WorldWideScience

Sample records for radiation therapy clinical

  1. Clinical experience of radiation therapy for Graves` ophthalmopathy

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Takeo; Mitsuhashi, Norio; Nagashima, Hisako; Sakurai, Hideyuki; Murata, Osamu; Ishizeki, Kei; Shimaya, Sanae; Hayakawa, Kazushige; Niibe, Hideo [Gunma Univ., Maebashi (Japan). School of Medicine

    1996-11-01

    The effect of radiation therapy for Graves` ophthalmopathy was evaluated. Ten patients with Graves` ophthalmopathy were treated with radiation therapy between 1992 and 1993 in Gunma University Hospital. All patients had a past history of hyperthyroidism and received 2,000 cGy to the retrobulbar tissues in 20 fractions. Nine of ten patients were treated with radiation therapy after the failure of corticosteroids. Six patients (60%) showed good or excellent responses. The exophthalmos type was more responsive to radiation therapy than the double vision type in this series. Two of five patients with the exophthalmos type demonstrated excellent responses, and their symptoms disappeared almost completely. The improvement of symptoms appeared within 3-6 months, and obvious clinical effects were demonstrated after 6 months of radiotherapy. Radiation therapy was well tolerated, and we have not observed any side effects of radiation therapy. In conclusion, radiation therapy is effective treatment for Graves` ophthalmopathy. (author)

  2. Clinical applications of advanced rotational radiation therapy

    Science.gov (United States)

    Nalichowski, Adrian

    Purpose: With a fast adoption of emerging technologies, it is critical to fully test and understand its limits and capabilities. In this work we investigate new graphic processing unit (GPU) based treatment planning algorithm and its applications in helical tomotherapy dose delivery. We explore the limits of the system by applying it to challenging clinical cases of total marrow irradiation (TMI) and stereotactic radiosurgery (SRS). We also analyze the feasibility of alternative fractionation schemes for total body irradiation (TBI) and TMI based on reported historical data on lung dose and interstitial pneumonitis (IP) incidence rates. Methods and Materials: An anthropomorphic phantom was used to create TMI plans using the new GPU based treatment planning system and the existing CPU cluster based system. Optimization parameters were selected based on clinically used values for field width, modulation factor and pitch. Treatment plans were also created on Eclipse treatment planning system (Varian Medical Systems Inc, Palo Alto, CA) using volumetric modulated arc therapy (VMAT) for dose delivery on IX treatment unit. A retrospective review was performed of 42 publications that reported IP rates along with lung dose, fractionation regimen, dose rate and chemotherapy. The analysis consisted of nearly thirty two hundred patients and 34 unique radiation regimens. Multivariate logistic regression was performed to determine parameters associated with IP and establish does response function. Results: The results showed very good dosimetric agreement between the GPU and CPU calculated plans. The results from SBRT study show that GPU planning system can maintain 90% target coverage while meeting all the constraints of RTOG 0631 protocol. Beam on time for Tomotherapy and flattening filter free RapidArc was much faster than for Vero or Cyberknife. Retrospective data analysis showed that lung dose and Cyclophosphomide (Cy) are both predictors of IP in TBI/TMI treatments. The

  3. Clinical results of radiation therapy for thymoma

    Energy Technology Data Exchange (ETDEWEB)

    Masunaga, Shin-ichiro; Ono, Koji; Hiraoka, Masahiro; Sasai, Keisuke; Kitakabu, Yoshizumi; Abe, Mitsuyuki (Kyoto Univ. (Japan). Faculty of Medicine); Takahashi, Masaji; Tsutsui, Kazushige; Fushiki, Masato

    1992-05-01

    From August 1968 to December 1989, 58 patients with thymoma were treated by radiotherapy using cobalt-60 gamma ray. Eleven cases were treated by radiothrapy alone, 1 by preoperative radiotheapy, 43 by postoperative radiotherapy, and 3 in combination with intraoperative radiotherapy. The following points were clarified: (a) Postoperative and intraoperative radiotherapy were effective; (b) For postoperative radiotherapy, operability was the major factor influencing survival and local control, and Stage I and II tumors resected totally or subtotally as well as Stage III tumors resected totally were good indications for such therapy; (c) The patients with complicating myasthenia gravis had a longer survival time and better local control rate than those without it. Radiation pneumonitis was observed in 17 patients, and none of them died of this complication. In all cases in combination with intraoperative radiotherapy, dry desquamation was observed within the irradiated field. (author).

  4. Factors influencing radiation therapy student clinical placement satisfaction

    Energy Technology Data Exchange (ETDEWEB)

    Bridge, Pete; Carmichael, Mary-Ann [School of Clinical Sciences, Queensland University of Technology, Brisbane (Australia)

    2014-02-15

    Introduction: Radiation therapy students at Queensland University of Technology (QUT) attend clinical placements at five different clinical departments with varying resources and support strategies. This study aimed to determine the relative availability and perceived importance of different factors affecting student support while on clinical placement. The purpose of the research was to inform development of future support mechanisms to enhance radiation therapy students’ experience on clinical placement. Methods: This study used anonymous Likert-style surveys to gather data from years 1 and 2 radiation therapy students from QUT and clinical educators from Queensland relating to availability and importance of support mechanisms during clinical placements in a semester. Results: The study findings demonstrated student satisfaction with clinical support and suggested that level of support on placement influenced student employment choices. Staff support was perceived as more important than physical resources; particularly access to a named mentor, a clinical educator and weekly formative feedback. Both students and educators highlighted the impact of time pressures. Conclusions: The support offered to radiation therapy students by clinical staff is more highly valued than physical resources or models of placement support. Protected time and acknowledgement of the importance of clinical education roles are both invaluable. Joint investment in mentor support by both universities and clinical departments is crucial for facilitation of effective clinical learning.

  5. Imaging and Data Acquisition in Clinical Trials for Radiation Therapy.

    Science.gov (United States)

    FitzGerald, Thomas J; Bishop-Jodoin, Maryann; Followill, David S; Galvin, James; Knopp, Michael V; Michalski, Jeff M; Rosen, Mark A; Bradley, Jeffrey D; Shankar, Lalitha K; Laurie, Fran; Cicchetti, M Giulia; Moni, Janaki; Coleman, C Norman; Deye, James A; Capala, Jacek; Vikram, Bhadrasain

    2016-02-01

    Cancer treatment evolves through oncology clinical trials. Cancer trials are multimodal and complex. Assuring high-quality data are available to answer not only study objectives but also questions not anticipated at study initiation is the role of quality assurance. The National Cancer Institute reorganized its cancer clinical trials program in 2014. The National Clinical Trials Network (NCTN) was formed and within it was established a Diagnostic Imaging and Radiation Therapy Quality Assurance Organization. This organization is Imaging and Radiation Oncology Core, the Imaging and Radiation Oncology Core Group, consisting of 6 quality assurance centers that provide imaging and radiation therapy quality assurance for the NCTN. Sophisticated imaging is used for cancer diagnosis, treatment, and management as well as for image-driven technologies to plan and execute radiation treatment. Integration of imaging and radiation oncology data acquisition, review, management, and archive strategies are essential for trial compliance and future research. Lessons learned from previous trials are and provide evidence to support diagnostic imaging and radiation therapy data acquisition in NCTN trials.

  6. Technical basis of radiation therapy. Practical clinical applications. 5. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Levitt, Seymour H. [Karolinska Institutet Stockholm (Sweden). Dept. of Oncol-Pathol; Perez, Carlos A. [Washington Univ. Medical Center, St. Louis, MO (United States). Dept. of Radiation Oncology; Purdy, James A. [California Univ., Sacramento, CA (United States). Dept. of Radiation Oncology; Poortmans, Philip [Institute Verbeeten, Tilburg (Netherlands). Dept. of Radiation Oncology

    2012-07-01

    This well-received book, now in its fifth edition, is unique in providing a detailed description of the technological basis of radiation therapy. Another novel feature is the collaborative writing of the chapters by North American and European authors. This considerably broadens the book's perspective and increases its applicability in daily practice throughout the world. The book is divided into two sections. The first covers basic concepts in treatment planning, including essential physics and biological principles related to time-dose-fractionation, and explains the various technological approaches to radiation therapy, such as intensity-modulated radiation therapy, tomotherapy, stereotactic radiotherapy, and high and low dose rate brachytherapy. Issues relating to quality assurance, technology assessment, and cost-benefit analysis are also reviewed. The second part of the book discusses in depth the practical clinical applications of the different radiation therapy techniques in a wide range of cancer sites. All of the chapters have been written by leaders in the field. This book will serve to instruct and acquaint teachers, students, and practitioners in the various fields of oncology with the basic technological factors and approaches in radiation therapy. (orig.)

  7. Clinical Opportunities in Combining Immunotherapy with Radiation Therapy

    Directory of Open Access Journals (Sweden)

    Steven Eric Finkelstein

    2012-11-01

    Full Text Available Preclinical work in murine models suggests that local radiotherapy plus intratumoral syngeneic DC injection can mediate immunologic tumor eradication. Radiotherapy affects the immune response to cancer, besides the direct impact on the tumor cells, and other ways to coordinate immune modulation with radiotherapy have been explored. We review here the potential for immune mediated anticancer activity of radiation on tumors. This is mediated by antigen acquisition and presentation by dendritic cells, and through changes of lymphocytes’ activity. Recent work has implemented the combination of external beam radiation (EBRT with intratumoral injection of dendritic cells (DC. This included a pilot study of coordinated intraprostatic, autologous DC injection together with radiation therapy with five HLA-A2(+ subjects with high-risk, localized prostate cancer; the protocol used androgen suppression, external beam radiation therapy (25 fractions, 45 Gy, DC injections after fractions 5, 15, and 25, and then interstitial radioactive implant. Another was a phase II trial using neo-adjuvant cell death-inducing EBRT plus intra-tumoral DC in soft tissue sarcoma, to test if this would increase immune activity toward soft tissue sarcoma associated antigens. Clinical experience using radiation therapies combined with other systemic immune treatments are additionally surveyed, including use of investigational recombinant vaccinia and fowlpox, interleukin-2, toll like receptor 9 (TLR9 agonists and lymphocyte checkpoint inhibitors directed at PD1 and at CTLA4.

  8. Radiation Therapy

    Science.gov (United States)

    ... the area is stitched shut. Another treatment, called proton-beam radiation therapy , focuses the radiation on the ... after radiation treatment ends. Sore mouth and tooth decay. If you received radiation therapy to the head ...

  9. On-Line Adaptive Radiation Therapy: Feasibility and Clinical Study

    Directory of Open Access Journals (Sweden)

    Taoran Li

    2010-01-01

    Full Text Available The purpose of this paper is to evaluate the feasibility and clinical dosimetric benefit of an on-line, that is, with the patient in the treatment position, Adaptive Radiation Therapy (ART system for prostate cancer treatment based on daily cone-beam CT imaging and fast volumetric reoptimization of treatment plans. A fast intensity-modulated radiotherapy (IMRT plan reoptimization algorithm is implemented and evaluated with clinical cases. The quality of these adapted plans is compared to the corresponding new plans generated by an experienced planner using a commercial treatment planning system and also evaluated by an in-house developed tool estimating achievable dose-volume histograms (DVHs based on a database of existing treatment plans. In addition, a clinical implementation scheme for ART is designed and evaluated using clinical cases for its dosimetric qualities and efficiency.

  10. Radiation therapy plan checks in a paperless clinic.

    Science.gov (United States)

    Siochi, R Alfredo; Pennington, Edward C; Waldron, Timothy J; Bayouth, John E

    2009-01-27

    Traditional quality assurance checks of a patient's radiation therapy plan involve printing out treatment parameters from the treatment planning system and the "record and verify" (R&V) system and visually checking the information for one-to-one correspondence. In a paperless environment, one can automate this process through independent software that can read the treatment planning data directly and compare it against the parameters in the R&V system's database. In addition to verifying the data integrity, it is necessary to check the logical consistency of the data and the accuracy of various calculations. The results are then imported into the patient's electronic medical record. Appropriate workflows must be developed to ensure that no steps of the QA process are missed. This paper describes our electronic QA system (EQS), consisting of in-house software and workflows. The EQS covers 3D conformal and intensity modulated radiation therapy, electrons, stereotactic radiosurgery, total body irradiation, and clinical set ups with and without virtual simulation. The planning systems handled by our EQS are ADAC Pinnacle and Varian FASTPLAN, while the R&V systems are LANTIS and VARIS. The improvement in our plan check process over the paperless system is described in terms of the types of detected errors. The potential problems with the implementation and use of the EQS, as well as workarounds for data that are not easily accessible through electronic means, are described.

  11. Radiation Therapy

    Science.gov (United States)

    Radiation therapy is a cancer treatment. It uses high doses of radiation to kill cancer cells and stop them from ... half of all cancer patients receive it. The radiation may be external, from special machines, or internal, ...

  12. Combinations of Radiation Therapy and Immunotherapy for Melanoma: A Review of Clinical Outcomes

    Energy Technology Data Exchange (ETDEWEB)

    Barker, Christopher A., E-mail: barkerc@mskcc.org [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Postow, Michael A. [Department of Medicine, Melanoma and Sarcoma Oncology Service, Memorial Sloan-Kettering Cancer Center, New York, New York (United States)

    2014-04-01

    Radiation therapy has long played a role in the management of melanoma. Recent advances have also demonstrated the efficacy of immunotherapy in the treatment of melanoma. Preclinical data suggest a biologic interaction between radiation therapy and immunotherapy. Several clinical studies corroborate these findings. This review will summarize the outcomes of studies reporting on patients with melanoma treated with a combination of radiation therapy and immunotherapy. Vaccine therapies often use irradiated melanoma cells, and may be enhanced by radiation therapy. The cytokines interferon-α and interleukin-2 have been combined with radiation therapy in several small studies, with some evidence suggesting increased toxicity and/or efficacy. Ipilimumab, a monoclonal antibody which blocks cytotoxic T-lymphocyte antigen-4, has been combined with radiation therapy in several notable case studies and series. Finally, pilot studies of adoptive cell transfer have suggested that radiation therapy may improve the efficacy of treatment. The review will demonstrate that the combination of radiation therapy and immunotherapy has been reported in several notable case studies, series and clinical trials. These clinical results suggest interaction and the need for further study.

  13. Clinical significance of radiation therapy in breast recurrence and prognosis in breast-conserving surgery

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, Reiki; Nagao, Kazuharu; Miyayama, Haruhiko [Kumamoto City Hospital (Japan)] [and others

    1999-03-01

    Significant risk factors for recurrence of breast cancer after breast-conserving therapy, which has become a standard treatment for breast cancer, are positive surgical margins and the failure to perform radiation therapy. In this study, we evaluated the clinical significance of radiation therapy after primary surgery or breast recurrence. In 344 cases of breast-conserving surgery, disease recurred in 43 cases (12.5%), which were classified as follows: 17 cases of breast recurrence, 13 cases of breast and distant metastasis, and 13 cases of distant metastasis. Sixty-two patients (16.7%) received radiation therapy. A positive surgical margin and younger age were significant risk factors for breast recurrence in patients not receiving postoperative radiation therapy but not in patients receiving radiation therapy. Radiation therapy may be beneficial for younger patients with positive surgical margins. Furthermore, radiation therapy after recurrence was effective in the cases not treated with postoperative radiation but not in cases with inflammatory recurrence. Patients with breast recurrence alone had significantly higher survival rates than did patients with distant metastases regardless of breast recurrence. These findings suggest that the adaptation criteria of radiation therapy for local control must be clarified. (author)

  14. Dosimetric evaluation of whole-breast radiation therapy: Clinical experience

    Energy Technology Data Exchange (ETDEWEB)

    Osei, Ernest, E-mail: ernest.osei@grhosp.on.ca [Department of Medical Physics, Grand River Regional Cancer Centre, Kitchener, Ontario (Canada); Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario (Canada); Department of Systems Design, University of Waterloo, Waterloo, Ontario (Canada); Darko, Johnson [Department of Medical Physics, Grand River Regional Cancer Centre, Kitchener, Ontario (Canada); Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario (Canada); Fleck, Andre [Department of Medical Physics, Grand River Regional Cancer Centre, Kitchener, Ontario (Canada); White, Jana [Department of Radiation Therapy, Grand River Regional Cancer Centre, Kitchener, Ontario (Canada); Kiciak, Alexander; Redekop, Rachel [Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario (Canada); Gopaul, Darin [Department of Radiation Oncology, Grand River Regional Cancer Centre, Kitchener, Ontario (Canada)

    2015-01-01

    Radiation therapy of the intact breast is the standard therapy for preventing local recurrence of early-stage breast cancer following breast conservation surgery. To improve patient standard of care, there is a need to define a consistent and transparent treatment path for all patients that reduces significance variations in the acceptability of treatment plans. There is lack of consistency among institutions or individuals about what is considered an acceptable treatment plan: target coverage vis-à-vis dose to organs at risk (OAR). Clinical trials usually resolve these issues, as the criteria for an acceptable plan within the trial (target coverage and doses to OAR) are well defined. We developed an institutional criterion for accepting breast treatment plans in 2006 after analyzing treatment data of approximately 200 patients. The purpose of this article is to report on the dosimetric review of 623 patients treated in the last 18 months to evaluate the effectiveness of the previously developed plan acceptability criteria and any possible changes necessary to further improve patient care. The mean patient age is 61.6 years (range: 25.2 to 93.0 years). The mean breast separation for all the patients is 21.0 cm (range: 12.4 to 34.9 cm), and the mean planning target volume (PTV-eval) (breast volume for evaluation) is 884.0 cm{sup 3} (range: 73.6 to 3684.6 cm{sup 3}). Overall, 314 (50.4%) patients had the disease in the left breast and 309 (49.6%) had it in the right breast. A total of 147 (23.6%) patients were treated using the deep inspiration breath-hold (DIBH) technique. The mean normalized PTV-eval receiving at least 92% (V{sub 92%} {sub PD}) and 95% (V{sub 95%} {sub PD}) of the prescribed dose (PD) are more than 99% and 97%, respectively, for all patients. The mean normalized PTV-eval receiving at least 105% (V{sub 105%} {sub PD}) of the PD is less than 1% for all groups. The mean homogeneity index (HI), uniformity index (UI), and conformity index (CI) for the

  15. Implementation of Remote 3-Dimensional Image Guided Radiation Therapy Quality Assurance for Radiation Therapy Oncology Group Clinical Trials

    Energy Technology Data Exchange (ETDEWEB)

    Cui Yunfeng [Department of Radiation Oncology, Jefferson Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania (United States); Galvin, James M. [Department of Radiation Oncology, Jefferson Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania (United States); Radiation Therapy Oncology Group, American College of Radiology, Philadelphia, Pennsylvania (United States); Parker, William [Department of Medical Physics, McGill University Health Center, Montreal, QC (Canada); Breen, Stephen [Department of Radiation Physics, Princess Margaret Hospital, Toronto, ON (Canada); Yin Fangfang; Cai Jing [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Papiez, Lech S. [Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas (United States); Li, X. Allen [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin (United States); Bednarz, Greg [Department of Radiation Oncology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (United States); Chen Wenzhou [Department of Radiation Oncology, Jefferson Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania (United States); Xiao Ying, E-mail: ying.xiao@jefferson.edu [Department of Radiation Oncology, Jefferson Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania (United States); Radiation Therapy Oncology Group, American College of Radiology, Philadelphia, Pennsylvania (United States)

    2013-01-01

    Purpose: To report the process and initial experience of remote credentialing of three-dimensional (3D) image guided radiation therapy (IGRT) as part of the quality assurance (QA) of submitted data for Radiation Therapy Oncology Group (RTOG) clinical trials; and to identify major issues resulting from this process and analyze the review results on patient positioning shifts. Methods and Materials: Image guided radiation therapy datasets including in-room positioning CT scans and daily shifts applied were submitted through the Image Guided Therapy QA Center from institutions for the IGRT credentialing process, as required by various RTOG trials. A centralized virtual environment is established at the RTOG Core Laboratory, containing analysis tools and database infrastructure for remote review by the Physics Principal Investigators of each protocol. The appropriateness of IGRT technique and volumetric image registration accuracy were evaluated. Registration accuracy was verified by repeat registration with a third-party registration software system. With the accumulated review results, registration differences between those obtained by the Physics Principal Investigators and from the institutions were analyzed for different imaging sites, shift directions, and imaging modalities. Results: The remote review process was successfully carried out for 87 3D cases (out of 137 total cases, including 2-dimensional and 3D) during 2010. Frequent errors in submitted IGRT data and challenges in the review of image registration for some special cases were identified. Workarounds for these issues were developed. The average differences of registration results between reviewers and institutions ranged between 2 mm and 3 mm. Large discrepancies in the superior-inferior direction were found for megavoltage CT cases, owing to low spatial resolution in this direction for most megavoltage CT cases. Conclusion: This first experience indicated that remote review for 3D IGRT as part of QA

  16. Implementation of remote 3-dimensional image guided radiation therapy quality assurance for radiation therapy oncology group clinical trials.

    Science.gov (United States)

    Cui, Yunfeng; Galvin, James M; Parker, William; Breen, Stephen; Yin, Fang-Fang; Cai, Jing; Papiez, Lech S; Li, X Allen; Bednarz, Greg; Chen, Wenzhou; Xiao, Ying

    2013-01-01

    To report the process and initial experience of remote credentialing of three-dimensional (3D) image guided radiation therapy (IGRT) as part of the quality assurance (QA) of submitted data for Radiation Therapy Oncology Group (RTOG) clinical trials; and to identify major issues resulting from this process and analyze the review results on patient positioning shifts. Image guided radiation therapy datasets including in-room positioning CT scans and daily shifts applied were submitted through the Image Guided Therapy QA Center from institutions for the IGRT credentialing process, as required by various RTOG trials. A centralized virtual environment is established at the RTOG Core Laboratory, containing analysis tools and database infrastructure for remote review by the Physics Principal Investigators of each protocol. The appropriateness of IGRT technique and volumetric image registration accuracy were evaluated. Registration accuracy was verified by repeat registration with a third-party registration software system. With the accumulated review results, registration differences between those obtained by the Physics Principal Investigators and from the institutions were analyzed for different imaging sites, shift directions, and imaging modalities. The remote review process was successfully carried out for 87 3D cases (out of 137 total cases, including 2-dimensional and 3D) during 2010. Frequent errors in submitted IGRT data and challenges in the review of image registration for some special cases were identified. Workarounds for these issues were developed. The average differences of registration results between reviewers and institutions ranged between 2 mm and 3 mm. Large discrepancies in the superior-inferior direction were found for megavoltage CT cases, owing to low spatial resolution in this direction for most megavoltage CT cases. This first experience indicated that remote review for 3D IGRT as part of QA for RTOG clinical trials is feasible and effective

  17. Radiation Therapy: Professions in Radiation Therapy

    Science.gov (United States)

    ... Resources Professions Site Index A-Z Professions in Radiation Therapy Radiation Oncologist Therapeutic Medical Physicist Radiation Therapist Dosimetrist Radiation Oncology Nurse Social Worker Dietitian Radiation Oncologist Radiation oncologists are physicians who oversee the ...

  18. The Clinical Development of Molecularly Targeted Agents in Combination With Radiation Therapy: A Pharmaceutical Perspective

    Energy Technology Data Exchange (ETDEWEB)

    Ataman, Ozlem U., E-mail: ouataman@hotmail.com [Global Medicines Development, AstraZeneca, Alderley Park, Macclesfield, Cheshire (United Kingdom); Sambrook, Sally J. [Global Medicines Development, AstraZeneca, Alderley Park, Macclesfield, Cheshire (United Kingdom); Wilks, Chris [Innovative Medicines, AstraZeneca, Alderley Park, Macclesfield, Cheshire (United Kingdom); Lloyd, Andrew [Global Medicines Development, AstraZeneca, Alderley Park, Macclesfield, Cheshire (United Kingdom); Taylor, Amanda E. [Yellow Delaney Communications Ltd, Wilmslow, Cheshire (United Kingdom); Wedge, Stephen R. [Innovative Medicines, AstraZeneca, Alderley Park, Macclesfield, Cheshire (United Kingdom)

    2012-11-15

    Summary: This paper explores historical and current roles of pharmaceutical industry sponsorship of clinical trials testing radiation therapy combinations with molecularly targeted agents and attempts to identify potential solutions to expediting further combination studies. An analysis of clinical trials involving a combination of radiation therapy and novel cancer therapies was performed. Ongoing and completed trials were identified by searching the (clinicaltrials.gov) Web site, in the first instance, with published trials of drugs of interest identified through American Society of Clinical Oncology, European CanCer Organisation/European Society for Medical Oncology, American Society for Radiation Oncology/European Society for Therapeutic Radiology and Oncology, and PubMed databases and then cross-correlated with (clinicaltrials.gov) protocols. We examined combination trials involving radiation therapy with novel agents and determined their distribution by tumor type, predominant molecular mechanisms examined in combination to date, timing of initiation of trials relative to a novel agent's primary development, and source of sponsorship of such trials. A total of 564 studies of targeted agents in combination with radiation therapy were identified with or without concomitant chemotherapy. Most studies were in phase I/II development, with only 36 trials in phase III. The tumor site most frequently studied was head and neck (26%), followed by non-small cell lung cancer. Pharmaceutical companies were the sponsors of 33% of studies overall and provided support for only 16% of phase III studies. In terms of pharmaceutical sponsorship, Genentech was the most active sponsor of radiation therapy combinations (22%), followed by AstraZeneca (14%). Most radiation therapy combination trials do not appear to be initiated until after drug approval. In phase III studies, the most common (58%) primary endpoint was overall survival. Collectively, this analysis suggests that

  19. Radiation therapy physics

    CERN Document Server

    Hendee, William R; Hendee, Eric G

    2013-01-01

    The Third Edition of Radiation Therapy Physics addresses in concise fashion the fundamental diagnostic radiologic physics principles as well as their clinical implications. Along with coverage of the concepts and applications for the radiation treatment of cancer patients, the authors have included reviews of the most up-to-date instrumentation and critical historical links. The text includes coverage of imaging in therapy planning and surveillance, calibration protocols, and precision radiation therapy, as well as discussion of relevant regulation and compliance activities. It contains an upd

  20. Clinical characteristics and changes in living quality of patients with radiation encephalopathy induced by radiation therapy for treating nasopharyngeal carcinoma

    Institute of Scientific and Technical Information of China (English)

    Yamei Tang; Yi Li; Fusheng Zhang; Yunlin Liu; Haihong Zhou; Jianhong Ye; Yigang Xing

    2007-01-01

    BACKGROUND: Radiation encephalopathy (RE) caused by radiation therapy of nasopharyngeal carcinoma severely influences patients' quality of life (QOL). The factors, which influence such patients' QOL, have not been confirmed.OBJECTIVE: To observe the clinical and imageological characteristics of patients with radiation therapy of nasopharyngeal carcinoma-induced RE and the changes in QOL, and analyze QOL influencing factors.DESIGN: Retrospective case analysis.SETTING: Department of Neurology, the Second Affiliated Hospital of Sun Yat-sen University.PARTICIPANTS: Eighty-nine inpatients or outpatients with RE induced by radiation therapy of nasopharyngeal carcinoma admitted to Sun Yat-sen University Cancer Center and Department of Neurology,the Second Affiliated Hospital of Sun Yat-sen University from March 1994 to August 2004 were involved in this experiment. They all met the diagnosis criteria of RE from MERRITT'S neurology (10th edition).Thirty-three involved patients were randomly chosen as RE group. Another 34 concurrent inpatients or outpatients with nasopharyngeal carcinoma who received radiation therapy but without RE were chosen as control group. Informed consents of detected items were obtained from all the involved subjects.Quality of Life Questionnaire abbreviated version (WHOQOL-BREF) was used for on-the-spot evaluation.High points of WHOQOL-BREF indicated better QOL. The Late Effects on Normal Tissues - Subjective,Objective, Management and Analytic (LENT-SOMA) scale for evaluating radiation injury was used to evaluate headache and neurologic disorder of patients with RE induced by radiation therapy of nasopharyngeal carcinoma. The evaluation was graded into 5 degrees. High degrees indicted severer clinical therapy ending to onset), initial symptoms, common symptoms, imageological characteristics, QOL and other software.MAIN OUTCOME MEASURES: QOL and clinical characteristics of patients with RE induced by radiation therapy of nasopharyngeal carcinoma as

  1. Clinical results of radiation therapy for thymic tumors

    Energy Technology Data Exchange (ETDEWEB)

    Masunaga, Shin-ichiro; Ono, Koji; Hiraoka, Masahiro; Kitakabu, Yoshizumi; Abe, Mitsuyuki (Kyoto Univ. (Japan). Faculty of Medicine); Takahashi, Masaji; Fushiki, Masato

    1991-12-01

    From August 1968 to December 1989, 58 patients with thymoma, and 3 with thymic carcinoma were treated by radiotherapy using cobalt-60 gamma ray. Eleven cases were treated by radiotherapy alone, 1 by preoperative radiotherapy, 45 by postoperative radiotherapy, and 4 in combination with intraoperative radiotherapy. In thymoma, postoperative and intraoperative radiotherapies were effective, while concerning postoperative radiotherapy, operability was the major factor influencing survival and local control, and Stage I and II tumors resected totally or subtotally as well as Stage III tumors resected totally were good indications for such therapy. Cases of thymoma complicated by myasthenia gravis had a longer survival time and better local control rate than those without it. In the treatment of thymic carcinoma, it was suggested that the tumors can be controlled using complete resection and sufficient postoperative radiotherpay. (author).

  2. Clinical benefit of palliative radiation therapy in advanced gastric cancer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Michelle M.; Rana, Vishal; Janjan, Nora A. (Dept. of Radiation Oncology, Univ. of Texas M.D. Anderson Cancer Center, Houston, Texas (US)) (and others)

    2008-03-15

    Background. Local progression of advanced gastric cancer often manifests as bleeding, dysphagia/obstruction, or pain. We evaluated the magnitude and durability of palliation with radiotherapy (RT). Material and methods. From 1996 to 2004, 37 gastric cancer patients were treated with palliative RT (median dose 35Gy in 14 fractions). Nearly two-thirds of all patients received concurrent chemoradiation therapy (CRT). Index pre-treatment symptoms were gastric bleeding, dysphagia/obstruction, and pain in 54%, 43%, and 19% of patients, respectively. Results. The rates of control for bleeding, dysphagia/obstruction, and pain were 70% (14/20), 81% (13/16), and 86% (6/7), respectively. These symptoms were controlled without additional interventions for a median of 70%, 81%, and 49% of the patient's remaining life, respectively. Patients receiving CRT had a trend towards better median overall survival than those receiving RT alone (6.7 vs. 2.4 months, p=0.08). Lower (<41 Gy) biologically effective dose (BED, assuming an alpha/beta ratio of 10 for early responding tissues) predicted for poorer local control (6-month local control 70% vs. 100%, p=0.05) while T4 tumors had a trend towards inferior local control (6-month LC 56% vs. 100%, p=0.06). Discussion. Palliative RT controls symptoms for most of the remaining life in the majority of gastric cancer patients. The role of a higher dose of RT (BED >= 41 Gy), especially in patients with T4 tumors, remains to be established. In order to accurately define the role for radiotherapy in palliation of these symptoms, prospective randomized studies need to be conducted.

  3. Proton Radiation Therapy for Head and Neck Cancer: A Review of the Clinical Experience to Date

    Energy Technology Data Exchange (ETDEWEB)

    Holliday, Emma B.; Frank, Steven J., E-mail: sjfrank@mdanderson.org

    2014-06-01

    Proton beam radiation has been used for cancer treatment since the 1950s, but recent increasing interest in this form of therapy and the construction of hospital-based and clinic-based facilities for its delivery have greatly increased both the number of patients and the variety of tumors being treated with proton therapy. The mass of proton particles and their unique physical properties (ie, the Bragg peak) allow proton therapy to spare normal tissues distal to the tumor target from incidental irradiation. Initial observations show that proton therapy is particularly useful for treating tumors in challenging locations close to nontarget critical structures. Specifically, improvements in local control outcomes for patients with chordoma, chonodrosarcoma, and tumors in the sinonasal regions have been reported in series using proton. Improved local control and survival outcomes for patients with cancer of the head and neck region have also been seen with the advent of improvements in better imaging and multimodality therapy comprising surgery, radiation therapy, and chemotherapy. However, aggressive local therapy in the proximity of critical normal structures to tumors in the head and neck region may produce debilitating early and late toxic effects. Great interest has been expressed in evaluating whether proton therapy can improve outcomes, especially early and late toxicity, when used in the treatment of head and neck malignancies. This review summarizes the progress made to date in addressing this question.

  4. Predictors of urinary and rectal toxicity after external conformed radiation therapy in prostate cancer: Correlation between clinical, tumour and dosimetric parameters and radical and postoperative radiation therapy.

    Science.gov (United States)

    Martínez-Arribas, C M; González-San Segundo, C; Cuesta-Álvaro, P; Calvo-Manuel, F A

    2017-06-15

    To determine rectal and urinary toxicity after external beam radiation therapy (EBRT), assessing the results of patients who undergo radical or postoperative therapy for prostate cancer (pancreatic cancer) and their correlation with potential risk factors. A total of 333 patients were treated with EBRT. Of these, 285 underwent radical therapy and 48 underwent postoperative therapy (39 cases of rescue and 9 of adjuvant therapy). We collected clinical, tumour and dosimetric variable to correlate with toxicity parameters. We developed decision trees based on the degree of statistical significance. The rate of severe acute toxicity, both urinary and rectal, was 5.4% and 1.5%, respectively. The rate of chronic toxicity was 4.5% and 2.7%, respectively. Twenty-seven patients presented haematuria, and 9 presented haemorrhagic rectitis. Twenty-five patients (7.5%) presented permanent limiting sequela. The patients with lower urinary tract symptoms prior to the radiation therapy presented poorer tolerance, with greater acute bladder toxicity (P=0.041). In terms of acute rectal toxicity, 63% of the patients with mean rectal doses >45Gy and anticoagulant/antiplatelet therapy developed mild toxicity compared with 37% of the patients with mean rectal doses <45 Gy and without anticoagulant therapy. We were unable to establish predictors of chronic toxicity in the multivariate analysis. The long-term sequelae were greater in the patients who underwent urological operations prior to the radiation therapy and who were undergoing anticoagulant therapy. The tolerance to EBRT was good, and severe toxicity was uncommon. Baseline urinary symptoms constitute the predictor that most influenced the acute urinary toxicity. Rectal toxicity is related to the mean rectal dose and with anticoagulant/antiplatelet therapy. There were no significant differences in severe toxicity between radical versus postoperative radiation therapy. Copyright © 2017 AEU. Publicado por Elsevier España, S

  5. Bystander effects and their implications for clinical radiation therapy: Insights from multiscale in silico experiments.

    Science.gov (United States)

    Powathil, Gibin G; Munro, Alastair J; Chaplain, Mark A J; Swat, Maciej

    2016-07-21

    Radiotherapy is a commonly used treatment for cancer and is usually given in varying doses. At low radiation doses relatively few cells die as a direct response to radiation but secondary radiation effects, such as DNA mutation or bystander phenomena, may affect many cells. Consequently it is at low radiation levels where an understanding of bystander effects is essential in designing novel therapies with superior clinical outcomes. In this paper, we use a hybrid multiscale mathematical model to study the direct effects of radiation as well as radiation-induced bystander effects on both tumour cells and normal cells. We show that bystander responses play a major role in mediating radiation damage to cells at low-doses of radiotherapy, doing more damage than that due to direct radiation. The survival curves derived from our computational simulations showed an area of hyper-radiosensitivity at low-doses that are not obtained using a traditional radiobiological model. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Clinical applications of stereotactic radiation therapy for oligometastatic cancer patients: a disease-oriented approach

    Science.gov (United States)

    Ricardi, Umberto; Badellino, Serena; Filippi, Andrea Riccardo

    2016-01-01

    Oligometastases from solid tumors are currently recognized as a distinct clinical entity, corresponding to an intermediate state between local and widespread disease. It has been suggested that local ablative therapies (including surgery, radiofrequency ablation and radiation therapy) play an important role in this setting, in combination or not with systemic therapies, particularly in delaying disease progression and hopefully in increasing the median survival time. Stereotactic body radiation therapy (SBRT) rapidly emerged in recent years as one of the most effective and less toxic local treatment modalities for lung, liver, adrenal, brain and bone metastases. The aim of this review was to focus on its clinical role for oligometastatic disease in four major cancer subtypes: lung, breast, colorectal and prostate. On the basis of the available evidence, SBRT is able to provide high rates of local tumor control without significant toxicity. Its global impact on survival is uncertain; however, in specific subpopulations of oligometastatic patients there is a trend towards a significant improvement in progression-free and overall survival rates; these important data might be used as a platform for clinical decision-making and establish the basis for the current and future prospective trials investigating its role with or without systemic treatments. PMID:26962198

  7. The lag time in initiating clinical testing of new drugs in combination with radiation therapy, a significant barrier to progress?

    OpenAIRE

    Blumenfeld, P; Pfeffer, R M; Symon, Z; Den, R B; Dicker, A.P.; Raben, D.; Lawrence, Y R

    2014-01-01

    Background: The clinical development of new drugs with radiation appears to be limited. We hypothesised that phase I clinical trials with radiation therapy (RT) are initiated too late into a new drug's lifetime, impeding the ability to complete RT–drug development programmes before patent expiration. Methods: We identified novel drug–radiation phase I combination trials performed between 1980 and 2012 within the PubMed and ClinicalTrials.gov databases. Data gathered for each drug included: da...

  8. Biological equivalent dose studies for dose escalation in the stereotactic synchrotron radiation therapy clinical trials

    Energy Technology Data Exchange (ETDEWEB)

    Prezado, Y.; Fois, G.; Edouard, M.; Nemoz, C.; Renier, M.; Requardt, H.; Esteve, F.; Adam, JF.; Elleaume, H.; Bravin, A., E-mail: prezado@esrf.fr [ID17 Biomedical Beamline, European Synchrotron Radiation Facility (ESRF), 6 rue Jules Horowitz, BP 220, 38043 Grenoble Cedex (France)

    2009-03-15

    Synchrotron radiation is an innovative tool for the treatment of brain tumors. In the stereotactic synchrotron radiation therapy (SSRT) technique a radiation dose enhancement specific to the tumor is obtained. The tumor is loaded with a high atomic number (Z) element and it is irradiated in stereotactic conditions from several entrance angles. The aim of this work was to assess dosimetric properties of the SSRT for preparing clinical trials at the European Synchrotron Radiation Facility (ESRF). To estimate the possible risks, the doses received by the tumor and healthy tissues in the future clinical conditions have been calculated by using Monte Carlo simulations (PENELOPE code). The dose enhancement factors have been determined for different iodine concentrations in the tumor, several tumor positions, tumor sizes, and different beam sizes. A scheme for the dose escalation in the various phases of the clinical trials has been proposed. The biological equivalent doses and the normalized total doses received by the skull have been calculated in order to assure that the tolerance values are not reached.

  9. Global Harmonization of Quality Assurance Naming Conventions in Radiation Therapy Clinical Trials

    Energy Technology Data Exchange (ETDEWEB)

    Melidis, Christos, E-mail: christos.melidis@eortc.be [European Organization for the Research and Treatment of Cancer–Radiation Oncology Group (EORTC-ROG), Radiation Therapy Quality Assurance (RTQA), Brussels (Belgium); Bosch, Walther R. [Washington University, representing Advanced Technology Consortium, Radiation Oncology, St. Louis, Missouri (United States); Izewska, Joanna [Dosimetry Laboratory, International Atomic Energy Agency, Vienna (Austria); Fidarova, Elena; Zubizarreta, Eduardo [Applied Radiation Biology and Radiotherapy Section, International Atomic Energy Agency, Vienna (Austria); Ulin, Kenneth [Department of Radiation Oncology, University of Massachusetts Medical School, Representing Quality Assurance Review Center, Worcester, Massachusetts (United States); Ishikura, Satoshi [Department of Radiation Oncology, Juntendo University, Representing Japan Clinical Oncology Group, RTQA, Tokyo (Japan); Followill, David [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Representing Radiological Physics Center, RTQA, Houston, Texas (United States); Galvin, James [Department of Radiation Oncology, Thomas Jefferson University, Representing Radiation Therapy Oncology Group, RTQA, Philadelphia, Pennsylvania (United States); Haworth, Annette [Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, representing TransTasman Radiation Oncology Group (TROG) Cancer Research, Newcastle (Australia); Besuijen, Deidre [North West Cancer Centre, Representing TROG Cancer Research, Newcastle (Australia); Clark, Clark H. [Department of Medical Physics, St. Luke' s Cancer Centre, Royal Surrey County Hospital, Guildford, Surrey and National Physical Laboratory, Teddington, Middlesex, representing Radiation Therapy Trials Quality Assurance (RTTQA) (United Kingdom); Miles, Elizabeth; Aird, Edwin [Mount Vernon Cancer Centre, Northwood, Middlesex representing RTTQA (United Kingdom); and others

    2014-12-01

    Purpose: To review the various radiation therapy quality assurance (RTQA) procedures used by the Global Clinical Trials RTQA Harmonization Group (GHG) steering committee members and present the harmonized RTQA naming conventions by amalgamating procedures with similar objectives. Methods and Materials: A survey of the GHG steering committee members' RTQA procedures, their goals, and naming conventions was conducted. The RTQA procedures were classified as baseline, preaccrual, and prospective/retrospective data capture and analysis. After all the procedures were accumulated and described, extensive discussions took place to come to harmonized RTQA procedures and names. Results: The RTQA procedures implemented within a trial by the GHG steering committee members vary in quantity, timing, name, and compliance criteria. The procedures of each member are based on perceived chances of noncompliance, so that the quality of radiation therapy planning and treatment does not negatively influence the trial measured outcomes. A comparison of these procedures demonstrated similarities among the goals of the various methods, but the naming given to each differed. After thorough discussions, the GHG steering committee members amalgamated the 27 RTQA procedures to 10 harmonized ones with corresponding names: facility questionnaire, beam output audit, benchmark case, dummy run, complex treatment dosimetry check, virtual phantom, individual case review, review of patients' treatment records, and protocol compliance and dosimetry site visit. Conclusions: Harmonized RTQA harmonized naming conventions, which can be used in all future clinical trials involving radiation therapy, have been established. Harmonized procedures will facilitate future intergroup trial collaboration and help to ensure comparable RTQA between international trials, which enables meta-analyses and reduces RTQA workload for intergroup studies.

  10. Multicentre dose audit for clinical trials of radiation therapy in Asia.

    Science.gov (United States)

    Mizuno, Hideyuki; Fukuda, Shigekazu; Fukumura, Akifumi; Nakamura, Yuzuru-Kutsutani; Jianping, Cao; Cho, Chul-Koo; Supriana, Nana; Dung, To Anh; Calaguas, Miriam Joy; Devi, C R Beena; Chansilpa, Yaowalak; Banu, Parvin Akhter; Riaz, Masooma; Esentayeva, Surya; Kato, Shingo; Karasawa, Kumiko; Tsujii, Hirohiko

    2016-11-17

    A dose audit of 16 facilities in 11 countries has been performed within the framework of the Forum for Nuclear Cooperation in Asia (FNCA) quality assurance program. The quality of radiation dosimetry varies because of the large variation in radiation therapy among the participating countries. One of the most important aspects of international multicentre clinical trials is uniformity of absolute dose between centres. The National Institute of Radiological Sciences (NIRS) in Japan has conducted a dose audit of participating countries since 2006 by using radiophotoluminescent glass dosimeters (RGDs). RGDs have been successfully applied to a domestic postal dose audit in Japan. The authors used the same audit system to perform a dose audit of the FNCA countries. The average and standard deviation of the relative deviation between the measured and intended dose among 46 beams was 0.4% and 1.5% (k = 1), respectively. This is an excellent level of uniformity for the multicountry data. However, of the 46 beams measured, a single beam exceeded the permitted tolerance level of ±5%. We investigated the cause for this and solved the problem. This event highlights the importance of external audits in radiation therapy.

  11. The Adoption of New Adjuvant Radiation Therapy Modalities Among Medicare Beneficiaries With Breast Cancer: Clinical Correlates and Cost Implications

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Kenneth B. [Cancer Outcomes, Public Policy, and Effectiveness Research (COPPER) Center, Yale Comprehensive Cancer Center and Yale University School of Medicine, New Haven, Connecticut (United States); Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut (United States); Soulos, Pamela R. [Cancer Outcomes, Public Policy, and Effectiveness Research (COPPER) Center, Yale Comprehensive Cancer Center and Yale University School of Medicine, New Haven, Connecticut (United States); Section of General Internal Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut (United States); Herrin, Jeph [Cancer Outcomes, Public Policy, and Effectiveness Research (COPPER) Center, Yale Comprehensive Cancer Center and Yale University School of Medicine, New Haven, Connecticut (United States); Health Research and Educational Trust, Chicago, Illinois (United States); Yu, James B. [Cancer Outcomes, Public Policy, and Effectiveness Research (COPPER) Center, Yale Comprehensive Cancer Center and Yale University School of Medicine, New Haven, Connecticut (United States); Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut (United States); Long, Jessica B. [Cancer Outcomes, Public Policy, and Effectiveness Research (COPPER) Center, Yale Comprehensive Cancer Center and Yale University School of Medicine, New Haven, Connecticut (United States); Section of General Internal Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut (United States); Dostaler, Edward [Section of General Internal Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut (United States); and others

    2013-04-01

    Purpose: New radiation therapy modalities have broadened treatment options for older women with breast cancer, but it is unclear how clinical factors, geographic region, and physician preference affect the choice of radiation therapy modality. Methods and Materials: We used the Surveillance, Epidemiology, and End Results-Medicare database to identify women diagnosed with stage I-III breast cancer from 1998 to 2007 who underwent breast-conserving surgery. We assessed the temporal trends in, and costs of, the adoption of intensity modulated radiation therapy (IMRT) and brachytherapy. Using hierarchical logistic regression, we evaluated the relationship between the use of these new modalities and patient and regional characteristics. Results: Of 35,060 patients, 69.9% received conventional external beam radiation therapy (EBRT). Although overall radiation therapy use remained constant, the use of IMRT increased from 0.0% to 12.6% from 1998 to 2007, and brachytherapy increased from 0.7% to 9.0%. The statistical variation in brachytherapy use attributable to the radiation oncologist and geographic region was 41.4% and 9.5%, respectively (for IMRT: 23.8% and 22.1%, respectively). Women undergoing treatment at a free-standing radiation facility were significantly more likely to receive IMRT than were women treated at a hospital-based facility (odds ratio for IMRT vs EBRT: 3.89 [95% confidence interval, 2.78-5.45]). No such association was seen for brachytherapy. The median radiation therapy cost per treated patient increased from $5389 in 2001 to $8539 in 2007. Conclusions: IMRT and brachytherapy use increased substantially from 1998 to 2007; overall, radiation therapy costs increased by more than 50%. Radiation oncologists played an important role in treatment choice for both types of radiation therapy, whereas geographic region played a bigger role in the use of IMRT than brachytherapy.

  12. Hendee's radiation therapy physics

    CERN Document Server

    Pawlicki, Todd; Starkschall, George

    2016-01-01

    The publication of this fourth edition, more than ten years on from the publication of Radiation Therapy Physics third edition, provides a comprehensive and valuable update to the educational offerings in this field. Led by a new team of highly esteemed authors, building on Dr Hendee’s tradition, Hendee’s Radiation Therapy Physics offers a succinctly written, fully modernised update. Radiation physics has undergone many changes in the past ten years: intensity-modulated radiation therapy (IMRT) has become a routine method of radiation treatment delivery, digital imaging has replaced film-screen imaging for localization and verification, image-guided radiation therapy (IGRT) is frequently used, in many centers proton therapy has become a viable mode of radiation therapy, new approaches have been introduced to radiation therapy quality assurance and safety that focus more on process analysis rather than specific performance testing, and the explosion in patient-and machine-related data has necessitated an ...

  13. Radioprotectors and Radiomitigators for Improving Radiation Therapy: The Small Business Innovation Research (SBIR) Gateway for Accelerating Clinical Translation.

    Science.gov (United States)

    Prasanna, Pataje G S; Narayanan, Deepa; Hallett, Kory; Bernhard, Eric J; Ahmed, Mansoor M; Evans, Gregory; Vikram, Bhadrasain; Weingarten, Michael; Coleman, C Norman

    2015-09-01

    Although radiation therapy is an important cancer treatment modality, patients may experience adverse effects. The use of a radiation-effect modulator may help improve the outcome and health-related quality of life (HRQOL) of patients undergoing radiation therapy either by enhancing tumor cell killing or by protecting normal tissues. Historically, the successful translation of radiation-effect modulators to the clinic has been hindered due to the lack of focused collaboration between academia, pharmaceutical companies and the clinic, along with limited availability of support for such ventures. The U.S. Government has been developing medical countermeasures against accidental and intentional radiation exposures to mitigate the risk and/or severity of acute radiation syndrome (ARS) and the delayed effects of acute radiation exposures (DEARE), and there is now a drug development pipeline established. Some of these medical countermeasures could potentially be repurposed for improving the outcome of radiation therapy and HRQOL of cancer patients. With the objective of developing radiation-effect modulators to improve radiotherapy, the Small Business Innovation Research (SBIR) Development Center at the National Cancer Institute (NCI), supported by the Radiation Research Program (RRP), provided funding to companies from 2011 to 2014 through the SBIR contracts mechanism. Although radiation-effect modulators collectively refer to radioprotectors, radiomitigators and radiosensitizers, the focus of this article is on radioprotection and mitigation of radiation injury. This specific SBIR contract opportunity strengthened existing partnerships and facilitated new collaborations between academia and industry. In this commentary, we assess the impact of this funding opportunity, outline the review process, highlight the organ/site-specific disease needs in the clinic for the development of radiation-effect modulators, provide a general understanding of a framework for gathering

  14. Maximizing the probability of satisfying the clinical goals in radiation therapy treatment planning under setup uncertainty

    Energy Technology Data Exchange (ETDEWEB)

    Fredriksson, Albin, E-mail: albin.fredriksson@raysearchlabs.com; Hårdemark, Björn [RaySearch Laboratories, Sveavägen 44, Stockholm SE-111 34 (Sweden); Forsgren, Anders [Optimization and Systems Theory, Department of Mathematics, KTH Royal Institute of Technology, Stockholm SE-100 44 (Sweden)

    2015-07-15

    Purpose: This paper introduces a method that maximizes the probability of satisfying the clinical goals in intensity-modulated radiation therapy treatments subject to setup uncertainty. Methods: The authors perform robust optimization in which the clinical goals are constrained to be satisfied whenever the setup error falls within an uncertainty set. The shape of the uncertainty set is included as a variable in the optimization. The goal of the optimization is to modify the shape of the uncertainty set in order to maximize the probability that the setup error will fall within the modified set. Because the constraints enforce the clinical goals to be satisfied under all setup errors within the uncertainty set, this is equivalent to maximizing the probability of satisfying the clinical goals. This type of robust optimization is studied with respect to photon and proton therapy applied to a prostate case and compared to robust optimization using an a priori defined uncertainty set. Results: Slight reductions of the uncertainty sets resulted in plans that satisfied a larger number of clinical goals than optimization with respect to a priori defined uncertainty sets, both within the reduced uncertainty sets and within the a priori, nonreduced, uncertainty sets. For the prostate case, the plans taking reduced uncertainty sets into account satisfied 1.4 (photons) and 1.5 (protons) times as many clinical goals over the scenarios as the method taking a priori uncertainty sets into account. Conclusions: Reducing the uncertainty sets enabled the optimization to find better solutions with respect to the errors within the reduced as well as the nonreduced uncertainty sets and thereby achieve higher probability of satisfying the clinical goals. This shows that asking for a little less in the optimization sometimes leads to better overall plan quality.

  15. The physics of radiation therapy

    CERN Document Server

    Khan, Faiz M

    2009-01-01

    Dr. Khan's classic textbook on radiation oncology physics is now in its thoroughly revised and updated Fourth Edition. It provides the entire radiation therapy team—radiation oncologists, medical physicists, dosimetrists, and radiation therapists—with a thorough understanding of the physics and practical clinical applications of advanced radiation therapy technologies, including 3D-CRT, stereotactic radiotherapy, HDR, IMRT, IGRT, and proton beam therapy. These technologies are discussed along with the physical concepts underlying treatment planning, treatment delivery, and dosimetry. This Fourth Edition includes brand-new chapters on image-guided radiation therapy (IGRT) and proton beam therapy. Other chapters have been revised to incorporate the most recent developments in the field. This edition also features more than 100 full-color illustrations throughout.

  16. MO-B-BRD-01: Creation of 3D Printed Phantoms for Clinical Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Ehler, E. [University of Minnesota (United States)

    2015-06-15

    This session is designed so that the learning objectives are practical. The intent is that the attendee may take home an understanding of not just the technology, but also the logistical steps necessary to execute these 3D printing techniques in the clinic. Four practical 3D printing topics will be discussed: (i) Creating bolus and compensators for photon machines; (ii) tools for proton therapy; (iii) clinical applications in imaging; (iv) custom phantom design for clinic and research use. The use of 3D printers within the radiation oncology setting is proving to be a useful tool for creating patient specific bolus and compensators with the added benefit of cost savings. Creating the proper protocol is essential to ensuring that the desired effect is achieved and modeled in the treatment planning system. The critical choice of printer material (since it determines the interaction with the radiation) will be discussed. Selection of 3D printer type, design methods, verification of dose calculation, and the printing process will be detailed to give the basis for establishing your own protocol for electron and photon fields. A practical discussion of likely obstacles that may be encountered will be included. The diversity of systems and techniques in proton facilities leads to different facilities having very different requirements for beam modifying hardware and quality assurance devices. Many departments find the need to design and fabricate facility-specific equipment, making 3D printing an attractive technology. 3D printer applications in proton therapy will be discussed, including beam filters and compensators, and the design of proton therapy specific quality assurance tools. Quality control specific to 3D printing in proton therapy will be addressed. Advantages and disadvantages of different printing technology for these applications will also be discussed. 3D printing applications using high-resolution radiology-based imaging data will be presented. This data

  17. Rational use of intensity-modulated radiation therapy: the importance of clinical outcome.

    Science.gov (United States)

    De Neve, Wilfried; De Gersem, Werner; Madani, Indira

    2012-01-01

    During the last 2 decades, intensity-modulated radiation therapy (IMRT) became a standard technique despite its drawbacks of volume delineation, planning, robustness of delivery, challenging quality assurance, and cost as compared with non-IMRT. The theoretic advantages of IMRT dose distributions are generally accepted, but the clinical advantages remain debatable because of the lack of clinical assessment of the effort that is required to overshadow the disadvantages. Rational IMRT use requires a positive advantage/drawback balance. Only 5 randomized clinical trials (RCTs), 3 in the breast and 2 in the head and neck, which compare IMRT with non-IMRT (2-dimensional technique in four fifths of the trials), have been published (as of March 2011), and all had toxicity as the primary endpoint. More than 50 clinical trials compared results of IMRT-treated patients with a non-IMRT group, mostly historical controls. RCTs systematically showed a lower toxicity in IMRT-treated patients, and the non-RCTs confirmed these findings. Toxicity reduction, counterbalancing the drawbacks of IMRT, was convincing for breast and head and neck IMRT. For other tumor sites, the arguments favoring IMRT are weaker because of the inability to control bias outside the randomized setting. For anticancer efficacy endpoints, like survival, disease-specific survival, or locoregional control, the balance between advantages and drawbacks is fraught with uncertainties because of the absence of robust clinical data.

  18. Fractionated stereotactic radiation therapy for intracranial benign tumor : preliminary results of clinical application

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dae Yong; Ahn, Yong Chan; Huh, Seung Jae [Samsung Medical Center, Syungkyunkwan Univ. College of Medicine, Seoul (Korea, Republic of)] (and others)

    1998-06-01

    With the development of stereotactic immobilization systems capable of reliable serial repositioning, fractionated stereotactic radiation therapy(FSRT) offers the potential for an improved treatment outcome by excellent dose delivery, and dose distribution characteristics with the favorable radio-biological properties of fractionated irradiation. We describe our initial experience using FSRT for the treatment of intracranial benign tumor. Between August 1995 and December 1996, 15 patients(7 males and 8 females aged 6-70 years) were treated with FSRT. The patients had the following diagnosis : pituitary adenoma(10) including one patient who previously had received radiotherapy, craniopharyngioma(2), acoustic neurinoma(1), meningioma(2). Using the Gill-Thomas-Cos-man relocatable head frame and multiple non-coplanar therapy, the daily dose of 2Gy was irradiated at 90% to 100% isodose surface of the isocenter. The collimator sizes ranged from 26mm to 70mm. In all patients except one follow-up lost, disease was well-controlled. Acute complication was negligible and no patient experienced cranial nerve neuropathies and radiation necrosis. In overall patient setup with scalp measurements, reproducibility was found to have mean of 1.1{+-}0.6mm from the baseline reading. Relocatable stereotactic system for FSRT is highly reproducible and comfortable. Although the follow-up period was relatively short, FSRT is considered to be a safe an effective radiation technique as the treatment of intracranial tumor. But the fractionation schedule(fraction size, overall treatment time and total dose) still remains to be solved by further clinical trials.

  19. A Clinical Concept for Interfractional Adaptive Radiation Therapy in the Treatment of Head and Neck Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Alexandra D., E-mail: Alexandra.Jensen@med.uni-heidelberg.de [Department of Radiation Oncology, University of Heidelberg, Heidelberg (Germany); Nill, Simeon [Department of Medical Physics, German Cancer Research Centre (DKFZ), Heidelberg (Germany); Huber, Peter E. [Clinical Co-Operation Unit Radiation Oncology, German Cancer Research Centre (DKFZ), Heidelberg (Germany); Bendl, Rolf [Department of Medical Physics, German Cancer Research Centre (DKFZ), Heidelberg (Germany); Debus, Juergen; Muenter, Marc W. [Department of Radiation Oncology, University of Heidelberg, Heidelberg (Germany)

    2012-02-01

    Purpose: To present an approach to fast, interfractional adaptive RT in intensity-modulated radiation therapy (IMRT) of head and neck tumors in clinical routine. Ensuring adequate patient position throughout treatment proves challenging in high-precision RT despite elaborate immobilization. Because of weight loss, treatment plans must be adapted to account for requiring supportive therapy incl. feeding tube or parenteral nutrition without treatment breaks. Methods and Materials: In-room CT position checks are used to create adapted IMRT treatment plans by stereotactic correlation to the initial setup, and volumes are adapted to the new geometry. New IMRT treatment plans are prospectively created on the basis of position control scans using the initial optimization parameters in KonRad without requiring complete reoptimization and thus facilitating quick replanning in daily routine. Patients treated for squamous cell head and neck cancer (SCCHN) in 2006-2007 were evaluated as to necessity/number of replannings, weight loss, dose, and plan parameters. Results: Seventy-two patients with SCCHN received IMRT to the primary site and lymph nodes (median dose 70.4 Gy). All patients received concomitant chemotherapy requiring supportive therapy by feeding tube or parenteral nutrition. Median weight loss was 7.8 kg, median volume loss was approximately 7%. Fifteen of 72 patients required adaptation of their treatment plans at least once. Target coverage was improved by up to 10.7% (median dose). The increase of dose to spared parotid without replanning was 11.7%. Replanning including outlining and optimization was feasible within 2 hours for each patient, and treatment could be continued without any interruptions. Conclusion: To preserve high-quality dose application, treatment plans must be adapted to anatomical changes. Replanning based on position control scans therefore presents a practical approach in clinical routine. In the absence of clinically usable online

  20. Non-invasive pre-clinical MR imaging of prostate tumor hypoxia for radiation therapy prognosis

    Directory of Open Access Journals (Sweden)

    Derek White

    2014-03-01

    patient stratification for clinical implementation.------------------------------Cite this article as: White DA, Mason RP. Non-invasive pre-clinical MR imaging of prostate tumor hypoxia for radiation therapy prognosis. Int J Cancer Ther Oncol 2014; 2(2:020243. DOI: 10.14319/ijcto.0202.43

  1. [Heavy particle radiation therapy].

    Science.gov (United States)

    Lozares, S; Mañeru, F; Pellejero, S

    2009-01-01

    The characteristics of radiation formed by heavy particles make it a highly useful tool for therapeutic use. Protons, helium nuclei or carbon ions are being successfully employed in radiotherapy installations throughout the world. This article sets out the physical and technological foundations that make these radiation particles suitable for attacking white volume, as well as the different ways of administering treatment. Next, the main clinical applications are described, which show the therapeutic advantages in some of the pathologies most widely employed in proton and hadron therapy centres at present. Under continuous study, the clinical use of heavy particles appears to be an enormously promising path of advance in comparison with classical technologies, both in tumour coverage and in reducing dosages in surrounding tissue.

  2. Comparative evaluation of hydroxyproline in urine and in serum as a possible clinical parameter for radiation-induced destruction of connective tissue due to fractionated radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Reinartz, G.; Wurst, F.; Struck, H.; Dombrowa, B.

    1981-06-01

    In the course of postoperative fractionated radiation therapy hydroxyproline was evaluated as a biochemical parameter of radiation damage in 60 patients with different tumour diseases. At different times before, during and after therapy, hydroxyproline in serum was evaluated according to the method of Dabew and Struck, hydroxyproline in urine according to the test combination 'hypronosticon' (Organon-Technika). There was no correlation to be found between hydroxyproline in serum or urine, clinical course of disease and radiation dose. Possible explanations were discussed.

  3. Clinical Outcome after Breast Conserving Surgery and Radiation Therapy for Early Breast Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Heung Lae; Kim, Cheo Ljin; Park, Sung Kwang; Oh, Min Kyung; Lee, Jin Yong; Ahn, Ki Jung [Inje University College of Medicine, Busan (Korea, Republic of)

    2008-12-15

    .0001) and higher relapse rates (p=0.0507). However, patients with close margins were at equal risk of relapse and disease-free survival as with negative margins (p=1.000). Patients younger than 40 years of age had higher relapse rates (9.3% vs. 0%) and lower disease-free survival periods, but the difference was not statistically significant (p=0.1255). The relapse rates for patients with tumors was 14% for tumor stage T2, compared to 0% for tumor stage T1 tumors (p=0.0284). A univariate analysis found that disease-free survival and relapse rates, T stage, positive resection margin and mutation of p53 were significant factors for clinical outcome. Conclusion: The results of this study have shown that breast conservation surgery and radiation therapy in early breast cancer patients has proven to be a safe treatment modality with a low relapse rate and high disease-free survival rate. The patients with a positive margin, T2 stage, and mutation of p53 are associated with statistically higher relapse rates and lower disease-free survival.

  4. Preliminary analysis of a clinical trial for threedimensional conformal radiation therapy after conservative surgery

    Institute of Scientific and Technical Information of China (English)

    Hui Yao; Jinlan Gong; Li Li; Yun Wang; Xiaofeng Wu; Kezhu Hou

    2012-01-01

    Objective: The aim of this study was to evaluate the efficacy, complications and cosmetic results of three-dimensional conformal radiation therapy for early breast cancer after conservative surgery. Methods: Among 80 patients, 44 were treated by modified radical mastectomy followed by adjuvant radiotherapy (modified radical mastectomy, MMT), 36 were treated with breast conservative surgery with adjuvant irradiation [breast-conservation therapy (BCT)]. Tangential fields were used to deliver 6 MV X-ray beams to a total dose of 50 Gy. Another 16 Gy was added to the tumor bed with 6-9 MeV electron beams for BCT. Results: In MMT group, the local control, metastasis-free and death were 41, 41 and 1 respectively; in BCT group, the local control, metastasis-free and death were 35, 35 and 0. The difference of the above two indicators between the two groups showeed no statistical insignificance (P > 0. 05). In MMT group, 32 patients suffer radiation dermatitis above 2-level, 12 patients suffer radiation pneumonia, and 10 patients suffer edema of illness-side upper extremity; in BCT group, the above indicators were only 6, 2 and 1 respectively. Three months, six months and one year after radiation therapy, 90%, 92% and 95% patients were assessed as excellence in fine cosmetic state in BCT group. Conclusion: The effects of threedimensional conformal radiation therapy after conservative surgery are the same as that of modified radical mastectomy, while the former has better cosmetic results and lower radiation therapy induced complications.

  5. Radiation therapy -- skin care

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000735.htm Radiation therapy - skin care To use the sharing features ... this page, please enable JavaScript. When you have radiation treatment for cancer, you may have some changes ...

  6. Clinical evaluation of a commercial orthopedic metal artifact reduction tool for CT simulations in radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Li Hua; Noel, Camille; Chen, Haijian; Harold Li, H.; Low, Daniel; Moore, Kevin; Klahr, Paul; Michalski, Jeff; Gay, Hiram A.; Thorstad, Wade; Mutic, Sasa [Department of Radiation Oncology, Washington University, St. Louis, Missouri 63110 (United States); Department of Radiation Oncology, University of California Los Angeles, Los Angeles, California 90095 (United States); Department of Radiation Oncology, University of California San Diego, San Diego, California 92093 (United States); Philips Healthcare System, Cleveland, Ohio 44143 (United States); Department of Radiation Oncology, Washington University, St. Louis, Missouri 63110 (United States)

    2012-12-15

    Purpose: Severe artifacts in kilovoltage-CT simulation images caused by large metallic implants can significantly degrade the conspicuity and apparent CT Hounsfield number of targets and anatomic structures, jeopardize the confidence of anatomical segmentation, and introduce inaccuracies into the radiation therapy treatment planning process. This study evaluated the performance of the first commercial orthopedic metal artifact reduction function (O-MAR) for radiation therapy, and investigated its clinical applications in treatment planning. Methods: Both phantom and clinical data were used for the evaluation. The CIRS electron density phantom with known physical (and electron) density plugs and removable titanium implants was scanned on a Philips Brilliance Big Bore 16-slice CT simulator. The CT Hounsfield numbers of density plugs on both uncorrected and O-MAR corrected images were compared. Treatment planning accuracy was evaluated by comparing simulated dose distributions computed using the true density images, uncorrected images, and O-MAR corrected images. Ten CT image sets of patients with large hip implants were processed with the O-MAR function and evaluated by two radiation oncologists using a five-point score for overall image quality, anatomical conspicuity, and CT Hounsfield number accuracy. By utilizing the same structure contours delineated from the O-MAR corrected images, clinical IMRT treatment plans for five patients were computed on the uncorrected and O-MAR corrected images, respectively, and compared. Results: Results of the phantom study indicated that CT Hounsfield number accuracy and noise were improved on the O-MAR corrected images, especially for images with bilateral metal implants. The {gamma} pass rates of the simulated dose distributions computed on the uncorrected and O-MAR corrected images referenced to those of the true densities were higher than 99.9% (even when using 1% and 3 mm distance-to-agreement criterion), suggesting that dose

  7. Stereotactic body radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Lo, Simon S. [Univ. Hospitals Seidman Cancer Center, Cleveland, OH (United States). Dept. of Radiation Oncology; Case Western Reserve Univ., Cleveland, OH (United States). Case Comprehensive Cancer Center; Teh, Bin S. [The Methodist Hospital Cancer Center and Research Institute, Houston, TX (United States). Weill Cornell Medical College; Lu, Jiade J. [National Univ. of Singapore (Singapore). Dept. of Radiation Oncology; Schefter, Tracey E. (eds.) [Colorado Univ., Aurora, CO (United States). Dept. of Radiation Oncology

    2012-11-01

    Comprehensive an up-to-date account of the physical/technological, biological, and clinical aspects of SBRT. Examines in detail retrospective studies and prospective clinical trials for various organ sites from around the world. Written by world-renowned experts in SBRT from North America, Asia and Europe. Stereotactic body radiation therapy (SBRT) has emerged as an innovative treatment for various primary and metastatic cancers, and the past five years have witnessed a quantum leap in its use. This book provides a comprehensive and up-to-date account of the physical/technological, biological, and clinical aspects of SBRT. It will serve as a detailed resource for this rapidly developing treatment modality. The organ sites covered include lung, liver, spine, pancreas, prostate, adrenal, head and neck, and female reproductive tract. Retrospective studies and prospective clinical trials on SBRT for various organ sites from around the world are examined, and toxicities and normal tissue constraints are discussed. This book features unique insights from world-renowned experts in SBRT from North America, Asia, and Europe. It will be necessary reading for radiation oncologists, radiation oncology residents and fellows, medical physicists, medical physics residents, medical oncologists, surgical oncologists, and cancer scientists.

  8. Khan's the physics of radiation therapy

    CERN Document Server

    Khan, Faiz M

    2014-01-01

    Expand your understanding of the physics and practical clinical applications of advanced radiation therapy technologies with Khan's The Physics of Radiation Therapy, 5th edition, the book that set the standard in the field. This classic full-color text helps the entire radiation therapy team-radiation oncologists, medical physicists, dosimetrists, and radiation therapists-develop a thorough understanding of 3D conformal radiotherapy (3D-CRT), stereotactic radiosurgery (SRS), high dose-rate remote afterloaders (HDR), intensity modulated radiation therapy (IMRT), image-guided radiation therapy (

  9. Hounsfield unit recovery in clinical cone beam CT images of the thorax acquired for image guided radiation therapy

    DEFF Research Database (Denmark)

    Thing, Rune Slot; Bernchou, Uffe; Mainegra-Hing, Ernesto

    2016-01-01

    A comprehensive artefact correction method for clinical cone beam CT (CBCT) images acquired for image guided radiation therapy (IGRT) on a commercial system is presented. The method is demonstrated to reduce artefacts and recover CT-like Hounsfield units (HU) in reconstructed CBCT images of five ...

  10. Technical note: electronic chart checks in a paperless radiation therapy clinic.

    Science.gov (United States)

    Yang, Deshan; Wu, Yu; Brame, Ryan S; Yaddanapudi, Sridhar; Rangaraj, Dharanipathy; Li, H Harold; Goddu, S Murty; Mutic, Sasa

    2012-08-01

    EcCk, which stands for Electronic Chart ChecK, is a computer software and database system. It was developed to improve quality and efficiency of patient chart checking in radiation oncology departments. The core concept is to automatically collect and analyze patient treatment data, and to report discrepancies and potential concerns. EcCk consists of several different computer technologies, including relational database, DICOM, dynamic HTML, and image processing. Implemented in MATLAB and C#, EcCk processes patient data in DICOM, PDF, Microsoft Word, database, and Pinnacle native formats. Generated reports are stored on the storage server and indexed in the database. A standalone report-browser program is implemented to allow users to view reports on any computer in the department. Checks are performed according to predefined logical rules, and results are presented through color-coded reports in which discrepancies are summarized and highlighted. Users examine the reports and take appropriate actions. The core design is intended to automate human task and to improve the reliability of the performed tasks. The software is not intended to replace human audits but rather to aid as a decision support tool. The software was successfully implemented in the clinical environment and has demonstrated the feasibility of automation of this common task with modern clinical tools. The software integrates multiple disconnected systems and successfully supports analysis of data in diverse formats. While the human is the ultimate expert, EcCk has a significant potential to improve quality and efficiency of patient treatment record audits, and to allow verification of tasks that are not easily performed by humans. EcCk can potentially relieve human experts from simple and repetitive tasks, and allow them to work on other important tasks, and in the end to improve the quality and safety of radiation therapy treatments.

  11. Sparing of normal tissues with volumetric arc radiation therapy for glioblastoma: single institution clinical experience.

    Science.gov (United States)

    Briere, Tina Marie; McAleer, Mary Frances; Levy, Lawrence B; Yang, James N

    2017-05-02

    Patients with glioblastoma multiforme (GBM) require radiotherapy as part of definitive management. Our institution has adopted the use of volumetric arc therapy (VMAT) due to superior sparing of the adjacent organs at risk (OARs) compared to intensity modulated radiation therapy (IMRT). Here we report our clinical experience by analyzing target coverage and sparing of OARs for 90 clinical treatment plans. VMAT and IMRT patient cohorts comprising 45 patients each were included in this study. For all patients, the planning target volume (PTV) received 50 Gy in 30 fractions, and the simultaneous integrated boost PTV received 60 Gy. The characteristics of the two patient cohorts were examined for similarity. The doses to target volumes and OARs, including brain, brainstem, hippocampi, optic nerves, eyes, and cochleae were then compared using statistical analysis. Target coverage and normal tissue sparing for six patients with both clinical IMRT and VMAT plans were analyzed. PTV coverage of at least 95% was achieved for all plans, and the median mean dose to the boost PTV differed by only 0.1 Gy between the IMRT and VMAT plans. Superior sparing of the brainstem was found with VMAT, with a median difference in mean dose being 9.4 Gy. The ipsilateral cochlear mean dose was lower by 19.7 Gy, and the contralateral cochlea was lower by 9.5 Gy. The total treatment time was reduced by 5 min. The difference in the ipsilateral hippocampal D100% was 12 Gy, though this is not statistically significant (P = 0.03). VMAT for GBM patients can provide similar target coverage, superior sparing of the brainstem and cochleae, and be delivered in a shorter period of time compared with IMRT. The shorter treatment time may improve clinical efficiency and the quality of the treatment experience. Based on institutional clinical experience, use of VMAT for the treatment of GBMs appears to offer no inferiority in comparison to IMRT and may offer distinct advantages, especially for

  12. PROCTITIS ONE WEEK AFTER STEREOTACTIC BODY RADIATION THERAPY FOR PROSTATE CANCER: IMPLICATIONS FOR CLINICAL TRIAL DESIGN

    Directory of Open Access Journals (Sweden)

    Ima Paydar

    2016-07-01

    Full Text Available Background: Proctitis following prostate cancer radiation therapy is a primary determinant of quality of life (QOL. While previous studies have assessed acute rectal morbidity at 1 month after stereotactic body radiotherapy (SBRT, little data exist on the prevalence and severity of rectal morbidity within the first week following treatment. This study reports the acute bowel morbidity one week following prostate SBRT. Materials and methods: Between May 2013 and August 2014, 103 patients with clinically localized prostate cancer were treated with 35 to 36.25 Gy in five fractions using robotic SBRT delivered on a prospective clinical trial. Bowel toxicity was graded using the Common Terminology Criteria for Adverse Events version 4.0 (CTCAEv.4. Bowel QOL was assessed using EPIC-26 questionnaire bowel domain at baseline, one week, one month, and three months. Time-dependent changes in bowel symptoms were statistically compared using the Wilcoxon signed-rank test. Clinically significant change was assessed by the minimally important difference (MID in EPIC score. This was defined as a change of one-half standard deviation (SD from the baseline score. Results: One hundred and three patients with a minimum of three months of follow-up were analyzed. The cumulative incidence of acute grade 2 GI toxicity was 23%. There were no acute ≥ grade 3 bowel toxicities. EPIC bowel summary scores maximally declined at 1 week after SBRT (-13.9, p<0.0001 before returning to baseline at three months after SBRT (+0.03, p=0.94. Prior to treatment, 4.9% of men reported that their bowel bother was a moderate to big problem. This increased to 28.4% (p<0.0001 one week after SBRT and returned to baseline at three months after SBRT (0.0%, p=0.66. Only the bowel summary and bowel bother score declines at 1 week met the MID threshold for clinically significant change. Conclusion: The rate and severity of acute proctitis following prostate SBRT peaked at one week after

  13. Prostate tumor alignment and continuous, real-time adaptive radiation therapy using electromagnetic fiducials: clinical and cost-utility analyses.

    Science.gov (United States)

    Quigley, Martin M; Mate, Timothy P; Sylvester, John E

    2009-01-01

    To evaluate the accuracy, utility, and cost effectiveness of a new electromagnetic patient positioning and continuous, real-time monitoring system, which uses permanently implanted resonant transponders in the target (Calypso 4D Localization System and Beacon transponders, Seattle, WA) to continuously monitor tumor location and movement during external beam radiation therapy of the prostate. This clinical trial studied 43 patients at 5 sites. All patients were implanted with 3 transponders each. In 41 patients, the system was used for initial alignment at each therapy session. Thirty-five patients had continuous monitoring during their radiation treatment. Over 1,000 alignment comparisons were made to a commercially available kV X-ray positioning system (BrainLAB ExacTrac, Munich, Germany). Using decision analysis and Markov processes, the outcomes of patients were simulated over a 5-year period and measured in terms of costs from a payer's perspective and quality-adjusted life years (QALYs). All patients had satisfactory transponder implantations for monitoring purposes. In over 75% of the treatment sessions, the correction to conventional positioning (laser and tattoos) directed by an electromagnetic patient positioning and monitoring system was greater than 5 mm. Ninety-seven percent (34/35) of the patients who underwent continuous monitoring had target motion that exceeded preset limits at some point during the course of their radiation therapy. Exceeding preset thresholds resulted in user intervention at least once during the therapy in 80% of the patients (28/35). Compared with localization using ultrasound, electronic portal imaging devices (EPID), or computed tomography (CT), localization with the electromagnetic patient positioning and monitoring system yielded superior gains in QALYs at comparable costs. Most patients positioned with conventional tattoos and lasers for prostate radiation therapy were found by use of the electromagnetic patient positioning

  14. The clinical utilization of radiation therapy in Korea between 2009 and 2013

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Jin Kyu; Kim, Mi Sook; Jang, Won Il; Seo, Young Seok; Kim, Hee Jin; Cho, Chul Koo; Yoo, Hyung Jun; Paik, Eun Kyung; Cha, Yu Jin [Dept. of Radiation Oncology, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Song, Hyun Jin [College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu (Korea, Republic of)

    2016-06-15

    The purpose of this study was to estimate the clinical utilization of radiation therapy (RT) in Korea between 2009 and 2013. We analyzed open claims data from the Health Insurance Review and Assessment Service. The subjects were patients who had diagnostic codes C00-C97 or D00-D48 according to the 10th revision of the International Classification of Diseases, with procedure codes indicating RT treatment. The total number of patients who received RT in 2009, 2010, 2011, 2012, and 2013 were 45,571, 49,593, 54,671, 59,172, and 61,485, respectively. Among them, the total numbers of male and female patients were 20,780/24,791 in 2009, 22,711/26,882 in 2010, 24,872/29,799 in 2011, 27,101/32,071 in 2012, and 27,941/33,544 in 2013. The five cancers that were most frequently treated with RT between 2009 and 2012 were breast, lung, colorectal, liver, and uterine cervical cancers. However, the fifth most common cancer treated with RT that replaced uterine cervical cancer in 2013 was prostate cancer. The three leading types of cancer among the male patients were lung, colorectal, and liver cancers, whereas in female patients, they were breast, uterine cervical, and lung cancers. The type of cancer most commonly treated by RT was cancer of the central nervous system in patients aged 20 years or less, breast cancer in patients aged 30–50 years, and lung cancer in patients aged 60 years or more. Data from this study provided the clinical utilization of RT in Korea between 2009 and 2013.

  15. Adaptive radiation therapy in head and neck cancer for clinical practice: state of the art and practical challenges.

    Science.gov (United States)

    Veresezan, Ovidiu; Troussier, Idriss; Lacout, Alexis; Kreps, Sarah; Maillard, Sophie; Toulemonde, Aude; Marcy, Pierre-Yves; Huguet, Florence; Thariat, Juliette

    2017-02-01

    Modern radiation therapy techniques are characterized by high conformality to tumor volumes and steep dose gradients to spare normal organs. These techniques require accurate clinical target volume definitions and rigorous assessment of set up uncertainties using image guidance, a concept called image-guided radiation therapy. Due to alteration of patient anatomy, changes in tissue density/volumes and tumor shrinkage over the course of treatment, treatment accuracy may be challenged. This may result in excessive irradiation of organs at risk/healthy tissues and undercoverage of target volumes with a significant risk of locoregional failure. Adaptive radiation therapy (ART) is a concept allowing the clinician to reconsider the planned dose based on potential changes to accurately delivering the remaining radiation dose to the tumor while optimally minimizing irradiation of healthy tissues. There is little consensus on how to apply this concept in clinical practice. The current review investigates the current ART issues, including patient selection, clinical/dosimetric criteria and timing for re-planning, and practical technical issues. A practical algorithm is proposed for patient management in cases where ART is required.

  16. Clinical Outcomes of Image Guided Adaptive Hypofractionated Weekly Radiation Therapy for Bladder Cancer in Patients Unsuitable for Radical Treatment.

    Science.gov (United States)

    Hafeez, Shaista; McDonald, Fiona; Lalondrelle, Susan; McNair, Helen; Warren-Oseni, Karole; Jones, Kelly; Harris, Victoria; Taylor, Helen; Khoo, Vincent; Thomas, Karen; Hansen, Vibeke; Dearnaley, David; Horwich, Alan; Huddart, Robert

    2017-05-01

    We report on the clinical outcomes of a phase 2 study assessing image guided hypofractionated weekly radiation therapy in bladder cancer patients unsuitable for radical treatment. Fifty-five patients with T2-T4aNx-2M0-1 bladder cancer not suitable for cystectomy or daily radiation therapy treatment were recruited. A "plan of the day" radiation therapy approach was used, treating the whole (empty) bladder to 36 Gy in 6 weekly fractions. Acute toxicity was assessed weekly during radiation therapy, at 6 and 12 weeks using the Common Terminology Criteria for Adverse Events version 3.0. Late toxicity was assessed at 6 months and 12 months using Radiation Therapy Oncology Group grading. Cystoscopy was used to assess local control at 3 months. Cumulative incidence function was used to determine local progression at 1 at 2 years. Death without local progression was treated as a competing risk. Overall survival was estimated using the Kaplan-Meier method. Median age was 86 years (range, 68-97 years). Eighty-seven percent of patients completed their prescribed course of radiation therapy. Genitourinary and gastrointestinal grade 3 acute toxicity was seen in 18% (10/55) and 4% (2/55) of patients, respectively. No grade 4 genitourinary or gastrointestinal toxicity was seen. Grade ≥3 late toxicity (any) at 6 and 12 months was seen in 6.5% (2/31) and 4.3% (1/23) of patients, respectively. Local control after radiation therapy was 92% of assessed patients (60% total population). Cumulative incidence of local progression at 1 year and 2 years for all patients was 7% (95% confidence interval [CI] 2%-17%) and 17% (95% CI 8%-29%), respectively. Overall survival at 1 year was 63% (95% CI 48%-74%). Hypofractionated radiation therapy delivered weekly with a plan of the day approach offers good local control with acceptable toxicity in a patient population not suitable for radical bladder treatment. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights

  17. Smart Radiation Therapy Biomaterials.

    Science.gov (United States)

    Ngwa, Wilfred; Boateng, Francis; Kumar, Rajiv; Irvine, Darrell J; Formenti, Silvia; Ngoma, Twalib; Herskind, Carsten; Veldwijk, Marlon R; Hildenbrand, Georg Lars; Hausmann, Michael; Wenz, Frederik; Hesser, Juergen

    2017-03-01

    Radiation therapy (RT) is a crucial component of cancer care, used in the treatment of over 50% of cancer patients. Patients undergoing image guided RT or brachytherapy routinely have inert RT biomaterials implanted into their tumors. The single function of these RT biomaterials is to ensure geometric accuracy during treatment. Recent studies have proposed that the inert biomaterials could be upgraded to "smart" RT biomaterials, designed to do more than 1 function. Such smart biomaterials include next-generation fiducial markers, brachytherapy spacers, and balloon applicators, designed to respond to stimuli and perform additional desirable functions like controlled delivery of therapy-enhancing payloads directly into the tumor subvolume while minimizing normal tissue toxicities. More broadly, smart RT biomaterials may include functionalized nanoparticles that can be activated to boost RT efficacy. This work reviews the rationale for smart RT biomaterials, the state of the art in this emerging cross-disciplinary research area, challenges and opportunities for further research and development, and a purview of potential clinical applications. Applications covered include using smart RT biomaterials for boosting cancer therapy with minimal side effects, combining RT with immunotherapy or chemotherapy, reducing treatment time or health care costs, and other incipient applications. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Clinical Analysis of Xerostomia in Patients with Nasopharyngeal Carcinoma after Radiation Therapy

    Institute of Scientific and Technical Information of China (English)

    LIUXuekui; ZENGZongyuan; HONGMinghuang; ZHANGAllan; CUINianji; CHENFujing

    2005-01-01

    Objective: To investigate the severity of xerostomia and its impact on the quality of life in patients with nasopharyngeal carcinoma after conventional radiation therapy. Methods: One hundred and thirty-six patients with nasopharyngeal carcinoma, treated by conventional radiation therapy in Cancer Center, Sun Yat-sen University, were surveyed by interview at the outpatient department. A questionnaire and a visual analog scale (VAS) were used to analyze xerostomia and xerostomia-related problems. Results:Of 136 patints, 73.5% experienced a moderate to severe degree of xerostomia; 82.4% had to sip water to facilitate speech; 92.6% had to sip water to facilitate chewing and swallowing; 91.2% changed their feeding pattern (eating only mashed food); 61.3% had to wake up to drink water because of dry mouth; 75.0% had dental lesions to varying degrees. Conclusion: 73.5% of the patients with nasopharyngeal carcinoma after conventional radiation therapy experienced a moderate to severe degree of xerostomia. Xerostomia has a significant impact on the patient's speech, deglutition, and sleep, and can increase the morbidity of the dental diseases.

  19. Adaptive radiation therapy for bladder cancer: a review of adaptive techniques used in clinical practice.

    Science.gov (United States)

    Kibrom, Awet Z; Knight, Kellie A

    2015-12-01

    Significant changes in the shape, size and position of the bladder during radiotherapy (RT) treatment for bladder cancer have been correlated with high local failure rates; typically due to geographical misses. To account for this, large margins are added around the target volumes in conventional RT; however, this increases the volume of healthy tissue irradiation. The availability of cone beam computed tomography (CBCT) has not only allowed in-room volumetric imaging of the bladder, but also the development of adaptive radiotherapy (ART) for modification of plans to patient-specific changes. The aim of this review is to: (1) identify and explain the different ART techniques being used in clinical practice and (2) compare and contrast these different ART techniques to conventional RT in terms of target coverage and dose to healthy tissue: A literature search was conducted using EMBASE, MEDLINE and Scopus with the key words 'bladder, adaptive, radiotherapy/radiation therapy'. 11 studies were obtained that compared different adaptive RT techniques to conventional RT in terms of target volume coverage and healthy tissue sparing. All studies showed superior target volume coverage and/or healthy tissue sparing in adaptive RT compared to conventional RT. Cross-study comparison between different adaptive techniques could not be made due to the difference in protocols used in different studies. However, one study found daily re-optimisation of plans to be superior to plan of the day technique. The use of adaptive RT for bladder cancer is promising. Further study is required to assess adaptive RT versus conventional RT in terms of local control and long-term toxicity.

  20. Phase 1 Clinical Trial of Stereotactic Body Radiation Therapy Concomitant With Neoadjuvant Chemotherapy for Breast Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Bondiau, Pierre-Yves, E-mail: pierre-yves.bondiau@nice.unicancer.fr [Department of Radiotherapy, Centre Antoine Lacassagne, Nice (France); Courdi, Adel [Department of Radiotherapy, Centre Antoine Lacassagne, Nice (France); Bahadoran, Phillipe [Department of Dermatology, University Hospital of Nice, Nice (France); Chamorey, Emmanuel [Department of Radiotherapy, Centre Antoine Lacassagne, Nice (France); Queille-Roussel, Catherine [Centre de Pharmacologie Clinique Appliquée à la Dermatologie, Nice (France); Lallement, Michel; Birtwisle-Peyrottes, Isabelle; Chapellier, Claire; Pacquelet-Cheli, Sandrine; Ferrero, Jean-Marc [Department of Radiotherapy, Centre Antoine Lacassagne, Nice (France)

    2013-04-01

    Purpose: Stereotactic body radiation therapy (SBRT) allows stereotactic irradiation of thoracic tumors. It may have a real impact on patients who may not otherwise qualify for breast-conserving surgery. We conducted a phase 1 trial that tested 5 dose levels of SBRT concomitant with neoadjuvant chemotherapy (NACT) before to surgery. The purpose of the current dose escalation study was to determine the maximum tolerable dose of SBRT in the treatment of breast cancer. Methods and Materials: To define toxicity, we performed dermatologic examinations that included clinical examinations by 2 separate physicians and technical evaluations using colorimetry, dermoscopy, and skin ultrasonography. Dermatologic examinations were performed before NACT, 36 and 56 days after the beginning of NACT, and before surgery. Surgery was performed 4 to 8 weeks after the last chemotherapy session. Efficacy, the primary endpoint, was determined by the pathologic complete response (pCR) rate. Results: Maximum tolerable dose was not reached. Only 1 case of dose-limiting toxicity was reported (grade 3 dermatologic toxicity), and SBRT was overall well tolerated. The pCR rate was 36%, with none being observed at the first 2 dose levels, and the highest rate being obtained at dose level 3 (25.5 Gy delivered in 3 fractions). Furthermore, the breast-conserving surgery rate was up to 92% compared with an 8% total mastectomy rate. No surgical complications were reported. Conclusions: This study demonstrates that SBRT can be safely combined with NACT. Regarding the efficacy endpoints, this trial showed promising results in terms of pCR rate (36%) and breast-conserving rate (92%). The findings provide a strong rationale for extending the study into a phase 2 trial. In view of the absence of correlation between dose and pCR, and given that the data from dose level 3 met the statistical requirements, a dose of 25.5 Gy in 3 fractions should be used for the phase 2 trial.

  1. Clinical Implementation of Intrafraction Cone Beam Computed Tomography Imaging During Lung Tumor Stereotactic Ablative Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ruijiang; Han, Bin; Meng, Bowen [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California (United States); Maxim, Peter G.; Xing, Lei; Koong, Albert C. [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California (United States); Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California (United States); Diehn, Maximilian, E-mail: Diehn@Stanford.edu [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California (United States); Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California (United States); Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California (United States); Loo, Billy W., E-mail: BWLoo@Stanford.edu [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California (United States); Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California (United States)

    2013-12-01

    Purpose: To develop and clinically evaluate a volumetric imaging technique for assessing intrafraction geometric and dosimetric accuracy of stereotactic ablative radiation therapy (SABR). Methods and Materials: Twenty patients received SABR for lung tumors using volumetric modulated arc therapy (VMAT). At the beginning of each fraction, pretreatment cone beam computed tomography (CBCT) was used to align the soft-tissue tumor position with that in the planning CT. Concurrent with dose delivery, we acquired fluoroscopic radiograph projections during VMAT using the Varian on-board imaging system. Those kilovolt projections acquired during millivolt beam-on were automatically extracted, and intrafraction CBCT images were reconstructed using the filtered backprojection technique. We determined the time-averaged target shift during VMAT by calculating the center of mass of the tumor target in the intrafraction CBCT relative to the planning CT. To estimate the dosimetric impact of the target shift during treatment, we recalculated the dose to the GTV after shifting the entire patient anatomy according to the time-averaged target shift determined earlier. Results: The mean target shift from intrafraction CBCT to planning CT was 1.6, 1.0, and 1.5 mm; the 95th percentile shift was 5.2, 3.1, 3.6 mm; and the maximum shift was 5.7, 3.6, and 4.9 mm along the anterior-posterior, left-right, and superior-inferior directions. Thus, the time-averaged intrafraction gross tumor volume (GTV) position was always within the planning target volume. We observed some degree of target blurring in the intrafraction CBCT, indicating imperfect breath-hold reproducibility or residual motion of the GTV during treatment. By our estimated dose recalculation, the GTV was consistently covered by the prescription dose (PD), that is, V100% above 0.97 for all patients, and minimum dose to GTV >100% PD for 18 patients and >95% PD for all patients. Conclusions: Intrafraction CBCT during VMAT can provide

  2. Evidence-based skin care management in radiation therapy: clinical update.

    Science.gov (United States)

    McQuestion, Maurene

    2011-05-01

    To present a clinical update on the available evidence for the prevention and management of radiation skin reactions (radiodermatitis). Research studies, review articles, and clinical practice guidelines. In the past 4 years since the publication of the original article, there has been minimal change in the evidence available to guide decisions and practice in the management of radiation skin reactions. There continues to be insufficient evidence in the literature to recommend a variety of topical or oral agents in the prevention of skin reactions. There have been some recent studies that have impacted decision making and recommendations in the management of skin reactions. Radiation treatment techniques are the most promising intervention in reducing the degree of skin reaction. The use of calendula cream may reduce the incidence of grade 2 or 3 reactions in women with breast cancer. The controversy related to the use of deodorant in the treatment field unfortunately continues in clinical settings, but deodorant use as part of routine hygiene is now recommended for practice. Oncology nurses need to be aware of the evidence and lack of evidence when recommending interventions to their patients and avoid undue marketing influence when suggesting interventions for the management of skin reactions. Further research is required to evaluate specific interventions in both the prevention and management of radiation dermatitis. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Radiation Therapy for Lung Cancer

    Science.gov (United States)

    ... of the lung cancer and your overall health. Radiation Therapy Radiation is a high-energy X-ray that can ... surgery, chemotherapy or both depending upon the circumstances. Radiation therapy works within cancer cells by damaging their ...

  4. Hematuria following stereotactic body radiation therapy (SBRT) for clinically localized prostate cancer.

    Science.gov (United States)

    Gurka, Marie K; Chen, Leonard N; Bhagat, Aditi; Moures, Rudy; Kim, Joy S; Yung, Thomas; Lei, Siyuan; Collins, Brian T; Krishnan, Pranay; Suy, Simeng; Dritschilo, Anatoly; Lynch, John H; Collins, Sean P

    2015-02-19

    Hematuria following prostate radiotherapy is a known toxicity that may adversely affect a patient's quality of life. Given the higher dose of radiation per fraction using stereotactic body radiation therapy (SBRT) there is concern that post-SBRT hematuria would be more common than with alternative radiation therapy approaches. Herein, we describe the incidence and severity of hematuria following stereotactic body radiation therapy (SBRT) for prostate cancer at our institution. Two hundred and eight consecutive patients with prostate cancer treated with SBRT monotherapy with at least three years of follow-up were included in this retrospective analysis. Treatment was delivered using the CyberKnife® (Accuray) to doses of 35-36.25 Gy in 5 fractions. Toxicities were scored using the CTCAE v.4. Hematuria was counted at the highest grade it occurred in the acute and late setting for each patient. Cystoscopy findings were retrospectively reviewed. Univariate and multivariate analyses were performed. Hematuria-associated bother was assessed via the Expanded Prostate Index Composite (EPIC)-26. The median age was 69 years with a median prostate volume of 39 cc. With a median follow-up of 48 months, 38 patients (18.3%) experienced at least one episode of hematuria. Median time to hematuria was 13.5 months. In the late period, there were three grade 3 events and five grade 2 events. There were no grade 4 or 5 events. The 3-year actuarial incidence of late hematuria ≥ grade 2 was 2.4%. On univariate analysis, prostate volume (p = 0.022) and history of prior procedure(s) for benign prostatic hypertrophy (BPH) (p = 0.002) were significantly associated with hematuria. On multivariate analysis, history of prior procedure(s) for BPH (p prostate cancer was well tolerated with hematuria rates comparable to other radiation modalities. Patients factors associated with BPH, such as larger prostate volume, alpha antagonist usage, and prior history of procedures for BPH

  5. Involved Node Radiation Therapy

    DEFF Research Database (Denmark)

    Maraldo, Maja V; Aznar, Marianne C; Vogelius, Ivan R

    2012-01-01

    PURPOSE: The involved node radiation therapy (INRT) strategy was introduced for patients with Hodgkin lymphoma (HL) to reduce the risk of late effects. With INRT, only the originally involved lymph nodes are irradiated. We present treatment outcome in a retrospective analysis using this strategy...... to 36 Gy). Patients attended regular follow-up visits until 5 years after therapy. RESULTS: The 4-year freedom from disease progression was 96.4% (95% confidence interval: 92.4%-100.4%), median follow-up of 50 months (range: 4-71 months). Three relapses occurred: 2 within the previous radiation field......, and 1 in a previously uninvolved region. The 4-year overall survival was 94% (95% confidence interval: 88.8%-99.1%), median follow-up of 58 months (range: 4-91 months). Early radiation therapy toxicity was limited to grade 1 (23.4%) and grade 2 (13.8%). During follow-up, 8 patients died, none from HL, 7...

  6. Correlation of clinical outcome to the estimated radiation dose from Boron Neutron Capture Therapy (BNCT)

    Energy Technology Data Exchange (ETDEWEB)

    Chadha, M. [Beth Israel Medical Center, NY (United States). Dept. of Radiation Oncology; Coderre, J.A.; Chanana, A.D. [Brookhaven National Lab., Upton, NY (United States)] [and others

    1996-12-31

    A phase I/II trial delivering a single fraction of BNCT using p-Boronophenylalanine-Fructose and epithermal neutrons at the the Brookhaven Medical Research Reactor was initiated in September 1994. The primary endpiont of the study was to evaluate the feasibility and safety of a given BNCT dose. The clinical outcome of the disease was a secondary endpoint of the study. The objective of this paper is to evaluate the correlation of the clinical outcome of patients to the estimated radiation dose from BNCT.

  7. Correlation of clinical outcome to the estimated radiation dose from Boron Neutron Capture Therapy (BNCT)

    Energy Technology Data Exchange (ETDEWEB)

    Chadha, M. [Beth Israel Medical Center, NY (United States). Dept. of Radiation Oncology; Coderre, J.A.; Chanana, A.D. [Brookhaven National Lab., Upton, NY (United States)] [and others

    1996-12-31

    A phase I/II trial delivering a single fraction of BNCT using p-Boronophenylalanine-Fructose and epithermal neutrons at the the Brookhaven Medical Research Reactor was initiated in September 1994. The primary endpiont of the study was to evaluate the feasibility and safety of a given BNCT dose. The clinical outcome of the disease was a secondary endpoint of the study. The objective of this paper is to evaluate the correlation of the clinical outcome of patients to the estimated radiation dose from BNCT.

  8. Radiation therapy physics

    CERN Document Server

    1995-01-01

    The aim of this book is to provide a uniquely comprehensive source of information on the entire field of radiation therapy physics. The very significant advances in imaging, computational, and accelerator technologies receive full consideration, as do such topics as the dosimetry of radiolabeled antibodies and dose calculation models. The scope of the book and the expertise of the authors make it essential reading for interested physicians and physicists and for radiation dosimetrists.

  9. Vascular-targeted photodynamic of prostate cancer phase with Tookad for recurrent prostate cancer following radiation therapy: initial clinical studies

    Science.gov (United States)

    Weersink, Robert A.; Wilson, Brian C.; Bogaards, Arjen; Gertner, Mark R.; Davidson, Sean R. H.; Haider, Masoom A.; Elhilali, Mostafa; Trachtenberg, John

    2007-02-01

    We report on the first clinical application of vascular-targeted photodynamic therapy using a bacteriopheophorbide derivative, Tookad, in patients with localized prostate cancer following external beam radiation therapy. Patients received either escalating intravenous drug doses at a fixed light dose or escalated light doses at the highest photosensitizer dose. Two cylindrically diffusing fibers were placed transperineally in the prostate, along with light monitoring fibers in the prostate, urethra and rectum. Treatment response was assessed with 7-day gadolinium-enhanced T1-weighted MRI and 6-month biopsy. Lesion formation was strongly drug and light dose-dependent, with an apparent threshold response. Early biochemical and MRI responses support the clinical potential of TOOKAD-PDT to treat locally-recurrent prostate cancer.

  10. MO-C-BRB-05: Translating NIH funding to a [potential] clinical device in breast cancer radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Yu, C. [Univ Maryland School of Medicine (United States)

    2015-06-15

    Diagnostic radiology and radiation oncology are arguably two of the most technologically advanced specialties in medicine. The imaging and radiation medicine technologies in clinical use today have been continuously improved through new advances made in the commercial and academic research arenas. This symposium explores the translational path from research through clinical implementation. Dr. Pettigrew will start this discussion by sharing his perspectives as director of the National Institute of Biomedical Imaging and Bioengineering (NIBIB). The NIBIB has focused on promoting research that is technological in nature and has high clinical impact. We are in the age of precision medicine, and the technological innovations and quantitative tools developed by engineers and physicists working with physicians are providing innovative tools that increase precision and improve outcomes in health care. NIBIB funded grants lead to a very high patenting rate (per grant dollar), and these patents have higher citation rates by other patents, suggesting greater clinical impact, as well. Two examples of clinical translation resulting from NIH-funded research will be presented, in radiation therapy and diagnostic imaging. Dr. Yu will describe a stereotactic radiotherapy device developed in his laboratory that is designed for treating breast cancer with the patient in the prone position. It uses 36 rotating Cobalt-60 sources positioned in an annular geometry to focus the radiation beam at the system’s isocenter. The radiation dose is delivered throughout the target volume in the breast by constantly moving the patient in a planned trajectory relative to the fixed isocenter. With this technique, the focal spot dynamically paints the dose distribution throughout the target volume in three dimensions. Dr. Jackson will conclude this symposium by describing the RSNA Quantitative Imaging Biomarkers Alliance (QIBA), which is funded in part by NIBIB and is a synergistic collaboration

  11. Clinical and biochemical outcomes of men undergoing radical prostatectomy or radiation therapy for localized prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Schreiber, David; Weiss, Jeffrey P.; Safdieh, Joseph; Weiner, Joseph; Rotman, Marvin; Schwartz, David [Veterans Affairs, New York Harbor Healthcare System, Brooklyn (United States); Rineer, Justin [University of Florida Health Cancer Center at Orlando Health, Orlando (United States)

    2015-03-15

    We analyzed outcomes of patients with prostate cancer undergoing either radical retropubic prostatectomy (RRP) +/- salvage radiation or definitive radiation therapy (RT) +/- androgen deprivation. From 2003-2010 there were 251 patients who underwent RRP and 469 patients who received RT (> or =7,560 cGy) for prostate cancer. Kaplan-Meier analysis was performed with the log-rank test to compare biochemical control (bCR), distant metastatic-free survival (DMPFS), and prostate cancer-specific survival (PCSS) between the two groups. The median follow-up was 70 months and 61.3% of the men were African American. For low risk disease the 6-year bCR were 90.3% for RT and 85.6% for RRP (p = 0.23) and the 6-year post-salvage bCR were 90.3% vs. 90.9%, respectively (p = 0.84). For intermediate risk disease the 6-year bCR were 82.6% for RT and 59.7% for RRP (p < 0.001) and 82.6% vs. 74.0%, respectively, after including those salvaged with RT (p = 0.06). For high risk disease, the 6-year bCR were 67.4% for RT and 41.3% for RRP (p < 0.001) and after including those salvaged with RT was 67.4% vs. 43.1%, respectively (p < 0.001). However, there were no significant differences between the two groups in regards to DMPFS or PCSS. Treatment approaches utilizing RRP +/- salvage radiation or RT +/- androgen deprivation yielded equivalent DMPFS and PCSS outcomes. Biochemical control rates, using their respective definitions, appeared equivalent or better in those who received treatment with RT.

  12. Radiation Therapy: Additional Treatment Options

    Science.gov (United States)

    ... Cancer Upper GI Cancers Search x FIND A RADIATION ONCOLOGIST CLOSE SNIPEND TREATMENT TYPES SNIPSTART Home / Treatment ... novel targeted therapies can act as radiosensitizers. Systemic Radiation Therapy Certain cancers may be treated with radioactive ...

  13. Radiation Therapy for Testicular Cancer

    Science.gov (United States)

    ... Testicular Cancer Treating Testicular Cancer Radiation Therapy for Testicular Cancer Radiation therapy uses a beam of high-energy ... Testicular Cancer, by Type and Stage More In Testicular Cancer About Testicular Cancer Causes, Risk Factors, and Prevention ...

  14. The lag time in initiating clinical testing of new drugs in combination with radiation therapy, a significant barrier to progress?

    Science.gov (United States)

    Blumenfeld, P; Pfeffer, R M; Symon, Z; Den, R B; Dicker, A P; Raben, D; Lawrence, Y R

    2014-01-01

    Background: The clinical development of new drugs with radiation appears to be limited. We hypothesised that phase I clinical trials with radiation therapy (RT) are initiated too late into a new drug's lifetime, impeding the ability to complete RT–drug development programmes before patent expiration. Methods: We identified novel drug–radiation phase I combination trials performed between 1980 and 2012 within the PubMed and ClinicalTrials.gov databases. Data gathered for each drug included: date the initial phase I trial with/without RT was opened/published, date of the published positive phase III trials, and patent expiration dates. Lag time was defined as the interval between opening of the phase I trial without RT and the opening of the phase I with RT. Linear regression was used to model how the lag time has changed over time. Results: The median lag time was 6 years. The initial phase I trial with RT was typically published 2 years after the first published positive phase III trial and 11 years before patent expiration. Using a best-fit linear model, lag time decreased from 10 years for phase I trials published in 1990 to 5 years in 2005 (slope significantly non-zero, P<0.001). Conclusions: Clinical drug development with RT commences late in the life cycle of anti-cancer agents. Taking into account the additional time required for late-phase clinical trials, the delay in initiating clinical testing of drug–RT combinations discourages drug companies from further pursuing RT-based development. Encouragingly, lag time appears to be decreasing. Further reduction in lag time may accelerate RT-based drug development, potentially improving patient outcomes. PMID:25117813

  15. [Preliminary clinical evaluation of continuous infusion of 5-FU and low-dose Cisplatin (LFP) therapy alone and combined with radiation therapy for treatment of advanced or recurrent esophageal cancer].

    Science.gov (United States)

    Itoh, Satoshi; Morita, Sojiro; Ohnishi, Takenao; Tsuji, Akihito; Takamatsu, Masahiro; Horimi, Tadashi

    2002-02-01

    We evaluated the clinical effect of 5-FU and low-dose Cisplatin (LFP) therapy alone and LFP therapy combined with radiation therapy in patients with advanced or recurrent esophageal cancer. From March 1995 to September 2000, 11 patients with inoperable esophageal cancer, 8 patients with adjuvant chemotherapy post operation, and 14 patients with recurrent esophageal cancer were treated with LFP therapy. 5-FU (160 mg/m2/day) was continuously infused over 24 hours, and CDDP (3-7 mg/m2/day) was infused for 30 minutes. The administration schedule consisted of 5-FU for 7 consecutive days and CDDP for 5 days followed by a 2-day rest, each for four weeks. We combined radiation therapy for the patients with all lesions that could be included in the radiation field. Of 30 patients with measurable lesions the response rates of LFP therapy alone and LFP therapy combined with radiation therapy were 33% and 60%, respectively. Toxicity over grade 3 appeared in 3 of 15 patients with LFP therapy combined with radiation therapy. There was no significant difference between LFP therapy alone and LFP therapy combined with radiation therapy with regard to survival rate of inoperable and recurrent esophageal cancer. In conclusion, LFP therapy alone may be effective for esophageal cancer.

  16. Preliminary clinical evaluation of continuous infusion of 5-FU and low-dose cisplatin (LFP) therapy alone and combined with radiation therapy for treatment of advanced or recurrent esophageal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Satoshi; Morita, Sojiro; Ohnishi, Takenao; Tsuji, Akihito; Takamatsu, Masahiro; Horimi, Tadashi [Kochi Municipal Central Hospital, Nankoku (Japan). Cancer Research Center

    2002-02-01

    We evaluated the clinical effect of 5-FU and low-dose Cisplatin (LFP) therapy alone and LFP therapy combined with radiation therapy in patients with advanced or recurrent esophageal cancer. From March 1995 to September 2000, 11 patients with inoperable esophageal cancer, 8 patients with adjuvant chemotherapy post operation, and 14 patients with recurrent esophageal cancer were treated with LFP therapy. 5-FU (160 mg/m{sup 2}/day) was continuously infused over 24 hours, and CDDP (3-7 mg/m{sup 2}/day) was infused for 30 minutes. The administration schedule consisted of 5-FU for 7 consecutive days and CDDP for 5 days followed by a 2-day rest, each for four weeks. We combined radiation therapy for the patients with all lesions that could be included in the radiation field. Of 30 patients with measurable lesions the response rates of LFP therapy alone and LFP therapy combined with radiation therapy were 33% and 60%, respectively. Toxicity over grade 3 appeared in 3 of 15 patients with LFP therapy combined with radiation therapy. There was no significant difference between LFP therapy alone and LFP therapy combined with radiation therapy with regard to survival rate of inoperable and recurrent esophageal cancer. In conclusion, LFP therapy alone may be effective for esophageal cancer. (author)

  17. Severe coronary artery disease after radiation therapy of the chest and mediastinum: clinical presentation and treatment.

    Science.gov (United States)

    Orzan, F; Brusca, A; Conte, M R; Presbitero, P; Figliomeni, M C

    1993-01-01

    OBJECTIVE--To define the clinical and angiographic features and the therapeutic problems in patients with coronary artery disease after therapeutic irradiation of the chest. DESIGN--An observational retrospective study. SETTING--The cardiac catheterisation laboratory, university medical school. PATIENTS--15 subjects (8 men and 7 women, aged 25-56 years, mean 44) examined in the cardiac catheterisation laboratory, who had significant coronary artery disease years after having radiation treatment to the chest and anterior mediastinum. In the early stages of the study angiography was performed because of typical symptoms of ischaemic heart disease. Later on it was performed because of a high index of suspicion in people with signs of extensive radiation heart damage. MAIN OUTCOME MEASURES--Clinical and electrocardiographic evidence of ischaemic heart disease; echocardiographic signs of pericardial, myocardial or valvar involvement; angiographic evidence of coronary arterial stenosis, with special attention to the ostia; haemodynamic and angiographic signs of pericardial, myocardial, and valvar disease. Survival and symptomatic and functional status were ascertained after medical or surgical treatment. RESULTS--The patients were relatively young and had no risk factors. Seven patients had no signs or symptoms of ischaemic heart disease. Ten patients had ostial stenosis, which was associated with extensive involvement of other cardiac structures in nine of them. Seven required surgical treatment for coronary artery disease. Two died, one at surgery and the other one six months later. Five patients had complications associated with irradiation. CONCLUSIONS--Coronary arterial disease can be reasonably ascribed to the effects of chest irradiation when the patients are young and free from risk factors, especially if the obstructions are ostial and there is important damage to other cardiac structures. In patients with damage to other cardiac structures angina and infarction

  18. Microbeam radiation therapy

    Science.gov (United States)

    Laissue, Jean A.; Lyubimova, Nadia; Wagner, Hans-Peter; Archer, David W.; Slatkin, Daniel N.; Di Michiel, Marco; Nemoz, Christian; Renier, Michel; Brauer, Elke; Spanne, Per O.; Gebbers, Jan-Olef; Dixon, Keith; Blattmann, Hans

    1999-10-01

    The central nervous system of vertebrates, even when immature, displays extraordinary resistance to damage by microscopically narrow, multiple, parallel, planar beams of x rays. Imminently lethal gliosarcomas in the brains of mature rats can be inhibited and ablated by such microbeams with little or no harm to mature brain tissues and neurological function. Potentially palliative, conventional wide-beam radiotherapy of malignant brain tumors in human infants under three years of age is so fraught with the danger of disrupting the functional maturation of immature brain tissues around the targeted tumor that it is implemented infrequently. Other kinds of therapy for such tumors are often inadequate. We suggest that microbeam radiation therapy (MRT) might help to alleviate the situation. Wiggler-generated synchrotron x-rays were first used for experimental microplanar beam (microbeam) radiation therapy (MRT) at Brookhaven National Laboratory's National Synchrotron Light Source in the early 1990s. We now describe the progress achieved in MRT research to date using immature and adult rats irradiated at the European Synchrotron Radiation Facility in Grenoble, France, and investigated thereafter at the Institute of Pathology of the University of Bern.

  19. Clinical outcomes of image guided radiation therapy (IGRT) with gold fiducial vaginal cuff markers for high-risk endometrial cancer

    Energy Technology Data Exchange (ETDEWEB)

    Monroe, Alan T.; Peddada, Anuj V. [Dept. of Radiation Oncology, Penrose Cancer Center, Colorado Springs (United States); Pikaart, Dirk [Dept. of Gynecologic Oncology, Penrose Cancer Center, Colorado Springs (United States)

    2013-06-15

    Objective. To report two year clinical outcomes of image guided radiation therapy (IGRT) to the vaginal cuff and pelvic lymph nodes in a series of high-risk endometrial cancer patients. Methods . Twenty-six consecutive high-risk endometrial cancer patients requiring adjuvant radiation to the vaginal cuff and regional lymph nodes were treated with vaginal cuff fiducial-based IGRT. Seventeen (65%) received sequential chemotherapy, most commonly with a sandwich technique. Brachytherapy followed external radiation in 11 patients to a median dose of 18 Gy in 3 fractions. The median external beam dose delivered was 47.5 Gy in 25 fractions. Results. All 656 fractions were successfully imaged and treated. The median overall translational shift required for correction was 9.1 mm (standard deviation, 5.2 mm) relative to clinical set-up with skin tattoos. Shifts of 1 cm, 1.5 cm, and 2 cm or greater were performed in 43%, 14%, and 4% of patients, respectively. Acute grade 2 gastrointestinal (GI) toxicity occurred in eight patients (30%) and grade 3 toxicity occurred in one. At two years, there have been no local or regional failures and actuarial overall survival is 95%. Conclusion. Daily image guidance for high-risk endometrial cancer results in a low incidence of acute GI/genitourinary (GU) toxicity with uncompromised tumor control at two years. Vaginal cuff translations can be substantial and may possibly result in underdosing if not properly considered.

  20. Radiation Therapy without Surgery for Spinal Metastases: Clinical Outcome and Prognostic Factors Analysis for Pain Control.

    Science.gov (United States)

    Matsumura, Akira; Hoshi, Manabu; Takami, Masatsugu; Tashiro, Takahiko; Nakamura, Hiroaki

    2012-09-01

    The purpose of radiation therapy (RT) for patients with spinal metastases is pain relief and control of paralysis. The aim of the present study was to assess pain relief using RT and to evaluate prognostic factors for pain control. We evaluated 97 consecutive patients, of mean age 62.7 years (range 28 to 86), with spinal metastases that had been treated by RT. We evaluated the effects of RT using pain level assessed using a drug grading scale based on the World Health Organization standards. The following potential prognostic factors for pain control of RT were evaluated using multivariate logistic regression analysis: age, gender, tumor type, performance status (PS), number of spinal metastases, and a history of chemotherapy. Among the 97 patients who underwent RT for pain relief, 68 patients (70.1%) presented with pain reduction. PS (odds ratio: 1.931; 95% confidence interval: 1.244 to 2.980) was revealed by multivariate logistic regression analysis to be the most important prognostic factor for pain control using RT. In conclusion, we found that RT was more effective for patients with spinal metastases while they maintained their PS.

  1. Monte Carlo dosimetry for forthcoming clinical trials in x-ray microbeam radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    MartInez-Rovira, I; Bravin, A; Prezado, Y [ID17 Biomedical Beamline, European Synchrotron Radiation Facility (ESRF), B.P. 220, 6 Jules Horowitz, F-38043 Grenoble Cedex (France); Sempau, J [Institut de Tecniques Energetiques, Universitat Politecnica de Catalunya, Diagonal 647, E-08028 Barcelona (Spain); Fernandez-Varea, J M, E-mail: yolanda.prezado@esrf.f [Facultat de Fisica (ECM and ICC), Universitat de Barcelona, Diagonal 647, E-08028 Barcelona (Spain)

    2010-08-07

    The purpose of this work is to define safe irradiation protocols in microbeam radiation therapy. The intense synchrotron-generated x-ray beam used for the treatment is collimated and delivered in an array of 50 {mu}m-sized rectangular fields with a centre-to-centre distance between microplanes of 400 {mu}m. The absorbed doses received by the tumour and the healthy tissues in a human head phantom have been assessed by means of Monte Carlo simulations. The identification of safe dose limits is carried out by evaluating the maximum peak and valley doses achievable in the tumour while keeping the valley doses in the healthy tissues under tolerances. As the skull receives a significant fraction of the dose, the dose limits are referred to this tissue. Dose distributions with high spatial resolution are presented for various tumour positions, skull thicknesses and interbeam separations. Considering a unidirectional irradiation (field size of 2x2 cm{sup 2}) and a centrally located tumour, the largest peak and valley doses achievable in the tumour are 55 Gy and 2.6 Gy, respectively. The corresponding maximum valley doses received by the skin, bone and healthy brain are 4 Gy, 14 Gy and 7 Gy (doses in one fraction), respectively, i.e. within tolerances (5% probability of complication within 5 years).

  2. Radiation Therapy for Soft Tissue Sarcomas

    Science.gov (United States)

    ... Stage Soft Tissue Sarcoma Treating Soft Tissue Sarcomas Radiation Therapy for Soft Tissue Sarcomas Radiation therapy uses ... spread. This is called palliative treatment . Types of radiation therapy External beam radiation therapy: For this treatment, ...

  3. Proton therapy in clinical practice

    Science.gov (United States)

    Liu, Hui; Chang, Joe Y.

    2011-01-01

    Radiation dose escalation and acceleration improves local control but also increases toxicity. Proton radiation is an emerging therapy for localized cancers that is being sought with increasing frequency by patients. Compared with photon therapy, proton therapy spares more critical structures due to its unique physics. The physical properties of a proton beam make it ideal for clinical applications. By modulating the Bragg peak of protons in energy and time, a conformal radiation dose with or without intensity modulation can be delivered to the target while sparing the surrounding normal tissues. Thus, proton therapy is ideal when organ preservation is a priority. However, protons are more sensitive to organ motion and anatomy changes compared with photons. In this article, we review practical issues of proton therapy, describe its image-guided treatment planning and delivery, discuss clinical outcome for cancer patients, and suggest challenges and the future development of proton therapy. PMID:21527064

  4. Proton therapy in clinical practice

    Institute of Scientific and Technical Information of China (English)

    Hui Liu; Joe Y. Chang

    2011-01-01

    Radiation dose escalation and acceleration improves local control but also increases toxicity. Proton radiation is an emerging therapy for localized cancers that is being sought with increasing frequency by patients. Compared with photon therapy, proton therapy spares more critical structures due to its unique physics. The physical properties of a proton beam make it ideal for clinical applications. By modulating the Bragg peak of protons in energy and time, a conformal radiation dose with or without intensity modulation can be delivered to the target while sparing the surrounding normal tissues. Thus, proton therapy is ideal when organ preservation is a priority. However, protons are more sensitive to organ motion and anatomy changes compared with photons. In this article, we review practical issues of proton therapy, describe its image-guided treatment planning and delivery, discuss clinical outcome for cancer patients, and suggest challenges and the future development of proton therapy.

  5. Dose computation in conformal radiation therapy including geometric uncertainties: Methods and clinical implications

    Science.gov (United States)

    Rosu, Mihaela

    The aim of any radiotherapy is to tailor the tumoricidal radiation dose to the target volume and to deliver as little radiation dose as possible to all other normal tissues. However, the motion and deformation induced in human tissue by ventilatory motion is a major issue, as standard practice usually uses only one computed tomography (CT) scan (and hence one instance of the patient's anatomy) for treatment planning. The interfraction movement that occurs due to physiological processes over time scales shorter than the delivery of one treatment fraction leads to differences between the planned and delivered dose distributions. Due to the influence of these differences on tumors and normal tissues, the tumor control probabilities and normal tissue complication probabilities are likely to be impacted upon in the face of organ motion. In this thesis we apply several methods to compute dose distributions that include the effects of the treatment geometric uncertainties by using the time-varying anatomical information as an alternative to the conventional Planning Target Volume (PTV) approach. The proposed methods depend on the model used to describe the patient's anatomy. The dose and fluence convolution approaches for rigid organ motion are discussed first, with application to liver tumors and the rigid component of the lung tumor movements. For non-rigid behavior a dose reconstruction method that allows the accumulation of the dose to the deforming anatomy is introduced, and applied for lung tumor treatments. Furthermore, we apply the cumulative dose approach to investigate how much information regarding the deforming patient anatomy is needed at the time of treatment planning for tumors located in thorax. The results are evaluated from a clinical perspective. All dose calculations are performed using a Monte Carlo based algorithm to ensure more realistic and more accurate handling of tissue heterogeneities---of particular importance in lung cancer treatment planning.

  6. Comparing Postoperative Radiation Therapies for Brain Metastases

    Science.gov (United States)

    In this clinical trial, patients with one to four brain metastases who have had at least one of the metastatic tumors removed surgically will be randomly assigned to undergo whole-brain radiation therapy or stereotactic radiosurgery.

  7. Cultural Competency Training to Increase Minority Enrollment into Radiation Therapy Clinical Trials-an NRG Oncology RTOG Study.

    Science.gov (United States)

    Wells, Jessica S; Pugh, Stephanie; Boparai, Karan; Rearden, Jessica; Yeager, Katherine A; Bruner, Deborah W

    2016-05-21

    Despite initiatives to increase the enrollment of racial and ethnic minorities into cancer clinical trials in the National Cancer Institute National Cancer Clinical Trials Network (NCCTN), participation by Latino and African American populations remain low. The primary aims of this pilot study are (1) to develop a Cultural Competency and Recruitment Training Program (CCRTP) for physician investigators and clinical research associates (CRAs), (2) to determine if the CCRTP increases cultural competency scores among physician investigators and CRAs, and (3) to determine the impact of the CCRTP on minority patient recruitment into NRG Oncology Radiation Therapy Oncology Group (RTOG) clinical trials. Sixty-seven CRAs and physicians participated in an in-person or online 4-h CRRTP training. Five knowledge and attitude items showed significant improvements from pre- to post-training. A comparison between enrolling sites that did and did not participate in the CCRTP demonstrated a pre to 1-year post-incremental increase in minority accrual to clinical trials of 1.2 % among participating sites. While not statistically significant, this increase translated into an additional 300 minority patients accrued to NCCTN clinical trials in the year following the training from those sites who participated in the training.

  8. Hounsfield unit recovery in clinical cone beam CT images of the thorax acquired for image guided radiation therapy

    Science.gov (United States)

    Slot Thing, Rune; Bernchou, Uffe; Mainegra-Hing, Ernesto; Hansen, Olfred; Brink, Carsten

    2016-08-01

    A comprehensive artefact correction method for clinical cone beam CT (CBCT) images acquired for image guided radiation therapy (IGRT) on a commercial system is presented. The method is demonstrated to reduce artefacts and recover CT-like Hounsfield units (HU) in reconstructed CBCT images of five lung cancer patients. Projection image based artefact corrections of image lag, detector scatter, body scatter and beam hardening are described and applied to CBCT images of five lung cancer patients. Image quality is evaluated through visual appearance of the reconstructed images, HU-correspondence with the planning CT images, and total volume HU error. Artefacts are reduced and CT-like HUs are recovered in the artefact corrected CBCT images. Visual inspection confirms that artefacts are indeed suppressed by the proposed method, and the HU root mean square difference between reconstructed CBCTs and the reference CT images are reduced by 31% when using the artefact corrections compared to the standard clinical CBCT reconstruction. A versatile artefact correction method for clinical CBCT images acquired for IGRT has been developed. HU values are recovered in the corrected CBCT images. The proposed method relies on post processing of clinical projection images, and does not require patient specific optimisation. It is thus a powerful tool for image quality improvement of large numbers of CBCT images.

  9. Migratory eosinophilic alveolitis caused by radiation therapy.

    Science.gov (United States)

    Lim, Jun Hyeok; Nam, Hae-Seong; Kim, Hun Jung; Choi, Chang-Hwan; Park, In-Suh; Cho, Jae Hwa; Ryu, Jeong-Seon; Kwak, Seung Min; Lee, Hong Lyeol

    2015-05-01

    Although radiation pneumonitis is usually confined to irradiated areas, some studies have reported that radiation-induced lymphocytic alveolitis can also spread to the non-irradiated lung. However, there have been few reports of radiation-induced eosinophilic alveolitis. We report the case of a 27-year-old female with radiation pneumonitis, occurring 4 months after radiation therapy for cancer of the left breast. Clinical and radiological relapse followed withdrawal of corticosteroids. Examination of bronchoalveolar lavage (BAL) in patchy airspace consolidations revealed increased eosinophil counts. Finally, clinical and radiological signs resolved rapidly after reintroduction of corticosteroids. Eosinophilic alveolitis may be promoted by radiation therapy. In the present case report, possible mechanisms for radiation-induced eosinophilic alveolitis are also reviewed.

  10. Development of local radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Hoon; Lim, Sang Moo; Choi, Chang Woon; Chai, Jong Su; Kim, Eun Hee; Kim, Mi Sook; Yoo, Seong Yul; Cho, Chul Koo; Lee, Yong Sik; Lee, Hyun Moo

    1999-04-01

    The major limitations of radiation therapy for cancer are the low effectiveness of low LET and inevitable normal tissue damage. Boron Neutron Capture Therapy (BNCT) is a form of potent radiation therapy using Boron-10 having a high propensityof capturing theraml neutrons from nuclear reactor and reacting with a prompt nuclear reaction. Photodynamic therapy is a similiar treatment of modality to BNCT using tumor-seeking photosenistizer and LASER beam. If Boron-10 and photosensitizers are introduced selectively into tumor cells, it is theoretically possible to destroy the tumor and to spare the surrounding normal tissue. Therefore, BNCT and PDT will be new potent treatment modalities in the next century. In this project, we performed PDT in the patients with bladder cancers, oropharyngeal cancer, and skin cancers. Also we developed I-BPA, new porphyrin compounds, methods for estimation of radiobiological effect of neutron beam, and superficial animal brain tumor model. Furthermore, we prepared preclinical procedures for clinical application of BNCT, such as the macro- and microscopic dosimetry, obtaining thermal neutron flux from device used for fast neutron production in KCCH have been performed.

  11. Clinical evaluation of a laser surface scanning system in 120 patients for improving daily setup accuracy in fractionated radiation therapy.

    Science.gov (United States)

    Moser, Torsten; Habl, Gregor; Uhl, Matthias; Schubert, Kai; Sroka-Perez, Gabriele; Debus, Jürgen; Herfarth, Klaus; Karger, Christian P

    2013-03-01

    To evaluate the clinical suitability of a specific optical surface imaging system to detect setup errors in fractionated radiation therapy. The setup correction accuracy of a 3-dimensional laser imaging system was analyzed for 6 different tumor locations with 20 patients each. For each patient, the setup corrections of the megavoltage computed tomography (MVCT) images of a TomoTherapy unit (TomoTherapy, Madison, WI) were compared with those of the laser system for the first 10 fractions. For the laser system, the reference surface either was obtained from the DICOM (Digital Imaging and Communications in Medicine) surface structure delineated on the planning computed tomography images or was acquired with the system itself at the first fraction after the MVCT-based setup correction. Data analysis was performed for both reference types. By use of the DICOM reference image, systematic shifts between 3 and 9 mm were found, depending on the tumor location. For the optical reference, no clinically relevant systematic shifts were found. MVCT-based setup corrections were detected with high accuracy, and only small movements were observed during treatment. Using a reference image acquired with the laser system itself after MVCT-based setup correction appears more reliable than importing the DICOM reference surface. After generation of the optical reference, the laser system may be used to derive setup corrections over a certain number of fractions, but additional radiologic imaging may still be necessary on a regular basis (eg, weekly) or if the corrections of the optical system appear implausibly large. Nevertheless, such a combined application may help to reduce the imaging dose for the patient. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Insufficiency fracture after radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Dong Ryul; Huh, Seung Jae [Dept.of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2014-12-15

    Insufficiency fracture occurs when normal or physiological stress applied to weakened bone with demineralization and decreased elastic resistance. Recently, many studies reported the development of IF after radiation therapy (RT) in gynecological cancer, prostate cancer, anal cancer and rectal cancer. The RT-induced insufficiency fracture is a common complication during the follow-up using modern imaging studies. The clinical suspicion and knowledge the characteristic imaging patterns of insufficiency fracture is essential to differentiate it from metastatic bone lesions, because it sometimes cause severe pain, and it may be confused with bone metastasis.

  13. Study on external beam radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Mi Sook; Yoo, Seoung Yul; Yoo, Hyung Jun; Ji, Young Hoon; Lee, Dong Han; Lee, Dong Hoon; Choi, Mun Sik; Yoo, Dae Heon; Lee, Hyo Nam; Kim, Kyeoung Jung

    1999-04-01

    To develop the therapy technique which promote accuracy and convenience in external radiation therapy, to obtain the development of clinical treatment methods for the global competition. The contents of the R and D were 1. structure, process and outcome analysis in radiation therapy department. 2. Development of multimodality treatment in radiation therapy 3. Development of computation using networking techniques 4. Development of quality assurance (QA) system in radiation therapy 5. Development of radiotherapy tools 6. Development of intraoperative radiation therapy (IORT) tools. The results of the R and D were 1. completion of survey and analysis about Korea radiation therapy status 2. Performing QA analysis about ICR on cervix cancer 3. Trial of multicenter randomized study on lung cancers 4. Setting up inter-departmental LAN using MS NT server and Notes program 5. Development of ionization chamber and dose-rate meter for QA in linear accelerator 6. Development on optimized radiation distribution algorithm for multiple slice 7. Implementation on 3 dimensional volume surface algorithm and 8. Implementation on adaptor and cone for IORT.

  14. Clinical Features of Brain Metastases in Small Cell Lung Cancer: an Implication for Hippocampal Sparing Whole Brain Radiation Therapy

    Directory of Open Access Journals (Sweden)

    Wen-Long Guo

    2017-02-01

    Full Text Available PURPOSE: To assess the clinical features and distribution of brain metastases (BMs of small cell lung cancer (SCLC in the hippocampal and perihippocampal region, with the purpose of exploring the viability of hippocampal-sparing whole-brain radiation therapy (HS-WBRT on reducing neurocognitive deficits. METHODS: This was a retrospective analysis of the clinical characteristics and patterns of BMs in patients with SCLC. Associations between the clinical characteristics and hippocampal metastases (HMs/perihippocampal metastases (PHMs were evaluated in univariate and multivariate regression analyses. RESULTS: A total of 1594 brain metastatic lesions were identified in 180 patients. Thirty-two (17.8% patients were diagnosed with BMs at the time of primary SCLC diagnosis. The median interval between diagnosis of primary SCLC and BMs was 9.3 months. There were 9 (5.0% and 22 (12.2% patients with HMs and PHMs (patients with BMs located in or within 5 mm around the hippocampus, respectively. In the univariate and multivariate analysis, the number of BMs was the risk factor for HMs and PHMs. Patients with BMs ≥ 5 had significantly higher risk of HMs (odds ratio [OR] 7.892, 95% confidence interval [CI] 1.469-42.404, P = .016, and patients with BMs ≥ 7 had significantly higher risk of PHMs (OR 5.162, 95% CI 2.017-13.213, P = .001. Patients with extracranial metastases are also associated with HMs. CONCLUSIONS: Our results indicate that patients with nonoligometastatic disease are significantly associated with HMs and PHMs. The incidence of PHMs may be acceptably low enough to perform HS-WBRT for SCLC. Our findings provide valuable clinical data to assess the benefit of HS-WBRT in SCLC patients with BMs.

  15. Antiangiogenic and Radiation Therapy

    Science.gov (United States)

    Ren, Ying; Fleischmann, Dominik; Foygel, Kira; Molvin, Lior; Lutz, Amelie M.; Koong, Albert C.; Jeffrey, R. Brooke; Tian, Lu; Willmann, Jürgen K.

    2015-01-01

    Objectives To assess early treatment effects on computed tomography (CT) perfusion parameters after antiangiogenic and radiation therapy in subcutaneously implanted, human colon cancer xenografts in mice and to correlate in vivo CT perfusion parameters with ex vivo assays of tumor vascularity and hypoxia. Materials and Methods Dynamic contrast-enhanced CT (perfusion CT, 129 mAs, 80 kV, 12 slices × 2.4 mm; 150 μL iodinated contrast agent injected at a rate of 1 mL/min intravenously) was performed in 100 subcutaneous human colon cancer xenografts on baseline day 0. Mice in group 1 (n = 32) received a single dose of the antiangiogenic agent bevacizumab (10 mg/kg body weight), mice in group 2 (n = 32) underwent a single radiation treatment (12 Gy), and mice in group 3 (n = 32) remained untreated. On days 1, 3, 5, and 7 after treatment, 8 mice from each group underwent a second CT perfusion scan, respectively, after which tumors were excised for ex vivo analysis. Four mice were killed after baseline scanning on day 0 for ex vivo analysis. Blood flow (BF), blood volume (BV), and flow extraction product were calculated using the left ventricle as an arterial input function. Correlation of in vivo CT perfusion parameters with ex vivo microvessel density and extent of tumor hypoxia were assessed by immunofluorescence. Reproducibility of CT perfusion parameter measurements was calculated in an additional 8 tumor-bearing mice scanned twice within 5 hours with the same CT perfusion imaging protocol. Results The intraclass correlation coefficients for BF, BV, and flow extraction product from repeated CT perfusion scans were 0.93 (95% confidence interval: 0.78, 0.97), 0.88 (0.66, 0.95), and 0.88 (0.56, 0.95), respectively. Changes in perfusion parameters and tumor volumes over time were different between treatments. After bevacizumab treatment, all 3 perfusion parameters significantly decreased from day 1 (P ≤ 0.006) and remained significantly decreased until day 7 (P ≤ 0

  16. EVALUATION OF THE CLINICAL USE OF HYPOXIC CELL SENSITIZERS IN RADIATION THERAPY OF MALIGNANT EPITHELIAL SKIN TUMORS

    Directory of Open Access Journals (Sweden)

    P. Yu. Polyakov

    2015-01-01

    Full Text Available Aim: To increase the efficacy of radiation therapy of malignant epithelial cell skin neoplasms with the use of radiation sensitizers of hypoxic tumor cells.Materials and methods: The study was performed in 517 patients with basal cell (n = 361 and squamous cell (n = 156 skin cancer, 274 (53% of whom had T2 and 243 (47%, T3 tumors. Patients with locally advanced and metastatic tumors were excluded from the study. The following treatment modalities were used: distant gamma-therapy, short-distance radiation therapy and combined radiation therapy with the use of non-conventional dose fractioning at total local doses equal to 72–73 Gr. The sensibilization of hypoxic tumor cells to radiation therapy with metronidazole was done by targeted delivery of the drug to the tumor by means of topical application of Coletex-M drapes impregnated with metronidazole in a high concentration (up to 20 mcg/cm². The second method of radiosensibilization of hypoxic tumor cells was based on a preliminary use of low intensity laser radiation onto the tumor. As a source this radiation, a helium neon laser was used with the power of up to 12 mVt and the wave length of 0.63 to 0.89 mcm, duration of sessions from 3 to 15 minutes. The control group comprised 192 skin cancer patients who underwent radiation therapy without the use of radiation sensitizers. Results: The use of metronidazole and low intensity laser radiation within the radiation therapy of T3 skin cancer patients, compared to the treatment without the radiation modifiers, significantly improved the immediate cure rates (full tumor regression at 1 to 1.5 months after completion of radiation from 75.5 ± 3.1% to 89.2 ± 1.9% (р < 0.05. In the group with basal cell skin cancer that underwent radiation therapy combined with metronidazole, there was an association of its radio-modifying effect and tumor size. Short-distance roentgenotherapy of patients with T2 basal cell skin cancer and tumor size of < 4 cm was

  17. Radiobiological rationale and clinical implications of hypo-fractionated radiation therapy; Bases radiobiologiques et applications cliniques de la radiotherapie hypofractionnee

    Energy Technology Data Exchange (ETDEWEB)

    Ko, E.C.; Forsythe, K.; Buckstein, M.; Kao, J.; Rosenstein, B.S. [Department of Radiation Oncology, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1236, New York, NY (United States)

    2011-06-15

    Recent clinical trials of hypo-fractionated radiation treatment have provided critical insights into the safety and efficacy of hypo-fractionation. However, there remains much controversy in the field, both at the level of clinical practice and in our understanding of the underlying radiobiological mechanisms. In this article, we review the clinical literature on hypo-fractionated radiation treatment for breast, prostate, and other malignancies. We highlight several ongoing clinical trials that compare outcomes of a hypo-fractionated approach versus those obtained with a conventional approach. Lastly, we outline some of the preclinical and clinical evidence that argue in favor of differential radiobiological mechanisms underlying hypo-fractionated radiation treatment. Emerging data from the ongoing studies will help to better define and guide the rational use of hypo-fractionation in future years. (authors)

  18. Stereotactic body radiation therapy for abdominal targets using volumetric intensity modulated arc therapy with RapidArc: Feasibility and clinical preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Scorsetti, Marta; Bignardi, Mario; Alongi, Filippo; Mancosu, Pietro; Navarria, Piera; Castiglioni, Simona; Pentimalli, Sara; Tozzi, Angelo (IRCCS Istituto Clinico Humanitas, Rozzano (Italy)), e-mail: pietro.mancosu@humanitas.it; Fogliata, Antonella; Cozzi, Luca (Oncology Inst. of Southern Switzerland, Bellinzona (Switzerland))

    2011-05-15

    Purpose. To report early clinical experience in stereotactic body radiation therapy (SBRT) delivered using volumetric intensity modulated arc therapy with RapidArc (RA) in patients with primary or metastatic tumours at abdominal sites. Material and methods. Thirty-seven consecutive patients were treated using RA. Of these, 16 had primary or metastatic liver tumours, nine had pancreatic cancer and 12 a nodal metastasis in the retro-peritoneum. Dose prescription varied from 45 to 75 Gy to the Clinical Target Volume in 3 to 6 fractions. The median follow-up was 12 months (6-22). Early local control and toxicity were investigated and reported. Results. Planning objectives on target volumes and organs at risk were met in most cases. Delivery time ranged from 2.8 +- 0.3 to 9.2 +- 2.4 minutes and pre-treatment plan verification resulted in a Gamma Agreement Index from 95.3 +- 3.8 to 98.3 +- 1.7%. At the time of analysis, local control (freedom from progression) at six months, was assessable in 24 of 37 patients and was achieved in 19 patients with a crude rate of 79.2%. Seven patients experienced treatment-related toxicity. Three patients experienced a mild and transient G1 enteritis and two showed a transient G1 liver damage. Two had late toxicity: one developed chronic enteritis causing G1 diarrhoea and G1 abdominal pain and one suffered at three months a G3 gastric bleeding. No patients experienced G4 acute toxicity. Conclusions. SBRT for abdominal targets delivered by means of RA resulted to be feasible with good early clinical results in terms of local control rate and acute toxicity profile. RA allowed to achieve required target coverage as well as to keep within normal tissue dose/volume constraints

  19. Estimated clinical benefit of protecting neurogenesis in the developing brain during radiation therapy for pediatric medulloblastoma

    DEFF Research Database (Denmark)

    Blomstrand, M.; Berthelsen, Anne Kiil; Munck af Rosenschöld, Per Martin

    2012-01-01

    We sought to assess the feasibility and estimate the benefit of sparing the neurogenic niches when irradiating the brain of pediatric patients with medulloblastoma (MB) based on clinical outcome data. Pediatric MB survivors experience a high risk of neurocognitive adverse effects, often attributed......%-60%), and 33% (95% CI, 23%-44%) with opposing fields, IMAT, IMRT, and IMPT, respectively. Neurogenic niche sparing during cranial irradiation of pediatric patients with MB is feasible and is estimated to lower the risks of long-term neurocognitive sequelae. Greatest sparing is achieved with intensity...

  20. Multi-site evaluation of a clinical decision support system for radiation therapy

    Science.gov (United States)

    Deshpande, Ruchi; DeMarco, John; Kessel, Kerstin; Liu, Brent J.

    2016-03-01

    We have developed an imaging informatics based decision support system that learns from retrospective treatment plans to provide recommendations for healthy tissue sparing to prospective incoming patients. This system incorporates a model of best practices from previous cases, specific to tumor anatomy. Ultimately, our hope is to improve clinical workflow efficiency, patient outcomes and to increase clinician confidence in decision-making. The success of such a system depends greatly on the training dataset, which in this case, is the knowledge base that the data-mining algorithm employs. The size and heterogeneity of the database is essential for good performance. Since most institutions employ standard protocols and practices for treatment planning, the diversity of this database can be greatly increased by including data from different institutions. This work presents the results of incorporating cross-country, multi-institutional data into our decision support system for evaluation and testing.

  1. SU-E-J-181: Magnetic Resonance Image-Guided Radiation Therapy Workflow: Initial Clinical Experience

    Energy Technology Data Exchange (ETDEWEB)

    Green, O; Kashani, R; Santanam, L; Wooten, H; Li, H; Rodriguez, V; Hu, Y; Mutic, S [Washington University School of Medicine, St. Louis, MO (United States); Hand, T; Victoria, J [ViewRay, Inc., Oakwood Village, OH (United States); Steele, C [Barnes Jewish Hospital, St Louis, MO (United States)

    2014-06-01

    Purpose: The aims of this work are to describe the workflow and initial clinical experience treating patients with an MRI-guided radiotherapy (MRIGRT) system. Methods: Patient treatments with a novel MR-IGRT system started at our institution in mid-January. The system consists of an on-board 0.35-T MRI, with IMRT-capable delivery via doubly-focused MLCs on three {sup 60} Co heads. In addition to volumetric MR-imaging, real-time planar imaging is performed during treatment. So far, eleven patients started treatment (six finished), ranging from bladder to lung SBRT. While the system is capable of online adaptive radiotherapy and gating, a conventional workflow was used to start, consisting of volumetric imaging for patient setup using visible tumor, evaluation of tumor motion outside of PTV on cine images, and real-time imaging. Workflow times were collected and evaluated to increase efficiency and evaluate feasibility of adding the adaptive and gating features while maintaining a reasonable patient throughput. Results: For the first month, physicians attended every fraction to provide guidance on identifying the tumor and an acceptable level of positioning and anatomical deviation. Average total treatment times (including setup) were reduced from 55 to 45 min after physician presence was no longer required and the therapists had learned to align patients based on soft-tissue imaging. Presently, the source strengths were at half maximum (7.7K Ci each), therefore beam-on times will be reduced after source replacement. Current patient load is 10 per day, with increase to 25 anticipated in the near future. Conclusion: On-board, real-time MRI-guided RT has been incorporated into clinical use. Treatment times were kept to reasonable lengths while including volumetric imaging, previews of tumor movement, and physician evaluation. Workflow and timing is being continuously evaluated to increase efficiency. In near future, adaptive and gating capabilities of the system will

  2. Stereotactic Body Radiation Therapy for Prostate Cancer: What is the Appropriate Patient-Reported Outcome for Clinical Trial Design?

    Directory of Open Access Journals (Sweden)

    Jennifer Ai-Lian Woo

    2015-03-01

    Full Text Available Purpose: Stereotactic body radiation therapy (SBRT is increasingly utilized as primary treatment for clinically localized prostate cancer. Consensus regarding the appropriate patient-reported outcome (PRO endpoints for clinical trials for early stage prostate cancer RT is lacking. To aid in trial design, this study presents PROs over 36 months following SBRT for clinically localized prostate cancer. Methods: 174 hormone-naïve patients were treated with 35-36.25 Gy SBRT in 5 fractions. Patients completed the EPIC-26 questionnaire at baseline and all follow-ups; the proportion of patients developing a clinically significant decline in each EPIC domain was determined. The minimally important difference (MID was defined as a change of one-half SD from the baseline. Per RTOG 0938, we examined the percentage of patients who reported decline in EPIC urinary summary score of >2 points and EPIC bowel summary score of >5 points from baseline to one year. Results: 174 patients received SBRT with minimum follow-up of 36 months. The proportion of patients reporting a clinically significant decline in EPIC urinary/bowel scores was 34%/30%, 40%/32.2%, and 32.8%/21.5% at 6, 12, and 36 months. The percentage of patients reporting decline in the EPIC urinary summary score of >2 points was 43.2%, 51.6% and 41.8% at 6, 12, and 36 months. The percentage of patients reporting decline in EPIC bowel domain summary score of >5 points was 29.6% 29% and 22.4% at 6, 12, and 36 months. Conclusion: Our treatment protocol meets the RTOG 0938 criteria for advancing to a Phase III trial compared to conventionally fractionated RT. Between 12-36 months, the proportion of patients reporting decrease in both EPIC urinary and bowel scores declined, suggesting late improvement in these domains. Further investigation is needed to elucidate 1 which domains bear the greatest influence on post-treatment QOL, and 2 at what time point PRO endpoint(s should be assessed.

  3. SU-E-P-30: Clinical Applications of Spatially Fractionated Radiation Therapy (GRID) Using Helical Tomotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X; Liang, X [University of Arkansas Medical Science, Little Rock, AR (United States); Penagaricano, J [University of Arkansas for Medical Science, Little Rock, Arkansas (United States); Morrill, S; Corry, P; Paudel, N; Vaneerat, V Ratanatharathorn [University of Arkansas for Medical Sciences, Little Rock, AR (United States); Yan, Y [UT Southwestern Medical Center, Dallas, TX (United States); Griffin, R [University of Arkansas for Medical Sciences, Little Rock, Arkansas (United States)

    2015-06-15

    Purpose: To present the first clinical applications of Helical Tomotherapy-based spatially fractionated radiotherapy (HT-GRID) for deep seated tumors and associated dosimetric study. Methods: Ten previously treated GRID patients were selected (5 HT-GRID and 5 LINAC-GRID using a commercially available GRID block). Each case was re-planned either in HT-GRID or LINAC-GRID for a total of 10 plans for both techniques using same prescribed dose of 20 Gy to maximum point dose of GRID GTV. For TOMO-GRID, a programmable virtual TOMOGRID template mimicking a GRID pattern was generated. Dosimetric parameters compared included: GRID GTV mean dose (Dmean) and equivalent uniform dose (EUD), GRID GTV dose inhomogeneity (Ratio(valley/peak)), normal tissue Dmean and EUD, and other organs-at-risk(OARs) doses. Results: The median tumor volume was 634 cc, ranging from 182 to 4646 cc. Median distance from skin to the deepest part of tumor was 22cm, ranging from 8.9 to 38cm. The median GRID GTV Dmean and EUD was 10.65Gy (9.8–12.5Gy) and 7.62Gy (4.31–11.06Gy) for HT-GRID and was 6.73Gy (4.44–8.44Gy) and 3.95Gy (0.14–4.2Gy) for LINAC-GRID. The median Ratio(valley/peak) was 0.144(0.05–0.29) for HT-GRID and was 0.055(0.0001–0.14) for LINAC-GRID. For normal tissue in HT-GRID, the median Dmean and EUD was 1.24Gy (0.34–2.54Gy) and 5.45 Gy(3.45–6.89Gy) and was 0.61 Gy(0.11–1.52Gy) and 6Gy(4.45–6.82Gy) for LINAC-GRID. The OAR doses were comparable between the HT-GRID and LINAC-GRID. However, in some cases it was not possible to avoid a critical structure in LINAC-GRID; while HT-GRID can spare more tissue doses for certain critical structures. Conclusion: HT-GRID delivers higher GRID GTV Dmean, EUD and Ratio(valley/peak) compared to LINAC-GRID. HT-GRID delivers higher Dmean and lower EUD for normal tissue compared to LINAC-GRID. TOMOGRID template can be highly patient-specific and allows adjustment of the GRID pattern to different tumor sizes and shapes when they are deeply

  4. Multileaf Collimator Tracking Improves Dose Delivery for Prostate Cancer Radiation Therapy: Results of the First Clinical Trial

    DEFF Research Database (Denmark)

    Colvill, Emma; Booth, Jeremy T; O'Brien, Ricky T;

    2015-01-01

    PURPOSE: To test the hypothesis that multileaf collimator (MLC) tracking improves the consistency between the planned and delivered dose compared with the dose without MLC tracking, in the setting of a prostate cancer volumetric modulated arc therapy trial. METHODS AND MATERIALS: Multileaf...... collimator tracking was implemented for 15 patients in a prostate cancer radiation therapy trial; in total, 513 treatment fractions were delivered. During each treatment fraction, the prostate trajectory and treatment MLC positions were collected. These data were used as input for dose reconstruction...

  5. Radiation Therapy for Cancer

    Science.gov (United States)

    ... basic unit of light and other forms of electromagnetic radiation . It can be thought of as a bundle ... 3D-CRT uses very sophisticated computer software and advanced treatment machines to deliver radiation to very precisely shaped target areas. Many other ...

  6. Association of Clinical Response and Long-term Outcome Among Patients With Biopsied Orbital Pseudotumor Receiving Modern Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Prabhu, Roshan S., E-mail: rprabhu@emory.edu [Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia (United States); Kandula, Shravan; Liebman, Lang [Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia (United States); Wojno, Ted H.; Hayek, Brent [Division of Oculoplastics, Orbital and Cosmetic Surgery, Emory University, Atlanta, Georgia (United States); Hall, William A.; Shu, Hui-Kuo; Crocker, Ian [Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia (United States)

    2013-03-01

    Purpose: To retrospectively evaluate institutional outcomes for patients treated with modern radiation therapy (RT) for biopsied orbital pseudotumor (OP). Methods and Materials: Twenty patients (26 affected orbits) with OP were treated with RT between January 2002 and December 2011. All patients underwent biopsy with histopathologic exclusion of other disease processes. Sixteen patients (80%) were treated with intensity modulated RT, 3 (15%) with opposed lateral beams, and 1 (5%) with electrons. Median RT dose was 27 Gy (range 25.2-30.6 Gy). Response to RT was evaluated at 4 months post-RT. Partial response (PR) was defined as improvement in orbital symptoms without an increase in steroid dose. Complete response (CR) 1 and CR 2 were defined as complete resolution of orbital symptoms with reduction in steroid dose (CR 1) or complete tapering of steroids (CR 2). The median follow-up period was 18.6 months (range 4-81.6 months). Results: Seventeen patients (85%) demonstrated response to RT, with 7 (35%), 1 (5%), and 9 (45%) achieving a PR, CR 1, and CR 2, respectively. Of the 17 patients who had ≥PR at 4 months post-RT, 6 (35%) experienced recurrence of symptoms. Age (>46 years vs ≤46 years, P=.04) and clinical response to RT (CR 2 vs CR 1/PR, P=.05) were significantly associated with pseudotumor recurrence. Long-term complications were seen in 7 patients (35%), including 4 with cataract formation, 1 with chronic dry eye, 1 with enophthalmos, and 1 with keratopathy. Conclusions: RT is an effective treatment for improving symptoms and tapering steroids in patients with a biopsy supported diagnosis of OP. Older age and complete response to RT were associated with a significantly reduced probability of symptom recurrence. The observed late complications may be related to RT, chronic use of steroids/immunosuppressants, medical comorbidities, or combination of factors.

  7. Early Clinical Outcomes Demonstrate Preserved Cognitive Function in Children With Average-Risk Medulloblastoma When Treated With Hyperfractionated Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Tejpal, E-mail: tejpalgupta@rediffmail.com [Department of Radiation Oncology, Advanced Centre for Treatment Research and Education in Cancer and Tata Memorial Hospital, Mumbai (India); Jalali, Rakesh [Department of Radiation Oncology, Advanced Centre for Treatment Research and Education in Cancer and Tata Memorial Hospital, Mumbai (India); Goswami, Savita [Department of Clinical Psychology and Psychiatry Unit, Advanced Centre for Treatment Research and Education in Cancer and Tata Memorial Hospital, Mumbai (India); Nair, Vimoj [Department of Radiation Oncology, Advanced Centre for Treatment Research and Education in Cancer and Tata Memorial Hospital, Mumbai (India); Moiyadi, Aliasgar [Division of Neuro-Surgery, Department of Surgical Oncology, Advanced Centre for Treatment Research and Education in Cancer and Tata Memorial Hospital, Mumbai (India); Epari, Sridhar [Department of Pathology, Advanced Centre for Treatment Research and Education in Cancer and Tata Memorial Hospital, Mumbai (India); Sarin, Rajiv [Department of Radiation Oncology, Advanced Centre for Treatment Research and Education in Cancer and Tata Memorial Hospital, Mumbai (India)

    2012-08-01

    Purpose: To report on acute toxicity, longitudinal cognitive function, and early clinical outcomes in children with average-risk medulloblastoma. Methods and Materials: Twenty children {>=}5 years of age classified as having average-risk medulloblastoma were accrued on a prospective protocol of hyperfractionated radiation therapy (HFRT) alone. Radiotherapy was delivered with two daily fractions (1 Gy/fraction, 6 to 8 hours apart, 5 days/week), initially to the neuraxis (36 Gy/36 fractions), followed by conformal tumor bed boost (32 Gy/32 fractions) for a total tumor bed dose of 68 Gy/68 fractions over 6 to 7 weeks. Cognitive function was prospectively assessed longitudinally (pretreatment and at specified posttreatment follow-up visits) with the Wechsler Intelligence Scale for Children to give verbal quotient, performance quotient, and full-scale intelligence quotient (FSIQ). Results: The median age of the study cohort was 8 years (range, 5-14 years), representing a slightly older cohort. Acute hematologic toxicity was mild and self-limiting. Eight (40%) children had subnormal intelligence (FSIQ <85), including 3 (15%) with mild mental retardation (FSIQ 56-70) even before radiotherapy. Cognitive functioning for all tested domains was preserved in children evaluable at 3 months, 1 year, and 2 years after completion of HFRT, with no significant decline over time. Age at diagnosis or baseline FSIQ did not have a significant impact on longitudinal cognitive function. At a median follow-up time of 33 months (range, 16-58 months), 3 patients had died (2 of relapse and 1 of accidental burns), resulting in 3-year relapse-free survival and overall survival of 83.5% and 83.2%, respectively. Conclusion: HFRT without upfront chemotherapy has an acceptable acute toxicity profile, without an unduly increased risk of relapse, with preserved cognitive functioning in children with average-risk medulloblastoma.

  8. Radiation Therapy (For Parents)

    Science.gov (United States)

    ... with ink to highlight the treatment area. This "tattoo" should not be wiped off because it helps ... quickly to reduce exposure. previous continue Common Side Effects of Radiation If your child has cancer, you' ...

  9. Radiation Therapy of Pituitary Tumors

    Energy Technology Data Exchange (ETDEWEB)

    Park, Moon Baik; Hong, Seong Eong [Kyunghee University College of Medicine, Seoul (Korea, Republic of)

    1989-12-15

    Radiation treatment results were analyzed in a retrospective analysis of 47 patients with pituitary adenoma treated with radiation alone or combined with surgery from 1974 through 1987 at the Department of Therapeutic Radiology of Kyung Hee University. The 5-year overall survival rates for all patients was 80.4%. Radiation therapy was effective for improving visual symptoms and headache, but could not normalize amenorrhea and galactorrhoea. There was no difference of survival rate between radiation alone and combination with surgery. Prognostic factors such as age, sex, disease type, visual field, headache and surgical treatment were statistically no significant in survival rates of these patients.

  10. A Phase I Clinical and Pharmacology Study Using Amifostine as a Radioprotector in Dose-escalated Whole Liver Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Mary, E-mail: maryfeng@umich.edu [Department of Radiation Oncology, School of Medicine, University of Michigan, Ann Arbor, Michigan (United States); Smith, David E. [Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan (United States); Normolle, Daniel P. [Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania (United States); Knol, James A. [Department of Surgery, School of Medicine, University of Michigan, Ann Arbor, Michigan (United States); Pan, Charlie C.; Ben-Josef, Edgar [Department of Radiation Oncology, School of Medicine, University of Michigan, Ann Arbor, Michigan (United States); Lu Zheng; Feng, Meihua R.; Chen Jun [Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan (United States); Ensminger, William [Department of Internal Medicine, School of Medicine, University of Michigan, Ann Arbor, Michigan (United States); Lawrence, Theodore S. [Department of Radiation Oncology, School of Medicine, University of Michigan, Ann Arbor, Michigan (United States)

    2012-08-01

    Purpose: Diffuse intrahepatic tumors are difficult to control. Whole-liver radiotherapy has been limited by toxicity, most notably radiation-induced liver disease. Amifostine is a prodrug free-radical scavenger that selectively protects normal tissues and, in a preclinical model of intrahepatic cancer, systemic amifostine reduced normal liver radiation damage without compromising tumor effect. We hypothesized that amifostine would permit escalation of whole-liver radiation dose to potentially control microscopic disease. We also aimed to characterize the pharmacokinetics of amifostine and its active metabolite WR-1065 to optimize timing of radiotherapy. Methods and Materials: We conducted a radiation dose-escalation trial for patients with diffuse, intrahepatic cancer treated with whole-liver radiation and intravenous amifostine. Radiation dose was assigned using the time-to-event continual reassessment method. A companion pharmacokinetic study was performed. Results: Twenty-three patients were treated, with a maximum dose of 40 Gy. Using a logistical regression model, compared with our previously treated patients, amifostine increased liver tolerance by 3.3 {+-} 1.1 Gy (p = 0.007) (approximately 10%) with similar response rates. Peak concentrations of WR-1065 were 25 {mu}M with an elimination half-life of 1.5 h; these levels are consistent with radioprotective effects of amifostine in patients. Conclusion: These findings demonstrate for the first time that amifostine is a normal liver radioprotector. They further suggest that it may be useful to combine amifostine with fractionated or stereotactic body radiation therapy for patients with focal intrahepatic cancer.

  11. Respiratory Motion Prediction in Radiation Therapy

    Science.gov (United States)

    Vedam, Sastry

    Active respiratory motion management has received increasing attention in the past decade as a means to reduce the internal margin (IM) component of the clinical target volume (CTV)—planning target volume (PTV) margin typically added around the gross tumor volume (GTV) during radiation therapy of thoracic and abdominal tumors. Engineering and technical developments in linear accelerator design and respiratory motion monitoring respectively have made the delivery of motion adaptive radiation therapy possible through real-time control of either dynamic multileaf collimator (MLC) motion (gantry based linear accelerator design) or robotic arm motion (robotic arm mounted linear accelerator design).

  12. Monte Carlo techniques in radiation therapy

    CERN Document Server

    Verhaegen, Frank

    2013-01-01

    Modern cancer treatment relies on Monte Carlo simulations to help radiotherapists and clinical physicists better understand and compute radiation dose from imaging devices as well as exploit four-dimensional imaging data. With Monte Carlo-based treatment planning tools now available from commercial vendors, a complete transition to Monte Carlo-based dose calculation methods in radiotherapy could likely take place in the next decade. Monte Carlo Techniques in Radiation Therapy explores the use of Monte Carlo methods for modeling various features of internal and external radiation sources, including light ion beams. The book-the first of its kind-addresses applications of the Monte Carlo particle transport simulation technique in radiation therapy, mainly focusing on external beam radiotherapy and brachytherapy. It presents the mathematical and technical aspects of the methods in particle transport simulations. The book also discusses the modeling of medical linacs and other irradiation devices; issues specific...

  13. Radiation therapy in pseudotumour haemarthrosis

    Energy Technology Data Exchange (ETDEWEB)

    Lal, P.; Biswal, B.M.; Thulkar, S.; Patel, A.K.; Venkatesh, R.; Julka, P.K. [Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, Ansari Nagar, New Delhi (India). Departments of Radiation Oncology, Radiodiagnosis and Haematology

    1998-11-01

    Total or partial deficiency of factor VIII and IX in the coagulation cascade leads to haemophilia. Haemophilia affecting weight-bearing joints gives a `pseudotumour` or haemarthrosis-like condition. Surgery and cryoprecipitate infusions have been the treatment for this condition. Radiocolloids and radiation therapy have been used with some benefit. One case of ankle pseudotumour which was treated by low-dose external beam radiation is presented here. Copyright (1998) Blackwell Science Pty Ltd 14 refs., 2 figs.

  14. Stereotactic Hypofractionated Radiation Therapy as a Bridge to Transplantation for Hepatocellular Carcinoma: Clinical Outcome and Pathologic Correlation

    Energy Technology Data Exchange (ETDEWEB)

    Katz, Alan W., E-mail: alan_katz@urmc.rochester.edu [Department of Radiation Oncology, University of Rochester Medical Center, Rochester, New York (United States); Chawla, Sheema [Department of Radiation Oncology, University of Rochester Medical Center, Rochester, New York (United States); Qu, Zhenhong [Anatomic Pathology, William Beaumont Hospital, Royal Oak, Michigan (United States); Kashyap, Randeep [Department of Solid Organ Transplant, University of Rochester Medical Center, Rochester, New York (United States); Milano, Michael T. [Department of Radiation Oncology, University of Rochester Medical Center, Rochester, New York (United States); Hezel, Aram F. [Department of Medicine, Division of Hematology and Oncology, University of Rochester Medical Center, Rochester, New York (United States)

    2012-07-01

    Purpose: We sought to determine efficacy, safety, and outcome of stereotactic hypofractionated radiation therapy (SHORT) as a suitable bridging therapy for patients awaiting liver transplantation (LT) for hepatocellular carcinoma (HCC). We also examined histological response to radiation in the resected or explanted livers. Methods and Materials: Between August 2007 and January 2009, 18 patients with 21 lesions received SHORT. A median total dose of 50 Gy was delivered in 10 fractions. Three patients underwent either chemoembolization (n = 1) or radiofrequency ablation (n = 2) prior to SHORT. Radiographic response was based on computed tomography evaluation at 3 months after SHORT. Histological response as a percentage of tumor necrosis was assessed by a quantitative morphometric method. Results: Six of 18 patients were delisted because of progression (n = 3) or other causes (n = 3). Twelve patients successfully underwent major hepatic resection (n = 1) or LT (n = 11) at a median follow-up of 6.3 months (range, 0.6-11.6 months) after completion of SHORT. No patient developed gastrointestinal toxicity Grade {>=}3 or radiation-induced liver disease. Ten patients with 11 lesions were evaluable for pathological response. Two lesions had 100% necrosis, three lesions had {>=}50% necrosis, four lesions had {<=}50% necrosis, and two lesions had no necrosis. All patients were alive after LT and/or major hepatic resection at a median follow-up of 19.6 months. Conclusions: SHORT is an effective bridging therapy for patients awaiting LT for HCC. It provides excellent in-field control with minimal side effects, helps to downsize or stabilize tumors prior to LT, and achieves good pathological response.

  15. Characterization of the onboard imaging unit for the first clinical magnetic resonance image guided radiation therapy system

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Yanle, E-mail: Hu.Yanle@mayo.edu [Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri 63110 and Department of Radiation Oncology, Mayo Clinic in Arizona, Phoenix, Arizona 85054 (United States); Rankine, Leith; Green, Olga L.; Kashani, Rojano; Li, H. Harold; Li, Hua; Rodriguez, Vivian; Santanam, Lakshmi; Wooten, H. Omar; Mutic, Sasa [Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri 63110 (United States); Nana, Roger; Shvartsman, Shmaryu; Victoria, James; Dempsey, James F. [ViewRay, Inc., Oakwood Village, Ohio 44146 (United States)

    2015-10-15

    Purpose: To characterize the performance of the onboard imaging unit for the first clinical magnetic resonance image guided radiation therapy (MR-IGRT) system. Methods: The imaging performance characterization included four components: ACR (the American College of Radiology) phantom test, spatial integrity, coil signal to noise ratio (SNR) and uniformity, and magnetic field homogeneity. The ACR phantom test was performed in accordance with the ACR phantom test guidance. The spatial integrity test was evaluated using a 40.8 × 40.8 × 40.8 cm{sup 3} spatial integrity phantom. MR and computed tomography (CT) images of the phantom were acquired and coregistered. Objects were identified around the surfaces of 20 and 35 cm diameters of spherical volume (DSVs) on both the MR and CT images. Geometric distortion was quantified using deviation in object location between the MR and CT images. The coil SNR test was performed according to the national electrical manufacturers association (NEMA) standards MS-1 and MS-9. The magnetic field homogeneity test was measured using field camera and spectral peak methods. Results: For the ACR tests, the slice position error was less than 0.10 cm, the slice thickness error was less than 0.05 cm, the resolved high-contrast spatial resolution was 0.09 cm, the resolved low-contrast spokes were more than 25, the image intensity uniformity was above 93%, and the percentage ghosting was less than 0.22%. All were within the ACR recommended specifications. The maximum geometric distortions within the 20 and 35 cm DSVs were 0.10 and 0.18 cm for high spatial resolution three-dimensional images and 0.08 and 0.20 cm for high temporal resolution two dimensional cine images based on the distance-to-phantom-center method. The average SNR was 12.0 for the body coil, 42.9 for the combined torso coil, and 44.0 for the combined head and neck coil. Magnetic field homogeneities at gantry angles of 0°, 30°, 60°, 90°, and 120° were 23.55, 20.43, 18.76, 19

  16. Radiation Therapy of Testicular Seminoma

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Hong Gyun; Oh, Do Hoon; Ha, Sung Whan [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    1994-10-15

    Purpose: Testicular seminomas are radiosensitive and adjuvant radiation therapy after orchiectomy results in long term survival in early stage diseases. Ten year results of radiation therapy after orchiectomy and results of definitive treatment of recurrent seminoma are presented. Materials and Methods: Between August 1980 and February 1990, 32 patients with testicular seminomas were treated at the Department of Therapeutic Radiology, Seoul National University Hospital. Twenty-seven patients received radiation therapy after orchiectomy and 5 patients for treatment of recurrent tumors. Two of postoperatively treated patients and 2 of recurrent patients were excluded from the study because of incomplete treatment. Of the patients treated postoperatively. 18 were stage I, 5 were stage IIA, one was stage IIB, and one was stage IIC. There were 4 ipsilateral and 2 contralateral cryptorchids. Preoperatively, b-HCG levels were elevated in 5 patients. Median dose to pelvic and paraaortic lymph node area was 2900 cGy (1550-4550 cGy). One patient with stage I, 4 with stage IIA, and 1 with stage IIB received prophylactic mediastinal irradiation. Two patients were treated with chemotherapy before radiation therapy. Median follow-up period was 104(3-144) months. Result: Local control rates were 100% at 5 years after orchiectomy. Five year survival rates were 94.4% in Stage I and 100% in Stage II patients. One patient with stage I disease died 3 months after surgery due to mediastinal metastasis. All the 3 patients treated for recurrent disease are alive without disease. Conclusion: Postorchiectomy radiation to the pelvis and para-aortic area remains the treatment of choice for patient with early stage testicular seminoma. Radiation therapy is also an excellent treatment modality for recurrent seminoma.

  17. Pirfenidone enhances the efficacy of combined radiation and sunitinib therapy

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Seo-Hyun; Nam, Jae-Kyung; Jang, Junho; Lee, Hae-June, E-mail: hjlee@kcch.re.kr; Lee, Yoon-Jin, E-mail: yjlee8@kcch.re.kr

    2015-06-26

    Radiotherapy is a widely used treatment for many tumors. Combination therapy using anti-angiogenic agents and radiation has shown promise; however, these combined therapies are reported to have many limitations in clinical trials. Here, we show that radiation transformed tumor endothelial cells (ECs) to fibroblasts, resulting in reduced vascular endothelial growth factor (VEGF) response and increased Snail1, Twist1, Type I collagen, and transforming growth factor (TGF)-β release. Irradiation of radioresistant Lewis lung carcinoma (LLC) tumors greater than 250 mm{sup 3} increased collagen levels, particularly in large tumor vessels. Furthermore, concomitant sunitinib therapy did not show a significant difference in tumor inhibition versus radiation alone. Thus, we evaluated multimodal therapy that combined pirfenidone, an inhibitor of TGF-induced collagen production, with radiation and sunitinib treatment. This trimodal therapy significantly reduced tumor growth, as compared to radiation alone. Immunohistochemical analysis revealed that radiation-induced collagen deposition and tumor microvessel density were significantly reduced with trimodal therapy, as compared to radiation alone. These data suggest that combined therapy using pirfenidone may modulate the radiation-altered tumor microenvironment, thereby enhancing the efficacy of radiation therapy and concurrent chemotherapy. - Highlights: • Radiation changes tumor endothelial cells to fibroblasts. • Radio-resistant tumors contain collagen deposits, especially in tumor vessels. • Pirfenidone enhances the efficacy of combined radiation and sunitinib therapy. • Pirfenidone reduces radiation-induced collagen deposits in tumors.

  18. [Stereotactic radiation therapy].

    Science.gov (United States)

    Aristu, J J; Ciérvide, R; Guridi, J; Moreno, M; Arbea, L; Azcona, J D; Ramos, L I; Zubieta, J L

    2009-01-01

    Stereotactic radiotherapy is a form of external radiotherapy that employs a system of three dimensional coordinates independent of the patient for the precise localisation of the lesion. It also has the characteristic that the radiation beams are conformed and precise, and converge on the lesion, making it possible to administer very high doses of radiotherapy without increasing the radiation to healthy adjacent organs or structures. When the procedure is carried out in one treatment session it is termed radiosurgery, and when administered over several sessions it is termed stereotactic radiotherapy. Special systems of fixing or immobilising the patient (guides or stereotactic frames) are required together with radiotherapy devices capable of generating conformed beams (lineal accelerator, gammaknife, cyberknife, tomotherapy, cyclotrons). Modern stereotactic radiotherapy employs intra-tumoural radio-opaque frames or CAT image systems included in the irradiation device, which make possible a precise localisation of mobile lesions in each treatment session. Besides, technological advances make it possible to coordinate the lesion's movements in breathing with the radiotherapy unit (gating and tracking) for maximum tightening of margins and excluding a greater volume of healthy tissue. Radiosurgery is mainly indicated in benign or malign cerebral lesions less than 3-4 centimetres (arteriovenous malformations, neurinomas, meningiomas, cerebral metastases) and stereotactic radiotherapy is basically administered in tumours of extracraneal localisation that require high conforming and precision, such as inoperable early lung cancer and hepatic metastasis.

  19. Combination Therapy with Zoledronic Acid and Parathyroid Hormone Improves Bone Architecture and Strength following a Clinically-Relevant Dose of Stereotactic Radiation Therapy for the Local Treatment of Canine Osteosarcoma in Athymic Rats.

    Science.gov (United States)

    Curtis, Ryan C; Custis, James T; Ehrhart, Nicole P; Ehrhart, E J; Condon, Keith W; Gookin, Sara E; Donahue, Seth W

    2016-01-01

    Clinical studies using definitive-intent stereotactic radiation therapy (SRT) for the local treatment of canine osteosarcoma (OSA) have shown canine patients achieving similar median survival times as the current standard of care (amputation and adjuvant chemotherapy). Despite this, there remains an unacceptable high risk of pathologic fracture following radiation treatment. Zoledronic acid (ZA) and parathyroid hormone (PTH) are therapeutic candidates for decreasing this fracture risk post-irradiation. Due to differing mechanisms, we hypothesized that the combined treatment with ZA and PTH would significantly improve bone healing more than ZA or PTH treatment alone. Using an orthotopic model of canine osteosarcoma in athymic rats, we evaluated bone healing following clinically-relevant doses of radiation therapy (12 Gy x 3 fractions, 36 Gy total). Groups included 36 Gy SRT only, 36 Gy SRT plus ZA, 36 Gy SRT plus ZA and PTH, 36 Gy SRT plus PTH, and 36 Gy SRT plus localized PTH treatment. Our study showed significant increases in bone volume and increased polar moments of inertia (in the distal femoral metaphysis) 8 weeks after radiation in the combined (ZA/PTH) treatment group as compared to radiation treatment alone. Histomorphometric analysis revealed evidence of active mineralization at the study endpoint as well as successful tumor-cell kill across all treatment groups. This work provides further evidence for the expanding potential indications for ZA and PTH therapy, including post-irradiated bone disease due to osteosarcoma.

  20. Clinical features of brain metastases in breast cancer: an implication for hippocampal-sparing whole-brain radiation therapy

    Directory of Open Access Journals (Sweden)

    Wu S

    2016-12-01

    Full Text Available San-Gang Wu,1,* Jia-Yuan Sun,2,* Qin Tong,3 Feng-Yan Li,2 Zhen-Yu He2 1Department of Radiation Oncology, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen, 2Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, 3Department of Radiation Oncology, The First Affiliated Hospital of University of South China, Hengyang, People’s Republic of China *These authors contributed equally to this work Objective: The objectives of this study were to describe the distribution of brain metastases (BM in breast cancer patients and investigate the risk factors for perihippocampal metastases (PHM. Patients and methods: Retrospective analysis of the clinicopathological characteristics and patterns of BM was performed. Associations between clinicopathological characteristics and PHM (the hippocampus plus 5 mm margin were evaluated using logistic regression analyses. Results: A total of 1,356 brain metastatic lesions were identified in 192 patients. Patients with 1–3 BM, 4–9 BM, and ≥10 BM accounted for 63.0%, 18.8%, and 18.2%, respectively. There were only 7 (3.6% patients with hippocampal metastases (HM and 14 (7.3% patients with PHM. On logistic regression, the number of BM was an independent risk factor for PHM. Patients with ≥10 BM had a significantly higher risk of PHM compared with those with <10 BM. Breast cancer subtype (BCS was not associated with PHM. The number of BM was significantly correlated with various BCSs. Patients with hormone receptor (HR+/human epidermal growth factor receptor 2 (HER2+, HR-/HER2+, and HR-/HER2- subtypes had a higher probability of ≥10 BM, relative to patients with an HR+/HER2- subtype. Conclusion: Our study suggests that a low incidence of PHM may be acceptable to perform hippocampal-sparing whole-brain radiation therapy for breast cancer patients

  1. Sensitizing Osteosarcoma to Radiation Therapy

    Science.gov (United States)

    Mamo, Tewodros Kebede

    Several strategies to enhance the effects of radiation therapy are being explored for various cancers, with multiple molecular pathways and physical approaches suggested to play a role. One approach to improve the effectiveness of radiation therapy in tumors is the use of radiosensitizing molecules. Among the key radiosensitizing molecules being explored in various cancers include pharmacologic inhibitors of DNA repair and gold nanoparticles that physically enhance the amount of radiation deposited inside cancer cells. The main goal of this thesis is to explore the role of DNA repair inhibition as a radiosensitizing strategy for osteosarcoma cells. Additionally, the thesis investigates the effects of particle size in the application of gold nanoparticles in osteosarcoma cells to help identify the key parameters relevant to choosing an effective gold nanoparticle-based radiosensitizer.

  2. Interval to Biochemical Failure Predicts Clinical Outcomes in Patients With High-Risk Prostate Cancer Treated by Combined-Modality Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Shilkrut, Mark; McLaughlin, P. William [Department of Radiation Oncology, University of Michigan Health System, Ann Arbor, Michigan (United States); Merrick, Gregory S. [Schiffler Cancer Center, Wheeling Jesuit University, Wheeling, West Virginia (United States); Vainshtein, Jeffrey M.; Feng, Felix Y. [Department of Radiation Oncology, University of Michigan Health System, Ann Arbor, Michigan (United States); Hamstra, Daniel A., E-mail: dhamm@med.umich.edu [Department of Radiation Oncology, University of Michigan Health System, Ann Arbor, Michigan (United States)

    2013-07-15

    Purpose: To validate the prognostic value of interval to biochemical failure (IBF) in patients with high-risk prostate cancer (HiRPCa) treated with combined-modality radiation therapy (CMRT) with or without androgen deprivation therapy (ADT). Methods and Materials: We conducted a retrospective review of HiRPCa (prostate-specific antigen >20 ng/mL, Gleason score [GS] 8-10, or clinical T stage T3-T4) treated with either dose-escalated external beam radiation therapy (EBRT) or CMRT. Interval to biochemical failure was classified as ≤18 or >18 months from the end of all therapy to the date of biochemical failure (BF). Kaplan-Meier methods and Cox proportional hazards regression were used to evaluate the prognostic value of IBF ≤18 months for distant metastasis (DM) and prostate cancer-specific mortality (PCSM). Results: Of 958 patients with a median follow-up of 63.2 months, 175 patients experienced BF. In those with BF, there were no differences in pretreatment clinical characteristics between the EBRT and CMRT groups, except for a higher proportion of patients with GS 8-10 in the CMRT group (70% vs 52%, P=.02). Median IBF after all therapy was 24.0 months (interquartile range 9.6-46.0) in the EBRT group and 18.9 months (interquartile range 9.2-34.5) in the CMRT group (P=.055). On univariate analysis, IBF ≤18 months was associated with increased risk of DM and PCSM in the entire cohort and the individual EBRT and CMRT groups. On multivariate analysis, only GS 9-10 and IBF ≤18 months, but not the radiation therapy regimen or ADT use, predicted DM (hazard ratio [HR] 3.7, P<.01, 95% confidence interval [CI] 1.4-10.3 for GS 9-10; HR 3.9, P<.0001, 95% CI 2.4-6.5 for IBF ≤18 months) and PCSM (HR 14.8, P<.009, 95% CI 2.0-110 for GS 9-10; HR 4.4, P<.0001, 95% CI 2.4-8.1 for IBF ≤18 months). Conclusions: Short IBF was highly prognostic for higher DM and PCSM in patients with HiRPCa. The prognostic value of IBF for DM and PCSM was not affected by the radiation

  3. Total heart volume as a function of clinical and anthropometric parameters in a population of external beam radiation therapy patients

    Science.gov (United States)

    Nadège Ilembe Badouna, Audrey; Veres, Cristina; Haddy, Nadia; Bidault, François; Lefkopoulos, Dimitri; Chavaudra, Jean; Bridier, André; de Vathaire, Florent; Diallo, Ibrahima

    2012-01-01

    The aim of this paper was to determine anthropometric parameters leading to the least uncertain estimate of heart size when connecting a computational phantom to an external beam radiation therapy (EBRT) patient. From computed tomography images, we segmented the heart and calculated its total volume (THV) in a population of 270 EBRT patients of both sexes, aged 0.7-83 years. Our data were fitted using logistic growth functions. The patient age, height, weight, body mass index and body surface area (BSA) were used as explanatory variables. For both genders, good fits were obtained with both weight (R2 = 0.89 for males and 0.83 for females) and BSA (R2 = 0.90 for males and 0.84 for females). These results demonstrate that, among anthropometric parameters, weight plays an important role in predicting THV. These findings should be taken into account when assigning a computational phantom to a patient.

  4. Radiation therapy of follicular lymphoma

    Energy Technology Data Exchange (ETDEWEB)

    Koguchi, Masahiko; Nakamura, Naoki; Tsubokura, Takuji; Gomi, Koutarou; Yamashita, Takashi [Japanese Foundation for Cancer Research, Tokyo (Japan). Hospital; Shikama, Naoto

    2001-09-01

    The follicular lymphoma, exactly, the cancer of follicular center and germinal center B lymphocytes, is reviewed on its immunological, pathological and genetic diagnoses, epidemiology, clinical symptoms, prognosis factors, therapy and assessment of therapy effects together with respective therapy of follicular small cleaved and follicular mixed small cleaved and large cell lymphoma of grade I, II; and of follicular large cell lymphoma of grade III. The therapy is essentially the radiotherapy combined with chemotherapy and others, of which effect is mainly assessed by CT. In clinical application grade II, III, irradiation of X- and electron rays and their combination is done in a fractionated manner with the maximal dose of around 35 Gy. In clinical disease grade II, III, regimen of irradiation is not fixed. In III, IV, chemotherapy and immunotherapy are major. In recurrence and malignant transformation, there is a report of large dose chemotherapy + whole body irradiation + bone marrow transplantation. (K.H.)

  5. Clinical and Dosimetric Predictors of Acute Severe Lymphopenia During Radiation Therapy and Concurrent Temozolomide for High-Grade Glioma

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Jiayi, E-mail: jhuang@radonc.wustl.edu [Department of Radiation Oncology, Washington University School of Medicine, St Louis, Missouri (United States); DeWees, Todd A.; Badiyan, Shahed N.; Speirs, Christina K.; Mullen, Daniel F.; Fergus, Sandra [Department of Radiation Oncology, Washington University School of Medicine, St Louis, Missouri (United States); Tran, David D.; Linette, Gerry; Campian, Jian L. [Division of Medical Oncology, Department of Medicine, Washington University School of Medicine, St Louis, Missouri (United States); Chicoine, Michael R.; Kim, Albert H.; Dunn, Gavin [Department of Neurosurgery, Washington University School of Medicine, St Louis, Missouri (United States); Simpson, Joseph R.; Robinson, Clifford G. [Department of Radiation Oncology, Washington University School of Medicine, St Louis, Missouri (United States)

    2015-08-01

    Purpose: Acute severe lymphopenia (ASL) frequently develops during radiation therapy (RT) and concurrent temozolomide (TMZ) for high-grade glioma (HGG) and is associated with decreased survival. The current study was designed to identify potential predictors of ASL, with a focus on actionable RT-specific dosimetric parameters. Methods and Materials: From January 2007 to December 2012, 183 patients with HGG were treated with RT+TMZ and had available data including total lymphocyte count (TLC) and radiation dose-volume histogram parameters. ASL was defined as TLC of <500/μL within the first 3 months from the start of RT. Stepwise logistic regression analysis was used to determine the most important predictors of ASL. Results: Fifty-three patients (29%) developed ASL. Patients with ASL had significantly worse overall survival than those without (median: 12.5 vs 20.2 months, respectively, P<.001). Stepwise logistic regression analysis identified female sex (odds ratio [OR]: 5.30; 95% confidence interval [CI]: 2.46-11.41), older age (OR: 1.05; 95% CI: 1.02-1.09), lower baseline TLC (OR: 0.92; 95% CI: 0.87-0.98), and higher brain volume receiving 25 Gy (V{sub 25Gy}) (OR: 1.03; 95% CI: 1.003-1.05) as the most significant predictors for ASL. Brain V{sub 25Gy} <56% appeared to be the optimal threshold (OR: 2.36; 95% CI: 1.11-5.01), with an ASL rate of 38% versus 20% above and below this threshold, respectively (P=.006). Conclusions: Female sex, older age, lower baseline TLC, and higher brain V{sub 25Gy} are significant predictors of ASL during RT+TMZ therapy for HGG. Maintaining the V{sub 25Gy} of brain below 56% may reduce the risk of ASL.

  6. PET Motion Compensation for Radiation Therapy Using a CT-Based Mid-Position Motion Model: Methodology and Clinical Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Kruis, Matthijs F.; Kamer, Jeroen B. van de; Houweling, Antonetta C.; Sonke, Jan-Jakob; Belderbos, José S.A.; Herk, Marcel van, E-mail: m.v.herk@nki.nl

    2013-10-01

    Purpose: Four-dimensional positron emission tomography (4D PET) imaging of the thorax produces sharper images with reduced motion artifacts. Current radiation therapy planning systems, however, do not facilitate 4D plan optimization. When images are acquired in a 2-minute time slot, the signal-to-noise ratio of each 4D frame is low, compromising image quality. The purpose of this study was to implement and evaluate the construction of mid-position 3D PET scans, with motion compensated using a 4D computed tomography (CT)-derived motion model. Methods and Materials: All voxels of 4D PET were registered to the time-averaged position by using a motion model derived from the 4D CT frames. After the registration the scans were summed, resulting in a motion-compensated 3D mid-position PET scan. The method was tested with a phantom dataset as well as data from 27 lung cancer patients. Results: PET motion compensation using a CT-based motion model improved image quality of both phantoms and patients in terms of increased maximum SUV (SUV{sub max}) values and decreased apparent volumes. In homogenous phantom data, a strong relationship was found between the amplitude-to-diameter ratio and the effects of the method. In heterogeneous patient data, the effect correlated better with the motion amplitude. In case of large amplitudes, motion compensation may increase SUV{sub max} up to 25% and reduce the diameter of the 50% SUV{sub max} volume by 10%. Conclusions: 4D CT-based motion-compensated mid-position PET scans provide improved quantitative data in terms of uptake values and volumes at the time-averaged position, thereby facilitating more accurate radiation therapy treatment planning of pulmonary lesions.

  7. Radiation therapy of acromegaly.

    Science.gov (United States)

    Eastman, R C; Gorden, P; Glatstein, E; Roth, J

    1992-09-01

    Conventional megavoltage irradiation of GH-secreting tumors has predictable effects on tumor mass, GH, and pituitary function. 1. Further growth of the tumor is prevented in more than 99% of patients, with only a fraction of a percent of patients requiring subsequent surgery for tumor mass effects. 2. GH falls predictably with time. By 2 years GH falls by about 50% from the baseline level, and by 5 years by about 75% from the baseline level. The initial GH elevation and the size and erosive features of the sella turcica do not affect the percent decrease in GH from the baseline elevation. 3. With prolonged follow-up, further decrease in GH is seen at 10 and 15 years, with the fraction of surviving patients achieving GH levels less than 5 ng/mL approaching 90% after 15 years in our experience. Gender, previous surgery, and hyperprolactinemia do not seem to affect the response to treatment. Patients with initial GH greater than 100 ng/mL are significantly less likely to achieve GH values less than 5 ng/mL during long-term follow-up. 4. Hypopituitarism is a predictable outcome of treatment, is delayed, and may be more likely in patients who have had surgery prior to irradiation. There is no evidence that this complication is more common in patients with acromegaly than in patients with other pituitary adenomas receiving similar treatment. 5. Vision loss due to megavoltage irradiation--using modern techniques and limiting the total dose to 4680 rad given in 25 fractions over 35 days, with individual fractions not exceeding 180 rad--is extremely rare. The reported cases have occurred almost entirely in patients who have received larger doses or higher fractional doses. The theory that patients with acromegaly are prone to radiation-induced injury to the CNS and optic nerves and chiasm because of small vessel disease is not supported by a review of the reported cases. 6. Brain necrosis and secondary neoplasms induced by irradiation are extremely rare. 7. Although

  8. Migratory organizing pneumonitis `primed` by radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Bayle, J.Y.; Nesme, P.; Guerin, J.C. [Hopital de la Croix Rousse, Service de Pneumologie, Lyon (France); Bejui-Thivolet, F. [Hopital de la Croix Rousse, Laboratorie d`Anatomopatologie, Lyon (France); Loire, R. [Hopital Cardiovasculaire et Pneumologique, Universite Claude Bernard, Laboratoire d`Anatomopathologie, Lyon (France); Cordier, J.F. [Hopital Cardiovasculaire et Pneumologique, Universite Claude Bernard, Service de Pneumologie, Lyon (France)

    1995-02-01

    We report on two women presenting with cough and fever, 4 and 7 months, respectively, after starting breast radiation therapy following surgery for breast carcinoma. Chest roentgenogram and computed tomographic (CT) scan demonstrated alveolar opacities, initially limited to the pulmonary area next to the irradiated breast, but later migrating within both lungs. Intra-alveolar granulation tissue was found in transbronchial lung biopsies. Corticosteroid treatment resulted in dramatic clinical improvment, together with complete clearing of the pulmonary opacities on chest imaging. However, clinical and imaging relapses occurred when corticosteroids were withdrawn too rapidly; with further improvment when they were reintroduced. The reported cases clearly differ from radiation pneumonitis. They were fairly typical of cryptogenic organizing pneumonitis, also called idiopathic bronchiolitis obliterans organizing pneumonia, with the exception of the radiation therapy, partially affecting the lung, which had been performed within the previous months. Since focal radiation therapy involving the lung may induce diffuse bilateral lymphocytic alveolitis, we hypothesize that this may `prime` the lung to further injury, leading to cryptogenic organizing pneumonitis. (au) (26 refs.).

  9. Positron emission tomography scan for predicting clinical outcome of patients with recurrent cervical carcinoma following radiation therapy

    Directory of Open Access Journals (Sweden)

    Daya Nand Sharma

    2012-01-01

    Materials and Methods: Twenty two patients of post irradiated recurrent cervical carcinoma (PIRCC were enrolled in this prospective study. 18-fluorodeoxyglucose (FDG PET imaging was performed in each patient before the salvage therapy. The maximum standardized uptake value (SUVmax and metabolic tumor volume (MTV were measured and correlated with cumulative progression free survival (PFS. Results: Median age of patients was 42 years. Majority of patients had stage III disease at the initial presentation and all 22 patients had received prior definitive RT. The median recurrence free period was 11 months. Salvage therapy consisted of surgical resection or re-irradiation depending upon the various clinical and radiological factors. Median SUVmax was 5.8 (range 1.8-50.6 and median MTV was 43 cm 3 (range 5.8-243. The cumulative PFS for all patients was 20% at 30 months. The one-year PFS was 28% for patients with SUVmax value of >5.8 versus 42% for those with SUVmax value of 43 cm 3 versus 45% for those with MTV value of <43 cm 3 (P value 0.8. Conclusion: Our preliminary experience has suggested that FDG uptake on PET scan can predict the clinical outcome of PIRCC patients. Further randomized studies may be conducted with large sample size and longer follow up to establish its definite predictive value.

  10. Late complications of radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Masaki, Norie [Osaka Prefectural Center for Adult Diseases (Japan)

    1998-03-01

    There are cases in which, although all traces of acute radiation complications seem to have disappeared, late complications may appear months or years to become apparent. Trauma, infection or chemotherapy may sometimes recall radiation damage and irreversible change. There were two cases of breast cancer that received an estimated skin dose in the 6000 cGy range followed by extirpation of the residual tumor. The one (12 y.o.) developed atrophy of the breast and severe teleangiectasis 18 years later radiotherapy. The other one (42 y.o.) developed severe skin necrosis twenty years later radiotherapy after administration of chemotherapy and received skin graft. A case (52 y.o.) of adenoidcystic carcinoma of the trachea received radiation therapy. The field included the thoracic spinal cord which received 6800 cGy. Two years and 8 months after radiation therapy she developed complete paraplegia and died 5 years later. A truly successful therapeutic outcome requires that the patient be alive, cured and free of significant treatment-related morbidity. As such, it is important to assess quality of life in long-term survivors of cancer treatment. (author)

  11. Comparison of particle-radiation-therapy modalities

    Energy Technology Data Exchange (ETDEWEB)

    Fairchild, R.G.; Bond, V.P.

    1981-01-01

    The characteristics of dose distribution, beam alignment, and radiobiological advantages accorded to high LET radiation were reviewed and compared for various particle beam radiotherapeutic modalities (neutron, Auger electrons, p, ..pi../sup -/, He, C, Ne, and Ar ions). Merit factors were evaluated on the basis of effective dose to tumor relative to normal tissue, linear energy transfer (LET), and dose localization, at depths of 1, 4, and 10 cm. In general, it was found that neutron capture therapy using an epithermal neutron beam provided the best merit factors available for depths up to 8 cm. The position of fast neutron therapy on the Merit Factor Tables was consistently lower than that of other particle modalities, and above only /sup 60/Co. The largest body of clinical data exists for fast neutron therapy; results are considered by some to be encouraging. It then follows that if benefits with fast neutron therapy are real, additional gains are within reach with other modalities.

  12. [Laser radiations in medical therapy].

    Science.gov (United States)

    Richand, P; Boulnois, J L

    1983-06-30

    The therapeutic effects of various types of laser beams and the various techniques employed are studied. Clinical and experimental research has shown that Helio-Neon laser beams are most effective as biological stimulants and in reducing inflammation. For this reasons they are best used in dermatological surgery cases (varicose ulcers, decubital and surgical wounds, keloid scars, etc.). Infrared diode laser beams have been shown to be highly effective painkillers especially in painful pathologies like postherpetic neuritis. The various applications of laser therapy in acupuncture, the treatment of reflex dermatologia and optic fibre endocavital therapy are presented. The neurophysiological bases of this therapy are also briefly described.

  13. Clinical and radiobiological advantages of single-dose stereotactic light-ion radiation therapy for large intracranial arteriovenous malformations. Technical note.

    Science.gov (United States)

    Andisheh, Bahram; Brahme, Anders; Bitaraf, Mohammad A; Mavroidis, Panayiotis; Lind, Bengt K

    2009-11-01

    Radiation treatment of large arteriovenous malformations (AVMs) remains difficult and not very effective, even though seemingly promising methods such as staged volume treatments have been proposed by some radiation treatment centers. In symptomatic patients harboring large intracranial AVMs not amenable to embolization or resection, single-session high-dose stereotactic radiation therapy is a viable option, and the special characteristics of high-ionization-density light-ion beams offer several treatment advantages over photon and proton beams. These advantages include a more favorable depth-dose distribution in tissue, an almost negligible lateral scatter of the beam, a sharper penumbra, a steep dose falloff beyond the Bragg peak, and a higher probability of vascular response due to high ionization density and associated induction of endothelial cell proliferation and/or apoptosis. Carbon ions were recently shown to be an effective treatment for skull-base tumors. Bearing that in mind, the authors postulate that the unique physical and biological characteristics of light-ion beams should convey considerable clinical advantages in the treatment of large AVMs. In the present meta-analysis the authors present a comparison between light-ion beam therapy and more conventional modalities of radiation treatment with respect to these lesions. Dose-volume histograms and data on peripheral radiation doses for treatment of large AVMs were collected from various radiation treatment centers. Dose-response parameters were then derived by applying a maximum likelihood fitting of a binomial model to these data. The present binomial model was needed because the effective number of crucial blood vessels in AVMs (the number of vessels that must be obliterated to effect a cure, such as large fistulous nidus vessels) is low, making the Poisson model less suitable. In this study the authors also focused on radiobiological differences between various radiation treatments. Light

  14. Clinical Outcome of Patients Treated With 3D Conformal Radiation Therapy (3D-CRT) for Prostate Cancer on RTOG 9406

    Energy Technology Data Exchange (ETDEWEB)

    Michalski, Jeff, E-mail: michalski@wustl.edu [Radiation Oncology, Washington University Medical School, St. Louis, Missouri (United States); Image-guided Therapy Center, St. Louis, Missouri (United States); Winter, Kathryn [Department of Statistics, Radiation Therapy Oncology Group, Philadelphia, Pennsylvania (United States); Roach, Mack [Radiation Oncology, University of California-San Francisco, San Francisco, California (United States); Markoe, Arnold [University of Miami, Miami, Florida (United States); Sandler, Howard M. [University of Michigan, Ann Arbor, Michigan (United States); Cedars-Sinai Medical Center, Los Angeles, California (United States); Ryu, Janice [Radiation Oncology, University of California-Davis, Davis, California (United States); Radiation Oncology Associates, Sacramento, California (United States); Parliament, Matthew [Radiation Oncology, University of Alberta, Edmonton, Alberta (Canada); Purdy, James A. [Radiation Oncology, University of California-Davis, Davis, California (United States); Image-guided Therapy Center, St. Louis, Missouri (United States); Valicenti, Richard K. [Radiation Oncology, University of California-Davis, Davis, California (United States); Thomas Jefferson University, Philadelphia, Pennsylvania (United States); Cox, James D. [Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2012-07-01

    Purpose: Report of clinical cancer control outcomes on Radiation Therapy Oncology Group (RTOG) 9406, a three-dimensional conformal radiation therapy (3D-CRT) dose escalation trial for localized adenocarcinoma of the prostate. Methods and Materials: RTOG 9406 is a Phase I/II multi-institutional dose escalation study of 3D-CRT for men with localized prostate cancer. Patients were registered on five sequential dose levels: 68.4 Gy, 73.8 Gy, 79.2 Gy, 74 Gy, and 78 Gy with 1.8 Gy/day (levels I-III) or 2.0 Gy/day (levels IV and V). Neoadjuvant hormone therapy (NHT) from 2 to 6 months was allowed. Protocol-specific, American Society for Therapeutic Radiation Oncology (ASTRO), and Phoenix biochemical failure definitions are reported. Results: Thirty-four institutions enrolled 1,084 patients and 1,051 patients are analyzable. Median follow-up for levels I, II, III, IV, and V was 11.7, 10.4, 11.8, 10.4, and 9.2 years, respectively. Thirty-six percent of patients received NHT. The 5-year overall survival was 90%, 87%, 88%, 89%, and 88% for dose levels I-V, respectively. The 5-year clinical disease-free survival (excluding protocol prostate-specific antigen definition) for levels I-V is 84%, 78%, 81%, 82%, and 82%, respectively. By ASTRO definition, the 5-year disease-free survivals were 57%, 59%, 52%, 64% and 75% (low risk); 46%, 52%, 54%, 56%, and 63% (intermediate risk); and 50%, 34%, 46%, 34%, and 61% (high risk) for levels I-V, respectively. By the Phoenix definition, the 5-year disease-free survivals were 68%, 73%, 67%, 84%, and 80% (low risk); 70%, 62%, 70%, 74%, and 69% (intermediate risk); and 42%, 62%, 68%, 54%, and 67% (high risk) for levels I-V, respectively. Conclusion: Dose-escalated 3D-CRT yields favorable outcomes for localized prostate cancer. This multi-institutional experience allows comparison to other experiences with modern radiation therapy.

  15. Randomised trial of proton vs. carbon ion radiation therapy in patients with low and intermediate grade chondrosarcoma of the skull base, clinical phase III study

    Directory of Open Access Journals (Sweden)

    Combs Stephanie E

    2010-11-01

    Full Text Available Background Low and intermediate grade chondrosarcomas are relative rare bone tumours. About 5-12% of all chondrosarcomas are localized in base of skull region. Low grade chondrosarcoma has a low incidence of distant metastasis but is potentially lethal disease. Therefore, local therapy is of crucial importance in the treatment of skull base chondrosarcomas. Surgical resection is the primary treatment standard. Unfortunately the late diagnosis and diagnosis at the extensive stage are common due to the slow and asymptomatic growth of the lesions. Consequently, complete resection is hindered due to close proximity to critical and hence dose limiting organs such as optic nerves, chiasm and brainstem. Adjuvant or additional radiation therapy is very important for the improvement of local control rates in the primary treatment. Proton therapy is the gold standard in the treatment of skull base chondrosarcomas. However, high-LET (linear energy transfer beams such as carbon ions theoretically offer advantages by enhanced biologic effectiveness in slow-growing tumours. Methods/Design The study is a prospective randomised active-controlled clinical phase III trial. The trial will be carried out at Heidelberger Ionenstrahl-Therapie (HIT centre as monocentric trial. Patients with skull base chondrosarcomas will be randomised to either proton or carbon ion radiation therapy. As a standard, patients will undergo non-invasive, rigid immobilization and target volume definition will be carried out based on CT and MRI data. The biologically isoeffective target dose to the PTV (planning target volume in carbon ion treatment will be 60 Gy E ± 5% and 70 Gy E ± 5% (standard dose in proton therapy respectively. The 5 year local-progression free survival (LPFS rate will be analysed as primary end point. Overall survival, progression free and metastasis free survival, patterns of recurrence, local control rate and morbidity are the secondary end points. Discussion Up

  16. Clinical application of RapidArc volumetric modulated arc therapy as a component in whole brain radiation therapy for poor prognostic, four or more multiple brain metastases

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Heon; Lee, Kyu Chan; Choi, Jin Ho; Kim, Hye Young; Lee, Seok Ho; Sung, Ki Hoon; Kim, Yun Mi [Gachon University Gil Hospital, Incheon (Korea, Republic of)

    2012-06-15

    To determine feasibility of RapidArc in sequential or simultaneous integrated tumor boost in whole brain radiation therapy (WBRT) for poor prognostic patients with four or more brain metastases. Nine patients with multiple ({>=}4) brain metastases were analyzed. Three patients were classified as class II in recursive partitioning analysis and 6 were class III. The class III patients presented with hemiparesis, cognitive deficit, or apraxia. The ratio of tumor to whole brain volume was 0.8-7.9%. Six patients received 2-dimensional bilateral WBRT, (30 Gy/10- 12 fractions), followed by sequential RapidArc tumor boost (15-30 Gy/4-10 fractions). Three patients received RapidArc WBRT with simultaneous integrated boost to tumors (48-50 Gy) in 10-20 fractions. The median biologically effective dose to metastatic tumors was 68.1 Gy10 and 67.2 Gy10 and the median brain volume irradiated more than 100 Gy3 were 1.9% (24 cm3) and 0.8% (13 cm3) for each group. With less than 3 minutes of treatment time, RapidArc was easily applied to the patients with poor performance status. The follow-up period was 0.3-16.5 months. Tumor responses among the 6 patients who underwent follow-up magnetic resonance imaging were partial and stable in 3 and 3, respectively. Overall survival at 6 and 12 months were 66.7% and 41.7%, respectively. The local progression-free survival at 6 and 12 months were 100% and 62.5%, respectively. RapidArc as a component in whole brain radiation therapy for poor prognostic, multiple brain metastases is an effective and safe modality with easy application.

  17. Particle beam radiation therapy:re-introducing the future

    Institute of Scientific and Technical Information of China (English)

    Omar Abdel-Rahman

    2014-01-01

    Particle radiation therapy is an exciting area of radiotherapy basic and clinical researches. The majority of particle radiotherapy work is being done with proton beams having essential y the same radiobiologic properties as conventional photon/electron radiation but al owing a much more precise control of the radiation dose distribution. However, other charged particles are also playing an increasing role, like neutrons. In this review article we wil summarize the data related to basic and clinical experiences related to particle beam radiation therapy.

  18. A novel schedule of accelerated partial breast radiation using intensity-modulated radiation therapy in elderly patients: survival and toxicity analysis of a prospective clinical trial

    Energy Technology Data Exchange (ETDEWEB)

    Sayan, Mutlay; Nelson, Carl; Gagne, Havaleh; Rubin, Deborah; Heimann, Ruth [Dept. of Radiation Oncology, University of Vermont Medical Center, Burlington (United States); Wilson, Karen [University of Vermont Cancer Center, Burlington (United States)

    2017-03-15

    Several accelerated partial breast radiation (APBR) techniques have been investigated in patients with early-stage breast cancer (BC); however, the optimal treatment delivery techniques remain unclear. We evaluated the feasibility and toxicity of APBR delivered using intensity-modulated radiation therapy (IMRT) in elderly patients with stage I BC, using a novel fractionation schedule. Forty-two patients aged ≥65 years, with stage I BC who underwent breast conserving surgery were enrolled in a phase I/II study evaluating APBR using IMRT. Forty eligible patients received 40 Gy in 4 Gy daily fractions. Patients were assessed for treatment related toxicities, and cosmesis, before APBR, during, and after completion of the treatment. The median age was 73 years, median tumor size 0.8 cm and the median follow-up was 54 months. The 5-year locoregional control was 97.5% and overall survival 90%. Erythema and skin pigmentation was the most common acute adverse event, reported by 27 patients (69%). Twenty-six patients (65%) reported mild pain, rated 1-4/10. This improved at last follow-up to only 2 (15%). Overall the patient and physician reported worst late toxicities were lower than the baseline and at last follow-up, patients and physicians rated cosmesis as excellent/good in 93% and 86 %, respectively. In this prospective trial, we observed an excellent rate of tumor control with daily APBR. The acceptable toxicity profile and cosmetic results of this study support the use of IMRT planned APBR with daily schedule in elderly patients with early stage BC.

  19. Urethrogram-directed Stereotactic Body Radiation Therapy (SBRT for Clinically Localized Prostate Cancer in Patients with Contraindications to Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    Ima ePaydar

    2015-09-01

    Full Text Available Purpose: Magnetic resonance imaging (MRI-directed stereotactic body radiation therapy (SBRT has been established as a safe and effective treatment for prostate cancer. For patients with contraindications to MRI, CT-urethrogram is an alternative imaging approach to identify the location of the prostatic apex to guide treatment. This study sought to evaluate the safety of urethrogram-directed SBRT for prostate cancer.Methods: Between February 2009 and January 2014, 31 men with clinically localized prostate cancer were treated definitively with urethrogram-directed SBRT with or without supplemental intensity modulated radiation therapy (IMRT at Georgetown University Hospital. SBRT was delivered either as a primary treatment of 35-36.25 Gray (Gy in 5 fractions or as a boost of 19.5 Gy in 3 fractions followed by supplemental conventionally fractionated intensity modulated radiation therapy (45-50.4 Gy. Toxicities were recorded and scored using the Common Terminology Criteria for Adverse Events version 4.0 (CTCAE v.4.0.Results: The median patient age was 70 years with a median prostate volume of 38 cc. The median follow-up was 3.7 years. The patients were elderly (Median age = 70, and comorbidities were common (Carlson Comorbidity Index > 2 in 36%. 71% of patients utilized alpha agonists prior to treatment, and 9.7% had prior procedures for benign prostatic hyperplasia (BPH. The 3-year actuarial incidence rates of > Grade 3 GU toxicity and > Grade 2 GI toxicity were 3.2% and 9.7%, respectively. There were no Grade 4 or 5 toxicities.Conclusions: MRI is the preferred imaging modality to guide prostate SBRT treatment. However, urethrogram-directed SBRT is a safe alternative for the treatment of patients with prostate cancer who are unable to undergo MRI.

  20. Clinical Analysis of stereotactic body radiation therapy using extracranial gamma knife for patients with mainly bulky inoperable early stage non-small cell lung carcinoma

    Directory of Open Access Journals (Sweden)

    Tang Hanjun

    2011-07-01

    Full Text Available Abstract Purpose To evaluate the clinical efficacy and toxicity of stereotactic body radiation therapy (SBRT using extracranial gamma knife in patients with mainly bulky inoperable early stage non-small cell lung carcinoma (NSCLC. Materials and methods A total of 43 medically inoperable patients with mainly bulky Stage I/II NSCLC received SBRT using gamma knife were reviewed. The fraction dose and the total dose were determined by the radiation oncologist according to patients' general status, tumor location, tumor size and the relationship between tumor and nearby organ at risk (OAR. The total dose of 34~47.5 Gy was prescribed in 4~12 fractions, 3.5~10 Gy per fraction, one fraction per day or every other day. The therapeutic efficacy and toxicity were evaluated. Results The median follow-up was 22 months (range, 3-102 months. The local tumor response rate was 95.35%, with CR 18.60% (8/43 and PR 76.74% (33/43, respectively. The local control rates at 1, 2, 3, 5 years were 77.54%, 53.02%, 39.77%, and 15.46%, respectively, while the 1- and 2-year local control rates were 75% and 60% for tumor ≤3 cm; 84% and 71% for tumor sized 3~5 cm; 55% and 14.6% for tumor sized 5~7 cm; and 45%, 21% in those with tumor size of >7 cm. The overall survival rate at 1, 2, 3, 5 years were 92.04%, 78.04%, 62.76%, 42.61%, respectively. The toxicity of stereotactic radiation therapy was grade 1-2. Clinical stages were significantly important factor in local control of lung tumors (P = 0.000. Both clinical stages (P = 0.015 and chemotherapy (P = 0.042 were significantly important factors in overall survival of lung tumors. Conclusion SBRT is an effective and safe therapy for medically inoperable patients with early stage NSCLC. Clinical stage was the significant prognostic factors for both local tumor control and overall survival. The toxicity is mild. The overall local control for bulky tumors is poor. Tumor size is a poor prognostic factor, and the patients for

  1. Development of clinical application of radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Mi Sook; Yoo, Seoung Yul; Yoo, Hyung Jun [and others

    2000-04-01

    The aim is to develop the clinical radiation therapy techniques, which increase local control and cure rate of cancer. The contents were 1. technique of stereotactic radiotherapy 2. technique of intraoperative radiation therapy(IORT) 3. technique of fractionated radiotherapy 4. technique of 3D conformal therapy 5. chemoradiotherapy in lung cancer, rectal cancer and biliopancreatic cancer 6. network based information communication system of radiation oncology 7. animal studies for the best application of chemoradiotherapy and for elucidating mechanism of slide effect in radiotherapy. The results were 1. completion of quality assurance protocol, frame and mounting system 2. completion of applicator of IORT 3. clinical protocol of fractionated radiotherapy 4. clinical protocol of 3D conformal therapy for brain, head and neck, breast and lung cancer 5. completion of multimodality treatment protocol for lung, rectal and biliopancreatic cancer 6. completion of database system for patient information and simulation image 7. standardization of estimation for radiation induced pneumonitis in animal model. Future plans are (1) developed fractionated stereotactic radiotherapy system will be commercialized (2) developed applicator of brachytherapy for IORT will be commercialized (3) 3D conformal therapy will increase local control rate for brain tumor and decrease complications such as zerostomia after treatment for nasopharygeal cancer (4) training manpower and skills for randomized clinical trial (5) suggest possibility of clinical usefulness of oral 5-fluorouracil (6) to provide basic technique for electric chart (7) promote developing database system for image information (8) also in view of double edge sword effect of NO, it is possible to modify the NO production from irradiation to increase the tolerance to radiation.

  2. The clinical case for proton beam therapy

    Directory of Open Access Journals (Sweden)

    Foote Robert L

    2012-10-01

    Full Text Available Abstract Over the past 20 years, several proton beam treatment programs have been implemented throughout the United States. Increasingly, the number of new programs under development is growing. Proton beam therapy has the potential for improving tumor control and survival through dose escalation. It also has potential for reducing harm to normal organs through dose reduction. However, proton beam therapy is more costly than conventional x-ray therapy. This increased cost may be offset by improved function, improved quality of life, and reduced costs related to treating the late effects of therapy. Clinical research opportunities are abundant to determine which patients will gain the most benefit from proton beam therapy. We review the clinical case for proton beam therapy. Summary sentence Proton beam therapy is a technically advanced and promising form of radiation therapy.

  3. Validation of a GPU-based Monte Carlo code (gPMC) for proton radiation therapy: clinical cases study

    Science.gov (United States)

    Giantsoudi, Drosoula; Schuemann, Jan; Jia, Xun; Dowdell, Stephen; Jiang, Steve; Paganetti, Harald

    2015-03-01

    demonstrated between our fast GPU-based MC code (gPMC) and a previously extensively validated multi-purpose MC code (TOPAS) for a comprehensive set of clinical patient cases. This shows that MC dose calculations in proton therapy can be performed on time scales comparable to analytical algorithms with accuracy comparable to state-of-the-art CPU-based MC codes.

  4. Early Clinical Outcomes and Toxicity of Intensity Modulated Versus Conventional Pelvic Radiation Therapy for Locally Advanced Cervix Carcinoma: A Prospective Randomized Study

    Energy Technology Data Exchange (ETDEWEB)

    Gandhi, Ajeet Kumar, E-mail: ajeetgandhi23@gmail.com [Department of Radiation Oncology, All India Institute of Medical Sciences, New Delhi (India); Sharma, Daya Nand; Rath, Goura Kisor; Julka, Pramod Kumar; Subramani, Vellaiyan; Sharma, Seema; Manigandan, Durai; Laviraj, M.A. [Department of Radiation Oncology, All India Institute of Medical Sciences, New Delhi (India); Kumar, Sunesh [Department of Obstetrics and Gynecology, All India Institute of Medical Sciences, New Delhi (India); Thulkar, Sanjay [Department of Radiodiagnosis, All India Institute of Medical Sciences, New Delhi (India)

    2013-11-01

    Purpose: To evaluate the toxicity and clinical outcome in patients with locally advanced cervical cancer (LACC) treated with whole pelvic conventional radiation therapy (WP-CRT) versus intensity modulated radiation therapy (WP-IMRT). Methods and Materials: Between January 2010 and January 2012, 44 patients with International Federation of Gynecology and Obstetrics (FIGO 2009) stage IIB-IIIB squamous cell carcinoma of the cervix were randomized to receive 50.4 Gy in 28 fractions delivered via either WP-CRT or WP-IMRT with concurrent weekly cisplatin 40 mg/m{sup 2}. Acute toxicity was graded according to the Common Terminology Criteria for Adverse Events, version 3.0, and late toxicity was graded according to the Radiation Therapy Oncology Group system. The primary and secondary endpoints were acute gastrointestinal toxicity and disease-free survival, respectively. Results: Of 44 patients, 22 patients received WP-CRT and 22 received WP-IMRT. In the WP-CRT arm, 13 patients had stage IIB disease and 9 had stage IIIB disease; in the IMRT arm, 12 patients had stage IIB disease and 10 had stage IIIB disease. The median follow-up time in the WP-CRT arm was 21.7 months (range, 10.7-37.4 months), and in the WP-IMRT arm it was 21.6 months (range, 7.7-34.4 months). At 27 months, disease-free survival was 79.4% in the WP-CRT group versus 60% in the WP-IMRT group (P=.651), and overall survival was 76% in the WP-CRT group versus 85.7% in the WP-IMRT group (P=.645). Patients in the WP-IMRT arm experienced significantly fewer grade ≥2 acute gastrointestinal toxicities (31.8% vs 63.6%, P=.034) and grade ≥3 gastrointestinal toxicities (4.5% vs 27.3%, P=.047) than did patients receiving WP-CRT and had less chronic gastrointestinal toxicity (13.6% vs 50%, P=.011). Conclusion: WP-IMRT is associated with significantly less toxicity compared with WP-CRT and has a comparable clinical outcome. Further studies with larger sample sizes and longer follow-up times are warranted to justify

  5. Low incidence of new biochemical and clinical hypogonadism following hypofractionated stereotactic body radiation therapy (SBRT monotherapy for low- to intermediate-risk prostate cancer

    Directory of Open Access Journals (Sweden)

    Pahira John

    2011-03-01

    Full Text Available Abstract Background The CyberKnife is an appealing delivery system for hypofractionated stereotactic body radiation therapy (SBRT because of its ability to deliver highly conformal radiation therapy to moving targets. This conformity is achieved via 100s of non-coplanar radiation beams, which could potentially increase transitory testicular irradiation and result in post-therapy hypogonadism. We report on our early experience with CyberKnife SBRT for low- to intermediate-risk prostate cancer patients and assess the rate of inducing biochemical and clinical hypogonadism. Methods Twenty-six patients were treated with hypofractionated SBRT to a dose of 36.25 Gy in 5 fractions. All patients had histologically confirmed low- to intermediate-risk prostate adenocarcinoma (clinical stage ≤ T2b, Gleason score ≤ 7, PSA ≤ 20 ng/ml. PSA and total testosterone levels were obtained pre-treatment, 1 month post-treatment and every 3 months thereafter, for 1 year. Biochemical hypogonadism was defined as a total serum testosterone level below 8 nmol/L. Urinary and gastrointestinal toxicity was assessed using Common Toxicity Criteria v3; quality of life was assessed using the American Urological Association Symptom Score, Sexual Health Inventory for Men and Expanded Prostate Cancer Index Composite questionnaires. Results All 26 patients completed the treatment with a median 15 months (range, 13-19 months follow-up. Median pre-treatment PSA was 5.75 ng/ml (range, 2.3-10.3 ng/ml, and a decrease to a median of 0.7 ng/ml (range, 0.2-1.8 ng/ml was observed by one year post-treatment. The median pre-treatment total serum testosterone level was 13.81 nmol/L (range, 5.55 - 39.87 nmol/L. Post-treatment testosterone levels slowly decreased with the median value at one year follow-up of 10.53 nmol/L, significantly lower than the pre-treatment value (p Conclusions Hypofractionated SBRT offers the radiobiological benefit of a large fraction size and is well-tolerated by

  6. Radiation therapy in cholangiocellular carcinomas.

    Science.gov (United States)

    Brunner, Thomas B; Seufferlein, Thomas

    2016-08-01

    Cholangiocarcinoma can arise in all parts of the biliary tract and this has implications for therapy. Surgery is the mainstay of therapy however local relapse is a major problem. Therefore, adjuvant treatment with chemoradiotherapy was tested in trials. The SWOG-S0809 trial regimen of chemoradiotherapy which was tested in extrahepatic cholangiocarcinoma and in gallbladder cancer can currently be regarded as highest level of evidence for this indication. In contrast to adjuvant therapy where only conventionally fractionated radiotherapy plays a role, stereotactic body radiotherapy (SBRT) today has become a powerful alternative to chemoradiotherapy for definitive treatment due to the ability to administer higher doses of radiotherapy to improve local control. Sequential combinations with chemotherapy are also frequently employed. Nevertheless, in general cholangiocarcinoma is an orphan disease and future clinical trials will have to improve the available level of evidence.

  7. Radiation therapy for unresected gastric lymphoma

    Energy Technology Data Exchange (ETDEWEB)

    Kataoka, Masaaki; Kawamura, Masashi; Kimura, Yoshiko; Itoh, Hisao; Tsuda, Takaharu; Komatsu, Akira; Hamamoto, Ken (Ehime Univ., Ehime (Japan). School of Medicine)

    1990-05-01

    Six consecutive patients with unresected gastric lymphoma which were treated by radiation therapy between November 1976 and March 1989 were reviewed. Radiation therapy was performed using involved fields, total radiation dosages of which ranged from 25.2 to 36 Gy (mean, 29.3 Gy). Five out of the 6 patients were treated with chemotherapy combined with radiation. Regimen of the chemotherapy was CHOP (cyclophophamide, adriamycin, vincristine and prednisone) in most cases. Three out of the 6 underwent probe laparotomy, but the tumors were diagnosed as unresectable due to locally invading the adjacent structures. They were treated by chemo-radiotherapy and 2 of them are surviving as of the present study (40 and 116 months). The other 3 patients were diagnosed as with clinical stage IV disease and 2 of them were successfully treated with chemo-radiotherapy (21 and 66 months, surviving). These data suggest that unresected gastric lymphomas, which are locally advanced or stage IV disease, are treated by chemo-radiotherapy with high curability without any serious complications. (author).

  8. Targeted Radiation Therapy for Cancer Initiative

    Science.gov (United States)

    2015-09-01

    and whether this difference changed the outcome for palliative patients, 6) use of the Calypso system, and other advanced radiation therapy equipment...use of advanced technology radiation therapy techniques, such as IMRT and VMAT, in treating palliative patients. The main obstacle to overcome in...treating low-to-intermediate risk prostate cancer with intensity modulated radiation therapy (IMRT) using an electromagnetic localization system. IMRT

  9. Comparison of clinical outcomes and toxicity in endometrial cancer patients treated with adjuvant intensity-modulated radiation therapy or conventional radiotherapy.

    Science.gov (United States)

    Chen, Chien-Chih; Wang, Lily; Lu, Chien-Hsing; Lin, Jin-Ching; Jan, Jian-Sheng

    2014-12-01

    To evaluate the treatment outcomes and toxicity in endometrial cancer patients treated with hysterectomy and adjuvant intensity-modulated radiation therapy (IMRT) or conventional radiotherapy (CRT). There were 101 patients with stage IA-IIIC2 endometrial carcinoma treated with hysterectomy and adjuvant radiotherapy. In total, 36 patients received adjuvant CRT and 65 were treated with adjuvant IMRT. The endpoints were overall survival, local failure-free survival, and disease-free survival. Patients were assessed for acute toxicity weekly according to the Common Terminology Criteria for Adverse Events version 3.0. Late toxicity was evaluated according to the Radiation Therapy Oncology Group and the European Organization for Research and Treatment of Cancer Late Radiation Morbidity Scoring Schema. The 5-year overall survival, local failure-free survival, and disease-free survival for the CRT group and the IMRT group were 82.9% versus 93.5% (p = 0.26), 93.7% versus 89.3% (p = 0.68), and 88.0% versus 82.8% (p = 0.83), respectively. Four (11.1%) patients had Grade 3 or greater acute gastrointestinal (GI) toxicity and three (8.3%) patients had Grade 3 or greater acute genitourinary (GU) toxicity in the CRT group, whereas four (6.2%) patients had Grade 3 or greater acute GI toxicity in the IMRT group and no patient had severe GU toxicity. There was one (2.8%) patient who had Grade 3 or greater late GI toxicity and one (2.8%) patient had Grade 3 or greater late GU toxicity in the CRT group, whereas no patient had severe GI or GU toxicity in the IMRT group. Adjuvant IMRT for endometrial cancer patients had comparable clinical outcomes with CRT and had less acute and late toxicity. Copyright © 2013. Published by Elsevier B.V.

  10. The clinical potential of high energy, intensity and energy modulated electron beams optimized by simulated annealing for conformal radiation therapy

    Science.gov (United States)

    Salter, Bill Jean, Jr.

    Purpose. The advent of new, so called IVth Generation, external beam radiation therapy treatment machines (e.g. Scanditronix' MM50 Racetrack Microtron) has raised the question of how the capabilities of these new machines might be exploited to produce extremely conformal dose distributions. Such machines possess the ability to produce electron energies as high as 50 MeV and, due to their scanned beam delivery of electron treatments, to modulate intensity and even energy, within a broad field. Materials and methods. Two patients with 'challenging' tumor geometries were selected from the patient archives of the Cancer Therapy and Research Center (CTRC), in San Antonio Texas. The treatment scheme that was tested allowed for twelve, energy and intensity modulated beams, equi-spaced about the patient-only intensity was modulated for the photon treatment. The elementary beams, incident from any of the twelve allowed directions, were assumed parallel, and the elementary electron beams were modeled by elementary beam data. The optimal arrangement of elementary beam energies and/or intensities was optimized by Szu-Hartley Fast Simulated Annealing Optimization. Optimized treatment plans were determined for each patient using both the high energy, intensity and energy modulated electron (HIEME) modality, and the 6 MV photon modality. The 'quality' of rival plans were scored using three different, popular objective functions which included Root Mean Square (RMS), Maximize Dose Subject to Dose and Volume Limitations (MDVL - Morrill et. al.), and Probability of Uncomplicated Tumor Control (PUTC) methods. The scores of the two optimized treatments (i.e. HIEME and intensity modulated photons) were compared to the score of the conventional plan with which the patient was actually treated. Results. The first patient evaluated presented a deeply located target volume, partially surrounding the spinal cord. A healthy right kidney was immediately adjacent to the tumor volume, separated

  11. Radiation therapy for gastric mucosa-associated lymphoid tissue lymphoma: Dose-volumetric analysis and its clinical implications

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Hyeon Won; Kim, Tae Hyun; Choi, Il Ju; Kim, Chan Gyoo; Lee, Jong Yeul; Cho, Soo Jeong; Eom, Hyeon Seok; Moon, Sung Ho; Kim, Dae Yong [Research Institute and Hospital, National Cancer Center, Goyang (Korea, Republic of)

    2016-09-15

    To assess the clinical outcomes of radiotherapy (RT) using two-dimensional (2D) and three-dimensional conformal RT (3D-CRT) for patients with gastric mucosa-associated lymphoid tissue (MALT) lymphoma to evaluate the effectiveness of involved field RT with moderate-dose and to evaluate the benefit of 3D-CRT comparing with 2D-RT. Between July 2003 and March 2015, 33 patients with stage IE and IIE gastric MALT lymphoma received RT were analyzed. Of 33 patients, 17 patients (51.5%) were Helicobacter pylori (HP) negative and 16 patients (48.5%) were HP positive but refractory to HP eradication (HPE). The 2D-RT (n = 14) and 3D-CRT (n = 19) were performed and total dose was 30.6 Gy/17 fractions. Of 11 patients who RT planning data were available, dose-volumetric parameters between 2D-RT and 3D-CRT plans was compared. All patients reached complete remission (CR) eventually and median time to CR was 3 months (range, 1 to 15 months). No local relapse occurred and one patient died with second primary malignancy. Tumor response, survival, and toxicity were not significantly different between 2D-RT and 3D-CRT (p > 0.05, each). In analysis for dose-volumetric parameters, Dmax and CI for PTV were significantly lower in 3D-CRT plans than 2D-RT plans (p < 0.05, each) and Dmean and V15 for right kidney and Dmean for left kidney were significantly lower in 3D-CRT than 2D-RT (p < 0.05, each). Our data suggested that involved field RT with moderate-dose for gastric MALT lymphoma could be promising and 3D-CRT could be considered to improve the target coverage and reduce radiation dose to the both kidneys.

  12. Preliminary clinical evaluation of continuous infusion of 5-FU and low dose cisplatin (LFP) combined with radiation therapy for the treatment of advanced or recurrent esophageal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Satoshi; Morita, Soujiro; Hisa, Nobuaki; Tsuji, Akihito; Takamatsu, Masahiro; Takasaki, Motohiro; Horimi, Tadashi [Kochi Municipal Central Hospital (Japan)

    2000-11-01

    We evaluated the LFP combined with radiation therapy for the treatment of advanced or recurrent esophageal cancer. The patients consisted of 4 inoperable cases, 4 cases in combination with operation, and 5 cases with recurrent tumor. The response rate was 80% (CR2, PR6, NC1 and PD1). We conclude that the LFP combined with radiation therapy was effective and useful for the treatment of advanced or recurrent esophageal cancer. (author)

  13. Clinical fundamentals for radiation oncologists.

    Science.gov (United States)

    Yang, Jack

    2011-11-01

    Clinical fundamentals for radiation oncologists. Hasan Murshed. Medical Physics Publishing, Madison, WI, 2011. 680 pp. (soft cover), Price: $90.00. 978-1-930524-43-9. © 2011 American Association of Physicists in Medicine.

  14. The Impact of the Myeloid Response to Radiation Therapy

    Directory of Open Access Journals (Sweden)

    Michael J. Gough

    2013-01-01

    Full Text Available Radiation therapy is showing potential as a partner for immunotherapies in preclinical cancer models and early clinical studies. As has been discussed elsewhere, radiation provides debulking, antigen and adjuvant release, and inflammatory targeting of effector cells to the treatment site, thereby assisting multiple critical checkpoints in antitumor adaptive immunity. Adaptive immunity is terminated by inflammatory resolution, an active process which ensures that inflammatory damage is repaired and tissue function is restored. We discuss how radiation therapy similarly triggers inflammation followed by repair, the consequences to adaptive immune responses in the treatment site, and how the myeloid response to radiation may impact immunotherapies designed to improve control of residual cancer cells.

  15. Cancer and Radiation Therapy: Current Advances and Future Directions

    Directory of Open Access Journals (Sweden)

    Rajamanickam Baskar, Kuo Ann Lee, Richard Yeo, Kheng-Wei Yeoh

    2012-01-01

    Full Text Available In recent years remarkable progress has been made towards the understanding of proposed hallmarks of cancer development and treatment. However with its increasing incidence, the clinical management of cancer continues to be a challenge for the 21st century. Treatment modalities comprise of radiation therapy, surgery, chemotherapy, immunotherapy and hormonal therapy. Radiation therapy remains an important component of cancer treatment with approximately 50% of all cancer patients receiving radiation therapy during their course of illness; it contributes towards 40% of curative treatment for cancer. The main goal of radiation therapy is to deprive cancer cells of their multiplication (cell division potential. Celebrating a century of advances since Marie Curie won her second Nobel Prize for her research into radium, 2011 has been designated the Year of Radiation therapy in the UK. Over the last 100 years, ongoing advances in the techniques of radiation treatment and progress made in understanding the biology of cancer cell responses to radiation will endeavor to increase the survival and reduce treatment side effects for cancer patients. In this review, principles, application and advances in radiation therapy with their biological end points are discussed.

  16. Development of medical application methods using radiation. Radionuclide therapy

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Chang Woon; Lim, S. M.; Kim, E.H.; Woo, K. S.; Chung, W. S.; Lim, S. J.; Choi, T. H.; Hong, S. W.; Chung, H. Y.; No, W. C. [Korea Atomic Energy Research Institute. Korea Cancer Center Hospital, Seoul, (Korea, Republic of); Oh, B. H. [Seoul National University. Hospital, Seoul (Korea, Republic of); Hong, H. J. [Antibody Engineering Research Unit, Taejon (Korea, Republic of)

    1999-04-01

    In this project, we studied following subjects: 1. development of monoclonal antibodies and radiopharmaceuticals 2. clinical applications of radionuclide therapy 3. radioimmunoguided surgery 4. prevention of restenosis with intracoronary radiation. The results can be applied for the following objectives: (1) radionuclide therapy will be applied in clinical practice to treat the cancer patients or other diseases in multi-center trial. (2) The newly developed monoclonal antibodies and biomolecules can be used in biology, chemistry or other basic life science research. (3) The new methods for the analysis of therapeutic effects, such as dosimetry, and quantitative analysis methods of radioactivity, can be applied in basic research, such as radiation oncology and radiation biology.

  17. Proton therapy in the clinic.

    Science.gov (United States)

    DeLaney, Thomas F

    2011-01-01

    The clinical advantage for proton radiotherapy over photon approaches is the marked reduction in integral dose to the patient, due to the absence of exit dose beyond the proton Bragg peak. The integral dose with protons is approximately 60% lower than that with any external beam photon technique. Pediatric patients, because of their developing normal tissues and anticipated length of remaining life, are likely to have the maximum clinical gain with the use of protons. Proton therapy may also allow treatment of some adult tumors to much more effective doses, because of normal tissue sparing distal to the tumor. Currently, the most commonly available proton treatment technology uses 3D conformal approaches based on (a) distal range modulation, (b) passive scattering of the proton beam in its x- and y-axes, and (c) lateral beam-shaping. It is anticipated that magnetic pencil beam scanning will become the dominant mode of proton delivery in the future, which will lower neutron scatter associated with passively scattered beam lines, reduce the need for expensive beam-shaping devices, and allow intensity-modulated proton radiotherapy. Proton treatment plans are more sensitive to variations in tumor size and normal tissue changes over the course of treatment than photon plans, and it is expected that adaptive radiation therapy will be increasingly important for proton therapy as well. While impressive treatment results have been reported with protons, their cost is higher than for photon IMRT. Hence, protons should ideally be employed for anatomic sites and tumors not well treated with photons. While protons appear cost-effective for pediatric tumors, their cost-effectiveness for treatment of some adult tumors, such as prostate cancer, is uncertain. Comparative studies have been proposed or are in progress to more rigorously assess their value for a variety of sites. The utility of proton therapy will be enhanced by technological developments that reduce its cost

  18. Fully Automated Simultaneous Integrated Boosted-Intensity Modulated Radiation Therapy Treatment Planning Is Feasible for Head-and-Neck Cancer: A Prospective Clinical Study

    Energy Technology Data Exchange (ETDEWEB)

    Wu Binbin, E-mail: binbin.wu@gunet.georgetown.edu [Department of Radiation Oncology and Molecular Radiation Science, Johns Hopkins University, Baltimore, Maryland (United States); Department of Radiation Medicine, Georgetown University Hospital, Washington, DC (United States); McNutt, Todd [Department of Radiation Oncology and Molecular Radiation Science, Johns Hopkins University, Baltimore, Maryland (United States); Zahurak, Marianna [Department of Oncology Biostatistics, Johns Hopkins University, Baltimore, Maryland (United States); Simari, Patricio [Autodesk Research, Toronto, ON (Canada); Pang, Dalong [Department of Radiation Medicine, Georgetown University Hospital, Washington, DC (United States); Taylor, Russell [Department of Computer Science, Johns Hopkins University, Baltimore, Maryland (United States); Sanguineti, Giuseppe [Department of Radiation Oncology and Molecular Radiation Science, Johns Hopkins University, Baltimore, Maryland (United States)

    2012-12-01

    Purpose: To prospectively determine whether overlap volume histogram (OVH)-driven, automated simultaneous integrated boosted (SIB)-intensity-modulated radiation therapy (IMRT) treatment planning for head-and-neck cancer can be implemented in clinics. Methods and Materials: A prospective study was designed to compare fully automated plans (APs) created by an OVH-driven, automated planning application with clinical plans (CPs) created by dosimetrists in a 3-dose-level (70 Gy, 63 Gy, and 58.1 Gy), head-and-neck SIB-IMRT planning. Because primary organ sparing (cord, brain, brainstem, mandible, and optic nerve/chiasm) always received the highest priority in clinical planning, the study aimed to show the noninferiority of APs with respect to PTV coverage and secondary organ sparing (parotid, brachial plexus, esophagus, larynx, inner ear, and oral mucosa). The sample size was determined a priori by a superiority hypothesis test that had 85% power to detect a 4% dose decrease in secondary organ sparing with a 2-sided alpha level of 0.05. A generalized estimating equation (GEE) regression model was used for statistical comparison. Results: Forty consecutive patients were accrued from July to December 2010. GEE analysis indicated that in APs, overall average dose to the secondary organs was reduced by 1.16 (95% CI = 0.09-2.33) with P=.04, overall average PTV coverage was increased by 0.26% (95% CI = 0.06-0.47) with P=.02 and overall average dose to the primary organs was reduced by 1.14 Gy (95% CI = 0.45-1.8) with P=.004. A physician determined that all APs could be delivered to patients, and APs were clinically superior in 27 of 40 cases. Conclusions: The application can be implemented in clinics as a fast, reliable, and consistent way of generating plans that need only minor adjustments to meet specific clinical needs.

  19. Radiation Therapy Oncology Group Consensus Panel Guidelines for the Delineation of the Clinical Target Volume in the Postoperative Treatment of Pancreatic Head Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Goodman, Karyn A., E-mail: goodmank@mskcc.org [Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Regine, William F. [University of Maryland School of Medicine, Baltimore, Maryland (United States); Dawson, Laura A. [Princess Margaret Hospital, University of Toronto, Toronto, Ontario (Canada); Ben-Josef, Edgar [University of Michigan Medical School, Ann Arbor, Michigan (United States); Haustermans, Karin [University Hospital Leuven, Leuven (Belgium); Bosch, Walter R. [Image-Guided Therapy QA Center, Washington University, St. Louis, Missouri (United States); Turian, Julius; Abrams, Ross A. [Rush University Medical College, Chicago, Illinois (United States)

    2012-07-01

    Purpose: To develop contouring guidelines to be used in the Radiation Therapy Oncology Group protocol 0848, a Phase III randomized trial evaluating the benefit of adjuvant chemoradiation in patients with resected head of pancreas cancer. Methods and Materials: A consensus committee of six radiation oncologists with expertise in gastrointestinal radiotherapy developed stepwise contouring guidelines and an atlas for the delineation of the clinical target volume (CTV) in the postoperative treatment of pancreas cancer, based on identifiable regions of interest and margin expansions. Areas at risk for subclinical disease to be included in the CTV were defined, including nodal regions, anastomoses, and the preoperative primary tumor location. Regions of interest that could be reproducibly contoured on postoperative imaging after a pancreaticoduodenectomy were identified. Standardized expansion margins to encompass areas at risk were developed after multiple iterations to determine the optimal margin expansions. Results: New contouring recommendations based on CT anatomy were established. Written guidelines for the delineation of the postoperative CTV and normal tissues, as well as a Web-based atlas, were developed. Conclusions: The postoperative abdomen has been a difficult area for effective radiotherapy. These new guidelines will help physicians create fields that better encompass areas at risk and minimize dose to normal tissues.

  20. Personalized Radiation Therapy (PRT) for Lung Cancer.

    Science.gov (United States)

    Jin, Jian-Yue; Kong, Feng-Ming Spring

    2016-01-01

    This chapter reviews and discusses approaches and strategies of personalized radiation therapy (PRT) for lung cancers at four different levels: (1) clinically established PRT based on a patient's histology, stage, tumor volume and tumor locations; (2) personalized adaptive radiation therapy (RT) based on image response during treatment; (3) PRT based on biomarkers; (4) personalized fractionation schedule. The current RT practice for lung cancer is partially individualized according to tumor histology, stage, size/location, and combination with use of systemic therapy. During-RT PET-CT image guided adaptive treatment is being tested in a multicenter trial. Treatment response detected by the during-RT images may also provide a strategy to further personalize the remaining treatment. Research on biomarker-guided PRT is ongoing. The biomarkers include genomics, proteomics, microRNA, cytokines, metabolomics from tumor and blood samples, and radiomics from PET, CT, SPECT images. Finally, RT fractionation schedule may also be personalized to each individual patient to maximize therapeutic gain. Future PRT should be based on comprehensive considerations of knowledge acquired from all these levels, as well as consideration of the societal value such as cost and effectiveness.

  1. Intensity modulated radiation therapy (IMRT: differences in target volumes and improvement in clinically relevant doses to small bowel in rectal carcinoma

    Directory of Open Access Journals (Sweden)

    Delclos Marc E

    2011-06-01

    Full Text Available Abstract Background A strong dose-volume relationship exists between the amount of small bowel receiving low- to intermediate-doses of radiation and the rates of acute, severe gastrointestinal toxicity, principally diarrhea. There is considerable interest in the application of highly conformal treatment approaches, such as intensity-modulated radiation therapy (IMRT, to reduce dose to adjacent organs-at-risk in the treatment of carcinoma of the rectum. Therefore, we performed a comprehensive dosimetric evaluation of IMRT compared to 3-dimensional conformal radiation therapy (3DCRT in standard, preoperative treatment for rectal cancer. Methods Using RTOG consensus anorectal contouring guidelines, treatment volumes were generated for ten patients treated preoperatively at our institution for rectal carcinoma, with IMRT plans compared to plans derived from classic anatomic landmarks, as well as 3DCRT plans treating the RTOG consensus volume. The patients were all T3, were node-negative (N = 1 or node-positive (N = 9, and were planned to a total dose of 45-Gy. Pairwise comparisons were made between IMRT and 3DCRT plans with respect to dose-volume histogram parameters. Results IMRT plans had superior PTV coverage, dose homogeneity, and conformality in treatment of the gross disease and at-risk nodal volume, in comparison to 3DCRT. Additionally, in comparison to the 3DCRT plans, IMRT achieved a concomitant reduction in doses to the bowel (small bowel mean dose: 18.6-Gy IMRT versus 25.2-Gy 3DCRT; p = 0.005, bladder (V40Gy: 56.8% IMRT versus 75.4% 3DCRT; p = 0.005, pelvic bones (V40Gy: 47.0% IMRT versus 56.9% 3DCRT; p = 0.005, and femoral heads (V40Gy: 3.4% IMRT versus 9.1% 3DCRT; p = 0.005, with an improvement in absolute volumes of small bowel receiving dose levels known to induce clinically-relevant acute toxicity (small bowel V15Gy: 138-cc IMRT versus 157-cc 3DCRT; p = 0.005. We found that the IMRT treatment volumes were typically larger than that

  2. ACR Appropriateness Criteria for external beam radiation therapy treatment planning for clinically localized prostate cancer, part II of II

    Directory of Open Access Journals (Sweden)

    Nicholas G. Zaorsky, MD

    2017-07-01

    Conclusions: External beam radiation is a key component of the curative management of T1 and T2 prostate cancer. By combining the most recent medical literature, these Appropriateness Criteria can aid clinicians in determining the appropriate treatment delivery and personalized approaches for individual patients.

  3. Gleason Pattern 5 Is the Greatest Risk Factor for Clinical Failure and Death From Prostate Cancer After Dose-Escalated Radiation Therapy and Hormonal Ablation

    Energy Technology Data Exchange (ETDEWEB)

    Sabolch, Aaron [University of Michigan Medical School, Ann Arbor, MI (United States); Feng, Felix Y. [University of Michigan Medical School, Ann Arbor, MI (United States); Department of Radiation Oncology, Ann Arbor, MI (United States); Veterans Administration Medical Center, Ann Arbor, MI (United States); Daignault-Newton, Stephanie [University of Michigan Medical School, Ann Arbor, MI (United States); Division of Biostatistics, Ann Arbor, MI (United States); Halverson, Schuyler; Blas, Kevin; Phelps, Laura [University of Michigan Medical School, Ann Arbor, MI (United States); Olson, Karin B. [University of Michigan Medical School, Ann Arbor, MI (United States); Department of Radiation Oncology, Ann Arbor, MI (United States); Sandler, Howard M. [Department of Radiation Oncology, Cedars Sinai Medical Center, Los Angeles, CA (United States); Hamstra, Daniel A., E-mail: dhamm@med.umich.edu [Department of Radiation Oncology, Ann Arbor, MI (United States)

    2011-11-15

    Purpose: The division of Gleason score (GS) into three categories (2-6, 7, 8-10) may not fully use its prognostic power, as revealed by recent reports demonstrating the presence of Gleason Pattern 5 (GP5) as a strong predictor for biochemical recurrence. Therefore, we analyzed the clinical outcomes in patients treated with dose-escalated radiation therapy (RT) based on the presence or absence of GP5. Methods and Materials: Outcomes were analyzed for 718 men treated for localized prostate cancer with external-beam RT to a minimum planning target volume dose of at least 75 Gy. We assessed the impact of GP5 and that of pretreatment- and treatment-related factors on freedom from biochemical failure, freedom from metastasis (FFM), cause-specific survival (CSS), and overall survival (OS). Results: At biopsy, 89% of patients had no GP5, and 11% (76/718) had GP5. There were no differences in age, comorbid illness, T stage, prostate-specific antigen, or the use or duration of androgen deprivation therapy between GS8 without GP5 and GS8-10 with GP5. The presence of GP5 predicted lower FFM (p < 0.002; hazard ratio [HR] 3.4 [1.7-7.1]); CSS (p < 0.0001; HR 12.9 [5.4-31]); and OS (p < 0.0001; HR 3.6 [2.0-6.5]) in comparison with GS8 (without GP5). The 8-year FFM, CSS, and OS were 89%, 98%, and 57%, respectively, for those with Gleason 8 prostate cancer without GP5 in comparison with 61%, 55%, and 31%, respectively, for those with GP5. In addition, both FFM and CSS were strongly influenced by androgen deprivation therapy given concurrently with RT. On multivariate analysis, GP5 was the strongest prognostic factor for all clinical endpoints, including OS. Conclusion: The presence of GP5 predicts for worse clinical behavior, which therefore needs to be accounted for by risk stratification schemes. Further intensification of local and/or systemic therapy may be appropriate for such patients.

  4. Insufficiency fractures following radiation therapy for gynecologic malignancies

    Energy Technology Data Exchange (ETDEWEB)

    Ikushima, Hitoshi; Takegawa, Yoshihiro; Matsuki, Hirokazu; Yasuda, Hiroaki; Kawanaka, Takashi; Shiba, Atsushi; Kishida, Yoshiomi; Iwamoto, Seiji; Nishitani, Hiromu [Tokushima Univ. (Japan). School of Medicine

    2002-12-01

    The purpose of this study was to investigate the incidence, clinical and radiological findings of insufficiency fractures (IF) of the female pelvis following radiation therapy. We retrospectively reviewed the radiation oncology records of 108 patients with gynecologic malignancies who underwent external beam radiation therapy of the whole pelvis. All patients underwent conventional radiography and computed tomography (CT) scan every 6 months in follow-up after radiation therapy and magnetic resonance imaging (MRI) and radionuclide bone scan were added when the patients complained of pelvic pain. Thirteen of 108 patients (12%) developed IF in the irradiated field with a median interval of 6 months (range 3-51) from the completion of external beam radiation therapy. All patients who developed IF were postmenopausal women. Age of the patients who developed IF was significantly higher than that of the other patients. The parts of IF were sacroiliac joints, pubis, sacral body and 5th lumbar vertebra and six of 14 patients had multiple lesions. Treatment with rest and nonsteroidal anti-inflammatory drugs lead to symptomatic relief in all patients, although symptoms lasted from 3 to 20 months. Radiation-induced pelvic IF following radiation therapy for gynecologic malignancies were frequently observed in the post-menopausal patients within 1 year after external beam radiation therapy. Symmetrical fractures of the bilateral sacroiliac joint and pubis were the characteristic pattern of pelvic IF. All patients healed with conservative treatment, and nobody became non-ambulant. (author)

  5. Radiation Therapy for Early Stage Lung Cancer

    OpenAIRE

    Parashar, Bhupesh; Arora, Shruthi; Wernicke, A. Gabriella

    2013-01-01

    Radiation therapy for early stage lung cancer is a promising modality. It has been traditionally used in patients not considered candidates for standard surgical resection. However, its role has been changing rapidly since the introduction of new and advanced technology, especially in tumor tracking, image guidance, and radiation delivery. Stereotactic radiation therapy is one such advancement that has shown excellent local control rates and promising survival in early stage lung cancer. In a...

  6. Radiation Therapy for Early Stage Lung Cancer

    OpenAIRE

    Parashar, Bhupesh; Arora, Shruthi; Wernicke, A. Gabriella

    2013-01-01

    Radiation therapy for early stage lung cancer is a promising modality. It has been traditionally used in patients not considered candidates for standard surgical resection. However, its role has been changing rapidly since the introduction of new and advanced technology, especially in tumor tracking, image guidance, and radiation delivery. Stereotactic radiation therapy is one such advancement that has shown excellent local control rates and promising survival in early stage lung cancer. In a...

  7. Dosimetric verification and clinical evaluation of a new commercially available Monte Carlo-based dose algorithm for application in stereotactic body radiation therapy (SBRT) treatment planning

    Energy Technology Data Exchange (ETDEWEB)

    Fragoso, Margarida; Wen Ning; Kumar, Sanath; Liu Dezhi; Ryu, Samuel; Movsas, Benjamin; Munther, Ajlouni; Chetty, Indrin J, E-mail: ichetty1@hfhs.or [Henry Ford Health System, Detroit, MI (United States)

    2010-08-21

    Modern cancer treatment techniques, such as intensity-modulated radiation therapy (IMRT) and stereotactic body radiation therapy (SBRT), have greatly increased the demand for more accurate treatment planning (structure definition, dose calculation, etc) and dose delivery. The ability to use fast and accurate Monte Carlo (MC)-based dose calculations within a commercial treatment planning system (TPS) in the clinical setting is now becoming more of a reality. This study describes the dosimetric verification and initial clinical evaluation of a new commercial MC-based photon beam dose calculation algorithm, within the iPlan v.4.1 TPS (BrainLAB AG, Feldkirchen, Germany). Experimental verification of the MC photon beam model was performed with film and ionization chambers in water phantoms and in heterogeneous solid-water slabs containing bone and lung-equivalent materials for a 6 MV photon beam from a Novalis (BrainLAB) linear accelerator (linac) with a micro-multileaf collimator (m{sub 3} MLC). The agreement between calculated and measured dose distributions in the water phantom verification tests was, on average, within 2%/1 mm (high dose/high gradient) and was within {+-}4%/2 mm in the heterogeneous slab geometries. Example treatment plans in the lung show significant differences between the MC and one-dimensional pencil beam (PB) algorithms within iPlan, especially for small lesions in the lung, where electronic disequilibrium effects are emphasized. Other user-specific features in the iPlan system, such as options to select dose to water or dose to medium, and the mean variance level, have been investigated. Timing results for typical lung treatment plans show the total computation time (including that for processing and I/O) to be less than 10 min for 1-2% mean variance (running on a single PC with 8 Intel Xeon X5355 CPUs, 2.66 GHz). Overall, the iPlan MC algorithm is demonstrated to be an accurate and efficient dose algorithm, incorporating robust tools for MC

  8. Radiation Sensitization in Cancer Therapy.

    Science.gov (United States)

    Greenstock, Clive L.

    1981-01-01

    Discusses various aspects of radiation damage to biological material, including free radical mechanisms, radiation sensitization and protection, tumor hypoxia, mechanism of hypoxic cell radiosensitization, redox model for radiation modification, sensitizer probes of cellular radiation targets, pulse radiolysis studies of free radical kinetics,…

  9. Spot-Scanning Proton Radiation Therapy for Pediatric Chordoma and Chondrosarcoma: Clinical Outcome of 26 Patients Treated at Paul Scherrer Institute

    Energy Technology Data Exchange (ETDEWEB)

    Rombi, Barbara [Center for Proton Therapy, Paul Scherrer Institute, Villigen (Switzerland); ATreP (Provincial Agency for Proton Therapy), Trento (Italy); Ares, Carmen, E-mail: carmen.ares@psi.ch [Center for Proton Therapy, Paul Scherrer Institute, Villigen (Switzerland); Hug, Eugen B. [Center for Proton Therapy, Paul Scherrer Institute, Villigen (Switzerland); ProCure Proton Therapy Center, Somerset, New Jersey (United States); Schneider, Ralf; Goitein, Gudrun; Staab, Adrian; Albertini, Francesca; Bolsi, Alessandra; Lomax, Antony J. [Center for Proton Therapy, Paul Scherrer Institute, Villigen (Switzerland); Timmermann, Beate [Center for Proton Therapy, Paul Scherrer Institute, Villigen (Switzerland); WestGerman Proton Therapy Center Essen (Germany)

    2013-07-01

    Purpose: To evaluate the clinical results of fractionated spot-scanning proton radiation therapy (PT) in 26 pediatric patients treated at Paul Scherrer Institute for chordoma (CH) or chondrosarcoma (CS) of the skull base or axial skeleton. Methods and Materials: Between June 2000 and June 2010, 19 CH and 7 CS patients with tumors originating from the skull base (17) and the axial skeleton (9) were treated with PT. Mean age at the time of PT was 13.2 years. The mean prescribed dose was 74 Gy (relative biological effectiveness [RBE]) for CH and 66 Gy (RBE) for CS, at a dose of 1.8-2.0 Gy (RBE) per fraction. Results: Mean follow-up was 46 months. Actuarial 5-year local control (LC) rates were 81% for CH and 80% for CS. Actuarial 5-year overall survival (OS) was 89% for CH and 75% for CS. Two CH patients had local failures: one is alive with evidence of disease, while the other patient succumbed to local recurrence in the surgical pathway. One CS patient died of local progression of the disease. No high-grade late toxicities were observed. Conclusions: Spot-scanning PT for pediatric CH and CS patients resulted in excellent clinical outcomes with acceptable rates of late toxicity. Longer follow-up time and larger cohort are needed to fully assess tumor control and late effects of treatment.

  10. Modern radiation therapy for extranodal lymphomas

    DEFF Research Database (Denmark)

    Yahalom, Joachim; Illidge, Tim; Specht, Lena

    2015-01-01

    Extranodal lymphomas (ENLs) comprise about a third of all non-Hodgkin lymphomas (NHL). Radiation therapy (RT) is frequently used as either primary therapy (particularly for indolent ENL), consolidation after systemic therapy, salvage treatment, or palliation. The wide range of presentations of EN...

  11. PET-based radiation therapy planning.

    Science.gov (United States)

    Speirs, Christina K; Grigsby, Perry W; Huang, Jiayi; Thorstad, Wade L; Parikh, Parag J; Robinson, Clifford G; Bradley, Jeffrey D

    2015-01-01

    In this review, we review the literature on the use of PET in radiation treatment planning, with an emphasis on describing our institutional methodology (where applicable). This discussion is intended to provide other radiation oncologists with methodological details on the use of PET imaging for treatment planning in radiation oncology, or other oncologists with an introduction to the use of PET in planning radiation therapy. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Patient's quality of life after high-dose radiation therapy for thoracic carcinomas. Changes over time and influence on clinical outcome

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, Christina [University Clinic Giessen and Marburg, Clinic for Radiotherapy and Radiation Oncology, Marburg (Germany); Ruppiner Kliniken GmbH, Clinic for Radiotherapy and Radiation Oncology, Neuruppin (Germany); Engenhart-Cabillic, Rita; Vorwerk, Hilke [University Clinic Giessen and Marburg, Clinic for Radiotherapy and Radiation Oncology, Marburg (Germany); Schmidt, Michael; Huhnt, Winfried; Blank, Eyck; Sidow, Dietrich; Buchali, Andre [Ruppiner Kliniken GmbH, Clinic for Radiotherapy and Radiation Oncology, Neuruppin (Germany)

    2017-02-15

    Quality of life (QoL) is an important factor in patient care. This analysis is focused on QoL before and after radio(chemo)therapy in patients with thoracic carcinomas, as well as on its influence on clinical follow-up and survival, and the correlation with treatment-related toxicities. The analysis included 81 patients with intrathoracic carcinoma receiving radio(chemo)therapy. For analysis of QoL, the European Organisation for Research and Treatment of Cancer Quality of Life Questionnaire (EORTC QLQ-C30) and the lung cancer-specific supplement (EORTC QLQ-LC13) were used. QoL data were collected before radiation treatment (RT), and 6 weeks, 12 weeks, 6 months, and 12 months after RT. Other factors were additionally analyzed, including clinical outcome, survival, and side effects. The functional scales showed maximum values or at least a recovery 12 weeks after RT. Symptoms with a high mean symptom score (> 40) at all appointments were fatigue, dyspnea, and coughing. Insomnia, peripheral neuropathy, appetite loss, dyspnea (from QLQ-LC13), and all pain parameters had an intermediate mean score (10-40). There were low mean scores of < 10 for nausea and vomiting, diarrhea, sore mouth, and hemoptysis. There was a significant correlation between clinical dysphagia and radiation pneumonitis with the associated symptom scales. None of the QoL scores had a significant influence on local and distant control or survival. 12 weeks after RT the QLQ-C30 functional scales show the highest scores or at least a temporary recovery. The symptom scales accurately reflect the common symptoms and treatment-related toxicities. QoL did not prove to be a significant predictor for local and distant control or survival. (orig.) [German] Die Lebensqualitaet (QoL) ist ein entscheidender Faktor in der Patientenversorgung. In der vorliegenden Untersuchung lag der Fokus auf der QoL vor und nach Radio(chemo)therapie von Patienten mit thorakalen Tumoren sowie deren Einfluss auf das klinische

  13. Ion beam therapy fundamentals, technology, clinical applications

    CERN Document Server

    2012-01-01

    The book provides a detailed, up-to-date account of the basics, the technology, and the clinical use of ion beams for radiation therapy. Theoretical background, technical components, and patient treatment schemes are delineated by the leading experts that helped to develop this field from a research niche to its current highly sophisticated and powerful clinical treatment level used to the benefit of cancer patients worldwide. Rather than being a side-by-side collection of articles, this book consists of related chapters. It is a common achievement by 76 experts from around the world. Their expertise reflects the diversity of the field with radiation therapy, medical and accelerator physics, radiobiology, computer science, engineering, and health economics. The book addresses a similarly broad audience ranging from professionals that need to know more about this novel treatment modality or consider to enter the field of ion beam therapy as a researcher. However, it is also written for the interested public an...

  14. SU-E-T-50: Automatic Validation of Megavoltage Beams Modeled for Clinical Use in Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Melchior, M [Terapia Radiante S.A., La Plata, Buenos Aires (Argentina); Salinas Aranda, F [Vidt Centro Medico, Ciudad Autonoma De Buenos Aires (Argentina); 21st Century Oncology, Ft. Myers, FL (United States); Sciutto, S [Universidad Nacional de La Plata, La Plata, Buenos Aires (Argentina); Dodat, D [Centro Medico Privado Dean Funes, La Plata, Buenos Aires (Argentina); Larragueta, N [Universidad Nacional de La Plata, La Plata, Buenos Aires (Argentina); Centro Medico Privado Dean Funes, La Plata, Buenos Aires (Argentina)

    2014-06-01

    Purpose: To automatically validate megavoltage beams modeled in XiO™ 4.50 (Elekta, Stockholm, Sweden) and Varian Eclipse™ Treatment Planning Systems (TPS) (Varian Associates, Palo Alto, CA, USA), reducing validation time before beam-on for clinical use. Methods: A software application that can automatically read and analyze DICOM RT Dose and W2CAD files was developed using MatLab integrated development environment.TPS calculated dose distributions, in DICOM RT Dose format, and dose values measured in different Varian Clinac beams, in W2CAD format, were compared. Experimental beam data used were those acquired for beam commissioning, collected on a water phantom with a 2D automatic beam scanning system.Two methods were chosen to evaluate dose distributions fitting: gamma analysis and point tests described in Appendix E of IAEA TECDOC-1583. Depth dose curves and beam profiles were evaluated for both open and wedged beams. Tolerance parameters chosen for gamma analysis are 3% and 3 mm dose and distance, respectively.Absolute dose was measured independently at points proposed in Appendix E of TECDOC-1583 to validate software results. Results: TPS calculated depth dose distributions agree with measured beam data under fixed precision values at all depths analyzed. Measured beam dose profiles match TPS calculated doses with high accuracy in both open and wedged beams. Depth and profile dose distributions fitting analysis show gamma values < 1. Relative errors at points proposed in Appendix E of TECDOC-1583 meet therein recommended tolerances.Independent absolute dose measurements at points proposed in Appendix E of TECDOC-1583 confirm software results. Conclusion: Automatic validation of megavoltage beams modeled for their use in the clinic was accomplished. The software tool developed proved efficient, giving users a convenient and reliable environment to decide whether to accept or not a beam model for clinical use. Validation time before beam-on for clinical use

  15. Radiation-Induced Second Cancer Risk Estimates From Radionuclide Therapy

    Science.gov (United States)

    Bednarz, Bryan; Besemer, Abigail

    2017-09-01

    The use of radionuclide therapy in the clinical setting is expected to increase significantly over the next decade. There is an important need to understand the radiation-induced second cancer risk associated with these procedures. In this study the radiation-induced cancer risk in five radionuclide therapy patients was investigated. These patients underwent serial SPECT imaging scans following injection as part of a clinical trial testing the efficacy of a 131Iodine-labeled radiopharmaceutical. Using these datasets the committed absorbed doses to multiple sensitive structures were calculated using RAPID, which is a novel Monte Carlo-based 3D dosimetry platform developed for personalized dosimetry. The excess relative risk (ERR) for radiation-induced cancer in these structures was then derived from these dose estimates following the recommendations set forth in the BEIR VII report. The radiation-induced leukemia ERR was highest among all sites considered reaching a maximum value of approximately 4.5. The radiation-induced cancer risk in the kidneys, liver and spleen ranged between 0.3 and 1.3. The lifetime attributable risks (LARs) were also calculated, which ranged from 30 to 1700 cancers per 100,000 persons and were highest for leukemia and the liver for both males and females followed by radiation-induced spleen and kidney cancer. The risks associated with radionuclide therapy are similar to the risk associated with external beam radiation therapy.

  16. Quantitative evaluation of correlation of dose and FDG-PET uptake value with clinical chest wall complications in patients with lung cancer treated with stereotactic body radiation therapy.

    Science.gov (United States)

    Algan, O; Confer, M; Algan, S; Matthiesen, C; Herman, T; Ahmad, S; Ali, I

    2015-01-01

    The aim of this study was to investigate quantitatively the dosimetric factors that increase the risk of clinical complications of rib fractures or chest wall pain after stereotactic body radiation therapy (SBRT) to the lung. The correlations of clinical complications with standard-uptake values (SUV) and FDG-PET activity distributions from post-treatment PET-imaging were studied. Mean and maximum doses from treatment plans, FDG-PET activity values on post-SBRT PET scans and the presence of clinical complications were determined in fifteen patients undergoing 16 SBRT treatments for lung cancer. SBRT treatments were delivered in 3 to 5 fractions using 5 to 7 fields to prescription doses in the range from 39.0 to 60.0 Gy. The dose and FDG-PET activity values were extracted from regions of interest in the chest wall that matched anatomically. Quantitative evaluation of the correlation between dose deposition and FDG-PET activity was performed by calculating the Pearson correlation coefficient using pixel-by-pixel analysis of dose and FDG-PET activity maps in selected regions of interest associated with clinical complications. Overall, three of fifteen patients developed rib fractures with chest wall pain, and two patients developed pain symptoms without fracture. The mean dose to the rib cage in patients with fractures was 37.53 Gy compared to 33.35 Gy in patients without fractures. Increased chest wall activity as determined by FDG-uptake was noted in patients who developed rib fractures. Enhanced activity from PET-images correlated strongly with high doses deposited to the chest wall which could be predicted by a linear relationship. The local enhanced activity was associated with the development of clinical complications such as chest wall inflammation and rib fracture. This study demonstrates that rib fractures and chest wall pain can occur after SBRT treatments to the lung and is associated with increased activity on subsequent PET scans. The FDG-PET activity

  17. Radiation Therapy: Preventing and Managing Side Effects

    Science.gov (United States)

    ... Also be careful not to rub away the ink marks needed for your radiation therapy until it’s ... Health Care Professionals Programs & Services Breast Cancer Support TLC Hair Loss & Mastectomy Products Hope Lodge® Lodging Rides ...

  18. Modern radiation therapy for primary cutaneous lymphomas

    DEFF Research Database (Denmark)

    Specht, Lena; Dabaja, Bouthaina; Illidge, Tim

    2015-01-01

    Primary cutaneous lymphomas are a heterogeneous group of diseases. They often remain localized, and they generally have a more indolent course and a better prognosis than lymphomas in other locations. They are highly radiosensitive, and radiation therapy is an important part of the treatment, eit...... meetings and analysis of available evidence. The guidelines represent an agreed consensus view of the International Lymphoma Radiation Oncology Group steering committee on the use of radiation therapy in primary cutaneous lymphomas in the modern era......., either as the sole treatment or as part of a multimodality approach. Radiation therapy of primary cutaneous lymphomas requires the use of special techniques that form the focus of these guidelines. The International Lymphoma Radiation Oncology Group has developed these guidelines after multinational...

  19. Three-Phase Adaptive Radiation Therapy for Patients With Nasopharyngeal Carcinoma Undergoing Intensity-Modulated Radiation Therapy: Dosimetric Analysis.

    Science.gov (United States)

    Deng, Shan; Liu, Xu; Lu, Heming; Huang, Huixian; Shu, Liuyang; Jiang, Hailan; Cheng, Jinjian; Peng, Luxing; Pang, Qiang; Gu, Junzhao; Qin, Jian; Lu, Zhiping; Mo, Ying; Wu, Danling; Wei, Yinglin

    2017-01-01

    Patients with nasopharyngeal carcinoma undergoing intensity-modulated radiation therapy may experience significant anatomic changes throughout the entire treatment course, and adaptive radiation therapy may be necessary to maintain optimal dose delivered both to the targets and to the critical structures. The timing of adaptive radiation therapy, however, is largely unknown. This study was to evaluate the dosimetric benefits of a 3-phase adaptive radiation therapy technique for nasopharyngeal carcinoma. Twenty patients with nasopharyngeal carcinoma treated with intensity-modulated radiation therapy were recruited prospectively. After fractions 5 and 15, each patient had repeat computed tomography scans, and adaptive replans with recontouring the targets and organs at risk on the new computed tomography images were generated and used for subsequent treatment (replan 1 and replan 2). Two hybrid intensity-modulated radiation therapy plans (plan 1 and plan 2) were generated by superimposing the initial plan (plan 0) to each repeated new computed tomography image, reflecting the actual dose delivered to the targets and organs at risk if no changes were made to the original plan. Dosimetric comparisons were made between the adaptive replans (adaptive radiation therapy plans: plan 0 + replan 1 + replan 2) and their corresponding nonadaptive radiation therapy plans (plan 0 + plan 1 + plan 2). Comparing with the nonadaptive radiation therapy plans, the adaptive radiation therapy plans resulted in a significant improvement in conformity index for planning target volumes for primary disease, involved lymph node, high-risk clinical target volume, and low-risk clinical target volume (PTVnx, PTVnd, PTV1, and PTV2, respectively). Median V95 for PTVnx; D95, D99, V100, V95, and V93 for PTVnd; D99 and V100 for PTV1; and D95, D99, V100, V95, and V93 for PTV2 were increased significantly. There were significant dose-volume reductions, including maximum doses to the brainstem and

  20. Ultraviolet radiation therapy and UVR dose models

    Energy Technology Data Exchange (ETDEWEB)

    Grimes, David Robert, E-mail: davidrobert.grimes@oncology.ox.ac.uk [School of Physical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland and Cancer Research UK/MRC Oxford Institute for Radiation Oncology, Gray Laboratory, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ (United Kingdom)

    2015-01-15

    Ultraviolet radiation (UVR) has been an effective treatment for a number of chronic skin disorders, and its ability to alleviate these conditions has been well documented. Although nonionizing, exposure to ultraviolet (UV) radiation is still damaging to deoxyribonucleic acid integrity, and has a number of unpleasant side effects ranging from erythema (sunburn) to carcinogenesis. As the conditions treated with this therapy tend to be chronic, exposures are repeated and can be high, increasing the lifetime probability of an adverse event or mutagenic effect. Despite the potential detrimental effects, quantitative ultraviolet dosimetry for phototherapy is an underdeveloped area and better dosimetry would allow clinicians to maximize biological effect whilst minimizing the repercussions of overexposure. This review gives a history and insight into the current state of UVR phototherapy, including an overview of biological effects of UVR, a discussion of UVR production, illness treated by this modality, cabin design and the clinical implementation of phototherapy, as well as clinical dose estimation techniques. Several dose models for ultraviolet phototherapy are also examined, and the need for an accurate computational dose estimation method in ultraviolet phototherapy is discussed.

  1. Nursing care update: Internal radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Lowdermilk, D.L.

    1990-01-01

    Internal radiation therapy has been used in treating gynecological cancers for over 100 years. A variety of radioactive sources are currently used alone and in combination with other cancer treatments. Nurses need to be able to provide safe, comprehensive care to patients receiving internal radiation therapy while using precautions to keep the risks of exposure to a minimum. This article discusses current trends and issues related to such treatment for gynecological cancers.20 references.

  2. A Multi-institutional Clinical Trial of Rectal Dose Reduction via Injected Polyethylene-Glycol Hydrogel During Intensity Modulated Radiation Therapy for Prostate Cancer: Analysis of Dosimetric Outcomes

    Energy Technology Data Exchange (ETDEWEB)

    Song, Danny Y., E-mail: dsong2@jhmi.edu [Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland (United States); Herfarth, Klaus K.; Uhl, Matthias [Department of Radiation Oncology, University of Heidelberg, Heidelberg (Germany); Eble, Michael J.; Pinkawa, Michael [Department of Radiation Oncology, RWTH Aachen University, Aachen (Germany); Triest, Baukelien van; Kalisvaart, Robin [Department of Radiation Oncology, Netherlands Cancer Institute/Antoni van Leeuwenhoek Ziekenhuis, Amsterdam (Netherlands); Weber, Damien C.; Miralbell, Raymond [Department of Radiation Oncology, Geneva University, Geneva (Switzerland); DeWeese, Theodore L. [Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland (United States); Ford, Eric C. [Department of Radiation Oncology, University of Washington, Seattle, Washington (United States)

    2013-09-01

    Purpose: To characterize the effect of a prostate-rectum spacer on dose to rectum during external beam radiation therapy for prostate cancer and to assess for factors correlated with rectal dose reduction. Methods and Materials: Fifty-two patients at 4 institutions were enrolled into a prospective pilot clinical trial. Patients underwent baseline scans and then were injected with perirectal spacing hydrogel and rescanned. Intensity modulated radiation therapy plans were created on both scans for comparison. The objectives were to establish rates of creation of ≥7.5 mm of prostate-rectal separation, and decrease in rectal V70 of ≥25%. Multiple regression analysis was performed to evaluate the associations between preinjection and postinjection changes in rectal V70 and changes in plan conformity, rectal volume, bladder volume, bladder V70, planning target volume (PTV), and postinjection midgland separation, gel volume, gel thickness, length of PTV/gel contact, and gel left-to-right symmetry. Results: Hydrogel resulted in ≥7.5-mm prostate-rectal separation in 95.8% of patients; 95.7% had decreased rectal V70 of ≥25%, with a mean reduction of 8.0 Gy. There were no significant differences in preinjection and postinjection prostate, PTV, rectal, and bladder volumes. Plan conformities were significantly different before versus after injection (P=.02); plans with worse conformity indexes after injection compared with before injection (n=13) still had improvements in rectal V70. In multiple regression analysis, greater postinjection reduction in V70 was associated with decreased relative postinjection plan conformity (P=.01). Reductions in V70 did not significantly vary by institution, despite significant interinstitutional variations in plan conformity. There were no significant relationships between reduction in V70 and the other characteristics analyzed. Conclusions: Injection of hydrogel into the prostate-rectal interface resulted in dose reductions to rectum

  3. Clinical databases in physical therapy.

    NARCIS (Netherlands)

    Swinkels, I.C.; Ende, C.H.M. van den; Bakker, D. de; Wees, P.J. van der; Hart, D.L.; Deutscher, D.; Bosch, W.J.H.M. van den; Dekker, J.

    2007-01-01

    Clinical databases in physical therapy provide increasing opportunities for research into physical therapy theory and practice. At present, information on the characteristics of existing databases is lacking. The purpose of this study was to identify clinical databases in which physical therapists r

  4. Clinical databases in physical therapy.

    NARCIS (Netherlands)

    Swinkels, I.C.; Ende, C.H.M. van den; Bakker, D. de; Wees, P.J. van der; Hart, D.L.; Deutscher, D.; Bosch, W.J.H.M. van den; Dekker, J.

    2007-01-01

    Clinical databases in physical therapy provide increasing opportunities for research into physical therapy theory and practice. At present, information on the characteristics of existing databases is lacking. The purpose of this study was to identify clinical databases in which physical therapists

  5. THERMOPLASTIC MATERIALS APPLICATIONS IN RADIATION THERAPY.

    Science.gov (United States)

    Munteanu, Anca; Moldoveanu, Sinziana; Manea, Elena

    2016-01-01

    This is an example of the use of thermoplastic materials in a high-tech medicine field, oncology radiation therapy, in order to produce the rigid masks for positioning and immobilization of the patient during simulation of the treatment procedure, the imaging verification of position and administration of the indicated radiation dose. Implementation of modern techniques of radiation therapy is possible only if provided with performant equipment (CT simulators, linear accelerators of high energy particles provided with multilamellar collimators and imaging verification systems) and accessories that increase the precision of the treatment (special supports for head-neck, thorax, pelvis, head-neck and thorax immobilization masks, compensating materials like bolus type material). The paper illustrates the main steps in modern radiation therapy service and argues the role of thermoplastics in reducing daily patient positioning errors during treatment. As part of quality assurance of irradiation procedure, using a rigid mask is mandatory when applying 3D conformal radiation therapy techniques, radiation therapy with intensity modulated radiation or rotational techninques.

  6. Clinical characteristics and management of late urinary symptom flare following stereotactic body radiation therapy for prostate cancer

    Directory of Open Access Journals (Sweden)

    Jennifer Ai-Lian Woo

    2014-05-01

    Full Text Available Purpose: Stereotactic body radiotherapy (SBRT is increasingly utilized as primary treatment for localized prostate cancer (PCa. The late GU toxicity of SBRT has not been fully described. We characterize the clinical features of late urinary symptom flare (LUSF and recommend conservative management approaches.Methods: Between Feb.08-Aug.11, 216 men with PCa were treated definitively with SBRT at GUH. Treatment was delivered using the CyberKnife (35 Gy-36.25 Gy in 5 fractions. The prevalence of CTC-graded toxicities and medication usage were assessed at each follow-up visit. Patient-reported symptoms were assessed using the AUA symptom score and the EPIC-26 at 1, 3, 6, 9, 12, 18 and 24 months. LUSF was defined as an increase in the AUA score of ≥ 5 points above baseline with a degree of severity in the moderate to severe range. The relationship between the occurrence of flare and pretreatment characteristics were examined.Results: Of the 216 patients, 29 (13.4% experienced a late transient increase in the AUA score that met the criteria for LUSF. Among flare patients, median age was 66 yrs compared to 70 for those without flare (p = 0.007. In patients who experienced flare, CTC toxicities peaked at 9-18 months, and alpha-antagonist utilization peaked at 18 months (85% before decreasing at 24 months. The EPIC urinary summary score of flare patients transiently declined between 6 months and 18 months before returning to baseline at two years post-SBRT. Clinically significant increases in frequency, weak stream and dysuria were seen at 12 months post-SBRT. Among flare patients, 42.9% felt that urination was a moderate to big problem at 12 months following SBRT.Conclusions: In this study, we characterize LUSF following SBRT. LUSF is a constellation of symptoms including frequency/urgency, weak stream and dysuria that transiently occurs 6-18 months post-SBRT. The maintenance of prophylactic alpha-antagonists may limit the bother associated with this

  7. Clinical outcomes of video‐assisted thoracic surgery and stereotactic body radiation therapy for early‐stage non‐small cell lung cancer: A meta‐analysis

    Science.gov (United States)

    Ma, Longfei

    2016-01-01

    Background We compared video‐assisted thoracoscopic surgery (VATS) lobectomy and stereotactic body radiation therapy (SABR) to explore clinical outcomes in the treatment of patients with early stage NSCLC. Methods Major medical databases were systematically searched to identify studies on VATS and SBRT published between January 2010 and October 2015. English publications of stage I and II NSCLC with adequate patients and SBRT doses were included. A multivariate random effects model was used to perform meta‐analysis to compare overall survival (OS) and disease‐free survival (DFS) between VATS and SBRT, adjusting for median age and operable patient numbers. Results Thirteen VATS (3436 patients) and 24 SBRT (4433) studies were eligible. The median age and follow‐up duration was 68 years and 42 months for VATS and 74 years and 29.4 months for SBRT patients. After adjusting for the proportion of operable patients and median age, the estimated OS rates at one, two, three, and five years with VATS were 94%, 89%, 84%, and 69% compared with 96%, 94%, 89%, and 82% for SBRT. The estimated DFS rates at one, two, three, and five years with VATS were 97%, 93%, 87%, and 77% compared with 86%, 80%, 73%, and 58% for SBRT. Conclusion Before adjustment, patients treated with SBRT had poorer clinical outcomes compared to those treated with VATS. A substantial difference between median age and operability exists between patients treated with SBRT and VATS. After adjusting for these differences, OS and DFS did not differ significantly between the two techniques. PMID:27385987

  8. Neo-adjuvant chemo-radiation of rectal cancer with Volumetric Modulated Arc Therapy: summary of technical and dosimetric features and early clinical experience

    Directory of Open Access Journals (Sweden)

    Salati Emanuela

    2010-02-01

    Full Text Available Abstract Background To report about initial technical and clinical experience in preoperative radiation treatment of rectal cancer with volumetric modulated arcs with the RapidArc® (RA technology. Methods Twenty-five consecutive patients (pts were treated with RA. All showed locally advanced rectal adenocarcinoma with stage T2-T4, N0-1. Dose prescription was 44 Gy in 22 fractions (or 45 Gy in 25 fractions. Delivery was performed with single arc with a 6 MV photon beam. Twenty patients were treated preoperatively, five did not receive surgery. Twenty-three patients received concomitant chemotherapy with oral capecitabine. A comparison with a cohort of twenty patients with similar characteristics treated with conformal therapy (3DC is presented as well. Results From a dosimetric point of view, RA improved conformality of doses (CI95% = 1.1 vs. 1.4 for RA and 3DC, presented similar target coverage with lower maximum doses, significant sparing of femurs and significant reduction of integral and mean dose to healthy tissue. From the clinical point of view, surgical reports resulted in a down-staging in 41% of cases. Acute toxicity was limited to Grade 1-2 diarrhoea in 40% and Grade 3 in 8% of RA pts, 45% and 5% of 3DC pts, compatible with known effects of concomitant chemotherapy. RA treatments were performed with an average of 2.0 vs. 3.4 min of 3DC. Conclusion RA proved to be a safe, qualitatively advantageous treatment modality for rectal cancer, showing some improved results in dosimetric aspects.

  9. A Prospective Pathologic Study to Define the Clinical Target Volume for Partial Breast Radiation Therapy in Women With Early Breast Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Brandon T., E-mail: Brandon.Nguyen@act.gov.au [Department of Radiation Oncology, Peter MacCallum Cancer Centre, East Melbourne, Victoria (Australia); Canberra Hospital, Radiation Oncology Department, Garran, ACT (Australia); Deb, Siddhartha [Department of Anatomical Pathology, Peter MacCallum Cancer Centre, East Melbourne, Victoria (Australia); Victorian Cancer Biobank, Cancer Council of Victoria, Carlton, Victoria (Australia); Fox, Stephen [Department of Anatomical Pathology, Peter MacCallum Cancer Centre, East Melbourne, Victoria (Australia); Hill, Prudence [Department of Anatomical Pathology, St. Vincent' s Hospital Melbourne, Fitzroy, Victoria (Australia); Collins, Marnie [Centre for Biostatistics and Clinical Trials, Peter MacCallum Cancer Centre, East Melbourne, Victoria (Australia); Chua, Boon H. [Department of Radiation Oncology, Peter MacCallum Cancer Centre, East Melbourne, Victoria (Australia); University of Melbourne, Parkville, Victoria (Australia)

    2012-12-01

    Purpose: To determine an appropriate clinical target volume for partial breast radiation therapy (PBRT) based on the spatial distribution of residual invasive and in situ carcinoma after wide local excision (WLE) for early breast cancer or ductal carcinoma in situ (DCIS). Methods and Materials: We performed a prospective pathologic study of women potentially eligible for PBRT who had re-excision and/or completion mastectomy after WLE for early breast cancer or DCIS. A pathologic assessment protocol was used to determine the maximum radial extension (MRE) of residual carcinoma from the margin of the initial surgical cavity. Women were stratified by the closest initial radial margin width: negative (>1 mm), close (>0 mm and {<=}1 mm), or involved. Results: The study population was composed of 133 women with a median age of 59 years (range, 27-82 years) and the following stage groups: 0 (13.5%), I (40.6%), II (38.3%), and III (7.5%). The histologic subtypes of the primary tumor were invasive ductal carcinoma (74.4%), invasive lobular carcinoma (12.0%), and DCIS alone (13.5%). Residual carcinoma was present in the re-excision and completion mastectomy specimens in 55.4%, 14.3%, and 7.2% of women with an involved, close, and negative margin, respectively. In the 77 women with a noninvolved radial margin, the MRE of residual disease, if present, was {<=}10 mm in 97.4% (95% confidence interval 91.6-99.5) of cases. Larger MRE measurements were significantly associated with an involved margin (P<.001), tumor size >30 mm (P=.03), premenopausal status (P=.03), and negative progesterone receptor status (P=.05). Conclusions: A clinical target volume margin of 10 mm would encompass microscopic residual disease in >90% of women potentially eligible for PBRT after WLE with noninvolved resection margins.

  10. ETS Gene Fusions as Predictive Biomarkers of Resistance to Radiation Therapy for Prostate Cancer

    Science.gov (United States)

    2015-10-01

    Award Number: W81XWH-10-1-0582 TITLE: ETS Gene Fusions as Predictive Biomarkers of Resistance to Radiation Therapy for Prostate Cancer PRINCIPAL...ETS gene fusion status associated with clinical outcomes following radiation therapy , by analyzing both the collected biomarker and clinical data...denotes absence of an ERG fusion). ETS gene fusions status did not predict outcomes following radiation therapy , as demonstrated by Kaplan Meier

  11. Radiation therapy for Morbus Ledderhose - indication and clinical results; Strahlentherapie beim Morbus Ledderhose - Indikation und klinische Ergebnisse

    Energy Technology Data Exchange (ETDEWEB)

    Seegenschmiedt, M.H.; Attassi, M. [Klinik fuer Radioonkologie, Strahlentherapie und Nuklearmedizin, Alfried-Krupp-Krankenhaus, Essen (Germany)

    2003-12-01

    Background: morbus ledderhose (ML) is a rare hyperproliferative disorder of the plantar aponeurosis which is similar in its clinical course to morbus dupuytren (MD). We examined whether radiotherapy (RT) can effect symptoms and prevent disease progression. Patients and methods: from June 1996 to December 2001, 25 patients (12 female/13 male) aged 9-76 (median: 56) years had radiotherapy (RT) for symptomatic ML. Follow-up (FU) was at least 1 year. 36 feet (16 right/20 left) were treated, as eleven patients had bilateral disease. Twelve (48%) patients had MD. There were 63 nodules (with 0,5-6,5 cm diameter) on all feet and 20 cords (with 1-4 cm length) on 13 (52%) feet prior to RT. 21 (84%) patients had one or more signs: 14 (56%) severe local pain, eight (32%) walking difficulties, twelve (48%) other symptoms, pressure or tension sensation. The RT field involved all nodules and cords plus safety margin. Two RT-series were applied (each 5 x 3 gy in 1 week) separated by 8-12 weeks up to a total dose of 30 gy. Evaluation was performed at the end of RT, after 3 and 12 months FU and in December 2002. The primary endpoint was prevention of disease progression and avoidance of surgery. Secondary endpoints were objective changes of morphological and functional parameters and patient's satisfaction measured on a visual analogue scale (VAS). Results: with a median FU of 38 (12-67) months no patient experienced progression or underwent surgery: 11 of 36 (44%) feet had a reduced number (overall: - 16) or size of nodules, 7 of 13 (54%) feet had a reduced number (overall: -9) or length of cords; gait was improved in six of twelve (50%) feet; pain was reduced or had completely disappeared in 9 of 15 (60%) feet, and other symptoms disappeared in 8 of 18 (44%) symptomatic feet. 20 (80%) patients regarded 28 of 36 (78%) treated feet as improved and 8 (22%) in stable condition. The median relative improvement stated by patients on the VAS was 50% (0-100%). Treatment side effects

  12. Ocular neuromyotonia after radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Lessell, S.; Lessell, I.M.; Rizzo, J.F. III

    1986-12-15

    Ocular neuromyotonia is a paroxysmal monocular deviation that results from spasm of eye muscles secondary to spontaneous discharges from third, fourth, or sixth nerve axons. We observed this rare disorder in four patients who had been treated with radiation for tumors in the region of the sella turcica and cavernous sinus. Based on these cases and four others identified in the literature it would appear that radiation predisposes to a cranial neuropathy in which ocular neuromyotonia may be the major manifestation. Radiation appears to be the most common cause of ocular neuromyotonia.

  13. Whole-brain hippocampal sparing radiation therapy: Volume-modulated arc therapy vs intensity-modulated radiation therapy case study

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Katrina, E-mail: Trinabena23@gmail.com; Lenards, Nishele; Holson, Janice

    2016-04-01

    The hippocampus is responsible for memory and cognitive function. An ongoing phase II clinical trial suggests that sparing dose to the hippocampus during whole-brain radiation therapy can help preserve a patient's neurocognitive function. Progressive research and advancements in treatment techniques have made treatment planning more sophisticated but beneficial for patients undergoing treatment. The aim of this study is to evaluate and compare hippocampal sparing whole-brain (HS-WB) radiation therapy treatment planning techniques using volume-modulated arc therapy (VMAT) and intensity-modulated radiation therapy (IMRT). We randomly selected 3 patients to compare different treatment techniques that could be used for reducing dose to the hippocampal region. We created 2 treatment plans, a VMAT and an IMRT, from each patient's data set and planned on the Eclipse 11.0 treatment planning system (TPS). A total of 6 plans (3 IMRT and 3 VMAT) were created and evaluated for this case study. The physician contoured the hippocampus as per the Radiation Therapy Oncology Group (RTOG) 0933 protocol atlas. The organs at risk (OR) were contoured and evaluated for the plan comparison, which included the spinal cord, optic chiasm, the right and left eyes, lenses, and optic nerves. Both treatment plans produced adequate coverage on the planning target volume (PTV) while significantly reducing dose to the hippocampal region. The VMAT treatment plans produced a more homogenous dose distribution throughout the PTV while decreasing the maximum point dose to the target. However, both treatment techniques demonstrated hippocampal sparing when irradiating the whole brain.

  14. Scatter factors assessment in microbeam radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Prezado, Y.; Martinez-Rovira, I.; Sanchez, M. [Laboratoire Imagerie et Modelisation en Neurobiologie et Cancerologie IMNC-UMR 8165, Centre National de la Recherche Scientifique (CNRS), Campus Universitaire, Bat. 440, 15 rue Georges Clemenceau, 91406 Orsay Cedex (France); Institut de Tecniques Energetiques, Universitat Politecnica de Catalunya, Diagonal 647, E-08028 Barcelona (Spain) and ID17 Biomedical Beamline, European Synchrotron Radiation Facility (ESRF), 6 Rue Jules Horowitz, B.P. 220, 38043 Grenoble Cedex (France); Servicio de Radiofisica, Complejo Hospitalario de Santiago de Compostela, Rua Choupana S/N, 15706 Santiago de Compostela (Spain)

    2012-03-15

    Purpose: The success of the preclinical studies in Microbeam Radiation Therapy (MRT) paved the way to the clinical trials under preparation at the Biomedical Beamline of the European Synchrotron Radiation Facility. Within this framework, an accurate determination of the deposited dose is crucial. With that aim, the scatter factors, which translate the absolute dose measured in reference conditions (2 x 2 cm{sup 2} field size at 2 cm-depth in water) to peak doses, were assessed. Methods: Monte Carlo (MC) simulations were performed with two different widely used codes, PENELOPE and GEANT4, for the sake of safety. The scatter factors were obtained as the ratio of the doses that are deposited by a microbeam and by a field of reference size, at the reference depth. The calculated values were compared with the experimental data obtained by radiochromic (ISP HD-810) films and a PTW 34070 large area chamber. Results: The scatter factors for different microbeam field sizes assessed by the two MC codes were in agreement and reproduced the experimental data within uncertainty bars. Those correction factors were shown to be non-negligible for the future MRT clinical settings: an average 30% lower dose was deposited by a 50 {mu}m microbeam with respect to the reference conditions. Conclusions: For the first time, the scatter factors in MRT were systematically studied. They constitute an essential key to deposit accurate doses in the forthcoming clinical trials in MRT. The good agreement between the different calculations and the experimental data confirms the reliability of this challenging micrometric dose estimation.

  15. Clinical data for radiation embryology

    Energy Technology Data Exchange (ETDEWEB)

    Neumeister, K.; Waesser, S.

    1985-07-01

    In 1967 a prospective clinical study was started with the aim of providing optimum counselling for married couples who desire continuation of a pregnancy despite radiation exposure at an early stage as a result of X-ray diagnostics. Recommendations were devised as to whether an interruption of pregnancy should be applied for or not. These results were discussed repeatedly. Within the framework of the prospective study, embryological examinations were made in cases of interruption of pregnancy, and clinical and genetic examinations in cases of children who had been subject to radiation stress in utero. Up to July 1st 1984 nearly 200 cases of consultations have been or are being surveyed. The children were subjected to selected longterm examinations of up to 13 years. The results of cytogenetic, biochemical -genetic, clinical, and other examinations are considered and special charactristics of interesting cases are discussed. The conclusion was drawn that the recommendation to our patients to continue pregnancy in cases of exposure to radiation in utero below 0.1 Sv, was right. Furthermore the question arose of whether this dose limit could be increased. The study will be continued.

  16. Radiation Therapy and You: Support for People with Cancer

    Science.gov (United States)

    ... Terms Blogs and Newsletters Health Communications Publications Reports Radiation Therapy and You: Support for People With Cancer ... Copy This booklet covers: Questions and Answers About Radiation Therapy. Answers common questions, such as what radiation ...

  17. Adjuvant and Salvage Radiation Therapy After Prostatectomy: American Society for Radiation Oncology/American Urological Association Guidelines

    Energy Technology Data Exchange (ETDEWEB)

    Valicenti, Richard K., E-mail: Richard.valicenti@ucdmc.ucdavis.edu [Department of Radiation Oncology, University of California, Davis School of Medicine, Davis, California (United States); Thompson, Ian [Department of Urology, University of Texas Health Science Center at San Antonio, San Antonio, Texas (United States); Albertsen, Peter [Division of Urology, University of Connecticut Health Center, Farmington, Connecticut (United States); Davis, Brian J. [Department of Radiation Oncology, Mayo Medical School, Rochester, Minnesota (United States); Goldenberg, S. Larry [Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia (Canada); Wolf, J. Stuart [Department of Urology, University of Michigan, Ann Arbor, Michigan (United States); Sartor, Oliver [Department of Medicine and Urology, Tulane Medical School, New Orleans, Louisiana (United States); Klein, Eric [Glickman Urological Kidney Institute, Cleveland Clinic, Cleveland, Ohio (United States); Hahn, Carol [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Michalski, Jeff [Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri (United States); Roach, Mack [Department of Radiation Oncology, University of California, San Francisco, San Francisco, California (United States); Faraday, Martha M. [Four Oaks, Inc (United States)

    2013-08-01

    Purpose: The purpose of this guideline was to provide a clinical framework for the use of radiation therapy after radical prostatectomy as adjuvant or salvage therapy. Methods and Materials: A systematic literature review using PubMed, Embase, and Cochrane database was conducted to identify peer-reviewed publications relevant to the use of radiation therapy after prostatectomy. The review yielded 294 articles; these publications were used to create the evidence-based guideline statements. Additional guidance is provided as Clinical Principles when insufficient evidence existed. Results: Guideline statements are provided for patient counseling, use of radiation therapy in the adjuvant and salvage contexts, defining biochemical recurrence, and conducting a restaging evaluation. Conclusions: Physicians should offer adjuvant radiation therapy to patients with adverse pathologic findings at prostatectomy (ie, seminal vesicle invastion, positive surgical margins, extraprostatic extension) and salvage radiation therapy to patients with prostate-specific antigen (PSA) or local recurrence after prostatectomy in whom there is no evidence of distant metastatic disease. The offer of radiation therapy should be made in the context of a thoughtful discussion of possible short- and long-term side effects of radiation therapy as well as the potential benefits of preventing recurrence. The decision to administer radiation therapy should be made by the patient and the multidisciplinary treatment team with full consideration of the patient's history, values, preferences, quality of life, and functional status. The American Society for Radiation Oncology and American Urological Association websites show this guideline in its entirety, including the full literature review.

  18. Optimizing patient positioning for intensity modulated radiation therapy in hippocampal-sparing whole brain radiation therapy.

    Science.gov (United States)

    Siglin, Joshua; Champ, Colin E; Vakhnenko, Yelena; Witek, Matthew E; Peng, Cheng; Zaorsky, Nicholas G; Harrison, Amy S; Shi, Wenyin

    2014-01-01

    Sparing the hippocampus during whole brain radiation therapy (WBRT) offers potential neurocognitive benefits. However, previously reported intensity modulated radiation therapy (IMRT) plans use multiple noncoplanar beams for treatment delivery. An optimized coplanar IMRT template for hippocampal-sparing WBRT would assist in clinical workflow and minimize resource utilization. In this study, we sought to determine the optimal patient position to facilitate coplanar treatment planning and delivery of hippocampal-sparing WBRT using IMRT. A variable angle, inclined board was utilized for patient positioning. An anthropomorphic phantom underwent computed tomography simulation at various head angles. The IMRT goals were designed to achieve target coverage of the brain while maintaining hippocampal dose-volume constraints designed to conform to the Radiation Therapy Oncology Group 0933 protocol. Optimal head angle was then verified using data from 8 patients comparing coplanar and noncoplanar WBRT IMRT plans. Hippocampal, hippocampal avoidance region, and whole brain mean volumes were 1.1 cm(3), 12.5 cm(3), and 1185.1 cm(3), respectively. The hippocampal avoidance region occupied 1.1% of the whole brain planning volume. For the 30-degree head angle, a 7-field coplanar IMRT plan was generated, sparing the hippocampus to a maximum dose of 14.7 Gy; D100% of the hippocampus was 7.4 Gy and mean hippocampal dose was 9.3 Gy. In comparison, for flat head positioning the hippocampal Dmax was 22.9 Gy with a D100% of 9.2 Gy and mean dose of 11.7 Gy. Target coverage and dose homogeneity was comparable with previously published noncoplanar IMRT plans. Compared with conventional supine positioning, an inclined head board at 30 degrees optimizes coplanar whole brain IMRT treatment planning. Clinically acceptable hippocampal-sparing WBRT dosimetry can be obtained using a simplified coplanar plan at a 30-degree head angle, thus obviating the need for complex and time consuming noncoplanar

  19. Radiation therapy of prostate cancer applied with cooling effect

    Energy Technology Data Exchange (ETDEWEB)

    Furuhata, Akihiko; Ogawa, Katsuaki; Miyazaki, Machiko; Iwai, Hiroshi [Yokosuka National Hospital, Kanagawa (Japan); Takeda, Takashi

    1995-05-01

    The radio-sensitivity of prostate carcinoma is a resistant one. Also a prostate locates close to rectum, urethra and bladder of which mucus membranes are intermediate sensitive for irradiation, and causes side effects frequently. In this study, we applied with hyperfraction and local membrane cooling to the radiation therapy of the prostate cancer. This brought favorable clinical results with decreased morbidities. (author).

  20. Hypofractionated radiation therapy versus conventional radiation therapy in prostate cancer: A systematic review of its safety and efficacy.

    Science.gov (United States)

    Sánchez-Gómez, L M; Polo-deSantos, M; Rodríguez-Melcón, J I; Angulo, J C; Luengo-Matos, S

    2015-01-01

    New therapeutic alternatives can improve the safety and efficacy of prostate cancer treatment. To assess whether hypofractionated radiation therapy results in better safety and efficacy in the treatment of prostate cancer. Systematic review of the literature through searches on PubMed, Cochrane Library, CRD, ClinicalTrials and EuroScan, collecting indicators of safety and efficacy. We included 2 systematic reviews and a clinical trial. In terms of efficacy, there is considerable heterogeneity among the studies, and no conclusive results were found concerning the superiority of the hypofractionated option over the normal fractionated option. In terms of safety, there were no significant differences in the onset of acute genitourinary complications between the 2 treatments. However, one of the reviews found more acute gastrointestinal complications in patients treated with hypofractionated radiation therapy. There were no significant differences in long-term complications based on the type of radiation therapy used, although the studies did have limitations. To date, there are no conclusive results that show that hypofractionated radiation therapy is more effective or safer than normal fractionated radiation therapy in the treatment of localized prostate cancer. Copyright © 2014 AEU. Publicado por Elsevier España, S.L.U. All rights reserved.

  1. Image-guided radiation therapy; Bildgefuehrte Strahlentherapie

    Energy Technology Data Exchange (ETDEWEB)

    Boda-Heggemann, J.; Wertz, H.; Blessing, M.; Wenz, F.; Lohr, F. [Universitaetsmedizin Mannheim, Medizinische Fakultaet Mannheim der Universitaet Heidelberg, Klinik fuer Strahlentherapie und Radioonkologie, Mannheim (Germany); Guckenberger, M. [Universitaetsklinikum Wuerzburg, Klinik fuer Strahlentherapie, Wuerzburg (Germany); Ganswindt, U.; Belka, C. [Klinikum der Ludwig-Maximilians-Universitaet, Klinik fuer Strahlentherapie und Radioonkologie, Muenchen (Germany); Fuss, M. [Oregon Health and Science University, Program in Image-guided Radiation Therapy, Department of Radiation Medicine, Portland, OR (United States)

    2012-03-15

    Radiotherapy technology has improved rapidly over the past two decades. New imaging modalities, such as positron emission (computed) tomography (PET, PET-CT) and high-resolution morphological and functional magnetic resonance imaging (MRI) have been introduced into the treatment planning process. Image-guided radiation therapy (IGRT) with 3D soft tissue depiction directly imaging target and normal structures, is currently replacing patient positioning based on patient surface markers, frame-based intracranial and extracranial stereotactic treatment and partially also 2D field verification methods. On-line 3D soft tissue-based position correction unlocked the full potential of new delivery techniques, such as intensity-modulated radiotherapy, by safely delivering highly conformal dose distributions that facilitate dose escalation and hypofractionation. These strategies have already resulted in better clinical outcomes, e.g. in prostate and lung cancer and are expected to further improve radiotherapy results. (orig.) [German] Die Strahlentherapie hat in den vergangenen 2 Dekaden von zahlreichen technischen Entwicklungen profitiert. Neue Bildgebungsmodalitaeten wie Positronenemissionstomographie (PET, PET/CT) und hochaufloesende morphologische und funktionelle MR-Sequenzen wurden in den Bestrahlungsplanungsprozess integriert. Die bildgesteuerte Strahlentherapie (''image-guided radiation therapy'', IGRT) ermoeglicht mittlerweile unmittelbar am Beschleuniger auch die 3-D-Darstellung von Weichgewebetumoren und ersetzt die Patientenpositionierung mittels Hautmarkern, rahmenbasierten stereotaktischen Verfahren im Kopf- und Koerperstamm und teilweise auch die 2-D-Verifikation der Bestrahlungsfelder. IGRT gestattet die Realisierung des vollen Potenzials fortgeschrittener Bestrahlungstechniken wie der intensitaetsmodulierten Strahlentherapie, mit deren Hilfe hochkonformale Dosisverteilungen realisiert werden koennen. Diese Strategien haben zu verbesserten

  2. Thoracic spinal cord compression due to xtramedullary haemopoiesis in a patient with beta-thalassemia: complete clinical regression with radiation therapy alone

    Directory of Open Access Journals (Sweden)

    Aramita Saha

    2015-03-01

    Full Text Available Spinal cord compression due to Extramedullary   Haemopoesis in beta-thalassemia is extremely rare. Controversies are there between the two modalities of treatment surgery vs radiation therapy. We present here a case of beta thalassemia major in a twenty one years female patient who presented with features of spinal cord compression due to extramedullary  haemopoesis.. She was then treated  with 3000 cGy of radiation therapy targeted to the T5-T8  region, as 200 cGy/fraction daily,  5 fractions/week , over 6 weeks .The patient’s haemoglobin was elevated from 6.1g/dl to 10.1g/dl, with her haematocrit rising from 26.3 % to 32.8%.Steroid dose was tapered on hospital  day number 7.She achieved near full neurological recovery after medical treatment with steroids, blood transfusion and radiation therapy

  3. Pre-clinical evaluation of 2,3-dimercaptosuccinic acid as a radiation nephrotoxicity protective agent during radiopeptide therapy of neuroendocrine malignancy.

    Science.gov (United States)

    Moorin, Rachael E; Meyrick, Danielle P; Rose, Alison

    2007-04-01

    To determine if dimercaptosuccinic acid (DMSA), an agent originally developed as a safe non-toxic antidote for heavy metal poisoning, would be useful as a kidney radiation dose reduction agent in patients undergoing radiopeptide therapy for cancer. Thirty-six adult male Wistar rats were injected via the penile vein with 10 MBq of 177Lu-DOTA-tyr(3)-octreotate. At 30 min after the radiopeptide injection, 18 of the animals (intervention group) were injected with 0.15 mg x g(-1) of DMSA (i.p.). Samples were collected for gamma counting at 24 (n=12), 48 (n=12) and 72 h (n=12) after administration of the radiopeptide. At each time point, the percentage injected dose per gram of tissue in each sample of the six control animals was compared with that of the six animals from the DMSA injection regimen. The i.p. injection of 0.15 mg x g(-1) of DMSA 30 min following the administration of the 177Lu-DOTATATE reduced the mean (95% CI) kidney retention of radiopeptide by 15.6% (2.6-24.6) at 72 h while not significantly affecting uptake in other organs. Statistical testing of the difference between the two groups of animals (DMSA versus controls) at 72 h post-administration of the radiopeptide indicated only a 3% chance that the magnitude of the reduction in kidney radiopeptide retention observed would be expected due to natural variation (i.e., if there was no difference between the groups). This study has indicated that DMSA has the potential to selectively reduce radiopeptide kidney retention. Further work is necessary to determine the most effective dose of DMSA and the most effective timing regimen, and to examine the clinical efficacy of several other chelating agents.

  4. Aplicación clínica de la radioterapia de intensidad modulada The clinical application of intensity-modulated radiation therapy

    Directory of Open Access Journals (Sweden)

    A. Manterola

    2009-01-01

    Full Text Available La radioterapia de intensidad modulada (IMRT representa una de las mayores innovaciones técnicas de la moderna radioterapia. Su capacidad de conseguir tratamientos con la dosis altamente conformada al área de irradiación permite tratar volúmenes próximos a órganos de riesgo con gran seguridad. Estas características la convierten en una técnica ideal para estudios, bien de disminución de toxicidad en órganos de riesgo, bien de intensificación de dosis para mejorar el control de la enfermedad. La primera parte de este artículo tratará sobre qué se entiende por IMRT y sus peculiares características dosimétricas, así como de los tipos de IMRT; en la segunda parte se tratará la evidencia clínica en algunas de las localizaciones más investigadas como son tumores de cabeza y cuello, próstata y mama.Intensity-modulated radiation therapy (IMRT represents one of the greatest technical innovations in modern radiotherapy. Its capacity of achieving treatments with the dose conforming largely to the irradiated area makes it possible to treat volumes close to organs at risk with great safety These characteristics make it an ideal technique for studies, whether for reducing toxicity in organs at risk, or for intensifying dosages to improve the control of the disease. The first part of the article considers what is understood by IMRT and its peculiar dosimetric characteristics, as well the types of IMRT; the second part deals with the clinical evidence in some localisations such as tumours of the head and neck, prostate and breast.

  5. Herpes Zoster infection and radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Hayakawa, K.; Okazaki, A.; Mitsuhashi, N.; Ito, I.; Niibe, H. (Gunma Univ., Maebashi (Japan). School of Medicine)

    1981-02-01

    Between 1970 and 1979, among 3,320 patients with malignant neoplasms, herpes zoster (HZ) occurred in 54 (1.6%) after radiation therapy. The incidence of HZ infection was increased in patients with epipharyngeal cancer (10.0%), malignant lymphoma (5.7%), ovarial tumor (3.7%) and testicular tumor (3.6%). Most of these patients received extensive radiation therapy along the spinal cord and/or nerve roots. The location of HZ infection was divided as follows; HZ infectious lesion located in the area of (I-A) innervated segment of the irradiated nerve root (75.9%), (I-B) irradiated dermatome (5.6%) and (II) not associated with radiation field (18.5%). In 44 patients of I-A and B, HZ infection developed within a year, particularly in three months (22 cases) after the completion of irradiation. This latent period between completing irradiation and the development of HZ infection was likely to be compatible with the period between radiation therapy and earlier radiation injury. Among 10 patients in Group II, 7 patients developed HZ infection more than a year after radiation therapy. The cumulative survival of these patients except for the patients with malignant lymphoma was 66.7% and so HZ infection was considered to have no prognostic significance.

  6. Complications of head and neck radiation therapy and their management

    Energy Technology Data Exchange (ETDEWEB)

    Engelmeier, R.L.; King, G.E.

    1983-04-01

    Patients who receive radiation therapy to the head and neck suffer potential complications and undesirable side-effects of this therapy. The extent of undesirable responses is dependent on the source of irradiation, the fields of irradiation, and the dose. The radiotherapist determines these factors by the extent, location, and radiosensitivity of the tumor. The potential undesirable side-effects are xerostomia, mucositis, fibrosis, trismus, dermatitis, photosensitivity, radiation caries, soft tissue necrosis, and osteoradionecrosis. Each of these clinical entities and their proposed management have been discussed.

  7. Emerging Nanotechnology and Advanced Materials for Cancer Radiation Therapy.

    Science.gov (United States)

    Song, Guosheng; Cheng, Liang; Chao, Yu; Yang, Kai; Liu, Zhuang

    2017-08-01

    Radiation therapy (RT) including external beam radiotherapy (EBRT) and internal radioisotope therapy (RIT) has been widely used for clinical cancer treatment. However, owing to the low radiation absorption of tumors, high doses of ionizing radiations are often needed during RT, leading to severe damages to normal tissues adjacent to tumors. Meanwhile, the RT efficacies are limited by different mechanisms, among which the tumor hypoxia-associated radiation resistance is a well-known one, as there exists hypoxia inside most solid tumors while oxygen is essential to enhance radiation-induced DNA damages. With the development in nanotechnology, there have been great interests in using nanomedicine strategies to enhance radiation responses of tumors. Nanomaterials containing high-Z elements to absorb radiation rays (e.g. X-ray) can act as radio-sensitizers to deposit radiation energy within tumors and promote treatment efficacy. Nanoscale carriers are able to deliver therapeutic radioisotopes into tumors for internal RIT, or chemotherapeutic drugs for synergistically combined chemo-radiotherapy. As uncovered in recent studies, the tumor microenvironment could be modulated by various nanomedicine approaches to overcome hypoxia-associated radiation resistance. Herein, the authors will summarize the applications of nanomedicine for RT cancer treatment, and pay particular attention to the latest development of 'advanced materials' for enhanced cancer RT. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Two Effective Heuristics for Beam Angle Optimization in Radiation Therapy

    CERN Document Server

    Yarmand, Hamed

    2013-01-01

    In radiation therapy, mathematical methods have been used for optimizing treatment planning for delivery of sufficient dose to the cancerous cells while keeping the dose to critical surrounding structures minimal. This optimization problem can be modeled using mixed integer programming (MIP) whose solution gives the optimal beam orientation as well as optimal beam intensity. The challenge, however, is the computation time for this large scale MIP. We propose and investigate two novel heuristic approaches to reduce the computation time considerably while attaining high-quality solutions. We introduce a family of heuristic cuts based on the concept of 'adjacent beams' and a beam elimination scheme based on the contribution of each beam to deliver the dose to the tumor in the ideal plan in which all potential beams can be used simultaneously. We show the effectiveness of these heuristics for intensity modulated radiation therapy (IMRT) and stereotactic body radiation therapy (SBRT) on a clinical liver case.

  9. Technological progress in radiation therapy for brain tumors

    LENUS (Irish Health Repository)

    Vernimmen, Frederik Jozef

    2014-01-01

    To achieve a good therapeutic ratio the radiation dose to the tumor should be as high as possible with the lowest possible dose to the surrounding normal tissue. This is especially the case for brain tumors. Technological ad- vancements in diagnostic imaging, dose calculations, and radiation delivery systems, combined with a better un- derstanding of the pathophysiology of brain tumors have led to improvements in the therapeutic results. The widely used technology of delivering 3-D conformal therapy with photon beams (gamma rays) produced by Li-near Accelerators has progressed into the use of Intensity modulated radiation therapy (IMRT). Particle beams have been used for several decades for radiotherapy because of their favorable depth dose characteristics. The introduction of clinically dedicated proton beam therapy facilities has improved the access for cancer patients to this treatment. Proton therapy is of particular interest for pediatric malignancies. These technical improvements are further enhanced by the evolution in tumor physiology imaging which allows for improved delineation of the tumor. This in turn opens the potential to adjust the radiation dose to maximize the radiobiological effects. The advances in both imaging and radiation therapy delivery will be discussed.

  10. Cancer and electromagnetic radiation therapy: Quo Vadis?

    CERN Document Server

    Makropoulou, Mersini

    2016-01-01

    In oncology, treating cancer with a beam of photons is a well established therapeutic technique, developed over 100 years, and today over 50% of cancer patients will undergo traditional X-ray radiotherapy. However, ionizing radiation therapy is not the only option, as the high-energy photons delivering their cell-killing radiation energy into cancerous tumor can lead to significant damage to healthy tissues surrounding the tumor, located throughout the beam's path. Therefore, in nowadays, advances in ionizing radiation therapy are competitive to non-ionizing ones, as for example the laser light based therapy, resulting in a synergism that has revolutionized medicine. The use of non-invasive or minimally invasive (e.g. through flexible endoscopes) therapeutic procedures in the management of patients represents a very interesting treatment option. Moreover, as the major breakthrough in cancer management is the individualized patient treatment, new biophotonic techniques, e.g. photo-activated drug carriers, help...

  11. Constrictive pericarditis following mediastinal radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Coffee, M.A.; Hamman, J.L.

    1977-02-01

    In recent years, an increasing number of patients with neoplastic disease have received aggressive radiation therapy to the mediastinum. Following this therapy as many as 30% of patients develop pericarditis with effusion, which may later severely compromise cardiovascular function because of constriction and/or tamponade. In a retrospective study, Martin et al found either transient or persistent pericardial effusion in 24 of 81 patients with Hodgkin's disease, Stages I-III B, who underwent upper mantle radiation. Five of the 24 patients eventually required pericardiectomy for signs and symptoms of cardiac tamponade. Most of the retrospective studies of heart disease following radiation therapy demonstrate an increased incidence of cardiac involvement following high doses (over 4000 rads) to the mediastinum; however, acute pericarditis, restrictive disease, and even myocardial infarctions have occurred with a total dose of less than 4000 rads.

  12. Clinical Evaluation of Normalized Metal Artifact Reduction in kVCT Using MVCT Prior Images (MVCT-NMAR) for Radiation Therapy Treatment Planning

    Energy Technology Data Exchange (ETDEWEB)

    Paudel, Moti Raj, E-mail: mpaudel@ualberta.ca [Department of Oncology, University of Alberta, Edmonton, AB (Canada); Mackenzie, Marc [Department of Oncology, University of Alberta, Edmonton, AB (Canada); Fallone, B. Gino [Department of Oncology, University of Alberta, Edmonton, AB (Canada); Department of Physics, University of Alberta, Edmonton, AB (Canada); Department of Medical Physics, Cross Cancer Institute, Edmonton, AB (Canada); Rathee, Satyapal [Department of Oncology, University of Alberta, Edmonton, AB (Canada); Department of Medical Physics, Cross Cancer Institute, Edmonton, AB (Canada)

    2014-07-01

    Purpose: To evaluate the metal artifacts in diagnostic kilovoltage computed tomography (kVCT) images of patients that are corrected by use of a normalized metal artifact reduction (NMAR) method with megavoltage CT (MVCT) prior images: MVCT-NMAR. Methods and Materials: MVCT-NMAR was applied to images from 5 patients: 3 with dual hip prostheses, 1 with a single hip prosthesis, and 1 with dental fillings. The corrected images were evaluated for visualization of tissue structures and their interfaces and for radiation therapy dose calculations. They were compared against the corresponding images corrected by the commercial orthopedic metal artifact reduction algorithm in a Phillips CT scanner. Results: The use of MVCT images for correcting kVCT images in the MVCT-NMAR technique greatly reduces metal artifacts, avoids secondary artifacts, and makes patient images more useful for correct dose calculation in radiation therapy. These improvements are significant, provided the MVCT and kVCT images are correctly registered. The remaining and the secondary artifacts (soft tissue blurring, eroded bones, false bones or air pockets, CT number cupping within the metal) present in orthopedic metal artifact reduction corrected images are removed in the MVCT-NMAR corrected images. A large dose reduction was possible outside the planning target volume (eg, 59.2 Gy to 52.5 Gy in pubic bone) when these MVCT-NMAR corrected images were used in TomoTherapy treatment plans without directional blocks for a prostate cancer patient. Conclusions: The use of MVCT-NMAR corrected images in radiation therapy treatment planning could improve the treatment plan quality for patients with metallic implants.

  13. Malignant neoplasms of the uterus following radiation therapy for cervical carcinoma:a clinical study of 47 cases%子宫颈癌放疗后子宫体恶性肿瘤47例临床分析

    Institute of Scientific and Technical Information of China (English)

    Shaokang Ma; Lingying Wu

    2009-01-01

    Objective: To study the characteristics and clinical features of uterine neoplasms developed after radiation ther-apy for cervical carcinoma. Methods: Clinical data of 47 cases of uterine neoplasms occurred following radiation therapy for cervical carcinoma were retrospectively reviewed. Results: The median age at uterine neoplasms diagnosis was 62 years (range: 38-77 years), and the median latency period from initial therapy to development of uterine neoplasms was 14 years (range: 5-35 years). Thirty of 47 cases were endometrial carcinoma, of which 3 were uterine papillary serous carcinoma (UPSC). Seventeen of 47 patients were uterine sarcoma, all of those were carcinosarcoma. The distribution by stage, grade, and histology of 30 cases of endometrial carcinoma was as follows: stage Ib, 1 case; stage Ic, 2 cases; stage Ⅱ, 6; stage Ilia, 4; stage Ⅲb, 2; stage Ⅲc, 11; stage Ⅳ, 4 cases; grade 1, two cases; grade 2, nine; grade 3 (include 3 UPSC patients), seventeen; unknown grade, two; endometried, 27; UPSC, 3 cases; 7 of 30 cases of endometrial carcinoma had recurrences (23.3%), at median time to recurrence was 24 months, and their median survival time was 26 months. The overall 3- and 5-year survival rates were 60% and 38%, respectively. Of the 17 cases of uterine sarcoma, the median survival was 10 months, 6 patients oc-curred recurrence (35.9%), at a median time to recurrence was 9 months, and their median survival was 6 months. The overall 3- and 5-year survival rates were 12% and 0, respectively. Conclusion: The main uterine neoplasms development after radiation therapy for cervical carcinoma is endomethal carcinomas, of which there is a preponderance of high-risk histological subtypes and a poor prognosis. Most of the uterine sarcomas occurred following radiation therapy for cervical carcinoma are carcinosarcomas and the prognosis is very poor.

  14. Clinical reasoning in massage therapy.

    Science.gov (United States)

    Lemoon, Kim

    2008-08-20

    Clinical reasoning has long been a valuable tool for health care practitioners, but it has been under-researched in the field of massage therapy. Case reports have been a useful method for exploring the clinical reasoning process in various fields of manual therapy and can provide a model for similar research in the field of massage therapy. A diagnostically challenging case concerning a client with low back pain serves as a guideline for examining the clinical reasoning process of a massage therapist. A two-part methodology was employed: Client profileReflective inquiry The inquiry included questions pertaining to beliefs about health problems; beliefs about the mechanisms of pain; medical conditions that could explain the client's symptoms; knowledge of the client's anatomy, assessment, and treatment choices; observations made during treatment; extent of experience in treating similar problems; and ability to recognize clinical patterns. The clinical reasoning process of a massage therapist contributed to a differential diagnosis, which provided an explanation for the client's symptoms and led to a satisfactory treatment resolution. The present report serves as an example of the value of clinical reasoning in the field of massage therapy, and the need for expanded research into its methods and applications. The results of such research could be beneficial in teaching the clinical reasoning process at both the introductory and the advanced levels of massage therapy education.

  15. Eosinophilia following radiation therapy in childhood

    Energy Technology Data Exchange (ETDEWEB)

    Kawano, Yoshifumi; Hosoya, Ryota; Ohhashi, Tohya; Yamamoto, Keiko; Shiraga, Hiroshi (Saint Luke' s International Hospital, Tokyo (Japan))

    1983-06-01

    Radiation related eosinophilia (R.R.E.) has been observed mainly among the patients who received radiation therapy for uterine cancer, which was said to be the sign of good prognosis. Retrospective study of eosinophilia following radiation therapy was performed in 41 pediatric patients with acute lymphoblastic leukemia, brain tumor and so on. Thirty-two per cent of all courses of radiation therapy was associated with R.R.E.. Eosinophil counts increased gradually from two weeks after the start of therapy and reached to maximun on the 33rd day (mean). R.R.E. was seen much more frequently among the patients with brain tumor than those with ALL. And R.R.E. was also related to radiation dose. Patients under 3 years of age showed R.R.E. less frequently comparing to the older age group. Those findings might mean that R.R.E. was strongly related to the host's immunological function. This is the first report about R.R.E. in childhood.

  16. Building immunity to cancer with radiation therapy.

    Science.gov (United States)

    Haikerwal, Suresh J; Hagekyriakou, Jim; MacManus, Michael; Martin, Olga A; Haynes, Nicole M

    2015-11-28

    Over the last decade there has been a dramatic shift in the focus of cancer research toward understanding how the body's immune defenses can be harnessed to promote the effectiveness of cytotoxic anti-cancer therapies. The ability of ionizing radiation to elicit anti-cancer immune responses capable of controlling tumor growth has led to the emergence of promising combination-based radio-immunotherapeutic strategies for the treatment of cancer. Herein we review the immunoadjuvant properties of localized radiation therapy and discuss how technological advances in radio-oncology and developments in the field of tumor-immunotherapy have started to revolutionize the therapeutic application of radiotherapy.

  17. Radiation therapy for resistant sternal hydatid disease

    Energy Technology Data Exchange (ETDEWEB)

    Ulger, S.; Barut, H.; Tunc, M.; Aydinkarahaliloglu, E. [Ataturk Chest Disease and Thorasic Surgery Training and Research Hospital, Ankara (Turkey). Dept. of Radiation Oncology; Aydin, E.; Karaoglanoglu, N. [Ataturk Chest Disease and Thorasic Surgery Training and Research Hospital, Ankara (Turkey). Dept. of Thorasic Surgery; Gokcek, A. [Ataturk Chest Disease and Thorasic Surgery Training and Research Hospital, Ankara (Turkey). Dept. of Radiology

    2013-06-15

    Hydatid disease is a zoonotic infectious disease for which there are known treatment procedures and effective antibiotics; however, there are resistant cases that do not respond to medication or surgery. We report a case diagnosed as hydatid disease of the chest wall and treated with radiation therapy (RT) after medical and surgical therapy had failed. In conclusion, RT represents an alternative treatment modality in resistant cases. (orig.)

  18. Bullous pemphigoid after radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Duschet, P.; Schwarz, T.; Gschnait, F.

    1988-02-01

    Electron beam therapy applied to a lymph node metastasis from a squamous cell carcinoma was followed by the development of histologically and immunologically typical bullous pemphigoid, the lesions being initially strictly confined to the irradiation area. This observation suggests that the bullous pemphigoid antigen may be altered or unmasked by electron beam radiotherapy, leading subsequently to the production of autoantibodies. The disease in this case effectively responded to the administration of tetracycline and niacinamide, a therapeutic regimen described recently.

  19. Photodynamic therapy in clinical practice

    OpenAIRE

    E. V. Filonenko; L. G. Serova

    2016-01-01

    The review is on opportunities and possibilities of application of photodynamic therapy in clinical practice. The advantages of this method are the targeting of effect on tumor foci and high efficiency along with low systemic toxicity. The results of the set of recent Russian and foreign clinical trials are represented in the review. The method is successfully used in clinical practice with both radical (for early vulvar, cervical cancer and pre-cancer, central early lung cancer, esophageal a...

  20. BRCA1 Mutation: A Predictive Marker for Radiation Therapy?

    Energy Technology Data Exchange (ETDEWEB)

    Kan, Charlene; Zhang, Junran, E-mail: Junran.zhang@case.edu

    2015-10-01

    DNA repair, in particular, DNA double-strand break (DSB) repair, is essential for the survival of both normal and cancer cells. An elaborate repair mechanism has been developed in cells to efficiently repair the damaged DNA. The pathways predominately involved in DSB repair are homologous recombination and classic nonhomologous end-joining, although the alternative NHEJ pathway, a third DSB repair pathway, could also be important in certain contexts. The protein of BRCA1 encoded by the tumor suppressor gene BRCA1 regulates all DSB repair pathways. Given that DSBs represent the most biologically significant lesions induced by ionizing radiation and that impaired DSB repair leads to radiation sensitivity, it has been expected that cancer patients with BRCA1 mutations should benefit from radiation therapy. However, the clinical data have been conflicting and inconclusive. We provide an overview about the current status of the data regarding BRCA1 deficiency and radiation therapy sensitivity in both experimental models and clinical investigations. In addition, we discuss a strategy to potentiate the effects of radiation therapy by poly(ADP-ribose) polymerase inhibitors, the pharmacologic drugs being investigated as monotherapy for the treatment of patients with BRCA1/2 mutations.

  1. Single Vocal Cord Irradiation: Image Guided Intensity Modulated Hypofractionated Radiation Therapy for T1a Glottic Cancer: Early Clinical Results

    Energy Technology Data Exchange (ETDEWEB)

    Al-Mamgani, Abrahim, E-mail: a.almamgani@nki.nl [Department of Radiation Oncology – Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam (Netherlands); Kwa, Stefan L.S.; Tans, Lisa; Moring, Michael; Fransen, Dennie; Mehilal, Robert; Verduijn, Gerda M. [Department of Radiation Oncology – Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam (Netherlands); Baatenburg de Jong, Rob J. [Department of Otolaryngology and Head and Neck Surgery – Erasmus MC, University Medical Center Rotterdam, Rotterdam (Netherlands); Heijmen, Ben J.M.; Levendag, Peter C. [Department of Radiation Oncology – Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam (Netherlands)

    2015-10-01

    Purpose: To report, from a retrospective analysis of prospectively collected data, on the feasibility, outcome, toxicity, and voice-handicap index (VHI) of patients with T1a glottic cancer treated by a novel intensity modulated radiation therapy technique developed at our institution to treat only the involved vocal cord: single vocal cord irradiation (SVCI). Methods and Materials: Thirty patients with T1a glottic cancer were treated by means of SVCI. Dose prescription was set to 16 × 3.63 Gy (total dose 58.08 Gy). The clinical target volume was the entire vocal cord. Setup verification was done by means of an online correction protocol using cone beam computed tomography. Data for voice quality assessment were collected prospectively at baseline, end of treatment, and 4, 6, and 12 weeks and 6, 12, and 18 months after treatment using VHI questionnaires. Results: After a median follow-up of 30 months (range, 7-50 months), the 2-year local control and overall survival rates were 100% and 90% because no single local recurrence was reported and 3 patients died because of comorbidity. All patients have completed the intended treatment schedule; no treatment interruptions and no grade 3 acute toxicity were reported. Grade 2 acute dermatitis or dysphagia was reported in only 5 patients (17%). No serious late toxicity was reported; only 1 patient developed temporary grade 2 laryngeal edema, and responded to a short-course of corticosteroid. The VHI improved significantly, from 33.5 at baseline to 9.5 and 10 at 6 weeks and 18 months, respectively (P<.001). The control group, treated to the whole larynx, had comparable local control rates (92.2% vs 100%, P=.24) but more acute toxicity (66% vs 17%, P<.0001) and higher VHI scores (23.8 and 16.7 at 6 weeks and 18 months, respectively, P<.0001). Conclusion: Single vocal cord irradiation is feasible and resulted in maximal local control rate at 2 years. The deterioration in VHI scores was slight and temporary and

  2. Decline of Cosmetic Outcomes Following Accelerated Partial Breast Irradiation Using Intensity Modulated Radiation Therapy: Results of a Single-Institution Prospective Clinical Trial

    Energy Technology Data Exchange (ETDEWEB)

    Liss, Adam L. [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Ben-David, Merav A. [Department of Radiation Oncology, The Sheba Medical Center, Ramat Gan (Israel); Jagsi, Reshma; Hayman, James A. [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Griffith, Kent A. [Biostatistics Unit, University of Michigan, Ann Arbor, Michigan (United States); Moran, Jean M.; Marsh, Robin B. [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Pierce, Lori J., E-mail: ljpierce@umich.edu [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States)

    2014-05-01

    Purpose: To report the final cosmetic results from a single-arm prospective clinical trial evaluating accelerated partial breast irradiation (APBI) using intensity modulated radiation therapy (IMRT) with active-breathing control (ABC). Methods and Materials: Women older than 40 with breast cancer stages 0-I who received breast-conserving surgery were enrolled in an institutional review board-approved prospective study evaluating APBI using IMRT administered with deep inspiration breath-hold. Patients received 38.5 Gy in 3.85-Gy fractions given twice daily over 5 consecutive days. The planning target volume was defined as the lumpectomy cavity with a 1.5-cm margin. Cosmesis was scored on a 4-category scale by the treating physician. Toxicity was scored according to National Cancer Institute Common Terminology Criteria for Adverse Events (CTCAE version 3.0). We report the cosmetic and toxicity results at a median follow-up of 5 years. Results: A total of 34 patients were enrolled. Two patients were excluded because of fair baseline cosmesis. The trial was terminated early because fair/poor cosmesis developed in 7 of 32 women at a median follow-up of 2.5 years. At a median follow-up of 5 years, further decline in the cosmetic outcome was observed in 5 women. Cosmesis at the time of last assessment was 43.3% excellent, 30% good, 20% fair, and 6.7% poor. Fibrosis according to CTCAE at last assessment was 3.3% grade 2 toxicity and 0% grade 3 toxicity. There was no correlation of CTCAE grade 2 or greater fibrosis with cosmesis. The 5-year rate of local control was 97% for all 34 patients initially enrolled. Conclusions: In this prospective trial with 5-year median follow-up, we observed an excellent rate of tumor control using IMRT-planned APBI. Cosmetic outcomes, however, continued to decline, with 26.7% of women having a fair to poor cosmetic result. These results underscore the need for continued cosmetic assessment for patients treated with APBI by technique.

  3. Intraoperative radiation therapy for malignant glioma

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Noboru; Yamada, Hiromu; Andoh, Takashi; Takada, Mitsuaki; Hirata, Toshifumi; Funakoshi, Takashi; Doi, Hidetaka; Yanagawa, Shigeo (Gifu Univ. (Japan). Faculty of Medicine)

    1989-04-01

    Intraoperative radiation therapy (IOR) is an ideal means of exterminating residual tumor after surgical resection. In this study, the clinical results of IOR using a Scanditronix Microtron MM-22 were evaluated in 14 patients with malignant glioma, five of whom had recurrent tumors. Between July, 1985 and October, 1986, 11 patients with glioblastoma multiforme (GB) were irradiated 18 times (mean, 1.6 times/case), and three with astrocytoma (Kernohan grade III) underwent IOR once each. The target-absorbed dose at 1 to 2 cm deeper than the tumor resection surface was 15 to 50 Gy. During irradiation, a cotton bolus was placed in the dead space after over 91% of the tumor had been resected. As a rule, external irradiation therapy was also given postoperatively at a dose of 30 to 52 Gy. One patient died of pneumonia and disseminated intravascular coagulation syndrome 1 month postoperatively. The 1- and 2-year survival rates of the ramaining 13 patients were 84.6% and 61.5%, respectively; among the 10 with GB, they were 80% and 50%. Generally, the smaller the tumor size, the better the results. There were no adverse effects, despite the dose 15 to 50 Gy applied temporally to the tumor bed. IOR was especially effective against small, localized tumors, but was not always beneficial in cases of large tumors, particularly those with a contralateral focus. The improved survival rate in this series demonstrates that IOR is significantly effective in the 'induction of remission' following surgical excision of malignant gliomas. (author).

  4. Radiation therapy for stage IVA cervical cancer.

    Science.gov (United States)

    Murakami, Naoya; Kasamatsu, Takahiro; Morota, Madoka; Sumi, Minako; Inaba, Koji; Ito, Yoshinori; Itami, Jun

    2013-11-01

    To evaluate the outcome and discover predictive factors for patients with stage IVA cervical cancer treated with definitive radiation therapy. We retrospectively reviewed 34 patients with stage IVA cervical cancer who received definitive radiation therapy between 1992 and 2009. On univariate analysis, statistically significant prognostic factors for improved local control rate (LCR) were absence of pyometra (p=0.037) and equivalent dose in 2 Gy fractions (EQD2) at point A greater than 60 Gy (p=0.023). Prognostic factors for improved progression-free survival (PFS) were absence of pelvic lymph node metastasis at initial presentation (p=0.014), and EQD2 at point A greater than 60 Gy (p=0.023). Patients with stage IVA disease had poor median survival. However adequate radiation dose to point A produced favorable LCR and PFS, therefore efforts should be made to increase the point A dose.

  5. Radiation therapy of Graves' ophthalmopathy

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, Toshiki; Koga, Sukehiko; Anno, Hirofumi; Komai, Satoshi (Fujita-Gakuen Health Univ., Toyoake, Aichi (Japan))

    1992-01-01

    During the decade from 1978 to 1987, 20 patients with Graves' ophthalmopathy were treated with irradiation of 2000 cGy to the orbital tissue. We examined the effects of the therapy on 17 such patients. Exophthalmos tended to decrease. When the degree of deviation of the exophthalmic eye was small, the effect of therapy tended to be better than when it was large. Two cases that showed an increase in retrobulbar fatty tissue without thickening of the extraocular muscles did not respond as well as those that had thickening of the extraocular muscles. Diplopia tended to improve both subjectively and objectively. Ocular movement improved in 11 of the 17 patients. There were no serious radiation injuries after the radiation therapy, except for some transient swelling of the eyelid. (author).

  6. Photodynamic therapy in clinical practice

    Directory of Open Access Journals (Sweden)

    E. V. Filonenko

    2016-01-01

    Full Text Available The review is on opportunities and possibilities of application of photodynamic therapy in clinical practice. The advantages of this method are the targeting of effect on tumor foci and high efficiency along with low systemic toxicity. The results of the set of recent Russian and foreign clinical trials are represented in the review. The method is successfully used in clinical practice with both radical (for early vulvar, cervical cancer and pre-cancer, central early lung cancer, esophageal and gastric cancer, bladder cancer and other types of malignant tumors, and palliative care (including tumor pleuritis, gastrointestinal tumors and others. Photodynamic therapy delivers results which are not available for other methods of cancer therapy. Thus, photodynamic therapy allows to avoid gross scars (that is very important, for example, in gynecology for treatment of patients of reproductive age with cervical and vulvar cancer, delivers good cosmetic effect for skin tumors, allows minimal trauma for intact tissue surrounding tumor. Photodynamic therapy is also used in other fields of medicine, such as otorhinolaryngology, dermatology, ophthalmology, orthopaedics, for treatment of papilloma virus infection and purulent wounds as antibacterial therapy.

  7. Hedgehog pathway inhibitor in combination with radiation therapy for basal cell carcinomas of the head and neck. First clinical experience with vismodegib for locally advanced disease

    Energy Technology Data Exchange (ETDEWEB)

    Schulze, Bjoern; Roedel, Claus; Balermpas, Panagiotis [University Hospital Johann Wolfgang Goethe University, Department of Radiation Oncology, Frankfurt (Germany); Meissner, Markus [University Hospital Johann Wolfgang Goethe University, Department of Dermatology, Frankfurt (Germany); Ghanaati, Shahram [University Hospital Johann Wolfgang Goethe University, Department of Craniofacial and Plastic Surgery, Frankfurt (Germany); Burck, Iris [University Hospital Johann Wolfgang Goethe University, Department of Diagnostic and Interventional Radiology, Frankfurt (Germany)

    2016-01-15

    Definitive radiotherapy and vismodegib, an oral inhibitor of the hedgehog pathway, are both established treatment options for locally advanced basal cell carcinomas (BCC). Both have shown good results in local tumor control; however, the effects concerning advanced tumors are often not of a lasting nature and to date no systematic data about the combination of the two modalities are available. We retrospectively analyzed four patients who received vismodegib and radiotherapy in combination. Radiation doses varied between 50.4 Gy and 66.0 Gy. Three patients had recurrent BCC. One patient had locoregional lymph node involvement. Vismodegib was taken once a day (150 mg) during the entire time of irradiation and beyond upon instructions of the attending dermatologist. In three cases a persistent complete response was observed, in one case the tumor remained stable for approximately 6 months until further tumor progression was documented. The combined therapy was well tolerated in all cases. No exceptional side effects pointing at a drug-radiation interaction were observed. The combination of vismodegib and radiation seems feasible and the initial results are promising. In our cohort, there was no increase in unexpected side effects. Further research is needed to evaluate the significance of this combined therapy. (orig.) [German] Sowohl definitive Radiotherapie als auch Vismodegib, ein oraler Inhibitor der Hedgehog-Signalkaskade, sind etablierte Behandlungsoptionen fuer lokal fortgeschrittene Basalzellkarzinome (BCC). Beide Therapien zeigen fuer sich gute Ansprechraten, aber die lokale Tumorkontrolle ist oft nicht dauerhaft und bis heute existieren kaum Daten ueber eine Kombination der beiden Modalitaeten. Wir analysierten retrospektiv vier Patientenfaelle nach simultaner Applikation von Vismodegib und Bestrahlung. Die Bestrahlungsdosis variierte zwischen 50,4 Gy und 66,0 Gy. Drei der Patienten hatten ein rezidiviertes BCC. Ein Patient hatte einen befallenen regionalen

  8. Pelvic Normal Tissue Contouring Guidelines for Radiation Therapy: A Radiation Therapy Oncology Group Consensus Panel Atlas

    Energy Technology Data Exchange (ETDEWEB)

    Gay, Hiram A., E-mail: hgay@radonc.wustl.edu [Washington University School of Medicine, St Louis, MO (United States); Barthold, H. Joseph [Commonwealth Hematology and Oncology, Weymouth, MA (United States); Beth Israel Deaconess Medical Center, Boston, MA (Israel); O' Meara, Elizabeth [Radiation Therapy Oncology Group, Philadelphia, PA (United States); Bosch, Walter R. [Washington University School of Medicine, St Louis, MO (United States); El Naqa, Issam [Department of Radiation Oncology, McGill University Health Center, Montreal, Quebec (Canada); Al-Lozi, Rawan [Washington University School of Medicine, St Louis, MO (United States); Rosenthal, Seth A. [Radiation Oncology Centers, Radiological Associates of Sacramento, Sacramento, CA (United States); Lawton, Colleen [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI (United States); Lee, W. Robert [Department of Radiation Oncology, Duke University Medical Center, Durham, NC (United States); Sandler, Howard [Cedars-Sinai Medical Center, Los Angeles, CA (United States); Zietman, Anthony [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States); Myerson, Robert [Washington University School of Medicine, St Louis, MO (United States); Dawson, Laura A. [Department of Radiation Oncology, Princess Margaret Hospital, University of Toronto, Toronto, Ontario (Canada); Willett, Christopher [Department of Radiation Oncology, Duke University Medical Center, Durham, NC (United States); Kachnic, Lisa A. [Department of Radiation Oncology, Boston Medical Center, Boston University School of Medicine, Boston, MA (United States); Jhingran, Anuja [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX (United States); Portelance, Lorraine [University of Miami, Miami, FL (United States); Ryu, Janice [Radiation Oncology Centers, Radiological Associates of Sacramento, Sacramento, CA (United States); and others

    2012-07-01

    Purpose: To define a male and female pelvic normal tissue contouring atlas for Radiation Therapy Oncology Group (RTOG) trials. Methods and Materials: One male pelvis computed tomography (CT) data set and one female pelvis CT data set were shared via the Image-Guided Therapy QA Center. A total of 16 radiation oncologists participated. The following organs at risk were contoured in both CT sets: anus, anorectum, rectum (gastrointestinal and genitourinary definitions), bowel NOS (not otherwise specified), small bowel, large bowel, and proximal femurs. The following were contoured in the male set only: bladder, prostate, seminal vesicles, and penile bulb. The following were contoured in the female set only: uterus, cervix, and ovaries. A computer program used the binomial distribution to generate 95% group consensus contours. These contours and definitions were then reviewed by the group and modified. Results: The panel achieved consensus definitions for pelvic normal tissue contouring in RTOG trials with these standardized names: Rectum, AnoRectum, SmallBowel, Colon, BowelBag, Bladder, UteroCervix, Adnexa{sub R}, Adnexa{sub L}, Prostate, SeminalVesc, PenileBulb, Femur{sub R}, and Femur{sub L}. Two additional normal structures whose purpose is to serve as targets in anal and rectal cancer were defined: AnoRectumSig and Mesorectum. Detailed target volume contouring guidelines and images are discussed. Conclusions: Consensus guidelines for pelvic normal tissue contouring were reached and are available as a CT image atlas on the RTOG Web site. This will allow uniformity in defining normal tissues for clinical trials delivering pelvic radiation and will facilitate future normal tissue complication research.

  9. Can radiation therapy treatment planning system accurately predict surface doses in postmastectomy radiation therapy patients?

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Sharon [National University of Singapore, Yong Loo Lin School of Medicine (Singapore); Back, Michael [Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, New South Wales (Australia); Tan, Poh Wee; Lee, Khai Mun; Baggarley, Shaun [National University, Cancer Institute, Department of Radiation Oncology, National University, Hospital, Tower Block (Singapore); Lu, Jaide Jay, E-mail: mdcljj@nus.edu.sg [National University of Singapore, Yong Loo Lin School of Medicine (Singapore); National University, Cancer Institute, Department of Radiation Oncology, National University, Hospital, Tower Block (Singapore)

    2012-07-01

    Skin doses have been an important factor in the dose prescription for breast radiotherapy. Recent advances in radiotherapy treatment techniques, such as intensity-modulated radiation therapy (IMRT) and new treatment schemes such as hypofractionated breast therapy have made the precise determination of the surface dose necessary. Detailed information of the dose at various depths of the skin is also critical in designing new treatment strategies. The purpose of this work was to assess the accuracy of surface dose calculation by a clinically used treatment planning system and those measured by thermoluminescence dosimeters (TLDs) in a customized chest wall phantom. This study involved the construction of a chest wall phantom for skin dose assessment. Seven TLDs were distributed throughout each right chest wall phantom to give adequate representation of measured radiation doses. Point doses from the CMS Xio Registered-Sign treatment planning system (TPS) were calculated for each relevant TLD positions and results correlated. There were no significant difference between measured absorbed dose by TLD and calculated doses by the TPS (p > 0.05 (1-tailed). Dose accuracy of up to 2.21% was found. The deviations from the calculated absorbed doses were overall larger (3.4%) when wedges and bolus were used. 3D radiotherapy TPS is a useful and accurate tool to assess the accuracy of surface dose. Our studies have shown that radiation treatment accuracy expressed as a comparison between calculated doses (by TPS) and measured doses (by TLD dosimetry) can be accurately predicted for tangential treatment of the chest wall after mastectomy.

  10. Photon iso-effective dose for cancer treatment with mixed field radiation based on dose-response assessment from human and an animal model: clinical application to boron neutron capture therapy for head and neck cancer.

    Science.gov (United States)

    Gonzalez, Sara Josefina; Pozzi, Emiliano C C; Monti Hughes, Andrea; Provenzano, Lucas; Koivunoro, Hanna; Carando, Daniel Germán; Thorp, Silvia Inés; Casal, Mariana Rosalía; Bortolussi, Silva; Trivillin, Verónica A; Garabalino, Marcela A; Curotto, Paula; Heber, Elisa M; Santa Cruz, Gustavo A; Kankaanranta, Leena; Joensuu, Heikki; Schwint, Amanda E

    2017-08-31

    Boron Neutron Capture Therapy (BNCT) is a treatment modality that combines different radiation qualities. Since the severity of biological damage following irradiation depends on the radiation type, a quantity different from absorbed dose is required to explain effects observed in the clinical BNCT in terms of outcome compared with conventional photon radiation therapy. A new approach for calculating photon iso-effective doses in BNCT was introduced previously. The present work extends this model to include information from dose-response assessments in animal models and humans. Parameters of the model were determined for tumour and precancerous tissue using dose-response curves obtained from BNCT and photon studies performed in the hamster cheek pouch in vivo models of oral cancer and/or pre-cancer, and from head and neck cancer radiotherapy data with photons. To this end, suitable expressions of the dose-limiting Normal Tissue Complication and Tumour Control Probabilities for the reference radiation and for the mixed field BNCT radiation were developed. Pearson's correlation coefficients and p-values showed that TCP and NTCP models agreed with experimental data (with r > 0.87 and p-values >0.57). The photon iso-effective dose model was applied retrospectively to evaluate the dosimetry in tumours and mucosa for head and neck cancer patients treated with BNCT in Finland. Photon iso-effective doses in tumour were lower than those obtained with the standard RBE-weighted model (between 10% to 45%). The results also suggested that the probabilities of tumour control derived from photon iso-effective doses are more adequate to explain the clinical responses than those obtained with the RBE-weighted values. The dosimetry in the mucosa revealed that the photon iso-effective doses were about 30% to 50% higher than the corresponding RBE-weighted values. While the RBE-weighted doses are unable to predict mucosa toxicity, predictions based on the proposed model are

  11. A dosimetric evaluation of volumetric modulated arc therapy, intensity modulated radiation therapy, and three-dimensional conformal radiation therapy for the lower extremity soft tissue sarcoma

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sol Min; Song, Seong Chan; Hyun, Sung Eun; Park, Heung Deuk; Lee, Jaegi; Kim, Young Suk; Kim, Gwi Eon [Dept. of Radiation Oncology, Jeju National University Hospital, Jeju (Korea, Republic of)

    2016-06-15

    A dosimetric evaluation of volumetric modulated arc therapy, intensity modulated radiation therapy, and three-dimensional conformal radiation therapy for the lower extremity soft tissue sarcoma For the lower extremity soft tissue sarcoma, volumetric modulated arc therapy, intensity modulated radiation therapy, and three-dimensional conformal radiation therapy were evaluated to compare these three treatment planning technique. The mean doses to the planning target volume and the femur were calculated to evaluate target coverage and the risk of bone fracture during radiation therapy. Volumetric modulated arc therapy can reduce the dose to the femur without compromising target coverage and reduce the treatment time compared with intensity modulated radiation therapy.

  12. Clinical, biological, histological features and treatment of oral mucositis induced by radiation therapy: a literature review; Aspectos clinicos, biologicos, histopatologicos e tratamentos propostos para a mucosite oral induzida por radioterapia: revisao da literatura

    Energy Technology Data Exchange (ETDEWEB)

    Bonan, Paulo Rogerio Ferreti [Universidade Estadual de Montes Claros e Faculdades Unidas do Norte de Minas, MG (Brazil). Dept. de Odontologia]. E-mail: pbonan@yahoo.com; Lopes, Marcio Ajudarte; Almeida, Oslei Paes de [Universidade Estadual de Campinas (UNICAMP), Piracicaba, SP (Brazil). Faculdade de Odontologia. Dept. de Diagnostico Oral; Alves, Fabio de Abreu [Hospital do Cancer AC Camargo, Sao Paulo, SP (Brazil). Dept. de Estomatologia

    2005-07-01

    The oral mucositis is a main side effect of radiotherapy on head and neck, initiating two weeks after the beginning of the treatment. It is characterized by sensation of local burning to intense pain, leading in several cases, to the interruption of the treatment. The purpose of this work is to review the main published studies that discuss the clinical, biological and histopathological features of oral mucositis induced by radiation therapy and to describe the main approaches recommended to prevent or to treat it. Although the clinical features of mucositis are intensively described in the literature, few studies address the histopathological alterations in oral mucositis and only recently, its biological processes have been investigated. The biological mechanisms involved in the radiation tissue damage have been only recently discussed and there is no consensus among treatment modalities. Yet, the progressive knowledge in the histopathology and biological characteristics of oral mucositis probably will lead to more effective in prevention and control strategies. (author)

  13. Gastrointestinal Toxicities With Combined Antiangiogenic and Stereotactic Body Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Pollom, Erqi L.; Deng, Lei [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California (United States); Pai, Reetesh K. [Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (United States); Brown, J. Martin; Giaccia, Amato; Loo, Billy W.; Shultz, David B.; Le, Quynh Thu; Koong, Albert C. [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California (United States); Chang, Daniel T., E-mail: dtchang@stanford.edu [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California (United States)

    2015-07-01

    Combining the latest targeted biologic agents with the most advanced radiation technologies has been an exciting development in the treatment of cancer patients. Stereotactic body radiation therapy (SBRT) is an ablative radiation approach that has become established for the treatment of a variety of malignancies, and it has been increasingly used in combination with biologic agents, including those targeting angiogenesis-specific pathways. Multiple reports have emerged describing unanticipated toxicities arising from the combination of SBRT and angiogenesis-targeting agents, particularly of late luminal gastrointestinal toxicities. In this review, we summarize the literature describing these toxicities, explore the biological mechanism of action of toxicity with the combined use of antiangiogenic therapies, and discuss areas of future research, so that this combination of treatment modalities can continue to be used in broader clinical contexts.

  14. Radiation Therapy -- What It Is, How It Helps

    Science.gov (United States)

    ... Types Radiation Therapy EASY READING Radiation Therapy -- What It Is, How It Helps This easy-to-read guide offers a ... Imagine a world free from cancer. Help make it a reality. DONATE Cancer Information Cancer Prevention & Detection ...

  15. External and internal radiation therapy: Past and future directions

    Directory of Open Access Journals (Sweden)

    Sadeghi Mahdi

    2010-01-01

    Full Text Available Cancer is a leading cause of morbidity and mortality in the modern world. Treatment modalities comprise radiation therapy, surgery, chemotherapy and hormonal therapy. Radiation therapy can be performed by using external or internal radiation therapy. However, each method has its unique properties which undertakes special role in cancer treatment, this question is brought up that: For cancer treatment, whether external radiation therapy is more efficient or internal radiation therapy one? To answer this question, we need to consider principles and structure of individual methods. In this review, principles and application of each method are considered and finally these two methods are compared with each other.

  16. Proton minibeam radiation therapy: Experimental dosimetry evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Peucelle, C.; Martínez-Rovira, I.; Prezado, Y., E-mail: prezado@imnc.in2p3.fr [IMNC-UMR 8165, CNRS, Paris 7 and Paris 11 Universities, 15 rue Georges Clemenceau, Orsay Cedex 91406 (France); Nauraye, C.; Patriarca, A.; Hierso, E.; Fournier-Bidoz, N. [Institut Curie - Centre de Protonthérapie d’Orsay, Campus Universitaire, Bât. 101, Orsay 91898 (France)

    2015-12-15

    Purpose: Proton minibeam radiation therapy (pMBRT) is a new radiotherapy (RT) approach that allies the inherent physical advantages of protons with the normal tissue preservation observed when irradiated with submillimetric spatially fractionated beams. This dosimetry work aims at demonstrating the feasibility of the technical implementation of pMBRT. This has been performed at the Institut Curie - Proton Therapy Center in Orsay. Methods: Proton minibeams (400 and 700 μm-width) were generated by means of a brass multislit collimator. Center-to-center distances between consecutive beams of 3200 and 3500 μm, respectively, were employed. The (passive scattered) beam energy was 100 MeV corresponding to a range of 7.7 cm water equivalent. Absolute dosimetry was performed with a thimble ionization chamber (IBA CC13) in a water tank. Relative dosimetry was carried out irradiating radiochromic films interspersed in a IBA RW3 slab phantom. Depth dose curves and lateral profiles at different depths were evaluated. Peak-to-valley dose ratios (PVDR), beam widths, and output factors were also assessed as a function of depth. Results: A pattern of peaks and valleys was maintained in the transverse direction with PVDR values decreasing as a function of depth until 6.7 cm. From that depth, the transverse dose profiles became homogeneous due to multiple Coulomb scattering. Peak-to-valley dose ratio values extended from 8.2 ± 0.5 at the phantom surface to 1.08 ± 0.06 at the Bragg peak. This was the first time that dosimetry in such small proton field sizes was performed. Despite the challenge, a complete set of dosimetric data needed to guide the first biological experiments was achieved. Conclusions: pMBRT is a novel strategy in order to reduce the side effects of RT. This works provides the experimental proof of concept of this new RT method: clinical proton beams might allow depositing a (high) uniform dose in a brain tumor located in the center of the brain (7.5 cm depth

  17. 21 CFR 892.5750 - Radionuclide radiation therapy system.

    Science.gov (United States)

    2010-04-01

    ... operator to administer gamma radiation therapy, with the radiation source located at a distance from the... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Radionuclide radiation therapy system. 892.5750... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5750 Radionuclide radiation...

  18. A practical three-dimensional dosimetry system for radiation therapy

    OpenAIRE

    Guo, Pengyi; Adamovics, John; Oldham, Mark

    2006-01-01

    There is a pressing need for a practical three-dimensional (3D) dosimetry system, convenient for clinical use, and with the accuracy and resolution to enable comprehensive verification of the complex dose distributions typical of modern radiation therapy. Here we introduce a dosimetry system that can achieve this challenge, consisting of a radiochromic dosimeter (PRESAGE™) and a commercial optical computed tomography (CT) scanning system (OCTOPUS™). PRESAGE™ is a transparent material with com...

  19. Occurrence of BOOP outside radiation field after tangential radiation therapy for breast carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Hamanishi, Tohru; Gohma, Iwao; Oida, Kazukiyo [Tenri Hospital, Nara (Japan)] (and others)

    2000-07-01

    We report three cases of bronchiolitis obliterans organizing pneumonia (BOOP) that occurred outside the radiation field after radiation therapy using tangential fields for breast carcinoma. All patients complained of a cough between 14 and 20 weeks after completion of radiation therapy. Fever also developed in two of the three. Chest radiography and computed tomography demonstrated peripheral alveolar opacities outside the radiation field on the same side as the radiation therapy. Laboratory data showed an increased level of C-reactive protein and an increased erythrocyte sedimentation rate. Bronchoalveolar lavage showed an elevated total cell count with a very high percentage of lymphocytes. Transbronchial lung biopsy revealed a histologic pattern consistent with BOOP. Treatment with corticosteroids resulted in rapid clinical improvement and complete resolution of the radiographic abnormalities. This pulmonary disorder appears to be induced by radiation, especially when a tangential field is employed for breast carcinoma, though the etiology has not been fully investigated. It is important to be aware of this type of pulmonary complication in patients given radiotherapy for breast carcinoma. (author)

  20. No Clinically Significant Changes in Pulmonary Function Following Stereotactic Body Radiation Therapy for Early- Stage Peripheral Non-Small Cell Lung Cancer: An Analysis of RTOG 0236

    Energy Technology Data Exchange (ETDEWEB)

    Stanic, Sinisa, E-mail: sinisa.stanic@carle.com [Carle Cancer Center and University of Illinois College of Medicine, Urbana, Illinois (United States); Paulus, Rebecca [Radiation Therapy Oncology Group Statistical Center, Philadelphia, Pennsylvania (United States); Timmerman, Robert D. [University of Texas Southwestern, Dallas, Texas (United States); Michalski, Jeff M. [Washington University, St. Louis, Missouri (United States); Barriger, Robert B. [Indiana University, Indianapolis, Indiana (United States); Bezjak, Andrea [Princess Margaret Cancer Center, Toronto, Ontario (Canada); Videtic, Gregory M.M. [Cleveland Clinic Foundation, Cleveland, Ohio (United States); Bradley, Jeffrey [Washington University, St. Louis, Missouri (United States)

    2014-04-01

    Purpose: To investigate pulmonary function test (PFT) results and arterial blood gas changes (complete PFT) following stereotactic body radiation therapy (SBRT) and to see whether baseline PFT correlates with lung toxicity and overall survival in medically inoperable patients receiving SBRT for early stage, peripheral, non-small cell lung cancer (NSCLC). Methods and Materials: During the 2-year follow-up, PFT data were collected for patients with T1-T2N0M0 peripheral NSCLC who received effectively 18 Gy × 3 in a phase 2 North American multicenter study (Radiation Therapy Oncology Group [RTOG] protocol 0236). Pulmonary toxicity was graded by using the RTOG SBRT pulmonary toxicity scale. Paired Wilcoxon signed rank test, logistic regression model, and Kaplan-Meier method were used for statistical analysis. Results: At 2 years, mean percentage predicted forced expiratory volume in the first second and diffusing capacity for carbon monoxide declines were 5.8% and 6.3%, respectively, with minimal changes in arterial blood gases and no significant decline in oxygen saturation. Baseline PFT was not predictive of any pulmonary toxicity following SBRT. Whole-lung V5 (the percentage of normal lung tissue receiving 5 Gy), V10, V20, and mean dose to the whole lung were almost identical between patients who developed pneumonitis and patients who were pneumonitis-free. Poor baseline PFT did not predict decreased overall survival. Patients with poor baseline PFT as the reason for medical inoperability had higher median and overall survival rates than patients with normal baseline PFT values but with cardiac morbidity. Conclusions: Poor baseline PFT did not appear to predict pulmonary toxicity or decreased overall survival after SBRT in this medically inoperable population. Poor baseline PFT alone should not be used to exclude patients with early stage lung cancer from treatment with SBRT.

  1. Radiation Therapy in Elderly Skin Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Hee [Keimyung University College of Medicine, Daegu (Korea, Republic of)

    2008-06-15

    To evaluate the long term results (local control, survival, failure, and complications) after radiation therapy for skin cancer in elderly patients. The study spanned from January 1990 to October 2002. Fifteen elderly patients with skin cancer were treated by radiotherapy at the Keimyung University Dongsan Medical Center. The age distribution of the patients surveyed was 72 to 95 years, with a median age of 78.8 years. The pathologic classification of the 15 patients included squamous cell carcinoma (10 patients), basal cell carcinoma (3 patients), verrucous carcinoma (1 patient) and skin adnexal origin carcinoma (1 patient). The most common tumor location was the head (13 patients). The mean tumor diameter was 4.9 cm (range 2 to 9 cm). The radiation dose was delivered via an electron beam of 6 to 15 MeV. The dose range was adjusted to the tumor diameter and depth of tumor invasion. The total radiation dose ranged from 50{approx}80 Gy (mean: 66 Gy) with a 2 Gy fractional dose prescribed to the 80% isodose line once a day and 5 times a week. One patient with lymph node metastasis was treated with six MV photon beams boosted with electron beams. The length of the follow-up periods ranged from 10 to 120 months with a median follow-up period of 48 months. The local control rates were 100% (15/15). In addition, the five year disease free survival rate (5YDFS) was 80% and twelve patients (80%) had no recurrence and skin cancer recurrence occurred in 3 patients (20%). Three patients have lived an average of 90 months (68{approx}120 months) without recurrence or metastasis. A total of 9 patients who died as a result of other causes had a mean survival time of 55.8 months after radiation therapy. No severe acute or chronic complications were observed after radiation therapy. Only minor complications including radiation dermatitis was treated with supportive care. The results suggest that radiation therapy is an effective and safe treatment method for the treatment of skin

  2. Chronic neuroendocrinological sequelae of radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Sklar, C.A. [Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Constine, L.S. [Univ. of Rochester Medical Center, Rochester, NY (United States)

    1995-03-30

    A variety of neuroendocrine disturbances are observed following treatment with external radiation therapy when the hypothalamic-pituitary axis (HPA) is included in the treatment field. Radiation-induced abnormalities are generally dose dependent and may develop many years after irradiation. Growth hormone deficiency and premature sexual development can occur following doses as low as 18 Gy fractionated radiation and are the most common neuroendocrine problems noted in children. Deficiency of gonadotropins, thyroid stimulating hormone, and adrenocorticotropin are seen primarily in individuals treated with > 40 Gy HPA irradiation. Hyperprolactinemia can be seen following high-dose radiotherapy (>40 Gy), especially among young women. Most neuroendocrine disturbances that develop as a result of HPA irradiation are treatable; patients at risk require long-term endocrine follow-up. 23 refs., 6 figs., 2 tabs.

  3. Clinical Outcomes of Biological Effective Dose-Based Fractionated Stereotactic Radiation Therapy for Metastatic Brain Tumors From Non-Small Cell Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Matsuyama, Tomohiko, E-mail: matsutomo_llp@yahoo.co.jp [Department of Radiation Oncology, Kumamoto University, Kumamoto (Japan); Kogo, Kasei [Kumamoto Radiosurgery Clinic, Kumamoto (Japan); Oya, Natsuo [Department of Radiation Oncology, Kumamoto University, Kumamoto (Japan)

    2013-03-15

    Purpose: To evaluate the efficacy and toxicity of fractionated stereotactic radiation therapy (FSRT) based on biological effective dose (BED), a novel approach to deliver a fixed BED irrespective of dose fractionation, for brain metastases from non-small cell lung cancer (NSCLC). Methods and Materials: Between March 2005 and March 2009 we treated 299 patients with 1 to 5 lesions from NSCLC (573 total brain metastases) with FSRT using Novalis. The dose fractionation schedules were individually determined to deliver a peripheral BED10 (α/β ratio = 10) of approximately 80 Gy{sub 10}. The median number of fractions was 3 (range, 2-10), the median peripheral BED10 was 83.2 Gy (range, 19.1-89.6 Gy). Patients were followed up with magnetic resonance imaging (MRI) studies performed at 1- to 2-month intervals. The local tumor control rate and overall local progression-free and intracranial relapse-free survival were calculated by the Kaplan-Meier method. Results: Local control rates for all 573 lesions at 6 and 12 months were 96.3% and 94.5%, respectively. By multivariate analysis the tumor diameter was the only factor predictive of the local control rate (P=.001). The median overall survival, local progression-free survival, and intracranial relapse-free survival were 17.1, 14.9, and 4.4 months, respectively. The overall survival, local progression-free survival, and intracranial relapse-free survival rates at 6 and 12 months were 78.5% and 63.3%, 74.3% and 57.8%, and 41.0% and 21.8%, respectively. Six patients (2%) manifested progressive radiation injury to the brain even during therapy with corticosteroids; they underwent hyperbaric oxygen therapy, and follow-up MRI showed improvement. Conclusions: This study showed that BED-based FSRT for brain metastases from NSCLC is a promising strategy that may yield excellent outcomes with acceptable toxicity. Criteria must be established to determine the optimal dose fractionation for individual patients.

  4. Radiation therapy of psoriasis and parapsoriasis

    Energy Technology Data Exchange (ETDEWEB)

    Wiskemann, A.

    1982-09-15

    Selective UV-Phototherapy with lambda 300-320 nm (SUP) as well as oral photochemotherapy with 8-methoxy-psoralen plus UVA-radiation (PUVA intern) are very effective in clearing the lesions of the generalized psoriasis and those of the chronic forms of parapsoriasis. Being treated with 4 suberythemal doses per week psoriasis patients are free or nearly free of symptoms after averagely 6.3 weeks of SUP-therapy or after 5.3 weeks of PUVA orally. The PUVA-therapy is mainly indicated in pustular, inverse and erythrodermic psoriasis as well as in parapsoriasis en plaques and variegata. In all other forms of psoriasis and in pityriasis lichenoides-chronica, we prefer the SUP-therapy because of less acute or chronic side effects, and because of its better practicability. X-rays are indicated in psoriais of nails, grenz-rays in superficial psoriatic lesions of the face, the armpits, the genitals and the anal region.

  5. Some computer graphical user interfaces in radiation therapy

    Institute of Scientific and Technical Information of China (English)

    James C L Chow

    2016-01-01

    In this review, five graphical user interfaces(GUIs) used in radiation therapy practices and researches are introduced. They are:(1) the treatment time calculator, superficialx-ray treatment time calculator(SUPCALC) used in the superficial X-ray radiation therapy;(2) the monitor unit calculator, electron monitor unit calculator(EMUC) used in the electron radiation therapy;(3) the multileaf collimator machine file creator, sliding window intensity modulated radiotherapy(SWIMRT) used in generating fluence map for research and quality assurance in intensity modulated radiation therapy;(4) the treatment planning system, DOSCTP used in the calculation of 3D dose distribution using Monte Carlo simulation; and(5) the monitor unit calculator, photon beam monitor unit calculator(PMUC) used in photon beam radiation therapy. One common issue of these GUIs is that all user-friendly interfaces are linked to complex formulas and algorithms based on various theories, which do not have to be understood and noted by the user. In that case, user only needs to input the required information with help from graphical elements in order to produce desired results. SUPCALC is a superficial radiation treatment time calculator using the GUI technique to provide a convenient way for radiation therapist to calculate the treatment time, and keep a record for the skin cancer patient. EMUC is an electron monitor unit calculator for electron radiation therapy. Instead of doing hand calculation according to pre-determined dosimetric tables, clinical user needs only to input the required drawing of electron field in computer graphical file format, prescription dose, and beam parameters to EMUC to calculate the required monitor unit for the electron beam treatment. EMUC is based on a semi-experimental theory of sector-integration algorithm. SWIMRT is a multileaf collimator machine file creator to generate a fluence map produced by a medical linear accelerator. This machine file controls the

  6. Some computer graphical user interfaces in radiation therapy.

    Science.gov (United States)

    Chow, James C L

    2016-03-28

    In this review, five graphical user interfaces (GUIs) used in radiation therapy practices and researches are introduced. They are: (1) the treatment time calculator, superficial X-ray treatment time calculator (SUPCALC) used in the superficial X-ray radiation therapy; (2) the monitor unit calculator, electron monitor unit calculator (EMUC) used in the electron radiation therapy; (3) the multileaf collimator machine file creator, sliding window intensity modulated radiotherapy (SWIMRT) used in generating fluence map for research and quality assurance in intensity modulated radiation therapy; (4) the treatment planning system, DOSCTP used in the calculation of 3D dose distribution using Monte Carlo simulation; and (5) the monitor unit calculator, photon beam monitor unit calculator (PMUC) used in photon beam radiation therapy. One common issue of these GUIs is that all user-friendly interfaces are linked to complex formulas and algorithms based on various theories, which do not have to be understood and noted by the user. In that case, user only needs to input the required information with help from graphical elements in order to produce desired results. SUPCALC is a superficial radiation treatment time calculator using the GUI technique to provide a convenient way for radiation therapist to calculate the treatment time, and keep a record for the skin cancer patient. EMUC is an electron monitor unit calculator for electron radiation therapy. Instead of doing hand calculation according to pre-determined dosimetric tables, clinical user needs only to input the required drawing of electron field in computer graphical file format, prescription dose, and beam parameters to EMUC to calculate the required monitor unit for the electron beam treatment. EMUC is based on a semi-experimental theory of sector-integration algorithm. SWIMRT is a multileaf collimator machine file creator to generate a fluence map produced by a medical linear accelerator. This machine file controls

  7. Intraoperative radiation therapy (IORT) in head and neck cancer

    Science.gov (United States)

    Kyrgias, George; Hajiioannou, Jiannis; Tolia, Maria; Kouloulias, Vassilios; Lachanas, Vasileios; Skoulakis, Charalambos; Skarlatos, Ioannis; Rapidis, Alexandros; Bizakis, Ioannis

    2016-01-01

    Abstract Background: Multimodality therapy constitutes the standard treatment of advanced and recurrent head and neck cancer. Since locoregional recurrence comprises a major obstacle in attaining cure, the role of intraoperative radiation therapy (IORT) as an add-on in improving survival and local control of the disease has been investigated. IORT allows delivery of a single tumoricidal dose of radiation to areas of potential residual microscopic disease while minimizing doses to normal tissues. Advantages of IORT include the conformal delivery of a large dose of radiation in an exposed and precisely defined tumor bed, minimizing the risk of a geographic miss creating the potential for subsequent dose reduction of external beam radiation therapy (EBRT). This strategy allows for shortening overall treatment time and dose escalation. The aim of this review is to summarize recent published work on the use of IORT as an adjuvant modality to treat common head and neck cancer in the primary or recurrent setting. Methods: We searched the Medline, Scopus, Ovid, Cochrane, Embase, and ISI Web of Science databases for articles published from 1980 up to March 2016. Results: Based on relevant publications it appears that including IORT in the multimodal treatment may contribute to improved local control. However, the benefit in overall survival is not so clear. Conclusion: IORT seems to be a safe, promising adjunct in the management of head and neck cancer and yet further well organized clinical trials are required to determine its role more precisely. PMID:27977569

  8. Postprostatectomy radiation therapy: an evidence-based review.

    Science.gov (United States)

    Mishra, Mark V; Champ, Colin E; Den, Robert B; Scher, Eli D; Shen, Xinglei; Trabulsi, Edouard J; Lallas, Costas D; Knudsen, Karen E; Dicker, Adam P; Showalter, Timothy N

    2011-12-01

    While the majority of men with localized prostate cancer who undergo a radical prostatectomy will remain disease free, men with certain clinical and pathological features are known to be at an increased risk for developing a biochemical recurrence and, ultimately, distant metastatic disease. The optimal management of these patients continues to be a source of controversy. To date, three randomized Phase III trials have demonstrated that adjuvant radiation therapy (ART) for patients with certain adverse pathological features results in an improvement in several clinically-relevant end points, including biochemical recurrence-free survival and overall survival. Despite the evidence from these trials showing a benefit for ART, many believe that ART results in overtreatment and unwarranted treatment morbidity for a significant number of patients. Many physicians, therefore, instead advocate for close observation followed by early salvage radiation therapy (SRT) at the time of a biochemical recurrence. The purpose of this review is to evaluate the evidence for and to distinguish between ART and early SRT. We will also highlight current and future areas of research for this patient population, including radiation treatment dose escalation, hypofractionation and androgen deprivation therapy. We will also discuss the cost-effectiveness of ART and early SRT.

  9. TH-A-BRD-01: Radiation Biology for Radiation Therapy Physicists

    Energy Technology Data Exchange (ETDEWEB)

    Orton, C [Wayne State University, Grosse Pointe, MI (United States); Borras, C [Radiological Physics and Health Services, Washington, DC (United States); Carlson, D [Yale University School of Medicine, New Haven, CT (United States)

    2014-06-15

    they might be used to address clinically relevant problems. Underlying assumptions and limitations of existing models and their proper application will be discussed. This multidisciplinary educational session combines the fundamentals of radiobiology for radiation therapy and radiation protection with the practical application of biophysical models for treatment planning and evaluation. Learning Objectives: To understand fractionation in teletherapy and dose rate techniques in brachytherapy. To understand how the linear-quadratic models the effect of radiobiological parameters for radiotherapy. To understand the radiobiological basis of radiation protection standards applied to radiotherapy. To distinguish between stochastic effects and tissue reactions. To learn how to apply concepts of biological effective dose and RBE-weighted dose and to incorporate biological factors that alter radiation response. To discuss clinical strategies to increase therapeutic ratio, i.e., maximize local control while minimizing the risk of acute and late normal tissue effects.

  10. Clinical Application of Photodynamic Therapy

    Institute of Scientific and Technical Information of China (English)

    LIU Hui-long; LIU Duan-qi

    2005-01-01

    Photodynamic therapy(PDT) is a new medical technology, the study on photodynamic therapy was in full swing in the past two decade. Scientists have made great progress in it. Photosensitizer,oxygen and light source play important role in photodynamic therapy.PDT is a light activated chemotherapy. A photon is adsorbed by a photosensitizer which moves the drug into an excited state. The excited drug can then pass its energy to oxygen to create a chemical radical called "singlet oxygen". Singlet oxygen attacks cellular structures by oxidation. Such oxidative damage might be oxidation of cell membranes or proteins. When the accumulation of oxidative damage exceeds a threshold level,the cell begins to die.Photodynamic therapy allows selective treatment of localized cancer. PDT involves administration of a photosensitizer to the patients, followed by delivery of light to the cancerous region. The light activates the agent which kills the cancer cells. Without light,the agent is harmless.As a new therapy,photodynamic Therapy has great Advantage in treating cancers. 1. PDT avoids systemic treatment. The treatment occurs only where light is delivered, hence the patient does not undergo go needless systemic treatment when treating localized disease. Side-effects are avoided, from losing hair or suffering nausea to more serious complications. 2. PDT is selective. The photosensitizing agent will selectively accumulate in cancer cells and not in surrounding normal tissues.Hence ,there is selective targeting of the cancer and sparing of surrounding tissues.3. when surgery is not possible. PDT kills cancer cells but does not damage collagenous tissue structures,and normal cells will repopulate these structures. Hence,if a patient has cancer in a structure that cannot be removed surgically(eg. ,the upper bronchi of the lung) ,PDT can still treat the site. 4. PDT is repeatable. Unilke radiation therapy, PDT can be used again and again. Hence,it offers a means of longterm management

  11. Combined Radiation Therapy and Immune Checkpoint Blockade Therapy for Breast Cancer.

    Science.gov (United States)

    Hu, Zishuo I; Ho, Alice Y; McArthur, Heather L

    2017-09-01

    Treatment with checkpoint inhibitors has shown durable responses in a number of solid tumors, including melanoma, lung, and renal cell carcinoma. However, most breast cancers are resistant to monotherapy with checkpoint inhibitors. Radiation therapy (RT) has been shown to have a number of immunostimulatory effects, including priming the immune system, recruiting immune cells to the tumor environment, and altering the immunosuppressive effects of the tumor microenvironment. RT therefore represents a promising adjuvant therapy to checkpoint blockade in breast cancer. We review the data from the checkpoint blockade studies on breast cancer reported to date, the mechanisms by which RT potentiates immune responses, the preclinical and clinical data of checkpoint blockade and RT combinations, and the landscape of current clinical trials of RT and immune checkpoint inhibitor combinations in breast cancer. Clinical trials with checkpoint blockade therapy have demonstrated response rates of up to 19% in breast cancer, and many of the responses are durable. Preclinical data indicate that RT combined with checkpoint inhibition synergizes not only to enhance antitumor efficacy but also to induce responses outside of the radiation field. Thus multiple clinical trials are currently investigating the combination of checkpoint inhibition with RT. The use of combination strategies that incorporate chemotherapy and/or local strategies such as RT may be needed to augment responses to immune therapy in breast cancer. Preclinical and clinical results show that RT in combination with checkpoint blockade may be a promising therapeutic option in breast cancer. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. 宫颈癌根治术后三维适形放疗的临床价值%Clinical value of three-dimensional conformal radiation therapy for postoperation cervix cancer

    Institute of Scientific and Technical Information of China (English)

    Yaqin Qu; Yubao He; Xin Jiang; Zhiming Chen

    2008-01-01

    Objective:To observe the clinical value of three dimensional conformal radiation therapy (3D-CRT) followed by radical surgery and discuss the best radiation technique for cervical cancer patients after radical hysterectomy.Methods:From February 2003 to June 2006,115 stage Ⅰ-Ⅲa uterus cervix cancer patients received postoperation radiotherapy in our department after radical surgery.They were randomly divided into two groups.There were 81 patients in 3D-CRT group and 74 patients in traditional radiation group.According to FIGO,there were 45 in stage Ⅰ,77 in stage Ⅰa,31 in stage Ⅱb,2 in stage Ⅲa.Pathological examination confirmed that 148 cases had squamous carcinoma and 7 cases had adenocarcinoma.The target volume included supravaginal portion,the cervical stump,paracervical tissue,common iliac lymph nodes,internal and external iliac lymph nodes,obturator and sacral lymph nodes.For 3D-CRT group we designed four-field or two-fields rotating irradiation in the left-right and the anterior-posterior direction.For traditional radiation group we designed two-field,anterior-posterior,at opposed lateral directions.The radiation dose ranged from 48-50 Gy.Stage Ⅱb patients with a cervical stump recurrence received postoperative boost radiation by 8-10 Gy.Results:There were no significant difference in 0.5-year,1-year,1.5-year,2-year local control rate between 3D-CRT group and traditional radiation group (P>0.05).The occurrence of early and late complications was significant lower in 3D-CRT group than that in traditional radiation group (P<0.05).There was significant difference in gastrointestinal reaction and urinary system reaction between the two groups (P<0.05).In postoperation radiotherapy 3D-CRT was superior compared with traditional two-field radiation at opposed lateral direction.Conclusion:3D-CRT is superior compared with traditional radiation.Four-field rotating irradiation in 3D-CRT has advantages of dose focusing,even dose distribution and cause

  13. Neutrophils, a candidate biomarker and target for radiation therapy?

    Science.gov (United States)

    Schernberg, Antoine; Blanchard, Pierre; Chargari, Cyrus; Deutsch, Eric

    2017-08-23

    Neutrophils are the most abundant blood-circulating white blood cells, continuously generated in the bone marrow. Growing evidence suggests they regulate the innate and adaptive immune system during tumor evolution. This review will first summarize the recent findings on neutrophils as a key player in cancer evolution, then as a potential biomarker, and finally as therapeutic targets, with respective focuses on the interplay with radiation therapy. A complex interplay: Neutrophils have been associated with tumor progression through multiple pathways. Ionizing radiation has cytotoxic effects on cancer cells, but the sensitivity to radiation therapy in vivo differ from isolated cancer cells in vitro, partially due to the tumor microenvironment. Different microenvironmental states, whether baseline or induced, can modulate or even attenuate the effects of radiation, with consequences for therapeutic efficacy. Inflammatory biomarkers: Inflammation-based scores have been widely studied as prognostic biomarkers in cancer patients. We have performed a large retrospective cohort of patients undergoing radiation therapy (1233 patients), with robust relationship between baseline blood neutrophil count and 3-year's patient's overall survival in patients with different cancer histologies. (Pearson's correlation test: p = .001, r = -.93). Therapeutic approaches: Neutrophil-targeting agents are being developed for the treatment of inflammatory and autoimmune diseases. Neutrophils either can exert antitumoral (N1 phenotype) or protumoral (N2 phenotype) activity, depending on the Tumor Micro Environment. Tumor associated N2 neutrophils are characterized by high expression of CXCR4, VEGF, and gelatinase B/MMP9. TGF-β within the tumor microenvironment induces a population of TAN with a protumor N2 phenotype. TGF-β blockade slows tumor growth through activation of CD8 + T cells, macrophages, and tumor associated neutrophils with an antitumor N1 phenotype. This supports

  14. Deformable image registration in radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Seung Jong; Kim, Si Yong [Dept. of Radiation Oncology, Virginia Commonwealth University, Richmond (United States)

    2017-06-15

    The number of imaging data sets has significantly increased during radiation treatment after introducing a diverse range of advanced techniques into the field of radiation oncology. As a consequence, there have been many studies proposing meaningful applications of imaging data set use. These applications commonly require a method to align the data sets at a reference. Deformable image registration (DIR) is a process which satisfies this requirement by locally registering image data sets into a reference image set. DIR identifies the spatial correspondence in order to minimize the differences between two or among multiple sets of images. This article describes clinical applications, validation, and algorithms of DIR techniques. Applications of DIR in radiation treatment include dose accumulation, mathematical modeling, automatic segmentation, and functional imaging. Validation methods discussed are based on anatomical landmarks, physical phantoms, digital phantoms, and per application purpose. DIR algorithms are also briefly reviewed with respect to two algorithmic components: similarity index and deformation models.

  15. An analysis of the on-going clinical trials on proton and heavy-ion radiation therapy and their impact on the clinical application and future development%质子重离子放射治疗的临床研究概况

    Institute of Scientific and Technical Information of China (English)

    陆嘉德; 孔琳; 高晶; 蒋国梁

    2016-01-01

    对clinicaltrials.gov及PTCOG网站上注册的目前正在进行中的质子重离子放射治疗相关的前瞻性临床研究予以分类、归纳和分析,并介绍上海市质子重离子医院IONTRIS设备的临床注册研究结果以及临床实践的现状.大多数研究主要基于前期欧美和日本的临床实践经验.目前开展的近150项前瞻性临床研究中,大多为质子相关研究,涉及全身各个解剖部位的肿瘤;20项重(碳)离子相关研究中,大多涉及头颈部和中枢神经系统肿瘤.以新适应证和分割方式的Ⅱ期或Ⅰ/Ⅱ期临床研究为主,仅15项Ⅱ/Ⅲ期或Ⅲ期随机临床研究,另21项为0/Ⅰ期研究.上述临床研究的开展,将为质子重离子放射治疗剂量与分割的优化,以及适应证的进一步开拓提供依据.%To perform an evaluation of the on-going prospective clinical trials on particle radiation therapy and their impact on the current clinical practice as well as future clinical research and development.Furthermore,to briefly present the results of the registration trial of the IONTRIS particle therapy system at the Shanghai Proton and Heavy Ion Center.We used data from the clinicaltrials,gov and the Particle Therapy Collaborative Organization Group (PTCOG) website.After excluding retrospective and in silico studies,we examined and analyzed the prospective clinical trials for their ion type,targeting disease site,and nature.At the time of this analysis,149 prospective trials were identified on proton and carbon-ion radiation therapy,including 20 were carbon-ion and 129 trials were proton radiation focused,respectively.Except for 15 randomized phase Ⅱ/Ⅲ and Ⅲ trials,134 trials were phase 0-Ⅱ trials.Tumors from nearly all body parts were covered by the on-going trials,but trials on pediatric,GI,lung,prostate,and breast cancer account for the majority.The majority of the currently on-going trials focus on the efficacy and adverse-effects of the new dose

  16. Oral care of the cancer patient receiving radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Holtzhausen, T. (Medical Univ. of Southern Africa, Pretoria (South Africa). Dept. of Community Dentistry)

    1982-07-01

    Radiation therapy is frequently being used for the patient with oral cancer. The survival rate is increasing, due to more effective treatment technique. The question of whether any teeth should be extracted, the mode of therapy and the side effects of radiation like Xerostomia, caries, stomatitis, trismus and osteo-radionecrosis and also post radiation care are discussed.

  17. Radiation dose monitoring in the clinical routine

    Energy Technology Data Exchange (ETDEWEB)

    Guberina, Nika [UK Essen (Germany). Radiology

    2017-04-15

    Here we describe the first clinical experiences regarding the use of an automated radiation dose management software to monitor the radiation dose of patients during routine examinations. Many software solutions for monitoring radiation dose have emerged in the last decade. The continuous progress in radiological techniques, new scan features, scanner generations and protocols are the primary challenge for radiation dose monitoring software systems. To simulate valid dose calculations, radiation dose monitoring systems have to follow current trends and stay constantly up-to-date. The dose management software is connected to all devices at our institute and conducts automatic data acquisition and radiation dose calculation. The system incorporates 18 virtual phantoms based on the Cristy phantom family, estimating doses in newborns to adults. Dose calculation relies on a Monte Carlo simulation engine. Our first practical experiences demonstrate that the software is capable of dose estimation in the clinical routine. Its implementation and use have some limitations that can be overcome. The software is promising and allows assessment of radiation doses, like organ and effective doses according to ICRP 60 and ICRP 103, patient radiation dose history and cumulative radiation doses. Furthermore, we are able to determine local diagnostic reference doses. The radiation dose monitoring software systems can facilitate networking between hospitals and radiological departments, thus refining radiation doses and implementing reference doses at substantially lower levels.

  18. Clinical aspects of phage therapy.

    Science.gov (United States)

    Międzybrodzki, Ryszard; Borysowski, Jan; Weber-Dąbrowska, Beata; Fortuna, Wojciech; Letkiewicz, Sławomir; Szufnarowski, Krzysztof; Pawełczyk, Zdzisław; Rogóż, Paweł; Kłak, Marlena; Wojtasik, Elżbieta; Górski, Andrzej

    2012-01-01

    Phage therapy (PT) is a unique method of treatment of bacterial infections using bacteriophages (phages)-viruses that specifically kill bacteria, including their antibiotic-resistant strains. Over the last decade a marked increase in interest in the therapeutic use of phages has been observed, which has resulted from a substantial rise in the prevalence of antibiotic resistance of bacteria, coupled with an inadequate number of new antibiotics. The first, and so far the only, center of PT in the European Union is the Phage Therapy Unit (PTU) established at the Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Wrocław, Poland in 2005. This center continues the rich tradition of PT in Poland, which dates from the early 1920s. The main objective of this chapter is to present a detailed retrospective analysis of the results of PT of 153 patients with a wide range of infections resistant to antibiotic therapy admitted for treatment at the PTU between January 2008 and December 2010. Analysis includes the evaluation of both the efficacy and the safety of PT. In general, data suggest that PT can provide good clinical results in a significant cohort of patients with otherwise untreatable chronic bacterial infections and is essentially well tolerated. In addition, the whole complex procedure employed to obtain and characterize therapeutic phage preparations, as well as ethical aspects of PT, is discussed.

  19. [Radiation therapy for prostate cancer in modern era].

    Science.gov (United States)

    Nishimura, Takuya

    2016-01-01

    The purpose of this paper is to provide overview of the latest research trend on technique of radiation therapy of prostate cancer. Three-dimensional conformal radiation therapy(3D -CRT) has achieved better outcome of treatment for prostate cancer than 2-dimensional radiation therapy. Intensity-modulated radiation therapy(IMRT) is considered to be superior to 3D-CRT at certain points. Image-guided (IG) radiation therapy (IGRT), mainly IG-IMRT, is investigated what kind of influence it has on an outcome, both tumor control rate and adverse events. Particle therapy is a most ideal therapy theoretically. There is, however, few evidence which revealed that the therapy is superior to any other modalities.

  20. The development of a decision support system with an interactive clinical user interface for estimating treatment parameters in radiation therapy in order to reduce radiation dose in head and neck patients

    Science.gov (United States)

    Verma, Sneha; Liu, Joseph; Deshpande, Ruchi; DeMarco, John; Liu, Brent J.

    2017-03-01

    The primary goal in radiation therapy is to target the tumor with the maximum possible radiation dose while limiting the radiation exposure of the surrounding healthy tissues. However, in order to achieve an optimized treatment plan, many constraints, such as gender, age, tumor type, location, etc. need to be considered. The location of the malignant tumor with respect to the vital organs is another possible important factor for treatment planning process which can be quantified as a feature making it easier to analyze its effects. Incorporation of such features into the patient's medical history could provide additional knowledge that could lead to better treatment outcomes. To show the value of features such as relative locations of tumors and surrounding organs, the data is first processed in order to calculate the features and formulate a feature matrix. Then these feature are matched with retrospective cases with similar features to provide the clinician with insight on delivered dose in similar cases from past. This process provides a range of doses that can be delivered to the patient while limiting the radiation exposure of surrounding organs based on similar retrospective cases. As the number of patients increase, there will be an increase in computations needed for feature extraction as well as an increase in the workload for the physician to find the perfect dose amount. In order to show how such algorithms can be integrated we designed and developed a system with a streamlined workflow and interface as prototype for the clinician to test and explore. Integration of the tumor location feature with the clinician's experience and training could play a vital role in designing new treatment algorithms and better outcomes. Last year, we presented how multi-institutional data into a decision support system is incorporated. This year the presentation is focused on the interface and demonstration of the working prototype of informatics system.

  1. Acute radiation proctitis. A clinical, histopathological and histochemical study

    Energy Technology Data Exchange (ETDEWEB)

    Hovdenak, Nils

    2004-07-01

    The aim of the study is: 1) A sequential description of the clinical course of acute radiation proctitis during pelvic RT. 2) A sequential description of the rectal mucosal histopathology during pelvic RT as a possible substrate for clinical toxicity. 3) To assess the mucosal protease activity during RT as a possible explanation of the observed tissue changes. 4) To assess the efficacy of prophylactic sucralfate in acute radiation proctitis a randomised study was initiated and carried out together with a meta-analysis of previously available data. 5) Most studies on clinical acute toxicity in pelvic RT use either the RTOG/EORTC score system or focus on diarrhoea/stool frequency. A more differentiated and sensitive recording was developed and tested to pick up symptoms escaping the commonly used scores. 6) Study the relation between histopathological findings and the clinical picture. 4 papers presenting various studies are included. The titles are: 1) Acute radiation proctitis: a sequential clinicopathologic study during pelvic radiotherapy. 2) Clinical significance of increased gelatinolytic activity in the rectal mucosa during external beam radiation therapy of prostate cancer. 3) Profiles and time course of acute radiation toxicity symptoms during conformal radiotherapy for cancer of the prostate. 4) Sucralfate does not ameliorate acute radiation proctitis. Some future prospects are discussed.

  2. Imaging Changes in Pediatric Intracranial Ependymoma Patients Treated With Proton Beam Radiation Therapy Compared to Intensity Modulated Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Gunther, Jillian R. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Sato, Mariko; Chintagumpala, Murali [Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Texas Children' s Cancer Center, Houston, Texas (United States); Ketonen, Leena [Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Jones, Jeremy Y. [Department of Pediatric Radiology, Texas Children' s Hospital, Houston, Texas (United States); Allen, Pamela K. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Paulino, Arnold C. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Texas Children' s Cancer Center, Houston, Texas (United States); Okcu, M. Fatih; Su, Jack M. [Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Texas Children' s Cancer Center, Houston, Texas (United States); Weinberg, Jeffrey [Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Boehling, Nicholas S. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Khatua, Soumen [Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Adesina, Adekunle [Department of Pathology, Baylor College of Medicine, Texas Children' s Hospital, Houston, Texas (United States); Dauser, Robert; Whitehead, William E. [Department of Neurosurgery, Texas Children' s Hospital, Houston, Texas (United States); Mahajan, Anita, E-mail: amahajan@mdanderson.org [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2015-09-01

    Purpose: The clinical significance of magnetic resonance imaging (MRI) changes after radiation therapy (RT) in children with ependymoma is not well defined. We compared imaging changes following proton beam radiation therapy (PBRT) to those after photon-based intensity modulated RT (IMRT). Methods and Materials: Seventy-two patients with nonmetastatic intracranial ependymoma who received postoperative RT (37 PBRT, 35 IMRT) were analyzed retrospectively. MRI images were reviewed by 2 neuroradiologists. Results: Sixteen PBRT patients (43%) developed postradiation MRI changes at 3.8 months (median) with resolution by 6.1 months. Six IMRT patients (17%) developed changes at 5.3 months (median) with 8.3 months to resolution. Mean age at radiation was 4.4 and 6.9 years for PBRT and IMRT, respectively (P=.06). Age at diagnosis (>3 years) and time of radiation (≥3 years) was associated with fewer imaging changes on univariate analysis (odds ratio [OR]: 0.35, P=.048; OR: 0.36, P=.05). PBRT (compared to IMRT) was associated with more frequent imaging changes, both on univariate (OR: 3.68, P=.019) and multivariate (OR: 3.89, P=.024) analyses. Seven (3 IMRT, 4 PBRT) of 22 patients with changes had symptoms requiring intervention. Most patients were treated with steroids; some PBRT patients also received bevacizumab and hyperbaric oxygen therapy. None of the IMRT patients had lasting deficits, but 2 patients died from recurrent disease. Three PBRT patients had persistent neurological deficits, and 1 child died secondarily to complications from radiation necrosis. Conclusions: Postradiation MRI changes are more common with PBRT and in patients less than 3 years of age at diagnosis and treatment. It is difficult to predict causes for development of imaging changes that progress to clinical significance. These changes are usually self-limiting, but some require medical intervention, especially those involving the brainstem.

  3. Clinical efficacy of photodynamic therapy

    Science.gov (United States)

    Park, Ye-Kyu

    2016-01-01

    Objective The management of cervical intraepithelial neoplasia (CIN) and early invasive cancer of the uterine cervix is very difficult to approach, especially in case of young woman who wants to preserve her fertility. Conization of the cervix may have various kinds of disadvantage. The objective of this clinical retrospective study is to investigate the therapeutic effects and clinical efficacy of photodynamic therapy (PDT) including combined chemo-photodynamic therapy in patients with pre-malignant CIN and malignant invasive cervical cancer. Methods Total number of PDT trial case was 50 cases and total number of patient was 22 patients who registered to PDT clinic. We used photogem sensitizer and 632 nm diode laser in early two cases. After then we performed PDT using photofrin sensitizer and 630 nm diode laser in other cases. We used flat-cut, microlens, cylindrical diffuser, and interstitial type optic fibers in order to irradiate the lesions. 240 J/cm2 energy was irradiated to the lesions. Results CIN 2 were 4 cases (18.2%) and CIN 3 were 15 (68.2%) and invasive cervical cancer were 3 (13.6%). Complete remission (CR) was found in 20 patients (91%). One case of 19 patients with CIN lesion recurred at 18 months after PDT treatment. CR was found in 18 cases in the patients with CIN lesions (95%). CR was found in 2 cases in the patients with invasive cervical cancer (67%). Conclusion Our data showed that CR rate was fantastic in CIN group (95%). This study suggests that PDT can be recommended as new optimistic management modality on the patients with pre-malignant CIN lesions including carcinoma in situ and relatively early invasive cancer of the uterine cervix. Combined chemo-photodynamic therapy is essential in case of invasive cervical cancer. For the young age group who desperately want to preserve their fertility and have a healthy baby, PDT can be a beacon of hope. PMID:27896250

  4. Clinical efficacy of photodynamic therapy.

    Science.gov (United States)

    Park, Ye-Kyu; Park, Choong-Hak

    2016-11-01

    The management of cervical intraepithelial neoplasia (CIN) and early invasive cancer of the uterine cervix is very difficult to approach, especially in case of young woman who wants to preserve her fertility. Conization of the cervix may have various kinds of disadvantage. The objective of this clinical retrospective study is to investigate the therapeutic effects and clinical efficacy of photodynamic therapy (PDT) including combined chemo-photodynamic therapy in patients with pre-malignant CIN and malignant invasive cervical cancer. Total number of PDT trial case was 50 cases and total number of patient was 22 patients who registered to PDT clinic. We used photogem sensitizer and 632 nm diode laser in early two cases. After then we performed PDT using photofrin sensitizer and 630 nm diode laser in other cases. We used flat-cut, microlens, cylindrical diffuser, and interstitial type optic fibers in order to irradiate the lesions. 240 J/cm(2) energy was irradiated to the lesions. CIN 2 were 4 cases (18.2%) and CIN 3 were 15 (68.2%) and invasive cervical cancer were 3 (13.6%). Complete remission (CR) was found in 20 patients (91%). One case of 19 patients with CIN lesion recurred at 18 months after PDT treatment. CR was found in 18 cases in the patients with CIN lesions (95%). CR was found in 2 cases in the patients with invasive cervical cancer (67%). Our data showed that CR rate was fantastic in CIN group (95%). This study suggests that PDT can be recommended as new optimistic management modality on the patients with pre-malignant CIN lesions including carcinoma in situ and relatively early invasive cancer of the uterine cervix. Combined chemo-photodynamic therapy is essential in case of invasive cervical cancer. For the young age group who desperately want to preserve their fertility and have a healthy baby, PDT can be a beacon of hope.

  5. Mapping the literature of radiation therapy.

    Science.gov (United States)

    Delwiche, Frances A

    2013-04-01

    This study characterizes the literature of the radiation therapy profession, identifies the journals most frequently cited by authors writing in this discipline, and determines the level of coverage of these journals by major bibliographic indexes. Cited references from three discipline-specific source journals were analyzed according to the Mapping the Literature of Allied Health Project Protocol of the Nursing and Allied Health Resources Section of the Medical Library Association. Bradford's Law of Scattering was applied to all journal references to identify the most frequently cited journal titles. Journal references constituted 77.8% of the total, with books, government documents, Internet sites, and miscellaneous sources making up the remainder. Although a total of 908 journal titles were cited overall, approximately one-third of the journal citations came from just 11 journals. MEDLINE and Scopus provided the most comprehensive indexing of the journal titles in Zones 1 and 2. The source journals were indexed only by CINAHL and Scopus. The knowledgebase of radiation therapy draws heavily from the fields of oncology, radiology, medical physics, and nursing. Discipline-specific publications are not currently well covered by major indexing services, and those wishing to conduct comprehensive literature searches should search multiple resources.

  6. The Role of Hypofractionated Radiation Therapy with Photons, Protons and Heavy Ions for Treating Extracranial Lesions

    Directory of Open Access Journals (Sweden)

    Aaron Michael Laine

    2016-01-01

    Full Text Available Traditionally, the ability to deliver large doses of ionizing radiation to a tumor has been limited by radiation induced toxicity to normal surrounding tissues. This was the initial impetus for the development of conventionally fractionated radiation therapy, where large volumes of healthy tissue received radiation and were allowed the time to repair the radiation damage. However, advances in radiation delivery techniques and image guidance have allowed for more ablative doses of radiation to be delivered in a very accurate, conformal and safe manner with shortened fractionation schemes. Hypofractionated regimens with photons have already transformed how certain tumor types are treated with radiation therapy. Additionally, hypofractionation is able to deliver a complete course of ablative radiation therapy over a shorter period of time compared to conventional fractionation regimens making treatment more convenient to the patient and potentially more cost-effective. Recently there has been an increased interest in proton therapy because of the potential further improvement in dose distributions achievable due to their unique physical characteristics. Furthermore, with heavier ions the dose conformality is increased and in addition there is potentially a higher biological effectiveness compared to protons and photons. Due to the properties mentioned above, charged particle therapy has already become an attractive modality to further investigate the role of hypofractionation in the treatment of various tumors. This review will discuss the rationale and evolution of hypofractionated radiation therapy, the reported clinical success with initially photon and then charged particle modalities, and further potential implementation into treatment regimens going forward.

  7. Dosimetric advantages of a clinical daily adaptive plan selection strategy compared with a non-adaptive strategy in cervical cancer radiation therapy.

    Science.gov (United States)

    van de Schoot, Agustinus J A J; de Boer, Peter; Visser, Jorrit; Stalpers, Lukas J A; Rasch, Coen R N; Bel, Arjan

    2017-05-01

    Radiation therapy (RT) using a daily plan selection adaptive strategy can be applied to account for interfraction organ motion while limiting organ at risk dose. The aim of this study was to quantify the dosimetric consequences of daily plan selection compared with non-adaptive RT in cervical cancer. Ten consecutive patients who received pelvic irradiation, planning CTs (full and empty bladder), weekly post-fraction CTs and pre-fraction CBCTs were included. Non-adaptive plans were generated based on the PTV defined using the full bladder planning CT. For the adaptive strategy, multiple PTVs were created based on both planning CTs by ITVs of the primary CTVs (i.e., GTV, cervix, corpus-uterus and upper part of the vagina) and corresponding library plans were generated. Daily CBCTs were rigidly aligned to the full bladder planning CT for plan selection. For daily plan recalculation, selected CTs based on initial similarity were deformably registered to CBCTs. Differences in daily target coverage (D98% > 95%) and in V0.5Gy, V1.5Gy, V2Gy, D50% and D2% for rectum, bladder and bowel were assessed. Non-adaptive RT showed inadequate primary CTV coverage in 17% of the daily fractions. Plan selection compensated for anatomical changes and improved primary CTV coverage significantly (p adaptive RT, plan selection decreased the fraction dose to rectum and bowel indicated by significant (p adaptive strategy led to inadequate target coverage for individual patients. Daily plan selection corrected for day-to-day anatomical variations and resulted in adequate target coverage in all fractions. The dose to bowel and rectum was decreased significantly when applying adaptive RT.

  8. Pain Flare Is a Common Adverse Event in Steroid-Naïve Patients After Spine Stereotactic Body Radiation Therapy: A Prospective Clinical Trial

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Andrew [Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON (Canada); Department of Radiation Oncology, Princess Margaret Hospital, University of Toronto, Toronto, ON (Canada); Zeng, Liang; Zhang, Liying; Lochray, Fiona; Korol, Renee; Loblaw, Andrew; Chow, Edward [Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON (Canada); Sahgal, Arjun, E-mail: arjun.sahgal@sunnybrook.ca [Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON (Canada); Department of Radiation Oncology, Princess Margaret Hospital, University of Toronto, Toronto, ON (Canada)

    2013-07-15

    Purpose: To determine the incidence of pain flare after spine stereotactic body radiation therapy (SBRT) in steroid-naïve patients and identify predictive factors. Methods and Materials: Forty-one patients were treated with spine SBRT between February 2010 and April 2012. All patients had their pain assessed at baseline, during, and for 10 days after SBRT using the Brief Pain Inventory. All pain medications were recorded daily and narcotics converted to an oral morphine equivalent dose. Pain flare was defined as a 2-point increase in worst pain score as compared with baseline with no decrease in analgesic intake, a 25% increase in analgesic intake as compared with baseline with no decrease in worst pain score, or if corticosteroids were initiated at any point during or after SBRT because of pain. Results: The median age and Karnofsky performance status were 57.5 years (range, 27-80 years) and 80 (range, 50-100), respectively. Eighteen patients were treated with 20-24 Gy in a single fraction, whereas 23 patients were treated with 24-35 Gy in 2-5 fractions. Pain flare was observed in 68.3% of patients (28 of 41), most commonly on day 1 after SBRT (29%, 8 of 28). Multivariate analysis identified a higher Karnofsky performance status (P=.02) and cervical (P=.049) or lumbar (P=.02) locations as significant predictors of pain flare. In those rescued with dexamethasone, a significant decrease in pain scores over time was subsequently observed (P<.0001). Conclusions: Pain flare is a common adverse event after spine SBRT and occurs most commonly the day after treatment completion. Patients should be appropriately consented for this adverse event.

  9. Dose verification of a clinical intensity-modulated radiation therapy eye case by the magnetic resonance imaging of N-isopropylacrylamide gel dosimeters

    Science.gov (United States)

    Chen, Yen-Li; Hsieh, Bor-Tsung; Chiang, Chih-Ming; Shih, Cheng-Ting; Cheng, Kai-Yuan; Hsieh, Ling-Ling

    2014-11-01

    In this study, N-isopropylacrylamide (NIPAM) polymer gel, together with magnetic resonance imaging (MRI), was used to measure the relative three-dimensional (3D) dose distribution of an intensity-modulated radiation therapy (IMRT) eye case. The gels were enclosed in cylindrical acrylic vessels with 10 cm outer diameter and 10 cm length. The gels were subsequently irradiated by delivering 5 Gy of a prescribed dose with a 6 MV linear accelerator using five fields. The 3D maps of the proton relaxation rate R2 were obtained using a 1.5 T MRI system correlated with the dose. The treatment planning system (TPS) data and NIPAM gel dosimeter data were compared with the experimental results in the form of relative dose distributions, including isodose curves, dose profiles, and gamma index maps. Results indicated that the linear relationship of the R2-dose for NIPAM gel dosimeters reached 0.999 within the dose range of 0 Gy to 12 Gy. Comparison of planar dose distributions among the gel dosimeters and TPS showed that the isodose lines corresponded to selected planes in the axial plane. For the 50% to 110% dose analysis, the maximum dose differences varied from 4.04% to 13.53%. Gamma evaluation of the planar dose profile resulted in pass rates of 96.84%, 83.16%, and 53.42% when the acceptance criteria of 3%/3 mm, 2%/2 mm, and 1%/1 mm, respectively, were used in the axial plane. Overall, the results showed that NIPAM polymer gel dosimeters can serve as a high-resolution, accurate, 3D tool for IMRT dose distribution verification.

  10. OPTIMIZATION OF PALLIATIVE EXTERNAL BEAM RADIATION THERAPY FOR BLADDER CANCER

    Directory of Open Access Journals (Sweden)

    Yu. V. Gumenetskaya

    2014-08-01

    Full Text Available Purpose: To improve the efficacy of palliative radiation therapy for patients with bladder cancer (BC.Materials and Methods: In the years 1990−2010, 90 patients with BC were treated with palliative external beam radiation therapy (EBRT using three regimens: conventional fractionation in group 1 (n = 37, hypofractionation in group 2 (n = 22 and accelerated dynamic fractionation in group 3 (n = 31.Results: The immediate efficacy of EBRT was evaluated taking into account rapid relief of local symptoms of disease. In group 1, a clinically significant response (hematuria relief was achieved in 63,0 % cases, in group 2 — in 62,5 %, in group 3 — in 91,7 % cases. The 10-year follow-up showed that in group 1, the median survival was 21,8 ± 3,3 months; in groups 2 and 3, the median survival was 27,0 ± 7,8 and 32,6 ± 9,8 months, respectively. In group 2, an increase in the rate of acute radiation reactions was noted, whereas in group 3, palliative EBRT did not produce higher rates and severity of acute radiation reactions and complications.Conclusion: Accelerated dynamic fractionation was found to shorten treatment times and to improve outcomes and quality of life for incurable patients with BC.

  11. OPTIMIZATION OF PALLIATIVE EXTERNAL BEAM RADIATION THERAPY FOR BLADDER CANCER

    Directory of Open Access Journals (Sweden)

    Yu. V. Gumenetskaya

    2012-01-01

    Full Text Available Purpose: To improve the efficacy of palliative radiation therapy for patients with bladder cancer (BC.Materials and Methods: In the years 1990−2010, 90 patients with BC were treated with palliative external beam radiation therapy (EBRT using three regimens: conventional fractionation in group 1 (n = 37, hypofractionation in group 2 (n = 22 and accelerated dynamic fractionation in group 3 (n = 31.Results: The immediate efficacy of EBRT was evaluated taking into account rapid relief of local symptoms of disease. In group 1, a clinically significant response (hematuria relief was achieved in 63,0 % cases, in group 2 — in 62,5 %, in group 3 — in 91,7 % cases. The 10-year follow-up showed that in group 1, the median survival was 21,8 ± 3,3 months; in groups 2 and 3, the median survival was 27,0 ± 7,8 and 32,6 ± 9,8 months, respectively. In group 2, an increase in the rate of acute radiation reactions was noted, whereas in group 3, palliative EBRT did not produce higher rates and severity of acute radiation reactions and complications.Conclusion: Accelerated dynamic fractionation was found to shorten treatment times and to improve outcomes and quality of life for incurable patients with BC.

  12. Potential for heavy particle radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Raju, M.R.; Phillips, T.L.

    1977-03-01

    Radiation therapy remains one of the major forms of cancer treatment. When x rays are used in radiotherapy, there are large variations in radiation sensitivity among tumors because of the possible differences in the presence of hypoxic but viable tumor cells, differences in reoxygenation during treatment, differences in distribution of the tumor cells in their cell cycle, and differences in repair of sublethal damage. When high-LET particles are used, depending upon the LET distribution, these differences are reduced considerably. Because of these differences between x rays and high-LET particle effects, the high-LET particles may be more effective on tumor cells for a given effect on normal cells. Heavy particles have potential application in improving radiotherapy because of improved dose localization and possible advantages of high-LET particles due to their radiobiological characteristics. Protons, because of their defined range, Bragg peak, and small effects of scattering, have good dose localization characteristics. The use of protons in radiotherapy minimizes the morbidity of radiotherapy treatment and is very effective in treating deep tumors located near vital structures. Fast neutrons have no physical advantages over /sup 60/Co gamma rays but, because of their high-LET component, could be very effective in treating tumors that are resistant to conventional radiations. Negative pions and heavy ions combine some of the advantages of protons and fast neutrons.

  13. Potential for heavy particle radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Raju, M.R.; Phillips, T.L.

    1977-03-01

    Radiation therapy remains one of the major forms of cancer treatment. When x rays are used in radiotherapy, there are large variations in radiation sensitivity among tumors because of the possible differences in the presence of hypoxic but viable tumor cells, differences in reoxygenation during treatment, differences in distribution of the tumor cells in their cell cycle, and differences in repair of sublethal damage. When high-LET particles are used, depending upon the LET distribution, these differences are reduced considerably. Because of these differences between x rays and high-LET particle effects, the high-LET particles may be more effective on tumor cells for a given effect on normal cells. Heavy particles have potential application in improving radiotherapy because of improved dose localization and possible advantages of high-LET particles due to their radiobiological characteristics. Protons, because of their defined range, Bragg peak, and small effects of scattering, have good dose localization characteristics. The use of protons in radiotherapy minimizes the morbidity of radiotherapy treatment and is very effective in treating deep tumors located near vital structures. Fast neutrons have no physical advantages over /sup 60/Co gamma rays but, because of their high-LET component, could be very effective in treating tumors that are resistant to conventional radiations. Negative pions and heavy ions combine some of the advantages of protons and fast neutrons.

  14. Analysis of radiation pneumonitis outside the radiation field in breast conserving therapy for early breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Ogo, Etsuyo; Fujimoto, Kiminori; Hayabuchi, Naofumi [Kurume Univ., Fukuoka (Japan). School of Medicine] (and others)

    2002-02-01

    In a retrospective study of radiation-induced pulmonary changes for patients with breast conserving therapy for early breast cancer, we sent questionnaires to the main hospitals in Japan. In this study, we analyzed pulmonary changes after tangential whole-breast irradiation. The purpose of this study was to determine the incidence and risk factors for radiation pneumonitis outside the radiation field. The questionnaires included patients data, therapy data, and lung injury information between August 1999 and May 2000. On the first questionnaires, answer letters were received from 107 institutions out of 158 (67.7%). On the second questionnaires, response rate (hospitals which had radiation pneumonitis outside the radiation field) was 21.7% (23/106). We could find no risk factors of this type of pneumonitis. We suggested that lung irradiation might trigger this type of pneumonitis which is clinically similar to BOOP (bronchiolitis obliterans organizing pneumonia). It developed in 1.5-2.1% among the patients with breast conserving surgery and tangential whole-breast irradiation. And it is likely appeared within 6 months after radiotherapy. (author)

  15. Radiation pneumonitis after stereotactic radiation therapy for lung cancer

    Institute of Scientific and Technical Information of China (English)

    Hideomi; Yamashita; Wataru; Takahashi; Akihiro; Haga; Keiichi; Nakagawa

    2014-01-01

    Stereotactic body radiation therapy(SBRT)has a locacontrol rate of 95%at 2 years for non-small cell lungcancer(NSCLC)and should improve the prognosis oinoperable patients,elderly patients,and patients withsignificant comorbidities who have early-stage NSCLCThe safety of SBRT is being confirmed in internationalmulti-institutional PhaseⅡtrials for peripheral lungcancer in both inoperable and operable patients,bureports so far have found that SBRT is a safe and effective treatment for early-stage NSCLC and early metastatic lung cancer.Radiation pneumonitis(RP)is oneof the most common toxicities of SBRT.Although mospost-treatment RP is Grade 1 or 2 and either asymptomatic or manageable,a few cases are severe,symptomatic,and there is a risk for mortality.The reportedrates of symptomatic RP after SBRT range from 9%to28%.Being able to predict the risk of RP after SBRT isextremely useful in treatment planning.A dose-effecrelationship has been demonstrated,but suggesteddose-volume factors like mean lung dose,lung V20and/or lung V2.5 differed among the reports.We foundthat patients who present with an interstitial pneumo-nitis shadow on computed tomography scan and high levels of serum Krebs von den Lungen-6 and surfactant protein D have a high rate of severe radiation pneumo-nitis after SBRT.At our institution,lung cancer patients with these risk factors have not received SBRT since 2006,and our rate of severe RP after SBRT has de-creased significantly since then.

  16. Novel Silicon Devices for Radiation Therapy Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Bruzzi, Mara, E-mail: mara.bruzzi@unifi.it

    2016-02-11

    Modern radiotherapy techniques pose specific constraints in radiation-monitoring and dosimetry due to the occurrence of small radiation fields with high dose gradients, variation in space and time of the dose rate, variation in space and time of the beam energy spectrum. Novel devices coping with these strict conditions are needed. This paper reviews the most advanced technologies developed with silicon-based materials for clinical radiotherapy. Novel Si diodes as Pt-doped Si, epitaxial Si as well as thin devices have optimized performance, their response being independent of the accumulated dose, thus ensuring radiation tolerance and no need of recalibration. Monolithic devices based on segmented Si detectors can be easily tailored to optimize spatial resolution in the large active areas required in clinical radiotherapy. In particular, a monolithic device based on epitaxial p-type silicon, characterized by high spatial resolution and ability to directly measure temporal variations in dose modulation proved to be best viable solution for pre-treatment verifications in IMRT fields.

  17. Cherenkov Video Imaging Allows for the First Visualization of Radiation Therapy in Real Time

    Energy Technology Data Exchange (ETDEWEB)

    Jarvis, Lesley A., E-mail: Lesley.a.jarvis@hitchcock.org [Department of Medicine, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire (United States); Norris Cotton Cancer Center at the Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire (United States); Zhang, Rongxiao [Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire (United States); Gladstone, David J. [Department of Medicine, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire (United States); Norris Cotton Cancer Center at the Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire (United States); Jiang, Shudong [Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire (United States); Hitchcock, Whitney [Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire (United States); Friedman, Oscar D.; Glaser, Adam K.; Jermyn, Michael [Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire (United States); Pogue, Brian W. [Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire (United States); Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire (United States)

    2014-07-01

    Purpose: To determine whether Cherenkov light imaging can visualize radiation therapy in real time during breast radiation therapy. Methods and Materials: An intensified charge-coupled device (CCD) camera was synchronized to the 3.25-μs radiation pulses of the clinical linear accelerator with the intensifier set × 100. Cherenkov images were acquired continuously (2.8 frames/s) during fractionated whole breast irradiation with each frame an accumulation of 100 radiation pulses (approximately 5 monitor units). Results: The first patient images ever created are used to illustrate that Cherenkov emission can be visualized as a video during conditions typical for breast radiation therapy, even with complex treatment plans, mixed energies, and modulated treatment fields. Images were generated correlating to the superficial dose received by the patient and potentially the location of the resulting skin reactions. Major blood vessels are visible in the image, providing the potential to use these as biological landmarks for improved geometric accuracy. The potential for this system to detect radiation therapy misadministrations, which can result from hardware malfunction or patient positioning setup errors during individual fractions, is shown. Conclusions: Cherenkoscopy is a unique method for visualizing surface dose resulting in real-time quality control. We propose that this system could detect radiation therapy errors in everyday clinical practice at a time when these errors can be corrected to result in improved safety and quality of radiation therapy.

  18. Cancer of the breast. Radiation therapy.

    Science.gov (United States)

    Mercado, R; Deutsch, M

    1979-01-01

    There are many questions that have to be answered concerning the role of radiotherapy in the management of primary breast cancer. Hopefully, prospective clinical trials will provide some answers, but more basic research into the biology of breast cancer and the host-tumor relationship will be needed. There are indications that radiotherapy alone, or following minimal extirpative surgery in selected cases, may be as effective for control of breast cancer as conventional mastectomies. The role of radiotherapy following segmental mastectomy, with or without axillary dissection, needs to be clarified. The possibility exists that high LET (linear energy transfer) radiation such as neutron or pi meson beams may provide better local control than conventional radiation. Thus, it may be possible to treat effectively all primary breast cancers with such radiations and obviate the need for any type of mastectomy. It remains to be demonstrated whether adjuvant chemotherapy is as effective as radiotherapy in preventing chest wall and regional node recurrences. If it is not, there may be a place for both adjuvant chemotherapy and radiotherapy in the treatment of operable cancer of the breast. Likewise, effective chemotherapy combined with radiotherapy may increase the local and regional control achieved with radiotherapy alone and make more primary lesions suitable for treatment without mastectomy. Meyer (1970) recently called attention to the leukopenia and cellualr immune deficiency produced by irradiation to the thorax and mediastinum. Further study is necessary to define exactly how much immunosuppression results from radiotherapy, its clinical significance and what can be done to avoid or counter it. If Stjervsward's thesis (1974) concerning the deleterious effects of radiotherapy on survival is correct, then it is of great importance to identify those patients most likely to be adversely affected by radiotherapy. Conversely, it may be possible in the future to identify a

  19. Tooth extraction by orthodontic force after radiation therapy: report of case

    Energy Technology Data Exchange (ETDEWEB)

    Rodu, B.; Filler, S.J.; Woodfin, G.K.

    1985-12-01

    This report presents a therapeutic approach to orthodontic tooth extraction in a patient at high risk for the development of osteoradionecrosis with conventional techniques. The rationale for this procedure is discussed in detail, combining principles of radiation biology, clinical radiation therapy, and biomechanics of tooth movement.

  20. Immunotherapy and radiation therapy: considerations for successfully combining radiation into the paradigm of immuno-oncology drug development.

    Science.gov (United States)

    Sharon, Elad; Polley, Mei-Yin; Bernstein, Michael B; Ahmed, Mansoor

    2014-08-01

    As the immunotherapy of cancer comes of age, adding immunotherapeutic agents to radiation therapy has the potential to improve the outcomes for patients with a wide variety of malignancies. Despite the enormous potential of such combination therapy, laboratory data has been lacking and there is little guidance for pursuing novel treatment strategies. Animal models have significant limitation in combining radiation therapy with immunotherapy and some of the limitations of preclinical models are discussed in this article. In addition to the preclinical challenges, radiation therapy and immunotherapy combinations may have overlapping toxicities, and for both types of therapy, early and late manifestations of toxicity are possible. Given these risks, special attention should be given to the design of the specific Phase I clinical trial that is chosen. In this article, we describe several Phase I design possibilities that may be employed, including the 3 + 3 design (also known as the cohort of 3 design), the continual reassessment method (CRM), and the time-to-event continual reassessment method (TITE-CRM). Efficacy end points for further development of combination therapy must be based on multiple factors, including disease type, stage of disease, the setting of therapy and the goal of therapy. While the designs for future clinical trials will vary, it is clear that these two successful modalities of therapy can and should be combined for the benefit of cancer patients.

  1. Optimization of Radiation Therapy Techniques for Prostate Cancer With Prostate-Rectum Spacers: A Systematic Review

    Energy Technology Data Exchange (ETDEWEB)

    Mok, Gary [Department of Radiation Oncology, Geneva University Hospital, Geneva (Switzerland); Department of Radiation Oncology, Centre Intégré de Cancérologie de Laval, Centre de Santé et de Services Sociaux de Laval, Laval, Québec (Canada); Department of Radiology, Radiation Oncology, and Nuclear Medicine, Centre Hospitalier Universitaire de Montréal, Montréal, Québec (Canada); Benz, Eileen [Department of Radiation Oncology, Geneva University Hospital, Geneva (Switzerland); Vallee, Jean-Paul [Department of Radiology, Geneva University Hospital, Geneva (Switzerland); Miralbell, Raymond [Department of Radiation Oncology, Geneva University Hospital, Geneva (Switzerland); Zilli, Thomas, E-mail: Thomas.Zilli@hcuge.ch [Department of Radiation Oncology, Geneva University Hospital, Geneva (Switzerland)

    2014-10-01

    Dose-escalated radiation therapy for localized prostate cancer improves disease control but is also associated with worse rectal toxicity. A spacer placed between the prostate and rectum can be used to displace the anterior rectal wall outside of the high-dose radiation regions and potentially minimize radiation-induced rectal toxicity. This systematic review focuses on the published data regarding the different types of commercially available prostate-rectum spacers. Dosimetric results and preliminary clinical data using prostate-rectum spacers in patients with localized prostate cancer treated by curative radiation therapy are compared and discussed.

  2. Clinical prognostic factors and grading system for rib fracture following stereotactic body radiation therapy (SBRT) in patients with peripheral lung tumors.

    Science.gov (United States)

    Kim, Su Ssan; Song, Si Yeol; Kwak, Jungwon; Ahn, Seung Do; Kim, Jong Hoon; Lee, Jung Shin; Kim, Woo Sung; Kim, Sang-We; Choi, Eun Kyung

    2013-02-01

    Several studies reported rib fractures following stereotactic body radiation therapy (SBRT) for peripheral lung tumors. We tried to investigate risk factors and grading system for rib fractures after SBRT. Of 375 primary or metastatic lung tumors (296 patients) which were treated with SBRT at the Asan Medical Center (2006-2009), 126 lesions (118 patients) were adjacent to the chest-wall (6 months; these were investigated in the present retrospective study. Three to four fractional doses of 10-20 Gy were delivered to 85-90% iso-dose volume of the isocenter dose. Rib fracture grade was defined from follow-up CT scans as the appearance of a fracture line (Gr1), dislocation of the fractured rib by more than half the rib diameter (Gr2), or the appearance of adjacent soft tissue edema (Gr3). Chest wall pain was assessed according to the Common Terminology Criteria for Adverse Events (CTCAE) v3.0. Correlations between dose-volume data and the development of rib fracture were then analyzed. The Kaplan-Meier method, log-rank tests, and chi-square tests were used for statistical analysis. The median age of the patients was 69 years (range: 19-90). Over a median follow-up period of 22 months (range: 7-62), 48 cases of rib fracture were confirmed. Median time to rib fracture was 17 months (range: 4-52). The 2-year actuarial risk of rib fracture was 42.4%. Maximal grade was Gr1 (n=28), Gr2 (n=8), or Gr3 (n=15). The incidence of moderate to severe chest wall pain (CTCAE Gr ≥ 2) increased with maximal fracture grade (17.5% for Gr0-1 and 60.9% for Gr2-3; prib fracture in the present study. Efforts to decrease chest wall dose should be made to reduce the risk of the rib fracture, particularly in high-risk patients. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  3. WE-AB-BRA-07: Quantitative Evaluation of 2D-2D and 2D-3D Image Guided Radiation Therapy for Clinical Trial Credentialing, NRG Oncology/RTOG

    Energy Technology Data Exchange (ETDEWEB)

    Giaddui, T; Yu, J; Xiao, Y [Thomas Jefferson University, Philadelphia, PA (United States); Jacobs, P [MIM Software, Inc, Cleavland, Ohio (United States); Manfredi, D; Linnemann, N [IROC Philadelphia, RTQA Center, Philadelphia, PA (United States)

    2015-06-15

    Purpose: 2D-2D kV image guided radiation therapy (IGRT) credentialing evaluation for clinical trial qualification was historically qualitative through submitting screen captures of the fusion process. However, as quantitative DICOM 2D-2D and 2D-3D image registration tools are implemented in clinical practice for better precision, especially in centers that treat patients with protons, better IGRT credentialing techniques are needed. The aim of this work is to establish methodologies for quantitatively reviewing IGRT submissions based on DICOM 2D-2D and 2D-3D image registration and to test the methodologies in reviewing 2D-2D and 2D-3D IGRT submissions for RTOG/NRG Oncology clinical trials qualifications. Methods: DICOM 2D-2D and 2D-3D automated and manual image registration have been tested using the Harmony tool in MIM software. 2D kV orthogonal portal images are fused with the reference digital reconstructed radiographs (DRR) in the 2D-2D registration while the 2D portal images are fused with DICOM planning CT image in the 2D-3D registration. The Harmony tool allows alignment of the two images used in the registration process and also calculates the required shifts. Shifts calculated using MIM are compared with those submitted by institutions for IGRT credentialing. Reported shifts are considered to be acceptable if differences are less than 3mm. Results: Several tests have been performed on the 2D-2D and 2D-3D registration. The results indicated good agreement between submitted and calculated shifts. A workflow for reviewing these IGRT submissions has been developed and will eventually be used to review IGRT submissions. Conclusion: The IROC Philadelphia RTQA center has developed and tested a new workflow for reviewing DICOM 2D-2D and 2D-3D IGRT credentialing submissions made by different cancer clinical centers, especially proton centers. NRG Center for Innovation in Radiation Oncology (CIRO) and IROC RTQA center continue their collaborative efforts to enhance

  4. Medical factors influencing decision making regarding radiation therapy for breast cancer

    Directory of Open Access Journals (Sweden)

    Dilaveri CA

    2014-11-01

    Full Text Available Christina A Dilaveri,1 Nicole P Sandhu,1 Lonzetta Neal,1 Michelle A Neben-Wittich,1,2 Tina J Hieken,3 Maire Brid Mac Bride,1 Dietlind L Wahner-Roedler,1 Karthik Ghosh1 1Division of General Internal Medicine, 2Department of Radiation Oncology, 3Division of Subspecialty General Surgery, Mayo Clinic, Rochester, MN, USA Abstract: Radiation therapy is an important and effective adjuvant therapy for breast cancer. Numerous health conditions may affect medical decisions regarding tolerance of breast radiation therapy. These factors must be considered during the decision-making process after breast-conserving surgery or mastectomy for breast cancer. Here, we review currently available evidence focusing on medical conditions that may affect the patient–provider decision-making process regarding the use of radiation therapy. Keywords: cardiac devices, connective tissue disease, prior radiation

  5. Radiation-induced myocardial perfusion abnormalities in breast cancer patients following external beam radiation therapy

    Directory of Open Access Journals (Sweden)

    Mohammad Eftekhari

    2015-01-01

    Full Text Available Objective(s: Radiation therapy for breast cancer can induce myocardial capillary injury and increase cardiovascular morbidity and mortality. A prospective cohort was conducted to study the prevalence of myocardial perfusion abnormalities following radiation therapy of left-sided breast cancer patients as compared to those with right–sided cancer. Methods: To minimize potential confounding factors, only those patients with low 10-year risk of coronary artery disease (based on Framingham risk scoring were included. All patients were initially treated by modified radical mastectomy and then were managed by postoperative 3D Conformal Radiation Therapy (CRT to the surgical bed with an additional 1-cm margin, delivered by 46-50 Gy (in 2 Gy daily fractions over a 5-week course. The same dose-adjusted chemotherapy regimen (including anthracyclines, cyclophosphamide and taxol was given to all patients. Six months after radiation therapy, all patients underwent cardiac SPECT for the evaluation of myocardial perfusion. Results: A total of 71 patients with a mean age of 45.3±7.2 years [35 patients with leftsided breast cancer (exposed and 36 patients with right-sided cancer (controls] were enrolled. Dose-volume histogram (DVH [showing the percentage of the heart exposed to >50% of radiation] was significantly higher in patients with left-sided breast cancer. Visual interpretation detected perfusion abnormalities in 42.9% of cases and 16.7% of controls (P=0.02, Odds ratio=1.46. In semiquantitative segmental analysis, only apical (28.6% versus 8.3%, P=0.03 and anterolateral (17.1% versus 2.8%, P=0.049 walls showed significantly reduced myocardial perfusion in the exposed group. Summed Stress Score (SSS of>3 was observed in twelve cases (34.3%, while in five of the controls (13.9%,(Odds ratio=1.3. There was no significant difference between the groups regarding left ventricular ejection fraction. Conclusion: The risk of radiation induced myocardial

  6. Adjuvant postoperative radiation therapy for carcinoma of the uterine cervix

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyung Ja; Moon, Hye Seong; Kim, Seung Cheol; Kim, Chong Il; Ahn, Jung Ja [College of Medicine, Ewha Womans Univ., Seoul (Korea, Republic of)

    2003-09-01

    This study was undertaken to evaluate the efficacy of postoperative radiotherapy, and to investigate the prognostic factors for FIGO stages IB-IIB cervical cancer patients who were treated with simple hysterectomy, or who had high-risk factors following radical hysterectomy and pelvic lymph node dissection. Between March 1986 and December 1998, 58 patients, with FIGO stages IB-IIB cervical cancer were included in this study, The indications for postoperative radiation therapy were based on the pathological findings, including lymph node metastasis, positive surgical margin, parametrial extension, Iymphovascular invasion, invasion of more than half the cervical stroma, uterine extension and the incidental finding of cervix cancer following simple hysterectomy. All patients received external pelvic radiotherapy, and 5 patients, received an additional intracavitary radiation therapy. The radiation dose from the external beam to the whole pelvis was 45 - 50 Gy. Vagina cuff irradiation was performed, after completion of the external beam irradiation, al a low-dose rate of CS-137, with the total dose of 4488-4932 chy (median: 4500 chy) at 5 mm depth from the vagina surface. The median follow-up period was 44 months (15-108 months), The 5-yr actuarial local control rate, distant free survival and disease-free survival rate were 98%, 95% and 94%, respectively. A univariate analysis of the clinical and pathological parameters revealed that the clinical stage (p=0.0145), status of vaginal resection margin (p=0.0002) and parametrial extension (p=0.0001) affected the disease-free survival. From a multivariate analysis, only a parametrial extension independently influenced the disease-free survival. Five patients (9%) experienced Grade 2 late treatment-related complications, such as radiation proctitis (1 patient), cystitis (3 patients) and lymphedema of the leg (1 patient). No patient had grade 3 or 4 complications. Our results indicate that postoperative radiation therapy can

  7. Early Choline Levels From 3-Tesla MR Spectroscopy After Exclusive Radiation Therapy in Patients With Clinically Localized Prostate Cancer are Predictive of Plasmatic Levels of PSA at 1 Year

    Energy Technology Data Exchange (ETDEWEB)

    Crehange, Gilles, E-mail: gcrehange@cgfl.fr [Department of Radiation Oncology, Anticancer Centre Georges Francois Leclerc, Dijon (France); Maingon, Philippe [Department of Radiation Oncology, Anticancer Centre Georges Francois Leclerc, Dijon (France); Gauthier, Melanie [Biostatistics and Epidemiological Unit, EA 4184, Anticancer Centre Georges Francois Leclerc, Dijon (France); Parfait, Sebastien [LE2I, UMR 5158 CNRS, Universite de Bourgogne, Dijon (France); Cochet, Alexandre [Department of Magnetic Resonance Spectroscopy, Centre Hospitalier Universitaire, Dijon (France); Mirjolet, Celine [Department of Radiation Oncology, Anticancer Centre Georges Francois Leclerc, Dijon (France); Bonnetain, Franck [Biostatistics and Epidemiological Unit, EA 4184, Anticancer Centre Georges Francois Leclerc, Dijon (France); Cormier, Luc [Department of Urology, Centre Hospitalier Universitaire, Dijon (France); Brunotte, Francois; Walker, Paul [LE2I, UMR 5158 CNRS, Universite de Bourgogne, Dijon (France); Department of Magnetic Resonance Spectroscopy, Centre Hospitalier Universitaire, Dijon (France)

    2011-11-15

    Purpose: To investigate the time course response of prostate metabolism to irradiation using magnetic resonance spectroscopy (MRS) at 3-month intervals and its impact on biochemical control. Methods and Materials: Between January 2008 and April 2010, 24 patients with localized prostate cancer were prospectively enrolled in the Evaluation of the Response to Irradiation with MR Spectroscopy (ERIS) trial. All the patients had been treated with intensity-modulated radiation therapy with or without long-term adjuvant hormonal therapy (LTHT) and underwent 3-T MRS and prostate-specific antigen (PSA) assays at baseline and every 3 months thereafter up to 12 months. Results: After radiation, the mean normalized citrate level (citrate/water) decreased significantly over time, both in the peripheral zone (PZ) (p = 0.0034) and in the entire prostate (p = 0.0008), whereas no significant change was observed in mean normalized choline levels (choline/water) in the PZ (p = 0.84) and in the entire prostate (p = 0.95). At 6 months after radiation, the mean choline level was significantly lower in the PZ for patients with a PSA value of {<=}0.5 ng/mL at 12 months (4.9 {+-} 1.7 vs. 7.1 {+-} 1.5, p = 0.0378). Similar results were observed at 12 months in the PZ (6.2 {+-} 2.3 vs. 11.4 {+-} 4.1, p = 0.0117 for choline level and 3.4 {+-} 0.7 vs. 16.1 {+-} 6.1, p = 0.0054 for citrate level) and also in the entire prostate (6.2 {+-} 1.9 vs. 10.4 {+-} 3.2, p = 0.014 for choline level and 3.0 {+-} 0.8 vs. 13.3 {+-} 4.7, p = 0.0054 for citrate level). For patients receiving LTHT, there was no correlation between choline or citrate levels and PSA value, either at baseline or at follow-up. Conclusions: Low normalized choline in the PZ, 6 months after radiation, predicts which patients attained a PSA {<=}0.5 ng/mL at 1 year. Further analyses with longer follow-up times are warranted to determine whether or not these new biomarkers can conclusively predict the early radiation response and the

  8. Hypofractionated Whole-Breast Radiation Therapy: Does Breast Size Matter?

    Energy Technology Data Exchange (ETDEWEB)

    Hannan, Raquibul, E-mail: Raquibul.Hannan@gmail.com [Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas (United States); Thompson, Reid F.; Chen Yu; Bernstein, Karen; Kabarriti, Rafi; Skinner, William [Department of Radiation Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York (United States); Chen, Chin C. [Department of Radiation Oncology, Columbia University Medical Center, New York, New York (United States); Landau, Evan; Miller, Ekeni; Spierer, Marnee; Hong, Linda; Kalnicki, Shalom [Department of Radiation Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York (United States)

    2012-11-15

    Purpose: To evaluate the effects of breast size on dose-volume histogram parameters and clinical toxicity in whole-breast hypofractionated radiation therapy using intensity modulated radiation therapy (IMRT). Materials and Methods: In this retrospective study, all patients undergoing breast-conserving therapy between 2005 and 2009 were screened, and qualifying consecutive patients were included in 1 of 2 cohorts: large-breasted patients (chest wall separation >25 cm or planning target volume [PTV] >1500 cm{sub 3}) (n=97) and small-breasted patients (chest wall separation <25 cm and PTV <1500 cm{sub 3}) (n=32). All patients were treated prone or supine with hypofractionated IMRT to the whole breast (42.4 Gy in 16 fractions) followed by a boost dose (9.6 Gy in 4 fractions). Dosimetric and clinical toxicity data were collected and analyzed using the R statistical package (version 2.12). Results: The mean PTV V95 (percentage of volume receiving >= 95% of prescribed dose) was 90.18% and the mean V105 percentage of volume receiving >= 105% of prescribed dose was 3.55% with no dose greater than 107%. PTV dose was independent of breast size, whereas heart dose and maximum point dose to skin correlated with increasing breast size. Lung dose was markedly decreased in prone compared with supine treatments. Radiation Therapy Oncology Group grade 0, 1, and 2 skin toxicities were noted acutely in 6%, 69%, and 25% of patients, respectively, and at later follow-up (>3 months) in 43%, 57%, and 0% of patients, respectively. Large breast size contributed to increased acute grade 2 toxicity (28% vs 12%, P=.008). Conclusions: Adequate PTV coverage with acceptable hot spots and excellent sparing of organs at risk was achieved by use of IMRT regardless of treatment position and breast size. Although increasing breast size leads to increased heart dose and maximum skin dose, heart dose remained within our institutional constraints and the incidence of overall skin toxicity was comparable

  9. Neutron radiation therapy: application of advanced technology to the treatment of cancer

    CERN Document Server

    Maughan, R L; Kota, C; Burmeister, J; Porter, A T; Forman, J D; Blosser, H G; Blosser, E; Blosser, G

    1999-01-01

    The design and construction of a unique superconducting cyclotron for use in fast neutron radiation therapy is described. The clinical results obtained in the treatment of adenocarcinoma of the prostate with this accelerator are presented. Future use of the boron neutron capture reaction as a means of enhancing fast neutron therapy in the treatment of patients with brain tumors (glioblastoma multiforme) is also discussed.

  10. Combination Adriamycin and radiation therapy in gynecologic cancers

    Energy Technology Data Exchange (ETDEWEB)

    Watring, W.G.; Byfield, J.E.; Lagasse, L.D.; Lee, Y.D.; Juillard, G.; Jacobs, M.; Smith, M.L.

    1974-12-01

    Anthracyclic antibiotics, of which adriamycin is representative, have the ability to bind to cellular DNA and thereby interfere with the X ray repair process. When radiation survival curves of tissue cultures were studied, increased cell-killing was noted in those cultures with adriamycin over those without the drug. The mechanism by which this occurs may be related to a reduced rate of DNA strand break rejoining, as demonstrated by use of alkaline sucrose gradient techniques. A preliminary clinical Phase I study, in which patients with advanced gynecologic malignancy were treated by simultaneous adriamycin and X radiation, suggests that combined therapy is well-tolerated, and that such combinations may prove useful in selected patients.

  11. The value of radiation therapy for pituitary tumors

    Energy Technology Data Exchange (ETDEWEB)

    Watari, Tsutomu [Dokkyo Univ., Mibu, Tochigi (Japan). School of Medicine

    1995-09-01

    Following points are discussed in this review. (1) Historical review of our previous therapeutic management. (2) Classification of pituitary adenomas. (3) Clinical analysis of my recent 58 cases. (4) Verification of usefulness of postoperative irradiation which achieved to increase in local control rate. (5) Authoritativeness of radiotherapy. In general, 3 to 4 portal technique or arc therapy were employed. The lateral opposing field technique was avoid to use. The recommended doses using linear accelerator x-ray technique is approximately 5000 cGy in 5 weeks. To prevent radiation hazard; (1) examiner should not use technique of two opposed fields, (2) total doses should not exceed 5000 cGy in 5 to 6 weeks and the use of daily fractions should not exceed 200 cGy. (6) Correlation of hormone secreting tumors and radiation therapy. (7) Problem of radiosurgery and heavy particle. (8) Countermeasure for recurrence cases. (9) Problem of side effects of radiotherapy and its precaution. Complication of radiation for pituitary adenoma found that the significant side effects are negligibly small in recent years. (10) Pituitary tumor are originally slow growing and benign tumor, therefore the response to irradiation takes long time to elapse for final evaluation. For instance, over 80 to 90% of acromegaly patients respond HGH successfully, but this may require from one to several years. (11) Conclusion. (author).

  12. Impact of Intensity-Modulated Radiation Therapy Technique for Locally Advanced Non-Small-Cell Lung Cancer: A Secondary Analysis of the NRG Oncology RTOG 0617 Randomized Clinical Trial.

    Science.gov (United States)

    Chun, Stephen G; Hu, Chen; Choy, Hak; Komaki, Ritsuko U; Timmerman, Robert D; Schild, Steven E; Bogart, Jeffrey A; Dobelbower, Michael C; Bosch, Walter; Galvin, James M; Kavadi, Vivek S; Narayan, Samir; Iyengar, Puneeth; Robinson, Clifford G; Wynn, Raymond B; Raben, Adam; Augspurger, Mark E; MacRae, Robert M; Paulus, Rebecca; Bradley, Jeffrey D

    2017-01-01

    Purpose Although intensity-modulated radiation therapy (IMRT) is increasingly used to treat locally advanced non-small-cell lung cancer (NSCLC), IMRT and three-dimensional conformal external beam radiation therapy (3D-CRT) have not been compared prospectively. This study compares 3D-CRT and IMRT outcomes for locally advanced NSCLC in a large prospective clinical trial. Patients and Methods A secondary analysis was performed to compare IMRT with 3D-CRT in NRG Oncology clinical trial RTOG 0617, in which patients received concurrent chemotherapy of carboplatin and paclitaxel with or without cetuximab, and 60- versus 74-Gy radiation doses. Comparisons included 2-year overall survival (OS), progression-free survival, local failure, distant metastasis, and selected Common Terminology Criteria for Adverse Events (version 3) ≥ grade 3 toxicities. Results The median follow-up was 21.3 months. Of 482 patients, 53% were treated with 3D-CRT and 47% with IMRT. The IMRT group had larger planning treatment volumes (median, 427 v 486 mL; P = .005); a larger planning treatment volume/volume of lung ratio (median, 0.13 v 0.15; P = .013); and more stage IIIB disease (30.3% v 38.6%, P = .056). Two-year OS, progression-free survival, local failure, and distant metastasis-free survival were not different between IMRT and 3D-CRT. IMRT was associated with less ≥ grade 3 pneumonitis (7.9% v 3.5%, P = .039) and a reduced risk in adjusted analyses (odds ratio, 0.41; 95% CI, 0.171 to 0.986; P = .046). IMRT also produced lower heart doses ( P < .05), and the volume of heart receiving 40 Gy (V40) was significantly associated with OS on adjusted analysis ( P < .05). The lung V5 was not associated with any ≥ grade 3 toxicity, whereas the lung V20 was associated with increased ≥ grade 3 pneumonitis risk on multivariable analysis ( P = .026). Conclusion IMRT was associated with lower rates of severe pneumonitis and cardiac doses in NRG Oncology clinical trial RTOG 0617, which supports

  13. Severe prostatic calcification after radiation therapy for cancer.

    Science.gov (United States)

    Jones, W A; Miller, E V; Sullivan, L D; Chapman, W H

    1979-06-01

    Severe symptomatic prostatic calcification was seen in 3 patients who had carcinoma of the prostate treated initially with transurethral resection, followed in 2 to 4 weeks by definitive radiation therapy. This complication is probably preventable if an interval of 6 weeks is allowed between transurethral resection of the prostate and radiation therapy.

  14. [Importance of sonotomography in radiation therapy (author's transl)].

    Science.gov (United States)

    Heckemann, R; Quast, U; Glaeser, L; Schmitt, G

    1976-08-01

    Ultrasound tomography provides true scale representation of body contours and organ structures. The image supplies substantial, individual geometrical data, essential for computerized radiation treatment planning. The mehtod is described. Typical planning examples for therapy are demonstrated. The value of follow up sonograms for radiation therapy is described. The limitations of the method are pointed out.

  15. Assessment of secondary radiation and radiation protection in laser-driven proton therapy

    Energy Technology Data Exchange (ETDEWEB)

    Faby, Sebastian; Wilkens, Jan J. [Technische Univ. Muenchen Klinikum rechts der Isar (Germany). Dept. of Radiation Oncology; Technische Univ. Muenchen (Germany). Physik-Dept.

    2015-09-01

    This work is a feasibility study of a radiation treatment unit with laser-driven protons based on a state-of-the-art energy selection system employing four dipole magnets in a compact shielded beamline. The secondary radiation emitted from the beamline and its energy selection system and the resulting effective dose to the patient are assessed. Further, it is evaluated whether or not such a compact system could be operated in a conventional treatment vault for clinical linear accelerators under the constraint of not exceeding the effective dose limit of 1 mSv per year to the general public outside the treatment room. The Monte Carlo code Geant4 is employed to simulate the secondary radiation generated while irradiating a hypothetical tumor. The secondary radiation inevitably generated inside the patient is taken into account as well, serving as a lower limit. The results show that the secondary radiation emanating from the shielded compact therapy system would pose a serious secondary dose contamination to the patient. This is due to the broad energy spectrum and in particular the angular distribution of the laser-driven protons, which make the investigated beamline together with the employed energy selection system quite inefficient. The secondary radiation also cannot be sufficiently absorbed in a conventional linear accelerator treatment vault to enable a clinical operation. A promising result, however, is the fact that the secondary radiation generated in the patient alone could be very well shielded by a regular treatment vault, allowing the application of more than 100 fractions of 2 Gy per day with protons. It is thus theoretically possible to treat patients with protons in such treatment vaults. Nevertheless, the results show that there is a clear need for alternative more efficient energy selection solutions for laser-driven protons.

  16. Occurrence of BOOP outside radiation field after radiation therapy for small cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Hamanishi, Tohru; Oida, Kazukiyo [Tenri Hospital, Nara (Japan); Morimatu, Takafumi (and others)

    2001-09-01

    We report a case of bronchiolitis obliterans organizing pneumonia (BOOP) that occurred outside the radiation field after radiation therapy for small cell lung cancer. A 74-year-old woman received chemotherapy and a total of 60 Gy of radiation therapy to the right hilum and mediastinum for small cell carcinoma of the suprahilar area of the right lung. Radiation pneumonitis developed within the radiation port 3 months after the completion of radiation therapy. She complained of cough and was admitted 7 months after completion of the radiation therapy. Chest radiography and computed tomography demonstrated peripheral alveolar opacities outside the radiation field on the side contralateral to that receiving the radiation therapy. Bronchoalveolar lavage showed that the total cell count was increased, with a markedly increased percentage of lymphocytes. Transbronchial lung biopsy revealed a histologic pattern consistent with BOOP. Treatment with corticosteroids resulted in rapid improvement of the symptoms and complete resolution of the radiographic abnormalities of the left lung. Although some cases of BOOP following radiation therapy for breast cancer have been reported, none of BOOP after radiation therapy for lung cancer have appeared in the literature. (author)

  17. Radiation therapy for children: evolving technologies in the era of ALARA

    Energy Technology Data Exchange (ETDEWEB)

    Kun, Larry E.; Beltran, Chris [St. Jude Children' s Research Hospital, Department of Radiological Sciences, Memphis, TN (United States)

    2009-02-15

    The evolution of ever more sophisticated oncologic imaging and technologies providing far more precise radiation therapy have combined to increase the utilization of sophisticated radiation therapy in childhood cancer. For a majority of children with common central nervous system, soft tissue, bone, and dysontogenic neoplasms, local irradiation is fundamental to successful multi-disciplinary management. Along with more precise target volume definition and radiation delivery, new technologies provide added certainty of patient positioning (electronic portal imaging, cone beam CT) and conformality of dose delivery (3-D conformal irradiation, intensity modulated radiation therapy, proton beam therapy). Each of the major areas of technology development are able to better confine the high-dose region to the intended target, but they are also associated with the potential for larger volumes of uninvolved tissues being exposed to low radiation doses. The latter issue plays a role in documented levels of secondary carcinogenesis, sometimes with greater anticipated incidence than that seen in conventional radiation therapy. Parameters related to carcinogenesis, such as dose-volume relationships and neutron contamination that accompanies high-energy photon irradiation and proton therapy, can be identified, sometimes modulated, and accepted as part of the clinical decision process in fine tuning radiation therapy in this more vulnerable age group. (orig.)

  18. [Clinical trials with advanced therapy medicinal products].

    Science.gov (United States)

    Schüssler-Lenz, M; Schneider, C K

    2010-01-01

    For advanced therapies, the same basic principles for assessment apply as for any other biotechnological medicinal product. Nevertheless, the extent of data for quality, safety, and efficacy can be highly specific. Until recently, advanced therapies were not uniformly regulated across Europe, e.g., tissue engineered products were regulated either as medicinal products or medical devices. Thus, for some products no data from clinical studies are available, e.g., for autologous chondrocyte products. The draft guideline on Good Clinical Practice for clinical trials with advanced therapies describes specific additional requirements, e.g., ensuring traceability. Most clinical studies with advanced therapies in Germany are still in early phase I or II trials with highly divergent types of products and clinical indications. The Committee for Advanced Therapies (CAT) at the European Medicines Agency (EMEA) has been established to meet the scientific and regulatory challenges with advanced therapies.

  19. Assessing Adverse Events of Postprostatectomy Radiation Therapy for Prostate Cancer: Evaluation of Outcomes in the Regione Emilia-Romagna, Italy

    Energy Technology Data Exchange (ETDEWEB)

    Showalter, Timothy N., E-mail: tns3b@virginia.edu [Department of Radiation Oncology, University of Virginia, Charlottesville, Virginia (United States); Hegarty, Sarah E. [Center for Research in Medical Education and Health Care, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania (United States); Division of Biostatistics, Department of Pharmacology and Experimental Therapeutics, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania (United States); Rabinowitz, Carol [Center for Research in Medical Education and Health Care, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania (United States); Maio, Vittorio [Jefferson School of Population Health, Thomas Jefferson University, Philadelphia, Pennsylvania (United States); Hyslop, Terry [Department of Biostatistics & Bioinformatics, Duke University School of Medicine, Durham, North Carolina (United States); Dicker, Adam P. [Department of Radiation Oncology, Kimmel Cancer Center & Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania (United States); Louis, Daniel Z. [Center for Research in Medical Education and Health Care, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania (United States)

    2015-03-15

    , the timing of radiation therapy did not influence the risk of radiation therapy–associated adverse events in this cohort, which contradicts the commonly held clinical tenet that delaying radiation therapy reduces the risk of adverse events.

  20. Lessons Learned from Radiation Oncology Clinical Trials

    OpenAIRE

    Liu, Fei-Fei; Okunieff, Paul; Bernhard, Eric J.; Stone, Helen B.; Yoo, Stephen; Coleman, C. Norman; Vikram, Bhadrasain; Brown, Martin; Buatti, John; Guha, Chandan

    2013-01-01

    A Workshop entitled “Lessons Learned from Radiation Oncology Trials” was held on December 7–8th, 2011 in Bethesda, MD, to present and discuss some of the recently conducted Radiation Oncology clinical trials with a focus on those that failed to refute the null hypothesis. The objectives of this Workshop were to summarize and examine the questions that these trials provoked, to assess the quality and limitations of the pre-clinical data that supported the hypotheses underlying these trials, an...

  1. Modeling Clinical Radiation Responses in the IMRT Era

    Science.gov (United States)

    Schwartz, J. L.; Murray, D.; Stewart, R. D.; Phillips, M. H.

    2014-03-01

    The purpose of this review is to highlight the critical issues of radiobiological models, particularly as they apply to clinical radiation therapy. Developing models of radiation responses has a long history that continues to the present time. Many different models have been proposed, but in the field of radiation oncology, the linear-quadratic (LQ) model has had the most impact on the design of treatment protocols. Questions have been raised as to the value of the LQ model given that the biological assumption underlying it has been challenged by molecular analyses of cell and tissue responses to radiation. There are also questions as to use of the LQ model for hypofractionation, especially for high dose treatments using a single fraction. While the LQ model might over-estimate the effects of large radiation dose fractions, there is insufficient information to fully justify the adoption of alternative models. However, there is increasing evidence in the literature that non-targeted and other indirect effects of radiation sometimes produce substantial deviations from LQ-like dose-response curves. As preclinical and clinical hypofractionation studies accumulate, new or refined dose-response models that incorporate high-dose/fraction non-targeted and indirect effects may be required, but for now the LQ model remains a simple, useful tool to guide the design of treatment protocols.

  2. Radiation Therapy for Chloroma (Granulocytic Sarcoma)

    Energy Technology Data Exchange (ETDEWEB)

    Bakst, Richard; Wolden, Suzanne [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Yahalom, Joachim, E-mail: yahalomj@mskcc.org [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY (United States)

    2012-04-01

    Objectives: Chloroma (granulocytic sarcoma) is a rare, extramedullary tumor of immature myeloid cells related to acute nonlymphocytic leukemia or myelodysplastic syndrome. Radiation therapy (RT) is often used in the treatment of chloromas; however, modern studies of RT are lacking. We reviewed our experience to analyze treatment response, disease control, and toxicity associated with RT to develop treatment algorithm recommendations for patients with chloroma. Patients and Methods: Thirty-eight patients who underwent treatment for chloromas at our institution between February 1990 and June 2010 were identified and their medical records were reviewed and analyzed. Results: The majority of patients that presented with chloroma at the time of initial leukemia diagnosis (78%) have not received RT because it regressed after initial chemotherapy. Yet most patients that relapsed or remained with chloroma after chemotherapy are in the RT cohort (90%). Thirty-three courses of RT were administered to 22 patients. Radiation subsite breakdown was: 39% head and neck, 24% extremity, 9% spine, 9% brain, 6% genitourinary, 6% breast, 3% pelvis, and 3% genitourinary. Median dose was 20 (6-36) Gy. Kaplan-Meier estimates of progression-free survival and overall survival in the RT cohort were 39% and 43%, respectively, at 5 years. At a median follow-up of 11 months since RT, only 1 patient developed progressive disease at the irradiated site and 4 patients developed chloromas at other sites. RT was well tolerated without significant acute or late effects and provided symptom relief in 95% of cases. Conclusions: The majority of patients with chloromas were referred for RT when there was extramedullary progression, marrow relapse, or rapid symptom relief required. RT resulted in excellent local disease control and palliation of symptoms without significant toxicity. We recommend irradiating chloromas to at least 20 Gy, and propose 24 Gy in 12 fractions as an appropriate regimen.

  3. Radiation protection at Hadron therapy facilities.

    Science.gov (United States)

    Pelliccioni, Maorizio

    2011-07-01

    The Italian National Centre for Oncological Hadrontherapy is currently under construction in Pavia. It is designed for the treatment of deep-seated tumours (up to a depth of 27 cm of water equivalent) with proton and C-ion beams as well as for both clinical and radiobiological research. The particles will be accelerated by a 7-MeV u(-1) LINAC injector and a 400-MeV u(-1) synchrotron. In the first phase of the project, three treatment rooms will be in operation, equipped with four fixed beams, three horizontal and one vertical. The accelerators are currently undergoing commissioning. The main radiation protection problems encountered (shielding, activation, etc.) are hereby illustrated and discussed in relation to the constraints set by the Italian national authorities.

  4. Age Disparity in Palliative Radiation Therapy Among Patients With Advanced Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Jonathan [University of Hawaii, John A. Burns School of Medicine, Honolulu, Hawaii (United States); Xu, Beibei [Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California (United States); Moores Cancer Center, University of California San Diego, La Jolla, California (United States); Yeung, Heidi N.; Roeland, Eric J. [Moores Cancer Center, University of California San Diego, La Jolla, California (United States); Division of Palliative Medicine, Department of Internal Medicine, University of California San Diego, La Jolla, California (United States); Martinez, Maria Elena [Moores Cancer Center, University of California San Diego, La Jolla, California (United States); Department of Family and Preventive Medicine, University of California San Diego, La Jolla, California (United States); Le, Quynh-Thu [Department of Radiation Oncology, Stanford University, Stanford, California (United States); Mell, Loren K. [Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California (United States); Moores Cancer Center, University of California San Diego, La Jolla, California (United States); Murphy, James D., E-mail: j2murphy@ucsd.edu [Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California (United States); Moores Cancer Center, University of California San Diego, La Jolla, California (United States)

    2014-09-01

    Purpose/Objective: Palliative radiation therapy represents an important treatment option among patients with advanced cancer, although research shows decreased use among older patients. This study evaluated age-related patterns of palliative radiation use among an elderly Medicare population. Methods and Materials: We identified 63,221 patients with metastatic lung, breast, prostate, or colorectal cancer diagnosed between 2000 and 2007 from the Surveillance, Epidemiology, and End Results (SEER)-Medicare linked database. Receipt of palliative radiation therapy was extracted from Medicare claims. Multivariate Poisson regression analysis determined residual age-related disparity in the receipt of palliative radiation therapy after controlling for confounding covariates including age-related differences in patient and demographic covariates, length of life, and patient preferences for aggressive cancer therapy. Results: The use of radiation decreased steadily with increasing patient age. Forty-two percent of patients aged 66 to 69 received palliative radiation therapy. Rates of palliative radiation decreased to 38%, 32%, 24%, and 14% among patients aged 70 to 74, 75 to 79, 80 to 84, and over 85, respectively. Multivariate analysis found that confounding covariates attenuated these findings, although the decreased relative rate of palliative radiation therapy among the elderly remained clinically and statistically significant. On multivariate analysis, compared to patients 66 to 69 years old, those aged 70 to 74, 75 to 79, 80 to 84, and over 85 had a 7%, 15%, 25%, and 44% decreased rate of receiving palliative radiation, respectively (all P<.0001). Conclusions: Age disparity with palliative radiation therapy exists among older cancer patients. Further research should strive to identify barriers to palliative radiation among the elderly, and extra effort should be made to give older patients the opportunity to receive this quality of life-enhancing treatment at the end

  5. Arc binary intensity modulated radiation therapy (AB IMRT)

    Science.gov (United States)

    Yang, Jun

    The state of the art Intensity Modulate Radiation Therapy (IMRT) has been one of the most significant breakthroughs in the cancer treatment in the past 30 years. There are two types of IMRT systems. The first system is the binary-based tomotherapy, represented by the Peacock (Nomos Corp) and Tomo unit (TomoTherapy Inc.), adopting specific binary collimator leafs to deliver intensity modulated radiation fields in a serial or helical fashion. The other uses the conventional dynamic multileaf collimator (MLC) to deliver intensity modulated fields through a number of gantry positions. The proposed Arc Binary IMRT attempts to deliver Tomo-like IMRT with conventional dynamic MLC and combines the advantages of the two types of IMRT techniques: (1) maximizing the number of pencil beams for better dose optimization, (2) enabling conventional linear accelerator with dynamic MLC to deliver Tomo-like IMRT. In order to deliver IMRT with conventional dynamic MLC in a binary fashion, the slice-by-slice treatment with limited slice thickness has been proposed in the thesis to accommodate the limited MLC traveling speed. Instead of moving the patient to subsequent treatment slices, the proposed method offsets MLC to carry out the whole treatment, slice by slice sequentially, thus avoid patient position error. By denoting one arc pencil beam set as a gene, genetic algorithm (GA) is used as the searching engine for the dose optimization process. The selection of GA parameters is a crucial step and has been studied in depth so that the optimization process will converge with reasonable speed. Several hypothetical and clinical cases have been tested with the proposed IMRT method. The comparison of the dose distribution with other commercially available IMRT systems demonstrates the clear advantage of the new method. The proposed Arc Binary Intensity Modulated Radiation Therapy is not only theoretically sound but practically feasible. The implementation of this method would expand the

  6. Individual skin care during radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Zimmermann, J.S. [Klinik fuer Strahlentherapie (Radioonkologie), Christian-Albrechts-Universitaet Kiel (Germany); Budach, W. [Klinik und Poliklinik fuer Strahlentherapie und Radioonkologie, Eberhard-Carls-Universitaet Tuebingen (Germany); Doerr, W. [Klinik und Poliklinik fuer Strahlentherapie und Radioonkologie, Medizinische Fakultaet Carl Gustav Carus, Dresden (Germany)

    1998-11-01

    Background: In many clinical settings, the irradiated patient feels additional discomfort by the inhibition of washing the treatment portals and interruption of his adapted skin care habits. Material and methods: An analysis of the scientific recommendations as well as an analysis of the skin dose to the irradiated portals has been performed. An individual scheme for skin care under radiation has been developed. Results: A substantial decrease of the skin dose is achieved in many modern radiation techniques. The consequent reduction of severe skin reactions allowed the use of water and mild soaps as has been approved within many radiotherapy departments. This has lead to an individualized concept for skin care under radiation treatment including the allowance of gentle washing. The skin marks may be saved by using highly tolerable adhesive plasters or small tattoo points, if they are not superfluous by using masks or single referee points instead of marks for the field borders. Conclusions: The individualized concept for skin care during radiation may offer improved life quality to the patient and may decrease the acute reactions of the skin at least in some cases. (orig.) [Deutsch] Hintergrund: In vielen klinischen Situationen erfaehrt der bestrahlte Patient zusaetzliche Belastungen durch das frueher ausgesprochene Waschverbot der Bestrahlungsfelder wie auch durch die Unterbrechung seiner langjaehrigen Hygienegewohnheiten. Material und Methoden: Es wurde eine Analyse der wissenschaftlichen Empfehlungen wie auch der heutzutage bei modernen Bestrahlungstechniken auftretenden Hautdosis durchgefuehrt. Ein individuelles Schema zur Pflege der bestrahlten Haut wurde entwickelt. Ergebnisse: Durch eine Verringerung der Hautdosis und damit der Inzidenz schwerer Hautreaktionen bei modernen Bestrahlungstechniken wird mittlerweile in vielen Abteilungen das `Waschverbot` fuer bestrahlte Haut gelockert. Dies hat zu einem individualisierten Hautpflegekonzept unter der Bestrahlung

  7. Treatment of retinoblastoma by precision megavoltage radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Schipper, J.; Peperzeel, H.A. van (Rijksuniversiteit Utrecht (Netherlands). Academisch Ziekenhuis); Tan, K.E.W.P. (Royal Dutch Eye Hospital, Utrecht, Netherlands)

    1985-02-01

    The principal treatment concept in the Utrecht Retinoblastoma Centre is megavoltage irradiation, followed by light coagulation and/or cryotherapy if there is any doubt as to whether the residual tumour is still active. Radiation therapy is administered by means of a simple but highly accurate temporal beam technique. A standardized dose of 45 Gy is given in 15 fractions of 3 Gy at 3 fractions per week. From 1971 to 1982, 39 children with retinoblastoma have been irradiated in at least one eye. Of the 73 affected eyes, 18 were primarily enucleated, one received light coagulation only, and 54 received radiation therapy. Of the 54 irradiated eyes, 32 were additionally treated by light coagulation and/or cryotherapy for suspicious residual tumour (in 29 eyes), recurrent tumour (in 1 eye), and/or new tumour (in 3 eyes) and 10 were ultimately enucleated. Two eyes also received hyperthermia. The percentages of cure of the irradiated eyes with a minimum follow-up of 2 years were 100% (14/14), 100% (9/9), 83% (10/12), 79% (11/14) and 0% (0/5) in the Reese-Ellsworth groups I to V-A, respectively. Of the saved eyes 95% achieved useful vision. Eighteen eyes developed a clinically detectable radiation cataract; in five of these the lens was aspirated. Cataracts developed exclusively in those lenses of which a posterior portion of more than 1 mm had to be included in the treatment field. The likelihood and the degree of cataract formation was found to be directly related to the dose of radiation to the germinative zone of the lens epithelium. The minimum cataractogenic dose found in this series was 8 Gy.

  8. Radiation therapy for long-bone metastases

    Energy Technology Data Exchange (ETDEWEB)

    Wadasaki, Kouichi; Tomiyoshi, Hideki; Ooshima, Yoshie; Urashima, Masaki; Mori, Masaki (Hiroshima Red Cross Hospital and Atomic-Bomb Survivors Hospital (Japan))

    1992-09-01

    Efficacy of palliative and prophylactic radiotherapies for metastatic bone pain and pathological fracture was investigated in 14 patients with long bone metastases. Irradiation sites were the femur in 10 patients, the humerus in 2, the radius in one, and the tibia in one. Radiographs showed osteolytic lesion in 13 patients and osteoblastic lesion in one. A total dose of 48.6 Gy to 87.3 Gy was delivered in daily fractional doses of 2 Gy (one patient), 2.5 Gy (3), 3 Gy (6), 4 Gy (2) and 5 Gy (2), 5 days a week. For 13 patients, except for one death within one month after the completion of irradiation, pain relief was attained. Of these patients, 7 (54%) had complete pain relief. In one patient, pathological fracture occurred as early as 10 days after the beginning of irradiation when irradiation efficacy was not attained. In none of the 13 others, was pathological fracture encountered. No side effects were seen at all during or after irradiation. Radiation therapy was an extremely effective means for managing patients with long bone metastases in terms of its palliative and prophylactic role. (N.K.).

  9. Radiation therapy for the solitary plasmacytoma

    Directory of Open Access Journals (Sweden)

    Esengül Koçak

    2010-06-01

    Full Text Available Plasma-cell neoplasms are classically categorized into four groups as: multiple myeloma (MM, plasma-cell leukemias, solitary plasmacytomas (SP of the bone (SPB, and extramedullary plasmacytomas (EMP. These tumors may be described as localized or diffuse in presentation. Localized plasma-cell neoplasms are rare, and include SP of the skeletal system, accounting for 2-5% of all plasma-cell neoplasms, and EMP of soft tissue, accounting for approximately 3% of all such neoplasms. SP is defined as a solitary mass of neoplastic plasma cells either in the bone marrow or in various soft tissue sites. There appears to be a continuum in which SP often progresses to MM. The main treatment modality for SP is radiation therapy (RT. However, there are no conclusive data in the literature on the optimal RT dose for SP. This review describes the interrelationship of plasma-cell neoplasms, and attempts to determine the minimal RT dose required to obtain local control.

  10. Radiation therapy for oral verrucous carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Hamamoto, Yasushi; Niino, Keiji; Yoshino, Masanari; Yamaguchi, Koichi; Yoshizawa, Nobuo; Takahashi, Koji [Yamagata Univ. (Japan). School of Medicine; Itagaki, Takatomo; Watarai, Jiro

    2000-12-01

    In order to examine the usefulness of radiotherapy for verrucous carcinoma, eight cases of oral verrucous carcinoma treated with radiation therapy were reviewed. Definitive radiotherapy was performed in six patients and preoperative radiotherapy was performed in two patients. Definitive radiotherapy doses ranged from 20 to 60 Gy (median: 47.5 Gy) and preoperative radiotherapy doses were 25 Gy, delivered with a daily fraction size of 2.5 Gy in principle. All cases that received definitive irradiation became CR, but two of these patients underwent local recurrence; one was a patient irradiated with only 20 Gy and the other case underwent local recurrence of squamous cell carcinoma. In the cases irradiated with 45 Gy or more, 4 of 5 cases were locally controlled. No patient underwent regional lymph node metastases. One of two patients that received preoperative radiotherapy had local recurrence in spit of a negative surgical margin. Because the radiosensitivity of verrucous carcinoma was often good and anaplastic transformation was not common, radiotherapy can become a radical treatment for verrucous carcinoma. (author)

  11. [(111)In-DTPA]octreotide tumor uptake in GEPNET liver metastases after intra-arterial administration: an overview of preclinical and clinical observations and implications for tumor radiation dose after peptide radionuclide therapy.

    Science.gov (United States)

    Pool, Stefan E; Kam, Boen L R; Koning, Gerben A; Konijnenberg, Mark; Ten Hagen, Timo L M; Breeman, Woulter A P; Krenning, Eric P; de Jong, Marion; van Eijck, Casper H J

    2014-05-01

    With the aim to improve peptide receptor radionuclide therapy effects in patients with gastroenteropancreatic neuroendocrine tumor (GEPNET) liver metastases we explored the effect of intra-arterial (IA) administration of [(111)In-DTPA]octreotide ((111)In-DTPAOC) on tumor uptake in an animal model and in a patient study. Preclinical study: After administering (111)In-DTPAOC intra-venously (IV) or IA, biodistribution studies were performed in rats with a hepatic somatostatin receptor subtype 2 (sst2)-positive tumor. Clinical study: 3 patients with neuroendocrine liver metastases were injected twice with (111)In-DTPAOC. The first injection was given IV, and 2 weeks later, the second was injected IA (hepatic artery). Planar images of the abdomen were made up to 72 hours after injection. Blood samples were taken and urine was collected. Pharmacokinetic modeling was performed on the IV and IA data of the same patient. Based on this model, additional (177)Lu dosimetry calculations for IV and IA administrations were performed. The preclinical study showed a two-fold higher (111)In-DTPAOC tumor uptake after IA administration than after IV injection. Patient data showed a large variability in radioactivity increment in liver metastases after IA administration compared with IV administration. Renal radioactivity was not significantly lower after IA administration; (177)Lu dosimetry simulations in 1 patient using a maximum kidney radiation dose of 23 Gy showed IA administration resulted in a mean increase in tumor radiation dose of 2.9-fold. Preclinical and clinical data both indicate that IA administration of radiolabeled somatostatin analogs via the hepatic artery can significantly increase radionuclide uptake in GEPNET, sst2-positive, liver metastases up to 72 hours postinjection, although the effect of IA administration can differ between patients.

  12. Palliative Radiation Therapy for Symptomatic Control of Inoperable Renal Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Anatoly Nikolaev

    2016-01-01

    Full Text Available Renal cell carcinoma (RCC is traditionally considered to be resistant to conventional low dose radiation therapy (RT. The emergence of image-guided stereotactic body radiation therapy (SBRT made it possible to deliver much higher doses of radiation. Recent clinical trials of SBRT for RCC showed improvement in local control rates and acceptable toxicity. Here we report a case of inoperable symptomatic RCC that was managed with SBRT. Strikingly, the presenting symptoms of gross hematuria and severe anemia were completely resolved following a course of SBRT. Thus, our case report highlights the potential benefit of this technique for patients with inoperable RCC.

  13. On bolus for megavoltage photon and electron radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Vyas, Vedang [University of Waterloo, Waterloo, Ontario (Canada); Grand River Regional Cancer Centre, Kitchener, Ontario (Canada); Palmer, Lisa; Mudge, Ray [Grand River Regional Cancer Centre, Kitchener, Ontario (Canada); Jiang, Runqing [University of Waterloo, Waterloo, Ontario (Canada); Grand River Regional Cancer Centre, Kitchener, Ontario (Canada); Fleck, Andre [Grand River Regional Cancer Centre, Kitchener, Ontario (Canada); Schaly, Bryan [London Regional Cancer Program, London, Ontario (Canada); Osei, Ernest [University of Waterloo, Waterloo, Ontario (Canada); Grand River Regional Cancer Centre, Kitchener, Ontario (Canada); Charland, Paule, E-mail: paule.charland@grhosp.on.ca [Grand River Regional Cancer Centre, Kitchener, Ontario (Canada)

    2013-10-01

    Frequently, in radiation therapy one must treat superficial lesions on cancer patients; these are at or adjacent to the skin. Megavoltage photon radiotherapy penetrates through the skin to irradiate deep-seated tumors, with skin-sparing property. Hence, to treat superficial lesions, one must use a layer of scattering material to feign as the skin surface. Although megavoltage electron beams are used for superficial treatments, one occasionally needs to enhance the dose near the surface. Such is the function of a “bolus,” a natural or synthetically developed material that acts as a layer of tissue to provide a more effective treatment to the superficial lesions. Other uses of boluses are to correct for varying surface contours and to add scattering material around the patient's surface. Materials used as bolus vary from simple water to metal and include various mixtures and compounds. Even with the modernization of the technology for external-beam therapy and the emergence of various commercial boluses, the preparation and utilization of a bolus in clinical radiotherapy remains an art. Considering the varying experiences and practices, this paper briefly summarizes available boluses that have been proposed and are employed in clinical radiotherapy. Although this review is not exhaustive, it provides some initial guidance and answers questions that may arise in clinical practice.

  14. Natural health products and cancer chemotherapy and radiation therapy

    Directory of Open Access Journals (Sweden)

    Doreen Oneschuk

    2011-12-01

    Full Text Available Complementary therapies, notably natural health products such as herbs and vitamins, are frequently used by cancer patients receiving chemotherapy and radiation therapy. There is much controversy as to whether these natural health products should be taken during conventional cancer treatments. Supporters of this practice cite beneficial effects of the antioxidant properties, while opponents are concerned about the potential for natural health product-chemotherapy/radiation related negative interactions. This involves understanding the role and effect on metabolizing enzymes. This review will highlight the present evidence for both the beneficial and negative consequences of the use of natural health products during chemotherapy and radiation therapy.

  15. A practical three-dimensional dosimetry system for radiation therapy.

    Science.gov (United States)

    Guo, Pengyi; Adamovics, John; Oldham, Mark

    2006-10-01

    There is a pressing need for a practical three-dimensional (3D) dosimetry system, convenient for clinical use, and with the accuracy and resolution to enable comprehensive verification of the complex dose distributions typical of modern radiation therapy. Here we introduce a dosimetry system that can achieve this challenge, consisting of a radiochromic dosimeter (PRESAGE) and a commercial optical computed tomography (CT) scanning system (OCTOPUS). PRESAGE is a transparent material with compelling properties for dosimetry, including insensitivity of the dose response to atmospheric exposure, a solid texture negating the need for an external container (reducing edge effects), and amenability to accurate optical CT scanning due to radiochromic optical contrast as opposed to light-scattering contrast. An evaluation of the performance and viability of the PRESAGE/OCTOPUS, combination for routine clinical 3D dosimetry is presented. The performance of the two components (scanner and dosimeter) was investigated separately prior to full system test. The optical CT scanner has a spatial resolution of OCTOPUS system was evaluated with respect to a simple known 3D dose distribution, by comparison with GAFCHROMIC EBT film and the calculated dose from a commissioned planning system. The "measured" dose distribution in a cylindrical PRESAGE dosimeter (16 cm diameter and 11 cm height) was determined by optical-CT, using a filtered backprojection reconstruction algorithm. A three-way Gamma map comparison (4% dose difference and 4 mm distance to agreement), between the PRESAGE, EBT and calculated dose distributions, showed full agreement in measurable region of PRESAGE dosimeter (approximately 90% of radius). The EBT and PRESAGE distributions agreed more closely with each other than with the calculated plan, consistent with penumbral blurring in the planning data which was acquired with an ion chamber. In summary, our results support the conclusion that the PRESAGE optical

  16. Radiation therapy in Kimura's disease

    Energy Technology Data Exchange (ETDEWEB)

    Itami, J.; Arimizu, N.; Miyoshi, T.; Ogata, H.; Miura, K. (Chiba Univ. (Japan). Dept. of Radiology)

    1989-01-01

    Kimura's disease is a rare disorder which predominantly involves the head and neck region and causes eosinophilia in peripheral blood. It often responds well to corticosteroid therapy but some patients can be resistant; in these patients symptomatic radiation therapy can be of value. We reviewed 10 patients with Kimura's disease who received radiation therapy from 1975 through 1981 in the Department of Radiology, Chiba University Hospital. Nineteen tumors were irradiated and 15 of them locally controlled. In 5 patients, steroid therapy could be withdrawn. For local control, 25 to 30 Gy seemed to be adequate. (orig.).

  17. Controlled study of CCNU and radiation therapy in malignant astrocytoma.

    Science.gov (United States)

    Reagan, T J; Bisel, H F; Childs, D S; Layton, D D; Rhoton, A L; Taylor, W F

    1976-02-01

    The authors report 63 patients with biopsy-proved malignant (Grades 3 and 4) astrocytomas who were randomly placed in one of three treatment schedules within 2 weeks of surgery. One group (22 patients) received radiation therapy alone; the second group (22 patients) received 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea (CCNU) orally at intervals of 8 weeks; and the third group (19 patients) received combined radiation and drug therapy. Patients who received radiation therapy, with or without the drug, had a significantly longer survival than did those who received the drug alone. There was no difference in survival between the two groups who received radiation. The nitrosourea derivative CCNU does not seem to be an effective agent in the therapy of primary malignant brain tumors.

  18. Advances in Radiation Therapy in Pediatric Neuro-oncology.

    Science.gov (United States)

    Bindra, Ranjit S; Wolden, Suzanne L

    2016-03-01

    Radiation therapy remains a highly effective therapy for many pediatric central nervous system tumors. With more children achieving long-term survival after treatment for brain tumors, late-effects of radiation have become an important concern. In response to this problem, treatment protocols for a variety of pediatric central nervous system tumors have evolved to reduce radiation fields and doses when possible. Recent advances in radiation technology such as image guidance and proton therapy have led to a new era of precision treatment with significantly less exposure to healthy tissues. These developments along with the promise of molecular classification of tumors and targeted therapies point to an optimistic future for pediatric neuro-oncology.

  19. Superficial Radiation Therapy for the Treatment of Nonmelanoma Skin Cancers.

    Science.gov (United States)

    McGregor, Sean; Minni, John; Herold, David

    2015-12-01

    Superficial radiation therapy has become more widely available to dermatologists. With the advent of more portable machines, it has become more convenient for dermatology practices to employ in an office-based setting. The goal of this paper is to provide a deeper insight into the role of superficial radiation therapy in dermatology practice and to review the current literature surrounding its use in the treatment of both basal and squamous cell carcinomas.

  20. Optimization of adaptive radiation therapy in cervical cancer: Solutions for photon and proton therapy

    NARCIS (Netherlands)

    van de Schoot, A.J.A.J.

    2016-01-01

    In cervical cancer radiation therapy, an adaptive strategy is required to compensate for interfraction anatomical variations in order to achieve adequate dose delivery. In this thesis, we have aimed at optimizing adaptive radiation therapy in cervical cancer to improve treatment efficiency and

  1. Optimization of adaptive radiation therapy in cervical cancer: Solutions for photon and proton therapy

    NARCIS (Netherlands)

    van de Schoot, A.J.A.J.

    2016-01-01

    In cervical cancer radiation therapy, an adaptive strategy is required to compensate for interfraction anatomical variations in order to achieve adequate dose delivery. In this thesis, we have aimed at optimizing adaptive radiation therapy in cervical cancer to improve treatment efficiency and reduc

  2. Clinical study on intensity modulated radiation therapy combined with thermotherapy in treating advanced rectum cancer%IMRT联合热疗治疗中晚期直肠癌临床研究

    Institute of Scientific and Technical Information of China (English)

    王园园; 王义善; 杨柯; 胡蓉蓉; 杨桂青

    2012-01-01

    目的 观察适形调强放射治疗(IMRT)联合热疗治疗中晚期直肠癌的临床疗效.方法 将60例中晚期直肠癌患者随机分为单纯IMRT组及IMRT联合热疗组,分别给予相应治疗,比较2组患者治疗后临床疗效.结果 IMRT联合热疗组的治疗有效率87%,单纯IMRT组63%,2组有效率比较有显著性差异(P<0.05);在ZPS评分改善方面,IMRT联合热疗组也优于单纯IMRT组,且差异具有统计学意义.结论 IMRT联合热疗能够更有效地控制中晚期直肠癌,值得临床推广应用.%Objective It is to observe the clinical effect of intensity-modulated radiation therapy ( IMRT ) combined with thermotherapy in the treatment for advanced rectum cancer. Methods Sixty patients with advanced rectum cancer were randomly divided into IMRT group and IMRT combined with thermotherapy group. After treatment, the differences of clinical effect between these two groups were evaluated. Results The therapeutic effect was 87% in IMRT combined with thermotherapy group, and that was 63% in IMRT group, there was significant difference between both groups ( P <0.05 ). In the aspect of the improvement of ZPS scores, IMRT combined with thermotherapy group was also better than IMRT group only, there was significant difference between both groups ( P <0.05 ). Conclusion IMRT combined with thermotherapy can control advanced rectum cancer better, and thus, it deserves popularize clinical application.

  3. Early effects of preoperative radiation therapy for invasive bladder cancer

    Energy Technology Data Exchange (ETDEWEB)

    Isaka, Shigeo; Igarashi, Tatsuo; Ito, Haruo

    1983-10-01

    22 patients with high grade invasive bladder cancer were treated with preoperative radiation therapy (910 rad by fast neutron or 3000 rad by X ray during 2 weeks) followed by radical cystectomy and urinary diversion. 62.5 % of patients showed reduction in tumor size more than 50% evaluated by cystogram. Stage down was observed in 38% of patients compared between clinical and pathological stage. Histopathological effect of GII or GIII, according to the criteria described by Ohboshi, was noticed in 79 % of the patients. Better effect seemed to be obtained in fast neutron treated group than in X ray group. 19 patients received curative surgery, and 18 patients were alive without recurrence after 10 months (mean observed term). One died from lung metastasis 4.5 months after surgery. 50% of the patients complained of side effects of irradiation although they were tolerable, and 32% of the patients had major complications of surgery.

  4. [Radiation therapy in simultaneous choroidal and brain metastases].

    Science.gov (United States)

    Conill, C; Jorcano, S; Planas, I; Marruecos, J; Casas, F; Fontenla, J R

    2005-09-01

    Choroidal metastases from lung cancer can be the initial clinical manifestation of metastasic disease, although they generally coexist with at least two more metastasic sites. The most common symptom is decreased vision, however 20% of brain metastases can present with visual alterations. A differential diagnosis within brain metastases and/or choroidal is necessary. We present the case of a patient with lung cancer and decreased vision who was diagnosed as simultaneous choroidal and brain metastases. Radiation therapy (20Gy/5fractions) significantly improves decreased vision. This case shows that, although life expectancy of patients with metastasic lung cancer is short, an adequate diagnosis and treatment, can improve the quality of life of those patients.

  5. Radiation therapy for brain metastasis from lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Nishioka, Masayuki; Fukuoka, Masahiro; Kusunoki, Youko (Osaka Prefectural Habikino Hospital (Japan)) (and others)

    1991-04-01

    The prognosis for patients with brain metastasis from lung cancer following radiation therapy was evaluated. Seventy-eight patients received brain irradiation in the Osaka Prefectural Habikino Hospital between April 1985 and March 1989. Almost all patients had conventional radiotherapy of the whole brain, with a single dose of 2 or 3 Gy. Patients characteristics associated with favorable prognosis were as follows: Performance status of 0{similar to}1, age{le}49, female, histology of adenocarcinoma. Patients who received radiotherapy of 56 Gy{sub 10} or more, had longer survival time. The findings in the brain CT were evaluated, but the number, size, site of metastases, and mass effect to ventricular system were not related to the prognosis. The overall median survival was 3.5 months and the 1-year survival rate was 9.0%. Further clinical studies are necessary to improve the prognosis in brain metastases. (author).

  6. Molecular targeted treatment and radiation therapy for rectal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Marquardt, Friederike; Roedel, Franz; Capalbo, Gianni; Weiss, Christian; Roedel, Claus [Dept. of Radiation Therapy, Univ. of Frankfurt/Main (Germany)

    2009-06-15

    Background: EGFR (epidermal growth factor receptor) and VEGF (vascular endothelial growth factor) inhibitors confer clinical benefit in metastatic colorectal cancer when combined with chemotherapy. An emerging strategy to improve outcomes in rectal cancer is to integrate biologically active, targeted agents as triple therapy into chemoradiation protocols. Material and methods: cetuximab and bevacizumab have now been incorporated into phase I-II studies of preoperative chemoradiation therapy (CRT) for rectal cancer. The rationale of these combinations, early efficacy and toxicity data, and possible molecular predictors for tumor response are reviewed. Computerized bibliographic searches of Pubmed were supplemented with hand searches of reference lists and abstracts of ASCO and ASTRO meetings. Results: the combination of cetuximab and CRT can be safely applied without dose compromises of the respective treatment components. Disappointingly low rates of pathologic complete remission have been noted in several phase II studies. The K-ras mutation status and the gene copy number of EGFR may predict tumor response. The toxicity pattern (radiation-induced enteritis, perforations) and surgical complications (wound healing, fistula, bleeding) observed in at least some of the clinical studies with bevacizumab and CRT warrant further investigations. Conclusion: longer follow-up (and, finally, randomized trials) is needed to draw any firm conclusions with respect to local and distant failure rates, and toxicity associated with these novel treatment approaches. (orig.)

  7. Computed Tomography–Guided Interstitial High-Dose-Rate Brachytherapy in Combination With Regional Positive Lymph Node Intensity-Modulated Radiation Therapy in Locally Advanced Peripheral Non–Small Cell Lung Cancer: A Phase 1 Clinical Trial

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Li; Zhang, Jian-wen; Lin, Sheng; Luo, Hui-Qun; Wen, Qing-Lian; He, Li-Jia; Shang, Chang-Ling; Ren, Pei-Rong; Yang, Hong-Ru; Pang, Hao-Wen; Yang, Bo; He, Huai-Lin [Department of Oncology, Affiliated Hospital of Luzhou Medical College, Luzhou (China); Chen, Yue, E-mail: chenyue5523@126.com [Department of Nuclear Medicine, Affiliated Hospital of Luzhou Medical College, Luzhou (China); Wu, Jing-Bo, E-mail: wjb6147@163.com [Department of Oncology, Affiliated Hospital of Luzhou Medical College, Luzhou (China)

    2015-08-01

    Purpose: To assess the technical safety, adverse events, and efficacy of computed tomography (CT)-guided interstitial high-dose-rate (HDR) brachytherapy in combination with regional positive lymph node intensity modulated radiation therapy in patients with locally advanced peripheral non–small cell lung cancer (NSCLC). Methods and Materials: Twenty-six patients with histologically confirmed NSCLC were enrolled in a prospective, officially approved phase 1 trial. Primary tumors were treated with HDR brachytherapy. A single 30-Gy dose was delivered to the 90% isodose line of the gross lung tumor volume. A total dose of at least 70 Gy was administered to the 95% isodose line of the planning target volume of malignant lymph nodes using 6-MV X-rays. The patients received concurrent or sequential chemotherapy. We assessed treatment efficacy, adverse events, and radiation toxicity. Results: The median follow-up time was 28 months (range, 7-44 months). There were 3 cases of mild pneumothorax but no cases of hemothorax, dyspnea, or pyothorax after the procedure. Grade 3 or 4 acute hematologic toxicity was observed in 5 patients. During follow-up, mild fibrosis around the puncture point was observed on the CT scans of 2 patients, but both patients were asymptomatic. The overall response rates (complete and partial) for the primary mass and positive lymph nodes were 100% and 92.3%, respectively. The 1-year and 2-year overall survival (OS) rates were 90.9% and 67%, respectively, with a median OS of 22.5 months. Conclusion: Our findings suggest that HDR brachytherapy is safe and feasible for peripheral locally advanced NSCLC, justifying a phase 2 clinical trial.

  8. Clinical and nutritional implications of radiation enteritis

    Energy Technology Data Exchange (ETDEWEB)

    Beer, W.H.; Fan, A.; Halsted, C.H.

    1985-01-01

    The clinical and nutritional significance of radiation enteritis was assessed in eight patients with chronic diarrhea which followed curative doses of radiotherapy for pelvic malignancies. Steatorrhea, found in seven malnourished patients, was ascribed to ileal disease or previous surgery, or to bacterial contamination of the small intestine. Lactose intolerance, assessed by breath hydrogen excretion after oral lactose and by jejunal lactase levels, was found in six patients. In a subgroup of five patients, the administration of two different defined formula liquid diets by nasoduodenal infusion decreased fecal fluid and energy losses by about one-half. Compared to Vivonex-HN, the infusion of Criticare-HN was associated with greater likelihood of intestinal gas production but a three-fold greater utilization of protein. Intestinal malabsorption and malnutrition in radiation enteritis has diverse etiologies. Whereas nutritional support by liquid diet limits fecal fluid and energy losses, these diets differ significantly in clinical tolerance and biologic value.

  9. Misadministration of radiation therapy in veterinary medicine: a case report and literature review.

    Science.gov (United States)

    Arkans, M M; Gieger, T L; Nolan, M W

    2017-03-01

    Recent technical advancements in radiation therapy have allowed for improved targeting of tumours and sparing nearby normal tissues, while simultaneously decreasing the risk for medical errors by incorporating additional safety checks into electronic medical record keeping systems. The benefits of these new technologies, however, depends on their proper integration and use in the oncology clinic. Despite the advancement of technology for treatment delivery and medical record keeping, misadministration errors have a significant impact on patient care in veterinary oncology. The first part of this manuscript describes a medical incident that occurred at an academic veterinary referral hospital, in a dog receiving a combination of stereotactic radiation therapy and full-course intensity-modulated, image-guided radiation therapy. The second part of the report is a literature review, which explores misadministration errors and novel challenges which arise with the implementation of advancing technologies in veterinary radiation oncology. © 2015 John Wiley & Sons Ltd.

  10. Commissioning of a Monte Carlo treatment planning system for clinical use in radiation therapy; Evaluacion de un sistema de planificacion Monte Carlo de uso clinico para radioterapia

    Energy Technology Data Exchange (ETDEWEB)

    Zucca Aparcio, D.; Perez Moreno, J. M.; Fernandez Leton, P.; Garcia Ruiz-Zorrila, J.

    2016-10-01

    The commissioning procedures of a Monte Carlo treatment planning system (MC) for photon beams from a dedicated stereotactic body radiosurgery (SBRT) unit has been reported in this document. XVMC has been the MC Code available in the treatment planning system evaluated (BrainLAB iPlan RT Dose) which is based on Virtual Source Models that simulate the primary and scattered radiation, besides the electronic contamination, using gaussian components for whose modelling are required measurements of dose profiles, percentage depth dose and output factors, performed both in water and in air. The dosimetric accuracy of the particle transport simulation has been analyzed by validating the calculations in homogeneous and heterogeneous media versus measurements made under the same conditions as the dose calculation, and checking the stochastic behaviour of Monte Carlo calculations when using different statistical variances. Likewise, it has been verified how the planning system performs the conversion from dose to medium to dose to water, applying the stopping power ratio water to medium, in the presence of heterogeneities where this phenomenon is relevant, such as high density media (cortical bone). (Author)

  11. Therapy radiation apparatus for veterinary medicine

    Energy Technology Data Exchange (ETDEWEB)

    Parris, D.M.

    1987-03-03

    A radiation device is described for use in veterinary medicine, for treating exterior and interior portions of animal bodies, comprising: (a) power supply means providing selected voltages; (b) high frequency oscillator means; (c) frequency divider means responsive to the oscillator means, and adapted to control switch means for modulating a voltage supply for at least one non-laser broad band infrared radiation diode providing an expanding beam of radiation; and (d) means for applying at least one one-laser broad band infrared radiation diode to a dermal surface of an animal.

  12. Development of a label-free LC-MS/MS strategy to approach the identification of candidate protein biomarkers of disease recurrence in prostate cancer patients in a clinical trial of combined hormone and radiation therapy.

    LENUS (Irish Health Repository)

    Morrissey, Brian

    2013-06-01

    Combined hormone and radiation therapy (CHRT) is one of the principle curative regimes for localised prostate cancer (PCa). Following treatment, many patients subsequently experience disease recurrence however; current diagnostics tests fail to predict the onset of disease recurrence. Biomarkers that address this issue would be of significant advantage.

  13. Modern Radiation Therapy for Extranodal Lymphomas: Field and Dose Guidelines From the International Lymphoma Radiation Oncology Group

    Energy Technology Data Exchange (ETDEWEB)

    Yahalom, Joachim, E-mail: yahalomj@mskcc.org [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Illidge, Tim [Institute of Cancer Sciences, University of Manchester, Manchester Academic Health Sciences Centre, The Christie National Health Service Foundation Trust, Manchester (United Kingdom); Specht, Lena [Department of Oncology and Hematology, Rigshospitalet, University of Copenhagen, Copenhagen (Denmark); Hoppe, Richard T. [Department of Radiation Oncology, Stanford University, Palo Alto, California (United States); Li, Ye-Xiong [Department of Radiation Oncology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (China); Tsang, Richard [Department of Radiation Oncology, Princess Margaret Hospital, University of Toronto, Toronto, Ontario (Canada); Wirth, Andrew [Division of Radiation Oncology, Peter MacCallum Cancer Institute, St. Andrews Place, East Melbourne (Australia)

    2015-05-01

    Extranodal lymphomas (ENLs) comprise about a third of all non-Hodgkin lymphomas (NHL). Radiation therapy (RT) is frequently used as either primary therapy (particularly for indolent ENL), consolidation after systemic therapy, salvage treatment, or palliation. The wide range of presentations of ENL, involving any organ in the body and the spectrum of histological sub-types, poses a challenge both for routine clinical care and for the conduct of prospective and retrospective studies. This has led to uncertainty and lack of consistency in RT approaches between centers and clinicians. Thus far there is a lack of guidelines for the use of RT in the management of ENL. This report presents an effort by the International Lymphoma Radiation Oncology Group (ILROG) to harmonize and standardize the principles of treatment of ENL, and to address the technical challenges of simulation, volume definition and treatment planning for the most frequently involved organs. Specifically, detailed recommendations for RT volumes are provided. We have applied the same modern principles of involved site radiation therapy as previously developed and published as guidelines for Hodgkin lymphoma and nodal NHL. We have adopted RT volume definitions based on the International Commission on Radiation Units and Measurements (ICRU), as has been widely adopted by the field of radiation oncology for solid tumors. Organ-specific recommendations take into account histological subtype, anatomy, the treatment intent, and other treatment modalities that may be have been used before RT.

  14. Radiation therapy planning for early-stage Hodgkin lymphoma

    DEFF Research Database (Denmark)

    Maraldo, Maja V; Dabaja, Bouthaina S; Filippi, Andrea R

    2015-01-01

    PURPOSE: Early-stage Hodgkin lymphoma (HL) is a rare disease, and the location of lymphoma varies considerably between patients. Here, we evaluate the variability of radiation therapy (RT) plans among 5 International Lymphoma Radiation Oncology Group (ILROG) centers with regard to beam arrangements...

  15. Cranial Radiation Therapy and Damage to Hippocampal Neurogenesis

    Science.gov (United States)

    Monje, Michelle

    2008-01-01

    Cranial radiation therapy is associated with a progressive decline in cognitive function, prominently memory function. Impairment of hippocampal neurogenesis is thought to be an important mechanism underlying this cognitive decline. Recent work has elucidated the mechanisms of radiation-induced failure of neurogenesis. Potential therapeutic…

  16. Dosimetrically Triggered Adaptive Intensity Modulated Radiation Therapy for Cervical Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Karen [Department of Radiation Oncology, Liverpool Hospital, Sydney (Australia); Stewart, James [Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario (Canada); Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario (Canada); Kelly, Valerie [Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada); Xie, Jason [Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario (Canada); Brock, Kristy K. [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Moseley, Joanne [Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario (Canada); Cho, Young-Bin; Fyles, Anthony [Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada); Lundin, Anna; Rehbinder, Henrik; Löf, Johan [RaySearch Laboratories AB, Stockholm (Sweden); Jaffray, David A. [Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario (Canada); Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada); Department of Medical Biophysics, University of Toronto, Toronto, Ontario (Canada); Techna Institute for the Advancement of Technology for Health, Toronto, Ontario (Canada); Milosevic, Michael, E-mail: mike.milosevic@rmp.uhn.ca [Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada)

    2014-09-01

    Purpose: The widespread use of intensity modulated radiation therapy (IMRT) for cervical cancer has been limited by internal target and normal tissue motion. Such motion increases the risk of underdosing the target, especially as planning margins are reduced in an effort to reduce toxicity. This study explored 2 adaptive strategies to mitigate this risk and proposes a new, automated method that minimizes replanning workload. Methods and Materials: Thirty patients with cervical cancer participated in a prospective clinical study and underwent pretreatment and weekly magnetic resonance (MR) scans over a 5-week course of daily external beam radiation therapy. Target volumes and organs at risk (OARs) were contoured on each of the scans. Deformable image registration was used to model the accumulated dose (the real dose delivered to the target and OARs) for 2 adaptive replanning scenarios that assumed a very small PTV margin of only 3 mm to account for setup and internal interfractional motion: (1) a preprogrammed, anatomy-driven midtreatment replan (A-IMRT); and (2) a dosimetry-triggered replan driven by target dose accumulation over time (D-IMRT). Results: Across all 30 patients, clinically relevant target dose thresholds failed for 8 patients (27%) if 3-mm margins were used without replanning. A-IMRT failed in only 3 patients and also yielded an additional small reduction in OAR doses at the cost of 30 replans. D-IMRT assured adequate target coverage in all patients, with only 23 replans in 16 patients. Conclusions: A novel, dosimetry-triggered adaptive IMRT strategy for patients with cervical cancer can minimize the risk of target underdosing in the setting of very small margins and substantial interfractional motion while minimizing programmatic workload and cost.

  17. Proton-minibeam radiation therapy: A proof of concept

    Energy Technology Data Exchange (ETDEWEB)

    Prezado, Y. [IMNC-UMR 8165, CNRS, Paris 7 and Paris 11 Universities, 15 rue Georges Clemenceau, 91406 Orsay Cedex (France); Fois, G. R. [Dipartimento di Fisica, Universita degli Studi di Cagliari, Strada provinciale Monserrato Sestu km 0.700, Monserrato, Cagliari 09042 (Italy)

    2013-03-15

    Purpose: This Monte Carlo simulation work aims at studying a new radiotherapy approach called proton-minibeam radiation therapy (pMBRT). The main objective of this proof of concept was the evaluation of the possible gain in tissue sparing, thanks to the spatial fractionation of the dose, which could be used to deposit higher and potentially curative doses in clinical cases where tissue tolerances are a limit for conventional methods. Methods: Monte Carlo simulations (GATE v.6) have been used as a method to calculate the ratio of the peak-to-valley doses (PVDR) for arrays of proton minibeams of 0.7 mm width and several center-to-center distances, at different depths in a water phantom. The beam penumbras were also evaluated as an important parameter for tissue sparing, for example, in the treatment of non-cancer diseases like epilepsy. Two proton energies were considered in this study: a clinically relevant energy (105 MeV) and a very high energy (1 GeV), to benefit from a reduced lateral scattering. For the latter case, an interlaced geometry was also evaluated. Results: Higher or similar PVDR than the ones obtained in x-rays minibeam radiation therapy were achieved in several pMBRT configurations. In addition, for the two energies studied, the beam penumbras are smaller than in the case of Gamma Knife radiosurgery. Conclusions: The high PVDR obtained for some configurations and the small penumbras in comparison with existing radiosurgery techniques, suggest a potential gain in healthy tissue sparing in this new technique. Biological studies are warranted to assess the effects of pMBRT on both normal and tumoral tissues.

  18. Anaemia and radiation therapy; Anemie et radiotherapie

    Energy Technology Data Exchange (ETDEWEB)

    Denis, F. [Clinique d' Oncologie et de Radiotherapie, INSERM U619, 37 - Tours (France); Lartigau, E. [Centre de Lutte Contre le Cancer Oscar-Lambret, Dept. de Radiotherapie, 59 - Lille (France)

    2004-11-01

    Anaemia is frequent in cancer and may increase tumour hypoxia that stimulates angiogenesis. However, erythropoietin is a hypoxia-inducible stimulator of erythropoiesis which seems to improve quality of life in cancer patients. Two recent phase III randomized studies showed negative results using erythropoietin in head and neck cancer patients and in metastatic breast cancer patients with impaired specific survival. In vitro and in vivo experiments have provided erythropoietin-receptor expression in endothelial cancer cells including malignant tumours of the breast, prostate, cervix, lung, head and neck, ovary, melanoma, stomach, gut, kidney etc. Biologic effect of erythropoietin and its receptor linkage induces proliferation of human breast cancer and angiogenesis and may limit anti-tumour effect of cancer treatment, in part, by tumour vascularization improvement. In addition, the use of exogenous erythropoietin could be able to favour tumour progression by improving tumour oxygenation and nutriment supply. If erythropoietin receptor were functional in human cancer. the assessment of erythropoietin receptor expression on tumour cell may help to select patients benefiting from exogenous erythropoietin. However. the relationship between erythropoietin receptor expression, tumour growth and exogenous erythropoietin. requires more studies. The results of recent clinical trials suggest that using erythropoietin should be avoided in non-anemic patients and discussed in patients receiving curative therapy. (authors)

  19. 体部肿瘤立体定向放疗(SBRT或SABR)的临床应用现状%Current status of clinical application of stereotactic body radiation therapy

    Institute of Scientific and Technical Information of China (English)

    肖光莉

    2016-01-01

    Stereotactic body radiation therapy has become more and more popular in clinical practice due to its satisfactory efficacy and relatively low incidence of side effects.Different fractionation schemes are adopted based on the characteristics,location,and size of tumor.However,the optimal fractionation scheme and dose limits for organs at risk are still not clear.Therefore,further studies and observation of long-term adverse reactions are required.%体部肿瘤的立体定向放疗(SBRT)因其疗效好,副作用低,在临床上的应用越来越广泛.根据肿瘤特征、位置和大小,采用不同的放疗分割模式,但最佳分隔模式和OAR的剂量限制仍不清楚,需要进一步研究和观察长期的不良反应.

  20. Nuclear medicine therapy principles and clinical applications

    CERN Document Server

    Aktolun, Cumali

    2012-01-01

    This book reviews nuclear medicine techniques and technology for therapy of malignant and benign diseases, covering scientific principles and clinical applications, and trials of experimental agents for treating tumors involving virtually every organ system.

  1. Modern Radiation Therapy for Hodgkin Lymphoma: Field and Dose Guidelines From the International Lymphoma Radiation Oncology Group (ILROG)

    Energy Technology Data Exchange (ETDEWEB)

    Specht, Lena, E-mail: lena.specht@regionh.dk [Department of Oncology and Hematology, Rigshospitalet, University of Copenhagen (Denmark); Yahalom, Joachim [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Illidge, Tim [Institute of Cancer Sciences, University of Manchester, Manchester Academic Health Sciences Centre, Christie Hospital NHS Trust, Manchester (United Kingdom); Berthelsen, Anne Kiil [Department of Radiation Oncology and PET Centre, Rigshospitalet, University of Copenhagen (Denmark); Constine, Louis S. [Department of Radiation Oncology and Pediatrics, James P. Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York (United States); Eich, Hans Theodor [Department of Radiation Oncology, University of Münster (Germany); Girinsky, Theodore [Department of Radiation Oncology, Institut Gustave-Roussy, Villejuif (France); Hoppe, Richard T. [Department of Radiation Oncology, Stanford University, Stanford, California (United States); Mauch, Peter [Department of Radiation Oncology, Brigham and Women' s Hospital and Dana-Farber Cancer Institute, Harvard University, Boston, Massachusetts (United States); Mikhaeel, N. George [Department of Clinical Oncology and Radiotherapy, Guy' s and St Thomas' NHS Foundation Trust, London (United Kingdom); Ng, Andrea [Department of Radiation Oncology, Brigham and Women' s Hospital and Dana-Farber Cancer Institute, Harvard University, Boston, Massachusetts (United States)

    2014-07-15

    Radiation therapy (RT) is the most effective single modality for local control of Hodgkin lymphoma (HL) and an important component of therapy for many patients. These guidelines have been developed to address the use of RT in HL in the modern era of combined modality treatment. The role of reduced volumes and doses is addressed, integrating modern imaging with 3-dimensional (3D) planning and advanced techniques of treatment delivery. The previously applied extended field (EF) and original involved field (IF) techniques, which treated larger volumes based on nodal stations, have now been replaced by the use of limited volumes, based solely on detectable nodal (and extranodal extension) involvement at presentation, using contrast-enhanced computed tomography, positron emission tomography/computed tomography, magnetic resonance imaging, or a combination of these techniques. The International Commission on Radiation Units and Measurements concepts of gross tumor volume, clinical target volume, internal target volume, and planning target volume are used for defining the targeted volumes. Newer treatment techniques, including intensity modulated radiation therapy, breath-hold, image guided radiation therapy, and 4-dimensional imaging, should be implemented when their use is expected to decrease significantly the risk for normal tissue damage while still achieving the primary goal of local tumor control. The highly conformal involved node radiation therapy (INRT), recently introduced for patients for whom optimal imaging is available, is explained. A new concept, involved site radiation therapy (ISRT), is introduced as the standard conformal therapy for the scenario, commonly encountered, wherein optimal imaging is not available. There is increasing evidence that RT doses used in the past are higher than necessary for disease control in this era of combined modality therapy. The use of INRT and of lower doses in early-stage HL is supported by available data. Although the

  2. Stroke-like Migraine Attacks after Radiation Therapy Syndrome

    Institute of Scientific and Technical Information of China (English)

    Qian Zheng; Li Yang; Li-Ming Tan; Li-Xia Qin; Chun-Yu Wang; Hai-Nan Zhang

    2015-01-01

    Objective:To summarize the clinical presentation,pathogenesis,neuroimaging,treatment,and outcome of stroke-like migraine attacks after radiation therapy (SMART) syndrome,and to propose diagnostic criteria for this disorder.Data Sources:We searched the PubMed database for articles in English published from 1995 to 2015 using the terms of "stroke-like AND migraine AND radiation." Reference lists of the identified articles and reviews were used to retrieve additional articles.Study Selection:Data and articles related to late-onset effects of cerebral radiation were selected and reviewed.Results:SMART is a rare condition that involves complex migraines with focal neurologic deficits following cranial irradiation for central nervous system malignancies.The recovery,which ranges from hours to days to weeks,can be partial or complete.We propose the following diagnostic criteria for SMART:(1) Remote history of therapeutic external beam cranial irradiation for malignancy;(2) prolonged,reversible clinical manifestations mostly years after irradiation,which may include migraine,seizures,hemiparesis,hemisensory deficits,visuospatial defect,aphasia,confusion and so on;(3) reversible,transient,unilateral cortical gadolinium enhancement correlative abnormal T2 and fluid-attenuated inversion recovery signal of the affected cerebral region;(4) eventual complete or partial recovery,the length of duration of recovery ranging from hours to days to weeks;(5) no evidence of residual or recurrent tumor;(6) not attributable to another disease.To date,no specific treatment has been identified for this syndrome.Conclusions:SMART is an extremely rare delayed complication of brain irradiation.However,improvements in cancer survival rates have resulted in a rise in its frequency.Hence,awareness and recognition of the syndrome is important to make a rapid diagnosis and avoid aggressive interventions such as brain biopsy and cerebral angiography.

  3. Once-Daily Radiation Therapy for Inflammatory Breast Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Lindsay [Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (United States); Harmsen, William [Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota (United States); Blanchard, Miran [Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (United States); Goetz, Matthew [Division of Medical Oncology, Mayo Clinic, Rochester, Minnesota (United States); Jakub, James [Department of Surgery, Mayo Clinic, Rochester, Minnesota (United States); Mutter, Robert; Petersen, Ivy; Rooney, Jessica [Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (United States); Stauder, Michael [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Yan, Elizabeth [Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (United States); Laack, Nadia, E-mail: laack.nadia@mayo.edu [Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (United States)

    2014-08-01

    Purpose: Inflammatory breast cancer (IBC) is a rare and aggressive breast cancer variant treated with multimodality therapy. A variety of approaches intended to escalate the intensity and efficacy of radiation therapy have been reported, including twice-daily radiation therapy, dose escalation, and aggressive use of bolus. Herein, we examine our outcomes for patients treated with once-daily radiation therapy with aggressive bolus utilization, focusing on treatment technique. Methods and Materials: A retrospective review of patients with nonmetastatic IBC treated from January 1, 2000, through December 31, 2010, was performed. Locoregional control (LRC), disease-free survival (DFS), overall survival (OS) and predictors thereof were assessed. Results: Fifty-two women with IBC were identified, 49 (94%) of whom were treated with neoadjuvant chemotherapy. All underwent mastectomy followed by adjuvant radiation therapy. Radiation was delivered in once-daily fractions of 1.8 to 2.25 Gy (median, 2 Gy). Patients were typically treated with daily 1-cm bolus throughout treatment, and 33 (63%) received a subsequent boost to the mastectomy scar. Five-year Kaplan Meier survival estimates for LRC, DFS, and OS were 81%, 56%, and 64%, respectively. Locoregional recurrence was associated with poorer OS (P<.001; hazard ratio [HR], 4.1). Extracapsular extension was associated with worse LRC (P=.02), DFS (P=.007), and OS (P=.002). Age greater than 50 years was associated with better DFS (P=.03). Pathologic complete response was associated with a trend toward improved LRC (P=.06). Conclusions: Once-daily radiation therapy with aggressive use of bolus for IBC results in outcomes consistent with previous reports using various intensified radiation therapy regimens. LRC remains a challenge despite modern systemic therapy. Extracapsular extension, age ≤50 years, and lack of complete response to chemotherapy appear to be associated with worse outcomes. Novel strategies are needed in IBC

  4. Radiation therapy: model standards for determination of need

    Energy Technology Data Exchange (ETDEWEB)

    Lagasse, L.G.; Devins, T.B.

    1982-03-01

    Contents: Health planning process; Health care requirements (model for projecting need for megavoltage radiation therapy); Operational objectives (manpower, megavoltage therapy and treatment planning equipment, support services, management and evaluation of patient care, organization and administration); Compliance with other standards imposed by law; Financial feasibility and capability; Reasonableness of expenditures and costs; Relative merit; Environmental impact.

  5. Orthovoltage intraoperative radiation therapy for pancreatic adenocarcinoma

    Directory of Open Access Journals (Sweden)

    Kapp Daniel S

    2010-11-01

    Full Text Available Abstract Purpose To analyze the outcomes of patients from a single institution treated with surgery and orthovoltage intraoperative radiotherapy (IORT for pancreatic adenocarcinoma. Methods We retrospectively reviewed 23 consecutive patients from 1990-2001 treated with IORT to 23 discrete sites with median and mean follow up of 6.5 and 21 months, respectively. Most tumors were located in the head of the pancreas (83% and sites irradiated included: tumor bed (57%, vessels (26%, both the tumor bed/vessels (13% and other (4%. The majority of patients (83% had IORT at the time of their definitive surgery. Three patients had preoperative chemoradiation (13%. Orthovoltage X-rays (200-250 kVp were employed via individually sized and beveled cone applicators. Additional mean clinical characteristics include: age 64 (range 41-81; tumor size 4 cm (range 1.4-11; and IORT dose 1106 cGy (range 600-1500. Post-operative external beam radiation (EBRT or chemotherapy was given to 65% and 76% of the assessable patients, respectively. Outcomes measured were infield control (IFC, loco-regional control (LRC, distant metastasis free survival (DMFS, overall survival (OS and treatment-related complications. Results Kaplan-Meier (KM 2-year IFC, LRC, DMFS and OS probabilities for the whole group were 83%, 61%, 26%, and 27%, respectively. Our cohort had three grade 3-5 complications associated with treatment (surgery and IORT. Conclusions Orthovoltage IORT following tumor reductive surgery is reasonably well tolerated and seems to confer in-field control in carefully selected patients. However, distant metastases remain the major problem for patients with pancreatic adenocarcinoma.

  6. Impact of α-targeted radiation therapy on gene expression in a pre-clinical model for disseminated peritoneal disease when combined with paclitaxel.

    Directory of Open Access Journals (Sweden)

    Kwon Joong Yong

    Full Text Available To better understand the molecular basis of the enhanced cell killing effected by the combined modality of paclitaxel and ²¹²Pb-trastuzumab (Pac/²¹²Pb-trastuzumab, gene expression in LS-174T i.p. xenografts was investigated 24 h after treatment. Employing a real time quantitative PCR array (qRT-PCR array, 84 DNA damage response genes were quantified. Differentially expressed genes following therapy with Pac/²¹²Pb-trastuzumab included those involved in apoptosis (BRCA1, CIDEA, GADD45α, GADD45γ, GML, IP6K3, PCBP4, PPP1R15A, RAD21, and p73, cell cycle (BRCA1, CHK1, CHK2, GADD45α, GML, GTSE1, NBN, PCBP4, PPP1R15A, RAD9A, and SESN1, and damaged DNA repair (ATRX, BTG2, EXO1, FEN1, IGHMBP2, OGG1, MSH2, MUTYH, NBN, PRKDC, RAD21, and p73. This report demonstrates that the increased stressful growth arrest conditions induced by the Pac/²¹²Pb-trastuzumab treatment suppresses cell proliferation through the regulation of genes which are involved in apoptosis and damaged DNA repair including single and double strand DNA breaks. Furthermore, the study demonstrates that ²¹²Pb-trastuzumab potentiation of cell killing efficacy results from the perturbation of genes related to the mitotic spindle checkpoint and BASC (BRCA1-associated genome surveillance complex, suggesting cross-talk between DNA damage repair and the spindle damage response.

  7. Hydrogel Spacer Prospective Multicenter Randomized Controlled Pivotal Trial: Dosimetric and Clinical Effects of Perirectal Spacer Application in Men Undergoing Prostate Image Guided Intensity Modulated Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Mariados, Neil, E-mail: nmariados@ampofny.com [Associated Medical Professionals of New York, Syracuse, New York (United States); Sylvester, John [21st Century Oncology, East Bradenton, Florida (United States); Shah, Dhiren [Western New York Urology Associates, Cancer Care of WNY, Cheektowaga, New York (United States); Karsh, Lawrence [The Urology Center of Colorado, Denver, Colorado (United States); Hudes, Richard [Chesapeake Urology Research Associates, The Prostate Center, Owings Mills, Maryland (United States); Beyer, David [Arizona Oncology Services Foundation, Phoenix, Arizona (United States); Kurtzman, Steven [Urological Surgeons of Northern California, Campbell, California (United States); Bogart, Jeffrey [The Research Foundation of State University of New York, SUNY Upstate Medical University, Syracuse, New York (United States); Hsi, R. Alex [Peninsula Cancer Center, Poulsbo, Washington (United States); Kos, Michael [Urology Nevada, Reno, Nevada (United States); Ellis, Rodney [University Hospitals Case Medical Center, Cleveland, Ohio (United States); Logsdon, Mark [Sutter Health Sacramento Sierra Region, Sutter Institute for Medical Research, Sacramento, California (United States); Zimberg, Shawn [Advanced Radiation Centers of New York, Lake Success, New York (United States); Forsythe, Kevin [Oregon Urology Institute, Springfield, Oregon (United States); Zhang, Hong [University of Rochester, Rochester, New York (United States); Soffen, Edward [CentraState Medical Center, Freehold, New Jersey (United States); Francke, Patrick [Carolina Regional Cancer Center, 21st Century Oncology, Myrtle Beach, South Carolina (United States); Mantz, Constantine [21st Century Oncology, Fort Meyers, Florida (United States); Rossi, Peter [Emory University, Atlanta, Georgia (United States); DeWeese, Theodore [The Johns Hopkins University, Baltimore, Maryland (United States); and others

    2015-08-01

    Purpose: Perirectal spacing, whereby biomaterials are placed between the prostate and rectum, shows promise in reducing rectal dose during prostate cancer radiation therapy. A prospective multicenter randomized controlled pivotal trial was performed to assess outcomes following absorbable spacer (SpaceOAR system) implantation. Methods and Materials: Overall, 222 patients with clinical stage T1 or T2 prostate cancer underwent computed tomography (CT) and magnetic resonance imaging (MRI) scans for treatment planning, followed with fiducial marker placement, and were randomized to receive spacer injection or no injection (control). Patients received postprocedure CT and MRI planning scans and underwent image guided intensity modulated radiation therapy (79.2 Gy in 1.8-Gy fractions). Spacer safety and impact on rectal irradiation, toxicity, and quality of life were assessed throughout 15 months. Results: Spacer application was rated as “easy” or “very easy” 98.7% of the time, with a 99% hydrogel placement success rate. Perirectal spaces were 12.6 ± 3.9 mm and 1.6 ± 2.0 mm in the spacer and control groups, respectively. There were no device-related adverse events, rectal perforations, serious bleeding, or infections within either group. Pre-to postspacer plans had a significant reduction in mean rectal V70 (12.4% to 3.3%, P<.0001). Overall acute rectal adverse event rates were similar between groups, with fewer spacer patients experiencing rectal pain (P=.02). A significant reduction in late (3-15 months) rectal toxicity severity in the spacer group was observed (P=.04), with a 2.0% and 7.0% late rectal toxicity incidence in the spacer and control groups, respectively. There was no late rectal toxicity greater than grade 1 in the spacer group. At 15 months 11.6% and 21.4% of spacer and control patients, respectively, experienced 10-point declines in bowel quality of life. MRI scans at 12 months verified spacer absorption. Conclusions: Spacer

  8. [Ozone therapy for radiation reactions and skin lesions after neutron therapy in patients with malignant tumors].

    Science.gov (United States)

    Velikaya, V V; Gribova, O V; Musabaeva, L I; Startseva, Zh A; Simonov, K A; Aleinik, A N; Lisin, V A

    2015-01-01

    The article discusses the problem of radiation complications from normal tissues in patients after therapy with fast neutrons of 6.3 MeV. The methods of treatment using ozone technologies in patients with radiation reactions and skin lesions on the areas of irradiation after neutron and neutron-photon therapy have been worked out. Ozone therapy showed its harmlessness and increased efficiency of complex treatment of these patients.

  9. International Patterns of Practice in the Management of Radiation Therapy-induced Nausea and Vomiting

    Energy Technology Data Exchange (ETDEWEB)

    Dennis, Kristopher; Zhang Liying [Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario (Canada); Lutz, Stephen [Blanchard Valley Health Systems, Findlay, Ohio (United States); Baardwijk, Angela van [Department of Radiation Oncology (MAASTRO Clinic), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht (Netherlands); Linden, Yvette van der [Leiden University Medical Center, Leiden (Netherlands); Holt, Tanya [Radiation Oncology Mater Centre, Princess Alexandra Hospital, Brisbane (Australia); Arnalot, Palmira Foro [Parc de Salut Mar. Universitat Pompeu Fabra Barcelona (Spain); Lagrange, Jean-Leon [AP-HP Hopital Henri-Mondor, Universite Paris Est Creteil, Creteil (France); Maranzano, Ernesto [' S. Maria' Hospital, Terni (Italy); Liu, Rico [Queen Mary Hospital, Hong Kong (China); Wong, Kam-Hung [Queen Elizabeth Hospital, Hong Kong (Hong Kong); Wong, Lea-Choung [National University Cancer Institute (Singapore); Vassiliou, Vassilios [Bank of Cyprus Oncology Centre, Nicosia (Cyprus); Corn, Benjamin W. [Tel Aviv Medical Center, Tel Aviv (Israel); De Angelis, Carlo; Holden, Lori; Wong, C. Shun [Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario (Canada); Chow, Edward, E-mail: Edward.Chow@sunnybrook.ca [Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario (Canada)

    2012-09-01

    Purpose: To investigate international patterns of practice in the management of radiation therapy-induced nausea and vomiting (RINV). Methods and Materials: Oncologists prescribing radiation therapy in the United States, Canada, The Netherlands, Australia, New Zealand, Spain, Italy, France, Hong Kong, Singapore, Cyprus, and Israel completed a Web-based survey that was based on 6 radiation therapy-only clinical cases modeled after the minimal-, low-, moderate-, and high-emetic risk levels defined in the antiemetic guidelines of the American Society of Clinical Oncology and the Multinational Association of Supportive Care in Cancer. For each case, respondents estimated the risks of nausea and vomiting separately and committed to an initial management approach. Results: In total, 1022 responses were received. Risk estimates and management decisions for the minimal- and high-risk cases varied little and were in line with guideline standards, whereas those for the low- and moderate-risk cases varied greatly. The most common initial management strategies were as follows: rescue therapy for a minimal-risk case (63% of respondents), 2 low-risk cases (56% and 80%), and 1 moderate-risk case (66%); and prophylactic therapy for a second moderate-risk case (75%) and a high-risk case (95%). The serotonin (5-HT){sub 3} receptor antagonists were the most commonly recommended prophylactic agents. On multivariate analysis, factors predictive of a decision for prophylactic or rescue therapy were risk estimates of nausea and vomiting, awareness of the American Society of Clinical Oncology antiemetic guideline, and European Society for Therapeutic Radiology and Oncology membership. Conclusions: Risk estimates and management strategies for RINV varied, especially for low- and moderate-risk radiation therapy cases. Radiation therapy-induced nausea and vomiting are under-studied treatment sequelae. New observational and translational studies are needed to allow for individual patient risk

  10. Music therapy CD creation for initial pediatric radiation therapy: a mixed methods analysis.

    Science.gov (United States)

    Barry, Philippa; O'Callaghan, Clare; Wheeler, Greg; Grocke, Denise

    2010-01-01

    A mixed methods research design was used to investigate the effects of a music therapy CD (MTCD) creation intervention on pediatric oncology patients' distress and coping during their first radiation therapy treatment. The music therapy method involved children creating a music CD using interactive computer-based music software, which was "remixed" by the music therapist-researcher to extend the musical material. Eleven pediatric radiation therapy outpatients aged 6 to 13 years were randomly assigned to either an experimental group, in which they could create a music CD prior to their initial treatment to listen to during radiation therapy, or to a standard care group. Quantitative and qualitative analyses generated multiple perceptions from the pediatric patients, parents, radiation therapy staff, and music therapist-researcher. Ratings of distress during initial radiation therapy treatment were low for all children. The comparison between the two groups found that 67% of the children in the standard care group used social withdrawal as a coping strategy, compared to 0% of the children in the music therapy group; this trend approached significance (p = 0.076). MTCD creation was a fun, engaging, and developmentally appropriate intervention for pediatric patients, which offered a positive experience and aided their use of effective coping strategies to meet the demands of their initial radiation therapy treatment.

  11. Quality of Intensity Modulated Radiation Therapy Treatment Plans Using a {sup 60}Co Magnetic Resonance Image Guidance Radiation Therapy System

    Energy Technology Data Exchange (ETDEWEB)

    Wooten, H. Omar, E-mail: hwooten@radonc.wustl.edu; Green, Olga; Yang, Min; DeWees, Todd; Kashani, Rojano; Olsen, Jeff; Michalski, Jeff; Yang, Deshan; Tanderup, Kari; Hu, Yanle; Li, H. Harold; Mutic, Sasa

    2015-07-15

    Purpose: This work describes a commercial treatment planning system, its technical features, and its capabilities for creating {sup 60}Co intensity modulated radiation therapy (IMRT) treatment plans for a magnetic resonance image guidance radiation therapy (MR-IGRT) system. Methods and Materials: The ViewRay treatment planning system (Oakwood Village, OH) was used to create {sup 60}Co IMRT treatment plans for 33 cancer patients with disease in the abdominal, pelvic, thorax, and head and neck regions using physician-specified patient-specific target coverage and organ at risk (OAR) objectives. Backup plans using a third-party linear accelerator (linac)-based planning system were also created. Plans were evaluated by attending physicians and approved for treatment. The {sup 60}Co and linac plans were compared by evaluating conformity numbers (CN) with 100% and 95% of prescription reference doses and heterogeneity indices (HI) for planning target volumes (PTVs) and maximum, mean, and dose-volume histogram (DVH) values for OARs. Results: All {sup 60}Co IMRT plans achieved PTV coverage and OAR sparing that were similar to linac plans. PTV conformity for {sup 60}Co was within <1% and 3% of linac plans for 100% and 95% prescription reference isodoses, respectively, and heterogeneity was on average 4% greater. Comparisons of OAR mean dose showed generally better sparing with linac plans in the low-dose range <20 Gy, but comparable sparing for organs with mean doses >20 Gy. The mean doses for all {sup 60}Co plan OARs were within clinical tolerances. Conclusions: A commercial {sup 60}Co MR-IGRT device can produce highly conformal IMRT treatment plans similar in quality to linac IMRT for a variety of disease sites. Additional work is in progress to evaluate the clinical benefit of other novel features of this MR-IGRT system.

  12. The Role of Postmastectomy Radiation Therapy After Neoadjuvant Chemotherapy in Clinical Stage II-III Breast Cancer Patients With pN0: A Multicenter, Retrospective Study (KROG 12-05)

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Su Jung [Department of Radiation Oncology, Eulji General Hospital, College of Medicine, Eulji University, Seoul (Korea, Republic of); Park, Won, E-mail: wonro.park@samsung.com [Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Huh, Seung Jae; Choi, Doo Ho [Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Shin, Kyung Hwan [Proton Therapy Center, Research Institute and Hospital, National Cancer Center, Goyang (Korea, Republic of); Lee, Nam Kwon [Proton Therapy Center, Research Institute and Hospital, National Cancer Center, Goyang (Korea, Republic of); Department of Radiation Oncology, Korea Medical Center, Korea University, School of Medicine, Seoul (Korea, Republic of); Suh, Chang-Ok; Keum, Ki Chang; Kim, Yong Bae [Department of Radiation Oncology, Yonsei Cancer Center, Severance Hospital, Yonsei University College of Medicine, Seoul (Korea, Republic of); Ahn, Seung Do; Kim, Su Ssan [Department of Radiation Oncology, Asan Medical Center, University of Ulsan, College of Medicine, Seoul (Korea, Republic of); Ha, Sung W.; Chie, Eui Kyu; Kim, Kyubo [Department of Radiation Oncology, Seoul National University College of Medicine, Seoul (Korea, Republic of); Shin, Hyun Soo [Department of Radiation Oncology, Bundang CHA Hospital, School of Medicine, CHA University, Seongnam (Korea, Republic of); Kim, Jin Hee [Department of Radiation Oncology, Dongsan Medical Center, Keimyung University School of Medicine, Daegu (Korea, Republic of); Lee, Hyung-Sik [Department of Radiation Oncology, Dong-A University Hospital, Dong-A University School of Medicine, Busan (Korea, Republic of)

    2014-01-01

    Purpose: The purpose of this study was to investigate the role of postmastectomy radiation therapy (PMRT) after neoadjuvant chemotherapy (NAC) in clinical stage II-III breast cancer patients with pN0. Methods and Materials: We retrospectively identified 417 clinical stage II-III breast cancer patients who achieved an ypN0 at surgery after receiving NAC between 1998 and 2009. Of these, 151 patients underwent mastectomy after NAC. The effect of PMRT on disease-free survival (DFS), locoregional recurrence-free survival (LRRFS), and overall survival (OS) was evaluated by multivariate analysis including known prognostic factors using the Kaplan-Meier method and compared using the log–rank test and Cox proportional regression analysis. Results: Of the 151 patients who underwent mastectomy, 105 (69.5%) received PMRT and 46 patients (30.5%) did not. At a median follow-up of 59 months, 5 patients (3.3%) developed LRR (8 sites of recurrence) and 14 patients (9.3%) developed distant metastasis. The 5-year DFS, LRRFS, and OS rates were 91.2, 98.1, and 93.3% with PMRT and 83.0%, 92.3%, and 89.9% without PMRT, respectively (all P values not significant). By univariate analysis, only age (≤40 vs >40 years) was significantly associated with decreased DFS (P=.027). By multivariate analysis, age (≤40 vs >40 years) and pathologic T stage (0-is vs 1 vs 2-4) were significant prognostic factors affecting DFS (hazard ratio [HR] 0.353, 95% confidence interval [CI] 0.135-0.928, P=.035; HR 2.223, 95% CI 1.074-4.604, P=.031, respectively). PMRT showed no correlation with a difference in DFS, LRRFS, or OS by multivariate analysis. Conclusions: PMRT might not be necessary for pN0 patients after NAC, regardless of clinical stage. Prospective randomized clinical trial data are needed to assess whether PMRT can be safely omitted in pN0 patients after NAC and mastectomy for clinical stage II-III breast cancer.

  13. Automatic CT simulation optimization for radiation therapy: A general strategy

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hua, E-mail: huli@radonc.wustl.edu; Chen, Hsin-Chen; Tan, Jun; Gay, Hiram; Michalski, Jeff M.; Mutic, Sasa [Department of Radiation Oncology, Washington University, St. Louis, Missouri 63110 (United States); Yu, Lifeng [Department of Radiology, Mayo Clinic, Rochester, Minnesota 55905 (United States); Anastasio, Mark A. [Department of Biomedical Engineering, Washington University, St. Louis, Missouri 63110 (United States); Low, Daniel A. [Department of Radiation Oncology, University of California Los Angeles, Los Angeles, California 90095 (United States)

    2014-03-15

    Purpose: In radiation therapy, x-ray computed tomography (CT) simulation protocol specifications should be driven by the treatment planning requirements in lieu of duplicating diagnostic CT screening protocols. The purpose of this study was to develop a general strategy that allows for automatically, prospectively, and objectively determining the optimal patient-specific CT simulation protocols based on radiation-therapy goals, namely, maintenance of contouring quality and integrity while minimizing patient CT simulation dose. Methods: The authors proposed a general prediction strategy that provides automatic optimal CT simulation protocol selection as a function of patient size and treatment planning task. The optimal protocol is the one that delivers the minimum dose required to provide a CT simulation scan that yields accurate contours. Accurate treatment plans depend on accurate contours in order to conform the dose to actual tumor and normal organ positions. An image quality index, defined to characterize how simulation scan quality affects contour delineation, was developed and used to benchmark the contouring accuracy and treatment plan quality within the predication strategy. A clinical workflow was developed to select the optimal CT simulation protocols incorporating patient size, target delineation, and radiation dose efficiency. An experimental study using an anthropomorphic pelvis phantom with added-bolus layers was used to demonstrate how the proposed prediction strategy could be implemented and how the optimal CT simulation protocols could be selected for prostate cancer patients based on patient size and treatment planning task. Clinical IMRT prostate treatment plans for seven CT scans with varied image quality indices were separately optimized and compared to verify the trace of target and organ dosimetry coverage. Results: Based on the phantom study, the optimal image quality index for accurate manual prostate contouring was 4.4. The optimal tube

  14. 食管癌放疗后复发再程调强放疗的临床观察%Clinical efficacy of intensity modulated radiation therapy for loco-regionally recurrent e-sophageal cancer after initial radiotherapy

    Institute of Scientific and Technical Information of China (English)

    彭雷; 卢鑫; 朱兆峰

    2014-01-01

    目的:探讨调强放疗(intensity modulater radiation therapy,IMRT)在食管癌首程放疗后局部复发患者中的应用及临床观察。方法:37例首程放疗后局部复发的食管鳞癌患者,采用调强放疗技术进行二程放疗,处方剂量为(50-60)Gy/[2Gy·(25-30)f]。结果:37例患者中完全缓解(complete response,CR)7例,部分缓解(partial response,PR)20例,有效率(response rate,RR)为73.0%(27/37)。本组患者1、2、3年生存率分别为59.5%、32.4%、21.1%。放射性食管炎、骨髓抑制、胃肠道反应的发生率较高。全部病例随访资料完整。截止2012年12月,25例患者已经死亡,其中死于局部复发11例、远处转移8例、食管气管瘘2例、大出血2例、其他疾病1例、自杀1例。结论:调强放疗对于食管癌首程放疗后局部复发患者是一种较好的有效的治疗方法,能取得较好的局部控制率。%Objective:To evaluate the applications and clinical effect of intensity modulated radiation therapy (IMRT)for loco-regionally recurrent esophageal cancer after initial radiotherapy.Methods:All 37 patients with loco-regionally recurrent esophageal cancer after initial radiotherapy were treated with IMRT,with a total dose of (50-60)Gy/[2Gy·(25 -30)f].Results:Of 37 patients,7 patients achieved completed remission,20 patients achieved partial remission,the effective rate was 73.0%(27/37).The overall 1 -,2 -,3 -year survival rates were 59.5%, 32.4%,21.1%.In the radiation therapy,the incidence rates of radiation esophagitis and arrest of bone marrow were high.In followed up,until December 2012,25 patients died,1 1 from local recurrence,8 from distant metastases,2 from esophageal leak,2 from haemorrhage,1 from other disease,1 from suicide.Conclusion:To patients with loco-regionally recurrent esophageal cancer after initial radiotherapy,IMRT is an alternative effective method,can improve the local

  15. [The application of total quality management (TQM) in quality management of radiation therapy].

    Science.gov (United States)

    Jiang, Rui-yao; Fu, Shen; Li, Bin

    2009-03-01

    The strategies and methods of the total quality management (TQM) need to applied in quality management of radiation therapy. We should improve the level of quality control and quality assurance in radiation therapy. By establishing quality control system in radiation therapy, standardization of radiation therapy workflow, strengthening quality control of devices and physical technique and paying attention to safety protection and staff training.

  16. CLINICAL APPLICATION OF ACUPUNCTURE THERAPY

    Institute of Scientific and Technical Information of China (English)

    张玉倩; 李云芳; 王廷华

    2004-01-01

    In the present paper, the authors review some major effects of acupuncture in the treatment of clinical diseases and sum up some results of experimental researches on the mechanisms of acupuncture. Up to now, clinical practice and experimental researches demonstrate that acupuncture possesses good analgesic effect, integrative regulation effect on the functional activities of the body and defense-immune-potentiation effect.

  17. 42 CFR 410.35 - X-ray therapy and other radiation therapy services: Scope.

    Science.gov (United States)

    2010-10-01

    ... radioactive isotope therapy, and materials and the services of technicians administering the treatment. ... 42 Public Health 2 2010-10-01 2010-10-01 false X-ray therapy and other radiation therapy services... HEALTH AND HUMAN SERVICES MEDICARE PROGRAM SUPPLEMENTARY MEDICAL INSURANCE (SMI) BENEFITS Medical and...

  18. Encouraging Early Clinical Outcomes With Helical Tomotherapy-Based Image-Guided Intensity-Modulated Radiation Therapy for Residual, Recurrent, and/or Progressive Benign/Low-Grade Intracranial Tumors: A Comprehensive Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Tejpal, E-mail: tejpalgupta@rediffmail.com [Department of Radiation Oncology, ACTREC/TMH, Tata Memorial Centre, Kharghar, Navi Mumbai (India); Wadasadawala, Tabassum; Master, Zubin; Phurailatpam, Reena; Pai-Shetty, Rajershi; Jalali, Rakesh [Department of Radiation Oncology, ACTREC/TMH, Tata Memorial Centre, Kharghar, Navi Mumbai (India)

    2012-02-01

    Purpose: To report early clinical outcomes of helical tomotherapy (HT)-based image-guided intensity-modulated radiation therapy (IMRT) in brain tumors of varying shape, size, and location. Materials and Methods: Patients with residual, recurrent, and/or progressive low-grade intracranial and skull-base tumors were treated on a prospective protocol of HT-based IMRT and followed clinicoradiologically. Standardized metrics were used for plan evaluation and outcome analysis. Results: Twenty-seven patients with 30 lesions were treated to a median radiotherapy dose of 54 Gy in 30 fractions. All HT plans resulted in excellent target volume coverage with steep dose-gradients. The mean (standard deviation) dose homogeneity index and conformity index was 0.07 (0.05) and 0.71 (0.08) respectively. At first response assessment, 20 of 30 lesions were stable, whereas 9 showed partial regression. One patient with a recurrent clival chordoma though neurologically stable showed imaging-defined progression, whereas another patient with stable disease on serial imaging had sustained neurologic worsening. With a median follow-up of 19 months (interquartile range, 11-26 months), the 2-year clinicoradiological progression-free survival and overall survival was 93.3% and 100% respectively. Conclusions: Careful selection of radiotherapy technique is warranted for benign/low-grade brain tumors to achieve durable local control with minimum long-term morbidity. Large or complex-shaped tumors benefit most from IMRT. Our early clinical experience of HT-based IMRT for brain tumors has been encouraging.

  19. Results of Radiation Therapy in Stage III Uterine Cervical Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Chang Woo; Shin, Byung Chul; Yum, Ha Yong; Jeung, Tae Sig; Yoo, Myung Jin [Kosin University College of Medicine, Seoul (Korea, Republic of)

    1995-09-15

    Purpose : The aim of this study is to analyze the survival rate, treatment failure and complication of radiation therapy alone in stage III uterine cervical cancer. Materials and Methods : From January 1980 through December 1985, 227 patients with stage II uterine cervical cancer treated with radiation therapy at Kosin Medical Center were retrospectively studied. Among 227 patients, 72 patients(31.7%) were stage IIIa, and 155 patients(68.3%) were stage IIIb according to FIGO classification. Age distribution was 32-71 years(median: 62 years). Sixty nine patients(95.8%) in stage IIIa and 150 patients(96.8%) in stage IIIb were squamous cell carcinoma. Pelvic lymph node metastasis at initial diagnosis was 8 patients (11.1%) in stage IIIa and 29 patients(18.7%) in stage IIIb. Among 72 patients with stage IIIa, 36 patients(50%) were treated with external radiation therapy alone by conventional technique (180-200 cGy/fr). And 36 patients(50%) were treated with external radiation therapy with intracavitary radiotherapy(ICR) with Cs137 sources, and among 155 patients with stage IIIb, 80 patients(51.6%) were treated with external radiation therapy alone and 75 patients(48.4%) were treated with external radiation therapy with ICR. Total radiation doses of stage IIIa and IIIb were 65-105 Gy(median : 78.5 Gy) and 65-125.5 Gy (median :83.5 Gy). Survival rate was calculated by life-table method. Results : Complete response rates were 58.3% (42 patients) in state IIIa and 56.1%(87 patients) in stage Iiib. Overall 5 year survival rates were 57% in stage IIIa and 40% in stage IIIb. Five year survival rates by radiation technique in stage IIIa and IIIb were 64%, 40% in group treated in combination of external radiation and ICR, and 50%, 40% in the group of external radiation therapy alone(P=NS). Five year survival rates by response of radiation therapy in stage IIIa and IIIb were 90%, 66% in responder group, and 10%, 7% in non-responder group (P<0.01). There were statistically no

  20. Applications of Cherenkov Light Emission for Dosimetry in Radiation Therapy

    Science.gov (United States)

    Glaser, Adam Kenneth

    Since its discovery in the 1930's, the Cherenkov effect has been paramount in the development of high-energy physics research. It results in light emission from charged particles traveling faster than the local speed of light in a dielectric medium. The ability of this emitted light to describe a charged particle's trajectory, energy, velocity, and mass has allowed scientists to study subatomic particles, detect neutrinos, and explore the properties of interstellar matter. However, only recently has the phenomenon been considered in the practical context of medical physics and radiation therapy dosimetry, where Cherenkov light is induced by clinical x-ray photon, electron, and proton beams. To investigate the relationship between this phenomenon and dose deposition, a Monte Carlo plug-in was developed within the Geant4 architecture for medically-oriented simulations (GAMOS) to simulate radiation-induced optical emission in biological media. Using this simulation framework, it was determined that Cherenkov light emission may be well suited for radiation dosimetry of clinically used x-ray photon beams. To advance this application, several novel techniques were implemented to realize the maximum potential of the signal, such as time-gating for maximizing the signal to noise ratio (SNR) and Cherenkov-excited fluorescence for generating isotropic light release in water. Proof of concept experiments were conducted in water tanks to demonstrate the feasibility of the proposed method for two-dimensional (2D) projection imaging, three-dimensional (3D) parallel beam tomography, large field of view 3D cone beam tomography, and video-rate dynamic imaging of treatment plans for a number of common radiotherapy applications. The proposed dosimetry method was found to have a number of unique advantages, including but not limited to its non-invasive nature, water-equivalence, speed, high-resolution, ability to provide full 3D data, and potential to yield data in-vivo. Based on

  1. Systematic review of hyperbaric oxygen therapy for the treatment of radiation-induced skin necrosis.

    Science.gov (United States)

    Borab, Zachary; Mirmanesh, Michael D; Gantz, Madeleine; Cusano, Alessandro; Pu, Lee L Q

    2017-04-01

    Every year, 1.2 million cancer patients receive radiation therapy in the United States. Late radiation tissue injury occurs in an estimated 5-15% of these patients. Tissue injury can include skin necrosis, which can lead to chronic nonhealing wounds. Despite many treatments available to help heal skin necrosis such as hyperbaric oxygen therapy, no clinical guidelines exist and evidence is lacking. The purpose of this review is to identify and comprehensively summarize studies published to date to evaluate the effectiveness of hyperbaric oxygen therapy for the treatment of radiation-induced skin necrosis. Adhering to PRISMA guidelines, a systematic review of currently published articles was performed, evaluating the use of hyperbaric oxygen to treat skin necrosis. Eight articles were identified, including one observational cohort, five case series, and two case reports. The articles describe changes in symptoms and alteration in wound healing of radiation-induced skin necrosis after treatment with hyperbaric oxygen therapy. Hyperbaric oxygen therapy is a safe intervention with promising outcomes; however, additional evidence is needed to endorse its application as a relevant therapy in the treatment of radiation-induced skin necrosis.

  2. 蓝光照射治疗新生儿黄疸的疗效观察及护理体会%Clinical observation and nursing experience of Blue-ray radiation therapy for neonatal jaundice

    Institute of Scientific and Technical Information of China (English)

    母靖岚

    2012-01-01

      Summarizes the Blu-ray radiation therapy care of 60 neonates with neonatal jaundice.Including Blu-ray radiation therapy with pharmacotherapy, fully preparation of Blu-ray radiation equipment and neonates,strict implementation of scientific management system.Observing the regression of neonatal jaundice in the neonates,and the total effective rate was 100%. Considering that the result of Blu-ray radiation therapy for neonatal jaundice is satisfactory.%  总结了60例新生儿黄疸患儿蓝光照射治疗的护理。包括采用蓝光照射治疗配合药物治疗,做好蓝光箱及患儿的准备工作,严格执行科学的管理制度,观察患儿的黄疸消退情况,总有效率达100%。认为蓝光照射治疗新生儿黄疸疗效满意。

  3. Ozone therapy: A clinical review

    OpenAIRE

    Elvis, A. M.; Ekta, J. S.

    2011-01-01

    Ozone (O3) gas discovered in the mid-nineteenth century is a molecule consisting of three atoms of oxygen in a dynamically unstable structure due to the presence of mesomeric states. Although O3 has dangerous effects, yet researchers believe it has many therapeutic effects. Ozone therapy has been utilized and heavily studied for more than a century. Its effects are proven, consistent, safe and with minimal and preventable side effects. Medical O3 is used to disinfect and treat disease. Mechan...

  4. SU-E-T-361: Clinical Benefit of Automatic Beam Gating Mixed with Breath Hold in Radiation Therapy of Left Breast

    Energy Technology Data Exchange (ETDEWEB)

    Wu, J; Hill, G; Spiegel, J [Swedish Cancer Institute, Issaquah, Washington (United States); Ye, J [Swedish Cancer Institute, Edmond, Washington (United States); Mehta, V [Swedish Cancer Institute, Seattle, WA (United States)

    2014-06-01

    Purpose: To investigate the clinical and dosimetric benefits of automatic gating of left breast mixed with breath-hold technique. Methods: Two Active Breathing Control systems, ABC2.0 and ABC3.0, were used during simulation and treatment delivery. The two systems are different such that ABC2.0 is a breath-hold system without beam control capability, while ABC3.0 has capability in both breath-hold and beam gating. At simulation, each patient was scanned twice: one with free breathing (FB) and one with breath hold through ABC. Treatment plan was generated on the CT with ABC. The same plan was also recalculated on the CT with FB. These two plans were compared to assess plan quality. For treatments with ABC2.0, beams with MU > 55 were manually split into multiple subfields. All subfields were identical and shared the total MU. For treatment with ABC3.0, beam splitting was unnecessary. Instead, treatment was delivered in gating mode mixed with breath-hold technique. Treatment delivery efficiency using the two systems was compared. Results: The prescribed dose was 50.4Gy at 1.8Gy/fraction. The maximum heart dose averaged over 10 patients was 46.0±2.5Gy and 24.5±12.2Gy for treatments with FB and with ABC respectively. The corresponding heart V10 was 13.2±3.6% and 1.0±1.6% respectively. The averaged MUs were 99.8±7.5 for LMT, 99.2±9.4 for LLT. For treatment with ABC2.0, normally the original beam was split into 2 subfields. The averaged total time to delivery all beams was 4.3±0.4min for treatments with ABC2.0 and 3.3±0.6min for treatments with ABC3.0 in gating mode. Conclusion: Treatment with ABC tremendously reduced heart dose. Compared to treatments with ABC2.0, gating with ABC3.0 reduced the total treatment time by 23%. Use of ABC3.0 improved the delivery efficiency, and eliminated the possibility of mistreatments. The latter may happen with ABC2.0 where beam is not terminated when breath signal falls outside of the treatment window.

  5. Stereotactic body radiation therapy versus conventional radiation therapy in patients with early stage non-small cell lung cancer

    DEFF Research Database (Denmark)

    Jeppesen, Stefan Starup; Schytte, Tine; Jensen, Henrik R

    2013-01-01

    Abstract Introduction. Stereotactic body radiation therapy (SBRT) for early stage non-small cell lung cancer (NSCLC) is now an accepted and patient friendly treatment, but still controversy exists about its comparability to conventional radiation therapy (RT). The purpose of this single...... and SBRT predicted improved prognosis. However, staging procedure, confirmation procedure of recurrence and technical improvements of radiation treatment is likely to influence outcomes. However, SBRT seems to be as efficient as conventional RT and is a more convenient treatment for the patients....

  6. Predicting Radiation Pneumonitis After Stereotactic Ablative Radiation Therapy in Patients Previously Treated With Conventional Thoracic Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Liu Hui; Zhang Xu [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Vinogradskiy, Yevgeniy Y. [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Swisher, Stephen G. [Department of Thoracic and Cardiovascular Surgery, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Komaki, Ritsuko [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Chang, Joe Y., E-mail: jychang@mdanderson.org [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2012-11-15

    Purpose: To determine the incidence of and risk factors for radiation pneumonitis (RP) after stereotactic ablative radiation therapy (SABR) to the lung in patients who had previously undergone conventional thoracic radiation therapy. Methods and Materials: Seventy-two patients who had previously received conventionally fractionated radiation therapy to the thorax were treated with SABR (50 Gy in 4 fractions) for recurrent disease or secondary parenchymal lung cancer (T <4 cm, N0, M0, or Mx). Severe (grade {>=}3) RP and potential predictive factors were analyzed by univariate and multivariate logistic regression analyses. A scoring system was established to predict the risk of RP. Results: At a median follow-up time of 16 months after SABR (range, 4-56 months), 15 patients had severe RP (14 [18.9%] grade 3 and 1 [1.4%] grade 5) and 1 patient (1.4%) had a local recurrence. In univariate analyses, Eastern Cooperative Oncology Group performance status (ECOG PS) before SABR, forced expiratory volume in 1 second (FEV1), and previous planning target volume (PTV) location were associated with the incidence of severe RP. The V{sub 10} and mean lung dose (MLD) of the previous plan and the V{sub 10}-V{sub 40} and MLD of the composite plan were also related to RP. Multivariate analysis revealed that ECOG PS scores of 2-3 before SABR (P=.009), FEV1 {<=}65% before SABR (P=.012), V{sub 20} {>=}30% of the composite plan (P=.021), and an initial PTV in the bilateral mediastinum (P=.025) were all associated with RP. Conclusions: We found that severe RP was relatively common, occurring in 20.8% of patients, and could be predicted by an ECOG PS score of 2-3, an FEV1 {<=}65%, a previous PTV spanning the bilateral mediastinum, and V{sub 20} {>=}30% on composite (previous RT+SABR) plans. Prospective studies are needed to validate these predictors and the scoring system on which they are based.

  7. Sulfasalazine and temozolomide with radiation therapy for newly diagnosed glioblastoma

    Directory of Open Access Journals (Sweden)

    Satoru Takeuchi

    2014-01-01

    Full Text Available Background: A recent phase 1/2 clinical trial argued for caution for the use of sulfasalazine in progressive glioblastoma (GBM. However, the study enrolled patients with recurrent or progressive high-grade glioma indicating that patients recruited probably had severe disease. Thus, the study may not accurately reflect the effectiveness of sulfasalazine for GBM and we hypothesized that earlier sulfasalazine administration may lead to anticancer effects. Aim: The aim of this study was to investigate whether sulfasalazine can improve the outcomes of patients with newly diagnosed GBM. Subjects and Methods: A total of 12 patients were treated with temozolomide and sulfasalazine with radiation therapy after surgery. Twelve patients with primary GBM treated with temozolomide and radiation therapy formed the control group. Progression-free survival (PFS, overall survival (OS and seizure-free survival (SFS curves were obtained using the Kaplan-Meier method. The survival curves were compared using the log-rank test. Results: The median OS, PFS and SFS did not differ between the groups. Grade 3 or 4 adverse events occurred over the duration of the study in nine (75% patients. The median SFS was 12 months in nine patients who received sulfasalazine administration for more than 21 days, which was strongly but not significantly longer than the 3 months observed in the control group (P = 0.078. Conclusions: Sulfasalazine treatment with temozolomide plus radiotherapy for newly diagnosed primary GBM is associated with a high rate of discontinuation due to hematologic toxic effects. This treatment may have no effect on OS or PFS, although it may improve seizure control if an adequate dose can be administered.

  8. Physics fundamentals and biological effects of synchrotron radiation therapy; Fundamentos fisicos y efectos biologicos de la radioterapia con radiacion sincrotron

    Energy Technology Data Exchange (ETDEWEB)

    Prezado, Y.

    2010-07-01

    The main goal of radiation therapy is to deposit a curative dose in the tumor without exceeding the tolerances in the nearby healthy tissues. For some radioresistant tumors, like gliomas, requiring high doses for complete sterilization, the major obstacle for curative treatment with ionizing radiation remains the limited tolerance of the surrounding healthy tissue. This limitation is particularly severe for brain tumors and, especially important in children, due to the high risk of complications in the development of the central nervous system. In addition, the treatment of tumors close to an organ at risk, like the spinal cord, is also restricted. One possible solution is the development of new radiation therapy techniques exploiting radically different irradiation modes and modifying, in this way, the biological equivalent doses. This is the case of synchrotron radiation therapy (SR T). In this work the three new radiation therapy techniques under development at the European Synchrotron Radiation Facility (ESR F), in Grenoble (France) will be described, namely: synchrotron stereotactic radiation therapy (Ssr), microbeam radiation therapy (MR T) and mini beam radiation therapy. The promising results in the treatment of the high grade brain tumors obtained in preclinical studies have paved the way to the clinical trials. The first patients are expected in the fall of 2010. (Author).

  9. Designing for Anxiety Therapy, Bridging Clinical and Non-Clinical

    DEFF Research Database (Denmark)

    Bertelsen, Olav Wedege; Kramp, Gunnar

    2012-01-01

    In this position paper we discuss, in terms of the concept of boundary objects, how a mobile application, the MIKAT.app, bridge between clinical intervention in anxiety therapy, and life and coping strategies outside the clinic and across phases of being a person suffering from, or having suffered...

  10. A comprehensive dosimetric study of pancreatic cancer treatment using three-dimensional conformal radiation therapy (3DCRT), intensity-modulated radiation therapy (IMRT), volumetric-modulated radiation therapy (VMAT), and passive-scattering and modulated-scanning proton therapy (PT)

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Xuanfeng; Dionisi, Francesco; Tang, Shikui; Ingram, Mark; Hung, Chun-Yu; Prionas, Evangelos; Lichtenwalner, Phil; Butterwick, Ian; Zhai, Huifang; Yin, Lingshu; Lin, Haibo; Kassaee, Alireza; Avery, Stephen, E-mail: stephen.avery@uphs.upenn.edu

    2014-07-01

    With traditional photon therapy to treat large postoperative pancreatic target volume, it often leads to poor tolerance of the therapy delivered and may contribute to interrupted treatment course. This study was performed to evaluate the potential advantage of using passive-scattering (PS) and modulated-scanning (MS) proton therapy (PT) to reduce normal tissue exposure in postoperative pancreatic cancer treatment. A total of 11 patients with postoperative pancreatic cancer who had been previously treated with PS PT in University of Pennsylvania Roberts Proton Therapy Center from 2010 to 2013 were identified. The clinical target volume (CTV) includes the pancreatic tumor bed as well as the adjacent high-risk nodal areas. Internal (iCTV) was generated from 4-dimensional (4D) computed tomography (CT), taking into account target motion from breathing cycle. Three-field and 4-field 3D conformal radiation therapy (3DCRT), 5-field intensity-modulated radiation therapy, 2-arc volumetric-modulated radiation therapy, and 2-field PS and MS PT were created on the patients’ average CT. All the plans delivered 50.4 Gy to the planning target volume (PTV). Overall, 98% of PTV was covered by 95% of the prescription dose and 99% of iCTV received 98% prescription dose. The results show that all the proton plans offer significant lower doses to the left kidney (mean and V{sub 18} {sub Gy}), stomach (mean and V{sub 20} {sub Gy}), and cord (maximum dose) compared with all the photon plans, except 3-field 3DCRT in cord maximum dose. In addition, MS PT also provides lower doses to the right kidney (mean and V{sub 18} {sub Gy}), liver (mean dose), total bowel (V{sub 20} {sub Gy} and mean dose), and small bowel (V{sub 15} {sub Gy} absolute volume ratio) compared with all the photon plans and PS PT. The dosimetric advantage of PT points to the possibility of treating tumor bed and comprehensive nodal areas while providing a more tolerable treatment course that could be used for dose

  11. Adaptive Radiation Therapy for Postprostatectomy Patients Using Real-Time Electromagnetic Target Motion Tracking During External Beam Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Mingyao [Department of Radiation Oncology, Washington University School of Medicine, Saint Louis, Missouri (United States); Bharat, Shyam [Philips Research North America, Briarcliff Manor, New York (United States); Michalski, Jeff M.; Gay, Hiram A. [Department of Radiation Oncology, Washington University School of Medicine, Saint Louis, Missouri (United States); Hou, Wei-Hsien [St Louis University School of Medicine, St Louis, Missouri (United States); Parikh, Parag J., E-mail: pparikh@radonc.wustl.edu [Department of Radiation Oncology, Washington University School of Medicine, Saint Louis, Missouri (United States)

    2013-03-15

    Purpose: Using real-time electromagnetic (EM) transponder tracking data recorded by the Calypso 4D Localization System, we report inter- and intrafractional target motion of the prostate bed, describe a strategy to evaluate treatment adequacy in postprostatectomy patients receiving intensity modulated radiation therapy (IMRT), and propose an adaptive workflow. Methods and Materials: Tracking data recorded by Calypso EM transponders was analyzed for postprostatectomy patients that underwent step-and-shoot IMRT. Rigid target motion parameters during beam delivery were calculated from recorded transponder positions in 16 patients with rigid transponder geometry. The delivered doses to the clinical target volume (CTV) were estimated from the planned dose matrix and the target motion for the first 3, 5, 10, and all fractions. Treatment adequacy was determined by comparing the delivered minimum dose (D{sub min}) with the planned D{sub min} to the CTV. Treatments were considered adequate if the delivered CTV D{sub min} is at least 95% of the planned CTV D{sub min}. Results: Translational target motion was minimal for all 16 patients (mean: 0.02 cm; range: −0.12 cm to 0.07 cm). Rotational motion was patient-specific, and maximum pitch, yaw, and roll were 12.2, 4.1, and 10.5°, respectively. We observed inadequate treatments in 5 patients. In these treatments, we observed greater target rotations along with large distances between the CTV centroid and transponder centroid. The treatment adequacy from the initial 10 fractions successfully predicted the overall adequacy in 4 of 5 inadequate treatments and 10 of 11 adequate treatments. Conclusion: Target rotational motion could cause underdosage to partial volume of the postprostatectomy targets. Our adaptive treatment strategy is applicable to post-prostatectomy patients receiving IMRT to evaluate and improve radiation therapy delivery.

  12. Adaptive radiation therapy for postprostatectomy patients using real-time electromagnetic target motion tracking during external beam radiation therapy.

    Science.gov (United States)

    Zhu, Mingyao; Bharat, Shyam; Michalski, Jeff M; Gay, Hiram A; Hou, Wei-Hsien; Parikh, Parag J

    2013-03-15

    Using real-time electromagnetic (EM) transponder tracking data recorded by the Calypso 4D Localization System, we report inter- and intrafractional target motion of the prostate bed, describe a strategy to evaluate treatment adequacy in postprostatectomy patients receiving intensity modulated radiation therapy (IMRT), and propose an adaptive workflow. Tracking data recorded by Calypso EM transponders was analyzed for postprostatectomy patients that underwent step-and-shoot IMRT. Rigid target motion parameters during beam delivery were calculated from recorded transponder positions in 16 patients with rigid transponder geometry. The delivered doses to the clinical target volume (CTV) were estimated from the planned dose matrix and the target motion for the first 3, 5, 10, and all fractions. Treatment adequacy was determined by comparing the delivered minimum dose (Dmin) with the planned Dmin to the CTV. Treatments were considered adequate if the delivered CTV Dmin is at least 95% of the planned CTV Dmin. Translational target motion was minimal for all 16 patients (mean: 0.02 cm; range: -0.12 cm to 0.07 cm). Rotational motion was patient-specific, and maximum pitch, yaw, and roll were 12.2, 4.1, and 10.5°, respectively. We observed inadequate treatments in 5 patients. In these treatments, we observed greater target rotations along with large distances between the CTV centroid and transponder centroid. The treatment adequacy from the initial 10 fractions successfully predicted the overall adequacy in 4 of 5 inadequate treatments and 10 of 11 adequate treatments. Target rotational motion could cause underdosage to partial volume of the postprostatectomy targets. Our adaptive treatment strategy is applicable to post-prostatectomy patients receiving IMRT to evaluate and improve radiation therapy delivery. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Cone positioning device for oral radiation therapy.

    Science.gov (United States)

    Mahanna, G K; Ivanhoe, J R; Attanasio, R A

    1994-06-01

    This article describes the fabrication and modification of a peroral cone-positioning device. The modification provides added cone stability and prevents tongue intrusion into the radiation field. This device provides a repeatable accurate cone/lesion relationship and the fabrication technique is simplified, accurate, and minimizes patient discomfort.

  14. Towards the clinical implementation of iterative low-dose cone-beam CT reconstruction in image-guided radiation therapy: Cone/ring artifact correction and multiple GPU implementation

    Science.gov (United States)

    Yan, Hao; Wang, Xiaoyu; Shi, Feng; Bai, Ti; Folkerts, Michael; Cervino, Laura; Jiang, Steve B.; Jia, Xun

    2014-01-01

    Purpose: Compressed sensing (CS)-based iterative reconstruction (IR) techniques are able to reconstruct cone-beam CT (CBCT) images from undersampled noisy data, allowing for imaging dose reduction. However, there are a few practical concerns preventing the clinical implementation of these techniques. On the image quality side, data truncation along the superior–inferior direction under the cone-beam geometry produces severe cone artifacts in the reconstructed images. Ring artifacts are also seen in the half-fan scan mode. On the reconstruction efficiency side, the long computation time hinders clinical use in image-guided radiation therapy (IGRT). Methods: Image quality improvement methods are proposed to mitigate the cone and ring image artifacts in IR. The basic idea is to use weighting factors in the IR data fidelity term to improve projection data consistency with the reconstructed volume. In order to improve the computational efficiency, a multiple graphics processing units (GPUs)-based CS-IR system was developed. The parallelization scheme, detailed analyses of computation time at each step, their relationship with image resolution, and the acceleration factors were studied. The whole system was evaluated in various phantom and patient cases. Results: Ring artifacts can be mitigated by properly designing a weighting factor as a function of the spatial location on the detector. As for the cone artifact, without applying a correction method, it contaminated 13 out of 80 slices in a head-neck case (full-fan). Contamination was even more severe in a pelvis case under half-fan mode, where 36 out of 80 slices were affected, leading to poorer soft tissue delineation and reduced superior–inferior coverage. The proposed method effectively corrects those contaminated slices with mean intensity differences compared to FDK results decreasing from ∼497 and ∼293 HU to ∼39 and ∼27 HU for the full-fan and half-fan cases, respectively. In terms of efficiency boost

  15. Clinical Observation of Treatment of Retroperitoneal Lymph Node Metastasis by the Radiation Therapy of Gyro Rotary 60 Cobalt Radiation Treatment System%陀螺旋转式钴60放射外科治疗系统治疗腹膜后淋巴结转移瘤的近期疗效观察

    Institute of Scientific and Technical Information of China (English)

    李爽; 李贵新; 于金明; 邓军吉; 王文浩; 陈伟

    2013-01-01

    Objective To analyze the clinical observation of treatment of retroperitoneal lymph node metas -tasis by the radiation therapy of gyro rotary 60 cobalt radiation treatment system.Methods Thirty two patients with retro-peritoneal lymph node metastasis were treated with stereotactic radiotherapy in our department .The dose was 3~5Gy per fraction,the total dose of retroperitoneal were ranged from 35Gy to 50Gy,five times a week.The planned target volume was encompassed by more than 50%to 70%isodose line.Results The overall response rate(CR+PR) was 97.0%. Multivariate analysis showed that original illness ,radiotherapy dose and partial and complete response were related to i-dentified predictors of outcome,and the volume of radiotherapy,the size of metastatic-lymph node and tumor thrombi were not related to the outcome.Conclusion The radiation therapy of gyro rotary 60 cobalt radiation treatment system is a safe and effective treatment for retroperitoneal lymph node metastasis .It can be used as adjuvant therapy with the radia-tion therapy of gyro rotary 60 cobalt radiation treatment system .%  目的 探讨陀螺旋转式钴60放射外科治疗系统治疗腹膜后淋巴结转移瘤的近期疗效。方法 32例腹膜后淋巴结转移患者,给予陀螺旋转式钴60放射外科治疗系统治疗,50%~70%等剂量曲线覆盖整个靶区,单次周边剂量给予3~5Gy,周边总剂量35~50Gy。结果 32例中完全缓解(CR)24例,部分缓解(PR)7例,无变化(SD)1例。总有效率(CR+PR)为97.0%.多因素分析显示原发病、放疗剂量、症状缓解影响预后,而淋巴结转移大小、是否有癌栓、放疗体积与预后无关。结论 陀螺旋转式钴60放射外科治疗系统(简称陀螺刀)治疗腹膜后淋巴结转移瘤安全有效,可作为腹膜后淋巴结转移瘤的辅助性治疗手段。

  16. TU-CD-303-02: Beyond Radiation Induced Double Strand Breaks - a New Horizon for Radiation Therapy Research

    Energy Technology Data Exchange (ETDEWEB)

    Chang, S. [UNC School of Medicine (United States)

    2015-06-15

    Recent advances in cancer research have shed new light on the complex processes of how therapeutic radiation initiates changes at cellular, tissue, and system levels that may lead to clinical effects. These new advances may transform the way we use radiation to combat certain types of cancers. For the past two decades many technological advancements in radiation therapy have been largely based on the hypothesis that direct radiation-induced DNA double strand breaks cause cell death and thus tumor control and normal tissue damage. However, new insights have elucidated that in addition to causing cellular DNA damage, localized therapeutic radiation also initiates cascades of complex downstream biological responses in tissue that extend far beyond where therapeutic radiation dose is directly deposited. For instance, studies show that irradiated dying tumor cells release tumor antigens that can lead the immune system to a systemic anti-cancer attack throughout the body of cancer patient; targeted irradiation to solid tumor also increases the migration of tumor cells already in bloodstream, the seeds of potential metastasis. Some of the new insights may explain the long ago discovered but still unexplained non-localized radiation effects (bystander effect and abscopal effect) and the efficacy of spatially fractionated radiation therapy (microbeam radiation therapy and GRID therapy) where many “hot” and “cold” spots are intentionally created throughout the treatment volume. Better understanding of the mechanisms behind the non-localized radiation effects creates tremendous opportunities to develop new and integrated cancer treatment strategies that are based on radiotherapy, immunology, and chemotherapy. However, in the multidisciplinary effort to advance new radiobiology, there are also tremendous challenges including a lack of multidisciplinary researchers and imaging technologies for the microscopic radiation-induced responses. A better grasp of the essence of

  17. Determinants of job satisfaction among radiation therapy faculty.

    Science.gov (United States)

    Swafford, Larry G; Legg, Jeffrey S

    2009-01-01

    Job satisfaction is one of the most significant predictors of employee retention in a variety of occupational settings, including health care and education. A national survey of radiation therapy educators (n = 90) has indicated that respondents are not satisfied with their jobs based on data collected using the Minnesota Satisfaction Questionnaire (MSQ). To predict the factors associated with job satisfaction or dissatisfaction, the authors used a nine-item questionnaire derived from the MSQ. Educators were grouped according to their job satisfaction scores, and multiple discriminant analysis was used to determine which factors were predictive of satisfaction among groups of educators. Statistical results indicate that ability utilization, institutional support, compensation, personnel, and job characteristics were key determinants of job satisfaction among radiation therapy educators. These results may better inform faculty and administration of important factors that can promote job satisfaction and retain faculty in radiation therapy education programs.

  18. SU-E-T-79: A Study of the Effect of Clinical Tumor Volume Displacement On the Dosage of Post Modified Radical Mastectomy Intensity-Modulated Radiation Therapy Plans for Left-Sided Breast Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, W; Ma, C; Li, D; Wu, F [Cancer Hospital of Shantou University Medical College, Shantou, Guangdong (China)

    2015-06-15

    Purpose: To explore the effect of clinical tumor volume (CTV) displacement on the dosage of intensity-modulated radiation therapy (IMRT) plans for left-sided breast cancer after modified radical mastectomy. Methods: We created 2 sets of IMRT plans based on PTV0.5 and PTV0.7 (with CTV displacement of 0.5cm and 0.7cm respectively) for each of the ten consecutive left-sided breast cancer patients after modified radical mastectomy, and compared the difference in PTV coverage and organ at risk (OAR) sparing between the two groups. And then, we compared the difference in PTV coverage in IMRT plans based on PTV0.5 between the group with properly estimated CTV displacement (presuming the actual CTV displacement was 0.5cm) and the one with underestimated CTV displacement (presuming the actual CTV displacement was 0.7cm). The difference in results between the corresponding two groups was compared using paired-sample t-test. P values less than 0.05 were considered statistically significant. Results: IMRT plans derived from PTV0.5 had more homogenous PTV coverage, and less heart, left lung, right breast, right lung, left humeral head and B-P radiation exposure, as well as less total Mu as compared with the ones stemmed from PTV0.7 (all p<0.05). IMRT plans with appropriate estimation of CTV displacement had better PTV coverage compared with the ones with underestimated CTV displacement (all p<0.01). Conclusion: The IMRT plans with smaller CTV displacement in post modified radical mastectomy radiotherapy for left-sided breast cancer has dosimetrical advantages over the ones with larger CTV displacement. Underestimation of CTV displacement can lead to significant reduction of PTV coverage. Individually quantifying and minimizing CTV displacement can significantly improve PTV coverage and OAR (including heart and left lung) sparing. This work was supported by the Medical Scientific Research Foundation of Guangdong Procvince (A2014455 to Changchun Ma)

  19. Patterns of Local-Regional Failure in Completely Resected Stage IIIA(N2) Non-Small Cell Lung Cancer Cases: Implications for Postoperative Radiation Therapy Clinical Target Volume Design

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Wen [Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai (China); Fu, Xiao-Long, E-mail: xlfu1964@hotmail.com [Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai (China); Cai, Xu-Wei; Yang, Huan-Jun; Wu, Kai-Liang; Fan, Min [Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai (China); Xiang, Jia-Qing; Zhang, Ya-Wei; Chen, Hai-Quan [Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai (China)

    2014-04-01

    Purpose: To analyze patterns of local-regional failure (LRF) for completely resected stage IIIA(N2) non-small cell lung cancer (NSCLC) patients treated in our hospital and to propose a clinical target volume (CTV) for postoperative radiation therapy (PORT) in these patients. Methods and Materials: From 2005 to 2011, consecutive patients with pT1-3N2 NSCLC who underwent complete resection in our hospital but who did not receive PORT were identified. The patterns of first LRF were assessed and evaluated as to whether these areas would be encompassed by our proposed PORT CTV. Results: With a median follow-up of 24 months, 173 of 250 patients (69.2%) experienced disease recurrence. Of the 54 patients with LRF as the first event, 48 (89%) had recurrence within the proposed PORT CTV, and 6 (11%) had failures occurring both within and outside the proposed CTV (all of which occurred in patients with right-lung cancer). Ninety-three percent of failure sites (104 of 112) would have been contained within the proposed PORT CTV. For left-sided lung cancer, the most common lymph node station failure site was 4R, followed by 7, 4L, 6, 10L, and 5. For right-sided lung cancer, the most common site was station 2R, followed by 10R, 4R, and 7. Conclusions: LRF following complete surgery was an important and potentially preventable pattern of failure in stage IIIA(N2) patients. Ipsilateral superior mediastinal recurrences dominated for right-sided tumors, whereas left-sided tumors frequently involved the bilateral superior mediastinum. Most of the LRF sites would have been covered by the proposed PORT CTV. A prospective investigation of patterns of failure after PORT (following our proposed CTV delineation guideline) is presently underway and will be reported in a separate analysis.

  20. Communication skills training for radiation therapists: preparing patients for radiation therapy.

    Science.gov (United States)

    Halkett, Georgia; O'Connor, Moira; Aranda, Sanchia; Jefford, Michael; Merchant, Susan; York, Debra; Miller, Lisa; Schofield, Penelope

    2016-12-01

    Patients sometimes present for radiation therapy with high levels of anxiety. Communication skills training may assist radiation therapists to conduct more effective consultations with patients prior to treatment planning and treatment commencement. The overall aim of our research is to examine the effectiveness of a preparatory programme 'RT Prepare' delivered by radiation therapists to reduce patient psychological distress. The purpose of this manuscript was to describe the communication skills workshops developed for radiation therapists and evaluate participants' feedback. Radiation therapists were invited to participate in two communication skills workshops run on the same day: (1) Consultation skills in radiation therapy and (2) Eliciting and responding to patients' emotional cues. Evaluation forms were completed. Radiation therapists' consultations with patients were then audio-recorded and evaluated prior to providing a follow-up workshop with participants. Nine full day workshops were held. Sixty radiation therapists participated. Positive feedback was received for both workshops with 88% or more participants agreeing or strongly agreeing with all the statements about the different components of the two workshops. Radiation therapists highlighted participating in role play with an actor, discussing issues; receiving feedback; acquiring new skills and knowledge; watching others role play and practicing with checklist were their favourite aspects of the initial workshop. The follow-up workshops provided radiation therapists with feedback on how they identified and addressed patients' psychological concerns; time spent with patients during consultations and the importance of finding private space for consultations. Communication skills training consisting of preparing patients for radiation therapy and eliciting and responding to emotional cues with follow-up workshops has the potential to improve radiation therapists' interactions with patients undergoing

  1. Long-Term Results of an RTOG Phase II Trial (00-19) of External-Beam Radiation Therapy Combined With Permanent Source Brachytherapy for Intermediate-Risk Clinically Localized Adenocarcinoma of the Prostate

    Energy Technology Data Exchange (ETDEWEB)

    Lawton, Colleen A., E-mail: clawton@mcw.edu [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI (United States); Yan, Yan [Radiation Therapy Oncology Group Statistical Center, Philadelphia, PA (United States); Lee, W. Robert [Department of Radiation Oncology, Duke University School of Medicine, Durham, NC (United States); Gillin, Michael [Department of Radiation Oncology, MD Anderson Cancer Center, University of Texas MD Anderson Cancer Center, Houston, TX (United States); Firat, Selim [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI (United States); Baikadi, Madhava [Department of Radiation Oncology, Northeast Radiation Oncology Center, Scranton, PA (United States); Crook, Juanita [Department of Radiation Oncology, University of British Columbia, Kelowna, BC (Canada); Kuettel, Michael [Department of Radiation Medicine, Roswell Park Cancer Institute, Buffalo, NY (United States); Morton, Gerald [Department of Radiation Oncology, Toronto-Sunnybrook Regional Cancer Center, Toronto, ON (Canada); Sandler, Howard [Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, CA (United States)

    2012-04-01

    Purpose: External-beam radiation therapy combined with low-doserate permanent brachytherapy are commonly used to treat men with localized prostate cancer. This Phase II trial was performed to document late gastrointestinal or genitourinary toxicity as well as biochemical control for this treatment in a multi-institutional cooperative group setting. This report defines the long-term results of this trial. Methods and Materials: All eligible patients received external-beam radiation (45 Gy in 25 fractions) followed 2-6 weeks later by a permanent iodine 125 implant of 108 Gy. Late toxicity was defined by the Radiation Therapy Oncology Group/European Organization for Research and Treatment of Cancer late radiation morbidity scoring scheme. Biochemical control was defined by the American Society for Therapeutic Radiology and Oncology (ASTRO) Consensus definition and the ASTRO Phoenix definition. Results: One hundred thirty-eight patients were enrolled from 20 institutions, and 131 were eligible. Median follow-up (living patients) was 8.2 years (range, 2.7-9.3 years). The 8-year estimate of late grade >3 genitourinary and/or gastrointestinal toxicity was 15%. The most common grade >3 toxicities were urinary frequency, dysuria, and proctitis. There were two grade 4 toxicities, both bladder necrosis, and no grade 5 toxicities. In addition, 42% of patients complained of grade 3 impotence (no erections) at 8 years. The 8-year estimate of biochemical failure was 18% and 21% by the Phoenix and ASTRO consensus definitions, respectively. Conclusion: Biochemical control for this treatment seems durable with 8 years of follow-up and is similar to high-dose external beam radiation alone or brachytherapy alone. Late toxicity in this multi-institutional trial is higher than reports from similar cohorts of patients treated with high-dose external-beam radiation alone or permanent low-doserate brachytherapy alone, perhaps suggesting further attention to strategies that limit doses to

  2. The Role for Radiation Therapy in the Management of Sarcoma.

    Science.gov (United States)

    Leachman, Brooke K; Galloway, Thomas J

    2016-10-01

    Although there is no consensus regarding the optimal sequencing of external beam radiotherapy and surgery for extremity soft tissue sarcoma, radiation therapy delivered before or after limb-sparing surgery significantly improves local control, particularly for high-grade tumors. Large database analyses suggest that improved local control may translate into an overall survival benefit. Best practices require ample communication between the radiation and surgical teams to ensure appropriate tissues are targeted, unnecessary radiation is avoided, and patients are afforded the best opportunity for cure while maintaining function. Modern experiences with intensity-modulated radiotherapy/image-guided radiation therapy suggest toxicity is reduced through field size reduction and precise targeting, improving the therapeutic ratio. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Expert system classifier for adaptive radiation therapy in prostate cancer.

    Science.gov (United States)

    Guidi, Gabriele; Maffei, Nicola; Vecchi, Claudio; Gottardi, Giovanni; Ciarmatori, Alberto; Mistretta, Grazia Maria; Mazzeo, Ercole; Giacobazzi, Patrizia; Lohr, Frank; Costi, Tiziana

    2017-06-01

    A classifier-based expert system was developed to compare delivered and planned radiation therapy in prostate cancer patients. Its aim is to automatically identify patients that can benefit from an adaptive treatment strategy. The study predominantly addresses dosimetric uncertainties and critical issues caused by motion of hollow organs. 1200 MVCT images of 38 prostate adenocarcinoma cases were analyzed. An automatic daily re-contouring of structures (i.e. rectum, bladder and femoral heads), rigid/deformable registration and dose warping was carried out to simulate dose and volume variations during therapy. Support vector machine, K-means clustering algorithms and similarity index analysis were used to create an unsupervised predictive tool to detect incorrect setup and/or morphological changes as a consequence of inadequate patient preparation due to stochastic physiological changes, supporting clinical decision-making. After training on a dataset that was considered sufficiently dosimetrically stable, the system identified two equally sized macro clusters with distinctly different volumetric and dosimetric baseline properties and defined thresholds for these two clusters. Application to the test cohort resulted in 25% of the patients located outside the two macro clusters thresholds and which were therefore suspected to be dosimetrically unstable. In these patients, over the treatment course, mean volumetric changes of 30 and 40% for rectum and bladder were detected which possibly represents values justifying adjustment of patient preparation, frequent re-planning or a plan-of-the-day strategy. Based on our research, by combining daily IGRT images with rigid/deformable registration and dose warping, it is possible to apply a machine learning approach to the clinical setting obtaining useful information for a decision regarding an individualized adaptive strategy. Especially for treatments influenced by the movement of hollow organs, this could reduce inadequate

  4. Radiation therapy for head and neck cancers a case-based review

    CERN Document Server

    Beyzadeoglu, Murat; Selek, Ugur

    2014-01-01

    This evidence-based guide to the current management of cancer cases at all head and neck sites will assist in the appropriate selection and delineation of tumor volumes/fields for intensity-modulated radiation therapy (IMRT), including volumetric modulated arc therapy (VMAT). Each tumor site-related chapter presents, from the perspective of an academic expert, several actual cases at different stages in order to clarify specific clinical concepts. The coverage includes case presentation, a case-related literature review, patient preparation, simulation, contouring, treatment planning, treatment delivery, and follow-up. The text is accompanied by illustrations ranging from slice-by-slice delineations on planning CT images to finalized plan evaluations based on detailed acceptance criteria. The book will be of value for residents, fellows, practicing radiation oncologists, and medical physicists interested in clinical radiation oncology.

  5. Meningeal hemangiopericytoma treated with surgery and radiation therapy -case report-

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Ji Young; Oh, Yoon Kyeong [College of Medicine, Chosun University, Gwangju (Korea, Republic of)

    2006-06-15

    Meningeal hemangiopericytoma (HPC) is an uncommon dura-based tumor and can recur not only locally but also distantly in the neural axis or extraneural sites. We report our experience of radiation therapy, one preoperative and one elective postoperative, in two patients with meningeal HPC and reviewed the role of radiation therapy. A 41-year-old man (Case 1) presented with a 3-month history of headache and right hemiparesis. The mass was nearly unresectable at the first and second operation and diagnosed as meningeal HPC. Preoperative radiation therapy was given with a total dose of 55.8 Gy/31 fractions to the large residual mass of left frontoparietal area. Follow-up computerized tomography (CT) showed marked regression of tumor after radiation therapy. The third operation was performed to remove the residual tumor at 6 months after the radiation therapy and a 2 x 2 cm sized tumor was encountered. The mass was totally removed. The serial follow-up CT showed no evidence of recurrence and he is alive without distant metastasis for 4 years and 10 months after the first operation. A 45-year-old woman (Case 2) presented with suddenly developed headache and visual impairment. Tumor mass occupying right frontal lobe was removed with the preoperative diagnosis of meningioma. It was totally removed with attached sagittal sinus and diagnosed as meningeal HPC. Elective postoperative radiation therapy was performed to reduce local recurrence with a total dose of 54 Gy/30 fractions to the involved area of right frontal lobe. She is alive for 5 years maintaining normal activity without local recurrence and distant metastasis.

  6. The physical basis and future of radiation therapy

    Science.gov (United States)

    Bortfeld, T; Jeraj, R

    2011-01-01

    The remarkable progress in radiation therapy over the last century has been largely due to our ability to more effectively focus and deliver radiation to the tumour target volume. Physics discoveries and technology inventions have been an important driving force behind this progress. However, there is still plenty of room left for future improvements through physics, for example image guidance and four-dimensional motion management and particle therapy, as well as increased efficiency of more compact and cheaper technologies. Bigger challenges lie ahead of physicists in radiation therapy beyond the dose localisation problem, for example in the areas of biological target definition, improved modelling for normal tissues and tumours, advanced multicriteria and robust optimisation, and continuous incorporation of advanced technologies such as molecular imaging. The success of physics in radiation therapy has been based on the continued “fuelling” of the field with new discoveries and inventions from physics research. A key to the success has been the application of the rigorous scientific method. In spite of the importance of physics research for radiation therapy, too few physicists are currently involved in cutting-edge research. The increased emphasis on more “professionalism” in medical physics will tip the situation even more off balance. To prevent this from happening, we argue that medical physics needs more research positions, and more and better academic programmes. Only with more emphasis on medical physics research will the future of radiation therapy and other physics-related medical specialties look as bright as the past, and medical physics will maintain a status as one of the most exciting fields of applied physics. PMID:21606068

  7. Metformin: A Novel Biological Modifier of Tumor Response to Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Koritzinsky, Marianne, E-mail: mkoritzi@uhnresearch.ca

    2015-10-01

    Over the last decade, evidence has emerged to support a role for the antidiabetic drug metformin in the prevention and treatment of cancer. In particular, recent studies demonstrate that metformin enhances tumor response to radiation in experimental models, and retrospective analyses have shown that diabetic cancer patients treated with radiation therapy have improved outcomes if they take metformin to control their diabetes. Metformin may therefore be of utility for nondiabetic cancer patients treated with radiation therapy. The purpose of this review is to examine the data pertaining to an interaction between metformin and radiation, highlighting the essential steps needed to advance our current knowledge. There is also a focus on key biomarkers that should accompany prospective clinical trials in which metformin is being examined as a modifying agent with radiation therapy. Existing evidence supports that the mechanism underlying the ability of metformin to enhance radiation response is multifaceted, and includes direct radiosensitization as well as a reduction in tumor stem cell fraction, proliferation, and tumor hypoxia. Interestingly, metformin may enhance radiation response specifically in certain genetic backgrounds, such as in cells with loss of the tumor suppressors p53 and LKB1, giving rise to a therapeutic ratio and potential predictive biomarkers.

  8. Predictors of Radiation Pneumonitis in Patients Receiving Intensity Modulated Radiation Therapy for Hodgkin and Non-Hodgkin Lymphoma

    Energy Technology Data Exchange (ETDEWEB)

    Pinnix, Chelsea C., E-mail: ccpinnix@mdanderson.org [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Smith, Grace L.; Milgrom, Sarah; Osborne, Eleanor M.; Reddy, Jay P.; Akhtari, Mani; Reed, Valerie; Arzu, Isidora; Allen, Pamela K.; Wogan, Christine F. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Fanale, Michele A.; Oki, Yasuhiro; Turturro, Francesco; Romaguera, Jorge; Fayad, Luis; Fowler, Nathan; Westin, Jason; Nastoupil, Loretta; Hagemeister, Fredrick B.; Rodriguez, M. Alma [Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); and others

    2015-05-01

    Purpose: Few studies to date have evaluated factors associated with the development of radiation pneumonitis (RP) in patients with Hodgkin lymphoma (HL) and non-Hodgkin lymphoma (NHL), especially in patients treated with contemporary radiation techniques. These patients represent a unique group owing to the often large radiation target volumes within the mediastinum and to the potential to receive several lines of chemotherapy that add to pulmonary toxicity for relapsed or refractory disease. Our objective was to determine the incidence and clinical and dosimetric risk factors associated with RP in lymphoma patients treated with intensity modulated radiation therapy (IMRT) at a single institution. Methods and Materials: We retrospectively reviewed clinical charts and radiation records of 150 consecutive patients who received mediastinal IMRT for HL and NHL from 2009 through 2013. Clinical and dosimetric predictors associated with RP according to Radiation Therapy Oncology Group (RTOG) acute toxicity criteria were identified in univariate analysis using the Pearson χ{sup 2} test and logistic multivariate regression. Results: Mediastinal radiation was administered as consolidation therapy in 110 patients with newly diagnosed HL or NHL and in 40 patients with relapsed or refractory disease. The overall incidence of RP (RTOG grades 1-3) was 14% in the entire cohort. Risk of RP was increased for patients who received radiation for relapsed or refractory disease (25%) versus those who received consolidation therapy (10%, P=.019). Several dosimetric parameters predicted RP, including mean lung dose of >13.5 Gy, V{sub 20} of >30%, V{sub 15} of >35%, V{sub 10} of >40%, and V{sub 5} of >55%. The likelihood ratio χ{sup 2} value was highest for V{sub 5} >55% (χ{sup 2} = 19.37). Conclusions: In using IMRT to treat mediastinal lymphoma, all dosimetric parameters predicted RP, although small doses to large volumes of lung had the greatest influence. Patients with relapsed

  9. Statistical Decision Theory Applied to Radiation Therapy Treatment Decisions

    OpenAIRE

    Schultheiss, T. E.; El-Mahdi, Anas M.

    1982-01-01

    Statistical decision theory has been applied to the treatment planning decision of radiation therapy. The decision involves the choice of parameters which determine the radiation dose distribution. To choose among dose distributions requires a decision rule which reflects the uncertainty of possible outcomes for any specific dose distribution and the various risks associated with each outcome. A relative gravity or morbidity is assigned to each possible complication of treatment. In this stud...

  10. Clinical adenoviral gene therapy for prostate cancer.

    Science.gov (United States)

    Schenk, Ellen; Essand, Magnus; Bangma, Chris H; Barber, Chris; Behr, Jean-Paul; Briggs, Simon; Carlisle, Robert; Cheng, Wing-Shing; Danielsson, Angelika; Dautzenberg, Iris J C; Dzojic, Helena; Erbacher, Patrick; Fisher, Kerry; Frazier, April; Georgopoulos, Lindsay J; Hoeben, Rob; Kochanek, Stefan; Koppers-Lalic, Daniela; Kraaij, Robert; Kreppel, Florian; Lindholm, Leif; Magnusson, Maria; Maitland, Norman; Neuberg, Patrick; Nilsson, Berith; Ogris, Manfred; Remy, Jean-Serge; Scaife, Michelle; Schooten, Erik; Seymour, Len; Totterman, Thomas; Uil, Taco G; Ulbrich, Karel; Veldhoven-Zweistra, Joke L M; de Vrij, Jeroen; van Weerden, Wytske; Wagner, Ernst; Willemsen, Ralph

    2010-07-01

    Prostate cancer is at present the most common malignancy in men in the Western world. When localized to the prostate, this disease can be treated by curative therapy such as surgery and radiotherapy. However, a substantial number of patients experience a recurrence, resulting in spreading of tumor cells to other parts of the body. In this advanced stage of the disease only palliative treatment is available. Therefore, there is a clear clinical need for new treatment modalities that can, on the one hand, enhance the cure rate of primary therapy for localized prostate cancer and, on the other hand, improve the treatment of metastasized disease. Gene therapy is now being explored in the clinic as a treatment option for the various stages of prostate cancer. Current clinical experiences are based predominantly on trials with adenoviral vectors. As the first of a trilogy of reviews on the state of the art and future prospects of gene therapy in prostate cancer, this review focuses on the clinical experiences and progress of adenovirus-mediated gene therapy for this disease.

  11. Current status of radiation therapy. Evidence-based medicine (EBM) of radiation therapy. Current management of patients with esophageal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Nemoto, Kenji [Tohoku Univ., Sendai (Japan). School of Medicine

    2002-03-01

    The best management for small mucosal esophageal cancer is generally endoscopic mucosal resection. However, for submucosal cancer and extensive mucosal caner, either radical surgery or radiation seems to be an equally efficacious option. Radiation therapy concurrent with chemotherapy is more effective than radiation therapy alone for patients with unresectable esophageal cancer. The key drugs are cisplatin and 5-fluorouracil. However, for patients with poor performance status or for aged patients, radiation therapy alone is still a choice of treatment. Surgery has generally been indicated for patients with resectable esophageal cancer. However, outcomes of concurrent chemoradiation therapy may be comparable with those of surgery. Therefore, a prospective randomized study should be performed to determine the best management for patients with resectable esophageal cancer. The usefulness of intra-cavitary irradiation for esophageal cancer has not been clarified. A prospective randomized trial with a large number of patients is necessary to determine the effectiveness of intra-cavitary irradiation. The best management for patients with loco-regionally recurrent esophageal cancer after surgery has not been determined. Intensive therapy should be considered if the site of recurrence is limited and the time interval from surgery to recurrence is long. Chemotherapy is essential in the management of patients with small cell esophageal cancer. However, the best local therapy has not been determined. (author)

  12. Khan's lectures handbook of the physics of radiation therapy

    CERN Document Server

    Khan, Faiz M; Mihailidis, Dimitris

    2011-01-01

    Khan's Lectures: Handbook of the Physics of Radiation Therapy will provide a digest of the material contained in The Physics of Radiation Therapy. Lectures will be presented somewhat similar to a PowerPoint format, discussing key points of individual chapters. Selected diagrams from the textbook will be used to initiate the discussion. New illustrations will used, wherever needed, to enhance the understanding of important concepts. Discussion will be condensed and often bulleted. Theoretical details will be referred to the textbook and the cited literature. A problem set (practice questions) w

  13. A pilot study of intensity modulated radiation therapy with hypofractionated stereotactic body radiation therapy (SBRT) boost in the treatment of intermediate- to high-risk prostate cancer.

    Science.gov (United States)

    Oermann, Eric K; Slack, Rebecca S; Hanscom, Heather N; Lei, Sue; Suy, Simeng; Park, Hyeon U; Kim, Joy S; Sherer, Benjamin A; Collins, Brian T; Satinsky, Andrew N; Harter, K William; Batipps, Gerald P; Constantinople, Nicholas L; Dejter, Stephen W; Maxted, William C; Regan, James B; Pahira, John J; McGeagh, Kevin G; Jha, Reena C; Dawson, Nancy A; Dritschilo, Anatoly; Lynch, John H; Collins, Sean P

    2010-10-01

    Clinical data suggest that large radiation fractions are biologically superior to smaller fraction sizes in prostate cancer radiotherapy. The CyberKnife is an appealing delivery system for hypofractionated radiosurgery due to its ability to deliver highly conformal radiation and to track and adjust for prostate motion in real-time. We report our early experience using the CyberKnife to deliver a hypofractionated stereotactic body radiation therapy (SBRT) boost to patients with intermediate- to high-risk prostate cancer. Twenty-four patients were treated with hypofractionated SBRT and supplemental external radiation therapy plus or minus androgen deprivation therapy (ADT). Patients were treated with SBRT to a dose of 19.5 Gy in 3 fractions followed by intensity modulated radiation therapy (IMRT) to a dose of 50.4 Gy in 28 fractions. Quality of life data were collected with American Urological Association (AUA) symptom score and Expanded Prostate Cancer Index Composite (EPIC) questionnaires before and after treatment. PSA responses were monitored; acute urinary and rectal toxicities were assessed using Common Toxicity Criteria (CTC) v3. All 24 patients completed the planned treatment with an average follow-up of 9.3 months. For patients who did not receive ADT, the median pre-treatment PSA was 10.6 ng/ml and decreased in all patients to a median of 1.5 ng/ml by 6 months post-treatment. Acute effects associated with treatment included Grade 2 urinary and gastrointestinal toxicity but no patient experienced acute Grade 3 or greater toxicity. AUA and EPIC scores returned to baseline by six months post-treatment. Hypofractionated SBRT combined with IMRT offers radiobiological benefits of a large fraction boost for dose escalation and is a well tolerated treatment option for men with intermediate- to high-risk prostate cancer. Early results are encouraging with biochemical response and acceptable toxicity. These data provide a basis for the design of a phase II clinical

  14. Phototherapy cabinet for ultraviolet radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Horwitz, S.N.; Frost, P.

    1981-08-01

    A newly designed cabinet can be used for the treatment of psoriasis with fluorescent ultraviolet (UV) lamps. the new design provides more uniform distribution of UV radiation in both the horizontal and vertical axes, and several safety features have been added. The distribution and uniformity of UV output in this and in a previously described cabinet are compared. The UV output at the vertical center of the older UV light cabinet was six times greater than that at either the top or bottom, while the design of the present cabinet provides uniform UV radiation except for a slight increase at head height and at the level of the lower legs compared with the middle third of the cabinet. The variation in output of the older cabinet may, in part, explain the commonly encountered difficulty in the phototherapy of psoriasis of the scalp and lower extremities.

  15. Targeted Radiation Therapy for Cancer Initiative

    Science.gov (United States)

    2016-09-01

    Localization System will help to spare toxicity to the heart, 5) a military medical center department, with essentially fixed costs and without financial ...research was presented at the ACRO ( American College of Radiation Oncology) Annual Meeting in Orlando, FL March 17-19, 2016. We continue to analyze...data endpoints as the remaining subjects complete the follow-up phase. Databases have been created for the raw data gained from the Expanded Prostate

  16. Radiation dermatitis and pneumonitis following breast conserving therapy

    Energy Technology Data Exchange (ETDEWEB)

    Yoden, Eisaku; Hiratsuka, Junichi; Imajo, Yoshinari [Kawasaki Medical School, Kurashiki, Okayama (Japan)

    2000-09-01

    We investigated the frequency, degree and risk factors of radiation-induced dermatitis and pneumonitis in 255 patients receiving breast conserving therapy between April 1987 and April 1998. The majority of the patients underwent a wide excision or quadrantectomy with a level I, II axillary dissection, followed by radiotherapy consisting of 50 Gy/25 Fr/5 weeks to the preserved breast with a 4 MV beam by tangentially opposed portals using the half-field technique. Eleven patients received an additional 10 Gy/5 Fr of electron therapy to the tumor bed. Most of the patients developed radiation dermatitis which was limited to reddening or dry desquamation, with the exception of 14 patients with a localized moist reaction. The skin reaction was transient in all patients and improved with conservative treatments. Radiation pneumonitis appeared on chest X-rays in 30 patients, with a slight appearance in 21 and patchy appearance in 9. Three patients presented with persistent symptoms requiring medication. They were treated with steroids, resulting in complete resolution of the symptoms. A large volume of the chest wall within the irradiation field and a large area of irradiated skin were the risk factors of radiation dermatitis. The volume of irradiated lung significantly correlated with the frequency and degree of radiation pneumonitis. It was preferable that the maximum thickness of the involved lung should not exceed 3 cm. Complicated disease, adjuvant therapy and boost irradiation had no impact on the radiation dermatitis or pneumonitis. (author)

  17. Interactive Decision-Support Tool for Risk-Based Radiation Therapy Plan Comparison for Hodgkin Lymphoma

    DEFF Research Database (Denmark)

    Brodin, N. Patrik; Maraldo, Maja V.; Aznar, Marianne C.

    2014-01-01

    PURPOSE: To present a novel tool that allows quantitative estimation and visualization of the risk of various relevant normal tissue endpoints to aid in treatment plan comparison and clinical decision making in radiation therapy (RT) planning for Hodgkin lymphoma (HL). METHODS AND MATERIALS...... of dose-response curves to drive the reoptimization of a volumetric modulated arc therapy treatment plan for an HL patient with head-and-neck involvement. We also use this decision-support tool to visualize and quantitatively evaluate the trade-off between a 3-dimensional conformal RT plan...... and a volumetric modulated arc therapy plan for a patient with mediastinal HL. CONCLUSION: This multiple-endpoint decision-support tool provides quantitative risk estimates to supplement the clinical judgment of the radiation oncologist when comparing different RT options....

  18. A challenge for high-precision radiation therapy: the case for hadrons.

    Science.gov (United States)

    Wambersie, A; Auberger, T; Gahbauer, R A; Jones, D T; Pötter, R

    1999-06-01

    Developments in Hadron therapy, i.e., fast neutrons, protons, pions, heavy ions and boron neutron capture therapy are reviewed. For each type of particle, operational and closed facilities are listed as well as planned new facilities. Improvements in clinical results have always been linked to technological developments and better physical selectivity of the irradiation. Exploring the benefit of further improvement in dose localization expected from protons and conformal therapy is the challenge for the coming years. The radiobiological rationale for high-LET radiation in cancer treatment, proposed in the fifties, is still valid and has not been contradicted by recent radiobiological findings. This justifies the planning of a therapy facility where protons and heavy ions (carbon ions) could be applied, under optimal physical and technical conditions. Appropriate selection between low- and high-LET radiation for a particular tumor is indeed a radiobiological problem, independent of technical development.

  19. Radiobiological mechanisms of stereotactic body radiation therapy and stereotactic radiation surgery

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Mi Sook; Kim, Won Woo; Park, In Hwan; Kim, Hee Jong; Lee, Eun Jin; Jung, Jae Hoon [Research Center for Radiotherapy, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Cho, Lawrence Chin Soo; Song, Chang W. [Dept. of Radiation Oncology, University of Minnesota Medical School, Minneapolis (United States)

    2015-12-15

    Despite the increasing use of stereotactic body radiation therapy (SBRT) and stereotactic radiation surgery (SRS) in recent years, the biological base of these high-dose hypo-fractionated radiotherapy modalities has been elusive. Given that most human tumors contain radioresistant hypoxic tumor cells, the radiobiological principles for the conventional multiple-fractionated radiotherapy cannot account for the high efficacy of SBRT and SRS. Recent emerging evidence strongly indicates that SBRT and SRS not only directly kill tumor cells, but also destroy the tumor vascular beds, thereby deteriorating intratumor microenvironment leading to indirect tumor cell death. Furthermore, indications are that the massive release of tumor antigens from the tumor cells directly and indirectly killed by SBRT and SRS stimulate anti-tumor immunity, thereby suppressing recurrence and metastatic tumor growth. The reoxygenation, repair, repopulation, and redistribution, which are important components in the response of tumors to conventional fractionated radiotherapy, play relatively little role in SBRT and SRS. The linear-quadratic model, which accounts for only direct cell death has been suggested to overestimate the cell death by high dose per fraction irradiation. However, the model may in some clinical cases incidentally do not overestimate total cell death because high-dose irradiation causes additional cell death through indirect mechanisms. For the improvement of the efficacy of SBRT and SRS, further investigation is warranted to gain detailed insights into the mechanisms underlying the SBRT and SRS.

  20. Postoperative radiation therapy for malignant glioma. Results of conventional radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Teshima, T.; Inoue, T.; Chatani, M.; Hata, K.; Taki, T.; Nii, Y.; Nakagawa, H.

    1987-02-01

    From December 1977 through September 1984, a total of 39 cases of malignant glioma were treated with radiation therapy (RT) postoperatively. Twenty-nine cases were classified into glioblastoma (GM) and 10 astrocytoma (AS) (low grade : 6 and anaplastic : 4) histologically. One third of cases received 50 Gy/25 FRX/5 WKS of whole brain RT. Another two thirds of cases underwent 60 Gy/30 FRX/6 WKS of whole brain or 50 Gy/25 FRX/5 WKS of whole brain + additional 20 Gy/10 FRX/2 WKS of localized field RT. Chemotherapy (BLM, MeCCNU and ACNU) was given for 34 cases. Survivals at 3 years for GM and AS were 12 % and 68 %, respectively. Prognostic factors for GM were age, neurologic function (RTOG), AJC-staging T-factor, pre-RT LDH level and volume of residual tumor. Corresponding factors for AS were histological subclassification and neurologic function (RTOG). However, RT dose and field did not impact on survival significantly. Acute adverse effects of RT were otitis media or externa (70 %) and conjunctivitis (8 %). Retinal bleeding was noted in three long-term survivors at 2 years after RT.

  1. Radiation-induced pseudotumor following therapy for soft tissue sarcoma

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Lacey F.; Kransdorf, Mark J. [Mayo Clinic, Department of Radiology, Jacksonville, FL (United States); Buskirk, Steven J. [Mayo Clinic, Department of Radiation Oncology, Jacksonville, FL (United States); O' Connor, Mary I. [Mayo Clinic, Department of Orthopedic Surgery, Jacksonville, FL (United States); Menke, David M. [Mayo Clinic, Department of Pathology, Jacksonville, FL (United States)

    2009-06-15

    The purpose of this study was to describe the prevalence and imaging appearance of radiation induced pseudotumors in patients following radiation therapy for extremity soft tissue sarcomas. We retrospectively reviewed the serial magnetic resonance (MR) images of 24 patients following radiation therapy for extremity soft tissue sarcomas. A total of 208 exams were reviewed (mean, 8.7 exams per patient) and included all available studies following the start of radiation therapy. Exams were analyzed for the identification of focal signal abnormalities within the surgical bed suggesting local tumor recurrence. Histopathologic correlation was available in nine patients suspected of having local tumor recurrence. Additional information recorded included patient demographics, tumor type and location, radiation type, and dose. The study group consisted of 12 men and 12 women, having an average age of 63 years (range, 39-88 years). Primary tumors were malignant fibrous histiocytoma (n = 13), leiomyosarcoma (n = 6), liposarcoma (n = 3), synovial sarcoma (n = 1), and extraskeletal chondrosarcoma (n = 1). All lesions were high-grade sarcomas, except for two myxoid liposarcomas. Average patient radiation dose was 5,658 cGy (range, 4,500-8,040 cGy). Average follow-up time was 63 months (range, 3-204 months). Focal signal abnormalities suggesting local recurrence were seen in nine (38%) patients. Three of the nine patients with these signal abnormalities were surgically proven to have radiation-induced pseudotumor. The pseudotumors developed between 11 and 61 months following the initiation of radiation therapy (mean, 38 months), with an average radiation dose of 5,527 cGy (range, 5,040-6,500 cGy). MR imaging demonstrated a relatively ill-defined ovoid focus of abnormal signal and intense heterogeneous enhancement with little or no associated mass effect. MR imaging of radiation-induced pseudotumor typically demonstrates a relatively ill-defined ovoid mass-like focus of intense

  2. Comparison of the radiobiological effect of carbon ion beam therapy and conventional radiation therapy on cervical cancer.

    Science.gov (United States)

    Suzuki, Yoshiyuki; Nakano, Takashi; Ohno, Tatsuya; Oka, Kuniyuki

    2008-09-01

    Little clinical evidence has been provided to show the minimization of radiation resistance of tumors using high linear energy transfer radiation. We therefore investigated the radiobiological and molecular pathological aspects of carbon beam therapy. A total of 27 patients with squamous cell carcinoma (SCC) of the cervix were treated using a carbon beam and 50 control patients with SCC of the cervix using a photon beam. The expression of Ki-67, p53, and p27 proteins before radiotherapy and 5 and 15 days after therapy initiation were investigated using immunohistochemistry. Similar changes were observed in Ki-67 labeling index (LI) and p53 LI during carbon and photon beam therapies. However, for carbon beam therapy, the mean p27 LI significantly decreased from 25.2% before treatment to 18.6% on the 5th day after treatment initiation, followed by a significant increase to 36.1% on the 15th day. In contrast, for photon beam therapy, the p27 LI consistently decreased from the initial 19.9% to 13.7% on the 15th day. Histological effects were observably stronger under carbon than photon beam therapy, though no statistically significant difference was observed (p = 0.07 on the 5th day and p = 0.10 on the 15th day). The changes in p27 LI under carbon beam therapy were significantly different from those under photon beam therapy, which suggests important molecular differences in the radio-biological response between therapies. Further investigation is required to elucidate the clinical relevance of these putative changes and optimize the relative biological effectiveness of carbon beam to X-ray.

  3. Immunomodulatory effects of radiation: what is next for cancer therapy?

    Science.gov (United States)

    Kumari, Anita; Simon, Samantha S; Moody, Tomika D; Garnett-Benson, Charlie

    2016-01-01

    Despite its former reputation as being immunosuppressive, it has become evident that radiation therapy can enhance antitumor immune responses. This quality can be harnessed by utilizing radiation as an adjuvant to cancer immunotherapies. Most studies combine the standard radiation dose and regimens indicated for the given disease state, with novel cancer immunotherapies. It has become apparent that low-dose radiation, as well as doses within the hypofractionated range, can modulate tumor cells making them better targets for immune cell reactivity. Herein, we describe the range of phenotypic changes induced in tumor cells by radiation, and explore the diverse mechanisms of immunogenic modulation reported at these doses. We also review the impact of these doses on the immune cell function of cytotoxic cells in vivo and in vitro.

  4. The Application of FLUKA to Dosimetry and Radiation Therapy

    Science.gov (United States)

    Wilson, Thomas L.; Andersen, Victor; Pinsky, Lawrence; Ferrari, Alfredo; Battistoni, Giusenni

    2005-01-01

    Monte Carlo transport codes like FLUKA are useful for many purposes, and one of those is the simulation of the effects of radiation traversing the human body. In particular, radiation has been used in cancer therapy for a long time, and recently this has been extended to include heavy ion particle beams. The advent of this particular type of therapy has led to the need for increased capabilities in the transport codes used to simulate the detailed nature of the treatment doses to the Y O U S tissues that are encountered. This capability is also of interest to NASA because of the nature of the radiation environment in space.[l] While in space, the crew members bodies are continually being traversed by virtually all forms of radiation. In assessing the risk that this exposure causes, heavy ions are of primary importance. These arise both from the primary external space radiation itself, as well as fragments that result from interactions during the traversal of that radiation through any intervening material including intervening body tissue itself. Thus the capability to characterize the details of the radiation field accurately within a human body subjected to such external 'beams" is of critical importance.

  5. Biomarkers in T cell therapy clinical trials

    Directory of Open Access Journals (Sweden)

    Kalos Michael

    2011-08-01

    Full Text Available Abstract T cell therapy represents an emerging and promising modality for the treatment of both infectious disease and cancer. Data from recent clinical trials have highlighted the potential for this therapeutic modality to effect potent anti-tumor activity. Biomarkers, operationally defined as biological parameters measured from patients that provide information about treatment impact, play a central role in the development of novel therapeutic agents. In the absence of information about primary clinical endpoints, biomarkers can provide critical insights that allow investigators to guide the clinical development of the candidate product. In the context of cell therapy trials, the definition of biomarkers can be extended to include a description of parameters of the cell product that are important for product bioactivity. This review will focus on biomarker studies as they relate to T cell therapy trials, and more specifically: i. An overview and description of categories and classes of biomarkers that are specifically relevant to T cell therapy trials, and ii. Insights into future directions and challenges for the appropriate development of biomarkers to evaluate both product bioactivity and treatment efficacy of T cell therapy trials.

  6. Expert Radiation Oncologist Interpretations of Involved-Site Radiation Therapy Guidelines in the Management of Hodgkin Lymphoma

    Energy Technology Data Exchange (ETDEWEB)

    Hoppe, Bradford S. [University of Florida Health Proton Therapy Institute, Jacksonville, Florida (United States); Hoppe, Richard T., E-mail: rhoppe@stanford.edu [Stanford Cancer Institute, Stanford, California (United States)

    2015-05-01

    Purpose: Recently, involved-site radiation therapy (ISRT) guidelines have been developed and published to replace the previous concept of involved-field radiation therapy for patients with lymphoma. However, these ISRT guidelines may be interpreted in different ways, posing difficulties for prospective clinical trials. This study reports survey results regarding interpretation of the ISRT guidelines. Methods and Materials: Forty-four expert lymphoma radiation oncologists were asked to participate in a survey that included 7 different cases associated with 9 questions. The questions pertained to ISRT contouring and asked respondents to choose between 2 different answers (no “correct” answer) and a third write-in option allowed. Results: Fifty-two percent of those surveyed responded to the questionnaire. Among those who responded, 72% have practiced for >10 years, 46% have treated >20 Hodgkin lymphoma cases annually, and 100% were familiar with the ISRT concept. Among the 9 questions associated with the 7 cases, 3 had concordance among the expert radiation oncologists of greater than 70%. Six of the questions had less than 70% concordance (range, 56%-67%). Conclusions: Even among expert radiation oncologists, interpretation of ISRT guidelines is variable. Further guidance for ISRT field design will be needed to reduce variability among practicing physicians.

  7. Documenting Clinical Events in Adventure Therapy.

    Science.gov (United States)

    Gray, Sky; Yerkes, Rita

    1995-01-01

    Stresses the need for documenting the application and outcomes of specific adventure activities with specific client groups and documenting critical therapeutic/clinical incidents in adventure therapy programs. Overviews current trends in documentation of therapeutic adventure programs and provides recommendations from the medical and mental…

  8. Documenting Art Therapy Clinical Knowledge Using Interviews

    Science.gov (United States)

    Regev, Dafna

    2017-01-01

    Practicing art therapists have vast stores of knowledge and experience, but in most cases, their work is not documented, and their clinical knowledge does not enter the academic discourse. This article proposes a systematic approach to the collection of practice knowledge about art therapy based on conducting interviews with art therapists who…

  9. Radiation-induced bystander effect: The important part of ionizing radiation response. Potential clinical implications

    Directory of Open Access Journals (Sweden)

    Maria Wideł

    2009-08-01

    bystander effect may be a potentially harmful or a useful event in radiotherapy. The elevation of damage to tumor cells not directly hit by radiation or the initiation of tumor cell differentiation may increase the therapeutic ratio. If, however, molecular species secreted by irradiated tumor cells in vivo damage neighboring normal cells (epithelial and endothelial cells, fi broblasts, or lymphocytes, the bystander effect would be harmful and could lead to increased side effects in normal tissue. This is especially important in modern radiotherapy, as 3D conformal radiation therapy (3D-CRT and intensity-modulated radiation therapy (IMRT are aimed at diminishing the radiation dose in normal tissues. Recent in vivo studies on animals indicate that bystander effects may appear in organs and tissues remote from the irradiated fi eld and the extension of tissue damage seems to be tissue-type dependent. However, recent experimental results indicate that non-irradiated cells that are neighbors of irradiated cells may diminish radiation damage in the radiation-focused cells. Less is known about the bystander effect during fractionated irradiation. Thus the clinical implications of the bystander effect and its possible modifi cation for radiotherapeutic usefulness is still under debate.

  10. Anorectal Cancer: Critical Anatomic and Staging Distinctions That Affect Use of Radiation Therapy.

    Science.gov (United States)

    Matalon, Shanna A; Mamon, Harvey J; Fuchs, Charles S; Doyle, Leona A; Tirumani, Sree Harsha; Ramaiya, Nikhil H; Rosenthal, Michael H

    2015-01-01

    Although rectal and anal cancers are anatomically close, they are distinct entities with different histologic features, risk factors, staging systems, and treatment pathways. Imaging is at the core of initial clinical staging of these cancers and most commonly includes magnetic resonance imaging for local-regional staging and computed tomography for evaluation of metastatic disease. The details of the primary tumor and involvement of regional lymph nodes are crucial in determining if and how radiation therapy should be used in treatment of these cancers. Unfortunately, available imaging modalities have been shown to have imperfect accuracy for identification of nodal metastases and imaging features other than size. Staging of nonmetastatic rectal cancers is dependent on the depth of invasion (T stage) and the number of involved regional lymph nodes (N stage). Staging of nonmetastatic anal cancers is determined according to the size of the primary mass and the combination of regional nodal sites involved; the number of positive nodes at each site is not a consideration for staging. Patients with T3 rectal tumors and/or involvement of perirectal, mesenteric, and internal iliac lymph nodes receive radiation therapy. Almost all anal cancers warrant use of radiation therapy, but the extent and dose of the radiation fields is altered on the basis of both the size of the primary lesion and the presence and extent of nodal involvement. The radiologist must recognize and report these critical anatomic and staging distinctions, which affect use of radiation therapy in patients with anal and rectal cancers.

  11. Late adverse effects of radiation therapy for rectal cancer - a systematic overview

    Energy Technology Data Exchange (ETDEWEB)

    Birgisson, Helgi; Paahlman, Lars; Gunnarsson, Ulf [Dept. of Surgery, Univ. Hospital, Univ. of Uppsala, Uppsala (Sweden); Glimelius, Bengt [Dept. of Oncology, Radiology and Clinical Immunology, Univ. Hospital, Univ. of Uppsala, Uppsala (Sweden); Dept. of Oncology and Pathology, Karolinska Inst., Stockholm (Sweden)

    2007-05-15

    Purpose. The use of radiation therapy (RT) together with improvement in the surgical treatment of rectal cancer improves survival and reduces the risk for local recurrences. Despite these benefits, the adverse effects of radiation therapy limit its use. The aim of this review was to present a comprehensive overview of published studies on late adverse effects related to the RT for rectal cancer. Methods. Meta-analyses, reviews, randomised clinical trials, cohort studies and case-control studies on late adverse effects, due to pre- or postoperative radiation therapy and chemo-radiotherapy for rectal cancer, were systematically searched. Most information was obtained from the randomised trials, especially those comparing preoperative short-course 5x5 Gy radiation therapy with surgery alone. Results. The late adverse effects due to RT were bowel obstructions; bowel dysfunction presented as faecal incontinence to gas, loose or solid stools, evacuation problems or urgency; and sexual dysfunction. However, fewer late adverse effects were reported in recent studies, which generally used smaller irradiated volumes and better irradiation techniques; although, one study revealed an increased risk for secondary cancers in irradiated patients. Conclusions. These results stress the importance of careful patient selection for RT for rectal cancer. Improvements in the radiation technique should further be developed and the long-term follow-up of the randomised trials is the most important source of information on late adverse effects and should therefore be continued.

  12. Preoperative Single-Fraction Partial Breast Radiation Therapy: A Novel Phase 1, Dose-Escalation Protocol With Radiation Response Biomarkers

    Energy Technology Data Exchange (ETDEWEB)

    Horton, Janet K., E-mail: janet.horton@duke.edu [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Blitzblau, Rachel C.; Yoo, Sua [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Geradts, Joseph [Department of Pathology, Duke University Medical Center, Durham, North Carolina (United States); Chang, Zheng [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Baker, Jay A. [Department of Radiology, Duke University Medical Center, Durham, North Carolina (United States); Georgiade, Gregory S. [Department of Surgery, Duke University Medical Center, Durham, North Carolina (United States); Chen, Wei [Department of Bioinformatics: Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina (United States); Siamakpour-Reihani, Sharareh; Wang, Chunhao [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Broadwater, Gloria [Department of Biostatistics: Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina (United States); Groth, Jeff [Department of Pathology, Duke University Medical Center, Durham, North Carolina (United States); Palta, Manisha; Dewhirst, Mark [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Barry, William T. [Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, North Carolina (United States); Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts (United States); Duffy, Eileen A. [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); and others

    2015-07-15

    Purpose: Women with biologically favorable early-stage breast cancer are increasingly treated with accelerated partial breast radiation (PBI). However, treatment-related morbidities have been linked to the large postoperative treatment volumes required for external beam PBI. Relative to external beam delivery, alternative PBI techniques require equipment that is not universally available. To address these issues, we designed a phase 1 trial utilizing widely available technology to 1) evaluate the safety of a single radiation treatment delivered preoperatively to the small-volume, intact breast tumor and 2) identify imaging and genomic markers of radiation response. Methods and Materials: Women aged ≥55 years with clinically node-negative, estrogen receptor–positive, and/or progesterone receptor–positive HER2−, T1 invasive carcinomas, or low- to intermediate-grade in situ disease ≤2 cm were enrolled (n=32). Intensity modulated radiation therapy was used to deliver 15 Gy (n=8), 18 Gy (n=8), or 21 Gy (n=16) to the tumor with a 1.5-cm margin. Lumpectomy was performed within 10 days. Paired pre- and postradiation magnetic resonance images and patient tumor samples were analyzed. Results: No dose-limiting toxicity was observed. At a median follow-up of 23 months, there have been no recurrences. Physician-rated cosmetic outcomes were good/excellent, and chronic toxicities were grade 1 to 2 (fibrosis, hyperpigmentation) in patients receiving preoperative radiation only. Evidence of dose-dependent changes in vascular permeability, cell density, and expression of genes regulating immunity and cell death were seen in response to radiation. Conclusions: Preoperative single-dose radiation therapy to intact breast tumors is well tolerated. Radiation response is marked by early indicators of cell death in this biologically favorable patient cohort. This study represents a first step toward a novel partial breast radiation approach. Preoperative radiation should

  13. Surface dose with grids in electron beam radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Lin, K.-H.; Huang, C.-Y.; Lin, J.-P.; Chu, T.-C. E-mail: tcchu@mx.nthu.edu.tw

    2002-03-01

    This investigation attempts to solve the problem of the lack of skin-sparing effect in electron radiation therapy and to increase the tolerance of skin to radiation using the grid technique. Electron grid therapy involves the mounting of a Cerrobend grid in the electron cone. Film dosimetry was employed to measure the relative surface dose and the percentage depth dose profile of electron grid portals. Various grid hole diameters (d=0.45, 1.0, 1.5 cm) and grid hole spacings (s=0.4, 0.2 cm) were considered for electron beams from 6 to 14 MeV. Experimental results indicate that the electron grid technique can reduce the relative surface dose in electron radiation therapy. Degradations of the relative surface dose depend on the percentage of open area in the grid portal. A proper grid design allows the surface dose to be reduced and the range of nonhomogeneous doses to be limited to a depth at which the target volume can receive a homogeneous dose. The grid technique can lower the surface dose in electron radiation therapy.

  14. Pregnancy after radiation therapy for carcinoma of the cervix.

    Science.gov (United States)

    Browde, S; Friedman, M; Nissenbaum, M

    1986-01-01

    A successful pregnancy after intracavitary radiation therapy for carcinoma of the cervix is described. An additional 13 similar cases from the literature are reviewed. The possible reasons for the occurrence of these pregnancies despite irradiation to the ovaries, cervical canal and endometrium are discussed. The fact is emphasized that no genetic damage to the child was expected.

  15. Radiation therapy for portal venous invasion by hepatocellular carcinoma

    Institute of Scientific and Technical Information of China (English)

    Keiichi Nakagawa; Masatoshi Makuuchi; Kuni Ohtomo; Hideomi Yamashita; Kenshiro Shiraishi; Naoki Nakamura; Masao Tago; Hiroshi Igaki; Yoshio Hosoi; Shuichiro Shiina; Masao Omata

    2005-01-01

    AIM: To clarify the efficacy and safety of three-dimensional conformal radiotherapy (3-D CRT) for this disease and to specify patient subgroups suitable for this treatment.METHODS: Fifty-two patients with HCC received PVI-targeted radiation therapy from January 1995 through December 2003. Portal venous invasion (PVI) was found in the second or lower order branches of the portal vein in 6 patients, in the first branch in 24 patients and in the main trunk in 22 patients. Child classifications of liver function before radiation therapy were A, B, and C for 19, 24 and 2 patients, respectively. All patients received three-dimensional conformal radiotherapy with a total dose ranging from 39 to 60 Gy (57.0 Gy in average).RESULTS: Overall survival rates at 1, 2, 3, 4, and 5 years were 45.1%, 25.3%, 15.2%, 10.1%, and 5.1%, respectively. Univariate analysis revealed that Child status, the number of tumor foci, tumor type,transcatheter arterial embolization (TAE) after radiation therapy were statistically significant prognostic factors.Multivariate analysis showed that the number of tumor foci and TAE after radiation therapy were statistically significant.CONCLUSION: The results of this study strongly suggest the efficacy of 3-D CRT as treatment for PVI in HCC. 3-D CRT is recommended in combination with postradiation TAE for PVI of HCC with 5 tumor foci or less in the liver and with Child A liver function.

  16. Waiting Lists for Radiation Therapy: A Case Study

    Directory of Open Access Journals (Sweden)

    Singer Peter A

    2001-04-01

    Full Text Available Abstract Background Why waiting lists arise and how to address them remains unclear, and an improved understanding of these waiting list "dynamics" could lead to better management. The purpose of this study is to understand how the current shortage in radiation therapy in Ontario developed; the implications of prolonged waits; who is held accountable for managing such delays; and short, intermediate, and long-term solutions. Methods A case study of the radiation therapy shortage in 1998-99 at Princess Margaret Hospital, Toronto, Ontario, Canada. Relevant documents were collected; semi-structured, face-to-face interviews with ten administrators, health care workers, and patients were conducted, audio-taped and transcribed; and relevant meetings were observed. Results The radiation therapy shortage arose from a complex interplay of factors including: rising cancer incidence rates; broadening indications for radiation therapy; human resources management issues; government funding decisions; and responsiveness to previous planning recommendations. Implications of delays include poorer cancer control rates; patient suffering; and strained doctor-patient relationships. An incompatible relationship exists between moral responsibility, borne by government, and legal liability, borne by physicians. Short-term solutions include re-referral to centers with available resources; long-term solutions include training and recruiting health care workers, improving workload standards, increasing compensation, and making changes to the funding formula. Conclusion Human resource planning plays a critical role in the causes and solutions of waiting lists. Waiting lists have harsh implications for patients. Accountability relationships require realignment.

  17. Radiation therapy f