagnosis and Therapy of Injuries Induced by Ionizing Radiation'; Primer curso patagonico 'Diagnostico y Tratamiento de Lesiones Inducidas por Radiaciones Ionizantes'

    Energy Technology Data Exchange (ETDEWEB)

    Bellotti, Mariela I., E-mail: bellotti@cab.cnea.gov.ar [Comision Nacional de Energia Atomica (CAB/CNEA), San Carlos de Bariloche (Argentina). Centro Atomico Bariloche. Lab. de Cavitacion y Biotecnologia; Andres, Pablo A., E-mail: andresp@cab.cnea.gov.ar [Comision Nacional de Energia Atomica (CAB/CNEA), San Carlos de Bariloche (Argentina). Centro Atomico Bariloche. Division Proteccion Radiologica; Cascón, Adriana S., E-mail: adrianacascon@yahoo.com [Instituto de Medicina, Radiomedicina y Seguridad (IMERASE SA), Buenos Aires, (Argentina)

    2013-07-01

    In Patagonia there are academic centers, health and industrial facilities that use ionizing radiations in its usual practices. However, they do not have protocols that respond to local needs. For this reason was held from October 5 to November 10, 2012 in Bariloche Atomic Center, a training course for health personnel. The range of topics covered ranged from the definition of dosimetry quantities, types of radiation and biological dosimetry, biological effects, radiation acute syndrome, radiation-induced cutaneous syndrome, internal contamination, screening in radiological emergencies, etc.The course provided a theoretical and practical guide about how to recognize and treat people exposed to radiations, guidelines for acting in radiological emergencies and a perception of the psychosocial impact of the radiation accidents.The result was a pocket book for health personnel that will be used in case of having a patient with radiation induced injury.

  2. Exercise-Induced Pulmonary Edema in a Triathlon

    Directory of Open Access Journals (Sweden)

    Hirotomo Yamanashi

    2015-01-01

    Full Text Available Introduction. Family physicians have more opportunities to attend athletic competitions as medical staff at first-aid centers because of the increasing popularity of endurance sports. Case. A 38-year-old man who participated in a triathlon race experienced difficulty in breathing after swimming and was moved to a first-aid center. His initial oxygen saturation was 82% and a thoracic computed tomography scan showed bilateral ground glass opacity in the peripheral lungs. His diagnosis was noncardiogenic pulmonary edema associated with exercise or swimming: exercise-induced pulmonary edema (EIPE or swimming-induced pulmonary edema (SIPE. Treatment with furosemide and corticosteroid relieved his symptoms of pulmonary edema. Discussion. Noncardiogenic pulmonary edema associated with endurance sports is not common, but knowledge about EIPE/SIPE or neurogenic pulmonary edema associated with hyponatremia, which is called Ayus-Arieff syndrome, is crucial. Knowledge and caution for possible risk factors, such as exposure to cold water or overhydration, are essential for both medical staff and endurance athletes. Conclusion. To determine the presence of pulmonary edema associated with strenuous exercise, oxygen saturation should be used as a screening tool at a first-aid center. To avoid risks for EIPE/SIPE, knowledge about these diseases is essential for medical staff and for athletes who perform extreme exercise.

  3. Hypertonic saline reduces inflammation and enhances the resolution of oleic acid induced acute lung injury

    Directory of Open Access Journals (Sweden)

    Costello Joseph F

    2008-07-01

    Full Text Available Abstract Background Hypertonic saline (HTS reduces the severity of lung injury in ischemia-reperfusion, endotoxin-induced and ventilation-induced lung injury. However, the potential for HTS to modulate the resolution of lung injury is not known. We investigated the potential for hypertonic saline to modulate the evolution and resolution of oleic acid induced lung injury. Methods Adult male Sprague Dawley rats were used in all experiments. Series 1 examined the potential for HTS to reduce the severity of evolving oleic acid (OA induced acute lung injury. Following intravenous OA administration, animals were randomized to receive isotonic (Control, n = 12 or hypertonic saline (HTS, n = 12, and the extent of lung injury assessed after 6 hours. Series 2 examined the potential for HTS to enhance the resolution of oleic acid (OA induced acute lung injury. Following intravenous OA administration, animals were randomized to receive isotonic (Control, n = 6 or hypertonic saline (HTS, n = 6, and the extent of lung injury assessed after 6 hours. Results In Series I, HTS significantly reduced bronchoalveolar lavage (BAL neutrophil count compared to Control [61.5 ± 9.08 versus 102.6 ± 11.89 × 103 cells.ml-1]. However, there were no between group differences with regard to: A-a O2 gradient [11.9 ± 0.5 vs. 12.0 ± 0.5 KPa]; arterial PO2; static lung compliance, or histologic injury. In contrast, in Series 2, hypertonic saline significantly reduced histologic injury and reduced BAL neutrophil count [24.5 ± 5.9 versus 46.8 ± 4.4 × 103 cells.ml-1], and interleukin-6 levels [681.9 ± 190.4 versus 1365.7 ± 246.8 pg.ml-1]. Conclusion These findings demonstrate, for the first time, the potential for HTS to reduce pulmonary inflammation and enhance the resolution of oleic acid induced lung injury.

  4. The Selective Angiotensin II Type 2 Receptor Agonist, Compound 21, Attenuates the Progression of Lung Fibrosis and Pulmonary Hypertension in an Experimental Model of Bleomycin-Induced Lung Injury.

    Science.gov (United States)

    Rathinasabapathy, Anandharajan; Horowitz, Alana; Horton, Kelsey; Kumar, Ashok; Gladson, Santhi; Unger, Thomas; Martinez, Diana; Bedse, Gaurav; West, James; Raizada, Mohan K; Steckelings, Ulrike M; Sumners, Colin; Katovich, Michael J; Shenoy, Vinayak

    2018-01-01

    Idiopathic Pulmonary Fibrosis (IPF) is a chronic lung disease characterized by scar formation and respiratory insufficiency, which progressively leads to death. Pulmonary hypertension (PH) is a common complication of IPF that negatively impacts clinical outcomes, and has been classified as Group III PH. Despite scientific advances, the dismal prognosis of IPF and associated PH remains unchanged, necessitating the search for novel therapeutic strategies. Accumulating evidence suggests that stimulation of the angiotensin II type 2 (AT 2 ) receptor confers protection against a host of diseases. In this study, we investigated the therapeutic potential of Compound 21 (C21), a selective AT 2 receptor agonist in the bleomycin model of lung injury. A single intra-tracheal administration of bleomycin (2.5 mg/kg) to 8-week old male Sprague Dawley rats resulted in lung fibrosis and PH. Two experimental protocols were followed: C21 was administered (0.03 mg/kg/day, ip) either immediately (prevention protocol, BCP) or after 3 days (treatment protocol, BCT) of bleomycin-instillation. Echocardiography, hemodynamic, and Fulton's index assessments were performed after 2 weeks of bleomycin-instillation. Lung tissue was processed for gene expression, hydroxyproline content (a marker of collagen deposition), and histological analysis. C21 treatment prevented as well as attenuated the progression of lung fibrosis, and accompanying PH. The beneficial effects of C21 were associated with decreased infiltration of macrophages in the lungs, reduced lung inflammation and diminished pulmonary collagen accumulation. Further, C21 treatment also improved pulmonary pressure, reduced muscularization of the pulmonary vessels and normalized cardiac function in both the experimental protocols. However, there were no major differences in any of the outcomes measured from the two experimental protocols. Collectively, our findings indicate that stimulation of the AT 2 receptor by C21 attenuates

  5. The Selective Angiotensin II Type 2 Receptor Agonist, Compound 21, Attenuates the Progression of Lung Fibrosis and Pulmonary Hypertension in an Experimental Model of Bleomycin-Induced Lung Injury

    Directory of Open Access Journals (Sweden)

    Anandharajan Rathinasabapathy

    2018-03-01

    Full Text Available Idiopathic Pulmonary Fibrosis (IPF is a chronic lung disease characterized by scar formation and respiratory insufficiency, which progressively leads to death. Pulmonary hypertension (PH is a common complication of IPF that negatively impacts clinical outcomes, and has been classified as Group III PH. Despite scientific advances, the dismal prognosis of IPF and associated PH remains unchanged, necessitating the search for novel therapeutic strategies. Accumulating evidence suggests that stimulation of the angiotensin II type 2 (AT2 receptor confers protection against a host of diseases. In this study, we investigated the therapeutic potential of Compound 21 (C21, a selective AT2 receptor agonist in the bleomycin model of lung injury. A single intra-tracheal administration of bleomycin (2.5 mg/kg to 8-week old male Sprague Dawley rats resulted in lung fibrosis and PH. Two experimental protocols were followed: C21 was administered (0.03 mg/kg/day, ip either immediately (prevention protocol, BCP or after 3 days (treatment protocol, BCT of bleomycin-instillation. Echocardiography, hemodynamic, and Fulton's index assessments were performed after 2 weeks of bleomycin-instillation. Lung tissue was processed for gene expression, hydroxyproline content (a marker of collagen deposition, and histological analysis. C21 treatment prevented as well as attenuated the progression of lung fibrosis, and accompanying PH. The beneficial effects of C21 were associated with decreased infiltration of macrophages in the lungs, reduced lung inflammation and diminished pulmonary collagen accumulation. Further, C21 treatment also improved pulmonary pressure, reduced muscularization of the pulmonary vessels and normalized cardiac function in both the experimental protocols. However, there were no major differences in any of the outcomes measured from the two experimental protocols. Collectively, our findings indicate that stimulation of the AT2 receptor by C21 attenuates

  6. Accumulation of Tc-99m HMDP to radiation pulmonary fibrosis of six cases

    International Nuclear Information System (INIS)

    Suga, Kazuyoshi; Chouji, Takashi; Ariyoshi, Isao; Nomura, Satoshi; Nishikawa, Eiichi; Nakanishi, Takashi

    1990-01-01

    Six cases are reported in which Tc-99m hydroxy methylene diphosphonate (HMDP)was taken up by radiation pulmonary fibrosis on bone scintigraphy. The six patients received doses of more than 36 Gy to the thorax because of lung cancer (n=4) and breast cancer (n=2). The time from radiation therapy to accumulation of Tc-99m ranged from 2 months to 9 years. CT showed atelectasis-like shadow corresponding to radiation pulmonary fibrosis on chest X-ray, but did not show calcification deposits. In two patients followed up, accumulation of Tc-99m HMDP was not seen during early stage of radiation pneumonitis. Differentiating radiation pulmonary fibrosis from pleural effusion and carcinoma is required in accumulation of Tc-99m HMDP. (N.K.)

  7. Acute respiratory changes and pulmonary inflammation involving a pathway of TGF-β1 induction in a rat model of chlorine-induced lung injury

    Energy Technology Data Exchange (ETDEWEB)

    Wigenstam, Elisabeth; Elfsmark, Linda; Koch, Bo [Swedish Defence Research Agency, CBRN Defence and Security, Umeå (Sweden); Bucht, Anders [Swedish Defence Research Agency, CBRN Defence and Security, Umeå (Sweden); Department of Public Health and Clinical Medicine, Unit of Respiratory Medicine, Umeå University, Umeå (Sweden); Jonasson, Sofia, E-mail: sofia.jonasson@foi.se [Swedish Defence Research Agency, CBRN Defence and Security, Umeå (Sweden)

    2016-10-15

    We investigated acute and delayed respiratory changes after inhalation exposure to chlorine (Cl{sub 2}) with the aim to understand the pathogenesis of the long-term sequelae of Cl{sub 2}-induced lung-injury. In a rat model of nose-only exposure we analyzed changes in airway hyperresponsiveness (AHR), inflammatory responses in airways, expression of pro-inflammatory markers and development of lung fibrosis during a time-course from 5 h up to 90 days after a single inhalation of Cl{sub 2}. A single dose of dexamethasone (10 mg/kg) was administered 1 h following Cl{sub 2}-exposure. A 15-min inhalation of 200 ppm Cl{sub 2} was non-lethal in Sprague-Dawley rats. At 24 h post exposure, Cl{sub 2}-exposed rats displayed elevated numbers of leukocytes with an increase of neutrophils and eosinophils in bronchoalveolar lavage (BAL) and edema was shown both in lung tissue and the heart. At 24 h, the inflammasome-associated cytokines IL-1β and IL-18 were detected in BAL. Concomitant with the acute inflammation a significant AHR was detected. At the later time-points, a delayed inflammatory response was observed together with signs of lung fibrosis as indicated by increased pulmonary macrophages, elevated TGF-β expression in BAL and collagen deposition around airways. Dexamethasone reduced the numbers of neutrophils in BAL at 24 h but did not influence the AHR. Inhalation of Cl{sub 2} in rats leads to acute respiratory and cardiac changes as well as pulmonary inflammation involving induction of TGF-β1. The acute inflammatory response was followed by sustained macrophage response and lack of tissue repair. It was also found that pathways apart from the acute inflammatory response contribute to the Cl{sub 2}-induced respiratory dysfunction. - Highlights: • Inhalation of Cl{sub 2} leads to acute lung inflammation and airway hyperreactivity. • Cl{sub 2} activates an inflammasome pathway of TGF-β induction. • Cl{sub 2} leads to a fibrotic respiratory disease. • Treatment

  8. Predictive role of arterial carboxyhemoglobin concentrations in ovine burn and smoke inhalation-induced lung injury.

    Science.gov (United States)

    Lange, Matthias; Cox, Robert A; Enkhbaatar, Perenlei; Whorton, Elbert B; Nakano, Yoshimitsu; Hamahata, Atsumori; Jonkam, Collette; Esechie, Aimalohi; von Borzyskowski, Sanna; Traber, Lillian D; Traber, Daniel L

    2011-05-01

    Inhalation injury frequently occurs in burn patients and contributes to the morbidity and mortality of these injuries. Arterial carboxyhemoglobin has been proposed as an indicator of the severity of inhalation injury; however, the interrelation between arterial carboxyhemoglobin and histological alterations has not yet been investigated. Chronically instrumented sheep were subjected to a third degree burn of 40% of the total body surface area and inhalation of 48 breaths of cotton smoke. Carboxyhemoglobin was measured immediately after injury and correlated to clinical parameters of pulmonary function as well as histopathology scores from lung tissue harvested 24 hours after the injury. The injury was associated with a significant decline in pulmonary oxygenation and increases in pulmonary shunting, lung lymph flow, wet/dry weight ratio, congestion score, edema score, inflammation score, and airway obstruction scores. Carboxyhemoglobin was negatively correlated to pulmonary oxygenation and positively correlated to pulmonary shunting, lung lymph flow, and lung wet/dry weight ratio. No significant correlations could be detected between carboxyhemoglobin and histopathology scores and airway obstruction scores. Arterial carboxyhemoglobin in sheep with combined burn and inhalation injury are correlated with the degree of pulmonary failure and edema formation, but not with certain histological alterations including airway obstruction scores.

  9. Line-Enhanced Deformable Registration of Pulmonary Computed Tomography Images Before and After Radiation Therapy With Radiation-Induced Fibrosis

    Science.gov (United States)

    Sensakovic, William F.; Maxim, Peter; Diehn, Maximilian; Loo, Billy W.; Xing, Lei

    2018-01-01

    Purpose: The deformable registration of pulmonary computed tomography images before and after radiation therapy is challenging due to anatomic changes from radiation fibrosis. We hypothesize that a line-enhanced registration algorithm can reduce landmark error over the entire lung, including the irradiated regions, when compared to an intensity-based deformable registration algorithm. Materials: Two intensity-based B-spline deformable registration algorithms of pre-radiation therapy and post-radiation therapy images were compared. The first was a control intensity–based algorithm that utilized computed tomography images without modification. The second was a line enhancement algorithm that incorporated a Hessian-based line enhancement filter prior to deformable image registration. Registrations were evaluated based on the landmark error between user-identified landmark pairs and the overlap ratio. Results: Twenty-one patients with pre-radiation therapy and post-radiation therapy scans were included. The median time interval between scans was 1.2 years (range: 0.3-3.3 years). Median landmark errors for the line enhancement algorithm were significantly lower than those for the control algorithm over the entire lung (1.67 vs 1.83 mm; P 5 Gy (2.25 vs 3.31; P 5 Gy dose interval demonstrated a significant inverse relationship with post-radiation therapy fibrosis enhancement after line enhancement filtration (Pearson correlation coefficient = −0.48; P = .03). Conclusion: The line enhancement registration algorithm is a promising method for registering images before and after radiation therapy. PMID:29343206

  10. Radiation-induced augmentation of the immune response

    International Nuclear Information System (INIS)

    Anderson, R.E.; Lefkovits, I.; Troup, G.M.

    1980-01-01

    Radiation-induced augmentation of the immune response has been shown to occur both in vivo and in vitro. Evidence is presented to implicate injury to an extremely radiosensitive T cell in the expression of this phenomenon. Experiments are outlined which could be employed to support or reflect this hypothesis

  11. Reduced pulmonary blood flow in regions of injury 2 hours after acid aspiration in rats.

    Science.gov (United States)

    Richter, Torsten; Bergmann, Ralf; Musch, Guido; Pietzsch, Jens; Koch, Thea

    2015-01-01

    Aspiration-induced lung injury can decrease gas exchange and increase mortality. Acute lung injury following acid aspiration is characterized by elevated pulmonary blood flow (PBF) in damaged lung areas in the early inflammation stage. Knowledge of PBF patterns after acid aspiration is important for targeting intravenous treatments. We examined PBF in an experimental model at a later stage (2 hours after injury). Anesthetized Wistar-Unilever rats (n = 5) underwent unilateral endobronchial instillation of hydrochloric acid. The PBF distribution was compared between injured and uninjured sides and with that of untreated control animals (n = 6). Changes in lung density after injury were measured using computed tomography (CT). Regional PBF distribution was determined quantitatively in vivo 2 hours after acid instillation by measuring the concentration of [(68)Ga]-radiolabeled microspheres using positron emission tomography. CT scans revealed increased lung density in areas of acid aspiration. Lung injury was accompanied by impaired gas exchange. Acid aspiration decreased the arterial pressure of oxygen from 157 mmHg [139;165] to 74 mmHg [67;86] at 20 minutes and tended toward restoration to 109 mmHg [69;114] at 110 minutes (P < 0.001). The PBF ratio of the middle region of the injured versus uninjured lungs of the aspiration group (0.86 [0.7;0.9], median [25%;75%]) was significantly lower than the PBF ratio in the left versus right lung of the control group (1.02 [1.0;1.05]; P = 0.016). The PBF pattern 2 hours after aspiration-induced lung injury showed a redistribution of PBF away from injured regions that was likely responsible for the partial recovery from hypoxemia over time. Treatments given intravenously 2 hours after acid-induced lung injury may not preferentially reach the injured lung regions, contrary to what occurs during the first hour of inflammation. Please see related article: http://dx.doi.org/10.1186/s12871-015-0014-z.

  12. Upregulated copper transporters in hypoxia-induced pulmonary hypertension.

    Directory of Open Access Journals (Sweden)

    Adriana M Zimnicka

    Full Text Available Pulmonary vascular remodeling and increased arterial wall stiffness are two major causes for the elevated pulmonary vascular resistance and pulmonary arterial pressure in patients and animals with pulmonary hypertension. Cellular copper (Cu plays an important role in angiogenesis and extracellular matrix remodeling; increased Cu in vascular smooth muscle cells has been demonstrated to be associated with atherosclerosis and hypertension in animal experiments. In this study, we show that the Cu-uptake transporter 1, CTR1, and the Cu-efflux pump, ATP7A, were both upregulated in the lung tissues and pulmonary arteries of mice with hypoxia-induced pulmonary hypertension. Hypoxia also significantly increased expression and activity of lysyl oxidase (LOX, a Cu-dependent enzyme that causes crosslinks of collagen and elastin in the extracellular matrix. In vitro experiments show that exposure to hypoxia or treatment with cobalt (CoCl2 also increased protein expression of CTR1, ATP7A, and LOX in pulmonary arterial smooth muscle cells (PASMC. In PASMC exposed to hypoxia or treated with CoCl2, we also confirmed that the Cu transport is increased using 64Cu uptake assays. Furthermore, hypoxia increased both cell migration and proliferation in a Cu-dependent manner. Downregulation of hypoxia-inducible factor 1α (HIF-1α with siRNA significantly attenuated hypoxia-mediated upregulation of CTR1 mRNA. In summary, the data from this study indicate that increased Cu transportation due to upregulated CTR1 and ATP7A in pulmonary arteries and PASMC contributes to the development of hypoxia-induced pulmonary hypertension. The increased Cu uptake and elevated ATP7A also facilitate the increase in LOX activity and thus the increase in crosslink of extracellular matrix, and eventually leading to the increase in pulmonary arterial stiffness.

  13. Reducing pulmonary injury by hyperbaric oxygen preconditioning during simulated high altitude exposure in rats.

    Science.gov (United States)

    Li, Zhuo; Gao, Chunjin; Wang, Yanxue; Liu, Fujia; Ma, Linlin; Deng, Changlei; Niu, Ko-Chi; Lin, Mao-Tsun; Wang, Chen

    2011-09-01

    Hyperbaric oxygen preconditioning (HBO₂P + HAE) has been found to be beneficial in preventing the occurrence of ischemic damage to brain, spinal cord, heart, and liver in several disease models. In addition, pulmonary inflammation and edema are associated with a marked reduction in the expression levels of both aquaporin (AQP) 1 and AQP5 in the lung. Here, the aims of this study are first to ascertain whether acute lung injury can be induced by simulated high altitude in rats and second to assess whether HBO2P + HAE is able to prevent the occurrence of the proposed high altitude-induced ALI. Rats were randomly divided into the following three groups: the normobaric air (NBA; 21% O₂ at 1 ATA) group, the HBO₂P + high altitude exposure (HAE) group, and the NBA + HAE group. In HBO₂P + HAE group, animals received 100% O₂ at 2.0 ATA for 1 hour per day, for five consecutive days. In HAE groups, animals were exposed to a simulated HAE of 6,000 m in a hypobaric chamber for 24 hours. Right after being taken out to the ambient, animals were anesthetized generally and killed and thoroughly exsanguinated before their lungs were excised en bloc. The lungs were used for both histologic and molecular evaluation and analysis. In NBA + HAE group, the animals displayed higher scores of alveolar edema, neutrophil infiltration, and hemorrhage compared with those of NBA controls. In contrast, the levels of both AQP1 and AQP5 proteins and mRNA expression in the lung in the NBA + HAE group were significantly lower than those of NBA controls. However, the increased lung injury scores and the decreased levels of both AQP1 and AQP5 proteins and mRNA expression in the lung caused by HAE was significantly reduced by HBO₂P + HAE. Our results suggest that high altitude pulmonary injury may be prevented by HBO2P + HAE in rats.

  14. Stem cell-based therapies for acute radiation syndrome

    International Nuclear Information System (INIS)

    Guha, Chandan

    2014-01-01

    Exposure to high doses of ionizing radiation in the event of accidental or intentional incident such as nuclear/radiological terrorism can lead to debilitating injuries to multiple organs resulting in death within days depending on the amount of radiation dose and the quality of radiation. Unfortunately, there is not a single FDA-licensed drug approved against acute radiation injury. The RadStem Center for Medical Countermeasures against Radiation (RadStem CMGR) program at Einstein is developing stem cell-based therapies to treat acute radiation syndrome (ARS). We have demonstrated that intravenous transplantation of bone marrow-derived and adipose-derived stromal cells, consisting of a mixture of mesenchymal, endothelial and myeloid progenitors can mitigate mice exposed to whole body irradiation of 12 Gy or whole abdominal irradiation of up to 20 Gy. We identified a variety of growth and differentiation factors that individually is unable to improve survival of animals exposed to lethal irradiation, but when administered sequentially mitigates radiation injury and improves survival. We termed this phenomenon as synthetic survival and describe a new paradigm whereby the 'synthetic survival' of irradiated tissues can be promoted by systemic administration of growth factors to amplify residual stem cell clonogens post-radiation exposure, followed by a differentiation factor that favors tissue stem cell differentiation. Synthetic survival can be applied to mitigate lethal radiation injury in multiple organs following radiation-induced hematopoeitic, gastrointestinal and pulmonary syndromes. (author)

  15. Dasatinib-induced pulmonary arterial hypertension - A rare late complication.

    Science.gov (United States)

    Ibrahim, Uroosa; Saqib, Amina; Dhar, Vidhya; Odaimi, Marcel

    2018-01-01

    Dasatinib is a dual Src/Abl tyrosine kinase inhibitor approved for frontline and second line treatment of chronic phase chronic myelogenous leukemia. Pulmonary arterial hypertension is defined by an increase in mean pulmonary arterial pressure >25 mmHg at rest. Dasatinib-induced pulmonary hypertension has been reported in less than 1% of patients on chronic dasatinib treatment for chronic myelogenous leukemia. The pulmonary arterial hypertension from dasatinib may be categorized as either group 1 (drug-induced) or group 5 based on various mechanisms that may be involved including the pathogenesis of the disease process of chronic myelogenous leukemia. There have been reports of dasatinib-induced pulmonary arterial hypertension being reversible. We report a case of pulmonary arterial hypertension in a 46-year-old female patient with chronic phase chronic myelogenous leukemia on dasatinib treatment for over 10 years. She had significant improvement in symptoms after discontinuation of dasatinib and initiation of vasodilators. Several clinical questions arise once patients experience significant adverse effects as discussed in our case.

  16. Clinical study of regional ventilation and perfusion of pulmonary disease by ventilatory steady state measurement with Xe-133

    Energy Technology Data Exchange (ETDEWEB)

    Nishi, Fumiaki

    1984-12-01

    Ventilatory steady state measurement with Xe-133 were performed to evaluate regional ventilation (V radical) and perfusion (Q radical) in 60 cases of primary lung cancer and 39 cases of pulmonary diseases-chronic obstructive pulmonary disease (COPD), pulmonary fibrosis, sarcoidosis, mitral stenosis with pulmonary hypertension (PH), pulmonary alveolar proteinosis, bronchial adenoma and pulmonary embolism. Of 60 cases of lung cancer, 11 cases showed V radicalQ radical mismatch (18%). Even in the V radicalQ radical matched defect cases, a different grade of disorder was seen in V radical and Q radical and the grade of Q radical was severer than the grade of V radical. Of 38 cases irradiated by Linac X-ray, 3 cases whose V radical, Q radical were disordered a little before irradiation recovered completely to normal range after irradiadiation. Of 38 cases subjected to radiation therapy, radiation injury of lung was recognized in 22 cases. In the cases of recovered V radical, Q radical after irradiation, radiation injury of lung occurred, and then V radical, Q radical disordered and returned to pre-irradiation value. In the cases that recovered little in V radical, Q radical, radiation injury of lung occurred, and then V radical, Q radical could not return to pre-irradiation value. In 39 cases of pulmonary diseases, 7 cases of sarcoidosis showed normal V radical and Q radical value. 13 cases of COPD was available to evaluate the regional pulmonary function in MTT (Mean Transit Time). V radical, Q radical were slightly disordered and MTT proloned slightly in 10 cases of diffuse pulmonary fibrosis where a marked fibrosis lesion was remarkable. Six cases of PH showed significant correlation between the left ventricular mean pressure and the perfusion ratio of upper and lower lung field. (J.P.N.).

  17. Clinical study of regional ventilation and perfusion of pulmonary disease by ventilatory steady state measurement with Xe-133

    International Nuclear Information System (INIS)

    Nishi, Fumiaki

    1984-01-01

    Ventilatory steady state measurement with Xe-133 were performed to evaluate regional ventilation (V radical) and perfusion (Q radical) in 60 cases of primary lung cancer and 39 cases of pulmonary diseases-chronic obstructive pulmonary disease (COPD), pulmonary fibrosis, sarcoidosis, mitral stenosis with pulmonary hypertension (PH), pulmonary alveolar proteinosis, bronchial adenoma and pulmonary embolism. Of 60 cases of lung cancer, 11 cases showed V radicalQ radical mismatch (18%). Even in the V radicalQ radical matched defect cases, a different grade of disorder was seen in V radical and Q radical and the grade of Q radical was severer than the grade of V radical. Of 38 cases irradiated by Linac X-ray, 3 cases whose V radical, Q radical were disordered a little before irradiation recovered completely to normal range after irradiadiation. Of 38 cases who performed the radiation therapy, radiation injury of lung was recognized in 22 cases. In the cases of recovered V radical, Q radical after irradiation, radiation injury of lung occurred, and then V radical, Q radical disordered and returned to pre-irradiation value. In the cases that recovered little in V radical, Q radical, radiation injury of lung occurred, and then V radical, Q radical could not return to pre-irradiation value. In 39 cases of pulmonary diseases, 7 cases of sarcoidosis showed normal V radical and Q radical value. 13 cases of COPD was available to evaluate the regional pulmonary function in MTT (Mean Transit Time). V radical, Q radical were slightly disordered and MTT proloned slightly in 10 cases of diffuse pulmonary fibrosis where a marked fibrosis lesion was remarkable. Six cases of PH showed significant correlation between the left ventricular mean pressure and the perfusion ratio of upper and lower lung field. (J.P.N.)

  18. Radiation-induced late brain injury and the protective effect of traditional Chinese medicine

    International Nuclear Information System (INIS)

    Yi Junlin; Miao Yanjun; Yang Weizhi; Cai Weiming; Liu Yajie

    2004-01-01

    Objective: To investigate whether radiation-induced late injury of the brain can be ameliorated by traditional Chinese Medicine through blocking the primary events. Methods: This trial included five animal groups: sham irradiation, irradiation only, and three treatment groups. The whole brain of BALB/C mouse was irradiated with 22 Gy by using a 6 MV linear accelerator. Step down method was used to evaluate the study and memory abilities. Mouse weight was also recorded every week before and after irradiation. On D90, all mice alive were euthanized and Glee's silver dye method and Bielschousky silver dye method were used to detect the senile plaque and the neurofibrillary tangle. One-Way ANOVA was used to evaluate the differences among the groups in the various aspects of study and memory abilities as well as quality of life. Kaplan-Meier was used to evaluate the survival. Log-rank was used to detect the differences among the survival groups. Results: 1. There was no significant difference in survival among the treatment groups, even though Salvia Miltiorrhiza (SM) was able to improve the quality of life. As to the cognition function, it was shown that whole brain radiation would make a severe cognition damage with the learning and memorizing ability of the irradiated mice being worse than those of the sham irradiation group. The Traditional Chinese Medicine Salvia Miltiorrhiza possesses the role of a protective agent against cognition function damage induced by irradiation. 2. Glee's silver dye and Bielschousky silver dye show much more senile plaque and the neurofibrillary tangle in brain tissue of R group and R + 654-2 group than those in the R + SM group. Conclusions: Salvia Miltiorrhiza is able to protect the mouse from cognition function damage induced by irradiation and improve the quality of life by ameliorating the primary events, though it does not improve the survival

  19. Radiation sensitivity and the acute and chronical radiation injury of the liver. Strahlenempfindlichkeit und die akute und chronische Strahlenschaedigung der Leber

    Energy Technology Data Exchange (ETDEWEB)

    Lesch, R [Freiburg Univ. (Germany, F.R.). Abt. Experimentelle Pathologie

    1976-01-01

    The extended German version of the contribution 'Radiation-induced injury of the liver' from the manual of experimental pharmacology, volume XVI, part 5 (p. 227-304), Springer Verlag, Berlin-Heidelberg-New York 1976, is dealt with here. Following a brief presentation of the radiation-induced change of the human liver by external and internal radiation source, experimental results in the latter case of the radiation effect on the regeneration behaviour of the liver particularly regarding the nucleic acid synthesis are indicated especially using findings after thorotrast application. Furthermore, effects on the metabolic activities and on the liver function with combined radiation drug application on test animals is shown.

  20. Radiation-Induced Esophagitis is Mitigated by Soy Isoflavones

    Directory of Open Access Journals (Sweden)

    Matthew D Fountain

    2016-11-01

    Full Text Available Introduction: Lung cancer patients receiving radiotherapy present with acute esophagitis and chronic fibrosis, as a result of radiation injury to esophageal tissues. We have shown that soy isoflavones alleviate pneumonitis and fibrosis caused by radiation toxicity to normal lung. The effect of soy isoflavones on esophagitis histopathological changes induced by radiation was investigated. Methods: C57BL/6 mice were treated with 10 Gy or 25 Gy single thoracic irradiation and soy isoflavones for up to 16 weeks. Damage to esophageal tissues was assessed by H&E, Masson’s Trichrome and Ki-67 staining at 1, 4, 10, 16 weeks after radiation. The effects on smooth muscle cells and leukocyte infiltration were determined by immunohistochemistry using anti-αSMA and anti-CD45 respectively. Results: Radiation caused thickening of esophageal tissue layers that was significantly reduced by soy isoflavones. Major radiation alterations included hypertrophy of basal cells in mucosal epithelium and damage to smooth muscle cells in muscularis mucosae as well as disruption of collagen fibers in lamina propria connective tissue with leukocyte infiltration. These effects were observed as early as one week after radiation and were more pronounced with a higher dose of 25 Gy. Soy isoflavones limited the extent of tissue damage induced by radiation both at 10 and 25 Gy.Conclusions: Soy isoflavones have a radioprotective effect on the esophagus, mitigating the early and late effects of radiation injury in several esophagus tissue layers. Soy could be administered with radiotherapy to decrease the incidence and severity of esophagitis in lung cancer patients receiving thoracic radiation therapy.

  1. Quantification of regional early stage gas exchange changes using hyperpolarized "1"2"9Xe MRI in a rat model of radiation-induced lung injury

    International Nuclear Information System (INIS)

    Doganay, Ozkan; Stirrat, Elaine; McKenzie, Charles; Schulte, Rolf F.; Santyr, Giles E.

    2016-01-01

    Purpose: To assess the feasibility of hyperpolarized (HP) "1"2"9Xe MRI for detection of early stage radiation-induced lung injury (RILI) in a rat model involving unilateral irradiation by assessing differences in gas exchange dynamics between irradiated and unirradiated lungs. Methods: The dynamics of gas exchange between alveolar air space and pulmonary tissue (PT), PT and red blood cells (RBCs) was measured using single-shot spiral iterative decomposition of water and fat with echo asymmetry and least-squares estimation images of the right and left lungs of two age-matched cohorts of Sprague Dawley rats. The first cohort (n = 5) received 18 Gy irradiation to the right lung using a "6"0Co source and the second cohort (n = 5) was not irradiated and served as the healthy control. Both groups were imaged two weeks following irradiation when radiation pneumonitis (RP) was expected to be present. The gas exchange data were fit to a theoretical gas exchange model to extract measurements of pulmonary tissue thickness (L_P_T) and relative blood volume (V_R_B_C) from each of the right and left lungs of both cohorts. Following imaging, lung specimens were retrieved and percent tissue area (PTA) was assessed histologically to confirm RP and correlate with MRI measurements. Results: Statistically significant differences in L_P_T and V_R_B_C were observed between the irradiated and non-irradiated cohorts. In particular, L_P_T of the right and left lungs was increased approximately 8.2% and 5.0% respectively in the irradiated cohort. Additionally, V_R_B_C of the right and left lungs was decreased approximately 36.1% and 11.7% respectively for the irradiated cohort compared to the non-irradiated cohort. PTA measurements in both right and left lungs were increased in the irradiated group compared to the non-irradiated cohort for both the left (P < 0.05) and right lungs (P < 0.01) confirming the presence of RP. PTA measurements also correlated with the MRI measurements for both

  2. Injury by ionizing radiations

    International Nuclear Information System (INIS)

    Upton, A.C.

    1985-01-01

    In view of the vast amount of effort devoted to the study of radiation injury during the past century, it may be concluded that the effects of radiation are better understood than those of any other physical or chemical agent. To this extent, it is useful to review our experience with radiation in addressing health problems associated with other environmental agents

  3. Nitric oxide mediates lung injury induced by ischemia-reperfusion in rats.

    Science.gov (United States)

    Kao, Shang Jyh; Peng, Tai-Chu; Lee, Ru Ping; Hsu, Kang; Chen, Chao-Fuh; Hung, Yu-Kuen; Wang, David; Chen, Hsing I

    2003-01-01

    Nitric oxide (NO) has been reported to play a role in lung injury (LI) induced by ischemia-reperfusion (I/R). However, controversy exists as to the potential beneficial or detrimental effect of NO. In the present study, an in situ, perfused rat lung model was used to study the possible role of NO in the LI induced by I/R. The filtration coefficient (Kfc), lung weight gain (LWG), protein concentration in the bronchoalveolar lavage (PCBAL), and pulmonary arterial pressure (PAP) were measured to evaluate the degree of pulmonary hypertension and LI. I/R resulted in increased Kfc, LWG, and PCBAL. These changes were exacerbated by inhalation of NO (20-30 ppm) or 4 mM L-arginine, an NO precursor. The permeability increase and LI caused by I/R could be blocked by exposure to 5 mM N omega-nitro-L-arginine methyl ester (L-NAME; a nonspecific NO synthase inhibitor), and this protective effect of L-NAME was reversed with NO inhalation. Inhaled NO prevented the increase in PAP caused by I/R, while L-arginine had no such effect. L-NAME tended to diminish the I/R-induced elevation in PAP, but the suppression was not statistically significant when compared to the values in the I/R group. These results indicate that I/R increases Kfc and promotes alveolar edema by stimulating endogenous NO synthesis. Exogenous NO, either generated from L-arginine or delivered into the airway, is apparently also injurious to the lung following I/R. Copyright 2003 National Science Council, ROC and S. Karger AG, Basel

  4. Role of reactive nitrogen species generated via inducible nitric oxide synthase in vesicant-induced lung injury, inflammation and altered lung functioning

    Energy Technology Data Exchange (ETDEWEB)

    Sunil, Vasanthi R., E-mail: sunilvr@eohsi.rutgers.edu [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy Piscataway, NJ (United States); Shen, Jianliang; Patel-Vayas, Kinal; Gow, Andrew J. [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy Piscataway, NJ (United States); Laskin, Jeffrey D. [Department of Environmental and Occupational Medicine, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, NJ (United States); Laskin, Debra L. [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy Piscataway, NJ (United States)

    2012-05-15

    Pulmonary toxicity induced by sulfur mustard and related vesicants is associated with oxidative stress. In the present studies we analyzed the role of reactive nitrogen species (RNS) generated via inducible nitric oxide synthase (iNOS) in lung injury and inflammation induced by vesicants using 2-chloroethyl ethyl sulfide (CEES) as a model. C57Bl/6 (WT) and iNOS −/− mice were sacrificed 3 days or 14 days following intratracheal administration of CEES (6 mg/kg) or control. CEES intoxication resulted in transient (3 days) increases in bronchoalveolar lavage (BAL) cell and protein content in WT, but not iNOS −/− mice. This correlated with expression of Ym1, a marker of oxidative stress in alveolar macrophages and epithelial cells. In contrast, in iNOS −/− mice, Ym1 was only observed 14 days post-exposure in enlarged alveolar macrophages, suggesting that they are alternatively activated. This is supported by findings that lung tumor necrosis factor and lipocalin Lcn2 expression, mediators involved in tissue repair were also upregulated at this time in iNOS −/− mice. Conversely, CEES-induced increases in the proinflammatory genes, monocyte chemotactic protein-1 and cyclooxygenase-2, were abrogated in iNOS −/− mice. In WT mice, CEES treatment also resulted in increases in total lung resistance and decreases in compliance in response to methacholine, effects blunted by loss of iNOS. These data demonstrate that RNS, generated via iNOS play a role in the pathogenic responses to CEES, augmenting oxidative stress and inflammation and suppressing tissue repair. Elucidating inflammatory mechanisms mediating vesicant-induced lung injury is key to the development of therapeutics to treat mustard poisoning. -- Highlights: ► Lung injury, inflammation and oxidative stress are induced by the model vesicant CEES ► RNS generated via iNOS are important in the CEES-induced pulmonary toxicity ► iNOS −/− mice are protected from CEES-induced lung toxicity and

  5. The need for and the importance of biological indicators of radiation effects with special reference to injuries in radiation accidents

    International Nuclear Information System (INIS)

    Koeteles, G.J.; Bianco, A.

    1982-01-01

    The need for further research on the existing and new biological indicators of radiation injury has been expressed. The studies on the radiation-induced alterations of membrane structure and function stimulated investigations aiming to develop an indicator based on membrane-phenomena. The co-ordinated research programme on ''Cell Membrane Probes as Biological Indicators of Radiation Injury in Radiation Accidents'' was initiated in mid 1977 and terminated in 1980. Within this programme many basic observations were made in connection with altered features of various animal and human cell membranes. Molecular, biophysical, biochemical and cell biological approaches were performed. The rapid reaction within minutes or hours of membranes against relatively low doses of various types of irradiations were described and the effects proved to be transitory, i.e. membrane regeneration occurred within hours. These dose- and timedependent alterations suggest the possibility of developing a biological indicator which would give signals at the earliest period after radiation injury when no other biological informations are available. The importance of a system of biological indicators is emphasized. (author)

  6. Obaculactone protects against bleomycin-induced pulmonary fibrosis in mice

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xingqi; Ouyang, Zijun; You, Qian; He, Shuai; Meng, Qianqian; Hu, Chunhui; Wu, Xudong; Shen, Yan; Sun, Yang, E-mail: yangsun@nju.edu.cn; Wu, Xuefeng, E-mail: wuxf@nju.edu.cn; Xu, Qiang, E-mail: molpharm@163.com

    2016-07-15

    Idiopathic pulmonary fibrosis is a progressive, degenerative and almost irreversible disease. There is hardly an effective cure for lung damage due to pulmonary fibrosis. The purpose of this study was to evaluate the role of obaculactone in an already-assessed model of idiopathic pulmonary fibrosis induced by bleomycin administration. Mice were subjected to intratracheal instillation of bleomycin, and obaculactone was given orally after bleomycin instillation daily for 23 days. Treatment with obaculactone ameliorated body weight loss, lung histopathology abnormalities and pulmonary collagen deposition, with a decrease of the inflammatory cell number and the cytokine level in bronchoalveolar lavage fluid. Moreover, obaculactone inhibited the expression of icam1, vcam1, inos and cox2, and attenuated oxidative stress in bleomycin-treated lungs. Importantly, the production of collagen I and α-SMA in lung tissues as well as the levels of TGF-β1, ALK5, p-Smad2 and p-Smad3 in lung homogenates was also reduced after obaculactone treatment. Finally, the TGF-β1-induced epithelial-mesenchymal transition via Smad-dependent and Smad-independent pathways was reversed by obaculactone. Collectively, these data suggest that obaculactone may be a promising drug candidate for the treatment of idiopathic pulmonary fibrosis. - Highlights: • Obaculactone ameliorates bleomycin-induced pulmonary fibrosis in mice. • Obaculactone mitigates bleomycin-induced inflammatory response in lungs. • Obaculactone exerts inhibitory effects on TGF-β1 signaling and TGF-β1-induced EMT progress.

  7. Obaculactone protects against bleomycin-induced pulmonary fibrosis in mice

    International Nuclear Information System (INIS)

    Wang, Xingqi; Ouyang, Zijun; You, Qian; He, Shuai; Meng, Qianqian; Hu, Chunhui; Wu, Xudong; Shen, Yan; Sun, Yang; Wu, Xuefeng; Xu, Qiang

    2016-01-01

    Idiopathic pulmonary fibrosis is a progressive, degenerative and almost irreversible disease. There is hardly an effective cure for lung damage due to pulmonary fibrosis. The purpose of this study was to evaluate the role of obaculactone in an already-assessed model of idiopathic pulmonary fibrosis induced by bleomycin administration. Mice were subjected to intratracheal instillation of bleomycin, and obaculactone was given orally after bleomycin instillation daily for 23 days. Treatment with obaculactone ameliorated body weight loss, lung histopathology abnormalities and pulmonary collagen deposition, with a decrease of the inflammatory cell number and the cytokine level in bronchoalveolar lavage fluid. Moreover, obaculactone inhibited the expression of icam1, vcam1, inos and cox2, and attenuated oxidative stress in bleomycin-treated lungs. Importantly, the production of collagen I and α-SMA in lung tissues as well as the levels of TGF-β1, ALK5, p-Smad2 and p-Smad3 in lung homogenates was also reduced after obaculactone treatment. Finally, the TGF-β1-induced epithelial-mesenchymal transition via Smad-dependent and Smad-independent pathways was reversed by obaculactone. Collectively, these data suggest that obaculactone may be a promising drug candidate for the treatment of idiopathic pulmonary fibrosis. - Highlights: • Obaculactone ameliorates bleomycin-induced pulmonary fibrosis in mice. • Obaculactone mitigates bleomycin-induced inflammatory response in lungs. • Obaculactone exerts inhibitory effects on TGF-β1 signaling and TGF-β1-induced EMT progress.

  8. Effects of altered platelet number on pulmonary hypertension and platelet sequestration in monocrotaline pyrrole-treated rats

    International Nuclear Information System (INIS)

    White, S.M.; Wagner, J.G.; Roth, R.A.

    1989-01-01

    To study the role of platelets in monocrotaline pyrrole (MCTP)-induced pulmonary hypertension, pulmonary sequestration of 111In-labeled platelets in rats treated with MCTP and anti-rat platelet serum (PAS) was examined. Lung injury from a single, intravenous injection of MCTP (3.5 mg/kg) at Day 8 was evident as elevated lung weight and lavage fluid protein and lactate dehydrogenase activity. Additionally, right ventricular hypertrophy and elevated pulmonary arterial pressures (PAP) occurred. Treatment with PAS on Days 6-8 did not affect the lung injury but resulted in an attenuation of the pulmonary hypertensive response. Pulmonary platelet sequestration was also decreased in PAS-treated rats, yet the sequestration in the lungs of MCTP-treated rats that received PAS was significantly higher than that in the lungs of N,N-dimethylformamide (DMF) controls. MCTP-treated rats receiving control serum (CS) tended to sequester more 111In-labeled platelets than respective DMF controls, but this was not statistically significant. Blood platelet half-life was unaltered in rats receiving CS. When rats were treated similarly with MCTP and PAS and were killed at 18 days, the attenuation of the pulmonary hypertensive response previously described was not observed, and lung injury was more extensive than when CS was given. Apparently, platelet depletion delayed the development of the pulmonary hypertensive response. Supranormal platelet numbers produced by splenectomy did not affect MCTP-induced lung injury or the elevation in PAP. These results support the hypothesis that the development of MCTP-induced pulmonary hypertension is mediated in part by platelets

  9. Effects of abdominal lavage fluid from rats with radiation injury and combined radiation-burn injury on growth of hematopoietic progenitor cells

    International Nuclear Information System (INIS)

    Su, Y.-P.; Cheng, T.-M.; Guo, C.-H.; Liu, X.-H.; Qu, J.-F.

    2003-01-01

    Full text: Objective: To observe the effects of abdominal lavage fluid from rats with radiation injury, burn injury and combined radiation-burn injury on growth of hematopoietic progenitor cells. Methods Rats were irradiated with a single dose of 12 Gy γ-ray of 60Co, combined with 30% of total body surface area (TBSA) generated under a 5 KW bromo-tungsten lamp for 25 s. Lavage fluid from the peritoneum was collected 3, 12, 24, 48 and 72 hours after injury. Then the lavage fluid was added to the culture media of erythrocyte progenitor cells (CFU-E, BFE-E) or of granulocyte-macrophage progenitor cells (CFU-GM) at 40 mg/ml final concentration. Results The formed clones of CFU-E, BFU-E and CFU-GM of the lavage fluid from rats with radiation injury or combined radiation-burn injury at 3h, 12h, 24h, 48h and 72h time points were significantly higher than those from normal. They reached their peaks at 24h after injury (215.7%, 202.3%, or 241.2% from burned rats and 188.1%, 202.3% or 204.6% from rats inflected with combined radiation-burn injury as compared with those from normal rats). However, few CFU-E, BFU-E or CFU-GM clones were found after addition of lavage fluid from irradiated rats. Conclusion Peritoneal lavage fluid from rats with burn injury or combined radiation-burn injury enhances the growth of erythrocytes and granulocyte progenitor cells. On the contrary, the lavage fluid from irradiated rats shows inhibitory effects

  10. Radiation injuries of the oral cavity

    International Nuclear Information System (INIS)

    Galantseva, G.F.

    1982-01-01

    The review is given of factors which cause the beginning of radiation injuries of oral cavity in oncologic patients following radiotherapy: dose rate absorbed with tumor and surrounding healthy tissues; irradiation procedures; size of irradiated volume. Pathogenesis and clinical picture are considered as well as prophylaxis and tactics of treatments of patients with radiation injuries of oral cavity

  11. Optical cryoimaging for assessment of radiation-induced injury to rat kidney metabolic state

    Science.gov (United States)

    Mehrvar, Shima; Funding la Cour, Mette; Medhora, Meetha; Camara, Amadou K. S.; Ranji, Mahsa

    2018-02-01

    Objective: This study utilizes fluorescence cryoimaging to quantitatively assess the effect of a high dose of irradiation on rat renal metabolism through redox state. Introduction: Exposure to high doses of irradiation could lead to death, in part, due to renal dysfunction. The kidney is one of the most sensitive organs that exhibit delayed injuries in survivors of acute radiation syndrome. In this study, optical cryoimaging was utilized to examine the potential for renal mitochondrial dysfunction after partial-body irradiation (PBI) and the mitigating effect of lisinopril-treatment, an angiotensin converting enzyme inhibitor that is FDA-approved for other indications. Materials and methods: Rats were exposed to a single dose of 13 Gy leg-out partial body irradiation (PBI, by X-rays). Rats (n = 5/group) received no further treatment, or lisinopril started one week after irradiation and continued at 24 mg/m2 /day. The non-irradiated siblings were used as controls. After 150 days, the rats were sacrificed, and their kidneys harvested and snap frozen in liquid nitrogen for later cryoimaging. The 3D images of metabolic indices (NADH and FAD) were captured, and the redox ratio i.e. NADH/FAD was calculated. The mitochondrial redox state of three groups of rat kidneys were quantified by calculating the volumetric mean of redox ratio images (RR). Results: 3D cryoimaging revealed that in PBI only kidneys, the metabolic marker (RR) decreased significantly by 78% compared to non-irradiated controls. Treatment with lisinopril significantly improved the RR by 93% in groups exposed to PBI. Conclusion: This study aimed at quantifying the level of the mitochondrial redox state of irradiated rat kidneys compared to non-irradiated kidneys (controls) and the efficacy of lisinopril to preserve kidney metabolism after irradiation. PBI oxidized the metabolic state of kidneys and lisinopril mitigated the radiation-induced injury on renal mitochondria.

  12. Risk of radiation-induced pneumonitis after helical and static-port tomotherapy in lung cancer patients and experimental rats

    International Nuclear Information System (INIS)

    Zhang, Xianglan; Shin, You Keun; Zheng, Zhenlong; Zhu, Lianhua; Lee, Ik Jae

    2015-01-01

    Radiotherapy (RT) is one of the major non-operative treatment modalities for treating lung cancer. Tomotherapy is an advanced type of intensity-modulated radiotherapy (IMRT) in which radiation may be delivered in a helical fashion. However, unexpected pneumonitis may occur in patients treated with tomotherapy, especially in combination with chemotherapy, as a result of extensive low-dose radiation of large lung volumes. The aim of our study was to investigate the risk of radiation-induced pneumonitis after helical-mode and static-mode tomotherapy in patients with lung cancer and in an animal model. A total of 63 patients with primary lung cancer who were treated with static or helical tomotherapy with or without concurrent chemoradiotherapy (CCRT) were analyzed. Additionally, rats with radiation-induced pulmonary toxicity, which was induced by the application of helical or static tomography with or without CCRT, were evaluated. Helical-mode tomotherapy resulted in a significantly higher rate of late radiation pneumonitis in lung cancer patients than static-mode tomotherapy when evaluated by the Radiation Therapy Oncology Group (RTOG) and National Cancer Institute Common Terminology Criteria for Adverse Events (CTCAE) scoring system. In the animal model, helical tomotherapy alone induced significantly higher expression of interleukin (IL)-1α, IL-1β, IL-6, and transforming growth factor (TGF)-β in lung specimens, especially on the untreated side, compared to static tomotherapy alone. Additionally, rats treated with helical tomotherapy and CCRT demonstrated significantly higher expression of inflammatory cytokines compared to those treated with static tomotherapy and CCRT. Rat models treated with tomotherapy with or without CCRT could present similar patterns of pulmonary toxicity to those shown in lung cancer patients. The models can be used in further investigations of radiation induced pulmonary toxicity

  13. Impaired Skin Barrier Due to Sebaceous Gland Atrophy in the Latent Stage of Radiation-Induced Skin Injury: Application of Non-Invasive Diagnostic Methods

    Directory of Open Access Journals (Sweden)

    Hyosun Jang

    2018-01-01

    Full Text Available Radiation-induced skin injury can take the form of serious cutaneous damage and have specific characteristics. Asymptomatic periods are classified as the latent stage. The skin barrier plays a critical role in the modulation of skin permeability and hydration and protects the body against a harsh external environment. However, an analysis on skin barrier dysfunction against radiation exposure in the latent stage has not been conducted. Thus, we investigated whether the skin barrier is impaired by irradiation in the latent stage and aimed to identify the molecules involved in skin barrier dysfunction. We analyzed skin barrier function and its components in SKH1 mice that received 20 and 40 Gy local irradiation. Increased transepidermal water loss and skin pH were observed in the latent stage of the irradiated skin. Skin barrier components, such as structural proteins and lipid synthesis enzymes in keratinocyte, increased in the irradiated group. Interestingly, we noted sebaceous gland atrophy and increased serine protease and inflammatory cytokines in the irradiated skin during the latent period. This finding indicates that the main factor of skin barrier dysfunction in the latent stage of radiation-induced skin injury is sebaceous gland deficiency, which could be an intervention target for skin barrier impairment.

  14. Integrating microRNA and mRNA expression profiles in response to radiation-induced injury in rat lung

    International Nuclear Information System (INIS)

    Xie, Ling; Zhou, Jundong; Zhang, Shuyu; Chen, Qing; Lai, Rensheng; Ding, Weiqun; Song, ChuanJun; Meng, XingJun; Wu, Jinchang

    2014-01-01

    Exposure to radiation provokes cellular responses, which are likely regulated by gene expression networks. MicroRNAs are small non-coding RNAs, which regulate gene expression by promoting mRNA degradation or inhibiting protein translation. The expression patterns of both mRNA and miRNA during the radiation-induced lung injury (RILI) remain less characterized and the role of miRNAs in the regulation of this process has not been studied. The present study sought to evaluate miRNA and mRNA expression profiles in the rat lung after irradiation. Male Wistar rats were subjected to single dose irradiation with 20 Gy using 6 MV x-rays to the right lung. (A dose rate of 5 Gy/min was applied). Rats were sacrificed at 3, 12 and 26 weeks after irradiation, and morphological changes in the lung were examined by haematoxylin and eosin. The miRNA and mRNA expression profiles were evaluated by microarrays and followed by quantitative RT-PCR analysis. A cDNA microarray analysis found 2183 transcripts being up-regulated and 2917 transcripts down-regulated (P ≤ 0.05, ≥2.0 fold change) in the lung tissues after irradiation. Likewise, a miRNAs microarray analysis indicated 15 miRNA species being up-regulated and 8 down-regulated (P ≤ 0.05). Subsequent bioinformatics anal -yses of the differentially expressed mRNA and miRNAs revealed that alterations in mRNA expression following irradiation were negatively correlated with miRNAs expression. Our results provide evidence indicating that irradiation induces alterations of mRNA and miRNA expression in rat lung and that there is a negative correlation of mRNA and miRNA expression levels after irradiation. These findings significantly advance our understanding of the regulatory mechanisms underlying the pathophysiology of radiation-induced lung injury. In summary, RILI does not develop gradually in a linear process. In fact, different cell types interact via cytokines in a very complex network. Furthermore, this study suggests that

  15. Niacinamide mitigated the acute lung injury induced by phorbol myristate acetate in isolated rat's lungs.

    Science.gov (United States)

    Lin, Chia-Chih; Hsieh, Nan-Kuang; Liou, Huey Ling; Chen, Hsing I

    2012-03-01

    Phorbol myristate acetate (PMA) is a strong neutrophil activator and has been used to induce acute lung injury (ALI). Niacinamide (NAC) is a compound of B complex. It exerts protective effects on the ALI caused by various challenges. The purpose was to evaluate the protective effects of niacinamide (NAC) on the PMA-induced ALI and associated changes. The rat's lungs were isolated in situ and perfused with constant flow. A total of 60 isolated lungs were randomized into 6 groups to received Vehicle (DMSO 100 μg/g), PMA 4 μg/g (lung weight), cotreated with NAC 0, 100, 200 and 400 mg/g (lung weight). There were 10 isolated lungs in each group. We measured the lung weight and parameters related to ALI. The pulmonary arterial pressure and capillary filtration coefficient (Kfc) were determined in isolated lungs. ATP (adenotriphosphate) and PARP [poly(adenosine diphophate-ribose) polymerase] contents in lung tissues were detected. Real-time PCR was employed to display the expression of inducible and endothelial NO synthases (iNOS and eNOS). The neutrophil-derived mediators in lung perfusate were determined. PMA caused increases in lung weight parameters. This agent produced pulmonary hypertension and increased microvascular permeability. It resulted in decrease in ATP and increase in PARP. The expression of iNOS and eNOS was upregulated following PMA. PMA increased the neutrophil-derived mediators. Pathological examination revealed lung edema and hemorrhage with inflammatory cell infiltration. Immunohistochemical stain disclosed the presence of iNOS-positive cells in macrophages and endothelial cells. These pathophysiological and biochemical changes were diminished by NAC treatment. The NAC effects were dose-dependent. Our results suggest that neutrophil activation and release of neutrophil-derived mediators by PMA cause ALI and associated changes. NO production through the iNOS-producing cells plays a detrimental role in the PMA-induced lung injury. ATP is beneficial

  16. Niacinamide mitigated the acute lung injury induced by phorbol myristate acetate in isolated rat's lungs

    Directory of Open Access Journals (Sweden)

    Lin Chia-Chih

    2012-03-01

    Full Text Available Abstract Background Phorbol myristate acetate (PMA is a strong neutrophil activator and has been used to induce acute lung injury (ALI. Niacinamide (NAC is a compound of B complex. It exerts protective effects on the ALI caused by various challenges. The purpose was to evaluate the protective effects of niacinamide (NAC on the PMA-induced ALI and associated changes. Methods The rat's lungs were isolated in situ and perfused with constant flow. A total of 60 isolated lungs were randomized into 6 groups to received Vehicle (DMSO 100 μg/g, PMA 4 μg/g (lung weight, cotreated with NAC 0, 100, 200 and 400 mg/g (lung weight. There were 10 isolated lungs in each group. We measured the lung weight and parameters related to ALI. The pulmonary arterial pressure and capillary filtration coefficient (Kfc were determined in isolated lungs. ATP (adenotriphosphate and PARP [poly(adenosine diphophate-ribose polymerase] contents in lung tissues were detected. Real-time PCR was employed to display the expression of inducible and endothelial NO synthases (iNOS and eNOS. The neutrophil-derived mediators in lung perfusate were determined. Results PMA caused increases in lung weight parameters. This agent produced pulmonary hypertension and increased microvascular permeability. It resulted in decrease in ATP and increase in PARP. The expression of iNOS and eNOS was upregulated following PMA. PMA increased the neutrophil-derived mediators. Pathological examination revealed lung edema and hemorrhage with inflammatory cell infiltration. Immunohistochemical stain disclosed the presence of iNOS-positive cells in macrophages and endothelial cells. These pathophysiological and biochemical changes were diminished by NAC treatment. The NAC effects were dose-dependent. Conclusions Our results suggest that neutrophil activation and release of neutrophil-derived mediators by PMA cause ALI and associated changes. NO production through the iNOS-producing cells plays a detrimental

  17. The genetic basis of strain-dependent differences in the early phase of radiation injury in mouse lung

    International Nuclear Information System (INIS)

    Franko, A.J.; Sharplin, J.; Ward, W.F.; Hinz, J.M.

    1991-01-01

    Substantial differences between mouse strains have been reported in the lesions present in the lung during the early phase of radiation injury. Some strains show only classical pneumonitis, while other strains develop substantial fibrosis and hyaline membranes which contribute appreciably to respiratory insufficiency, in addition to pneumonitis. Other strains are intermediate between these extremes. These differences correlate with intrinsic differences in activities of lung plasminogen activator and angiotensin converting enzyme. The genetic basis of these differences was assessed by examining histologically the early reaction in lungs of seven murine hybrids available commercially after whole-thorax irradiation. Crosses between fibrosing and nonfibrosing parents were uniformly nonfibrosing, and crosses between fibrosing and intermediate parents were uniformly intermediate. No evidence of sex linkage was seen. Thus the phenotype in which fibrosis is found is controlled by autosomal recessive determinants. Strains prone to radiation-induced pulmonary fibrosis and hyaline membranes exhibited intrinsically lower activities of lung plasminogen activator and angiotensin converting enzyme than either the nonfibrosing strains or the nonfibrosing hybrid crosses. The median time of death of the hybrids was genetically determined primarily by the longest-lived parent regardless of the types of lesions expressed

  18. Treatment plan of acute radiation-induced skin injuries with special reference to an accidentally exposed case

    International Nuclear Information System (INIS)

    Yoshizawa, Yasuo; Kusama, Tomoko

    1977-01-01

    Description was made as to clinical cource of one case of acute radiation-induced skin injury and practical use of medical treatment plan for radiation-induced skin injuries. The accident occurred during the working (5 o'clock in the afternoon) on development of x-ray tube for x-ray fluorescent analysis apparatus. The condition of x-ray exposure was 50 KeV and 10 mA, and the window of x-ray tube was Be 0.3 mm in thickness. The exposure time was about 5 seconds, and the exposure dose on the palm of the right hand which was the maximum was estimated as 10,000 rads. In the next morning after the exposure, the patient complained of extension feeling and edema in the palm of the right hand, and redness and blister appeared. On 11 days after the exposure, blister and edematous swelling grew to the greatest, and pain was emphasized. On 15 days after the exposure, tendency of cure appeared, and on 20 days after, pigmentation became marked. Main symptoms of local findings of one year and half after the exposure were skin atrophy, dilatation of capillary vessels, and depigmentation. The strict local rest, the protection from stimulations outside, the use of medicines for external application in which additives were small in quantity, the frequent and detailed local observation and detailed life guidance were mentioned as basic policies in the early treatment. Avoidance of the skin dryness, local observation with proper frequency, protection from stimulations outside, and life guidance were mentioned as basic policies during the period while the symptoms were fixed. In case of acute exposure, the importance of early treatment and necessity of endeavour of preventing delayed disturbances such as chronic ulcer and carcinogenesis were mentioned. (Tsunoda, M.)

  19. Treatment plan of acute radiation-induced skin injuries with special reference to an accidentally exposed case

    Energy Technology Data Exchange (ETDEWEB)

    Yashizawa, Y; Kusama, T [Tokyo Univ. (Japan). Faculty of Medicine

    1977-05-01

    Description was made as to clinical cource of one case of acute radiation-induced skin injury and practical use of medical treatment plan for radiation-induced skin injuries. The accident occurred during the working (5 o'clock in the afternoon) on development of x-ray tube for x-ray fluorescent analysis apparatus. The condition of x-ray exposure was 50 KeV and 10 mA, and the window of x-ray tube was Be 0.3 mm in thickness. The exposure time was about 5 seconds, and the exposure dose on the palm of the right hand which was the maximum was estimated at 10,000 rads. In the next morning after the exposure, the patient complained of extension feeling and edema in the palm of the right hand, and redness and blister appeared. On 11 days after the exposure, blister and edematous swelling grew to the greatest, and pain was emphasized. On 15 days after the exposure, tendency of cure appeared, and on 20 days after, pigmentation became marked. Main symptoms of local findings of one year and half after the exposure were skin atrophy, dilatation of capillary vessels, and depigmentation. The strict local rest, the protection from stimulations outside, the use of medicines for external application in which additives were small in quantity, the frequent and detailed local observation and detailed life guidance were mentioned as basic policies in the early treatment. Avoidance of the skin dryness, local observation with proper frequency, protection from stimulations outside, and life guidance were mentioned as basic policies during the period while the symptoms were fixed. In case of acute exposure, the importance of early treatment and necessity of endeavour of preventing delayed disturbances such as chronic ulcer and carcinogenesis were mentioned.

  20. The effect of pentoxifylline on early and late radiation injury following fractionated irradiation in C3H mice

    Energy Technology Data Exchange (ETDEWEB)

    Dion, M.W.; Hussey, D.H.; Osborne, J.W.

    1989-07-01

    An experiment was performed to test the effectiveness of pentoxifylline in reducing late radiation injury. One hundred and four C3H mice were randomized into eight groups of 13 mice each, and the right hind limbs were irradiated with 4000, 5000, 6000, or 7000 cGy in ten fractions. Each group was treated with once daily injections of either pentoxifylline or saline for 30+ weeks. An additional ten mice received daily injections of pentoxifylline or saline, but no irradiation. The pentoxifylline animals demonstrated significantly less late injury than the saline treated animals. The most obvious differences were observed in the 5000 and 6000 cGy groups. There were seven radiation related deaths in the saline treated control groups, but only one radiation related death in the pentoxifylline treated groups. Whereas 42% (20/48) of the saline treated animals had a late injury score of 3.0 or greater, only 8% (4/51) of the pentoxifylline treated animals had a late skin score as high as 3.0. Pentoxifylline had no effect on the acute radiation injury scores. The drug was well tolerated with no toxic effects noted. Pentoxifylline is a methyl xanthine derivative that is used to treat vascular occlusive disease in humans. It improves perfusion through small capillaries by improving the deformability of red blood cells, inhibiting platelet aggregation, and stimulating the release of prostacyclin. This study shows that the prophylactic administration of pentoxifylline can modify late radiation induced injury in the mouse extremity. It may have value in the prevention or treatment of late radiation induced injury in humans, and it could be a useful tool to help define the mechanisms of late radiation injury in specific organs.

  1. The effect of pentoxifylline on early and late radiation injury following fractionated irradiation in C3H mice

    International Nuclear Information System (INIS)

    Dion, M.W.; Hussey, D.H.; Osborne, J.W.

    1989-01-01

    An experiment was performed to test the effectiveness of pentoxifylline in reducing late radiation injury. One hundred and four C3H mice were randomized into eight groups of 13 mice each, and the right hind limbs were irradiated with 4000, 5000, 6000, or 7000 cGy in ten fractions. Each group was treated with once daily injections of either pentoxifylline or saline for 30+ weeks. An additional ten mice received daily injections of pentoxifylline or saline, but no irradiation. The pentoxifylline animals demonstrated significantly less late injury than the saline treated animals. The most obvious differences were observed in the 5000 and 6000 cGy groups. There were seven radiation related deaths in the saline treated control groups, but only one radiation related death in the pentoxifylline treated groups. Whereas 42% (20/48) of the saline treated animals had a late injury score of 3.0 or greater, only 8% (4/51) of the pentoxifylline treated animals had a late skin score as high as 3.0. Pentoxifylline had no effect on the acute radiation injury scores. The drug was well tolerated with no toxic effects noted. Pentoxifylline is a methyl xanthine derivative that is used to treat vascular occlusive disease in humans. It improves perfusion through small capillaries by improving the deformability of red blood cells, inhibiting platelet aggregation, and stimulating the release of prostacyclin. This study shows that the prophylactic administration of pentoxifylline can modify late radiation induced injury in the mouse extremity. It may have value in the prevention or treatment of late radiation induced injury in humans, and it could be a useful tool to help define the mechanisms of late radiation injury in specific organs

  2. Effects of mesenchymal stem cells on thymus tissue injury induced by ionizing radiation in mice

    International Nuclear Information System (INIS)

    Wang Hongyan; Qi Yali; Gong Shouliang; Song Xiangfu; Liu Liping; Chen Yubing

    2009-01-01

    Objective: To observe the migration,colonization and repairing effects of marrow mesenchymal stem cells (MSCs) on thymus tissue injury induced by ionizing radiation in mice. Methods: MSCs of C57BL/6 mice were isolated, purified and cultivated in vitro. Their migration and colorization were observed with laser confocal microscopy 1, 5 and 10 d after DAPI labeled. MSCs were injected into the thymus tissue of mice through tail vein. The model of thymus tissue injury induced by whole-body X-irradiation was established. The mice were divided into four groups: normal, irradiation, irradiation+saline, and irradiation+MSCs groups. The apoptosis was detected by flow cytometry and the repairing effect of MSCs on thymus tissue injury was observed by histological method 3 months later. Results: The occurrence of MSCs in the thymus was observed 1 d after MSCs injection, the diffusion of MSCs in the thymus appeared 5 d later, and widely dispersed 10 d later. The apoptotic rate of thymocytes in irradiation group was higher than that in normal (P<0.05) and was lower than that in MSCs group (P<0.05). The structures of cortex and medulla of thymus were clear in mice in normal group, there were a large number of lymphocytes in the cortex and small number of lymphocytes in the medulla. The structures of cortex and medulla of thymus were unclear in mice in both irradiation, irradiation and saline groups. The lymphocytes in thymus showed extensive coagulation necrosis. There were remnants or newborn lymphoid tissue in the cortex and medulla in mice in irradiation+MSCs groups. Conclusion: MSCs can be rapidly enriched in thymus tissue and promote regeneration and repair of damaged thymus. (authors)

  3. Enhancement of the Acrolein-Induced Production of Reactive Oxygen Species and Lung Injury by GADD34

    OpenAIRE

    Sun, Yang; Ito, Sachiko; Nishio, Naomi; Tanaka, Yuriko; Chen, Nana; Liu, Lintao; Isobe, Ken-ichi

    2015-01-01

    Chronic obstructive pulmonary disease (COPD) is characterized by lung destruction and inflammation. As a major compound of cigarette smoke, acrolein plays a critical role in the induction of respiratory diseases. GADD34 is known as a growth arrest and DNA damage-related gene, which can be overexpressed in adverse environmental conditions. Here we investigated the effects of GADD34 on acrolein-induced lung injury. The intranasal exposure of acrolein induced the expression of GADD34, developing...

  4. Resveratrol efficiently improves pulmonary function via stabilizing mast cells in a rat intestinal injury model.

    Science.gov (United States)

    Huang, Xiaolei; Zhao, Weicheng; Hu, Dan; Han, Xue; Wang, Hanbin; Yang, Jianyu; Xu, Yang; Li, Yuantao; Yao, Weifeng; Chen, Chaojin

    2017-09-15

    Intestinal ischemia/reperfusion (IIR) leads to acute lung injury (ALI) distally by aggravating pulmonary oxidative stress. Resveratrol is effective in attenuating ALI through its antioxidant capacity. This study aimed to determine the effects of resveratrol on IIR-induced ALI and to explore the role of mast cells (MCs) activation in a rat model of IIR. Adult Sprague-Dawley rats were subjected to IIR by occluding the superior mesenteric artery for 60min followed by 4-hour reperfusion. Resveratrol was intraperitoneally injected at a dose of 15mg/kg for 5days before IIR. MCs stabilizer/inhibitor cromolyn sodium and degranulator compound 48/80 were used to explore the interaction between resveratrol and MCs. Lung tissues were collected for pathological detection and MCs staining. Pulmonary protein expression of surfactant protein-C (SP-C), tryptase, p47 phox and gp91 phox (two NADPH oxidase subunits), ICAM-1(intercellular adhesion molecule-1) and P-selectin were detected. The levels of oxidative stress markers (SOD, MDA, H 2 O 2 and MPO) and β-hexosaminidase were also measured. At the end of IIR, lung injury was significantly increased and was associated with decreased expression of SP-C and increased lung oxidative stress. Increased inflammation as well as activation of MCs was also observed in the lungs after IIR. All these changes were prevented or reversed by resveratrol pretreatment or MCs inhibition with cromolyn sodium. However, these protective effects of resveratrol or cromolyn sodium were reduced by MCs degranulator compound 48/80. These findings reveal that resveratrol attenuates IIR-induced ALI by reducing NADPH oxidase protein expression and inflammation through stabilizing MCs. Copyright © 2017. Published by Elsevier Inc.

  5. Pulmonary hypertension in patient with elevated homocystein level and blast injuries.

    Science.gov (United States)

    Zuljević, Ervin; Redzepi, Gzim; Plestina, Sanja; Vidjak, Vinko; Loncarić, Vlasta; Jakopović, Marko; Samarzija, Miroslav

    2009-03-01

    38-year-old man had chronic deep venous thrombosis (DVT) as a result of multiple injuries caused by an explosion of grenade 12 years ago, with recurrent pulmonary thromboembolisms and pulmonary hypertension which was unrecognized for a decade. Patient was admitted with a progressive dyspnea and exercise intolerance (NYHA II). The diagnosis was established according to clinical symptoms, transthoracic echocardiography, phlebography, lung scintigraphy and pulmonary angiography. Oral anticoagulant therapy was introduced and cava filter indicated to implant. During phlebography a floating thrombus was found in the inferior cava vein underneath renal vein. Implantation was delayed and patient received systemic fibrinolytic therapy with streptokinase (7500 000 UI within 4 days), followed by heparin infusion and warfarin. Post-fibrinolytic phlebography showed clear lumen of inferior vena cava. Fibrinolysis had also affected pulmonary hypertension-systolic pressure in the right ventricle measured by Doppler echocardiography decreased from 90 to 65 mmHg. Permanent intravenous cava filter was implanted.

  6. Explanation of diagnostic criteria for radiation-induced nervous system disease

    International Nuclear Information System (INIS)

    Xing Zhiwei; Jiang Enhai

    2012-01-01

    National occupational health standard-Diagnostic Criteria for Radiation-Induced Nervous System Disease has been issued and implemented by the Ministry of health. This standard contained three independent criteria of the brain, spinal cord and peripheral nerve injury. These three kinds of disease often go together in clinic,therefore,the three diagnostic criteria were merged into radioactive nervous system disease diagnostic criteria for entirety and maneuverability of the standard. This standard was formulated based on collection of the clinical practice experience, extensive research of relevant literature and foreign relevant publications. It is mainly applied to diagnosis and treatment of occupational radiation-induced nervous system diseases, and to nervous system diseases caused by medical radiation exposure as well. In order to properly implement this standard, also to correctly deal with radioactive nervous system injury, the main contents of this standard including dose threshold, clinical manifestation, indexing standard and treatment principle were interpreted in this article. (authors)

  7. Successful Mitigation of Delayed Intestinal Radiation Injury Using Pravastatin is not Associated with Acute Injury Improvement or Tumor Protection

    International Nuclear Information System (INIS)

    Haydont, Valerie; Gilliot, Olivier; Rivera, Sofia; Bourgier, Celine; Francois, Agnes; Aigueperse, Jocelyne; Bourhis, Jean; Vozenin-Brotons, Marie-Catherine

    2007-01-01

    Purpose: To investigate whether pravastatin mitigates delayed radiation-induced enteropathy in rats, by focusing on the effects of pravastatin on acute cell death and fibrosis according to connective tissue growth factor (CTGF) expression and collagen inhibition. Methods and Materials: Mitigation of delayed radiation-induced enteropathy was investigated in rats using pravastatin administered in drinking water (30 mg/kg/day) 3 days before and 14 days after irradiation. The ileum was irradiated locally after surgical exteriorization (X-rays, 19 Gy). Acute apoptosis, acute and late histologic alterations, and late CTGF and collagen deposition were monitored by semiquantitative immunohistochemistry and colorimetric staining (6 h, 3 days, 14 days, 15 weeks, and 26 weeks after irradiation). Pravastatin antitumor action was studied in HT-29, HeLa, and PC-3 cells by clonogenic cell survival assays and tumor growth delay experiments. Results: Pravastatin improved delayed radiation enteropathy in rats, whereas its benefit in acute and subacute injury remained limited (6 h, 3 days, and 14 days after irradiation). Delayed structural improvement was associated with decreased CTGF and collagen deposition but seemed unrelated to acute damage. Indeed, the early apoptotic index increased, and severe subacute structural damage occurred. Pravastatin elicited a differential effect, protecting normal intestine but not tumors from radiation injury. Conclusion: Pravastatin provides effective protection against delayed radiation enteropathy without interfering with the primary antitumor action of radiotherapy, suggesting that clinical transfer is feasible

  8. Oleanolic acid acetate attenuates polyhexamethylene guanidine phosphate-induced pulmonary inflammation and fibrosis in mice.

    Science.gov (United States)

    Kim, Min-Seok; Han, Jin-Young; Kim, Sung-Hwan; Jeon, Doin; Kim, Hyeon-Young; Lee, Seung Woong; Rho, Mun-Chual; Lee, Kyuhong

    2018-06-01

    Oleanolic acid acetate (OAA), triterpenoid compound isolated from Vigna angularis (azuki bean), has been revealed anti-inflammatory in several studies. We investigated the effects of OAA against polyhexamethylene guanidine phosphate (PHMG-P)-induced pulmonary inflammation and fibrosis in mice. OAA treatment effectively alleviated PHMG-P-induced lung injury, including the number of total and differential cell in BAL fluid, histopathological lesions and hydroxyproline content in a dose dependent manner. Moreover, OAA treatment significantly decreased the elevations of IL-1β, IL-6, TNF-α, TGF-β1, and fibronectin, and the activation of the NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome in the lungs of PHMG-P-treated mice. Cytokines are known to be key modulators in the inflammatory responses that drive progression of fibrosis in injured tissues. The activation of NLRP3 inflammasome has been reported to be involved in induction of inflammatory cytokines. These results indicate that OAA may mitigate the inflammatory response and development of pulmonary fibrosis in the lungs of mice treated with PHMG-P. Copyright © 2018. Published by Elsevier B.V.

  9. Murine P-glycoprotein deficiency alters intestinal injury repair and blunts lipopolysaccharide-induced radioprotection.

    Science.gov (United States)

    Staley, Elizabeth M; Yarbrough, Vanisha R; Schoeb, Trenton R; Daft, Joseph G; Tanner, Scott M; Steverson, Dennis; Lorenz, Robin G

    2012-09-01

    P-glycoprotein (P-gp) has been reported to increase stem cell proliferation and regulate apoptosis. Absence of P-gp results in decreased repair of intestinal epithelial cells after chemical injury. To further explore the mechanisms involved in the effects of P-gp on intestinal injury and repair, we used the well-characterized radiation injury model. In this model, injury repair is mediated by production of prostaglandins (PGE(2)) and lipopolysaccharide (LPS) has been shown to confer radioprotection. B6.mdr1a(-/-) mice and wild-type controls were subjected to 12 Gy total body X-ray irradiation and surviving crypts in the proximal jejunum and distal colon were evaluated 3.5 days after irradiation. B6.mdr1a(-/-) mice exhibited normal baseline stem cell proliferation and COX dependent crypt regeneration after irradiation. However, radiation induced apoptosis was increased and LPS-induced radioprotection was blunted in the C57BL6.mdr1a(-/-) distal colon, compared to B6 wild-type controls. The LPS treatment induced gene expression of the radioprotective cytokine IL-1α, in B6 wild-type controls but not in B6.mdr1a(-/-) animals. Lipopolysaccharid-induced radioprotection was absent in IL-1R1(-/-) animals, indicating a role for IL-1α in radioprotection, and demonstrating that P-gp deficiency interferes with IL-1α gene expression in response to systemic exposure to LPS.

  10. Chemotherapy-induced pulmonary hypertension: role of alkylating agents.

    Science.gov (United States)

    Ranchoux, Benoît; Günther, Sven; Quarck, Rozenn; Chaumais, Marie-Camille; Dorfmüller, Peter; Antigny, Fabrice; Dumas, Sébastien J; Raymond, Nicolas; Lau, Edmund; Savale, Laurent; Jaïs, Xavier; Sitbon, Olivier; Simonneau, Gérald; Stenmark, Kurt; Cohen-Kaminsky, Sylvia; Humbert, Marc; Montani, David; Perros, Frédéric

    2015-02-01

    Pulmonary veno-occlusive disease (PVOD) is an uncommon form of pulmonary hypertension (PH) characterized by progressive obstruction of small pulmonary veins and a dismal prognosis. Limited case series have reported a possible association between different chemotherapeutic agents and PVOD. We evaluated the relationship between chemotherapeutic agents and PVOD. Cases of chemotherapy-induced PVOD from the French PH network and literature were reviewed. Consequences of chemotherapy exposure on the pulmonary vasculature and hemodynamics were investigated in three different animal models (mouse, rat, and rabbit). Thirty-seven cases of chemotherapy-associated PVOD were identified in the French PH network and systematic literature analysis. Exposure to alkylating agents was observed in 83.8% of cases, mostly represented by cyclophosphamide (43.2%). In three different animal models, cyclophosphamide was able to induce PH on the basis of hemodynamic, morphological, and biological parameters. In these models, histopathological assessment confirmed significant pulmonary venous involvement highly suggestive of PVOD. Together, clinical data and animal models demonstrated a plausible cause-effect relationship between alkylating agents and PVOD. Clinicians should be aware of this uncommon, but severe, pulmonary vascular complication of alkylating agents. Copyright © 2015 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  11. Effects of positive end-expiratory pressure and recruitment maneuvers in a ventilator-induced injury mouse model.

    Directory of Open Access Journals (Sweden)

    Laura A Cagle

    Full Text Available Positive-pressure mechanical ventilation is an essential therapeutic intervention, yet it causes the clinical syndrome known as ventilator-induced lung injury. Various lung protective mechanical ventilation strategies have attempted to reduce or prevent ventilator-induced lung injury but few modalities have proven effective. A model that isolates the contribution of mechanical ventilation on the development of acute lung injury is needed to better understand biologic mechanisms that lead to ventilator-induced lung injury.To evaluate the effects of positive end-expiratory pressure and recruitment maneuvers in reducing lung injury in a ventilator-induced lung injury murine model in short- and longer-term ventilation.5-12 week-old female BALB/c mice (n = 85 were anesthetized, placed on mechanical ventilation for either 2 hrs or 4 hrs with either low tidal volume (8 ml/kg or high tidal volume (15 ml/kg with or without positive end-expiratory pressure and recruitment maneuvers.Alteration of the alveolar-capillary barrier was noted at 2 hrs of high tidal volume ventilation. Standardized histology scores, influx of bronchoalveolar lavage albumin, proinflammatory cytokines, and absolute neutrophils were significantly higher in the high-tidal volume ventilation group at 4 hours of ventilation. Application of positive end-expiratory pressure resulted in significantly decreased standardized histology scores and bronchoalveolar absolute neutrophil counts at low- and high-tidal volume ventilation, respectively. Recruitment maneuvers were essential to maintain pulmonary compliance at both 2 and 4 hrs of ventilation.Signs of ventilator-induced lung injury are evident soon after high tidal volume ventilation (as early as 2 hours and lung injury worsens with longer-term ventilation (4 hrs. Application of positive end-expiratory pressure and recruitment maneuvers are protective against worsening VILI across all time points. Dynamic compliance can be used guide

  12. Effects of positive end-expiratory pressure and recruitment maneuvers in a ventilator-induced injury mouse model

    Science.gov (United States)

    Franzi, Lisa M.; Linderholm, Angela L.; Last, Jerold A.; Adams, Jason Y.; Harper, Richart W.

    2017-01-01

    Background Positive-pressure mechanical ventilation is an essential therapeutic intervention, yet it causes the clinical syndrome known as ventilator-induced lung injury. Various lung protective mechanical ventilation strategies have attempted to reduce or prevent ventilator-induced lung injury but few modalities have proven effective. A model that isolates the contribution of mechanical ventilation on the development of acute lung injury is needed to better understand biologic mechanisms that lead to ventilator-induced lung injury. Objectives To evaluate the effects of positive end-expiratory pressure and recruitment maneuvers in reducing lung injury in a ventilator-induced lung injury murine model in short- and longer-term ventilation. Methods 5–12 week-old female BALB/c mice (n = 85) were anesthetized, placed on mechanical ventilation for either 2 hrs or 4 hrs with either low tidal volume (8 ml/kg) or high tidal volume (15 ml/kg) with or without positive end-expiratory pressure and recruitment maneuvers. Results Alteration of the alveolar-capillary barrier was noted at 2 hrs of high tidal volume ventilation. Standardized histology scores, influx of bronchoalveolar lavage albumin, proinflammatory cytokines, and absolute neutrophils were significantly higher in the high-tidal volume ventilation group at 4 hours of ventilation. Application of positive end-expiratory pressure resulted in significantly decreased standardized histology scores and bronchoalveolar absolute neutrophil counts at low- and high-tidal volume ventilation, respectively. Recruitment maneuvers were essential to maintain pulmonary compliance at both 2 and 4 hrs of ventilation. Conclusions Signs of ventilator-induced lung injury are evident soon after high tidal volume ventilation (as early as 2 hours) and lung injury worsens with longer-term ventilation (4 hrs). Application of positive end-expiratory pressure and recruitment maneuvers are protective against worsening VILI across all time points

  13. Effects of positive end-expiratory pressure and recruitment maneuvers in a ventilator-induced injury mouse model.

    Science.gov (United States)

    Cagle, Laura A; Franzi, Lisa M; Linderholm, Angela L; Last, Jerold A; Adams, Jason Y; Harper, Richart W; Kenyon, Nicholas J

    2017-01-01

    Positive-pressure mechanical ventilation is an essential therapeutic intervention, yet it causes the clinical syndrome known as ventilator-induced lung injury. Various lung protective mechanical ventilation strategies have attempted to reduce or prevent ventilator-induced lung injury but few modalities have proven effective. A model that isolates the contribution of mechanical ventilation on the development of acute lung injury is needed to better understand biologic mechanisms that lead to ventilator-induced lung injury. To evaluate the effects of positive end-expiratory pressure and recruitment maneuvers in reducing lung injury in a ventilator-induced lung injury murine model in short- and longer-term ventilation. 5-12 week-old female BALB/c mice (n = 85) were anesthetized, placed on mechanical ventilation for either 2 hrs or 4 hrs with either low tidal volume (8 ml/kg) or high tidal volume (15 ml/kg) with or without positive end-expiratory pressure and recruitment maneuvers. Alteration of the alveolar-capillary barrier was noted at 2 hrs of high tidal volume ventilation. Standardized histology scores, influx of bronchoalveolar lavage albumin, proinflammatory cytokines, and absolute neutrophils were significantly higher in the high-tidal volume ventilation group at 4 hours of ventilation. Application of positive end-expiratory pressure resulted in significantly decreased standardized histology scores and bronchoalveolar absolute neutrophil counts at low- and high-tidal volume ventilation, respectively. Recruitment maneuvers were essential to maintain pulmonary compliance at both 2 and 4 hrs of ventilation. Signs of ventilator-induced lung injury are evident soon after high tidal volume ventilation (as early as 2 hours) and lung injury worsens with longer-term ventilation (4 hrs). Application of positive end-expiratory pressure and recruitment maneuvers are protective against worsening VILI across all time points. Dynamic compliance can be used guide the frequency

  14. Radiation injury caused by internal contamination

    International Nuclear Information System (INIS)

    Petyrek, P.

    1988-01-01

    Basic data are given of radiation injury of the respiratory organs, digestive tract, hematogenous tissues and the thyroid due to internal contamination. Attention is drawn to the complexity of the problem and to the effect of the various factors affecting the picture and course of the radiation damage. The treatment is based on the assumption that fundamental is the damage of the stem cells of the critical organs. Discussed are also the basic clinical pictures that can occur due to internal contamination with activities causing radiation injury. (B.S.). 27 refs

  15. Radiation-induced pulmonary endothelial dysfunction and hydroxyproline accumulation in four strains of mice

    International Nuclear Information System (INIS)

    Ward, W.F.; Sharplin, J.; Franko, A.J.; Hinz, J.M.

    1989-01-01

    C57BL mice exposed to 14 Gy of whole-thorax irradiation develop significant histologic lung fibrosis within 52 weeks, whereas CBA and C3H mice do not exhibit substantial fibrosis during this time. The purpose of the present study was to determine whether this strain-dependent difference in radiation histopathology is associated with genetic differences in pulmonary endothelial metabolic activity or in endothelial radioresponsiveness. C57BL/6J, C57BL/10J, CBA/J, and C3H/HeJ mice were sacrificed 12 weeks after exposure to 0 or 14 Gy of 300-kV X rays to the whole thorax. Lung angiotensin converting enzyme (ACE) activity and plasminogen activator (PLA) activity were measured as indices of pulmonary endothelial function; and lung hydroxyproline (HP) content served as an index of pulmonary fibrosis. Lung ACE and PLA activities in sham-irradiated C57BL/6J and CB57BL/10J mice were only half as high as those in sham-irradiated CBA/J and C3H/HeJ mice. Exposure to 14 Gy of X rays produced a slight but nonsignificant reduction in lung ACE and PLA activity in the C57BL strains, and a significant reduction in the CBA/J and C3H/HeJ mice. Even after 14 Gy, however, lung ACE and PLA activities in CBA/J and C3H/HeJ mice were higher than those in sham-irradiated C57BL/6J and C57BL/10J mice. Lung HP content in all four strains increased significantly after irradiation, but this increase was accompanied by an increase in lung wet weight. As a result, HP concentration (per milligram wet weight) remained constant or increased slightly in both C57BL strains and actually decreased in the CBA/J and C3H/HeJ mice. These data demonstrate significant genetic differences in both intrinsic pulmonary endothelial enzyme activity and endothelial radioresponsiveness among the four strains of mice

  16. Plasma-derived human C1-esterase inhibitor does not prevent mechanical ventilation-induced pulmonary complement activation in a rat model of Streptococcus pneumoniae pneumonia

    NARCIS (Netherlands)

    de Beer, F. M.; Aslami, H.; Hoeksma, J.; van Mierlo, G.; Wouters, D.; Zeerleder, S.; Roelofs, J. J. T. H.; Juffermans, N. P.; Schultz, M. J.; Lagrand, W. K.

    2014-01-01

    Mechanical ventilation has the potential to cause lung injury, and the role of complement activation herein is uncertain. We hypothesized that inhibition of the complement cascade by administration of plasma-derived human C1-esterase inhibitor (C1-INH) prevents ventilation-induced pulmonary

  17. Differential pulmonary and cardiac effects of pulmonary exposure to a panel of particulate matter-associated metals

    International Nuclear Information System (INIS)

    Wallenborn, J. Grace; Schladweiler, Mette J.; Richards, Judy H.; Kodavanti, Urmila P.

    2009-01-01

    Biological mechanisms underlying the association between particulate matter (PM) exposure and increased cardiovascular health effects are under investigation. Water-soluble metals reaching systemic circulation following pulmonary exposure are likely exerting a direct effect. However, it is unclear whether specific PM-associated metals may be driving this. We hypothesized that exposure to equimolar amounts of five individual PM-associated metals would cause differential pulmonary and cardiac effects. We exposed male WKY rats (14 weeks old) via a single intratracheal instillation (IT) to saline or 1 μmol/kg body weight of zinc, nickel, vanadium, copper, or iron in sulfate form. Responses were analyzed 4, 24, 48, or 96 h after exposure. Pulmonary effects were assessed by bronchoalveolar lavage fluid levels of total cells, macrophages, neutrophils, protein, albumin, and activities of lactate dehydrogenase, γ-glutamyl transferase, and n-acetyl glucosaminidase. Copper induced earlier pulmonary injury/inflammation, while zinc and nickel produced later effects. Vanadium or iron exposure induced minimal pulmonary injury/inflammation. Zinc, nickel, or copper increased serum cholesterol, red blood cells, and white blood cells at different time points. IT of nickel and copper increased expression of metallothionein-1 (MT-1) in the lung. Zinc, nickel, vanadium, and iron increased hepatic MT-1 expression. No significant changes in zinc transporter-1 (ZnT-1) expression were noted in the lung or liver; however, zinc increased cardiac ZnT-1 at 24 h, indicating a possible zinc-specific cardiac effect. Nickel exposure induced an increase in cardiac ferritin 96 h after IT. This data set demonstrating metal-specific cardiotoxicity is important in linking metal-enriched anthropogenic PM sources with adverse health effects.

  18. Surgical treatment of intestinal radiation injury

    International Nuclear Information System (INIS)

    Maekelae, J.Ne.; Nevasaari, K.; Kairaluoma, M.I.

    1987-01-01

    A review of 43 consecutive patients requiring operation for serious intestinal radiation injury was undertaken to elucidate the efficacy of surgical treatment. The most common site of radiation injury was the rectum (19 cases), followed by the small bowel (13 cases), the colon (7 cases), and the combination of these (4 cases). The overall operative mortality was 14%; morbidity, 47%; and the postoperative symptom-free period, 18 +/- 30 months. Colostomy (N = 20) carried the lowest risk of mortality, 0%, as compared with resection (N = 17) and bypass procedure (N = 6), which were accompanied by the mortalities of 24% and 33%, respectively. During the follow-up (3-13 years) 12 patients (28%) died of recurrent cancer and 9 patients (21%) of persistent radiation injury, which yielded an overall mortality of 65% after resection and 50% and 65% after bypass and colostomy procedures, respectively. Continuing radiation damage led to 15 late reoperations. Ten of these were performed after colostomy, four after resection, and one after bypass. We conclude that colostomy cannot be regarded as a preferred operative method, because it does not prevent the progression of radiation injury and because it is, for this reason, associated with a higher late-complication rate. A more radical surgery is recommended but with the limitation that the operative method must be adapted to the operative finding

  19. Grape seed extract ameliorates bleomycin-induced mouse pulmonary fibrosis.

    Science.gov (United States)

    Liu, Qi; Jiang, Jun-Xia; Liu, Ya-Nan; Ge, Ling-Tian; Guan, Yan; Zhao, Wei; Jia, Yong-Liang; Dong, Xin-Wei; Sun, Yun; Xie, Qiang-Min

    2017-05-05

    Pulmonary fibrosis is common in a variety of inflammatory lung diseases, such as interstitial pneumonia, chronic obstructive pulmonary disease, and silicosis. There is currently no effective clinical drug treatment. It has been reported that grape seed extracts (GSE) has extensive pharmacological effects with minimal toxicity. Although it has been found that GSE can improve the lung collagen deposition and fibrosis pathology induced by bleomycin in rat, its effects on pulmonary function, inflammation, growth factors, matrix metalloproteinases and epithelial-mesenchymal transition remain to be researched. In the present study, we studied whether GSE provided protection against bleomycin (BLM)-induced mouse pulmonary fibrosis. ICR strain mice were treated with BLM in order to establish pulmonary fibrosis models. GSE was given daily via intragastric administration for three weeks starting at one day after intratracheal instillation. GSE at 50 or 100mg/kg significantly reduced BLM-induced inflammatory cells infiltration, proinflammatory factor protein expression, and hydroxyproline in lung tissues, and improved pulmonary function in mice. Additionally, treatment with GSE also significantly impaired BLM-induced increases in lung fibrotic marker expression (collagen type I alpha 1 and fibronectin 1) and decreases in an anti-fibrotic marker (E-cadherin). Further investigation indicated that the possible molecular targets of GSE are matrix metalloproteinases-9 (MMP-9) and TGF-β1, given that treatment with GSE significantly prevented BLM-induced increases in MMP-9 and TGF-β1 expression in the lungs. Together, these results suggest that supplementation with GSE may improve the quality of life of lung fibrosis patients by inhibiting MMP-9 and TGF-β1 expression in the lungs. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Organization of medical aid and treatment of victims of mass ionizing radiation injuries

    International Nuclear Information System (INIS)

    Gus'kova, A.K.; Burenin, P.I.; Barabanova, A.V.

    1987-01-01

    General organization points on medical aid and treatment of mass ionizing radiation injuries in population are presented. Characteristic of losses and structure of injuries induced by a nuclear explosion are given. Destructions in a town caused by a nuclear explosion and medical aid conditions for patients are analysed. Main information about structure of medical surveillance of civil defence and criteria of medical classification and evacuation of the injured are presented

  1. Radiation injury claims: an overview and update

    International Nuclear Information System (INIS)

    Schaffer, W.G.

    1984-01-01

    The author reviews the radiation injury claims problem and summarizes the legal framework in which the claims are presently brought. Two cases are reviewed in which the decisions are troubling. The implications of these decisions are discussed in the overall radiation injury claims problem. The author notes that in the largest radiation injury case tried in the United States, the court was unable to resolve the claims within the confines of the existing law. The disregard for established norms of adjudication and the resultant decline in predictability of outcome portends grave consequences, not only for the nuclear industry but for other industries involved with potentially toxic substances

  2. The experimental study on protective effects and mechanisms of chelating agents of catechols amino carboxylic acid for radiation injury induced by actimides(Th-234)

    International Nuclear Information System (INIS)

    Chen, H. H.; Luo, M. C.; Sun, M. Z.; Hu, Y. X.; Wang, Y. H.; Jin, M. Y.; Cheng, W. Y.

    2002-01-01

    The decorporative efficacy and antioxidative action of prompt and delayed consecutive administration of catecholicpolyaminopolycarboxylate ligands, 7601 and 9501 for radiothorium in mice were investigated. DTPA and Vitamin E were used as positive controls. The competitive abilities of 7601 and 9501 to mobilize the thorium with BSA were studied. Their inhibition effects on superoxide anionas radicals were measured with electron spin resonance. The results showed that 7601 and 9501 are able to effectively prevent the internal radiation injury induced radiothorium, attributing to their double functions of pronounced removal effectiveness and antioxidative action. Their protective effects were better than DTPA and Vitamin E. The mechanisms of protective effects of 7601 and 9501 for internal radiation injury was close related to competitive ability of chelating agent to chelate the thorium with BSA and oxygen free radical scavenging activities

  3. Role of endothelium in radiation-induced normal tissue damages; Role de l'endothelium dans les dommages radio-induits aux tissus sains

    Energy Technology Data Exchange (ETDEWEB)

    Milliat, F

    2007-05-15

    More than half of cancers are treated with radiation therapy alone or in combination with surgery and/or chemotherapy. The goal of radiation therapy is to deliver enough ionising radiation to destroy cancer cells without exceeding the level that the surrounding healthy cells can tolerate. Unfortunately, radiation-induced normal tissue injury is still a dose limiting factor in the treatment of cancer with radiotherapy. The knowledge of normal tissue radiobiology is needed to determine molecular mechanisms involved in normal tissue pathogenic pathways in order to identify therapeutic targets and develop strategies to prevent and /or reduce side effects of radiation therapy. The endothelium is known to play a critical role in radiation-induced injury. Our work shows that endothelial cells promote vascular smooth muscle cell proliferation, migration and fibro-genic phenotype after irradiation. Moreover, we demonstrate for the first time the importance of PAI-1 in radiation-induced normal tissue damage suggesting that PAI-1 may represent a molecular target to limit injury following radiotherapy. We describe a new role for the TGF-b/Smad pathway in the pathogenesis of radiation-induced damages. TGF-b/Smad pathway is involved in the fibro-genic phenotype of VSMC induced by irradiated EC as well as in the radiation-induced PAI-1 expression in endothelial cells. (author)

  4. Upfront triple combination therapy-induced pulmonary edema in a case of pulmonary arterial hypertension associated with Sjogren's syndrome

    Directory of Open Access Journals (Sweden)

    Kimikazu Takeuchi

    Full Text Available Clinical efficacy of combination therapy using vasodilators for pulmonary arterial hypertension (PAH is well established. However, information on its safety are limited. We experienced a case of primary Sjogren's syndrome associated with PAH where the patient developed pulmonary edema immediately after the introduction of upfront triple combination therapy. Although the combination therapy successfully stabilized her pre-shock state, multiple ground glass opacities (GGO emerged. We aborted the dose escalation of epoprostenol and initiated continuous furosemide infusion and noninvasive positive pressure ventilation (NPPV, but this did not prevent an exacerbation of pulmonary edema. Chest computed tomography showing diffuse alveolar infiltrates without inter-lobular septal thickening suggests the pulmonary edema was unlikely due to cardiogenic pulmonary edema and pulmonary venous occlusive disease. Acute respiratory distress syndrome was also denied from no remarkable inflammatory sign and negative results of drug-induced lymphocyte stimulation tests (DLST. We diagnosed the etiological mechanism as pulmonary vasodilator-induced trans-capillary fluid leakage. Following steroid pulse therapy dramatically improved GGO. We realized that overmuch dose escalation of epoprostenol on the top of dual upfront combination poses the risk of pulmonary edema. Steroid pulse therapy might be effective in cases of vasodilator-induced pulmonary edema in Sjogren's syndrome associated with PAH. Keywords: Steroid therapy, Ground glass opacity, Inter-lobular septal thickening, Epoprostenol, Acute respiratory distress syndrome, Trans-capillary fluid leakage

  5. Claudin-3 expression in radiation-exposed rat models: A potential marker for radiation-induced intestinal barrier failure

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Sehwan; Lee, Jong-geol; Bae, Chang-hwan; Lee, Seung Bum [National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Jang, Won-Suk; Lee, Sun-Joo [Laboratory of Experimental Pathology, Korea Cancer Center Hospital, Seoul (Korea, Republic of); Lee, Seung-Sook [National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Department of Pathology, Korea Cancer Center Hospital, Seoul (Korea, Republic of); Park, Sunhoo, E-mail: sunhoo@kcch.re.kr [National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Department of Pathology, Korea Cancer Center Hospital, Seoul (Korea, Republic of)

    2015-01-02

    Highlights: • Irradiation increased intestinal bacterial translocation, accompanied by claudin protein expression in rats. • Neurotensin decreased the bacterial translocation and restored claudin-3 expression. • Claudin-3 can be used as a marker in evaluating radiation induced intestinal injury. - Abstract: The molecular events leading to radiation-induced intestinal barrier failure are not well known. The influence of the expression of claudin proteins in the presence and absence of neurotensin was investigated in radiation-exposed rat intestinal epithelium. Wistar rats were randomly divided into control, irradiation, and irradiation + neurotensin groups, and bacterial translocation to the mesenteric lymph node and expression of claudins were determined. Irradiation led to intestinal barrier failure as demonstrated by significant bacterial translocation. In irradiated terminal ilea, expression of claudin-3 and claudin-4 was significantly decreased, and claudin-2 expression was increased. Administration of neurotensin significantly reduced bacterial translocation and restored the structure of the villi as seen by histologic examination. Among the three subtype of claudins, only claudin-3 expression was restored. These results suggest that the therapeutic effect of neurotensin on the disruption of the intestinal barrier is associated with claudin-3 alteration and that claudin-3 could be used as a marker in evaluating radiation-induced intestinal injury.

  6. Modulation of the Rho/ROCK pathway in heart and lung after thorax irradiation reveals targets to improve normal tissue toxicity.

    Science.gov (United States)

    Monceau, Virginie; Pasinetti, Nadia; Schupp, Charlotte; Pouzoulet, Fred; Opolon, Paule; Vozenin, Marie-Catherine

    2010-11-01

    The medical options available to prevent or treat radiation-induced injury are scarce and developing effective countermeasures is still an open research field. In addition, more than half of cancer patients are treated with radiation therapy, which displays a high antitumor efficacy but can cause, albeit rarely, disabling long-term toxicities including radiation fibrosis. Progress has been made in the definition of molecular pathways associated with normal tissue toxicity that suggest potentially effective therapeutic targets. Targeting the Rho/ROCK pathway seems a promising anti-fibrotic approach, at least in the gut; the current study was performed to assess whether this target was relevant to the prevention and/or treatment of injury to the main thoracic organs, namely heart and lungs. First, we showed activation of two important fibrogenic pathways (Smad and Rho/ROCK) in response to radiation-exposure to adult cardiomyocytes; we extended these observations in vivo to the heart and lungs of mice, 15 and 30 weeks post-irradiation. We correlated this fibrogenic molecular imprint with alteration of heart physiology and long-term remodelling of pulmonary and cardiac histological structures. Lastly, cardiac and pulmonary radiation injury and bleomycin-induced pulmonary fibrosis were successfully modulated using Rho/ROCK inhibitors (statins and Y-27632) and this was associated with a normalization of fibrogenic markers. In conclusion, the present paper shows for the first time, activation of Rho/ROCK and Smad pathways in pulmonary and cardiac radiation-induced delayed injury. Our findings thereby reveal a safe and efficient therapeutic opportunity for the abrogation of late thoracic radiation injury, potentially usable either before or after radiation exposure; this approach is especially attractive in (1) the radiation oncology setting, as it does not interfere with prior anti-cancer treatment and in (2) radioprotection, as applicable to the treatment of established

  7. The Curious Question of Exercise-Induced Pulmonary Edema

    Directory of Open Access Journals (Sweden)

    Melissa L. Bates

    2011-01-01

    Full Text Available The question of whether pulmonary edema develops during exercise on land is controversial. Yet, the development of pulmonary edema during swimming and diving is well established. This paper addresses the current controversies that exist in the field of exercise-induced pulmonary edema on land and with water immersion. It also discusses the mechanisms by which pulmonary edema can develop during land exercise, swimming, and diving and the current gaps in knowledge that exist. Finally, this paper discusses how these fields can continue to advance and the areas where clinical knowledge is lacking.

  8. Nigella sativa oil Ameliorates ionizing Radiation induced cellular injury in Male Albino Rats

    International Nuclear Information System (INIS)

    Mohamed, E.T.; El-Kady, A.A.

    2013-01-01

    Nigella sativa (NS), commonly known as black seed, is a plant spices in which thymoquinone is the main active ingredient isolated from the black seeds. The seeds of Nigella sativa are used in herbal medicine all over the world for the treatment and prevention of a number of diseases. The aim of this study was focused on investigating the possible protective effect of NS against gamma radiation induced nephrotoxicity and inflammatory changes in male albino rats. Twenty four albino rats were divided into four equal groups as follows: control group, irradiated group (animals subjected to whole body gamma irradiation at a dose of 6 Gy), treated group (rats treated with 0.2 ml/kg, i.p., NS oil for 4 weeks), and treated irradiated group (animals treated with 0.2 mL/kg, i.p., NS oil for 4 weeks then exposed to whole body gamma irradiation at a dose of 6 Gy). The obtained results revealed that the administration of Nigella sativa oil to irradiated rats significantly ameliorated the changes induced in kidney antioxidant system; catalase and glutathione peroxidase activities as well as reduced glutathione concentration. Also, NS oil restored the kidney function indices (urea and creatinine) near normal level when compared with their equivalent values in irradiated rats. In addition, the changes in serum tumor necrosis factor alpha (TNF-α), Interleukin-1β (IL-1β) and Interleukin-6 (IL-6) activities were markedly improved compared to the corresponding values of irradiated group. The histopathological results showed distinctive pattern of ischemic renal injury in irradiated group, while in treated- irradiated group the renal tissues showed relatively well-preserved architecture with or without focal degeneration. In conclusion, NS acts in the kidney as a potent scavenger of free radicals to prevent or ameliorates the toxic effects of gamma irradiation as shown in the biochemical and histopathological study and also NS oil might provide substantial protection against

  9. A correlation study between high resolution CT appearances and expression of transforming growth factor-β, tumor necrosis factor-α in radiation-induced lung injury of rats

    International Nuclear Information System (INIS)

    Guo Lili; Cheng Guangjun; Li Shaodong; Xu Kai

    2008-01-01

    Objective: To study the correlation between high resolution computed tomography manifestations and expression of transforming growth factor beta, tumor necrosis factor alpha in radiation- induced lung injury of rats, and to investigate the values of cytokine detection and HRCT scanning for the prediction and early diagnosis of radiation-induced lung injury. Methods: Forty-eight Sprague-Dawley (SD) rats were randomly divided into eight groups, group A was normal control group, and group B- H were irradiated with a single dose of 15 Gy to the lungs. HRCT scanning was performed before and 1 week, 2, 4, 8, 12, 16, 24 weeks after radiation in group A-H respectively. The expression of TGF-beta and TNF-alpha were detected with ELISA. All the rats were killed to observe pathological changes of their lungs. HRCT signs, levels of cytokine were simultaneously compared and analyzed. The t-test and Spearman rank correlation were used for the statistics. Results: Four HRCT signs were observed during the 24 weeks after radiation, including ground-glass opacity (1 case), patchy consolidation (8 cases), massive consolidation (7 cases) and fibrosis (3 cases). The average levels of TGF-beta in group B-H [(3.33± 0.47), (3.20±0.65), (3.12±0.45), (3.54±0.80), (3.30±1.13), (2.49±0.67), (4.19± 0.22) μg/L, respectively] were higher than the control group [(0.45±0.14) μg/L, P 0.05). There were no rank correlations between HRCT manifestations and expression of TGF-beta and TNF-alpha (r s = 0.5570 and 0.1013,P>0.05). HRCT signs were correlated with pathological changes. Conclusions: The monitoring of TGF-beta and TNF-alpha in the serum after irradiation can predict the development of radiation-induced lung injury. There are no rank correlations between HRCT manifestations and expression of TGF-beta and TNF-alpha. (authors)

  10. Search for the lowest irradiation dose from literatures on radiation-induced breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Yoshizawa, Y; Kusama, T [Tokyo Univ. (Japan). Faculty of Medicine

    1975-12-01

    A survey of past case reports concerning radiation-induced breast cancer was carried out in order to find the lowest irradiation dose. The search of literature published since 1951 revealed 10 cases of radiation-induced breast cancer. Only 5 cases had precise descriptions of the irradiation dose. The lowest irradiation dose was estimated at 1470 rads in the case of external X-ray irradiation for tuberous angioma. All of cases of radiation-induced breast cancer had received radiation for the treatment of nonmalignant tumors, such as pulmonary tuberculosis, mastitis, and tuberous angioma. There also were three statistical studies. The first concerned atomic bomb survivors, the second, pulmoanry tuberculous patients subjected to frequent fluoroscopies, and the third, patients of acute post partum mastitis. These statistical studies had revealed a significant increase in the incidence of breast cancer in the irradiated group, but there was little information about the lowest irradiation dose. It was noticed that radiation-induced breast cancer was more numerous in the upper inner quadrant of the breast. Most histopathological findings of radiation-induced breast cancer involved duct cell carcinoma. The latent period was about 15 years.

  11. Simvastatin inhibits smoke-induced airway epithelial injury: implications for COPD therapy.

    Science.gov (United States)

    Davis, Benjamin B; Zeki, Amir A; Bratt, Jennifer M; Wang, Lei; Filosto, Simone; Walby, William F; Kenyon, Nicholas J; Goldkorn, Tzipora; Schelegle, Edward S; Pinkerton, Kent E

    2013-08-01

    Chronic obstructive pulmonary disease (COPD) is the third leading cause of death. The statin drugs may have therapeutic potential in respiratory diseases such as COPD, but whether they prevent bronchial epithelial injury is unknown. We hypothesised that simvastatin attenuates acute tobacco smoke-induced neutrophilic lung inflammation and airway epithelial injury. Spontaneously hypertensive rats were given simvastatin (20 mg·kg(-1) i.p.) daily for either 7 days prior to tobacco smoke exposure and during 3 days of smoke exposure, or only during tobacco smoke exposure. Pretreatment with simvastatin prior to and continued throughout smoke exposure reduced the total influx of leukocytes, neutrophils and macrophages into the lung and airways. Simvastatin attenuated tobacco smoke-induced cellular infiltration into lung parenchymal and airway subepithelial and interstitial spaces. 1 week of simvastatin pretreatment almost completely prevented smoke-induced denudation of the airway epithelial layer, while simvastatin given only concurrently with the smoke exposure had no effect. Simvastatin may be a novel adjunctive therapy for smoke-induced lung diseases, such as COPD. Given the need for statin pretreatment there may be a critical process of conditioning that is necessary for statins' anti-inflammatory effects. Future work is needed to elucidate the mechanisms of this statin protective effect.

  12. Computed tomography evaluation of pulmonary alterations after radiotherapy

    International Nuclear Information System (INIS)

    Neves, Mauricio de Carvalho; Grossi, Carla Martins De; Santos, Alair Augusto S.M.D. dos; Carvalho, Renato; Santos, Marcia Heizer; Lodi, Nilson Jose; Meirelles, Maria Angelica V.F.O.; Fontes, Cristina Asvolinsque P.; Neves Filho, Henrique Cezar; Fernandes, Marcus Vinicius C.; Ferreira Neto, Armando Leao; Miranda Neto, Darci P.; Rios, Anna Cristina S.; Andreiuolo, Pedro Angelo; Koch, Hilton Augusto

    1998-01-01

    A retrospective study of 15 patients with primary tumors, 13 of the lung and 2 breast cancers, treated in the Hospital Santa Cruz/Beneficiencia Portuguesa de Niteroi, RJ, in the period comprised from February 1991 to October 1996, was done. The pulmonary radiotherapy effects were observed in two clinical presentations - acute (radiation pneumonitis) and chronic (radiation fibrosis) -, both depending upon the radiotherapy doses, the radiation area, the individual susceptibility and the previous chemotherapy. Signs of pulmonary fibrosis were found in 73.3% of the patients, pneumonitis in 20.0% and absence of changes after radiation in 6.6%. Computed tomography was an excellent noninvasive diagnostic method in demonstrating radiotherapy-induced pulmonary changes, more evident in high-resolution technique scans. (author)

  13. Study of cell cycle and apoptosis after radiation with electron linear accelerator injury

    International Nuclear Information System (INIS)

    Xu Lan; Zhou Yinghui; Shi Ning; Peng Miao; Wu Shiliang

    2002-01-01

    Purpose: To determine the cell cycle and apoptosis of the injured cells after radiation with the electron linear accelerator. Methods: NIH 3T3 cells were irradiated by the radiation with the electron linear accelerator. In the experiment the condition of the cell cycle and apoptosis of the injured cells were measured. The expression of p53 was also tested. Results: After exposure to radiation, the number of apoptotic cells as well as the expression of p53 increased. Conclusion: The electron linear accelerator radiation injury can induce cell apoptosis

  14. Oleic Acid Induces Lung Injury in Mice through Activation of the ERK Pathway

    Directory of Open Access Journals (Sweden)

    Cassiano Felippe Gonçalves-de-Albuquerque

    2012-01-01

    Full Text Available Oleic acid (OA can induce acute lung injury in experimental models. In the present work, we used intratracheal OA injection to show augmented oedema formation, cell migration and activation, lipid mediator, and cytokine productions in the bronchoalveolar fluids of Swiss Webster mice. We also demonstrated that OA-induced pulmonary injury is dependent on ERK1/2 activation, since U0126, an inhibitor of ERK1/2 phosphorylation, blocked neutrophil migration, oedema, and lipid body formation as well as IL-6, but not IL-1β production. Using a mice strain carrying a null mutation for the TLR4 receptor, we proved that increased inflammatory parameters after OA challenges were not due to the activation of the TLR4 receptor. With OA being a Na/K-ATPase inhibitor, we suggest the possible involvement of this enzyme as an OA target triggering lung inflammation.

  15. General discussion about enzymes activities of radiation injury

    International Nuclear Information System (INIS)

    Vucicevic, M.; Sukalo, I.

    1989-01-01

    Researching reliable and practical indicators of radiation injury, however, is very interesting and considerable department of scientific studies, practical and theoretical. Enzymes activities are among biochemical indicators which are changed after radiation injury. Activity of these specific proteins is important in regulation of every biochemical reaction in existing beings. Biological macromolecules can be damaged by radiation or the cell permeability can be changed. All of these influence directly on enzymes activities. In this paper we present the review of the all important enzymes, indicators of the radiation injury, which variances on reference to normal values are significant of the functional and the structural changes of essential organs (author)

  16. General discussion about enzymes activities of radiation injury

    Energy Technology Data Exchange (ETDEWEB)

    Vucicevic, M; Sukalo, I [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1989-07-01

    Researching reliable and practical indicators of radiation injury, however, is very interesting and considerable department of scientific studies, practical and theoretical. Enzymes activities are among biochemical indicators which are changed after radiation injury. Activity of these specific proteins is important in regulation of every biochemical reaction in existing beings. Biological macromolecules can be damaged by radiation or the cell permeability can be changed. All of these influence directly on enzymes activities. In this paper we present the review of the all important enzymes, indicators of the radiation injury, which variances on reference to normal values are significant of the functional and the structural changes of essential organs (author)

  17. Dual hit lipopolysaccharide & oleic acid combination induced rat model of acute lung injury/acute respiratory distress syndrome

    Directory of Open Access Journals (Sweden)

    T N Hagawane

    2016-01-01

    Results: It was noted that the respiratory rate, and tumour necrosis factor-α (TNF-α levels were significantly higher at 4 h in the dual hit group as compared to LPS, OA and control groups. Interleukin-6 (IL-6 levels were significantly higher in the dual hit group as compared to LPS at 8 and 24 h, OA at 8 h and control (at all time intervals group. IL-1β levels were significantly higher in LPS and dual hit groups at all time intervals, but not in OA and control groups. The injury induced in dual hit group was earlier and more sustained as compared to LPS and OA alone. Interpretation & conclusions: The lung pathology and changes in respiration functions produced by the dual hit model were closer to the diagnostic criteria of ALI/ARDS in terms of clinical manifestations and pulmonary injury and the injury persisted longer as compared to LPS and OA single hit model. Therefore, the ARDS model produced by the dual hit method was closer to the diagnostic criteria of ARDS in terms of clinical manifestations and pulmonary injury.

  18. Metabolic acidosis may be as protective as hypercapnic acidosis in an ex-vivo model of severe ventilator-induced lung injury: a pilot study.

    Science.gov (United States)

    Kapetanakis, Theodoros; Siempos, Ilias I; Metaxas, Eugenios I; Kopterides, Petros; Agrogiannis, George; Patsouris, Efstratios; Lazaris, Andreas C; Stravodimos, Konstantinos G; Roussos, Charis; Armaganidis, Apostolos

    2011-04-13

    There is mounting experimental evidence that hypercapnic acidosis protects against lung injury. However, it is unclear if acidosis per se rather than hypercapnia is responsible for this beneficial effect. Therefore, we sought to evaluate the effects of hypercapnic (respiratory) versus normocapnic (metabolic) acidosis in an ex vivo model of ventilator-induced lung injury (VILI). Sixty New Zealand white rabbit ventilated and perfused heart-lung preparations were used. Six study groups were evaluated. Respiratory acidosis (RA), metabolic acidosis (MA) and normocapnic-normoxic (Control - C) groups were randomized into high and low peak inspiratory pressures, respectively. Each preparation was ventilated for 1 hour according to a standardized ventilation protocol. Lung injury was evaluated by means of pulmonary edema formation (weight gain), changes in ultrafiltration coefficient, mean pulmonary artery pressure changes as well as histological alterations. HPC group gained significantly greater weight than HPMA, HPRA and all three LP groups (P = 0.024), while no difference was observed between HPMA and HPRA groups regarding weight gain. Neither group differ on ultrafiltration coefficient. HPMA group experienced greater increase in the mean pulmonary artery pressure at 20 min (P = 0.0276) and 40 min (P = 0.0012) compared with all other groups. Histology scores were significantly greater in HP vs. LP groups (p < 0.001). In our experimental VILI model both metabolic acidosis and hypercapnic acidosis attenuated VILI-induced pulmonary edema implying a mechanism other than possible synergistic effects of acidosis with CO2 for VILI attenuation.

  19. Radiation induced early delayed changes in mice brain: a 1h MRS and behavioral evaluation study

    International Nuclear Information System (INIS)

    Gupta, Mamta; Rana, Poonam; Haridas, Seenu; Manda, Kailash; Hemanth Kumar, B.S.; Khushu, Subash

    2014-01-01

    Radiation induced CNS injury can be classified as acute, early delayed and late delayed. Most of the studies suggest that acute injury is reversible whereas early delayed and late delayed injury is irreversible leading to metabolic and cognitive impairment. Extensive research has been carried out on cranial radiation induced early and late delayed changes, there are no reports on whole body radiation induced early and delayed changes. The present study was designed to observe early delayed effects of radiation during whole body radiation exposure. A total of 20 C57 male mice were divided in two groups of 10 animals each. One group was exposed to a dose of 5 Gy whole body radiation through Tele 60 Co irradiation facility with source operating at 2.496 Gy/min, while other group served as sham irradiated control. Behavioral and MR spectroscopy was carried out 3 months post irradiation. Behavioral parameters such as locomotor activity and working memory were evaluated first then followed by MR spectroscopy at 7T animal MRI system. For MRS, voxel was localised in the cortex-hippocampus region of mouse brain. MR spectra were acquired using PRESS sequence, FID was processed using LC model for quantitation. The data showed impaired cognitive functions and altered metabolite levels during early delayed phase of whole body radiation induced injury. In behavioural experiments, there was a significant impairment in the cognitive as well as exploratory functions at 3 months post irradiation in irradiated group as compared to controls. MRS results explained changes in mI, glutamine and glx levels in irradiated animals compared to controls. Altered mI level has been found to be associated with reduced cognitive abilities in many brain disorders including MCI and Alzheimer's disease. The findings of this study suggest that whole body radiation exposure may have long lasting effect on the cognitive performance. (author)

  20. Occurrence and treatment of radiation injuries following radiotherapy

    International Nuclear Information System (INIS)

    Nakano, Masao

    1978-01-01

    General side effects recognized in digestive organ and hematopoietic organ during radiotherapy were described, and curative medicines for them were mentioned. Countermeasures for dermatitis, reactions of oral, pharyngeal or espophageal mucosae, radiation pneumonitis, radiation enteritis, urinary tract injuries which appeared during radiotherapy were described, and curative medicines for them were mentioned. Skin ulcer, ulcers in oral cavity, and larynx, edema in larynx and lower larynx, bone necrosis, necrosis of thyroid cartilage, injuries of eyeball, radiation damage in lung, delayed injuries following radiotherapy for uterine cancer, nervous system disorder, and lymphatic system disorder were mentioned as main delayed local injuries, and countermeasures for them were described. Lastly, a mental attitude for radiotherapy was described. (Serizawa, K.)

  1. Alpha-tocopherol succinate- and AMD3100-mobilized progenitors mitigate radiation combined injury in mice

    International Nuclear Information System (INIS)

    Singh, Vijay K.; Wise, Stephen Y.; Fatanmi, Oluseyi O.; Beattie, Lindsay A.; Ducey, Elizabeth J.; Seed, Thomas M.

    2014-01-01

    The purpose of this study was to elucidate the role of alpha-tocopherol succinate (TS)- and AMD3100-mobilized progenitors in mitigating combined injury associated with acute radiation exposure in combination with secondary physical wounding. CD2F1 mice were exposed to high doses of cobalt-60 gamma-radiation and then transfused intravenously with 5 million peripheral blood mononuclear cells (PBMCs) from TS- and AMD3100-injected mice after irradiation. Within 1 h after irradiation, mice were exposed to secondary wounding. Mice were observed for 30 d after irradiation and cytokine analysis was conducted by multiplex Luminex assay at various time-points after irradiation and wounding. Our results initially demonstrated that transfusion of TS-mobilized progenitors from normal mice enhanced survival of acutely irradiated mice exposed 24 h prior to transfusion to supralethal doses (11.5–12.5 Gy) of 60 Co gamma-radiation. Subsequently, comparable transfusions of TS-mobilized progenitors were shown to significantly mitigate severe combined injuries in acutely irradiated mice. TS administered 24 h before irradiation was able to protect mice against combined injury as well. Cytokine results demonstrated that wounding modulates irradiation-induced cytokines. This study further supports the conclusion that the infusion of TS-mobilized progenitor-containing PBMCs acts as a bridging therapy in radiation-combined-injury mice. We suggest that this novel bridging therapeutic approach involving the infusion of TS-mobilized hematopoietic progenitors following acute radiation exposure or combined injury might be applicable to humans. (author)

  2. Role of endothelium in radiation-induced normal tissue damages; Role de l'endothelium dans les dommages radio-induits aux tissus sains

    Energy Technology Data Exchange (ETDEWEB)

    Milliat, F

    2007-05-15

    More than half of cancers are treated with radiation therapy alone or in combination with surgery and/or chemotherapy. The goal of radiation therapy is to deliver enough ionising radiation to destroy cancer cells without exceeding the level that the surrounding healthy cells can tolerate. Unfortunately, radiation-induced normal tissue injury is still a dose limiting factor in the treatment of cancer with radiotherapy. The knowledge of normal tissue radiobiology is needed to determine molecular mechanisms involved in normal tissue pathogenic pathways in order to identify therapeutic targets and develop strategies to prevent and /or reduce side effects of radiation therapy. The endothelium is known to play a critical role in radiation-induced injury. Our work shows that endothelial cells promote vascular smooth muscle cell proliferation, migration and fibro-genic phenotype after irradiation. Moreover, we demonstrate for the first time the importance of PAI-1 in radiation-induced normal tissue damage suggesting that PAI-1 may represent a molecular target to limit injury following radiotherapy. We describe a new role for the TGF-b/Smad pathway in the pathogenesis of radiation-induced damages. TGF-b/Smad pathway is involved in the fibro-genic phenotype of VSMC induced by irradiated EC as well as in the radiation-induced PAI-1 expression in endothelial cells. (author)

  3. MAP3K19 Is a Novel Regulator of TGF-β Signaling That Impacts Bleomycin-Induced Lung Injury and Pulmonary Fibrosis.

    Science.gov (United States)

    Boehme, Stefen A; Franz-Bacon, Karin; DiTirro, Danielle N; Ly, Tai Wei; Bacon, Kevin B

    2016-01-01

    Idiopathic pulmonary fibrosis (IPF) is a progressive, debilitating disease for which two medications, pirfenidone and nintedanib, have only recently been approved for treatment. The cytokine TGF-β has been shown to be a central mediator in the disease process. We investigated the role of a novel kinase, MAP3K19, upregulated in IPF tissue, in TGF-β-induced signal transduction and in bleomycin-induced pulmonary fibrosis. MAP3K19 has a very limited tissue expression, restricted primarily to the lungs and trachea. In pulmonary tissue, expression was predominantly localized to alveolar and interstitial macrophages, bronchial epithelial cells and type II pneumocytes of the epithelium. MAP3K19 was also found to be overexpressed in bronchoalveolar lavage macrophages from IPF patients compared to normal patients. Treatment of A549 or THP-1 cells with either MAP3K19 siRNA or a highly potent and specific inhibitor reduced phospho-Smad2 & 3 nuclear translocation following TGF-β stimulation. TGF-β-induced gene transcription was also strongly inhibited by both the MAP3K19 inhibitor and nintedanib, whereas pirfenidone had a much less pronounced effect. In combination, the MAP3K19 inhibitor appeared to act synergistically with either pirfenidone or nintedanib, at the level of target gene transcription or protein production. Finally, in an animal model of IPF, inhibition of MAP3K19 strongly attenuated bleomycin-induced pulmonary fibrosis when administered either prophylactically ortherapeutically. In summary, these results strongly suggest that inhibition of MAP3K19 may have a beneficial therapeutic effect in the treatment of IPF and represents a novel strategy to target this disease.

  4. [Pulmonary apoptosis and necrosis in hyperoxia-induced acute mouse lung injury].

    Science.gov (United States)

    Zhang, Xiang-feng; Foda, Hussein D

    2004-07-01

    To investigate the pathways to cell death in hyperoxia-induced lung injury and the functional significance of apoptosis in vivo in response to hyperoxia. Seventy-two mice were exposed in sealed cages > 98% oxygen (for 24 - 72 h) or room air, and the severity of lung injury and epithelium sloughing was evaluated. The extent and location of apoptosis in injured lung tissues were studied by terminal transferase dUTP end labeling assay (TUNEL), reverse transcript-polymerase chain reaction (RT-PCR) and immunohistochemistry. Hyperoxia caused acute lung injury; the hyperoxic stress resulted in marked epithelium sloughing. TUNEL assay exhibited increased apoptosis index both in alveolar epithelial cells and bronchial epithelial cells in sections from mice after 48 h hyperoxia compared with their control group (0.51 +/- 0.10, 0.46 +/- 0.08 verse 0.04 +/- 0.02, 0.02 +/- 0.01). This was accompanied by increased expression of caspase-3 mRNA in lung tissues after 48 h hyperoxia compared with their control group (0.53 +/- 0.09 verse 0.34 +/- 0.07), the expression was higher at 72 h of hyperoxia (0.60 +/- 0.08). Immunohistochemistry study showed caspase-3 protein was located in cytoplasm and nuclei of airway epithelial cells, alveolar epithelial cells and macrophage in hyperoxia mice. The expression of caspase-3 protein in airway epithelium significantly increased at 24 h of hyperoxia compared with their control group (41.62 +/- 3.46 verse 15.86 +/- 1.84), the expression level was highest at 72 h of hyperoxia (55.24 +/- 6.80). Both apoptosis and necrosis contribute to cell death during hyperoxia. Apoptosis plays an important role in alveolar damage and cell death from hyperoxia.

  5. Egr-1 regulates autophagy in cigarette smoke-induced chronic obstructive pulmonary disease.

    Directory of Open Access Journals (Sweden)

    Zhi-Hua Chen

    2008-10-01

    Full Text Available Chronic obstructive pulmonary disease (COPD is a progressive lung disease characterized by abnormal cellular responses to cigarette smoke, resulting in tissue destruction and airflow limitation. Autophagy is a degradative process involving lysosomal turnover of cellular components, though its role in human diseases remains unclear.Increased autophagy was observed in lung tissue from COPD patients, as indicated by electron microscopic analysis, as well as by increased activation of autophagic proteins (microtubule-associated protein-1 light chain-3B, LC3B, Atg4, Atg5/12, Atg7. Cigarette smoke extract (CSE is an established model for studying the effects of cigarette smoke exposure in vitro. In human pulmonary epithelial cells, exposure to CSE or histone deacetylase (HDAC inhibitor rapidly induced autophagy. CSE decreased HDAC activity, resulting in increased binding of early growth response-1 (Egr-1 and E2F factors to the autophagy gene LC3B promoter, and increased LC3B expression. Knockdown of E2F-4 or Egr-1 inhibited CSE-induced LC3B expression. Knockdown of Egr-1 also inhibited the expression of Atg4B, a critical factor for LC3B conversion. Inhibition of autophagy by LC3B-knockdown protected epithelial cells from CSE-induced apoptosis. Egr-1(-/- mice, which displayed basal airspace enlargement, resisted cigarette-smoke induced autophagy, apoptosis, and emphysema.We demonstrate a critical role for Egr-1 in promoting autophagy and apoptosis in response to cigarette smoke exposure in vitro and in vivo. The induction of autophagy at early stages of COPD progression suggests novel therapeutic targets for the treatment of cigarette smoke induced lung injury.

  6. Diseases induced by ionizing radiation

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    The instruction sheet for medical examinations presents information on clinical symptoms and diagnostic procedures relating to the following cases: 1. Acute radiation injury due to whole-body exposure; 2. acute, local radiation injury due to partial body exposure; 3. chronic general affections due to whole-body exposure; 4. chronic, local affections due to partial body exposure; 5. delayed radiation effects. (HP) [de

  7. First Patagonian Course on 'Diagnosis and Therapy of Injuries Induced by Ionizing Radiation'; Primer curso patagonico 'Diagnostico y Tratamiento de Lesiones Inducidas por Radiaciones Ionizantes'

    Energy Technology Data Exchange (ETDEWEB)

    Bellotti, Mariela I., E-mail: bellotti@cab.cnea.gov.ar [Comision Nacional de Energia Atomica (CAB/CNEA), San Carlos de Bariloche (Argentina). Centro Atomico Bariloche. Lab. de Cavitacion y Biotecnologia; Andres, Pablo A., E-mail: andresp@cab.cnea.gov.ar [Comision Nacional de Energia Atomica (CAB/CNEA), San Carlos de Bariloche (Argentina). Centro Atomico Bariloche. Division Proteccion Radiologica; Cascón, Adriana S., E-mail: adrianacascon@yahoo.com [Instituto de Medicina, Radiomedicina y Seguridad (IMERASE SA), Buenos Aires, (Argentina)

    2013-07-01

    In Patagonia there are academic centers, health and industrial facilities that use ionizing radiations in its usual practices. However, they do not have protocols that respond to local needs. For this reason was held from October 5 to November 10, 2012 in Bariloche Atomic Center, a training course for health personnel. The range of topics covered ranged from the definition of dosimetry quantities, types of radiation and biological dosimetry, biological effects, radiation acute syndrome, radiation-induced cutaneous syndrome, internal contamination, screening in radiological emergencies, etc.The course provided a theoretical and practical guide about how to recognize and treat people exposed to radiations, guidelines for acting in radiological emergencies and a perception of the psychosocial impact of the radiation accidents.The result was a pocket book for health personnel that will be used in case of having a patient with radiation induced injury.

  8. Inhibitory effect of MgSO4 on calcium overload after radiation-induced brain injuries

    International Nuclear Information System (INIS)

    Tu Yu; Zhou Yuying; Wang Lili

    2005-01-01

    Objective: To explore the neuroprotective effect of magnesium sulfate (MgSO 4 ) on radiation-induced acute brain injuries. Methods: A total of 60 mature Sprague-Dawley rats were randomly divided into 3 groups: blank control group, experimental control group and experimental therapy group. The whole brain of SD rats of experimental control group and experimental therapy group was irradiated to a dose of 20 Gy using 6 MeV electrons. Magnesium sulfate was injected intraperitoneally into the rats of experimental therapy group before and after irradiation for five times. At different time points (24 h, 7 days, 14 days, 30 days after irradiation), the brain tissue was taken. Plasma direct reading spectrography was used to measure the contents of Ca 2+ , Mg 2+ in brain tissue, and the percentage of brain water content was calculated with the wet-dry weight formula. Results: Compared with the blank control group, the percentage of brain water and content of Ca 2+ in brain of the experimental control group increased markedly (P 2+ decreased significantly (P 2+ in brain of the experimental therapy group were significantly lower than those of the experimental control group (P<0.05). Conclusion: Magnesium sulfate used in the early stage after irradiation can inhibit the calcium overload in rat brain , and attenuate brain edema and injuries. (authors)

  9. Radiation-induced enteropathy

    Energy Technology Data Exchange (ETDEWEB)

    Sher, M.E.; Bauer, J. (Mount Sinai Hospital, New York, NY (USA))

    1990-02-01

    The incidence of chronic radiation enteritis appears to have risen in recent years due to the increasing utilization of radiotherapy for abdominal and pelvic malignancies. The etiology, pathogenesis, and management of radiation enteritis are discussed. Two case reports exemplify the progressive nature of the disease. Case 1 demonstrates the classical picture of multiple exacerbations and remissions of partial small bowel obstruction and the eventual need for surgical management ten years after radiation therapy. Case 2 presents the more severe sequelae of an acute perforation with a 14-yr latency period. Predisposing factors in the progression of radiation injury include excessive radiation, underlying cardiovascular disease, fixation of the bowel, and an asthenic habitus. In both cases, radiation injury was localized to a discrete segment of bowel; therefore, resection with a primary end-to-end anastomosis was performed. In addition, diseased bowel was eliminated and, therefore, would not cause further complications such as intractable bleeding or fistula formation. The review focuses on current knowledge which may be applied to the treatment and prevention of radiation enteritis.

  10. Radiation injuries of plasmatic membrane and lethal action of radiation on cells

    Energy Technology Data Exchange (ETDEWEB)

    Fomenko, B S; Akoev, I G [AN SSSR, Pushchino-na-Oke. Inst. Biologicheskoj Fiziki

    1984-01-01

    Data on modification of procaryotes and eukaryotes cell injuries using preparations not penetrating into cells and also membrane-specific drugs localized in cells in a lipid phase are generalized. A conclusion is drawn that radiation injuries of plasmatic membrane of prokaryotes and eukaryotes contribute considerably to lethal action of radiation on cells.

  11. Radiation injuries of plasmatic membrane and lethal action of radiation on cells

    International Nuclear Information System (INIS)

    Fomenko, B.S.; Akoev, I.G.

    1984-01-01

    Data on modification of procaryotes and eukaryotes cell injuries using preparations not penetrating into cells and also membrane-specific drugs localized in cells in a lipid phase are generalized. A conclusion is drawn that radiation injuries of plasmatic membrane of prokaryotes and eukaryotes contribute considerably to lethal action of radiation on cells

  12. Methimazole protects lungs during hepatic ischemia-reperfusion injury in rats: an effect not induced by hypothyroidism.

    Science.gov (United States)

    Tütüncü, Tanju; Demirci, Cagatay; Gözalan, Ugur; Yüksek, Yunus Nadi; Bilgihan, Ayse; Kama, Nuri Aydin

    2007-05-01

    Hepatic ischemia-reperfusion injury may lead to remote organ failure with mortal respiratory dysfunction. The aim of the present study was to analyze the possible protective effects of methimazole on lungs after hepatic ischemia-reperfusion injury. Forty male Wistar albino rats were randomized into five groups: a control group, in which bilateral pulmonary lobectomy was done; a hepatic ischemia-reperfusion group, in which bilateral pulmonary lobectomy was done after hepatic ischemia-reperfusion; a thyroidectomy-ischemia-reperfusion group (total thyroidectomy followed by, 7 days later, bilateral pulmonary lobectomy after hepatic ischemia-reperfusion); a methimazole-ischemia-reperfusion group (following methimazole administration for 7 days, bilateral pulmonary lobectomy was done after hepatic ischemia-reperfusion); and a methimazole +L-thyroxine-ischemia-reperfusion group (following methimazole and L-thyroxine administration for 7 days, bilateral pulmonary lobectomy was performed after hepatic ischemia-reperfusion). Pulmonary tissue specimens were evaluated histopathologically and for myeloperoxidase and malondialdehyde levels. All of the ischemia-reperfusion intervention groups had higher pulmonary injury scoring indices than the control group (P < 0.001). Pulmonary injury index of the ischemia-reperfusion group was higher than that of both the methimazole-supplemented hypothyroid and euthyroid groups (P = 0028; P = 0,038, respectively) and was similar to that of the thyroidectomized group. Pulmonary tissue myeloperoxidase and malondialdehyde levels in the ischemia-reperfusion group were similar with that in the thyroidectomized rats but were significantly higher than that in the control, and both the methimazole-supplemented hypothyroid and euthyroid groups. Methimazole exerts a protective role on lungs during hepatic ischemia-reperfusion injury, which can be attributed to its anti-inflammatory and anti-oxidant effects rather than hypothyroidism alone.

  13. Nonredundant functions of alphabeta and gammadelta T cells in acrolein-induced pulmonary pathology.

    Science.gov (United States)

    Borchers, Michael T; Wesselkamper, Scott C; Eppert, Bryan L; Motz, Gregory T; Sartor, Maureen A; Tomlinson, Craig R; Medvedovic, Mario; Tichelaar, Jay W

    2008-09-01

    Acrolein exposure represents a significant human health hazard. Repeated acrolein exposure causes the accumulation of monocytes/macrophages and lymphocytes, mucous cell metaplasia, and epithelial injury. Currently, the mechanisms that control these events are unclear, and the relative contribution of T-cell subsets to pulmonary pathologies following repeated exposures to irritants is unknown. To examine whether lymphocyte subpopulations regulate inflammation and epithelial cell pathology, we utilized a mouse model of pulmonary pathology induced by repeated acrolein exposures. The role of lymphocyte subsets was examined by utilizing transgenic mice genetically deficient in either alphabeta T cells or gammadelta T cells, and changes in cellular, molecular, and pathologic outcomes associated with repeated inhalation exposure to 2.0 and 0.5 ppm acrolein were measured. To examine the potential functions of lymphocyte subsets, we purified these cells from the lungs of mice repeatedly exposed to 2.0 ppm acrolein, isolated and amplified messenger RNA, and performed microarray analysis. Our data demonstrate that alphabeta T cells are required for macrophage accumulation, whereas gammadelta T cells are critical regulators of epithelial cell homeostasis, as identified by epithelial cell injury and apoptosis, following repeated acrolein exposure. This is supported by microarray analyses that indicated the T-cell subsets are unique in their gene expression profiles following acrolein exposures. Microarray analyses identified several genes that may contribute to phenotypes mediated by T-cell subpopulations including those involved in cytokine receptor signaling, chemotaxis, growth factor production, lymphocyte activation, and apoptosis. These data provide strong evidence that T-cell subpopulations in the lung are major determinants of pulmonary pathology and highlight the advantages of dissecting their effector functions in response to toxicant exposures.

  14. Role of plasminogen activator inhibitor type-1 in radiation-induced normal tissues injury

    International Nuclear Information System (INIS)

    Abderrahmani, R.

    2010-01-01

    Radiotherapy is an essential tool for cancer treatment, but there is a balance between benefits and risks related to the use of ionizing radiation: the objective is to deliver a maximum dose to the tumour to destroy or to sterilize it while protecting surrounding normal tissues. Radio-induced damages to normal tissues are therefore a limiting factor when increasing the dose delivered to the tumour. One of the objectives of this research thesis is to bring to the fore a relationship between the initiation of lesions and the development of late damages, more particularly in the intestine, and to identify the involved molecular actors and their inter-connectivity. After a first part presenting ionizing radiation, describing biological effects of ionizing radiation and their use in radiotherapy, presenting the intestine and the endothelium and discussing the intestine radio-sensitivity, discussing the radio-induced intestine damages and radiotherapy-induced complications, and presenting the plasminogen activator inhibitor (PAI-1) and its behaviour in presence of ionizing radiation, two articles are reproduced. The first one addresses the effect of a pharmacological inhibition and of genetic deficiency in PAI-1 on the evolution of radio-induced intestine lesions. The second one discusses the fact that radio-induced PAI-1-related death of endothelial cells determines the severity of early radio-induced intestine lesions

  15. Using bosentan to treat paraquat poisoning-induced acute lung injury in rats.

    Directory of Open Access Journals (Sweden)

    Zhongchen Zhang

    Full Text Available BACKGROUND: Paraquat poisoning is well known for causing multiple organ function failure (MODS and high mortality. Acute lung injury and advanced pulmonary fibrosis are the most serious complications. Bosentan is a dual endothelin receptor antagonist. It plays an important role in treating PF. There is no related literature on the use of bosentan therapy for paraquat poisoning. OBJECTIVE: To study the use of bosentan to treat acute lung injury and pulmonary fibrosis as induced by paraquat. METHOD: A total of 120 adult Wister male rats were randomly assigned to three groups: the paraquat poisoning group (rats were intragastrically administered with paraquat at 50 mg/kg body weight once at the beginning; the bosentan therapy group (rats were administered bosentan at 100 mg/kg body weight by intragastric administration half an hour after paraquat was administered, then the same dose was administered once a day; and a control group (rats were administered intragastric physiological saline. On the 3rd, 7th, 14th, and 21st days following paraquat exposure, rats were sacrificed, and samples of lung tissue and venous blood were collected. The levels of transforming growth factor-β1 (TGF-β1, endothelin-1 (ET-1, and hydroxyproline (HYP in the plasma and lung homogenate were determined. Optical and electronic microscopes were used to examine pathological changes. RESULT: The TGF-β1, ET-1, and HYP of the paraquat poisoning group were significantly higher than in the control group, and they were significantly lower in the 21st day therapy group than in the paraquat poisoning group on the same day. Under the optical and electronic microscopes, lung tissue damage was observed to be more severe but was then reduced after bosentan was administered. CONCLUSION: Bosentan can reduce inflammation factor release. It has a therapeutic effect on acute lung injury as induced by paraquat.

  16. Clinical analysis on Shengmai Injection in treating radiation pneumonia and pulmonary fibrosis

    International Nuclear Information System (INIS)

    Yao Chunxiao

    2004-01-01

    Objective: To study the effect of Shengmai Injection in treating radiation pneumonia and pulmonary fibrosis in the course of radiotherapy. Methods: Altogether 96 cases were randomly and equally allocated into a treatment group and a control group, 48 cases each, All patients were treated with radical radiotherapy. The initial radiotherapy was using 10 MV X-rays at conventionally fractionated dose of 60-70 Gy. Patients of the control group were given conventional radiotherapy, and those of the treatment group were given both conventional radiotherapy and Shengmai Injection 40-60 ml by iv drip for 3-5 courses, 10 days for each course. Results: In the treatment group, the incidences of radiation pneumonia and pulmonary fibrosis were 18.8%, 16.7%, respectively, whereas in the control group they were 37.5% and 35.4%, respectively. There were significant differences between the two groups (P<0.05). Conclusion: Shengmai Injection can decrease the incidences of radiation pneumonia and pulmonary fibrosis

  17. Manganese (II) induces chemical hypoxia by inhibiting HIF-prolyl hydroxylase: Implication in manganese-induced pulmonary inflammation

    International Nuclear Information System (INIS)

    Han, Jeongoh; Lee, Jong-Suk; Choi, Daekyu; Lee, Youna; Hong, Sungchae; Choi, Jungyun; Han, Songyi; Ko, Yujin; Kim, Jung-Ae; Mi Kim, Young; Jung, Yunjin

    2009-01-01

    Manganese (II), a transition metal, causes pulmonary inflammation upon environmental or occupational inhalation in excess. We investigated a potential molecular mechanism underlying manganese-induced pulmonary inflammation. Manganese (II) delayed HIF-1α protein disappearance, which occurred by inhibiting HIF-prolyl hydroxylase (HPH), the key enzyme for HIF-1α hydroxylation and subsequent von Hippel-Lindau(VHL)-dependent HIF-1α degradation. HPH inhibition by manganese (II) was neutralized significantly by elevated dose of iron. Consistent with this, the induction of cellular HIF-1α protein by manganese (II) was abolished by pretreatment with iron. Manganese (II) induced the HIF-1 target gene involved in pulmonary inflammation, vascular endothelial growth factor (VEGF), in lung carcinoma cell lines. The induction of VEGF was dependent on HIF-1. Manganese-induced VEGF promoted tube formation of HUVEC. Taken together, these data suggest that HIF-1 may be a potential mediator of manganese-induced pulmonary inflammation

  18. Erythropoietin Pretreatment Attenuates Seawater Aspiration-Induced Acute Lung Injury in Rats.

    Science.gov (United States)

    Ji, Mu-Huo; Tong, Jian-Hua; Tan, Yuan-Hui; Cao, Zhen-Yu; Ou, Cong-Yang; Li, Wei-Yan; Yang, Jian-Jun; Peng, Y G; Zhu, Si-Hai

    2016-02-01

    Seawater drowning-induced acute lung injury (ALI) is a serious clinical condition characterized by increased alveolar-capillary permeability, excessive inflammatory responses, and refractory hypoxemia. However, current therapeutic options are largely supportive; thus, it is of great interest to search for alternative agents to treat seawater aspiration-induced ALI. Erythropoietin (EPO) is a multifunctional agent with antiinflammatory, antioxidative, and antiapoptotic properties. However, the effects of EPO on seawater aspiration-induced ALI remain unclear. In the present study, male rats were randomly assigned to the naive group, normal saline group, seawater group, or seawater + EPO group. EPO was administered intraperitoneally at 48 and 24 h before seawater aspiration. Arterial blood gas analysis was performed with a gas analyzer at baseline, 30 min, 1 h, 4 h, and 24 h after seawater aspiration, respectively. Histological scores, computed tomography scan, nuclear factor kappa B p65, inducible nitric oxide synthase, caspase-3, tumor necrosis factor-alpha, interleukin (IL)-1β, IL-6, IL-10, wet-to-dry weight ratio, myeloperoxidase activity, malondialdehyde, and superoxide dismutase in the lung were determined 30 min after seawater aspiration. Our results showed that EPO pretreatment alleviated seawater aspiration-induced ALI, as indicated by increased arterial partial oxygen tension and decreased lung histological scores. Furthermore, EPO pretreatment attenuated seawater aspiration-induced increase in the expressions of pulmonary nuclear factor kappa B p65, inducible nitric oxide synthase, caspase-3, tumor necrosis factor-alpha, IL-1β, myeloperoxidase activity, and malondialdehyde when compared with the seawater group. Collectively, our study suggested that EPO pretreatment attenuates seawater aspiration-induced ALI by down-regulation of pulmonary pro-inflammatory cytokines, oxidative stress, and apoptosis.

  19. Compound edaravone alleviates lipopolysaccharide (LPS)-induced acute lung injury in mice.

    Science.gov (United States)

    Zhang, Zhengping; Luo, Zhaowen; Bi, Aijing; Yang, Weidong; An, Wenji; Dong, Xiaoliang; Chen, Rong; Yang, Shibao; Tang, Huifang; Han, Xiaodong; Luo, Lan

    2017-09-15

    Acute lung injury (ALI) represents an unmet medical need with an urgency to develop effective pharmacotherapies. Compound edaravone, a combination of edaravone and borneol, has been developed for treatment of ischemia stroke in clinical phase III study. The purpose of the present study is to investigate the anti-inflammatory effect of compound edaravone on lipopolysaccharide (LPS)-induced inflammatory response in RAW264.7 cells and the therapeutic efficacy on LPS-induced ALI in mice. Edaravone and compound edaravone concentration-dependently decreased LPS-induced interleukin-6 (IL-6) production and cyclooxygenase-2 (COX-2) expression in RAW264.7 cells. The efficiency of compound edaravone was stronger than edaravone alone. In the animal study, compound edaravone was injected intravenously to mice after intratracheal instillation of LPS. It remarkably alleviated LPS-induced lung injury including pulmonary histological abnormalities, polymorphonuclear leukocyte (PMN) infiltration and extravasation. Further study demonstrated that compound edaravone suppressed LPS-induced TNF-α and IL-6 increase in mouse serum and bronchoalveolar lavage (BAL) fluid, and inhibited LPS-induced nuclear factor-κB (NF-κB) activation and COX-2 expression in mice lung tissues. Importantly, our findings demonstrated that the compound edaravone showed a stronger protective effect against mouse ALI than edaravone alone, which suggested the synergies between edaravone and borneol. In conclusion, compound edaravone could be a potential novel therapeutic drug for ALI treatment and borneol might produce a synergism with edaravone. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Pathology of experimental radiation pancarditis, 1. Observation on radiation-induced heart injuries following a single dose of x-ray irradiation to rabbit heart with special reference to its pathogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Maeda, S [Kyorin Univ., Mitaka, Tokyo (Japan). School of Medicine

    1980-01-01

    Radiation-induced heart injuries were morphologically studied by using the rabbits irradiated with a single dose of 3,000R (group I) or 300R X-ray (group II) from 1 hour until 6 months. There was no essential difference in the lesions of the hearts from group I and that of group II. Acute epicarditis was found as early as 1 hour after irradiation and it became maximum in severity at 1 - 2 days. In the myocardium, there were degeneration and resolution of the myocardial cell, various architectural changes of mitochondria, and disorganization of the intercalated disc. Polymorphonuclear cell infiltration and endothelial injuries of the capillaries occurred in the interstitial tissue. In addition, endocarditis with or without thrombus formation was often found. Acute inflammation was seen in the myocardium of group II rather later than that of group I, but it disappeared earlier. In the later stage, fibrosis finally occurred in the epicardium and endocardium. Glycoprotein degeneration of the muscle cells and fibrosis appeared in the myocardium. The pathogenesis of radiation pancarditis is thought to be dependent not only on the disturbance of microcirculation caused by endothelial cell damage of the capillaries, but also on alterations of the myocardial mitochondria as a result of direct injury.

  1. Early remodeling of nasal mucosa in rat model after radiation injury

    International Nuclear Information System (INIS)

    Xiao Mang; Tang Jianguo; Luo Baozhen; Zhao Li'na; Shi Guozhi

    2008-01-01

    Objective: To explore the feature of nasal mucosa remodeling in experimental radiation injury. Methods: Fourty male rats were randomly divided into five groups, as control group and radiation injury groups (radiation dose were 20 Gy, 30 Gy, 40 Gy and 50 Gy). Each group had 8 rats. Two weeks after the last irradiation, the rats were killed and the nasal middle turbinates of the animals were removed. The tissue blocks were embedded in paraffin. The paraffin sections were stained with hematoxylin and eosin (HE), alcian blue- periodic acid-Schif (AB-PAS), and Masson Trichrome (MT). The infiltrating eosinophils in nasal mucosa were examined. AB-PAS positive cells in the surface epithelium in nasal mucosa were counted. The percentage of area in MT stained extracellular matrix in nasal mucosa and damage of epithelium were determined by an image analyzer. Results: The control group only presented a few eosinophils. Significant eosinophil infiltration was observed in the radiation injury groups, especially for the 30 Gy radiation injury group. Compared with the control group, there was no significant epithelial damage in 20 Gy radiation injury group. Significant epithelial damage were observed in the rest of radiation injury groups. The epithelial damage became more severe as the radiation dose increasing. A little but not significant increase in AB-PAS positive cells was observed in the mucos of the 20 Gy radiation injury group and significant increase in the 30 and 40 Gy groups. But in the 50 Gy radiation injury group, the AB-PAS positive cells were decreased compared with control group. The collagen fibrils in the mucosa of nasal middle turbinate in 20 Gy radiation injury group did not significantly increase.. But in the other groups, the increase was significant compared with that of control group. Furthermore, collagen fibrils increased as the radiation dose increased. Conclusions: Epithelial damage, goblet cells hyperplasia and extracellular matrix deposition are the

  2. TLR2 deficiency aggravates lung injury caused by mechanical ventilation

    NARCIS (Netherlands)

    Kuipers, Maria Theresa; Jongsma, Geartsje; Hegeman, Maria A; Tuip-de Boer, Anita M; Wolthuis, Esther K; Choi, Goda; Bresser, Paul; van der Poll, Tom; Schultz, Marcus J; Wieland, Catharina W

    Innate immunity pathways are found to play an important role in ventilator-induced lung injury. We analyzed pulmonary expression of Toll-like receptor 2 (TLR2) in humans and mice and determined the role of TLR2 in the pathogenesis of ventilator-induced lung injury in mice. Toll-like receptor 2 gene

  3. Diagnosis and treatment of radiation injuries

    International Nuclear Information System (INIS)

    Dalci, D.; Doerter, G.; Gueclue, I.

    2005-01-01

    This publication is the translation of IAEA Safety Reports Series No.2 ,Diagnosis and Treatment of Radiation Injuries. This report is directed at medical professionals who may be involved in the management of radiation injuries starting from the first few hours or days after an exposure of undefined severity. The principal aim of this publication is to provide guidelines to enable medical professionals to carry out prompt diagnostic measure and to offer emergency treatment. This report provides information in tabulated form on clinical criteria for dose assesment. Additionally, it discusses the appropriate dose-effect relationship in cases of external radiation involving either total body or local exposures, as well as internal contamination

  4. Subacute brain atrophy induced by radiation therapy to the malignant brain tumors

    International Nuclear Information System (INIS)

    Asai, Akio; Matsutani, Masao; Takakura, Kintomo.

    1987-01-01

    In order to analyze brain atrophy after radiation therapy to the brain tumors, we calculated a CSF-cranial volume ratio on CT scan as an index of brain atrophy, and estimated dementia-score by Hasegawa's method in 91 post-irradiated patients with malignant brain tumors. Radiation-induced brain atrophy was observed in 51 out of 91 patients (56 %) and dementia in 23 out of 47 patients (49 %). These two conditions were closely related, and observed significantly more often in aged and whole-brain-irradiated patients. As radiation-induced brain atrophy accompanied by dementia appeared 2 - 3 months after the completion of radiation therapy, it should be regarded as a subacute brain injury caused by radiation therapy. (author)

  5. Mass casualties of radiation injuries after nuclear weapon explosion

    International Nuclear Information System (INIS)

    Messerschmidt, O.

    1980-01-01

    Burns, mechanical lesions, radiation injuries as well as combinations of these types of injuries as a consequence of a nuclear explosion demand different basic lines of triage. The lack of a suitable physical dosimetry is a special problem for the evaluation of radiation injuries. While in cases of wounds and burns treatment, like surgery, is recommended to take place early, for example, within hours or days after those injuries, treatment of radiation victims is necessary only in the stage of severe haematologic changes including disturbances of coagulation and occurrence of high fever which appears after one or two weeks subsequent to exposure. The lack of medical personnel and medical equipment result in even a worse prognosis for the various injuries than in peace time accidents. (orig.) [de

  6. Metabolic acidosis may be as protective as hypercapnic acidosis in an ex-vivo model of severe ventilator-induced lung injury: a pilot study

    Directory of Open Access Journals (Sweden)

    Patsouris Efstratios

    2011-04-01

    Full Text Available Abstract Background There is mounting experimental evidence that hypercapnic acidosis protects against lung injury. However, it is unclear if acidosis per se rather than hypercapnia is responsible for this beneficial effect. Therefore, we sought to evaluate the effects of hypercapnic (respiratory versus normocapnic (metabolic acidosis in an ex vivo model of ventilator-induced lung injury (VILI. Methods Sixty New Zealand white rabbit ventilated and perfused heart-lung preparations were used. Six study groups were evaluated. Respiratory acidosis (RA, metabolic acidosis (MA and normocapnic-normoxic (Control - C groups were randomized into high and low peak inspiratory pressures, respectively. Each preparation was ventilated for 1 hour according to a standardized ventilation protocol. Lung injury was evaluated by means of pulmonary edema formation (weight gain, changes in ultrafiltration coefficient, mean pulmonary artery pressure changes as well as histological alterations. Results HPC group gained significantly greater weight than HPMA, HPRA and all three LP groups (P = 0.024, while no difference was observed between HPMA and HPRA groups regarding weight gain. Neither group differ on ultrafiltration coefficient. HPMA group experienced greater increase in the mean pulmonary artery pressure at 20 min (P = 0.0276 and 40 min (P = 0.0012 compared with all other groups. Histology scores were significantly greater in HP vs. LP groups (p Conclusions In our experimental VILI model both metabolic acidosis and hypercapnic acidosis attenuated VILI-induced pulmonary edema implying a mechanism other than possible synergistic effects of acidosis with CO2 for VILI attenuation.

  7. Plastic and reconstructive surgical treatment of the radiation injuries

    International Nuclear Information System (INIS)

    Ono, Nobutaka; Ogo, Ken; Uchiyama, Kanenari; Fukushima, Hisaki

    1977-01-01

    Eleven cases of radiation injury are reported. Three of them were relatively superficial ''radiation dermatitis''. They received radical excision and free skin-grafting to the cosmetic and functional satisfaction. Eight patients had deeper injury, ''radiation ulcer''. Six cases were treated by ''local flap''. The local flap technique is the simplest and the most effective way to treat the radiation ulcer. The reason is 1) it is a one stage operation, 2) it has a permanent pedicle supplying good blood flow, 3) it has very close texture and color match to the area. However, a skin-grafting performed on one patient of radiation ulcer ended up with failure. The indication of the skin-grafting and the local flap was discussed from the point of the stage or degree of radiation injuries and the recommendable method is the skin-grafting to the radiation dermatitis and the local flap to the radiation ulcer. (auth.)

  8. Effects of bone marrow-derived cells on monocrotaline- and hypoxia-induced pulmonary hypertension in mice

    Directory of Open Access Journals (Sweden)

    Vainchenker William

    2007-01-01

    Full Text Available Abstract Background Bone marrow -derived cells (BMDCs can either limit or contribute to the process of pulmonary vascular remodeling. Whether the difference in their effects depends on the mechanism of pulmonary hypertension (PH remains unknown. Objectives We investigated the effect of BMDCs on PH induced in mice by either monocrotaline or exposure to chronic hypoxia. Methods Intravenous administration of the active monocrotaline metabolite (monocrotaline pyrrole, MCTp to C57BL/6 mice induced PH within 15 days, due to remodeling of small distal vessels. Three days after the MCTp injection, the mice were injected with BMDCs harvested from femurs and tibias of donor mice treated with 5-fluorouracil (3.5 mg IP/animal to deplete mature cells and to allow proliferation of progenitor cells. Results BMDCs significantly attenuated PH as assessed by reductions in right ventricular systolic pressure (20 ± 1 mmHg vs. 27 ± 1 mmHg, P ≤ 0.01, right ventricle weight/left ventricle+septum weight ratio (0.29 ± 0.02 vs. 0.36 ± 0.01, P ≤ 0.03, and percentage of muscularized vessels (26.4% vs. 33.5%, P ≤ 0.05, compared to control animals treated with irradiated BMDCs. Tracking cells from constitutive GFP-expressing male donor mice with anti-GFP antibodies or chromosome Y level measurement by quantitative real-time PCR showed BMDCs in the lung. In contrast, chronically hypoxic mice subjected to the same procedure failed to show improvement in PH. Conclusion These results show that BMDCs limit pulmonary vascular remodeling induced by vascular injury but not by hypoxia.

  9. Ninety-nine years of radiation injuries in dental radiography

    International Nuclear Information System (INIS)

    Maeda, Kadzuo

    1994-01-01

    A German dentist, F.O. Walkhoff, has started dental radiography as early as two weeks after Roentgen's discovery on November 8, 1895. The purpose of this paper is to revisit radiation injuries by dividing the era into the era of Kells (before World War II) and the era of low exposure doses (after World War II). Edmund Kells (1856-1928), a pioneer of dental radiologist in the United States, has later become a victim of radiation injuries. During the era of Kells, skin radiation injuries were frequent among the group of dental and medical personnels. In the era of low exposure doses, cancers, leukemia, and genetic effects have begun to receive attention. Radiation injuries occurring in a dental practice are discussed in the context of the two eras. (N.K.) 43 refs

  10. Imaging pulmonary fibrosis

    International Nuclear Information System (INIS)

    Brauner, M.W.; Rety, F.; Naccache, J.M.; Girard, F.; Valeyre, D.F.

    2001-01-01

    Localized fibrosis of the lung is usually scar tissue while diffuse pulmonary fibrosis is more often a sign of active disease. Chronic infiltrative lung disease may be classified into four categories: idiopathic pneumonitis, collagen diseases, granulomatosis (sarcoidosis), and caused by known diseases (pneumoconiosis, hypersensitivity pneumonitis, drug-induced lung disease, radiation). (authors)

  11. Antioxidant mechanism of Rutin on hypoxia-induced pulmonary arterial cell proliferation.

    Science.gov (United States)

    Li, Qian; Qiu, Yanli; Mao, Min; Lv, Jinying; Zhang, Lixin; Li, Shuzhen; Li, Xia; Zheng, Xiaodong

    2014-11-18

    Reactive oxygen species (ROS) are involved in the pathologic process of pulmonary arterial hypertension as either mediators or inducers. Rutin is a type of flavonoid which exhibits significant scavenging properties on oxygen radicals both in vitro and in vivo. In this study, we proposed that rutin attenuated hypoxia-induced pulmonary artery smooth muscle cell (PASMC) proliferation by scavenging ROS. Immunofluorescence data showed that rutin decreased the production of ROS, which was mainly generated through mitochondria and NADPH oxidase 4 (Nox4) in pulmonary artery endothelial cells (PAECs). Western blot results provided further evidence on rutin increasing expression of Nox4 and hypoxia-inducible factor-1α (HIF-1α). Moreover, cell cycle analysis by flow cytometry indicated that proliferation of PASMCs triggered by hypoxia was also repressed by rutin. However, N-acetyl-L-cysteine (NAC), a scavenger of ROS, abolished or diminished the capability of rutin in repressing hypoxia-induced cell proliferation. These data suggest that rutin shows a potential benefit against the development of hypoxic pulmonary arterial hypertension by inhibiting ROS, subsequently preventing hypoxia-induced PASMC proliferation.

  12. Antioxidant Mechanism of Rutin on Hypoxia-Induced Pulmonary Arterial Cell Proliferation

    Directory of Open Access Journals (Sweden)

    Qian Li

    2014-11-01

    Full Text Available Reactive oxygen species (ROS are involved in the pathologic process of pulmonary arterial hypertension as either mediators or inducers. Rutin is a type of flavonoid which exhibits significant scavenging properties on oxygen radicals both in vitro and in vivo. In this study, we proposed that rutin attenuated hypoxia-induced pulmonary artery smooth muscle cell (PASMC proliferation by scavenging ROS. Immunofluorescence data showed that rutin decreased the production of ROS, which was mainly generated through mitochondria and NADPH oxidase 4 (Nox4 in pulmonary artery endothelial cells (PAECs. Western blot results provided further evidence on rutin increasing expression of Nox4 and hypoxia-inducible factor-1α (HIF-1α. Moreover, cell cycle analysis by flow cytometry indicated that proliferation of PASMCs triggered by hypoxia was also repressed by rutin. However, N-acetyl-L-cysteine (NAC, a scavenger of ROS, abolished or diminished the capability of rutin in repressing hypoxia-induced cell proliferation. These data suggest that rutin shows a potential benefit against the development of hypoxic pulmonary arterial hypertension by inhibiting ROS, subsequently preventing hypoxia-induced PASMC proliferation.

  13. Ruscogenin inhibits lipopolysaccharide-induced acute lung injury in mice: involvement of tissue factor, inducible NO synthase and nuclear factor (NF)-κB.

    Science.gov (United States)

    Sun, Qi; Chen, Ling; Gao, Mengyu; Jiang, Wenwen; Shao, Fangxian; Li, Jingjing; Wang, Jun; Kou, Junping; Yu, Boyang

    2012-01-01

    Acute lung injury is still a significant clinical problem with a high mortality rate and there are few effective therapies in clinic. Here, we studied the inhibitory effect of ruscogenin, an anti-inflammatory and anti-thrombotic natural product, on lipopolysaccharide (LPS)-induced acute lung injury in mice basing on our previous studies. The results showed that a single oral administration of ruscogenin significantly decreased lung wet to dry weight (W/D) ratio at doses of 0.3, 1.0 and 3.0 mg/kg 1 h prior to LPS challenge (30 mg/kg, intravenous injection). Histopathological changes such as pulmonary edema, coagulation and infiltration of inflammatory cells were also attenuated by ruscogenin. In addition, ruscogenin markedly decreased LPS-induced myeloperoxidase (MPO) activity and nitrate/nitrite content, and also downregulated expression of tissue factor (TF), inducible NO synthase (iNOS) and nuclear factor (NF)-κB p-p65 (Ser 536) in the lung tissue at three doses. Furthermore, ruscogenin reduced plasma TF procoagulant activity and nitrate/nitrite content in LPS-induced ALI mice. These findings confirmed that ruscogenin significantly attenuate LPS-induced acute lung injury via inhibiting expressions of TF and iNOS and NF-κB p65 activation, indicating it as a potential therapeutic agent for ALI or sepsis. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Effect of Aspirin on Fractalkine in Rats with Pulmonary Embolism

    African Journals Online (AJOL)

    2Department of Surgical Oncology, Tumor Hospital of Taizhou, Wenling 317502, China ... PE-induced lung injury was alleviated by treatment with aspirin based on the results of ..... pulmonary hypertension in chronic obstructive ... pancreatitis.

  15. Effect of penehyclidine hydrochloride on β-arrestin-1 expression in lipopolysaccharide-induced human pulmonary microvascular endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhan, J. [Department of Anesthesiology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei (China); Xiao, F. [Department of Osteology, Pu Ai Hospital, Huazhong University of Science and Technology, Wuhan, Hubei (China); Zhang, Z.Z.; Wang, Y.P.; Chen, K.; Wang, Y.L. [Department of Anesthesiology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei (China)

    2013-12-02

    β-arrestins are expressed proteins that were first described, and are well-known, as negative regulators of G protein-coupled receptor signaling. Penehyclidine hydrochloride (PHC) is a new anti-cholinergic drug that can inhibit biomembrane lipid peroxidation, and decrease cytokines and oxyradicals. However, to date, no reports on the effects of PHC on β-arrestin-1 in cells have been published. The aim of this study was to investigate the effect of PHC on β-arrestin-1 expression in lipopolysaccharide (LPS)-induced human pulmonary microvascular endothelial cells (HPMEC). Cultured HPMEC were pretreated with PHC, followed by LPS treatment. Muscarinic receptor mRNAs were assayed by real-time quantitative PCR. Cell viability was assayed by the methyl thiazolyl tetrazolium (MTT) conversion test. The dose and time effects of PHC on β-arrestin-1 expression in LPS-induced HPMEC were determined by Western blot analysis. Cell malondialdehyde (MDA) level and superoxide dismutase (SOD) activity were measured. It was found that the M{sub 3} receptor was the one most highly expressed, and was activated 5 min after LPS challenge. Furthermore, 2 μg/mL PHC significantly upregulated expression of β-arrestin-1 within 10 to 15 min. Compared with the control group, MDA levels in cells were remarkably increased and SOD activities were significantly decreased in LPS pretreated cells, while PHC markedly decreased MDA levels and increased SOD activities. We conclude that PHC attenuated ROS injury by upregulating β-arrestin-1 expression, thereby implicating a mechanism by which PHC may exert its protective effects against LPS-induced pulmonary microvascular endothelial cell injury.

  16. Effect of penehyclidine hydrochloride on β-arrestin-1 expression in lipopolysaccharide-induced human pulmonary microvascular endothelial cells

    International Nuclear Information System (INIS)

    Zhan, J.; Xiao, F.; Zhang, Z.Z.; Wang, Y.P.; Chen, K.; Wang, Y.L.

    2013-01-01

    β-arrestins are expressed proteins that were first described, and are well-known, as negative regulators of G protein-coupled receptor signaling. Penehyclidine hydrochloride (PHC) is a new anti-cholinergic drug that can inhibit biomembrane lipid peroxidation, and decrease cytokines and oxyradicals. However, to date, no reports on the effects of PHC on β-arrestin-1 in cells have been published. The aim of this study was to investigate the effect of PHC on β-arrestin-1 expression in lipopolysaccharide (LPS)-induced human pulmonary microvascular endothelial cells (HPMEC). Cultured HPMEC were pretreated with PHC, followed by LPS treatment. Muscarinic receptor mRNAs were assayed by real-time quantitative PCR. Cell viability was assayed by the methyl thiazolyl tetrazolium (MTT) conversion test. The dose and time effects of PHC on β-arrestin-1 expression in LPS-induced HPMEC were determined by Western blot analysis. Cell malondialdehyde (MDA) level and superoxide dismutase (SOD) activity were measured. It was found that the M 3 receptor was the one most highly expressed, and was activated 5 min after LPS challenge. Furthermore, 2 μg/mL PHC significantly upregulated expression of β-arrestin-1 within 10 to 15 min. Compared with the control group, MDA levels in cells were remarkably increased and SOD activities were significantly decreased in LPS pretreated cells, while PHC markedly decreased MDA levels and increased SOD activities. We conclude that PHC attenuated ROS injury by upregulating β-arrestin-1 expression, thereby implicating a mechanism by which PHC may exert its protective effects against LPS-induced pulmonary microvascular endothelial cell injury

  17. Pulmonary permeability assessed by fluorescent-labeled dextran instilled intranasally into mice with LPS-induced acute lung injury.

    Directory of Open Access Journals (Sweden)

    Honglei Chen

    Full Text Available Several different methods have been used to assess pulmonary permeability in response to acute lung injury (ALI. However, these methods often involve complicated procedures and algorithms that are difficult to precisely control. The purpose of the current study is to establish a feasible method to evaluate alterations in lung permeability by instilling fluorescently labeled dextran (FITC-Dextran intranasally.For the mouse model of direct ALI, lipopolysaccharide (LPS was administered intranasally. FITC-Dextran was instilled intranasally one hour before the mice were euthanized. Plasma fluorescence intensities from the LPS group were significantly higher than in the control group. To determine the reliability and reproducibility of the procedure, we also measured the lung wet-to-dry weight ratio, the protein concentration of the bronchoalveolar lavage fluid, tight and adherens junction markers and pathological changes. Consistent results were observed when the LPS group was compared with the control group. Simultaneously, we found that the concentration of plasma FITC-Dextran was LPS dose-dependent. The concentration of plasma FITC-Dextran also increased with initial intranasal FITC-Dextran doses. Furthermore, increased fluorescence intensity of plasma FITC-Dextran was found in the intraperitoneally LPS-induced ALI model.In conclusion, the measurement of FITC-Dextran in plasma after intranasal instillation is a simple, reliable, and reproducible method to evaluate lung permeability alterations in vivo. The concentration of FITC-Dextran in the plasma may be useful as a potential peripheral biomarker of ALI in experimental clinical studies.

  18. Pulmonary permeability assessed by fluorescent-labeled dextran instilled intranasally into mice with LPS-induced acute lung injury.

    Science.gov (United States)

    Chen, Honglei; Wu, Shaoping; Lu, Rong; Zhang, Yong-guo; Zheng, Yuanyuan; Sun, Jun

    2014-01-01

    Several different methods have been used to assess pulmonary permeability in response to acute lung injury (ALI). However, these methods often involve complicated procedures and algorithms that are difficult to precisely control. The purpose of the current study is to establish a feasible method to evaluate alterations in lung permeability by instilling fluorescently labeled dextran (FITC-Dextran) intranasally. For the mouse model of direct ALI, lipopolysaccharide (LPS) was administered intranasally. FITC-Dextran was instilled intranasally one hour before the mice were euthanized. Plasma fluorescence intensities from the LPS group were significantly higher than in the control group. To determine the reliability and reproducibility of the procedure, we also measured the lung wet-to-dry weight ratio, the protein concentration of the bronchoalveolar lavage fluid, tight and adherens junction markers and pathological changes. Consistent results were observed when the LPS group was compared with the control group. Simultaneously, we found that the concentration of plasma FITC-Dextran was LPS dose-dependent. The concentration of plasma FITC-Dextran also increased with initial intranasal FITC-Dextran doses. Furthermore, increased fluorescence intensity of plasma FITC-Dextran was found in the intraperitoneally LPS-induced ALI model. In conclusion, the measurement of FITC-Dextran in plasma after intranasal instillation is a simple, reliable, and reproducible method to evaluate lung permeability alterations in vivo. The concentration of FITC-Dextran in the plasma may be useful as a potential peripheral biomarker of ALI in experimental clinical studies.

  19. Physical and biological predictors of radiation-induced whole lung injury: early results of a prospective study

    International Nuclear Information System (INIS)

    Marks, L.B.; Munley, M.; Bentel, G.; Hollis, D.; Zhou, S.; Jirtle, R.; Kong, F.M.; Scarfone, C.; Antoine, P.; Chew, M.; Tapson, V.; Spencer, D.; Jaszczak, R.; Coleman, E.; Anscher, M.

    1996-01-01

    Purpose: To develop methods of predicting the pulmonary consequences of thoracic irradiation (RT) by prospectively studying changes in pulmonary function following RT. Methods: 105 patients receiving incidental partial lung irradiation during treatment of tumors in/around the thorax (lung-70, breast-18, lymphoma-4, misc-3) had whole lung function assessed (symptoms and pulmonary function tests [PFTs: FEV1-forced expiratory volume 1 sec; DLCO-diffusion capacity]) before and repeatedly 6-48 months following RT. All had computed tomography-based 3-dimensional (3D) dose calculations with lung density heterogeneity corrections for dose-volume histogram (DVH) and NTCP (normal tissue complication probability) calculations. Functional DVHs (DVfH) based on SPECT (single photon emission computed tomography) lung perfusion scans, and serial transforming growth factor-beta (TGF-β) levels were available in 50 and 30 patients, respectively. The incidence and severity of changes in whole lung function were correlated with clinical, physical and biological factors outlined in the results. Exploratory statistical analyses were preformed using chi-square, logistic regression, and multiple linear regression. Mean pt age=57, range 21-87; sex: 63 F, 42 M; 29 had chemotherapy (CT) before/with RT; Follow-up 6-48 months (mean 15, median 12). Results RT-induced symptoms developed in 26 patients (7-grade I-no intervention; 16 grade II-steroids; 3 grade III-oxygen and steroids). A mixed model based on pre-RT DLCO and CT-based NTCP was strongly predictive for the development of symptoms (p 30 Gy. In patients with 'good' pre-RT PFTs, there may be a relationship between the % reduction in PFT and % lung volume receiving >30 Gy (figure). Conclusion: Whole lung injury (symptoms or PFT changes) appears to be related to a variety of physical, biological and clinical factors. The data suggest that no one variable is likely to be an adequate predictor and that multi-faceted predictive models will be

  20. Angiotensin II type 2 receptor agonist Compound 21 attenuates pulmonary inflammation in a model of acute lung injury

    Directory of Open Access Journals (Sweden)

    Menk M

    2018-05-01

    Full Text Available Mario Menk, Jan Adriaan Graw, Clarissa von Haefen, Hendrik Steinkraus, Burkhard Lachmann, Claudia D Spies, David Schwaiberger Department of Anesthesiology and Operative Intensive Care Medicine, Charité – University Medicine Berlin, FreieUniversität Berlin, Humboldt-Universitätzu Berlin, and Berlin Institute of Health, Germany Purpose: Although the role of the angiotensin II type 2 (AT2 receptor in acute lung injury is not yet completely understood, a protective role of this receptor subtype has been suggested. We hypothesized that, in a rodent model of acute lung injury, stimulation of the AT2 receptor with the direct agonist Compound 21 (C21 might have a beneficial effect on pulmonary inflammation and might improve pulmonary gas exchange. Materials and methods: Male adult rats were divided into a treatment group that received pulmonary lavage followed by mechanical ventilation (LAV, n=9, a group receiving pulmonary lavage, mechanical ventilation, and direct stimulation of the AT2 receptor with C21 (LAV+C21, n=9, and a control group that received mechanical ventilation only (control, n=9. Arterial blood gas analysis was performed every 30 min throughout the 240-min observation period. Lung tissue and plasma samples were obtained at 240 min after the start of mechanical ventilation. Protein content and surface activity of bronchoalveolar lavage fluid were assessed and the wet/dry-weight ratio of lungs was determined. Transcriptional and translational regulation of pro- and antiinflammatory cytokines IL-1β, tumor necrosis factor-alpha, IL-6, IL-10, and IL-4 was determined in lungs and in plasma. Results: Pulmonary lavage led to a significant impairment of gas exchange, the formation of lung edema, and the induction of pulmonary inflammation. Protein content of lavage fluid was increased and contained washed-out surfactant. Direct AT2 receptor stimulation with C21 led to a significant inhibition of tumor necrosis factor-alpha and IL-6

  1. Inflammatory markers of radiation-induced late effects

    International Nuclear Information System (INIS)

    Dubner, D.; Gallegos, C.; Michelin, S.; Portas, M.

    2011-01-01

    Up to now there is no established parameters for the follow-up of delayed radiation injuries. Late toxicity is generally irreversible and can have devastating effects on quality of life of people exposed either accidentally or during therapeutic radiation treatments. Histologically, late manifestations of radiation damage include fibrosis, necrosis, atrophy and vascular lesions. Although many etiologies have been suggested regarding these late toxicities, persistent inflammation has been described as playing a key role. The recruitment of leukocytes from circulating blood is decisive in the inflammatory reaction. All the steps in the recruitment cascade are orchestrated by cell-adhesion molecules (CAMs) on both leukocytes and endothelial cells, and different subsets of CAMs are responsible for different steps in extravasation. A link between radiationinduced inflammatory processes and alterations in T-cell immunity are still demonstrable in the blood of A-bomb survivors. The following study was conducted to examine the response of the immune system in the inflammatory reactions in patients with late skin injuries after radiotherapy or interventional fluoroscopy procedures. The expression of adhesion molecules ICAM1 and β1-integrin on granulocytes and lymphocytes, as well as changes in subpopulations of T lymphocytes and the level of C-reactive protein, a well- studied inflammatory marker were evaluated. (authors)

  2. Cellular infiltrates and injury evaluation in a rat model of warm pulmonary ischemia-reperfusion

    NARCIS (Netherlands)

    Van Putte, BP; Kesecioglu, J; Hendriks, JMH; Persy, VP; van Marck, E; Van Schil, PEY; De Broe, ME

    Introduction Beside lung transplantation, cardiopulmonary bypass, isolated lung perfusion and sleeve resection result in serious pulmonary ischemia - reperfusion injury, clinically known as acute respiratory distress syndrome. Very little is known about cells infiltrating the lung during ischemia -

  3. Bosutinib induced pleural effusions: Case report and review of tyrosine kinase inhibitors induced pulmonary toxicity

    Directory of Open Access Journals (Sweden)

    Natalia I. Moguillansky, MD

    2017-01-01

    Full Text Available Tyrosine kinase inhibitors are known to cause pulmonary complications. We report a case of bosutinib related bilateral pleural effusions in a patient with chronic myeloid leukemia. Characteristics of the pleural fluid are presented. We also discuss other tyrosine kinase inhibitors induced pulmonary toxicities, including pulmonary hypertension and interstitial lung disease.

  4. Reduction of radiation injury of fresh agricultural products by saccharide

    International Nuclear Information System (INIS)

    Hayashi, Toru; Todoroki, Setsuko

    1998-01-01

    To establish irradiation technologies as one of alternative technology of methyl bromide fumigation, radiation sensitivities for each kind of fresh agricultural products and reduction of radiation injury were investigated. Fresh vegetables and flowers such as cabbage, sprouts, asparagus, lettuce, chrysanthemum, carnation, rose, etc. were used and irradiated with 750 Gy γ-ray. Flowers received radiation injury were soaked into various kinds of solutions for one night, then they were irradiated with 500 Gy γ-ray. They showed different radiation sensitivities. Cruciferae plant showed radioresistance and Compositae plant radiosensitivity. A keeping quality agent for cut flowers indicated protection effect on radiation injury. (S.Y.)

  5. Reduction of radiation injury of fresh agricultural products by saccharide

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Toru; Todoroki, Setsuko [National Food Research Inst., Tsukuba, Ibaraki (Japan)

    1998-02-01

    To establish irradiation technologies as one of alternative technology of methyl bromide fumigation, radiation sensitivities for each kind of fresh agricultural products and reduction of radiation injury were investigated. Fresh vegetables and flowers such as cabbage, sprouts, asparagus, lettuce, chrysanthemum, carnation, rose, etc. were used and irradiated with 750 Gy {gamma}-ray. Flowers received radiation injury were soaked into various kinds of solutions for one night, then they were irradiated with 500 Gy {gamma}-ray. They showed different radiation sensitivities. Cruciferae plant showed radioresistance and Compositae plant radiosensitivity. A keeping quality agent for cut flowers indicated protection effect on radiation injury. (S.Y.)

  6. Drug-induced hepatic injury

    DEFF Research Database (Denmark)

    Friis, Henrik; Andreasen, P B

    1992-01-01

    The Danish Committee on Adverse Drug Reactions received 1100 reports of suspected drug-induced hepatic injury during the decade 1978-1987. The causal relationship between drug and hepatic injury was classified as definite in 57 (5.2%) reports, probable in 989 (89.9%) reports, possible in 50 (4.......5%) reports and unclassifiable in four (0.4%) reports. Hepatic injuries accounted for 5.9% of all adverse drug reactions reported, and 14.7% of the lethal adverse drug reactions. A total of 47.2% were classified as acute cytotoxic, 16.2% as acute cholestatic and 26.9% as abnormal hepatic function. In 52 (4.......7%) cases the hepatic injury was lethal; only 14 (1.3%) cases were chronic. Halothane accounted for 25% of the cases. The incidence of halothane-induced hepatic injury is decreasing, and only one lethal case has been reported since 1981. Next to halothane, sulfasalazine was the drug most often suspected...

  7. Biochemical and Radiobiological Factors in the Early Detection of Radiation Injury in Mammals

    Energy Technology Data Exchange (ETDEWEB)

    Cole, L. J. [Life Sciences Division, Stanford Research Institute, Menlo Park, CA (United States)

    1971-03-15

    In considering the body of radiobiological knowledge upon which the present possibilities for the development of an objective quantitative laboratory procedure for early detection of radiation injury depend, it is evident that there are at least three general categories of radiation effects which are relevant to this objective: (1) Products of the enzymatic-chemical breakdown of macromolecules, and lysis of killed or dying cells from radiosensitive tissues, for example deoxypolynucleotides from lymphoid tissues and bone marrow; (2) Radiation-induced inhibition of synthesis of deoxyribonucleic acid (DNA) and/or other macromolecules, eliciting alterations in tissue and blood concentrations and pool size of metabolic intermediates in the synthesis, for example, deoxycytidine; (3) Radiation-induced alterations, suppression, or cessation of specialized cell function; of particular interest here is the immunological functions of lymphocytes, including those in the circulating blood. For rodents, the exquisite radiosensitivity of bone-marrow-stem cells as well as of lymphocytes has been precisely measured by modern cellular radiobiological techniques: the colony-forming technique of Till and McCulloch, yielding a D{sub 0} for bone-marrow cells of about 80 R; and the graft-versus-host reactivity of transplanted lymphocytes yielding a similar D{sub 0} value. In our own hands, a modified colony-formation technique for dog bone-marrow cells irradiated in.vitro and in vivo give D{sub 0} values of {approx}100 R. Thus, on the basis of radiation sensitivity and the time-relationships for interphase cell death for lymphocytes, it appears that this cell class is probably the best ''candidate'' source for an early radiation-injury detection system. However,- the important report by Zicha and Buric indicates that extrapolation of biochemical data on radiation dosimetry from rodents to man is not necessarily feasible, at least in the. case of the urinary excretion of deoxycytidine

  8. Long-term administration of a small molecular weight catalytic metalloporphyrin antioxidant, AEOL 10150, protects lungs from radiation-induced injury

    International Nuclear Information System (INIS)

    Rabbani, Zahid N.; Batinic-Haberle, Ines; Anscher, Mitchell S.; Huang Jie; Day, Brian J.; Alexander, Elaine; Dewhirst, Mark W.; Vujaskovic, Zeljko

    2007-01-01

    Purpose: To determine whether administration of a catalytic antioxidant, Mn(III) tetrakis(N,N'-diethylimidazolium-2-yl) porphyrin, AEOL 10150, with superoxide dismutase (SOD) mimetic properties, reduces the severity of radiation-induced injury to the lung from single-dose irradiation (RT) of 28 Gy. Methods and Materials: Rats were randomly divided into four different dose groups (0, 1, 10, and 30 mg/kg/day of AEOL 10150), receiving either short-term (1 week) or long-term (10 weeks) drug administration via osmotic pumps. Rats received single-dose irradiation (RT) of 28 Gy to the right hemithorax. Breathing rates, body weights, blood samples, histopathology, and immunohistochemistry were used to assess lung damage. Results: There was no significant difference in any of the study endpoints between the irradiated controls and the three groups receiving RT and short-term administration of AEOL 10150. For the long-term administration, functional determinants of lung damage 20 weeks postradiation were significantly worse for RT + phosphate-buffered saline (PBS) and RT + 1 mg/kg/day of AEOL 10150 as compared with the irradiated groups treated with higher doses of AEOL 10150 (10 or 30 mg/kg/day). Lung histology at 20 weeks revealed a significant decrease in structural damage and collagen deposition in rats receiving 10 or 30 mg/kg/day after radiation in comparison to the RT + PBS and 1 mg/kg/day groups. Immunohistochemistry demonstrated a significant reduction in macrophage accumulation, oxidative stress, and hypoxia in rats receiving AEOL 10150 (10 or 30 mg/kg/day) after lung irradiation compared with the RT + PBS and 1 mg/kg/day groups. Conclusions: The chronic administration of a novel catalytic antioxidant, AEOL 10150, demonstrates a significant protective effect from radiation-induced lung injury. AEOL 10150 has its primary impact on the cascade of events after irradiation, and adding the drug before irradiation and its short-term administration have no significant

  9. Pulmonary Edema: Classification, Mechanisms of Development, Diagnosis

    Directory of Open Access Journals (Sweden)

    V. V. Moroz

    2009-01-01

    Full Text Available Pulmonary edema remains a topical problem of modern reanimatology. In clinical practice, there is a need for continuous monitoring of the content of extravascular water in the lung and the pulmonary vascular permeability index for the timely detection and treatment of pulmonary edema. This literature review considers the minor mechanisms of pulmonary extravas-cular water exchange in health and in different types of pulmonary edema (acute lung injury, pneumonia, sepsis, postoperative period, burns, injuries etc., as well as the most accessible current (irradiation and dilution studies permitting an estimate of the level of pulmonary extravascular water and the pulmonary vascular permeability index in clinical practice. Key words: pulmonary edema, acute lung injury, pulmonary extravascular water, pulmonary vascular permeability index.

  10. Modulation of the ρ/rock pathway in heart and lung after thorax irradiation reveals targets to improve normal tissue toxicity

    International Nuclear Information System (INIS)

    Monceau, V.; Pasinetti, N.; Schupp, C.; Pouzoulet, F.; Opolon, P.; Vozenin, M.C.

    2010-01-01

    The medical options available to prevent or treat radiation-induced injury are scarce and developing effective countermeasures is still an open research field. In addition, more than half of cancer patients are treated with radiation therapy, which displays a high antitumor efficacy but can cause, albeit rarely, disabling long-term toxicities including radiation fibrosis. Progress has been made in the definition of molecular pathways associated with normal tissue toxicity that suggest potentially effective therapeutic targets. Targeting the Rho/ROCK pathway seems a promising anti-fibrotic approach, at least in the gut; the current study was performed to assess whether this target was relevant to the prevention and/or treatment of injury to the main thoracic organs, namely heart and lungs. First, we showed activation of two important fibro-genic pathways (Smad and Rho/ROCK) in response to radiation-exposure to adult cardio-myocytes; we extended these observations in vivo to the heart and lungs of mice, 15 and 30 weeks post-irradiation. We correlated this fibro-genic molecular imprint with alteration of heart physiology and long-term remodelling of pulmonary and cardiac histological structures. Lastly, cardiac and pulmonary radiation injury and bleomycin-induced pulmonary fibrosis were successfully modulated using Rho/ROCK inhibitors (statins and Y-27632) and this was associated with a normalization of fibro-genic markers. In conclusion, the present paper shows for the first time, activation of Rho/ROCK and Smad pathways in pulmonary and cardiac radiation-induced delayed injury. Our findings thereby reveal a safe and efficient therapeutic opportunity for the abrogation of late thoracic radiation injury, potentially usable either before or after radiation exposure; this approach is especially attractive in (1) the radiation oncology setting, as it does not interfere with prior anti-cancer treatment and in (2) radioprotection, as applicable to the treatment of

  11. Mammalian Target of Rapamycin Inhibition With Rapamycin Mitigates Radiation-Induced Pulmonary Fibrosis in a Murine Model

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Eun Joo [Radiation Oncology Branch, Center for Cancer Research, National Institutes of Health, Bethesda, Maryland (United States); Sowers, Anastasia; Thetford, Angela [Radiation Biology Branch, Center for Cancer Research, National Institutes of Health, Bethesda, Maryland (United States); McKay-Corkum, Grace; Chung, Su I. [Radiation Oncology Branch, Center for Cancer Research, National Institutes of Health, Bethesda, Maryland (United States); Mitchell, James B. [Radiation Biology Branch, Center for Cancer Research, National Institutes of Health, Bethesda, Maryland (United States); Citrin, Deborah E., E-mail: citrind@mail.nih.gov [Radiation Oncology Branch, Center for Cancer Research, National Institutes of Health, Bethesda, Maryland (United States)

    2016-11-15

    Purpose: Radiation-induced pulmonary fibrosis (RIPF) is a late toxicity of therapeutic radiation. Signaling of the mammalian target of rapamycin drives several processes implicated in RIPF, including inflammatory cytokine production, fibroblast proliferation, and epithelial senescence. We sought to determine if mammalian target of rapamycin inhibition with rapamycin would mitigate RIPF. Methods and Materials: C57BL/6NCr mice received a diet formulated with rapamycin (14 mg/kg food) or a control diet 2 days before and continuing for 16 weeks after exposure to 5 daily fractions of 6 Gy of thoracic irradiation. Fibrosis was assessed with Masson trichrome staining and hydroxyproline assay. Cytokine expression was evaluated by quantitative real-time polymerase chain reaction. Senescence was assessed by staining for β-galactosidase activity. Results: Administration of rapamycin extended the median survival of irradiated mice compared with the control diet from 116 days to 156 days (P=.006, log-rank test). Treatment with rapamycin reduced hydroxyproline content compared with the control diet (irradiation plus vehicle, 45.9 ± 11.8 μg per lung; irradiation plus rapamycin, 21.4 ± 6.0 μg per lung; P=.001) and reduced visible fibrotic foci. Rapamycin treatment attenuated interleukin 1β and transforming growth factor β induction in irradiated lungs compared with the control diet. Type II pneumocyte senescence after irradiation was reduced with rapamycin treatment at 16 weeks (3-fold reduction at 16 weeks, P<.001). Conclusions: Rapamycin protected against RIPF in a murine model. Rapamycin treatment reduced inflammatory cytokine expression, extracellular matrix production, and senescence in type II pneumocytes.

  12. Dosimetric analysis of imaging changes following pulmonary stereotactic body radiation therapy.

    Science.gov (United States)

    Prendergast, Brendan M; Bonner, James A; Popple, Richard A; Spencer, Sharon A; Fiveash, John B; Keene, Kimberly S; Cerfolio, Robert J; Minnich, Douglas J; Dobelbower, Michael C

    2011-02-01

    The aim of this study was to determine whether late patterns of pulmonary fibrosis are related to specific radiation doses administered during thoracic stereotactic body radiation therapy (SBRT). The records of all patients treated with SBRT for either pulmonary metastases or inoperable primary lung tumours at the University of Alabama at Birmingham from November 2005 to July 2008 were reviewed. Patients selected for analysis had diagnostic chest computed tomography (CT) scans acquired at least 180 days after completion of therapy. CT scans acquired at follow-up were co-registered with the original treatment planning CT scans for 12 eligible patients (17 lesions), and late-occurring pulmonary imaging abnormalities (IAs) were contoured. Dosimetric parameters analysed include D(80) , D(90) , V(18) and V(prescription dose) of the IA and V(14) and V(18) of the lung. Late pulmonary IAs were identified in 11 treated areas from nine patients. Late IAs could not be identified in six treated areas from three patients secondary to emphysema, tumour progression and severe atelectasis, respectively. The mean doses to 80% (D(80) ) and 90% (D(90) ) of the IAs were 18.4 and 14.5 Gy, respectively (ranges: 5.6-27.8 and 3.3-22.4 Gy). On average, 79.4% (range: 45.6-97.5%) of the IA received at least 18 Gy, while an average of 19.3% (range: 0.2-42.2%) received the prescription dose. On average, only 4.2% (range: 1.1-7.8%) of the lungs received 18 Gy. Imaging abnormalities consistent with pulmonary fibrosis are common after SBRT and are well approximated by the 18 Gy isodose distribution. The clinical ramification of these findings should be evaluated in future studies. © 2011 The Authors. Journal of Medical Imaging and Radiation Oncology © 2011 The Royal Australian and New Zealand College of Radiologists.

  13. Management of radiation injuries

    International Nuclear Information System (INIS)

    Roberto, Maria A.

    2003-01-01

    Injuries by exposure to ionizing radiation can be due to the detonation of a nuclear device in a military conflict, or it can occur following a large industrial accident (e.g. Chernobyl), or it can be the result of therapy (e.g. in a laboratory, in the case of cancer or other clinical situations). The severity of biological tissues damage depends on the energy deposited. The skin and subcutaneous tissue alone damaged may be related with an exposure to low energy radiation. In case of an exposure to high energy radiation the deeper structures will be involved. The treatment of the clinical situation after radiation requires special facilities (burn intensive care unit) and a massive support from a dedicated team. (author)

  14. Drug-induced pulmonary arterial hypertension: a recent outbreak

    Directory of Open Access Journals (Sweden)

    Gérald Simonneau

    2013-09-01

    Full Text Available Pulmonary arterial hypertension (PAH is a rare disorder characterised by progressive obliteration of the pulmonary microvasculature resulting in elevated pulmonary vascular resistance and premature death. According to the current classification PAH can be associated with exposure to certain drugs or toxins, particularly to appetite suppressant intake drugs, such as aminorex, fenfluramine derivatives and benfluorex. These drugs have been confirmed to be risk factors for PAH and were withdrawn from the market. The supposed mechanism is an increase in serotonin levels, which was demonstrated to act as a growth factor for the pulmonary artery smooth muscle cells. Amphetamines, phentermine and mazindol were less frequently used, but are considered possible risk factors, for PAH. Dasatinib, dual Src/Abl kinase inhibitor, used in the treatment of chronic myelogenous leukaemia was associated with cases of severe PAH, potentially in part reversible after dasatinib withdrawal. Recently, several studies have raised the issue of potential endothelial dysfunction that could be induced by interferon, and a few cases of PAH have been reported with interferon therapy. PAH remains a rare complication of these drugs, suggesting possible individual susceptibility, and further studies are needed to identify patients at risk of drug-induced PAH.

  15. Pulmonary lesion induced by low and high positive end-expiratory pressure levels during protective ventilation in experimental acute lung injury.

    Science.gov (United States)

    Pássaro, Caroline P; Silva, Pedro L; Rzezinski, Andréia F; Abrantes, Simone; Santiago, Viviane R; Nardelli, Liliane; Santos, Raquel S; Barbosa, Carolina M L; Morales, Marcelo M; Zin, Walter A; Amato, Marcelo B P; Capelozzi, Vera L; Pelosi, Paolo; Rocco, Patricia R M

    2009-03-01

    To investigate the effects of low and high levels of positive end-expiratory pressure (PEEP), without recruitment maneuvers, during lung protective ventilation in an experimental model of acute lung injury (ALI). Prospective, randomized, and controlled experimental study. University research laboratory. Wistar rats were randomly assigned to control (C) [saline (0.1 mL), intraperitoneally] and ALI [paraquat (15 mg/kg), intraperitoneally] groups. After 24 hours, each group was further randomized into four groups (six rats each) at different PEEP levels = 1.5, 3, 4.5, or 6 cm H2O and ventilated with a constant tidal volume (6 mL/kg) and open thorax. Lung mechanics [static elastance (Est, L) and viscoelastic pressure (DeltaP2, L)] and arterial blood gases were measured before (Pre) and at the end of 1-hour mechanical ventilation (Post). Pulmonary histology (light and electron microscopy) and type III procollagen (PCIII) messenger RNA (mRNA) expression were measured after 1 hour of mechanical ventilation. In ALI group, low and high PEEP levels induced a greater percentage of increase in Est, L (44% and 50%) and DeltaP2, L (56% and 36%) in Post values related to Pre. Low PEEP yielded alveolar collapse whereas high PEEP caused overdistension and atelectasis, with both levels worsening oxygenation and increasing PCIII mRNA expression. In the present nonrecruited ALI model, protective mechanical ventilation with lower and higher PEEP levels than required for better oxygenation increased Est, L and DeltaP2, L, the amount of atelectasis, and PCIII mRNA expression. PEEP selection titrated for a minimum elastance and maximum oxygenation may prevent lung injury while deviation from these settings may be harmful.

  16. Glycosaminoglycan synthesis in amiodarone-induced pulmonary fibrosis

    International Nuclear Information System (INIS)

    Farinas, E.M.

    1986-01-01

    Glycosaminoglycans (GAG) have previously been demonstrated to be synthesized in greater than normal amounts following a single intratracheal insufflation of bleomycin in hamsters. This suggests that GAG may play a role in the propagation of pulmonary fibrotic reactions. To further test this hypothesis, GAG synthesis was studied in a new hamster model of interstitial lung injury, induced by the cardiac drug, aminodarone. Animals received a single intratracheal instillation of 1.25 mg aminodarone. At 4, 9, and 21 days post-insufflation, the animals were sacrificed, their lungs removed, and 1 mm fragments placed in explant culture for 6 hours at 37 0 C in the presence of 35 S-sulfate. The labeled GAG were isolated and measured for 35 S incorporation. The author then isolated the hexosamine portions of the respective GAGs, Heparan Sulfate (HEP S), Chondroitin-6-Sulfate (Ch-6-S) and Chondroitin-4-Sulfate and Dermatan Sulfate (CH-4-S and DS) using the enzyme ABC and paper chromatography. They also studied the GAG content and distribution in hamster lung fibroblasts incorporated with 35 S for 48 hours and subjected to either 0, 0.01 mg, 0.1 mg, or 1 mg of aminodarone. GAG synthesis is increased at an early stage following the induction of lung injury by aminodarone and remains elevated for a 3 week period. The change in GAG distribution boards elevated CH-4-S and DS may be characteristic of interstitial diseases in general. The GAGs that are synthesized by fibroblasts may be responsible for the increased CH-4-S and DS synthesis

  17. Role of secretory phospholipase A(2) in rhythmic contraction of pulmonary arteries of rats with monocrotaline-induced pulmonary arterial hypertension.

    Science.gov (United States)

    Tanabe, Yoshiyuki; Saito-Tanji, Maki; Morikawa, Yuki; Kamataki, Akihisa; Sawai, Takashi; Nakayama, Koichi

    2012-01-01

    Excessive stretching of the vascular wall in accordance with pulmonary arterial hypertension (PAH) induces a variety of pathogenic cellular events in the pulmonary arteries. We previously reported that indoxam, a selective inhibitor for secretory phospholipase A(2) (sPLA(2)), blocked the stretch-induced contraction of rabbit pulmonary arteries by inhibition of untransformed prostaglandin H(2) (PGH(2)) production. The present study was undertaken to investigate involvement of sPLA(2) and untransformed PGH(2) in the enhanced contractility of pulmonary arteries of experimental PAH in rats. Among all the known isoforms of sPLA(2), sPLA(2)-X transcript was most significantly augmented in the pulmonary arteries of rats with monocrotaline-induced pulmonary hypertension (MCT-PHR). The pulmonary arteries of MCT-PHR frequently showed two types of spontaneous contraction in response to stretch; 27% showed rhythmic contraction, which was sensitive to indoxam and SC-560 (selective COX-1 inhibitor), but less sensitive to NS-398 (selective COX-2 inhibitor); and 47% showed sustained incremental tension (tonic contraction), which was insensitive to indoxam and SC-560, but sensitive to NS-398 and was attenuated to 45% of the control. Only the rhythmically contracting pulmonary arteries of MCT-PHR produced a substantial amount of untransformed PGH(2), which was abolished by indoxam. These results suggest that sPLA(2)-mediated PGH(2) synthesis plays an important role in the rhythmic contraction of pulmonary arteries of MCT-PHR.

  18. Effects of combined radiation-burn injury on survival rate of allogeneic skin grafts and immune reaction in rats

    International Nuclear Information System (INIS)

    Ran Xinze; Yan Yongtang; Cheng Tianmin; Li Yuan; Wei Shuqing

    1996-01-01

    The effects of combined radiation-burn injury on survival rate of allogeneic skin grafts and immune reaction were studied in rats with combined injury of 3-8 Gy 60 Co γ-ray irradiation plus 15% total body surface area full thickness burn induced by exposure to a 5 kw bromotungsten lamp. The allogeneic skin was transplanted 24 hours after injury. It was found that all the skin grafts failed to survive in 10 days and the immune reaction significantly increased in the early stage of burn injury. But the immune reaction was obviously suppressed by the combined radiation-burn injury. The survival rates of skin grafts were 20% and 30% in the combined injury of burn plus 3 and 4 Gy irradiation respectively. When the radiation doses increased to 5,6 and 8 Gy, the survival rates elevated to 69%, 88% and 100% respectively (in the group of 8 Gy, bone marrow transplantation was conducted before receiving skin graft). At day 30 post-transplantation the survival rates were still 36%, 42% and 100% respectively. Compared with burn group, there was a significant difference in survival rate when the radiation doses were higher than 5 Gy. These results indicate that the survival rate of the allogeneic skin graft increases concurrently with the increase in radiation dose and decreases with the elapse of the post-transplantation time

  19. Legislation and litigation related to low-level radiation injury claims

    International Nuclear Information System (INIS)

    McCraw, T.

    1985-01-01

    Current legislation and litigation related to radiation exposure will have an enormous impact on the radiation protection and monitoring requirements of the future. A brief review of some proposed injury compensation bills for veterans and a recent court decision for low-level radiation injury claims are reviewed

  20. X-ray and radium gamma radiation injuries

    International Nuclear Information System (INIS)

    Fokkema, R.E.

    1993-05-01

    During the period 1896-1939 a number of maxima could be distinguished in the incidence of X-ray and radium gamma ray injuries in patients. An explanation for these fluctuations is investigated in this study. The first distinguishable maximum in the number of reported cases of X-ray injuries can be found in the period 1896-1897 and mainly concerns skin lesions, caused by the lack of shielding and ignorance of the effects. In the period 1904-1905 there was once again an apparent prevalence of radiation injuries to patients. After 1905 the incidence of radiation injuries decreased due to a wider use of dosimetric methods. The third phase of increased injuries may be subdivided into three components. In diagnostic roentgenology from 1896 to 1926 a number of causes of roentgen burns persisted: multiple or long exposures, the use of a short focus-skin-distance and a lack of suitable dosimetric methods. The reduction of complications after 1923 can be attributed to several factors: systematic training of physics who wished to become roentgenologists, greater care of doctors, the use of an alternative method of radiotherapy according to Coutard's method, the introduction of dosimetry with ionization chambers (after 1924), the consensus reached over the roentgen as a unit of applied dosage (in 1928), and the introduction of absorption curves for radiation quality (in 1933). Around 1920 a high complication rate arose as a result of exposure to radiation emitted by radium. In 1922 the first reliable radium dosimetry method came available. This applied to external radium therapy by regular shaped applicators. After 1938 reliable dosimetry was achieved in the field of interstitial radium therapy (brachytherapy). Injuries from radium therapy, however, persisted till about 1940, caused not only by the delayed availability of radium dosimetry, but also to the use of radium therapy by poorly trained radium therapists. 28 figs., 5 tabs

  1. Drug-induced lung injury associated with sorafenib: analysis of all-patient post-marketing surveillance in Japan.

    Science.gov (United States)

    Horiuchi-Yamamoto, Yuka; Gemma, Akihiko; Taniguchi, Hiroyuki; Inoue, Yoshikazu; Sakai, Fumikazu; Johkoh, Takeshi; Fujimoto, Kiminori; Kudoh, Shoji

    2013-08-01

    Sorafenib is a multi-kinase inhibitor currently approved in Japan for unresectable and/or metastatic renal cell carcinoma and unresectable hepatocellular carcinoma. Although drug-induced lung injury has recently been the focus of interest in Japanese patients treated with molecular targeting agents, the clinical features of patients receiving sorafenib remain to be completely investigated. All-patient post-marketing surveillance data was obtained within the frame of Special Drug Use Investigation; between April 2008 and March 2011, we summarized the clinical information of 62 cases with drug-induced lung injury among approximately 13,600 sorafenib-treated patients in Japan. In addition, we summarized the results of evaluation by a safety board of Japanese experts in 34 patients in whom pulmonary images were available. For the calculation of reporting frequency, interim results of Special Drug Use Investigation were used. In the sets of completed reports (2,407 in renal cell carcinoma and 647 in hepatocellular carcinoma), the reporting frequency was 0.33 % (8 patients; fatal, 4/8) and 0.62 % (4 patients; fatal, 2/4), respectively. Major clinical symptoms included dyspnea, cough, and fever. Evaluation of the images showed that 18 cases out of 34 patients had a pattern of diffuse alveolar damage. The patients with hepatocellular carcinoma showed a greater incidence and earlier onset of lung injury than those with renal cell carcinoma. Although the overall reporting frequency of sorafenib-induced lung injury is not considered high, the radiological diffuse alveolar damage pattern led to a fatal outcome. Therefore, early recognition of sorafenib-induced lung injury is crucial for physicians and patients.

  2. Pathogenetic Mechanisms of Neurogenic Pulmonary Edema

    Czech Academy of Sciences Publication Activity Database

    Šedý, Jiří; Kuneš, Jaroslav; Zicha, Josef

    2015-01-01

    Roč. 32, č. 15 (2015), s. 1135-1145 ISSN 0897-7151 R&D Projects: GA ČR(CZ) GAP304/12/0259 Institutional support: RVO:67985823 Keywords : baroreflex-induced bradycardia * blood pressure rise * blood volume redistribution * neurogenic pulmonary edema * spinal cord injury * sympathetic nervous system Subject RIV: ED - Physiology Impact factor: 4.377, year: 2015

  3. Maternal PUFA omega-3 supplementation prevents hyperoxia-induced pulmonary hypertension in the offspring.

    Science.gov (United States)

    Zhong, Ying; Catheline, Daniel; Houeijeh, Ali; Sharma, Dyuti; Du, Li-Zhong; Besengez, Capucine; Deruelle, Philippe; Legrand, Philippe; Storme, Laurent

    2018-03-29

    Pulmonary hypertension (PH) and right ventricular hypertrophy (RVH) affect 16-25% of premature infants with bronchopulmonary dysplasia (BPD), contributing significantly to perinatal morbidity and mortality. Polyunsaturated fatty acids ω-3 (PUFA ω-3) can improve vascular remodeling, angiogenesis, and inflammation under pathophysiological conditions. However, the effects of PUFA ω-3 supplementation in BPD-associated PH are unknown. The present study aimed to evaluate the effects of PUFA ω-3 on pulmonary vascular remodeling, angiogenesis, and inflammatory response in a hyperoxia-induced rat model of PH. From embryonic day 15, pregnant Spague-Dawley rats were supplemented daily with PUFA ω-3, PUFA ω-6, or normal saline (0.2 ml/day). After birth, pups were pooled, assigned as 12 per litter, and randomly to either in air or continuous oxygen exposure (FiO2 = 85%) for 20 days, then sacrificed for pulmonary hemodynamic and morphometric analysis. We found that PUFA ω-3 supplementation improved survival, decreased right ventricular systolic pressure and RVH caused by hyperoxia, and significantly improved alveolarization, vascular remodeling, and vascular density. PUFA ω-3 supplementation produced a higher level of total ω-3 in lung tissue and breast milk, and was found reversing the reduced levels of VEGFA, VEGFR-2, ANGPT-1, TIE-2, eNOS, and NO concentrations in lung tissue, and the increased ANGPT-2 levels in hyperoxia-exposed rats. The beneficial effects of PUFA ω-3 in improving lung injuries were also associated with an inhibition of leukocyte infiltration, and reduced expression of proinflammatory cytokines IL-1β, IL-6 and TNF-α. These data indicated that maternal PUFA ω-3 supplementation strategies could effectively protect against infant PH induced by hyperoxia.

  4. Morphological aspects of radiation injury

    Energy Technology Data Exchange (ETDEWEB)

    Congdon, C C; Fliedner, T M

    1971-04-01

    The injury to haemopoietic and lymphatic tissues produced by ionizing irradiation in various species of mammals including man is one of the major features of the biological effects of radiation (Bond et al. 1965,' Cottier, 1961). At the moment of injury and for a short time thereafter relatively little morphological evidence of cell damage in bone marrow other than cessation of cell division and DNA synthesis is seen. Within a few hours, however, depending on the level of exposure, major destruction of red bone marrow tissue can occur. In this chapter the histologic changes in bone marrow are summarized for correlation with the functional aspects of the change in the target tissue, particularly its cell renewal features and where possible the remarkable flux or migration of cells through bone marrow and lymphatic tissues. This latter topic of cellular traffic represents the outcome of extensive physiological studies on haemopoiesis and lymphopoiesis by mammalian radiobiologists. The initial injury, the structural changes and the physiological consequences are the first half of the radiation injury sequence. Regeneration also has morphological features of major importance to the understanding of radiation haematology. It is common to discuss radiation effects on biological materials from the point of view of external or internal sources of exposure. In addition exposure rate, whole body or partial body, type and quality of the ionizing source are features that must be taken into account. While these features are extremely important, the simplest approach to understanding histologic effects on the bone marrow is to assume acute penetrating whole-body exposure in the lethal range. With this background the differences related to variations in the conditions of exposure can usually be understood. The individual human or animal organism receiving the exposure must also be considered in the final outcome of the experience because age, sex, nutritional status and presence

  5. Effects of Acanthopanax senticosus on Brain Injury Induced by Simulated Spatial Radiation in Mouse Model Based on Pharmacokinetics and Comparative Proteomics

    Directory of Open Access Journals (Sweden)

    Yingyu Zhou

    2018-01-01

    Full Text Available The active compounds in Acanthopanax senticosus (AS have different pharmacokinetic characteristics in mouse models. Cmax and AUC of Acanthopanax senticosus polysaccharides (ASPS were significantly reduced in radiation-injured mice, suggesting that the blood flow of mouse was blocked or slowed, due to the pathological state of ischemia and hypoxia, which are caused by radiation. In contrast, the ability of various metabolizing enzymes to inactivate, capacity of biofilm transport decrease, and lessening of renal blood flow accounts for radiation, resulting in the accumulation of syringin and eleutheroside E in the irradiated mouse. Therefore, there were higher pharmacokinetic parameters—AUC, MRT, and t1/2 of the two compounds in radiation-injured mouse, when compared with normal mouse. In order to investigate the intrinsic mechanism of AS on radiation injury, AS extract’s protective effects on brain, the main part of mouse that suffered from radiation, were explored. The function of AS extract in repressing expression changes of radiation response proteins in prefrontal cortex (PFC of mouse brain included tubulin protein family (α-, β-tubulin subunits, dihydropyrimidinase-related protein 2 (CRMP2, γ-actin, 14-3-3 protein family (14-3-3ζ, ε, heat shock protein 90β (HSP90β, and enolase 2. The results demonstrated the AS extract had positive effects on nerve cells’ structure, adhesion, locomotion, fission, and phagocytosis, through regulating various action pathways, such as Hippo, phagosome, PI3K/Akt (phosphatidylinositol 3 kinase/protein kinase B, Neurotrophin, Rap1 (Ras-related protein RAP-1A, gap junction glycolysis/gluconeogenesis, and HIF-1 (Hypoxia-inducible factor 1 signaling pathways to maintain normal mouse neurological activity. All of the results indicated that AS may be a promising alternative medicine for the treatment of radiation injury in mouse brain. It would be tested that whether the bioactive ingredients of AS could

  6. Management of radiation injuries by natural herbs and neutraceuticals

    Energy Technology Data Exchange (ETDEWEB)

    Goyal, P.K., E-mail: pkgoyal2002@gmail.com [Radiation and Cancer Biology Laboratory, Department of Zoology, University of Rajasthan, Jaipur (India)

    2013-10-15

    In the era of expanding nuclear energy program all over world, the role of radiation biology has acquired greater relevance and significance in addressing the health and environment issues. In view of constant human exposure to background radiation both naturally and man made e.g nuclear power plants and weapons testing, consumer products, medical X-ray, uranium mining and milling etc., the radiobiological research has been devoted to induction of cancer and evaluation of genetic effects. In the present time, nuclear terrorism and weapon related effects are raising much alarm and concern to public health. Obviously, radiation biology research has great potential in diagnosis, therapy and establishing standards for assessment risk from radiation exposure. The development of effective medical countermeasures to protect, mitigate, and treat normal tissue injury needs urgent investigation for basic molecular mechanisms and developing appropriate ready to-use kits using relevant cellular, animal model and clinical trails for practical purposes. Since the use of synthetic compounds is associated with the inherent toxicity, attention in recent years has been directed towards developing radiation countermeasure agents from the natural sources and/or nature-identical molecules. The rich biodiversity available in the Indian subcontinent has yielded several new drugs that find application in the modern medicine and there is a like hood of discovering many more, Over the last few years, interest in evaluating oriental medicinal herbs and edible phyto products for the use in anti-radiation strategies is encouraging and emerging as an acceptable approach for preventing the radiation induced lesions in many countries. Several Indian medicinal plants (Emblica officinalis, Rosemarinus officinalis, Trigonella foenum-graecum, Alstonia scholaris, Tinospora cordifolia, Phyllanthus niruri, Svzvgiumcumini, Aegle marmelos etc) and antioxidant vitamins (C and E) have been tested in this

  7. Management of radiation injuries by natural herbs and neutraceuticals

    International Nuclear Information System (INIS)

    Goyal, P.K.

    2013-01-01

    In the era of expanding nuclear energy program all over world, the role of radiation biology has acquired greater relevance and significance in addressing the health and environment issues. In view of constant human exposure to background radiation both naturally and man made e.g nuclear power plants and weapons testing, consumer products, medical X-ray, uranium mining and milling etc., the radiobiological research has been devoted to induction of cancer and evaluation of genetic effects. In the present time, nuclear terrorism and weapon related effects are raising much alarm and concern to public health. Obviously, radiation biology research has great potential in diagnosis, therapy and establishing standards for assessment risk from radiation exposure. The development of effective medical countermeasures to protect, mitigate, and treat normal tissue injury needs urgent investigation for basic molecular mechanisms and developing appropriate ready to-use kits using relevant cellular, animal model and clinical trails for practical purposes. Since the use of synthetic compounds is associated with the inherent toxicity, attention in recent years has been directed towards developing radiation countermeasure agents from the natural sources and/or nature-identical molecules. The rich biodiversity available in the Indian subcontinent has yielded several new drugs that find application in the modern medicine and there is a like hood of discovering many more, Over the last few years, interest in evaluating oriental medicinal herbs and edible phyto products for the use in anti-radiation strategies is encouraging and emerging as an acceptable approach for preventing the radiation induced lesions in many countries. Several Indian medicinal plants (Emblica officinalis, Rosemarinus officinalis, Trigonella foenum-graecum, Alstonia scholaris, Tinospora cordifolia, Phyllanthus niruri, Svzvgiumcumini, Aegle marmelos etc) and antioxidant vitamins (C and E) have been tested in this

  8. Dose rate effectiveness in radiation-induced teratogenesis in mice

    International Nuclear Information System (INIS)

    Kato, F.; Ootsuyama, A.; Norimura, T.

    2000-01-01

    To investigate the role of p53 gene in tissue repair of teratogenic injury, we compared incidence of radiation-induced malformations in homozygous p53(-/-) mice, heterozygous p53(+/-) mice and wild-type p53(+/+) mice. After X-irradiation with 2 Gy at high dose rate on 9.5 days of gestation, p53(-/-) mice showed higher incidences of anomalies and higher resistance to prenatal deaths than p53(+/+) mice. This reciprocal relationship of radiosensitivity to anomalies and deaths supports the notion that embryos or fetuses have a p53-dependent 'guardian' that aborts cells bearing radiation-induced teratogenic DNA damage. In fact, after X-irradiation, the number of apoptotic cells was greatly increased in p53(+/+) fetuses but not in p53(-/-) fetuses. The same dose of γ-ray exposure at low dose rate on 9.5-10.5 day of gestation produced significant reduction of radiation-induced malformation in p53(+/+) and p53(+/-) mice, remained teratogenic for p53(-/-) mice. These results suggest that complete elimination of teratogenic damage from irradiated tissues requires the concerted cooperation of two mechanisms; proficient DNA repair and the p53-dependent apoptotic tissue repair. When concerted DNA repair and apoptosis functions efficiently, there is a threshold dose-rate for radiation-induced malformations. (author)

  9. Drug-induced Pulmonary Fibrosis

    International Nuclear Information System (INIS)

    Daba, Mohammad H.; Al-Arifi, Mohammad N; Gubar, Othman A.; El-Tahir, Kamal E.

    2004-01-01

    Pulmonary fibrosis is characterized by the accumulation of excessive connective tissue in the lungs. Its causes include chronic administration of some drugs for example bleomycin, cyclophosphamide, amiodarone, procainamide, penicillamine, gold and nitrofurantoin; exposure to certain environmental factors such as gases, asbestos and silica and bacterial or fungal infections. Some systemic diseases also predispose to the disease for example rheumatoid arthritis and systemic lupus erythematosus. The disease is associated with release of oxygen radicals and some mediators such as tumor necrosis factor-alpha TNF-alpha, transforming growth factor-beta Tbgf-beta, PDGF, If-I, Et-I and interleukins 1, 4, 8 and 13. The symptoms of the disease include dyspne a, non-productive cough, fever and damage to the lung cells. It is diagnosed with the aid of chest radiography, high resolution computed tomographic scanning and the result of pulmonary function tests. Drug-induced pulmonary fibrosis may involve release of free oxygen radicals and various cytokines for example Il-I beta and TNF-alpha via activation of nuclear transcription factor Nf-beta as in the case of bleomycin and mitomycin or via release of TGF-beta as in case of tamoxifen or via inhibition of macrophages and lymphocytes phospholipases as in the case of amiodarone with the resultant accumulation of phospholipids and reduction of the immune system. (author)

  10. Radiation-induced Changes in the Electrophoretic Profile of Serum Albumin

    Directory of Open Access Journals (Sweden)

    Celso Vieira Lima

    2018-01-01

    Full Text Available ABSTRACT Albumin protein profiles were investigated in electrophoresis system in relation to the whole body exposition to the radiation. Two groups of rats Wistar were set up as the control (CG and the irradiated one (IG. The IG was exposed to Co-60 at a dose of 5 Gy. After a 72-hour exposition, 300 μL of blood was collected in the inferior vena cava, renal, jugular, hepatic, and pulmonary veins and the serum separated. The albumin protein was identified by vertical electrophoresis in acrylamide Commassi blue or silver stained. The calibration procedure was applied to albumin samples with well-known concentrations. The mathematical correlation was developed involving electrophoretic parameters of band intensities and sizes from gel representation, providing values of protein concentrations in comparison with standard bands with known concentrations. There were significant differences in the physiological concentrations in the jugular and pulmonary sites in relation to renal and cava regional sites. Significant differences induced by radiation in serum albumin concentration were also found in hepatic and jugular sites. Alteration of albumin concentration was found as a nearly effect from whole body irradiation. This phenomenon points out to alterations in cell metabolism in the liver justified by a possible indication of proteomics damage from radiation.

  11. Loss of Syndecan-1 Abrogates the Pulmonary Protective Phenotype Induced by Plasma After Hemorrhagic Shock.

    Science.gov (United States)

    Wu, Feng; Peng, Zhanglong; Park, Pyong Woo; Kozar, Rosemary A

    2017-09-01

    Syndecan-1 (Sdc1) is considered a biomarker of injury to the endothelial glycocalyx following hemorrhagic shock, with shedding of Sdc1 deleterious. Resuscitation with fresh frozen plasma (FFP) has been correlated with restitution of pulmonary Sdc1 and reduction of lung injury, but the precise contribution of Sdc1 to FFPs protection in the lung remains unclear. Human lung endothelial cells were used to assess the time and dose-dependent effect of FFP on Sdc1 expression and the effect of Sdc1 silencing on in vitro endothelial cell permeability and actin stress fiber formation. Wild-type and Sdc1 mice were subjected to hemorrhagic shock followed by resuscitation with lactated Ringers (LR) or FFP and compared with shock alone and shams. Lungs were harvested after 3 h for analysis of permeability, histology, and inflammation and for measurement of syndecan- 2 and 4 expression. In vitro, FFP enhanced pulmonary endothelial Sdc1 expression in time- and dose-dependent manners and loss of Sdc1 in pulmonary endothelial cells worsened permeability and stress fiber formation by FFP. Loss of Sdc1 in vivo led to equivalency between LR and FFP in restoring pulmonary injury, inflammation, and permeability after shock. Lastly, Sdc1 mice demonstrated a significant increase in pulmonary syndecan 4 expression after hemorrhagic shock and FFP-based resuscitation. Taken together, our findings support a key role for Sdc1 in modulating pulmonary protection by FFP after hemorrhagic shock. Our results also suggest that other members of the syndecan family may at least be contributing to FFP's effects on the endothelium, an area that warrants further investigation.

  12. Creation of lung-targeted dexamethasone immunoliposome and its therapeutic effect on bleomycin-induced lung injury in rats.

    Directory of Open Access Journals (Sweden)

    Xue-Yuan Chen

    Full Text Available OBJECTIVE: Acute lung injury (ALI, is a major cause of morbidity and mortality, which is routinely treated with the administration of systemic glucocorticoids. The current study investigated the distribution and therapeutic effect of a dexamethasone(DXM-loaded immunoliposome (NLP functionalized with pulmonary surfactant protein A (SP-A antibody (SPA-DXM-NLP in an animal model. METHODS: DXM-NLP was prepared using film dispersion combined with extrusion techniques. SP-A antibody was used as the lung targeting agent. Tissue distribution of SPA-DXM-NLP was investigated in liver, spleen, kidney and lung tissue. The efficacy of SPA-DXM-NLP against lung injury was assessed in a rat model of bleomycin-induced acute lung injury. RESULTS: The SPA-DXM-NLP complex was successfully synthesized and the particles were stable at 4°C. Pulmonary dexamethasone levels were 40 times higher with SPA-DXM-NLP than conventional dexamethasone injection. Administration of SPA-DXM-NLP significantly attenuated lung injury and inflammation, decreased incidence of infection, and increased survival in animal models. CONCLUSIONS: The administration of SPA-DXM-NLP to animal models resulted in increased levels of DXM in the lungs, indicating active targeting. The efficacy against ALI of the immunoliposomes was shown to be superior to conventional dexamethasone administration. These results demonstrate the potential of actively targeted glucocorticoid therapy in the treatment of lung disease in clinical practice.

  13. Radionuclide injury to the lung

    International Nuclear Information System (INIS)

    Dagle, G.E.; Sanders, C.L.

    1984-01-01

    Radionuclide injury to the lung has been studied in rats, hamsters, dogs, mice and baboons. Exposure of the lung to high dose levels of radionuclides produces a spectrum of progressively more severe functional and morphological changes, ranging from radiation pneumonitis and fibrosis to lung tumors. These changes are somewhat similar for different species. Their severity can be related to the absorbed radiation dose (measured in rads) produced by alpha, beta or gamma radiation emanating from various deposited radionuclides. The chemicophysical forms of radionuclides and spatial-temporal factors are also important variables. As with other forms of injury to the lung, repair attempts are highlighted by fibrosis and proliferation of pulmonary epithelium. Lung tumors are the principal late effect observed in experimental animals following pulmonary deposition of radionuclides at dose levels that do not result in early deaths from radiation pneumonitis or fibrosis. The predominant lung tumors described have been of epithelial origin and have been classified, in decreasing frequency of occurrence, as adenocarcinoma, bronchioloalveolar carcinoma, epidermoid carcinomas and combined epidermoid and adenocarcinoma. Mesothelioma and fibrosarcoma have been observed in rats, but less commonly in other species. Hemangiosarcomas were frequently observed in dogs exposed to beta-gamma emitters, and occasionally in rats exposed to alpha emitters. These morphologic changes in the lungs of experimental animals were reviewed and issues relevant to the prediction of human hazards discussed. 88 references

  14. Mathematics of Ventilator-induced Lung Injury.

    Science.gov (United States)

    Rahaman, Ubaidur

    2017-08-01

    Ventilator-induced lung injury (VILI) results from mechanical disruption of blood-gas barrier and consequent edema and releases of inflammatory mediators. A transpulmonary pressure (P L ) of 17 cmH 2 O increases baby lung volume to its anatomical limit, predisposing to VILI. Viscoelastic property of lung makes pulmonary mechanics time dependent so that stress (P L ) increases with respiratory rate. Alveolar inhomogeneity in acute respiratory distress syndrome acts as a stress riser, multiplying global stress at regional level experienced by baby lung. Limitation of stress (P L ) rather than strain (tidal volume [V T ]) is the safe strategy of mechanical ventilation to prevent VILI. Driving pressure is the noninvasive surrogate of lung strain, but its relations to P L is dependent on the chest wall compliance. Determinants of lung stress (V T , driving pressure, positive end-expiratory pressure, and inspiratory flow) can be quantified in terms of mechanical power, and a safe threshold can be determined, which can be used in decision-making between safe mechanical ventilation and extracorporeal lung support.

  15. Observation of injury effects and apoptosis induced by microwave and gamma ray on lymphocyte in Raji cell

    International Nuclear Information System (INIS)

    Xia Hongjie; Wang Dewen; Zuo Hongyan; Xu Xinping; Jia Kai; Qiu Bingtao

    2011-01-01

    To investigate the rule of apoptosis, necrosis and the effects of Raji cell induced by microwave and gamma ray, the Raji cell was exposed to microwave radiation and gamma radiation. Morphological changes were observed by inverted phase contrast microscope before and after radiation. Annexin-V and PI double labelling were used to detect changes of apoptosis and necrosis rate. The results show that the cell shape was changed and the rate of apoptosis and necrosis were increased after exposure to microwave and γ ray. The injury effect of γ+S-HPM compound radiation was more serious than any single radiation on lymphocyte. The major characteristics of injury showed as gamma ray effect. The trends of apoptosis and necrosis keep consistency with the change of the cell morphology after radiation between each observation group. (authors)

  16. The cellular basis of renal injury by radiation

    International Nuclear Information System (INIS)

    Williams, M.V.

    1986-01-01

    This review with substantial bibliography summarises renal assay techniques available and discusses the histological and functional studies leading to differing opinions between the belief that vascular injury provides a general explanation of the late effects of radiotherapy and the opposing view that parenchymal cell damage is more important. It is proposed that the link between glomerular and tubular function obscures the primary site of injury and that radiation injury will result in a reduction of functioning nephron mass by primary damage to the tubules or glomeruli. Compensatory renal vasodilation would close a positive feedback loop. Radiation could also cause direct vascular injury; decreased renal perfusion and hypertension would result. Again sensitisation to hypertensive vascular damage would close a feedback loop. (UK)

  17. 4-Hydroxyphenylacetic Acid Attenuated Inflammation and Edema via Suppressing HIF-1α in Seawater Aspiration-Induced Lung Injury in Rats

    Science.gov (United States)

    Liu, Zhongyang; Xi, Ronggang; Zhang, Zhiran; Li, Wangping; Liu, Yan; Jin, Faguang; Wang, Xiaobo

    2014-01-01

    4-Hydroxyphenylacetic acid (4-HPA) is an active component of Chinese herb Aster tataricus which had been widely used in China for the treatment of pulmonary diseases. The aim of this study is to investigate the effect of 4-HPA on seawater aspiration-induced lung injury. Pulmonary inflammation and edema were assessed by enzyme-linked immunosorbent assay (ELISA), bronchoalveolar lavage fluid (BALF) white cell count, Evans blue dye analysis, wet to dry weight ratios, and histology study. Hypoxia-inducible factor-1α (HIF-1α) siRNA and permeability assay were used to study the effect of 4-HPA on the production of inflammatory cytokines and monolayer permeability in vitro. The results showed that 4-HPA reduced seawater instillation-induced mortality in rats. In lung tissues, 4-HPA attenuated hypoxia, inflammation, vascular leak, and edema, and decreased HIF-1α protein level. In primary rat alveolar epithelial cells (AEC), 4-HPA decreased hypertonicity- and hypoxia-induced HIF-1α protein levels through inhibiting the activations of protein translational regulators and via promoting HIF-1α protein degradation. In addition, 4-HPA lowered inflammatory cytokines levels through suppressing hypertonicity- and hypoxia-induced HIF-1α in NR8383 macrophages. Moreover, 4-HPA decreased monolayer permeability through suppressing hypertonicity and hypoxia-induced HIF-1α, which was mediated by inhibiting vascular endothelial growth factor (VEGF) in rat lung microvascular endothelial cell line (RLMVEC). In conclusion, 4-HPA attenuated inflammation and edema through suppressing hypertonic and hypoxic induction of HIF-1α in seawater aspiration-induced lung injury in rats. PMID:25050781

  18. Radiation-induced abnormal cortical thickness in patients with nasopharyngeal carcinoma after radiotherapy

    Directory of Open Access Journals (Sweden)

    Jiabao Lin

    2017-01-01

    Full Text Available Conventional MRI studies showed that radiation-induced brain necrosis in patients with nasopharyngeal carcinoma (NPC in years after radiotherapy (RT could involve brain gray matter (GM and impair brain function. However, it is still unclear the radiation-induced brain morphological changes in NPC patients with normal-appearing GM in the early period after RT. In this study, we acquired high-resolution brain structural MRI data from three groups of patients, 22 before radiotherapy (pre-RT NPC patients with newly diagnosed but not yet medically treated, 22 NPC patients in the early-delayed stage after radiotherapy (post-RT-ED, and 20 NPC patients in the late-delayed stage after radiotherapy (post-RT-LD, and then analyzed the radiation-induced cortical thickness alteration in NPC patients after RT. Using a vertex-wise surface-based morphometry (SBM approach, we detected significantly decreased cortical thickness in the precentral gyrus (PreCG in the post-RT-ED group compared to the pre-RT group. And the post-RT-LD group showed significantly increased cortical thickness in widespread brain regions, including the bilateral inferior parietal, left isthmus of the cingulate, left bank of the superior temporal sulcus and left lateral occipital regions, compared to the pre-RT group, and in the bilateral PreCG compared to the post-RT-ED group. Similar analysis with ROI-wise SBM method also found the consistent results. These results indicated that radiation-induced brain injury mainly occurred in the post-RT-LD group and the cortical thickness alterations after RT were dynamic in different periods. Our findings may reflect the pathogenesis of radiation-induced brain injury in NPC patients with normal-appearing GM and an early intervention is necessary for protecting GM during RT.

  19. Effect of blood transfusion and skin grafting on rats with combined radiation-burn injury

    International Nuclear Information System (INIS)

    Yan Yongtang; Ran Xinze; Wei Shuqing

    1990-01-01

    The therapeutic effect of escharectomy and skin grafting at different times on rats with combined radiation-burn injuries (5 Gy total body irradiation plus flash radiation from a 5 kW bromotungstenic lamp to induce a 15% TBSA full thickness burn on back) treated with blood transfusion (BT) were studied. The treatment with BT and escharectomy plus skin grafting at 24, 48, and 72 h after injury showed significant therapeutic effects. In these treated groups, early recovery of WBC counts, the granulocytes and total lymphocytes, T, B-cells, bone marrow cells or CFU-F counts were evident within 30 days after injury. The 30-day survival rates of the skin grafts in the group treated with BT and skin grafting at 24 h after injury was 80%, in the group with skin grafting alone was 50%, while all the skin grafts sloughted within 30 days when the grafting was performed 48 and 72 h after injury. The 30-day survival rate of the recipients treated with skin grafting plus BT was higher than that of the animals with skin grafting alone. The results showed that satisfactory results were achieved with BT plus escharectomy and skin grafting within 24 h after injury, while skin grafting performed at 48 or 72 h after injury was ineffective for the survival of skin grafts

  20. Endothelium-dependent relaxation induced by cathepsin G in porcine pulmonary arteries

    Science.gov (United States)

    Glusa, Erika; Adam, Christine

    2001-01-01

    Serine proteinases elicit profound cellular effects in various tissues mediated by activation of proteinase-activated receptors (PAR). In the present study, we investigated the vascular effects of cathepsin G, a serine proteinase that is present in the azurophil granules of leukocytes and is known to activate several cells that express PARs. In prostaglandin F2α (3 μM)-precontracted rings from porcine pulmonary arteries with intact endothelium, cathepsin G caused concentration-dependent relaxant responses (pEC50=9.64±0.12). The endothelium-dependent relaxant effect of cathepsin G could also be demonstrated in porcine coronary arteries (pEC50=9.23±0.07). In pulmonary arteries the cathepsin G-induced relaxation was inhibited after blockade of nitric oxide synthesis by L-NAME (200 μM) and was absent in endothelium-denuded vessels. Bradykinin- and cathepsin G-induced relaxant effects were associated with a 5.7 fold and 2.4 fold increase in the concentration of cyclic GMP, respectively. Compared with thrombin and trypsin, which also produced an endothelium-dependent relaxation in pulmonary arteries, cathepsin G was 2.5 and four times more potent, respectively. Cathepsin G caused only small homologous desensitization. In cathepsin G-challenged vessels, thrombin was still able to elicit a relaxant effect. The effects of cathepsin G were blocked by soybean trypsin inhibitor (IC50=0.043 μg ml−1), suggesting that proteolytic activity is essential for induction of relaxation. Recombinant acetyl-eglin C proved to be a potent inhibitor (IC50=0.14 μg ml−1) of the cathepsin G effect, whereas neither indomethacin (3 μM) nor the thrombin inhibitor hirudin (5 ATU ml−1) elicited any inhibitory activity. Due to their polyanionic structure defibrotide (IC50=0.11 μg ml−1), heparin (IC50=0.48 μg ml−1) and suramin (IC50=1.85 μg ml−1) diminished significantly the relaxation in response to the basic protein cathepsin G. In conclusion, like

  1. Hypoxia-induced pulmonary vascular remodeling: cellular and molecular mechanisms.

    Science.gov (United States)

    Stenmark, Kurt R; Fagan, Karen A; Frid, Maria G

    2006-09-29

    Chronic hypoxic exposure induces changes in the structure of pulmonary arteries, as well as in the biochemical and functional phenotypes of each of the vascular cell types, from the hilum of the lung to the most peripheral vessels in the alveolar wall. The magnitude and the specific profile of the changes depend on the species, sex, and the developmental stage at which the exposure to hypoxia occurred. Further, hypoxia-induced changes are site specific, such that the remodeling process in the large vessels differs from that in the smallest vessels. The cellular and molecular mechanisms vary and depend on the cellular composition of vessels at particular sites along the longitudinal axis of the pulmonary vasculature, as well as on local environmental factors. Each of the resident vascular cell types (ie, endothelial, smooth muscle, adventitial fibroblast) undergo site- and time-dependent alterations in proliferation, matrix protein production, expression of growth factors, cytokines, and receptors, and each resident cell type plays a specific role in the overall remodeling response. In addition, hypoxic exposure induces an inflammatory response within the vessel wall, and the recruited circulating progenitor cells contribute significantly to the structural remodeling and persistent vasoconstriction of the pulmonary circulation. The possibility exists that the lung or lung vessels also contain resident progenitor cells that participate in the remodeling process. Thus the hypoxia-induced remodeling of the pulmonary circulation is a highly complex process where numerous interactive events must be taken into account as we search for newer, more effective therapeutic interventions. This review provides perspectives on each of the aforementioned areas.

  2. Cardiopulmonary protective effects of the selective FXR agonist obeticholic acid in the rat model of monocrotaline-induced pulmonary hypertension.

    Science.gov (United States)

    Vignozzi, Linda; Morelli, Annamaria; Cellai, Ilaria; Filippi, Sandra; Comeglio, Paolo; Sarchielli, Erica; Maneschi, Elena; Vannelli, Gabriella Barbara; Adorini, Luciano; Maggi, Mario

    2017-01-01

    Farnesoid X receptor (FXR) activation by obeticholic acid (OCA) has been demonstrated to inhibit inflammation and fibrosis development and even induce fibrosis regression in liver, kidney and intestine in multiple disease models. OCA also inhibits liver fibrosis in nonalcoholic steatohepatitis patients. FXR activation has also been demonstrated to suppress the inflammatory response and to promote lung repair after lung injury. This study investigated the effects of OCA treatment (3, 10 or 30mg/kg, daily for 5days a week, for 7 and/or 28 days) on inflammation, tissue remodeling and fibrosis in the monocrotaline (MCT)-induced pulmonary arterial hypertension (PAH) rat model. Treatment with OCA attenuated MCT-induced increased pulmonary arterial wall thickness and right ventricular hypertrophy, by i) blunting pathogenic inflammatory mechanisms (downregulation of interleukin 6, IL-6, and monocyte chemoattractant protein-1, MCP-1) and ii) enhancing protective mechanisms counteracting fibrosis and endothelial/mesenchymal transition. MCT-injected rats also showed a marked decrease of pulmonary artery responsiveness to both endothelium-dependent and independent relaxant stimuli, such as acetylcholine and a nitric oxide donor, sodium nitroprusside. Administration of OCA (30mg/kg) normalized this decreased responsiveness. Accordingly, OCA treatment induced profound beneficial effects on lung histology. In particular, both OCA doses markedly reduced the MCT-induced medial wall thickness increase in small pulmonary arteries. To evaluate the objective functional improvement by OCA treatment of MCT-induced PAH, we performed a treadmill test and measured duration of exercise. MCT significantly reduced, and OCA normalized treadmill endurance. Results with OCA were similar, or even superior, to those obtained with tadalafil, a well-established treatment of PAH. In conclusion, OCA treatment demonstrates cardiopulmonary protective effects, modulating lung vascular remodeling, reducing

  3. Interleukin-6 overexpression induces pulmonary hypertension.

    Science.gov (United States)

    Steiner, M Kathryn; Syrkina, Olga L; Kolliputi, Narasaish; Mark, Eugene J; Hales, Charles A; Waxman, Aaron B

    2009-01-30

    Inflammatory cytokine interleukin (IL)-6 is elevated in the serum and lungs of patients with pulmonary artery hypertension (PAH). Several animal models of PAH cite the potential role of inflammatory mediators. We investigated role of IL-6 in the pathogenesis of pulmonary vascular disease. Indices of pulmonary vascular remodeling were measured in lung-specific IL-6-overexpressing transgenic mice (Tg(+)) and compared to wild-type (Tg(-)) controls in both normoxic and chronic hypoxic conditions. The Tg(+) mice exhibited elevated right ventricular systolic pressures and right ventricular hypertrophy with corresponding pulmonary vasculopathic changes, all of which were exacerbated by chronic hypoxia. IL-6 overexpression increased muscularization of the proximal arterial tree, and hypoxia enhanced this effect. It also reproduced the muscularization and proliferative arteriopathy seen in the distal arteriolar vessels of PAH patients. The latter was characterized by the formation of occlusive neointimal angioproliferative lesions that worsened with hypoxia and were composed of endothelial cells and T-lymphocytes. IL-6-induced arteriopathic changes were accompanied by activation of proangiogenic factor, vascular endothelial growth factor, the proproliferative kinase extracellular signal-regulated kinase, proproliferative transcription factors c-MYC and MAX, and the antiapoptotic proteins survivin and Bcl-2 and downregulation of the growth inhibitor transforming growth factor-beta and proapoptotic kinases JNK and p38. These findings suggest that IL-6 promotes the development and progression of pulmonary vascular remodeling and PAH through proproliferative antiapoptotic mechanisms.

  4. Substances stimulating recovery for radiation injury

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, A; Yonezawa, M; Katoh, N [Radiation Center of Osaka Prefecture, Sakai (Japan)

    1978-11-01

    A relationship between radiation injury and its recovery (intracellular recovery, intercellular recovery, or individual recovery) was discussed. In addition to histological researches in Japan, some substances (free radicals, endotoxin, vaccine, crude drugs, tissue extracts, blood platelet, etc.) stimulating recovery for radiation injury were introduced, and the progress of the study by the authors was summarized. Effects of a root of Panax ginseng (it is believed to accelerate segmentation of marrow cells, and synthesis of DNA and protein in rats and men), methods of its extracting and administration, its influences upon hemogram and organ weight in animal experiments, exclusion of side effects, period of administration, and purification of its effective components were reported.

  5. Pulmonary embolism in a wounded with mine blast injury against the background of anticoagulant prophylaxis (case report

    Directory of Open Access Journals (Sweden)

    K. N. Nikolaev

    2015-01-01

    Full Text Available Venous thrombosis and pulmonary embolism in healthy military are rare. Fighting surgical trauma is the trigger of a cascade of defense reactions of the body and the blood coagulation system, leading to stop bleeding. Hemostatic disorders, shifting the equilibrium toward hypercoagulable state, the emergence of the risk factors associated with the injury, lead to uncontrolled thrombosis with subsequent development of venous thromboembolic complications. We present the case of the left pulmonary artery thromboembolism in 41 year old wounded with a gunshot fracture of the right femur, obtained by blowing an unknown explosive device. Medical assistance was provided in three stages of evacuation. In order to stabilize a femur fracture the external fixation device was used. According coagulogram thrombinemia persisted for more than 30 days. Prevention of thrombosis carried LMWH (Clexane, with 9 days after injury. 31 day angiography was performed computer, identified thrombus by 70% ceiling clearance left pulmonary artery; by ultrasound scanning of the veins of the lower limbs was diagnosed asymptomatic thrombosis of the right iliofemoral. Against the background of complex treatment for 67 hours after the injury occurred recanalization. This case shows that the injured limb wound clinical symptoms of the disease symptoms negate venous thrombosis, which becomes the only manifestation of pulmonary embolism. Prevention of venous thromboembolic events, as well as monitoring of its effectiveness, should be carried out at all stages of the evacuation of the wounded and for the entire period of the presence of risk factors for their development.

  6. C-11-labeled octadecylamine, a potential agent for positron tomographic pulmonary metabolism studies

    International Nuclear Information System (INIS)

    Washburn, L.C.; Wallace, R.T.; Byrd, B.L.; Sun, T.T.; Coffey, J.L.; Hubner, K.F.

    1984-01-01

    C-11-Labeled straight-chain primary aliphatic amines are rapidly and selectively sequestered by lung endothelial cells, making these agents potentially useful for positron tomographic studies of the lung as a metabolic organ. However, because amines having straight chains containing 4 to 13 carbon atoms are rapidly catabolized in vivo with loss of radiolabel, quantitation of pulmonary concentration is difficult. The authors have studied the effect of structural changes on the uptake and retention of primary aliphatic amines in rat lung and found that the metabolic loss form the lung decreased with increasing length of the straight carbon chain. In fact, the lung concentration of octadecylamine, a straight-chain amine with 18 carbon atoms, was constant between 1 and 30 minutes after intravenous administration. This highly insoluble amine was solubilized using 3% aqueous human serum albumin. Unilateral, radiation-induced lung injury in the rat was used as a model to study the potential of C-11-labeled octadecylamine. Radiation-damaged (3000 and 5000 Rads) lungs had significantly lower 15-minute uptakes of the labeled amine than the corresponding nonirradiated lungs. However, at 8000 Rads the concentration in both lungs was greatly suppressed, indicating that the decrease in metabolism becomes systemic at high radiation doses. These results suggest that C-11-labeled octadecylamine is a potentially useful agent for quantitative evaluation of pulmonary metabolism by positron tomography

  7. Ibuprofen prevents synthetic smoke-induced pulmonary edema

    Energy Technology Data Exchange (ETDEWEB)

    Shinozawa, Y.; Hales, C.; Jung, W.; Burke, J.

    1986-12-01

    Multiple potentially injurious agents are present in smoke but the importance of each of these agents in producing lung injury as well as the mechanisms by which the lung injury is produced are unknown. In order to study smoke inhalation injury, we developed a synthetic smoke composed of a carrier of hot carbon particles of known size to which a single known common toxic agent in smoke, in this case HCI, could be added. We then exposed rats to the smoke, assayed their blood for the metabolites of thromboxane and prostacyclin, and intervened shortly after smoke with the cyclooxygenase inhibitors indomethacin or ibuprofen to see if the resulting lung injury could be prevented. Smoke exposure produced mild pulmonary edema after 6 h with a wet-to-dry weight ratio of 5.6 +/- 0.2 SEM (n = 11) compared with the non-smoke-exposed control animals with a wet-to-dry weight ratio of 4.3 +/- 0.2 (n = 12), p less than 0.001. Thromboxane B, and 6-keto-prostaglandin F1 alpha rose to 1660 +/- 250 pg/ml (p less than 0.01) and to 600 +/- 100 pg/ml (p greater than 0.1), respectively, in the smoke-injured animals compared with 770 +/- 150 pg/ml and 400 +/- 100 pg/ml in the non-smoke-exposed control animals. Indomethacin (n = 11) blocked the increase in both thromboxane and prostacyclin metabolites but failed to prevent lung edema.

  8. Integrative Metabolic Signatures for Hepatic Radiation Injury.

    Directory of Open Access Journals (Sweden)

    Irwin Jack Kurland

    Full Text Available Radiation-induced liver disease (RILD is a dose-limiting factor in curative radiation therapy (RT for liver cancers, making early detection of radiation-associated liver injury absolutely essential for medical intervention. A metabolomic approach was used to determine metabolic signatures that could serve as biomarkers for early detection of RILD in mice.Anesthetized C57BL/6 mice received 0, 10 or 50 Gy Whole Liver Irradiation (WLI and were contrasted to mice, which received 10 Gy whole body irradiation (WBI. Liver and plasma samples were collected at 24 hours after irradiation. The samples were processed using Gas Chromatography/Mass Spectrometry and Liquid Chromatography/Mass Spectrometry.Twenty four hours after WLI, 407 metabolites were detected in liver samples while 347 metabolites were detected in plasma. Plasma metabolites associated with 50 Gy WLI included several amino acids, purine and pyrimidine metabolites, microbial metabolites, and most prominently bradykinin and 3-indoxyl-sulfate. Liver metabolites associated with 50 Gy WLI included pentose phosphate, purine, and pyrimidine metabolites in liver. Plasma biomarkers in common between WLI and WBI were enriched in microbial metabolites such as 3 indoxyl sulfate, indole-3-lactic acid, phenyllactic acid, pipecolic acid, hippuric acid, and markers of DNA damage such as 2-deoxyuridine. Metabolites associated with tryptophan and indoles may reflect radiation-induced gut microbiome effects. Predominant liver biomarkers in common between WBI and WLI were amino acids, sugars, TCA metabolites (fumarate, fatty acids (lineolate, n-hexadecanoic acid and DNA damage markers (uridine.We identified a set of metabolomic markers that may prove useful as plasma biomarkers of RILD and WBI. Pathway analysis also suggested that the unique metabolic changes observed after liver irradiation was an integrative response of the intestine, liver and kidney.

  9. A novel radiation responsive cis-acting element regulates gene induction and mediates tissue injury

    International Nuclear Information System (INIS)

    Hallahan, Dennis E.; Virudachalam, Subbulakshmi; Kuchibahtla, Jaya

    1997-01-01

    Purpose: The intracellular adhesion molecule (ICAM-1) binds and activates inflammatory cells and thereby contributes to the pathogenesis of tissue injury. To characterize a model for radiation-induction of tissue injury, we studied radiation-mediated lung injury in mice deficient in the ICAM-1 gene. To study the mechanisms of x-ray mediated ICAM induction, we studied transcriptional activation of the ICAM promoter and nuclear protein binding to the 5' untranslated region of the ICAM gene. Methods: Immunohistochemistry and immunofluorescence were used to study the histologic pattern of ICAM expression in irradiated tissue. The ICAM-1 knockout mice were bred with wild type mice to create heterozygous mice with attenuated ICAM expression. ICAM -/-, ICAM+/- and ICAM +/+ mice were treated with thoracic irradiation and lung sections were stained for leukocyte common antigen (CD45) to study inflammation. To study the mechanism of x-ray induction of ICAM, we linked the 5' untranslated region of the ICAM gene to the luciferase reporter gene and delated DNA segments from the promoter to determine which elements are required for induction. We performed electrophoretic mobility shift analysis of nuclear proteins from irradiated endothelial cells to study transcription factor activation. Results: Immunohistochemistry showed dose and time dependent increases in ICAM protein expression in irradiated lungs which was prolonged as compared to endothelial cells in vitro. The histologic pattern of ICAM expression was in the capillary endothelium and was distinct from the pattern of expression of other radiation-inducible adhesion molecules. ICAM knockout mice had no ICAM expression and no inflammatory cell accumulation in the irradiated lung. ICAM+/+ mice developed leukocyte adhesion to irradiated endothelium within hours of irradiation and radiation pneumonitis 5 to 6 weeks later. The DNA sequence between -981 and -769 (relative to start codon) contains two 16-base pair repeats, each

  10. The Triaging and Treatment of Cold-Induced Injuries.

    Science.gov (United States)

    Sachs, Christoph; Lehnhardt, Marcus; Daigeler, Adrien; Goertz, Ole

    2015-10-30

    In Central Europe, cold-induced injuries are much less common than burns. In a burn center in western Germany, the mean ratio of these two types of injury over the past 10 years was 1 to 35. Because cold-induced injuries are so rare, physicians often do not know how to deal with them. This article is based on a review of publications (up to December 2014) retrieved by a selective search in PubMed using the terms "freezing," "frostbite injury," "non-freezing cold injury," and "frostbite review," as well as on the authors' clinical experience. Freezing and cold-induced trauma are part of the treatment spectrum in burn centers. The treatment of cold-induced injuries is not standardized and is based largely on case reports and observations of use. distinction is drawn between non-freezing injuries, in which there is a slow temperature drop in tissue without freezing, and freezing injuries in which ice crystals form in tissue. In all cases of cold-induced injury, the patient should be slowly warmed to 22°-27°C to prevent reperfusion injury. Freezing injuries are treated with warming of the body's core temperature and with the bathing of the affected body parts in warm water with added antiseptic agents. Any large or open vesicles that are already apparent should be debrided. To inhibit prostaglandin-mediated thrombosis, ibuprofen is given (12 mg/kg body weight b.i.d.). The treatment of cold-induced injuries is based on their type, severity, and timing. The recommendations above are grade C recommendations. The current approach to reperfusion has yielded promising initial results and should be further investigated in prospective studies.

  11. 3D ultrasound Nakagami imaging for radiation-induced vaginal fibrosis

    Science.gov (United States)

    Yang, Xiaofeng; Rossi, Peter; Shelton, Joseph; Bruner, Debrorah; Tridandapani, Srini; Liu, Tian

    2014-03-01

    Radiation-induced vaginal fibrosis is a debilitating side-effect affecting up to 80% of women receiving radiotherapy for their gynecological (GYN) malignancies. Despite the significant incidence and severity, little research has been conducted to identify the pathophysiologic changes of vaginal toxicity. In a previous study, we have demonstrated that ultrasound Nakagami shape and PDF parameters can be used to quantify radiation-induced vaginal toxicity. These Nakagami parameters are derived from the statistics of ultrasound backscattered signals to capture the physical properties (e.g., arrangement and distribution) of the biological tissues. In this paper, we propose to expand this Nakagami imaging concept from 2D to 3D to fully characterize radiation-induced changes to the vaginal wall within the radiation treatment field. A pilot study with 5 post-radiotherapy GYN patients was conducted using a clinical ultrasound scanner (6 MHz) with a mechanical stepper. A serial of 2D ultrasound images, with radio-frequency (RF) signals, were acquired at 1 mm step size. The 2D Nakagami shape and PDF parameters were calculated from the RF signal envelope with a sliding window, and then 3D Nakagami parameter images were generated from the parallel 2D images. This imaging method may be useful as we try to monitor radiation-induced vaginal injury, and address vaginal toxicities and sexual dysfunction in women after radiotherapy for GYN malignancies.

  12. Bioactive Components from Qingwen Baidu Decoction against LPS-Induced Acute Lung Injury in Rats

    Directory of Open Access Journals (Sweden)

    Qi Zhang

    2017-04-01

    Full Text Available Qingwen Baidu Decoction (QBD is an extraordinarily “cold” formula. It was traditionally used to cure epidemic hemorrhagic fever, intestinal typhoid fever, influenza, sepsis and so on. The purpose of this study was to discover relationships between the change of the constituents in different extracts of QBD and the pharmacological effect in a rat model of acute lung injury (ALI induced by lipopolysaccharide (LPS. The study aimed to discover the changes in constituents of different QBD extracts and the pharmacological effects on acute lung injury (ALI induced by LPS. The results demonstrated that high dose and middle dose of QBD had significantly potent anti-inflammatory effects and reduced pulmonary edema caused by ALI in rats (p < 0.05. To explore the underlying constituents of QBD, we assessed its influence of six different QBD extracts on ALI and analyzed the different constituents in the corresponding HPLC chromatograms by a Principal Component Analysis (PCA method. The results showed that the pharmacological effect of QBD was related to the polarity of its extracts, and the medium polarity extracts E2 and E5 in particular displayed much better protective effects against ALI than other groups. Moreover, HPLC-DAD-ESI-MSn and PCA analysis showed that verbascoside and angoroside C played a key role in reducing pulmonary edema. In addition, the current study revealed that ethyl gallate, pentagalloylglucose, galloyl paeoniflorin, mudanpioside C and harpagoside can treat ALI mainly by reducing the total cells and infiltration of activated polymorphonuclear leukocytes (PMNs.

  13. New era of radiotherapy: An update in radiation-induced lung disease

    International Nuclear Information System (INIS)

    Benveniste, M.F.K.; Welsh, J.; Godoy, M.C.B.; Betancourt, S.L.; Mawlawi, O.R.; Munden, R.F.

    2013-01-01

    Over the last few decades, advances in radiotherapy (RT) technology have improved delivery of radiation therapy dramatically. Advances in treatment planning with the development of image-guided radiotherapy and in techniques such as proton therapy, allows the radiation therapist to direct high doses of radiation to the tumour. These advancements result in improved local regional control while reducing potentially damaging dosage to surrounding normal tissues. It is important for radiologists to be aware of the radiological findings from these advances in order to differentiate expected radiation-induced lung injury (RILD) from recurrence, infection, and other lung diseases. In order to understand these changes and correlate them with imaging, the radiologist should have access to the radiation therapy treatment plans

  14. Phrenic nerve injury: An underrecognized and potentially preventable complication of pulmonary vein isolation using a wide-area circumferential ablation approach.

    Science.gov (United States)

    Yong Ji, Sang; Dewire, Jane; Barcelon, Bernadette; Philips, Binu; Catanzaro, John; Nazarian, Saman; Cheng, Alan; Spragg, David; Tandri, Harikrishna; Bansal, Sandeep; Ashikaga, Hiroshi; Rickard, Jack; Kolandaivelu, Aravindan; Sinha, Sunil; Marine, Joseph E; Calkins, Hugh; Berger, Ronald

    2013-10-01

    Phrenic nerve injury (PNI) is a well-known, although uncommon, complication of pulmonary vein isolation (PVI) using radiofrequency energy. Currently, there is no consensus about how to avoid or minimize this injury. The purpose of this study was to determine how often the phrenic nerve, as identified using a high-output pacing, lies along the ablation trajectory of a wide-area circumferential lesion set. We also sought to determine if PVI can be achieved without phrenic nerve injury by modifying the ablation lesion set so as to avoid those areas where phrenic nerve capture (PNC) is observed. We prospectively enrolled 100 consecutive patients (age 61.7 ± 9.2 years old, 75 men) who underwent RF PVI using a wide-area circumferential ablation approach. A high-output (20 mA at 2 milliseconds) endocardial pacing protocol was performed around the right pulmonary veins and the carina where a usual ablation lesion set would be made. A total of 30% of patients had PNC and required modification of ablation lines. In the group of patients with PNC, the carina was the most common site of capture (85%) followed by anterior right superior pulmonary vein (RSPV) (70%) and anterior right inferior pulmonary vein (RIPV) (30%). A total of 25% of PNC group had capture in all 3 (RSPV, RIPV, and carina) regions. There was no difference in the clinical characteristics between the groups with and without PNC. RF PVI caused no PNI in either group. High output pacing around the right pulmonary veins and the carina reveals that the phrenic nerve lies along a wide-area circumferential ablation trajectory in 30% of patients. Modification of ablation lines to avoid these sites may prevent phrenic nerve injury during RF PVI. © 2013 Wiley Periodicals, Inc.

  15. Pulmonary fibrosis

    International Nuclear Information System (INIS)

    Yamakido, Michio; Okuzaki, Takeshi

    1992-01-01

    When the chest is exposed to x radiation and Co-60 gamma radiation, radiation damage may occur in the lungs 2 to 10 weeks after irradiation. This condition is generally referred to as radiation pneumonitis, with the incidence ranging from 5.4% to 91.8% in the literature. Then radiation pneumonitis may develop into pulmonary fibrosis associated with roentgenologically diffuse linear and ring-like shadows and strong contraction 6 months to one year after irradiation. Until recently, little attention has been paid to pulmonary pneumonitis as a delayed effect of A-bomb radiation. The recent study using the population of 9,253 A-bomb survivors have suggested that the prevalence of pulmonary fibrosis tended to be high in heavily exposed A-bomb survivors. Two other studies using the cohort of 16,956 and 42,728 A-bomb survivors, respectively, have shown that the prevalence of roentgenologically proven pulmonary fibrosis was higher in men than women (1.82% vs 0.41%), was increased with aging and had a higher tendency in heavily exposed A-bomb survivors. (N.K.)

  16. Antioxidant Approaches to Management of Ionizing Irradiation Injury

    Directory of Open Access Journals (Sweden)

    Joel Greenberger

    2015-01-01

    Full Text Available Ionizing irradiation induces acute and chronic injury to tissues and organs. Applications of antioxidant therapies for the management of ionizing irradiation injury fall into three categories: (1 radiation counter measures against total or partial body irradiation; (2 normal tissue protection against acute organ specific ionizing irradiation injury; and (3 prevention of chronic/late radiation tissue and organ injury. The development of antioxidant therapies to ameliorate ionizing irradiation injury began with initial studies on gene therapy using Manganese Superoxide Dismutase (MnSOD transgene approaches and evolved into applications of small molecule radiation protectors and mitigators. The understanding of the multiple steps in ionizing radiation-induced cellular, tissue, and organ injury, as well as total body effects is required to optimize the use of antioxidant therapies, and to sequence such approaches with targeted therapies for the multiple steps in the irradiation damage response.

  17. Hypoxia-induced glucose-6-phosphate dehydrogenase overexpression and -activation in pulmonary artery smooth muscle cells: implication in pulmonary hypertension

    Science.gov (United States)

    Chettimada, Sukrutha; Gupte, Rakhee; Rawat, Dhwajbahadur; Gebb, Sarah A.; McMurtry, Ivan F.

    2014-01-01

    Severe pulmonary hypertension is a debilitating disease with an alarmingly low 5-yr life expectancy. Hypoxia, one of the causes of pulmonary hypertension, elicits constriction and remodeling of the pulmonary arteries. We now know that pulmonary arterial remodeling is a consequence of hyperplasia and hypertrophy of pulmonary artery smooth muscle (PASM), endothelial, myofibroblast, and stem cells. However, our knowledge about the mechanisms that cause these cells to proliferate and hypertrophy in response to hypoxic stimuli is still incomplete, and, hence, the treatment for severe pulmonary arterial hypertension is inadequate. Here we demonstrate that the activity and expression of glucose-6-phosphate dehydrogenase (G6PD), the rate-limiting enzyme of the pentose phosphate pathway, are increased in hypoxic PASM cells and in lungs of chronic hypoxic rats. G6PD overexpression and -activation is stimulated by H2O2. Increased G6PD activity contributes to PASM cell proliferation by increasing Sp1 and hypoxia-inducible factor 1α (HIF-1α), which directs the cells to synthesize less contractile (myocardin and SM22α) and more proliferative (cyclin A and phospho-histone H3) proteins. G6PD inhibition with dehydroepiandrosterone increased myocardin expression in remodeled pulmonary arteries of moderate and severe pulmonary hypertensive rats. These observations suggest that altered glucose metabolism and G6PD overactivation play a key role in switching the PASM cells from the contractile to synthetic phenotype by increasing Sp1 and HIF-1α, which suppresses myocardin, a key cofactor that maintains smooth muscle cell in contractile state, and increasing hypoxia-induced PASM cell growth, and hence contribute to pulmonary arterial remodeling and pathogenesis of pulmonary hypertension. PMID:25480333

  18. Combination of radiation injuries: pathogenesis, clinic, therapy

    International Nuclear Information System (INIS)

    Tsyba, A.F.; Farshatova, M.N.

    1993-01-01

    Modern notions on combined radiation injuries (CRI) are presented. Characteristic of injurious factors of nuclear explosion and common regularities of the CRI origination is given. The data on the CRI clinical peculiarities, diagnostics and treatment, principles of medical assistance for the injured on the stages of medical evacuation and recommendations on rehabilitation are presented

  19. Radiation-induced apoptosis

    International Nuclear Information System (INIS)

    Ohyama, Harumi

    1995-01-01

    Apoptosis is an active process of gene-directed cellular self-destruction that can be induced in many cell types via numerous physiological and pathological stimuli. We found that interphasedeath of thymocytes is a typical apoptosis showing the characteristic features of apoptosis including cell shrinkage, chromatin condensation and DNA degradation. Moderate dose of radiation induces extensive apoptosis in rapidly proliferating cell population such as the epithelium of intestinal crypt. Recent reports indicate that the ultimate form of radiation-induced mitotic death in several cells is also apoptosis. One of the hallmarks of apoptosis is the enzymatic internucleosomal degradation of chromatin DNA. We identified an endonuclease responsible for the radiation-induced DNA degradation in rat thymocytes. The death-sparing effects of interrupting RNA and protein synthesis suggested a cell genetic program for apoptosis. Apoptosis of thymocytes initiated by DNA damage, such as radiation and radio mimetic substance, absolutely requires the protein of p53 cancer suppresser gene. The cell death induced by glucocorticoid, or aging, has no such requirement. Expression of oncogene bcl-2 rescues cells from the apoptosis. Massive apoptosis in radiosensitive cells induced by higher dose radiation may be fatal. It is suggested that selective apoptotic elimination of cells would play an important role for protection against carcinogenesis and malformation through removal of cells with unrepaired radiation-induced DNA damages. Data to evaluate the significance of apoptosis in the radiation risk are still poor. Further research should be done in order to clarify the roles of the cell death on the acute and late effects of irradiation. (author)

  20. Propofol attenuates oxidant-induced acute lung injury in an isolated perfused rabbit-lung model.

    Science.gov (United States)

    Yumoto, Masato; Nishida, Osamu; Nakamura, Fujio; Katsuya, Hirotada

    2005-01-01

    Reactive oxygen species have been strongly implicated in the pathogenesis of acute lung injury (ALI). Some animal studies suggest that free radical scavengers inhibit the onset of oxidant-induced ALI. Propofol (2,6-diisopropylphenol) is chemically similar to phenol-based free radical scavengers such as the endogenous antioxidant vitamin E. Both in vivo and in vitro studies have suggested that propofol has antioxidant potential. We hypothesized that propofol may attenuate ALI by acting as a free-radical scavenger. We investigated the effects of propofol on oxidant-induced ALI induced by purine and xanthine oxidase (XO), in isolated perfused rabbit lung, in two series of experiments. In series 1, we examined the relationship between the severity of ALI and the presence of hydrogen peroxide (H2O2). In series 2, we evaluated the effects of propofol on attenuating ALI and the dose dependence of these effects. The lungs were perfused for 90 min, and we evaluated the effects on the severity of ALI by monitoring the pulmonary capillary filtration coefficient (Kfc), pulmonary arterial pressure (Ppa), and the pulmonary capillary hydrostatic pressure (Ppc). In series 1, treatment with catalase (an H2O2 scavenger) prior to the addition of purine and XO resulted in complete prevention of ALI, suggesting that H2O2 may be involved closely in the pathogenesis of ALI. In series 2, pretreatment with propofol at concentrations in excess of 0.5 mM significantly inhibited the increases in the Kfc values, and that in excess of 0.75 mM significantly inhibited the increase in the Ppa values. Propofol attenuates oxidant-induced ALI in an isolated perfused rabbit lung model, probably due to its antioxidant action.

  1. Radiation pneumonitis and fibrosis

    International Nuclear Information System (INIS)

    Shopova, V.; Salovsky, P.; Dancheva, V.

    2001-01-01

    The likelihood of toxic pulmonary lesions development as the result of radiation therapy for pulmonary carcinoma and breast cancer is discussed. Two possible forms of radiation induced changes are described, namely: classical radiation pneumonitis (RP) terminating with lung fibrosis circumscribed in the radiation zone, and sporadic RP giving rise to bilateral lymphatic alveolitis and manifestations outside the irradiation field. Attention is called to the fact that chemotherapy augments the risk of toxic lung damage occurrence. A number of markers for early RP diagnosis, including lactate dehydrogenase activity, KL-6, procollagen III, transforming growth factor β, C-reactive protein and partial oxygen pressure are listed. Therapeutic possibilities in coping with RP and pulmonary fibrosis are assayed. Apart from the standard therapeutic approach using corticosteroids and azatioprin, ideas are set forth concerning the application of some antioxidants, angiotensin converting enzyme inhibitors and γ-interferon. It is pointed out that radiation pneumonitis and pulmonary fibrosis treatment has an essential practical bearing on life expectancy and quality of life in a great number of cancer patients. (author)

  2. Increasing the inspiratory time and I:E ratio during mechanical ventilation aggravates ventilator-induced lung injury in mice.

    Science.gov (United States)

    Müller-Redetzky, Holger C; Felten, Matthias; Hellwig, Katharina; Wienhold, Sandra-Maria; Naujoks, Jan; Opitz, Bastian; Kershaw, Olivia; Gruber, Achim D; Suttorp, Norbert; Witzenrath, Martin

    2015-01-28

    Lung-protective ventilation reduced acute respiratory distress syndrome (ARDS) mortality. To minimize ventilator-induced lung injury (VILI), tidal volume is limited, high plateau pressures are avoided, and positive end-expiratory pressure (PEEP) is applied. However, the impact of specific ventilatory patterns on VILI is not well defined. Increasing inspiratory time and thereby the inspiratory/expiratory ratio (I:E ratio) may improve oxygenation, but may also be harmful as the absolute stress and strain over time increase. We thus hypothesized that increasing inspiratory time and I:E ratio aggravates VILI. VILI was induced in mice by high tidal-volume ventilation (HVT 34 ml/kg). Low tidal-volume ventilation (LVT 9 ml/kg) was used in control groups. PEEP was set to 2 cm H2O, FiO2 was 0.5 in all groups. HVT and LVT mice were ventilated with either I:E of 1:2 (LVT 1:2, HVT 1:2) or 1:1 (LVT 1:1, HVT 1:1) for 4 hours or until an alternative end point, defined as mean arterial blood pressure below 40 mm Hg. Dynamic hyperinflation due to the increased I:E ratio was excluded in a separate group of animals. Survival, lung compliance, oxygenation, pulmonary permeability, markers of pulmonary and systemic inflammation (leukocyte differentiation in lung and blood, analyses of pulmonary interleukin-6, interleukin-1β, keratinocyte-derived chemokine, monocyte chemoattractant protein-1), and histopathologic pulmonary changes were analyzed. LVT 1:2 or LVT 1:1 did not result in VILI, and all individuals survived the ventilation period. HVT 1:2 decreased lung compliance, increased pulmonary neutrophils and cytokine expression, and evoked marked histologic signs of lung injury. All animals survived. HVT 1:1 caused further significant worsening of oxygenation, compliance and increased pulmonary proinflammatory cytokine expression, and pulmonary and blood neutrophils. In the HVT 1:1 group, significant mortality during mechanical ventilation was observed. According to the "baby lung

  3. Rho-Kinase Inhibition Ameliorates Dasatinib-Induced Endothelial Dysfunction and Pulmonary Hypertension

    Directory of Open Access Journals (Sweden)

    Csilla Fazakas

    2018-05-01

    Full Text Available The multi-kinase inhibitor dasatinib is used for treatment of imatinib-resistant chronic myeloid leukemia, but is prone to induce microvascular dysfunction. In lung this can manifest as capillary leakage with pleural effusion, pulmonary edema or even pulmonary arterial hypertension. To understand how dasatinib causes endothelial dysfunction we examined the effects of clinically relevant concentrations of dasatinib on both human pulmonary arterial macro- and microvascular endothelial cells (ECs. The effects of dasatinib was compared to imatinib and nilotinib, two other clinically used BCR/Abl kinase inhibitors that do not inhibit Src. Real three-dimensional morphology and high resolution stiffness mapping revealed softening of both macro- and microvascular ECs upon dasatinib treatment, which was not observed in response to imatinib. In a dose-dependent manner, dasatinib decreased transendothelial electrical resistance/impedance and caused a permeability increase as well as disruption of tight adherens junctions in both cell types. In isolated perfused and ventilated rat lungs, dasatinib increased mean pulmonary arterial pressure, which was accompanied by a gain in lung weight. The Rho-kinase inhibitor Y27632 partly reversed the dasatinib-induced changes in vitro and ex vivo, presumably by acting downstream of Src. Co-administration of the Rho-kinase inhibitor Y27632 completely blunted the increased pulmonary pressure in response to dasatinib. In conclusion, a dasatinib-induced permeability increase in human pulmonary arterial macro- and microvascular ECs might explain many of the adverse effects of dasatinib in patients. Rho-kinase inhibition might be suitable to ameliorate these effects.

  4. Surgical management of radiation injury to the small intestine

    Energy Technology Data Exchange (ETDEWEB)

    Swan, R.W.; Fowler, W.C. Jr., Boronow, R.C.

    1976-01-01

    Severe injury of the small intestine represents one of the most tragic complications of radiation of the pelvis and abdomen. Not uncommonly, patients die from the radiation or the treatment of its intestinal complications. More commonly, patients become intestinal cripples, secondary to chronic partial obstruction of the small intestine and malnutrition associated with the stagnant loop syndrome, as previously reported by one of us. Management results have been discouraging, usually because of a general lack of clinical recognition and understanding of radiation injury to the intestine. Medical management has not been satisfactory. It may provide temporary relief from symptoms, but not long-lasting. Surgical management, although frequently curative, has been associated with high death and morbidity rates. Many surgical procedures have been used in treating radiation injury to the small intestine. Generally, these fall into two categories: first, intestinal resection with primary anastomosis; and second, enteroenteric or enterocolic bypass. In the literature are reflected advocates for each method of surgical management.

  5. Injury of the blood-testies barrier after low-dose-rate chronic radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Young Hoon; Bae Min Ji; Lee, Chang Geun; Yang, Kwang Mo; Jur, Kyu; Kim, Jong Sun [Dongnam Institute of Radiological and Medical Science, Busan (Korea, Republic of)

    2014-04-15

    The systemic effect of radiation increases in proportionally with the dose and dose rate. Little is known concerning the relationships between harmful effects and accumulated dose, which is derived from continuous low-dose rate radiation exposure. Recent our studies show that low-dose-rate chronic radiation exposure (3.49 mGy/h) causes adverse effects in the testis at a dose of 2 Gy (6 mGy/h). However, the mechanism of the low-dose-rate 2 Gy irradiation induced testicular injury remains unclear. The present results indicate that low-dose rate chronic radiation might affect the BTB permeability, possibly by decreasing levels of ZO-1, Occludin-1, and NPC-2. Furthermore, our results suggest that there is a risk of male infertility through BTB impairment even with low-dose-rate radiation if exposure is continuous.

  6. Manipulations of core temperatures in ischemia-reperfusion lung injury in rabbits.

    Science.gov (United States)

    Chang, Hung; Huang, Kun-Lun; Li, Min-Hui; Hsu, Ching-Wang; Tsai, Shih-Hung; Chu, Shi-Jye

    2008-01-01

    The present study was designed to determine the effect of various core temperatures on acute lung injury induced by ischemia-reperfusion (I/R) in our isolated rabbit lung model. Typical acute lung injury was successfully induced by 30 min of ischemia followed by 90 min of reperfusion observation. The I/R elicited a significant increase in pulmonary arterial pressure, microvascular permeability (measured by using the capillary filtration coefficient, Kfc), Delta Kfc ratio, lung weight gain and the protein concentration of the bronchoalveolar lavage fluid. Mild hypothermia significantly attenuated acute lung injury induced by I/R, all parameters having decreased significantly (p<0.05); conversely, mild hyperthermia did not further exacerbate acute lung injury. These experimental data suggest that mild hypothermia significantly ameliorated acute lung injury induced by ischemia-reperfusion in rabbits.

  7. Effect of carbon dioxide inhalation on pulmonary hypertension induced by increased blood flow and hypoxia

    Directory of Open Access Journals (Sweden)

    I-Chun Chuang

    2011-08-01

    Full Text Available There is now increasing evidence from the experimental and clinical setting that therapeutic hypercapnia from intentionally inspired carbon dioxide (CO2 or lower tidal volume might be a beneficial adjunct to the strategies of mechanical ventilation in critical illness. Although previous reports indicate that CO2 exerts a beneficial effect in the lungs, the pulmonary vascular response to hypercapnia under various conditions remains to be clarified. The purpose of the present study is to characterize the pulmonary vascular response to CO2 under the different conditions of pulmonary hypertension secondary to increased pulmonary blood flow and secondary to hypoxic pulmonary vasoconstriction. Isolated rat lung (n = 32 was used to study (1 the vasoactive action of 5% CO2 in either N2 (hypoxic-hypercapnia or air (normoxic-hypercapnia at different pulmonary arterial pressure levels induced by graded speed of perfusion flow and (2 the role of nitric oxide (NO in mediating the pulmonary vascular response to hypercapnia, hypoxia, and flow-associated pulmonary hypertension. The results indicated that inhaled CO2 reversed pulmonary hypertension induced by hypoxia but not by flow alteration. Endogenous NO attenuates hypoxic pulmonary vasoconstriction but does not augment the CO2-induced vasodilatation. Acute change in blood flow does not alter the endogenous NO production.

  8. Combination of Radiation and Burn Injury Alters FDG Uptake in Mice

    Science.gov (United States)

    Carter, Edward A.; Winter, David; Tolman, Crystal; Paul, Kasie; Hamrahi, Victoria; Tompkins, Ronald; Fischman, Alan J.

    2012-01-01

    Radiation exposure and burn injury have both been shown to alter glucose utilization in vivo. The present study was designed to study the effect of burn injury combined with radiation exposure, on glucose metabolism in mice using [18F] Fluorodeoxyglucose (18FDG). Groups of male mice weighing approximately 30g were studied. Group 1 was irradiated with a 137Cs source (9 Gy). Group 2 received full thickness burn injury on 25% total body surface area followed by resuscitated with saline (2mL, IP). Group 3 received radiation followed 10 minutes later by burn injury. Group 4 were sham treated controls. After treatment, the mice were fasted for 23 hours and then injected (IV) with 50 µCi of 18FDG. One hour post injection, the mice were sacrificed and biodistribution was measured. Positive blood cultures were observed in all groups of animals compared to the shams. Increased mortality was observed after 6 days in the burn plus radiated group as compared to the other groups. Radiation and burn treatments separately or in combination produced major changes in 18FDG uptake by many tissues. In the heart, brown adipose tissue (BAT) and spleen, radiation plus burn produced a much greater increase (p<0.0001) in 18FDG accumulation than either treatment separately. All three treatments produced moderate decreases in 18FDG accumulation (p<0.01) in the brain and gonads. Burn injury, but not irradiation, increased 18FDG accumulation in skeletal muscle; however the combination of burn plus radiation decreased 18FDG accumulation in skeletal muscle. This model may be useful for understanding the effects of burns + irradiation injury on glucose metabolism and in developing treatments for victims of injuries produced by the combination of burn plus irradiation. PMID:23143615

  9. Preventive effect of Chinese traditional medicine-Qing-Xue granula on radiation induced lung injury in mice

    International Nuclear Information System (INIS)

    Wang Xiaozhen; Ji Wei; Jiang Heng; Zhao Lujun; Yang Weizhi; Yang Yufei; Wang Luhua

    2012-01-01

    Objective: To evaluate whether oral administration of Chinese traditional medicine, Qing-Xue granula, can prevent mouse lung injury caused by thoracic radiation. Methods: 128 BalB/C mice were divided into 4 groups: control (C) group; radiation (R) group; radiation plus high dose Qing-Xue granula (H) group and radiation plus median dose Qing-Xue granula (M) group. The H and M groups were fed 0.64 g and 0.32 g of Qing-Xue granula dissolved in 0.5 ml saline once daily for two months,which were 4 and 2 times of human dosage, respectively. Whole thorax radiation of 12 Gy was delivered with a single ventral-dorsal field with 6 MV X-ray. Group C and group R received 21 days of 0.5 ml saline feeding. Mice were sacrificed at 1, 2, 4 or 6 months after radiation. Macrophage cell count of lung lavage fluid and hydroxyproline content of left lung were assayed, and the lung fibrosis was scored according to the Ashcroft's criteria. The plasma interleukin-6 (IL-6) and vascular endothelial growth factor (VEGF) concentration were assayed with ELISA method. The One-way ANOVA was used to test the significance of any differences between groups at each time point. Results: The macrophage cell number of lung lavage fluid was significantly lower in the 1 st month in group M than in group R (2:4, q =3.92, P 0.05). The hydroxyproline content of group H was significantly lower than group R in the 1 st and 6 th months (q =3.62, 3.54, all P nd , 4 th and 6 th months (q=3.38 -4.16, all P st month (q=3.53, P 0.05). The VEGF concentration was significantly higher in group R than group C since the 2 nd month (q =3.12 - 3.78, P nd and 6 th months (q =3.08 - 3.92, all P<0.05). Conclusions: Oral Chinese traditional medicine, Qing-Xue granula, could prevent radiation induced lung fibrosis in mice, especially at high dosage. The degree of elevation of VEGF in plasma was not parallel with that of lung fibrosis. (authors)

  10. Ginsenoside Rb1 Attenuates Agonist-Induced Contractile Response via Inhibition of Store-Operated Calcium Entry in Pulmonary Arteries of Normal and Pulmonary Hypertensive Rats

    Directory of Open Access Journals (Sweden)

    Rui-Xing Wang

    2015-03-01

    Full Text Available Background: Pulmonary hypertension (PH is characterized by sustained vasoconstriction, enhanced vasoreactivity and vascular remodeling, which leads to right heart failure and death. Despite several treatments are available, many forms of PH are still incurable. Ginsenoside Rb1, a principle active ingredient of Panax ginseng, exhibits multiple pharmacological effects on cardiovascular system, and suppresses monocrotaline (MCT-induced right heart hypertrophy. However, its effect on the pulmonary vascular functions related to PH is unknown. Methods: We examined the vasorelaxing effects of ginsenoside Rb1 on endothelin-1 (ET-1 induced contraction of pulmonary arteries (PAs and store-operated Ca2+ entry (SOCE in pulmonary arterial smooth muscle cells (PASMCs from chronic hypoxia (CH and MCT-induced PH. Results: Ginsenoside Rb1 elicited concentration-dependent relaxation of ET-1-induced PA contraction. The vasorelaxing effect was unaffected by nifedipine, but abolished by the SOCE blocker Gd3+. Ginsenoside Rb1 suppressed cyclopiazonic acid (CPA-induced PA contraction, and CPA-activated cation entry and Ca2+ transient in PASMCs. ET-1 and CPA-induced contraction, and CPA-activated cation entry and Ca2+ transients were enhanced in PA and PASMCs of CH and MCT-treated rats; the enhanced responses were abolished by ginsenoside Rb1. Conclusion: Ginsenoside Rb1 attenuates ET-1-induced contractile response via inhibition of SOCE, and it can effectively antagonize the enhanced pulmonary vasoreactivity in PH.

  11. Melatonin suppresses acrolein-induced IL-8 production in human pulmonary fibroblasts.

    Science.gov (United States)

    Kim, Gun-Dong; Lee, Seung Eun; Kim, Tae-Ho; Jin, Young-Ho; Park, Yong Seek; Park, Cheung-Seog

    2012-04-01

    Cigarette smoke (CS) causes harmful alterations in the lungs and airway structures and functions that characterize chronic obstructive pulmonary disease (COPD). In addition to COPD, active cigarette smoking causes other respiratory diseases and diminishes health status. Furthermore, recent studies show that, α, β-unsaturated aldehyde acrolein in CS induces the production of interleukin (IL)-8, which is known to be related to bronchitis, rhinitis, pulmonary fibrosis, and asthma. In addition, lung and pulmonary fibroblasts secrete IL-8, which has a chemotactic effect on leukocytes, and which in turn, play a critical role in lung inflammation. On the other hand, melatonin regulates circadian rhythm homeostasis in humans and has many other effects, which include antioxidant and anti-inflammatory effects, as demonstrated by the reduced expressions of iNOS, IL-1β, and IL-6 and increased glutathione (GSH) and superoxide dismutase activities. In this study, we investigated whether melatonin suppresses acrolein-induced IL-8 secretion in human pulmonary fibroblasts (HPFs). It was found that acrolein-induced IL-8 production was accompanied by increased levels of phosphorylation of Akt and extracellular signal-regulated kinases (ERK1/2) in HPFs, and that melatonin suppressed IL-8 production in HPFs. These results suggest that melatonin suppresses acrolein-induced IL-8 production via ERK1/2 and phosphatidylinositol 3-kinase (PI3K)/Akt signal inhibition in HPFs. © 2011 John Wiley & Sons A/S.

  12. Extracellular adenosine production by ecto-5′-nucleotidase (CD73) enhances radiation-induced lung fibrosis

    Science.gov (United States)

    Wirsdörfer, Florian; de Leve, Simone; Cappuccini, Federica; Eldh, Therese; Meyer, Alina V.; Gau, Eva; Thompson, Linda F.; Chen, Ning-Yuan; Karmouty-Quintana, Harry; Fischer, Ute; Kasper, Michael; Klein, Diana; Ritchey, Jerry W.; Blackburn, Michael R.; Westendorf, Astrid M.; Stuschke, Martin; Jendrossek, Verena

    2016-01-01

    Radiation-induced pulmonary fibrosis is a severe side effect of thoracic irradiation, but its pathogenesis remains poorly understood and no effective treatment is available. In this study, we investigated the role of the extracellular adenosine as generated by the ecto-5'-nucleotidase CD73 in fibrosis development after thoracic irradiation. Exposure of wild-type C57BL/6 mice to a single dose (15 Gray) of whole thorax irradiation triggered a progressive increase in CD73 activity in the lung between 3 and 30 weeks post-irradiation. In parallel, adenosine levels in bronchoalveolar lavage fluid (BALF) were increased by approximately three-fold. Histological evidence of lung fibrosis was observed by 25 weeks after irradiation. Conversely, CD73-deficient mice failed to accumulate adenosine in BALF and exhibited significantly less radiation-induced lung fibrosis (P<0.010). Furthermore, treatment of wild-type mice with pegylated adenosine deaminase (PEG-ADA) or CD73 antibodies also significantly reduced radiation-induced lung fibrosis. Taken together, our findings demonstrate that CD73 potentiates radiation-induced lung fibrosis, suggesting that existing pharmacological strategies for modulating adenosine may be effective in limiting lung toxicities associated with the treatment of thoracic malignancies. PMID:26921334

  13. Therapeutic effects of human umbilical cord blood-derived mesenchymal stem cells on the radiation-induced GI syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Se Hwan; Jang, Won Suk; Lee, Sun Joo; Park, Eun Young; Kim, Youn Joo; Jin, Sung Ho; Park, Sun Hoo; Lee, Seung Sook [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2011-05-15

    The gastrointestinal (GI) tract is one of the most radiosensitive organ systems in the body. Radiation-induced GI injury is described as destruction of crypt cell, decrease in villous height and number, ulceration, and necrosis of intestinal epithelium. Studies show that mesenchymal stem cells (MSCs) treatment may be useful in the repair or regeneration of damaged organs including bone, cartilage, or myocardium. MSCs from umbilical cord blood (UCB) have many advantages because of the immature nature of newborn cells compared to bone marrow derived MSCs. Moreover, UCB-MSCs provide no ethical barriers for basic studies and clinical applications. In this study, we explore the regeneration capability of human UCB-MSCs after radiation-induced GI injury

  14. Radiation-Induced Noncancer Risks in Interventional Cardiology: Optimisation of Procedures and Staff and Patient Dose Reduction

    Science.gov (United States)

    Khairuddin Md Yusof, Ahmad

    2013-01-01

    Concerns about ionizing radiation during interventional cardiology have been increased in recent years as a result of rapid growth in interventional procedure volumes and the high radiation doses associated with some procedures. Noncancer radiation risks to cardiologists and medical staff in terms of radiation-induced cataracts and skin injuries for patients appear clear potential consequences of interventional cardiology procedures, while radiation-induced potential risk of developing cardiovascular effects remains less clear. This paper provides an overview of the evidence-based reviews of concerns about noncancer risks of radiation exposure in interventional cardiology. Strategies commonly undertaken to reduce radiation doses to both medical staff and patients during interventional cardiology procedures are discussed; optimisation of interventional cardiology procedures is highlighted. PMID:24027768

  15. Effect of radiation-induced heart injury on content of cardiac troponin I and endothelin-1 in SD rats

    International Nuclear Information System (INIS)

    Xu Jiuhong; Gao Yaoming; Zhang Junning; Li Xinli

    2011-01-01

    Objective: To investigate the effect of radiation-induced heart injury (RIHD) on cardiac endothelin-1 (ET-1) and cardiac troponin I (cTnI) in SD rats, and the possibility regarding ET-1 and cTnI as biomarker of RIHD was also explored. Methods: Healthy female SD rats were randomly divided into two groups: the control group (C) and irradiation group (R). The rats in R group were irradiated with linear accelerator at a single dose of 25 Gy. Five milliliters blood was collected from the inferior vena cava on the 5th, 15th, 30th, 60th day after radiation. Blood was centrifuged and serum was collected. Content of ET-1 and cTnI in blood serum were detected by ELISA kits. Results: The content of ET-1 in the R group was always higher than that in the C group (P<0.01) during the whole process, and the difference between two groups had statistical significance only on the 5th day (P<0.01) and 15th day (P<0.05) after radiation. However, the content of cTnI in R group was higher than that in the C group within 30 days after radiation, then decreased, and only on the 15th day (P<0.05) and the 30th day (P<0.01) after radiation, there was statistical difference between two groups. Conclusion: The content of ET-1 and cTnI in blood serum increase obviously after receiving RIHD, so these two indicators can be used as markers to diagnose early RIHD sensitively and specifically. (authors)

  16. Sildenafil attenuates pulmonary inflammation and fibrin deposition, mortality and right ventricular hypertrophy in neonatal hyperoxic lung injury

    Directory of Open Access Journals (Sweden)

    Boersma Hester

    2009-04-01

    Full Text Available Abstract Background Phosphodiesterase-5 inhibition with sildenafil has been used to treat severe pulmonary hypertension and bronchopulmonary dysplasia (BPD, a chronic lung disease in very preterm infants who were mechanically ventilated for respiratory distress syndrome. Methods Sildenafil treatment was investigated in 2 models of experimental BPD: a lethal neonatal model, in which rat pups were continuously exposed to hyperoxia and treated daily with sildenafil (50–150 mg/kg body weight/day; injected subcutaneously and a neonatal lung injury-recovery model in which rat pups were exposed to hyperoxia for 9 days, followed by 9 days of recovery in room air and started sildenafil treatment on day 6 of hyperoxia exposure. Parameters investigated include survival, histopathology, fibrin deposition, alveolar vascular leakage, right ventricular hypertrophy, and differential mRNA expression in lung and heart tissue. Results Prophylactic treatment with an optimal dose of sildenafil (2 × 50 mg/kg/day significantly increased lung cGMP levels, prolonged median survival, reduced fibrin deposition, total protein content in bronchoalveolar lavage fluid, inflammation and septum thickness. Treatment with sildenafil partially corrected the differential mRNA expression of amphiregulin, plasminogen activator inhibitor-1, fibroblast growth factor receptor-4 and vascular endothelial growth factor receptor-2 in the lung and of brain and c-type natriuretic peptides and the natriuretic peptide receptors NPR-A, -B, and -C in the right ventricle. In the lethal and injury-recovery model we demonstrated improved alveolarization and angiogenesis by attenuating mean linear intercept and arteriolar wall thickness and increasing pulmonary blood vessel density, and right ventricular hypertrophy (RVH. Conclusion Sildenafil treatment, started simultaneously with exposure to hyperoxia after birth, prolongs survival, increases pulmonary cGMP levels, reduces the pulmonary

  17. Hematological parameters after acute radiation injury

    International Nuclear Information System (INIS)

    Hirashima, Kunitake

    1989-01-01

    According to clinical experiences of radiation accidents during the past two decades, utilization of measured hematologic changes as a direcrt indicator of the severity of radiation injury provides important information for diagnosis and prognostic evaluation in individual cases. Hematologic changes can be described in terms of prognostic categories based on the possible outcome of the acute radiation syndrome. The five categories suggested by Wald according to the grade of severity. By the actual application of this category to our experience of the 1971 Chiba accident of exposure to irridium 192, it was proved that the estimated dose was well correlated to the value by cytogenetic analysis and physical estimation used of thermo-luminescence phenomena. In hematological parameters, a decrease of lymphocytes occurs whithin 24 hours after the exposure. The level of this early lymphopenia is regarded as one of the best indicators of severity of radiation injury. For the decision of therapeutic procedures, however, the total granulocyte count and platelet count are more valuable to exclude severe infection and bleeding symptoms occurred one month after the exposure. The limitation of the approach by hematologic data must exist in the case exposed in a non-uniform fashion. To overwhelm this difficulty, the application of rapid marrow scanning by short-lived RI such as 52 Fe is expected and the bone marrow imaging by magnetic resonance studies is more exciting. For more sensitive and technically easy-drived methods detecting hematologic injury, our new method of detecting micro-nucleus in polychromatic erythroblasts from cultured erythroid colonies from peripheral blood is now developing. Preliminary data have shown the sensitivity of this method is comparable to the cytogenetic study of pheripheral lymphocytes. (author)

  18. The compound Chinese medicine "Kang Fu Ling" protects against high power microwave-induced myocardial injury.

    Science.gov (United States)

    Zhang, Xueyan; Gao, Yabing; Dong, Ji; Wang, Shuiming; Yao, Binwei; Zhang, Jing; Hu, Shaohua; Xu, Xinping; Zuo, Hongyan; Wang, Lifeng; Zhou, Hongmei; Zhao, Li; Peng, Ruiyun

    2014-01-01

    The prevention and treatment of Microwave-caused cardiovascular injury remains elusive. This study investigated the cardiovascular protective effects of compound Chinese medicine "Kang Fu Ling" (KFL) against high power microwave (HPM)-induced myocardial injury and the role of the mitochondrial permeability transition pore (mPTP) opening in KFL protection. Male Wistar rats (100) were divided into 5 equal groups: no treatment, radiation only, or radiation followed by treatment with KFL at 0.75, 1.5, or 3 g/kg/day. Electrocardiography was used to Electrophysiological examination. Histological and ultrastructural changes in heart tissue and isolated mitochondria were observed by light microscope and electron microscopy. mPTP opening and mitochondrial membrane potential were detected by confocal laser scanning microscopy and fluorescence analysis. Connexin-43 (Cx-43) and endothelial nitric oxide synthase (eNOS) were detected by immunohistochemistry. The expression of voltage-dependent anion channel (VDAC) was detected by western blotting. At 7 days after radiation, rats without KFL treatment showed a significantly lower heart rate (P<0.01) than untreated controls and a J point shift. Myocyte swelling and rearrangement were evident. Mitochondria exhibited rupture, and decreased fluorescence intensity, suggesting opening of mPTP and a consequent reduction in mitochondrial membrane potential. After treatment with 1.5 g/kg/day KFL for 7 d, the heart rate increased significantly (P<0.01), and the J point shift was reduced flavorfully (P<0.05) compared to untreated, irradiated rats; myocytes and mitochondria were of normal morphology. The fluorescence intensities of dye-treated mitochondria were also increased, suggesting inhibition of mPTP opening and preservation of the mitochondrial membrane potential. The microwave-induced decrease of Cx-43 and VDAC protein expression was significantly reversed. Microwave radiation can cause electrophysiological, histological and

  19. The compound Chinese medicine "Kang Fu Ling" protects against high power microwave-induced myocardial injury.

    Directory of Open Access Journals (Sweden)

    Xueyan Zhang

    Full Text Available BACKGROUND: The prevention and treatment of Microwave-caused cardiovascular injury remains elusive. This study investigated the cardiovascular protective effects of compound Chinese medicine "Kang Fu Ling" (KFL against high power microwave (HPM-induced myocardial injury and the role of the mitochondrial permeability transition pore (mPTP opening in KFL protection. METHODS: Male Wistar rats (100 were divided into 5 equal groups: no treatment, radiation only, or radiation followed by treatment with KFL at 0.75, 1.5, or 3 g/kg/day. Electrocardiography was used to Electrophysiological examination. Histological and ultrastructural changes in heart tissue and isolated mitochondria were observed by light microscope and electron microscopy. mPTP opening and mitochondrial membrane potential were detected by confocal laser scanning microscopy and fluorescence analysis. Connexin-43 (Cx-43 and endothelial nitric oxide synthase (eNOS were detected by immunohistochemistry. The expression of voltage-dependent anion channel (VDAC was detected by western blotting. RESULTS: At 7 days after radiation, rats without KFL treatment showed a significantly lower heart rate (P<0.01 than untreated controls and a J point shift. Myocyte swelling and rearrangement were evident. Mitochondria exhibited rupture, and decreased fluorescence intensity, suggesting opening of mPTP and a consequent reduction in mitochondrial membrane potential. After treatment with 1.5 g/kg/day KFL for 7 d, the heart rate increased significantly (P<0.01, and the J point shift was reduced flavorfully (P<0.05 compared to untreated, irradiated rats; myocytes and mitochondria were of normal morphology. The fluorescence intensities of dye-treated mitochondria were also increased, suggesting inhibition of mPTP opening and preservation of the mitochondrial membrane potential. The microwave-induced decrease of Cx-43 and VDAC protein expression was significantly reversed. CONCLUSION: Microwave radiation can

  20. Arginase 1: an unexpected mediator of pulmonary capillary barrier dysfunction in models of acute lung injury

    Directory of Open Access Journals (Sweden)

    Rudolf eLucas

    2013-08-01

    Full Text Available The integrity of epithelial and endothelial barriers in the lower airspaces of the lungs has to be tightly regulated, in order to prevent leakage and to assure efficient gas exchange between the alveoli and capillaries. Both G- and G+ bacterial toxins, such as LPS and pneumolysin, respectively, can be released in high concentrations within the pulmonary compartments upon antibiotic treatment of patients suffering from acute respiratory distress syndrome (ARDS or severe pneumonia. These toxins are able to impair endothelial barrier function, either directly, or indirectly, by induction of pro-inflammatory mediators and neutrophil sequestration. Toxin-induced endothelial hyperpermeability can involve myosin light chain phosphorylation and/or microtubule rearrangement. Endothelial nitric oxide synthase (eNOS was proposed to be a guardian of basal barrier function, since eNOS knock-out mice display an impaired expression of inter-endothelial junction proteins and as such an increased vascular permeability, as compared to wild type mice. The enzyme arginase, the activity of which can be regulated by the redox status of the cell, exists in two isoforms - arginase 1 (cytosolic and arginase 2 (mitochondrial - both of which can be expressed in lung microvascular endothelial cells. Upon activation, arginase competes with eNOS for the substrate L-arginine, as such impairing eNOS-dependent NO generation and promoting ROS generation by the enzyme. This mini-review will discuss recent findings regarding the interaction between bacterial toxins and arginase during acute lung injury and will as such address the role of arginase in bacterial toxin-induced pulmonary endothelial barrier dysfunction.

  1. Imaging after radiation therapy of thoracic tumors

    International Nuclear Information System (INIS)

    Ghaye, B.; Wanet, M.; El Hajjam, M.

    2016-01-01

    Radiation-induced lung disease (RILD) is frequent after therapeutic irradiation of thoracic malignancies. Many technique-, treatment-, tumor- and patient-related factors influence the degree of injury sustained by the lung after irradiation. Based on the time interval after the completion of the treatment RILD presents as early and late features characterized by inflammatory and fibrotic changes, respectively. They are usually confined to the radiation port. Though the typical pattern of RILD is easily recognized after conventional two-dimensional radiation therapy (RT), RILD may present with atypical patterns after more recent types of three or four-dimensional RT treatment. Three atypical patterns are reported: the modified conventional, the mass-like and the scar-like patterns. Knowledge of the various features and patterns of RILD is important for correct diagnosis and appropriate treatment. RILD should be differentiated from recurrent tumoral disease, infection and radiation-induced tumors. Due to RILD, the follow-up after RT may be difficult as response evaluation criteria in solid tumours (RECIST) criteria may be unreliable to assess tumor control particularly after stereotactic ablation RT (SABR). Long-term follow-up should be based on clinical examination and morphological and/or functional investigations including CT, PET-CT, pulmonary functional tests, MRI and PET-MRI. (authors)

  2. Radiation injury in the digestive system after radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Horie, Y; Mishima, Y; Hara, K; Tomiyama, J; Nakano, H [Tokyo Univ. (Japan). Faculty of Medicine

    1975-03-01

    This paper described the investigation of 18 patients with injury in the digestive system who received surgical procedure after radiotherapy of cancer for the past ten years. The patients consisted of 6 males and 12 females with the age ranging 21 to 66 years old. Primary diseases were 9 cancers of the cervix of the uterus, seminoma and cancer of the ovary, the rectum and the other regions. Radiotherapy was applicable to each of the diseases, and more than 3,000 rads of irradiation given for over a month. Symptoms developed 3 months to 4 and a half years after irradiation and the mean period was about a year except one patient in whom cancer of the colon occurred after 13 years. Operation was performed about several months after the onset of disease in the average. Of 18 patients who received operation, cancer was suspected at preoperative diagnosis in all of 3 patients in whom gastric lesion was resected, 3 of 4 in whom the colon was resected, 1 with small intestine lesion and 1 of 4 with rectum lesion. It was characteristic of these lesions that recurrence of cancer was preoperatively suspected in most of the patients. In the patient with rectum lesion, steroids suppository was given postoperatively. In addition, historical background of radiation injury, difference in period of the occurrence of radiation injury, local injury in delayed period, predisposing cause, classification, symptoms, diagnosis and treatment of radiation injury were also mentioned.

  3. Radiation injury in the digestive system after radiotherapy

    International Nuclear Information System (INIS)

    Horie, Yoshiaki; Mishima, Yoshio; Hara, Kosuke; Tomiyama, Jiro; Nakano, Haruo

    1975-01-01

    This paper described the investigation of 18 patients with injury in the digestive system who received surgical procedure after radiotherapy of cancer for the past ten years. The patients consisted of 6 males and 12 females with the age ranging 21 to 66 years old. Primary diseases were 9 cancers of the cervix of the uterus, seminoma and cancer of the ovary, the rectum and the other regions. Radiotherapy was applicable to each of the diseases, and more than 3,000 rads of irradiation given for over a month. Symptoms developed 3 months to 4 and a half years after irradiation and the mean period was about a year except one patient in whom cancer of the colon occurred after 13 years. Operation was performed about several months after the onset of disease in the average. Of 18 patients who received operation, cancer was suspected at preoperative diagnosis in all of 3 patients in whom gastric lesion was resected, 3 of 4 in whom the colon was resected, 1 with small intestine lesion and 1 of 4 with rectum lesion. It was characteristic of these lesions that recurrence of cancer was preoperatively suspected in most of the patients. In the patient with rectum lesion, steroids suppository was given postoperatively. In addition, historical background of radiation injury, difference in period of the occurrence of radiation injury, local injury in delayed period, predisposing cause, classification, symptoms, diagnosis and treatment of radiation injury were also mentioned. (Kanao, N.)

  4. Changes of intermediary taurine and tryptophan metabolism after combined radiation-thermal injury

    International Nuclear Information System (INIS)

    Konnova, L.A.; Novoselova, G.S.

    1986-01-01

    The dynamics of changes of the taurine and tryptophane concentration in blood serum of rats has been studied during 30 days after 3b degree burn of 15% of body surface after total even exposure to radiation in doses of 3 and 6 Gy, and after combined radiation thermal injury. Combined radiation-thermal injury was found to be characterized by reduced concentration of taurine but an increase of the tryptophane level from the second-third day after the injury

  5. Prevention of LPS-Induced Acute Lung Injury in Mice by Progranulin

    Directory of Open Access Journals (Sweden)

    Zhongliang Guo

    2012-01-01

    Full Text Available The acute respiratory distress syndrome (ARDS, a clinical complication of severe acute lung injury (ALI in humans, is a leading cause of morbidity and mortality in critically ill patients. Despite decades of research, few therapeutic strategies for clinical ARDS have emerged. Here we carefully evaluated the effect of progranulin (PGRN in treatment of ARDS using the murine model of lipopolysaccharide (LPS-induced ALI. We reported that administration of PGRN maintained the body weight and survival of ALI mice. We revealed that administration of PGRN significantly reduced LPS-induced pulmonary inflammation, as reflected by reductions in total cell and neutrophil counts, proinflammatory cytokines, as well as chemokines in bronchoalveolar lavage (BAL fluid. Furthermore, administration of PGRN resulted in remarkable reversal of LPS-induced increases in lung permeability as assessed by reductions in total protein, albumin, and IgM in BAL fluid. Consistently, we revealed a significant reduction of histopathology changes of lung in mice received PGRN treatment. Finally, we showed that PGRN/TNFR2 interaction was crucial for the protective effect of PGRN on the LPS-induced ALI. Our findings strongly demonstrated that PGRN could effectively ameliorate the LPS-induced ALI in mice, suggesting a potential application for PGRN-based therapy to treat clinical ARDS.

  6. Combined effects of radiation and trauma

    Science.gov (United States)

    Messerschmidt, Otfried

    Injuries, caused by both whole-body irradiation and wounds or burns, have been relatively little studied. Possibly because many investigators think that these injuries are just modified radiation-induced diseases for which the same treatment principles are valid. Other authors had the impression that, for instance, the radiation burn trauma is a new kind of disease which differs significantly from either radiation syndrome alone or from burn disease. There are many experimental data on animals which suggest that the pathology of combined injuries differs significantly from that of radiation-induced disease or of thermal or mechanical traumas. Wounds or burns which, in general, do not cause septicaemia could become entrance ports for bacteria when animals are exposed to whole-body irradiation. Thrombocytopenia is the reason for hemorrhages in wounds. The susceptibility to shock is increased considerably in combined injuries and the formation of callus in the bone fractures is significantly delayed. The healing of wounds and burns in the initial phase of the radiation syndrome does not always differ from healing in the non-irradiated organism. However, a few days or weeks later very serious wound infections and hemorrhages can occur. The additional injuries almost always worsen the development and prognosis of radiation-induced disease. The recommended treatment for combined injuries will differ in many respects from the treatment of wounds and burns or the radiation syndrome.

  7. Experimental assessment of the role of the blood flow inhibition in hyperglycemia-enhanced radiation injury to tumor

    International Nuclear Information System (INIS)

    Kozin, S.V.; Sevast'yanov, A.I.; Yarmonenko, S.P.

    1986-01-01

    Experimental assessment of the role of the blood flow inhibition in enhancement of radiation injury to tumors using short-term hyperglycemia was provided. Experiments on mice with Ehrlich solid carcinoma showed the dependence of a rise of the antitumor effect of preceding radiation induced by glucose and glucose combined with mexamin on a degree of the blood flow inhibition under the influence of these modifying agents. It was established that a considerable enhancement of radiation injury occured but in such tumors where short-term hyperglycemia and mexamin decreased the blood flow level not less than 5-10 fold as estimated by 133 Xe clearance. The results of the above experiments showed that the noticeable inhibition of the blood flow in tumors was a necessary tough, probably, not the only condition for a high efficacy of short-term hyperglycemia used an ajuvant to radiotherapy

  8. Protective effect of Hongxue tea mixture against radiation injury in mice

    International Nuclear Information System (INIS)

    Zhao Chun; Zhang Xuehui; Wang Qi

    2005-01-01

    Objective: To develop health food of anti-radiation among biological source in Yunnan. Methods: Screening test was done of the health food of biological source of anti-radiation injury in mice. It is indicated that Hong-Xue Tea Mixture among the biological source has the effect against radiation injury, observing experiment of dose-effect of Hong-Xue Tea Mixture was done. Micronuclei in the bone marrow polychromatophilic erythrocytes in each dose group of mice were examined, leucocytes number and 30 day survival rate of mice following whole-body 5.0 Gy γ irradiation were also determined. Results: Research showed that Hong-Xue Tea Mixture and Spirulina Platensis Mixture among the biological source have protective effect against radiation injury in mice. Observing experiment of dose-effect of Hong-Xue Tea Mixture show that low, medium and high dose of Hong-Xue Tea Mixture can significantly decrease bone marrow PECMN rate of mice, increase leucocytes number and 30 day survival rate. Conclusion: Hong-Xue Tea Mixture has potent protective effects against radiation injury in mice. (authors)

  9. Fructokinase activity mediates dehydration-induced renal injury.

    Science.gov (United States)

    Roncal Jimenez, Carlos A; Ishimoto, Takuji; Lanaspa, Miguel A; Rivard, Christopher J; Nakagawa, Takahiko; Ejaz, A Ahsan; Cicerchi, Christina; Inaba, Shinichiro; Le, MyPhuong; Miyazaki, Makoto; Glaser, Jason; Correa-Rotter, Ricardo; González, Marvin A; Aragón, Aurora; Wesseling, Catharina; Sánchez-Lozada, Laura G; Johnson, Richard J

    2014-08-01

    The epidemic of chronic kidney disease in Nicaragua (Mesoamerican nephropathy) has been linked with recurrent dehydration. Here we tested whether recurrent dehydration may cause renal injury by activation of the polyol pathway, resulting in the generation of endogenous fructose in the kidney that might subsequently induce renal injury via metabolism by fructokinase. Wild-type and fructokinase-deficient mice were subjected to recurrent heat-induced dehydration. One group of each genotype was provided water throughout the day and the other group was hydrated at night, after the dehydration. Both groups received the same total hydration in 24 h. Wild-type mice that received delayed hydration developed renal injury, with elevated serum creatinine, increased urinary NGAL, proximal tubular injury, and renal inflammation and fibrosis. This was associated with activation of the polyol pathway, with increased renal cortical sorbitol and fructose levels. Fructokinase-knockout mice with delayed hydration were protected from renal injury. Thus, recurrent dehydration can induce renal injury via a fructokinase-dependent mechanism, likely from the generation of endogenous fructose via the polyol pathway. Access to sufficient water during the dehydration period can protect mice from developing renal injury. These studies provide a potential mechanism for Mesoamerican nephropathy.

  10. Inhibitor of neuronal nitric oxide synthase improves gas exchange in ventilator-induced lung injury after pneumonectomy

    Directory of Open Access Journals (Sweden)

    Suborov Evgeny V

    2012-06-01

    Full Text Available Abstract Background Mechanical ventilation with high tidal volumes may cause ventilator-induced lung injury (VILI and enhanced generation of nitric oxide (NO. We demonstrated in sheep that pneumonectomy followed by injurious ventilation promotes pulmonary edema. We wished both to test the hypothesis that neuronal NOS (nNOS, which is distributed in airway epithelial and neuronal tissues, could be involved in the pathogenesis of VILI and we also aimed at investigating the influence of an inhibitor of nNOS on the course of VILI after pneumonectomy. Methods Anesthetized sheep underwent right pneumonectomy, mechanical ventilation with tidal volumes (VT of 6 mL/kg and FiO2 0.5, and were subsequently randomized to a protectively ventilated group (PROTV; n = 8 keeping VT and FiO2 unchanged, respiratory rate (RR 25 inflations/min and PEEP 4 cm H2O for the following 8 hrs; an injuriously ventilated group with VT of 12 mL/kg, zero end-expiratory pressure, and FiO2 and RR unchanged (INJV; n = 8 and a group, which additionally received the inhibitor of nNOS, 7-nitroindazole (NI 1.0 mg/kg/h intravenously from 2 hours after the commencement of injurious ventilation (INJV + NI; n = 8. We assessed respiratory, hemodynamic and volumetric variables, including both the extravascular lung water index (EVLWI and the pulmonary vascular permeability index (PVPI. We measured plasma nitrite/nitrate (NOx levels and examined lung biopsies for lung injury score (LIS. Results Both the injuriously ventilated groups demonstrated a 2–3-fold rise in EVLWI and PVPI, with no significant effects of NI. In the INJV group, gas exchange deteriorated in parallel with emerging respiratory acidosis, but administration of NI antagonized the derangement of oxygenation and the respiratory acidosis significantly. NOx displayed no significant changes and NI exerted no significant effect on LIS in the INJV group. Conclusion Inhibition of nNOS improved gas exchange

  11. Inhibitor of neuronal nitric oxide synthase improves gas exchange in ventilator-induced lung injury after pneumonectomy.

    Science.gov (United States)

    Suborov, Evgeny V; Smetkin, Alexey A; Kondratiev, Timofey V; Valkov, Andrey Y; Kuzkov, Vsevolod V; Kirov, Mikhail Y; Bjertnaes, Lars J

    2012-06-21

    Mechanical ventilation with high tidal volumes may cause ventilator-induced lung injury (VILI) and enhanced generation of nitric oxide (NO). We demonstrated in sheep that pneumonectomy followed by injurious ventilation promotes pulmonary edema. We wished both to test the hypothesis that neuronal NOS (nNOS), which is distributed in airway epithelial and neuronal tissues, could be involved in the pathogenesis of VILI and we also aimed at investigating the influence of an inhibitor of nNOS on the course of VILI after pneumonectomy. Anesthetized sheep underwent right pneumonectomy, mechanical ventilation with tidal volumes (VT) of 6 mL/kg and FiO2 0.5, and were subsequently randomized to a protectively ventilated group (PROTV; n = 8) keeping VT and FiO2 unchanged, respiratory rate (RR) 25 inflations/min and PEEP 4 cm H2O for the following 8 hrs; an injuriously ventilated group with VT of 12 mL/kg, zero end-expiratory pressure, and FiO2 and RR unchanged (INJV; n = 8) and a group, which additionally received the inhibitor of nNOS, 7-nitroindazole (NI) 1.0 mg/kg/h intravenously from 2 hours after the commencement of injurious ventilation (INJV + NI; n = 8). We assessed respiratory, hemodynamic and volumetric variables, including both the extravascular lung water index (EVLWI) and the pulmonary vascular permeability index (PVPI). We measured plasma nitrite/nitrate (NOx) levels and examined lung biopsies for lung injury score (LIS). Both the injuriously ventilated groups demonstrated a 2-3-fold rise in EVLWI and PVPI, with no significant effects of NI. In the INJV group, gas exchange deteriorated in parallel with emerging respiratory acidosis, but administration of NI antagonized the derangement of oxygenation and the respiratory acidosis significantly. NOx displayed no significant changes and NI exerted no significant effect on LIS in the INJV group. Inhibition of nNOS improved gas exchange, but did not reduce lung water extravasation following

  12. Stereotactic body radiotherapy for Stage I lung cancer with chronic obstructive pulmonary disease. Special reference to survival and radiation-induced pneumonitis

    International Nuclear Information System (INIS)

    Inoue, Toshihiko; Shiomi, Hiroya; Oh, Ryoong-Jin

    2015-01-01

    This retrospective study aimed to evaluate radiation-induced pneumonitis (RIP) and a related condition that we define in this report — prolonged minimal RIP (pmRIP) — after stereotactic body radiotherapy (SBRT) for Stage I primary lung cancer in patients with chronic obstructive pulmonary disease (COPD). We assessed 136 Stage I lung cancer patients with COPD who underwent SBRT. Airflow limitation on spirometry was classified into four Global Initiative for Chronic Obstructive Lung Disease (GOLD) grades, with minor modifications: GOLD 1 (mild), GOLD 2 (moderate), GOLD 3 (severe) and GOLD 4 (very severe). On this basis, we defined two subgroups: COPD-free (COPD -) and COPD-positive (COPD +). There was no significant difference in overall survival or cause-specific–survival between these groups. Of the 136 patients, 44 (32%) had pmRIP. Multivariate analysis showed that COPD and the Brinkman index were statistically significant risk factors for the development of pmRIP. COPD and the Brinkman index were predictive factors for pmRIP, although our findings also indicate that SBRT can be tolerated in early lung cancer patients with COPD. (author)

  13. Low risk of pulmonary tuberculosis of residents in high background radiation area, Yangjiang, China

    International Nuclear Information System (INIS)

    Li Xiaojuan; Sun Quanfu

    2006-01-01

    Objective: To examine the pulmonary tuberculosis mortality risk of the residents in high background radiation area (HBRA), Yangjiang, China. Methods: A cohort including 89 694 persons in HBRA and 35 385 persons in control area (CA) has been established since 1979. Person-year tables based on classified variables including sex, attained age, follow-up calendar year, and dose-rate group (high, intermediate, and low in HBRA, and control group) were tabulated using DATAB in EPICURE. Poisson regression analysis was used to estimate the relative risks (RR) of infectious and parasitic disease especially for pulmonary tuberculosis. Cumulative dose for each cohort member was obtained. Results: Two million person-years were accumulated by follow-up and 612 cases of pulmonary tuberculosis ascertained. Compared with risk in the control area, statistically significant lower risk of pulmonary tuberculosis was observed in HBRA among those who aged 60 years and over; markedly decreased risk occurred among males; no significant difference was found among the 6 follow-up stages, two subregions in the HBRA, or different diagnostic facilities. A statistically significantly negative dose-response was observed (P<0.001), the higher accumulative dose, the lower dose the pulmonary tuberculosis mortality risk. Its excess relative risk (ERR/Sv) was estimated to be -1.09 (95% CI: -1.34, -0.85). No established risk factors could explain this lower risk. Conclusions: The mortality of puhnonary tuberculosis among residents in HBRA who were chronically exposed to low-dose radiation was statistically significantly lower than that in the control area, and a significant dose-response relationship was observed, which probably resulted from the immunoenhancement of low dose radiation. (authors)

  14. The protective effects of resveratral on acute radiation injury in mice

    International Nuclear Information System (INIS)

    Yan Hao; Wang Hui; Zhang Heng

    2014-01-01

    Objective: To study the protective function of resveratrol on radiation-induced small intestine injury and lethal effect in mice. Methods: Mice were randomly divided into three groups: irradiation (IR) control, IR only, and IR+ resveratrol. 15 mice each group were irradiated on abdomen with 7.2 Gy γ-rays for cell lethal assay and 8 mice each group were irradiated with 6.5 Gy for small intestine injury assay. For the IR+ resveratrol group, the mouse was given resveratrol by intragastric administration 24 h before irradiation and then was fed with resveratrol daily for 5 days. The control and IR alone groups were fed with placebo. After 30 days of IR, mouse survival rate was detected. For small intestine injury experiments, 24 h after IR, the mice were terminated and the small intestines were treated with HE and immunohistochemical staining. Results: Compared with the irradiation group, resveratrol increased mouse survival by 33.3%, decreased apoptosis in intestinal crypt cells (t = 17.35, P < 0.05), and increased Ki67 expression (t = 13.62, P < 0.05). Conclusion: Resveratrol could protect small intestine injury from ionizing irradiation. (authors)

  15. The Influence of CO2 and Exercise on Hypobaric Hypoxia Induced Pulmonary Edema in Rats

    Directory of Open Access Journals (Sweden)

    Ryan L. Sheppard

    2018-02-01

    Full Text Available Introduction: Individuals with a known susceptibility to high altitude pulmonary edema (HAPE demonstrate a reduced ventilation response and increased pulmonary vasoconstriction when exposed to hypoxia. It is unknown whether reduced sensitivity to hypercapnia is correlated with increased incidence and/or severity of HAPE, and while acute exercise at altitude is known to exacerbate symptoms the effect of exercise training on HAPE susceptibility is unclear.Purpose: To determine if chronic intermittent hypercapnia and exercise increases the incidence of HAPE in rats.Methods: Male Wistar rats were randomized to sedentary (sed-air, CO2 (sed-CO2, exercise (ex-air, or exercise + CO2 (ex-CO2 groups. CO2 (3.5% and treadmill exercise (15 m/min, 10% grade were conducted on a metabolic treadmill, 1 h/day for 4 weeks. Vascular reactivity to CO2 was assessed after the training period by rheoencephalography (REG. Following the training period, animals were exposed to hypobaric hypoxia (HH equivalent to 25,000 ft for 24 h. Pulmonary injury was assessed by wet/dry weight ratio, lung vascular permeability, bronchoalveolar lavage (BAL, and histology.Results: HH increased lung wet/dry ratio (HH 5.51 ± 0.29 vs. sham 4.80 ± 0.11, P < 0.05, lung permeability (556 ± 84 u/L vs. 192 ± 29 u/L, P < 0.001, and BAL protein (221 ± 33 μg/ml vs. 114 ± 13 μg/ml, P < 0.001, white blood cell (1.16 ± 0.26 vs. 0.66 ± 0.06, P < 0.05, and platelet (16.4 ± 2.3, vs. 6.0 ± 0.5, P < 0.001 counts in comparison to normobaric normoxia. Vascular reactivity was suppressed by exercise (−53% vs. sham, P < 0.05 and exercise+CO2 (−71% vs. sham, P < 0.05. However, neither exercise nor intermittent hypercapnia altered HH-induced changes in lung wet/dry weight, BAL protein and cellular infiltration, or pulmonary histology.Conclusion: Exercise training attenuates vascular reactivity to CO2 in rats but neither exercise training nor chronic intermittent hypercapnia affect HH- induced

  16. Fatal acute pulmonary injury associated with everolimus.

    Science.gov (United States)

    Depuydt, Pieter; Nollet, Joke; Benoit, Dominique; Praet, Marleen; Caes, Frank

    2012-03-01

    To report a case of fatal alveolar hemorrhage associated with the use of everolimus in a patient who underwent a solid organ transplant. In a 71-year-old cardiac transplant patient, cyclosporine was replaced with everolimus because of worsening renal function. Over the following weeks, the patient developed nonproductive cough and increasing dyspnea. His condition deteriorated to acute respiratory failure with hemoptysis, requiring hospital admission. Bilateral patchy alveolar infiltrates were apparent on chest X-ray and computed tomography. Cardiac failure was ruled out and empiric antimicrobial therapy was initiated. Additional extensive workup could not document opportunistic infection. Everolimus was discontinued and high-dose corticosteroid therapy was initiated. Despite this, the patient required invasive mechanical ventilation and died because of refractory massive hemoptysis. Autopsy revealed diffuse alveolar hemorrhage. Everolimus is a mammalian target of rapamycin inhibitor approved for use as an immunosuppressant and antineoplastic agent. Its main advantage over calcineurin inhibitors (tacrolimus and cyclosporine) is a distinct safety profile. Although it has become clear that everolimus induces pulmonary toxicity more frequently than initially thought, most published cases thus far represented mild and reversible disease, and none was fatal. Here, we report a case of pulmonary toxicity developing over weeks following the introduction of everolimus, in which a fatal outcome could not be prevented by drug withdrawal and corticosteroid treatment. The association of everolimus and this syndrome was probable according to the Naranjo probability scale. This case indicates that with the increasing use of everolimus, clinicians should be aware of the rare, but life-threatening manifestation of pulmonary toxicity.

  17. Perinatal radiation-induced renal damage in the beagle

    International Nuclear Information System (INIS)

    Jaenke, R.S.; Angleton, G.M.

    1990-01-01

    The developing perinatal kidney is particularly sensitive to radiation. The pathogenesis of the radiation-induced lesion is related to the destruction of outer cortical developing nephrons and direct radiation injury with secondary hemodynamic alterations in remnant nephrons. In this study, which is part of a life span investigation of the effects of whole-body gamma radiation during prenatal and early postnatal life, dogs were given 0, 0.16, 0.83, or 1.25 Gy irradiation at either 55 days postcoitus or 2 days postpartum and were examined morphometrically and histopathologically at 70 days of age. Although irradiated dogs showed no reduction in the total number of nephrons per kidney, there was a significant increase in the total number and relative percentage of immature, dysplastic glomeruli. In addition, deeper cortical glomeruli of irradiated kidneys exhibited mesangial sclerosis similar to that associated with progressive renal failure in our previous studies. These findings are in accord with those reported at doses of 2.24 to 3.57 Gy and demonstrate that the perinatal kidney is affected by radiation doses much lower than previously demonstrated

  18. [Association between pulmonary vascular remodeling and expression of hypoxia-inducible factor-1α, endothelin-1 and inducible nitric oxide synthase in pulmonary vessels in neonatal rats with hypoxic pulmonary hypertension].

    Science.gov (United States)

    Wang, Jian-Rong; Zhou, Ying; Sang, Kui; Li, Ming-Xia

    2013-02-01

    To investigate the association between pulmonary vascular remodeling and expression of hypoxia-inducible factor-1α (HIF-1α), endothelin-1 (ET-1) and inducible nitric oxide synthase (iNOS) in pulmonary vessels in neonatal rats with hypoxic pulmonary hypertension (HPH). A neonatal rat model of HPH was established as an HPH group, and normal neonatal rats were enrolled as a control group. The mean pulmonary arterial pressure (mPAP) was measured. The percentage of medial thickness to outer diameter of the small pulmonary arteries (MT%) and the percentage of medial cross-section area to total cross-section area of the pulmonary small arteries (MA%) were measured as the indicators for pulmonary vascular remodeling. The immunohistochemical reaction intensities for HIF-1α, ET-1 and iNOS and their mRNA expression in lung tissues of neonatal rats were measured. Correlation analysis was performed to determine the relationship between pulmonary vascular remodeling and mRNA expression of HIF-1α, ET-1 and iNOS. The mPAP of the HPH group kept increasing on days 3, 5, 7, 10, 14, and 21 of hypoxia, with a significant difference compared with the control group (P<0.05). The HPH group had significantly higher MT% and MA% than the control group from day 7 of hypoxia (P<0.05). HIF-1α protein expression increased significantly on days 3, 5, 7 and 10 days of hypoxia, and HIF-1α mRNA expression increased significantly on days 3, 5 and 7 days of hypoxia in the HPH group compared with the control group (P<0.05). ET-1 protein expression increased significantly on days 3, 5 and 7 days of hypoxia and ET-1 mRNA expression increased significantly on day 3 of hypoxia in the HPH group compared with the control group (P<0.05). Both iNOS protein and mRNA expression were significantly higher on days 3, 5 and 7 days of hypoxia than the control group (P<0.05). Both MT% and MA% were positively correlated with HIF-1α mRNA expression (r=0.835 and 0.850 respectively; P<0.05). Pulmonary vascular

  19. Capacity of bone marrow colony forming unit-fibroblasts in vitro from mice with combined radiation-burn injury

    International Nuclear Information System (INIS)

    Chen Xinghua; Luo Chengji; Guo Chaohua; Wang Ping

    1999-01-01

    Objective: To investigate the capacity of bone marrow colony forming unit-fibroblasts (CFU-F) from mice with combined radiation-burn injury. Methods: Mice were treated with 5.0 Gy γ-ray radiation alone, 15% total body surface area (TBSA) III degree burn alone or combined radiation-burn. The numbers of CFU-Fs were assayed by Dexter's method. Results: The numbers of CFU-Fs from mice with radiation and combined radiation-burn injury were significantly decreased, compared with those of controls and mice with burn injury alone (P<0.05-0.01). conclusion: The results reveal that the repairing process of bone marrow stromal cells from mice with radiation injury and combined radiation-burn injury is slow, and the combined radiation-burn injury inflicted on the stromal cells possesses the characteristic of radiation injury

  20. Protective role of andrographolide in bleomycin-induced pulmonary fibrosis in mice.

    Science.gov (United States)

    Zhu, Tao; Zhang, Wei; Xiao, Min; Chen, Hongying; Jin, Hong

    2013-12-03

    Idiopathic pulmonary fibrosis (IPF) is a chronic devastating disease with poor prognosis. Multiple pathological processes, including inflammation, epithelial mesenchymal transition (EMT), apoptosis, and oxidative stress, are involved in the pathogenesis of IPF. Recent findings suggested that nuclear factor-κB (NF-κB) is constitutively activated in IPF and acts as a central regulator in the pathogenesis of IPF. The aim of our study was to reveal the value of andrographolide on bleomycin-induced inflammation and fibrosis in mice. The indicated dosages of andrographolide were administered in mice with bleomycin-induced pulmonary fibrosis. On day 21, cell counts of total cells, macrophages, neutrophils and lymphocytes, alone with TNF-α in bronchoalveolar lavage fluid (BALF) were measured. HE staining and Masson's trichrome (MT) staining were used to observe the histological alterations of lungs. The Ashcroft score and hydroxyproline content of lungs were also measured. TGF-β1 and α-SMA mRNA and protein were analyzed. Activation of NF-κB was determined by western blotting and electrophoretic mobility shift assay (EMSA). On day 21 after bleomycin stimulation, andrographolide dose-dependently inhibited the inflammatory cells and TNF-α in BALF. Meanwhile, our data demonstrated that the Ashcroft score and hydroxyproline content of the bleomycin-stimulated lung were reduced by andrographolide administration. Furthermore, andrographloide suppressed TGF-β1 and α-SMA mRNA and protein expression in bleomycin-induced pulmonary fibrosis. Meanwhile, andrographolide significantly dose-dependently inhibited the ratio of phospho-NF-κB p65/total NF-κB p65 and NF-κB p65 DNA binding activities. Our findings indicate that andrographolide compromised bleomycin-induced pulmonary inflammation and fibrosis possibly through inactivation of NF-κB. Andrographolide holds promise as a novel drug to treat the devastating disease of pulmonary fibrosis.

  1. Protective Role of Andrographolide in Bleomycin-Induced Pulmonary Fibrosis in Mice

    Directory of Open Access Journals (Sweden)

    Tao Zhu

    2013-12-01

    Full Text Available Idiopathic pulmonary fibrosis (IPF is a chronic devastating disease with poor prognosis. Multiple pathological processes, including inflammation, epithelial mesenchymal transition (EMT, apoptosis, and oxidative stress, are involved in the pathogenesis of IPF. Recent findings suggested that nuclear factor-κB (NF-κB is constitutively activated in IPF and acts as a central regulator in the pathogenesis of IPF. The aim of our study was to reveal the value of andrographolide on bleomycin-induced inflammation and fibrosis in mice. The indicated dosages of andrographolide were administered in mice with bleomycin-induced pulmonary fibrosis. On day 21, cell counts of total cells, macrophages, neutrophils and lymphocytes, alone with TNF-α in bronchoalveolar lavage fluid (BALF were measured. HE staining and Masson’s trichrome (MT staining were used to observe the histological alterations of lungs. The Ashcroft score and hydroxyproline content of lungs were also measured. TGF-β1 and α-SMA mRNA and protein were analyzed. Activation of NF-κB was determined by western blotting and electrophoretic mobility shift assay (EMSA. On day 21 after bleomycin stimulation, andrographolide dose-dependently inhibited the inflammatory cells and TNF-α in BALF. Meanwhile, our data demonstrated that the Ashcroft score and hydroxyproline content of the bleomycin-stimulated lung were reduced by andrographolide administration. Furthermore, andrographloide suppressed TGF-β1 and α-SMA mRNA and protein expression in bleomycin-induced pulmonary fibrosis. Meanwhile, andrographolide significantly dose-dependently inhibited the ratio of phospho-NF-κB p65/total NF-κB p65 and NF-κB p65 DNA binding activities. Our findings indicate that andrographolide compromised bleomycin-induced pulmonary inflammation and fibrosis possibly through inactivation of NF-κB. Andrographolide holds promise as a novel drug to treat the devastating disease of pulmonary fibrosis.

  2. Hematological Changes Induced by Mercury Ions and Ionizing Radiation in Experimental Animals

    International Nuclear Information System (INIS)

    Kim, Jin-Kyu; Lee, Yun-Jong; Choi, Dae-Seong; Kim, Ji-Hyang; Cebulska-Wasilewska, Antonina

    2006-01-01

    Toxic metals such as lead, chromium, cadmium, mercury and arsenic are widely found in our environment. Humans are exposed to these metals from numerous sources, including contaminated air, water, soil and food. Mercury, one of the most diffused and hazardous organ specific environmental contaminants, exists in a wide variety of physical and chemical states, each of which has unique characteristics for a target organ specificity. Although reports indicate that mercury induces deleterious damage, little is known about its effects on living organisms. Ionizing radiation, an extensively used therapeutic modality in oncology, not only eradicates neoplastic cells but also generates inevitable side effects for normal tissues. Such biological effects are made through the production of reactive oxygen species which include a superoxide anion, a hydroxyl radical and a hydrogen peroxide. These reactive species may contribute to the radiation-induced cytotoxicity (e.g., chromosome aberrations, protein oxidation, and muscle injury) and to the metabolic and morphologic changes (e.g., increased muscle proteolysis and changes in the central nervous system) in animals and humans. In the present study, radioimmunoassay of the cortisol in the serum and the analysis of the hematological components and enzymes related to a tissue injury were carried out to evaluate the effects of mercury chloride in comparison with those of ionizing radiation

  3. Hematological Changes Induced by Mercury Ions and Ionizing Radiation in Experimental Animals

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin-Kyu; Lee, Yun-Jong; Choi, Dae-Seong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Kim, Ji-Hyang [Biotechnology Research Institute, Seoul (Korea, Republic of); Cebulska-Wasilewska, Antonina [The Henryk Niewodniczanski Institute of Nuclear Physics, Krakow (Poland)

    2006-07-01

    Toxic metals such as lead, chromium, cadmium, mercury and arsenic are widely found in our environment. Humans are exposed to these metals from numerous sources, including contaminated air, water, soil and food. Mercury, one of the most diffused and hazardous organ specific environmental contaminants, exists in a wide variety of physical and chemical states, each of which has unique characteristics for a target organ specificity. Although reports indicate that mercury induces deleterious damage, little is known about its effects on living organisms. Ionizing radiation, an extensively used therapeutic modality in oncology, not only eradicates neoplastic cells but also generates inevitable side effects for normal tissues. Such biological effects are made through the production of reactive oxygen species which include a superoxide anion, a hydroxyl radical and a hydrogen peroxide. These reactive species may contribute to the radiation-induced cytotoxicity (e.g., chromosome aberrations, protein oxidation, and muscle injury) and to the metabolic and morphologic changes (e.g., increased muscle proteolysis and changes in the central nervous system) in animals and humans. In the present study, radioimmunoassay of the cortisol in the serum and the analysis of the hematological components and enzymes related to a tissue injury were carried out to evaluate the effects of mercury chloride in comparison with those of ionizing radiation.

  4. Docosahexaenoic acid inhibits monocrotaline-induced pulmonary hypertension via attenuating endoplasmic reticulum stress and inflammation.

    Science.gov (United States)

    Chen, Rui; Zhong, Wei; Shao, Chen; Liu, Peijing; Wang, Cuiping; Wang, Zhongqun; Jiang, Meiping; Lu, Yi; Yan, Jinchuan

    2018-02-01

    Endoplasmic reticulum (ER) stress and inflammation contribute to pulmonary hypertension (PH) pathogenesis. Previously, we confirmed that docosahexaenoic acid (DHA) could improve hypoxia-induced PH. However, little is known about the link between DHA and monocrotaline (MCT)-induced PH. Our aims were, therefore, to evaluate the effects and molecular mechanisms of DHA on MCT-induced PH in rats. Rat PH was induced by MCT. Rats were treated with DHA daily in the prevention group (following MCT injection) and the reversal group (after MCT injection for 2 wk) by gavage. After 4 wk, mean pulmonary arterial pressure (mPAP), right ventricular (RV) hypertrophy index, and morphological and immunohistochemical analyses were evaluated. Rat pulmonary artery smooth muscle cells (PASMCs) were used to investigate the effects of DHA on cell proliferation stimulated by platelet-derived growth factor (PDGF)-BB. DHA decreased mPAP and attenuated pulmonary vascular remodeling and RV hypertrophy, which were associated with suppressed ER stress. DHA blocked the mitogenic effect of PDGF-BB on PASMCs and arrested the cell cycle via inhibiting nuclear factor of activated T cells-1 (NFATc1) expression and activation and regulating cell cycle-related proteins. Moreover, DHA ameliorated inflammation in lung and suppressed macrophage and T lymphocyte accumulation in lung and adventitia of resistance pulmonary arteries. These findings suggest that DHA could protect against MCT-induced PH by reducing ER stress, suppressing cell proliferation and inflammation.

  5. Is radiation-induced ovarian failure in rhesus monkeys preventable by luteinizing hormone-releasing hormone agonists?: Preliminary observations

    International Nuclear Information System (INIS)

    Ataya, K.; Pydyn, E.; Ramahi-Ataya

    1995-01-01

    With the advent of cancer therapy, increasing numbers of cancer patients are achieving long term survival. Impaired ovarian function after radiation therapy has been reported in several studies. Some investigators have suggested that luteinizing hormone-releasing hormone agonists (LHRHa) can prevent radiation-induced ovarian injury in rodents. Adult female rhesus monkeys were given either vehicle or Leuprolide acetate before, during, and after radiation. Radiation was given in a dose of 200 rads/day for a total of 4000 rads to the ovaries. Frequent serum samples were assayed for estradiol (E 2 ) and FSH. Ovariectomy was performed later. Ovaries were processed and serially sectioned. Follicle count and size distribution were determined. Shortly after radiation started, E 2 dropped to low levels, at which it remained, whereas serum FSH level, which was low before radiation, rose soon after starting radiation. In monkeys treated with a combination of LHRHa and radiation, FSH started rising soon after the LHRHa-loaded minipump was removed (after the end of radiation). Serum E 2 increased after the end of LHRHa treatment in the non-irradiated monkey, but not in the irradiated monkey. Follicle counts were not preserved in the LHRHa-treated monkeys that received radiation. The data demonstrated no protective effect of LHRHa treatment against radiation-induced ovarian injury in this rhesus monkey model. 58 refs., 2 figs., 1 tab

  6. Human umbilical cord mesenchymal stem cells reduce systemic inflammation and attenuate LPS-induced acute lung injury in rats

    Directory of Open Access Journals (Sweden)

    Li Jianjun

    2012-09-01

    Full Text Available Abstract Background Mesenchymal stem cells (MSCs possess potent immunomodulatory properties and simultaneously lack the ability to illicit immune responses. Hence, MSCs have emerged as a promising candidate for cellular therapeutics for inflammatory diseases. Within the context of this study, we investigated whether human umbilical cord-derived mesenchymal stem cells (UC-MSCs could ameliorate lipopolysaccharide- (LPS- induced acute lung injury (ALI in a rat model. Methods ALI was induced via injection of LPS. Rats were divided into three groups: (1 saline group(control, (2 LPS group, and (3 MSC + LPS group. The rats were sacrificed at 6, 24, and 48 hours after injection. Serum, bronchoalveolar lavage fluid (BALF, and lungs were collected for cytokine concentration measurements, assessment of lung injury, and histology. Results UC-MSCs increased survival rate and suppressed LPS-induced increase of serum concentrations of pro-inflammatory mediators TNF-α, IL-1β, and IL-6 without decreasing the level of anti-inflammatory cytokine IL-10. The MSC + LPS group exhibited significant improvements in lung inflammation, injury, edema, lung wet/dry ratio, protein concentration, and neutrophil counts in the BALF, as well as improved myeloperoxidase (MPO activity in the lung tissue. Furthermore, UC-MSCs decreased malondialdehyde (MDA production and increased Heme Oxygenase-1 (HO-1 protein production and activity in the lung tissue. Conclusion UC-MSCs noticeably increased the survival rate of rats suffering from LPS-induced lung injury and significantly reduced systemic and pulmonary inflammation. Promoting anti-inflammatory homeostasis and reducing oxidative stress might be the therapeutic basis of UC-MSCs.

  7. Pulmonary mechanic and lung histology induced by Crotalus durissus cascavella snake venom.

    Science.gov (United States)

    Oliveira Neto, Joselito de; Silveira, João Alison de Moraes; Serra, Daniel Silveira; Viana, Daniel de Araújo; Borges-Nojosa, Diva Maria; Sampaio, Célia Maria Souza; Monteiro, Helena Serra Azul; Cavalcante, Francisco Sales Ávila; Evangelista, Janaina Serra Azul Monteiro

    2017-10-01

    This study have analyzed the pulmonary function in an experimental model of acute lung injury, induced by the Crotalus durissus cascavella venom (C. d. cascavella) (3.0 μg/kg - i.p), in pulmonary mechanic and histology at 1 h, 3 h, 6 h, 12 h and 24 h after inoculation. The C. d. cascavella venom led to an increase in Newtonian Resistance (R N ), Tissue Resistance (G) and Tissue Elastance (H) in all groups when compared to the control, particularly at 12 h and 24 h. The Histeresivity (η) increased 6 h, 12 h and 24 h after inoculation. There was a decrease in Static Compliance (C ST ) at 6 h, 12 h and 24 h and inspiratory capacity (IC) at 3 h, 6 h, 12 h and 24 h. C. d. cascavella venom showed significant morphological changes such as atelectasis, emphysema, hemorrhage, polymorphonuclear inflammatory infiltrate, edema and congestion. After a challenge with methacholine (MCh), R N demonstrated significant changes at 6, 12 and 24 h. This venom caused mechanical and histopathological changes in the lung tissue; however, its mechanisms of action need further studies in order to better elucidate the morphofunctional lesions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. A comparative analysis of longitudinal computed tomography and histopathology for evaluating the potential of mesenchymal stem cells in mitigating radiation-induced pulmonary fibrosis.

    Science.gov (United States)

    Perez, Jessica R; Lee, Sangkyu; Ybarra, Norma; Maria, Ola; Serban, Monica; Jeyaseelan, Krishinima; Wang, Li Ming; Seuntjens, Jan; Naqa, Issam El

    2017-08-22

    Radiation-induced pulmonary fibrosis (RIPF) is a debilitating side effect that occurs in up to 30% of thoracic irradiations in breast and lung cancer patients. RIPF remains a major limiting factor to dose escalation and an obstacle to applying more promising new treatments for cancer cure. Limited treatment options are available to mitigate RIPF once it occurs, but recently, mesenchymal stem cells (MSCs) and a drug treatment stimulating endogenous stem cells (GM-CSF) have been investigated for their potential in preventing this disease onset. In a pre-clinical rat model, we contrasted the application of longitudinal computed tomography (CT) imaging and classical histopathology to quantify RIPF and to evaluate the potential of MSCs in mitigating RIPF. Our results on histology demonstrate promises when MSCs are injected endotracheally (but not intravenously). While our CT analysis highlights the potential of GM-CSF treatment. Advantages and limitations of both analytical methods are contrasted in the context of RIPF.

  9. Pulmonary Toxicity of Perfluorinated Silane-Based Nanofilm Spray Products: Solvent Dependency

    DEFF Research Database (Denmark)

    Nørgaard, Asger Wisti; Hansen, Jitka S.; Sørli, Jorid Birkelund

    2014-01-01

    A number of cases of pulmonary injury by use of aerosolized surface coating products have been reported worldwide. The aerosol from a commercial alcohol-based nanofilm product (NFP) for coating of nonabsorbing surfaces was found to induce severe lung damage in a recent mouse bioassay. The NFP con...

  10. Effects of FTY720 on Lung Injury Induced by Hindlimb Ischemia Reperfusion in Rats

    Directory of Open Access Journals (Sweden)

    Liangrong Wang

    2017-01-01

    Full Text Available Background. Sphingosine-1-phosphate (S1P is a biologically active lysophospholipid mediator involved in modulating inflammatory process. We investigated the effects of FTY720, a structural analogue of S1P after phosphorylation, on lung injury induced by hindlimb ischemia reperfusion (IR in rats. Methods. Fifty Sprague-Dawley rats were divided into groups SM, IR, F3, F5, and F10. Group SM received sham operation, and bilateral hindlimb IR was established in group IR. The rats in groups F3, F5, and F10 were pretreated with 3, 5, and 10 mg/kg/d FTY720 for 7 days before IR. S1P lyase (S1PL, sphingosine kinase (SphK 1, and SphK2 mRNA expressions, wet/dry weight (W/D, and polymorphonuclear/alveolus (P/A in lung tissues were detected, and the lung injury score was evaluated. Results. W/D, P/A, and mRNA expressions of S1PL, SphK1, and SphK2 were higher in group IR than in group SM, while these were decreased in both groups F5 and F10 as compared to IR (p<0.05. The lung tissue presented severe lesions in group IR, which were attenuated in groups F5 and F10 with lower lung injury scores than in group IR (p<0.05. Conclusions. FTY720 pretreatment could attenuate lung injury induced by hindlimb IR by modulating S1P metabolism and decreasing pulmonary neutrophil infiltration.

  11. Combined Hydration and Antibiotics with Lisinopril to Mitigate Acute and Delayed High-dose Radiation Injuries to Multiple Organs.

    Science.gov (United States)

    Fish, Brian L; Gao, Feng; Narayanan, Jayashree; Bergom, Carmen; Jacobs, Elizabeth R; Cohen, Eric P; Moulder, John E; Orschell, Christie M; Medhora, Meetha

    2016-11-01

    The NIAID Radiation and Nuclear Countermeasures Program is developing medical agents to mitigate the acute and delayed effects of radiation that may occur from a radionuclear attack or accident. To date, most such medical countermeasures have been developed for single organ injuries. Angiotensin converting enzyme (ACE) inhibitors have been used to mitigate radiation-induced lung, skin, brain, and renal injuries in rats. ACE inhibitors have also been reported to decrease normal tissue complication in radiation oncology patients. In the current study, the authors have developed a rat partial-body irradiation (leg-out PBI) model with minimal bone marrow sparing (one leg shielded) that results in acute and late injuries to multiple organs. In this model, the ACE inhibitor lisinopril (at ~24 mg m d started orally in the drinking water at 7 d after irradiation and continued to ≥150 d) mitigated late effects in the lungs and kidneys after 12.5-Gy leg-out PBI. Also in this model, a short course of saline hydration and antibiotics mitigated acute radiation syndrome following doses as high as 13 Gy. Combining this supportive care with the lisinopril regimen mitigated overall morbidity for up to 150 d after 13-Gy leg-out PBI. Furthermore, lisinopril was an effective mitigator in the presence of the growth factor G-CSF (100 μg kg d from days 1-14), which is FDA-approved for use in a radionuclear event. In summary, by combining lisinopril (FDA-approved for other indications) with hydration and antibiotics, acute and delayed radiation injuries in multiple organs were mitigated.

  12. DIFFERENT TYPES OF INSPIRATORY MUSCLE TRAINING PROVIDES BETTERMENT IN ALTERED PULMONARY FUNCTIONS IN UPPER THORACIC SPINAL CORD INJURIES

    Directory of Open Access Journals (Sweden)

    Muruganandam Periyasamy

    2016-08-01

    Full Text Available Background: Respiratory problems are usual in upper thoracic spinal cord injuries when compared to Lower thoracic spinal cord injuries. Generally there are frequent respiratory complications in the individuals with spinal cord injuries. The complications of the respiratory system are severe and more prevalent source of morbidity and mortality after the spinal cord injury due to the inefficient breathing capacity including inspiratory and expiratory abilities. The present study represents the inspiratory muscle training especially in upper thoracic spinal cord injury patients to assess the improvement in the pulmonary functions. Methods: Twenty five patients with the age between 25 -40 years with the upper spinal cord injuries were selected in the present study in order to assess the efficacy of the training. Several types of exercises were practiced including diaphragmatic breathing exercises, incentive spirometry, active cycle of breathing technique and weight training. COPD Conditions, Chest wall deformities, Hypertensive patients, Cardio vascular problems were excluded in the study. Results: The results from the study showed that significant changes were found in the patients treated with all the above mentioned techniques. Axillary level, nipple level, Xiphisternum levels were analysed and the results found to be significant after the treatment. Incentive spirometry and peak flow meter observations were also found to be significant when compare to the pretreatment. Conclusion: The present study conclude that the combined effect of incentive spriometry, diaphragmatic breathing exercises, and active cycle of breathing technique is more effective in improving the pulmonary functions in upper thoracic spinal cord injuries than single method efficiency.

  13. Chemical chaperones reduce ionizing radiation-induced endoplasmic reticulum stress and cell death in IEC-6 cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun Sang; Lee, Hae-June; Lee, Yoon-Jin [Division of Radiation Effects, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of); Jeong, Jae-Hoon [Division of Radiotherapy, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of); Kang, Seongman [Division of Life Sciences, Korea University, Seoul 136-701 (Korea, Republic of); Lim, Young-Bin, E-mail: yblim@kirams.re.kr [Division of Radiation Effects, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of)

    2014-07-25

    Highlights: • UPR activation precedes caspase activation in irradiated IEC-6 cells. • Chemical ER stress inducers radiosensitize IEC-6 cells. • siRNAs that targeted ER stress responses ameliorate IR-induced cell death. • Chemical chaperons prevent cell death in irradiated IEC-6 cells. - Abstract: Radiotherapy, which is one of the most effective approaches to the treatment of various cancers, plays an important role in malignant cell eradication in the pelvic area and abdomen. However, it also generates some degree of intestinal injury. Apoptosis in the intestinal epithelium is the primary pathological factor that initiates radiation-induced intestinal injury, but the mechanism by which ionizing radiation (IR) induces apoptosis in the intestinal epithelium is not clearly understood. Recently, IR has been shown to induce endoplasmic reticulum (ER) stress, thereby activating the unfolded protein response (UPR) signaling pathway in intestinal epithelial cells. However, the consequences of the IR-induced activation of the UPR signaling pathway on radiosensitivity in intestinal epithelial cells remain to be determined. In this study, we investigated the role of ER stress responses in IR-induced intestinal epithelial cell death. We show that chemical ER stress inducers, such as tunicamycin or thapsigargin, enhanced IR-induced caspase 3 activation and DNA fragmentation in intestinal epithelial cells. Knockdown of Xbp1 or Atf6 with small interfering RNA inhibited IR-induced caspase 3 activation. Treatment with chemical chaperones prevented ER stress and subsequent apoptosis in IR-exposed intestinal epithelial cells. Our results suggest a pro-apoptotic role of ER stress in IR-exposed intestinal epithelial cells. Furthermore, inhibiting ER stress may be an effective strategy to prevent IR-induced intestinal injury.

  14. EXERCISE-INDUCED PULMONARY HEMORRHAGE AFTER RUNNING A MARATHON

    Science.gov (United States)

    We report on a healthy 26-year-old male who had an exercise-induced pulmonary hemorrhage (EIPH) within 24 hours of running a marathon. There were no symptoms, abnormalities on exam, or radiographic infiltrates. He routinely participated in bronchoscopy research and the EIPH was e...

  15. Suppression of the expression of hypoxia-inducible factor-1α by RNA interference alleviates hypoxia-induced pulmonary hypertension in adult rats.

    Science.gov (United States)

    Li, Ying; Shi, Bo; Huang, Liping; Wang, Xin; Yu, Xiaona; Guo, Baosheng; Ren, Weidong

    2016-12-01

    Hypoxia-inducible factor-1α (HIF-1α) has been implicated in the pathogenesis of hypoxic pulmonary hypertension (PH). However, the potential clinical value of HIF-1α as a therapeutic target in the treatment of PH has not yet been evaluated. In this study, an animal model of hypoxia-induced PH was established by exposing adult rats to 10% O2 for 3 weeks, and the effects of the lentivirus-mediated delivery of HIF-1α short hairpin RNA (shRNA) by intratracheal instillation prior to exposure to hypoxia on the manifestations of hypoxia-induced PH were assessed. The successful delivery of HIF-1α shRNA into the pulmonary arteries effectively suppressed the hypoxia-induced upregulation of HIF-1α, accompanied by the prominent attenuation the symptoms associated with hypoxia-induced PH, including the elevation of pulmonary arterial pressure, hypertrophy and hyperplasia of pulmonary artery smooth muscle cells (PASMCs), as well as the muscularization of pulmonary arterioles. In addition, the knockdown of HIF-1α in cultured rat primary PASMCs significantly inhibited the hypoxia-induced acceleration of the cell cycle and the proliferation of the PASMCs, suggesting that HIF-1α may be a direct mediator of PASMC hyperplasia in hypoxia-induced PH. In conclusion, this study demonstrates the potent suppressive effects of HIF-1α shRNA on hypoxia-induced PH and PASMC hyperplasia, providing evidence for the potential application of HIF-1α shRNA in the treatment of hypoxic PH.

  16. Late radiation injury to muscle and peripheral nerves

    International Nuclear Information System (INIS)

    Gillette, E. L.; Mahler, P. A.; Powers, B. E.; Gillette, S. M.; Vujaskovic, Z.

    1995-01-01

    Late radiation injury to muscles and peripheral nerves is infrequently observed. However, the success of radiation oncology has led to longer patient survival, providing a greater opportunity for late effects to develop, increase in severity and, possibly, impact the quality of life of the patient. In addition, when radiation therapy is combined with surgery and/or chemotherapy, the risk of late complications is likely to increase. It is clear that the incidence of complications involving muscles and nerves increases with time following radiation. The influence of volume has yet to be determined; however, an increased volume is likely to increase the risk of injury to muscles and nerves. Experimental and clinical studies have indicated that the (α(β)) ratio for muscle is approximately 4 Gy and, possibly, 2 Gy for peripheral nerve, indicating the great influence of fractionation on response of these tissues. This is of concern for intraoperative radiation therapy, and for high dose rate brachytherapy. This review of clinical and experimental data discusses the response of muscle and nerves late after radiation therapy. A grading system has been proposed and endpoints suggested

  17. Traditional Chinese Medicine and Herb-induced Liver Injury: Comparison with Drug-induced Liver Injury.

    Science.gov (United States)

    Jing, Jing; Teschke, Rolf

    2018-03-28

    Cases of suspected herb-induced liver injury (HILI) caused by herbal Traditional Chinese Medicines (TCMs) and of drug-induced liver injury (DILI) are commonly published in the scientific literature worldwide. As opposed to the multiplicity of botanical chemicals in herbal TCM products, which are often mixtures of several herbs, conventional Western drugs contain only a single synthetic chemical. It is therefore of interest to study how HILI by TCM and DILI compare with each other, and to what extent results from each liver injury type can be transferred to the other. China is among the few countries with a large population using synthetic Western drugs as well as herbal TCM. Therefore, China is well suited to studies of liver injury comparing drugs with TCM herbs. Despite some concordance, recent analyses of liver injury cases with verified causality, using the Roussel Uclaf Causality Assessment Method, revealed major differences in HILI caused by TCMs as compared to DILI with respect to the following features: HILI cases are less frequently observed as compared to DILI, have a smaller proportion of females and less unintentional rechallenge events, and present a higher rate of hepatocellular injury features. Since many results were obtained among Chinese residents who had access to and had used Western drugs and TCM herbs, such ethnic homogeneity supports the contention that the observed differences of HILI and DILI in the assessed population are well founded.

  18. Prenatal radiation injury and immune development

    International Nuclear Information System (INIS)

    Nold, J.B.; Miller, G.K.; Benjamin, S.A.

    1985-01-01

    Previous studies demonstrated a significant reduction in thymic medullary and epithelial volumes in irradiated canine fetuses. The present study was performed to determine if this prenatal radiation-induced damage persists and is accompanied by functional immune abnormalities after birth. Six pregnant beagle dogs received sham-irradiation or single abdominal exposures to 200R of 60Co radiation at 35 days gestation. The mean fetal dose was approximately 1.5 Gy. Half the dogs of each litter were sacrificed at birth; half were sacrificed at 24 weeks of age. Following sacrifice, thymus sections from each dog were examined morphometrically. The following in vitro and in vivo assays were performed at selected times; lymphocyte blastogenesis, hematology, bone marrow progenitor cell (CFU-GM) colony growth, humoral antibody response to sheep red blood cells, dinitrochloro-benzene skin sensitization, and gross and histopathology. When compared with age-matched controls, thymic medullary volumes in irradiated dogs were significantly reduced at birth; but, by 24 weeks of age, were similar to control values. At 12-16 weeks of age irradiated dogs showed a significant decrease in humoral antibody responses to inoculated sheep red blood cells. In vitro culture of bone marrow demonstrated a significant reduction of CFU-GM colony growth in irradiated dogs at 24 weeks of age. This was accompanied by a reduction in peripheral white blood cell counts in these dogs from 12-24 weeks of age. These data suggest that radiation injury to the fetal lymphohematopoietic system results in significant postnatal immunologic and hematopoietic defects

  19. Isoflurane administration before ischemia and during reperfusion attenuates ischemia/reperfusion-induced injury of isolated rabbit lungs.

    Science.gov (United States)

    Liu, R; Ishibe, Y; Ueda, M; Hang, Y

    1999-09-01

    To investigate the effects of isoflurane on ischemia/ reperfusion (IR)-induced lung injury, we administered isoflurane before ischemia or during reperfusion. Isolated rabbit lungs were divided into the following groups: control (n = 6), perfused and ventilated for 120 min without ischemia; ISO-control (n = 6), 1 minimum alveolar anesthetic concentration (MAC) isoflurane was administered for 30 min before 120 min continuous perfusion; IR (n = 6), ischemia for 60 min, followed by 60 min reperfusion; IR-ISO1 and IR-ISO2, ischemia followed by reperfusion and 1 MAC (n = 6) or 2 MAC (n = 6) isoflurane for 60 min; ISO-IR (n = 6), 1 MAC isoflurane was administered for 30 min before ischemia, followed by IR. During these maneuvers, we measured total pulmonary vascular resistance (Rt), coefficient of filtration (Kfc), and lung wet to dry ratio (W/D). The results indicated that administration of isoflurane during reperfusion inhibited an IR-induced increase in Kfc and W/D ratio. Furthermore, isoflurane at 2 MAC, but not 1 MAC, significantly inhibited an IR-induced increase in Rt. The administration of isoflurane before ischemia significantly attenuated the increase in IR-induced Kfc, W/D, and Rt. Our results suggest that the administration of isoflurane before ischemia and during reperfusion protects against ischemia-reperfusion-induced injury in isolated rabbit lungs.

  20. Study of collagen metabolism after β radiation injury

    International Nuclear Information System (INIS)

    Zhou Yinghui; Xulan; Wu Shiliang; Zhang Xueguang; Chen Liesong

    2000-01-01

    Objective: To investigate the change of collagen metabolism and it's regulation after β radiation. Method: The animal model of β radiation injury was established by the β radiation produced by the linear accelerator; and irradiated NIH 3T3 cells were studied. In the experiment the contents of total collagen, collagen type I and type III were measured. The activity of MMPs-1 was tested. The contents of TGF-β 1 , IL-6 were also detected. Results: After exposure to β radiation, little change was found in the content of total collagen, but the content of collagen I decreased and the content of collagen III, MMPs-1 activity increased; the expression of TGF-β 1 , IL-6 increased. Conclusion: The changes in the metabolism of collagen play an important role in the irradiated injury of the skin; TGF-β 1 and IL-6 may be essential in the regulation of the collagen metabolism