WorldWideScience

Sample records for radiation sensitivity estimation

  1. Estimations of climate sensitivity based on top-of-atmosphere radiation imbalance

    Directory of Open Access Journals (Sweden)

    B. Lin

    2010-02-01

    Full Text Available Large climate feedback uncertainties limit the accuracy in predicting the response of the Earth's climate to the increase of CO2 concentration within the atmosphere. This study explores a potential to reduce uncertainties in climate sensitivity estimations using energy balance analysis, especially top-of-atmosphere (TOA radiation imbalance. The time-scales studied generally cover from decade to century, that is, middle-range climate sensitivity is considered, which is directly related to the climate issue caused by atmospheric CO2 change. The significant difference between current analysis and previous energy balance models is that the current study targets at the boundary condition problem instead of solving the initial condition problem. Additionally, climate system memory and deep ocean heat transport are considered. The climate feedbacks are obtained based on the constraints of the TOA radiation imbalance and surface temperature measurements of the present climate. In this study, the TOA imbalance value of 0.85 W/m2 is used. Note that this imbalance value has large uncertainties. Based on this value, a positive climate feedback with a feedback coefficient ranging from −1.3 to −1.0 W/m2/K is found. The range of feedback coefficient is determined by climate system memory. The longer the memory, the stronger the positive feedback. The estimated time constant of the climate is large (70~120 years mainly owing to the deep ocean heat transport, implying that the system may be not in an equilibrium state under the external forcing during the industrial era. For the doubled-CO2 climate (or 3.7 W/m2 forcing, the estimated global warming would be 3.1 K if the current estimate of 0.85 W/m2 TOA net radiative heating could be confirmed. With accurate long-term measurements of TOA radiation, the analysis method suggested by this study provides a great potential in the

  2. Sensitivity of APSIM/ORYZA model due to estimation errors in solar radiation

    Directory of Open Access Journals (Sweden)

    Alexandre Bryan Heinemann

    2012-01-01

    Full Text Available Crop models are ideally suited to quantify existing climatic risks. However, they require historic climate data as input. While daily temperature and rainfall data are often available, the lack of observed solar radiation (Rs data severely limits site-specific crop modelling. The objective of this study was to estimate Rs based on air temperature solar radiation models and to quantify the propagation of errors in simulated radiation on several APSIM/ORYZA crop model seasonal outputs, yield, biomass, leaf area (LAI and total accumulated solar radiation (SRA during the crop cycle. The accuracy of the 5 models for estimated daily solar radiation was similar, and it was not substantially different among sites. For water limited environments (no irrigation, crop model outputs yield, biomass and LAI was not sensitive for the uncertainties in radiation models studied here.

  3. Incoming longwave radiation to melting snow: observations, sensitivity and estimation in Northern environments

    Science.gov (United States)

    Sicart, J. E.; Pomeroy, J. W.; Essery, R. L. H.; Bewley, D.

    2006-11-01

    At high latitudes, longwave radiation can provide similar, or higher, amounts of energy to snow than shortwave radiation due to the low solar elevation (cosine effect and increased scattering due to long atmospheric path lengths). This effect is magnified in mountains due to shading and longwave emissions from the complex topography. This study examines longwave irradiance at the snow surface in the Wolf Creek Research Basin, Yukon Territory, Canada (60° 36N, 134° 57W) during the springs of 2002 and 2004. Incoming longwave radiation was estimated from standard meteorological measurements by segregating radiation sources into clear sky, clouds and surrounding terrain. A sensitivity study was conducted to detect the atmospheric and topographic conditions under which emission from adjacent terrain significantly increases the longwave irradiance. The total incoming longwave radiation is more sensitive to sky view factor than to the temperature of the emitting terrain surfaces. Brutsaert's equation correctly simulates the clear-sky irradiance for hourly time steps using temperature and humidity. Longwave emissions from clouds, which raised longwave radiation above that from clear skies by 16% on average, were best estimated using daily atmospheric shortwave transmissivity and hourly relative humidity. An independent test of the estimation procedure for a prairie site near Saskatoon, Saskatchewan, Canada, indicated that the calculations are robust in late winter and spring conditions. Copyright

  4. Can climate sensitivity be estimated from short-term relationships of top-of-atmosphere net radiation and surface temperature?

    International Nuclear Information System (INIS)

    Lin Bing; Min Qilong; Sun Wenbo; Hu Yongxiang; Fan, Tai-Fang

    2011-01-01

    Increasing the knowledge in climate radiative feedbacks is critical for current climate studies. This work focuses on short-term relationships between global mean surface temperature and top-of-atmosphere (TOA) net radiation. The relationships may be used to characterize the climate feedback as suggested by some recent studies. As those recent studies, an energy balance model with ocean mixed layer and both radiative and non-radiative heat sources is used here. The significant improvement of current model is that climate system memories are considered. Based on model simulations, short-term relationship between global mean surface temperature and TOA net radiation (or the linear striation feature as suggested by previous studies) might represent climate feedbacks when the system had no memories. However, climate systems with the same short-term feedbacks but different memories would have a similar linear striation feature. This linear striation feature reflects only fast components of climate feedbacks and may not represent the total climate feedback even when the memory length of climate systems is minimal. The potential errors in the use of short-term relationships in estimations of climate sensitivity could be big. In short time scales, fast climate processes may overwhelm long-term climate feedbacks. Thus, the climate radiative feedback parameter obtained from short-term data may not provide a reliable estimate of climate sensitivity. This result also suggests that long-term observations of global surface temperature and TOA radiation are critical in the understanding of climate feedbacks and sensitivities.

  5. Multiparametric assessment of radiation effects for the individual radiation sensitivity estimation

    International Nuclear Information System (INIS)

    2006-01-01

    The effects of low dose irradiation are highly relevant for radiation protection in the public. The sensitivity to clastogenic and tumorigenic effects of ionizing radiation (IR) varies considerably amongst individuals. Examples for genetically determined enhanced sensitivity are well known in some hereditary diseases: patients with chromosomal instability syndromes, Ataxia telangiectasia (A-T), Nijmegen Breakage Syndrome (NBS) and Bloom Syndrome (BS) show strongly enhanced sensitivity towards IR, severe immunodeficiencies, and a high incidence for developing leukemias and lymphomas. This obvious coincidence of enhanced radiosensitivity and tumor risk, and the frequently observed enhanced radiosensitivity of genetically non-defined tumor patients indicate that tumor patients may constitute a subpopulation with enriched genetical predisposition for enhanced radiosensitivity. Furthermore, a subpopulation of radiosensitive individuals may be part of the probably inconspicuous total population. For example, individuals heterozygous for the above mentioned genes (and possibly some other genes) show enhanced radiosensitivity if compared with the normal population. In general, heterozygous carriers of those hereditary deficiencies are clinically inconspicuous, but due an haploinsufficiency their tumour risk may be enhanced. This has been shown for mice carrying an heterozygous Nbs1 mutation (J.-Q. Wang, Lyon, pers. Communication). Our findings concerning enhanced radiation-induced chromosomal aberrations in heterozygous Nbs1 cell lines support this notion. The identification of high risk groups with enhanced radiosensitivity is therefore an important task for radioprotection. This project aimed at establishing a procedure which allows to test various cellular parameters as indicators for effects of radiation. A standard protocol for the isolation and cryoconservation of primary blood cells was developed. DNA repair analysis (Comet Assay) and radiation-induced apoptosis

  6. Application of generalized estimating equations to a study in vitro of radiation sensitivity

    International Nuclear Information System (INIS)

    Cologne, J.B.; Carter, R.L.; Fujita, Shoichiro; Ban, Sadayuki.

    1993-08-01

    We describes an application of the generalized estimating equation (GEE) method (Liang K-Y, Zeger SL: Longitudinal data analysis using generalized linear models. Biometrika 73:13-22, 1986) for regression analyses of correlated Poisson data. As an alternative to the use of an arbitrarily chosen working correlation matrix, we demonstrate the use of GEE with a reasonable model for the true covariance structure among repeated observations within individuals. We show that, under such a split-plot design with large clusters, the asymptotic relative efficiency of GEE with simple (independence or exchangeable) working correlation matrices is rather low. We also illustrate the use of GEE with an empirically estimated model for overdispersion in a large study of radiation sensitivity where cluster size is small and a simple working correlation structure is sufficient. We conclude by summarizing issues and needs for further work concerning efficiency of the GEE parameter estimates in practice. (author)

  7. Estimating option values of solar radiation management assuming that climate sensitivity is uncertain.

    Science.gov (United States)

    Arino, Yosuke; Akimoto, Keigo; Sano, Fuminori; Homma, Takashi; Oda, Junichiro; Tomoda, Toshimasa

    2016-05-24

    Although solar radiation management (SRM) might play a role as an emergency geoengineering measure, its potential risks remain uncertain, and hence there are ethical and governance issues in the face of SRM's actual deployment. By using an integrated assessment model, we first present one possible methodology for evaluating the value arising from retaining an SRM option given the uncertainty of climate sensitivity, and also examine sensitivities of the option value to SRM's side effects (damages). Reflecting the governance challenges on immediate SRM deployment, we assume scenarios in which SRM could only be deployed with a limited degree of cooling (0.5 °C) only after 2050, when climate sensitivity uncertainty is assumed to be resolved and only when the sensitivity is found to be high (T2x = 4 °C). We conduct a cost-effectiveness analysis with constraining temperature rise as the objective. The SRM option value is originated from its rapid cooling capability that would alleviate the mitigation requirement under climate sensitivity uncertainty and thereby reduce mitigation costs. According to our estimates, the option value during 1990-2049 for a +2.4 °C target (the lowest temperature target level for which there were feasible solutions in this model study) relative to preindustrial levels were in the range between $2.5 and $5.9 trillion, taking into account the maximum level of side effects shown in the existing literature. The result indicates that lower limits of the option values for temperature targets below +2.4 °C would be greater than $2.5 trillion.

  8. Microenvironment around tumors and their radiation sensitivity. The possibility of molecular target for radiation sensitization

    Energy Technology Data Exchange (ETDEWEB)

    Akimoto, Tetsuo; Ishikawa, Hitoshi [Gunma Univ., Maebashi (Japan). School of Medicine; Mitsuhashi, Norio [Tokyo Women' s Medical Coll. (Japan)

    2001-12-01

    There have been scarce studies concerning the effect of microenvironment around tumors on their radiation sensitivity and this review describes the influence of environmental factors of cell adhesion, growth factors, cytokines, hypoxia and angiogenesis on the sensitivity and response to radiation and on the signal transduction to consider the possibility of molecular target for radiation sensitization. Cell-cell adhesion and cell-matrix interaction in response to radiation may have a role in inducing apoptotic process like anti-apoptotic or pro-apoptotic one. Growth factors and cytokines can affect the tumor response to radiation in more extent than p53 gene status since apoptosis induction is not always an indication of radiation sensitivity in many tumors clinically encountered. Radiation sensitivity is low in tumor cells under hypoxic conditions and it is important to know the relationship between those hypoxic cell response and angiogenesis by factors like HIF (hypoxia-inducible factor)-1. Molecular targets for radiation sensitization are now under development and both basic and clinical studies are important for future application of those sensitizing agents for the radiotherapy of tumors. (K.H.)

  9. Microenvironment around tumors and their radiation sensitivity. The possibility of molecular target for radiation sensitization

    International Nuclear Information System (INIS)

    Akimoto, Tetsuo; Ishikawa, Hitoshi

    2001-01-01

    There have been scarce studies concerning the effect of microenvironment around tumors on their radiation sensitivity and this review describes the influence of environmental factors of cell adhesion, growth factors, cytokines, hypoxia and angiogenesis on the sensitivity and response to radiation and on the signal transduction to consider the possibility of molecular target for radiation sensitization. Cell-cell adhesion and cell-matrix interaction in response to radiation may have a role in inducing apoptotic process like anti-apoptotic or pro-apoptotic one. Growth factors and cytokines can affect the tumor response to radiation in more extent than p53 gene status since apoptosis induction is not always an indication of radiation sensitivity in many tumors clinically encountered. Radiation sensitivity is low in tumor cells under hypoxic conditions and it is important to know the relationship between those hypoxic cell response and angiogenesis by factors like HIF (hypoxia-inducible factor)-1. Molecular targets for radiation sensitization are now under development and both basic and clinical studies are important for future application of those sensitizing agents for the radiotherapy of tumors. (K.H.)

  10. Unique proteomic signature for radiation sensitive patients; a comparative study between normo-sensitive and radiation sensitive breast cancer patients

    Energy Technology Data Exchange (ETDEWEB)

    Skiöld, Sara [Center for Radiation Protection Research, Department of Molecular Biosciences, The Wernner-Gren Institute, Stockholm University, Stockholm (Sweden); Azimzadeh, Omid [Institute of Radiation Biology, German Research Center for Environmental Health, Helmholtz Zentrum München (Germany); Merl-Pham, Juliane [Research Unit Protein Science, German Research Center for Environmental Health, Helmholtz Zentrum München, Neuherberg (Germany); Naslund, Ingemar; Wersall, Peter; Lidbrink, Elisabet [Division of Radiotherapy, Radiumhemmet, Karolinska University Hospital, Stockholm (Sweden); Tapio, Soile [Institute of Radiation Biology, German Research Center for Environmental Health, Helmholtz Zentrum München (Germany); Harms-Ringdahl, Mats [Center for Radiation Protection Research, Department of Molecular Biosciences, The Wernner-Gren Institute, Stockholm University, Stockholm (Sweden); Haghdoost, Siamak, E-mail: Siamak.Haghdoost@su.se [Center for Radiation Protection Research, Department of Molecular Biosciences, The Wernner-Gren Institute, Stockholm University, Stockholm (Sweden)

    2015-06-15

    Highlights: • The unique protein expression profiles were found that separate radiosensitive from normal sensitive breast cancer patients. • The oxidative stress response, coagulation properties and acute phase response suggested to be the hallmarks of radiation sensitivity. - Abstract: Radiation therapy is a cornerstone of modern cancer treatment. Understanding the mechanisms behind normal tissue sensitivity is essential in order to minimize adverse side effects and yet to prevent local cancer reoccurrence. The aim of this study was to identify biomarkers of radiation sensitivity to enable personalized cancer treatment. To investigate the mechanisms behind radiation sensitivity a pilot study was made where eight radiation-sensitive and nine normo-sensitive patients were selected from a cohort of 2914 breast cancer patients, based on acute tissue reactions after radiation therapy. Whole blood was sampled and irradiated in vitro with 0, 1, or 150 mGy followed by 3 h incubation at 37 °C. The leukocytes of the two groups were isolated, pooled and protein expression profiles were investigated using isotope-coded protein labeling method (ICPL). First, leukocytes from the in vitro irradiated whole blood from normo-sensitive and extremely sensitive patients were compared to the non-irradiated controls. To validate this first study a second ICPL analysis comparing only the non-irradiated samples was conducted. Both approaches showed unique proteomic signatures separating the two groups at the basal level and after doses of 1 and 150 mGy. Pathway analyses of both proteomic approaches suggest that oxidative stress response, coagulation properties and acute phase response are hallmarks of radiation sensitivity supporting our previous study on oxidative stress response. This investigation provides unique characteristics of radiation sensitivity essential for individualized radiation therapy.

  11. Unique proteomic signature for radiation sensitive patients; a comparative study between normo-sensitive and radiation sensitive breast cancer patients

    International Nuclear Information System (INIS)

    Skiöld, Sara; Azimzadeh, Omid; Merl-Pham, Juliane; Naslund, Ingemar; Wersall, Peter; Lidbrink, Elisabet; Tapio, Soile; Harms-Ringdahl, Mats; Haghdoost, Siamak

    2015-01-01

    Highlights: • The unique protein expression profiles were found that separate radiosensitive from normal sensitive breast cancer patients. • The oxidative stress response, coagulation properties and acute phase response suggested to be the hallmarks of radiation sensitivity. - Abstract: Radiation therapy is a cornerstone of modern cancer treatment. Understanding the mechanisms behind normal tissue sensitivity is essential in order to minimize adverse side effects and yet to prevent local cancer reoccurrence. The aim of this study was to identify biomarkers of radiation sensitivity to enable personalized cancer treatment. To investigate the mechanisms behind radiation sensitivity a pilot study was made where eight radiation-sensitive and nine normo-sensitive patients were selected from a cohort of 2914 breast cancer patients, based on acute tissue reactions after radiation therapy. Whole blood was sampled and irradiated in vitro with 0, 1, or 150 mGy followed by 3 h incubation at 37 °C. The leukocytes of the two groups were isolated, pooled and protein expression profiles were investigated using isotope-coded protein labeling method (ICPL). First, leukocytes from the in vitro irradiated whole blood from normo-sensitive and extremely sensitive patients were compared to the non-irradiated controls. To validate this first study a second ICPL analysis comparing only the non-irradiated samples was conducted. Both approaches showed unique proteomic signatures separating the two groups at the basal level and after doses of 1 and 150 mGy. Pathway analyses of both proteomic approaches suggest that oxidative stress response, coagulation properties and acute phase response are hallmarks of radiation sensitivity supporting our previous study on oxidative stress response. This investigation provides unique characteristics of radiation sensitivity essential for individualized radiation therapy

  12. Sensitivity of APSIM/ORYZA model due to estimation errors in solar radiation

    OpenAIRE

    Alexandre Bryan Heinemann; Pepijn A.J. van Oort; Diogo Simões Fernandes; Aline de Holanda Nunes Maia

    2012-01-01

    Crop models are ideally suited to quantify existing climatic risks. However, they require historic climate data as input. While daily temperature and rainfall data are often available, the lack of observed solar radiation (Rs) data severely limits site-specific crop modelling. The objective of this study was to estimate Rs based on air temperature solar radiation models and to quantify the propagation of errors in simulated radiation on several APSIM/ORYZA crop model seasonal outputs, yield, ...

  13. Toxic clinical hypoxic radiation sensitizers plus radiation-induced toxicity

    International Nuclear Information System (INIS)

    Richmond, R.C.

    1984-01-01

    The operational definition espoused twelve years ago that clinical hypoxic radiation sensitizers should be nontoxic interferes with the recognition and research of useful radiation sensitizers. Eight years ago the toxic antitumor drug cis-dichlorodiammineplatinum(II) was reported to be a hypoxic radiation sensitizer and the selective antitumor action of this drug was stressed as potentially creating tumor-targeted radiation sensitization. This rationale of oxidative antitumor drugs as toxic and targeted clinical sensitizers is useful, and has led to the study reported here. The antitumor drug cis-(1,1-cyclobutane-dicarboxylato)diammineplatinum(II), or JM-8, is being tested in clinical trials. Cells of S. typhimurium in PBS in the presence of 0.2mM JM-8 are found to be sensitized to irradiation under hypoxic, but not oxic, conditions. JM-8 is nontoxic to bacteria at this concentration, but upon irradiation the JM-8 solution becomes highly toxic. This radiation induced toxicity of JM-8 preferentially develops from hypoxic solution, and thus contributes to the rationale of hypoxic tumor cell destruction

  14. Radiation induced variations in photoperiod-sensitivity, thermo-sensitivity and the number of days to heading in rice

    International Nuclear Information System (INIS)

    Hsieh, S.C.

    1975-01-01

    Radiation induced semi-dwarf mutants derived from five japonica type varieties of rice were studied with regard to their photoperiod-sensitivity, thermo-sensitivity and the number of days to heading. The experiment was carried out under the natural conditions at Taipei. The coefficient of photoperiod-sensitivity and thermo-sensitivity as developed by Oka (1954) were estimated for the mutants in comparison with their original varieties. It was observed that these various physiological characters could be altered easily by mutations. Mutants showed wider ranges in both positive and negative directions than their original varieties in all physiological characters studied. Even though heading date depends on both photoperiod-sensitivity and thermo-sensitivity, it was estimated which of the two contributed more to the induced earliness in each mutant. This offers a basis for selecting early maturing lines of rice

  15. Uncertainty and Sensitivity Analysis of Afterbody Radiative Heating Predictions for Earth Entry

    Science.gov (United States)

    West, Thomas K., IV; Johnston, Christopher O.; Hosder, Serhat

    2016-01-01

    The objective of this work was to perform sensitivity analysis and uncertainty quantification for afterbody radiative heating predictions of Stardust capsule during Earth entry at peak afterbody radiation conditions. The radiation environment in the afterbody region poses significant challenges for accurate uncertainty quantification and sensitivity analysis due to the complexity of the flow physics, computational cost, and large number of un-certain variables. In this study, first a sparse collocation non-intrusive polynomial chaos approach along with global non-linear sensitivity analysis was used to identify the most significant uncertain variables and reduce the dimensions of the stochastic problem. Then, a total order stochastic expansion was constructed over only the important parameters for an efficient and accurate estimate of the uncertainty in radiation. Based on previous work, 388 uncertain parameters were considered in the radiation model, which came from the thermodynamics, flow field chemistry, and radiation modeling. The sensitivity analysis showed that only four of these variables contributed significantly to afterbody radiation uncertainty, accounting for almost 95% of the uncertainty. These included the electronic- impact excitation rate for N between level 2 and level 5 and rates of three chemical reactions in uencing N, N(+), O, and O(+) number densities in the flow field.

  16. SEM probe of IC radiation sensitivity

    Science.gov (United States)

    Gauthier, M. K.; Stanley, A. G.

    1979-01-01

    Scanning Electron Microscope (SEM) used to irradiate single integrated circuit (IC) subcomponent to test for radiation sensitivity can localize area of IC less than .03 by .03 mm for determination of exact location of radiation sensitive section.

  17. Radiation-sensitive material and method of recording information upon radiation-sensitive material

    International Nuclear Information System (INIS)

    Petrov, V.V.; Krjuchin, A.A.

    1981-01-01

    The invention can be employed for recording binary information in memory units of electronic computers, in video-recording equipment, laser recording devices and other recording means. The proposed radiation-sensitive material comprises a metallic layer made of silver, or copper, or nickel, or thallium, or alloy thereof, an inorganic material layer made of arsenic chalcogenide, or antimony chalcogenide, or bismuth chalcogenide, and a separation layer disposed between the metallic layer and the inorganic material layer made of a material which is inert relative to said layers, which separation layer has a thickness sufficient for preventing interaction between the metallic layer and the inorganic material layer when the radiation-sensitive materials is exposed to electromagnetic or corpuscular radiation having a power density lower than a threshold value required for the breakdown of the separation layer in the area exposed to radiation. The separation layer can be made from As, Sb, Si or Ge or their oxides, metallic oxides of e.g. Al, Ti, V or Fe, or from polyorganosiloxane films. (author)

  18. Radiation risk estimation

    International Nuclear Information System (INIS)

    Schull, W.J.; Texas Univ., Houston, TX

    1992-01-01

    Estimation of the risk of cancer following exposure to ionizing radiation remains largely empirical, and models used to adduce risk incorporate few, if any, of the advances in molecular biology of a past decade or so. These facts compromise the estimation risk where the epidemiological data are weakest, namely, at low doses and dose rates. Without a better understanding of the molecular and cellular events ionizing radiation initiates or promotes, it seems unlikely that this situation will improve. Nor will the situation improve without further attention to the identification and quantitative estimation of the effects of those host and environmental factors that enhance or attenuate risk. (author)

  19. Radiation sensitive solid state devices

    International Nuclear Information System (INIS)

    Shannon, J.M.; Ralph, J.E.

    1975-01-01

    A solid state radiation sensitive device is described employing JFETs as the sensitive elements. Two terminal construction is achieved by using a common conductor to capacitively couple to the JFET gate and to one of the source and drain connections. (auth)

  20. Improving Estimates of Cloud Radiative Forcing over Greenland

    Science.gov (United States)

    Wang, W.; Zender, C. S.

    2014-12-01

    Multiple driving mechanisms conspire to increase melt extent and extreme melt events frequency in the Arctic: changing heat transport, shortwave radiation (SW), and longwave radiation (LW). Cloud Radiative Forcing (CRF) of Greenland's surface is amplified by a dry atmosphere and by albedo feedback, making its contribution to surface melt even more variable in time and space. Unfortunately accurate cloud observations and thus CRF estimates are hindered by Greenland's remoteness, harsh conditions, and low contrast between surface and cloud reflectance. In this study, cloud observations from satellites and reanalyses are ingested into and evaluated within a column radiative transfer model. An improved CRF dataset is obtained by correcting systematic discrepancies derived from sensitivity experiments. First, we compare the surface radiation budgets from the Column Radiation Model (CRM) driven by different cloud datasets, with surface observations from Greenland Climate Network (GC-Net). In clear skies, CRM-estimated surface radiation driven by water vapor profiles from both AIRS and MODIS during May-Sept 2010-2012 are similar, stable, and reliable. For example, although AIRS water vapor path exceeds MODIS by 1.4 kg/m2 on a daily average, the overall absolute difference in downwelling SW is CRM estimates are within 20 W/m2 range of GC-Net downwelling SW. After calibrating CRM in clear skies, the remaining differences between CRM and observed surface radiation are primarily attributable to differences in cloud observations. We estimate CRF using cloud products from MODIS and from MERRA. The SW radiative forcing of thin clouds is mainly controlled by cloud water path (CWP). As CWP increases from near 0 to 200 g/m2, the net surface SW drops from over 100 W/m2 to 30 W/m2 almost linearly, beyond which it becomes relatively insensitive to CWP. The LW is dominated by cloud height. For clouds at all altitudes, the lower the clouds, the greater the LW forcing. By applying

  1. Radiation dose estimates for radiopharmaceuticals

    International Nuclear Information System (INIS)

    Stabin, M.G.; Stubbs, J.B.; Toohey, R.E.

    1996-04-01

    Tables of radiation dose estimates based on the Cristy-Eckerman adult male phantom are provided for a number of radiopharmaceuticals commonly used in nuclear medicine. Radiation dose estimates are listed for all major source organs, and several other organs of interest. The dose estimates were calculated using the MIRD Technique as implemented in the MIRDOSE3 computer code, developed by the Oak Ridge Institute for Science and Education, Radiation Internal Dose Information Center. In this code, residence times for source organs are used with decay data from the MIRD Radionuclide Data and Decay Schemes to produce estimates of radiation dose to organs of standardized phantoms representing individuals of different ages. The adult male phantom of the Cristy-Eckerman phantom series is different from the MIRD 5, or Reference Man phantom in several aspects, the most important of which is the difference in the masses and absorbed fractions for the active (red) marrow. The absorbed fractions for flow energy photons striking the marrow are also different. Other minor differences exist, but are not likely to significantly affect dose estimates calculated with the two phantoms. Assumptions which support each of the dose estimates appears at the bottom of the table of estimates for a given radiopharmaceutical. In most cases, the model kinetics or organ residence times are explicitly given. The results presented here can easily be extended to include other radiopharmaceuticals or phantoms

  2. Radiation-sensitive diacrylates

    International Nuclear Information System (INIS)

    Demajistre, R.

    1976-01-01

    Novel diacrylates are prepared by reacting a monohydroxylated acrylic monomer with a polyisocyanate. The reaction product may be polymerized by subjecting to ionizing irradiation, actinic light or to free radical catalysts to form a useful coating material. The diacrylates may also be copolymerized with other radiation sensitive materials. 6 claims, no drawings

  3. Space Radiation Heart Disease Risk Estimates for Lunar and Mars Missions

    Science.gov (United States)

    Cucinotta, Francis A.; Chappell, Lori; Kim, Myung-Hee

    2010-01-01

    The NASA Space Radiation Program performs research on the risks of late effects from space radiation for cancer, neurological disorders, cataracts, and heart disease. For mortality risks, an aggregate over all risks should be considered as well as projection of the life loss per radiation induced death. We report on a triple detriment life-table approach to combine cancer and heart disease risks. Epidemiology results show extensive heterogeneity between populations for distinct components of the overall heart disease risks including hypertension, ischaemic heart disease, stroke, and cerebrovascular diseases. We report on an update to our previous heart disease estimates for Heart disease (ICD9 390-429) and Stroke (ICD9 430-438), and other sub-groups using recent meta-analysis results for various exposed radiation cohorts to low LET radiation. Results for multiplicative and additive risk transfer models are considered using baseline rates for US males and female. Uncertainty analysis indicated heart mortality risks as low as zero, assuming a threshold dose for deterministic effects, and projections approaching one-third of the overall cancer risk. Medan life-loss per death estimates were significantly less than that of solid cancer and leukemias. Critical research questions to improve risks estimates for heart disease are distinctions in mechanisms at high doses (>2 Gy) and low to moderate doses (<2 Gy), and data and basic understanding of radiation doserate and quality effects, and individual sensitivity.

  4. Comparative study of different surrogate markers for individual radiation sensitivity

    International Nuclear Information System (INIS)

    Hoffmann, Nele Julia

    2013-01-01

    Radiotherapy is an important part of therapeutic tumor treatment concept. The applied total dose is limited by the unavoidable radiation effect on the surrounding normal tissue and the risk of radiation induced acute or chronic side effects. The clinical radiation sensitivity, i.e. the risk of radiogenic side effects is strongly coupled to the cellular radiation sensitivity. The contribution is focused on the development of a predictive tool for the individual radiation sensitivity for individual radiotherapeutic planning using lymphocytes. Residual foci, i.e. accumulated repair associated proteins at the residual double strand break are supposed to be surrogate markers of the cellular radiation sensitivity. No relation between the foci detection and the G(0)/G(1) was found assay with respect to the individual radiation sensitivity.

  5. Solar constant values for estimating solar radiation

    International Nuclear Information System (INIS)

    Li, Huashan; Lian, Yongwang; Wang, Xianlong; Ma, Weibin; Zhao, Liang

    2011-01-01

    There are many solar constant values given and adopted by researchers, leading to confusion in estimating solar radiation. In this study, some solar constant values collected from literature for estimating solar radiation with the Angstroem-Prescott correlation are tested in China using the measured data between 1971 and 2000. According to the ranking method based on the t-statistic, a strategy to select the best solar constant value for estimating the monthly average daily global solar radiation with the Angstroem-Prescott correlation is proposed. -- Research highlights: → The effect of the solar constant on estimating solar radiation is investigated. → The investigation covers a diverse range of climate and geography in China. → A strategy to select the best solar constant for estimating radiation is proposed.

  6. Superoxide dismutase amplifies organismal sensitivity to ionizing radiation

    International Nuclear Information System (INIS)

    Scott, M.D.; Meshnick, S.R.; Eaton, J.W.

    1989-01-01

    Although increased superoxide dismutase (SOD) activity is often associated with enhanced resistance of cells and organisms to oxidant challenges, few direct tests of the antioxidant importance of this enzyme have been carried out. To assess the importance of SOD in defending against gamma-radiation, we employed Escherichia coli with deficient, normal, and super-normal enzyme activities. Surprisingly, the radiation sensitivity of E. coli actually increases as bacterial SOD activity increases. Elevated intracellular SOD activity sensitizes E. coli to radiation-induced mortality, whereas SOD-deficient bacteria show normal or decreased radiosensitivity. Toxic effects of activated oxygen species are involved in this phenomenon; bacterial SOD activity has no effect on radiation sensitivity under anaerobic conditions or on the lethality of other, non-oxygen-dependent, toxins such as ultraviolet radiation

  7. Modification of radiation sensitivity by edaravone

    International Nuclear Information System (INIS)

    Sasano, Nakashi; Enomoto, Atsushi; Miyagawa, Kiyoshi; Hosoi, Yoshio; Nakagawa, Keiichi

    2009-01-01

    Studied was the effect of edaravone (E), a clinical therapeutic drug for brain infarction possessing properties of free radical scavenger, on apoptosis in vitro. Human T-cell leukemic MOLT-4 cells and p53-knockdown MOLT-4 cells which overexpressing short hairpin type p53 by siRNA treatment were X-irradiated by Shimadzu Pantak HF 350 machine at 135-140 cGy/min for 2-5 Gy in total, in the presence of E. Cell death was estimated by dye-exclusion, apoptosis by EPICS flow cytometry, cellular reactive oxygen species by chloromethyl-2',7'-dichlorodihydrofluoresein diacetate (CM-H 2 -DCFDA) fluorometry, and p53-related protein expression by Western blotting. E was found to have a radio-protective effect on cells at high concentrations (e.g., 2.7 and 3 mg/mL, 2Gy) and radio-sensitizing action at low concentrations (e.g., 0.15-1.5 mg/mL). Clinical plasma levels of E have been reportedly far lower than the concentrations in this experiment: ideally, E can sensitize tumor cells to radiation and protect normal cells from. (K.T.)

  8. Radiation-induced Genomic Instability and Radiation Sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Varnum, Susan M.; Sowa, Marianne B.; Kim, Grace J.; Morgan, William F.

    2013-01-19

    The obvious relationships between reactive oxygen and nitrogen species, mitochondrial dysfunction, inflammatory type responses and reactive chemokines and cytokines suggests a general stress response induced by ionizing radiation most likely leads to the non-targeted effects described after radiation exposure. We argue that true bystander effects do not occur in the radiation therapy clinic. But there is no question that effects outside the target volume do occur. These “out of field effects” are considered very low dose effects in the context of therapy. So what are the implications of non-targeted effects on radiation sensitivity? The primary goal of therapy is to eradicate the tumor. Given the genetic diversity of the human population, lifestyle and environment factors it is likely some combination of these will influence patient outcome. Non-targeted effects may contribute to a greater or lesser extent. But consider the potential situation involving a partial body exposure due to a radiation accident or radiological terrorism. Non-targeted effects suggest that the tissue at risk for demonstrating possible detrimental effects of radiation exposure might be greater than the volume actually irradiated.

  9. Radiation sensitivity of human lung cancer cell lines

    International Nuclear Information System (INIS)

    Carmichael, J.; Degraff, W.G.; Gamson, J.; Russo, G.; Mitchell, J.B.; Gazdar, A.F.; Minna, J.D.; Levitt, M.L.

    1989-01-01

    X-Ray survival curves were determined using a panel of 17 human lung cancer cell lines, with emphasis on non-small cell lung cancer (NSCLC). In contrast to classic small cell lung cancer (SCLC) cell lines, NSCLC cell lines were generally less sensitive to radiation as evidenced by higher radiation survival curve extrapolation numbers, surviving fraction values following a 2Gy dose (SF2) and the mean inactivation dose values (D) values. The spectrum of in vitro radiation responses observed was similar to that expected in clinical practice, although mesothelioma was unexpectedly sensitive in vitro. Differences in radiosensitivity were best distinguished by comparison of SF2 values. Some NSCLC lines were relatively sensitive, and in view of this demonstrable variability in radiation sensitivity, the SF2 value may be useful for in vitro predictive assay testing of clinical specimens. (author)

  10. Estimating shortwave solar radiation using net radiation and meteorological measurements

    Science.gov (United States)

    Shortwave radiation has a wide variety of uses in land-atmosphere interactions research. Actual evapotranspiration estimation that involves stomatal conductance models like Jarvis and Ball-Berry require shortwave radiation to estimate photon flux density. However, in most weather stations, shortwave...

  11. Investigation of some parameters influencing the sensitivity of human tooth enamel to gamma radiation using electron paramagnetic resonance

    International Nuclear Information System (INIS)

    El-Faramawy, N.

    2008-01-01

    Electron paramagnetic resonance (EPR) has been successfully used as a physical technique for gamma radiation dose reconstruction using calcified tissues. To minimize potential discrepancies between EPR readings in future studies, the effects of cavity response factor, tooth position and donor gender on the estimated gamma radiation dose were studied. It was found that the EPR response per sample mass used for assessment of doses in teeth outside of the 70-100 mg range should be corrected by a factor which is a function of the sample mass. In the EPR measurements, the difference in sensitivity of different tooth positions to γ-radiation was taken into consideration. It was determined that among all the premolars and molars tooth positions, the relative standard deviation of sensitivity was 6.5%, with the wisdom teeth and the first molars having the highest and lowest sensitivity to γ-radiation, respectively. The current results reveal no effect of the donor gender on the sensitivity to γ-radiation. (author)

  12. Radiation sensitive devices and systems for detection of radioactive materials and related methods

    Science.gov (United States)

    Kotter, Dale K

    2014-12-02

    Radiation sensitive devices include a substrate comprising a radiation sensitive material and a plurality of resonance elements coupled to the substrate. Each resonance element is configured to resonate responsive to non-ionizing incident radiation. Systems for detecting radiation from a special nuclear material include a radiation sensitive device and a sensor located remotely from the radiation sensitive device and configured to measure an output signal from the radiation sensitive device. In such systems, the radiation sensitive device includes a radiation sensitive material and a plurality of resonance elements positioned on the radiation sensitive material. Methods for detecting a presence of a special nuclear material include positioning a radiation sensitive device in a location where special nuclear materials are to be detected and remotely interrogating the radiation sensitive device with a sensor.

  13. Radiation sensitivity of mammalian cells

    International Nuclear Information System (INIS)

    Koch, C.J.

    1985-01-01

    The authors tested various aspects of the so-called ''competition'' model for radiation sensitization/protection. In this model, sensitizers and/or protectors react in first order chemical reactions with radiation-induced target radicals in the cell, producing damage fixation or repair respectively. It is only because of these parallel, first-order competing reactions that they may assign net amounts of damage on the basis of the chemical reactivity of the sentiziers/protectors with the radicals. It might be expected that such a simple model could not explain all aspects of cellular radiosensitivity and this has indeed been found to be true. However, one is able, with the simple model, to pose quite specific questions, and obtain quantitative information with respect to the relative agreement between experiment and theory. Many experiments by several investigators have found areas of disagreement with the competition theory, particularly with respect to the follow items: 1) role of cellular glutathione as the most important endogeneous radiation protector 2) characteristics of various sensitizers which cause them to behave differently from each other 3) methods relating to the quantitative kinetic analysis of experimenal results. This paper addresses these specific areas of disagreement from both an experimental and theoretical basis

  14. Influence of catalase on the radiation sensitizing effect of misonidazole

    International Nuclear Information System (INIS)

    Gazso, G.L.; Dam, A.

    1985-01-01

    The radiation modifying action of misonidazole and catalase was investigated in Bacillus megaterium spores at various oxygen concentrations. Catalase (120 μg/ml) decreased the radiation sensitizing action of misonidazole. Misonidazole as an electron affinic radiation sensitizer enhanced the build up of H 2 O 2 , thus promoting the reaction with catalase. Protection by catalase was not enough to eliminate the total radiation sensitizing effect of misonidazole. (orig.)

  15. Evaluation of texaphyrins as tumor selective radiation sensitizers

    International Nuclear Information System (INIS)

    Qing Fan; Woodburn, Kathryn W.; Young, Stuart W.

    1997-01-01

    Texaphyrins are expanded porphyrin macrocycles that selectively localize and are retained in cancerous lesions. The function of the texaphyrin can be manipulated by the incorporation of different metal ions into the macrocycle's central cavity. Gadolinium texaphyrin (Gd-Tex) and lutetium texaphyrin (Lu-Tex) were evaluated as radiation sensitizers. Radiation sensitization studies were performed using SMT-F and EMT6 mammary tumor-bearing mice. Single and multifraction dose regimens were performed. SMT-F bearing DBA/2N mice and EMT6 bearing Balb/c mice were intravenously administered with Gd-Tex of Lu-Tex (5-40 μmol/kg) 30 minutes to 5 hours prior to radiation (10-50 Gray) for the single fraction studies. The more radioresistant EMT-6 sarcoma model was used for the multifraction studies. The tumor bearing animals were injected with Gd-Tex (5, 20, or 40 μmol/kg) to 2 hours prior radiation (1, 2, or 4 Gray), this regimen was performed for five consecutive days. Gd-Tex is paramagnetic and has a strong fluorescence signal. Tumor selectivity was determined by MRI and fluorescence spectral imaging before and up to 24 hours following the administration of Gd-Tex. Gd-Tex but not Lu-Tex, proved to be an effective radiation sensitizer. Administration of Gd-Tex (40 μmol/kg) prior to a single dose of 30 Gray radiation provided a significant improvement in survival in SMT-F-bearing DBA/2N mice as compared to animals receiving radiation alone (p = 0.0034). A significant radiation sensitization effect was also found in multiple fraction studies (five consecutive days) with Balb/C mice bearing EMT-6 neoplasma-- following 1 Gray of radiation for 5 days there was a significant difference between the 20 and 40 μmol/kg group and controls (p = 0.003, p = 0.005 respectively). MRI and fluorescence spectral imaging studies of tumor bearing animals revealed excellent contrast enhancement of the tumor which persisted up to 24 hours. Texaphyrins localize in neoplasms as visualized using MRI

  16. Relationship between intrinsic radiation sensitivity and metastatic potential

    International Nuclear Information System (INIS)

    Lewis, Anne M.; Mei, Su; Doty, Jay; Chen Yi; Pardo, Francisco S.

    1996-01-01

    Purpose: Prior studies emphasized genetic modulation of tumorigenicity, and experimental metastatic potential in cells transfected with oncogenes. Whether the intrinsic radiation sensitivity of cells might correlate with parallel changes in metastatic potential is unknown. Methods and Materials: Rat embryo cells (REC) were transfected with the following oncogenes, and where appropriate, with corresponding selection markers: pCMV neopEJ6.6ras, pEJ6.6ras/v-myc, pE1a, and pEJ6-.6ras/E1a. Individual transfectant clones and corresponding pooled cellular populations were propagated in selective medium. In vitro cellular radiation sensitivity was determined via clonogenic assays, a minimum of three, by standard techniques and individual SF 2 and MID parameters determined. Tumorigenicity was defined as the number of tumors forming following the injection of 1 x 10 5 - 1 x 10 6 cells into the axillary pouch of three different strains of immune-deficient mice. Animals were killed once resultant tumors reached a maximum size of 1.5-2.0 cm in maximum diameter. For determination of experimental metastatic potential, between 1 x 10 5 -1 x 10 6 cells were injected into the tail veins of litter-matched sibling mice in parallel to the tumorigenicity studies. Results: Radiobiologic studies indicate similar levels of radiation sensitivity among REC, mock-transfected REC, E1a, and combined E1a/ras transfectants. pEJ6.6ras, and combined ras/myc transfected pooled cellular populations demonstrated increases in radiation resistance when compared to the pooled radiobiologic data from untransfected and mock-transfected corresponding pooled cellular populations (p 2 , MID). Rat embryo cells, E1a, and mock-transfectants were relatively radiation sensitive and nontumorigenic. pE1a/ras was tumorigenic but demonstrated relatively low experimental metastatic potential. Ras, and ras/myc transfectants, demonstrated similar levels of experimental metastatic potential on lung colonization assays

  17. Modification of radiation sensitivity by edaravone

    Energy Technology Data Exchange (ETDEWEB)

    Sasano, Nakashi; Enomoto, Atsushi; Miyagawa, Kiyoshi [Tokyo Univ., Graduate School of Medicine, Tokyo (Japan); Hosoi, Yoshio [Niigata Univ., School of Health Sciences, Niigata, Niigata (Japan); Nakagawa, Keiichi [Tokyo Univ., Hospital, Tokyo (Japan)

    2009-03-15

    Studied was the effect of edaravone (E), a clinical therapeutic drug for brain infarction possessing properties of free radical scavenger, on apoptosis in vitro. Human T-cell leukemic MOLT-4 cells and p53-knockdown MOLT-4 cells which overexpressing short hairpin type p53 by siRNA treatment were X-irradiated by Shimadzu Pantak HF 350 machine at 135-140 cGy/min for 2-5 Gy in total, in the presence of E. Cell death was estimated by dye-exclusion, apoptosis by EPICS flow cytometry, cellular reactive oxygen species by chloromethyl-2',7'-dichlorodihydrofluoresein diacetate (CM-H{sub 2}-DCFDA) fluorometry, and p53-related protein expression by Western blotting. E was found to have a radio-protective effect on cells at high concentrations (e.g., 2.7 and 3 mg/mL, 2Gy) and radio-sensitizing action at low concentrations (e.g., 0.15-1.5 mg/mL). Clinical plasma levels of E have been reportedly far lower than the concentrations in this experiment: ideally, E can sensitize tumor cells to radiation and protect normal cells from. (K.T.)

  18. Effect of ethanol of the radiation sensitivity of human hemoglobin

    International Nuclear Information System (INIS)

    Szweda-Lewandowska, Z.; Puchala, M.

    1981-01-01

    Radiation sensitivity of oxy-, deoxy-, and methemoglobin (HbOs, Hbbj, and MetHb) in water solutions containing 0.2 M ethanol and in ethanol-free solutions was compared. Radiation sensitivity was estimated on the basis of changes in absorbance at the Soret band (a = 430 nm for deoxyhemoglobin), changes in the absorbance ration Avqv/Avwt determined after conversion of irradiated preparations to methemoglobin, and changes in the value of parameters describing the reaction of hemoglobin oxygenation. The protection coefficient p of hemoglobin by ethanol (ratio of a change in the absence of ethanol to that in its presence) calculated from changes in absorbance at the Soret band equaled about 1.5 at a 4-Mrad dose in all bases except MetHb irradiated in air for which p was much higher (about 3.2). The protection coefficient p' calculated from Dtx values for changes in Avchemically bondv/Avwt equaled 2.2 for HbOs, and 2.8 for MetHb for preparations irradiated in air; p' = 1.7 for Hbbj and 1.8 for MetHb for preparations irradiated under argon. On the basis of these results, the role of /sup ./OH radicals and oxygen in the radiation damage of hemoglobin is discussed

  19. Methods and tools for the evaluation of the sensitivity to natural radiations of advanced integrated circuits

    International Nuclear Information System (INIS)

    Peronnard, P.

    2009-10-01

    Atmospheric neutrons, whose fluxes and energies dependent on the altitude, the sun activity and the geographic coordinates, have been identified as being capable to provoke SEE (Single Event Effects), by indirect ionisation, in integrated devices issued from advanced manufacturing processes (nano-metric devices). This concerns not only avionics but also applications operating at ground level. The evaluation of the sensitivity to SEE provoked by natural radiation becomes thus a mandatory step during the selection of devices devoted to be included in applications requiring high reliability. The sensitivity to SEE can be mitigated by different approaches at different levels from manufacturing level (use of particular process technologies such as SOI - Silicon On Isolator -) to the system level (hardware/software redundancy). Independently of the adopted hardening approach, the so-called radiation ground testing are mandatory to evaluate the error rates of a device or a system. During such tests, the DUT (Device Under Test) is exposed to a flux of particles while it performs a given activity. For SEU (Single Event Upsets) radiation ground testing, two main strategies exist: static test: the circuit areas which are supposed to be sensitive to SEUs (registers, memories,...) are initialized with a reference pattern. The content of the sensitive area is periodically compared to the reference pattern to identify potential SEU. Dynamic test: the DUT performs an activity representative of the one it will execute during the final application. Static test: strategies are frequently adopted as they provide the intrinsic sensitivity, in terms of the average number of particles needed to provoke an SEU, of different sensitive areas of the device. From such a strategy can thus be obtained a 'worst case estimation' of the device sensitivity. This thesis aims at giving a description and validating the methodologies required to estimate the sensitivity to radiations of two types of

  20. Micronuclei: sensitivity for the detection of radiation induced damage

    International Nuclear Information System (INIS)

    Di Giorgio, M.; Nasazzi, N.B.; Taja, M.R.

    1998-01-01

    The in vitro cytokinesis-block (CB) micronucleus (MN) assay for human peripheral blood has been used extensively for the assessment of chromosomal damage induced by ionizing radiation and chemicals and considered a suitable biological dosimeter for estimating in vivo whole body exposures, particularly in the case of large scale radiation accidents. One of the major drawbacks of the MN assay is its reduced sensitivity for the detection of damage induced by low doses of low LET radiation, due to the high variability among the spontaneous MN frequencies. It is suggested that age, smoking habit and sex are the main confounding factors that contribute to the observed variability. Previous work in our laboratory, shows a significant positive correlation of the spontaneous and radiation induced MN frequencies with age and smoking habit, the latter being the strongest confounder. These findings led to in vitro studies of the dose-response relationships for smoking and non smoking donors evaluated separately, using 60 Co γ rays. The objectives of the present work are: 1-To increase the amount of data of the dose-response relationships, using γ rays from a 60 Co source, for smoking and non smoking donors, in order to find, if applicable, a correction factor for the calibration curve that takes into account the smoking habit of the individual in the case of accidental overexposure dose assessment, particularly in the low dose range. 2-To establish general conclusions on the current state of the technique. The sample for smoking and non smoking calibration curves was enlarged in the range of 0Gy to 2Gy. The fitting of both curves, performed up to the 2Gy dose, resulted in a linear quadratic model. MN distribution among bi nucleated cells was found to be over dispersed with respect to Poisson distribution, the average ratio of variance to mean being 1.13 for non smokers and 1.17 for smokers. Each fitted calibration curve, for smoking and non smoking donors, fell within the 95

  1. A hybrid computational approach to estimate solar global radiation: An empirical evidence from Iran

    International Nuclear Information System (INIS)

    Mostafavi, Elham Sadat; Ramiyani, Sara Saeidi; Sarvar, Rahim; Moud, Hashem Izadi; Mousavi, Seyyed Mohammad

    2013-01-01

    This paper presents an innovative hybrid approach for the estimation of the solar global radiation. New prediction equations were developed for the global radiation using an integrated search method of genetic programming (GP) and simulated annealing (SA), called GP/SA. The solar radiation was formulated in terms of several climatological and meteorological parameters. Comprehensive databases containing monthly data collected for 6 years in two cities of Iran were used to develop GP/SA-based models. Separate models were established for each city. The generalization of the models was verified using a separate testing database. A sensitivity analysis was conducted to investigate the contribution of the parameters affecting the solar radiation. The derived models make accurate predictions of the solar global radiation and notably outperform the existing models. -- Highlights: ► A hybrid approach is presented for the estimation of the solar global radiation. ► The proposed method integrates the capabilities of GP and SA. ► Several climatological and meteorological parameters are included in the analysis. ► The GP/SA models make accurate predictions of the solar global radiation.

  2. Radiation-sensitive genetically susceptible pediatric sub-populations

    Energy Technology Data Exchange (ETDEWEB)

    Kleinerman, Ruth A. [National Cancer Institute, NIH, DHHS, Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, Rockville, MD (United States)

    2009-02-15

    Major advances in pediatric cancer treatment have resulted in substantial improvements in survival. However, concern has emerged about the late effects of cancer therapy, especially radiation-related second cancers. Studies of childhood cancer patients with inherited cancer syndromes can provide insights into the interaction between radiation and genetic susceptibility to multiple cancers. Children with retinoblastoma (Rb), neurofibromatosis type 1 (NF1), Li-Fraumeni syndrome (LFS), and nevoid basal cell carcinoma syndrome (NBCCS) are at substantial risk of developing radiation-related second and third cancers. A radiation dose-response for bone and soft-tissue sarcomas has been observed in hereditary Rb patients, with many of these cancers occurring in the radiation field. Studies of NF1 patients irradiated for optic pathway gliomas have reported increased risks of developing another cancer associated with radiotherapy. High relative risks for second and third cancers were observed for a cohort of 200 LFS family members, especially children, possibly related to radiotherapy. Children with NBCCS are very sensitive to radiation and develop multiple basal cell cancers in irradiated areas. Clinicians following these patients should be aware of their increased genetic susceptibility to multiple primary malignancies enhanced by sensitivity to ionizing radiation. (orig.)

  3. Radiation sensitization studies by silymarin on HCT-15 cells

    International Nuclear Information System (INIS)

    Lal, Mitu; Gupta, Damodar; Arora, R.

    2014-01-01

    Radiotherapy has been widely used for treatment of human cancers. However, cancer cells develop radioresistant phenotypes following multiple exposures to the treatment agent that decrease the efficacy of radiotherapy. Here it was investigated that the radiation sensitization effects of silymarin found in colon cancer. The aim of this study was to investigate mechanisms involved in radiation sensitization growth inhibitory effect of silymarin in combination with radiation, in Human colon carcinoma (HCT-15). The human colon carcinoma was utilized and SRB-assay was performed to study anti-proliferative effect of silymarin in combination with gamma radiation (2 Gy) appropriate radiation dose was optimized and confirmed by clonogenic assay. Microscopic analysis was done by staining with Hoechst-33342, DAPI, Propidium iodide to confirm the presence of apoptosis. Nitric oxide production, changes in lipid peroxidation, Cell cycle analysis were carried out and mitochondrial membrane potential was measured by uptake of cationic dye JC-1 by using flow cytometer. Silymarin in combination with radiation (2 Gy) inhibited 70% ± 5% population growth of HCT-15 cells in time and dose dependent manner. Pre treatment of cells with silymarin for 30 min before radiation was found to be most effective for radiation sensitization. There was 25% increase in levels of nitric oxide as compare to control, whereas 2.5 fold change in lipid peroxidation with respect to control. IR-induced apoptosis in HCT-15 cell line was significantly enhanced by silymarin, as reflected by viability, DNA fragmentation, and mitochondrial dysfunction. Additionally, silymarin in combination with IR is found to be effective in sensitization of HCT-15 cells. In vivo studies on development of tumor and sensitization aspects needs to done in future. (author)

  4. In vivo radiation sensitivity of glioblastoma multiforme

    International Nuclear Information System (INIS)

    Taghian, Alphonse; Freeman, Jill; Suit, Herman; DuBois, Willem; Budach, Wilfried; Baumann, Michael

    1995-01-01

    Purpose: Human glioblastoma (GBM) is one of the most resistant tumors to radiation. In previous reports, we have demonstrated a wide range of radiation sensitivity of GBM in vitro; that is, SF 2 values of 0.2 to 0.8. The great sensitivity of some of the cell lines is not in accord with the almost invariably fatal clinical outcome of patients with GBM. The sensitivity of cells in vitro pertains to cells cultured in optimal nutritional conditions. The TCD 50 (the radiation dose necessary to control 50% of the tumors locally) determined in lab animals is analogous to the use of radiation with curative intent in clinical radiation oncology. The aim of the present study was (a) to evaluate the sensitivity of GBM in vivo relative to that of other tumor types and (b) assess the relationship between the single dose TCD 50 of the xenografts and the sensitivity of the corresponding cell lines in vitro. Methods and Materials: The TCD 50 assay was used to study twelve human tumor lines. Four previously published values were added. A total of 10 GBM, 4 squamous cell carcinoma (SCC), 1 soft tissue sarcoma (STS), and 1 cancer colon (CC) are included in the analysis. For further suppression of the residual immune system, all the animals received 6 Gy whole-body irradiation 1 day before transplantation. Local tumor irradiations were given as a single dose, under conditions of clamp hypoxia using a Cs irradiator. Results: The TCD 50 values for the 10 GBM xenografts varied between 32.5 and 75.2 Gy, with an average of 47.2 ± 13.1 Gy. The TCD 50 values for the SCC were similar to those of the GBM and ranged from 40.7 and 54.4 Gy, with a mean of 46.8 ± 6.4. The difference between the average TCD 50 of GBM and SCC was not significant. The STS and CC xenografts had TCD 50 values of 46.0 and 49.2 Gy, respectively. No correlation was found between the TCD 50 in vivo and the SF 2 or D 0 in vitro. Conclusions: Our data on GBM xenografts showed a wide range of sensitivities to single dose

  5. In vivo radiation sensitivity of glioblastoma multiforme

    Energy Technology Data Exchange (ETDEWEB)

    Taghian, Alphonse; Freeman, Jill; Suit, Herman; DuBois, Willem; Budach, Wilfried; Baumann, Michael

    1995-04-30

    Purpose: Human glioblastoma (GBM) is one of the most resistant tumors to radiation. In previous reports, we have demonstrated a wide range of radiation sensitivity of GBM in vitro; that is, SF{sub 2} values of 0.2 to 0.8. The great sensitivity of some of the cell lines is not in accord with the almost invariably fatal clinical outcome of patients with GBM. The sensitivity of cells in vitro pertains to cells cultured in optimal nutritional conditions. The TCD{sub 50} (the radiation dose necessary to control 50% of the tumors locally) determined in lab animals is analogous to the use of radiation with curative intent in clinical radiation oncology. The aim of the present study was (a) to evaluate the sensitivity of GBM in vivo relative to that of other tumor types and (b) assess the relationship between the single dose TCD{sub 50} of the xenografts and the sensitivity of the corresponding cell lines in vitro. Methods and Materials: The TCD{sub 50} assay was used to study twelve human tumor lines. Four previously published values were added. A total of 10 GBM, 4 squamous cell carcinoma (SCC), 1 soft tissue sarcoma (STS), and 1 cancer colon (CC) are included in the analysis. For further suppression of the residual immune system, all the animals received 6 Gy whole-body irradiation 1 day before transplantation. Local tumor irradiations were given as a single dose, under conditions of clamp hypoxia using a Cs irradiator. Results: The TCD{sub 50} values for the 10 GBM xenografts varied between 32.5 and 75.2 Gy, with an average of 47.2 {+-} 13.1 Gy. The TCD{sub 50} values for the SCC were similar to those of the GBM and ranged from 40.7 and 54.4 Gy, with a mean of 46.8 {+-} 6.4. The difference between the average TCD{sub 50} of GBM and SCC was not significant. The STS and CC xenografts had TCD{sub 50} values of 46.0 and 49.2 Gy, respectively. No correlation was found between the TCD{sub 50} in vivo and the SF{sub 2} or D{sub 0} in vitro. Conclusions: Our data on GBM

  6. Sensitivities in synchrotron radiation TXRF

    International Nuclear Information System (INIS)

    Pianetta, P.; Baur, K.; Brennan, S.

    2000-01-01

    This work describes the progress we achieved at the Stanford Synchrotron Radiation Laboratory (SSRL) in improving the sensitivity for both the transition metals and light elements such as Al and Na. The transition metal work has matured to the point where a facility exists at SSRL in which semiconductor companies are able to perform industrially relevant measurements at state of the art detection limits. This facility features clean wafer handling and automated data acquisition making routine analytical measurements possible. The best sensitivity demonstrated so far is 3.4 E7 atoms/cm 2 for a 5000 second count time corresponding to 7.6 E7 atoms/cm 2 for a standard 1000 second count time. This is more than a factor of 100 better than what can be achieved with conventional TXRF systems. The detection of light elements such as Al and Na is challenging due to the presence of the h stronger Si fluorescence peak. For traditional energy-dispersive detection only the tunability of synchrotron radiation to excitation energies below the Si-K absorption edge leads to an acceptable sensitivity for Al detection which is limited by a large background due to inelastic x-ray Raman scattering. An alternative approach to overcome the Raman contribution and the strong Si fluorescence is to use a wavelength-dispersive spectrometer for fluorescence detection. The benefits of such a multilayer spectrometer over a solid state detector are its higher energy resolution and greater dynamic range. This strategy allows primary excitation above the Si K absorption edge, eliminating the background due to Raman scattering, and a gracing emission geometry to guarantee high surface sensitivity. Studies testing this concept in combination with high flux synchrotron radiation are underway and first results will be presented. (author)

  7. Radiation-Induced Second Cancer Risk Estimates From Radionuclide Therapy

    Science.gov (United States)

    Bednarz, Bryan; Besemer, Abigail

    2017-09-01

    The use of radionuclide therapy in the clinical setting is expected to increase significantly over the next decade. There is an important need to understand the radiation-induced second cancer risk associated with these procedures. In this study the radiation-induced cancer risk in five radionuclide therapy patients was investigated. These patients underwent serial SPECT imaging scans following injection as part of a clinical trial testing the efficacy of a 131Iodine-labeled radiopharmaceutical. Using these datasets the committed absorbed doses to multiple sensitive structures were calculated using RAPID, which is a novel Monte Carlo-based 3D dosimetry platform developed for personalized dosimetry. The excess relative risk (ERR) for radiation-induced cancer in these structures was then derived from these dose estimates following the recommendations set forth in the BEIR VII report. The radiation-induced leukemia ERR was highest among all sites considered reaching a maximum value of approximately 4.5. The radiation-induced cancer risk in the kidneys, liver and spleen ranged between 0.3 and 1.3. The lifetime attributable risks (LARs) were also calculated, which ranged from 30 to 1700 cancers per 100,000 persons and were highest for leukemia and the liver for both males and females followed by radiation-induced spleen and kidney cancer. The risks associated with radionuclide therapy are similar to the risk associated with external beam radiation therapy.

  8. Correlation of radiation sensitivity and nitrofurantoin sensitivity of Escherichia coli K-12

    International Nuclear Information System (INIS)

    Kloeck, K.

    1981-01-01

    The Uvr- and rec-mutants of E.coli K-12 have been tested with a view to their radiation- and nitrofuration sensitivity. The tests showed that all mutants tested were more radiation- and NF-sensitive than the wild type AB 1157. When the NF-sensitivity had been compared to the UV- and X-ray sensitivity it became obvious that the NF-sensitivity is correlated to the UV-sensitivity. Studies carried out with regard to the time dependence of the NF-effect on E.coli showed that the effect of NF on E. Coli became weaker after about 1 1/2 to 2 hours. That is possibly caused by the fact that the E. coli bacteria succeed in reducing the NF to an inactive form. By means of nitrosoguanidine mutants of E-coli AB 1157 had been induced and by means of the Replicite Plating Method, NF-sensible mutants had been isolated from the plutonium mixture. Among the mutants which had been isolated by this method, 74% had been more UV-sensitive than the wild type and 55% more X-ray sensitive. Thus NF-sensitive mutants have not necessarily to be considered as rec-mutants as there are also uvr-mutants in the mixture. (orig.) [de

  9. Radiation in space: risk estimates

    International Nuclear Information System (INIS)

    Fry, R.J.M.

    2002-01-01

    The complexity of radiation environments in space makes estimation of risks more difficult than for the protection of terrestrial population. In deep space the duration of the mission, position of the solar cycle, number and size of solar particle events (SPE) and the spacecraft shielding are the major determinants of risk. In low-earth orbit missions there are the added factors of altitude and orbital inclination. Different radiation qualities such as protons and heavy ions and secondary radiations inside the spacecraft such as neutrons of various energies, have to be considered. Radiation dose rates in space are low except for short periods during very large SPEs. Risk estimation for space activities is based on the human experience of exposure to gamma rays and to a lesser extent X rays. The doses of protons, heavy ions and neutrons are adjusted to take into account the relative biological effectiveness (RBE) of the different radiation types and thus derive equivalent doses. RBE values and factors to adjust for the effect of dose rate have to be obtained from experimental data. The influence of age and gender on the cancer risk is estimated from the data from atomic bomb survivors. Because of the large number of variables the uncertainties in the probability of the effects are large. Information needed to improve the risk estimates includes: (1) risk of cancer induction by protons, heavy ions and neutrons; (2) influence of dose rate and protraction, particularly on potential tissue effects such as reduced fertility and cataracts; and (3) possible effects of heavy ions on the central nervous system. Risk cannot be eliminated and thus there must be a consensus on what level of risk is acceptable. (author)

  10. Solar radiation estimation based on the insolation

    International Nuclear Information System (INIS)

    Assis, F.N. de; Steinmetz, S.; Martins, S.R.; Mendez, M.E.G.

    1998-01-01

    A series of daily global solar radiation data measured by an Eppley pyranometer was used to test PEREIRA and VILLA NOVA’s (1997) model to estimate the potential of radiation based on the instantaneous values measured at solar noon. The model also allows to estimate the parameters of PRESCOTT’s equation (1940) assuming a = 0,29 cosj. The results demonstrated the model’s validity for the studied conditions. Simultaneously, the hypothesis of generalizing the use of the radiation estimative formulas based on insolation, and using K = Ko (0,29 cosj + 0,50 n/N), was analysed and confirmed [pt

  11. Estimating surface solar radiation from upper-air humidity

    Energy Technology Data Exchange (ETDEWEB)

    Kun Yang [Telecommunications Advancement Organization of Japan, Tokyo (Japan); Koike, Toshio [University of Tokyo (Japan). Dept. of Civil Engineering

    2002-07-01

    A numerical model is developed to estimate global solar irradiance from upper-air humidity. In this model, solar radiation under clear skies is calculated through a simple model with radiation-damping processes under consideration. A sky clearness indicator is parameterized from relative humidity profiles within three atmospheric sublayers, and the indicator is used to connect global solar radiation under clear skies and that under cloudy skies. Model inter-comparisons at 18 sites in Japan suggest (1) global solar radiation strongly depends on the sky clearness indicator, (2) the new model generally gives better estimation to hourly-mean solar irradiance than the other three methods used in numerical weather predictions, and (3) the new model may be applied to estimate long-term solar radiation. In addition, a study at one site in the Tibetan Plateau shows vigorous convective activities in the region may cause some uncertainties to radiation estimations due to the small-scale and short life of convective systems. (author)

  12. Photometric estimation of defect size in radiation direction

    International Nuclear Information System (INIS)

    Zuev, V.M.

    1993-01-01

    Factors, affecting accuracy of photometric estimation of defect size in radiation transmission direction, are analyzed. Experimentally obtained dependences of contrast of defect image on its size in radiation transmission direction are presented. Practical recommendations on improving accuracy of photometric estimation of defect size in radiation transmission direction, are developed

  13. Roadmap to Clinical Use of Gold Nanoparticles for Radiation Sensitization

    Energy Technology Data Exchange (ETDEWEB)

    Schuemann, Jan, E-mail: jschuemann@mgh.harvard.edu [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (United States); Berbeco, Ross [Department of Radiation Oncology, Brigham and Women' s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts (United States); Chithrani, Devika B. [Department of Physics, Ryerson University, Toronto, Ontario (Canada); Cho, Sang Hyun [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Kumar, Rajiv [Nanomedicine Science and Technology Center, Northeastern University, Boston, Massachusetts (United States); Department of Radiation Oncology, Harvard Medical School, Boston, Massachusetts (United States); McMahon, Stephen J. [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (United States); Centre for Cancer Research and Cell Biology, Queen' s University Belfast, Belfast, Northern Ireland (United Kingdom); Sridhar, Srinivas [Nanomedicine Science and Technology Center, Northeastern University, Boston, Massachusetts (United States); Department of Radiation Oncology, Harvard Medical School, Boston, Massachusetts (United States); Krishnan, Sunil [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2016-01-01

    The past decade has seen a dramatic increase in interest in the use of gold nanoparticles (GNPs) as radiation sensitizers for radiation therapy. This interest was initially driven by their strong absorption of ionizing radiation and the resulting ability to increase dose deposited within target volumes even at relatively low concentrations. These early observations are supported by extensive experimental validation, showing GNPs' efficacy at sensitizing tumors in both in vitro and in vivo systems to a range of types of ionizing radiation, including kilovoltage and megavoltage X rays as well as charged particles. Despite this experimental validation, there has been limited translation of GNP-mediated radiation sensitization to a clinical setting. One of the key challenges in this area is the wide range of experimental systems that have been investigated, spanning a range of particle sizes, shapes, and preparations. As a result, mechanisms of uptake and radiation sensitization have remained difficult to clearly identify. This has proven a significant impediment to the identification of optimal GNP formulations which strike a balance among their radiation sensitizing properties, their specificity to the tumors, their biocompatibility, and their imageability in vivo. This white paper reviews the current state of knowledge in each of the areas concerning the use of GNPs as radiosensitizers, and outlines the steps which will be required to advance GNP-enhanced radiation therapy from their current pre-clinical setting to clinical trials and eventual routine usage.

  14. Estimation of solar radiation from Australian meterological observations

    International Nuclear Information System (INIS)

    Moriarty, W.W.

    1991-01-01

    A carefully prepared set of Australian radiation and meteorological data was used to develop a system for estimating hourly or instantaneous broad band direct, diffuse and global radiation from meteorological observations. For clear sky conditions relationships developed elsewhere were adapted to Australian data. For cloudy conditions the clouds were divided into two groups, high clouds and opaque (middle and low) clouds, and corrections were made to compensate for the bias due to reporting practices for almost clear and almost overcast skies. Careful consideration was given to the decrease of visible sky toward the horizon caused by the vertical extent of opaque clouds. Equations relating cloud and other meteorological observations to the direct and diffuse radiation contained four unknown quantities, functions of cloud amount and of solar elevation, which were estimated from the data. These were the proportions of incident solar radiation passed on as direct and as diffuse radiation by high clouds, and as diffuse radiation by opaque clouds, and a factor to describe the elevation dependence of the fraction of sky not obscured by opaque clouds. When the resulting relationships were used to estimate global, direct and diffuse radiation on a horizontal surface, the results were good, especially for global radiation. Some discrepancies between estimates and measurements of diffuse and direct radiation were probably due to erroneously high measurements of diffuse radiation

  15. Sensitivity Analysis of Median Lifetime on Radiation Risks Estimates for Cancer and Circulatory Disease amongst Never-Smokers

    Science.gov (United States)

    Chappell, Lori J.; Cucinotta, Francis A.

    2011-01-01

    Radiation risks are estimated in a competing risk formalism where age or time after exposure estimates of increased risks for cancer and circulatory diseases are folded with a probability to survive to a given age. The survival function, also called the life-table, changes with calendar year, gender, smoking status and other demographic variables. An outstanding problem in risk estimation is the method of risk transfer between exposed populations and a second population where risks are to be estimated. Approaches used to transfer risks are based on: 1) Multiplicative risk transfer models -proportional to background disease rates. 2) Additive risk transfer model -risks independent of background rates. In addition, a Mixture model is often considered where the multiplicative and additive transfer assumptions are given weighted contributions. We studied the influence of the survival probability on the risk of exposure induced cancer and circulatory disease morbidity and mortality in the Multiplicative transfer model and the Mixture model. Risks for never-smokers (NS) compared to the average U.S. population are estimated to be reduced between 30% and 60% dependent on model assumptions. Lung cancer is the major contributor to the reduction for NS, with additional contributions from circulatory diseases and cancers of the stomach, liver, bladder, oral cavity, esophagus, colon, a portion of the solid cancer remainder, and leukemia. Greater improvements in risk estimates for NS s are possible, and would be dependent on improved understanding of risk transfer models, and elucidating the role of space radiation on the various stages of disease formation (e.g. initiation, promotion, and progression).

  16. Individual radiation sensitivity: implications in medical practice

    Energy Technology Data Exchange (ETDEWEB)

    Gisone, P.; Dubner, D.; Perez, M.D.R.; Michelin, S.; Di Giogio, M. [Autoridad Regulatoria Nuclear, Buenos Aires (Argentina); Bourguignon, M. [Direction Generale de la Surete Nucleaire et de la Radioprotection, Paris (France)

    2006-07-01

    Important advances in radiotherapy and nuclear medicine towards better treatment modalities and safer applications have taken place in recent years. Progress in medical imaging, better tumour targeting and optimization of radiation delivery have allowed for dose escalation and improved patient outcome. However, the tolerance of normal tissues constitutes the limiting factor for dose escalation in therapeutical uses of ionizing radiation (IR). Patients vary considerably in their normal tissue response to IR even after similar treatments. As many as 5% of cancer patients develop severe effects to external radiation therapy in normal tissues within the treatment field: they may include acute effects such as erythema and desquamation of the exposed skin and mucosa that appear during or directly after radiotherapy, late effects developed months or years later, such as fibrosis and telangiectasia and cancer induction. Several patient and treatment related factors are known to influence the variability of side effects, however up to a 70% of the total variance of normal tissue radiation response remained unexplained. Thus, individual sensitivity to IR, i.e. hypersensitivity to carcinogenic risks (stochastic effects) and hypersensitivity to deterministic effects, is becoming an important issue in oncology and raises questions regarding the underlying mechanisms. The mechanisms of DNA repair, the signalling pathways involved in radiation sensitivity and non-targeted effects are key aspects, essential to understanding radiation effects at genetic level. Moreover, human genetic diseases that combine higher incidence of cancer and hypersensitivity to IR are associated with defects in cell response to DNA damage. Therefore, much interest has raised during the last years in the developing of predictive tests capable to detect in advance such hypersensitive conditions. The goal of this presentation is to review the possible mechanisms involved in genetic and epigenetic

  17. Individual radiation sensitivity: implications in medical practice

    International Nuclear Information System (INIS)

    Gisone, P.; Dubner, D.; Perez, M.D.R.; Michelin, S.; Di Giogio, M.; Bourguignon, M.

    2006-01-01

    Important advances in radiotherapy and nuclear medicine towards better treatment modalities and safer applications have taken place in recent years. Progress in medical imaging, better tumour targeting and optimization of radiation delivery have allowed for dose escalation and improved patient outcome. However, the tolerance of normal tissues constitutes the limiting factor for dose escalation in therapeutical uses of ionizing radiation (IR). Patients vary considerably in their normal tissue response to IR even after similar treatments. As many as 5% of cancer patients develop severe effects to external radiation therapy in normal tissues within the treatment field: they may include acute effects such as erythema and desquamation of the exposed skin and mucosa that appear during or directly after radiotherapy, late effects developed months or years later, such as fibrosis and telangiectasia and cancer induction. Several patient and treatment related factors are known to influence the variability of side effects, however up to a 70% of the total variance of normal tissue radiation response remained unexplained. Thus, individual sensitivity to IR, i.e. hypersensitivity to carcinogenic risks (stochastic effects) and hypersensitivity to deterministic effects, is becoming an important issue in oncology and raises questions regarding the underlying mechanisms. The mechanisms of DNA repair, the signalling pathways involved in radiation sensitivity and non-targeted effects are key aspects, essential to understanding radiation effects at genetic level. Moreover, human genetic diseases that combine higher incidence of cancer and hypersensitivity to IR are associated with defects in cell response to DNA damage. Therefore, much interest has raised during the last years in the developing of predictive tests capable to detect in advance such hypersensitive conditions. The goal of this presentation is to review the possible mechanisms involved in genetic and epigenetic

  18. Mutation frequencies in female mice and the estimation of genetic hazards of radiation in women

    International Nuclear Information System (INIS)

    Russell, W.L.

    1977-01-01

    The female germ cell stage of primary importance in radiation genetic hazards is the immature, arrested oocyte. In the mouse, this stage has a near zero or zero sensitivity to mutation induction by radiation. However, the application of these mouse results to women has been questioned on the ground that the mouse arrested oocytes are highly sensitive to killing by radiation, while the human cells are not; and, furthermore, that the mature and maturing oocytes in the mouse, which are resistant to killing, are sensitive to mutation induction. The present results have a 2-fold bearing on this problem. First, a more detailed analysis of oocyte-stage sensitivity to killing and mutation induction shows that there is no consistent correlation, either negative or positive, between the two. This indicates that the sensitivity to cell killing of the mouse immature oocyte may not be sufficient reason to prevent its use in predicting the mutational response of the human immature oocyte. Second, if the much more cautious assumption is made that the human arrested oocyte might be as mutationally sensitive as the most sensitive of all oocyte stages in the mouse, namely the maturing and mature ones, then the present data on the duration of these stages permit more accurate estimates than were heretofore possible on the mutational response of these stages to chronic irradiation

  19. Relative radiation sensitivity of insulators, stabilizers, and superconductors

    International Nuclear Information System (INIS)

    Van Konynenburg, R.A.; Guinan, M.W.

    1980-12-01

    The operating conditions of the magnets including temperature and radiation fields are discussed. Comments were made on the nuclear heating. Components of the magnet system, including the materials used, the important properties, the atomic structure, the damage mechanism, and the effects of room temperature warmup are described. Some failure criteria for the various components are suggested. Available data concerning radiation effects on each component are discussed. Their radiation sensitivities are compared using the conditions calculated for the ETF toroidal field magnet inboard leg, and ranked in order of sensitivity. Comments were made on the implications of this ranking for the directions of future applied materials research

  20. Effect of troglitazone on radiation sensitivity in cervix cancer cells

    International Nuclear Information System (INIS)

    An, Zheng Zhe; Liu, Xian Guang; Song, Hye Jin; Choi, Chi Hwan; Kim, Won Dong; Park, Woo Yoon; Yu, Jae Ran

    2012-01-01

    Troglitazone (TRO) is a peroxisome proliferator-activated receptor γ (PPARγ ) agonist. TRO has antiproliferative activity on many kinds of cancer cells via G1 arrest. TRO also increases Cu 2+ /Zn 2+ -superoxide dismutase (CuZnSOD) and catalase. Cell cycle, and SOD and catalase may affect on radiation sensitivity. We investigated the effect of TRO on radiation sensitivity in cancer cells in vitro. Three human cervix cancer cell lines (HeLa, Me180, and SiHa) were used. The protein expressions of SOD and catalase, and catalase activities were measured at 2-10 μM of TRO for 24 hours. Cell cycle was evaluated with flow cytometry. Reactive oxygen species (ROS) was measured using 2',7'-dichlorofluorescin diacetate. Cell survival by radiation was measured with clonogenic assay. By 5 μM TRO for 24 hours, the mRNA, protein expression and activity of catalase were increased in all three cell lines. G0- G1 phase cells were increased in HeLa and Me180 by 5 μM TRO for 24 hours, but those were not increased in SiHa. By pretreatment with 5 μM TRO radiation sensitivity was increased in HeLa and Me180, but it was decreased in SiHa. In Me180, with 2 μM TRO which increased catalase but not increased G0-G1 cells, radiosensitization was not observed. ROS produced by radiation was decreased with TRO. TRO increases radiation sensitivity through G0-G1 arrest or decreases radiation sensitivity through catalasemediated ROS scavenging according to TRO dose or cell types. The change of radiation sensitivity by combined with TRO is not dependent on the PPAR γ expression level.

  1. Radiation sensitivity of integrated circuits Pt. 1

    International Nuclear Information System (INIS)

    Bereczkine Kerenyi, Ilona

    1986-01-01

    The cosmic ray sensitivity of CMOS integrated circuits are overviewed in three parts. The aim is to analyze the effects of ionizing radiation on the degradation of electronic parameters, the effects of the electric state during irradiation, and the radiation hardening of ICs. In this Part 1 a general introduction of the response of semiconductors to cosmic radiation is given, and the radiation tolerance and hardening of small-scale integrated CMOS ICs is analyzed in detail. The devices include various basic inverters and simple gate ICs. (R.P.)

  2. Sensitivity of clostridium acetobutylicum to oxygen and ionizing radiation

    International Nuclear Information System (INIS)

    Sozer, A.C.; Adler, H.I.; Machanoff, R.; Haney, S.

    1984-01-01

    The authors are studying the sensitivity of four strains of the obligate anaerobe, Clostridium acetobutylicum, to oxygen and ionizing radiation. Anaerobic bacteria are useful for such studies because of the absence of elaborate oxygen detoxification mechanisms that are found in aerobes. Their experiments make use of sterile membrane fragments from Escherichia coli that rapidly remove molecular oxygen from media and permit growth of anaerobes without the use of reducing agents or anaerobic chambers. Of the four strains examined for sensitivity to ionizing radiation under anaerobic conditions, one has an LD/sub 50/ of -- 25 krads and the others have an LD/sub 50/ of -- 7 krads. The radiation resistant strain is also relatively resistant to oxygen exposure. Sensitivity to oxygen was determined by diluting cells in buffer at 28 0 and bubbling with air. An exposure to air for 40 min induced only slight inactivation in the radiation resistant strain. All strains are capable of removing oxygen from complex media but there is no apparent correlation between this oxygen consuming reaction and inactivation by either oxygen or radiation

  3. Immunological aspects of light radiation sensitivity

    International Nuclear Information System (INIS)

    Hellman, K.B.; Schuller, G.B.

    1981-01-01

    The immune system comprises one aspect of the host's defense mechanism against potentially harmful agents. It has become recognized as an important factor in light radiation sensitivity and light-mediated disease. The interaction of light radiation with the immune system has formed the basis for the evolving discipline of photoimmunology. A description of the multicomponent immune system, its modification by light radiation, and a discussion of how photoimmunological studies may provide data important for understanding the mechanisms involved in photosensitivity are presented in this review. Photosensitivity may be either acquired or may be genetic in nature. Acquired photosensitivity involves an individual's reaction to either light alone or light in conjunction with topically or systemically administered photosenitizing agents. The outcome of such a reaction can be benign or severe, depending on a number of factors. Genetic photosensitivity includes the reactions to light radiation of individuals carrying the genetic information for inherited diseases such as Ataxia telangiectasia (AT) and Xeroderma pigmentosum (XP). Factors associated with these conditions can lead to enhanced sensitivity to radiation-related diseases, such as cancer. In addition, there are conditions which cannot be readily placed in either of the categories just described but, nevertheless, have been correlated with immune system dysfunction. These include photoallergy, photosensitivity associated with autoimmunity, and light-induced skin cancer. Immunological studies have provided information which may aid in elucidating the problem of photosensitivity and in the development of suitable radioprotective measures

  4. DNA repair and radiation sensitivity in mammalian cells

    International Nuclear Information System (INIS)

    Chen, D.J.C.; Stackhouse, M.; Chen, D.S.

    1993-01-01

    Ionizing radiation induces various types of damage in mammalian cells including DNA single-strand breaks, DNA double-strand breaks (DSB), DNA-protein cross links, and altered DNA bases. Although human cells can repair many of these lesions there is little detailed knowledge of the nature of the genes and the encoded enzymes that control these repair processes. We report here on the cellular and genetic analyses of DNA double-strand break repair deficient mammalian cells. It has been well established that the DNA double-strand break is one of the major lesions induced by ionizing radiation. Utilizing rodent repair-deficient mutant, we have shown that the genes responsible for DNA double-strand break repair are also responsible for the cellular expression of radiation sensitivity. The molecular genetic analysis of DSB repair in rodent/human hybrid cells indicate that at least 6 different genes in mammalian cells are responsible for the repair of radiation-induced DNA double-strand breaks. Mapping and the prospect of cloning of human radiation repair genes are reviewed. Understanding the molecular and genetic basis of radiation sensitivity and DNA repair in man will provide a rational foundation to predict the individual risk associated with radiation exposure and to prevent radiation-induced genetic damage in the human population

  5. Lake and Reservoir Evaporation Estimation: Sensitivity Analysis and Ranking Existing Methods

    Directory of Open Access Journals (Sweden)

    maysam majidi

    2016-02-01

    were acquired from the Doosti Dam weather station. Relative humidity, wind speed, atmospheric pressure and precipitation were acquired from the Pol−Khatoon weather station. Dew point temperature and sunshine data were collected from the Sarakhs weather station. Lake area was estimated from hypsometric curve in relation to lake level data. Temperature measurements were often performed in 16−day periods or biweekly from September 2011 to September 2012. Temperature profile of the lake (required for lake evaporation estimation was measured at different points of the reservoir using a portable multi−meter. The eighteen existing methods were compared and ranked based on Bowen ratio energy balance method (BREB. Results and Discussion: The estimated annual evaporation values by all of the applied methods in this study, ranged from 21 to 113mcm (million cubic meters. BREB annual evaporation obtained value was equal to 69.86mcm and evaporation rate averaged 5.47mm d-1 during the study period. According to the results, there is a relatively large difference between the obtained evaporation values from the adopted methods. The sensitivity analysis of evaporation methods for some input parameters indicated that the Hamon method (Eq. 16 was the most sensitive to the input parameters followed by the Brutsaert−Stricker and BREB, and radiation−temperature methods (Makkink, Jensen−Haise and Stephen−Stewart had the least sensitivity to input data. Besides, the air temperature, solar radiation (sunshine data, water surface temperature and wind speed data had the most effect on lake evaporation estimations, respectively. Finally, all evaporation estimation methods in this study have been ranked based on RMSD values. On a daily basis, the Jensen−Haise and the Makkink (solar radiation, temperature group, Penman (Combination group and Hamon (temperature, day length group methods had a relatively reasonable performance. As the results on a monthly scale, the Jensen−Haise and

  6. Observationally constrained estimates of carbonaceous aerosol radiative forcing.

    Science.gov (United States)

    Chung, Chul E; Ramanathan, V; Decremer, Damien

    2012-07-17

    Carbonaceous aerosols (CA) emitted by fossil and biomass fuels consist of black carbon (BC), a strong absorber of solar radiation, and organic matter (OM). OM scatters as well as absorbs solar radiation. The absorbing component of OM, which is ignored in most climate models, is referred to as brown carbon (BrC). Model estimates of the global CA radiative forcing range from 0 to 0.7 Wm(-2), to be compared with the Intergovernmental Panel on Climate Change's estimate for the pre-Industrial to the present net radiative forcing of about 1.6 Wm(-2). This study provides a model-independent, observationally based estimate of the CA direct radiative forcing. Ground-based aerosol network data is integrated with field data and satellite-based aerosol observations to provide a decadal (2001 through 2009) global view of the CA optical properties and direct radiative forcing. The estimated global CA direct radiative effect is about 0.75 Wm(-2) (0.5 to 1.0). This study identifies the global importance of BrC, which is shown to contribute about 20% to 550-nm CA solar absorption globally. Because of the inclusion of BrC, the net effect of OM is close to zero and the CA forcing is nearly equal to that of BC. The CA direct radiative forcing is estimated to be about 0.65 (0.5 to about 0.8) Wm(-2), thus comparable to or exceeding that by methane. Caused in part by BrC absorption, CAs have a net warming effect even over open biomass-burning regions in Africa and the Amazon.

  7. Preliminary Study of Position-Sensitive Large-Area Radiation Portal Monitor

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Chang Hwy; Kim, Hyunok; Moon, Myung Kook [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Jongyul [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Park, Jong Won; Lim, Yong Kon [Korea Institute of Ocean Science and Technology, Daejeon (Korea, Republic of)

    2013-10-15

    An RPM, which is a passive inspection method, is a system for monitoring the movement of radioactive materials at an airport, seaport, border, etc. To detect a γ-ray, an RPM using the plastic scintillator is generally used. The method of γ-ray detection using an RPM with a plastic scintillator is to measure lights generated by an incident γ-ray in the scintillator. Generally, a large-area RPM uses one or two photomultiplier tubes (PMT) for light collection. However, in this study, we developed a 4-ch RPM that can measure the radiation signal using 4 PMTs. The reason for using 4 PMTs is to calculate the position of the radiation source. In addition, we developed an electric device for acquisition of a 4-ch output signal at the same time. To estimate the performance of the developed RPM, we performed an RPM test using a {sup 60}Co γ-ray check source. In this study, we performed the development of a 4-ch RPM. The major function of the typical RPM is to measure the radiation. However, we developed a position-sensitive 4-ch RPM, which can be used to measure the location of the radiation source, as well as the radiation measurement, at the same time. In the future, we plan to develop an algorithm for a position detection of the radiation. In addition, an algorithm will be applied to an RPM.

  8. Dose estimation for space radiation protection

    International Nuclear Information System (INIS)

    Xu Feng; Xu Zhenhua; Huang Zengxin; Jia Xianghong

    2007-01-01

    For evaluating the effect of space radiation on human health, the dose was estimated using the models of space radiation environment, models of distribution of the spacecraft's or space suit's mass thickness and models of human body. The article describes these models and calculation methods. (authors)

  9. Estimation of radiation losses from sheathed thermocouples

    International Nuclear Information System (INIS)

    Roberts, I.L.; Coney, J.E.R.; Gibbs, B.M.

    2011-01-01

    Thermocouples are often used for temperature measurements in heat exchangers. However if the radiation losses from a thermocouple in a high temperature gas flow to colder surroundings are ignored significant errors can occur. Even at moderate temperature differences, these can be significant. Prediction of radiation losses from theory can be problematic, especially in situations where there are large variations in the measured temperatures as the emissivity and radiative heat transfer coefficient of the thermocouple are not constant. The following approach combines experimental results with established empirical relationships to estimate losses due to radiation in an annular heat exchanger at temperatures up to 950 o C. - Highlights: → Sheathed thermocouples are often used to measure temperatures in heat exchangers. → Errors are introduced if radiation losses are ignored. → Radiation losses are environment specific and may be significant. → Experimental and theoretical methods are used to estimate losses. → Hot side maximum temperature 950 o C.

  10. Discrete non-parametric kernel estimation for global sensitivity analysis

    International Nuclear Information System (INIS)

    Senga Kiessé, Tristan; Ventura, Anne

    2016-01-01

    This work investigates the discrete kernel approach for evaluating the contribution of the variance of discrete input variables to the variance of model output, via analysis of variance (ANOVA) decomposition. Until recently only the continuous kernel approach has been applied as a metamodeling approach within sensitivity analysis framework, for both discrete and continuous input variables. Now the discrete kernel estimation is known to be suitable for smoothing discrete functions. We present a discrete non-parametric kernel estimator of ANOVA decomposition of a given model. An estimator of sensitivity indices is also presented with its asymtotic convergence rate. Some simulations on a test function analysis and a real case study from agricultural have shown that the discrete kernel approach outperforms the continuous kernel one for evaluating the contribution of moderate or most influential discrete parameters to the model output. - Highlights: • We study a discrete kernel estimation for sensitivity analysis of a model. • A discrete kernel estimator of ANOVA decomposition of the model is presented. • Sensitivity indices are calculated for discrete input parameters. • An estimator of sensitivity indices is also presented with its convergence rate. • An application is realized for improving the reliability of environmental models.

  11. Age and radiation sensitivity of rat mammary clonogenic cells

    International Nuclear Information System (INIS)

    Shimada, Yoshiya; Yasukawa-Barnes, J.; Kim, R.Y.; Gould, M.N.; Clifton, K.H.

    1994-01-01

    The relative risk of breast cancer is very high among women who were exposed to ionizing radiation during or before puberty. In the current studies, the surviving fractions of clonogenic mammary cells of groups of virgin rats were estimated after single exposures to 137 Cs γ rays at intervals from 1 to 12 weeks after birth. The radiosensitivity of clonogens from prepubertal rats was high and changed with the onset of puberty at between 4 and 6 weeks of age. By this time, the increase in the size of the clonogenic cell subpopulation was slowing and differentiation of terminal mammary end buds and alveolar structures was occurring. Analysis of the relationship of clonogen survival and radiation dose according to the α/β model showed that the exponential αD term predominated at the second and fourth weeks of age. By the eighth week of age, the βD 2 term had come to predominate and the survival curve had a pronounced initial convex shoulder. Further experiments are required to determine whether there is an association between the high sensitivity of the prepubertal and pubertal mammary clonogens to radiation killing and a high susceptibility to radiogenic initiation of cancer. 24 refs., 4 figs., 1 tab

  12. NEW MODEL FOR SOLAR RADIATION ESTIMATION FROM ...

    African Journals Online (AJOL)

    NEW MODEL FOR SOLAR RADIATION ESTIMATION FROM MEASURED AIR TEMPERATURE AND ... Nigerian Journal of Technology ... Solar radiation measurement is not sufficient in Nigeria for various reasons such as maintenance and ...

  13. Internal Variability and Disequilibrium Confound Estimates of Climate Sensitivity From Observations

    Science.gov (United States)

    Marvel, Kate; Pincus, Robert; Schmidt, Gavin A.; Miller, Ron L.

    2018-02-01

    An emerging literature suggests that estimates of equilibrium climate sensitivity (ECS) derived from recent observations and energy balance models are biased low because models project more positive climate feedback in the far future. Here we use simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5) to show that across models, ECS inferred from the recent historical period (1979-2005) is indeed almost uniformly lower than that inferred from simulations subject to abrupt increases in CO2 radiative forcing. However, ECS inferred from simulations in which sea surface temperatures are prescribed according to observations is lower still. ECS inferred from simulations with prescribed sea surface temperatures is strongly linked to changes to tropical marine low clouds. However, feedbacks from these clouds are a weak constraint on long-term model ECS. One interpretation is that observations of recent climate changes constitute a poor direct proxy for long-term sensitivity.

  14. Albendazole sensitizes cancer cells to ionizing radiation

    International Nuclear Information System (INIS)

    Patel, Kirtesh; Doudican, Nicole A; Schiff, Peter B; Orlow, Seth J

    2011-01-01

    Brain metastases afflict approximately half of patients with metastatic melanoma (MM) and small cell lung cancer (SCLC) and represent the direct cause of death in 60 to 70% of those affected. Standard of care remains ineffective in both types of cancer with the challenge of overcoming the blood brain barrier (BBB) exacerbating the clinical problem. Our purpose is to determine and characterize the potential of albendazole (ABZ) as a cytotoxic and radiosensitizing agent against MM and SCLC cells. Here, ABZ's mechanism of action as a DNA damaging and microtubule disrupting agent is assessed through analysis of histone H2AX phosphorylation and cell cyle progression. The cytotoxicity of ABZ alone and in combination with radiation therapy is determined though clonogenic cell survival assays in a panel of MM and SCLC cell lines. We further establish ABZ's ability to act synergistically as a radio-sensitizer through combination index calculations and apoptotic measurements of poly (ADP-ribose) polymerase (PARP) cleavage. ABZ induces DNA damage as measured by increased H2AX phosphorylation. ABZ inhibits the growth of MM and SCLC at clinically achievable plasma concentrations. At these concentrations, ABZ arrests MM and SCLC cells in the G2/M phase of the cell cycle after 12 hours of treatment. Exploiting the notion that cells in the G2/M phase are the most sensitive to radiation therapy, we show that treatment of MM and SCLC cells treated with ABZ renders them more sensitive to radiation in a synergistic fashion. Additionally, MM and SCLC cells co-treated with ABZ and radiation exhibit increased apoptosis at 72 hours. Our study suggests that the orally available antihelminthic ABZ acts as a potent radiosensitizer in MM and SCLC cell lines. Further evaluation of ABZ in combination with radiation as a potential treatment for MM and SCLC brain metastases is warranted

  15. Albendazole sensitizes cancer cells to ionizing radiation

    Science.gov (United States)

    2011-01-01

    Background Brain metastases afflict approximately half of patients with metastatic melanoma (MM) and small cell lung cancer (SCLC) and represent the direct cause of death in 60 to 70% of those affected. Standard of care remains ineffective in both types of cancer with the challenge of overcoming the blood brain barrier (BBB) exacerbating the clinical problem. Our purpose is to determine and characterize the potential of albendazole (ABZ) as a cytotoxic and radiosensitizing agent against MM and SCLC cells. Methods Here, ABZ's mechanism of action as a DNA damaging and microtubule disrupting agent is assessed through analysis of histone H2AX phosphorylation and cell cyle progression. The cytotoxicity of ABZ alone and in combination with radiation therapy is determined though clonogenic cell survival assays in a panel of MM and SCLC cell lines. We further establish ABZ's ability to act synergistically as a radio-sensitizer through combination index calculations and apoptotic measurements of poly (ADP-ribose) polymerase (PARP) cleavage. Results ABZ induces DNA damage as measured by increased H2AX phosphorylation. ABZ inhibits the growth of MM and SCLC at clinically achievable plasma concentrations. At these concentrations, ABZ arrests MM and SCLC cells in the G2/M phase of the cell cycle after 12 hours of treatment. Exploiting the notion that cells in the G2/M phase are the most sensitive to radiation therapy, we show that treatment of MM and SCLC cells treated with ABZ renders them more sensitive to radiation in a synergistic fashion. Additionally, MM and SCLC cells co-treated with ABZ and radiation exhibit increased apoptosis at 72 hours. Conclusions Our study suggests that the orally available antihelminthic ABZ acts as a potent radiosensitizer in MM and SCLC cell lines. Further evaluation of ABZ in combination with radiation as a potential treatment for MM and SCLC brain metastases is warranted. PMID:22094106

  16. Non-nitro radiation sensitizers

    International Nuclear Information System (INIS)

    Jacobs, G.P.

    1986-01-01

    This short communication aims to update the review of non-nitro radiation sensitizers (Shenoy and Singh 1985) and correct omissions. Work is mentioned and bibliography given for studied of cis-platinum, potassium permanganate, cobalt hexammine, sodium bromide, dimethylsulphoxide, zinc and copper ions, organic nitroxyl free radicals (TAN,TMPN and NPPN + PNAP), halogenated pyrimidines, organic and inorganic iodine containing compounds, diacetyl, acetone and acetophenone, rho-hydrobenzoic acid and its esters, pentobarbitone and secobarbitone, heparin and 9-anilinoacridines, dehydropiandosterone and paraquat. (U.K.)

  17. Radiation sensitivity of human malignant lymphocytes

    International Nuclear Information System (INIS)

    Seshadri, R.; Matthews, C.; Morley, A.A.

    1985-01-01

    A simple and rapid in vitro technique to assess the sensitivity of human malignant lymphocytes to roentgen irradiation is described. A variety of established malignant lymphocyte cell lines were cloned in microwells and clone survival was used as the end-point. The survival of the clonogenic malignant lymphocyte down to a fraction of approximately 0.001 could be measured accurately. Except for a T-cell line, the radiation sensitivities of the cell lines were similar to that of normal T-lymphocytes. (orig.)

  18. Physical determinants of radiation sensitivity in bacterial spores

    International Nuclear Information System (INIS)

    Powers, E.L.

    1982-01-01

    Several factors modifying radiation sensitivity in dry bacterial spores are described and discussed. Vacuum inducing the loss of critical structural water, very low dose rates of radiation from which the cell may recover, radiations of high linear energy transfer, and the action of temperature over long periods of time on previously irradiated cells are recognized from extensive laboratory work as important in determining survival of spores exposed to low radiation doses at low temperatures for long periods of time. Some extensions of laboratory work are proposed

  19. Toward the elucidation of factors concerning the individual difference of radiation sensitivity, and the reduction of radiation risks

    International Nuclear Information System (INIS)

    Nenoi, Mitsuru; Nakajima, Tetsuo; Wang, Bing

    2013-01-01

    This article describes studies aiming at the title subject and contains 2 topics of genetic and non-genetic factors modifying the radiation sensitivity. The ultimate purposes of those studies are the introduction of individual weighting factor to correct the individual differences of the sensitivity (IDS) and the practical control of the sensitivity-concerned factors, in the field of medical exposure. For genetic factors, described are studies on factors modifying the sensitivity at DNA repair and on the control of the sensitivity through the DNA repairing factors. The former, using cultured cells, aims at identifying protein (gene) of possible biomarker for IDS in non-homologous end-joining (NHEJ), an important mechanism in repairing the double strand break of DNA. Ku protein is found as the candidate. The latter has revealed that cells lacking Artemis, XRCC4 or MDC1 gene are highly sensitive, and are planning to suppress Artemis activity artificially, which may lead to the reduction of radiation cancer formation due to the death of highly sensitive cells. For non-genetic factors, described are studies on the life habits modifying the sensitivity, on the control of the sensitivity through the radiation-induced adaptive response and with steroid hormone. In the first, in mice treated with high-calorie diet and X-irradiation, a possible radiation response is suggested in the hepatic DNA-methylation and micro-RNA. Second, the combination of radiation adaptive response in the genome damage and restriction of diet ingestion is shown to lower the sensitivity of mice with use of C, Ne ion or X-ray irradiation. Third, in studies on the radiation-induced formation and condensation of breast cancer stem cells in the presence of progesterone, the hormone is found to produce micro-RNA molecules relating with the suppression of cellular senescence and repressed carcinogenesis with over-expression of apoptosis inhibitory molecules. (T.T.)

  20. Data error effects on net radiation and evapotranspiration estimation

    International Nuclear Information System (INIS)

    Llasat, M.C.; Snyder, R.L.

    1998-01-01

    The objective of this paper is to evaluate the potential error in estimating the net radiation and reference evapotranspiration resulting from errors in the measurement or estimation of weather parameters. A methodology for estimating the net radiation using hourly weather variables measured at a typical agrometeorological station (e.g., solar radiation, temperature and relative humidity) is presented. Then the error propagation analysis is made for net radiation and for reference evapotranspiration. Data from the Raimat weather station, which is located in the Catalonia region of Spain, are used to illustrate the error relationships. The results show that temperature, relative humidity and cloud cover errors have little effect on the net radiation or reference evapotranspiration. A 5°C error in estimating surface temperature leads to errors as big as 30 W m −2 at high temperature. A 4% solar radiation (R s ) error can cause a net radiation error as big as 26 W m −2 when R s ≈ 1000 W m −2 . However, the error is less when cloud cover is calculated as a function of the solar radiation. The absolute error in reference evapotranspiration (ET o ) equals the product of the net radiation error and the radiation term weighting factor [W = Δ(Δ1+γ)] in the ET o equation. Therefore, the ET o error varies between 65 and 85% of the R n error as air temperature increases from about 20° to 40°C. (author)

  1. Impact of Precipitating Ice Hydrometeors on Longwave Radiative Effect Estimated by a Global Cloud-System Resolving Model

    Science.gov (United States)

    Chen, Ying-Wen; Seiki, Tatsuya; Kodama, Chihiro; Satoh, Masaki; Noda, Akira T.

    2018-02-01

    Satellite observation and general circulation model (GCM) studies suggest that precipitating ice makes nonnegligible contributions to the radiation balance of the Earth. However, in most GCMs, precipitating ice is diagnosed and its radiative effects are not taken into account. Here we examine the longwave radiative impact of precipitating ice using a global nonhydrostatic atmospheric model with a double-moment cloud microphysics scheme. An off-line radiation model is employed to determine cloud radiative effects according to the amount and altitude of each type of ice hydrometeor. Results show that the snow radiative effect reaches 2 W m-2 in the tropics, which is about half the value estimated by previous studies. This effect is strongly dependent on the vertical separation of ice categories and is partially generated by differences in terminal velocities, which are not represented in GCMs with diagnostic precipitating ice. Results from sensitivity experiments that artificially change the categories and altitudes of precipitating ice show that the simulated longwave heating profile and longwave radiation field are sensitive to the treatment of precipitating ice in models. This study emphasizes the importance of incorporating appropriate treatments for the radiative effects of precipitating ice in cloud and radiation schemes in GCMs in order to capture the cloud radiative effects of upper level clouds.

  2. Investigation of graphene-based nanoscale radiation sensitive materials

    Science.gov (United States)

    Robinson, Joshua A.; Wetherington, Maxwell; Hughes, Zachary; LaBella, Michael, III; Bresnehan, Michael

    2012-06-01

    Current state-of-the-art nanotechnology offers multiple benefits for radiation sensing applications. These include the ability to incorporate nano-sized radiation indicators into widely used materials such as paint, corrosion-resistant coatings, and ceramics to create nano-composite materials that can be widely used in everyday life. Additionally, nanotechnology may lead to the development of ultra-low power, flexible detection systems that can be embedded in clothing or other systems. Graphene, a single layer of graphite, exhibits exceptional electronic and structural properties, and is being investigated for high-frequency devices and sensors. Previous work indicates that graphene-oxide (GO) - a derivative of graphene - exhibits luminescent properties that can be tailored based on chemistry; however, exploration of graphene-oxide's ability to provide a sufficient change in luminescent properties when exposed to gamma or neutron radiation has not been carried out. We investigate the mechanisms of radiation-induced chemical modifications and radiation damage induced shifts in luminescence in graphene-oxide materials to provide a fundamental foundation for further development of radiation sensitive detection architectures. Additionally, we investigate the integration of hexagonal boron nitride (hBN) with graphene-based devices to evaluate radiation induced conductivity in nanoscale devices. Importantly, we demonstrate the sensitivity of graphene transport properties to the presence of alpha particles, and discuss the successful integration of hBN with large area graphene electrodes as a means to provide the foundation for large-area nanoscale radiation sensors.

  3. Population sensitivities of animals to chronic ionizing radiation-model predictions from mice to elephant.

    Science.gov (United States)

    Sazykina, Tatiana G

    2018-02-01

    Model predictions of population response to chronic ionizing radiation (endpoint 'morbidity') were made for 11 species of warm-blooded animals, differing in body mass and lifespan - from mice to elephant. Predictions were made also for 3 bird species (duck, pigeon, and house sparrow). Calculations were based on analytical solutions of the mathematical model, simulating a population response to low-LET ionizing radiation in an ecosystem with a limiting resource (Sazykina, Kryshev, 2016). Model parameters for different species were taken from biological and radioecological databases; allometric relationships were employed for estimating some parameter values. As a threshold of decreased health status in exposed populations ('health threshold'), a 10% reduction in self-repairing capacity of organisms was suggested, associated with a decline in ability to sustain environmental stresses. Results of the modeling demonstrate a general increase of population vulnerability to ionizing radiation in animal species of larger size and longevity. Populations of small widespread species (mice, house sparrow; body mass 20-50 g), which are characterized by intensive metabolism and short lifespan, have calculated 'health thresholds' at dose rates about 6.5-7.5 mGy day -1 . Widespread animals with body mass 200-500 g (rat, common pigeon) - demonstrate 'health threshold' values at 4-5 mGy day -1 . For populations of animals with body mass 2-5 kg (rabbit, fox, raccoon), the indicators of 10% health decrease are in the range 2-3.4 mGy day -1 . For animals with body mass 40-100 kg (wolf, sheep, wild boar), thresholds are within 0.5-0.8 mGy day -1 ; for herbivorous animals with body mass 200-300 kg (deer, horse) - 0.5-0.6 mGy day -1 . The lowest health threshold was estimated for elephant (body mass around 5000 kg) - 0.1 mGy day -1 . According to the model results, the differences in population sensitivities of warm-blooded animal species to ionizing radiation are generally

  4. Gamma response study of radiation sensitive MOSFETs for their use as gamma radiation sensor

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Saurabh; Kumar, A. Vinod [Radiation Safety Systems Division, Bhabha Atomic Research Centre, Mumbai (India); Aggarwal, Bharti; Singh, Arvind; Topkar, Anita, E-mail: anita@barc.gov.in [Electronics Division, Bhabha Atomic Research Centre, Mumbai (India)

    2016-05-23

    Continuous monitoring of gamma dose is important in various fields like radiation therapy, space-related research, nuclear energy programs and high energy physics experiment facilities. The present work is focused on utilization of radiation-sensitive Metal-Oxide-Semiconductor Field Effect Transistors (MOSFETs) to monitor gamma radiation doses. Static characterization of these detectors was performed to check their expected current-voltage relationship. Threshold voltage and transconductance per unit gate to source voltage (K factor) were calculated from the experimental data. The detector was exposed to gamma radiation in both, with and without gate bias voltage conditions, and change in threshold voltage was monitored at different gamma doses. The experimental data was fitted to obtain equation for dependence of threshold voltage on gamma dose. More than ten times increase in sensitivity was observed in biased condition (+3 V) compared to the unbiased case.

  5. Radiation sensitivity and EPR dosimetric potential of gallic acid and its esters

    International Nuclear Information System (INIS)

    Tuner, Hasan; Oktay Bal, M.; Polat, Mustafa

    2015-01-01

    In the preset work the radiation sensitivities of Gallic Acid anhydrous and monohydrate, Octyl, Lauryl, and Ethyl Gallate (GA, GAm, OG, LG, and EG) were investigated in the intermediate (0.5–20 kGy) and low radiation (<10 Gy) dose range using Electron Paramagnetic Resonance (EPR) spectroscopy. While OG, LG, and EG are presented a singlet EPR spectra, their radiation sensitivity found to be very different in the intermediate dose range. At low radiation dose range (<10 Gy) only LG is found to be present a signal that easily distinguished from the noise signals. The intermediate and low dose range radiation sensitivities are compared using well known EPR dosimeter alanine. The radiation yields (G) of the interested material were found to be 1.34×10 −2 , 1.48×10 −2 , 4.14×10 −2 , and 6.03×10 −2 , 9.44×10 −2 for EG, GA, GAm, OG, and LG, respectively at the intermediate dose range. It is found that the simple EPR spectra and the noticeable EPR signal of LG make it a promising dosimetric material to be used below 10 Gy of radiation dose. - Highlights: • Radiation sensitivity of gallic acid and its esters were studied in intermediate and low radiation dose range using EPR. • While the irradiated samples of GA were presented complex EPR spectra the esters presented singlet ESR spectra. • Samples were compared to alanine in terms of the dosimetric point of view. • The radiation sensitivities of the investigated materials were very low at intermediate doses. • Lauryl ester of gallic acid was found to present a good sensitivity below 10 Gy

  6. Sensitivity of transient synchrotron radiation to tokamak plasma parameters

    International Nuclear Information System (INIS)

    Fisch, N.J.; Kritz, A.H.

    1988-12-01

    Synchrotron radiation from a hot plasma can inform on certain plasma parameters. The dependence on plasma parameters is particularly sensitive for the transient radiation response to a brief, deliberate, perturbation of hot plasma electrons. We investigate how such a radiation response can be used to diagnose a variety of plasma parameters in a tokamak. 18 refs., 13 figs

  7. Estimating hourly direct and diffuse solar radiation for the compilation of solar radiation distribution maps

    International Nuclear Information System (INIS)

    Ueyama, H.

    2005-01-01

    This paper presents a new method for estimating hourly direct and diffuse solar radiation. The essence of the method is the estimation of two important factors related to solar radiation, atmospheric transmittance and a dimensionless parameter, using empirical and physical equations and data from general meteorological observation stations. An equation for atmospheric transmittance of direct solar radiation and a dimensionless parameter representing diffuse solar radiation are developed. The equation is based on multiple regression analysis and uses three parameters as explanatory variates: calculated hourly extraterrestrial solar radiation on a horizontal plane, observed hourly sunshine duration and hourly precipitation as observed at a local meteorological observatory. The dimensionless parameter for estimating a diffuse solar radiation is then determined by linear least squares using observed hourly solar radiation at a local meteorological observatory. The estimated root mean square error (RMSE) of hourly direct and diffuse solar radiation is about 0.0-0.2 MJ¥m(-2)¥h(-1) in each mean period. The RMSE of the ten-day and monthly means of these quantities is about 0.0-0.2 MJ¥m(-2)¥h(-1), based on comparisons with AMeDAS station data, located at a distance of 6 km

  8. Cherenkov radiation-based three-dimensional position-sensitive PET detector: A Monte Carlo study.

    Science.gov (United States)

    Ota, Ryosuke; Yamada, Ryoko; Moriya, Takahiro; Hasegawa, Tomoyuki

    2018-05-01

    Cherenkov radiation has recently received attention due to its prompt emission phenomenon, which has the potential to improve the timing performance of radiation detectors dedicated to positron emission tomography (PET). In this study, a Cherenkov-based three-dimensional (3D) position-sensitive radiation detector was proposed, which is composed of a monolithic lead fluoride (PbF 2 ) crystal and a photodetector array of which the signals can be readout independently. Monte Carlo simulations were performed to estimate the performance of the proposed detector. The position- and time resolution were evaluated under various practical conditions. The radiator size and various properties of the photodetector, e.g., readout pitch and single photon timing resolution (SPTR), were parameterized. The single photon time response of the photodetector was assumed to be a single Gaussian for the simplification. The photo detection efficiency of the photodetector was ideally 100% for all wavelengths. Compton scattering was included in simulations, but partly analyzed. To estimate the position at which a γ-ray interacted in the Cherenkov radiator, the center-of-gravity (COG) method was employed. In addition, to estimate the depth-of-interaction (DOI) principal component analysis (PCA), which is a multivariate analysis method and has been used to identify the patterns in data, was employed. The time-space distribution of Cherenkov photons was quantified to perform PCA. To evaluate coincidence time resolution (CTR), the time difference of two independent γ-ray events was calculated. The detection time was defined as the first photon time after the SPTR of the photodetector was taken into account. The position resolution on the photodetector plane could be estimated with high accuracy, by using a small number of Cherenkov photons. Moreover, PCA showed an ability to estimate the DOI. The position resolution heavily depends on the pitch of the photodetector array and the radiator

  9. Estimation of diffuse from measured global solar radiation

    International Nuclear Information System (INIS)

    Moriarty, W.W.

    1991-01-01

    A data set of quality controlled radiation observations from stations scattered throughout Australia was formed and further screened to remove residual doubtful observations. It was then divided into groups by solar elevation, and used to find average relationships for each elevation group between relative global radiation (clearness index - the measured global radiation expressed as a proportion of the radiation on a horizontal surface at the top of the atmosphere) and relative diffuse radiation. Clear-cut relationships were found, which were then fitted by polynomial expressions giving the relative diffuse radiation as a function of relative global radiation and solar elevation. When these expressions were used to estimate the diffuse radiation from the global, the results had a slightly smaller spread of errors than those from an earlier technique given by Spencer. It was found that the errors were related to cloud amount, and further relationships were developed giving the errors as functions of global radiation, solar elevation, and the fraction of sky obscured by high cloud and by opaque (low and middle level) cloud. When these relationships were used to adjust the first estimates of diffuse radiation, there was a considerable reduction in the number of large errors

  10. Andrographolide Sensitizes Ras-Transformed Cells to Radiation in vitro and in vivo

    International Nuclear Information System (INIS)

    Hung, Shih-Kai; Hung, Ling-Chien; Kuo, Cheng-Deng

    2010-01-01

    Purpose: Increasing the sensitivity of tumor cells to radiation is a major goal of radiotherapy. The present study investigated the radiosensitizing effects of andrographolide and examined the molecular mechanisms of andrographolide-mediated radiosensitization. Methods and Materials: An H-ras-transformed rat kidney epithelial (RK3E) cell line was used to measure the radiosensitizing effects of andrographolide in clonogenic assays, 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H tetrazolium bromide assays, and a xenograft tumor growth model. The mechanism of andrographolide-sensitized cell death was analyzed using annexin V staining, caspase 3 activity assays, and terminal transferase uridyl nick end labeling assays. The roles of nuclear factor kappa B (NF-κB) and Akt in andrographolide-mediated sensitization were examined using reporter assays, electrophoretic mobility shift assays, and Western blotting. Results: Concurrent andrographolide treatment (10 μM, 3 h) sensitized Ras-transformed cells to radiation in vitro (sensitizer enhancement ratio, 1.73). Andrographolide plus radiation (one dose of 300 mg/kg peritumor andrographolide and one dose of 6 Gy radiation) resulted in significant tumor growth delay (27 ± 2.5 days) compared with radiation alone (22 ± 1.5 days; p <.05). Radiation induced apoptotic markers (e.g., caspase-3, membrane reversion, DNA fragmentation), and andrographolide treatment did not promote radiation-induced apoptosis. However, the protein level of activated Akt was significantly reduced by andrographolide. NF-κB activity was elevated in irradiated Ras-transformed cells, and andrographolide treatment significantly reduced radiation-induced NF-κB activity. Conclusion: Andrographolide sensitized Ras-transformed cells to radiation both in vitro and in vivo. Andrographolide-mediated radiosensitization was associated with downregulation of Akt and NF-κB activity. These observations indicate that andrographolide is a novel radiosensitizing agent

  11. Characterization of new radiation-sensitive mutant, Escherichia coli K-12 radC102

    International Nuclear Information System (INIS)

    Felzenszwalb, I.; Sargentini, N.J.; Smith, K.C.

    1984-01-01

    A new radiation-sensitive mutant, radC, has been isolated. The radC gene is located at 81.0 min on the Escherichia coli K-12 linkage map. The radC mutation sensitized cells to uv radiation, but unlike most DNA repair mutations, sensitization to X rays was observed only for rich medium-grown cells. For cells grown in rich medium, the radC mutant was normal for γ radiation mutagenesis, but showed less uv-radiation mutagenesis than the wild-type strain; it showed normal amount of X- and uv-radiation-induced DNA degradation, and it wasapprox. =60% deficient in recombination ability. The radC strain was normal for host cell reactivation of γ and uv-irradiated bacteriophage the radC mutation did not sensitize a recA strain, but did sensitize a radA and a polA strain to X and uv radiation and a uvrA strain to uv radiation. Therefore, it is suggested that the radC gene product plays a role in the growth medium-dependent, recA gene-dependent repair of DNA single-strand breaks after X irradiation, and in postreplication repair after uv irradiation

  12. Review of the current status of radiation risk estimates

    International Nuclear Information System (INIS)

    Charles, M.W.; Little, M.P.

    1988-10-01

    This report reviews the current status of radiation risk estimation for low linear energy transfer radiation. Recent statements by various national and international organisations regarding risk estimates are critically discussed. The recently published revised population risk estimates from the study of Japanese bomb survivors are also reviewed and used with some unpublished data from Japan to calculate risk figures for a general work force. (author)

  13. Epicatechin stimulates mitochondrial activity and selectively sensitizes cancer cells to radiation.

    Directory of Open Access Journals (Sweden)

    Hosam A Elbaz

    Full Text Available Radiotherapy is the treatment of choice for solid tumors including pancreatic cancer, but the effectiveness of treatment is limited by radiation resistance. Resistance to chemotherapy or radiotherapy is associated with reduced mitochondrial respiration and drugs that stimulate mitochondrial respiration may decrease radiation resistance. The objectives of this study were to evaluate the potential of (--epicatechin to stimulate mitochondrial respiration in cancer cells and to selectively sensitize cancer cells to radiation. We investigated the natural compound (--epicatechin for effects on mitochondrial respiration and radiation resistance of pancreatic and glioblastoma cancer cells using a Clark type oxygen electrode, clonogenic survival assays, and Western blot analyses. (--Epicatechin stimulated mitochondrial respiration and oxygen consumption in Panc-1 cells. Human normal fibroblasts were not affected. (--Epicatechin sensitized Panc-1, U87, and MIA PaCa-2 cells with an average radiation enhancement factor (REF of 1.7, 1.5, and 1.2, respectively. (--Epicatechin did not sensitize normal fibroblast cells to ionizing radiation with a REF of 0.9, suggesting cancer cell selectivity. (--Epicatechin enhanced Chk2 phosphorylation and p21 induction when combined with radiation in cancer, but not normal, cells. Taken together, (--epicatechin radiosensitized cancer cells, but not normal cells, and may be a promising candidate for pancreatic cancer treatment when combined with radiation.

  14. Estimates Of Radiation Belt Remediation Requirements

    Science.gov (United States)

    Tuszewski, M.; Hoyt, R. P.; Minor, B. M.

    2004-12-01

    A low-Earth orbit nuclear detonation could produce an intense artificial radiation belt of relativistic electrons. Many satellites would be destroyed within a few weeks. We present here simple estimates of radiation belt remediation by several different techniques, including electron absorption by gas release, pitch angle scattering by steady electric and magnetic fields from tether arrays, and pitch angle scattering by wave-particle interactions from in-situ transmitters. For each technique, the mass, size, and power requirements are estimated for a one-week remediation (e-folding) timescale, assuming that a 10 kTon blast trapped 1024 fission product electrons (1 to 8 MeV) at L = 1.5 in a dipolar belt of width dL = 0.1.

  15. Estimating solar radiation in Ghana

    International Nuclear Information System (INIS)

    Anane-Fenin, K.

    1986-04-01

    The estimates of global radiation on a horizontal surface for 9 towns in Ghana, West Africa, are deduced from their sunshine data using two methods developed by Angstrom and Sabbagh. An appropriate regional parameter is determined with the first method and used to predict solar irradiation in all the 9 stations with an accuracy better than 15%. Estimation of diffuse solar irradiation by Page, Lin and Jordan and three other authors' correlation are performed and the results examined. (author)

  16. Radiation-sensitive switching circuits

    Energy Technology Data Exchange (ETDEWEB)

    Moore, J.H.; Cockshott, C.P.

    1976-03-16

    A radiation-sensitive switching circuit has a light emitting diode which supplies light to a photo-transistor, the light being interrupted from time to time. When the photo-transistor is illuminated, current builds up and when this current reaches a predetermined value, a trigger circuit changes state. The peak output of the photo-transistor is measured and the trigger circuit is arranged to change state when the output of the device is a set proportion of the peak output, so as to allow for aging of the components. The circuit is designed to control the ignition system in an automobile engine.

  17. Radiation-sensitive switching circuits

    Energy Technology Data Exchange (ETDEWEB)

    Moore, J.H.; Cockshott, C.P.

    1976-03-16

    A radiation-sensitive switching circuit includes a light emitting diode which from time to time illuminates a photo-transistor, the photo-transistor serving when its output reaches a predetermined value to operate a trigger circuit. In order to allow for aging of the components, the current flow through the diode is increased when the output from the transistor falls below a known level. Conveniently, this is achieved by having a transistor in parallel with the diode, and turning the transistor off when the output from the phototransistor becomes too low. The circuit is designed to control the ignition system in an automobile engine.

  18. Radiation vulcanization of natural rubber latex sensitized with commercial gases

    International Nuclear Information System (INIS)

    Chirinos, H.; Lugao, A.

    2002-01-01

    The industrial activities using natural rubber latex are fully compatible with rural areas in Amazon and other places in Brazil, as well as in other tropical countries. However the classical sulfur vulcanization presents many occupational problems for the workers in rural areas. Radiation vulcanization of natural rubber latex is a much more friendly process as sulfur compounds are not needed for crosslinking, although chemicals as acrylate monomers, particularly multifunctional acrylates are still used as sensitizers for radiation processes. Two commercial gases, acetylene and butadiene, were selected as sensitizers for the radiation vulcanization of natural rubber latex instead of acrylates. These gases accelerate the crosslinking rates of the cure process and lower the radiation dose required to achieve vulcanization of natural rubber latex and improve the mechanical properties to reduce the tackiness of rubber goods. (author)

  19. Radiation vulcanization of natural rubber latex sensitized with commercial gases

    Energy Technology Data Exchange (ETDEWEB)

    Chirinos, H.; Lugao, A. [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)

    2002-07-01

    The industrial activities using natural rubber latex are fully compatible with rural areas in Amazon and other places in Brazil, as well as in other tropical countries. However the classical sulfur vulcanization presents many occupational problems for the workers in rural areas. Radiation vulcanization of natural rubber latex is a much more friendly process as sulfur compounds are not needed for crosslinking, although chemicals as acrylate monomers, particularly multifunctional acrylates are still used as sensitizers for radiation processes. Two commercial gases, acetylene and butadiene, were selected as sensitizers for the radiation vulcanization of natural rubber latex instead of acrylates. These gases accelerate the crosslinking rates of the cure process and lower the radiation dose required to achieve vulcanization of natural rubber latex and improve the mechanical properties to reduce the tackiness of rubber goods. (author)

  20. In vivo assay of the radiation sensitivity of hypoxic tumour cells. Influence of radiation quality and hypoxic sensitization

    International Nuclear Information System (INIS)

    Porschen, W.; Bosiljanoff, P.; Gewehr, K.; Muehlensiepen, H.; Feinendegen, L.E.

    1977-01-01

    In order to measure quantitatively tumour cell kinetics in living mice, tumour bearing animals (sarcoma-180) received intravenously 5-iodo-2'-deoxyuridine (IUdR), a thymidine analogue, which was labelled with 125 I or with 131 I, both of which can be easily externally counted by their gamma emission. IUdR is stably bound to DNA, reutilization is minimal and the measured activity loss from the tumour later than 50 hours after injection signals cell loss or cell death. The effect of irradiation on euoxic and average tumour cells was studied by sequentially labelling the tumour bearing animals first with 125 IUdR and, 70 hours later, with 131 IUdR. At the time of the second injection the average tumour cell population is labelled by the first injection of 125 IUdR, and the second injection of 131 IUdR nearly exclusively tags the perivascular tumour cells; these are euoxic in contrast to the average tumour cell, a large proportion of which is hypoxic. The radiation-induced activity loss rates from the two labelled tumour cell populations indicate the sensitivities of the two populations. At dose levels that cause identical effects on euoxic cells, the ratio of radiation-induced enhancement of cell loss rates for euoxic cells to average cells was 2.6 for 60 Co gamma radiation, 1.4 for 15MeV neutron irradiation, and 1.0 for alpha irradiation (1.5.MeV). The effect of five hypoxic cell sensitizers was analysed. The sensitization was limited to hypoxic cells, and the most effective drug was Ro-07-0582, showing at the 50% level of maximum effect a dose modifying factor of 1.5. Sensitization was highest when the drug was given 15 min prior to irradiation. Hyperthermia affected nearly exclusively hypoxic cells and showed a dose modifying factor of about 2 when the tumours were heated at 42 0 C for 30 min immediately after irradiation. The resulting enhancement of effect was reduced when hyperthermia was applied prior to irradiation. (author)

  1. Development of software for estimating clear sky solar radiation in Indonesia

    Science.gov (United States)

    Ambarita, H.

    2017-01-01

    Research on solar energy applications in Indonesia has come under scrutiny in recent years. Solar radiation is harvested by solar collector or solar cell and convert the energy into useful energy such as heat and or electricity. In order to provide a better configuration of a solar collector or a solar cell, clear sky radiation should be estimated properly. In this study, an in-house software for estimating clear sky radiation is developed. The governing equations are solved simultaneously. The software is tested in Medan city by performing a solar radiation measurements. For clear sky radiation, the results of the software and measurements ones show a good agreement. However, for the cloudy sky condition it cannot predict the solar radiation. This software can be used to estimate the clear sky radiation in Indonesia.

  2. Radiation curable pressure sensitive adhesive composition

    International Nuclear Information System (INIS)

    Steuben, K.C.

    1978-01-01

    Radiation curable pressure sensitive adhesive composition comprises: a polyoxyalkylene homo- or copolymer which is either a polyoxyethylene homopolymer or a poly (oxyethylene-oxypropylene) copolymer, or mixture thereof, having a molecular weight of from 1,700 to 90,000, in which at least 40 percent by weight of the oxyalkylene units are oxyethylene units; a liquid carbamyloxy alkyl acrylate; and, optionally, a photoinitiator

  3. Role of mitochondria in radiation sensitivity

    International Nuclear Information System (INIS)

    Indo, Hiroko; Tomita, Kazuo; Majima, Hideyuki; Matsui, Hirofumi; Ozawa, Toshihiko

    2007-01-01

    This paper describes mainly the role of mitochondrial (Mt) manganese superoxide dismutase (MnSOD) for deciding the radiation sensitivity of cells. The fact that Mt concerns with apoptosis has been shown by the finding that change in Mt membrane potential relates with the cell death. Mt has the electron transport system to yield the cellular energy molecule (ATP) and from which electrons are leaked out in 2-3%, a considerably large proportion in a cell. The electrons react with oxygen nearby to yield SO (O 2 ·- ), which in turn induces apoptosis through oxidation stress (OS). On the other hand, MnSOD is transported in Mt from cytoplasm and excludes the reactive oxygen species (ROS) like SO. Studies by MnSOD gene-deletion, knockout, cDNA-transfection, and transgenesis have indicated MnSOD is essential for keeping life and resistance to OS. Authors have shown that overexpression of Mt MnSOD protects against radiation-induced cell death, suggesting that Mt participates in radiation sensitivity where SO is involved. Interestingly, MnSOD activity is low in cancer cells, its overexpression results in tumor suppression and MnSOD is a target in leukemia therapy. When MTS (Mt targeting sequence, necessary for the enzyme to enter Mt)-deleted MnSOD is transfected, cells lack resistance to radiation, indicating the enzyme must be present in Mt. Mt DNA damage leading to electron transport system impairment is found to increase ROS, and to be reversed by the transfection of MnSOD gene. Studies of Mt DNA damage in cancer cells where aerobic glycolysis is actively operated, are currently in progress lively, and are thought to promote the development of diagnosis and treatment of cancer. (R.T.)

  4. The Dose Estimation Formula Of Photon Radiation To Film Badge Of Kodak Type 2

    International Nuclear Information System (INIS)

    Rohmah, Nur

    2000-01-01

    Study to determine the formula of dose estimation for photon radiation to film badge of Kodak type 2 has been carried out. The irradiation was done by irradiated film badge of Kodak type 2 using photon sources of X-rays machine, 137 Cs and 60 Co. By determining the apparent dose and also the sensitivity values each filters of the calibration curve and the weighting factors of energy dependence curve, the formula of the dose estimation for film badge of Kodak type 2 could be obtained, i.e. H 1cm 2.066761E-02N ADPI-2 + 1.953342N ADAI - 8.946254N ADCu + 24.80611N ADSn/pb

  5. Predicting Radiative Heat Transfer in Oxy-Methane Flame Simulations: An Examination of Its Sensitivities to Chemistry and Radiative Property Models

    Directory of Open Access Journals (Sweden)

    Hassan Abdul-Sater

    2015-01-01

    Full Text Available Measurements from confined, laminar oxy-methane flames at different O2/CO2 dilution ratios in the oxidizer are first reported with measurements from methane-air flames included for comparison. Simulations of these flames employing appropriate chemistry and radiative property modeling options were performed to garner insights into the experimental trends and assess prediction sensitivities to the choice of modeling options. The chemistry was modeled employing a mixture-fraction based approach, Eddy dissipation concept (EDC, and refined global finite rate (FR models. Radiative properties were estimated employing four weighted-sum-of-gray-gases (WSGG models formulated from different spectroscopic/model databases. The mixture fraction and EDC models correctly predicted the trends in flame length and OH concentration variations, and the O2, CO2, and temperature measurements outside the flames. The refined FR chemistry model predictions of CO2 and O2 deviated from their measured values in the flame with 50% O2 in the oxidizer. Flame radiant power estimates varied by less than 10% between the mixture fraction and EDC models but more than 60% between the different WSGG models. The largest variations were attributed to the postcombustion gases in the temperature range 500 K–800 K in the upper sections of the furnace which also contributed significantly to the overall radiative transfer.

  6. On the instability effects in radiation-sensitive chalcogenide glasses

    International Nuclear Information System (INIS)

    Balitska, V.; Kovalskiy, A.; Shpotyuk, O.; Vakiv, M.

    2007-01-01

    The features of application of radiation-sensitive media based on chalcogenide glasses of As-Ge-S system for registration of high-energy γ-radiation are analysed. It is shown that compositional features of the observed time-instability effect should be taken into account in order to ensure a higher accuracy of the developed dosimeters

  7. On the instability effects in radiation-sensitive chalcogenide glasses

    Energy Technology Data Exchange (ETDEWEB)

    Balitska, V. [Lviv State University for Vital Activity Safety, 35 Kleparivska str., Lviv, UA-79007 (Ukraine); Lviv Institute of Materials of SRC ' Carat' , 202 Stryjska str., Lviv, UA-79031 (Ukraine); Kovalskiy, A. [Lviv Institute of Materials of SRC ' Carat' , 202 Stryjska str., Lviv, UA-79031 (Ukraine); International Materials Institute for New Functionality in Glass, Lehigh University, 5 East Packer Avenue, Bethlehem, PA 18015-3195 (United States); Shpotyuk, O. [Lviv Institute of Materials of SRC ' Carat' , 202 Stryjska str., Lviv, UA-79031 (Ukraine); International Materials Institute for New Functionality in Glass, Lehigh University, 5 East Packer Avenue, Bethlehem, PA 18015-3195 (United States)], E-mail: shpotyuk@novas.lviv.ua; Vakiv, M. [Lviv Institute of Materials of SRC ' Carat' , 202 Stryjska str., Lviv, UA-79031 (Ukraine)

    2007-04-15

    The features of application of radiation-sensitive media based on chalcogenide glasses of As-Ge-S system for registration of high-energy {gamma}-radiation are analysed. It is shown that compositional features of the observed time-instability effect should be taken into account in order to ensure a higher accuracy of the developed dosimeters.

  8. The Visualization of Infrared Radiation Using Thermal Sensitive Foils

    Science.gov (United States)

    Bochnícek, Zdenek

    2013-01-01

    This paper describes a set of demonstration school experiments where infrared radiation is detected using thermal sensitive foils. The possibility of using standard glass lenses for infrared imaging is discussed in detail. It is shown that with optic components made from glass, infrared radiation up to 2.5 µm of wavelength can be detected. The…

  9. Effect of ionizing radiation on properties of acrylic pressure sensitive adhesives

    International Nuclear Information System (INIS)

    Panta, P.P.; Zimek, Z.A.; Giuszewski, W.; Kowalewski, R.; Wojtynska, E.; Wnuk, A.

    1998-01-01

    Pressure-sensitive adhesives for technical application are widely produced. The biological properties of adhesives depend on the type of monomers used. The available literature data as experience of the authors of this study in the area of pressure-sensitive acrylic adhesive, polymers used in medicine, polymerisation in aqueous media, radiation sterilization, permit to make an assumption that it is possible to elaborate the technology of production of pressure-sensitive adhesives in aqueous emulsion for medical applications. Identification of phenomena influencing the adhesive properties, especially its adhesion, cohesion, tack and durability is of great importance. The control of polymer structure is performed by means of adequate selection of conditions of synthesis and parameters of radiation processing. The authors investigate the influence on the final products of such factors as the type and amount of monomers used, their mutual ratio, as well as the ratio monomers and the dose of ionising radiation. There is no available literature information concerning the investigation of resistance of acrylic emulsion adhesive to sterilisation by electron beam. It is known from unpublished research that some adhesives are resistant to radiation, while others undergo destruction. It probably depends on the composition of emulsion, specifically on the additives which modify adhesives. Simultaneous achievement of good cohesion and adhesion in the case of such types of pressure sensitive adhesives is very difficult pressure sensitive adhesives is very difficult

  10. Radiation sensitivity and EPR dosimetric potential of gallic acid and its esters

    Science.gov (United States)

    Tuner, Hasan; Oktay Bal, M.; Polat, Mustafa

    2015-02-01

    In the preset work the radiation sensitivities of Gallic Acid anhydrous and monohydrate, Octyl, Lauryl, and Ethyl Gallate (GA, GAm, OG, LG, and EG) were investigated in the intermediate (0.5-20 kGy) and low radiation (<10 Gy) dose range using Electron Paramagnetic Resonance (EPR) spectroscopy. While OG, LG, and EG are presented a singlet EPR spectra, their radiation sensitivity found to be very different in the intermediate dose range. At low radiation dose range (<10 Gy) only LG is found to be present a signal that easily distinguished from the noise signals. The intermediate and low dose range radiation sensitivities are compared using well known EPR dosimeter alanine. The radiation yields (G) of the interested material were found to be 1.34×10-2, 1.48×10-2, 4.14×10-2, and 6.03×10-2, 9.44×10-2 for EG, GA, GAm, OG, and LG, respectively at the intermediate dose range. It is found that the simple EPR spectra and the noticeable EPR signal of LG make it a promising dosimetric material to be used below 10 Gy of radiation dose.

  11. Sensitivity of surface temperature to radiative forcing by contrail cirrus in a radiative-mixing model

    Directory of Open Access Journals (Sweden)

    U. Schumann

    2017-11-01

    Full Text Available Earth's surface temperature sensitivity to radiative forcing (RF by contrail cirrus and the related RF efficacy relative to CO2 are investigated in a one-dimensional idealized model of the atmosphere. The model includes energy transport by shortwave (SW and longwave (LW radiation and by mixing in an otherwise fixed reference atmosphere (no other feedbacks. Mixing includes convective adjustment and turbulent diffusion, where the latter is related to the vertical component of mixing by large-scale eddies. The conceptual study shows that the surface temperature sensitivity to given contrail RF depends strongly on the timescales of energy transport by mixing and radiation. The timescales are derived for steady layered heating (ghost forcing and for a transient contrail cirrus case. The radiative timescales are shortest at the surface and shorter in the troposphere than in the mid-stratosphere. Without mixing, a large part of the energy induced into the upper troposphere by radiation due to contrails or similar disturbances gets lost to space before it can contribute to surface warming. Because of the different radiative forcing at the surface and at top of atmosphere (TOA and different radiative heating rate profiles in the troposphere, the local surface temperature sensitivity to stratosphere-adjusted RF is larger for SW than for LW contrail forcing. Without mixing, the surface energy budget is more important for surface warming than the TOA budget. Hence, surface warming by contrails is smaller than suggested by the net RF at TOA. For zero mixing, cooling by contrails cannot be excluded. This may in part explain low efficacy values for contrails found in previous global circulation model studies. Possible implications of this study are discussed. Since the results of this study are model dependent, they should be tested with a comprehensive climate model in the future.

  12. γ-radiation induces cellular sensitivity and aberrant methylation in human tumor cell lines.

    Science.gov (United States)

    Kumar, Ashok; Rai, Padmalatha S; Upadhya, Raghavendra; Vishwanatha; Prasada, K Shama; Rao, B S Satish; Satyamoorthy, Kapettu

    2011-11-01

    Ionizing radiation induces cellular damage through both direct and indirect mechanisms, which may include effects from epigenetic changes. The purpose of this study was to determine the effect of ionizing radiation on DNA methylation patterns that may be associated with altered gene expression. Sixteen human tumor cell lines originating from various cancers were initially tested for radiation sensitivity by irradiating them with γ-radiation in vitro and subsequently, radiation sensitive and resistant cell lines were treated with different doses of a demethylating agent, 5-Aza-2'-Deoxycytidine (5-aza-dC) and a chromatin modifier, Trichostatin-A (TSA). Survival of these cell lines was measured using 3-(4, 5-Dimethylthiazol- 2-yl)-2, 5-diphenyltetrazolium (MTT) and clonogenic assays. The effect of radiation on global DNA methylation was measured using reverse phase high performance liquid chromatography (RP-HPLC). The transcription response of methylated gene promoters, from cyclin-dependent kinase inhibitor 2A (p16(INK4a)) and ataxia telangiectasia mutated (ATM) genes, to radiation was measured using a luciferase reporter assay. γ-radiation resistant (SiHa and MDAMB453) and sensitive (SaOS2 and WM115) tumor cell lines were examined for the relationship between radiation sensitivity and DNA methylation. Treatment of cells with 5-aza-dC and TSA prior to irradiation enhanced DNA strand breaks, G2/M phase arrest, apoptosis and cell death. Exposure to γ-radiation led to global demethylation in a time-dependent manner in tumor cells in relation to resistance and sensitivity to radiation with concomitant activation of p16(INK4a) and ATM gene promoters. These results provide important information on alterations in DNA methylation as one of the determinants of radiation effects, which may be associated with altered gene expression. Our results may help in delineating the mechanisms of radiation resistance in tumor cells, which can influence diagnosis, prognosis and

  13. New horizontal global solar radiation estimation models for Turkey based on robust coplot supported genetic programming technique

    International Nuclear Information System (INIS)

    Demirhan, Haydar; Kayhan Atilgan, Yasemin

    2015-01-01

    Highlights: • Precise horizontal global solar radiation estimation models are proposed for Turkey. • Genetic programming technique is used to construct the models. • Robust coplot analysis is applied to reduce the impact of outlier observations. • Better estimation and prediction properties are observed for the models. - Abstract: Renewable energy sources have been attracting more and more attention of researchers due to the diminishing and harmful nature of fossil energy sources. Because of the importance of solar energy as a renewable energy source, an accurate determination of significant covariates and their relationships with the amount of global solar radiation reaching the Earth is a critical research problem. There are numerous meteorological and terrestrial covariates that can be used in the analysis of horizontal global solar radiation. Some of these covariates are highly correlated with each other. It is possible to find a large variety of linear or non-linear models to explain the amount of horizontal global solar radiation. However, models that explain the amount of global solar radiation with the smallest set of covariates should be obtained. In this study, use of the robust coplot technique to reduce the number of covariates before going forward with advanced modelling techniques is considered. After reducing the dimensionality of model space, yearly and monthly mean daily horizontal global solar radiation estimation models for Turkey are built by using the genetic programming technique. It is observed that application of robust coplot analysis is helpful for building precise models that explain the amount of global solar radiation with the minimum number of covariates without suffering from outlier observations and the multicollinearity problem. Consequently, over a dataset of Turkey, precise yearly and monthly mean daily global solar radiation estimation models are introduced using the model spaces obtained by robust coplot technique and

  14. Economic Value of Narrowing the Uncertainty in Climate Sensitivity: Decadal Change in Shortwave Cloud Radiative Forcing and Low Cloud Feedback

    Science.gov (United States)

    Wielicki, B. A.; Cooke, R. M.; Golub, A. A.; Mlynczak, M. G.; Young, D. F.; Baize, R. R.

    2016-12-01

    Several previous studies have been published on the economic value of narrowing the uncertainty in climate sensitivity (Cooke et al. 2015, Cooke et al. 2016, Hope, 2015). All three of these studies estimated roughly 10 Trillion U.S. dollars for the Net Present Value and Real Option Value at a discount rate of 3%. This discount rate is the nominal discount rate used in the U.S. Social Cost of Carbon Memo (2010). The Cooke et al studies approached this problem by examining advances in accuracy of global temperature measurements, while the Hope 2015 study did not address the type of observations required. While temperature change is related to climate sensitivity, large uncertainties of a factor of 3 in current anthropogenic radiative forcing (IPCC, 2013) would need to be solved for advanced decadal temperature change observations to assist the challenge of narrowing climate sensitivity. The present study takes a new approach by extending the Cooke et al. 2015,2016 papers to replace observations of temperature change to observations of decadal change in the effects of changing clouds on the Earths radiative energy balance, a measurement known as Cloud Radiative Forcing, or Cloud Radiative Effect. Decadal change in this observation is direclty related to the largest uncertainty in climate sensitivity which is cloud feedback from changing amount of low clouds, primarily low clouds over the world's oceans. As a result, decadal changes in shortwave cloud radiative forcing are more directly related to cloud feedback uncertainty which is the dominant uncertainty in climate sensitivity. This paper will show results for the new approach, and allow an examination of the sensitivity of economic value results to different observations used as a constraint on uncertainty in climate sensitivity. The analysis suggests roughly a doubling of economic value to 20 Trillion Net Present Value or Real Option Value at 3% discount rate. The higher economic value results from two changes: a

  15. CHEMICAL VAPOUR DEPOSITION FROM A RADIATION-SENSITIVE PRECURSOR

    DEFF Research Database (Denmark)

    2017-01-01

    The present invention relates in one aspect to a method of depositing a thin film on a substrate by chemical vapour deposition (CVD) from a radiation-sensitive precursor substance. The method comprises the steps of: (i) placing the substrate in a reaction chamber of a CVD system; (ii) heating...... heating pulse followed by an idle period; (iii) during at least one of the idle periods, providing a pressure pulse of precursor substance inside the reaction chamber by feeding at least one precursor substance to the reaction chamber so as to establish a reaction partial pressure for thin film deposition...... is formed. According to a further aspect, the invention relates to a chemical vapour deposition (CVD) system for depositing a thin film onto a substrate using precursor substances containing at least one radiation sensitive species....

  16. Guide for use of radiation-sensitive indicators. 2. ed.

    International Nuclear Information System (INIS)

    2002-01-01

    This guide covers the use of radiation-sensitive indicators in radiation processing. These indicators may be labels, papers, inks or packaging materials which undergo a color change or become colored when exposed to ionizing radiation. The purpose of these indicators is to determine visually whether or not a product has been irradiated, rather than to measure different dose levels. Such materials are not dosimeters and should not be used as a substitute for proper dosimetry. Information about dosimetry systems for ionizing radiation is provided in other ASTM and ISO/ASTM documents (see ISO/ASTM Guide 51261

  17. Radiation sensitivity of Merkel cell carcinoma cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, J.H.; Ramsay, J.R.; Birrell, G.W. [Queensland Institute of Medical Research (Australia)] [and others

    1995-07-30

    Merkel cell carcinoma (MCC), being a small cell carcinoma, would be expected to be sensitive to radiation. Clinical analysis of patients at our center, especially those with macroscopic disease, would suggest the response is quite variable. We have recently established a number of MCC cell lines from patients prior to radiotherapy, and for the first time are in a position to determine their sensitivity under controlled conditions. Some of the MCC lines grew as suspension cultures and could not be single cell cloned; therefore, it was not possible to use clonogenic survival for all cell lines. A tetrazolium based (MTT) assay was used for these lines, to estimate cell growth after {gamma} irradiation. Control experiments were conducted on lymphoblastoid cell lines (LCL) and the adherent MCC line, MCC13, to demonstrate that the two assays were comparable under the conditions used. We have examined cell lines from MCC, small cell lung cancer (SCLC), malignant melanomas, Epstein Barr virus (EBV) transformed lymphocytes (LCL), and skin fibroblasts for their sensitivity to {gamma} irradiation using both clonogenic cell survival and MTT assays. The results show that the tumor cell lines have a range of sensitivities, with melanoma being more resistant (surviving fraction at 2 Gy (SF2) 0.57 and 0.56) than the small cell carcinoma lines, MCC (SF2 range 0.21-0.45, mean SF2 0.30, n = 8) and SCLC (SF2 0.31). Fibroblasts were the most sensitive (SF2 0.13-0.20, mean 0.16, n = 5). The MTT assay, when compared to clonogenic assay for the MCC13 adherent line and the LCL, gave comparable results under the conditions used. Both assays gave a range of SF2 values for the MCC cell lines, suggesting that these cancers would give a heterogeneous response in vivo. The results with the two derivative clones of MCC14 (SF2 for MCC14/1 0.38, MCC14/2 0.45) would further suggest that some of them may develop resistance during clonogenic evolution. 25 refs., 3 figs., 1 tab.

  18. Radiation sensitivity of Merkell cell carcinoma cell lines

    International Nuclear Information System (INIS)

    Leonard, J. Helen; Ramsay, Jonathan R.; Kearsley, John H.; Birrell, Geoff W.

    1995-01-01

    Purpose: Merkel cell carcinoma (MCC), being a small cell carcinoma, would be expected to be sensitive to radiation. Clinical analysis of patients at our center, especially those with macroscopic disease, would suggest the response is quite variable. We have recently established a number of MCC cell lines from patients prior to radiotherapy, and for the first time are in a position to determine their sensitivity under controlled conditions. Methods and Materials: Some of the MCC lines grew as suspension cultures and could not be single cell cloned; therefore, it was not possible to use clonogenic survival for all cell lines. A tetrazolium based (MTT) assay was used for these lines, to estimate cell growth after γ irradiation. Control experiments were conducted on lymphoblastoid cell lines (LCL) and the adherent MCC line, MCC13, to demonstrate that the two assays were comparable under the conditions used. Results: We have examined cell lines from MCC, small cell lung cancer (SCLC), malignant melanomas, Epstein Barr virus (EBV) transformed lymphocytes (LCL), and skin fibroblasts for their sensitivity to γ irradiation using both clonogenic cell survival and MTT assays. The results show that the tumor cell lines have a range of sensitivities, with melanoma being more resistant (surviving fraction at 2 Gy (SF2) 0.57 and 0.56) than the small cell carcinoma lines, MCC (SF2 range 0.21-0.45, mean SF2 0.30, n = 8) and SCLC (SF2 0.31). Fibroblasts were the most sensitive (SF2 0.13-0.20, mean 0.16, n = 5). The MTT assay, when compared to clonogenic assay for the MCC13 adherent line and the LCL, gave comparable results under the conditions used. Conclusion: Both assays gave a range of SF2 values for the MCC cell lines, suggesting that these cancers would give a heterogeneous response in vivo. The results with the two derivative clones of MCC14 (SF2 for MCC14/1 0.38, MCC14/2 0.45) would further suggest that some of them may develop resistance during clonogenic evolution

  19. Estimation of parameter sensitivities for stochastic reaction networks

    KAUST Repository

    Gupta, Ankit

    2016-01-07

    Quantification of the effects of parameter uncertainty is an important and challenging problem in Systems Biology. We consider this problem in the context of stochastic models of biochemical reaction networks where the dynamics is described as a continuous-time Markov chain whose states represent the molecular counts of various species. For such models, effects of parameter uncertainty are often quantified by estimating the infinitesimal sensitivities of some observables with respect to model parameters. The aim of this talk is to present a holistic approach towards this problem of estimating parameter sensitivities for stochastic reaction networks. Our approach is based on a generic formula which allows us to construct efficient estimators for parameter sensitivity using simulations of the underlying model. We will discuss how novel simulation techniques, such as tau-leaping approximations, multi-level methods etc. can be easily integrated with our approach and how one can deal with stiff reaction networks where reactions span multiple time-scales. We will demonstrate the efficiency and applicability of our approach using many examples from the biological literature.

  20. Estimation of ultraviolet radiation dose using CaF2:Tb phosphor

    International Nuclear Information System (INIS)

    Fukuda, Y.; Ohtaki, H.; Owaki, S.

    1996-01-01

    To observe and estimate the dose of ultraviolet (UV) radiation in sunlight, the available thermoluminescence (TL) materials were studied. Several kinds of lanthanide elements were doped in pure CaF 2 powdered crystal and the properties of the Tl for UV were observed. The TL intensity from CaF 2 :Tb was the highest among the samples doped with various lanthanide elements, and form the TL emission spectra (380-540 nm) the TL is estimated to be due to inner transition of Tb 3+ . The peak wavelength of the TL excitation light was located approximately at 235 nm and light of a longer wavelength than 320 nm was unable to excite the TL. The ultraviolet response of CaF 2 :Tb depended on its sintering temperature. Even without γ ray pre-irradiation the CaF 2 :Tb sample with 1 h exposure to sunlight has enough sensitivity to estimate the change of UV. Seasonal change of UV intensity in sunlight was measured with this TLD during four months in 1993. The results agreed with that of other institutes in Japan. (author)

  1. Experimental study of variations in background radiation and the effect on Nuclear Car Wash sensitivity

    International Nuclear Information System (INIS)

    Church, J; Slaughter, D; Norman, E; Asztalos, S; Biltoft, P

    2007-01-01

    Error rates in a cargo screening system such as the Nuclear Car Wash [1-7] depend on the standard deviation of the background radiation count rate. Because the Nuclear Car Wash is an active interrogation technique, the radiation signal for fissile material must be detected above a background count rate consisting of cosmic, ambient, and neutron-activated radiations. It was suggested previously [1,6] that the Corresponding negative repercussions for the sensitivity of the system were shown. Therefore, to assure the most accurate estimation of the variation, experiments have been performed to quantify components of the actual variance in the background count rate, including variations in generator power, irradiation time, and container contents. The background variance is determined by these experiments to be a factor of 2 smaller than values assumed in previous analyses, resulting in substantially improved projections of system performance for the Nuclear Car Wash

  2. Radiation sensitivity of T-lymphocytes from immunodeficient wasted mice

    International Nuclear Information System (INIS)

    Padilla, M.; Libertin, C.; Krco, C.; Woloschak, G.E.

    1990-01-01

    Mice with the autosomal recessive gene wasted (wst/wst) exhibit neurologic disorders, reduced mucosal immune responses, and abnormal DNA repair mechanisms. The wst/wst mouse has been proposed as a murine model for the human disorder ataxia telangiectasia. Experiments were designed to examine the sensitivity of T-cells from wasted mice to ionizing radiation. Results demonstrated that T-cell clones derived from wasted mice are more sensitive to the killing effects of gamma-rays than similar T-cell clones from control mice. Bulk thymocyte and splenic cell cultures demonstrated similar radiation sensitivity. Both thymic and splenic lymphocytes from wasted mice also expressed low proliferative responses to mitogenic stimulation with concanavalin A (Con A) that could not be attributed to an absence or reduction in T-cell number. However, following activation with Con A, cell cultures exhibited a marked decrease in the percentage of Thyl + cells in wasted mice, in contrast to cultures from control mice in which significant increases in Thyl + cells were observed. Furthermore, when cells were treated with gamma-rays in combination with Con A, Thyl + cells were decreased in control spleen and thymus, but were elevated in similarly treated wasted cultures. These changes were accompanied by an increase in cell volume in T-cells from wasted but not from control mice. These results describe the sensitivity of T-cells from wasted mice to ionizing radiation; in addition, they suggest that the wst/wst abnormality may be associated with cell cycle aberrancies

  3. Expression of Ku correlates with radiation sensitivities in the head and neck cancer cell lines

    International Nuclear Information System (INIS)

    Lee, Sang Wook; Yu, Eun Sil; Yi, So Lyoung; Son, Se Hee; Kim, Jong Hoon; Ahn, Seung Do; Shin, Seong Soo; Choi, Eun Kyung

    2004-01-01

    DNA-dependent protein kinase (DNA-PK) is a serine/threonine kinase consisting of a 470 kDa catalytic subunit (DNA-PKcs) and a heterodimeric regulatory complex, called Ku, which is composed of 70 kDa (Ku 70) and 86 kDa (Ku 80) proteins. The DNA-PK has been shown to play a pivotal role in rejoining DNA double-strand-breaks (dsb) in mammalian cells. The purpose of this study is to examine the relationship between the level of Ku expression and radiation sensitivity. Nine head and neck, cancer cell lines showed various intrinsic radiation sensitivities. Among the nine, AMC-HN-3 cell was the most sensitive for X-ray irradiation and AMC-HN-9 cell was the most resistance. The most sensitive and resistant cell lines were selected and the test sensitivity of radiation and expression of Ku were measured. Radiation sensitivity was obtained by colony forming assay and Ku protein expression using Western blot analysis. Ku80 increased expression by radiation, wheras Ku70 did not. Overexpression of Ku80 protein increased radiation resistance in AMC-HN9 cell line. There was a correlation between Ku80 expression and radiation resistance. Ku80 was shown to play an important role in radiation damage response. Induction of Ku80 expression had an important role in DNA damage repair by radiation. Ku80 expression may be an effective predictive assay of radiosensitivity on head and neck cancer

  4. Sensitivity of Technical Efficiency Estimates to Estimation Methods: An Empirical Comparison of Parametric and Non-Parametric Approaches

    OpenAIRE

    de-Graft Acquah, Henry

    2014-01-01

    This paper highlights the sensitivity of technical efficiency estimates to estimation approaches using empirical data. Firm specific technical efficiency and mean technical efficiency are estimated using the non parametric Data Envelope Analysis (DEA) and the parametric Corrected Ordinary Least Squares (COLS) and Stochastic Frontier Analysis (SFA) approaches. Mean technical efficiency is found to be sensitive to the choice of estimation technique. Analysis of variance and Tukey’s test sugge...

  5. Changes in bacterial radiation sensitivity due to deuterium substitution

    International Nuclear Information System (INIS)

    Strauss, A.; Weiss, H.

    1985-01-01

    The influence of deuterium substitution for hydrogen on radiation sensitivity was measured under various conditions for E. coli B/r irradiated by 450 kev electrons in single intense pulses. Cells were grown in a nutrient medium made from a deuterium oxide based solution. They were suspended in a D/sub 2/O based buffered saline and plated in thin aqueous layers on membrane filters and irradiated in 100% N/sub 2/ or 100% O/sub 2/. Comparisons were made to cells similarly plated and irradiated but grown instead in a water based nutrient medium and suspended in either a water based or a D/sub 2/O based buffered saline. For the conventionally grown cells, D/sub 2/O increased the radiation sensitivity in both gases by about 10%. For cells grown and suspended with D/sub 2/O based media, a 50% reduction of radiation sensitivity was found with both gas and an increased extrapolation number was observed. In this latter method, deuterium is more fully substituted for hydrogen in the molecular substrate of the cell. These cells were also irradiated over a temperature range of 2 0 C to 43 0 C after being suspended in deuterated ethanol. Speculations for the changes induced by the substitution are presented

  6. Genetic and epigenetic features in radiation sensitivity. Part I: Cell signalling in radiation response

    International Nuclear Information System (INIS)

    Bourguignon, Michel H.; Gisone, Pablo A.; Perez, Maria R.; Michelin, Severino; Dubner, Diana; Giorgio, Marina di; Carosella, Edgardo D.

    2005-01-01

    Recent progress especially in the field of gene identification and expression has attracted greater attention to genetic and epigenetic susceptibility to cancer, possibly enhanced by ionising radiation. It has been proposed that the occurrence and severity of the adverse reactions to radiation therapy are also influenced by such genetic susceptibility. This issue is especially important for radiation therapists since hypersensitive patients may suffer from adverse effects in normal tissues following standard radiation therapy, while normally sensitive patients could receive higher doses of radiation offering a better likelihood of cure for malignant tumours. This paper, the first of two parts, reviews the main mechanisms involved in cell response to ionising radiation. DNA repair machinery and cell signalling pathways are considered and their role in radiosensitivity is analysed. The implication of non-targeted and delayed effects in radiosensitivity is also discussed. (orig.)

  7. Novel concepts in modification of radiation sensitivity

    International Nuclear Information System (INIS)

    Bump, E.A.; Palayoor, S.T.; Lai, L.L.; Cerce, B.A.; Langley, R.E.; Coleman, C.N.; Braunhut, S.J.

    1994-01-01

    The purpose of this study was to determine whether biological effects of radiation, such as apoptosis, that differ from classical clonogenic cell killing, can be modified with agents that would not be expected to modify classical clonogenic cell killing. This would expand the range of potential modifiers of radiation therapy. EL4 murine lymphoma cell apoptosis was determined by electrophoretic analysis of deoxyribonucleic acid (DNA) fragmentation. DNA was extracted 24 h after irradiation or addition of inducing agents. Modifiers of radiation-induced apoptosis were added immediately after irradiation. The effects of radiation on wounded endothelial monolayers were studied by scraping a line across the monolayer 30 min after irradiation. Cell detachment was used as an endpoint to determine the protective effect of prolonged exposure to retinol prior to irradiation. EL4 cell apoptosis can be induced by tert-butyl hydroperoxide or the glutathione oxidant SR-4077. Radiation-induced EL4 cell apoptosis can be inhibited with 3-aminobenzamide, an agent that sensitizes cells to classical clonogenic cell killing. Radiation-induced endothelial cell detachment from confluent monolayers can be modified by pretreatment with retinol. These results raise the possibility that radiation could induce apoptosis by an oxidative stress mechanism that is different from that involved in classical clonogenic cell killing. These and other recent findings encourage the notion that differential modification of classical clonogenic cell killing and other important endpoints of radiation action may be possible. 47 refs., 3 figs

  8. Highly sensitive microcalorimeters for radiation research

    International Nuclear Information System (INIS)

    Avaev, V.N.; Demchuk, B.N.; Ioffe, L.A.; Efimov, E.P.

    1984-01-01

    Calorimetry is used in research at various types of nuclear-physics installations to obtain information on the quantitative and qualitative composition of ionizing radiation in a reactor core and in the surrounding layers of the biological shield. In this paper, the authors examine the characteristics of highly sensitive microcalorimeters with modular semiconductor heat pickups designed for operation in reactor channels. The microcalorimeters have a thin-walled aluminum housing on whose inner surface modular heat pickups are placed radially as shown here. The results of measurements of the temperature dependence of the sensitivity of the microcalorimeters are shown. The results of measuring the sensitivity of a PMK-2 microcalorimeter assembly as a function of integrated neutron flux for three energy intervals and the adsorbed gamma energy are shown. In order to study specimens with different shapes and sizes, microcalorimeters with chambers in the form of cylinders and a parallelepiped were built and tested

  9. Radiation and thermal characteristics of mouse lymphoma cells and their radiation-sensitive mutant

    International Nuclear Information System (INIS)

    Baba, Yuji; Yasunaga, Tadamasa; Uozumi, Hideaki; Takahashi, Mutsumasa; Sawada, Shozo.

    1988-01-01

    Radiation and thermal characteristics of L5178Y cells and their radiation-sensitive mutant M10 cells were studied by the colony-forming method and the dye-exclusion method using eosin-Y. Although M10 cells were remarkably radiation-sensitive compared with L5178Y cells, it was diffcult to cause interphase death of M10 after a large dose of irradiation. After heat treatments, L5178Y cells revealed more cell destruction and were stained well by eosin-Y, but it was relatively difficult to produce cell destruction of M10 cells, which showed poor staining by eosin-Y. When assayed by the colony-forming method, M10 cells were also heat-resistant compared to L5178Y. The dye-exclusion rate was closely correlated with cell survival after hyperthermia of L5178Y cells, suggesting that this is a simple method of detecting the thermosensitivity and thermotolerance of cancer cells. The difference in survival of L5178Y cells and M10 cells after combined treatment with gamma irradiation and hyperthermia was smaller than with gamma irradiation alone. It was also found that there was a relationship between radiation-induced interphase death and hyperthermia-induced interphase death, and that interphase death accounted for a major part of cell death caused by hyperthermia in mouse leukemia cells. (author)

  10. Estimation of Sensitive Proportion by Randomized Response Data in Successive Sampling

    Directory of Open Access Journals (Sweden)

    Bo Yu

    2015-01-01

    Full Text Available This paper considers the problem of estimation for binomial proportions of sensitive or stigmatizing attributes in the population of interest. Randomized response techniques are suggested for protecting the privacy of respondents and reducing the response bias while eliciting information on sensitive attributes. In many sensitive question surveys, the same population is often sampled repeatedly on each occasion. In this paper, we apply successive sampling scheme to improve the estimation of the sensitive proportion on current occasion.

  11. Familial melanoma associated with dominant ultraviolet radiation sensitivity

    International Nuclear Information System (INIS)

    Ramsay, R.G.; Chen, P.; Imray, F.P.; Kidson, C.; Lavin, M.F.; Hockey, A.

    1982-01-01

    Sensitivity to ultraviolet radiation was studied in lymphoblastoid cell lines derived from 32 members of two families with histories of multiple primary melanomas in several generations. As assayed by colony formation in agar or by trypan blue exclusion following irradiation, cellular sensitivity showed a bimodal distribution. All persons with melanoma or multiple moles were in the sensitive group, while some family members exhibited responses similar to those of controls. Cells from four cases of sporadic melanoma showed normal levels of sensitivity. The data are consistent with a dominantly inherited ultraviolet light sensitivity associated with these examples of familial melanoma. Spontaneous and ultraviolet light-induced sister chromatid exchange frequencies were similar to those in control cell lines. No defect in excision repair was detected in any of the above cell lines, but the sensitive group showed postirradiation inhibition of DNA replication intermediate between controls and an excision-deficient xeroderma pigmentosum cell line

  12. Application of the control variate technique to estimation of total sensitivity indices

    International Nuclear Information System (INIS)

    Kucherenko, S.; Delpuech, B.; Iooss, B.; Tarantola, S.

    2015-01-01

    Global sensitivity analysis is widely used in many areas of science, biology, sociology and policy planning. The variance-based methods also known as Sobol' sensitivity indices has become the method of choice among practitioners due to its efficiency and ease of interpretation. For complex practical problems, estimation of Sobol' sensitivity indices generally requires a large number of function evaluations to achieve reasonable convergence. To improve the efficiency of the Monte Carlo estimates for the Sobol' total sensitivity indices we apply the control variate reduction technique and develop a new formula for evaluation of total sensitivity indices. Presented results using well known test functions show the efficiency of the developed technique. - Highlights: • We analyse the efficiency of the Monte Carlo estimates of Sobol' sensitivity indices. • The control variate technique is applied for estimation of total sensitivity indices. • We develop a new formula for evaluation of Sobol' total sensitivity indices. • We present test results demonstrating the high efficiency of the developed formula

  13. Use of satellite data to estimate radiation and evaporation for northwest Mexico

    International Nuclear Information System (INIS)

    Stewart, J.B.; Watts, C.J.; Rodriguez, J.C.; Bruin, H.A.R. de; Berg, A.R. van den; Garatuza-Payán, J.

    1999-01-01

    Incoming solar radiation was estimated from visible band data obtained by the GOES satellite over northwest Mexico. Comparisons against ground-based measurements of incoming solar radiation showed good agreement, particularly in months with low cloud cover. The data from an automatic weather station installed within the Yaqui Valley Irrigation Scheme was used to estimate potential evaporation from a formula based on incoming solar radiation and climatological values of temperature. The success of this formula was assessed by comparison against potential evaporation estimated using the Penman and Penman–Monteith formulae and measurements of net radiation. (author)

  14. Study on the application of sensitizing and protective agent in the process of radiation chemistry

    International Nuclear Information System (INIS)

    Kamal, Z.

    1976-01-01

    The role of sensitizing agent and protective agent in the process of radiation chemistry is studied. Direct and indirect radiation effects on bio molecules, molecular and sensitizing agent mechanism, electron activities as the basis for sensitizing agent mechanism, protective agent mechanism on irradiated macro molecules, and kinds of protective and sensitizing agents, are discussed. (RUW)

  15. Significance of genetic predisposition and genomic instability for individual sensitivity to radiation. Implications for radiation protection

    International Nuclear Information System (INIS)

    Heller, H.

    2001-01-01

    At its closed-door meeting on 20/21 January 2000 the Radiation Protection Committee dedicated much of its attention to the significance of genetic predisposition and genetic instability for individual radiation sensitivity and to the implication of this for radiation protection. The statements and contributions to the closing plenary discussion touched on many aspects of ethics, personal rights, occupational medicine and insurance issues relating to this subject, all of which extend far beyond the purely technical issues of radiation protection. The present volume contains the lecture manuscripts of the meeting as well as a summarising assessment by the Radiation Protection Committee [de

  16. Radiation risk estimation based on measurement error models

    CERN Document Server

    Masiuk, Sergii; Shklyar, Sergiy; Chepurny, Mykola; Likhtarov, Illya

    2017-01-01

    This monograph discusses statistics and risk estimates applied to radiation damage under the presence of measurement errors. The first part covers nonlinear measurement error models, with a particular emphasis on efficiency of regression parameter estimators. In the second part, risk estimation in models with measurement errors is considered. Efficiency of the methods presented is verified using data from radio-epidemiological studies.

  17. Sensitivity of hyperthermia-treated human cells to killing by ultraviolet or gamma radiation

    International Nuclear Information System (INIS)

    Mitchel, R.E.; Smith, B.P.; Wheatly, N.; Chan, A.; Child, S.; Paterson, M.C.

    1985-01-01

    Human xeroderma pigmentosum (XP) or Fanconi anemia (FA) fibroblasts displayed shouldered 45 0 C heat survival curves not significantly different from normal fibroblasts, a result similar to that previously found for ataxia telangiectasia (AT) cells, indicating heat resistance is not linked to either uv or low-LET ionizing radiation resistance. Hyperthermia (45 0 C) sensitized normal and XP fibroblasts to killing by gamma radiation but failed to sensitize the cells to the lethal effects of 254 nm uv radiation. Thermal inhibition of repair of ionizing radiation lesions but not uv-induced lesions appears to contribute synergistically to cell death. The thermal enhancement ratio (TER) for the synergistic interaction of hyperthermia (45 0 C, 30 min) and gamma radiation was significantly lower in one FA and two strains (TER = 1.7-1.8) than that reported previously for three normal strains (TER = 2.5-3.0). These XP and FA strains may be more gamma sensitive than normal human fibroblasts. Since hyperthermia treatment only slightly increases the gamma-radiation sensitivity of ataxia telangiectasia (AT) fibroblasts compared to normal strains, it is possible that the degree of thermal enhancement attainable reflects the genetically inherent ionizing radiation repair capacity of the cells. The data indicate that both repair inhibition and particular lesion types are required for lethal synergism between heat and radiation. We therefore postulate that the transient thermal inhibition of repair results in the conversion of gamma-induced lesions to irrepairable lethal damage, while uv-type damage can remain unaltered during this period

  18. Radiation dose estimates for carbon-11-labelled PET tracers

    International Nuclear Information System (INIS)

    Aart, Jasper van der; Hallett, William A.; Rabiner, Eugenii A.; Passchier, Jan; Comley, Robert A.

    2012-01-01

    Introduction: Carbon-11-labelled positron emission tomography (PET) tracers commonly used in biomedical research expose subjects to ionising radiation. Dosimetry is the measurement of radiation dose, but also commonly refers to the estimation of health risk associated with ionising radiation. This review describes radiation dosimetry of carbon-11-labelled molecules in the context of current PET research and the most widely used regulatory guidelines. Methods: A MEDLINE literature search returned 42 articles; 32 of these were based on human PET data dealing with radiation dosimetry of carbon-11 molecules. Radiation burden expressed as effective dose and maximum absorbed organ dose was compared between tracers. Results: All but one of the carbon-11-labelled PET tracers have an effective dose under 9 μSv/MBq, with a mean of 5.9 μSv/MBq. Data show that serial PET scans in a single subject are feasible for the majority of radiotracers. Conclusion: Although differing in approach, the two most widely used regulatory frameworks (those in the USA and the EU) do not differ substantially with regard to the maximum allowable injected activity per PET study. The predictive validity of animal dosimetry models is critically discussed in relation to human dosimetry. Finally, empirical PET data are related to human dose estimates based on homogenous distribution, generic models and maximum cumulated activities. Despite the contribution of these models to general risk estimation, human dosimetry studies are recommended where continued use of a new PET tracer is foreseen.

  19. Radiative forcing over the conterminous United States due to contemporary land cover land use change and sensitivity to snow and interannual albedo variability

    Science.gov (United States)

    Barnes, Christopher A.; Roy, David P.

    2010-01-01

    Satellite-derived land cover land use (LCLU), snow and albedo data, and incoming surface solar radiation reanalysis data were used to study the impact of LCLU change from 1973 to 2000 on surface albedo and radiative forcing for 58 ecoregions covering 69% of the conterminous United States. A net positive surface radiative forcing (i.e., warming) of 0.029 Wm−2 due to LCLU albedo change from 1973 to 2000 was estimated. The forcings for individual ecoregions were similar in magnitude to current global forcing estimates, with the most negative forcing (as low as −0.367 Wm−2) due to the transition to forest and the most positive forcing (up to 0.337 Wm−2) due to the conversion to grass/shrub. Snow exacerbated both negative and positive forcing for LCLU transitions between snow-hiding and snow-revealing LCLU classes. The surface radiative forcing estimates were highly sensitive to snow-free interannual albedo variability that had a percent average monthly variation from 1.6% to 4.3% across the ecoregions. The results described in this paper enhance our understanding of contemporary LCLU change on surface radiative forcing and suggest that future forcing estimates should model snow and interannual albedo variation.

  20. Radiation risk and its estimation for nuclear facilities

    International Nuclear Information System (INIS)

    Krueger, F.W.

    1979-01-01

    The level of knowledge achieved in estimating risks due to the operation of nuclear facilities is discussed. In this connection it is analyzed to what extent risk estimates may be used for establishing requirements for facilities and measures of radiation protection and accident prevention. At present, estimates of risks are subject to great uncertainties. However, the results attainable already permit to discern the causes of possible accidents and to develop effective measures for preventing such accidents. For the time being (and maybe in principle) risk estimation is possible only with more or less arbitrary premises. Within the foreseeable future, cost-benefit comparisons cannot compensate for discretionary decisions in establishing requirements for measures of radiation protection and accident prevention. In preparing such decisions based on experience, expert opinions, political and socio-economic reflections and views, comparison of the risk of novel technologies with existing ones or accepted risks may be a useful means. (author)

  1. DNA-nuclear matrix interactions and ionizing radiation sensitivity

    International Nuclear Information System (INIS)

    Schwartz, J.L.; Vaughan, A.T.M.

    1993-01-01

    The association between inherent ionizing radiation sensitivity and DNA supercoil unwinding in mammalian cells suggests that the organization of the DNA in chromosomes plays an important role in radiation responses. In this paper, a model is proposed which suggests that these DNA unwinding alterations reflect differences in the attachment of DNA to the nuclear matrix. In radioresistant cells, the MAR structure might exist in a more stable, open configuration, limiting DNA unwinding following strand break induction and influencing the rate and nature of DNA double-strand break rejoining

  2. Study on intraoperative radiotherapy applying hyperthermia together with radiation sensitizers for progressive local carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Abe, M; Takahashi, M; Ono, K; Hiraoka, M [Kyoto Univ. (Japan). Faculty of Medicine

    1980-08-01

    Intraoperative radiotherapy for gastric cancer, colonic cancer, pancreatic cancer, cancer of the biliary tract, prostatic carcinoma, cerebral tumor, tumor of soft tissues, and osteosarcoma and its clinical results were described. Basic and clinical studies on effects of both hyperthermia and radiation sensitizers to elevate radiation sensitivity were also described, because effects of intraoperative radiotherapy were raised by applying hyperthermia and hypoxic cell sensitizers.

  3. Radiation polymerized hot melt pressure sensitive adhesives

    International Nuclear Information System (INIS)

    Pastor, S.D.; Skoultchi, M.M.

    1977-01-01

    Hot melt pressure sensitive adhesive compositions formed by copolymerizing at least one 3-(chlorinated aryloxy)-2-hydroxypropyl ester of an alpha, beta unsaturated carboxylic acid with acrylate based copolymerizable monomers, are described. The resultant ethylenically saturated prepolymer is heated to a temperature sufficient to render it fluid and flowable. This composition is coated onto a substrate and exposed to ultraviolet radiation

  4. Solar and Net Radiation for Estimating Potential Evaporation from Three Vegetation Canopies

    Science.gov (United States)

    D.M. Amatya; R.W. Skaggs; G.W. Cheschier; G.P. Fernandez

    2000-01-01

    Solar and net radiation data are frequent/y used in estimating potential evaporation (PE) from various vegetative surfaces needed for water balance and hydrologic modeling studies. Weather parameters such as air temperature, relative humidity, wind speed, solar radiation, and net radiation have been continuously monitored using automated sensors to estimate PE for...

  5. Estimation of potential solar radiation using 50m grid digital terrain model

    International Nuclear Information System (INIS)

    Kurose, Y.; Nagata, K.; Ohba, K.; Maruyama, A.

    1999-01-01

    To clarify the spatial distribution of solar radiation, a model to estimate the potential incoming solar radiation with 50m grid size was developed. The model is based on individual calculation of direct and diffuse solar radiation accounting for the effect of topographic shading. Using the elevation data in the area with radius 25km, which was offered by the Digital Map 50m Grid, the effect of topographic shading is estimated as angle of elevation for surrounding configuration to 72 directions. The estimated sunshine duration under clear sky conditions agreed well with observed values at AMeDAS points of Kyushu and Shikoku region. Similarly, there is a significant agreement between estimated and observed variation of solar radiation for monthly mean conditions over complex terrain. These suggest that the potential incoming solar radiation can be estimated well over complex terrain using the model. Locations of large fields over complex terrain agreed well with the area of the abundant insolation condition, which is defined by the model. The model is available for the investigation of agrometeorological resources over complex terrain. (author)

  6. Sensitivity of radiation methods of diagnosis of electric potentials in dielectric materials

    International Nuclear Information System (INIS)

    Sapozhkov, Yu.I.; Smekalin, L.F.; Yagushkin, N.I.

    1985-01-01

    On the base of the albedo method the characteristics of radiation methods of diagnosis of electric potentials inside dielectrics, such as sensitivity and resolution are considered. Investigations are carried out for electron energies of tens keV. It is shown that with energy growth the sensitivity to electric field in the dielectrics volume drops. The target atomic number growth reduces the sensitivity approximately 1/lnz. The albedo method resolution in the investigated energy range is constant. The results obtained testify to the usability radiation methods of the diagnosis for control of electric fields of dielectric structural materials in the course of their operation

  7. Advances in radiation biology: Relative radiation sensitivities of human organ systems. Volume 12

    International Nuclear Information System (INIS)

    Lett, J.T.; Altman, K.I.; Ehmann, U.K.; Cox, A.B.

    1987-01-01

    This volume is a thematically focused issue of Advances in Radiation Biology. The topic surveyed is relative radiosensitivity of human organ systems. Topics considered include relative radiosensitivities of the thymus, spleen, and lymphohemopoietic systems; relative radiosensitivities of the small and large intestine; relative rediosensitivities of the oral cavity, larynx, pharynx, and esophagus; relative radiation sensitivity of the integumentary system; dose response of the epidermal; microvascular, and dermal populations; relative radiosensitivity of the human lung; relative radiosensitivity of fetal tissues; and tolerance of the central and peripheral nervous system to therapeutic irradiation

  8. Advances in radiation biology: Relative radiation sensitivities of human organ systems. Volume 12

    Energy Technology Data Exchange (ETDEWEB)

    Lett, J.T.; Altman, K.I.; Ehmann, U.K.; Cox, A.B.

    1987-01-01

    This volume is a thematically focused issue of Advances in Radiation Biology. The topic surveyed is relative radiosensitivity of human organ systems. Topics considered include relative radiosensitivities of the thymus, spleen, and lymphohemopoietic systems; relative radiosensitivities of the small and large intestine; relative rediosensitivities of the oral cavity, larynx, pharynx, and esophagus; relative radiation sensitivity of the integumentary system; dose response of the epidermal; microvascular, and dermal populations; relative radiosensitivity of the human lung; relative radiosensitivity of fetal tissues; and tolerance of the central and peripheral nervous system to therapeutic irradiation.

  9. Estimation of radiation dose received by the victims in a Chinese radiation accident

    International Nuclear Information System (INIS)

    Zhang, Liangan; Xu, Zhiyong; Jia, Delin; Dai, Guangfu

    2002-01-01

    In April 1999, a radiation accident happened in Henan province, China. In this accident, A 60 Co ex-service therapy radiation source was purchased by a waster purchase company, then some persons break the lead pot and taken out the stainless steel drawer with the radiation source, then sell the drawer to another small company, and the buyer reserved the drawer in his bed room until all of his family members shoot their cookies. During the event, seven persons received overdose exposure, the dose rang is about 1.0 - 6.0Gy, especially, all of the buyer family members meet with bad radiation damage. In order to assess the accident consequences and cure the patients of the bad radiation damage, it is necessary to estimate the doses of the Victims in the accident. In the dose reconstruction of the accident victims, we adopted biologic dose method, experiment-simulating method with an anthropomorphic phantom, and theory simulating method with Monte Carlo to estimate the doses of the victims. In this paper, the frame of the accident and the Monte Carlo method in our work will be described, the main dose results of the three methods mentioned above will be reported and a comparison analysis will be presented

  10. Radiation sensitivity of different citric pectins

    Energy Technology Data Exchange (ETDEWEB)

    Inamura, Patricia Y.; Mastro, Nelida L. del [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)]. E-mails: patyoko@yahoo.com; nlmastro@ipen.br

    2007-07-01

    Pectic substances are important soluble polysaccharides of plant origin of considerable interest for food industry as gelling agent and stabilizer in jams, fruit jellies, yogurt drinks and lactic acid beverages. Polysaccharides can be degraded by ionizing radiation due to the free radical induced scission of the glycosidic bonds. Viscosity methods had been used to determine the efficiency of hydroxyl radical induced chain breaks generation in macromolecules. In the present work samples of pectin with different degree of methoxylation were employed in order to study their radiation sensitivity by means of viscosity measurements. Samples of citric pectin 1% solutions were irradiated with gamma rays at different doses, ranging from 0 to 15 kGy, using a {sup 60}Co Gammacell 220 (AECL), dose rate about 2 kGy/h. After irradiation the viscosity was measured on the viscometer Brookfield model LV-DVIII at 50, 60 and 70 deg C within a period of 48h. Pectin viscosity with high degree of methoxylation decreased sharply with the radiation dose remaining almost constant from 10 kGy. Pectin with low degree of methoxylation presented initially higher values of viscosity and the radiation induced decrease was also pronounced. Viscosity measurements decreased with the increase of the temperature applied for both kind of samples. The effect of radiation induced chain breaks generation in pectin molecules was evident through the viscosity reduction of irradiated pectin solutions although the viscosity presented diverse values depending of the degree of methoxylation of carboxyl groups in the backbone of polysaccharide macromolecules. (author)

  11. Radiation sensitivity of different citric pectins

    International Nuclear Information System (INIS)

    Inamura, Patricia Y.; Mastro, Nelida L. del

    2007-01-01

    Pectic substances are important soluble polysaccharides of plant origin of considerable interest for food industry as gelling agent and stabilizer in jams, fruit jellies, yogurt drinks and lactic acid beverages. Polysaccharides can be degraded by ionizing radiation due to the free radical induced scission of the glycosidic bonds. Viscosity methods had been used to determine the efficiency of hydroxyl radical induced chain breaks generation in macromolecules. In the present work samples of pectin with different degree of methoxylation were employed in order to study their radiation sensitivity by means of viscosity measurements. Samples of citric pectin 1% solutions were irradiated with gamma rays at different doses, ranging from 0 to 15 kGy, using a 60 Co Gammacell 220 (AECL), dose rate about 2 kGy/h. After irradiation the viscosity was measured on the viscometer Brookfield model LV-DVIII at 50, 60 and 70 deg C within a period of 48h. Pectin viscosity with high degree of methoxylation decreased sharply with the radiation dose remaining almost constant from 10 kGy. Pectin with low degree of methoxylation presented initially higher values of viscosity and the radiation induced decrease was also pronounced. Viscosity measurements decreased with the increase of the temperature applied for both kind of samples. The effect of radiation induced chain breaks generation in pectin molecules was evident through the viscosity reduction of irradiated pectin solutions although the viscosity presented diverse values depending of the degree of methoxylation of carboxyl groups in the backbone of polysaccharide macromolecules. (author)

  12. Is the precision of human radiation tolerance estimates sufficient for radiation emergency management

    International Nuclear Information System (INIS)

    Lushbaugh, C.C.; Huebner, K.F.; Fry, S.A.; Ricks, R.C.

    1982-01-01

    Retrospective clinical evaluations of the deleterious consequences of accidental and therapeutic radiation exposures have provided working estimates of human radiation tolerance of variable accuracy. Their inaccuracy results from the fact that in accidents, where normal persons have been irradiated, doses have usually been unknown, whereas in radiotherapy, where doses are known precisely, the additivity of various diseases and cellular abnormalities upon final radiosensitivity remains largely unknown. Even so, from follow-up studies of radiation-accident victims, human radiation biology is not known to be qualitatively different from that of other animals and so the mechanisms of human radiation lethality are sufficiently understood to dictate therapeutic measures and suggest radiation dosage limits for their effectiveness for a few irradiated patients or where large populations are exposed under austere conditions. (author)

  13. How far is cancer cured by radiation sensitization?

    International Nuclear Information System (INIS)

    Ando, Koichi; Sasaki, Takehito; Ikeda, Hiroshi

    1990-01-01

    Some types of cancer are not cured by radiation alone in view of histology, location, and size. In facing so-called radioresistant cancer, antineoplastic agents, hypoxic cell sensitizers, biological response modifiers, or hyperthermia are used in combination with radiation, with the aim of cancer cure. First of all, this chapter discusses the subject of 'what is tumor cure by radiation therapy'. Current conditions of the aforementioned combined modalities and the future perspectives are presented. The following subjects are covered: (1) tumor control - significance of the number of stem cells; (2) biological evaluation of chemo-radiotherapy with cisplatin; (3) clinical results and experience with combination of radiotherapy and radiosensitizers; (4) radiosensitization with hypoxic cell radiosensitizers - present status (5) hypoxic cell radiosensitizers - present status and problems from the viewpoint of clinical radiotherapy; (6) thermal radiosensitization in vitro and its implications for radiotherapy; (7) clinical assessment of thermoradiotherapy for breast cancer and cancer of the urinary bladder; (8) interactions of radiation and biological response modifiers in the treatment of malignant tumor; (9) improvement in the effects of radiation therapy with biological response modifiers. (N.K.)

  14. Radiation-sensitive compounds and methods of using same

    International Nuclear Information System (INIS)

    DeMajistre, R.

    1977-01-01

    Novel diacrylates are prepared by reacting a monohydroxylated acrylic monomer with a polyisocyanate. The reaction product may be polymerized by subjecting to ionizing irradiation, actinic light or to free radical catalysis to form a useful coating material. The diacrylates may also be copolymerized with other radiation sensitive materials

  15. Developing a new solar radiation estimation model based on Buckingham theorem

    Science.gov (United States)

    Ekici, Can; Teke, Ismail

    2018-06-01

    While the value of solar radiation can be expressed physically in the days without clouds, this expression becomes difficult in cloudy and complicated weather conditions. In addition, solar radiation measurements are often not taken in developing countries. In such cases, solar radiation estimation models are used. Solar radiation prediction models estimate solar radiation using other measured meteorological parameters those are available in the stations. In this study, a solar radiation estimation model was obtained using Buckingham theorem. This theory has been shown to be useful in predicting solar radiation. In this study, Buckingham theorem is used to express the solar radiation by derivation of dimensionless pi parameters. This derived model is compared with temperature based models in the literature. MPE, RMSE, MBE and NSE error analysis methods are used in this comparison. Allen, Hargreaves, Chen and Bristow-Campbell models in the literature are used for comparison. North Dakota's meteorological data were used to compare the models. Error analysis were applied through the comparisons between the models in the literature and the model that is derived in the study. These comparisons were made using data obtained from North Dakota's agricultural climate network. In these applications, the model obtained within the scope of the study gives better results. Especially, in terms of short-term performance, it has been found that the obtained model gives satisfactory results. It has been seen that this model gives better accuracy in comparison with other models. It is possible in RMSE analysis results. Buckingham theorem was found useful in estimating solar radiation. In terms of long term performances and percentage errors, the model has given good results.

  16. Variance estimation for sensitivity analysis of poverty and inequality measures

    Directory of Open Access Journals (Sweden)

    Christian Dudel

    2017-04-01

    Full Text Available Estimates of poverty and inequality are often based on application of a single equivalence scale, despite the fact that a large number of different equivalence scales can be found in the literature. This paper describes a framework for sensitivity analysis which can be used to account for the variability of equivalence scales and allows to derive variance estimates of results of sensitivity analysis. Simulations show that this method yields reliable estimates. An empirical application reveals that accounting for both variability of equivalence scales and sampling variance leads to confidence intervals which are wide.

  17. Gamma radiation induced sensitization and photo-transfer in Mg2SiO4:Tb TLD phosphor

    International Nuclear Information System (INIS)

    Lakshmanan, A.R.; Vohra, K.G.

    1979-01-01

    Mg 2 SiO 4 :Tb TLD phosphor was found to show enhanced TL sensitivity to both gamma and UV radiations after high pre-gamma exposures (>100 R) and a post-annealing treatment at 300 0 C for 1 h. Maximum sensitization factors of 2.8 and 55 were obtained at the pre-expsoure levels of 5.2x10 1 C/kg and 1.3x10 3 C/kg for gamma and UV test radiations respectively. The near constancy of the intensity of the residual TL (RTL) peak at 500 0 C for the sensitized sample with increasing test-gamma exposures has ruled out the re-trapping model proposed earlier for the gamma radiation induced sensitization in this phosphor. The Tsub(max) for the sensitized phosphor was found to occur at a higher temperature compared to that for the virgin phosphor. The dependence of sensitization on RTL was explained qualitatively on the basis of competition between sensitization traps (having higher energy than the dosimetry traps) and RTL traps while capturing the charge carriers generated during the test-gamma exposure. The sensitization observed in this phosphor to UV test radiation was found to be a consequence of the photo-transfer of charge carriers from deep (RTL) traps to the shallow (dosimetry) traps. The reduction in RTL peak (500 0 C) intensity of the sensitized sample with increasing test-UV exposure has demonstrated the photo-transfer mechanism in this phosphor. The TL response of the virgin Mg 2 SiO 4 :Tb phosphor was found to be supralinear to both gamma and UV radiations. The TL response of the sensitized phosphor was found to be linear to gamma radiation and sublinear to UV radiation. (Auth.)

  18. Biological effects of radiation and estimation of risk to radiation workers

    International Nuclear Information System (INIS)

    Murthy, M.S.S.

    1987-01-01

    The biological effects of radiation have three stages: physical, chemical and biological. A precise mathematical description of biological effects and of one-to-one correspondence between the initial energy absorption and final effect has not been possible, because several factors are involved in biological effects and their manifestation period varies from less than one second to several years. The mechanism of biological radiation effects is outlined. The two groups of these effects are (1) immediate and (2) delayed. The main aim of radiation protection programme is to eliminate the risk of non-stochastic effects to an acceptable level. The mean annual dose for 30,000 radiation workers in India is 2.7 m Sv. Estimated risk of fatal cancer from this dose is about 50 cases of cancer per year per million workers which is well below the ICRP standard for safe occupation stipulated at fatality rate less than or equal to 100 per year per milion workers. When compared with risk in other occupations, the risk to radiation workers is much less. (M.G.B.)

  19. DNA-nuclear matrix interactions and ionizing radiation sensitivity

    International Nuclear Information System (INIS)

    Schwartz, J.L.; Chicago Univ., IL; Vaughan, A.T.M.

    1993-01-01

    The association between inherent ionizing radiation sensitivity and DNA supercoil unwinding in mammalian cells suggests that the DNA-nuclear matrix attachment region (MAR) plays an important role in radiation response. In radioresistant cells, the MAR structure may exist in a more stable, open configuration, limiting DNA unwinding following strand break induction and maintaining DNA ends in close proximity for more rapid and accurate rejoining. In addition, the open configuration at these matrix attachment sites may serve to facilitate rapid DNA processing of breaks by providing (1) sites for repair proteins to collect and (2) energy to drive enzymatic reactions

  20. Mechanisms of UVB-resistance in rice: Cultivar differences in the sensitivity to UVB radiation in rice

    International Nuclear Information System (INIS)

    Hidema, J.

    2001-01-01

    In a study on the sensitivity to UVB radiation of rice cultivars of 5 Asian rice ecotypes, results showed that the rice cultivars widely varied in UVB sensitivity; among the Japanese rice cultivars, Sasanishiki was more resistant to UVB, while Norin 1 was less resistant; UV-sensitive Norin 1 was deficient in photorepair of cyclobutane pyrimidine dimers (UV-induced DNA damage), and the sensitivity to UVB radiation significantly correlated with deficient CPD photorepair; and that this deficiency in Norin 1 resulted from a functionally altered photolyase. The results suggest that photorepair capacity is a principal factor in determining UVB sensitivity in rice. The effects of supplemental UVB radiation on the growth and yield of Japanese rice cultivars under field conditions were also studied in Japan since 1993. The results indicate that supplemental UVB radiation had inhibitory effects on the growth and yield of rice. Furthermore, grain size was smaller with supplemental UVB radiation

  1. Climate forcings and climate sensitivities diagnosed from atmospheric global circulation models

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Bruce T. [Boston University, Department of Geography and Environment, Boston, MA (United States); Knight, Jeff R.; Ringer, Mark A. [Met Office Hadley Centre, Exeter (United Kingdom); Deser, Clara; Phillips, Adam S. [National Center for Atmospheric Research, Boulder, CO (United States); Yoon, Jin-Ho [University of Maryland, Cooperative Institute for Climate and Satellites, Earth System Science Interdisciplinary Center, College Park, MD (United States); Cherchi, Annalisa [Centro Euro-Mediterraneo per i Cambiamenti Climatici, and Istituto Nazionale di Geofisica e Vulcanologia, Bologna (Italy)

    2010-12-15

    Understanding the historical and future response of the global climate system to anthropogenic emissions of radiatively active atmospheric constituents has become a timely and compelling concern. At present, however, there are uncertainties in: the total radiative forcing associated with changes in the chemical composition of the atmosphere; the effective forcing applied to the climate system resulting from a (temporary) reduction via ocean-heat uptake; and the strength of the climate feedbacks that subsequently modify this forcing. Here a set of analyses derived from atmospheric general circulation model simulations are used to estimate the effective and total radiative forcing of the observed climate system due to anthropogenic emissions over the last 50 years of the twentieth century. They are also used to estimate the sensitivity of the observed climate system to these emissions, as well as the expected change in global surface temperatures once the climate system returns to radiative equilibrium. Results indicate that estimates of the effective radiative forcing and total radiative forcing associated with historical anthropogenic emissions differ across models. In addition estimates of the historical sensitivity of the climate to these emissions differ across models. However, results suggest that the variations in climate sensitivity and total climate forcing are not independent, and that the two vary inversely with respect to one another. As such, expected equilibrium temperature changes, which are given by the product of the total radiative forcing and the climate sensitivity, are relatively constant between models, particularly in comparison to results in which the total radiative forcing is assumed constant. Implications of these results for projected future climate forcings and subsequent responses are also discussed. (orig.)

  2. Improvements to a neutral radiation detection and position sensitive process and devices

    International Nuclear Information System (INIS)

    Charpak, Georges; Nguyen, N.H.; Policarpo, Armando.

    1977-01-01

    This invention aims to provide a neutral radiation position sensitive process and device providing a spatial radiation satisfactory for most medical applications and an energy radiation that cannot be reached by gas detectors based on proportional counters or by scintillation counters. Only solid state detectors can compete with respect to energy resolution. The detector described enables large areas to be covered which cannot be reached at accessible costs by solid state detectors. With this aim in view, the invention suggests an incident neutral radiation and position sensitive process, particularly soft gamma and X radiations, whereby photoelectrons are made to form by incident radiation action on gas atoms contained in an enclosure. By means of an electric field, the electrons are diverted towards a space undergoing an electric field high enough in value to create photons by exciting gas atoms and returning them to the de-excited state. The photons are collected, through a transparent window, on a layer of a material for converting such photons into scintillations in the near or visible UV spectrum and the barycentre of the scintillations is positioned on the layer, for instance by photomultipliers or ionization detectors. According to another aspect of the invention, it suggests a detection and position sensitive device comprising (generally downstream of a collimator with a grid of inlet holes) a leak tight containment fitted with an inlet window transparent to incident radiations, filled with a gas producing electrons by interaction with the incident radiation, and fitted with electrodes for generating an electric field to divert the electrons to a space for creating secondary photons [fr

  3. Estimated risk for secondary cancer in the contra-lateral breast following radiation therapy of breast cancer

    International Nuclear Information System (INIS)

    Johansen, Safora; Danielsen, Turi; Olsen, Dag Rune

    2008-01-01

    Purpose. To facilitate a discussion about the impact of dose heterogeneity on the risk for secondary contralateral breast (CB) cancer predicted with linear and non linear models associated with primary breast irradiation. Methods and materials. Dose volume statistics of the CB calculated for eight patients using a collapsed cone algorithm were used to predict the excess relative risk (ERR) for cancer induction in CB. Both linear and non-linear models were employed. A sensitivity analysis demonstrating the impact of different parameter values on calculated ERR for the eight patients was also included in this study. Results. A proportionality assumption was established to make the calculations with a linear and non-linear model comparable. ERR of secondary cancer predicted by the linear model varied considerably between the patients, while the predicted ERR for the same patients using the non-linear model showed very small variation. The predicted ERRs by the two models were indistinguishable for small doses, i.e. below ∼3 Gy. The sensitivity analysis showed that the quadratic component of the radiation-induction pre-malignant cell term is negligible for lower dose level. The ERR is highly sensitive to the value of agr1 and agr2. Conclusions. Optimization of breast cancer radiation therapy, where also the risk for radiation induced secondary malignancies in the contralateral breast is taken into account, requires robust and valid risk assessment. The linear dose-risk model does not account for the complexity in the mechanisms underlying the development of secondary malignancies following exposure to radiation; this is particularly important when estimating risk associated with highly heterogeneous dose distributions as is the case in the contralateral breast of women receiving breast cancer irradiation

  4. Methylglyoxal-bis(guanylhydrazone), a polyamine analogue, sensitized γ-radiation-induced cell death in HL-60 leukemia cells Sensitizing effect of MGBG on γ-radiation-induced cell death.

    Science.gov (United States)

    Kim, Jin Sik; Lee, Jin; Chung, Hai Won; Choi, Han; Paik, Sang Gi; Kim, In Gyu

    2006-09-01

    Methylglyoxal-bis(guanylhydrazone) (MGBG), a polyamine analogue, has been known to inhibit the biosynthesis of polyamines, which are important in cell proliferation. We showed that MGBG treatment significantly affected γ-radiation-induced cell cycle transition (G(1)/G(0)→S→G(2)/M) and thus γ-radiation-induced cell death. As determined by micronuclei and comet assay, we showed that it sensitized the cytotoxic effect induced by γ-radiation. One of the reasons is that polyamine depletion by MGBG treatment did not effectively protect against the chemical (OH) or physical damage to DNA caused by γ-radiation. Through in vitro experiment, we confirmed that DNA strand breaks induced by γ-radiation was prevented more effectively in the presence of polyamines (spermine and spermidine) than in the absence of polyamines. MGBG also blocks the cell cycle transition caused by γ-radiation (G(2) arrest), which helps protect cells by allowing time for DNA repair before entry into mitosis or apoptosis, via the down regulation of cyclin D1, which mediates the transition from G(1) to S phase of cell cycle, and ataxia telangiectasia mutated, which is involved in the DNA sensing, repair and cell cycle check point. Therefore, the abrogation of G(2) arrest sensitizes cells to the effect of γ-radiation. As a result, γ-radiation-induced cell death increased by about 2.5-3.0-fold in cells treated with MGBG. However, exogenous spermidine supplement partially relieved this γ-radiation-induced cytotoxicity and cell death. These findings suggest a potentially therapeutic strategy for increasing the cytotoxic efficacy of γ-radiation.

  5. Radioecological sensitivity

    International Nuclear Information System (INIS)

    Howard, Brenda J.; Strand, Per; Assimakopoulos, Panayotis

    2003-01-01

    After the release of radionuclide into the environment it is important to be able to readily identify major routes of radiation exposure, the most highly exposed individuals or populations and the geographical areas of most concern. Radioecological sensitivity can be broadly defined as the extent to which an ecosystem contributes to an enhanced radiation exposure to Man and biota. Radioecological sensitivity analysis integrates current knowledge on pathways, spatially attributes the underlying processes determining transfer and thereby identifies the most radioecologically sensitive areas leading to high radiation exposure. This identifies where high exposure may occur and why. A framework for the estimation of radioecological sensitivity with respect to humans is proposed and the various indicators by which it can be considered have been identified. These are (1) aggregated transfer coefficients (Tag), (2) action (and critical) loads, (3) fluxes and (4) individual exposure of humans. The importance of spatial and temporal consideration of all these outputs is emphasized. Information on the extent of radionuclide transfer and exposure to humans at different spatial scales is needed to reflect the spatial differences which can occur. Single values for large areas, such as countries, can often mask large variation within the country. Similarly, the relative importance of different pathways can change with time and therefore assessments of radiological sensitivity are needed over different time periods after contamination. Radioecological sensitivity analysis can be used in radiation protection, nuclear safety and emergency preparedness when there is a need to identify areas that have the potential of being of particular concern from a risk perspective. Prior identification of radioecologically sensitive areas and exposed individuals improve the focus of emergency preparedness and planning, and contribute to environmental impact assessment for future facilities. The

  6. Radiation Dose Estimation for Pediatric Patients Undergoing Cardiac Catheterization

    Science.gov (United States)

    Wang, Chu

    Patients undergoing cardiac catheterization are potentially at risk of radiation-induced health effects from the interventional fluoroscopic X-ray imaging used throughout the clinical procedure. The amount of radiation exposure is highly dependent on the complexity of the procedure and the level of optimization in imaging parameters applied by the clinician. For cardiac catheterization, patient radiation dosimetry, for key organs as well as whole-body effective, is challenging due to the lack of fixed imaging protocols, unlike other common X-ray based imaging modalities. Pediatric patients are at a greater risk compared to adults due to their greater cellular radio-sensitivities as well as longer remaining life-expectancy following the radiation exposure. In terms of radiation dosimetry, they are often more challenging due to greater variation in body size, which often triggers a wider range of imaging parameters in modern imaging systems with automatic dose rate modulation. The overall objective of this dissertation was to develop a comprehensive method of radiation dose estimation for pediatric patients undergoing cardiac catheterization. In this dissertation, the research is divided into two main parts: the Physics Component and the Clinical Component. A proof-of-principle study focused on two patient age groups (Newborn and Five-year-old), one popular biplane imaging system, and the clinical practice of two pediatric cardiologists at one large academic medical center. The Physics Component includes experiments relevant to the physical measurement of patient organ dose using high-sensitivity MOSFET dosimeters placed in anthropomorphic pediatric phantoms. First, the three-dimensional angular dependence of MOSFET detectors in scatter medium under fluoroscopic irradiation was characterized. A custom-made spherical scatter phantom was used to measure response variations in three-dimensional angular orientations. The results were to be used as angular dependence

  7. Estimated radiation dose from timepieces containing tritium

    International Nuclear Information System (INIS)

    McDowell-Boyer, L.M.

    1980-01-01

    Luminescent timepieces containing radioactive tritium, either in elemental form or incorporated into paint, are available to the general public. The purpose of this study was to estimate potential radiation dose commitments received by the public annually as a result of exposure to tritium which may escape from the timepieces during their distribution, use, repair, and disposal. Much uncertainty is associated with final dose estimates due to limitations of empirical data from which exposure parameters were derived. Maximum individual dose estimates were generally less than 3 μSv/yr, but ranged up to 2 mSv under worst-case conditions postulated. Estimated annual collective (population) doses were less than 5 person/Sv per million timepieces distributed

  8. A comparison of two methods for estimating the technical costs of external beam radiation therapy

    International Nuclear Information System (INIS)

    Hayman, James A.; Lash, Kathy A.; Tao, May L.; Halman, Marc A.

    2000-01-01

    treatment courses were as follows: palliative 'simple' $1,285 vs. $1,195; palliative 'complex' $2,345 vs. $1,769; curative breast $6,757 vs. $4,850; and curative prostate $9,453 vs. $7,498. Accordingly, the CCR estimates were 8%, 33%, 39%, and 26% higher than the CAS cost estimates, respectively. The primary cause of the difference between the estimates was the daily cost of delivering a 'complex' treatment. In fact, if corrected the difference between the estimates fell to 0%, 1%, 4%, and 0%, respectively. Similar results were observed for both methods when the analysis was repeated using data from another academic institution. Medicare reimbursement was also slightly lower than, but remarkably close to, the costs estimated by the CAS approach. Conclusions: For 'complex' treatment courses, which represent the vast majority of external beam treatments, technical costs estimated using the CCR approach appear to be significantly higher than those estimated using procedure-specific cost estimates. Because cost-effectiveness analyses of radiation therapy tend to be sensitive to the cost of treatment, the use of higher costs will result in radiation therapy appearing less cost-effective

  9. Radiative transfer model for estimation of global solar radiation; Modelo de transferencia radiativa para la estimacion de la radiacion solar global

    Energy Technology Data Exchange (ETDEWEB)

    Pettazzi, A.; Sabon, C. S.; Souto, G. J. A.

    2004-07-01

    In this work, the efficiency of a radiative transfer model in estimating the annual solar global radiation has been evaluated, over different locations at Galicia, Spain, in clear sky periods. Due to its quantitative significance, special attention has been focused on the analysis of the influence of visibility over the global radiation. By comparison of both estimated and measured global solar radiation along year 2002, a typical annual visibility series was obtained over every location. These visibility values has been analysed in order to identify patterns and typical values, in order to be used to estimate the global solar radiation along a different year. Validation was done over the year 2003, obtaining an annual estimation less than 10 % different to the measured value. (Author)

  10. Radiation dose estimates for copper-64 citrate in man

    International Nuclear Information System (INIS)

    Crook, J.E.; Carlton, J.E.; Stabin, M.; Watson, E.

    1985-01-01

    Tumor imaging agents suitable for use with positron emission tomographs are constantly sought. We have performed studies with animal-tumor-bearing models that have demonstrated the rapid uptake of copper-64. The radiation dose estimates for man indicate that the intravenous administration of 7.0 mCi would result in radiation doses to the kidney of 9.8 to 10.5 rads with other organs receiving substantially less radiation. 5 refs., 3 tabs

  11. Radiation dose estimates for copper-64 citrate in man

    International Nuclear Information System (INIS)

    Crook, J.E.; Carlton, J.E.; Stabin, M.; Watson, E.

    1986-01-01

    Tumor imaging agents suitable for use with positron emission tomographs are constantly sought. The authors have performed studies with animal-tumor-bearing models that have demonstrated the rapid uptake of copper-64. The radiation dose estimates for man indicate that the intravenous administration of 7.0 mCi would result in radiation doses to the kidney of 9.8 to 10.5 rads with other organs receiving substantially less radiations. 5 references, 3 tables

  12. An organic group contribution approach to radiative efficiency estimation of organic working fluid

    International Nuclear Information System (INIS)

    Zhang, Xinxin; Kobayashi, Noriyuki; He, Maogang; Wang, Jingfu

    2016-01-01

    Highlights: • We use group contribution method to estimate radiative efficiency. • CFC, HCFC, HFC, HFE, and PFC were estimated using this method. • In most cases, the estimation value has a good precision. • The method is reliable for the estimation of molecule with a symmetric structure. • This estimation method can offer good reference for working fluid development. - Abstract: The ratification of the Montreal Protocol in 1987 and the Kyoto Protocol in 1997 mark an environment protection era of the development of organic working fluid. Ozone depletion potential (ODP) and global warming potential (GWP) are two most important indices for the quantitative comparison of organic working fluid. Nowadays, more and more attention has been paid to GWP. The calculation of GWP is an extremely complicated process which involves interactions between surface and atmosphere such as atmospheric radiative transfer and atmospheric chemical reactions. GWP of a substance is related to its atmospheric abundance and is a variable in itself. However, radiative efficiency is an intermediate parameter for GWP calculation and it is a constant value used to describe inherent property of a substance. In this paper, the group contribution method was adopted to estimate the radiative efficiency of the organic substance which contains more than one carbon atom. In most cases, the estimation value and the standard value are in a good agreement. The biggest estimation error occurs in the estimation of the radiative efficiency of fluorinated ethers due to its plenty of structure groups and its complicated structure compared with hydrocarbon. This estimation method can be used to predict the radiative efficiency of newly developed organic working fluids.

  13. Effects of peroxide and catalase on near ultraviolet radiation sensitivity in Escherichia coli strains

    International Nuclear Information System (INIS)

    Coombs, A.M.L.; Moss, S.H.

    1987-01-01

    The role of peroxide and catalase on NUV radiation sensitivity was examined in two repair competent E. coli strains, AB1157 and B/r. Exponential phase B/r is considerably more sensitive to NUV radiation than exponential phase AB1157. However, resistance to 5 mmol dm -3 H 2 O 2 was induced in both AB1157 and B/r by pretreating growing cells with 30 μmol dm -3 H 2 O 2 . Pretreatment also induced resistance to broad-band NUV radiation in these strains. The addition of catalase to the post-irradiation plating medium increased survival to the same extent as that provided by pretreatment with 30 μmol dm -3 H 2 O 2 , in both strains. The NUV radiation sensitivity seen in B/r does not appear to be due to a deficiency in enzymes that scavenge H 2 O 2 , as a catalase deficient mutant, E. coli UM1, is more resistant to NUV radiation than B/r. Also, assays for H 2 O 2 scavenging ability show little difference between AB1157 and B/r in this respect. Two hypotheses are put forward to account for the sensitivity of exponential phase B/r. Whilst it is apparent that peroxides and catalase do have a role in NUV radiation damage, it is clear that other factors also influence survival under certain conditions. (author)

  14. High sensitive radiation detector for radiology dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Valente, M.; Malano, F. [Instituto de Fisica Enrique Gaviola, Oficina 102 FaMAF - UNC, Av. Luis Medina Allende, Ciudad Universitaria, 5000 Cordoba (Argentina); Molina, W.; Vedelago, J., E-mail: valente@famac.unc.edu.ar [Laboratorio de Investigaciones e Instrumentacion en Fisica Aplicada a la Medicina e Imagenes por Rayos X, Laboratorio 448 FaMAF - UNC, Ciudad Universitaria, 5000 Cordoba (Argentina)

    2014-08-15

    Fricke solution has a wide range of applications as radiation detector and dosimetry. It is particularly appreciated in terms of relevant comparative advantages, like tissue equivalence when prepared in aqueous media like gel matrix, continuous mapping capability, dose rate recorded and incident direction independence as well as linear dose response. This work presents the development and characterization of a novel Fricke gel system, based on modified chemical compositions making possible its application in clinical radiology. Properties of standard Fricke gel dosimeter for high dose levels are used as starting point and suitable chemical modifications are introduced and carefully investigated in order to attain high resolution for low dose ranges, like those corresponding to radiology interventions. The developed Fricke gel radiation dosimeter system achieves the expected typical dose dependency, actually showing linear response in the dose range from 20 up to 4000 mGy. Systematic investigations including several chemical compositions are carried out in order to obtain a good enough dosimeter response for low dose levels. A suitable composition among those studied is selected as a good candidate for low dose level radiation dosimetry consisting on a modified Fricke solution fixed to a gel matrix containing benzoic acid along with sulfuric acid, ferrous sulfate, xylenol orange and ultra-pure reactive grade water. Dosimeter samples are prepared in standard vials for its in phantom irradiation and further characterization by spectrophotometry measuring visible light transmission and absorbance before and after irradiation. Samples are irradiated by typical kV X-ray tubes and calibrated Farmer type ionization chamber is used as reference to measure dose rates inside phantoms in at vials locations. Once sensitive material composition is already optimized, dose-response curves show significant improvement regarding overall sensitivity for low dose levels. According to

  15. High sensitive radiation detector for radiology dosimetry

    International Nuclear Information System (INIS)

    Valente, M.; Malano, F.; Molina, W.; Vedelago, J.

    2014-08-01

    Fricke solution has a wide range of applications as radiation detector and dosimetry. It is particularly appreciated in terms of relevant comparative advantages, like tissue equivalence when prepared in aqueous media like gel matrix, continuous mapping capability, dose rate recorded and incident direction independence as well as linear dose response. This work presents the development and characterization of a novel Fricke gel system, based on modified chemical compositions making possible its application in clinical radiology. Properties of standard Fricke gel dosimeter for high dose levels are used as starting point and suitable chemical modifications are introduced and carefully investigated in order to attain high resolution for low dose ranges, like those corresponding to radiology interventions. The developed Fricke gel radiation dosimeter system achieves the expected typical dose dependency, actually showing linear response in the dose range from 20 up to 4000 mGy. Systematic investigations including several chemical compositions are carried out in order to obtain a good enough dosimeter response for low dose levels. A suitable composition among those studied is selected as a good candidate for low dose level radiation dosimetry consisting on a modified Fricke solution fixed to a gel matrix containing benzoic acid along with sulfuric acid, ferrous sulfate, xylenol orange and ultra-pure reactive grade water. Dosimeter samples are prepared in standard vials for its in phantom irradiation and further characterization by spectrophotometry measuring visible light transmission and absorbance before and after irradiation. Samples are irradiated by typical kV X-ray tubes and calibrated Farmer type ionization chamber is used as reference to measure dose rates inside phantoms in at vials locations. Once sensitive material composition is already optimized, dose-response curves show significant improvement regarding overall sensitivity for low dose levels. According to

  16. Solar radiation estimation using sunshine hour and air pollution index in China

    International Nuclear Information System (INIS)

    Zhao, Na; Zeng, Xiaofan; Han, Shumin

    2013-01-01

    Highlights: • Aerosol can affect coefficients of A–P equation to estimate solar radiation. • Logarithmic model performed best, according to MBE, MABE, MPE, MAPE, RMSE and NSE. • Parameters of A–P model can be adjusted by API, geographical position and altitude. • A general equation to estimate solar radiation was established in China. - Abstract: Angström–Prescott (A–P) equation is the most widely used empirical relationship to estimate global solar radiation from sunshine hours. A new approach based on Air Pollution Index (API) data is introduced to adjust the coefficients of A–P equation in this study. Based on daily solar radiation, sunshine hours and API data at nine meteorological stations from 2001 to 2011 in China, linear, exponential and logarithmic models are developed and validated. When evaluated by performance indicators of mean bias error, mean absolute bias error, mean percentage error, mean absolute percentage error, root mean square error, and Nash–Sutcliffe Equation, it is demonstrated that logarithmic model performed better than the other models. Then empirical coefficients for three models are given for each station and the variations of these coefficients are affected by API, geographical position, and altitude. This indicates that aerosol can play an important role in estimation solar radiation from sunshine hours, especially in those highly polluted regions. Finally, a countrywide general equation is established based on the sunshine hour data, API and geographical parameters, which can be used to estimate the daily solar radiation in areas where the radiation data is not available

  17. Radiation sensitivity for delayed reproductive death (DRD) following single or split-dose irradiation

    International Nuclear Information System (INIS)

    Hagemann, G.; Lipfert, C.H.; Wueppen, G.

    2001-01-01

    Materials and Methods: CHO-cells of a sub clone of the line T71 have a spontaneous cell loss rate of l of the DRD can be defined as the proportional factor of the linear relationship between the MCD on one side and the dose K x the cell division factor m on the other side. E l is dependent on the age of the cells during irradiation and the cell line. The slope of the dually logarithmic growth curve of the cell population is: s=1-E l . K. Experimentally E l was found to be equal for single and split dose irradiation and amounted to E l =0.065 with s d =±0.004. - Literature analysis for the mathematical estimation of E l . K was based on reports of measurements of the local tumor recurrence growth of carcinomas and sarcomas of rodents and pulmonary metastases of sarcomas in humans, respectively, after fractional irradiation. We obtained values of ≤E l . K≤0.77. Values for E l are independent of the dose and lie considerably below data derived from in-vitro measurements of different cell cultures. Conclusions: Since recurrence kinetics of tumors are determined by the radiation sensitivity E l of the DRD, E l can be used for estimating the kinetics of tumor recurrence. As lately described, MCD is linearly proportional to the micro-nucleus frequency. Determinations of the micro-nucleus frequencies in tumor cell biopsies pre and post radiation onset offer the option for developing a fast predictive assay. Organ malformations of embryos after exposition to ionizing radiation can be mathematically deduced by DRD to the partial cell mortality. (orig.) [de

  18. Approximate method in estimation sensitivity responses to variations in delayed neutron energy spectra

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, J; Shin, H S; Song, T Y; Park, W S [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    Previous our numerical results in computing point kinetics equations show a possibility in developing approximations to estimate sensitivity responses of nuclear reactor. We recalculate sensitivity responses by maintaining the corrections with first order of sensitivity parameter. We present a method for computing sensitivity responses of nuclear reactor based on an approximation derived from point kinetics equations. Exploiting this approximation, we found that the first order approximation works to estimate variations in the time to reach peak power because of their linear dependence on a sensitivity parameter, and that there are errors in estimating the peak power in the first order approximation for larger sensitivity parameters. To confirm legitimacy of out approximation, these approximate results are compared with exact results obtained from out previous numerical study. 4 refs., 2 figs., 3 tabs. (Author)

  19. Approximate method in estimation sensitivity responses to variations in delayed neutron energy spectra

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, J.; Shin, H. S.; Song, T. Y.; Park, W. S. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    Previous our numerical results in computing point kinetics equations show a possibility in developing approximations to estimate sensitivity responses of nuclear reactor. We recalculate sensitivity responses by maintaining the corrections with first order of sensitivity parameter. We present a method for computing sensitivity responses of nuclear reactor based on an approximation derived from point kinetics equations. Exploiting this approximation, we found that the first order approximation works to estimate variations in the time to reach peak power because of their linear dependence on a sensitivity parameter, and that there are errors in estimating the peak power in the first order approximation for larger sensitivity parameters. To confirm legitimacy of out approximation, these approximate results are compared with exact results obtained from out previous numerical study. 4 refs., 2 figs., 3 tabs. (Author)

  20. [Ionizing and non-ionizing radiation (comparative risk estimations)].

    Science.gov (United States)

    Grigor'ev, Iu G

    2012-01-01

    The population has widely used mobile communication for already more than 15 years. It is important to note that the use of mobile communication has sharply changed the conditions of daily exposure of the population to EME We expose our brain daily for the first time in the entire civilization. The mobile phone is an open and uncontrollable source of electromagnetic radiation. The comparative risk estimation for the population of ionizing and non-ionizing radiation was carried out taking into account the real conditions of influence. Comparison of risks for the population of ionizing and non-ionizing radiation leads us to a conclusion that EMF RF exposure in conditions of wide use of mobile communication is potentially more harmful than ionizing radiation influence.

  1. Sensitive Constrained Optimal PMU Allocation with Complete Observability for State Estimation Solution

    Directory of Open Access Journals (Sweden)

    R. Manam

    2017-12-01

    Full Text Available In this paper, a sensitive constrained integer linear programming approach is formulated for the optimal allocation of Phasor Measurement Units (PMUs in a power system network to obtain state estimation. In this approach, sensitive buses along with zero injection buses (ZIB are considered for optimal allocation of PMUs in the network to generate state estimation solutions. Sensitive buses are evolved from the mean of bus voltages subjected to increase of load consistently up to 50%. Sensitive buses are ranked in order to place PMUs. Sensitive constrained optimal PMU allocation in case of single line and no line contingency are considered in observability analysis to ensure protection and control of power system from abnormal conditions. Modeling of ZIB constraints is included to minimize the number of PMU network allocations. This paper presents optimal allocation of PMU at sensitive buses with zero injection modeling, considering cost criteria and redundancy to increase the accuracy of state estimation solution without losing observability of the whole system. Simulations are carried out on IEEE 14, 30 and 57 bus systems and results obtained are compared with traditional and other state estimation methods available in the literature, to demonstrate the effectiveness of the proposed method.

  2. Sensitivity of Glacier Mass Balance Estimates to the Selection of WRF Cloud Microphysics Parameterization in the Indus River Watershed

    Science.gov (United States)

    Johnson, E. S.; Rupper, S.; Steenburgh, W. J.; Strong, C.; Kochanski, A.

    2017-12-01

    Climate model outputs are often used as inputs to glacier energy and mass balance models, which are essential glaciological tools for testing glacier sensitivity, providing mass balance estimates in regions with little glaciological data, and providing a means to model future changes. Climate model outputs, however, are sensitive to the choice of physical parameterizations, such as those for cloud microphysics, land-surface schemes, surface layer options, etc. Furthermore, glacier mass balance (MB) estimates that use these climate model outputs as inputs are likely sensitive to the specific parameterization schemes, but this sensitivity has not been carefully assessed. Here we evaluate the sensitivity of glacier MB estimates across the Indus Basin to the selection of cloud microphysics parameterizations in the Weather Research and Forecasting Model (WRF). Cloud microphysics parameterizations differ in how they specify the size distributions of hydrometeors, the rate of graupel and snow production, their fall speed assumptions, the rates at which they convert from one hydrometeor type to the other, etc. While glacier MB estimates are likely sensitive to other parameterizations in WRF, our preliminary results suggest that glacier MB is highly sensitive to the timing, frequency, and amount of snowfall, which is influenced by the cloud microphysics parameterization. To this end, the Indus Basin is an ideal study site, as it has both westerly (winter) and monsoonal (summer) precipitation influences, is a data-sparse region (so models are critical), and still has lingering questions as to glacier importance for local and regional resources. WRF is run at a 4 km grid scale using two commonly used parameterizations: the Thompson scheme and the Goddard scheme. On average, these parameterizations result in minimal differences in annual precipitation. However, localized regions exhibit differences in precipitation of up to 3 m w.e. a-1. The different schemes also impact the

  3. Effect of Long Term Low-Level Gamma Radiation on Thermal Sensitivity of RDX/HMX Mixtures

    Science.gov (United States)

    1976-11-01

    1.1x10 R. It was concluded that the slight exothermic reaction before the 3^6 HMX polymorphic transition could be caused by a radiation-induced...Radiation on Thermal Sensitivity of RDX / HMX Mixtures 5. TYPE OF REPORT 4 PERIOD COVERED Final Report 6. PERFORMING ORG. REPORT NUMBER 7...and Identity by block number) Gamma radiation Weight loss HMX Impact sensitivity test RDX Vacuum stability test DTA Infrared spectrometry TGA

  4. Estimation of daily net radiation from synoptic meteorological data

    International Nuclear Information System (INIS)

    Lee, B.W.; Myung, E.J.; Kim, B.C.

    1991-01-01

    Five models for net radiation estimation reported by Linacre (1968), Berljand(1956), Nakayama et al. (1983), Chang (1970) and Doorenbos et al. (1977) were tested for the adaptability to Korea. A new model with effective longwave radiation term parameterized by air temperature, solar radiation and vapor pressure was formulated and tested for its accuracy. Above five models with original parameter values showed large absolute mean deviations ranging from 0.86 to 1.64 MJ/m 2 /day. The parameters of the above five models were reestimated by using net radiation and meteorological elements measured in Suwon, Korea

  5. Sensitivity of glaciation in the arid subtropical Andes to changes in temperature, precipitation, and solar radiation

    Science.gov (United States)

    Vargo, L. J.; Galewsky, J.; Rupper, S.; Ward, D. J.

    2018-04-01

    The subtropical Andes (18.5-27 °S) have been glaciated in the past, but are presently glacier-free. We use idealized model experiments to quantify glacier sensitivity to changes in climate in order to investigate the climatic drivers of past glaciations. We quantify the equilibrium line altitude (ELA) sensitivity (the change in ELA per change in climate) to temperature, precipitation, and shortwave radiation for three distinct climatic regions in the subtropical Andes. We find that in the western cordillera, where conditions are hyper-arid with the highest solar radiation on Earth, ELA sensitivity is as high as 34 m per % increase in precipitation, and 70 m per % decrease in shortwave radiation. This is compared with the eastern cordillera, where precipitation is the highest of the three regions, and ELA sensitivity is only 10 m per % increase in precipitation, and 25 m per % decrease in shortwave radiation. The high ELA sensitivity to shortwave radiation highlights the influence of radiation on mass balance of high elevation and low-latitude glaciers. We also consider these quantified ELA sensitivities in context of previously dated glacial deposits from the regions. Our results suggest that glaciation of the humid eastern cordillera was driven primarily by lower temperatures, while glaciations of the arid Altiplano and western cordillera were also influenced by increases in precipitation and decreases in shortwave radiation. Using paleoclimate records from the timing of glaciation, we find that glaciation of the hyper-arid western cordillera can be explained by precipitation increases of 90-160% (1.9-2.6× higher than modern), in conjunction with associated decreases in shortwave radiation of 7-12% and in temperature of 3.5 °C.

  6. Genetic and epigenetic features in radiation sensitivity. Part II: implications for clinical practice and radiation protection

    International Nuclear Information System (INIS)

    Bourguignon, Michel H.; Gisone, Pablo A.; Perez, Maria R.; Michelin, Severino; Dubner, Diana; Giorgio, Marina di; Carosella, Edgardo D.

    2005-01-01

    Recent progress especially in the field of gene identification and expression has attracted greater attention to the genetic and epigenetic susceptibility to cancer, possibly enhanced by ionising radiation. This issue is especially important for radiation therapists since hypersensitive patients may suffer from adverse effects in normal tissues following standard radiation therapy, while normally sensitive patients could receive higher doses of radiation, offering a better likelihood of cure for malignant tumours. Although only a small percentage of individuals are ''hypersensitive'' to radiation effects, all medical specialists using ionising radiation should be aware of the aforementioned progress in medical knowledge. The present paper, the second of two parts, reviews human disorders known or strongly suspected to be associated with hypersensitivity to ionising radiation. The main tests capable of detecting such pathologies in advance are analysed, and ethical issues regarding genetic testing are considered. The implications for radiation protection of possible hypersensitivity to radiation in a part of the population are discussed, and some guidelines for nuclear medicine professionals are proposed. (orig.)

  7. Certified metamodels for sensitivity indices estimation

    Directory of Open Access Journals (Sweden)

    Prieur Clémentine

    2012-04-01

    Full Text Available Global sensitivity analysis of a numerical code, more specifically estimation of Sobol indices associated with input variables, generally requires a large number of model runs. When those demand too much computation time, it is necessary to use a reduced model (metamodel to perform sensitivity analysis, whose outputs are numerically close to the ones of the original model, while being much faster to run. In this case, estimated indices are subject to two kinds of errors: sampling error, caused by the computation of the integrals appearing in the definition of the Sobol indices by a Monte-Carlo method, and metamodel error, caused by the replacement of the original model by the metamodel. In cases where we have certified bounds for the metamodel error, we propose a method to quantify both types of error, and we compute confidence intervals for first-order Sobol indices. L’analyse de sensibilité globale d’un modèle numérique, plus précisément l’estimation des indices de Sobol associés aux variables d’entrée, nécessite généralement un nombre important d’exécutions du modèle à analyser. Lorsque celles-ci requièrent un temps de calcul important, il est judicieux d’effectuer l’analyse de sensibilité sur un modèle réduit (ou métamodèle, fournissant des sorties numériquement proches du modèle original mais pour un coût nettement inférieur. Les indices estimés sont alors entâchés de deux sortes d’erreur : l’erreur d’échantillonnage, causée par l’estimation des intégrales définissant les indices de Sobol par une méthode de Monte-Carlo, et l’erreur de métamodèle, liée au remplacement du modèle original par le métamodèle. Lorsque nous disposons de bornes d’erreurs certifiées pour le métamodèle, nous proposons une méthode pour quantifier les deux types d’erreurs et fournir des intervalles de confiance pour les indices de Sobol du premier ordre.

  8. Evaluation of Clear-Sky Incoming Radiation Estimating Equations Typically Used in Remote Sensing Evapotranspiration Algorithms

    Directory of Open Access Journals (Sweden)

    Ted W. Sammis

    2013-09-01

    Full Text Available Net radiation is a key component of the energy balance, whose estimation accuracy has an impact on energy flux estimates from satellite data. In typical remote sensing evapotranspiration (ET algorithms, the outgoing shortwave and longwave components of net radiation are obtained from remote sensing data, while the incoming shortwave (RS and longwave (RL components are typically estimated from weather data using empirical equations. This study evaluates the accuracy of empirical equations commonly used in remote sensing ET algorithms for estimating RS and RL radiation. Evaluation is carried out through comparison of estimates and observations at five sites that represent different climatic regions from humid to arid. Results reveal (1 both RS and RL estimates from all evaluated equations well correlate with observations (R2 ≥ 0.92, (2 RS estimating equations tend to overestimate, especially at higher values, (3 RL estimating equations tend to give more biased values in arid and semi-arid regions, (4 a model that parameterizes the diffuse component of radiation using two clearness indices and a simple model that assumes a linear increase of atmospheric transmissivity with elevation give better RS estimates, and (5 mean relative absolute errors in the net radiation (Rn estimates caused by the use of RS and RL estimating equations varies from 10% to 22%. This study suggests that Rn estimates using recommended incoming radiation estimating equations could improve ET estimates.

  9. Sensitivity to plant modelling uncertainties in optimal feedback control of sound radiation from a panel

    DEFF Research Database (Denmark)

    Mørkholt, Jakob

    1997-01-01

    Optimal feedback control of broadband sound radiation from a rectangular baffled panel has been investigated through computer simulations. Special emphasis has been put on the sensitivity of the optimal feedback control to uncertainties in the modelling of the system under control.A model...... in terms of a set of radiation filters modelling the radiation dynamics.Linear quadratic feedback control applied to the panel in order to minimise the radiated sound power has then been simulated. The sensitivity of the model based controller to modelling uncertainties when using feedback from actual...

  10. Bias correction for the estimation of sensitivity indices based on random balance designs

    International Nuclear Information System (INIS)

    Tissot, Jean-Yves; Prieur, Clémentine

    2012-01-01

    This paper deals with the random balance design method (RBD) and its hybrid approach, RBD-FAST. Both these global sensitivity analysis methods originate from Fourier amplitude sensitivity test (FAST) and consequently face the main problems inherent to discrete harmonic analysis. We present here a general way to correct a bias which occurs when estimating sensitivity indices (SIs) of any order – except total SI of single factor or group of factors – by the random balance design method (RBD) and its hybrid version, RBD-FAST. In the RBD case, this positive bias has been recently identified in a paper by Xu and Gertner [1]. Following their work, we propose a bias correction method for first-order SIs estimates in RBD. We then extend the correction method to the SIs of any order in RBD-FAST. At last, we suggest an efficient strategy to estimate all the first- and second-order SIs using RBD-FAST. - Highlights: ► We provide a bias correction method for the global sensitivity analysis methods: RBD and RBD-FAST. ► In RBD, first-order sensitivity estimates are corrected. ► In RBD-FAST, sensitivity indices of any order and closed sensitivity indices are corrected. ► We propose an efficient strategy to estimate all the first- and second-order indices of a model.

  11. Effects of peroxide and catalase on near ultraviolet radiation sensitivity in Escherichia coli strains

    Energy Technology Data Exchange (ETDEWEB)

    Coombs, A.M.L.; Moss, S.H.

    1987-03-01

    The role of peroxide and catalase on NUV radiation sensitivity was examined in two repair competent E. coli strains, AB1157 and B/r. Exponential phase B/r is considerably more sensitive to NUV radiation than exponential phase AB1157. However, resistance to 5 mmol dm/sup -3/ H/sub 2/O/sub 2/ was induced in both AB1157 and B/r by pretreating growing cells with 30 ..mu..mol dm/sup -3/ H/sub 2/O/sub 2/. Pretreatment also induced resistance to broad-band NUV radiation in these strains. The addition of catalase to the post-irradiation plating medium increased survival to the same extent as that provided by pretreatment with 30 ..mu..mol dm/sup -3/ H/sub 2/O/sub 2/, in both strains. The NUV radiation sensitivity seen in B/r does not appear to be due to a deficiency in enzymes that scavenge H/sub 2/O/sub 2/, as a catalase deficient mutant, E. coli UM1, is more resistant to NUV radiation than B/r. Also, assays for H/sub 2/O/sub 2/ scavenging ability show little difference between AB1157 and B/r in this respect. Two hypotheses are put forward to account for the sensitivity of exponential phase B/r. Whilst it is apparent that peroxides and catalase do have a role in NUV radiation damage, it is clear that other factors also influence survival under certain conditions.

  12. PROBABILISTIC ESTIMATION OF VIBRATION INFLUENCE ON SENSITIVE SYSTEM ELEMENTS

    Directory of Open Access Journals (Sweden)

    A. A. Lobaty

    2009-01-01

    Full Text Available The paper considers a problem pertaining to an estimation of vibration influence on sensitive system elements. Dependences of intensity and probability of a process exit characterizing a condition of a system element for the preset range that allow to estimate serviceability and no-failure operation of the system have been obtained analytically in the paper

  13. Enhanced sensitivity of the RET proto-oncogene to ionizing radiation in vitro.

    Science.gov (United States)

    Volpato, Claudia Béu; Martínez-Alfaro, Minerva; Corvi, Raffaella; Gabus, Coralie; Sauvaigo, Sylvie; Ferrari, Pietro; Bonora, Elena; De Grandi, Alessandro; Romeo, Giovanni

    2008-11-01

    Exposure to ionizing radiation is a well-known risk factor for a number of human cancers, including leukemia and thyroid cancer. It has been known for a long time that exposure of cells to radiation results in extensive DNA damage; however, a small number of studies have tried to explain the mechanisms of radiation-induced carcinogenesis. The high prevalence of RET/PTC rearrangements in patients who have received external radiation, and the evidence of in vitro induction of RET rearrangements in human cells, suggest an enhanced sensitivity of the RET genomic region to damage by ionizing radiation. To assess whether RET is indeed more sensitive to radiations than other genomic regions, we used a COMET assay coupled with fluorescence in situ hybridization, which allows the measurement of DNA fragmentation in defined genomic regions of single cells. We compared the initial DNA damage of the genomic regions of RET, CXCL12/SDF1, ABL, MYC, PLA2G2A, p53, and JAK2 induced by ionizing radiation in both a lymphoblastoid and a fetal thyroid cell line. In both cell lines, RET fragmentation was significantly higher than in other genomic regions. Moreover, a differential distribution of signals within the COMET was associated with a higher percentage of RET fragments in the tail. RET was more susceptible to fragmentation in the thyroid-derived cells than in lymphoblasts. This enhanced susceptibility of RET to ionizing radiation suggests the possibility of using it as a radiation exposure marker.

  14. Charge-coupled devices as positron sensitive detectors of x-radiation

    International Nuclear Information System (INIS)

    Volkov, G.S.; Zazhivikhin, V.V.; Zajtsev, V.I.; Mishevskij, V.O.

    1996-01-01

    Results of theoretical and experimental studies on the sensitivity and spatial resolution of devices with a charge link (CLD) within the X-radiation energy range are described. The areas of the device application are considered

  15. Tumor necrosis factor alpha selectively sensitizes human immunodeficiency virus-infected cells to heat and radiation

    International Nuclear Information System (INIS)

    Wong, G.H.; McHugh, T.; Weber, R.; Goeddel, D.V.

    1991-01-01

    We report here that infection of the human T-cell line HUT-78 with human immunodeficiency virus (HIV) increases its sensitivity to heat and radiation toxicity. A possible explanation for this result may be the reduced expression of manganous superoxide dismutase (MnSOD) in HIV-infected cells compared to uninfected cells. Tumor necrosis factor alpha (TNF-alpha) further sensitizes HIV-infected cells but not uninfected cells to heat and radiation. This is consistent with the ability of TNF-alpha to induce the expression of MnSOD in uninfected but not in HIV-infected cells. HIV-infected HUT-78 cell lines engineered to overexpress MnSOD are more resistant to heat and radiation than HIV-infected cells that do not overexpress MnSOD. However, treatment with TNF-alpha still sensitizes these cells to heat and radiation

  16. Relationship of radiation sensitivity and aberrant DNA synthesis in repair deficient CHO cells

    International Nuclear Information System (INIS)

    Newman, C.N.; Hagler, H.; Miller, J.H.

    1986-11-01

    Comparison of alkaline sucrose gradient profiles of pulse-labeled DNA from a normal CHO cell line and its radiation-sensitive mutant, xrs-5, reveals significant differences in the replicon elongation/maturation process in these two cells. During a one hr period of growth subsequent to labeling, the molecular weight of pulse-labeled DNA from the mutant cell increases considerably more rapidly than that of the parent cell. For xrs-5, the presence of 2 mM deoxycytidine (CdR) in the culture medium reduces the replication rate to one approaching that of the parent cell growing in the standard medium. Corresponding uv resistance of the mutant likewise increases to nearly that of the parent cell line. These results suggest that the locus conferring radiation sensitivity to xrs-5 affects the DNA replisome complex and that replicative activity and radiation sensitivity are jointly modulated by CdR. 19 refs., 4 figs

  17. Sensitivity of an autoradiographic film to ionizing radiation of different types and energies

    International Nuclear Information System (INIS)

    Kras, A.B.; Lutzke-Birk, A.; Kalicki, A.

    1984-01-01

    The ORWO-AF3 autoradiographic film has been studied with regard to its sensitivity to beta radiation (E/sub max/ = 0.155 and 0.306 MeV, resp.), gamma radiation of more than 1 MeV and K/sub α/ and K/sub β/ radiation of about 5.9 KeV. The obtained data can be used for the correction of depth distribution profiles if elements are labelled with radioisotopes emitting mixed radiation, e.g., beta and gamma radiation

  18. A model to estimate insulin sensitivity in dairy cows

    Directory of Open Access Journals (Sweden)

    Holtenius Kjell

    2007-10-01

    Full Text Available Abstract Impairment of the insulin regulation of energy metabolism is considered to be an etiologic key component for metabolic disturbances. Methods for studies of insulin sensitivity thus are highly topical. There are clear indications that reduced insulin sensitivity contributes to the metabolic disturbances that occurs especially among obese lactating cows. Direct measurements of insulin sensitivity are laborious and not suitable for epidemiological studies. We have therefore adopted an indirect method originally developed for humans to estimate insulin sensitivity in dairy cows. The method, "Revised Quantitative Insulin Sensitivity Check Index" (RQUICKI is based on plasma concentrations of glucose, insulin and free fatty acids (FFA and it generates good and linear correlations with different estimates of insulin sensitivity in human populations. We hypothesized that the RQUICKI method could be used as an index of insulin function in lactating dairy cows. We calculated RQUICKI in 237 apparently healthy dairy cows from 20 commercial herds. All cows included were in their first 15 weeks of lactation. RQUICKI was not affected by the homeorhetic adaptations in energy metabolism that occurred during the first 15 weeks of lactation. In a cohort of 24 experimental cows fed in order to obtain different body condition at parturition RQUICKI was lower in early lactation in cows with a high body condition score suggesting disturbed insulin function in obese cows. The results indicate that RQUICKI might be used to identify lactating cows with disturbed insulin function.

  19. Tentative estimations of genetic hazards for the atomic bomb radiations, Hiroshima and Nagasaki

    International Nuclear Information System (INIS)

    Yoshikawa, Isao; Ayaki, Toshikazu

    1978-01-01

    The degree of genetic hazards which could appear in the offspring of A-bomb survivors (after F1) was estimated on the basis of a report by the United Nations Scientific Committee on the Effects of Atomic Radiation in 1977. The genetic effects of atomic bomb radiation on humans (insufficient data) were investigated on the basis of data obtained from animal experiments (especially mice). The incidence of chromosome aberration and gene mutation induced by radiation was estimated based on data obtained from experiments with marmosets and mice, respectively. The appearance time and frequency of chromosome aberration and dominant mutation were estimated based on the incidence of mutation induced by radiation. The effects of recessive mutation were determined by estimating the probability of such mutation in a presumed human group by means of a simulation method in which a computer was used. (Tsunoda, M.)

  20. UV- and gamma-radiation sensitive mutants of Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Jiang, C.Z.; Yen, C.N.; Cronin, K.; Mitchell, D.; Britt, A.B.

    1997-01-01

    Arabidopsis seedlings repair UV-induced DNA damage via light-dependent and -independent pathways. The mechanism of the ''dark repair'' pathway is still unknown. To determine the number of genes required for dark repair and to investigate the substrate-specificity of this process we isolated mutants with enhanced sensitivity to UV radiation in the absence of photoreactivating light. Seven independently derived UV sensitive mutants were isolated from an EMS-mutagenized population. These fell into six complementation groups, two of which (UVR1 and UVH1) have previously been defined. Four of these mutants are defective in the dark repair of UV-induced pyrimidine [6-4] pyrimidinone dimers. These four mutant lines are sensitive to the growth-inhibitory effects of gamma radiation, suggesting that this repair pathway is also involved in the repair of some type of gamma-induced DNA damage product. The requirement for the coordinate action of several different gene products for effective repair of pyrimidine dimers, as well as the nonspecific nature of the repair activity, is consistent with nucleotide excision repair mechanisms previously described in Saccharomyces cerevisiae and nonplant higher eukaryotes and inconsistent with substrate-specific base excision repair mechanisms found in some bacteria, bacteriophage, and fungi. (author)

  1. Radiation sensitive area detection device and method

    Science.gov (United States)

    Carter, Daniel C. (Inventor); Hecht, Diana L. (Inventor); Witherow, William K. (Inventor)

    1991-01-01

    A radiation sensitive area detection device for use in conjunction with an X ray, ultraviolet or other radiation source is provided which comprises a phosphor containing film which releases a stored diffraction pattern image in response to incoming light or other electromagnetic wave. A light source such as a helium-neon laser, an optical fiber capable of directing light from the laser source onto the phosphor film and also capable of channelling the fluoresced light from the phosphor film to an integrating sphere which directs the light to a signal processing means including a light receiving means such as a photomultiplier tube. The signal processing means allows translation of the fluoresced light in order to detect the original pattern caused by the diffraction of the radiation by the original sample. The optical fiber is retained directly in front of the phosphor screen by a thin metal holder which moves up and down across the phosphor screen and which features a replaceable pinhole which allows easy adjustment of the resolution of the light projected onto the phosphor film. The device produces near real time images with high spatial resolution and without the distortion that accompanies prior art devices employing photomultiplier tubes. A method is also provided for carrying out radiation area detection using the device of the invention.

  2. Radiation sensitive polymers of oxygen-substituted maleimides and elements containing same

    International Nuclear Information System (INIS)

    Wilson, J.C.

    1977-01-01

    Radiation sensitive polymers comprising from about 1 to 100 mole % of a polymerized maleimide monomer consisting of a hydrocarbon group having from 2 to 20 carbon atoms, preferably a bridged hydrocarbon group having from 6 to 10 carbon atoms and from 0 to about 99 mole % of at least one additional polymerized ethylenically unsaturated monomer are described. The polymers are soluble in organic solvents, possess desirably high glass transition temperatures and are capable of undergoing a photochemical reaction to yield polymers having isocyanate and oxy-substituted cyclopropane moieties which are capable of crosslinking in the presence of active hydrogen-containing compounds. The polymers are useful in radiation sensitive compositions and elements containing same

  3. Sensitivity of APSIM/ORYZA model due to estimation errors in solar radiation Análise de sensibilidade do modelo APSIM/ORYZA na estimava de erros na radiação solar

    Directory of Open Access Journals (Sweden)

    Alexandre Bryan Heinemann

    2012-01-01

    Full Text Available Crop models are ideally suited to quantify existing climatic risks. However, they require historic climate data as input. While daily temperature and rainfall data are often available, the lack of observed solar radiation (Rs data severely limits site-specific crop modelling. The objective of this study was to estimate Rs based on air temperature solar radiation models and to quantify the propagation of errors in simulated radiation on several APSIM/ORYZA crop model seasonal outputs, yield, biomass, leaf area (LAI and total accumulated solar radiation (SRA during the crop cycle. The accuracy of the 5 models for estimated daily solar radiation was similar, and it was not substantially different among sites. For water limited environments (no irrigation, crop model outputs yield, biomass and LAI was not sensitive for the uncertainties in radiation models studied here.Modelos de simulação de culturas são importantes para quantificar riscos climáticos. Esses modelos necessitam de dados climáticos como dados de entrada. Entretanto, dados diários de precipitação pluvial e temperatura são facilmente encontrados, enquanto dados de radiação solar (Rs limitam-se à aplicação de modelos de simulação de culturas. O objetivo deste estudo foi estimar a Rs utilizando cinco modelos de estimativa de radiação solar com base na temperatura do ar e quantificar a propagação de erros na radiação simulada na produtividade, biomassa, área foliar e radiação solar acumulada durante o ciclo da cultura do arroz de terras altas simulados pelo modelo de simulação ORYZA/APSIM. A acurácia dos cinco modelos de estimativa da radiação solar foi similar e não foi diferente entre os diferentes locais. Para ambientes que ocorre estresse hídrico, as saídas do modelo ORYZA/APSIM produtividade, biomassa e índice de área foliar não foram sensíveis às incertezas provenientes da radiação solar estimadas neste estudo.

  4. Modification of radiation sensitivity by salts of the metals beryllium and indium and the rare earths cerium, lanthanum and scandium

    International Nuclear Information System (INIS)

    Floersheim, G.L.

    1995-01-01

    The LD 50 of 46 salts of metals and rare earths (lanthanoids) was determined in mice. Half the LD 50 of the compounds was then combined with lethal radiation (10.5 Gy) and the modification of survival time was scored. Only the metals beryllium and indium and the rare earths cerium, lanthanum and scandium displayed activity in our assay. There were then tested at a wider range of lower doses and reduced survival time in a dose-dependent fashion. This appears to be compatible with enhancement of radiation sensitivity. The interaction of these metals and rare earths with radiation adds a new facet to their toxicological spectrum and, by enhancing radiation effects, may influence estimates of risk. On the other hand, radiosensitizing properties of the metals may be useful for further development of compounds to be used as adjuncts in specific situations of cancer radiotherapy. 31 refs., 1 fig., 1 tab

  5. Estimates of radiation doses and cancer risk from food intake in Korea

    International Nuclear Information System (INIS)

    Moon, Eun Kyeong; Lee, Won Jin; Ha, Wi Ho; Seo, Song Won; Jin, Young Woo; Jeong, Kyu Hwan; Yoon, Hae Jung; Kim, Hyoung Soo; Hwang, Myung Sil; Choi, Hoon

    2016-01-01

    After the Fukushima Daiichi nuclear power plant accident, a widespread public concern for radiation exposure through the contamination of domestic or imported food has continued worldwide. Because the internal exposure from contaminated food is an important consideration for human health effect, some studies for estimating radiation doses and cancer risk from the Fukushima nuclear accident have been conducted in several countries (1). The aims of the study is to estimate internal radiation dose and lifetime risks of cancer from food ingestion in Korean population. Our findings suggest no discernible increase n radiation doses or excess fatal cancer risk from food ingestion at this stage in Korea, and provide scientific evidence of the risk communication with general public associated with low-dose radiation exposure.

  6. Estimates of radiation doses and cancer risk from food intake in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Eun Kyeong; Lee, Won Jin [Korea University, Seoul (Korea, Republic of); Ha, Wi Ho; Seo, Song Won; Jin, Young Woo [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Jeong, Kyu Hwan [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of); Yoon, Hae Jung; Kim, Hyoung Soo; Hwang, Myung Sil [Ministry of Food and Drug Safety, Cheongju (Korea, Republic of); Choi, Hoon [Wonkwang University, Iksan (Korea, Republic of)

    2016-04-15

    After the Fukushima Daiichi nuclear power plant accident, a widespread public concern for radiation exposure through the contamination of domestic or imported food has continued worldwide. Because the internal exposure from contaminated food is an important consideration for human health effect, some studies for estimating radiation doses and cancer risk from the Fukushima nuclear accident have been conducted in several countries (1). The aims of the study is to estimate internal radiation dose and lifetime risks of cancer from food ingestion in Korean population. Our findings suggest no discernible increase n radiation doses or excess fatal cancer risk from food ingestion at this stage in Korea, and provide scientific evidence of the risk communication with general public associated with low-dose radiation exposure.

  7. Study of the uncertainty in estimation of the exposure of non-human biota to ionising radiation.

    Science.gov (United States)

    Avila, R; Beresford, N A; Agüero, A; Broed, R; Brown, J; Iospje, M; Robles, B; Suañez, A

    2004-12-01

    Uncertainty in estimations of the exposure of non-human biota to ionising radiation may arise from a number of sources including values of the model parameters, empirical data, measurement errors and biases in the sampling. The significance of the overall uncertainty of an exposure assessment will depend on how the estimated dose compares with reference doses used for risk characterisation. In this paper, we present the results of a study of the uncertainty in estimation of the exposure of non-human biota using some of the models and parameters recommended in the FASSET methodology. The study was carried out for semi-natural terrestrial, agricultural and marine ecosystems, and for four radionuclides (137Cs, 239Pu, 129I and 237Np). The parameters of the radionuclide transfer models showed the highest sensitivity and contributed the most to the uncertainty in the predictions of doses to biota. The most important ones were related to the bioavailability and mobility of radionuclides in the environment, for example soil-to-plant transfer factors, the bioaccumulation factors for marine biota and the gut uptake fraction for terrestrial mammals. In contrast, the dose conversion coefficients showed low sensitivity and contributed little to the overall uncertainty. Radiobiological effectiveness contributed to the overall uncertainty of the dose estimations for alpha emitters although to a lesser degree than a number of transfer model parameters.

  8. A new sensitive technique for study of radiation effects in amino acids

    International Nuclear Information System (INIS)

    Thwaites, D.I.; Buchan, G.; Ettinger, K.V.; Mallard, J.R.; Takavar, A.

    1976-01-01

    A new technique for the study of radiation induced free radicals in amino acids based on their reactions when untrapped by dissolution in water is reported. The light emission or lyoluminescence response of various amino acids to gamma radiation ( 60 Co) measured 4 hr after irradiation are shown. The sensitivities vary over three orders of magnitude, but there is little or no correlation between the lyoluminescent response and the structural type of amino acid. Dose-reponse curves indicate that the useful range extends from a few krad to a few hundred krad. Methods of extending the lower limits are discussed. Storage of irradiated material over a period of 4 months at 20 0 C showed changes of the order of 10%. Exposure to daylight has no effect on the light yield of amino acids. It is stated that the lyoluminescence technique is more sensitive than ESR in detecting radiation effects in amino acids. Lyoluminescence of irradiated proteins, RNA and DNA, has been observed. It appears that the new method may be particularly useful in providing information on the nature and magnitude of direct radiation damage in biologically important compounds and find applications in radiation dosimetry. (U.K.)

  9. Estimation of doses to patients with chronic radiation sickness from external occupational exposure

    International Nuclear Information System (INIS)

    Jia Delin; Dai Guangfu

    1991-01-01

    The doses to patients with chronic radiation sickness who had engaged in diagnostic radiology have been estimated according to the radiation work load, type and capacity of X-ray equipment, protection conditions, data of nationwide survey on doses to X-ray workers in China, or the data of dose monitoring in working places. Based on the activities of radium sources, time taken up in performing radium therapy, distance to radium sources and radiation work load, the doses to patients who had engaged in radium therapy have been estimated. The results of estimated average doses for 29 cases of chronic radiation sickness are given. Their average red marrow dose, trunk dose and effective dose equivalent are 1.3 Gy, 1.2 Gy and 1.6 Sv, respectively

  10. Research on Paramecium aurelia sensitivity factors to natural ionizing radiations

    International Nuclear Information System (INIS)

    Croute, F.; Soleilhavoup, J.P.; Gros, N.; Planel, H.

    1976-01-01

    Previous results have demonstrated that the proliferative activity of Paramecium aurelia is linked to the level of natural ionizing radiations since this activity is decreased under radiation protection (lead cell) and increased under chronic exposure to very low dose of 60 Co gamma rays. The results of this investigation indicate that cell sensitivity in spite of variations in natural irradiation levels can be isolated; they are called 'radioresistant' in opposition to 'radiosensitive' cells which present the other response. These characters are being retained for 9 months after the strains have been isolated. On the other hand, in the case of radiosensitive strains, it has been demonstrated that autogamy affected the cell response to background irradiation; no response at all occured on the very day when autogamy took place, but it reached a maximum level 8 days approximately after autogamy. Moreover, it has been proved that the catalase activity of Paramecium aurelia is higher than those already studied in other cell varieties. This great amount of catalase, which seems to vary with the age of cultures after autogamy, could act on Paramecium sensitivity to very low radiation doses [fr

  11. The sensitivity of active and inactive chromatin to ionizing radiation-induced DNA strand breakage

    International Nuclear Information System (INIS)

    Chiu, S.-M.; Oleinick, N.L.

    1982-01-01

    The sensitivity of DNA in actively transcribing and inactive states has been compared with regard to γ-radiation-induced single-strand break (SSB) induction. The results indicate that chromatin organization is important in the determination of the sensitivity of cellular DNA toward γ-radiation: Not only the yield but also the rate of repair of SSB is greater in the actively transcribing genes than in the total nuclear DNA. (author)

  12. Radiation studies on the microflora in a High-level radiation environment

    International Nuclear Information System (INIS)

    Zahiera, T.S.

    1988-01-01

    Radiation sensitivities of microflora in the air environment of the irradiation room of the 60 CO industrial irradiation facility of NCRRT was studied. The isolated microflora was identified to be the Gram positive micrococci, and the gram positive bacilli: coagulans and laterosporous. The study of the dose-survival counts dependence of the colonies showed the existance of the combination of at least two groups of micro-organisms with different sensitivities to radiation. The value of the radiation resistant group was found to be 2.2 10kGy. A method is presented to estimate the amount of each group in the initial culture. A study of the dependence of radiation lethality on the dose rate of radiation on the aerobic dry microbes showed no significant effect in the dose-rate range from 330 down to 44 Gy.min

  13. MicroRNA-203 Modulates the Radiation Sensitivity of Human Malignant Glioma Cells

    International Nuclear Information System (INIS)

    Chang, Ji Hyun; Hwang, Yeo Hyun; Lee, David J.; Kim, Dan Hyo; Park, Ji Min; Wu, Hong-Gyun; Kim, In Ah

    2016-01-01

    Purpose: We investigated whether miR-203 could modulate the radiation sensitivity of glioblastoma (GBM) cells and which target gene(s) could be involved. Methods and Materials: Three human malignant glioma (MG) cell lines and normal human astrocytes were transfected with control microRNA, pre-miR-203, or antisense miR-203. Real-time PCR (RT-PCR), clonogenic assays, immunofluorescence, and invasion/migration assays were performed. To predict the target(s), bioinformatics analyses using microRNA target databases were performed. Results: Overexpression of miR-203 increased the radiation sensitivity of all 3 human MG cell lines and prolonged radiation-induced γ-H2AX foci formation. Bioinformatics analyses suggested that miR-203 could be involved in post-transcriptional control of DNA repair, PI3K/AKT, SRC, and JAK/STAT3 and the vascular signaling pathway. Western blot analysis validated the fact that miR-203 downregulated ATM, RAD51, SRC, PLD2, PI3K-AKT, JAK-STAT3, VEGF, HIF-1α, and MMP2. Overexpression of miR-203 inhibited invasion and migration potentials, downregulated SLUG and Vimentin, and upregulated Claudin-1 and ZO1. Conclusions: These data demonstrate that miR-203 potentially controls DNA damage repair via the PI3K/AKT and JAK/STAT3 pathways and may collectively contribute to the modulation of radiation sensitivity in MG cells by inhibiting DNA damage repair, prosurvival signaling, and epithelium-mesenchyme transition. Taken together, these findings demonstrate that miR-203 could be a target for overcoming the radiation resistance of GBM.

  14. MicroRNA-203 Modulates the Radiation Sensitivity of Human Malignant Glioma Cells

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Ji Hyun [Department of Radiation Oncology, Graduate School of Medicine, Seoul National University, Seoul (Korea, Republic of); Hwang, Yeo Hyun; Lee, David J.; Kim, Dan Hyo; Park, Ji Min [Medical Science Research Institute, Seoul National University Bundang Hospital, Kyeonggido (Korea, Republic of); Wu, Hong-Gyun [Department of Radiation Oncology, Graduate School of Medicine, Seoul National University, Seoul (Korea, Republic of); Kim, In Ah, E-mail: inah228@snu.ac.kr [Department of Radiation Oncology, Graduate School of Medicine, Seoul National University, Seoul (Korea, Republic of); Medical Science Research Institute, Seoul National University Bundang Hospital, Kyeonggido (Korea, Republic of); Cancer Research Institute, Seoul National University, Seoul (Korea, Republic of)

    2016-02-01

    Purpose: We investigated whether miR-203 could modulate the radiation sensitivity of glioblastoma (GBM) cells and which target gene(s) could be involved. Methods and Materials: Three human malignant glioma (MG) cell lines and normal human astrocytes were transfected with control microRNA, pre-miR-203, or antisense miR-203. Real-time PCR (RT-PCR), clonogenic assays, immunofluorescence, and invasion/migration assays were performed. To predict the target(s), bioinformatics analyses using microRNA target databases were performed. Results: Overexpression of miR-203 increased the radiation sensitivity of all 3 human MG cell lines and prolonged radiation-induced γ-H2AX foci formation. Bioinformatics analyses suggested that miR-203 could be involved in post-transcriptional control of DNA repair, PI3K/AKT, SRC, and JAK/STAT3 and the vascular signaling pathway. Western blot analysis validated the fact that miR-203 downregulated ATM, RAD51, SRC, PLD2, PI3K-AKT, JAK-STAT3, VEGF, HIF-1α, and MMP2. Overexpression of miR-203 inhibited invasion and migration potentials, downregulated SLUG and Vimentin, and upregulated Claudin-1 and ZO1. Conclusions: These data demonstrate that miR-203 potentially controls DNA damage repair via the PI3K/AKT and JAK/STAT3 pathways and may collectively contribute to the modulation of radiation sensitivity in MG cells by inhibiting DNA damage repair, prosurvival signaling, and epithelium-mesenchyme transition. Taken together, these findings demonstrate that miR-203 could be a target for overcoming the radiation resistance of GBM.

  15. Estimation of solar radiation over Cambodia from long-term satellite data

    Energy Technology Data Exchange (ETDEWEB)

    Janjai, S.; Pankaew, P.; Laksanaboonsong, J. [Solar Energy Research Laboratory, Department of Physics, Faculty of Science, Silpakorn University, Nakhon Pathom 73000 (Thailand); Kitichantaropas, P. [Department of Alternative Energy Development and Efficiency, Ministry of Energy, 17 Rama 1 Road, Patumwan, Bangkok 10330 (Thailand)

    2011-04-15

    In this work, monthly average daily global solar irradiation over Cambodia was estimated from a long-term satellite data. A 14-year period (1995-2008) of visible channel data from GMS5, GOES9 and MTSAT-1R satellites were used to provide earth-atmospheric reflectivity. A satellite-based solar radiation model developed for a tropical environment was used to estimate surface solar radiation. The model relates the satellite-derived earth-atmospheric reflectivity to absorption and scattering coefficients of various atmospheric constituents. The absorption of solar radiation due to water vapour was calculated from precipitable water derived from ambient relative humidity and temperature. Ozone data from the TOMS and OMI satellite data were employed to compute the solar radiation absorption by ozone. The depletion of radiation due to aerosols was estimated from the visibility data. Five new solar radiation measuring stations were established at Cambodian cities, namely Siem Reap (13.87 N, 103.85 E), Kompong Thom (12.68 N, 104.88 E), Phnom Penh (11.55 N, 104.83 E), Sihanouke Ville (10.67 N, 103.63 E) and Kampot (10.70 N, 104.28 E). Global solar radiation measured at these stations was used to validate the model. The validation was also carried out by using solar radiation measured at four Thai meteorological stations. These stations are situated near the Cambodian border. Monthly average daily global irradiation from these stations was compared with that calculated from the model. The measured and calculated irradiation is in good agreement, with the root mean square difference of 6.3%, with respect to the mean values. After the validation, the model was used to calculate monthly average daily global solar irradiation over Cambodia. Based on this satellite-derived irradiation, solar radiation maps for Cambodia were generated. These maps show that solar radiation climate of this country is strongly influenced by the monsoons. A solar radiation database was also generated

  16. Inhibition of autophagy induced by TSA sensitizes colon cancer cell to radiation.

    Science.gov (United States)

    He, Gang; Wang, Yan; Pang, Xueli; Zhang, Bo

    2014-02-01

    Radiotherapy is one of the main treatments for clinical cancer therapy. However, its application was limited due to lack of radiosensitivity in some cancers. Trichostatin A (TSA) is a classic histone deacetylases inhibitor (HDACi) that specifically inhibits the biochemical functions of HDAC and is demonstrated to be an active anticancer drug. However, whether it could sensitize colon cancer to radiation is not clear. Our results showed that TSA enhanced the radiosensitivity of colon cancer cells as determined by CCK-8 and clonogenic survival assay. Moreover, apoptotic cell death induced by radiation was enhanced by TSA treatment. Additionally, TSA also induced autophagic response in colon cancer cells, while autophagy inhibition led to cell apoptosis and enhanced the radiosensitivity of colon cancer cells. Our data suggested that inhibition of cytoprotective autophagy sensitizes cancer cell to radiation, which might be further investigated for clinical cancer radiotherapy.

  17. A critical review on the estimation of daily global solar radiation from sunshine duration

    International Nuclear Information System (INIS)

    Yorukoglu, Mehmet; Celik, Ali Naci

    2006-01-01

    Models such as the Angstroem-Prescott equation are used to estimate global solar radiation from sunshine duration. In the literature, researchers investigate either the goodness of the model itself or the goodness of the estimation of global solar radiation based on a set of statistical parameters such as R 2 , RMSE, MBE, MABE, MPE and MAPE. If the former is the objective, then the statistical analysis should naturally be based on H/H o - S/S o (the ratio of daily solar radiation to extraterrestrial daily solar radiation vs. the ratio of sunshine duration to day length). If the latter is investigated, then the statistical analysis should be based on H c - H m (calculated daily solar radiation vs. measured daily solar radiation). A literature survey undertaken in the present article showed that these two data sets are apt to be confused, drawing the statistical parameters to be used in assessment of the estimation model from the latter data set or the vice versa set. The statistical parameters are clearly derived from the basics for both of the data sets, and the inconsistencies caused by this confusion and other factors are exposed. A case study of the estimation models and global solar radiation estimation from sunshine duration is presented using five different models (linear, quadratic, cubic, logarithmic and exponential), which are the most common models used in the literature, based on 6 years long measured hourly global solar radiation data

  18. Accuracy and sensitivity analysis on seismic anisotropy parameter estimation

    Science.gov (United States)

    Yan, Fuyong; Han, De-Hua

    2018-04-01

    There is significant uncertainty in measuring the Thomsen’s parameter δ in laboratory even though the dimensions and orientations of the rock samples are known. It is expected that more challenges will be encountered in the estimating of the seismic anisotropy parameters from field seismic data. Based on Monte Carlo simulation of vertical transversely isotropic layer cake model using the database of laboratory anisotropy measurement from the literature, we apply the commonly used quartic non-hyperbolic reflection moveout equation to estimate the seismic anisotropy parameters and test its accuracy and sensitivities to the source-receive offset, vertical interval velocity error and time picking error. The testing results show that the methodology works perfectly for noise-free synthetic data with short spread length. However, this method is extremely sensitive to the time picking error caused by mild random noises, and it requires the spread length to be greater than the depth of the reflection event. The uncertainties increase rapidly for the deeper layers and the estimated anisotropy parameters can be very unreliable for a layer with more than five overlain layers. It is possible that an isotropic formation can be misinterpreted as a strong anisotropic formation. The sensitivity analysis should provide useful guidance on how to group the reflection events and build a suitable geological model for anisotropy parameter inversion.

  19. Sensitivity of APSIM/ORYZA model due to estimation errors in solar radiation

    NARCIS (Netherlands)

    Heinemann, A.B.; Oort, van P.A.J.; Simoes Fernandes, D.; Maia, A.H.N.

    2012-01-01

    Crop models are ideally suited to quantify existing climatic risks. However, they require historic climate data as input. While daily temperature and rainfall data are often available, the lack of observed solar radiation (Rs) data severely limits site-specific crop modelling. The objective of this

  20. Effect of oxygen pressure on sensitivity of CR-39 used for astronauts radiation dosimetry

    International Nuclear Information System (INIS)

    Murai, T.; Yabe, S.; Nagamatsu, A.; Tawara, H.; Kumagai, H.; Miyazawa, Y.; Kitajo, K.; Kodaira, S.; Yasuda, N.

    2006-01-01

    The personal radiation dosimeters for astronauts are exposed to low-pressure oxygen gas (0.29 atmospheres) during extra-vehicle activities. CR-39 plastic track detectors are one of the typical passive dosimeters for space radiation monitoring. We investigated change in track formation sensitivity of the antioxidant-doped CR-39 plastic with which oxygen gas comes in contact at different pressures up to 2 atmospheres for 1h to 10 days. The oxygen effect on sensitivity was measured for the C, Si and Fe ions (10-200 keV/μm) from the HIMAC heavy ion accelerator. The sensitivity is obviously sensitive to oxygen pressure at heavy-ion exposures, but not sensitive to the experience of oxygen atmosphere before and after the ion exposures. The maximum sensitivity is obtained at 0.29 atmospheres. The present experimental data suggested that the effect depends on LET of incident particles. (author)

  1. Radiation sensitive polymer gel dosimeters

    International Nuclear Information System (INIS)

    Lepage, M.; Back, S.A.J.; Baldock, C.; Whittaker, A.K.; Rintoul, L.

    2000-01-01

    Full text: Radiation sensitive gels are studied for their potential to retain a permanent 3D dose distribution for applications in radiotherapy. Co-monomers dissolved in a tissue-equivalent hydrogel undergo a polymerization reaction upon absorption of ionizing radiation. The polymer formed influences the local spin-spin relaxation time (T 2 ) of the dosimeter that can be determined using magnetic resonance imaging (MRI). The relationship between T2 and the absorbed dose was studied for different initial chemical compositions. The aim was to find a model linking the changes in T 2 with absorbed dose to the initial composition of the dosimeter. It is believed this will help designing new gel dosimeters having desired properties to minimize the uncertainty in the determination of the dose distribution. 1 H, 13 C nuclear magnetic resonance spectroscopy and FT-Raman spectroscopy were used to quantify the amount of monomers still remaining after the absorption of a given dose of radiation. This data is used to model the changes of T2 as a function of the absorbed dose. A model of fast exchange of magnetization between three proton pools was used, where the fraction of protons (f x H ) in the x th pool is obtained from the chemical composition of the dosimeter and the apparent T2 of each pool is determined for a given composition. Initially, the protons are contained in two pools; a mobile (mob), which contains the water protons and the monomers protons, and a gelatin (gela) proton pool. The mobile pool is partially depleted as polymer is formed, the protons are transferred into the polymer (pol) pool. In the figure, the experimental data along with the calculated values are plotted for three different monomer concentrations, with the gelatin concentration fixed. The model is seen to provide a good fit to the experimental data

  2. Spontaneous baroreflex sensitivity estimates during graded bicycle exercise: a comparative study

    International Nuclear Information System (INIS)

    Vallais, Frederic; Baselli, Giuseppe; Lucini, Daniela; Pagani, Massimo; Porta, Alberto

    2009-01-01

    In the literature, several methods have been proposed for the assessment of the baroreflex sensitivity from spontaneous variability of heart period and systolic arterial pressure. The present study compares the most utilized approaches for the evaluation of the spontaneous baroreflex sensitivity (i.e. sequence-based, spectral, cross-spectral and model-based techniques) over a protocol capable of inducing a progressive decrease of the baroreflex sensitivity in the presence of a relevant respiratory drive (i.e. a stepwise dynamic bicycle exercise at 10%, 20% and 30% of the maximum nominal individual effort) in 16 healthy humans. Results demonstrated that the degree of correlation among the estimates is related to the structure of the model explicitly or implicitly assumed by the method and depends on the experimental condition (i.e. on the physiological mechanisms contemporaneously active with baroreflex, e.g. cardiopulmonary reflexes). However, even in the presence of a significant correlation, proportional and/or constant biases can be present, thus rendering spontaneous baroreflex estimates not interchangeable. We suggest that the comparison among different baroreflex sensitivity estimates might elucidate physiological mechanisms responsible for the relationship between heart period and systolic arterial pressure

  3. Assessing the potential of support vector machine for estimating daily solar radiation using sunshine duration

    International Nuclear Information System (INIS)

    Chen, Ji-Long; Li, Guo-Sheng; Wu, Sheng-Jun

    2013-01-01

    Highlights: • Support vector machine is used to estimate daily solar radiation from sunshine duration. • Seven SVM models using different input attributes are evaluated using 35 years long term data. • SVM models significantly outperform the empirical models. • The optimal SVM model is proposed. - Abstract: Estimation of solar radiation from sunshine duration offers an important alternative in the absence of measured solar radiation. However, due to the dynamic nature of atmosphere, accurate estimation of daily solar radiation has been being a challenging task. This paper presents an application of Support vector machine (SVM) to estimation of daily solar radiation using sunshine duration. Seven SVM models using different input attributes and five empirical sunshine-based models are evaluated using meteorological data at three stations in Liaoning province in China. All the SVM models give good performances and significantly outperform the empirical models. The newly developed model, SVM1 using sunshine ratio as input attribute, is preferred due to its greater accuracy and simple input attribute. It performs better in winter, while highest root mean square error and relative root mean square error are obtained in summer. The season-dependent SVM model is superior to the fixed model in estimation of daily solar radiation for winter, while consideration of seasonal variation of the data sets cannot improve the results for spring, summer and autumn. Moreover, daily solar radiation could be well estimated by SVM1 using the data from nearby stations. The results indicate that the SVM method would be a promising alternative over the traditional approaches for estimation of daily solar radiation

  4. The problem of multicollinearity in horizontal solar radiation estimation models and a new model for Turkey

    International Nuclear Information System (INIS)

    Demirhan, Haydar

    2014-01-01

    Highlights: • Impacts of multicollinearity on solar radiation estimation models are discussed. • Accuracy of existing empirical models for Turkey is evaluated. • A new non-linear model for the estimation of average daily horizontal global solar radiation is proposed. • Estimation and prediction performance of the proposed and existing models are compared. - Abstract: Due to the considerable decrease in energy resources and increasing energy demand, solar energy is an appealing field of investment and research. There are various modelling strategies and particular models for the estimation of the amount of solar radiation reaching at a particular point over the Earth. In this article, global solar radiation estimation models are taken into account. To emphasize severity of multicollinearity problem in solar radiation estimation models, some of the models developed for Turkey are revisited. It is observed that these models have been identified as accurate under certain multicollinearity structures, and when the multicollinearity is eliminated, the accuracy of these models is controversial. Thus, a reliable model that does not suffer from multicollinearity and gives precise estimates of global solar radiation for the whole region of Turkey is necessary. A new nonlinear model for the estimation of average daily horizontal solar radiation is proposed making use of the genetic programming technique. There is no multicollinearity problem in the new model, and its estimation accuracy is better than the revisited models in terms of numerous statistical performance measures. According to the proposed model, temperature, precipitation, altitude, longitude, and monthly average daily extraterrestrial horizontal solar radiation have significant effect on the average daily global horizontal solar radiation. Relative humidity and soil temperature are not included in the model due to their high correlation with precipitation and temperature, respectively. While altitude has

  5. Performance of Sayigh's universal formula in the estimation of global solar radiation in Ghana

    International Nuclear Information System (INIS)

    Oduro Afriyie, K.

    1995-10-01

    The performance of Sayigh's universal formula for the estimation of global solar radiation is tested against that of Angstrom-Black model for 13 stations in Ghana, using monthly mean daily global solar radiation averaged over the years 1957-1981. Sayigh's model is found not to perform as credibility as the Angstrom-Black model in the estimation of monthly global solar radiation in Ghana. Of the 156 values of monthly global solar radiation estimated by Sayigh's model, 123 (or 78.8%) had discrepancies of more than 10% with the measured values. The corresponding value for the Angstrom-Black model was 7 (or 4.5%). (author). 5 refs

  6. Analysis of solar radiation transfer: A method to estimate the porosity of a plastic shading net

    International Nuclear Information System (INIS)

    Abdel-Ghany, A.M.; Al-Helal, I.M.

    2011-01-01

    Plastic nets with opaque threads are frequently used for shading agricultural structures under high solar radiation conditions. A parameter that is often used to define a net is the net porosity (Π). Value of Π is usually estimated by one of three methods: image processing, direct beam transmittance, or solar radiation balance (hereafter radiation balance). Image processing is a rather slow process because it requires scanning the net sample at high resolution. The direct beam transmittance and radiation balance methods greatly overestimate Π because some of the solar radiation incident on the thread surfaces is forward scattered and add a considerable amount of radiation to that transmitted from the net pores directly. In this study, the radiation balance method was modified to estimate Π precisely. The amount of solar radiation scattered forward on the thread surfaces was estimated separately. Thus, the un-scattered solar radiation transmitted from the net pores directly, which describes the net porosity, Π could be estimated. This method, in addition to the image processing and the direct beam transmittance methods were used to estimate Π for different types of nets that are commonly used for shading structures in summer. Values of Π estimated by using the proposed method were in good accordance with those measured by the image processing method at a resolution of 4800 dpi. The direct beam transmittance and the radiation balance methods resulted in overestimation errors in the values of Π. This error strongly depends on the color of the net. The estimated errors were +14% for a green net and +37% for a white net when using the radiation balance method, and were +16% and +38%, respectively, when using the direct beam transmittance method. In the image processing method, a resolution of 2400 dpi is sufficient to estimate Π precisely and the higher resolutions showed no significant effect on the value of Π.

  7. Radiation sensitivity and gene expression in Enchytraeus japonensis, a species of earth worm

    International Nuclear Information System (INIS)

    Kubota, Yoshihisa

    2011-01-01

    The importance of radiological protection of the environment based on scientific principles is gaining international recognition as environment issues garner more attention. Earthworm (annelids) is a ubiquitous soil invertebrate known to play an important role in the maintenance of the soil ecosystem and thus selected as one of 12 kinds of reference animals and plants by the ICRP. In the present study, radiation sensitivity and gene expression in a recently described terrestrial oligochaete, Enchytraeus japonensis (E. japonensis) were studied. E. japonensis worms were acutely irradiated at increasing doses of gamma radiation, and the number of worms after 30 days of radiation was examined. The dose effectively inhibiting 50% of proliferation was approximately 22 Gy, which was comparable to the dose required to elicit growth inhibition in other earthworm species. In order to seek other biological endpoints for more sensitive and/or quicker assessment of radiation effects, gene expression profiling in E. japonensis was also performed, and poly (ADP-ribose) polymerase I (PARP I) was identified as a radiation-responsive gene. PARP I transcript level increased dose-dependently. (author)

  8. Estimation and analysis of spectral solar radiation over Cairo

    International Nuclear Information System (INIS)

    Abdel Wahab, M.M.; Omran, M.

    1994-05-01

    This work presents a methodology to estimate spectral diffuse and global radiation on horizontal surface. This method is validated by comparing with measured direct and global spectral radiation in four bands. The results show a good performance in cloudless conditions. The analysis of the ratio of surface values to extraterrestrial ones revealed an over-all depletion in the summer months. Also there was no evidence for any tendency for conversion of radiational components through different bands. The model presents excellent agreement with the measured values for (UV/G) ratio. (author). 7 refs, 4 figs, 3 tabs

  9. Estimated population exposure from nuclear power production and other radiation sources

    International Nuclear Information System (INIS)

    Pochin, E.E.

    1976-01-01

    Estimates are given of the total radiation dose from all forms of ionizing radiation resulting from nuclear power reduction. A power consumption of 1kW per head of population, derived entirely from nuclear energy, would increase the average radiation exposure of the whole population from 100mrem per year from natural sources (plus about 40mrem per year from medical procedures and other artificial causes) by about 6mrem per year. The genetically signifificant component of this increase would be about 4mrem per year. Available estimates of harm from radiation would indicate that this would give a risk per year per million of population of about 1 fatal induced malignancy, about the same number of malignancies fully treatable by operation, and, after many generations, about the same number of inherited defects, of greater or less severity, per year. Accidental injuries, particularly in constructional and mining work, would cause an estimated 1 fatality and 50 other accidents annually. Indications are given of the number of fatalities and accidents involved in equal power production by alternative methods, and of the value and limitations of such numerical comparisons in reaching decisions on the development of future power programmes

  10. A simple method to estimate the episode and programme sensitivity of breast cancer screening programmes.

    Science.gov (United States)

    Zorzi, Manuel; Guzzinati, Stefano; Puliti, Donella; Paci, Eugenio

    2010-01-01

    The estimation of breast cancer screening sensitivity is a major aim in the quality assessment of screening programmes. The proportional incidence method for the estimation of the sensitivity of breast cancer screening programmes is rarely used to estimate the underlying incidence rates. We present a method to estimate episode and programme sensitivity of screening programmes, based solely on cancers detected within screening cycles (excluding breast cancer cases at prevalent screening round) and on the number of incident cases in the total target population (steady state). The assumptions, strengths and limitations of the method are discussed. An example of calculation of episode and programme sensitivities is given, on the basis of the data from the IMPACT study, a large observational study of breast cancer screening programmes in Italy. The programme sensitivity from the fifth year of screening onwards ranged between 41% and 48% of the total number of cases in the target population. At steady state episode sensitivity was 0.70, with a trend across age groups, with lowest values in women aged 50-54 years (0.52) and highest in those 65-69 (0.77). The method is a very serviceable tool for estimating sensitivity in service screening programmes, and the results are comparable with those of other methods of estimation.

  11. Estimation of natural radiation background level and population dose in China

    International Nuclear Information System (INIS)

    Pan Ziqiang

    1992-01-01

    The authors describe in general the natural radiation background level in China, and based on available data present an estimated annual effective dose equivalent of the population to natural radiation that is some 2.3 mSv, of which about 0.54 mSv is from original γ radiation and about 0.8 mSv from radon and its short-lived daughters

  12. Methodology for estimating radiation dose rates to freshwater biota exposed to radionuclides in the environment

    International Nuclear Information System (INIS)

    Blaylock, B.G.; Frank, M.L.; O'Neal, B.R.

    1993-08-01

    The purpose of this report is to present a methodology for evaluating the potential for aquatic biota to incur effects from exposure to chronic low-level radiation in the environment. Aquatic organisms inhabiting an environment contaminated with radioactivity receive external radiation from radionuclides in water, sediment, and from other biota such as vegetation. Aquatic organisms receive internal radiation from radionuclides ingested via food and water and, in some cases, from radionuclides absorbed through the skin and respiratory organs. Dose rate equations, which have been developed previously, are presented for estimating the radiation dose rate to representative aquatic organisms from alpha, beta, and gamma irradiation from external and internal sources. Tables containing parameter values for calculating radiation doses from selected alpha, beta, and gamma emitters are presented in the appendix to facilitate dose rate calculations. The risk of detrimental effects to aquatic biota from radiation exposure is evaluated by comparing the calculated radiation dose rate to biota to the U.S. Department of Energy's (DOE's) recommended dose rate limit of 0.4 mGy h -1 (1 rad d -1 ). A dose rate no greater than 0.4 mGy h -1 to the most sensitive organisms should ensure the protection of populations of aquatic organisms. DOE's recommended dose rate is based on a number of published reviews on the effects of radiation on aquatic organisms that are summarized in the National Council on Radiation Protection and Measurements Report No. 109 (NCRP 1991). DOE recommends that if the results of radiological models or dosimetric measurements indicate that a radiation dose rate of 0. 1 mGy h -1 will be exceeded, then a more detailed evaluation of the potential ecological consequences of radiation exposure to endemic populations should be conducted

  13. An estimate of the doubling dose of ionizing radiation for humans

    International Nuclear Information System (INIS)

    Neel, J.V.

    1990-01-01

    All accumulated data on the children of Hiroshima and Nagasaki survivors have been analyzed employing the revised procedures for estimating gonadal radiation exposures that became effective in 1986. The basic statistical procedure employed has been to obtain a linear regression of indicator on the combined gonadal exposures of the parents. There is no statistically significant regression of indicator on dose for any of the indicators; however, it is accepted that some mutations were produced in the survivors of the bombings. The implications of the data for the genetic doubling dose of radiation for humans have been explored. The appropriate dose rate factor to be applied in extrapolating to the effect of chronic radiation is 2. This leads to a doubling dose estimate for the chronic irradiation of humans of between 3.4 and 4.5 Sv. The error is large but indeterminate, but the estimate is based on conservative assumptions. (3 tabs.)

  14. Estimation of available global solar radiation using sunshine duration over South Korea

    Science.gov (United States)

    Das, Amrita; Park, Jin-ki; Park, Jong-hwa

    2015-11-01

    Besides designing a solar energy system, accurate insolation data is also a key component for many biological and atmospheric studies. But solar radiation stations are not widely available due to financial and technical limitations; this insufficient number affects the spatial resolution whenever an attempt is made to construct a solar radiation map. There are several models in literature for estimating incoming solar radiation using sunshine fraction. Seventeen of such models among which 6 are linear and 11 non-linear, have been chosen for studying and estimating solar radiation on a horizontal surface over South Korea. The better performance of a non-linear model signifies the fact that the relationship between sunshine duration and clearness index does not follow a straight line. With such a model solar radiation over 79 stations measuring sunshine duration is computed and used as input for spatial interpolation. Finally monthly solar radiation maps are constructed using the Ordinary Kriging method. The cross validation results show good agreement between observed and predicted data.

  15. A new method for assessing how sensitivity and specificity of linkage studies affects estimation.

    Directory of Open Access Journals (Sweden)

    Cecilia L Moore

    Full Text Available While the importance of record linkage is widely recognised, few studies have attempted to quantify how linkage errors may have impacted on their own findings and outcomes. Even where authors of linkage studies have attempted to estimate sensitivity and specificity based on subjects with known status, the effects of false negatives and positives on event rates and estimates of effect are not often described.We present quantification of the effect of sensitivity and specificity of the linkage process on event rates and incidence, as well as the resultant effect on relative risks. Formulae to estimate the true number of events and estimated relative risk adjusted for given linkage sensitivity and specificity are then derived and applied to data from a prisoner mortality study. The implications of false positive and false negative matches are also discussed.Comparisons of the effect of sensitivity and specificity on incidence and relative risks indicate that it is more important for linkages to be highly specific than sensitive, particularly if true incidence rates are low. We would recommend that, where possible, some quantitative estimates of the sensitivity and specificity of the linkage process be performed, allowing the effect of these quantities on observed results to be assessed.

  16. Evaluation of the radiation-sensitizer/protector and/or antioxidant efficiencies using Fricke and PAG dosimeters

    International Nuclear Information System (INIS)

    Meesat, Ridthee; Jay-Gerin, Jean-Paul; Khalil, Abdelouahed; Lepage, Martin

    2009-01-01

    In this study, our aim is to assess the potential of Fricke and polyacrylamide gel (PAG) dosimeters to quantitatively evaluate the efficiency of potential radiation sensitizers/protectors and antioxidants. These compounds are of importance in radiotherapy as well as in disease prevention and promotion of health. The basic principle of the Fricke dosimeter is the radiation-induced oxidation of Fe 2+ to Fe 3+ in an aerated aqueous 0.4 M H 2 SO 4 . The production of ferric ions is most sensitive to the radical species produced in the radiolysis of water. Using this method, we observed that cystamine (one of the best of the known radioprotectors) can prevent oxydation of Fe 2+ from reactive radiolysis species. However, one obvious disadvantage of the Fricke dosimeter is that it operates under highly acidic conditions (pH 0.46), which may degrade biological compounds. In contrast, the pH of the polyacrylamide gel (PAG) dosimeter is almost neutral, such that degradation of compounds is less probable. A change in R 2 -dose sensitivity was observed in the presence of radiosensitizers/radioprotectors and antioxidants. The protective effect of Trolox (a well-known antioxidant) and thiourea (a radioprotector) was readily observed using the PAG dosimeter. Incorporation of iodinated radiation sensitizers such as NaI and an iodine contrast agent led to a quantifiable sensitizer enhancement ratio. These studies suggest that the Fricke and the PAG dosimeters have the potential to evaluate the efficiency of radiation sensitizers/protectors and antioxidants.

  17. A ΔdinB mutation that sensitizes Escherichia coli to the lethal effects of UV- and X-radiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Mei-Chong W.; Franco, Magdalena; Vargas, Doris M. [Department of Biological Sciences, San Jose State University, San Jose, CA 95192 (United States); Hudman, Deborah A. [Department of Microbiology and Immunology, A.T. Still University, Kirksville College of Osteopathic Medicine, Kirksville, MO 63501 (United States); White, Steven J. [Department of Biological Sciences, San Jose State University, San Jose, CA 95192 (United States); Fowler, Robert G., E-mail: rfowler@sjsu.edu [Department of Biological Sciences, San Jose State University, San Jose, CA 95192 (United States); Sargentini, Neil J. [Department of Microbiology and Immunology, A.T. Still University, Kirksville College of Osteopathic Medicine, Kirksville, MO 63501 (United States)

    2014-05-15

    Highlights: • We describe Δ(dinB-yafN)883(::kan), a novel dinB allele, referred to as ΔdinB883, a deletion that sensitizes E. coli cells to UV irradiation. • This UV radiation sensitivity is most acute in the early logarithmic phase of culture growth. • This UV radiation sensitivity is completely dependent upon a functional umuDC operon. • Sequencing reveals ΔdinB883 retains the proximal 161 nucleotides, i.e., 54 amino acids, of the wild-type sequence. • The ΔdinB883 mutant is hypothesized to produce a peptide of 83 amino acids, DinB883, that compromises UmuDC function. - Abstract: The DinB (PolIV) protein of Escherichia coli participates in several cellular functions. We investigated a dinB mutation, Δ(dinB-yafN)883(::kan) [referred to as ΔdinB883], which strongly sensitized E. coli cells to both UV- and X-radiation killing. Earlier reports indicated dinB mutations had no obvious effect on UV radiation sensitivity which we confirmed by showing that normal UV radiation sensitivity is conferred by the ΔdinB749 allele. Compared to a wild-type strain, the ΔdinB883 mutant was most sensitive (160-fold) in early to mid-logarithmic growth phase and much less sensitive (twofold) in late log or stationary phases, thus showing a growth phase-dependence for UV radiation sensitivity. This sensitizing effect of ΔdinB883 is assumed to be completely dependent upon the presence of UmuDC protein; since the ΔdinB883 mutation did not sensitize the ΔumuDC strain to UV radiation killing throughout log phase and early stationary phase growth. The DNA damage checkpoint activity of UmuDC was clearly affected by ΔdinB883 as shown by testing a umuC104 ΔdinB883 double-mutant. The sensitivities of the ΔumuDC strain and the ΔdinB883 ΔumuDC double-mutant strain were significantly greater than for the ΔdinB883 strain, suggesting that the ΔdinB883 allele only partially suppresses UmuDC activity. The ΔdinB883 mutation partially sensitized (fivefold) uvrA and uvr

  18. A trial of ACNU and radiation therapy with sensitizing agents for malignant gliomas

    Energy Technology Data Exchange (ETDEWEB)

    Kawano, Hirokazu; Hayashi, Minoru; Satoh, Kazufumi; Ishii, Hisamasa; Nakatsugawa, Shigekazu; Ishii, Yasushi (Fukui Medical School, Yoshida, Fukui (Japan))

    1989-11-01

    Twelve cases of malignant gliomas (anaplastic astrocytoma 4, glioblatoma 8, recurrent 3, primary 9) were treated with ACNU and radiation with sensitizing agents after the surgical removal of the tumor. BUdR, Vidarabine (Ara-A), Aciclovir (ACV) were applied for sensitizing agents. BUdR was administrated intraarterially prior to radiation (380 rad, two times a week), and Ara-A and ACV intravenously during and after the radiation. Total dosage of the radiation was 50-60 Grey for each case. All recurrent and eight primary patients died. The mean survival time of the recurrent patients was 17.7 months, while that of the primary patients was 13.4 months. One of the primary patients was glioblastoma and is still surviving more than 24 months by now. The complete response (CR) rate of the primary tumor patients observed by computerized tomography (CT) scan was 5/9. We can expect the availability of this trial for malignant gliomas because of high CR rate in primary tumor cases. (author).

  19. Global solar radiation estimation in Lavras region, Minas Gerais

    International Nuclear Information System (INIS)

    Dantas, A.A.A.; Carvalho, L.G. de; Ferreira, E.

    2003-01-01

    The objective of this work was the determination of the ''a'' and '' b'' constants of the Angstrom linear model in order to estimate the global solar radiation in Lavras, MG. The work was carried out in the Climatological Station of Lavras (ECP/INMET/UFLA), at the Federal University of Lavras, from December 2001 to November 2002, through insolation daily data and global solar radiation daily records. The ''a'' and '' b'' constants, that express the atmospheric transmitance, were obtained by regression analysis of those data. The obtained equation, Qg/Qt = 0,23 + 0,49 presented a determination coefficient of 0,89. The results are smaller than those suggested by the recommendations that uses the local latitude. According to the results, its possible to indicate the values of 0,23 and 0,49 to be used as the ''a'' and '' b'' constants on the Angstrom equation to estimate the global solar radiation in Lavras, MG. (author) [pt

  20. Position of cytogenetic examination of cosmonauts for the space radiation expose estimate

    Science.gov (United States)

    Snigireva, Galina; Novitskaya, Natalia; Ivanov, Alexander

    Analysis of chromosome aberrations in human peripheral blood lymphocytes is widely used for the indication and quantitative assessment of radiation. The dose, as estimated by the frequency of chromosome aberrations takes into account not only the physical impact of radiation on the human body but also its individual characteristics, such as radiation sensitivity and functional conditions during irradiation. The purpose of this study was to evaluate the influence of radiation on the chromosome aberration frequency in peripheral blood lymphocytes of the cosmonauts who participated in flights on the ISS (International Space Station). Cytogenetic examination was performed in the period 1992-2013 and included the analysis of chromosome aberrations using conventional Giemsa staining method in blood samples from 38 cosmonauts who participated in flights on the ISS. The cytogenetic examination results showed that cosmic flights lead to an increase of chromosome aberrations in the lymphocytes of cosmonauts. Compared with the pre-flight levels frequencies of dicentrics and centric rings (the radiation exposure markers) are about 4 times higher for cosmonauts after flights. The frequency of chromosome aberrations depends on the length of the flight and, correspondingly, on the accumulated dose of cosmic irradiation. Between flights, a decrease in the chromosome aberration frequency is observed, but even several years after a flight, the level of chromosome aberrations in the lymphocytes of cosmonauts remains high. Cytogenetic monitoring of cosmonauts can undoubtedly play an important role in comprehensive medical surveys of these individuals if we take into account the possible connection of higher levels of chromosomal aberrations with the risk of oncological diseases. Analysis of chromosome aberration dynamics after flights will allow the determination of individuals with an increased cancerogenese risk and provision of required treatments.

  1. Rapid Estimation of Gustatory Sensitivity Thresholds with SIAM and QUEST

    Directory of Open Access Journals (Sweden)

    Richard Höchenberger

    2017-06-01

    Full Text Available Adaptive methods provide quick and reliable estimates of sensory sensitivity. Yet, these procedures are typically developed for and applied to the non-chemical senses only, i.e., to vision, audition, and somatosensation. The relatively long inter-stimulus-intervals in gustatory studies, which are required to minimize adaptation and habituation, call for time-efficient threshold estimations. We therefore tested the suitability of two adaptive yes-no methods based on SIAM and QUEST for rapid estimation of taste sensitivity by comparing test-retest reliability for sucrose, citric acid, sodium chloride, and quinine hydrochloride thresholds. We show that taste thresholds can be obtained in a time efficient manner with both methods (within only 6.5 min on average using QUEST and ~9.5 min using SIAM. QUEST yielded higher test-retest correlations than SIAM in three of the four tastants. Either method allows for taste threshold estimation with low strain on participants, rendering them particularly advantageous for use in subjects with limited attentional or mnemonic capacities, and for time-constrained applications during cohort studies or in the testing of patients and children.

  2. In vivo sensitivity estimation and imaging acceleration with rotating RF coil arrays at 7 Tesla

    Science.gov (United States)

    Li, Mingyan; Jin, Jin; Zuo, Zhentao; Liu, Feng; Trakic, Adnan; Weber, Ewald; Zhuo, Yan; Xue, Rong; Crozier, Stuart

    2015-03-01

    Using a new rotating SENSitivity Encoding (rotating-SENSE) algorithm, we have successfully demonstrated that the rotating radiofrequency coil array (RRFCA) was capable of achieving a significant reduction in scan time and a uniform image reconstruction for a homogeneous phantom at 7 Tesla. However, at 7 Tesla the in vivo sensitivity profiles (B1-) become distinct at various angular positions. Therefore, sensitivity maps at other angular positions cannot be obtained by numerically rotating the acquired ones. In this work, a novel sensitivity estimation method for the RRFCA was developed and validated with human brain imaging. This method employed a library database and registration techniques to estimate coil sensitivity at an arbitrary angular position. The estimated sensitivity maps were then compared to the acquired sensitivity maps. The results indicate that the proposed method is capable of accurately estimating both magnitude and phase of sensitivity at an arbitrary angular position, which enables us to employ the rotating-SENSE algorithm to accelerate acquisition and reconstruct image. Compared to a stationary coil array with the same number of coil elements, the RRFCA was able to reconstruct images with better quality at a high reduction factor. It is hoped that the proposed rotation-dependent sensitivity estimation algorithm and the acceleration ability of the RRFCA will be particularly useful for ultra high field MRI.

  3. In vivo sensitivity estimation and imaging acceleration with rotating RF coil arrays at 7 Tesla.

    Science.gov (United States)

    Li, Mingyan; Jin, Jin; Zuo, Zhentao; Liu, Feng; Trakic, Adnan; Weber, Ewald; Zhuo, Yan; Xue, Rong; Crozier, Stuart

    2015-03-01

    Using a new rotating SENSitivity Encoding (rotating-SENSE) algorithm, we have successfully demonstrated that the rotating radiofrequency coil array (RRFCA) was capable of achieving a significant reduction in scan time and a uniform image reconstruction for a homogeneous phantom at 7 Tesla. However, at 7 Tesla the in vivo sensitivity profiles (B1(-)) become distinct at various angular positions. Therefore, sensitivity maps at other angular positions cannot be obtained by numerically rotating the acquired ones. In this work, a novel sensitivity estimation method for the RRFCA was developed and validated with human brain imaging. This method employed a library database and registration techniques to estimate coil sensitivity at an arbitrary angular position. The estimated sensitivity maps were then compared to the acquired sensitivity maps. The results indicate that the proposed method is capable of accurately estimating both magnitude and phase of sensitivity at an arbitrary angular position, which enables us to employ the rotating-SENSE algorithm to accelerate acquisition and reconstruct image. Compared to a stationary coil array with the same number of coil elements, the RRFCA was able to reconstruct images with better quality at a high reduction factor. It is hoped that the proposed rotation-dependent sensitivity estimation algorithm and the acceleration ability of the RRFCA will be particularly useful for ultra high field MRI. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Combined equations for estimating global solar radiation: Projection of radiation field over Japan under global warming conditions by statistical downscaling

    International Nuclear Information System (INIS)

    Iizumi, T.; Nishimori, M.; Yokozawa, M.

    2008-01-01

    For this study, we developed a new statistical model to estimate the daily accumulated global solar radiation on the earth's surface and used the model to generate a high-resolution climate change scenario of the radiation field in Japan. The statistical model mainly relies on precipitable water vapor calculated from air temperature and relative humidity on the surface to estimate seasonal changes in global solar radiation. On the other hand, to estimate daily radiation fluctuations, the model uses either a diurnal temperature range or relative humidity. The diurnal temperature range, calculated from the daily maximum and minimum temperatures, and relative humidity is a general output of most climate models, and pertinent observation data are comparatively easy to access. The statistical model performed well when estimating the monthly mean value, daily fluctuation statistics, and regional differences in the radiation field in Japan. To project the change in the radiation field for the years 2081 to 2100, we applied the statistical model to the climate change scenario of a high-resolution Regional Climate Model with a 20-km mesh size (RCM20) developed at the Meteorological Research Institute based on the Special Report for Emission Scenario (SRES)-A2. The projected change shows the following tendency: global solar radiation will increase in the warm season and decrease in the cool season in many areas of Japan, indicating that global warming may cause changes in the radiation field in Japan. The generated climate change scenario for the radiation field is linked to long-term and short-term changes in air temperature and relative humidity obtained from the RCM20 and, consequently, is expected to complement the RCM20 datasets for an impact assessment study in the agricultural sector

  5. An integrated model for radiation induced cancer

    International Nuclear Information System (INIS)

    Hall, E.J.; Varma, M.

    1994-01-01

    Risk estimates for radiation induced cancer are based on epidemiological data, principally the Japanese A bomb survivors. These estimates for radiation are better known than for any other environmental pollutant, but they do not relate directly to exposure to low doses and low dose rate. Recent rapid advances in molecular genetics, coupled with steady gains in cellular biology, radiation physics and chemistry led to the notion that the time may not be far off when it may be possible to arrive at human cancer risk estimates entirely from laboratory data. Whether risk estimates based on laboratory data will ever replace estimates based on epidemiological studies is an open question. What is clear is that laboratory data can supplement the present risk estimates by providing information on the relative effectiveness of high LET radiations, the importance of dose rate and dose protraction, and by identifying subpopulations which are unusually sensitive or resistant to radiation carcinogenesis. (author)

  6. Production and characterization of radiation-sensitive meiotic mutants of Coprinus cinereus

    International Nuclear Information System (INIS)

    Zolan, M.E.; Tremel, C.J.; Pukkila, P.J.

    1988-01-01

    We have isolated four gamma-sensitive mutants of the basidiomycete Coprinus cinereus. When homozygous, two of these (rad 3-1 and rad 9-1) produce fruiting bodies with very few viable basidiospores, the products of meiosis in this organism. A less radiation-sensitive allele of RAD 3, rad 3-2, causes no apparent meiotic defect in homozygous strains. Quantitative measurements of oidial survival of rad 3-1;rad 9-1 double mutants compared to the single mutants indicated that rad 3-1 and rad 9-1 mutants are defective in the same DNA repair pathway. In the pew viable basidiospores that are produced by these two strains, essentially normal levels of meiotic recombination can be detected. None of the mutants exhibits increased sensitivity to UV radiation. Cytological examination of meiotic chromosomes from mutant and wild-type fruiting bodies showed that rad 3-1 homozygous strains fail to condense and pair homologous chromosomes during prophase I. Although rad 9-1 strains are successful at chromosome pairing, meiosis is usually not completed in these mutants

  7. Theoretical estimation and validation of radiation field in alkaline hydrolysis plant

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Sanjay; Krishnamohanan, T.; Gopalakrishnan, R.K., E-mail: singhs@barc.gov.in [Radiation Safety Systems Division, Bhabha Atomic Research Centre, Mumbai (India); Anand, S. [Health Physics Division, Bhabha Atomic Research Centre, Mumbai (India); Pancholi, K. C. [Waste Management Division, Bhabha Atomic Research Centre, Mumbai (India)

    2014-07-01

    Spent organic solvent (30% TBP + 70% n-Dodecane) from reprocessing facility is treated at ETP in Alkaline Hydrolysis Plant (AHP) and Organic Waste Incineration (ORWIN) Facility. In AHP-ORWIN, there are three horizontal cylindrical tanks having 2.0 m{sup 3} operating capacity used for waste storage and transfer. The three tanks are, Aqueous Waste Tank (AWT), Waste Receiving Tank (WRT) and Dodecane Waste Tank (DWT). These tanks are en-housed in a shielded room in this facility. Monte Carlo N-Particle (MCNP) radiation transport code was used to estimate ambient radiation field levels when the storage tanks are having hold up volumes of desired specific activity levels. In this paper the theoretically estimated values of radiation field is compared with the actual measured dose.

  8. Lowland rice yield estimates based on air temperature and solar radiation

    International Nuclear Information System (INIS)

    Pedro Júnior, M.J.; Sentelhas, P.C.; Moraes, A.V.C.; Villela, O.V.

    1995-01-01

    Two regression equations were developed to estimate lowland rice yield as a function of air temperature and incoming solar radiation, during the crop yield production period in Pindamonhangaba, SP, Brazil. The following rice cultivars were used: IAC-242, IAC-100, IAC-101 and IAC-102. The value of optimum air temperature obtained was 25.0°C and of optimum global solar radiation was 475 cal.cm -2 , day -1 . The best agrometeorological model was the one that related least deviation of air temperature and solar radiation in relation to the optimum value obtained through a multiple linear regression. The yield values estimated by the model showed good fit to actual yields of lowland rice (less than 10%). (author) [pt

  9. Albedo and estimates of net radiation for green beans under polyethylene cover and field conditions

    International Nuclear Information System (INIS)

    Souza, J.L. de; Escobedo, J.F.; Tornero, M.T.T.

    1999-01-01

    This paper describes the albedo (r) and estimates of net radiation and global solar irradiance for green beans crop (Phaseolus vulgaris L.), cultivated in greenhouse with cover of polyethylene and field conditions, in Botucatu, SP, Brazil (22° 54' S; 48° 27' W; 850 m). The solar global irradiance (R g ) and solar reflected radiation (R r ) were used to estimate the albedo through the ratio between R r and R g . The diurnal curves of albedo were obtained for days with clear sky and partially cloudy conditions, for different phenological stages of the crop. The albedo ranged with the solar elevation, the environment and the phenological stages. The cloudiness range have almost no influence on the albedo diurnal amount. The estimation of radiation were made by linear regression, using the global solar irradiance (R g ) and net short-waves radiation (R c ) as independent variables. All estimates of radiation showed better adjustment for specific phenological periods compared to the entire crop growing cycle. The net radiation in the greenhouse has been estimated by the global solar irradiance measured at field conditions. (author) [pt

  10. Multisource Estimation of Long-term Global Terrestrial Surface Radiation

    Science.gov (United States)

    Peng, L.; Sheffield, J.

    2017-12-01

    Land surface net radiation is the essential energy source at the earth's surface. It determines the surface energy budget and its partitioning, drives the hydrological cycle by providing available energy, and offers heat, light, and energy for biological processes. Individual components in net radiation have changed historically due to natural and anthropogenic climate change and land use change. Decadal variations in radiation such as global dimming or brightening have important implications for hydrological and carbon cycles. In order to assess the trends and variability of net radiation and evapotranspiration, there is a need for accurate estimates of long-term terrestrial surface radiation. While large progress in measuring top of atmosphere energy budget has been made, huge discrepancies exist among ground observations, satellite retrievals, and reanalysis fields of surface radiation, due to the lack of observational networks, the difficulty in measuring from space, and the uncertainty in algorithm parameters. To overcome the weakness of single source datasets, we propose a multi-source merging approach to fully utilize and combine multiple datasets of radiation components separately, as they are complementary in space and time. First, we conduct diagnostic analysis of multiple satellite and reanalysis datasets based on in-situ measurements such as Global Energy Balance Archive (GEBA), existing validation studies, and other information such as network density and consistency with other meteorological variables. Then, we calculate the optimal weighted average of multiple datasets by minimizing the variance of error between in-situ measurements and other observations. Finally, we quantify the uncertainties in the estimates of surface net radiation and employ physical constraints based on the surface energy balance to reduce these uncertainties. The final dataset is evaluated in terms of the long-term variability and its attribution to changes in individual

  11. Methylation of the ATM promoter in glioma cells alters ionizing radiation sensitivity

    International Nuclear Information System (INIS)

    Roy, Kanaklata; Wang, Lilin; Makrigiorgos, G. Mike; Price, Brendan D.

    2006-01-01

    Glioblastomas are among the malignancies most resistant to radiation therapy. In contrast, cells lacking the ATM protein are highly sensitive to ionizing radiation. The relationship between ATM protein expression and radiosensitivity in 3 glioma cell lines was examined. T98G cells exhibited normal levels of ATM protein, whereas U118 and U87 cells had significantly lower levels of ATM and increased (>2-fold) sensitivity to ionizing radiation compared to T98G cells. The ATM promoter was methylated in U87 cells. Demethylation by azacytidine treatment increased ATM protein levels in the U87 cells and decreased their radiosensitivity. In contrast, the ATM promoter in U118 cells was not methylated. Further, expression of exogenous ATM did not significantly alter the radiosensitivity of U118 cells. ATM expression is therefore heterogeneous in the glioma cells examined. In conclusion, methylation of the ATM promoter may account for the variable radiosensitivity and heterogeneous ATM expression in a fraction of glioma cells

  12. Estimating skin sensitization potency from a single dose LLNA.

    Science.gov (United States)

    Roberts, David W

    2015-04-01

    Skin sensitization is an important aspect of safety assessment. The mouse local lymph node assay (LLNA) developed in the 1990 s is an in vivo test used for skin sensitization hazard identification and characterization. More recently a reduced version of the LLNA (rLLNA) has been developed as a means of identifying, but not quantifying, sensitization hazard. The work presented here is aimed at enabling rLLNA data to be used to give quantitative potency information that can be used, inter alia, in modeling and read-across approaches to non-animal based potency estimation. A probit function has been derived enabling estimation of EC3 from a single dose. This has led to development of a modified version of the rLLNA, whereby as a general principle the SI value at 10%, or at a lower concentration if 10% is not testable, is used to calculate the EC3. This version of the rLLNA has been evaluated against a selection of chemicals for which full LLNA data are available, and has been shown to give EC3 values in good agreement with those derived from the full LLNA. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Hydroxyurea as a radiation sensitizer in malignancies of the head and neck

    International Nuclear Information System (INIS)

    Mohanta, P.K.; Singhal, R.M.; Jindel, R.; Sharma, R.L.; Julka, P.K.

    1992-01-01

    A prospective randomized trail was undertaken to assess the efficacy of hydroxyurea as a radiation sensitizer. Disease control rates achieved significance (p<0.01) values only at 2 and 3 months post-radiation. At the end of 2 years of follow-up there was no significant difference in the disease control rate between the control and the experimental group. The toxicity in the experimental group was acceptable. One patient had severe vomiting; 13% showed severe mucositis, 4.5% had erythema of the treatment area and 40% showed dry desquamation. There seems to be no added advantage of hydroxyurea and radiation over radiation alone. (author). 12 refs., 2 tabs

  14. Estimating radiative feedbacks from stochastic fluctuations in surface temperature and energy imbalance

    Science.gov (United States)

    Proistosescu, C.; Donohoe, A.; Armour, K.; Roe, G.; Stuecker, M. F.; Bitz, C. M.

    2017-12-01

    Joint observations of global surface temperature and energy imbalance provide for a unique opportunity to empirically constrain radiative feedbacks. However, the satellite record of Earth's radiative imbalance is relatively short and dominated by stochastic fluctuations. Estimates of radiative feedbacks obtained by regressing energy imbalance against surface temperature depend strongly on sampling choices and on assumptions about whether the stochastic fluctuations are primarily forced by atmospheric or oceanic variability (e.g. Murphy and Forster 2010, Dessler 2011, Spencer and Braswell 2011, Forster 2016). We develop a framework around a stochastic energy balance model that allows us to parse the different contributions of atmospheric and oceanic forcing based on their differing impacts on the covariance structure - or lagged regression - of temperature and radiative imbalance. We validate the framework in a hierarchy of general circulation models: the impact of atmospheric forcing is examined in unforced control simulations of fixed sea-surface temperature and slab ocean model versions; the impact of oceanic forcing is examined in coupled simulations with prescribed ENSO variability. With the impact of atmospheric and oceanic forcing constrained, we are able to predict the relationship between temperature and radiative imbalance in a fully coupled control simulation, finding that both forcing sources are needed to explain the structure of the lagged-regression. We further model the dependence of feedback estimates on sampling interval by considering the effects of a finite equilibration time for the atmosphere, and issues of smoothing and aliasing. Finally, we develop a method to fit the stochastic model to the short timeseries of temperature and radiative imbalance by performing a Bayesian inference based on a modified version of the spectral Whittle likelihood. We are thus able to place realistic joint uncertainty estimates on both stochastic forcing and

  15. Problems and solutions in the estimation of genetic risks from radiation and chemicals

    International Nuclear Information System (INIS)

    Russell, W.L.

    1980-01-01

    Extensive investigations with mice on the effects of various physical and biological factors, such as dose rate, sex and cell stage, on radiation-induced mutation have provided an evaluation of the genetics hazards of radiation in man. The mutational results obtained in both sexes with progressive lowering of the radiation dose rate have permitted estimation of the mutation frequency expected under the low-level radiation conditions of most human exposure. Supplementing the studies on mutation frequency are investigations on the phenotypic effects of mutations in mice, particularly anatomical disorders of the skeleton, which allow an estimation of the degree of human handicap associated with the occurrence of parallel defects in man. Estimation of the genetic risk from chemical mutagens is much more difficult, and the research is much less advanced. Results on transmitted mutations in mice indicate a poor correlation with mutation induction in non-mammalian organisms

  16. Sensitivity to low-dose radiation in radiosensitive ''wasted'' mice

    International Nuclear Information System (INIS)

    Paunesku, T.; Protic, M.; Woloschak, G. E.

    1999-01-01

    Mice homozygous for the autosomal recessive wasted mutation (wst/wst) have abnormalities in T-lymphocytes and in the anterior motor neuron cells of the spinal cord, leading to sensitivity to low doses of ionizing radiation, hind limb paralysis, and immunodeficiency. This defect results in a failure to gain weight by 20 days and death at 28 days of age. The wasted mutation (previously mapped to mouse chromosome 2) is shown to be a 3-bp deletion in a T-cell-specific (and perhaps motor-neuron-specific) regulatory region (promoter) of the proliferating cell nuclear antigen (PCNA) gene on mouse chromosome 2. A regulatory element is also shown to be important in PCNA expression in T-lymphocytes and motor neuron cells afflicted by the 3-bp deletion in the PCNA promoter. The model is as follows: Absence of PCNA expression in the thymuses (and motor neurons) of wasted mice causes cellular apoptosis; this absence of expression is mediated by a positive transactor that can bind to the wild-type but not the wasted mutant PCNA promoter; the bound protein induces late expression of PCNA in T-lymphocytes and prevents onset of radiation sensitivity in the cells

  17. Pattern statistics on Markov chains and sensitivity to parameter estimation

    Directory of Open Access Journals (Sweden)

    Nuel Grégory

    2006-10-01

    Full Text Available Abstract Background: In order to compute pattern statistics in computational biology a Markov model is commonly used to take into account the sequence composition. Usually its parameter must be estimated. The aim of this paper is to determine how sensitive these statistics are to parameter estimation, and what are the consequences of this variability on pattern studies (finding the most over-represented words in a genome, the most significant common words to a set of sequences,.... Results: In the particular case where pattern statistics (overlap counting only computed through binomial approximations we use the delta-method to give an explicit expression of σ, the standard deviation of a pattern statistic. This result is validated using simulations and a simple pattern study is also considered. Conclusion: We establish that the use of high order Markov model could easily lead to major mistakes due to the high sensitivity of pattern statistics to parameter estimation.

  18. Estimation of Downwelling Surface Longwave Radiation under Heavy Dust Aerosol Sky

    Directory of Open Access Journals (Sweden)

    Chunlei Wang

    2017-02-01

    Full Text Available The variation of aerosols, especially dust aerosol, in time and space plays an important role in climate forcing studies. Aerosols can effectively reduce land surface longwave emission and re-emit energy at a colder temperature, which makes it difficult to estimate downwelling surface longwave radiation (DSLR with satellite data. Using the latest atmospheric radiative transfer code (MODTRAN 5.0, we have simulated the outgoing longwave radiation (OLR and DSLR under different land surface types and atmospheric profile conditions. The results show that dust aerosol has an obvious “warming” effect to longwave radiation compared with other aerosols; that aerosol longwave radiative forcing (ALRF increased with the increasing of aerosol optical depth (AOD; and that the atmospheric water vapor content (WVC is critical to the understanding of ALRF. A method is proposed to improve the accuracy of DSLR estimation from satellite data for the skies under heavy dust aerosols. The AOD and atmospheric WVC under cloud-free conditions with a relatively simple satellite-based radiation model yielding the high accurate DSLR under heavy dust aerosol are used explicitly as model input to reduce the effects of dust aerosol on the estimation of DSLR. Validations of the proposed model with satellites data and field measurements show that it can estimate the DSLR accurately under heavy dust aerosol skies. The root mean square errors (RMSEs are 20.4 W/m2 and 24.2 W/m2 for Terra and Aqua satellites, respectively, at the Yingke site, and the biases are 2.7 W/m2 and 9.6 W/m2, respectively. For the Arvaikheer site, the RMSEs are 23.2 W/m2 and 19.8 W/m2 for Terra and Aqua, respectively, and the biases are 7.8 W/m2 and 10.5 W/m2, respectively. The proposed method is especially applicable to acquire relatively high accurate DSLR under heavy dust aerosol using MODIS data with available WVC and AOD data.

  19. Estimation of solar radiation energy of Ethiopia from sunshine data

    Energy Technology Data Exchange (ETDEWEB)

    Argaw, N. [Tampere Univ., Dep. of Civil Engineering, Tampere (Finland)

    1996-12-31

    Measurements of global solar radiation on a horizontal surface, for nine meteorological stations in Ethiopia, are compared with their corresponding values computed based on Angstroem relations. Regression coefficients are obtained and correlation equations are determined to predict the global solar radiation. The results shows that Angstroem relations are valid for Ethiopian locations, and the correlation equations can be used to predict the monthly mean daily global solar radiation in the locations considered in this study. This study also proves that the results made by ENEC et al, using the generalised Frere`s coefficients, is unsatisfactory for the prediction of monthly mean daily global solar radiation. On the other hand, the work of Dogniaux and Lemoine, using the regression coefficients a and b as a function of latitude and atmospheric turbidity and grouping large range latitudes to extend the application, can give better estimation. However, for more accurate estimation, several additional meteorological stations have to be evaluated and their regression coefficients have to be determined before grouping in to one relationship to express the variations of a and b under any conditions of equipment and location. (author) 1 fig., 11 tabs., 22 refs.

  20. Non-analog Monte Carlo estimators for radiation momentum deposition

    International Nuclear Information System (INIS)

    Hykes, Joshua M.; Densmore, Jeffery D.

    2009-01-01

    The standard method for calculating radiation momentum deposition in Monte Carlo simulations is the analog estimator, which tallies the change in a particle's momentum at each interaction with the matter. Unfortunately, the analog estimator can suffer from large amounts of statistical error. In this paper, we present three new non-analog techniques for estimating momentum deposition. Specifically, we use absorption, collision, and track-length estimators to evaluate a simple integral expression for momentum deposition that does not contain terms that can cause large amounts of statistical error in the analog scheme. We compare our new non-analog estimators to the analog estimator with a set of test problems that encompass a wide range of material properties and both isotropic and anisotropic scattering. In nearly all cases, the new non-analog estimators outperform the analog estimator. The track-length estimator consistently yields the highest performance gains, improving upon the analog-estimator figure of merit by factors of up to two orders of magnitude.

  1. Specificity and sensitivity of NMR based urinary metabolic biomarker for radiation injury

    International Nuclear Information System (INIS)

    Tyagi, Ritu; Watve, Apurva; Khushu, Subash; Rana, Poonam

    2016-01-01

    Increasing burden of natural background radiation and terrestrial radionuclides is a big threat of radiation exposure to the population at large. It is necessary to develop biomarker of ionizing radiation exposure that can be used for mass screening in the event of a radiological mass casualty incident. Metabolomics has already been proven as an excellent developing prospect for capturing diseases specific metabolic signatures as possible biomarkers. The aim of the present study is to evaluate the sensitivity and specificity of the urinary metabolites after whole body radiation exposure which can further be used as early predictive marker. The PLS-DA based ROC curve depicted taurine as a biomarker of early radiation injury. This study along with other 'omics' technique will be useful to help design strategies for non-invasive radiation biodosimetry through metabolomics in human populations

  2. Estimating the horizontal diffuse solar radiation over the Central Anatolia Region of Turkey

    International Nuclear Information System (INIS)

    Aras, Haydar; Balli, Ozgur; Hepbasli, Arif

    2006-01-01

    The main objective of the present study is to develop new hybrid models to predict the monthly average daily diffuse solar radiation on a horizontal surface over Turkey's Central Anatolia Region (CAR), which covers the 12 provinces (Afyon, Ankara, Cankiri, Corum, Eskisehir, Kayseri, Kirsehir, Konya, Nevsehir, Nigde, Sivas and Yozgat), as an example. The models proposed by many investigators to estimate the diffuse solar radiation were reviewed. Although the global solar radiation and sunshine duration have been measured by the Turkish State Meteorological Service (DMI) over all the country since 1964, the diffuse solar radiation has not been measured. The twelve new hybrid models for estimating the monthly average daily diffuse solar radiation on a horizontal surface in the CAR were validated, and thus, the most accurate model was selected for guiding future projects

  3. Near-ultraviolet radiation-induced damage using an actinic reticuloid strain as a possible sensitive model

    International Nuclear Information System (INIS)

    Kralli, A.

    1987-01-01

    The introduction to this thesis consists of a review of current concepts regarding the effects of ultraviolet radiation on living cells. Actinic reticuloid, a disease condition for which a near-ultraviolet radiation cellular sensitivity has been proposed as an underlying cause, is described. The experimental work, the broad aim of which is to expand existing knowledge of the effects of near-ultraviolet radiation that may lead to cell lethality, has centred upon the irradiation of a normal human skin fibroblast strain, GM730, and a strain derived from an actinic reticuloid patient, AR6LO. Parts 1 and 2 examine the effects of the irradiation on both normal and actinic fibroblast sensitivities to a range of ultraviolet wavelengths. The next two sections include observations on the protective effect of Trolox-C, a vitamin E analogue and the sensitization resulting from the replacement of the irradiation medium by a deuterated one, using both normal and actinic reticuloid fibroblasts. The final part examines broad-band near- and far-ultraviolet radiation induced membrane damage by the use of radioactively labelled rubidium as a potassium analogue. (author)

  4. Radiation-Induced Leukemia at Doses Relevant to Radiation Therapy: Modeling Mechanisms and Estimating Risks

    Science.gov (United States)

    Shuryak, Igor; Sachs, Rainer K.; Hlatky, Lynn; Mark P. Little; Hahnfeldt, Philip; Brenner, David J.

    2006-01-01

    Because many cancer patients are diagnosed earlier and live longer than in the past, second cancers induced by radiation therapy have become a clinically significant issue. An earlier biologically based model that was designed to estimate risks of high-dose radiation induced solid cancers included initiation of stem cells to a premalignant state, inactivation of stem cells at high radiation doses, and proliferation of stem cells during cellular repopulation after inactivation. This earlier model predicted the risks of solid tumors induced by radiation therapy but overestimated the corresponding leukemia risks. Methods: To extend the model to radiation-induced leukemias, we analyzed in addition to cellular initiation, inactivation, and proliferation a repopulation mechanism specific to the hematopoietic system: long-range migration through the blood stream of hematopoietic stem cells (HSCs) from distant locations. Parameters for the model were derived from HSC biologic data in the literature and from leukemia risks among atomic bomb survivors v^ ho were subjected to much lower radiation doses. Results: Proliferating HSCs that migrate from sites distant from the high-dose region include few preleukemic HSCs, thus decreasing the high-dose leukemia risk. The extended model for leukemia provides risk estimates that are consistent with epidemiologic data for leukemia risk associated with radiation therapy over a wide dose range. For example, when applied to an earlier case-control study of 110000 women undergoing radiotherapy for uterine cancer, the model predicted an excess relative risk (ERR) of 1.9 for leukemia among women who received a large inhomogeneous fractionated external beam dose to the bone marrow (mean = 14.9 Gy), consistent with the measured ERR (2.0, 95% confidence interval [CI] = 0.2 to 6.4; from 3.6 cases expected and 11 cases observed). As a corresponding example for brachytherapy, the predicted ERR of 0.80 among women who received an inhomogeneous low

  5. Development and evaluation of neural network models to estimate daily solar radiation at Córdoba, Argentina

    International Nuclear Information System (INIS)

    Bocco, M.

    2006-01-01

    The objective of this work was to develop neural network models of backpropagation type to estimate solar radiation based on extraterrestrial radiation data, daily temperature range, precipitation, cloudiness and relative sunshine duration. Data from Córdoba, Argentina, were used for development and validation. The behaviour and adjustment between values observed and estimates obtained by neural networks for different combinations of input were assessed. These estimations showed root mean square error between 3.15 and 3.88 MJ m -2 d -1 . The latter corresponds to the model that calculates radiation using only precipitation and daily temperature range. In all models, results show good adjustment to seasonal solar radiation. These results allow inferring the adequate performance and pertinence of this methodology to estimate complex phenomena, such as solar radiation [pt

  6. Applicability of empirical correlations for estimating global solar radiation

    International Nuclear Information System (INIS)

    Gopinathan, K.K.; Baholo, M.

    1987-01-01

    Three empirical models suggested by different investigators, for estimating monthly mean daily global radiation on a horizontal surface, are compared statistically to test their universal applicability. The models thus compared are those suggested by Rietveld, Glover and McCulloch and Gopinathan. The models are compared by calculating the root mean square error, mean bias error and mean relative percentage error values. The model suggested by Gopinathan yields the best results in terms of root mean square, mean bias and mean percentage errors. The model by Rietveld is the second best and the model by Glover and McCulloch comes at third place. However, the differences in the magnitude of errors among the three models are very small and all the three models can be considered to be accurate for global radiation estimation for any location in the world

  7. An update on standards for radiation in the environment and associated estimates of risk

    International Nuclear Information System (INIS)

    Kocher, D.C.

    1989-01-01

    This presentation reviews current and proposed standards, recommendations, and guidances for limiting routine radiation exposures of the public, and estimates the risk corresponding to standards, recommendations, and guidances. These estimates provide a common basis for comparing different criteria for limiting public exposures to radiation, as well as hazardous chemicals

  8. Radiation Sensitivity of Societies

    International Nuclear Information System (INIS)

    Uray, I.; Hille, R.; Rohloff, F.

    1998-01-01

    Investigating the mean dose values as well as dose distributions of the inhabitants in a large number of settlements maybe set down, that the generally calculated mean exposure is a good measure to estimate the collective dose for a settlement or for a large region. Its uncertainty is however too high, and the dose distribution is very broad (250-300%) to estimate the external exposure of any single person. However, models may take into account more details of influencing factors. First of all the surveying of the local contamination density distribution could be more detailed and more accurate. Measure and distribution of the internal exposure (is not the subject of the present work, but it is similarly problematic. In this situation it is very difficult to search the dose-effect relationships exactly, and is also difficult to satisfy the people that their fears are unjustified. Society pays the costs of the nuclear industry and of the possible consequences as well. But society can neither control the nuclear industry nor the possible consequences at all. Both science and single people are waiting for more and detailed information. If we can not decrease the r adiation sensitivity of societies , then the consequences of Chernobyl will be growing unnecessarily, and it can strongly retard the justified development of the nuclear industry as well. (author)

  9. Targeting Nucleophosmin 1 Represents a Rational Strategy for Radiation Sensitization

    Energy Technology Data Exchange (ETDEWEB)

    Sekhar, Konjeti R. [Department of Radiation Oncology, Vanderbilt University School of Medicine, Nashville, Tennessee (United States); Benamar, Mouadh [Department of Radiation Oncology, University of Virginia School of Medicine, Charlottesville, Virginia (United States); Venkateswaran, Amudhan; Sasi, Soumya [Department of Radiation Oncology, Vanderbilt University School of Medicine, Nashville, Tennessee (United States); Penthala, Narsimha R.; Crooks, Peter A. [Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas (United States); Hann, Stephen R. [Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee (United States); Geng, Ling [Department of Radiation Oncology, Vanderbilt University School of Medicine, Nashville, Tennessee (United States); Balusu, Ramesh [Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas (United States); Abbas, Tarek [Department of Radiation Oncology, University of Virginia School of Medicine, Charlottesville, Virginia (United States); Freeman, Michael L., E-mail: michael.freeman@vanderbilt.edu [Department of Radiation Oncology, Vanderbilt University School of Medicine, Nashville, Tennessee (United States)

    2014-08-01

    Purpose: To test the hypothesis that small molecule targeting of nucleophosmin 1 (NPM1) represents a rational approach for radiosensitization. Methods and Materials: Wilde-type and NPM1-deficient mouse embryo fibroblasts (MEFs) were used to determine whether radiosensitization produced by the small molecule YTR107 was NPM1 dependent. The stress response to ionizing radiation was assessed by quantifying pNPM1, γH2AX, and Rad51 foci, neutral comet tail moment, and colony formation. NPM1 levels in a human-derived non-small-cell lung cancer (NSCLC) tissue microarray (TMA) were determined by immunohistochemistry. YTR107-mediated radiosensitization was assessed in NSCLC cell lines and xenografts. Results: Use of NPM1-null MEFs demonstrated that NPM1 is critical for DNA double- strand break (DSB) repair, that loss of NPM1 increases radiation sensitivity, and that YTR107-mediated radiosensitization is NPM1 dependent. YTR107 was shown to inhibit NPM1 oligomerization and impair formation of pNPM1 irradiation-induced foci that colocalized with γH2AX foci. Analysis of the TMA demonstrated that NPM1 is overexpressed in subsets of NSCLC. YTR107 inhibited DNA DSB repair and radiosensitized NSCLC lines and xenografts. Conclusions: These data demonstrate that YTR107-mediated targeting of NPM1 impairs DNA DSB repair, an event that increases radiation sensitivity.

  10. Targeting Nucleophosmin 1 Represents a Rational Strategy for Radiation Sensitization

    International Nuclear Information System (INIS)

    Sekhar, Konjeti R.; Benamar, Mouadh; Venkateswaran, Amudhan; Sasi, Soumya; Penthala, Narsimha R.; Crooks, Peter A.; Hann, Stephen R.; Geng, Ling; Balusu, Ramesh; Abbas, Tarek; Freeman, Michael L.

    2014-01-01

    Purpose: To test the hypothesis that small molecule targeting of nucleophosmin 1 (NPM1) represents a rational approach for radiosensitization. Methods and Materials: Wilde-type and NPM1-deficient mouse embryo fibroblasts (MEFs) were used to determine whether radiosensitization produced by the small molecule YTR107 was NPM1 dependent. The stress response to ionizing radiation was assessed by quantifying pNPM1, γH2AX, and Rad51 foci, neutral comet tail moment, and colony formation. NPM1 levels in a human-derived non-small-cell lung cancer (NSCLC) tissue microarray (TMA) were determined by immunohistochemistry. YTR107-mediated radiosensitization was assessed in NSCLC cell lines and xenografts. Results: Use of NPM1-null MEFs demonstrated that NPM1 is critical for DNA double- strand break (DSB) repair, that loss of NPM1 increases radiation sensitivity, and that YTR107-mediated radiosensitization is NPM1 dependent. YTR107 was shown to inhibit NPM1 oligomerization and impair formation of pNPM1 irradiation-induced foci that colocalized with γH2AX foci. Analysis of the TMA demonstrated that NPM1 is overexpressed in subsets of NSCLC. YTR107 inhibited DNA DSB repair and radiosensitized NSCLC lines and xenografts. Conclusions: These data demonstrate that YTR107-mediated targeting of NPM1 impairs DNA DSB repair, an event that increases radiation sensitivity

  11. [Fitness of workers with particular sensitivity to non-ionizing radiation].

    Science.gov (United States)

    Moccaldi, R; Grandi, C

    2011-01-01

    Chapter IV and V of Title VIII of D.Lgs 81/2008, implementing the Directives 2004/40/EC respectively (protection of workers exposed to electromagnetic fields) and 2006/25/EC (protection of workers exposed to artificial optical radiation), make frequent reference to the workers as "at particular risk" namely those workers who, by their biological or pathological characteristics, lifestyles, multiple exposure to other risk factors, may be more susceptible to the effects of electromagnetic fields or optical radiation. The identification of workers with particular sensitivity is essential for health surveillance, in particular regarding the determination of fitness. The operational guidance on Title VIII of D.Lgs 81/2008 drafted by the Italian Technical Coordination for Safety in the workplace of Regions and Autonomous Provinces (Document No. 1-2009), in collaboration with ISPESL and ISS, includes a preliminary identification of the categories of workers considered most susceptible to the risk from exposure to electromagnetic fields and optical radiation. On the basis of this information the authors identified more focused and structured classes of workers to be considered as "particularly sensitive to risk", it is not only related to a specific wavelength, but based on a comprehensive risk assessment in individual exposure situation, with regard to the exposure levels, any multiple exposures, the possibility of adequate personal protection.

  12. Use of an improved radiation amplification factor to estimate the effect of total ozone changes on action spectrum weighted irradiances and an instrument response function

    Science.gov (United States)

    Herman, Jay R.

    2010-12-01

    Multiple scattering radiative transfer results are used to calculate action spectrum weighted irradiances and fractional irradiance changes in terms of a power law in ozone Ω, U(Ω/200)-RAF, where the new radiation amplification factor (RAF) is just a function of solar zenith angle. Including Rayleigh scattering caused small differences in the estimated 30 year changes in action spectrum-weighted irradiances compared to estimates that neglect multiple scattering. The radiative transfer results are applied to several action spectra and to an instrument response function corresponding to the Solar Light 501 meter. The effect of changing ozone on two plant damage action spectra are shown for plants with high sensitivity to UVB (280-315 nm) and those with lower sensitivity, showing that the probability for plant damage for the latter has increased since 1979, especially at middle to high latitudes in the Southern Hemisphere. Similarly, there has been an increase in rates of erythemal skin damage and pre-vitamin D3 production corresponding to measured ozone decreases. An example conversion function is derived to obtain erythemal irradiances and the UV index from measurements with the Solar Light 501 instrument response function. An analytic expressions is given to convert changes in erythemal irradiances to changes in CIE vitamin-D action spectrum weighted irradiances.

  13. Uncertain quantities in estimating radiation exposure from former landfill sites: groundwater pathway

    International Nuclear Information System (INIS)

    Kistinger, S.

    2005-01-01

    With regard to the title of the closed meeting, ''Realistic determination of radiation exposure'', we state that generic estimates can by definition never be realistic, but that it is their purpose to be conservative. However this still leaves us with the question of how conservative a generic dose estimate must be and how the existing variability or indeterminacy of reality should be taken into account. This paper presents various methods for dealing with this indeterminacy in generic dose estimates. The example used for this purpose is a simplified model for the determination of the potential radiation exposure caused by a former landfill site via the water pathway

  14. Validation of radiation dose estimations in VRdose: comparing estimated radiation doses with observed radiation doses

    International Nuclear Information System (INIS)

    Nystad, Espen; Sebok, Angelia; Meyer, Geir

    2004-04-01

    The Halden Virtual Reality Centre has developed work-planning software that predicts the radiation exposure of workers in contaminated areas. To validate the accuracy of the predicted radiation dosages, it is necessary to compare predicted doses to actual dosages. During an experimental study conducted at the Halden Boiling Water Reactor (HBWR) hall, the radiation exposure was measured for all participants throughout the test session, ref. HWR-681 [3]. Data from this experimental study have also been used to model tasks in the work-planning software and gather data for predicted radiation exposure. Two different methods were used to predict radiation dosages; one method used all radiation data from all the floor levels in the HBWR (all-data method). The other used only data from the floor level where the task was conducted (isolated data method). The study showed that the all-data method gave predictions that were on average 2.3 times higher than the actual radiation dosages. The isolated-data method gave predictions on average 0.9 times the actual dosages. (Author)

  15. Modulation of DNA methylation levels sensitizes doxorubicin-resistant breast adenocarcinoma cells to radiation-induced apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Luzhna, Lidia [Department of Biological Sciences, University of Lethbridge, AB, Canada T1K 3M4 (Canada); Kovalchuk, Olga, E-mail: olga.kovalchuk@uleth.ca [Department of Biological Sciences, University of Lethbridge, AB, Canada T1K 3M4 (Canada)

    2010-02-05

    Chemoresistant tumors often fail to respond to other cytotoxic treatments such as radiation therapy. The mechanisms of chemo- and radiotherapy cross resistance are not fully understood and are believed to be epigenetic in nature. We hypothesize that MCF-7 cells and their doxorubicin-resistant variant MCF-7/DOX cells may exhibit different responses to ionizing radiation due to their dissimilar epigenetic status. Similar to previous studies, we found that MCF-7/DOX cells harbor much lower levels of global DNA methylation than MCF-7 cells. Furthermore, we found that MCF-7/DOX cells had lower background apoptosis levels and were less responsive to radiation than MCF-7 cells. Decreased radiation responsiveness correlated to significant global DNA hypomethylation in MCF-7/DOX cells. Here, for the first time, we show that the radiation resistance of MCF-7/DOX cells can be reversed by an epigenetic treatment - the application of methyl-donor SAM. SAM-mediated reversal of DNA methylation led to elevated radiation sensitivity in MCF-7/DOX cells. Contrarily, application of SAM on the radiation sensitive and higher methylated MCF-7 cells resulted in a decrease in their radiation responsiveness. This data suggests that a fine balance of DNA methylation is needed to insure proper radiation and drug responsiveness.

  16. Comparison of two different techniques on the human lymphocytes morphology and sensitivity to gamma radiation

    International Nuclear Information System (INIS)

    Kol, R.

    1985-02-01

    The lymphocytes in the peripheral blood are divided into two main subclasses: T cells and B cells. These differ from each other in function and in their sensitivity to radiation. The effort to study which group is more sensitive to radiation has resulted in many contradictory results. In the present study we examined whether the methods that are used to separate the lymphocytes from the whole blood, before their separation into subclasses, have an effect on the cells and whether this might contribute to the contradictory results. Blood samples were taken from several normal donors and each sample was devided into two fractions. Lymphocytes in each fraction were separated by one of the two following methods: a) sedimentation of erythrocytes by gravitation; b) separation on Ficoll-Paque density gradient. For cells obtained by these two methods, the ultrastructure was examined by electron microscopy and their ability to incorporate radioactive thymidine was measured. Samples separated on Ficoll-Paque showed a subpopulation with morphological changes similar to those occuring in lymphocytes undergoing stimulation. Unstimulated cells separated on Ficoll-Paque showed greater sensitivity to radiation. The effect of gamma radiation on the capability of lymphocytes to undergo transformation in response to three mitogens; PHA, PWM and Con A was examined. Different mitogens stimulate different lymphocytes subpopulations. There was no difference between the two separation methods regarding the sensitivity to gamma radiation of stimulation by PAH and PWM. The transformation by Con A of lymphocytes separated on Ficoll-Paque was more radiosensitive. This could indicate that the separation by Ficoll-Paque density gradient causes a selective depletion of T lymphocytes that react with Con A and are considered more radioresistant. The use of different methods for separating lymphocytes from whole blood- each has a different influence on the cells- can contribute to contradictory

  17. The use of a sky camera for solar radiation estimation based on digital image processing

    International Nuclear Information System (INIS)

    Alonso-Montesinos, J.; Batlles, F.J.

    2015-01-01

    The necessary search for a more sustainable global future means using renewable energy sources to generate pollutant-free electricity. CSP (Concentrated solar power) and PV (photovoltaic) plants are the systems most in demand for electricity production using solar radiation as the energy source. The main factors affecting final electricity generation in these plants are, among others, atmospheric conditions; therefore, knowing whether there will be any change in the solar radiation hitting the plant's solar field is of fundamental importance to CSP and PV plant operators in adapting the plant's operation mode to these fluctuations. Consequently, the most useful technology must involve the study of atmospheric conditions. This is the case for sky cameras, an emerging technology that allows one to gather sky information with optimal spatial and temporal resolution. Hence, in this work, a solar radiation estimation using sky camera images is presented for all sky conditions, where beam, diffuse and global solar radiation components are estimated in real-time as a novel way to evaluate the solar resource from a terrestrial viewpoint. - Highlights: • Using a sky camera, the solar resource has been estimated for one minute periods. • The sky images have been processed to estimate the solar radiation at pixel level. • The three radiation components have been estimated under all sky conditions. • Results have been presented for cloudless, partially-cloudy and overcast conditions. • For beam and global radiation, the nRMSE value is of about 11% under overcast skies.

  18. Differential sensitivity of Chironomus and human hemoglobin to gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Gaikwad, Pallavi S. [Stress Biology Research Laboratory, Department of Zoology, Savitribai Phule University, Pune, 411007 (India); Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085 (India); Panicker, Lata [Solid State Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085 (India); Mohole, Madhura; Sawant, Sangeeta [Bioinformatics Center, Savitribai Phule Pune University, Pune, 411007 (India); Mukhopadhyaya, Rita [Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085 (India); Nath, Bimalendu B., E-mail: bbnath@gmail.com [Stress Biology Research Laboratory, Department of Zoology, Savitribai Phule University, Pune, 411007 (India)

    2016-08-05

    Chironomus ramosus is known to tolerate high doses of gamma radiation exposure. Larvae of this insect possess more than 95% of hemoglobin (Hb) in its circulatory hemolymph. This is a comparative study to see effect of gamma radiation on Hb of Chironomus and humans, two evolutionarily diverse organisms one having extracellular and the other intracellular Hb respectively. Stability and integrity of Chironomus and human Hb to gamma radiation was compared using biophysical techniques like Dynamic Light Scattering (DLS), UV-visible spectroscopy, fluorescence spectrometry and CD spectroscopy after exposure of whole larvae, larval hemolymph, human peripheral blood, purified Chironomus and human Hb. Sequence- and structure-based bioinformatics methods were used to analyze the sequence and structural similarities or differences in the heme pockets of respective Hbs. Resistivity of Chironomus Hb to gamma radiation is remarkably higher than human Hb. Human Hb exhibited loss of heme iron at a relatively low dose of gamma radiation exposure as compared to Chironomus Hb. Unlike human Hb, the heme pocket of Chironomus Hb is rich in aromatic amino acids. Higher hydophobicity around heme pocket confers stability of Chironomus Hb compared to human Hb. Previously reported gamma radiation tolerance of Chironomus can be largely attributed to its evolutionarily ancient form of extracellular Hb as evident from the present study. -- Highlights: •Comparison of radiation tolerant Chironomus Hb and radiation sensitive Human Hb. •Amino acid composition of midge and human heme confer differential hydrophobicity. •Heme pocket of evolutionarily ancient midge Hb provide gamma radiation resistivity.

  19. Differential sensitivity of Chironomus and human hemoglobin to gamma radiation

    International Nuclear Information System (INIS)

    Gaikwad, Pallavi S.; Panicker, Lata; Mohole, Madhura; Sawant, Sangeeta; Mukhopadhyaya, Rita; Nath, Bimalendu B.

    2016-01-01

    Chironomus ramosus is known to tolerate high doses of gamma radiation exposure. Larvae of this insect possess more than 95% of hemoglobin (Hb) in its circulatory hemolymph. This is a comparative study to see effect of gamma radiation on Hb of Chironomus and humans, two evolutionarily diverse organisms one having extracellular and the other intracellular Hb respectively. Stability and integrity of Chironomus and human Hb to gamma radiation was compared using biophysical techniques like Dynamic Light Scattering (DLS), UV-visible spectroscopy, fluorescence spectrometry and CD spectroscopy after exposure of whole larvae, larval hemolymph, human peripheral blood, purified Chironomus and human Hb. Sequence- and structure-based bioinformatics methods were used to analyze the sequence and structural similarities or differences in the heme pockets of respective Hbs. Resistivity of Chironomus Hb to gamma radiation is remarkably higher than human Hb. Human Hb exhibited loss of heme iron at a relatively low dose of gamma radiation exposure as compared to Chironomus Hb. Unlike human Hb, the heme pocket of Chironomus Hb is rich in aromatic amino acids. Higher hydophobicity around heme pocket confers stability of Chironomus Hb compared to human Hb. Previously reported gamma radiation tolerance of Chironomus can be largely attributed to its evolutionarily ancient form of extracellular Hb as evident from the present study. -- Highlights: •Comparison of radiation tolerant Chironomus Hb and radiation sensitive Human Hb. •Amino acid composition of midge and human heme confer differential hydrophobicity. •Heme pocket of evolutionarily ancient midge Hb provide gamma radiation resistivity.

  20. Age dependent radiation sensitivity of eggs of Dysdercus koenigii Fabricius

    International Nuclear Information System (INIS)

    Harwalkar, M.R.

    1992-01-01

    Eggs of Dysdercus koenigii Fabricius aged 0 to 2, 24, 48 and 72 hr were irradiated with X-ray doses ranging between 3 to 15 Gy to determine radiation sensitivity. It was observed that age of the eggs greatly influenced their response to radiation treatment. A dose of 6 Gy was required to prevent hatching of 0 to 2 hr old eggs but older eggs (24 and 48 hr) required 9 and 15 Gy, respectively, to bring about the same effect. At all the doses hatchability of 72 hr old irradiated eggs was much higher than those irradiated at younger age. Survival of nymphs emerging from 72 hr irradiated eggs at different dose levels was found to be dose dependent. Percentage of nymphs metamorphosing into adults decreased with increasing radiation dose received at the embryonic stage. (author). 21 refs., 2 figs

  1. Using mortality data to estimate radiation effects on breast cancer incidence

    International Nuclear Information System (INIS)

    Hoel, D.G.; Dinse, G.E.

    1990-01-01

    In this paper we combine Japanese data on radiation exposure and cancer mortality with U.S. data on cancer incidence and lethality to estimate the effects of ionizing radiation on cancer incidence. The analysis is based on the mathematical relationship between the mortality rate and the incidence and lethality rates, as well as on statistical models that relate Japanese incidence rates to U.S. incidence rates and radiation risk factors. Our approach assumes that the risk of death from causes other than the cancer does not depend on whether or not the cancer is present, and among individuals with the cancer, the risk of death attributable to the cancer is the same in Japan and the U.S. and is not affected by radiation exposure. In particular, we focus on the incidence of breast cancer in Japanese women and how this incidence is affected by radiation risk factors. The analysis uses Japanese exposure and mortality data from the Radiation Effects Research Foundation study of atomic bomb survivors and U.S. incidence and lethality data from the Surveillance, Epidemiology, and End Results Registry. Even without Japanese incidence data, we obtain reasonable estimates of the incidence of breast cancer in unexposed Japanese women and identify the radiation risk factors that affect this incidence. Our analysis demonstrates that the age at exposure is an important risk factor, but that the incidence of breast cancer is not affected by the city of residence (Nagasaki versus Hiroshima) or the time since exposure

  2. Metal-containing radiation-sensitive polymers

    International Nuclear Information System (INIS)

    Lee, A.Y.

    1986-01-01

    The copolymers of methyl methacrylate with alkali metal salts (Na, K, and Cs) of methacrylic acid have been prepared by saponification K, and Cs) of methylacrylic acid have been prepared by saponification of the homopolymer poly(methyl methacrylate), PMMA. Low degrees of hydrolysis have been achieved by a heterogeneous system, and from the infrared spectra it has been confirmed that the ester groups of the methyl methacrylates are directly converted to the metal salts of methacrylic acid. These ionomers exhibit pseudo high molecular weights in gel permeation chromatogram, but no appreciable increase in intrinsic viscosities is observed in comparison to PMMA. The coordinated inorganic polymers poly[(dithio-2,2'-diacetato)bis(dimethylsulfoxide)dioxouranium(VI)] and poly[{methylenebis(thio)-2,2'-bis(acetato)}bis(dimethylsulfoxide)dioxouranium(VI)]have been synthesized in dimethyl sulfoxide solution with about 90% yield. The degree of polymerization and the number of average molecular weights of these polymers have been assessed by high resolution nuclear magnetic resonance, with which the acetato end group to the bridging ligand group ratios have been determined. The polymers bridging ligand group ratios have been determined. The polymers have been characterized by employing various techniques: infrared spectra, thermal gravimetric analysis, 13 C solid state nuclear magnetic resonance, and gel permeation chromatography. The prepared polymer samples have been subjected to various doses of 137 Cs gamma radiation under which the polymers predominantly undergo chain scission. The radiation sensitivities of the polymers are assessed by G values which are obtained from gel permeation chromatograms. These uranyl polymers exhibit unusually high G values

  3. Best estimate radiation heat transfer model developed for TRAC-BD1

    International Nuclear Information System (INIS)

    Spore, J.W.; Giles, M.M.; Shumway, R.W.

    1981-01-01

    A best estimate radiation heat transfer model for analysis of BWR fuel bundles has been developed and compared with 8 x 8 fuel bundle data. The model includes surface-to-surface and surface-to-two-phase fluid radiation heat transfer. A simple method of correcting for anisotropic reflection effects has been included in the model

  4. Estimating the approximation error when fixing unessential factors in global sensitivity analysis

    Energy Technology Data Exchange (ETDEWEB)

    Sobol' , I.M. [Institute for Mathematical Modelling of the Russian Academy of Sciences, Moscow (Russian Federation); Tarantola, S. [Joint Research Centre of the European Commission, TP361, Institute of the Protection and Security of the Citizen, Via E. Fermi 1, 21020 Ispra (Italy)]. E-mail: stefano.tarantola@jrc.it; Gatelli, D. [Joint Research Centre of the European Commission, TP361, Institute of the Protection and Security of the Citizen, Via E. Fermi 1, 21020 Ispra (Italy)]. E-mail: debora.gatelli@jrc.it; Kucherenko, S.S. [Imperial College London (United Kingdom); Mauntz, W. [Department of Biochemical and Chemical Engineering, Dortmund University (Germany)

    2007-07-15

    One of the major settings of global sensitivity analysis is that of fixing non-influential factors, in order to reduce the dimensionality of a model. However, this is often done without knowing the magnitude of the approximation error being produced. This paper presents a new theorem for the estimation of the average approximation error generated when fixing a group of non-influential factors. A simple function where analytical solutions are available is used to illustrate the theorem. The numerical estimation of small sensitivity indices is discussed.

  5. Sensitivity of Escherichia coli acrA Mutants to Psoralen plus Near-Ultraviolet Radiation

    DEFF Research Database (Denmark)

    Hansen, M. Trier

    1982-01-01

    The sensitivity to psoralen plus near-ultraviolet radiation (PUVA) was compared in a pair of E. coli strains differing at the acrA locus. Survival was determined for both bacteria and phage λ. AcrA mutant cells were 40 times more sensitive than wild type to the lethal effect of PUVA. Free λ phage...

  6. The potential sensitivity of tropical plants to increased ultraviolet-B radiation

    International Nuclear Information System (INIS)

    Ziska, L.H.

    1996-01-01

    Little is known concerning the impact of stratospheric ozone depletion and increasing ultraviolet (UV)-B radiation on the phenology and growth of tropical plants. This is because, ostensibly, tropical plants are already exposed to relatively high levels of UV-B radiation (relative to a temperate environment) and should, therefore, possess a greater degree of tolerance to increased UV-B radiation. In this brief review I hope to show that, potentially, direct and indirect effects on photosynthesis, assimilate partitioning, phenology and biomass could occur in both tropical crops (e.g. cassava, rice) and native species (e.g. Cecropia obtusifolia (Bertol. Fl)., Tetramolopium humile (Gray), Nana sandwicensis L.). However, it should be noted that differences in sensitivity to UV-B radiation can be related to experimental conditions, and care should be taken to ensure that the quantity and quality of background solar radiation remains at near ambient conditions. Nevertheless, by integrating current and past studies on the impact of UV-B radiation on tropical species, I hope to be able to demonstrate that photosynthesis, morphology and growth in tropical plants could be directly affected by UV-B radiation and that UV-B radiation may be a factor in species and community dynamics in natural plant populations in the tropics

  7. Applicability of Daily Solar Radiation Estimated by Mountain Microclimate Simulation Model (MT-CLIM) in Korea

    International Nuclear Information System (INIS)

    Shim, K.M.; Kim, Y.S.; Lee, D.B.; Kang, K.K.; So, K.H.

    2012-01-01

    Accuracy of daily solar radiation estimated from a Mountain Microclimate Simulation Model (MT-CLIM) was assessed for seven observation sites with complex topography in Uiseong County. The coefficient of determination () between the observed and the estimated daily solar radiation was 0.52 for 7 sites for the study period from 1 August to 30 September 2009. Overall, the MT-CLIM overestimated the solar radiation with root mean square error (RMSE) of which is about 25% of the mean daily solar radiation () for the study period. Considering that the pyranometer's tolerance is of standard sensor, the RMSE of MT-CLIM was too large to accept for a direct application for agricultural sector. The reliability of solar radiation estimated by MT-CLIM must be improved by considering additional ways such as using a topography correction coefficient

  8. Theoretical epidemiology applied to health physics: estimation of the risk of radiation-induced breast cancer

    International Nuclear Information System (INIS)

    Sutherland, J.V.

    1983-01-01

    Indirect estimation of low-dose radiation hazards is possible using the multihit model of carcinogenesis. This model is based on cancer incidence data collected over many decades on tens of millions of people. Available data on human radiation effects can be introduced into the modeling process without the requirement that these data precisely define the model to be used. This reduction in the information demanded from the limited data on human radiation effects allows a more rational approach to estimation of low-dose radiation hazards and helps to focus attention on research directed towards understanding the process of carcinogenesis, rather than on repeating human or animal experiments that cannot provide sufficient data to resolve the low-dose estimation problem. Assessment of the risk of radiation-induced breast cancer provides an excellent example of the utility of multihit modeling procedures

  9. X-ray survival characteristics and genetic analysis for nine saccharomyces deletion mutants that show altered radiation sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Game, John C.; Williamson, Marsha S.; Baccari, Clelia

    2004-01-07

    The availability of a genome-wide set of Saccharomyces deletion mutants provides a chance to identify all the yeast genes involved in DNA repair. Using X-rays, we are screening these mutants to identify additional genes that show increased sensitivity to the lethal effects of ionizing radiation. For each mutant identified as sensitive, we are confirming that the sensitivity phenotype co-segregates with the deletion allele and are obtaining multipoint survival-versus-dose assays in at least two haploid and one homozygous diploid strains. We present data for deletion mutants involving the genes DOT1, MDM20, NAT3, SPT7, SPT20, GCN5, HFI1, DCC1 and VID21/EAF1, and discuss their potential roles in repair. Eight of these genes have a clear radiation-sensitive phenotype when deleted, but the ninth, GCN5, has at most a borderline phenotype. None of the deletions confer substantial sensitivity to ultra-violet radiation, although one or two may confer marginal sensitivity. The DOT1 gene is of interest because its only known function is to methylate one lysine residue in the core of the histone H3 protein. We find that histone H3 mutants (supplied by K. Struhl) in which this residue is replaced by other amino-acids are also X-ray sensitive, seeming to confirm that methylation of the lysine-79 residue is required for effective repair of radiation damage.

  10. Inconing solar radiation estimates at terrestrial surface using meteorological satellite

    International Nuclear Information System (INIS)

    Arai, N.; Almeida, F.C. de.

    1982-11-01

    By using the digital images of the visible channel of the GOES-5 meteorological satellite, and a simple radiative transfer model of the earth's atmosphere, the incoming solar radiation reaching ground is estimated. A model incorporating the effects of Rayleigh scattering and water vapor absorption, the latter parameterized using the surface dew point temperature value, is used. Comparisons with pyranometer observations, and parameterization versus radiosonde water vapor absorption calculation are presented. (Author) [pt

  11. Comparative studies on the effect of radiation-sensitizing agents used in radiating VX2 Carcinoma

    International Nuclear Information System (INIS)

    Migita, Hidenobu

    1975-01-01

    The effects of 5-Fu and BUdR as radiation-sensitizing agents macroscopically were investigated in 122 VX2 Carcinomas transplanted into the calves of the hind legs of rabbits. Experimental groups and contrast groups are divided into six as follows: A: No treatment, B: 5-Fu infusion, C: BUdR+Antimetabolite infusion, D: Radiation, E: 5-Fu infusion and radiation, and F: BUdR+Antimetabolite infusion and radiation. The amount of agent given to each was 5 mg/kg/day of 5-Fu and 50 mg/kg/day of BUdR, and the amount of radiation was 300 rad/day. 5-Fu was used as the Antimetabolite, and its amount was one-tenth of that in the 5-Fu Infusion Group. The agent and the radiation were given for five days. 1. In the 300 rad/day Group, the radiation was not enough to result in a complete cure. 2. In the two Agent Infusion Group, 5-Fu and BUdR+Antimetabolite proved to be anti-cancer, but neither of them resulted in effective treatment. 3. The 5-Fu Infusion and Radiation Group, showed a strong degenerative change in the tumor cell and a radiosensitive effect from 5-Fu, but the tumor was not lessened. 4. In the BUdR-Antimetabolite Infusion and Radiation Group, the tumor began to reduce on the third day. On the seventh and fourteenth days, necrosis of the greater part of tumor was seen, and the rest of the tumor cells were found to be in degenerative change. On the twenty first day, no live tumor cell was found, only dead remains of tumor cells. The results were confirmed both macroscopically and histopathologically. 5. BUdR can be expected to be effective in clinical application to oral malignant tumors. (Evans, J.)

  12. New way to rise estimation objectivity of radiation consequences on human

    International Nuclear Information System (INIS)

    Akhmatullina, N. B.

    2001-01-01

    The discussion of negative consequences of radiation on human often leaves without attention the fact that the basic meaning of danger of radiation level rise in environment for human connected with genetic structure defects. Namely changes in genome lead to different negative consequences and not only accompany, but also precede them. However the tendency which appeared in our country to substitute the direct genetic analysis with references to rise of frequency of morbidity on separate nosologic groups, whose area is widen arbitrary, has brought to nonadequateness of methodologic approach, distorted the determination of 'genetic consequence' itself and as the effect of this, distorted the real estimation of consequences of Kazakh Test Sites (TS) and other sources of radiation contamination activity. The question is arising: how can we distinguish observed and discribed effects of other genotoxicants of chemical and biological origin? There are different cytogenetic methods to detect genetic damages. The more widely used - is the estimation of the chromosome anomalies frequency estimation in somatic cells, especially in lymphocytes of peripheral blood. Traditionally researches proceeds from thin mechanisms of mutagenesis, which points that radiation mutagenesis leads primarily to chromosome, and chemical - to chromatide aberrations. In radiation influence chromosome aberrations appears in nondivided lymphocytes (G1-phase) and became easily observed in first metaphase (Browen e.a.1972, Bender e.a.1966). On the contrary the aberrations, induced by chemical factors, appears primarily in the S- phase irrespectively of what is cycle's stage, when the cells were exposed. Therefore the majority of aberrations have chromatide type (Evanse e.a.1980, Preston e.a.1981). Following pointed criteria many original investigations on people exposed to radiation were carried out. Moreover it was proved the application of such method to estimate the absorbed radiation in the

  13. Assessing the transferability of support vector machine model for estimation of global solar radiation from air temperature

    International Nuclear Information System (INIS)

    Chen, Ji-Long; Li, Guo-Sheng; Xiao, Bei-Bei; Wen, Zhao-Fei; Lv, Ming-Quan; Chen, Chun-Di; Jiang, Yi; Wang, Xiao-Xiao; Wu, Sheng-Jun

    2015-01-01

    Highlights: • Transferability of SVM in estimation of solar radiation is investigated. • Radiation at estimation site could be well estimated by SVM developed at source site. • A strategy for selecting a suitable source site is presented. • SVM accuracy is affected by distance and temperature difference between two sites. • RMSE of SVM shows logarithm or linearly relationship with altitude of source site. - Abstract: Exploring novel methods for estimation of global solar radiation from air temperature has been being a focus in many studies. This paper evaluates the transferability of support vector machines (SVM) for estimation of solar radiation in subtropical zone in China. Results suggest that solar radiation at one site (estimation site) could be well estimated by SVM model developed at another site (source site). The accuracy of estimation is affected by the distance and temperature difference between two sites, and altitude of source site. Higher correlations between RMSE of SVM and distance, and temperature differences are observed in northeastern region, increasing the reliability and confidence of SVM model developed at nearby stations. While lower correlations between RMSE and distance, and temperature differences are observed in southwest plateau region. When the altitude of estimation site is lower than 1200 m, RMSE show logarithm relationship with altitude of source sites where the altitude are lower than that of estimation site. Otherwise, RMSE show linearly relationship with altitude of source sites where the altitude are higher than 200 m but lower than that of the estimation site. This result suggests that solar radiation could be also estimated using SVM model developed at the site with similar but lower altitude. Based on these results, a strategy that takes into account the climatic conditions, topography, distance, and altitude for selecting a suitable source site is presented. The findings can guide and ease the appropriate choice of

  14. CALIPSO-Inferred Aerosol Direct Radiative Effects: Bias Estimates Using Ground-Based Raman Lidars

    Science.gov (United States)

    Thorsen, Tyler; Fu, Qiang

    2016-01-01

    Observational constraints on the change in the radiative energy budget caused by the presence of aerosols, i.e. the aerosol direct radiative effect (DRE), have recently been made using observations from the Cloud- Aerosol Lidar and Infrared Pathfinder Satellite (CALIPSO). CALIPSO observations have the potential to provide improved global estimates of aerosol DRE compared to passive sensor-derived estimates due to CALIPSO's ability to perform vertically-resolved aerosol retrievals over all surface types and over cloud. In this study we estimate the uncertainties in CALIPSO-inferred aerosol DRE using multiple years of observations from the Atmospheric Radiation Measurement (ARM) program's Raman lidars (RL) at midlatitude and tropical sites. Examined are assumptions about the ratio of extinction-to-backscatter (i.e. the lidar ratio) made by the CALIPSO retrievals, which are needed to retrieve the aerosol extinction profile. The lidar ratio is shown to introduce minimal error in the mean aerosol DRE at the top-of-atmosphere and surface. It is also shown that CALIPSO is unable to detect all radiatively-significant aerosol, resulting in an underestimate in the magnitude of the aerosol DRE by 30-50%. Therefore, global estimates of the aerosol DRE inferred from CALIPSO observations are likely too weak.

  15. Photosynthetically active radiation and comparison of methods for its estimation in equatorial Singapore

    Science.gov (United States)

    Tan, Puay Yok; Ismail, Mirza Rifqi Bin

    2016-02-01

    Photosynthetically active radiation (PAR) is an important input variable for urban climate, crop modelling and ecosystem services studies. Despite its importance, only a few empirical studies have been conducted on PAR, its relationship to global solar radiation and sky conditions and its estimation in the tropics. We report in this study, the characterisation of PAR in Singapore through direct measurements and development of models for its estimation using input variables of global solar radiation ( H), photometric radiation ( L), clearness index ( k t ) and sky view factor (SVF). Daily PAR showed a good correlation with daily H and had a comparatively small seasonal variation in PAR due to Singapore's equatorial position. The ratio of PAR to H ( PAR/ H) showed a slight depression in midyear from May to August, which correlated well with seasonal patterns in rainfall over the study period. Hourly PAR/ H increased throughout the day. Three empirical models developed in this study were able to predict daily PAR satisfactorily, with the most accurate model being one which included both H and k t as independent variables. A regression model for estimation of PAR under shaded conditions using SVF produced satisfactory estimation of daily PAR but was prone to high mean percentage error at low PAR levels.

  16. In vivo sensitivity of the embryonic and adult neural stem cell compartments to low-dose radiation.

    Science.gov (United States)

    Barazzuol, Lara; Jeggo, Penny A

    2016-08-01

    The embryonic brain is radiation-sensitive, with cognitive deficits being observed after exposure to low radiation doses. Exposure of neonates to radiation can cause intracranial carcinogenesis. To gain insight into the basis underlying these outcomes, we examined the response of the embryonic, neonatal and adult brain to low-dose radiation, focusing on the neural stem cell compartments. This review summarizes our recent findings. At E13.5-14.5 the embryonic neocortex encompasses rapidly proliferating stem and progenitor cells. Exploiting mice with a hypomorphic mutation in DNA ligase IV (Lig4(Y288C) ), we found a high level of DNA double-strand breaks (DSBs) at E14.5, which we attribute to the rapid proliferation. We observed endogenous apoptosis in Lig4(Y288C) embryos and in WT embryos following exposure to low radiation doses. An examination of DSB levels and apoptosis in adult neural stem cell compartments, the subventricular zone (SVZ) and the subgranular zone (SGZ) revealed low DSB levels in Lig4(Y288C) mice, comparable with the levels in differentiated neuronal tissues. We conclude that the adult SVZ does not incur high levels of DNA breakage, but sensitively activates apoptosis; apoptosis was less sensitively activated in the SGZ, and differentiated neuronal tissues did not activate apoptosis. P5/P15 mice showed intermediate DSB levels, suggesting that DSBs generated in the embryo can be transmitted to neonates and undergo slow repair. Interestingly, this analysis revealed a stage of high endogenous apoptosis in the neonatal SVZ. Collectively, these studies reveal that the adult neural stem cell compartment, like the embryonic counterpart, can sensitively activate apoptosis. © The Author 2016. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  17. A fuzzy regression with support vector machine approach to the estimation of horizontal global solar radiation

    International Nuclear Information System (INIS)

    Baser, Furkan; Demirhan, Haydar

    2017-01-01

    Accurate estimation of the amount of horizontal global solar radiation for a particular field is an important input for decision processes in solar radiation investments. In this article, we focus on the estimation of yearly mean daily horizontal global solar radiation by using an approach that utilizes fuzzy regression functions with support vector machine (FRF-SVM). This approach is not seriously affected by outlier observations and does not suffer from the over-fitting problem. To demonstrate the utility of the FRF-SVM approach in the estimation of horizontal global solar radiation, we conduct an empirical study over a dataset collected in Turkey and applied the FRF-SVM approach with several kernel functions. Then, we compare the estimation accuracy of the FRF-SVM approach to an adaptive neuro-fuzzy system and a coplot supported-genetic programming approach. We observe that the FRF-SVM approach with a Gaussian kernel function is not affected by both outliers and over-fitting problem and gives the most accurate estimates of horizontal global solar radiation among the applied approaches. Consequently, the use of hybrid fuzzy functions and support vector machine approaches is found beneficial in long-term forecasting of horizontal global solar radiation over a region with complex climatic and terrestrial characteristics. - Highlights: • A fuzzy regression functions with support vector machines approach is proposed. • The approach is robust against outlier observations and over-fitting problem. • Estimation accuracy of the model is superior to several existent alternatives. • A new solar radiation estimation model is proposed for the region of Turkey. • The model is useful under complex terrestrial and climatic conditions.

  18. Radiation shielding estimates for manned Mars space flight

    International Nuclear Information System (INIS)

    Dudkin, V.E.; Kovalev, E.E.; Kolomensky, A.V.; Sakovich, V.A.; Semenov, V.F.; Demin, V.P.; Benton, E.V.

    1992-01-01

    In the analysis of the required radiation shielding for spacecraft during a Mars flight, the specific effects of solar activity (SA) on the intensity of galactic and solar cosmic rays were taken into consideration. Three spaceflight periods were considered: (1) maximum SA; (2) minimum SA; and (3) intermediate SA, when intensities of both galactic and solar cosmic rays are moderately high. Scenarios of spaceflights utilizing liquid-propellant rocket engines, low-and intermediate-thrust nuclear electrojet engines, and nuclear rocket engines, all of which have been designed in the Soviet Union, are reviewed. Calculations were performed on the basis of a set of standards for radiation protection approved by the U.S.S.R. State Committee for Standards. It was found that the lowest estimated mass of a Mars spacecraft, including the radiation shielding mass, obtained using a combination of a liquid propellant engine with low and intermediate thrust nuclear electrojet engines, would be 500-550 metric tons. (author)

  19. The economic costs of radiation-induced health effects: Estimation and simulation

    International Nuclear Information System (INIS)

    Nieves, L.A.; Tawil, J.J.

    1988-08-01

    This effort improves the quantitative information available for use in evaluating actions that alter health risks due to population exposure to ionizing radiation. To project the potential future costs of changes in health effects risks, Pacific Northwest Laboratory (PNL) constructed a probabilistic computer model, Health Effects Costs Model (HECOM), which utilizes the health effect incidence estimates from accident consequences models to calculate the discounted sum of the economic costs associated with population exposure to ionizing radiation. Application of HECOM to value-impact and environmental impact analyses should greatly increase the quality of the information available for regulatory decision making. Three major types of health effects present risks for any population sustaining a significant radiation exposure: acute radiation injuries (and fatalities), latent cancers, and impairments due to genetic effects. The literature pertaining to both incidence and treatment of these health effects was reviewed by PNL and provided the basis for developing economic cost estimates. The economic costs of health effects estimated by HECOM represent both the value of resources consumed in diagnosing, treating, and caring for the patient and the value of goods not produced because of illness or premature death due to the health effect. Additional costs to society, such as pain and suffering, are not included in the PNL economic cost measures since they do not divert resources from other uses, are difficult to quantify, and do not have a value observable in the marketplace. 83 refs., 3 figs., 19 tabs

  20. The economic costs of radiation-induced health effects: Estimation and simulation

    Energy Technology Data Exchange (ETDEWEB)

    Nieves, L.A.; Tawil, J.J.

    1988-08-01

    This effort improves the quantitative information available for use in evaluating actions that alter health risks due to population exposure to ionizing radiation. To project the potential future costs of changes in health effects risks, Pacific Northwest Laboratory (PNL) constructed a probabilistic computer model, Health Effects Costs Model (HECOM), which utilizes the health effect incidence estimates from accident consequences models to calculate the discounted sum of the economic costs associated with population exposure to ionizing radiation. Application of HECOM to value-impact and environmental impact analyses should greatly increase the quality of the information available for regulatory decision making. Three major types of health effects present risks for any population sustaining a significant radiation exposure: acute radiation injuries (and fatalities), latent cancers, and impairments due to genetic effects. The literature pertaining to both incidence and treatment of these health effects was reviewed by PNL and provided the basis for developing economic cost estimates. The economic costs of health effects estimated by HECOM represent both the value of resources consumed in diagnosing, treating, and caring for the patient and the value of goods not produced because of illness or premature death due to the health effect. Additional costs to society, such as pain and suffering, are not included in the PNL economic cost measures since they do not divert resources from other uses, are difficult to quantify, and do not have a value observable in the marketplace. 83 refs., 3 figs., 19 tabs.

  1. Perspectives on radiation dose estimates for A-bomb survivors

    International Nuclear Information System (INIS)

    Loewe, W.E.

    1987-01-01

    For decades after the actual events, quantitative characterization of the radiation fields at Hiroshima and Nagasaki continues to be sought, with high accuracy a goal justified by the unique contribution to radiation protection standards that is represented by the medical records of exposed survivors. The most recent effort is distinguished by its reliance on computer modelling and concomitant detail, and by its decentralized direction, both internationally and internally to the U.S. and Japan, with resultant ongoing peer review and wide scope of inquiry. A new system for individual dose estimation has been agreed upon, and its scientific basis has been elaborated in the literature as well as in a comprehensive treatise to be published in the Spring of 1987. In perspective, this new system appears to be an unusually successful achievement that offers the expectation of reliable estimates with the desired accuracy. Some aspects leading to this expectation, along with a caveat, are discussed here

  2. Perspectives on radiation dose estimates for A-bomb survivors

    International Nuclear Information System (INIS)

    Loewe, W.E.

    1986-12-01

    Four decades after the actual events, quantitative characterization of the radiation fields at Hiroshima and Nagasaki continues to be sought, with high accuracy a goal justified by the unique contribution to radiation protection standards that is represented by the medical records of exposed survivors. The most recent effort is distinguished by its reliance on computer modeling and concomitant detail, and by its decentralized direction, both internationally and internally to the US and Japan, with resultant ongoing peer review and wide scope of inquiry. A new system for individual dose estimation has been agreed upon, and its scientific basis has been elaborated in the literature as well as in a comprehensive treatise to be published in the Spring of 1987. In perspective, this new system appears to be an unusually successful achievement that offers the expectation of reliable estimates with the desired accuracy. Some aspects leading to this expectation, along with a caveat, are discussed here. 4 refs., 8 figs., 3 tabs

  3. Response to the eruption of Mount Pinatubo in relation to climate sensitivity in the CMIP3 models

    Energy Technology Data Exchange (ETDEWEB)

    Bender, Frida A.M.; Ekman, Annica M.L.; Rodhe, Henning [Stockholm University, Department of Meteorology, Stockholm (Sweden)

    2010-10-15

    The radiative flux perturbations and subsequent temperature responses in relation to the eruption of Mount Pinatubo in 1991 are studied in the ten general circulation models incorporated in the Coupled Model Intercomparison Project, phase 3 (CMIP3), that include a parameterization of volcanic aerosol. Models and observations show decreases in global mean temperature of up to 0.5 K, in response to radiative perturbations of up to 10 W m{sup -2}, averaged over the tropics. The time scale representing the delay between radiative perturbation and temperature response is determined by the slow ocean response, and is estimated to be centered around 4 months in the models. Although the magnitude of the temperature response to a volcanic eruption has previously been used as an indicator of equilibrium climate sensitivity in models, we find these two quantities to be only weakly correlated. This may partly be due to the fact that the size of the volcano-induced radiative perturbation varies among the models. It is found that the magnitude of the modelled radiative perturbation increases with decreasing climate sensitivity, with the exception of one outlying model. Therefore, we scale the temperature perturbation by the radiative perturbation in each model, and use the ratio between the integrated temperature perturbation and the integrated radiative perturbation as a measure of sensitivity to volcanic forcing. This ratio is found to be well correlated with the model climate sensitivity, more sensitive models having a larger ratio. Further, if this correspondence between ''volcanic sensitivity'' and sensitivity to CO{sub 2} forcing is a feature not only among the models, but also of the real climate system, the alleged linear relation can be used to estimate the real climate sensitivity. The observational value of the ratio signifying volcanic sensitivity is hereby estimated to correspond to an equilibrium climate sensitivity, i.e. equilibrium temperature

  4. Diffuse solar radiation estimation models for Turkey's big cities

    International Nuclear Information System (INIS)

    Ulgen, Koray; Hepbasli, Arif

    2009-01-01

    A reasonably accurate knowledge of the availability of the solar resource at any place is required by solar engineers, architects, agriculturists, and hydrologists in many applications of solar energy such as solar furnaces, concentrating collectors, and interior illumination of buildings. For this purpose, in the past, various empirical models (or correlations) have been developed in order to estimate the solar radiation around the world. This study deals with diffuse solar radiation estimation models along with statistical test methods used to statistically evaluate their performance. Models used to predict monthly average daily values of diffuse solar radiation are classified in four groups as follows: (i) From the diffuse fraction or cloudness index, function of the clearness index, (ii) From the diffuse fraction or cloudness index, function of the relative sunshine duration or sunshine fraction, (iii) From the diffuse coefficient, function of the clearness index, and (iv) From the diffuse coefficient, function of the relative sunshine duration or sunshine fraction. Empirical correlations are also developed to establish a relationship between the monthly average daily diffuse fraction or cloudness index (K d ) and monthly average daily diffuse coefficient (K dd ) with the monthly average daily clearness index (K T ) and monthly average daily sunshine fraction (S/S o ) for the three big cities by population in Turkey (Istanbul, Ankara and Izmir). Although the global solar radiation on a horizontal surface and sunshine duration has been measured by the Turkish State Meteorological Service (STMS) over all country since 1964, the diffuse solar radiation has not been measured. The eight new models for estimating the monthly average daily diffuse solar radiation on a horizontal surface in three big cites are validated, and thus, the most accurate model is selected for guiding future projects. The new models are then compared with the 32 models available in the

  5. Sensitivity of Process Design due to Uncertainties in Property Estimates

    DEFF Research Database (Denmark)

    Hukkerikar, Amol; Jones, Mark Nicholas; Sarup, Bent

    2012-01-01

    The objective of this paper is to present a systematic methodology for performing analysis of sensitivity of process design due to uncertainties in property estimates. The methodology provides the following results: a) list of properties with critical importance on design; b) acceptable levels of...... in chemical processes. Among others vapour pressure accuracy for azeotropic mixtures is critical and needs to be measured or estimated with a ±0.25% accuracy to satisfy acceptable safety levels in design....

  6. Risk estimation and decision making: the health effects on populations of exposure to low levels of ionizing radiation

    International Nuclear Information System (INIS)

    Fabrikant, J.I.

    1982-01-01

    Presented is a background for an understanding of the potential health effects in populations exposed to low-level radiation. Discussed is the knowledge about the health effects of low-level radiation. Comments on how the risks of radiation-induced cancer and genetically-related ill-health in man may be estimated, the sources of the scientific and epidemiological data, the dose-response models used, and the uncertainties which limit precise estimates of excess risks from radiation. Also discussed are the implications of numerical risk estimation for radiation protection and decision-making for public health policy

  7. Use of middle infrared radiation to estimate the leaf area index of a boreal forest

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, D.S. [Kingston Univ., Surrey (United Kingdom). Centre for Earth and Environmental Science Research, School of Geography; Wicks, T. E.; Curran, P.J. [Southampton Univ., Southampton, Hampshire (United Kingdom). Dept. of Geography

    2000-06-01

    Reflected radiation recorded by satellite sensors is a common procedure to estimate the leaf area index (LAI) of boreal forest. The normalized difference vegetation index (NDVI), derived from measurements of visible and near infrared radiation were commonly used to estimate LAI. But research in tropical forest has shown that LAI is more closely related to radiation of middle infrared wavelengths than that of visible wavelengths. This research calculated a vegetation index (VI3) using radiation from vegetation recorded at near and middle infrared wavelengths. In the case of boreal forest, VI3 and LAI displayed a closer relationship than NDVI and LAI. Also, the use of VI3 explained approximately 76 per cent of the variation in field estimates of LAI, versus approximately 46 per cent for NDVI. The authors concluded that consideration should be given to information provided by middle infrared radiation to estimate the leaf area index of boreal forest. The research area was located in the Southern Study Area (SSA) of the BOReal Ecosystem-Atmospher Study (BOREAS), situated on the southern edge of the Canadian boreal forest, 40 km north of Prince Albert, Saskatchewan. 1 tab., 4 figs., 46 refs.

  8. Inverse Estimation of Surface Radiation Properties Using Repulsive Particle Swarm Optimization Algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyun Ho [Sejong University, Sejong (Korea, Republic of); Kim, Ki Wan [Agency for Defense Development, Daejeon (Korea, Republic of)

    2014-09-15

    The heat transfer mechanism for radiation is directly related to the emission of photons and electromagnetic waves. Depending on the participation of the medium, the radiation can be classified into two forms: surface and gas radiation. In the present study, unknown radiation properties were estimated using an inverse boundary analysis of surface radiation in an axisymmetric cylindrical enclosure. For efficiency, a repulsive particle swarm optimization (RPSO) algorithm, which is a relatively recent heuristic search method, was used as inverse solver. By comparing the convergence rates and accuracies with the results of a genetic algorithm (GA), the performances of the proposed RPSO algorithm as an inverse solver was verified when applied to the inverse analysis of the surface radiation problem.

  9. Inverse Estimation of Surface Radiation Properties Using Repulsive Particle Swarm Optimization Algorithm

    International Nuclear Information System (INIS)

    Lee, Kyun Ho; Kim, Ki Wan

    2014-01-01

    The heat transfer mechanism for radiation is directly related to the emission of photons and electromagnetic waves. Depending on the participation of the medium, the radiation can be classified into two forms: surface and gas radiation. In the present study, unknown radiation properties were estimated using an inverse boundary analysis of surface radiation in an axisymmetric cylindrical enclosure. For efficiency, a repulsive particle swarm optimization (RPSO) algorithm, which is a relatively recent heuristic search method, was used as inverse solver. By comparing the convergence rates and accuracies with the results of a genetic algorithm (GA), the performances of the proposed RPSO algorithm as an inverse solver was verified when applied to the inverse analysis of the surface radiation problem

  10. Importance of representing optical depth variability for estimates of global line-shaped contrail radiative forcing.

    Science.gov (United States)

    Kärcher, Bernd; Burkhardt, Ulrike; Ponater, Michael; Frömming, Christine

    2010-11-09

    Estimates of the global radiative forcing by line-shaped contrails differ mainly due to the large uncertainty in contrail optical depth. Most contrails are optically thin so that their radiative forcing is roughly proportional to their optical depth and increases with contrail coverage. In recent assessments, the best estimate of mean contrail radiative forcing was significantly reduced, because global climate model simulations pointed at lower optical depth values than earlier studies. We revise these estimates by comparing the probability distribution of contrail optical depth diagnosed with a climate model with the distribution derived from a microphysical, cloud-scale model constrained by satellite observations over the United States. By assuming that the optical depth distribution from the cloud model is more realistic than that from the climate model, and by taking the difference between the observed and simulated optical depth over the United States as globally representative, we quantify uncertainties in the climate model's diagnostic contrail parameterization. Revising the climate model results accordingly increases the global mean radiative forcing estimate for line-shaped contrails by a factor of 3.3, from 3.5 mW/m(2) to 11.6 mW/m(2) for the year 1992. Furthermore, the satellite observations and the cloud model point at higher global mean optical depth of detectable contrails than often assumed in radiative transfer (off-line) studies. Therefore, we correct estimates of contrail radiative forcing from off-line studies as well. We suggest that the global net radiative forcing of line-shaped persistent contrails is in the range 8-20 mW/m(2) for the air traffic in the year 2000.

  11. Estimates of the generation of available potential energy by infrared radiation

    Science.gov (United States)

    Hansen, A. R.; Nagle, R. L.

    1984-01-01

    Data from the National Meteorological Center and net outgoing infrared radiation (IR) data measured by NOAA satellites for January 1977 are used to compute estimates of the spectral and spatial contributions to the net generation of available potential energy in the Northern Hemisphere due to infrared radiation. Although these estimates are necessarily crude, the results obtained indicate that IR causes destruction of both zonal and eddy available potential energy. The contributions from midlatitudes to the zonal and eddy generation are about -5.0 W/sq m and about -0.6 W/sq m, respectively. The eddy generation is due almost entirely to stationary wavenumbers one and two. Comparison with earlier studies and computation of Newtonian cooling coefficients are discussed.

  12. Biological indicators for radiation absorbed dose: a review

    International Nuclear Information System (INIS)

    Paul, S.F.D.; Venkatachalam, P.; Jeevanram, R.K.

    1996-01-01

    Biological dosimetry has an important role to play in assessing the cumulative radiation exposure of persons working with radiation and also in estimating the true dose received during accidents involving external and internal exposure. Various biodosimetric methods have been tried to estimate radiation dose for the above purposes. Biodosimetric methods include cytogenetic, immunological and mutational assays. Each technique has certain advantages and disadvantages. We present here a review of each technique, the actual method used for detection of dose, the sensitivity of detection and its use in long term studies. (author)

  13. Development of transmission dose estimation algorithm for in vivo dosimetry in high energy radiation treatment

    International Nuclear Information System (INIS)

    Yun, Hyong Geun; Shin, Kyo Chul; Hun, Soon Nyung; Woo, Hong Gyun; Ha, Sung Whan; Lee, Hyoung Koo

    2004-01-01

    In vivo dosimetry is very important for quality assurance purpose in high energy radiation treatment. Measurement of transmission dose is a new method of in vivo dosimetry which is noninvasive and easy for daily performance. This study is to develop a tumor dose estimation algorithm using measured transmission dose for open radiation field. For basic beam data, transmission dose was measured with various field size (FS) of square radiation field, phantom thickness (Tp), and phantom chamber distance (PCD) with a acrylic phantom for 6 MV and 10 MV X-ray. Source to chamber distance (SCD) was set to 150 cm. Measurement was conducted with a 0.6 cc Farmer type ion chamber. By using regression analysis of measured basic beam data, a transmission dose estimation algorithm was developed. Accuracy of the algorithm was tested with flat solid phantom with various thickness in various settings of rectangular fields and various PCD. In our developed algorithm, transmission dose was equated to quadratic function of log(A/P) (where A/P is area-perimeter ratio) and the coefficients of the quadratic functions were equated to tertiary functions of PCD. Our developed algorithm could estimate the radiation dose with the errors within ±0.5% for open square field, and with the errors within ±1.0% for open elongated radiation field. Developed algorithm could accurately estimate the transmission dose in open radiation fields with various treatment settings of high energy radiation treatment. (author)

  14. Effect of gamma radiation dose and sensitizer on the physical properties of irradiated natural rubber latex

    International Nuclear Information System (INIS)

    Komgrit, R.; Thawat, C.; B, Tripob; Wirach, T.

    2009-07-01

    Full text: The vulcanization of natural rubber latex can be induced by gamma radiation, which enhances cross-linking within the rubber matrix. The purpose of this research is to investigate the effect of gamma radiation dose and sensitizers on the physical properties of irradiated natural rubber. Three sensitizers n-butyl acrylate (n-B A), tetrachloroethylene (C 2 Cl 4 ) and trichloromethane (CHCl 3 ) were mixed with natural rubber latex before irradiation with gamma ray dose varied from 14 to 22 kGy. Results showed that the mixture of three sensitizers with specific ratios effectively induced the cross-linking of natural rubber latex. The cross-linking ratio and improved physical properties increased with increasing gamma dose. Therefore, the mixture ratios of n-B A, C 2 Cl 4 and CHCl 3 have shown to be a critical parameter in the vulcanization of natural rubber latex by gamma radiation

  15. Precise estimation of total solar radiation on tilted surface

    African Journals Online (AJOL)

    rajeev

    rarely available required for precise sizing of energy systems. The total solar radiation at different orientation and slope is needed to calculate the efficiency of the installed solar energy systems. To calculate clearness index (Kt) used by Gueymard (2000) for estimating solar irradiation H, irradiation at the earth's surface has ...

  16. Risk estimates for the health effects of alpha radiation

    International Nuclear Information System (INIS)

    Thomas, D.C.; McNeill, K.G.

    1981-09-01

    This report provides risk estimates for various health effects of alpha radiation. Human and animal data have been used to characterize the shapes of dose-response relations and the effects of various modifying factors, but quantitative risk estimates are based solely on human data: for lung cancer, on miners in the Colorado plateau, Czechoslovakia, Sweden, Ontario and Newfoundland; for bone and head cancers, on radium dial painters and radium-injected patients. Slopes of dose-response relations for lung cancer show a tendency to decrease with increasing dose. Linear extrapolation is unlikely to underestimate the excess risk at low doses by more than a factor of l.5. Under the linear cell-killing model, our best estimate

  17. Resveratrol sensitization of DU145 prostate cancer cells to ionizing radiation is associated to ceramide increase.

    Science.gov (United States)

    Scarlatti, Francesca; Sala, Giusy; Ricci, Clara; Maioli, Claudio; Milani, Franco; Minella, Marco; Botturi, Marco; Ghidoni, Riccardo

    2007-08-08

    Radiotherapy is an established therapeutic modality for prostate cancer. Since it is well known that radiotherapy is limited due to its severe toxicity towards normal cells at high dose and minimal effect at low dose, the search for biological compounds that increase the sensitivity of tumors cells to radiation may improve the efficacy of therapy. Resveratrol, a natural antioxidant, was shown to inhibit carcinogenesis in animal models, and to block the process of tumor initiation and progression. The purpose of this study was to examine whether or not resveratrol can sensitize DU145, an androgen-independent human prostate cancer cell line, to ionizing radiation. We report here that DU145 cells are resistant to ionizing radiation-induced cell death, but pretreatment with resveratrol significantly enhances cell death. Resveratrol acts synergistically with ionizing radiation to inhibit cell survival in vitro. Resveratrol also potentiates ionizing radiation-induced ceramide accumulation, by promoting its de novo biosynthesis. This confirms ceramide as an effective mediator of the anticancer potential induced by resveratrol.

  18. Current estimates of radiation risks and implications for dose limits

    International Nuclear Information System (INIS)

    Clarke, R.H.

    1989-01-01

    The publication of the 1988 report of UNSCEAR represents a major step forward in that there is an international consensus on the estimation of risk from exposure to ionising radiation. The estimates of fatal cancers in the UNSCEAR report are up to 4 times the values in the 1977 review. This paper will describe the reasons for the increase, the remaining uncertainties and the implications for dose limits in occupational and public exposure. (author)

  19. Synthesis and mechanistic studies of phosphoraziridines as radiation sensitizers

    International Nuclear Information System (INIS)

    Perlman, M.E.

    1982-01-01

    Ethyl bis(2,2-dimethyl-1-aziridinyl)phosphinyl carbamate (AB-132) and ethyl bis(2,2-dimethyl-1-aziridinyl)phosphinate (AB-163) are potent antitumor agents which have also been demonstrated to be radiation sensitizers in experimental and clinical studies. Monophenyl aziridines and various isomers of diphenylaziridines were utilized. Optically active 2-phenyl aziridine was also employed in order to prepare diastereomerically homogeneous compounds. Para-substituted phenylaziridines were prepared as well and converted to the corresponding phosphoraziridines in order to probe electronic effects of such substituents on biological activity and chemical reactivity. The hydrolysis of 2,2-dimethylaziridine-type compounds including AB-132 and AB-163 was studied by NMR in order to gain further insight into the hydrolytic intermediates which may be responsible for the known cholinesterase inhibition and the suspected phosphorylation of radiation-damaged DNA. Comparative reactivities of the compounds prepared in this study with p-nitrobenzylpyridine were investigated so as to provide some indication of potential alkylating activity, in the hope of obtaining a correlation with biological activity. Electron spin resonance was utilized to study the effects of radiation on phosphoraziridine crystals

  20. Inhibition of ERK1/2 or AKT Activity Equally Enhances Radiation Sensitization in B16F10 Cells

    Science.gov (United States)

    Kalal, Bhuvanesh Sukhlal; Fathima, Faraz; Pai, Vinitha Ramanath; Sanjeev, Ganesh; Krishna, Chilakapati Murali; Upadhya, Dinesh

    2018-01-01

    Background The aim of the study was to evaluate the radiation sensitizing ability of ERK1/2, PI3K-AKT and JNK inhibitors in highly radiation resistant and metastatic B16F10 cells which carry wild-type Ras and Braf. Methods Mouse melanoma cell line B16F10 was exposed to 1.0, 2.0 and 3.0 Gy of electron beam radiation. Phosphorylated ERK1/2, AKT and JNK levels were estimated by ELISA. Cells were exposed to 2.0 and 3.0 Gy of radiation with or without prior pharmacological inhibition of ERK1/2, AKT as well as JNK pathways. Cell death induced by radiation as well as upon inhibition of these pathways was measured by TUNEL assay using flow cytometry. Results Exposure of B16F10 cells to 1.0, 2.0 and 3.0 Gy of electron beam irradiation triggered an increase in all the three phosphorylated proteins compared to sham-treated and control groups. B16F10 cells pre-treated with either ERK1/2 or AKT inhibitors equally enhanced radiation-induced cell death at 2.0 as well as 3.0 Gy (P < 0.001), while inhibition of JNK pathway increased radiation-induced cell death to a lesser extent. Interestingly combined inhibition of ERK1/2 or AKT pathways did not show additional cell death compared to individual ERK1/2 or AKT inhibition. This indicates that ERK1/2 or AKT mediates radiation resistance through common downstream molecules in B16F10 cells. Conclusions Even without activating mutations in Ras or Braf genes, ERK1/2 and AKT play a critical role in B16F10 cell survival upon radiation exposure and possibly act through common downstream effector/s. PMID:29581812

  1. Thermal radiosensitization in heat- and radiation-sensitive mutants of CHO cells

    International Nuclear Information System (INIS)

    Kampinga, H.H.; Kanon, B.; Konings, A.W.T.; Stackhouse, M.A.; Bedford, J.S.

    1993-01-01

    In the current study, the extent of hyperthermic radiosensitization in a new γ-radiation-sensitive cell line, irs-20, recently isolated by Stackhouse and Bedford (1991) and a heat-sensitive mutant hs-36 (Harvey and Bedford 1988) was compared with the radiosensitization of their mutual parent CHO 10B12 cell line. The irs-20 and CHO 10B12 cells have comparable heat (43.5 o C) sensitivities, whereas hs-36 and CHO 10B12 show a similar sensitivity to γ- and X-rays. Radiosensitization due to pre-exposure to 43.5 o C heating of plateau phase cultures was found for all three cell lines, even after relatively mild heat treatment killing <20% of cells. Experiments using CHEF electrophoresis confirmed the dsb repair deficiency of the irs-20 cells (Stackhouse and Bedford 1992) and showed that heat inhibited dsb repair in all three cell lines. (Author)

  2. Global Performance of a Fast Parameterization Scheme for Estimating Surface Solar Radiation from MODIS data

    Science.gov (United States)

    Tang, W.; Yang, K.; Sun, Z.; Qin, J.; Niu, X.

    2016-12-01

    A fast parameterization scheme named SUNFLUX is used in this study to estimate instantaneous surface solar radiation (SSR) based on products from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor onboard both Terra and Aqua platforms. The scheme mainly takes into account the absorption and scattering processes due to clouds, aerosols and gas in the atmosphere. The estimated instantaneous SSR is evaluated against surface observations obtained from seven stations of the Surface Radiation Budget Network (SURFRAD), four stations in the North China Plain (NCP) and 40 stations of the Baseline Surface Radiation Network (BSRN). The statistical results for evaluation against these three datasets show that the relative root-mean-square error (RMSE) values of SUNFLUX are less than 15%, 16% and 17%, respectively. Daily SSR is derived through temporal upscaling from the MODIS-based instantaneous SSR estimates, and is validated against surface observations. The relative RMSE values for daily SSR estimates are about 16% at the seven SURFRAD stations, four NCP stations, 40 BSRN stations and 90 China Meteorological Administration (CMA) radiation stations.

  3. The estimation of doses to the inhabitants arising from natural radiation source in the high background radiation area of Yangjiang, China

    International Nuclear Information System (INIS)

    Yuan Yongling; Shen Hong; Morishima, H.; Wei Lvxin; Jian Yuannu

    2004-01-01

    Objective: The purposes is to estimate the average annual effective dose of the inhabitants and absorbed dose in some human tissues and organs arising from natural radiation sources in the High Background Radiation Area (HBRA) of Yangjiang and in the neighboring Control Area (CA). In order to provide more effective evidence for analyzing the dose-effect relationships among the cohort members in the investigated areas, authors divided the local inhabitant into different dose-groups. Methods: The authors measured the environmental gamma external radiation levels and individual accumulated doses of 5293 people in the investigated areas. The concentrations for 222 Rn, 220 Rn and their decay products in air were also surveyed. The authors estimated the internal doses of natural radionuclides based on the results obtained from measurements in food, in drinking water, in human teeth, in several human tissues, in human placenta, and in activity concentration of exhaled 222 Rn and 220 Rn of the residents living in the investigated areas. Results: The estimation of average annual effective doses in HBRA and CA based on the data of environmental measurements of radiation level respectively are 2.12 ± 0.29 mSv a -1 and 0.69 ± 0.09 mSv a -1 . The sources of higher background radiation in HBRA are mainly contributed from terrestrial gamma radiation. The estimation of average annual effective doses to the residents arising from inhalation of 222 Rn, 220 Rn and their decay products was 3.28 mSv a -1 in HBRA, while that in CA was 1.03 mSv a -1 . The values of the absorbed dose of the residents in their trachea-bronchial tree and lung in HBRA arising from inhalation of 222 Rn, 220 Rn and their decay products are 5.40 mGy a -1 and 1.08 mGy a -1 respectively, which are about four times of the values of the absorbed dose in CA. The estimation of average annual effective doses to the inhabitants caused by 226 Ra and 228 Ra in HBRA and CA were 281.88 μSv a -1 and 84.54 μSv a -1

  4. Estimating negative likelihood ratio confidence when test sensitivity is 100%: A bootstrapping approach.

    Science.gov (United States)

    Marill, Keith A; Chang, Yuchiao; Wong, Kim F; Friedman, Ari B

    2017-08-01

    Objectives Assessing high-sensitivity tests for mortal illness is crucial in emergency and critical care medicine. Estimating the 95% confidence interval (CI) of the likelihood ratio (LR) can be challenging when sample sensitivity is 100%. We aimed to develop, compare, and automate a bootstrapping method to estimate the negative LR CI when sample sensitivity is 100%. Methods The lowest population sensitivity that is most likely to yield sample sensitivity 100% is located using the binomial distribution. Random binomial samples generated using this population sensitivity are then used in the LR bootstrap. A free R program, "bootLR," automates the process. Extensive simulations were performed to determine how often the LR bootstrap and comparator method 95% CIs cover the true population negative LR value. Finally, the 95% CI was compared for theoretical sample sizes and sensitivities approaching and including 100% using: (1) a technique of individual extremes, (2) SAS software based on the technique of Gart and Nam, (3) the Score CI (as implemented in the StatXact, SAS, and R PropCI package), and (4) the bootstrapping technique. Results The bootstrapping approach demonstrates appropriate coverage of the nominal 95% CI over a spectrum of populations and sample sizes. Considering a study of sample size 200 with 100 patients with disease, and specificity 60%, the lowest population sensitivity with median sample sensitivity 100% is 99.31%. When all 100 patients with disease test positive, the negative LR 95% CIs are: individual extremes technique (0,0.073), StatXact (0,0.064), SAS Score method (0,0.057), R PropCI (0,0.062), and bootstrap (0,0.048). Similar trends were observed for other sample sizes. Conclusions When study samples demonstrate 100% sensitivity, available methods may yield inappropriately wide negative LR CIs. An alternative bootstrapping approach and accompanying free open-source R package were developed to yield realistic estimates easily. This

  5. Estimation of radiation hazard of global 85Kr

    International Nuclear Information System (INIS)

    Vasilenko, I.Ya.; Moskalev, Yu.I.; Istomina, A.G.

    1979-01-01

    The data on sources and levels of the 85 Kr biosphere contamination are presented on the basis of generalization and analysis of literature. The potential irradiation doses for people are calculated and the biological estimation of the hazard of 85 Kr accumulation in the atmosphere up to 2050 is given taking into account the prospects for development of nuclear power engineering. The basis of the estimation is the radionuclide blastomogeneous and genetic effect. The conclusion is made that the prospects for development of nuclear power engineering do not lead to any sufficient increase in the number of malignant tumors and genetic abnormalities caused by 85 Kr radiation comparing with their natural frequency

  6. Low-level radiation: a review of current estimates of hazards to human populations

    International Nuclear Information System (INIS)

    Myers, D.K.

    1977-12-01

    Mankind has always lived with low levels of ionizing radiation from natural sources. This ionizing radiation may induce cancers in irradiated persons and genetic defects in the descendents of irradiated persons. The internationally accepted estimates of risks suggest that the numbers of cancers and genetic defects induced in the general population by natural background radiation are not more than about 1% of the numbers of cancers and genetic defects normally present in the general population. The added risks to the general public due to any prospective nuclear power program are minute compared to those from background radiation. At the maximum permissible levels of radiation exposures for occupational workers, the predicted number of fatal cancers induced would lead to a reduction in average life-span from 73.0 years to about 72.7 years. Since occupational exposures are usually much less than maximum permissible levels, the risks are correspondingly reduced. These occupational risks are comparable to those in most other industries and occupations. Some areas of uncertainty in the accepted risk estimates are discussed in detail in this review. (author)

  7. Sensitivity and parameter-estimation precision for alternate LISA configurations

    International Nuclear Information System (INIS)

    Vallisneri, Michele; Crowder, Jeff; Tinto, Massimo

    2008-01-01

    We describe a simple framework to assess the LISA scientific performance (more specifically, its sensitivity and expected parameter-estimation precision for prescribed gravitational-wave signals) under the assumption of failure of one or two inter-spacecraft laser measurements (links) and of one to four intra-spacecraft laser measurements. We apply the framework to the simple case of measuring the LISA sensitivity to monochromatic circular binaries, and the LISA parameter-estimation precision for the gravitational-wave polarization angle of these systems. Compared to the six-link baseline configuration, the five-link case is characterized by a small loss in signal-to-noise ratio (SNR) in the high-frequency section of the LISA band; the four-link case shows a reduction by a factor of √2 at low frequencies, and by up to ∼2 at high frequencies. The uncertainty in the estimate of polarization, as computed in the Fisher-matrix formalism, also worsens when moving from six to five, and then to four links: this can be explained by the reduced SNR available in those configurations (except for observations shorter than three months, where five and six links do better than four even with the same SNR). In addition, we prove (for generic signals) that the SNR and Fisher matrix are invariant with respect to the choice of a basis of TDI observables; rather, they depend only on which inter-spacecraft and intra-spacecraft measurements are available

  8. Development of an efficient process for radiation vulcanization of natural rubber latex using hydroperoxide with sensitizer

    International Nuclear Information System (INIS)

    Siri-upathum, C.; Sonsuk, M.

    1996-01-01

    An attempt was made to reduce irradiation dose for radiation vulcanization of natural rubber latex. A promising method was to partially crosslink the latex by radiation vulcanization using n-butyl acrylate (n-BA) as sensitizer and t-butyl hydroperoxide (BHPO) as a co-sensitizer followed by redox vulcanization using residual BHPO as an oxidant and either fructose or tetra ethylene penta mine as reducing agents. It was found that the irradiation dose was reduced to 4 kGy with 5 phr n-BA as sensitizer and 0.1 phr BHPO as co-sensitizer. Successive crosslinking to full vulcanization was done by redox vulcanization using either 4 phr fructose at 60 degree C for 3 hours of 0.4 phr tetra-ethylene penta mine at room temperature for 1 hour. The rubber films obtained had tensile strength of about 25 MPa, modulus 300% of 0.9 MPa and crosslink density of about 1.5 x 10 19 crosslink/cm 3 . It was noted that the rubber film from the co-vulcanization was the average value of the values obtained by radiation vulcanization and redox vulcanization

  9. Assessing the potential of random forest method for estimating solar radiation using air pollution index

    International Nuclear Information System (INIS)

    Sun, Huaiwei; Gui, Dongwei; Yan, Baowei; Liu, Yi; Liao, Weihong; Zhu, Yan; Lu, Chengwei; Zhao, Na

    2016-01-01

    Highlights: • Models based on random forests for daily solar radiation estimation are proposed. • Three sites within different air pollution index conditions are considered. • Performance of random forests is better than that of empirical methodologies. • Special attention is given to the use of air pollution index. • The potential of air pollution index is assessed by random forest models. - Abstract: Simulations of solar radiation have become increasingly common in recent years because of the rapid global development and deployment of solar energy technologies. The effect of air pollution on solar radiation is well known. However, few studies have attempting to evaluate the potential of the air pollution index in estimating solar radiation. In this study, meteorological data, solar radiation, and air pollution index data from three sites having different air pollution index conditions are used to develop random forest models. We propose different random forest models with and without considering air pollution index data, and then compare their respective performance with that of empirical methodologies. In addition, a variable importance approach based on random forest is applied in order to assess input variables. The results show that the performance of random forest models with air pollution index data is better than that of the empirical methodologies, generating 9.1–17.0% lower values of root-mean-square error in a fitted period and 2.0–17.4% lower values of root-mean-square error in a predicted period. Both the comparative results of different random forest models and variance importance indicate that applying air pollution index data is improves estimation of solar radiation. Also, although the air pollution index values varied largely from season to season, the random forest models appear more robust performances in different seasons than different models. The findings can act as a guide in selecting used variables to estimate daily solar

  10. Radiation sensitivity of poliovirus, a model for norovirus, inoculated in oyster (Crassostrea gigas) and culture broth under different conditions

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Pil-Mun [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of); Park, Jae Seok [Korea Food and Drug Administration, Seoul 122-704 (Korea, Republic of); Park, Jin-Gyu; Park, Jae-Nam; Han, In-Jun; Song, Beom-Seok; Choi, Jong-il; Kim, Jae-Hun; Byun, Myung-Woo [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of); Baek, Min [Atomic Energy Policy Division, Ministry of Education, Science and Technology, Gwacheon 427-715 (Korea, Republic of); Chung, Young-Jin [Department of Food and Nutrition, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Lee, Ju-Woon [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of)], E-mail: sjwlee@kaeri.re.kr

    2009-07-15

    Poliovirus is a recognized surrogate for norovirus, pathogen in water and food, due to the structural and genetic similarity. Although radiation sensitivity of poliovirus in water or media had been reported, there has been no research in food model such as shellfish. In this study, oyster (Crassostrea gigas) was incubated in artificial seawater contaminated with poliovirus, and thus radiation sensitivity of poliovirus was determined in inoculated oyster. The effects of ionizing radiation on the sensitivity of poliovirus were also evaluated under different conditions such as pH (4-7) and salt concentration (1-15%) in culture broth, and temperature during irradiation. The D{sub 10} value of poliovirus in PBS buffer, virus culture broth and oyster was determined to 0.46, 2.84 and 2.94 kGy, respectively. The initial plaque forming unit (PFU) of poliovirus in culture broth was slightly decreased as the decrease of pH and the increase of salt concentration, but radiation sensitivity was not affected by pH and salt contents. However, radiation resistance of poliovirus was increased at frozen state. These results provide the basic information for the inactivation of pathogenic virus in foods by using irradiation.

  11. Radiation sensitivity of poliovirus, a model for norovirus, inoculated in oyster (Crassostrea gigas) and culture broth under different conditions

    International Nuclear Information System (INIS)

    Jung, Pil-Mun; Park, Jae Seok; Park, Jin-Gyu; Park, Jae-Nam; Han, In-Jun; Song, Beom-Seok; Choi, Jong-il; Kim, Jae-Hun; Byun, Myung-Woo; Baek, Min; Chung, Young-Jin; Lee, Ju-Woon

    2009-01-01

    Poliovirus is a recognized surrogate for norovirus, pathogen in water and food, due to the structural and genetic similarity. Although radiation sensitivity of poliovirus in water or media had been reported, there has been no research in food model such as shellfish. In this study, oyster (Crassostrea gigas) was incubated in artificial seawater contaminated with poliovirus, and thus radiation sensitivity of poliovirus was determined in inoculated oyster. The effects of ionizing radiation on the sensitivity of poliovirus were also evaluated under different conditions such as pH (4-7) and salt concentration (1-15%) in culture broth, and temperature during irradiation. The D 10 value of poliovirus in PBS buffer, virus culture broth and oyster was determined to 0.46, 2.84 and 2.94 kGy, respectively. The initial plaque forming unit (PFU) of poliovirus in culture broth was slightly decreased as the decrease of pH and the increase of salt concentration, but radiation sensitivity was not affected by pH and salt contents. However, radiation resistance of poliovirus was increased at frozen state. These results provide the basic information for the inactivation of pathogenic virus in foods by using irradiation.

  12. Radiation sensitivity of poliovirus, a model for norovirus, inoculated in oyster ( Crassostrea gigas) and culture broth under different conditions

    Science.gov (United States)

    Jung, Pil-Mun; Park, Jae Seok; Park, Jin-Gyu; Park, Jae-Nam; Han, In-Jun; Song, Beom-Seok; Choi, Jong-il; Kim, Jae-Hun; Byun, Myung-Woo; Baek, Min; Chung, Young-Jin; Lee, Ju-Woon

    2009-07-01

    Poliovirus is a recognized surrogate for norovirus, pathogen in water and food, due to the structural and genetic similarity. Although radiation sensitivity of poliovirus in water or media had been reported, there has been no research in food model such as shellfish. In this study, oyster ( Crassostrea gigas) was incubated in artificial seawater contaminated with poliovirus, and thus radiation sensitivity of poliovirus was determined in inoculated oyster. The effects of ionizing radiation on the sensitivity of poliovirus were also evaluated under different conditions such as pH (4-7) and salt concentration (1-15%) in culture broth, and temperature during irradiation. The D10 value of poliovirus in PBS buffer, virus culture broth and oyster was determined to 0.46, 2.84 and 2.94 kGy, respectively. The initial plaque forming unit (PFU) of poliovirus in culture broth was slightly decreased as the decrease of pH and the increase of salt concentration, but radiation sensitivity was not affected by pH and salt contents. However, radiation resistance of poliovirus was increased at frozen state. These results provide the basic information for the inactivation of pathogenic virus in foods by using irradiation.

  13. Efficient estimators for likelihood ratio sensitivity indices of complex stochastic dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Arampatzis, Georgios; Katsoulakis, Markos A.; Rey-Bellet, Luc [Department of Mathematics and Statistics, University of Massachusetts, Amherst, Massachusetts 01003 (United States)

    2016-03-14

    We demonstrate that centered likelihood ratio estimators for the sensitivity indices of complex stochastic dynamics are highly efficient with low, constant in time variance and consequently they are suitable for sensitivity analysis in long-time and steady-state regimes. These estimators rely on a new covariance formulation of the likelihood ratio that includes as a submatrix a Fisher information matrix for stochastic dynamics and can also be used for fast screening of insensitive parameters and parameter combinations. The proposed methods are applicable to broad classes of stochastic dynamics such as chemical reaction networks, Langevin-type equations and stochastic models in finance, including systems with a high dimensional parameter space and/or disparate decorrelation times between different observables. Furthermore, they are simple to implement as a standard observable in any existing simulation algorithm without additional modifications.

  14. Gene targeting associated with the radiation sensitivity in squamous cell carcinoma by using microarray analysis

    International Nuclear Information System (INIS)

    Nimura, Yoshinori; Kumagai, Ken; Kouzu, Yoshinao; Higo, Morihiro; Kato, Yoshikuni; Seki, Naohiko; Yamada, Shigeru

    2005-01-01

    In order to identify a set of genes related to radiation sensitivity of squamous cell carcinoma (SCC) and establish a predictive method, we compared expression profiles of radio-sensitive/radio-resistant SCC cell lines, using the in-house cDNA microarray consisting of 2,201 human genes derived from full-length enriched SCC cDNA libraries and the Human oligo chip 30 K (Hitachi Software Engineering). Surviving fractions (SF) after irradiation of heavy iron were calculated by colony formation assay. Three pairs (TE2-TE13, YES5-YES6, and HSC3-HSC2), sensitive (SF1 0.6), were selected for the microarray analysis. The results of cDNA microarray analysis showed that 20 genes in resistant cell lines and 5 genes in sensitive cell lines were up regulated more than 1.5-fold compared with sensitive and resistant cell lines respectively. Fourteen out of 25 genes were confirmed the gene expression profiles by real-time polymerase chain reaction (PCR). Twenty-seven genes identified by Human oligo chip 30 K are candidate for the markers to distinguish radio-sensitive from radio-resistant. These results suggest that the isolated 27 genes are the candidates that might be used as specific molecular markers to predict radiation sensitivity. (author)

  15. Sensitivity and Acclimation of Three Canopy-Forming Seaweeds to UVB Radiation and Warming

    KAUST Repository

    Xiao, Xi; de Bettignies, Thibaut; Olsen, Ylva S.; Agusti, Susana; Duarte, Carlos M.; Wernberg, Thomas

    2015-01-01

    Canopy-forming seaweeds, as primary producers and foundation species, provide key ecological services. Their responses to multiple stressors associated with climate change could therefore have important knock-on effects on the functioning of coastal ecosystems. We examined interactive effects of UVB radiation and warming on juveniles of three habitat-forming subtidal seaweeds from Western Australia–Ecklonia radiata, Scytothalia dorycarpa and Sargassum sp. Fronds were incubated for 14 days at 16–30°C with or without UVB radiation and growth, health status, photosynthetic performance, and light absorbance measured. Furthermore, we used empirical models from the metabolic theory of ecology to evaluate the sensitivity of these important seaweeds to ocean warming. Results indicated that responses to UVB and warming were species specific, with Sargassum showing highest tolerance to a broad range of temperatures. Scytothalia was most sensitive to elevated temperature based on the reduced maximum quantum yields of PSII; however, Ecklonia was most sensitive, according to the comparison of activation energy calculated from Arrhenius’ model. UVB radiation caused reduction in the growth, physiological responses and thallus health in all three species. Our findings indicate that Scytothalia was capable of acclimating in response to UVB and increasing its light absorption efficiency in the UV bands, probably by up-regulating synthesis of photoprotective compounds. The other two species did not acclimate over the two weeks of exposure to UVB. Overall, UVB and warming would severely inhibit the growth and photosynthesis of these canopy-forming seaweeds and decrease their coverage. Differences in the sensitivity and acclimation of major seaweed species to temperature and UVB may alter the balance between species in future seaweed communities under climate change.

  16. Sensitivity and Acclimation of Three Canopy-Forming Seaweeds to UVB Radiation and Warming

    KAUST Repository

    Xiao, Xi

    2015-12-02

    Canopy-forming seaweeds, as primary producers and foundation species, provide key ecological services. Their responses to multiple stressors associated with climate change could therefore have important knock-on effects on the functioning of coastal ecosystems. We examined interactive effects of UVB radiation and warming on juveniles of three habitat-forming subtidal seaweeds from Western Australia–Ecklonia radiata, Scytothalia dorycarpa and Sargassum sp. Fronds were incubated for 14 days at 16–30°C with or without UVB radiation and growth, health status, photosynthetic performance, and light absorbance measured. Furthermore, we used empirical models from the metabolic theory of ecology to evaluate the sensitivity of these important seaweeds to ocean warming. Results indicated that responses to UVB and warming were species specific, with Sargassum showing highest tolerance to a broad range of temperatures. Scytothalia was most sensitive to elevated temperature based on the reduced maximum quantum yields of PSII; however, Ecklonia was most sensitive, according to the comparison of activation energy calculated from Arrhenius’ model. UVB radiation caused reduction in the growth, physiological responses and thallus health in all three species. Our findings indicate that Scytothalia was capable of acclimating in response to UVB and increasing its light absorption efficiency in the UV bands, probably by up-regulating synthesis of photoprotective compounds. The other two species did not acclimate over the two weeks of exposure to UVB. Overall, UVB and warming would severely inhibit the growth and photosynthesis of these canopy-forming seaweeds and decrease their coverage. Differences in the sensitivity and acclimation of major seaweed species to temperature and UVB may alter the balance between species in future seaweed communities under climate change.

  17. Expedited Radiation Biodosimetry by Automated Dicentric Chromosome Identification (ADCI) and Dose Estimation.

    Science.gov (United States)

    Shirley, Ben; Li, Yanxin; Knoll, Joan H M; Rogan, Peter K

    2017-09-04

    Biological radiation dose can be estimated from dicentric chromosome frequencies in metaphase cells. Performing these cytogenetic dicentric chromosome assays is traditionally a manual, labor-intensive process not well suited to handle the volume of samples which may require examination in the wake of a mass casualty event. Automated Dicentric Chromosome Identifier and Dose Estimator (ADCI) software automates this process by examining sets of metaphase images using machine learning-based image processing techniques. The software selects appropriate images for analysis by removing unsuitable images, classifies each object as either a centromere-containing chromosome or non-chromosome, further distinguishes chromosomes as monocentric chromosomes (MCs) or dicentric chromosomes (DCs), determines DC frequency within a sample, and estimates biological radiation dose by comparing sample DC frequency with calibration curves computed using calibration samples. This protocol describes the usage of ADCI software. Typically, both calibration (known dose) and test (unknown dose) sets of metaphase images are imported to perform accurate dose estimation. Optimal images for analysis can be found automatically using preset image filters or can also be filtered through manual inspection. The software processes images within each sample and DC frequencies are computed at different levels of stringency for calling DCs, using a machine learning approach. Linear-quadratic calibration curves are generated based on DC frequencies in calibration samples exposed to known physical doses. Doses of test samples exposed to uncertain radiation levels are estimated from their DC frequencies using these calibration curves. Reports can be generated upon request and provide summary of results of one or more samples, of one or more calibration curves, or of dose estimation.

  18. Loss tangent and complex modulus estimated by acoustic radiation force creep and shear wave dispersion.

    Science.gov (United States)

    Amador, Carolina; Urban, Matthew W; Chen, Shigao; Greenleaf, James F

    2012-03-07

    Elasticity imaging methods have been used to study tissue mechanical properties and have demonstrated that tissue elasticity changes with disease state. In current shear wave elasticity imaging methods typically only shear wave speed is measured and rheological models, e.g. Kelvin-Voigt, Maxwell and Standard Linear Solid, are used to solve for tissue mechanical properties such as the shear viscoelastic complex modulus. This paper presents a method to quantify viscoelastic material properties in a model-independent way by estimating the complex shear elastic modulus over a wide frequency range using time-dependent creep response induced by acoustic radiation force. This radiation force induced creep method uses a conversion formula that is the analytic solution of a constitutive equation. The proposed method in combination with shearwave dispersion ultrasound vibrometry is used to measure the complex modulus so that knowledge of the applied radiation force magnitude is not necessary. The conversion formula is shown to be sensitive to sampling frequency and the first reliable measure in time according to numerical simulations using the Kelvin-Voigt model creep strain and compliance. Representative model-free shear complex moduli from homogeneous tissue mimicking phantoms and one excised swine kidney were obtained. This work proposes a novel model-free ultrasound-based elasticity method that does not require a rheological model with associated fitting requirements.

  19. Temporal correlations between sensitivity to radiation-induced mitotic delay and the S phase of the sea urchin egg

    International Nuclear Information System (INIS)

    Rustad, R.C.; Viswanathan, G.; Antonellis, B.C.

    1979-01-01

    Separate samples of eggs from the sea urchin Arbacia punctulata were gamma irradiated (4kR) at different times after fertilisation and division delay measured. The results demonstrated a characteristic post-fertilisation pattern of a rise in sensitivity to radiation-induced mitotic delay, followed by a biphasic decrease in sensitivity to a refractory period. Measurements of the cumulative incorporation of 3 H-TdR showed that the first period of decreasing radiation sensitivity was closely associated with the bulk synthesis of DNA (S phase). (U.K.)

  20. An Escherichia coli strain deficient for both exonuclease 5 and deoxycytidine triphosphate deaminase shows enhanced sensitivity to ionizing radiation

    International Nuclear Information System (INIS)

    Estevenon, A.M.; Kooistra, J.; Sicard, N.

    1995-01-01

    An Escherichia coli mutant lacking deoxycytidine triphosphate deaminase (Dcd) activity and an unknown function encoded by a gene designated ior exhibits sensitivity to ionizing radiation whereas dcd mutants themselves are not sensitive. A DNA fragment from an E. coli genomic library that restores the wild type level of UV and gamma ray resistance to this mutant has been cloned in the multicopy vector pBR322. Comparison of its restriction map with the physical map of the E. coli chromosome revealed complete identity to the recBD genes. ior affects ATP-dependent exonuclease activity, suggesting that it is an allele of recB. This mutation alone does not confer sensitivity to UV and gamma radiation, indicating that lack of Dcd activity is also required for expression of radiation sensitivity

  1. Radiation Sensitivity of some Food Borne Bacterial Pathogens in Animal Foods and Minced Meat

    International Nuclear Information System (INIS)

    Mohammed, W.S.; Ali, A.R.; Alexan, A.F.

    2010-01-01

    Bacteriological examination of 100 samples of animal food stuffs (fish meal and bone and meat meal; as models of dry food materials) and 50 samples of minced meat (as a model of moist food materials) revealed the isolation of different bacterial pathogens; Escherichia coli, Klebsiella spp., Pseudomonas aeruginosa, Proteus spp., Staph. aureus and Salmonella species, in a decreasing order of occurrence. In the experiment; the dry food stuffs were sterilized in autoclave and the minced meat was sterilized by gamma irradiation at 10 kGy. The efficacy of gamma irradiation against the inoculated bacterial isolates (E coli 0157: H7, Salmonella enteritidis and Staph. aureus) in animal food stuffs and minced meat was investigated. Irradiated samples were stored at room temperature (25 degree C) for 2 weeks. The food borne pathogens used in this study showed a difference in radiation sensitivity. E. coli 0157: H7, Staphylococcus aureus and Salmonella enteritidis were eradicated at 1, 2 and 3 kGy, respectively. Also, inoculated pathogens in minced meat were more sensitive to ionizing radiation than dry animal food stuffs. It could be concluded that low doses of gamma irradiation are effective means of inactivating pathogenic bacteria. This radiation sensitivity is related to the bacterial isolates and the evaluated growth

  2. An estimate of the radiation-induced cancer risk from the whole-body stray radiation exposure in neutron radiotherapy

    International Nuclear Information System (INIS)

    Geraci, J.P.; Jackson, K.L.; Mariano, M.S.

    1982-01-01

    1980 BEIR III risk factors have been used to estimate the secondary cancer risks from the whole-body stray radiation exposures occurring in neutron radiotherapy. Risks were calculated using linear, linear-quadratic and quadratic dose-response models for the gamma component of the stray radiation. The linear dose-response model was used to calculate risk for the neutron component of the stray radiation. These estimates take into consideration for the first time the age and sex distribution of patients undergoing neutron therapy. Changes in risk as a function of the RBE (10-100) assigned to the stray neutron radiation component have also been assessed. Excess risks in neutron-treated patients have been compared with excess risks for photon-treated patients and with the expected incidence of cancer in a normal population having the same age and sex distribution. Results indicate that it will be necessary to tolerate a higher incidence of secondary cancers in patients undergoing fast neutron therapy than is the case with conventional photon therapy. For neutron RBEs of less than 50 the increased risk is only a fraction of the normal expected incidence of cancer in this population. Comparison of the radiation-induced risk with reported normal tissue complication rates in the treatment volume indicates that the excess cancer risk is substantially lower than the risk from other late normal tissue effects. (author)

  3. Radiation-induced increases in sensitivity of cataleptic behavior to haloperidol: possible involvement of prostaglandins

    International Nuclear Information System (INIS)

    Joseph, J.A.; Kandasamy, S.B.; Hunt, W.A.; Dalton, T.K.; Stevens, S.

    1988-01-01

    The effects of radiation exposure on haloperidol-induced catalepsy were examined in order to determine whether elevated prostaglandins, through an action on dopaminergic autoreceptors, could be involved in the radiation-induced increase in the potency of this neuroleptic. Cataleptic behavior was examined in animals irradiated with various doses of gamma photons (1-150 Gy) and pretreated with a subthreshold dose of haloperidol (0.1 mg/kg). This approach was chosen to maximize any synergistic effects of radiation and haloperidol. After irradiation with doses less than or equal to 30 Gy, the combined treatment of haloperidol and radiation produced catalepsy, whereas neither treatment alone had an effect. This observed catalepsy could be blocked with prior administration of indomethacin, a prostaglandin synthesis inhibitor. Animals exposed to doses of radiation less than or equal to 50 Gy and no haloperidol, however, displayed apparent catalepsy. This effect was also antagonized by indomethacin. Prostaglandins can induce catalepsy and when administered in subthreshold doses along with subthreshold doses of haloperidol, catalepsy was observed. In order to assess a possible action of prostaglandins and radiation on dopaminergic activity, the functioning of striatal dopaminergic autoreceptors was examined by determining the effects of varying concentrations of haloperidol on the K+-evoked release of dopamine from striatal slices obtained from parallel groups of animals treated as above. Results indicated that sensitivity to haloperidol increased (higher K+-evoked dopamine release) in slices from irradiated or prostaglandin-treated animals and that this increase in sensitivity was blocked by indomethacin

  4. In vivo sensitivity of the embryonic and adult neural stem cell compartments to low-dose radiation

    International Nuclear Information System (INIS)

    Barazzuol, Lara; Jeggo, Penny A.

    2016-01-01

    The embryonic brain is radiation-sensitive, with cognitive deficits being observed after exposure to low radiation doses. Exposure of neonates to radiation can cause intracranial carcinogenesis. To gain insight into the basis underlying these outcomes, we examined the response of the embryonic, neonatal and adult brain to low-dose radiation, focusing on the neural stem cell compartments. This review summarizes our recent findings. At E13.5–14.5 the embryonic neocortex encompasses rapidly proliferating stem and progenitor cells. Exploiting mice with a hypomorphic mutation in DNA ligase IV (Lig4 Y288C ), we found a high level of DNA double-strand breaks (DSBs) at E14.5, which we attribute to the rapid proliferation. We observed endogenous apoptosis in Lig4 Y288C embryos and in WT embryos following exposure to low radiation doses. An examination of DSB levels and apoptosis in adult neural stem cell compartments, the subventricular zone (SVZ) and the subgranular zone (SGZ) revealed low DSB levels in Lig4 Y288C mice, comparable with the levels in differentiated neuronal tissues. We conclude that the adult SVZ does not incur high levels of DNA breakage, but sensitively activates apoptosis; apoptosis was less sensitively activated in the SGZ, and differentiated neuronal tissues did not activate apoptosis. P5/P15 mice showed intermediate DSB levels, suggesting that DSBs generated in the embryo can be transmitted to neonates and undergo slow repair. Interestingly, this analysis revealed a stage of high endogenous apoptosis in the neonatal SVZ. Collectively, these studies reveal that the adult neural stem cell compartment, like the embryonic counterpart, can sensitively activate apoptosis

  5. Temperature-based estimation of global solar radiation using soft computing methodologies

    Science.gov (United States)

    Mohammadi, Kasra; Shamshirband, Shahaboddin; Danesh, Amir Seyed; Abdullah, Mohd Shahidan; Zamani, Mazdak

    2016-07-01

    Precise knowledge of solar radiation is indeed essential in different technological and scientific applications of solar energy. Temperature-based estimation of global solar radiation would be appealing owing to broad availability of measured air temperatures. In this study, the potentials of soft computing techniques are evaluated to estimate daily horizontal global solar radiation (DHGSR) from measured maximum, minimum, and average air temperatures ( T max, T min, and T avg) in an Iranian city. For this purpose, a comparative evaluation between three methodologies of adaptive neuro-fuzzy inference system (ANFIS), radial basis function support vector regression (SVR-rbf), and polynomial basis function support vector regression (SVR-poly) is performed. Five combinations of T max, T min, and T avg are served as inputs to develop ANFIS, SVR-rbf, and SVR-poly models. The attained results show that all ANFIS, SVR-rbf, and SVR-poly models provide favorable accuracy. Based upon all techniques, the higher accuracies are achieved by models (5) using T max- T min and T max as inputs. According to the statistical results, SVR-rbf outperforms SVR-poly and ANFIS. For SVR-rbf (5), the mean absolute bias error, root mean square error, and correlation coefficient are 1.1931 MJ/m2, 2.0716 MJ/m2, and 0.9380, respectively. The survey results approve that SVR-rbf can be used efficiently to estimate DHGSR from air temperatures.

  6. Estimation of Radiation Limit from a Huygens' Box under Non-Free-Space Conditions

    DEFF Research Database (Denmark)

    Franek, Ondrej; Sørensen, Morten; Bonev, Ivan Bonev

    2013-01-01

    The recently studied Huygens' box method has difficulties when radiation of an electronic module is to be determined under non-free-space conditions, i.e. with an enclosure. We propose an estimate on radiation limit under such conditions based only on the Huygens' box data from free...

  7. Estimating the risks of cancer mortality and genetic defects resulting from exposures to low levels of ionizing radiation

    International Nuclear Information System (INIS)

    Buhl, T.E.; Hansen, W.R.

    1984-05-01

    Estimators for calculating the risk of cancer and genetic disorders induced by exposure to ionizing radiation have been recommended by the US National Academy of Sciences Committee on the Biological Effects of Ionizing Radiations, the UN Scientific Committee on the Effects of Atomic Radiation, and the International Committee on Radiological Protection. These groups have also considered the risks of somatic effects other than cancer. The US National Council on Radiation Protection and Measurements has discussed risk estimate procedures for radiation-induced health effects. The recommendations of these national and international advisory committees are summarized and compared in this report. Based on this review, two procedures for risk estimation are presented for use in radiological assessments performed by the US Department of Energy under the National Environmental Policy Act of 1969 (NEPA). In the first procedure, age- and sex-averaged risk estimators calculated with US average demographic statistics would be used with estimates of radiation dose to calculate the projected risk of cancer and genetic disorders that would result from the operation being reviewed under NEPA. If more site-specific risk estimators are needed, and the demographic information is available, a second procedure is described that would involve direct calculation of the risk estimators using recommended risk-rate factors. The computer program REPCAL has been written to perform this calculation and is described in this report. 25 references, 16 tables

  8. Estimating the risks of cancer mortality and genetic defects resulting from exposures to low levels of ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Buhl, T.E.; Hansen, W.R.

    1984-05-01

    Estimators for calculating the risk of cancer and genetic disorders induced by exposure to ionizing radiation have been recommended by the US National Academy of Sciences Committee on the Biological Effects of Ionizing Radiations, the UN Scientific Committee on the Effects of Atomic Radiation, and the International Committee on Radiological Protection. These groups have also considered the risks of somatic effects other than cancer. The US National Council on Radiation Protection and Measurements has discussed risk estimate procedures for radiation-induced health effects. The recommendations of these national and international advisory committees are summarized and compared in this report. Based on this review, two procedures for risk estimation are presented for use in radiological assessments performed by the US Department of Energy under the National Environmental Policy Act of 1969 (NEPA). In the first procedure, age- and sex-averaged risk estimators calculated with US average demographic statistics would be used with estimates of radiation dose to calculate the projected risk of cancer and genetic disorders that would result from the operation being reviewed under NEPA. If more site-specific risk estimators are needed, and the demographic information is available, a second procedure is described that would involve direct calculation of the risk estimators using recommended risk-rate factors. The computer program REPCAL has been written to perform this calculation and is described in this report. 25 references, 16 tables.

  9. Sensitivity of the human breast to cancer induction by ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Mole, R H [Medical Research Council, Harwell (UK). Radiobiological Research Unit

    1978-06-01

    Available evidence for the induction of cancer in the human breast by small doses of radiation is reviewed. A comparison is made of risk estimates for the frequency of breast cancer in excess of controls, per rad of ionizing radiation, resulting from multiple fluoroscopy, radiotherapy of non-malignant diseases of the breast, or the exposure of Japanese bomb survivors. The significance of the age at exposure is discussed, and consideration is given to the application of the evidence to practical problems in radiography, radiotherapy, screening by mammography, and radiological protection for occupational exposure.

  10. Variation in radiation sensitivity and repair kinetics in different parts of the spinal cord

    International Nuclear Information System (INIS)

    Adamus-Gorka, Magdalena; Brahme, Anders; Mavroidis, Panayiotis; Lind, Bengt K.

    2008-01-01

    Background. The spinal cord, known for its strongly serial character and high sensitivity to radiation even when a small segment is irradiated, is one of the most critical organs at risk to be spared during radiation therapy. To compare the sensitivity of different parts of the spinal cord, data for radiation myelopathy have been used. Material and methods. In the present study, the relative seriality model was fitted to two different datasets of clinical radiation myelitis concerning cervical spinal cord after treating 248 patients for head and neck cancer and thoracic spinal cord after treating 43 patients with lung carcinoma. The maximum likelihood method was applied to fit the clinical data. The model parameters and their 68% confidence intervals were calculated for each dataset. The α/β ratio for the thoracic cord was also was also found to be 0.9 (0-3.0) Gy. Results. The dose-response curve for the more sensitive cervical myelopathy is well described by the parameters D 50 =55.9 (54.8-57.1) Gy, γ=6.9 (5.0-9.2), s=0.13 (0.07-0.24), whereas the thoracic myelopathy is described by the parameters D 50 =75.5 (70.5-80.8) Gy, γ=1.1 (0.6-1.6), s=36 (3.3-8). Discussion and conclusions. Large differences in radiation response between the cervical and thoracic region of spinal cord are thus observed: cervical myelopathy seems to be characterized by medium seriality, while thoracic spinal cord is characterized by a highly serial dose-response. The much steeper dose-response curve for cervical spinal cord myelopathy can be interpreted as a higher number of functional subunits consistent with a higher amount of white matter close to the brain

  11. Estimation of daily solar radiation from routinely observed meteorological data in Chongqing, China

    International Nuclear Information System (INIS)

    Li Maofen; Liu Hongbin; Guo Pengtao; Wu Wei

    2010-01-01

    Solar radiation is a very important and major variable in crop simulation models. However, it is measured at a very limited number of meteorological stations worldwide. Models were developed to estimate daily solar radiation in Chongqing, one of the most important agricultural areas in China. Several routinely observed meteorological variables including daily maximum and minimum temperatures, daily mean dew point temperature, fog and rainfall had been obtained, investigated and analyzed from 1986 to 2000 for Chongqing. The monthly mean daily solar radiation at this location ranged from a maximum of 15.082 MJ m -2 day -1 in August and a minimum of 3.042 MJ m -2 day -1 in December. A newly developed model that included all selected variables proved the best method with a RMSE value of 2.522 MJ m -2 day -1 . The best performed models for different seasons were further evaluated according to divide-and-conquer principle. The model using all selected variables provided the best estimates of daily solar radiation in winter and autumn with RMSE values of 1.491 and 2.037 MJ m -2 day -1 , respectively. The method involving temperatures and rainfall information could be used to estimate daily solar radiation in summer with a RMSE value of 3.163 MJ m -2 day -1 . The model using temperature, rainfall and dew point data performed better than other models in spring with a RMSE value of 2.910 MJ m -2 day -1 .

  12. A new approach to estimate Angstrom coefficients

    International Nuclear Information System (INIS)

    Abdel Wahab, M.

    1991-09-01

    A simple quadratic equation to estimate global solar radiation with coefficients depending on some physical atmospheric parameters is presented. The importance of the second order and sensitivity to some climatic variations is discussed. (author). 8 refs, 4 figs, 2 tabs

  13. Delay-Line Three-Dimensional Position Sensitive Radiation Detection

    Science.gov (United States)

    Jeong, Manhee

    High-resistivity silicon(Si) in large volumes and with good charge carrier transport properties has been produced and achieved success as a radiation detector material over the past few years due to its relatively low cost as well as the availability of well-established processing technologies. One application of that technology is in the fabrication of various position-sensing topologies from which the incident radiation's direction can be determined. We have succeeded in developing the modeling tools for investigating different position-sensing schemes and used those tools to examine both amplitude-based and time-based methods, an assessment that indicates that fine position-sensing can be achieved with simpler readout designs than are conventionally deployed. This realization can make ubiquitous and inexpensive deployment of special nuclear materials (SNM) detecting technology becomes more feasible because if one can deploy position-sensitive semiconductor detectors with only one or two contacts per side. For this purpose, we have described the delay-line radiation detector and its optimized fabrication. The semiconductor physics were simulated, the results from which guided the fabrication of the guard ring structure and the detector electrode, both of which included metal-field-plates. The measured improvement in the leakage current was confirmed with the fabricated devices, and the structures successfully suppressed soft-breakdown. We also demonstrated that fabricating an asymmetric strip-line structure successfully minimizing the pulse shaping and increases the distance through which one can propagate the information of the deposited charge distribution. With fabricated delay-line detectors we can acquire alpha spectra (Am-241) and gamma spectra (Ba-133, Co-57 and Cd-109). The delay-line detectors can therefore be used to extract the charge information from both ion and gamma-ray interactions. Furthermore, standard charge-sensitive circuits yield high SNR

  14. Estimated effects on radiation doses from alternatives in a spent fuel transportation system

    International Nuclear Information System (INIS)

    Schneider, K.J.; Ross, W.A.; Smith, R.I.

    1988-07-01

    This paper contains the results of a study of estimated radiation doses to the public and workers from the transport of spent fuel from commercial nuclear power reactors to a geologic repository. A postulated reference rail/legal-weight truck transportation system is defined that would use current transportation technology, and provide a breakdown of activities and time/distance/dose-rate estimates for each activity within the system. Collective doses are estimated for each of the major activities at the reactor site, in transit, and at the repository receiving facility. Annual individual doses to the maximally exposed individuals or groups of individuals are also estimated. The dose-reduction potentials and costs are estimated for a total of 17 conceptual alternatives and subalternatives to the postulated reference system. Most of the alternatives evaluated are estimated to provide both cost and dose reductions. The major conclusion is that the potential exists for significant future reductions in radiation doses to the public and workers and for reductions in costs compared to those based on a continuation of past practices in the US

  15. Estimated effects on radiation doses from alternatives in a spent fuel transportation system

    International Nuclear Information System (INIS)

    Schneider, K.J.; Ross, W.A.; Smith, R.I.

    1988-01-01

    This paper contains the results of a study of estimated radiation doses to the public and workers from the transport of spent fuel from commercial nuclear power reactors to a geologic repository. A postulated reference rail/legal-weight truck transportation system is defined that would use current transportation technology, and provide a breakdown of activities and time/distance/dose-rate estimates for each activity within the system. Collective doses are estimated for each of the major activities at the reactor site, in transit, and at the repository receiving facility. Annual individual doses to the maximally exposed individuals or groups of individuals also estimated. The dose-reduction potentials and costs are estimated for a total of 17 conceptual alternatives and subalternatives to the postulated reference system. Most of the alternatives evaluated are estimated to provide both cost and dose reductions. The major conclusion is that the potential exists for significant future reductions in radiation doses to the public and workers and for reductions in costs compared to those based on a continuation of past practices in the U.S

  16. Inhibition of DNA repair by whole body irradiation induced nitric oxide leads to higher radiation sensitivity in lymphocytes

    International Nuclear Information System (INIS)

    Sharma, Deepak; Santosh Kumar, S.; Raghu, Rashmi; Maurya, D.K.; Sainis, K.B.

    2007-01-01

    Full text: It is well accepted that the sensitivity of mammalian cells is better following whole body irradiation (WBI) as compared to that following in vitro irradiation. However, the underlying mechanisms are not well understood. Following WBI, the lipid peroxidation and cell death were significantly higher in lymphocytes as compared to that in vitro irradiated lymphocytes. Further, WBI treatment of tumor bearing mice resulted in a significantly higher inhibition of EL-4 cell proliferation as compared to in vitro irradiation of EL-4 cells. The DNA repair was significantly slower in lymphocytes obtained from WBI treated mice as compared to that in the cells exposed to same dose of radiation in vitro. Generation of nitric oxide following irradiation and also its role in inhibition of DNA repair have been reported, hence, its levels were estimated under both WBI and in vitro irradiation conditions. Nitric oxide levels were significantly elevated in the plasma of WBI treated mice but not in the supernatant of in vitro irradiated cells. Addition of sodium nitroprusside (SNP), a nitric oxide donor to in vitro irradiated cells inhibited the repair of DNA damage and sensitized cells to undergo cell death. It also enhanced the radiation-induced functional impairment of lymphocytes as evinced from suppression of mitogen-induced IL-2, IFN-γ and bcl-2 mRNA expression. Administration of N G -nitro-L-arginine-methyl-ester(L-NAME), a nitric oxide synthase inhibitor, to mice significantly protected lymphocytes against WBI-induced DNA damage and inhibited in vivo radiation-induced production of nitric oxide. Our results indicated that nitric oxide plays a role in the higher radiosensitivity of lymphocytes in vivo by inhibiting repair of DNA damage

  17. Sensitivity of probability-of-failure estimates with respect to probability of detection curve parameters

    Energy Technology Data Exchange (ETDEWEB)

    Garza, J. [University of Texas at San Antonio, Mechanical Engineering, 1 UTSA circle, EB 3.04.50, San Antonio, TX 78249 (United States); Millwater, H., E-mail: harry.millwater@utsa.edu [University of Texas at San Antonio, Mechanical Engineering, 1 UTSA circle, EB 3.04.50, San Antonio, TX 78249 (United States)

    2012-04-15

    A methodology has been developed and demonstrated that can be used to compute the sensitivity of the probability-of-failure (POF) with respect to the parameters of inspection processes that are simulated using probability of detection (POD) curves. The formulation is such that the probabilistic sensitivities can be obtained at negligible cost using sampling methods by reusing the samples used to compute the POF. As a result, the methodology can be implemented for negligible cost in a post-processing non-intrusive manner thereby facilitating implementation with existing or commercial codes. The formulation is generic and not limited to any specific random variables, fracture mechanics formulation, or any specific POD curve as long as the POD is modeled parametrically. Sensitivity estimates for the cases of different POD curves at multiple inspections, and the same POD curves at multiple inspections have been derived. Several numerical examples are presented and show excellent agreement with finite difference estimates with significant computational savings. - Highlights: Black-Right-Pointing-Pointer Sensitivity of the probability-of-failure with respect to the probability-of-detection curve. Black-Right-Pointing-Pointer The sensitivities are computed with negligible cost using Monte Carlo sampling. Black-Right-Pointing-Pointer The change in the POF due to a change in the POD curve parameters can be easily estimated.

  18. Sensitivity of probability-of-failure estimates with respect to probability of detection curve parameters

    International Nuclear Information System (INIS)

    Garza, J.; Millwater, H.

    2012-01-01

    A methodology has been developed and demonstrated that can be used to compute the sensitivity of the probability-of-failure (POF) with respect to the parameters of inspection processes that are simulated using probability of detection (POD) curves. The formulation is such that the probabilistic sensitivities can be obtained at negligible cost using sampling methods by reusing the samples used to compute the POF. As a result, the methodology can be implemented for negligible cost in a post-processing non-intrusive manner thereby facilitating implementation with existing or commercial codes. The formulation is generic and not limited to any specific random variables, fracture mechanics formulation, or any specific POD curve as long as the POD is modeled parametrically. Sensitivity estimates for the cases of different POD curves at multiple inspections, and the same POD curves at multiple inspections have been derived. Several numerical examples are presented and show excellent agreement with finite difference estimates with significant computational savings. - Highlights: ► Sensitivity of the probability-of-failure with respect to the probability-of-detection curve. ►The sensitivities are computed with negligible cost using Monte Carlo sampling. ► The change in the POF due to a change in the POD curve parameters can be easily estimated.

  19. Estimate on external effective doses received by the Iranian population from environmental gamma radiation sources

    Energy Technology Data Exchange (ETDEWEB)

    Roozitalab, J.; Reza deevband, M.; Rastkhah, N. [National Radiation Protection Dept. Atomic Energy Organization (Iran, Islamic Republic of); Sohrabi, M. [Intenatinal atomic Energy Agency, Vienna (Austria)

    2006-07-01

    Concentration of natural radioactive materials, especially available U 238, Ra 226, Th 232, and K 40 in construction materials and soil, as well as absorb dose from cosmic rays, is the most important source of the people for effective doses from the environment radiation. In order to evaluate external effective dose, it has been carried out more than 1000 measurements in 36 cities by sensitive dosimeters to environmental gamma radiation for indoor and outdoor conditions in residential areas; which its results show that range of gamma exposure for inside of buildings in Iran is 8.7-20.5 {mu}R/h, and outdoor environments of different cities is 7.9-20.6 {mu}R/h, which their mean value are 14.33 and 12.62 {mu}R/h respectively. Meanwhile, it has been estimated that beam-absorbing ratio between indoor and outdoor in measured environments is 1.55, except contribution of cosmic rays. This studies show that average effective dose for each Iranian person from environmental gamma is 96.9 n Sv/h, and annually effective dose for every person is 0.848 mSv. (authors)

  20. Estimate on external effective doses received by the Iranian population from environmental gamma radiation sources

    International Nuclear Information System (INIS)

    Roozitalab, J.; Reza deevband, M.; Rastkhah, N.; Sohrabi, M.

    2006-01-01

    Concentration of natural radioactive materials, especially available U 238, Ra 226, Th 232, and K 40 in construction materials and soil, as well as absorb dose from cosmic rays, is the most important source of the people for effective doses from the environment radiation. In order to evaluate external effective dose, it has been carried out more than 1000 measurements in 36 cities by sensitive dosimeters to environmental gamma radiation for indoor and outdoor conditions in residential areas; which its results show that range of gamma exposure for inside of buildings in Iran is 8.7-20.5 μR/h, and outdoor environments of different cities is 7.9-20.6 μR/h, which their mean value are 14.33 and 12.62 μR/h respectively. Meanwhile, it has been estimated that beam-absorbing ratio between indoor and outdoor in measured environments is 1.55, except contribution of cosmic rays. This studies show that average effective dose for each Iranian person from environmental gamma is 96.9 n Sv/h, and annually effective dose for every person is 0.848 mSv. (authors)

  1. Investigation of the modifying effects of vitamin A and hypoxic cell sensitizers in radiation carcinogenesis in mice

    International Nuclear Information System (INIS)

    Mian, T.A.

    1982-01-01

    The effect of vitamin A (retinyl acetate) and three hypoxic cell sensitizers (metronidazole, misonidazole and desmethylmisonidazole) on lung tumor development in strain A mice exposed to radiation was assessed. In experiments involving vitamin A, two groups of mice were fed a low vitamin A diet (< 100 IU/100g diet) while the two other groups were fed a high vitamin A diet (800 IU/100 g diet). After two weeks one group maintained on the high vitamin A diet and one group maintained on the low vitamin A diet were given an acute dose of 500 rad of gamma radiation to the thoracic region. Mice were killed, their lungs were removed and the number of surface adenomas were counted. There was a significant increase in the number of mice bearing lung tumors and the mean number of lung tumors per mouse in the irradiated group maintained on the high vitamin A diet at 40 weeks post irradiation as compared to the irradiated group maintained on a low vitamin A diet. In the other experiment two dose levels of the hypoxic cell sensitizers, 0.2 mg/g and 0.6 mg/g, were used either alone or in combination with 900 rad of gamma radiation in a fractionated dose schedule of twice a week for three weeks. In the groups of mice which received hypoxic cell sensitizers only, the prevalence and the mean number of lung tumors per mouse were somewhat increased in the higher dose group (0.6 mg/g) of misonidazole but was not significantly different from the control animals in the other two sensitizer groups. The combination of hypoxic cell sensitizer and radiation did not show any significant enhancement of lung tumor response when compared with the group which received radiation only. The dose of radiation used in this study significantly enhanced lung tumor formation in mice when compared with the control group

  2. Whole body [{sup 11}C]-dihydrotetrabenazine imaging of baboons: biodistribution and human radiation dosimetry estimates

    Energy Technology Data Exchange (ETDEWEB)

    Murthy, Rajan [Columbia University College of Physicians and Surgeons, Department of Psychiatry, New York, NY (United States); New York State Psychiatric Institute, Department of Neuroscience, Division of Brain Imaging, New York, NY (United States); Harris, Paul; Leibel, Rudolph [Columbia University College of Physicians and Surgeons, Department of Medicine, New York, NY (United States); Simpson, Norman; Parsey, Ramin [Columbia University College of Physicians and Surgeons, Department of Psychiatry, New York, NY (United States); Van Heertum, Ronald [Columbia University College of Physicians and Surgeons, Department of Radiology, New York, NY (United States); New York State Psychiatric Institute, Department of Neuroscience, Division of Brain Imaging, New York, NY (United States); Mann, J.J. [Columbia University College of Physicians and Surgeons, Department of Psychiatry, New York, NY (United States); Columbia University College of Physicians and Surgeons, Department of Radiology, New York, NY (United States); New York State Psychiatric Institute, Department of Neuroscience, Division of Brain Imaging, New York, NY (United States)

    2008-04-15

    Vesicular monoamine transporter type 2 abundance quantified using the radiotracer [{sup 11}C]-dihydrotetrabenazine (DTBZ) has been used to study diagnosis and pathogenesis of dementia and psychiatric disorders in humans. In addition, it may be a surrogate marker for insulin-producing pancreatic beta cell mass, useful for longitudinal measurements using positron emission tomography to track progression of autoimmune diabetes. To support the feasibility of long-term repeated administrations, we estimate the biodistribution and dosimetry of [{sup 11}C]-DTBZ in humans. Five baboon studies were acquired using a Siemens ECAT camera. After transmission scanning, 165-210 MBq of [{sup 11}C]-DTBZ were injected, and dynamic whole body emission scans were conducted. Time-activity data were used to obtain residence times and estimate absorbed radiation dose according to the MIRD model. Most of the injected tracer localized to the liver and the lungs, followed by the intestines, brain, and kidneys. The highest estimated absorbed radiation dose was in the stomach wall. The largest radiation dose from [{sup 11}C]-DTBZ is to the stomach wall. This dose estimate, as well as the radiation dose to other radiosensitive organs, must be considered in evaluating the risks of multiple administrations. (orig.)

  3. Radiation dose estimates due to air particulate emissions from selected phosphate industry operations

    International Nuclear Information System (INIS)

    Partridge, J.E.; Horton, T.R.; Sensintaffar, E.L.; Boysen, G.A.

    1978-06-01

    The EPA Office of Radiation Programs has conducted a series of studies to determine the radiological impact of the phosphate mining and milling industry. This report describes the efforts to estimate the radiation doses due to airborne emissions of particulates from selected phosphate milling operations in Florida. Two wet process phosphoric acid plants and one ore drying facility were selected for this study. The 1976 Annual Operations/Emissions Report, submitted by each facility to the Florida Department of Environmental Regulation, and a field survey trip by EPA personnel to each facility were used to develop data for dose calculations. The field survey trip included sampling for stack emissions and ambient air samples collected in the general vicinity of each plant. Population and individual radiation dose estimates are made based on these sources of data

  4. Radiation doses to neonates and issues of radiation protection in a special care baby unit

    International Nuclear Information System (INIS)

    Armpilia, C.I.; Fife, I.A.J.; Croasdale, P.L.

    2001-01-01

    Radiographs are most commonly taken in the neonatal period to assist in the diagnosis and management of respiratory difficulties. Frequent accurate radiographic assessment is required and a knowledge of the radiation dose is necessary to make the justification of such exposures. A survey of radiation doses to neonates from diagnostic X-ray examinations (chest and abdomen) has been carried out in the special care baby unit (SCBU) of the Royal Free Hospital. Entrance surface dose (ESD) was calculated from Quality Control measurements on the X-ray set itself. Direct measurement of radiation doses was also performed using highly sensitive thermoluminescence dosimeters (LiF:Mg,Cu,P), calibrated and tested for consistency in sensitivity. The mean ESD per radiograph was calculated to be 36μGy (with a standard deviation of 6μGy), averaged over 95 X-ray examinations. The ESD's as derived from the TLD crystals, ranged from 18μGy to 60μGy. The mean energy imparted (EI) and the mean whole body dose per radiograph were estimated to be 14μJ and 10μGy respectively. Assuming that neonates and foetuses are equally susceptible to carcinogenic effects of radiation (it involves an overestimation of risk), the radiation risk of childhood cancer from a single radiograph was estimated to be of the order (0.3-1.3)x10 -6 . Radiation doses compared favourably with the reference value of 80μGy ESD published by CEC in 1996. (author)

  5. Study of radiation sensitization of artesunate on human HeLa cells of cervical cancer

    International Nuclear Information System (INIS)

    Ji Rong; Cao Jianping; Chen Xialin; Zhu Wei; Jiang Qing; Pan Chunyan; Zhou Yuanyuan; Feng Yang; Peng Xiaomei; Liu Yang; Fan Saijun

    2010-01-01

    Objective: To investigate the radiosensitizing effects of artesunate on human HeLa cells of cervical cancer in vitro. Methods: Hela cells irradiated with 60 Co γ-rays. The dose rate was 0.635 Gy/min and the radiation dose was 0, 1, 2, 4, 6 Gy, respectively. The anti-proliferation activities of artesunate on HeLa cells were evaluated with MTT assay, to determine the most appropriate drug concentration. The effect of radiosensitivity was observed by using clonogenic assay. The single-hit multi-target model was used to plot the HeLa cell's dose-survival curve, to calculate mean lethal dose, quasi-threshold dose and sensitization enhancement rate, and to evaluate its radiosensitization effect. The apoptosis was analyzed with flow cytometry (FCM) to further test the radiation sensitization of artesunate on HeLa cells. Results: The inhibition of artesunate on HeLa cells increased with concentration. In radiation group, the cell cloning efficiency were 91.67%, 82.02%, 58.06%, 25.01%, respectively, and in artesunate (2.0 μmol/L) + radiation group, the cell cloning efficiency were 74.93%, 60.53%, 22.38%, 5.05%. In radiation group and artesunate (2.0 μmol/L) + radiation group, the mean lethal dose (D 0 ) was 2.95 and 2.07 Gy, respectively, while the qusai-threshold dose (D q ) were 2.01 and 1.24 Gy, respectively, and SER was 1.43. Compared with 2 and 6 Gy radiation group, the apoptosis rate of drug + radiation group increased from 12.26%, 40.08% to 22.71%, 59.92. Conclusions: The inhibiting effect of artesunate on HeLa cells is concentration-dependent. Artesunate has radiosensitizing effect on HeLa cells in vitro. (authors)

  6. Radiation sensitivity and DNA repair in Caenorhabditis elegans strains with different mean life spans

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, P S; Simpson, V J; Johnson, T; Mitchell, D

    1988-06-01

    The sensitivities to three DNA damaging agents (UV and ..gamma..-radiation, methyl methanesulfonate) were measured in four recombinant inbred (RI) strains of Caenorhabditis elegans with mean life spans ranging from 13 to 30.9 days, as well as in the wild-type strains used to derive these RI's. Sensitivities at several stages in the developmental cycle were tested. There were no significant correlations between mean life span and the lethal effects of these 3 agents. Excision of two UV-radiation-induced DNA photoproducts was also measured. Long-lived strains were no more repair competent than shorter-lived strains. These data indicate that DNA repair plays at best a minor role in the aging process of C. elegans. 33 refs.; 4 figs.

  7. A hybrid numerical prediction scheme for solar radiation estimation in un-gauged catchments.

    Science.gov (United States)

    Shamim, M. A.; Bray, M.; Ishak, A. M.; Remesan, R.; Han, D.

    2009-09-01

    The importance of solar radiation on earth's surface is depicted in its wide range of applications in the fields of meteorology, agricultural sciences, engineering, hydrology, crop water requirements, climatic changes and energy assessment. It is quite random in nature as it has to go through different processes of assimilation and dispersion while on its way to earth. Compared to other meteorological parameters, solar radiation is quite infrequently measured, for example, the worldwide ratio of stations collecting solar radiation to those collecting temperature is 1:500 (Badescu, 2008). Researchers, therefore, have to rely on indirect techniques of estimation that include nonlinear models, artificial intelligence (e.g. neural networks), remote sensing and numerical weather predictions (NWP). This study proposes a hybrid numerical prediction scheme for solar radiation estimation in un-gauged catchments. It uses the PSU/NCAR's Mesoscale Modelling system (MM5) (Grell et al., 1995) to parameterise the cloud effect on extraterrestrial radiation by dividing the atmosphere into four layers of very high (6-12 km), high (3-6 km), medium (1.5-3) and low (0-1.5) altitudes from earth. It is believed that various cloud forms exist within each of these layers. An hourly time series of upper air pressure and relative humidity data sets corresponding to all of these layers is determined for the Brue catchment, southwest UK, using MM5. Cloud Index (CI) was then determined using (Yang and Koike, 2002): 1 p?bi [ (Rh - Rh )] ci =------- max 0.0,---------cri dp pbi - ptipti (1- Rhcri) where, pbi and pti represent the air pressure at the top and bottom of each layer and Rhcri is the critical value of relative humidity at which a certain cloud type is formed. Output from a global clear sky solar radiation model (MRM v-5) (Kambezidis and Psiloglu, 2008) is used along with meteorological datasets of temperature and precipitation and astronomical information. The analysis is aided by the

  8. Studies on the Mechanism of Radiation Resistance in Micrococcus Radiodurans and its Sensitization

    Energy Technology Data Exchange (ETDEWEB)

    Kitayama, S.; Matsuyama, A. [Radiobiology Laboratory, Institute of Physical and Chemical Research, Wako-shi, Saitama-ken (Japan)

    1978-06-15

    Efficient and accurate repair of radiation-induced lesions in M. radiodurans was investigated as to the cause of its extreme radioresistance. The cells were made permeable to deoxyribonucleoside triphosphate by treatment with non-ionic detergent, Triton X-100. After irradiation with 2 krad gamma rays more than 80% of the single-strand scissions were rejoined in the permeable cells within 10 min at 37 Degree-Sign C. This fast repair process requires the presence of deoxyribonucleoside triphosphates and NAD. However, rejoining of DNA strand scission was incomplete after prolonged incubation in the permeable cells. This suggests that alternate repair reaction(s) is necessary for complete recovery. The other type of radiation lesion was found by postirradiation incubation at non-permissive temperature, which markedly sensitizes this bacterium to radiation. Postincubation at this temperature also sensitizes the cells to chemicals that damage DNA. The extreme radioresistance of this bacterium was also lost by mutation and an isolated radiosensitive mutant showed almost the same radiosensitivity as E. coli K12 or B/r. These results are discussed in connection with the extreme radioresistance of M. radiodurans. (author)

  9. Studies on the mechanism of radiation resistance in Micrococcus radiodurans and its sensitization

    International Nuclear Information System (INIS)

    Kitayama, S.; Matsuyama, A.

    1978-01-01

    Efficient and accurate repair of radiation-induced lesions in M. radiodurans was investigated as to the cause of its extreme radioresistance. The cells were made permeable to deoxyribonucleoside triphosphate by treatment with non-ionic detergent, Triton X-100. After irradiation with 2 krad gamma rays more than 80% of the single-strand scissions were rejoined in the permeable cells within 10 min at 37 0 C. This fast repair process requires the presence of deoxyribonucleoside triphosphates and NAD. However, rejoining of DNA strand scission was incomplete after prolonged incubation in the permeable cells. This suggests that alternate repair reaction(s) is necessary for complete recovery. The other type of radiation lesion was found by post-irradiation incubation at non-permissive temperature, which markedly sensitizes this bacterium to radiation. Postincubation at this temperature also sensitizes the cells to chemicals that damage DNA. The extreme radioresistance of this bacterium was also lost by mutation and an isolated radiosensitive mutant showed almost the same radiosensitivity as E. coli K12 or B/r. These results are discussed in connection with the extreme radioresistance of M. radiodurans. (author)

  10. Determination of a lower bound on Earth's climate sensitivity

    Directory of Open Access Journals (Sweden)

    STEPHEN E. Schwartz

    2013-09-01

    Full Text Available Transient and equilibrium sensitivity of Earth's climate has been calculated using global temperature, forcing and heating rate data for the period 1970–2010. We have assumed increased long-wave radiative forcing in the period due to the increase of the long-lived greenhouse gases. By assuming the change in aerosol forcing in the period to be zero, we calculate what we consider to be lower bounds to these sensitivities, as the magnitude of the negative aerosol forcing is unlikely to have diminished in this period. The radiation imbalance necessary to calculate equilibrium sensitivity is estimated from the rate of ocean heat accumulation as 0.37±0.03 W m−2 (all uncertainty estimates are 1−σ. With these data, we obtain best estimates for transient climate sensitivity 0.39±0.07 K (W m−2−1 and equilibrium climate sensitivity 0.54±0.14 K (W m−2−1, equivalent to 1.5±0.3 and 2.0±0.5 K (3.7 W m−2−1, respectively. The latter quantity is equal to the lower bound of the ‘likely’ range for this quantity given by the 2007 IPCC Assessment Report. The uncertainty attached to the lower-bound equilibrium sensitivity permits us to state, within the assumptions of this analysis, that the equilibrium sensitivity is greater than 0.31 K (W m−2−1, equivalent to 1.16 K (3.7 W m−2−1, at the 95% confidence level.

  11. Empirical Models for the Estimation of Global Solar Radiation in ...

    African Journals Online (AJOL)

    Empirical Models for the Estimation of Global Solar Radiation in Yola, Nigeria. ... and average daily wind speed (WS) for the interval of three years (2010 – 2012) measured using various instruments for Yola of recorded data collected from the Center for Atmospheric Research (CAR), Anyigba are presented and analyzed.

  12. Radiative forcing estimates of sulfate aerosol in coupled climate-chemistry models with emphasis on the role of the temporal variability

    Directory of Open Access Journals (Sweden)

    C. Déandreis

    2012-06-01

    Full Text Available This paper describes the impact on the sulfate aerosol radiative effects of coupling the radiative code of a global circulation model with a chemistry-aerosol module. With this coupling, temporal variations of sulfate aerosol concentrations influence the estimate of aerosol radiative impacts. Effects of this coupling have been assessed on net fluxes, radiative forcing and temperature for the direct and first indirect effects of sulfate.

    The direct effect respond almost linearly to rapid changes in concentrations whereas the first indirect effect shows a strong non-linearity. In particular, sulfate temporal variability causes a modification of the short wave net fluxes at the top of the atmosphere of +0.24 and +0.22 W m−2 for the present and preindustrial periods, respectively. This change is small compared to the value of the net flux at the top of the atmosphere (about 240 W m−2. The effect is more important in regions with low-level clouds and intermediate sulfate aerosol concentrations (from 0.1 to 0.8 μg (SO4 m−3 in our model.

    The computation of the aerosol direct radiative forcing is quite straightforward and the temporal variability has little effect on its mean value. In contrast, quantifying the first indirect radiative forcing requires tackling technical issues first. We show that the preindustrial sulfate concentrations have to be calculated with the same meteorological trajectory used for computing the present ones. If this condition is not satisfied, it introduces an error on the estimation of the first indirect radiative forcing. Solutions are proposed to assess radiative forcing properly. In the reference method, the coupling between chemistry and climate results in a global average increase of 8% in the first indirect radiative forcing. This change reaches 50% in the most sensitive regions. However, the reference method is not suited to run long climate

  13. Risk estimation of radiation exposure in early pregnancy

    International Nuclear Information System (INIS)

    Neumeister, K.; Waesser, S.

    1977-01-01

    The biomedical effects of radiation exposure (occupational, by X-ray diagnosis or examinations in nuclear medicine) to low doses on early pregnancy have been subject of a research work dealing with the dose level which, in case of exceeding, may lead to somatic damage (1.5 to 10 rem), and with the type of radiation injuries (malformations, functional disorder, cancer induction, increase in morbidity rate, genetic damage). A pilot study was the basis for the programme which will record such cases from all over the GDR. Within the scope of the health centre at the National Board of Nuclear Safety and Radiation Protection of the GDR, medical opinion on the interruption or preservation of pregnancy at its early stage, after exposure, was delivered in more than 50 cases. Exposure of the foetus was exactly determined. These children were re-investigated at the age of 1 to 3 years by applying pediatric and genetic examinations. The latter were based on clinical and biochemical methods as well as chromosome analyses. From these results, the risk of exposure in early pregnancy is estimated and adequate dose limits are suggested. In case these limits are exceeded, an interruption should be advised

  14. Radiation sensitivity of foodborne pathogens in meat byproducts with different packaging

    International Nuclear Information System (INIS)

    Yong, Hae In; Kim, Hyun-Joo; Nam, Ki Chang; Kwon, Joong Ho; Jo, Cheorun

    2015-01-01

    The aim of this study was to determine radiation sensitivity of Escherichia coli O157:H7 and Listeria monocytogenes in edible meat byproducts. Seven beef byproducts (heart, liver, lung, lumen, omasum, large intestine, and small intestine) and four pork byproducts (heart, large intestine, liver, and small intestine) were used. Electron beam irradiation significantly reduced the numbers of pathogenic microorganisms in meat byproducts and no viable cells were detected in both aerobically- and vacuum-packaged samples irradiated at 4 kGy. Meat byproducts packed under vacuum had higher D 10 value than the ones packed aerobically. No significant difference was observed between the D 10 values of E. coli O157:H7 and L. monocytogenes inoculated in either aerobically or vacuum packaged samples. These results suggest that low-dose electron beam irradiation can significantly decrease microbial numbers and reduce the risk of meat byproduct contamination by the foodborne pathogens. - Highlights: • Radiation sensitivities of pathogens in meat byproduct were tested. • Electron beam irradiation of 3 or 4 kGy reduced pathogens by> 9 log • The D 10 values were lower in the aerobic-packaging than under vacuum condition

  15. Three-dimensional, position-sensitive radiation detection

    Science.gov (United States)

    He, Zhong; Zhang, Feng

    2010-04-06

    Disclosed herein is a method of determining a characteristic of radiation detected by a radiation detector via a multiple-pixel event having a plurality of radiation interactions. The method includes determining a cathode-to-anode signal ratio for a selected interaction of the plurality of radiation interactions based on electron drift time data for the selected interaction, and determining the radiation characteristic for the multiple-pixel event based on both the cathode-to-anode signal ratio and the electron drift time data. In some embodiments, the method further includes determining a correction factor for the radiation characteristic based on an interaction depth of the plurality of radiation interactions, a lateral distance between the selected interaction and a further interaction of the plurality of radiation interactions, and the lateral positioning of the plurality of radiation interactions.

  16. Cytogenetic biodosimetry to estimate radiation doses received in accidental radiological exposures

    International Nuclear Information System (INIS)

    AIsbeih, Ghazi

    2014-01-01

    The tremendous applications of nuclear technologies in various aspects of life increase the probability of over exposure due to involuntary or premeditated nuclear accidents. National radiation-protection preparedness requires adequate estimate of dose received for efficient medical assistance of victims. Cytogenetic biodosimetry is an ISO and IAEA standardized biotechnology technique. We have established a reference biological dosimetry laboratory to boost the nation's ability to respond to sporadic and mass radiation casualty incidents and to assess the magnitude of radiation overexposure. Accurate calculation of radiation doses received will result in evidence based treatment decisions and better management of valuable emergency resources. It will also contribute to the 'National Radiation Protection Program' by playing a role in nuclear emergency plans. The cytogenetic method is standardized and scalable. In addition to diagnosis of over exposure, it provides triage capability for rapid stratification of patients who need more specialized medical care. It can also detect false positives and false negatives exposure particularly in cases of legal allegations

  17. Incorporating GOES Satellite Photosynthetically Active Radiation (PAR) Retrievals to Improve Biogenic Emission Estimates in Texas

    Science.gov (United States)

    Zhang, Rui; White, Andrew T.; Pour Biazar, Arastoo; McNider, Richard T.; Cohan, Daniel S.

    2018-01-01

    This study examines the influence of insolation and cloud retrieval products from the Geostationary Operational Environmental Satellite (GOES) system on biogenic emission estimates and ozone simulations in Texas. Compared to surface pyranometer observations, satellite-retrieved insolation and photosynthetically active radiation (PAR) values tend to systematically correct the overestimation of downwelling shortwave radiation in the Weather Research and Forecasting (WRF) model. The correlation coefficient increases from 0.93 to 0.97, and the normalized mean error decreases from 36% to 21%. The isoprene and monoterpene emissions estimated by the Model of Emissions of Gases and Aerosols from Nature are on average 20% and 5% less, respectively, when PAR from the direct satellite retrieval is used rather than the control WRF run. The reduction in biogenic emission rates using satellite PAR reduced the predicted maximum daily 8 h ozone concentration by up to 5.3 ppbV over the Dallas-Fort Worth (DFW) region on some days. However, episode average ozone response is less sensitive, with a 0.6 ppbV decrease near DFW and 0.3 ppbV increase over East Texas. The systematic overestimation of isoprene concentrations in a WRF control case is partially corrected by using satellite PAR, which observes more clouds than are simulated by WRF. Further, assimilation of GOES-derived cloud fields in WRF improved CAMx model performance for ground-level ozone over Texas. Additionally, it was found that using satellite PAR improved the model's ability to replicate the spatial pattern of satellite-derived formaldehyde columns and aircraft-observed vertical profiles of isoprene.

  18. Effects of food diets on insect development and its sensitivity to gamma radiation

    International Nuclear Information System (INIS)

    Khattak, S.U.; Azhar, A.; Shahid, M.

    2004-01-01

    Taking red flour beetle, Tribolium castaneum (Herbst), as a study case, studies on the effect of different food diets on insect development and losses and its sensitivity to gamma radiation, were conducted under controlled laboratory conditions. The results revealed that all the three major parameters (development, losses and sensitivity) varied significantly (P< 0.05) with respect to fed diet. Developmental period was highest (43.5 days) in wheat starch and lowest (22 days) in wheat flour + 5% yeast (Standard diet). A significantly highest progeny (948) was produced in barley and lowest (105.3) in wheat starch. Maximum adult weight (37.35 mg/20 adults) was recorded in sorghum and minimum (33.4) in starch. Percent weight loss was highest (21.25) in barley and lowest (8.0) in starch. Barley flour was found as the most preferred diet. Radiosensitivity in relation to diet indicated that adults reared on wheat starch were most sensitive. Comparing the dose response, insect mortality was dose, diet and post irradiation duration dependent. However, 2.5kGy proved quite lethal. No significant effect of radiation was observed on moisture and protein contents of the diets, except reducing sugars. (author)

  19. On the sensitivity of a helicopter combustor wall temperature to convective and radiative thermal loads

    International Nuclear Information System (INIS)

    Berger, S.; Richard, S.; Duchaine, F.; Staffelbach, G.; Gicquel, L.Y.M.

    2016-01-01

    Highlights: • Coupling of LES, DOM and conduction is applied to an industrial combustor. • Thermal sensitivity of the combustor to convection and radiation is investigated. • CHT based on LES is feasible in an industrial context with acceptable CPU costs. • Radiation heat fluxes are of the same order of magnitude that the convective ones. • CHT with radiation are globally in good agreement with thermocolor test. - Abstract: The design of aeronautical engines is subject to many constraints that cover performance gain as well as increasingly sensitive environmental issues. These often contradicting objectives are currently being answered through an increase in the local and global temperature in the hot stages of the engine. As a result, hot spots could appear causing a premature aging of the combustion chamber. Today, the characterization of wall temperatures is performed experimentally by complex thermocolor tests in advanced phases of the design process. To limit such expensive experiments and integrate the knowledge of the thermal environment earlier in the design process, efforts are currently performed to provide high fidelity numerical tools able to predict the combustion chamber wall temperature including the main physical phenomena: combustion, convection and mixing of hot products and cold flows, radiative transfers as well as conduction in the solid parts. In this paper, partitioned coupling approaches based on a Large Eddy Simulation (LES) solver, a Discrete Ordinate Method radiation solver and an unsteady conduction code are used to investigate the sensitivity of an industrial combustor thermal environment to convection and radiation. Four computations including a reference adiabatic fluid only simulation, Conjugate Heat Transfer, Radiation-Fluid Thermal Interaction and fully coupled simulations are performed and compared with thermocolor experimental data. From the authors knowledge, such comparative study with LES has never been published. It

  20. The influence of radiolytic sensitizers in natural rubber latex vulcanization induced by ionizing radiation

    International Nuclear Information System (INIS)

    Guedes, S.M.L.; Souza, A. de

    1991-01-01

    This work made on radiation vulcanization of natural rubber latex process by gamma rays from 60 Co source and electron beam of 1.5 MeV, 25 m A by Dynamitron, instead of classic process using sulfur. The experiment was carried out to study the influence of sensitizers (C Cl 4 and n-butyl acrylate) and was reported the vulcanization dose for each sensitizers, related to maximum tensile strength. The results show the possibility to introduce the volatile sensitizer (n-butyl acrylate) instead of C Cl 4 (toxic) in industry applications. (author)

  1. A position-sensitive scintillation detector for two-dimensional angular correlation of annihilation radiation using metal-package position-sensitive photomultiplier tubes

    International Nuclear Information System (INIS)

    Inoue, Koji; Nagai, Yasuyoshi; Saito, Haruo; Nagashima, Yasuyuki; Hyodo, Toshio; Muramatsu, Shinichi; Nagai, Shota

    1999-01-01

    We have constructed and tested a prototype of a new position sensitive γ-ray detector which consists of an array of 2.6x2.6x18 mm 3 BGO scintillator blocks, a light guide, and four metal-package position-sensitive photomultiplier tubes (R5900-00-C8) recently developed by Hamamatsu Photonics Co. Ltd. Scalability of the detector of this type makes it possible to construct a larger detector using many PS-PMTs, which will be useful for the two-dimensional angular correlation of annihilation radiation apparatus

  2. Effect of a hypoxic cell sensitizer doranidazole on the radiation-induced apoptosis of mouse L5178Y lymphoma cells

    International Nuclear Information System (INIS)

    Aoki, Mizuho; Furusawa, Yoshiya; Shibamoto, Yuta

    2002-01-01

    We investigated the sensitizing effect of the 2-nitroimidazole analogue doranidazole, a new hypoxic radiosensitizer, on radiation-induced apoptosis in L5178Y cells. Apoptosis was assessed by checking DNA ladder formation, the presence of sub-G1 peaks in flow cytometry, and chromation condensation. A radiosensitizing effect of doranidazole was also confirmed by a soft-agar colony assay of surviving cells. In the assay of DNA ladder formation, DNA fragmentation was observed following irradiation under an aerobic or hypoxic condition with or without doranidazole. The proportions of the cells at the sub-G1 peak in a flow cytometric measurement was not very different among the irradiations at 5 Gy under the aerobic condition, 15 Gy under hypoxia, and 10 Gy with 1 mM doranidazole under hypoxia. The fraction of cells with chromatin condensation was found to be significantly increased with doranidazole up to 3 mM when applied under hypoxic irradiation, but did not increase even at 10 mM. The sensitizer enhancement ratio was estimated to be about 1.7 with a concentration of 1 mM. This enhancement ratio was not different from that observed by assaying cell survivals. On the other hand, doranidazole showed no radiosensitizing effect under aerobic conditions with 1 mM. In conclusion, the radiation-induced apoptosis of L5178Y cells was enhanced by doranidazole under hypoxia. (author)

  3. Chromosome Aberrations in Human Lymphocytes Irradiated with Ionizing Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Tae Ho; Kim, Jin Hong; Kim, Jin Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The purpose of the present experiment was to provide data on the dose-dependent production of chromosome aberrations such as dicentrics, centric rings, and excess acentrics. Radiation is one of the more dangerous clastogens in the environment. Ionizing radiation causes chromosome breakages and various cytogenetic aberrations in exposed cells. In an investigation into radiation emergencies, it is important to estimate the dose to exposed persons for several reasons. Physical dosimeters (e. g., film badges) may misrepresent the actual radiation dose and may not be available in a radiological accident or terrorism incident. Biological dosimetry is suitable for estimating the radiation dose during such accidents. The dicentric chromosome assay is very sensitive and a reliable bio-indicator in cases of accidental overexposure.

  4. Individual radiation sensitivity (gender, age, genetic disposition). Consequences for radiation protection

    International Nuclear Information System (INIS)

    Streffer, C.

    2013-01-01

    The effects of ionising radiation on human health is influenced by a number of physiological and molecular biological factors. This is also valid for the causation of stochastic radiation effects especially the causation of cancer. Several epidemiological studies have resulted with respect to the total rate of solid cancers that women are more sensitive than men by a factor of 1.6 to 2.0. For leukaemia this is not the case. The largest studies come from the investigations on the survivors of the atomic bombs in Hiroshima and Nagasaki. But also studies on the population of the Techa River (Southeast Urals) yield such data. The analyses of single cancer localizations come to different results with respect to the dependence on the sex. Secondary cancers after radiotherapy for cancer treatment show also higher rates in women than in men. A similar situation is observed with respect to the dependence of cancer rate on age. The total rate of solid cancers is highest with children and decreases with increasing age. The effects are very different again with single cancer localizations. An especially strong age dependence was observed for thyroid cancer. Increasingly individuals have been found who are especially radiosensitive on the basis of their genetic disposition also with respect to the causation of cancer. Mechanisms and possibilities to trace these individuals are discussed. It is also discussed whether and to which extent these data should have consequences for the practical radiological protection. (orig.)

  5. Position sensitive regions in a generic radiation sensor based on single event upsets in dynamic RAMs

    International Nuclear Information System (INIS)

    Darambara, D.G.; Spyrou, N.M.

    1997-01-01

    Modern integrated circuits are highly complex systems and, as such, are susceptible to occasional failures. Semiconductor memory devices, particularly dynamic random access memories (dRAMs), are subject to random, transient single event upsets (SEUs) created by energetic ionizing radiation. These radiation-induced soft failures in the stored data of silicon based memory chips provide the foundation for a new, highly efficient, low cost generic radiation sensor. The susceptibility and the detection efficiency of a given dRAM device to SEUs is a complicated function of the circuit design and geometry, the operating conditions and the physics of the charge collection mechanisms involved. Typically, soft error rates measure the cumulative response of all sensitive regions of the memory by broad area chip exposure in ionizing radiation environments. However, this study shows that many regions of a dynamic memory are competing charge collection centres having different upset thresholds. The contribution to soft fails from discrete regions or individual circuit elements of the memory device is unambiguously separated. Hence the use of the dRAM as a position sensitive radiation detector, with high spatial resolution, is assessed and demonstrated. (orig.)

  6. A simple method to estimate radiation interception by nursery stock conifers: a case study of eastern white cedar

    International Nuclear Information System (INIS)

    Pronk, A.A.; Goudriaan, J.; Stilma, E.; Challa, H.

    2003-01-01

    A simple method was developed to estimate the fraction radiation intercepted by small eastern white cedar plants (Thuja occidentalis ‘Brabant’). The method, which describes the crop canopy as rows of cuboids, was compared with methods used for estimating radiation interception by crops with homogeneous canopies and crops grown in rows. The extinction coefficient k was determined at different plant arrangements and an average k-value of 0.48 ± 0.03 (R 2 = 0.89) was used in the calculations. Effects of changing plant characteristics and inter- and intra-row plant distances were explored. The fraction radiation intercepted that was estimated with the method for rows of cuboids was up to 20% and for row crops up to 8% lower than estimated with the method for homogeneous canopies at low plant densities and a LAI of 1. The fraction radiation intercepted by small plants of Thuja occidentalis ‘Brabant’ was best estimated by the simple method described in this paper

  7. Sensitivity of Reliability Estimates in Partially Damaged RC Structures subject to Earthquakes, using Reduced Hysteretic Models

    DEFF Research Database (Denmark)

    Iwankiewicz, R.; Nielsen, Søren R. K.; Skjærbæk, P. S.

    The subject of the paper is the investigation of the sensitivity of structural reliability estimation by a reduced hysteretic model for a reinforced concrete frame under an earthquake excitation.......The subject of the paper is the investigation of the sensitivity of structural reliability estimation by a reduced hysteretic model for a reinforced concrete frame under an earthquake excitation....

  8. Modification of the cellular heat sensitivity of cucumber by growth under supplemental ultraviolet-B radiation

    International Nuclear Information System (INIS)

    Caldwell, C.R.

    1994-01-01

    The effect of ultraviolet B (UV-B) radiation on the thermal sensitivity of cucumber (Cucumis sativus L.) was studied using UV-B-sensitive cv Poinsett 76 and UV-B-resistant cv Ashley grown under control and elevated (300 mW m -2 ) UV-B radiation levels. Using both cotyledon and leaf discs, the ability of the tissue to reduce triphenyl tetrazolium chloride (TTC) was determined after treatment at 50 degrees C for various times. Semilogarithmic plots of TTC reduction as a function of time at 50 degrees were curvilinear. They were monophasic for the control cucumber and biphasic for cucumber grown in the presence of elevated UV-B. Treatment of cucumber plants at 37 degrees C for 24 h or of tissue discs at acute UV-B levels for 1 h further modified their response to elevated temperature. These results suggest that growth of cucumber under enhanced UV-B radiation levels increased its ability to withstand elevated temperatures. 19 refs., 2 figs., 2 tabs

  9. Calibration and Evaluation of Different Estimation Models of Daily Solar Radiation in Seasonally and Annual Time Steps in Shiraz Region

    Directory of Open Access Journals (Sweden)

    Hamid Reza Fooladmand

    2017-06-01

    Full Text Available Introduction: Solar radiation on the earth surface has a wide range of applications in hydrology, agriculture and meteorology. Solar radiation is an important parameter of estimated models of reference crop potential evapotranspiration such as the Penman–Monteith equation. Also, total sunshine hours are one of the most important factors affecting climate and environment, and its long-term variation is of much concern in climate studies. Reference crop potential evapotranspiration is one of the most important parts of water cycle in the nature but, direct measurement of this crop parameter is so difficult and not practical. Therefore, equations that can estimate the value of evapotranspiration only by using meteorological data are necessary. As mentioned before, the Penman–Monteith equation can be used for estimating reference crop potential evapotranspiration, however this equation needs solar radiation data, and the measurement of solar radiation is done in a limited numbers of weather stations in Iran, and also in Fars province, south of Iran. Since, the measurement of solar radiation is expensive, therefore many models have been derived for its estimation in different climates of the world., Many investigators also have been tried to estimate solar radiation for different locations of the world based on more simple measured weather data such as air temperature (minimum, maximum or mean and sunshine hours. Hence, the derived equations for estimating solar radiation based on other weather data can be used for estimating reference crop potential evapotranspiration with the Penman–Monteith equation. Materials and Methods: In this study, solar radiation was estimated in Shiraz, central part of the Fars province in south of Iran. For this purpose, the daily measured of solar radiation data in Shiraz synoptic station were used. Also, other needed weather data were used. All available data was for the years 2006 to 2010. Measured data of years

  10. Random balance designs for the estimation of first order global sensitivity indices

    International Nuclear Information System (INIS)

    Tarantola, S.; Gatelli, D.; Mara, T.A.

    2006-01-01

    We present two methods for the estimation of main effects in global sensitivity analysis. The methods adopt Satterthwaite's application of random balance designs in regression problems, and extend it to sensitivity analysis of model output for non-linear, non-additive models. Finite as well as infinite ranges for model input factors are allowed. The methods are easier to implement than any other method available for global sensitivity analysis, and reduce significantly the computational cost of the analysis. We test their performance on different test cases, including an international benchmark on safety assessment for nuclear waste disposal originally carried out by OECD/NEA

  11. Estimated cumulative radiation dose received by diagnostic imaging during staging and treatment of operable Ewing sarcoma 2005-2012

    International Nuclear Information System (INIS)

    Johnsen, Boel; Fasmer, Kristine Eldevik; Boye, Kjetil; Rosendahl, Karen; Aukland, Stein Magnus; Trovik, Clement; Biermann, Martin

    2017-01-01

    Patients with Ewing sarcoma are subject to various diagnostic procedures that incur exposure to ionising radiation. To estimate the radiation doses received from all radiologic and nuclear imaging episodes during diagnosis and treatment, and to determine whether 18 F-fluorodeoxyglucose positron emission tomography - computed tomography ( 18 F-FDG PET-CT) is a major contributor of radiation. Twenty Ewing sarcoma patients diagnosed in Norway in 2005-2012 met the inclusion criteria (age <30 years, operable disease, uncomplicated chemotherapy and surgery, no metastasis or residual disease within a year of diagnosis). Radiation doses from all imaging during the first year were calculated for each patient. The mean estimated cumulative radiation dose for all patients was 34 mSv (range: 6-70), radiography accounting for 3 mSv (range: 0.2-12), CT for 13 mSv (range: 2-28) and nuclear medicine for 18 mSv (range: 2-47). For the patients examined with PET-CT, the mean estimated cumulative effective dose was 38 mSv, of which PET-CT accounted for 14 mSv (37%). There was large variation in number and type of examinations performed and also in estimated cumulative radiation dose. The mean radiation dose for patients examined with PET-CT was 23% higher than for patients not examined with PET-CT. (orig.)

  12. Studies on radiation-sensitive nonsilver halide materials, (1)

    International Nuclear Information System (INIS)

    Komizu, Hideo; Honda, Koichi; Yabe, Akira; Kawasaki, Masami; Fujii, Etsuo

    1978-01-01

    In order to discover new radiation-sensitive nonsilver halide materials, the coloration based on the formation of Stenhouse salts was studied in the following three systems: (a) furfural-amine/HCl aq/methanol solution, (b) furfural-amine/polyhalogenide/PMMA matrix, (c) furfural-amine/PVC matrix. Firstly, forty-five aromatic amines were surveyed to find out the amines suitable for the color precursors (reactant from furfural and amine) in the system (a). As a result, the five amines, which gave the precursors in good yields by the reaction with furfural, were selected: m-nitroaniline, N-methylaniline, m-methyl-N-methylaniline, aniline, and o-methoxyaniline. Secondly, the coloration induced by electron beam bombardment was studied in the systems (b) and (c) containing the color precursors (the reactants from these amines and furfural). Although the PMMA films containing the color precursors and polyhalogenides were sensitive to electron beam, they were not stable when standing under daylight at room temperature. The PVC films containing the color precursors were very stable and colored to reddish yellow (lambda sub(max) 498 - 545 nm) by electron beam bombardment. The PVC film containing N-methylaniline-furfural was the most sensitive and the increase in absorbance at 498 nm was 0.78 by electron beam bombardment of 60 kV - 7.5 x 10 -7 C/cm 2 . A good linear relationship existed between the degree of coloration and the amounts of electron beam bombardment in the range from 0 to 10 -6 C/cm 2 . (author)

  13. Model parameters estimation and sensitivity by genetic algorithms

    International Nuclear Information System (INIS)

    Marseguerra, Marzio; Zio, Enrico; Podofillini, Luca

    2003-01-01

    In this paper we illustrate the possibility of extracting qualitative information on the importance of the parameters of a model in the course of a Genetic Algorithms (GAs) optimization procedure for the estimation of such parameters. The Genetic Algorithms' search of the optimal solution is performed according to procedures that resemble those of natural selection and genetics: an initial population of alternative solutions evolves within the search space through the four fundamental operations of parent selection, crossover, replacement, and mutation. During the search, the algorithm examines a large amount of solution points which possibly carries relevant information on the underlying model characteristics. A possible utilization of this information amounts to create and update an archive with the set of best solutions found at each generation and then to analyze the evolution of the statistics of the archive along the successive generations. From this analysis one can retrieve information regarding the speed of convergence and stabilization of the different control (decision) variables of the optimization problem. In this work we analyze the evolution strategy followed by a GA in its search for the optimal solution with the aim of extracting information on the importance of the control (decision) variables of the optimization with respect to the sensitivity of the objective function. The study refers to a GA search for optimal estimates of the effective parameters in a lumped nuclear reactor model of literature. The supporting observation is that, as most optimization procedures do, the GA search evolves towards convergence in such a way to stabilize first the most important parameters of the model and later those which influence little the model outputs. In this sense, besides estimating efficiently the parameters values, the optimization approach also allows us to provide a qualitative ranking of their importance in contributing to the model output. The

  14. Evaluation of γ-radiation-induced DNA damage in two species of bivalves and their relative sensitivity using comet assay

    International Nuclear Information System (INIS)

    Praveen Kumar, M.K.; Shyama, S.K.; Sonaye, B.S.; Naik, U Roshini; Kadam, S.B.; Bipin, P.D.; D’costa, A.; Chaubey, R.C.

    2014-01-01

    Highlights: • Possible genotoxic effect of accidental exposure of aquatic fauna to γ radiation. • Relative sensitivity of bivalves to γ radiation is also analyzed using comet assay. • γ radiation induced significant genetic damage in both the species of bivalves. • P. malabarica and M. casta exhibited a similar level of sensitivity to γ radiation. • Comet assay may be used as a biomarker for the environmental biomonitoring. - Abstract: Ionizing radiation is known to induce genetic damage in diverse groups of organisms. Under accidental situations, large quantities of radioactive elements get released into the environment and radiation emitted from these radionuclides may adversely affect both the man and the non-human biota. The present study is aimed (a) to know the genotoxic effect of gamma radiation on aquatic fauna employing two species of selected bivalves, (b) to evaluate the possible use of ‘Comet assay’ for detecting genetic damage in haemocytes of bivalves as a biomarker for environmental biomonitoring and also (c) to compare the relative sensitivity of two species of bivalves viz. Paphia malabarica and Meretrix casta to gamma radiation. The comet assays was optimized and validated using different concentrations (18, 32 and 56 mg/L) of ethyl methanesulfonate (EMS), a direct-acting reference genotoxic agent, to which the bivalves were exposed for various times (24, 48 and 72 h). Bivalves were irradiated (single acute exposure) with 5 different doses (viz. 2, 4, 6, 8 and 10 Gy) of gamma radiation and their genotoxic effects on the haemocytes were studied using the comet assay. Haemolymph was collected from the adductor muscle at 24, 48 and 72 h of both EMS-exposed and irradiated bivalves and comet assay was carried out using standard protocol. A significant increase in DNA damage was observed as indicated by an increase in % tail DNA damage at different concentrations of EMS and all the doses of gamma radiation as compared to controls in

  15. Evaluation of γ-radiation-induced DNA damage in two species of bivalves and their relative sensitivity using comet assay

    Energy Technology Data Exchange (ETDEWEB)

    Praveen Kumar, M.K., E-mail: here.praveen@gmail.com [Department of Zoology, Goa University, Goa 403206 (India); Shyama, S.K., E-mail: skshyama@gmail.com [Department of Zoology, Goa University, Goa 403206 (India); Sonaye, B.S. [Department of Radiation Oncology, Goa Medical College, Goa (India); Naik, U Roshini; Kadam, S.B.; Bipin, P.D.; D’costa, A. [Department of Zoology, Goa University, Goa 403206 (India); Chaubey, R.C. [Radiation Biology and Health Science Division, Bhabha Atomic Research Centre, Mumbai (India)

    2014-05-01

    Highlights: • Possible genotoxic effect of accidental exposure of aquatic fauna to γ radiation. • Relative sensitivity of bivalves to γ radiation is also analyzed using comet assay. • γ radiation induced significant genetic damage in both the species of bivalves. • P. malabarica and M. casta exhibited a similar level of sensitivity to γ radiation. • Comet assay may be used as a biomarker for the environmental biomonitoring. - Abstract: Ionizing radiation is known to induce genetic damage in diverse groups of organisms. Under accidental situations, large quantities of radioactive elements get released into the environment and radiation emitted from these radionuclides may adversely affect both the man and the non-human biota. The present study is aimed (a) to know the genotoxic effect of gamma radiation on aquatic fauna employing two species of selected bivalves, (b) to evaluate the possible use of ‘Comet assay’ for detecting genetic damage in haemocytes of bivalves as a biomarker for environmental biomonitoring and also (c) to compare the relative sensitivity of two species of bivalves viz. Paphia malabarica and Meretrix casta to gamma radiation. The comet assays was optimized and validated using different concentrations (18, 32 and 56 mg/L) of ethyl methanesulfonate (EMS), a direct-acting reference genotoxic agent, to which the bivalves were exposed for various times (24, 48 and 72 h). Bivalves were irradiated (single acute exposure) with 5 different doses (viz. 2, 4, 6, 8 and 10 Gy) of gamma radiation and their genotoxic effects on the haemocytes were studied using the comet assay. Haemolymph was collected from the adductor muscle at 24, 48 and 72 h of both EMS-exposed and irradiated bivalves and comet assay was carried out using standard protocol. A significant increase in DNA damage was observed as indicated by an increase in % tail DNA damage at different concentrations of EMS and all the doses of gamma radiation as compared to controls in

  16. Status of multigroup sensitivity profiles and covariance matrices available from the radiation shielding information center

    International Nuclear Information System (INIS)

    Roussin, R.W.; Drischler, J.D.; Marable, J.H.

    1980-01-01

    In recent years multigroup sensitivity profiles and covariance matrices have been added to the Radiation Shielding Information Center's Data Library Collection (DLC). Sensitivity profiles are available in a single package. DLC-45/SENPRO, and covariance matrices are found in two packages, DLC-44/COVERX and DLC-77/COVERV. The contents of these packages are described and their availability is discussed

  17. Hyperspectral estimation of corn fraction of photosynthetically active radiation

    International Nuclear Information System (INIS)

    Yang Fei; Zhang Bai; Song Kaishan

    2008-01-01

    Fraction of absorbed photosynthetically active radiation (FPAR) is one of the important variables in many productivity and biomass estimation models, this analyzed the effect of FPAR estimation with hyperspectral information, which could provide the scientific support on the improvement of FPAR estimation, remote sensing data validation, and the other ecological models. Based on the field experiment of corn, this paper analyzed the correlations between FPAR and spectral reflectance or the differential coefficient, and discussed the mechanism of FPAR estimation, studied corn FPAR estimation with reflectance, first differential coefficient, NDVI and RVI. The reflectance of visible bands showed much better correlations with FPAR than near-infrared bands. The correlation curve between FPAR and differential coefficient varied more frequently and greatly than the curve of FPAR and reflectance. Reflectance and differential coefficient both had good regressions with FPAR of the typical single band, with the maximum R2 of 0.791 and 0.882. In a word, differential coefficient and vegetation index were much effective than reflectance for corn FPAR estimating, and the stepwised regression of multibands differential coefficient showed the best regression with R2 of 0.944. 375 nm purpled band and 950 nm near-infraed band absorbed by water showed prodigious potential for FPAR estimating precision. On the whole, vegetation index and differential coefficient have good relationships with FPAR, and could be used for FAPR estimation. It would be effective of choosing right bands and excavating the hyperspectral data to improve FPAR estimating precision

  18. Development of a model system to study leukotriene-induced modification of radiation sensitivity in mammalian cells

    Energy Technology Data Exchange (ETDEWEB)

    Walden, Jr, T L; Holahan, Jr, E V; Catravas, G N

    1986-01-01

    Leukotrienes (LT) are an important class of biological mediators for which no information exists concerning their synthesis following a radiation insult or on their ability to modify cellular response to a subsequent radiation exposure. Results are presented which illustrate that the Chinese hamster lung fibroblast cell line, V79A03, is useful as a model system to study the metabolic fate of leukotrienes and the effect of LT on radiation sensitivity of mammalian cells in vitro. (U.K.).

  19. Low-power millimeter wave radiations do not alter stress-sensitive gene expression of chaperone proteins.

    Science.gov (United States)

    Zhadobov, M; Sauleau, R; Le Coq, L; Debure, L; Thouroude, D; Michel, D; Le Dréan, Y

    2007-04-01

    This article reports experimental results on the influence of low-power millimeter wave (MMW) radiation at 60 GHz on a set of stress-sensitive gene expression of molecular chaperones, namely clusterin (CLU) and HSP70, in a human brain cell line. Selection of the exposure frequency is determined by its near-future applications for the new broadband civil wireless communication systems including wireless local area networks (WLAN) for domestic and professional uses. Frequencies around 60 GHz are strongly attenuated in the earth's atmosphere and such radiations represent a new environmental factor. An exposure system operating in V-band (50-75 GHz) was developed for cell exposure. U-251 MG glial cell line was sham-exposed or exposed to MMW radiation for different durations (1-33 h) and two different power densities (5.4 microW/cm(2) or 0.54 mW/cm(2)). As gene expression is a multiple-step process, we analyzed chaperone proteins induction at different levels. First, using luciferase reporter gene, we investigated potential effect of MMWs on the activation of transcription factors (TFs) and gene promoter activity. Next, using RT-PCR and Western blot assays, we verified whether MMW exposure could alter RNA accumulation, translation, or protein stability. Experimental data demonstrated the absence of significant modifications in gene transcription, mRNA, and protein amount for the considered stress-sensitive genes for the exposure durations and power densities investigated. The main results of this study suggest that low-power 60 GHz radiation does not modify stress-sensitive gene expression of chaperone proteins. (c) 2006 Wiley-Liss, Inc.

  20. Model-free approach to the estimation of radiation hazards. I. Theory

    International Nuclear Information System (INIS)

    Zaider, M.; Brenner, D.J.

    1986-01-01

    The experience of the Japanese atomic bomb survivors constitutes to date the major data base for evaluating the effects of low doses of ionizing radiation on human populations. Although numerous analyses have been performed and published concerning this experience, it is clear that no consensus has emerged as to the conclusions that may be drawn to assist in setting realistic radiation protection guidelines. In part this is an inherent consequences of the rather limited amount of data available. In this paper the authors address an equally important problem; namely, the use of arbitrary parametric risk models which have little theoretical foundation, yet almost totally determine the final conclusions drawn. They propose the use of a model-free approach to the estimation of radiation hazards

  1. Position sensitive detection of neutrons in high radiation background field.

    Science.gov (United States)

    Vavrik, D; Jakubek, J; Pospisil, S; Vacik, J

    2014-01-01

    We present the development of a high-resolution position sensitive device for detection of slow neutrons in the environment of extremely high γ and e(-) radiation background. We make use of a planar silicon pixelated (pixel size: 55 × 55 μm(2)) spectroscopic Timepix detector adapted for neutron detection utilizing very thin (10)B converter placed onto detector surface. We demonstrate that electromagnetic radiation background can be discriminated from the neutron signal utilizing the fact that each particle type produces characteristic ionization tracks in the pixelated detector. Particular tracks can be distinguished by their 2D shape (in the detector plane) and spectroscopic response using single event analysis. A Cd sheet served as thermal neutron stopper as well as intensive source of gamma rays and energetic electrons. Highly efficient discrimination was successful even at very low neutron to electromagnetic background ratio about 10(-4).

  2. SENSITIVITY OF THE CUMIN SEEDS ASSOCIATED FUNGI TO GAMMA RADIATION

    International Nuclear Information System (INIS)

    BOTROS, H.W.; HELAL, I.M.; EL TOBGY, K.M.K.

    2008-01-01

    The present study was carried out to investigate the sensitivity of fungi associated to cumin seeds for gamma radiation. In this regard, the isolated seed associated fungi from the cumin seeds were fifteen fungal species belonging to five genera. The fungal species concerning, Aspergillus ochraceus, Fusarium oxysporium and Aspergillus flavus were the predominant fungi in percentages of 17.8, 15.83 and 12.78 %, respectively. Aspergillus ochraceus was the most effective prevalent fungi on the seed germination causing highest percentage of seed invasion followed by Fusarium oxysporium and Aspergillus flavus. The amylolytic, proteolytic and lipolytic activity and mycotoxin production of the three predominant fungi were negatively influenced by gamma radiation when exposed to doses of 1.0 , 1.5 , 2.5 , 3.5 , 5.0 and 7.5 kGy a behaviour which was parallel to the inhibition in the amount of growth by gamma irradiation

  3. A survey of cross-section sensitivity analysis as applied to radiation shielding

    International Nuclear Information System (INIS)

    Goldstein, H.

    1977-01-01

    Cross section sensitivity studies revolve around finding the change in the value of an integral quantity, e.g. transmitted dose, for a given change in one of the cross sections. A review is given of the principal methodologies for obtaining the sensitivity profiles-principally direct calculations with altered cross sections, and linear perturbation theory. Some of the varied applications of cross section sensitivity analysis are described, including the practice, of questionable value, of adjusting input cross section data sets so as to provide agreement with integral experiments. Finally, a plea is made for using cross section sensitivity analysis as a powerful tool for analysing the transport mechanisms of particles in radiation shields and for constructing models of how cross section phenomena affect the transport. Cross section sensitivities in the shielding area have proved to be highly problem-dependent. Without the understanding afforded by such models, it is impossible to extrapolate the conclusions of cross section sensitivity analysis beyond the narrow limits of the specific situations examined in detail. Some of the elements that might be of use in developing the qualitative models are presented. (orig.) [de

  4. Environmental factors used for the estimation of radiation dose to thyroid gland

    International Nuclear Information System (INIS)

    Ohmomo, Yoichiro

    1976-01-01

    Environmental factors used for the estimation of radiation dose to thyroid gland were discussed in this paper, such as deposition velocity of radioactive iodine onto plant leaves, elimination factor from the leaves, transfer of this nuclide to milk and the consumption of those critical foods especially by inhabitants around nuclear sites in coastal area of Ibaraki Prefecture. Uptake of the stable iodine was estimated. (auth.)

  5. The sensitivity of the human breast to cancer induction by ionizing radiation

    International Nuclear Information System (INIS)

    Mole, R.H.

    1978-01-01

    Available evidence for the induction of cancer in the human breast by small doses of radiation is reviewed. A comparison is made of risk estimates for the frequency of breast cancer in excess of controls, per rad of ionizing radiation, resulting from multiple fluoroscopy, radiotherapy of non-malignant diseases of the breast, or the exposure of Japanese bomb survivors. The significance of the age at exposure is discussed, and consideration is given to the application of the evidence to practical problems in radiography, radiotherapy, screening by mammography, and radiological protection for occupational exposure. (U.K.)

  6. Radiogenic male breast cancer with in vitro sensitivity to ionizing radiation and bleomycin

    International Nuclear Information System (INIS)

    Greene, M.H.; Goedert, J.J.; Bech-Hansen, N.T.; McGuire, D.; Paterson, M.C.; Fraumeni, J.F. Jr.

    1983-01-01

    A cytogenetically normal man with gynecomastia and a family history of diverse cancers developed adenocarcinoma of the breast 30 years following thymic irradiation. In vitro experiments measuring colony-forming ability of cultured skin fibroblasts from family members implied that the patient had a small but significant increase in sensitivity to ionizing radiation, and a moderate increase in sensitivity to bleomycin, a radiomimetic drug. Enhanced radiosensitivity of fibroblasts from the patient's mother, and bleomycin sensitivity of fibroblasts from the sister suggested, but did not prove, that genetic susceptibility affected the risk of radiogenic cancer in this individual. In vitro studies of cancer-prone kindreds are a useful research strategy in delineating mechanisms of carcinogenesis

  7. A simple method to estimate radiation interception by nursery stock conifers: a case study of eastern white cedar

    NARCIS (Netherlands)

    Pronk, A.A.; Goudriaan, J.; Stilma, E.S.C.; Challa, H.

    2003-01-01

    A simple method was developed to estimate the fraction radiation intercepted by small eastern white cedar plants (Thuja occidentalis 'Brabant'). The method, which describes the crop canopy as rows of cuboids, was compared with methods used for estimating radiation interception by crops with

  8. Role of p53 status in radiation sensitivity and cell cycle progression

    International Nuclear Information System (INIS)

    Zellars, Richard C.; Loney, Tania; Schott, Ann F.; Davis, Mary A.; Maybaum, Jonathan; Clarke, Michael F.; Lawrence, Theodore S.

    1995-01-01

    Purpose: Although p53 function plays a major role in G1 arrest after radiation, the influence of p53 status on progress through other phases of the cell cycle and on radiation sensitivity of human tumors is less clear. We investigated these issues using cells with a conditional expression system for wild type p53. Methods: A temperature sensitive murine wild type p53 plasmid was used (Ginsberg D, et al: Mol. Cell.Biol . 11:582, 1991). At the permissive temperature (32 deg. C), this plasmid produces a protein which assumes a conformation that exhibits wild type p53 function. However, when cells are cultured at 38 deg. C, this protein assumes an inactive conformation. HT29 human colon cancer cells (which are p53 mutant) were transduced with this plasmid (designated PEP A and PEP G cells) or a control vector (designated CCH1 cells) using electroporation and Geneticin selection. The presence of murine p53 transcript in the PEP cells was confirmed by Northern analysis. Results: Cells were cultured under 3 conditions: 1) 38 deg. C at all times; 2) 32 deg. C for 24 hours prior to irradiation and 3) 32 deg. C for 24 hours after irradiation. We found that culturing under permissive temperatures produced a small decrease in surviving fraction in the PEP clones (0.61 ± 0.10 and 0.64 ± 0.07, for PEP A and G, respectively) but not the CCH1 controls (1.14 ± 0.15). PEP cells tended to be more radiosensitive than CCH1 cells (even under non-permissive conditions) and demonstrated a trend towards increased radiosensitivity under both Conditions 2 and 3. In addition, flow cytometry revealed that a 24 hour exposure to permissive conditions increased the fraction of cells in G1 slightly and in G2/M substantially. S phase was almost absent. Conclusion: Restoration of p53 function in HT29 human colon cancer cells using this temperature sensitive system produced increased cytotoxicity and radiation sensitivity as well as cell cycle redistribution. It will be important to assess the

  9. Estimation of snow albedo reduction by light absorbing impurities using Monte Carlo radiative transfer model

    Science.gov (United States)

    Sengupta, D.; Gao, L.; Wilcox, E. M.; Beres, N. D.; Moosmüller, H.; Khlystov, A.

    2017-12-01

    Radiative forcing and climate change greatly depends on earth's surface albedo and its temporal and spatial variation. The surface albedo varies greatly depending on the surface characteristics ranging from 5-10% for calm ocean waters to 80% for some snow-covered areas. Clean and fresh snow surfaces have the highest albedo and are most sensitive to contamination with light absorbing impurities that can greatly reduce surface albedo and change overall radiative forcing estimates. Accurate estimation of snow albedo as well as understanding of feedbacks on climate from changes in snow-covered areas is important for radiative forcing, snow energy balance, predicting seasonal snowmelt, and run off rates. Such information is essential to inform timely decision making of stakeholders and policy makers. Light absorbing particles deposited onto the snow surface can greatly alter snow albedo and have been identified as a major contributor to regional climate forcing if seasonal snow cover is involved. However, uncertainty associated with quantification of albedo reduction by these light absorbing particles is high. Here, we use Mie theory (under the assumption of spherical snow grains) to reconstruct the single scattering parameters of snow (i.e., single scattering albedo ῶ and asymmetry parameter g) from observation-based size distribution information and retrieved refractive index values. The single scattering parameters of impurities are extracted with the same approach from datasets obtained during laboratory combustion of biomass samples. Instead of using plane-parallel approximation methods to account for multiple scattering, we have used the simple "Monte Carlo ray/photon tracing approach" to calculate the snow albedo. This simple approach considers multiple scattering to be the "collection" of single scattering events. Using this approach, we vary the effective snow grain size and impurity concentrations to explore the evolution of snow albedo over a wide

  10. Factors modifying sensitivity to carcinogens and the problem of threshold in carcinogenesis

    International Nuclear Information System (INIS)

    Anisimov, V.N.

    1983-01-01

    Maximum allowable concentrations of chemical carcinogens and dose rates of ionizing radiation have been under extensive study both experimentally and epidemiologically. The problem of the carcinogenic hazards of low-level radiation is a very difficult one: in epidemiological studies it is hard to take into account the many factors (e.g. diseases, diet, genetic peculiarities) that may affect sensitivity to radiation; in experimental studies it is hard to extrapolate with accuracy from one species to another or from the individual threshold to that of the whole population. Age, enzyme activity, sex, and DNA repair capability also modify sensitivity to radiation; when factors such as these are better understood it is expected that epidemiological studies will give a solution that allows estimation of the carcinogenic risk from low-level radiation and hence establishment of a threshold dose. (author)

  11. Sensitivity to UV radiation in early life stages of the Mediterranean sea urchin Sphaerechinus granularis (Lamarck)

    International Nuclear Information System (INIS)

    Nahon, Sarah; Castro Porras, Viviana A.; Pruski, Audrey M.; Charles, Francois

    2009-01-01

    The sea urchin Sphaerechinus granularis was used to investigate the impact of relevant levels of UV-B radiation on the early life stages of a common Mediterranean free spawning benthic species. Sperm, eggs and embryos were exposed to a range of UV radiation doses. The resulting endpoints were evaluated in terms of fertilisation success, development and survival rates. Above a weighted UV radiation dose of 0.0029 kJ m -2 , fertilisation capability of irradiated sperm decreased rapidly. The exposure of the eggs to 0.0175 kJ m -2 and more led to delayed and inhibited development with ensuing embryonic morphological abnormalities. One-day old larvae remained strongly sensitive to UV radiation as shown by the 50% decrease of the larval survival rate for a dose of 0.025 kJ m -2 UVR. The elevated sensitivity of embryos to experimental UVR went along with a lack of significant amount of sunscreen compounds (e.g., mycosporine-like amino acids) in the eggs. The present results demonstrated that gamete viability and embryonic development may be significantly impaired by solar UV radiation in S. granularis, compromising in this way the reproduction of the species. Unless adaptive behavioural reproductive strategies exist, the influence of ambient UV radiation appears as a selective force for population dynamics of broadcast spawners in the shallow benthic Mediterranean environment

  12. Sensitivity to UV radiation in early life stages of the Mediterranean sea urchin Sphaerechinus granularis (Lamarck)

    Energy Technology Data Exchange (ETDEWEB)

    Nahon, Sarah [UPMC Univ Paris 06, UMR 7621, LOBB, Observatoire Oceanologique, F-66651, Banyuls/mer (France); CNRS, UMR 7621, LOBB, Observatoire Oceanologique, F-66651, Banyuls/mer (France); Castro Porras, Viviana A. [UPMC Univ Paris 06, UMR 7621, LOBB, Observatoire Oceanologique, F-66651, Banyuls/mer (France); Pruski, Audrey M. [UPMC Univ Paris 06, UMR 7621, LOBB, Observatoire Oceanologique, F-66651, Banyuls/mer (France); CNRS, UMR 7621, LOBB, Observatoire Oceanologique, F-66651, Banyuls/mer (France); Charles, Francois [UPMC Univ Paris 06, UMR 7621, LOBB, Observatoire Oceanologique, F-66651, Banyuls/mer (France); CNRS, UMR 7621, LOBB, Observatoire Oceanologique, F-66651, Banyuls/mer (France)], E-mail: charles@obs-banyuls.fr

    2009-03-01

    The sea urchin Sphaerechinus granularis was used to investigate the impact of relevant levels of UV-B radiation on the early life stages of a common Mediterranean free spawning benthic species. Sperm, eggs and embryos were exposed to a range of UV radiation doses. The resulting endpoints were evaluated in terms of fertilisation success, development and survival rates. Above a weighted UV radiation dose of 0.0029 kJ m{sup -2}, fertilisation capability of irradiated sperm decreased rapidly. The exposure of the eggs to 0.0175 kJ m{sup -2} and more led to delayed and inhibited development with ensuing embryonic morphological abnormalities. One-day old larvae remained strongly sensitive to UV radiation as shown by the 50% decrease of the larval survival rate for a dose of 0.025 kJ m{sup -2} UVR. The elevated sensitivity of embryos to experimental UVR went along with a lack of significant amount of sunscreen compounds (e.g., mycosporine-like amino acids) in the eggs. The present results demonstrated that gamete viability and embryonic development may be significantly impaired by solar UV radiation in S. granularis, compromising in this way the reproduction of the species. Unless adaptive behavioural reproductive strategies exist, the influence of ambient UV radiation appears as a selective force for population dynamics of broadcast spawners in the shallow benthic Mediterranean environment.

  13. Tumor progression: analysis of the instability of the metastatic phenotype, sensitivity to radiation and chemotherapy

    International Nuclear Information System (INIS)

    Welch, D.R.

    1984-01-01

    The major complications for tumor therapy are 1) tumor spread (metastasis); 2) the mixed nature of tumors (heterogeneity); and 3) the capacity of tumors to evolve (progress). To study these tumor characteristics, the rat 13762NF mammary adenocarcinoma was cloned and studied for metastatic properties and sensitivities to therapy (chemotherapy, radiation and hyperthermia). The cell clones were heterogeneous and no correlation between metastatic potential and therapeutic sensitivities was observed. Further, these phenotypes were unstable during pasage in vitro; yet, the changes were clone dependent and reproducible using different cryoprotected cell stocks. To understand the phenotypic instability, subclones were isolated from low and high passage cell clones. The results demonstrated that 1) tumor cells are heterogeneous for multiple phenotypes; 2) tumor cells are unstable for multiple phenotypes; 3) the magnitude, direction and time of occurrence of phenotypic drift is clone dependent; 4) the sensitivity of cell clones to ionizing radiation (γ or heat) and chemotherapy agents is independent of their metastatic potential; 5) shifts in metastatic potential and sensitivity to therapy may occur simultaneously but are not linked; and 6) tumor cells independently diverge to form several subpopulations with unique phenotypic profiles

  14. Sensitivity and uncertainty analysis for the annual phosphorus loss estimator model.

    Science.gov (United States)

    Bolster, Carl H; Vadas, Peter A

    2013-07-01

    Models are often used to predict phosphorus (P) loss from agricultural fields. Although it is commonly recognized that model predictions are inherently uncertain, few studies have addressed prediction uncertainties using P loss models. In this study we assessed the effect of model input error on predictions of annual P loss by the Annual P Loss Estimator (APLE) model. Our objectives were (i) to conduct a sensitivity analyses for all APLE input variables to determine which variables the model is most sensitive to, (ii) to determine whether the relatively easy-to-implement first-order approximation (FOA) method provides accurate estimates of model prediction uncertainties by comparing results with the more accurate Monte Carlo simulation (MCS) method, and (iii) to evaluate the performance of the APLE model against measured P loss data when uncertainties in model predictions and measured data are included. Our results showed that for low to moderate uncertainties in APLE input variables, the FOA method yields reasonable estimates of model prediction uncertainties, although for cases where manure solid content is between 14 and 17%, the FOA method may not be as accurate as the MCS method due to a discontinuity in the manure P loss component of APLE at a manure solid content of 15%. The estimated uncertainties in APLE predictions based on assumed errors in the input variables ranged from ±2 to 64% of the predicted value. Results from this study highlight the importance of including reasonable estimates of model uncertainty when using models to predict P loss. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  15. Combined radiation-protective and radiation-sensitizing agents. III. Radiosensitization by misonidazole as a function of concentrations of endogenous glutathione or exogenous thiols

    International Nuclear Information System (INIS)

    Koch, C.J.; Stobbe, C.C.; Baer, K.A.

    1986-01-01

    Radiosensitization of V79 Chinese hamster fibroblasts by 0.5 mM misonidazole is a smooth function of endogenous glutathione (GSH) levels as modulated upwards by pre-incubation in medium containing cysteamine, or downwards by pre-incubation in medium containing buthionine sulfoximine. The enhancement ratio (radiation sensitivity in nitrogen/radiation sensitivity in nitrogen +/- sensitizer or thiol) varies from 1.3 at 12 mM to 2.25 at less than 0.1 mM endogenous GSH. The enhanced radiosensitivity of thiol-depleted hypoxic cells is reversed when exogenous thiols are added, and for equivalent ER, the exogenous thiol concentrations are much lower than the endogenous GSH concentrations. Measurement of intracellular drug concentrations amplified rather than diminished the above discrepancy, since intracellular concentrations of cysteamine were lower and glutathione much lower than the extracellular concentrations. Three possible explanations are addressed: an external membrane component of damage is involved, long-range protection to DNA target radicals is possible from outside the cell (e.g., donation of electrons), and (c) endogenous glutathione is not in a free or exchangeable state (e.g., bound)

  16. Soil moisture estimation using reflected solar and emitted thermal infrared radiation

    Science.gov (United States)

    Jackson, R. D.; Cihlar, J.; Estes, J. E.; Heilman, J. L.; Kahle, A.; Kanemasu, E. T.; Millard, J.; Price, J. C.; Wiegand, C. L.

    1978-01-01

    Classical methods of measuring soil moisture such as gravimetric sampling and the use of neutron moisture probes are useful for cases where a point measurement is sufficient to approximate the water content of a small surrounding area. However, there is an increasing need for rapid and repetitive estimations of soil moisture over large areas. Remote sensing techniques potentially have the capability of meeting this need. The use of reflected-solar and emitted thermal-infrared radiation, measured remotely, to estimate soil moisture is examined.

  17. Random balance designs for the estimation of first order global sensitivity indices

    Energy Technology Data Exchange (ETDEWEB)

    Tarantola, S. [Joint Research Centre, European Commission, Institute of the Protection and Security of the Citizen, TP 361, Via E. Fermi 1, 21020 Ispra (Vatican City State, Holy See,) (Italy)]. E-mail: stefano.tarantola@jrc.it; Gatelli, D. [Joint Research Centre, European Commission, Institute of the Protection and Security of the Citizen, TP 361, Via E. Fermi 1, 21020 Ispra (VA) (Italy); Mara, T.A. [Laboratory of Industrial engineering, University of Reunion Island, BP 7151, 15 avenue Rene Cassin, 97 715 Saint-Denis (France)

    2006-06-15

    We present two methods for the estimation of main effects in global sensitivity analysis. The methods adopt Satterthwaite's application of random balance designs in regression problems, and extend it to sensitivity analysis of model output for non-linear, non-additive models. Finite as well as infinite ranges for model input factors are allowed. The methods are easier to implement than any other method available for global sensitivity analysis, and reduce significantly the computational cost of the analysis. We test their performance on different test cases, including an international benchmark on safety assessment for nuclear waste disposal originally carried out by OECD/NEA.

  18. Estimating net surface shortwave radiation from Chinese geostationary meteorological satellite FengYun-2D (FY-2D) data under clear sky.

    Science.gov (United States)

    Zhang, Xiaoyu; Li, Lingling

    2016-03-21

    Net surface shortwave radiation (NSSR) significantly affects regional and global climate change, and is an important aspect of research on surface radiation budget balance. Many previous studies have proposed methods for estimating NSSR. This study proposes a method to calculate NSSR using FY-2D short-wave channel data. Firstly, a linear regression model is established between the top-of-atmosphere (TOA) broadband albedo (r) and the narrowband reflectivity (ρ1), based on data simulated with MODTRAN 4.2. Secondly, the relationship between surface absorption coefficient (as) and broadband albedo (r) is determined by dividing the surface type into land, sea, or snow&ice, and NSSR can then be calculated. Thirdly, sensitivity analysis is performed for errors associated with sensor noise, vertically integrated atmospheric water content, view zenith angle and solar zenith angle. Finally, validation using ground measurements is performed. Results show that the root mean square error (RMSE) between the estimated and actual r is less than 0.011 for all conditions, and the RMSEs between estimated and real NSSR are 26.60 W/m2, 9.99 W/m2, and 23.40 W/m2, using simulated data for land, sea, and snow&ice surfaces, respectively. This indicates that the proposed method can be used to adequately estimate NSSR. Additionally, we compare field measurements from TaiYuan and ChangWu ecological stations with estimates using corresponding FY-2D data acquired from January to April 2012, on cloud-free days. Results show that the RMSE between the estimated and actual NSSR is 48.56W/m2, with a mean error of -2.23W/m2. Causes of errors also include measurement accuracy and estimations of atmospheric water vertical contents. This method is only suitable for cloudless conditions.

  19. Effect of nitric oxide and hydrogen sulfide on radiation sensitivity of spores of Bacillus megaterium in suspension

    Energy Technology Data Exchange (ETDEWEB)

    Russell, C

    1966-01-01

    The effect of nitric oxide on the sensitivity to radiation of spores of B. megaterium in water suspension is similar to that seen in vegetative cells of E. coli. The spores are less sensitive in the presence of hydrogen sulfide. 11 references, 1 figure.

  20. Estimated cumulative radiation dose received by diagnostic imaging during staging and treatment of operable Ewing sarcoma 2005-2012

    Energy Technology Data Exchange (ETDEWEB)

    Johnsen, Boel [Haukeland University Hospital, Centre for Nuclear Medicine and PET, Department of Radiology, P.O. Box 1400, Bergen (Norway); Fasmer, Kristine Eldevik [Haukeland University Hospital, Department of Oncology, Medical Physics Section, Bergen (Norway); Boye, Kjetil [Norwegian Radium Hospital, Oslo University Hospital, Department of Oncology, Oslo (Norway); Rosendahl, Karen; Aukland, Stein Magnus [Haukeland University Hospital, Department of Radiology, Paediatric Section, Bergen (Norway); University of Bergen, Department of Clinical Medicine, Bergen (Norway); Trovik, Clement [University of Bergen, Department of Clinical Medicine, Bergen (Norway); Haukeland University Hospital, Department of Surgery, Orthopaedic Section, Bergen (Norway); Biermann, Martin [Haukeland University Hospital, Centre for Nuclear Medicine and PET, Department of Radiology, P.O. Box 1400, Bergen (Norway); University of Bergen, Department of Clinical Medicine, Bergen (Norway)

    2017-01-15

    Patients with Ewing sarcoma are subject to various diagnostic procedures that incur exposure to ionising radiation. To estimate the radiation doses received from all radiologic and nuclear imaging episodes during diagnosis and treatment, and to determine whether {sup 18}F-fluorodeoxyglucose positron emission tomography - computed tomography ({sup 18}F-FDG PET-CT) is a major contributor of radiation. Twenty Ewing sarcoma patients diagnosed in Norway in 2005-2012 met the inclusion criteria (age <30 years, operable disease, uncomplicated chemotherapy and surgery, no metastasis or residual disease within a year of diagnosis). Radiation doses from all imaging during the first year were calculated for each patient. The mean estimated cumulative radiation dose for all patients was 34 mSv (range: 6-70), radiography accounting for 3 mSv (range: 0.2-12), CT for 13 mSv (range: 2-28) and nuclear medicine for 18 mSv (range: 2-47). For the patients examined with PET-CT, the mean estimated cumulative effective dose was 38 mSv, of which PET-CT accounted for 14 mSv (37%). There was large variation in number and type of examinations performed and also in estimated cumulative radiation dose. The mean radiation dose for patients examined with PET-CT was 23% higher than for patients not examined with PET-CT. (orig.)

  1. The sensitivity of human mesenchymal stem cells to ionizing radiation

    International Nuclear Information System (INIS)

    Chen, M.-F.; Lin, C.-T.; Chen, W.-C.; Yang, C.-T.; Chen, C.-C.; Liao, S.-K.; Liu, J.M.; Lu, C.-H.; Lee, K.-D.

    2006-01-01

    Purpose: Recent studies have shown that mesenchymal stem cells (MSCs) obtained from bone marrow transplantation patients originate from the host. This clinical observation suggests that MSCs in their niches could be resistant to irradiation. However, the biologic responses of bone marrow MSCs to irradiation have rarely been described in the literature. Methods and Materials: In this study, human bone marrow-derived, clonally expanded MSCs were used to investigate their sensitivity to irradiation in vitro, and the cellular mechanisms that may facilitate resistance to irradiation. The human lung cancer cell line A549 and the breast cancer cell line HCC1937 were used as controls for radiosensitivity; the former line has been shown to be radioresistant and the latter radiosensitive. We then examined their in vitro biologic changes and sensitivities to radiation therapy. Results: Our results suggest that MSCs are characterized as resistant to irradiation. Several cellular mechanisms were demonstrated that may facilitate resistance to irradiation: ATM protein phosphorylation, activation of cell-cycle checkpoints, double-strand break repair by homologous recombination and nonhomologous end joining (NHEJ), and the antioxidant capacity for scavenging reactive oxygen species. Conclusions: As demonstrated, MSCs possess a better antioxidant reactive oxygen species-scavenging capacity and active double-strand break repair to facilitate their radioresistance. These findings provide a better understanding of radiation-induced biologic responses in MSCs and may lead to the development of better strategies for stem cell treatment and cancer therapy

  2. Differential sensitivity to natural ultraviolet radiation among phytoplankton species in Arctic lakes (Spitsbergen, Norway)

    NARCIS (Netherlands)

    Donk, van E.; Faafeng, B.A.; Lange, de H.J.

    2001-01-01

    Incubation experiments demonstrated a differential sensitivity to natural UV-radiation among the dominant phytoplankton species from three Arctic lakes, situated near Ny-Ålesund, Spitsbergen (79° N). The growth of small chlorophytes, diatoms and picocyanobacteria from two oligotrophic lakes was

  3. Effect of Uncertainties in Physical Property Estimates on Process Design - Sensitivity Analysis

    DEFF Research Database (Denmark)

    Hukkerikar, Amol; Jones, Mark Nicholas; Sin, Gürkan

    for performing sensitivity of process design subject to uncertainties in the property estimates. To this end, first uncertainty analysis of the property models of pure components and their mixtures was performed in order to obtain the uncertainties in the estimated property values. As a next step, sensitivity......Chemical process design calculations require accurate and reliable physical and thermodynamic property data and property models of pure components and their mixtures in order to obtain reliable design parameters which help to achieve desired specifications. The uncertainties in the property values...... can arise from the experiments itself or from the property models employed. It is important to consider the effect of these uncertainties on the process design in order to assess the quality and reliability of the final design. The main objective of this work is to develop a systematic methodology...

  4. Estimating the daily global solar radiation spatial distribution from diurnal temperature ranges over the Tibetan Plateau in China

    International Nuclear Information System (INIS)

    Pan, Tao; Wu, Shaohong; Dai, Erfu; Liu, Yujie

    2013-01-01

    Highlights: ► Bristow–Campbell model was calibrated and validated over the Tibetan Plateau. ► Develop a simple method to rasterise the daily global solar radiation and get gridded information. ► The daily global solar radiation spatial distribution over the Tibetan Plateau was estimated. - Abstract: Daily global solar radiation is fundamental to most ecological and biophysical processes because it plays a key role in the local and global energy budget. However, gridded information about the spatial distribution of solar radiation is limited. This study aims to parameterise the Bristow–Campbell model for the daily global solar radiation estimation in the Tibetan Plateau and propose a method to rasterise the daily global solar radiation. Observed daily solar radiation and diurnal temperature data from eleven stations over the Tibetan Plateau during 1971–2010 were used to calibrate and validate the Bristow–Campbell radiation model. The extra-terrestrial radiation and clear sky atmospheric transmittance were calculated on a Geographic Information System (GIS) platform. Results show that the Bristow–Campbell model performs well after adjusting the parameters, the average Pearson’s correlation coefficients (r), Nash–Sutcliffe equation (NSE), ratio of the root mean square error to the standard deviation of measured data (RSR), and root mean-square error (RMSE) of 11 stations are 0.85, 2.81 MJ m −2 day −1 , 0.3 and 0.77 respectively. Gridded maximum and minimum average temperature data were obtained using Parameter-elevation Regressions on Independent Slopes Model (PRISM) and validated by the Chinese Ecosystem Research Network (CERN) stations’ data. The spatial daily global solar radiation distribution pattern was estimated and analysed by combining the solar radiation model (Bristow–Campbell model) and meteorological interpolation model (PRISM). Based on the overall results, it can be concluded that a calibrated Bristow–Campbell performs well

  5. Sensitivity of strains of Escherichia coli differing in repair capability to far UV, near UV and visible radiations

    International Nuclear Information System (INIS)

    Webb, R.B.; Brown, M.S.

    1976-01-01

    In stationary phase, strains of Escherichia coli deficient in excision (B/r Hcr) or recombination repair (K12 AB2463) were more sensitive than a repair proficient strain (B/r) to monochromatic near-ultraviolet (365nm) and visible (460 nm) radiations. The relative increase in sensitivity of mutants deficient in excision or recombination repair in comparison to the wildtype, was less at 365 nm than at 254 nm. However, a strain deficient in both excision and recombination repair (K12 AB2480) showed a large, almost equal, increase in sensitivity over mutants deficient in either excision or recombination repair at 365 nm and 254 nm. All strains tested were highly resistant to 650 nm radiation. Action spectra for lethality of strains B/r and B/r Hcr in stationary phase reveal small peaks or shoulders in the 330 to 340, 400 to 410 and 490 to 510 nm wavelength ranges. The presence of 5 micro g/ml acriflavine (an inhibitor of repair) in the plating medium greatly increased the sensitivity of strain B/r to radiation at 254, 365 and 460 nm, while strains E.coli B/r Hcr and K12 AB2463 were sensitized by small amounts. At each of the wavelengths tested, acriflavine in the plating medium had at most a small effect on E.coli K12 AB2480. Acriflavine failed to sensitize any strain tested at 650 nm. Evidence supports the interpretation that lesions induced in DNA by 365 nm and 460 nm radiations play the major role in the inactivation of E.coli by these wavelengths. Single-strand breaks (or alkali-labile bonds), but not pyrimidine dimers are candidates for the lethal DNA lesions in uvrA and repair proficient strains. At high fluences lethality may be enhanced by damage to the excision and recombination repair systems. (author)

  6. Sensitivity of strains of Escherichia coli differing in repair capability to far uv, near uv and visible radiations

    Energy Technology Data Exchange (ETDEWEB)

    Webb, R B; Brown, M S [Argonne National Lab., Ill. (USA)

    1976-11-01

    In stationary phase, strains of Escherichia coli deficient in excision (B/r Hcr) or recombination repair (K12 AB2463) were more sensitive than a repair proficient strain (B/r) to monochromatic near-ultraviolet (365nm) and visible (460 nm) radiations. The relative increase in sensitivity of mutants deficient in excision or recombination repair in comparison to the wildtype, was less at 365 nm than at 254 nm. However, a strain deficient in both excision and recombination repair (K12 AB2480) showed a large, almost equal, increase in sensitivity over mutants deficient in either excision or recombination repair at 365 nm and 254 nm. All strains tested were highly resistant to 650 nm radiation. Action spectra for lethality of strains B/r and B/r Hcr in stationary phase reveal small peaks or shoulders in the 330 to 340, 400 to 410 and 490 to 510 nm wavelength ranges. The presence of 5 micro g/ml acriflavine (an inhibitor of repair) in the plating medium greatly increased the sensitivity of strain B/r to radiation at 254, 365 and 460 nm, while strains E.coli B/r Hcr and K12 AB2463 were sensitized by small amounts. At each of the wavelengths tested, acriflavine in the plating medium had at most a small effect on E.coli K12 AB2480. Acriflavine failed to sensitize any strain tested at 650 nm. Evidence supports the interpretation that lesions induced in DNA by 365 nm and 460 nm radiations play the major role in the inactivation of E.coli by these wavelengths. Single-strand breaks (or alkali-labile bonds), but not pyrimidine dimers are candidates for the lethal DNA lesions in uvrA and repair proficient strains. At high fluences lethality may be enhanced by damage to the excision and recombination repair systems.

  7. Mutation induction by 365-nm radiation and far-ultraviolet light in Escherichia coli differing in near- and far-ultraviolet light sensitivity

    International Nuclear Information System (INIS)

    Leonardo, J.M.; Reynolds, P.R.; Tuveson, R.W.

    1984-01-01

    The his-4 locus derived from Escherichia coli strain AB1157 has been transduced into 4 E. coli strains that exhibit all 4 possible combinations of genes controlling sensitivity to near-ultraviolet light (nur versus nur + ) and far-ultraviolet light (uvrA6 versus uvrA + ). The 4 strains exhibited the predicted sensitivity to 254-nm radiation based on the sensitivity of the parent strains from which they were derived and the frequency of his + mutations predicted from experiments with AB1157 from which the his-4 locus was derived. When the 4 strains were treated with 365-nm radiation, they exhibited the predicted sensitivity based on the near-ultraviolet light sensitivity of the strains from which they were derived while his + mutations were undetectable with the 4 strains as well as with strain AB1157. When treated with 365-nm radiation, cells of a WP2sub(s) strain (a derivative of B/r transduced to his-4) plated on semi-enriched medium prepared with casamino acids did not yield induced mutations, whereas plating on semi-enriched medium prepared with nutrient broth did yield mutants at both the his-4 and trp loci at frequencies at least an order of magnitude lower than that observed with far-ultraviolet light. The induction of nutritionally independent mutants by 365-nm radiation is strongly dependent on the supplement used for semi-enrichment. When compared at equivalent survival levels, mutant frequencies are significantly less following 365-nm radiation when compared with far-ultraviolet radiation. (Auth.)

  8. Recommendations for determining the surface contamination of the skin and estimating radiation exposure of the skin after contamination

    International Nuclear Information System (INIS)

    1989-01-01

    The recommendations are applicable to the determination of surface contaminations of the skin and to the estimation of the expected radiation exposure of the skin of contaminated persons. According to the present recommendations, the radiation exposure can only be estimated for the intact and healthy skin

  9. Estimation of solar radiation over Turkey using artificial neural network and satellite data

    International Nuclear Information System (INIS)

    Senkal, Ozan; Kuleli, Tuncay

    2009-01-01

    This study introduces artificial neural networks (ANNs) for the estimation of solar radiation in Turkey (26-45 E and 36-42 N). Resilient propagation (RP), Scale conjugate gradient (SCG) learning algorithms and logistic sigmoid transfer function were used in the network. In order to train the neural network, meteorological data for the period from August 1997 to December 1997 for 12 cities (Antalya, Artvin, Edirne, Kayseri, Kuetahya, Van, Adana, Ankara, Istanbul, Samsun, Izmir, Diyarbakir) spread over Turkey were used as training (nine stations) and testing (three stations) data. Meteorological and geographical data (latitude, longitude, altitude, month, mean diffuse radiation and mean beam radiation) are used in the input layer of the network. Solar radiation is the output. However, solar radiation has been estimated as monthly mean daily sum by using Meteosat-6 satellite C3 D data in the visible range over 12 cities in Turkey. Digital counts of satellite data were converted into radiances and these are used to calculate the albedos. Using the albedo, the cloud cover index of each pixel was constructed. Diffuse and direct component of horizontal irradiation were calculated as a function of optical air mass, turbidity factor and Rayleigh optical thickness for clear-sky. Using the relation between clear-sky index and cloud cover index, the solar irradiance for any pixel is calculated for Physical method. RMS between the estimated and ground values for monthly mean daily sum with ANN and Physical method values have been found as 2.32 MJ m -2 (54 W/m 2 ) and 2.75 MJ m -2 (64 W/m 2 ) (training cities), 3.94 MJ m -2 (91 W/m 2 ) and 5.37 MJ m -2 (125 W/m 2 ) (testing cities), respectively

  10. Glow discharge, its sensitivity to infra-red radiation. Observations made during the testing of multiwire proportional chambers

    International Nuclear Information System (INIS)

    Marsh, J.B.; Souten, K.H.; O'Hagan, B.

    1979-05-01

    It has been shown that under glow discharge conditions, multiwire proportional chambers are sensitive to infra-red radiation. Discharge current measurements and light change measurements have been made and the effect of the input window on the output signal and the importance of the finish of the anode and HT wires have been investigated. From these observations it would appear that a glow discharge in the form detailed in this report is sensitive to infra-red radiation though work is still required to optimise the parameters of such a device for IR detection or solar cell technology. (UK)

  11. A technique for estimating the probability of radiation-stimulated failures of integrated microcircuits in low-intensity radiation fields: Application to the Spektr-R spacecraft

    Science.gov (United States)

    Popov, V. D.; Khamidullina, N. M.

    2006-10-01

    In developing radio-electronic devices (RED) of spacecraft operating in the fields of ionizing radiation in space, one of the most important problems is the correct estimation of their radiation tolerance. The “weakest link” in the element base of onboard microelectronic devices under radiation effect is the integrated microcircuits (IMC), especially of large scale (LSI) and very large scale (VLSI) degree of integration. The main characteristic of IMC, which is taken into account when making decisions on using some particular type of IMC in the onboard RED, is the probability of non-failure operation (NFO) at the end of the spacecraft’s lifetime. It should be noted that, until now, the NFO has been calculated only from the reliability characteristics, disregarding the radiation effect. This paper presents the so-called “reliability” approach to determination of radiation tolerance of IMC, which allows one to estimate the probability of non-failure operation of various types of IMC with due account of radiation-stimulated dose failures. The described technique is applied to RED onboard the Spektr-R spacecraft to be launched in 2007.

  12. Using Satellites to Investigate the Sensitivity of Longwave Downward Radiation to Water Vapor at High Elevations

    Science.gov (United States)

    Naud, Catherine M.; Miller, James R.; Landry, Chris

    2012-01-01

    Many studies suggest that high-elevation regions may be among the most sensitive to future climate change. However, in situ observations in these often remote locations are too sparse to determine the feedbacks responsible for enhanced warming rates. One of these feedbacks is associated with the sensitivity of longwave downward radiation (LDR) to changes in water vapor, with the sensitivity being particularly large in many high-elevation regions where the average water vapor is often low. We show that satellite retrievals from the Moderate Resolution Imaging Spectroradiometer (MODIS) and Clouds and the Earth's Radiant Energy System (CERES) can be used to expand the current ground-based observational database and that the monthly averaged clear-sky satellite estimates of humidity and LDR are in good agreement with the well-instrumented Center for Snow and Avalanche Studies ground-based site in the southwestern Colorado Rocky Mountains. The relationship between MODIS-retrieved precipitable water vapor and surface specific humidity across the contiguous United States was found to be similar to that previously found for the Alps. More important, we show that satellites capture the nonlinear relationship between LDR and water vapor and confirm that LDR is especially sensitive to changes in water vapor at high elevations in several midlatitude mountain ranges. Because the global population depends on adequate fresh water, much of which has its source in high mountains, it is critically important to understand how climate will change there. We demonstrate that satellites can be used to investigate these feedbacks in high-elevation regions where the coverage of surface-based observations is insufficient to do so.

  13. A method for daily global solar radiation estimation from two instantaneous values using MODIS atmospheric products

    International Nuclear Information System (INIS)

    Xu, Xiaojun; Du, Huaqiang; Zhou, Guomo; Mao, Fangjie; Li, Pingheng; Fan, Weiliang; Zhu, Dien

    2016-01-01

    Accurate information on the temporal and spatial distributions of solar radiation is very important in many scientific fields. In this study, instantaneous solar irradiances on a horizontal surface at 10:30 and 13:30 local time (LT) were calculated from Moderate Resolution Imaging Spectroradiometer (MODIS) atmospheric data products with relatively high spatial resolution using a solar radiation model. These solar irradiances were combined to derive half-hourly averages of solar irradiance (HASI) and daily global solar radiation (GSR) on a horizontal surface using linear interpolation, piecewise linear regression, and quadratic polynomial regression. Compared with field observations, the HASI were estimated accurately when the total cloud fraction (TCF) was 0.6. Overall, the daily GSR estimated in this study was better than that estimated by the Modern-Era Retrospective Analysis for Research and Applications (MERRA) reanalysis of NASA. The daily GSR estimated in this study was underestimated, whereas it was overestimated by MERRA. The combination of the daily GSR estimates of this study and MERRA offers a simple and feasible technique for reducing uncertainty in daily GSR estimates. - Highlights: • Daily GSR is integrated from two observations from the MODIS products. • Daily GSR from the MODIS products is underestimated. • Biases were attributed primarily to variations in the total cloud percent. • Combining daily GSR estimates from the MODIS and the MERRA increases accuracy.

  14. Effect of free radicals and cultivation media on radiation sensitivities of escherichia coli and related bacteria

    International Nuclear Information System (INIS)

    Ito, Hitoshi

    2000-01-01

    Effects of gamma-irradiation on some strains of Escherichia coli, Salmonella enteritidis and Staphylococcus aureus were investigated in the presence of N 2 , N 2 O and O 2 and with the hydroxyl radical (OH) scavengers glycerol, polyethylene glycerol and formate. Injured cell membrane of bacteria was detected using with MacConkey agar for E. coli and S. enteritidis and 7% NaCl Triptic soy agar for St. aureus instead of Tryptic soy agar for recovery medium. From this study, addition of glycerol significantly reduced the sensitivity in all of strains, and cell membrane was not injured significantly except in radiation sensitive strain E. coli A4-1. When superoxide radicals (O 2 ) were generated during irradiation in the presence of formate, injured cell membrane increased significantly in all of strains. However, molecular oxygen (O 2 ) and OH radicals also had some effects on the damage of cell membrane. These results suggest that most radiation induced cell lethality was responsible to the cooperative effects of intracellular OH radicals and O 2 on DNA with lessor effect of damage on cell membrane by O 2 radicals, O 2 and OH radicals. On the radiation sensitive strain of E. coli, cell lethality occurred significantly by the injury of cell membrane compared with other strains. (author)

  15. Repair of gamma radiation damage in wild type and a radiation sensitive mutant of Deinococcus radiodurans

    International Nuclear Information System (INIS)

    Mizuma, Nagayo

    1989-01-01

    In an effort to examine production and repair of radiation-induced single and double strand breaks in the DNA, a repair-deficient wild type and a repair-deficient mutant, UV17, of Deinococcus radiodurans were subjected to Co-60 gamma irradiation at a dose rate of 6.3 kGy/hr for wild type and 3.9 kGy/hr for UV17 mutant. The shoulder of the curve of UV17 mutant was narrow but existed with the intercept of 0.7 kGy and the corresponding value of the wild type was 4.2 kGy. Mutant cells exhibited about 6 fold increases in sensitivity for the shoulder relative to the wild type. The D 37 doses in the wild type and the mutant were 0.57 kGy and 0.25 kGy, respectively. From the survival curves, difference in the sensitivity between two strains was mainly due to difference of repair capacity than the number of radiation sensitive target. Sedimentation rate of the main component in the irradiated cells of UV17 mutant increased almost to the level of unirradiated control by the postincubation at 30deg C for 3 hrs. The results indicated that this sensitive mutant also exhibited an ability to restore single strand breaks after exposure to a sublethal dose of 0.6 kGy. When restitution of double strand breaks was analyzed by sedimentation in a neutral sucrose gradient, the wild type showed restitution to DNA-membrane complex from large part of the breaks. For UV17 mutant, the apparent increase in DNA-membrane complex formation was seen after 3 hours incubation. Large part of the decrease in the activities of peak 2 was recovered in the peak 1 for the wild type. For the mutant, there was little restitution to peak 1. Almost free DNA component in UV17 mutant, therefore, was merely degraded into shorter pieces. Restoration of DNA-membrane complex from free DNA derived from gamma-ray induced double strand scission involved closely in the repair of gamma-induced damage and survival. (N.K.)

  16. Estimation of radiation hardening in ferritic steels using the cluster dynamics models

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Jun Hyun; Kim, Whung Whoe; Hong, Jun Hwa [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2005-07-01

    Evolution of microstructure under irradiation brings about the mechanical property changes of materials, of which the major concern is radiation hardening in this work. Radiation hardening is generally expressed in terms of an increase in yield strength as a function of radiation dose and temperature. Cluster dynamics model for radiation hardening has been developed to describe the evolution of point defects clusters (PDCs) and copperrich precipitates (CRPs). While the mathematical models developed by Stoller focus on the evolution of PDCs in ferritic steels under neutron irradiation, we slightly modify the model by including the CRP growth and estimate the magnitude of hardening induced by PDC and CRP. The model is then used to calculate the changes in yield strength of RPV steels. The calculation results are compared to measured yield strength values, obtained from surveillance testing of PWR vessel steels in France.

  17. Radiation sensitization by dihydroartemisinin on human HeLa cells of cervical cancer

    International Nuclear Information System (INIS)

    Chen Xialin; Cao Jianping; Ji Rong; Zhu Wei; Liu Yang; Gong Xiaomei; Tang Yan; Pan Chunyan; Fan Saijun

    2009-01-01

    Objective: To investigate the radiosensitizing effects of dihydroartemisinin (DHA) on human HeLa cells of cervical cancer irradiated by X rays. Methods: Cell growth kinetics was determined using MTF assay. Cell survival was analyzed by elonogenic assay. The change of cell cycle and apeptosis was measured by flow cytometry. Results: Dihydroartemisinin inhibited the growth of HeLa cells of human cervical cancer and showed a dose-dependent and time-dependent manner. Dihydroartemisinin (20 μmol/L) showed the radiosensitizing effects on HeLa cells, and the sensitizing enhancement ratio (SER) was 1.47. Dihydroartemisinin abrogated radiation-induced G 2 arrest of the tested HeLa cells, the G 2 ratio of medicine + radiation group dechned from 73.58% to 48.31%. Dihydroartemisinin enhanced the apoptosis of HeLa cells by X-irradiation, the apoptosis rates of medicine + radiation group significantly increased from 29.46%, 48.04%, 70.21% to 45.79%, 66.36% and 79.58%, respectively for 2, 4 and 6 Gy. Conclusions: Dihydroartemisinin could increase the radiosensitivity of HeLa cells of human cervical cancer. Abrogation of radiation-induced C 2 arrest could be part of the mechanism. (authors)

  18. Sensitivity to radiation and cycle-active drugs as a function of stem cell compartment repletion

    International Nuclear Information System (INIS)

    Degowin, R.L.; Gibson, D.P.

    1976-01-01

    We have studied the sensitivity of normal mouse hemopoietic tissue to radiation and cycle-active drugs in relation to stem cell compartment repletion. Recovery of erythropoiesis in endogenous spleen colonies, blood reticulocytes, and 30-day survivals were determined in mice after an initial large dose of partial-body irradiation. We found that the normal stem cell compartment is more sensitive to cycle-independent modes of therapy, like radiation and cyclophosphamide, than it is to cycle-active agents like cytosine arabinoside and methotrexate. The depleted stem cell compartment exhibits marked sensitivity to cycle-independent agents but less to cycle-active agents, which, however, suppress its recovery more than they do the normal. The overshoot phase of recovery is relatively resistant to either cycle-independent or cycle-active agents. A reticulocytosis following a reticulocytopenia signals the overshoot phase of stem cell compartment recovery and relatively increased resistance. These findings may prove useful in designing chemotherapy regimens and in anticipating marrow recovery in planning for supportive care in patients with neoplastic disease

  19. A sensitivity study on modeling black carbon in snow and its radiative forcing over the Arctic and Northern China

    International Nuclear Information System (INIS)

    Qian, Yun; Wang, Hailong; Rasch, Philip J; Zhang, Rudong; Flanner, Mark G

    2014-01-01

    Black carbon in snow (BCS) simulated in the Community Atmosphere Model (CAM5) is evaluated against measurements over Northern China and the Arctic, and its sensitivity to atmospheric deposition and two parameters that affect post-depositional enrichment is explored. Improvements in atmospheric BC transport and deposition significantly reduce the biases (by a factor of two) in the estimation of BCS concentration over both Northern China and the Arctic. Further sensitivity simulations using the improved CAM5 indicate that the melt-water scavenging efficiency (MSE) parameter plays an important role in regulating BC concentrations in the Arctic through the post-depositional enrichment, which not only drastically changes the amplitude but also shifts the seasonal cycle of the BCS concentration and its radiative forcing in the Arctic. The impact of the snow aging scaling factor (SAF) on BCS shows more complex latitudinal and seasonal dependence, and overall impact of SAF is much smaller than that of MSE. The improvements of BC transport and deposition in CAM5 have a stronger influence on BCS than perturbations of the two snow model parameters in Northern China. (letters)

  20. Clinical evaluation of the partition model for estimating radiation doses from yttrium-90 microspheres in the treatment of hepatic cancer

    International Nuclear Information System (INIS)

    Ho, S.; Lau, W.Y.; Leung, T.W.T.; Chan, M.; Johnson, P.J.; Li, A.K.C.

    1997-01-01

    Radiation doses to the tumour and non-tumorous liver compartments from yttrium-90 microspheres in the treatment of hepatic cancer, as estimated by a partition model, have been verified by correlation with the actual doses measured with a beta probe at open surgery. The validity of the doses to the lungs, the tumour and non-tumours liver compartment as estimated by the partition model was further evaluated in clinical settings. On the basis of the observation that one of three patients who received more than 30 Gy from a single treatment and one of two patients who received more than 50 Gy from multiple treatments developed radiation pneumonitis, it was deduced that an estimated lung dose 30 Gy as estimated by the partition model and were predicted to develop radiation pneumonitis, did so despite the use of partial hepatic embolization to reduce the degree of lung shunting. Furthermore, a higher radiological response rate and prolonged survival were found in the group of patients who received higher tumour doses, as estimated by the partition model, than in the group with lower estimated tumour doses. Thus the radiation doses estimated by the partition model can be used to predict (a) complication rate, (b) response rate and (c) duration of survival in the same manner as the actual radiation doses measured with a beta probe at open surgery. The partition model has made selective internal radiation therapy using 90 Y microspheres safe and repeatable without laparotomy. (orig.)

  1. Histone Deacetylase Inhibitor Induced Radiation Sensitization Effects on Human Cancer Cells after Photon and Hadron Radiation Exposure

    Directory of Open Access Journals (Sweden)

    Ariungerel Gerelchuluun

    2018-02-01

    Full Text Available Suberoylanilide hydroxamic acid (SAHA is a histone deacetylase inhibitor, which has been widely utilized throughout the cancer research field. SAHA-induced radiosensitization in normal human fibroblasts AG1522 and lung carcinoma cells A549 were evaluated with a combination of γ-rays, proton, and carbon ion exposure. Growth delay was observed in both cell lines during SAHA treatment; 2 μM SAHA treatment decreased clonogenicity and induced cell cycle block in G1 phase but 0.2 μM SAHA treatment did not show either of them. Low LET (Linear Energy Transfer irradiated A549 cells showed radiosensitization effects on cell killing in cycling and G1 phase with 0.2 or 2 μM SAHA pretreatment. In contrast, minimal sensitization was observed in normal human cells after low and high LET radiation exposure. The potentially lethal damage repair was not affected by SAHA treatment. SAHA treatment reduced the rate of γ-H2AX foci disappearance and suppressed RAD51 and RPA (Replication Protein A focus formation. Suppression of DNA double strand break repair by SAHA did not result in the differences of SAHA-induced radiosensitization between human cancer cells and normal cells. In conclusion, our results suggest SAHA treatment will sensitize cancer cells to low and high LET radiation with minimum effects to normal cells.

  2. Analysis of the common deletions in the mitochondrial DNA is a sensitive biomarker detecting direct and non-targeted cellular effects of low dose ionizing radiation

    International Nuclear Information System (INIS)

    Schilling-Toth, Boglarka; Sandor, Nikolett; Kis, Eniko; Kadhim, Munira; Safrany, Geza; Hegyesi, Hargita

    2011-01-01

    One of the key issues of current radiation research is the biological effect of low doses. Unfortunately, low dose science is hampered by the unavailability of easily performable, reliable and sensitive quantitative biomarkers suitable detecting low frequency alterations in irradiated cells. We applied a quantitative real time polymerase chain reaction (qRT-PCR) based protocol detecting common deletions (CD) in the mitochondrial genome to assess direct and non-targeted effects of radiation in human fibroblasts. In directly irradiated (IR) cells CD increased with dose and was higher in radiosensitive cells. Investigating conditioned medium-mediated bystander effects we demonstrated that low and high (0.1 and 2 Gy) doses induced similar levels of bystander responses and found individual differences in human fibroblasts. The bystander response was not related to the radiosensitivity of the cells. The importance of signal sending donor and signal receiving target cells was investigated by placing conditioned medium from a bystander response positive cell line (F11-hTERT) to bystander negative cells (S1-hTERT) and vice versa. The data indicated that signal sending cells are more important in the medium-mediated bystander effect than recipients. Finally, we followed long term effects in immortalized radiation sensitive (S1-hTERT) and normal (F11-hTERT) fibroblasts up to 63 days after IR. In F11-hTERT cells CD level was increased until 35 days after IR then reduced back to control level by day 49. In S1-hTERT cells the increased CD level was also normalized by day 42, however a second wave of increased CD incidence appeared by day 49 which was maintained up to day 63 after IR. This second CD wave might be the indication of radiation-induced instability in the mitochondrial genome of S1-hTERT cells. The data demonstrated that measuring CD in mtDNA by qRT-PCR is a reliable and sensitive biomarker to estimate radiation-induced direct and non-targeted effects.

  3. Analysis of the common deletions in the mitochondrial DNA is a sensitive biomarker detecting direct and non-targeted cellular effects of low dose ionizing radiation.

    Science.gov (United States)

    Schilling-Tóth, Boglárka; Sándor, Nikolett; Kis, Eniko; Kadhim, Munira; Sáfrány, Géza; Hegyesi, Hargita

    2011-11-01

    One of the key issues of current radiation research is the biological effect of low doses. Unfortunately, low dose science is hampered by the unavailability of easily performable, reliable and sensitive quantitative biomarkers suitable detecting low frequency alterations in irradiated cells. We applied a quantitative real time polymerase chain reaction (qRT-PCR) based protocol detecting common deletions (CD) in the mitochondrial genome to assess direct and non-targeted effects of radiation in human fibroblasts. In directly irradiated (IR) cells CD increased with dose and was higher in radiosensitive cells. Investigating conditioned medium-mediated bystander effects we demonstrated that low and high (0.1 and 2Gy) doses induced similar levels of bystander responses and found individual differences in human fibroblasts. The bystander response was not related to the radiosensitivity of the cells. The importance of signal sending donor and signal receiving target cells was investigated by placing conditioned medium from a bystander response positive cell line (F11-hTERT) to bystander negative cells (S1-hTERT) and vice versa. The data indicated that signal sending cells are more important in the medium-mediated bystander effect than recipients. Finally, we followed long term effects in immortalized radiation sensitive (S1-hTERT) and normal (F11-hTERT) fibroblasts up to 63 days after IR. In F11-hTERT cells CD level was increased until 35 days after IR then reduced back to control level by day 49. In S1-hTERT cells the increased CD level was also normalized by day 42, however a second wave of increased CD incidence appeared by day 49 which was maintained up to day 63 after IR. This second CD wave might be the indication of radiation-induced instability in the mitochondrial genome of S1-hTERT cells. The data demonstrated that measuring CD in mtDNA by qRT-PCR is a reliable and sensitive biomarker to estimate radiation-induced direct and non-targeted effects. Copyright

  4. Campbell-Bristow development Model for Estimating Global Solar radiation in the Region of Junin, Perú

    Directory of Open Access Journals (Sweden)

    Dr. Becquer Frauberth Camayo-Lapa

    2015-11-01

    Full Text Available In order to have a tool to estimate the monthly and annual solar radiation on the horizontal surface in Junín region, in which is not available with this information, adapted Bristow-Campbell (1984 model for estimating global solar radiation monthly average.   To develop the model of Bristow-Campbell that estimates the average daily global solar radiation monthly modeling technique proposed by Espinoza (2010, were recorded daily maximum and minimum temperatures of 19 weather stations and the equations proposed  by the Solar High Peru 2003 was adapted to this model.  The Bristow-Campbell model was developed with data recorded in stations: Santa Ana, Tarma and Satipo belonging to Sierra and Selva, respectively. The performance of applications calculated solar radiation was determined by considering the OLADE (1992 that solar radiation over 4,0 kWh/m2/day are profitable and 5,0 kWh/m2/day very profitable. The results indicate that the monthly average global solar radiation in Junín  region is 5,3  kWh/m2/day corresponding to the  4,2 Forest and the Sierra 5,6 kWh/m2/day kWh/m2/day. Profitability is determined for the less profitable Selva and Sierra is very profitable. In addition, the operating model is simple and available to all users. We conclude that application of the Bristow-Campbell model adapted, it is an instrument of great utility to generate a comprehensive database of available solar radiation in Junín region.

  5. Position-sensitive radiation monitoring (surface contamination monitor). Innovative technology summary report

    International Nuclear Information System (INIS)

    1999-06-01

    The Shonka Research Associates, Inc. Position-Sensitive Radiation Monitor both detects surface radiation and prepares electronic survey map/survey report of surveyed area automatically. The electronically recorded map can be downloaded to a personal computer for review and a map/report can be generated for inclusion in work packages. Switching from beta-gamma detection to alpha detection is relatively simple and entails moving a switch position to alpha and adjusting the voltage level to an alpha detection level. No field calibration is required when switching from beta-gamma to alpha detection. The system can be used for free-release surveys because it meets the federal detection level sensitivity limits requires for surface survey instrumentation. This technology is superior to traditionally-used floor contamination monitor (FCM) and hand-held survey instrumentation because it can precisely register locations of radioactivity and accurately correlate contamination levels to specific locations. Additionally, it can collect and store continuous radiological data in database format, which can be used to produce real-time imagery as well as automated graphics of survey data. Its flexible design can accommodate a variety of detectors. The cost of the innovative technology is 13% to 57% lower than traditional methods. This technology is suited for radiological surveys of flat surfaces at US Department of Energy (DOE) nuclear facility decontamination and decommissioning (D and D) sites or similar public or commercial sites

  6. Position-sensitive radiation monitoring (surface contamination monitor). Innovative technology summary report

    Energy Technology Data Exchange (ETDEWEB)

    1999-06-01

    The Shonka Research Associates, Inc. Position-Sensitive Radiation Monitor both detects surface radiation and prepares electronic survey map/survey report of surveyed area automatically. The electronically recorded map can be downloaded to a personal computer for review and a map/report can be generated for inclusion in work packages. Switching from beta-gamma detection to alpha detection is relatively simple and entails moving a switch position to alpha and adjusting the voltage level to an alpha detection level. No field calibration is required when switching from beta-gamma to alpha detection. The system can be used for free-release surveys because it meets the federal detection level sensitivity limits requires for surface survey instrumentation. This technology is superior to traditionally-used floor contamination monitor (FCM) and hand-held survey instrumentation because it can precisely register locations of radioactivity and accurately correlate contamination levels to specific locations. Additionally, it can collect and store continuous radiological data in database format, which can be used to produce real-time imagery as well as automated graphics of survey data. Its flexible design can accommodate a variety of detectors. The cost of the innovative technology is 13% to 57% lower than traditional methods. This technology is suited for radiological surveys of flat surfaces at US Department of Energy (DOE) nuclear facility decontamination and decommissioning (D and D) sites or similar public or commercial sites.

  7. A simple formula for estimating global solar radiation in central arid deserts of Iran

    International Nuclear Information System (INIS)

    Sabziparvar, Ali A.

    2008-01-01

    Over the last two decades, using simple radiation models has been an interesting task to estimate daily solar radiation in arid and semi-arid deserts such as those in Iran, where the number of solar observation sites is poor. In Iran, most of the models used so far, have been validated for a few specific locations based on short-term solar observations. In this work, three different radiation models (Sabbagh, Paltridge, Daneshyar) have been revised to predict the climatology of monthly average daily solar radiation on horizontal surfaces in various cities in central arid deserts of Iran. The modifications are made by the inclusion of altitude, monthly total number of dusty days and seasonal variation of Sun-Earth distance. A new height-dependent formula is proposed based on MBE, MABE, MPE and RMSE statistical analysis. It is shown that the revised Sabbagh method can be a good estimator for the prediction of global solar radiation in arid and semi-arid deserts with an average error of less than 2%, that performs a more accurate prediction than those in the previous studies. The required data for the suggested method are usually available in most meteorological sites. For the locations, where some of the input data are not reported, an alternative approach is presented. (author)

  8. Models for the estimation of diffuse solar radiation for typical cities in Turkey

    International Nuclear Information System (INIS)

    Bakirci, Kadir

    2015-01-01

    In solar energy applications, diffuse solar radiation component is required. Solar radiation data particularly in terms of diffuse component are not readily affordable, because of high price of measurements as well as difficulties in their maintenance and calibration. In this study, new empirical models for predicting the monthly mean diffuse solar radiation on a horizontal surface for typical cities in Turkey are established. Therefore, fifteen empirical models from studies in the literature are used. Also, eighteen diffuse solar radiation models are developed using long term sunshine duration and global solar radiation data. The accuracy of the developed models is evaluated in terms of different statistical indicators. It is found that the best performance is achieved for the third-order polynomial model based on sunshine duration and clearness index. - Highlights: • Diffuse radiation is given as a function of clearness index and sunshine fraction. • The diffuse radiation is an important parameter in solar energy applications. • The diffuse radiation measurement is for limited periods and it is very rare. • The new models can be used to estimate monthly average diffuse solar radiation. • The accuracy of the models is evaluated on the basis of statistical indicators

  9. Evidence for a high and a low sensitivity receptor site for radiation-induced vomiting in the dog

    International Nuclear Information System (INIS)

    Harding, R.K.; Hugenholtz, H.; Kucharczyk, J.

    1987-01-01

    Ablation of the area postrema (AP) has been shown to prevent radiation-induced vomiting in the dog (induced by 6-8 By /sup 60/Co γ). In other species (cat, monkey) a higher dose of radiation is necessary to elicit emesis and visceral deafferentation has been more effective than AP ablation in preventing vomiting. The AP and the dorsal motor nucleus of the vagus (DMV), an important visceral afferent terminus, are anatomically adjacent structures in the medulla oblongata. Aggressive AP ablation could affect the DMV. The author's removed the AP in 6 dogs. Previous work showed this surgery prevented vomiting following exposure to 6-8 Gy. To prove the lesion did not invade the underlying DMV, the animals were given a hypertonic saline gavage, to elicit vomiting via visceral receptors. Animals were later submitted to 15-20 Gy. Those with proved visceral afferent connections vomited. They conclude that the AP is the most sensitive site for the stimulation of radiation-induced vomiting and that a less sensitive visceral site also exists. Differences in the relative sensitivities of these 2 systems may account for published species differences

  10. A study of using polythiol compounds and 2-ethyl-hexyl-acrylate with carbon tetrachloride as sensitizers for radiation vulcanization of natural rubber latex

    International Nuclear Information System (INIS)

    Polsuksiri, C.

    1989-01-01

    Experiments on using 3 different compounds of polythiol and an acrylate as sensitizer for radiation vulcanization were conducted. It was found that 1,4 butane diol propane tris-3-mercapto propionate showed the tendency to be a good sensitizer. The tensile strength of the rubber film prepared from the irradiated latex was found to be 14 MPa at sensitizer concentration of 1 phr and radiation dose of 45 kGy. As for 2-ethyl hexyl acrylate (2EHA), the maximum tensile strength of rubber film was found to be 23 MPa at concentration of 3 phr and radiation dose of 35 kGy. The mixture of 2 EHA and CCl 4 at various ratio was also used as sensitizer. The optimum ratio was found to be 5:1 at concentration of 6 phr and radiation dose of 15 kGy. The maximum tensile strength was as high as 25 MPa. The study also revealed that the radiation vulcanized latex with crosslink density of about 18x10 18 C.L./cm 3 would give the rubber film of highest tensile strength

  11. Sensitization of ultraviolet radiation damage in bacteria and mammalian cells

    International Nuclear Information System (INIS)

    Fisher, G.J.; Watts, M.E.; Patel, K.B.; Adams, G.E.

    1978-01-01

    Bacteria (Serratia marcescens) and mammalian cells (Chinese hamsters V79-379A) were irradiated in monolayers with ultraviolet light at 254 nm or 365 nm in the presence or absence of radiosensitizing drugs. At 254 nm, killing is very efficient (Dsub(37) approximately equal 1 J m -2 exposure, or approximately equal 6 x 10 4 photons absorbed by DNA per bacterium), and sensitizers have no effect. At 365 nm, cells are not killed in buffer, but are inactivated in the presence of nifurpipone or misonidazole. Lethal exposures (approximately equal 5 x 10 3 J m -2 at 10 nM misonidazole) correspond to about 10 7 photons absorbed by sensitizer molecules per bacterium. Toxicity of stable photoproducts of the drugs is not involved, nor is oxygen required. Hence the transient species formed by photo-excitation of radiosensitizer molecules are capable of killing cells in the absence of other types of radiation damage. (author)

  12. Effect of ''pasteurizing'' doses of ionizing radiations on drug sensitivity of microbes isolated at pharmacentical factory

    International Nuclear Information System (INIS)

    Pavlov, E.P.; Shcheglova, S.G.; Sedov, V.V.

    1978-01-01

    The effect of ionizing radiations on drug sensitivity of microorganisms has been investigated, particularly, the influence of pasteurizing'' doses of ionizing radia''ons on the drug sensitivity of microorganisms isolated at a Moscow pharmaceutical factory to a number of widely used antibiotics. 250 krad single irradiation of dry microbial culture resulted in a change of the antibiotic sensitivity in 0.5% of 686 strains studied. All changes were toward the appearance of sensitivity to one or several antibiotics. When cultures were irradiated 3 times, this value increased up to 9%. In no case the appearance of resistance to antibiotics was observed

  13. Probe-Specific Procedure to Estimate Sensitivity and Detection Limits for 19F Magnetic Resonance Imaging.

    Directory of Open Access Journals (Sweden)

    Alexander J Taylor

    Full Text Available Due to low fluorine background signal in vivo, 19F is a good marker to study the fate of exogenous molecules by magnetic resonance imaging (MRI using equilibrium nuclear spin polarization schemes. Since 19F MRI applications require high sensitivity, it can be important to assess experimental feasibility during the design stage already by estimating the minimum detectable fluorine concentration. Here we propose a simple method for the calibration of MRI hardware, providing sensitivity estimates for a given scanner and coil configuration. An experimental "calibration factor" to account for variations in coil configuration and hardware set-up is specified. Once it has been determined in a calibration experiment, the sensitivity of an experiment or, alternatively, the minimum number of required spins or the minimum marker concentration can be estimated without the need for a pilot experiment. The definition of this calibration factor is derived based on standard equations for the sensitivity in magnetic resonance, yet the method is not restricted by the limited validity of these equations, since additional instrument-dependent factors are implicitly included during calibration. The method is demonstrated using MR spectroscopy and imaging experiments with different 19F samples, both paramagnetically and susceptibility broadened, to approximate a range of realistic environments.

  14. Probe-Specific Procedure to Estimate Sensitivity and Detection Limits for 19F Magnetic Resonance Imaging.

    Science.gov (United States)

    Taylor, Alexander J; Granwehr, Josef; Lesbats, Clémentine; Krupa, James L; Six, Joseph S; Pavlovskaya, Galina E; Thomas, Neil R; Auer, Dorothee P; Meersmann, Thomas; Faas, Henryk M

    2016-01-01

    Due to low fluorine background signal in vivo, 19F is a good marker to study the fate of exogenous molecules by magnetic resonance imaging (MRI) using equilibrium nuclear spin polarization schemes. Since 19F MRI applications require high sensitivity, it can be important to assess experimental feasibility during the design stage already by estimating the minimum detectable fluorine concentration. Here we propose a simple method for the calibration of MRI hardware, providing sensitivity estimates for a given scanner and coil configuration. An experimental "calibration factor" to account for variations in coil configuration and hardware set-up is specified. Once it has been determined in a calibration experiment, the sensitivity of an experiment or, alternatively, the minimum number of required spins or the minimum marker concentration can be estimated without the need for a pilot experiment. The definition of this calibration factor is derived based on standard equations for the sensitivity in magnetic resonance, yet the method is not restricted by the limited validity of these equations, since additional instrument-dependent factors are implicitly included during calibration. The method is demonstrated using MR spectroscopy and imaging experiments with different 19F samples, both paramagnetically and susceptibility broadened, to approximate a range of realistic environments.

  15. Estimation of monthly solar radiation distribution for solar energy system analysis

    International Nuclear Information System (INIS)

    Coskun, C.; Oktay, Z.; Dincer, I.

    2011-01-01

    The concept of probability density frequency, which is successfully used for analyses of wind speed and outdoor temperature distributions, is now modified and proposed for estimating solar radiation distributions for design and analysis of solar energy systems. In this study, global solar radiation distribution is comprehensively analyzed for photovoltaic (PV) panel and thermal collector systems. In this regard, a case study is conducted with actual global solar irradiation data of the last 15 years recorded by the Turkish State Meteorological Service. It is found that intensity of global solar irradiance greatly affects energy and exergy efficiencies and hence the performance of collectors. -- Research highlights: → The first study to apply global solar radiation distribution in solar system analyzes. → The first study showing global solar radiation distribution as a parameter of the solar irradiance intensity. → Time probability intensity frequency and probability power distribution do not have similar distribution patterns for each month. → There is no relation between the distribution of annual time lapse and solar energy with the intensity of solar irradiance.

  16. Okadaic acid for radiation dose estimation using drug-induced premature chromosome condensation

    International Nuclear Information System (INIS)

    Wang Chunyan; Zhang Wei; Su Xu

    2005-01-01

    Objective: To establish simple biological method for high irradiation dose estimation using drug-induced prematurely condensed chromosomes (PCC) aberrations. Methods: Peripheral blood was taken from healthy adults and irradiated by 0, 1, 2, 5, 10, 15, 20 and 25 Gy 60 Co γ-rays. Then the blood samples were cultured for 48 hrs. One hr before the end of culture , okadaic acid was added into culture medium to induce PCC rings, which were counted for each dose point. Results: The yield of PCC rings was increased with the dose of radiation until 20 Gy. Within the range of 1 to 20 Gy, there was a good dose-response relationship between the yield of PCC rings and radiation dose. Conclusion: Compared with the analysis of frequency of dicentrics, the yield of PCC rings could be a good biodosimetry indicator for estimation of high dose irradiation. (authors)

  17. Irradiation of cells by single and double pulses of high intensity radiation: oxygen sensitization and diffusion kinetics

    International Nuclear Information System (INIS)

    Epp, E.R.; Ling, C.C.; Weiss, H.

    1976-01-01

    This paper discusses advances made on both experimental and theoretical approaches involving single and double pulses of high intensity ionizing radiation delivered to cultured bacterial and mammalian cells where the effect of oxygen is concerned. Information gained on the lifetime of oxygen-sensitive species suspected to be produced in critical molecules in irradiated cells and perhaps intimately related to the still unknown mechanisms of oxygen sensitization is described. The diffusion characteristics of oxygen at the cellular level obtained from experimental data are discussed. Current knowledge on intracellular radiolytic oxygen depletion is also presented. Future work on the use of high intensity pulsed radiation as a tool in cellular radiobiological research is outlined. It is expected that obtaining knowledge of the time available for damaged molecules to enter into chemical reactions may lead to insights into the mechanisms of radiation injury in cells, such as those involved in the oxygen effect. (Auth.)

  18. Studies on the reference Korean and estimation of radiation exposure dose

    International Nuclear Information System (INIS)

    Kim, Y.J.; Lee, K.S.; Chun, K.J.; Kim, J.B.; Chung, G.H.; Kim, S.R.

    1982-01-01

    For the purpose of establishment of Reference Korean and estimation of internal and external exposure doses in the Reference Korean, we have surveyed reference values for Koreans such as physical standards including height, weight, and body surface area, food consumption rate of daily intake of radioactive substances and exposure dose from natural radiation. (Author)

  19. Folic acid deficiency increases chromosomal instability, chromosome 21 aneuploidy and sensitivity to radiation-induced micronuclei

    International Nuclear Information System (INIS)

    Beetstra, Sasja; Thomas, Philip; Salisbury, Carolyn; Turner, Julie; Fenech, Michael

    2005-01-01

    Folic acid deficiency can lead to uracil incorporation into DNA, hypomethylation of DNA, inefficient DNA repair and increase chromosome malsegregation and breakage. Because ionising radiation increases demand for efficient DNA repair and also causes chromosome breaks we hypothesised that folic acid deficiency may increase sensitivity to radiation-induced chromosome breakage. We tested this hypothesis by using the cytokinesis-block micronucleus assay in 10 day WIL2-NS cell cultures at four different folic acid concentrations (0.2, 2, 20, and 200 nM) that span the 'normal' physiological range in humans. The study showed a significant dose-dependent increase in frequency of binucleated cells with micronuclei and/or nucleoplasmic bridges with decreasing folic acid concentration (P < 0.0001, P = 0.028, respectively). These biomarkers of chromosomal instability were also increased in cells irradiated (1.5 Gy γ-rays) on day 9 relative to un-irradiated controls (P < 0.05). Folic acid deficiency and γ-irradiation were shown to have a significant interactive effect on frequency of cells containing micronuclei (two-way ANOVA, interaction P 0.0039) such that the frequency of radiation-induced micronucleated cells (i.e. after subtracting base-line frequency of un-irradiated controls) increased with decreasing folic acid concentration (P-trend < 0.0001). Aneuploidy of chromosome 21, apoptosis and necrosis were increased by folic acid deficiency but not by ionising radiation. The results of this study show that folate status has an important impact on chromosomal stability and is an important modifying factor of cellular sensitivity to radiation-induced genome damage

  20. Empirical models for the estimation of global solar radiation with sunshine hours on horizontal surface in various cities of Pakistan

    International Nuclear Information System (INIS)

    Gadiwala, M.S.; Usman, A.; Akhtar, M.; Jamil, K.

    2013-01-01

    In developing countries like Pakistan the global solar radiation and its components is not available for all locations due to which there is a requirement of using different models for the estimation of global solar radiation that use climatological parameters of the locations. Only five long-period locations data of solar radiation data is available in Pakistan (Karachi, Quetta, Lahore, Multan and Peshawar). These locations almost encompass the different geographical features of Pakistan. For this reason in this study the Mean monthly global solar radiation has been estimated using empirical models of Angstrom, FAO, Glover Mc-Culloch, Sangeeta & Tiwari for the diversity of approach and use of climatic and geographical parameters. Empirical constants for these models have been estimated and the results obtained by these models have been tested statistically. The results show encouraging agreement between estimated and measured values. The outcome of these empirical models will assist the researchers working on solar energy estimation of the location having similar conditions

  1. On the evaluation of the sensitivity of SRAM-Based FPGA to errors due to natural radiation environment

    International Nuclear Information System (INIS)

    Bocquillon, Alexandre

    2009-01-01

    This work aims at designing a test methodology to analyze the effect of natural radiation on FPGA SRAM-based chip-sets. Study of likely errors due to single or multiple events occurring in the configuration memory will be based on fault-injection experiments performed with laser devices. It relies on both a description of scientific background and a description of complex architecture of FPGA SRAM-Based and usual testing apparatus. Fault injection experiments with laser are conducted on several classes of components in order to perform static tests of the configuration memory and identify the links with the application. It shows the organization and sensitivity of SRAM configuration cells. Criticality criteria for configuration bits have been specified following dynamic tests in protons accelerator, in regard to their impact on the application. From this classification was developed a predicting tool for critical error rate estimation. (author) [fr

  2. Phenylbutyrate Sensitizes Human Glioblastoma Cells Lacking Wild-Type P53 Function to Ionizing Radiation

    International Nuclear Information System (INIS)

    Lopez, Carlos A.; Feng, Felix Y.; Herman, Joseph M.; Nyati, Mukesh K.; Lawrence, Theodore S.; Ljungman, Mats

    2007-01-01

    Purpose: Histone deacetylase (HDAC) inhibitors induce growth arrest, differentiation, and apoptosis in cancer cells. Phenylbutyrate (PB) is a HDAC inhibitor used clinically for treatment of urea cycle disorders. Because of its low cytotoxicity, cerebrospinal fluid penetration, and high oral bioavailability, we investigated PB as a potential radiation sensitizer in human glioblastoma cell lines. Methods and Materials: Four glioblastoma cell lines were selected for this study. Phenylbutyrate was used at a concentration of 2 mM, which is achievable in humans. Western blots were used to assess levels of acetylated histone H3 in tumor cells after treatment with PB. Flow cytometry was used for cell cycle analysis. Clonogenic assays were performed to assess the effect of PB on radiation sensitivity. We used shRNA against p53 to study the role of p53 in radiosensitization. Results: Treatment with PB alone resulted in hyperacetylation of histones, confirmed by Western blot analysis. The PB alone resulted in cytostatic effects in three cell lines. There was no evidence of G 1 arrest, increase in sub-G 1 fraction or p21 protein induction. Clonogenic assays showed radiosensitization in two lines harboring p53 mutations, with enhancement ratios (± SE) of 1.5 (± 0.2) and 1.3 (± 0.1), respectively. There was no radiopotentiating effect in two cell lines with wild-type p53, but knockdown of wild-type p53 resulted in radiosensitization by PB. Conclusions: Phenylbutyrate can produce p21-independent cytostasis, and enhances radiation sensitivity in p53 mutant human glioblastoma cells in vitro. This suggests the potential application of combined PB and radiotherapy in glioblastoma harboring mutant p53

  3. Donor-specific cell-based assays in studying sensitivity to low-dose radiation: a population-based perspective

    Directory of Open Access Journals (Sweden)

    Dora eIl'yasova

    2014-11-01

    Full Text Available Currently, a linear no-threshold model is used to estimate health risks associated with exposure to low-dose radiation, a prevalent exposure in the general population, because the direct estimation from epidemiological studies suffers from uncertainty. This model has been criticized based on unique biology of low-dose radiation. Whether the departure from linearity is toward increased or decreased risk is intensely debated. We present an approach based on individual radiosensitivity testing and discuss how individual radiosensitivity can be assessed with the goal to develop a quantifiable measure of cellular response that can be conducted via high-throughput population testing.

  4. Spectral estimates of net radiation and soil heat flux

    International Nuclear Information System (INIS)

    Daughtry, C.S.T.; Kustas, W.P.; Moran, M.S.; Pinter, P.J. Jr.; Jackson, R.D.; Brown, P.W.; Nichols, W.D.; Gay, L.W.

    1990-01-01

    Conventional methods of measuring surface energy balance are point measurements and represent only a small area. Remote sensing offers a potential means of measuring outgoing fluxes over large areas at the spatial resolution of the sensor. The objective of this study was to estimate net radiation (Rn) and soil heat flux (G) using remotely sensed multispectral data acquired from an aircraft over large agricultural fields. Ground-based instruments measured Rn and G at nine locations along the flight lines. Incoming fluxes were also measured by ground-based instruments. Outgoing fluxes were estimated using remotely sensed data. Remote Rn, estimated as the algebraic sum of incoming and outgoing fluxes, slightly underestimated Rn measured by the ground-based net radiometers. The mean absolute errors for remote Rn minus measured Rn were less than 7%. Remote G, estimated as a function of a spectral vegetation index and remote Rn, slightly overestimated measured G; however, the mean absolute error for remote G was 13%. Some of the differences between measured and remote values of Rn and G are associated with differences in instrument designs and measurement techniques. The root mean square error for available energy (Rn - G) was 12%. Thus, methods using both ground-based and remotely sensed data can provide reliable estimates of the available energy which can be partitioned into sensible and latent heat under non advective conditions

  5. Sensitivity of probabilistic MCO water content estimates to key assumptions

    International Nuclear Information System (INIS)

    DUNCAN, D.R.

    1999-01-01

    Sensitivity of probabilistic multi-canister overpack (MCO) water content estimates to key assumptions is evaluated with emphasis on the largest non-cladding film-contributors, water borne by particulates adhering to damage sites, and water borne by canister particulate. Calculations considered different choices of damage state degree of independence, different choices of percentile for reference high inputs, three types of input probability density function (pdfs): triangular, log-normal, and Weibull, and the number of scrap baskets in an MCO

  6. Radiation sensitivity of Salmonella isolates relative to resistance to ampicillin, chloramphenicol or gentamicin

    Science.gov (United States)

    Niemira, Brendan A.; Lonczynski, Kelly A.; Sommers, Christopher H.

    2006-09-01

    Antibiotic resistance of inoculated bacteria is a commonly used selective marker. Bacteria resistant to the antibiotic nalidixic acid have been shown to have an increased sensitivity to irradiation. The purpose of this research was to screen a collection of Salmonella isolates for antibiotic resistance and determine the association, if any, of antibiotic resistance with radiation sensitivity. Twenty-four clinical isolates of Salmonella were screened for native resistance to multiple concentrations of ampicillin (Amp), chloramphenicol (Chl), or gentamicin (Gm). Test concentrations were chosen based on established clinical minimum inhibitory concentration (MIC) levels, and isolates were classified as either sensitive or resistant based on their ability to grow at or above the MIC. Salmonella cultures were grown overnight at (37 °C) in antibiotic-amended tryptic soy broth (TSB). Native resistance to Gm was observed with each of the 24 isolates (100%). Eight isolates (33%) were shown to be resistant to Amp, while seven isolates (29%) were shown to be resistant to Chl. In separate experiments, Salmonella cultures were grown overnight (37 °C) in TSB, centrifuged, and the cell pellets were re-suspended in phosphate buffer. The samples were then gamma irradiated at doses up to 1.0 kGy. The D10 values (the ionizing radiation dose required to reduce the viable number of microorganisms by 90%) were determined for the 24 isolates and they ranged from 0.181 to 0.359 kGy. No correlation was found between the D10 value of the isolate and its sensitivity or resistance to each of the three antibiotics. Resistance to Amp or Chl is suggested as appropriate resistance marker for Salmonella test strains to be used in studies of irradiation.

  7. Radiation sensitivity of Salmonella isolates relative to resistance to ampicillin, chloramphenicol or gentamicin

    International Nuclear Information System (INIS)

    Niemira, Brendan A.; Lonczynski, Kelly A.; Sommers, Christopher H.

    2006-01-01

    Antibiotic resistance of inoculated bacteria is a commonly used selective marker. Bacteria resistant to the antibiotic nalidixic acid have been shown to have an increased sensitivity to irradiation. The purpose of this research was to screen a collection of Salmonella isolates for antibiotic resistance and determine the association, if any, of antibiotic resistance with radiation sensitivity. Twenty-four clinical isolates of Salmonella were screened for native resistance to multiple concentrations of ampicillin (Amp), chloramphenicol (Chl), or gentamicin (Gm). Test concentrations were chosen based on established clinical minimum inhibitory concentration (MIC) levels, and isolates were classified as either sensitive or resistant based on their ability to grow at or above the MIC. Salmonella cultures were grown overnight at (37 o C) in antibiotic-amended tryptic soy broth (TSB). Native resistance to Gm was observed with each of the 24 isolates (100%). Eight isolates (33%) were shown to be resistant to Amp, while seven isolates (29%) were shown to be resistant to Chl. In separate experiments, Salmonella cultures were grown overnight (37 o C) in TSB, centrifuged, and the cell pellets were re-suspended in phosphate buffer. The samples were then gamma irradiated at doses up to 1.0 kGy. The D 10 values (the ionizing radiation dose required to reduce the viable number of microorganisms by 90%) were determined for the 24 isolates and they ranged from 0.181 to 0.359 kGy. No correlation was found between the D 10 value of the isolate and its sensitivity or resistance to each of the three antibiotics. Resistance to Amp or Chl is suggested as appropriate resistance marker for Salmonella test strains to be used in studies of irradiation

  8. Use of BEIR V and UNSCEAR 1988 in radiation risk assessment: Lifetime total cancer mortality risk estimates at low doses and low dose rates for low-LET radiation

    International Nuclear Information System (INIS)

    1992-12-01

    In November 1986, the Department of Defense (DoD) asked the Committee on Interagency Radiation Research and Policy Coordination (CIRRPC) to develop a coordinated Federal position on risk assessment for low levels of ionizing radiation. Since Federal risk assessment activities are based primarily on the scientific data and analyses in authoritative review documents prepared by groups like the National Academy of Sciences' Committee on the Biological Effects of Ionizing Radiation (BEIR), the National Council on Radiation Protection and Measurements (NCRP) and the United Nations' Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), DoD proposed that the CIRRPC Science Panel undertake the task of providing coordinated interagency positions on the use of information in the reports of such groups. The practice has been for individual Federal agencies to interpret and decide independently how to use the information provided in such reports. As a result of its deliberations, the Subpanel recommends two nominal risk estimates for lifetime total cancer mortality following whole-body exposure to low levels of low-LET ionizing radiation, one for the general population and one for the working-age population (see Section II). The recommended risk estimates reflect the general agreement of information in BEIR V and UNSCEAR 1988 for total cancer mortality. The Subpanel's risk estimates and associated statements are intended to meet the needs of the Federal agencies for: (a) values that are current; (b) values that are relevant to the low-dose and low dose-rate ionizing radiation exposures principally encountered in carrying out Federal responsibilities; (c) a statement of the change in the estimates of lifetime total cancer mortality relative to estimates in previous authoritative review documents; and (d) a practical statement on the scientific uncertainty associated with applying the lifetime total cancer mortality values at very low doses

  9. Estimation of Net Radiation in Three Different Plant Functional Types in Korea

    International Nuclear Information System (INIS)

    Kwon, H.J.

    2009-01-01

    Net Radiation (R N ) is the major driving force for biophysical and biogeochemical processes in the terrestrial ecosystems, which is one of the most critical variables in both measurement and modeling. Despite its importance, there are only 10 weather stations conducting R N measurements among the 544 stations operated by Korea Meteorological Administration (KMA; KMA, 2008). The measurement of incoming shortwave radiation (R S ↓) is, however, conducted at 22 stations while that of sunshine duration is conducted at all the manned stations. In this context, the recent research for estimating R N using R S ↓ in Korean peninsula by Kwon (2009) is of great worth. The author used a linear regression and the radiation balance methods. We generally agree with the author that, in terms of simplicity and practicality, both methods show reliable applicability for estimating R N . We noted, however, that the author’s experimental method and analysis need some clarification and improvement, that are addressed in the following perspectives: (1) the use of daily integrated data for regression, (2) the use of measured albedo, (3) the use of linear coefficients for whole year data, (4) methodological improvement, (5) the use of sunshine duration, and (6) the error assessment. (author)

  10. Estimation of radiation cancer risk in CT-KUB

    Science.gov (United States)

    Karim, M. K. A.; Hashim, S.; Bakar, K. A.; Bradley, D. A.; Ang, W. C.; Bahrudin, N. A.; Mhareb, M. H. A.

    2017-08-01

    The increased demand for computed tomography (CT) in radiological scanning examinations raises the question of a potential health impact from the associated radiation exposures. Focusing on CT kidney-ureter-bladder (CT-KUB) procedures, this work was aimed at determining organ equivalent dose using a commercial CT dose calculator and providing an estimate of cancer risks. The study, which included 64 patients (32 males and 32 females, mean age 55.5 years and age range 30-80 years), involved use of a calibrated CT scanner (Siemens-Somatom Emotion 16-slice). The CT exposures parameter including tube potential, pitch factor, tube current, volume CT dose index (CTDIvol) and dose-length product (DLP) were recorded and analyzed using CT-EXPO (Version 2.3.1, Germany). Patient organ doses, including for stomach, liver, colon, bladder, red bone marrow, prostate and ovaries were calculated and converted into cancer risks using age- and sex-specific data published in the Biological Effects of Ionizing Radiation (BEIR) VII report. With a median value scan range of 36.1 cm, the CTDIvol, DLP, and effective dose were found to be 10.7 mGy, 390.3 mGy cm and 6.2 mSv, respectively. The mean cancer risks for males and females were estimated to be respectively 25 and 46 out of 100,000 procedures with effective doses between 4.2 mSv and 10.1 mSv. Given the increased cancer risks from current CT-KUB procedures compared to conventional examinations, we propose that the low dose protocols for unenhanced CT procedures be taken into consideration before establishing imaging protocols for CT-KUB.

  11. Multiple sensitive estimation and optimal sample size allocation in the item sum technique.

    Science.gov (United States)

    Perri, Pier Francesco; Rueda García, María Del Mar; Cobo Rodríguez, Beatriz

    2018-01-01

    For surveys of sensitive issues in life sciences, statistical procedures can be used to reduce nonresponse and social desirability response bias. Both of these phenomena provoke nonsampling errors that are difficult to deal with and can seriously flaw the validity of the analyses. The item sum technique (IST) is a very recent indirect questioning method derived from the item count technique that seeks to procure more reliable responses on quantitative items than direct questioning while preserving respondents' anonymity. This article addresses two important questions concerning the IST: (i) its implementation when two or more sensitive variables are investigated and efficient estimates of their unknown population means are required; (ii) the determination of the optimal sample size to achieve minimum variance estimates. These aspects are of great relevance for survey practitioners engaged in sensitive research and, to the best of our knowledge, were not studied so far. In this article, theoretical results for multiple estimation and optimal allocation are obtained under a generic sampling design and then particularized to simple random sampling and stratified sampling designs. Theoretical considerations are integrated with a number of simulation studies based on data from two real surveys and conducted to ascertain the efficiency gain derived from optimal allocation in different situations. One of the surveys concerns cannabis consumption among university students. Our findings highlight some methodological advances that can be obtained in life sciences IST surveys when optimal allocation is achieved. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Dose estimation and prediction of radiation effects on aquatic biota resulting from radioactive releases from the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Blaylock, B.G.; Witherspoon, J.P.

    1975-01-01

    Aquatic organisms are exposed to radionuclides released to the environment during various steps of the nuclear fuel cycle. Routine releases from these processes are limited in compliance with technical specifications and requirements of federal regulations. These regulations reflect I.C.R.P. recommendations which are designed to provide an environment considered safe for man. It is generally accepted that aquatic organisms will not receive damaging external radiation doses in such environments; however, because of possible bioaccumulation of radionuclides there is concern that aquatic organisms might be adversely affected by internal doses. The objectives of this paper are: to estimate the radiation dose received by aquatic biota from the different processes and determine the major dose-contributing radionuclides, and to assess the impact of estimated doses on aquatic biota. Dose estimates are made by using radionuclide concentration measured in the liquid effluents of representative facilities. This evaluation indicates the potential for the greatest radiation dose to aquatic biota from the nuclear fuel supply facilities (i.e., uranium mining and milling). The effects of chronic low-level radiation on aquatic organisms are discussed from somatic and genetic viewpoints. Based on the body of radiobiological evidence accumulated up to the present time, no significant deleterious effects are predicted for populations of aquatic organisms exposed to the estimated dose rates resulting from routine releases from conversion, enrichment, fabrication, reactors and reprocessing facilities. At the doses estimated for milling and mining operations it would be difficult to detect radiation effects on aquatic populations; however, the significance of such radiation exposures to aquatic populations cannot be fully evaluated without further research on effects of chronic low-level radiation. (U.S.)

  13. Transport-constrained extensions of collision and track length estimators for solutions of radiative transport problems

    International Nuclear Information System (INIS)

    Kong, Rong; Spanier, Jerome

    2013-01-01

    In this paper we develop novel extensions of collision and track length estimators for the complete space-angle solutions of radiative transport problems. We derive the relevant equations, prove that our new estimators are unbiased, and compare their performance with that of more conventional estimators. Such comparisons based on numerical solutions of simple one dimensional slab problems indicate the the potential superiority of the new estimators for a wide variety of more general transport problems

  14. Methodology to estimate variations in solar radiation reaching densely forested slopes in mountainous terrain.

    Science.gov (United States)

    Sypka, Przemysław; Starzak, Rafał; Owsiak, Krzysztof

    2016-12-01

    Solar radiation reaching densely forested slopes is one of the main factors influencing the water balance between the atmosphere, tree stands and the soil. It also has a major impact on site productivity, spatial arrangement of vegetation structure as well as forest succession. This paper presents a methodology to estimate variations in solar radiation reaching tree stands in a small mountain valley. Measurements taken in three inter-forest meadows unambiguously showed the relationship between the amount of solar insolation and the shading effect caused mainly by the contour of surrounding tree stands. Therefore, appropriate knowledge of elevation, aspect and tilt angles of the analysed planes had to be taken into consideration during modelling. At critical times, especially in winter, the diffuse and reflected components of solar radiation only reached some of the sites studied as the beam component of solar radiation was totally blocked by the densely forested mountain slopes in the neighbourhood. The cross-section contours and elevation angles of all obstructions are estimated from a digital surface model including both digital elevation model and the height of tree stands. All the parameters in a simplified, empirical model of the solar insolation reaching a given horizontal surface within the research valley are dependent on the sky view factor (SVF). The presented simplified, empirical model and its parameterisation scheme should be easily adaptable to different complex terrains or mountain valleys characterised by diverse geometry or spatial orientation. The model was developed and validated (R 2  = 0.92 , σ = 0.54) based on measurements taken at research sites located in the Silesian Beskid Mountain Range. A thorough understanding of the factors determining the amount of solar radiation reaching woodlands ought to considerably expand the knowledge of the water exchange balance within forest complexes as well as the estimation of site

  15. Bayesian Estimation of Fish Disease Prevalence from Pooled Samples Incorporating Sensitivity and Specificity

    Science.gov (United States)

    Williams, Christopher J.; Moffitt, Christine M.

    2003-03-01

    An important emerging issue in fisheries biology is the health of free-ranging populations of fish, particularly with respect to the prevalence of certain pathogens. For many years, pathologists focused on captive populations and interest was in the presence or absence of certain pathogens, so it was economically attractive to test pooled samples of fish. Recently, investigators have begun to study individual fish prevalence from pooled samples. Estimation of disease prevalence from pooled samples is straightforward when assay sensitivity and specificity are perfect, but this assumption is unrealistic. Here we illustrate the use of a Bayesian approach for estimating disease prevalence from pooled samples when sensitivity and specificity are not perfect. We also focus on diagnostic plots to monitor the convergence of the Gibbs-sampling-based Bayesian analysis. The methods are illustrated with a sample data set.

  16. Sensitivity of mesoscale modeling of smoke direct radiative effect to the emission inventory: a case study in northern sub-Saharan African region

    International Nuclear Information System (INIS)

    Zhang, Feng; Wang, Jun; Yang, Zhifeng; Ge, Cui; Ichoku, Charles; Hyer, Edward J; Da Silva, Arlindo; Su, Shenjian; Zhang, Xiaoyang; Kondragunta, Shobha; Kaiser, Johannes W; Wiedinmyer, Christine

    2014-01-01

    An ensemble approach is used to examine the sensitivity of smoke loading and smoke direct radiative effect in the atmosphere to uncertainties in smoke emission estimates. Seven different fire emission inventories are applied independently to WRF-Chem model (v3.5) with the same model configuration (excluding dust and other emission sources) over the northern sub-Saharan African (NSSA) biomass-burning region. Results for November and February 2010 are analyzed, respectively representing the start and end of the biomass burning season in the study region. For February 2010, estimates of total smoke emission vary by a factor of 12, but only differences by factors of 7 or less are found in the simulated regional (15°W–42°E, 13°S–17°N) and monthly averages of column PM 2.5 loading, surface PM 2.5 concentration, aerosol optical depth (AOD), smoke radiative forcing at the top-of-atmosphere and at the surface, and air temperature at 2 m and at 700 hPa. The smaller differences in these simulated variables may reflect the atmospheric diffusion and deposition effects to dampen the large difference in smoke emissions that are highly concentrated in areas much smaller than the regional domain of the study. Indeed, at the local scale, large differences (up to a factor of 33) persist in simulated smoke-related variables and radiative effects including semi-direct effect. Similar results are also found for November 2010, despite differences in meteorology and fire activity. Hence, biomass burning emission uncertainties have a large influence on the reliability of model simulations of atmospheric aerosol loading, transport, and radiative impacts, and this influence is largest at local and hourly-to-daily scales. Accurate quantification of smoke effects on regional climate and air quality requires further reduction of emission uncertainties, particularly for regions of high fire concentrations such as NSSA. (paper)

  17. The impact of advances in human molecular biology on radiation genetic risk estimation in man

    International Nuclear Information System (INIS)

    Sankaranarayanan, K.

    1996-01-01

    This paper provides an overview of the conceptual framework, the data base, methods and assumptions used thus far to assess the genetic risks of exposure of human populations to ionising radiation. These are then re-examined in the contemporary context of the rapidly expanding knowledge of the molecular biology of human mendelian diseases. This re-examination reveals that (i) many of the assumptions used thus far in radiation genetic risk estimation may not be fully valid and (ii) the current genetic risk estimates are probably conservative, but provide an adequate margin of safety for radiological protection. The view is expressed that further advances in the field of genetic risk estimation will be largely driven by advances in the molecular biology of human genetic diseases. (author). 37 refs., 5 tabs

  18. The impact on radiation risk estimates of effect modifiers and confounders

    International Nuclear Information System (INIS)

    Sharp, G.B.; Cologne, J.B.; Pierce, D.A.; Tokuoka, S.

    2003-01-01

    We have conducted studies of the joint effects of radiation with other risk factors for liver, lung, and breast cancer in the cohort of Japanese survivors of the 1945 atomic bombings. Based on follow-up of 45,113 subjects from 1958 through 1994, of whom 592 developed lung cancer, we found the effects of smoking and radiation to be significantly non-multiplicative and consistent with additivity. Adjustment for smoking reduced the female:male ratio of radiation risk estimates for lung cancer in this cohort from 5.8 to 1.6, a ratio more similar to that for all solid cancers. We conducted cross sectional and case control studies within the A-bomb survivor cohort to assess the joint effects of radiation with hepatitis B virus (HBV) and C virus (HCV) infections on the etiology of liver cirrhosis and hepatocellular carcinoma (HCC). Our study of 268 pathologist-confirmed cirrhosis cases and 843 subjects without cirrhosis, found no relationship between A-bomb radiation and cirrhosis after adjustment for viral hepatitis. In terms of HCC, our study of 238 pathologist-confirmed cases and 894 controls showed super-multiplicative interaction between radiation and HCV infections. Our results suggest that while chronic radiation exposure acts as a complete carcinogen for HCC, acute irradiation may act in concert with an agent such as HCV that is associated with liver cell proliferation. Studies in progress of the joint effects of radiation with insulin-like growth factor 1 (IGF-1) and IGF Binding Protein 3 (IGFBP-3), and total estradiol on the etiology of breast cancer, a particularly radiogenic tumor, will also be discussed

  19. Sunshine-based estimation of global solar radiation on horizontal surface at Lake Van region (Turkey)

    International Nuclear Information System (INIS)

    Duzen, Hacer; Aydin, Harun

    2012-01-01

    Highlights: ► The global solar radiation at Lake Van region is estimated. ► This study is unique for the Lake Van region. ► Solar radiation around Lake Van has the highest value at the east-southeast region. ► The annual average solar energy potential is obtained as 750–2458 kWh/m 2 . ► Results can be used to estimate evaporation. - Abstract: In this study several sunshine-based regression models have been evaluated to estimate monthly average daily global solar radiation on horizontal surface of Lake Van region in the Eastern Anatolia region in Turkey by using data obtained from seven different meteorological stations. These models are derived from Angström–Prescott linear regression model and its derivatives such as quadratic, cubic, logarithmic and exponential. The performance of this regression models were evaluated by comparing the calculated clearness index and the measured clearness index. Several statistical tests were used to control the validation and goodness of the regression models in terms of the coefficient of determination, mean percent error, mean absolute percent error, mean biased error, mean absolute biased error, root mean square error and t-statistic. The results of all the regression models are within acceptable limits according to the statistical tests. However, the best performances are obtained by cubic regression model for Bitlis, Gevaş, Hakkari, Muş stations and by quadratic regression model for Malazgirt, Tatvan and Van stations to predict global solar radiation. The spatial distributions of the monthly average daily global solar radiation around the Lake Van region were obtained with interpolation of calculated solar radiation data that acquired from best fit models of the stations. The annual average solar energy potential for Lake Van region is obtained between 750 kWh/m 2 and 2485 kWh/m 2 with annual average of 1610 kWh/m 2 .

  20. Estimating the Infrared Radiation Wavelength Emitted by a Remote Control Device Using a Digital Camera

    Science.gov (United States)

    Catelli, Francisco; Giovannini, Odilon; Bolzan, Vicente Dall Agnol

    2011-01-01

    The interference fringes produced by a diffraction grating illuminated with radiation from a TV remote control and a red laser beam are, simultaneously, captured by a digital camera. Based on an image with two interference patterns, an estimate of the infrared radiation wavelength emitted by a TV remote control is made. (Contains 4 figures.)

  1. Parameterization and sensitivity analyses of a radiative transfer model for remote sensing plant canopies

    Science.gov (United States)

    Hall, Carlton Raden

    A major objective of remote sensing is determination of biochemical and biophysical characteristics of plant canopies utilizing high spectral resolution sensors. Canopy reflectance signatures are dependent on absorption and scattering processes of the leaf, canopy properties, and the ground beneath the canopy. This research investigates, through field and laboratory data collection, and computer model parameterization and simulations, the relationships between leaf optical properties, canopy biophysical features, and the nadir viewed above-canopy reflectance signature. Emphasis is placed on parameterization and application of an existing irradiance radiative transfer model developed for aquatic systems. Data and model analyses provide knowledge on the relative importance of leaves and canopy biophysical features in estimating the diffuse absorption a(lambda,m-1), diffuse backscatter b(lambda,m-1), beam attenuation alpha(lambda,m-1), and beam to diffuse conversion c(lambda,m-1 ) coefficients of the two-flow irradiance model. Data sets include field and laboratory measurements from three plant species, live oak (Quercus virginiana), Brazilian pepper (Schinus terebinthifolius) and grapefruit (Citrus paradisi) sampled on Cape Canaveral Air Force Station and Kennedy Space Center Florida in March and April of 1997. Features measured were depth h (m), projected foliage coverage PFC, leaf area index LAI, and zenith leaf angle. Optical measurements, collected with a Spectron SE 590 high sensitivity narrow bandwidth spectrograph, included above canopy reflectance, internal canopy transmittance and reflectance and bottom reflectance. Leaf samples were returned to laboratory where optical and physical and chemical measurements of leaf thickness, leaf area, leaf moisture and pigment content were made. A new term, the leaf volume correction index LVCI was developed and demonstrated in support of model coefficient parameterization. The LVCI is based on angle adjusted leaf

  2. Radioprotective effect of garlic extract on some bacterial strains with different radiation sensitivities

    International Nuclear Information System (INIS)

    Tawfik, Z.S.; Abushady, M.R.

    1992-01-01

    The radioprotective effect of garlic on four bacterial strains with different degrees of radiation sensitivities was investigated. The presence of garlic led to an increase in d-10 value of Ps. Aeruginosa, S. aureus and S. typhimurium by 160%, 50%, and 30% respectively. The protective efficiency of garlic against radiation was noticed to be proportional to its concentration in a given inoculum size. Garlic extract up to 180 micro liter per 10 8 inoculum size of B. cereus showed no protective effect. This fact was attributed to the existence of sulphur compounds in the given strain. Higher garlic concentrations appeared to affect the cloning efficiency of a given strain. 4fig., 2tab

  3. Estimation of impairment of gustation and salivary secretion after radiation therapy for head and neck malignancies

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Yoshiyuki; Fuwa, Nobukazu; Kikuchi, Yuzo [Aichi Cancer Center, Nagoya (Japan). Hospital; Morita, Kozo; Murao, Takayuki; Yokoi, Motoo

    1995-06-01

    To estimate impairment of gustation and salivary secretion after radiation therapy, we classified the degree of gustation and xerostomia into 4 grades in 50 patients who had received radiation therapy for head and neck malignancies. We found that gustation recovered in most patients regardless of radiation dose, but salivary secretion recovered only when radiation dose was less than 40 to 50 Gy on the gland of the affected side and less than 30 to 40 Gy on the opposite side. (author).

  4. Estimation of impairment of gustation and salivary secretion after radiation therapy for head and neck malignancies

    International Nuclear Information System (INIS)

    Itoh, Yoshiyuki; Fuwa, Nobukazu; Kikuchi, Yuzo; Morita, Kozo; Murao, Takayuki; Yokoi, Motoo.

    1995-01-01

    To estimate impairment of gustation and salivary secretion after radiation therapy, we classified the degree of gustation and xerostomia into 4 grades in 50 patients who had received radiation therapy for head and neck malignancies. We found that gustation recovered in most patients regardless of radiation dose, but salivary secretion recovered only when radiation dose was less than 40 to 50 Gy on the gland of the affected side and less than 30 to 40 Gy on the opposite side. (author)

  5. Modeling of the radiative energy balance within a crop canopy for estimating evapotranspiration: Studies on a row planted soybean canopy

    International Nuclear Information System (INIS)

    Nakano, Y.; Hirota, O.

    1990-01-01

    The spatial distribution and density of the leaf area within a crop canopy were used to estimate the radiational environment and evapotranspiration. Morphological measurements were pursued on the soybean stands in the early stage of growth when the two-dimensional foliage distribution pattern existed. The rectangular tube model was used to calculate the light absorption by parallel row of crops both short-wave radiation (direct and diffuse solar radiation, and scattered radiation by plant elements) and long-wave radiation (emanated radiation from the sky, ground and leaves). The simulated profiles are in close agreement with the experimentally measured short-wave and net radiation data. The evapotranspiration of a row was calcuated using a simulated net radiation. The model calculation also agreed well with the evapotranspiration estimated by the Bowen ratio method

  6. Intervention of oxygen-control ability to radiation sensitivity, cell aging and cell transformation

    International Nuclear Information System (INIS)

    Yoshii, Hanako; Watanabe, Masami

    2009-01-01

    Oxygen is essential for life, and cells have therefore developed numerous adaptive responses to oxygen change. Here, we examined the difference in oxygen-control functions of human (HE), mouse (ME), and Syrian hamster embryo (SHE) cells cultured under different oxygen conditions (0.5%, 2% and 20%), and also examined whether oxygen tensions contributed to cellular lifespan and transformation. HE cells had their replicative lifespan slightly extended under hypoxic (0.5% and 2% oxygen) conditions, but were not immortalized under any of the oxygen concentrations. On the other hand, although ME cells cultured under 20% oxygen tension decreased their proliferation potency temporarily at early stage, all rodent cells were immortalized and acquired anchorage-independency, regardless of oxygen tension. These results suggest that cellular oxygen control function is related to sensitivities cellular immortalization and transformation. To understand intervention of oxygen control ability on cellular immortalization and transformation, we examined the intracellular oxidative level, mitochondria functions and radiation sensitivity. Intracellular oxidative levels of hypoxically cultured rodent cells were significantly enhanced. Mitochondrial membrane potential was altered depend on oxygen tensions, but the change was not parallel to mitochondria number in rodent cells. ME cells were particularly sensitive to oxygen change, and showed a clear oxygen effect on the X-ray survival. However, there was no difference in frequency of radiation-induced micronuclei between HE and ME cells. These results suggest that the response to oxygen change differs markedly in HE and rodent cells. (author)

  7. The importance of the chosen technique to estimate diffuse solar radiation by means of regression

    Energy Technology Data Exchange (ETDEWEB)

    Arslan, Talha; Altyn Yavuz, Arzu [Department of Statistics. Science and Literature Faculty. Eskisehir Osmangazi University (Turkey)], email: mtarslan@ogu.edu.tr, email: aaltin@ogu.edu.tr; Acikkalp, Emin [Department of Mechanical and Manufacturing Engineering. Engineering Faculty. Bilecik University (Turkey)], email: acikkalp@gmail.com

    2011-07-01

    The Ordinary Least Squares (OLS) method is one of the most frequently used for estimation of diffuse solar radiation. The data set must provide certain assumptions for the OLS method to work. The most important is that the regression equation offered by OLS error terms must fit within the normal distribution. Utilizing an alternative robust estimator to get parameter estimations is highly effective in solving problems where there is a lack of normal distribution due to the presence of outliers or some other factor. The purpose of this study is to investigate the value of the chosen technique for the estimation of diffuse radiation. This study described alternative robust methods frequently used in applications and compared them with the OLS method. Making a comparison of the data set analysis of the OLS and that of the M Regression (Huber, Andrews and Tukey) techniques, it was study found that robust regression techniques are preferable to OLS because of the smoother explanation values.

  8. Development of a Disaggregation Framework toward the Estimation of Subdaily Reference Evapotranspiration: 2- Estimation of Subdaily Reference Evapotranspiration Using Disaggregated Weather Data

    Directory of Open Access Journals (Sweden)

    F. Parchami Araghi

    2016-09-01

    Full Text Available Introduction: Subdaily estimates of reference evapotranspiration (ET o are needed in many applications such as dynamic agro-hydrological modeling. However, in many regions, the lack of subdaily weather data availability has hampered the efforts to quantify the subdaily ET o. In the first presented paper, a physically based framework was developed to desegregate daily weather data needed for estimation of subdaily reference ET o, including air temperature, wind speed, dew point, actual vapour pressure, relative humidity, and solar radiation. The main purpose of this study was to estimate the subdaily ETo using disaggregated daily data derived from developed disaggregation framework in the first presented paper. Materials and Methods: Subdaily ET o estimates were made, using ASCE and FAO-56 Penman–Monteith models (ASCE-PM and FAO56-PM, respectively and subdaily weather data derived from the developed daily-to-subdaily weather data disaggregation framework. To this end, long-term daily weather data got from Abadan (59 years and Ahvaz (50 years synoptic weather stations were collected. Sensitivity analysis of Penman–Monteith model to the different meteorological variables (including, daily air temperature, wind speed at 2 m height, actual vapor pressure, and solar radiation was carried out, using partial derivatives of Penman–Monteith equation. The capability of the two models for retrieving the daily ETo was evaluated, using root mean square error RMSE (mm, the mean error ME (mm, the mean absolute error ME (mm, Pearson correlation coefficient r (-, and Nash–Sutcliffe model efficiency coefficient EF (-. Different contributions to the overall error were decomposed using a regression-based method. Results and Discussion: The results of the sensitivity analysis showed that the daily air temperature and the actual vapor pressure are the most significant meteorological variables, which affect the ETo estimates. In contrast, low sensitivity

  9. Using sensitivity derivatives for design and parameter estimation in an atmospheric plasma discharge simulation

    International Nuclear Information System (INIS)

    Lange, Kyle J.; Anderson, W. Kyle

    2010-01-01

    The problem of applying sensitivity analysis to a one-dimensional atmospheric radio frequency plasma discharge simulation is considered. A fluid simulation is used to model an atmospheric pressure radio frequency helium discharge with a small nitrogen impurity. Sensitivity derivatives are computed for the peak electron density with respect to physical inputs to the simulation. These derivatives are verified using several different methods to compute sensitivity derivatives. It is then demonstrated how sensitivity derivatives can be used within a design cycle to change these physical inputs so as to increase the peak electron density. It is also shown how sensitivity analysis can be used in conjunction with experimental data to obtain better estimates for rate and transport parameters. Finally, it is described how sensitivity analysis could be used to compute an upper bound on the uncertainty for results from a simulation.

  10. Effects of radio sensitizers in the vulcanization of natural rubber latex induced by gamma radiation

    International Nuclear Information System (INIS)

    Souza, A. de; Canavel, V.; Araujo, S.C. de; Guedes, S.M.L.

    1992-01-01

    The effect of C Cl 4 and n-butyl acrylate as a sensitizer for radiation vulcanization of 60% DRC natural rubber latex with gamma rays, was studied relating tensile strength of vulcanized latex. The vulcanization dose is 200 kGy for natural rubber latex and it decreases to 40 kGy and to 9 kGy in the presence of C Cl 4 / potassium laureate and n-butyl acrylate / t-butyl hydroperoxide, respectively. The H 2 O 2 as a co-sensitizer does not change the efficiency of the combination of these sensitizers. The IV spectra show the formation of C=O after the irradiation as consequence of oxidation reactions. (author)

  11. MiR-33a Decreases High-Density Lipoprotein-Induced Radiation Sensitivity in Breast Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Wolfe, Adam R.; Bambhroliya, Arvind [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Reddy, Jay P. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Debeb, Bisrat G. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Huo, Lei [Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Larson, Richard; Li, Li [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Ueno, Naoto T. [Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Woodward, Wendy A., E-mail: wwoodward@mdanderson.org [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2016-06-01

    Purpose: We previously showed that high-density lipoprotein (HDL) radiosensitizes inflammatory breast cancer (IBC) cells in vitro and is associated with better local control after radiation therapy in IBC patients. The microRNA miR-33 family negatively regulates the adenosine triphosphate binding cassette transporter subfamily A member 1. We hypothesized that variations in miR-33a expression in IBC cancer cells versus non-IBC cells would correlate with radiation sensitivity following exposure to HDL in vitro. Methods and Materials: MiR-33a expression was analyzed by reverse transcriptase–polymerase chain reaction in 4 cell lines representing common clinical breast cancer subtypes. Overexpression and knockdown of miR-33a was demonstrated via transfection of an miR-33a mimic or an anti-miR-33a construct in high- and low-expressing miR-33a cell lines. Clonogenic survival in vitro in these cells was quantified at baseline and following HDL treatment. MiR-33a expression on distant relapse-free survival (DRFS) of 210 cases downloaded from the Oxford breast cancer dataset was determined. Results: Expression levels of miR-33a were lower in IBC cell lines and IBC tumor samples than in non-IBC cell lines and normal breast tissue. Cholesterol concentrations in the cell membranes were higher in IBC cells than in non-IBC cells. Clonogenic survival following 24 hours of HDL treatment was decreased in response to irradiation in the low-miR-33a–expressing cell lines SUM149 and KPL4, but survival following HDL treatment decreased in the high-miR-33a–expressing cell lines MDA-MB-231 and SUM159. In the high-miR-33a–expressing cell lines, anti-miR-33a transfection decreased radiation resistance in clonogenic assays. Conversely, in the low-miR-33a–expressing cell lines, the miR-33a mimic reversed the HDL-induced radiation sensitization. Breast cancer patients in the top quartile based on miR-33a expression had markedly lower rates of DRFS than the bottom quartile (P

  12. MiR-33a Decreases High-Density Lipoprotein-Induced Radiation Sensitivity in Breast Cancer

    International Nuclear Information System (INIS)

    Wolfe, Adam R.; Bambhroliya, Arvind; Reddy, Jay P.; Debeb, Bisrat G.; Huo, Lei; Larson, Richard; Li, Li; Ueno, Naoto T.; Woodward, Wendy A.

    2016-01-01

    Purpose: We previously showed that high-density lipoprotein (HDL) radiosensitizes inflammatory breast cancer (IBC) cells in vitro and is associated with better local control after radiation therapy in IBC patients. The microRNA miR-33 family negatively regulates the adenosine triphosphate binding cassette transporter subfamily A member 1. We hypothesized that variations in miR-33a expression in IBC cancer cells versus non-IBC cells would correlate with radiation sensitivity following exposure to HDL in vitro. Methods and Materials: MiR-33a expression was analyzed by reverse transcriptase–polymerase chain reaction in 4 cell lines representing common clinical breast cancer subtypes. Overexpression and knockdown of miR-33a was demonstrated via transfection of an miR-33a mimic or an anti-miR-33a construct in high- and low-expressing miR-33a cell lines. Clonogenic survival in vitro in these cells was quantified at baseline and following HDL treatment. MiR-33a expression on distant relapse-free survival (DRFS) of 210 cases downloaded from the Oxford breast cancer dataset was determined. Results: Expression levels of miR-33a were lower in IBC cell lines and IBC tumor samples than in non-IBC cell lines and normal breast tissue. Cholesterol concentrations in the cell membranes were higher in IBC cells than in non-IBC cells. Clonogenic survival following 24 hours of HDL treatment was decreased in response to irradiation in the low-miR-33a–expressing cell lines SUM149 and KPL4, but survival following HDL treatment decreased in the high-miR-33a–expressing cell lines MDA-MB-231 and SUM159. In the high-miR-33a–expressing cell lines, anti-miR-33a transfection decreased radiation resistance in clonogenic assays. Conversely, in the low-miR-33a–expressing cell lines, the miR-33a mimic reversed the HDL-induced radiation sensitization. Breast cancer patients in the top quartile based on miR-33a expression had markedly lower rates of DRFS than the bottom quartile (P

  13. Radiation sensitivity of B-16 melanoma

    International Nuclear Information System (INIS)

    Griem, M.L.; Malkinson, F.D.; Kalis, J.B.; Shefner, A.

    1984-01-01

    A model has been developed for radiation studies of melanoma. Β-16 melanoma (NCI), carried by subcutaneous implant in C57BL/6NCr mice was implanted instramuscularly into the right rear leg of female B6C3F1 mice. Test mice were inoculated with 1 x 10/sup 5/, 5 x 10/sup 5/, and 1 x 10/sup 6/ tumor cells to determine an appropriate tumor challenge for a reproducible and suitable median survival time. A challenge inoculum of 5 x 10/sup 5/ tumor cells was subsequently chosen as the standard tumor dose for test animals used in subsequent radiation dose response studies. Tumor-bearing test animals were treated with 500, 1000, 1500, or 2000 rads of 250 kV x-rays either 4 days or 14 days after tumor implantation. Only the tumorbearing leg of the test mouse was exposed during irradiation; the animal was otherwise protected by lead shielding. The median survival time of tumorbearing unirradiated mice was 24.4 days. Radiation on day 4 postinoculation was more effective than radiation administered on day 14. Median survival time for the 4 radiation dose groups given x-rays on day 4 were 31.0, 38.2, 59.0, and 60.0 days with progressive increases in radiation dose. Median survival times for mice irradiated on day 14 were 26.8, 31.8, 34.8, and 49.2 days as the radiation doses increased. This mouse melanoma model can be used in combined modality studies

  14. Estimation of missing values in solar radiation data using piecewise interpolation methods: Case study at Penang city

    International Nuclear Information System (INIS)

    Zainudin, Mohd Lutfi; Saaban, Azizan; Bakar, Mohd Nazari Abu

    2015-01-01

    The solar radiation values have been composed by automatic weather station using the device that namely pyranometer. The device is functions to records all the radiation values that have been dispersed, and these data are very useful for it experimental works and solar device’s development. In addition, for modeling and designing on solar radiation system application is needed for complete data observation. Unfortunately, lack for obtained the complete solar radiation data frequently occur due to several technical problems, which mainly contributed by monitoring device. Into encountering this matter, estimation missing values in an effort to substitute absent values with imputed data. This paper aimed to evaluate several piecewise interpolation techniques likes linear, splines, cubic, and nearest neighbor into dealing missing values in hourly solar radiation data. Then, proposed an extendable work into investigating the potential used of cubic Bezier technique and cubic Said-ball method as estimator tools. As result, methods for cubic Bezier and Said-ball perform the best compare to another piecewise imputation technique

  15. Estimation of missing values in solar radiation data using piecewise interpolation methods: Case study at Penang city

    Science.gov (United States)

    Zainudin, Mohd Lutfi; Saaban, Azizan; Bakar, Mohd Nazari Abu

    2015-12-01

    The solar radiation values have been composed by automatic weather station using the device that namely pyranometer. The device is functions to records all the radiation values that have been dispersed, and these data are very useful for it experimental works and solar device's development. In addition, for modeling and designing on solar radiation system application is needed for complete data observation. Unfortunately, lack for obtained the complete solar radiation data frequently occur due to several technical problems, which mainly contributed by monitoring device. Into encountering this matter, estimation missing values in an effort to substitute absent values with imputed data. This paper aimed to evaluate several piecewise interpolation techniques likes linear, splines, cubic, and nearest neighbor into dealing missing values in hourly solar radiation data. Then, proposed an extendable work into investigating the potential used of cubic Bezier technique and cubic Said-ball method as estimator tools. As result, methods for cubic Bezier and Said-ball perform the best compare to another piecewise imputation technique.

  16. Estimation of missing values in solar radiation data using piecewise interpolation methods: Case study at Penang city

    Energy Technology Data Exchange (ETDEWEB)

    Zainudin, Mohd Lutfi, E-mail: mdlutfi07@gmail.com [School of Quantitative Sciences, UUMCAS, Universiti Utara Malaysia, 06010 Sintok, Kedah (Malaysia); Institut Matematik Kejuruteraan (IMK), Universiti Malaysia Perlis, 02600 Arau, Perlis (Malaysia); Saaban, Azizan, E-mail: azizan.s@uum.edu.my [School of Quantitative Sciences, UUMCAS, Universiti Utara Malaysia, 06010 Sintok, Kedah (Malaysia); Bakar, Mohd Nazari Abu, E-mail: mohdnazari@perlis.uitm.edu.my [Faculty of Applied Science, Universiti Teknologi Mara, 02600 Arau, Perlis (Malaysia)

    2015-12-11

    The solar radiation values have been composed by automatic weather station using the device that namely pyranometer. The device is functions to records all the radiation values that have been dispersed, and these data are very useful for it experimental works and solar device’s development. In addition, for modeling and designing on solar radiation system application is needed for complete data observation. Unfortunately, lack for obtained the complete solar radiation data frequently occur due to several technical problems, which mainly contributed by monitoring device. Into encountering this matter, estimation missing values in an effort to substitute absent values with imputed data. This paper aimed to evaluate several piecewise interpolation techniques likes linear, splines, cubic, and nearest neighbor into dealing missing values in hourly solar radiation data. Then, proposed an extendable work into investigating the potential used of cubic Bezier technique and cubic Said-ball method as estimator tools. As result, methods for cubic Bezier and Said-ball perform the best compare to another piecewise imputation technique.

  17. A three-dimensional cohesive sediment transport model with data assimilation: Model development, sensitivity analysis and parameter estimation

    Science.gov (United States)

    Wang, Daosheng; Cao, Anzhou; Zhang, Jicai; Fan, Daidu; Liu, Yongzhi; Zhang, Yue

    2018-06-01

    Based on the theory of inverse problems, a three-dimensional sigma-coordinate cohesive sediment transport model with the adjoint data assimilation is developed. In this model, the physical processes of cohesive sediment transport, including deposition, erosion and advection-diffusion, are parameterized by corresponding model parameters. These parameters are usually poorly known and have traditionally been assigned empirically. By assimilating observations into the model, the model parameters can be estimated using the adjoint method; meanwhile, the data misfit between model results and observations can be decreased. The model developed in this work contains numerous parameters; therefore, it is necessary to investigate the parameter sensitivity of the model, which is assessed by calculating a relative sensitivity function and the gradient of the cost function with respect to each parameter. The results of parameter sensitivity analysis indicate that the model is sensitive to the initial conditions, inflow open boundary conditions, suspended sediment settling velocity and resuspension rate, while the model is insensitive to horizontal and vertical diffusivity coefficients. A detailed explanation of the pattern of sensitivity analysis is also given. In ideal twin experiments, constant parameters are estimated by assimilating 'pseudo' observations. The results show that the sensitive parameters are estimated more easily than the insensitive parameters. The conclusions of this work can provide guidance for the practical applications of this model to simulate sediment transport in the study area.

  18. Cost-Sensitive Estimation of ARMA Models for Financial Asset Return Data

    Directory of Open Access Journals (Sweden)

    Minyoung Kim

    2015-01-01

    Full Text Available The autoregressive moving average (ARMA model is a simple but powerful model in financial engineering to represent time-series with long-range statistical dependency. However, the traditional maximum likelihood (ML estimator aims to minimize a loss function that is inherently symmetric due to Gaussianity. The consequence is that when the data of interest are asset returns, and the main goal is to maximize profit by accurate forecasting, the ML objective may be less appropriate potentially leading to a suboptimal solution. Rather, it is more reasonable to adopt an asymmetric loss where the model's prediction, as long as it is in the same direction as the true return, is penalized less than the prediction in the opposite direction. We propose a quite sensible asymmetric cost-sensitive loss function and incorporate it into the ARMA model estimation. On the online portfolio selection problem with real stock return data, we demonstrate that the investment strategy based on predictions by the proposed estimator can be significantly more profitable than the traditional ML estimator.

  19. 4D modeling and estimation of respiratory motion for radiation therapy

    CERN Document Server

    Lorenz, Cristian

    2013-01-01

    Respiratory motion causes an important uncertainty in radiotherapy planning of the thorax and upper abdomen. The main objective of radiation therapy is to eradicate or shrink tumor cells without damaging the surrounding tissue by delivering a high radiation dose to the tumor region and a dose as low as possible to healthy organ tissues. Meeting this demand remains a challenge especially in case of lung tumors due to breathing-induced tumor and organ motion where motion amplitudes can measure up to several centimeters. Therefore, modeling of respiratory motion has become increasingly important in radiation therapy. With 4D imaging techniques spatiotemporal image sequences can be acquired to investigate dynamic processes in the patient’s body. Furthermore, image registration enables the estimation of the breathing-induced motion and the description of the temporal change in position and shape of the structures of interest by establishing the correspondence between images acquired at different phases of the br...

  20. MicroRNA-221 and -222 Regulate Radiation Sensitivity by Targeting the PTEN Pathway

    International Nuclear Information System (INIS)

    Zhang Chunzhi; Kang Chunsheng; Wang Ping; Cao Yongzhen; Lv Zhonghong; Yu Shizhu; Wang Guangxiu; Zhang Anling; Jia Zhifan; Han Lei; Yang Chunying; Ishiyama, Hiromichi; Teh, Bin S.; Xu Bo; Pu Peiyu

    2011-01-01

    Purpose: MicroRNAs (miRNAs) are noncoding RNAs inhibiting expression of numerous target genes by posttranscriptional regulation. miRNA-221 and miRNA-222 (miRNA-221/-222) expression is elevated in radioresistant tumor cell lines; however, it is not known whether and how miRNAs control cellular responses to ionizing irradiation. Methods and Materials: We used bioinformatic analyses, luciferase reporter assay, and genetic knockdown and biochemical assays to characterize the regulation pathways of miRNA-221/-222 in response to radiation treatment. Results: We identified the PTEN gene as a target of miRNA-221/-222. Furthermore, we found that knocking down miRNA-221/-222 by antisense oligonucleotides upregulated PTEN expression. Upregulated PTEN expression suppressed AKT activity and increased radiation-induced apoptosis, resulting in enhancement of radiosensitivity in tumor cells. Conclusions: miRNA-221/-222 control radiation sensitivity by regulating the PTEN/AKT pathway and can be explored as novel targets for radiosensitization.