WorldWideScience

Sample records for radiation safety performance

  1. Radiation safety

    International Nuclear Information System (INIS)

    Jain, Priyanka

    2014-01-01

    The use of radiation sources is a privilege; in order to retain the privilege, all persons who use sources of radiation must follow policies and procedures for their safe and legal use. The purpose of this poster is to describe the policies and procedures of the Radiation Protection Program. Specific conditions of radiation safety require the establishment of peer committees to evaluate proposals for the use of radionuclides, the appointment of a radiation safety officer, and the implementation of a radiation safety program. In addition, the University and Medical Centre administrations have determined that the use of radiation producing machines and non-ionizing radiation sources shall be included in the radiation safety program. These Radiation Safety policies are intended to ensure that such use is in accordance with applicable State and Federal regulations and accepted standards as directed towards the protection of health and the minimization of hazard to life or property. It is the policy that all activities involving ionizing radiation or radiation emitting devices be conducted so as to keep hazards from radiation to a minimum. Persons involved in these activities are expected to comply fully with the Canadian Nuclear Safety Act and all it. The risk of prosecution by the Department of Health and Community Services exists if compliance with all applicable legislation is not fulfilled. (author)

  2. Radiation safety

    International Nuclear Information System (INIS)

    1996-04-01

    Most of the ionizing radiation that people are exposed to in day-to-day activities comes from natural, rather than manmade, sources. The health effects of radiation - both natural and artificial - are relatively well understood and can be effectively minimized through careful safety measures and practices. The IAEA, together with other international and expert organizations, is helping to promote and institute Basic Safety Standards on an international basis to ensure that radiation sources and radioactive materials are managed for both maximum safety and human benefit

  3. Radiation safety

    International Nuclear Information System (INIS)

    Van Riessen, A.

    2002-01-01

    Full text: Experience has shown that modem, fully enclosed, XRF and XRD units are generally safe. This experience may lead to complacency and ultimately a lowering of standards which may lead to accidents. Maintaining awareness of radiation safety issues is thus an important role for all radiation safety officers. With the ongoing progress in technology, a greater number of radiation workers are more likely to use a range of instruments/techniques - eg portable XRF, neutron beam analysis, and synchrotron radiation analysis. The source for each of these types of analyses is different and necessitates an understanding of the associated dangers as well as use of specific radiation badges. The trend of 'suitcase science' is resulting in scientists receiving doses from a range of instruments and facilities with no coordinated approach to obtain an integrated dose reading for an individual. This aspect of radiation safety needs urgent attention. Within Australia a divide is springing up between those who work on Commonwealth property and those who work on State property. For example a university staff member may operate irradiating equipment on a University campus and then go to a CSIRO laboratory to operate similar equipment. While at the University State regulations apply and while at CSIRO Commonwealth regulations apply. Does this individual require two badges? Is there a need to obtain two licences? The application of two sets of regulations causes unnecessary confusion and increases the workload of radiation safety officers. Radiation safety officers need to introduce risk management strategies to ensure that both existing and new procedures result in risk minimisation. A component of this strategy includes ongoing education and revising of regulations. AXAA may choose to contribute to both of these activities as a service to its members as well as raising the level of radiation safety for all radiation workers. Copyright (2002) Australian X-ray Analytical

  4. Radiation legacy of nuclear tests at the Semipalatinsk test site in the light of requirements ensuring radiation safety performance

    International Nuclear Information System (INIS)

    Logachev, V.A.; Logacheva, L.A.

    2005-01-01

    Peculiarities of nuclear tests radiation legacy at the Semipalatinsk test site (STS) are shown in the light of performance of requirements ensuring radiation safety, decrease radiation contamination levels in environment and minimize exposure of radiation for population residing contaminated areas by radioactive fallout. The paper provides data on characterization of peculiarities of the STS operation legacy based on review of archival data of the former 3-d General Administration under USSR Ministry of Health. (author)

  5. Radiation safety audit

    International Nuclear Information System (INIS)

    Kadadunna, K.P.I.K.; Mod Ali, Noriah

    2008-01-01

    Audit has been seen as one of the effective methods to ensure harmonization in radiation protection. A radiation safety audit is a formal safety performance examination of existing or future work activities by an independent team. Regular audit will assist the management in its mission to maintain the facilities environment that is inherently safe for its employees. The audits review the adequacy of facilities for the type of use, training, and competency of workers, supervision by authorized users, availability of survey instruments, security of radioactive materials, minimization of personnel exposure to radiation, safety equipment, and the required record keeping. All approved areas of use are included in these periodic audits. Any deficiency found in the audit shall be corrected as soon as possible after they are reported. Radiation safety audit is a proactive approach to improve radiation safety practices and identify and prevent any potential radiation accident. It is an excellent tool to identify potential problem to radiation users and to assure that safety measures to eliminate or reduce the problems are fully considered. Radiation safety audit will help to develop safety culture of the facility. It is intended to be the cornerstone of a safety program designed to aid the facility, staff and management in maintaining a safe environment in which activities are carried out. The initiative of this work is to evaluate the need of having a proper audit as one of the mechanism to manage the safety using ionizing radiation. This study is focused on the need of having a proper radiation safety audit to identify deviations and deficiencies of radiation protection programmes. It will be based on studies conducted on several institutes/radiation facilities in Malaysia in 2006. Steps will then be formulated towards strengthening radiation safety through proper audit. This will result in a better working situation and confidence in the radiation protection community

  6. Regulatory supervision of safety indicators; experience with radiation safety indicators in Dukovany nuclear power plant performance

    International Nuclear Information System (INIS)

    Urbancik, L.; Kulich, V.

    2004-01-01

    The State Office for Nuclear Safety uses three sets of indicators describing the following aspects of a favourable nuclear power plant operation: smooth operation in normal circumstances, low risk to the population, and operation with a positive safety attitude. These are three safety-related areas for assessment. Each area has its own set of indicators. Overall operational safety performance indicators were identified for each attribute. From this point, a level of strategic indicators was developed, and finally, a set of specific indicators was set up. While neither the overall indicators nor the strategic indicators are directly measurable, the specific indicators are directly measurable and are targeted during inspection. (author)

  7. Radiation safety

    International Nuclear Information System (INIS)

    Woods, D.A.

    1982-01-01

    Sections include: dose units, dose limits, dose rate, potential hazards of ionizing radiations, control of internal and external radiation exposure, personal dosemeters, monitoring programs and transport of radioactive material (packaging and shielding)

  8. Application of feedback system in optimizing safety performance of "6"0Co radiation apparatus

    International Nuclear Information System (INIS)

    Luo Shishi; Wang Zegang; Ge Cailin; Ma Fei; Gong Zheng

    2001-01-01

    To ensure "6"0Co apparatus runs safely applying the basic principle of cybernetics to optimizing safety performance was studied. Through several decades of practice the cybernetic system is shown to be safe and effective, and it will be an example for small and middle "6"0Co radiation apparatus to rebuild the cybernetic system. (authors)

  9. Radiation safety

    International Nuclear Information System (INIS)

    Auxier, J.A.

    1977-01-01

    Data available on the biological effects of radiation on man are reviewed, with emphasis on dose response to low LET and high LET radiation sources, and the effects of dose rate. Existing guides for radiation protection were formulated largely on the basis of tumor induction in the bone of radium dial painters, but the ICRP/NCRP annual dose guides of 5 rem/yr are of the same general magnitude as the doses received in several parts of the world from the natural radiation environment. Because of the greater sensitivity of rapidly dividing cells and the assumption that radiation occupations would not begin before the age of eighteen, maximum exposure levels were set as 5 (N-18) rem/yr, where N is the exposed worker's age in years. However, in the case of the natural radiation environment, exposure commences, in a sense, with the exposure of the ovum of the individual's mother; and the ovum is formed during the fetal development of the mother. In occupational exposures, the professional health physicist has always practiced the as low as practical philosophy, and exposures have generally averaged far below the guidelines. The average annual exposure of the radiation worker in modern plants and laboratories is approximately equal to the average natural radiation environment exposure rate and far lower than the natural radiation environment in many parts of the world. There are numerous complications and uncertainties in quantifying radiation effects on humans, however, the greatest is that due to having to extrapolate from high dose levels at which effects have been measured and quantified, to low levels at which most exposures occur but at which no effects have been observed

  10. Key Performance Indicators in the Evaluation of the Quality of Radiation Safety Programs.

    Science.gov (United States)

    Schultz, Cheryl Culver; Shaffer, Sheila; Fink-Bennett, Darlene; Winokur, Kay

    2016-08-01

    Beaumont is a multiple hospital health care system with a centralized radiation safety department. The health system operates under a broad scope Nuclear Regulatory Commission license but also maintains several other limited use NRC licenses in off-site facilities and clinics. The hospital-based program is expansive including diagnostic radiology and nuclear medicine (molecular imaging), interventional radiology, a comprehensive cardiovascular program, multiple forms of radiation therapy (low dose rate brachytherapy, high dose rate brachytherapy, external beam radiotherapy, and gamma knife), and the Research Institute (including basic bench top, human and animal). Each year, in the annual report, data is analyzed and then tracked and trended. While any summary report will, by nature, include items such as the number of pieces of equipment, inspections performed, staff monitored and educated and other similar parameters, not all include an objective review of the quality and effectiveness of the program. Through objective numerical data Beaumont adopted seven key performance indicators. The assertion made is that key performance indicators can be used to establish benchmarks for evaluation and comparison of the effectiveness and quality of radiation safety programs. Based on over a decade of data collection, and adoption of key performance indicators, this paper demonstrates one way to establish objective benchmarking for radiation safety programs in the health care environment.

  11. Radiation safety

    International Nuclear Information System (INIS)

    Goetz, B.B.; Murphy, C.H.

    1987-01-01

    In medicine, as in other fields of scientific endeavor, the development of advanced and specialized techniques has resulted in increased hazards for employees. However, by possessing both an appreciation of the proper use of factors that regulate radiation exposure around radiology equipment and a knowledge of the biologic effects of radiation, which can include possible genetic and somatic consequences, it is possible to maximize the usefulness of these valuable procedures while minimizing the risk to medical personnel involved with patient care

  12. Radiation safety at CERN

    Energy Technology Data Exchange (ETDEWEB)

    Hoefert, M [CERN, Geneva (Switzerland)

    1995-09-01

    CERN, the European Laboratory for Particle Physics, operates proton accelerators up to an energy of 450 GeV and an electron-positron storage ring in the 50 GeV energy range for fundamental high-energy particle physics. A strong radiation protection group assures the radiation safety of these machines both during their operation and in periods of maintenance and repair. Particular radiation problems in an accelerator laboratory are presented and recent developments in radiation protection at CERN discussed. (author)

  13. Radiation safety in aviation

    International Nuclear Information System (INIS)

    2005-06-01

    The guide presents the requirements governing radiation safety of aircrews exposed to cosmic radiation and monitoring of such exposure. It applies to enterprises engaged in aviation under a Finnish operating licence and to Finnish military aviation at altitudes exceeding 8,000 metres. The radiation exposure of aircrews at altitudes of less than 8,000 metres is so minimal that no special measures are generally required to investigate or limit exposure to radiation

  14. Radiation and waste safety

    International Nuclear Information System (INIS)

    1997-01-01

    Most of the ionizing radiation that people are exposed to in day-to-day activities comes from natural, rather than manmade, sources. Nuclear radiation is a powerful source of benefit to mankind, whether applied in the field of medicine, agriculture, environmental management or elsewhere. The health effects of radiation - both natural and artificial - are relatively well understood and can be minimized through careful safety measures and practices. The Department of Technical Co-operation is sponsoring a programme with the support of the Nuclear Safety Department aiming at establishing Basic Safety Standard requirements in all Member States. (IAEA)

  15. RF radiation safety handbook

    International Nuclear Information System (INIS)

    Kitchen, Ronald.

    1993-01-01

    Radio frequency radiation can be dangerous in a number of ways. Hazards include electromagnetic compatibility and interference, electro-explosive vapours and devices, and direct effects on the human body. This book is a general introduction to the sources and nature of RF radiation. It describes the ways in which our current knowledge, based on relevant safety standards, can be used to safeguard people from any harmful effects of RF radiation. The book is designed for people responsible for, or concerned with, safety. This target audience will primarily be radio engineers, but includes those skilled in other disciplines including medicine, chemistry or mechanical engineering. The book covers the problems of RF safety management, including the use of measuring instruments and methods, and a review of current safety standards. The implications for RF design engineers are also examined. (Author)

  16. Radiation shielding and safety design

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong Ouk; Gil, C. S.; Cho, Y. S.; Kim, D. H.; Kim, H. I.; Kim, J. W.; Lee, C. W.; Kim, K. Y.; Kim, B. H. [KAERI, Daejeon (Korea, Republic of)

    2011-07-15

    A benchmarking for the test facility, evaluations of the prompt radiation fields, evaluation of the induced activities in the facility, and estimation of the radiological impact on the environment were performed in this study. and the radiation safety analysis report for nuclear licensing was written based on this study. In the benchmark calculation, the neutron spectra was measured in the 20 Mev test facility and the measurements were compared with the computational results to verify the calculation system. In the evaluation of the prompt radiation fields, the shielding design for 100 MeV target rooms, evaluations of the leakage doses from the accidents and skyshine analysis were performed. The evaluation of the induced activities were performed for the coolant, inside air, structural materials, soil and ground-water. At last, the radiation safety analysis report was written based on results from these studies

  17. Radiation safety and control

    International Nuclear Information System (INIS)

    Kim, Jang Hee; Kim, Gi Sub.

    1996-12-01

    The principal objective of radiological safety control is intended for achievement and maintenance of appropriately safe condition in environmental control for activities involving exposure from the use of radiation. In order to establish these objective, we should be to prevent deterministic effects and to limit the occurrence stochastic effects to level deemed to be acceptable by the application of general principles of radiation protection and systems of dose limitation based on ICRP recommendations. (author). 22 tabs., 13 figs., 11 refs

  18. Radiation safety standards

    International Nuclear Information System (INIS)

    1975-01-01

    This is a basic document with which all rules and regulations, etc., concerning protection from ionizing radiations of workers and the general population have to conform. Basic concepts, dimensions, units, and terms used in the area of radiation safety are defined. Radiation exposures are sorted out into three categories: A, to personnel; B, to individual members of the popul;tion; and C, to the general population. Critical organs, furthermore, comprise four groups, the first of them being applicable to the whole-body gonads and bone marrow. Category A maximum permissible dose (MPD) to first group critical organs is 5 rem/year; to second group, 15 rem/year; to thrid group, 3O rem/year; and to fourth group, 75 rem/year. These rate figures include doses from both external and internal radiation exposure. Quality factors needed in computing doses from various types of radiation are provided. Permissible planned exposure levels are specified and guidelines given for accidental exposures. A radiation accident is considered to have occurred if the relevant critical organ dose is 5 times the annual MPD for that organ. For individual members of the population (category B), annual somatic doses to first group critical organs shall not exceed 0,5 rem. Population exposure is controlled in terms of genetically significant dose, which shall not exceed 5 rem/30 years. (G.G.)

  19. Safety assessment of radiation pasteurization of poultry feed : production performance trails

    Energy Technology Data Exchange (ETDEWEB)

    El din, M D; Farag, H; Borsa, Joseph; Guenter, Bill

    1989-01-01

    Feed used to rear farm animals for human consumption has often been implicated as vehicle for dissemination of microbial pathogens that can adversely affect both animals or birds, and humans. Radiation pasteurization of animal feed to improve its microbiological quality should reduce the incidence of feed-borne infection (both clinical and subs clinical) in the herd or flock. This would result in safer food for the consumer, and improved economic performance of the production unit. This latter benefit is particularly important because it could directly offset the treating the feed. The likelihood of occurrence, as well as the magnitude, of any improved economic performance in the herd or flock consuming the irradiated feed must be determined experimentally. Accordingly, short term feeding tests were carried out to determine the effect of radiation pasteurization of poultry feed on growth performance of young chicks. Newly hatched white leghorn cacklers were used in the present studies to examine the effects of (i) control vs irradiated feed; and (ii) control vs stressed (transient chilled) birds. Feed consumption and pen weight were monitored for 21 days. Three experiments were conducted in the summer of 1989, using separate lots of commercially obtained feed ingredients for each experiment, In two of the three feeding tests there was a highly significant (p<.01) increase in feed conversion efficiency in the birds fed the irradiated feed. The magnitude of the increased efficiency was 2.4% and 2.8% in the two positive experiments. In one of the two positive experiments the feed contained antibiotics (Penicillin and Streptomycin) while the feed in other was antibiotic-free these results suggest that radiation pasteurization of poultry feed may have a beneficial effect on the feed conversion efficiency of the birds consuming that feed.8 tab.

  20. Safety assessment of radiation pasteurization of poultry feed : production performance trails

    International Nuclear Information System (INIS)

    El din, M. D.; Farag, H.; Borsa, Joseph; Guenter, Bill.

    1989-01-01

    Feed used to rear farm animals for human consumption has often been implicated as vehicle for dissemination of microbial pathogens that can adversely affect both animals or birds, and humans. Radiation pasteurization of animal feed to improve its microbiological quality should reduce the incidence of feed-borne infection (both clinical and subs clinical) in the herd or flock. This would result in safer food for the consumer, and improved economic performance of the production unit. This latter benefit is particularly important because it could directly offset the treating the feed. The likelihood of occurrence, as well as the magnitude, of any improved economic performance in the herd or flock consuming the irradiated feed must be determined experimentally. Accordingly, short term feeding tests were carried out to determine the effect of radiation pasteurization of poultry feed on growth performance of young chicks. Newly hatched white leghorn cacklers were used in the present studies to examine the effects of (i) control vs irradiated feed; and (ii) control vs stressed (transient chilled) birds. Feed consumption and pen weight were monitored for 21 days. Three experiments were conducted in the summer of 1989, using separate lots of commercially obtained feed ingredients for each experiment, In two of the three feeding tests there was a highly significant (p<.01) increase in feed conversion efficiency in the birds fed the irradiated feed. The magnitude of the increased efficiency was 2.4% and 2.8% in the two positive experiments. In one of the two positive experiments the feed contained antibiotics (Penicillin and Streptomycin) while the feed in other was antibiotic-free these results suggest that radiation pasteurization of poultry feed may have a beneficial effect on the feed conversion efficiency of the birds consuming that feed.8 tab

  1. Promoting safety culture in radiation industry through radiation audit

    International Nuclear Information System (INIS)

    Noriah, M.A.

    2007-01-01

    This paper illustrates the Malaysian experience in implementing and promoting effective radiation safety program. Current management practice demands that an organization inculcate culture of safety in preventing radiation hazard. The aforementioned objectives of radiation protection can only be met when it is implemented and evaluated continuously. Commitment from the workforce to treat safety as a priority and the ability to turn a requirement into a practical language is also important to implement radiation safety policy efficiently. Maintaining and improving safety culture is a continuous process. There is a need to establish a program to measure, review and audit health and safety performance against predetermined standards. This program is known as radiation safety audit and is able to reveal where and when action is needed to make improvements to the systems of controls. A structured and proper radiation self-auditing system is seen as the sole requirement to meet the current and future needs in sustainability of radiation safety. As a result safety culture, which has been a vital element on safety in many industries can be improved and promote changes, leading to good safety performance and excellence. (author)

  2. Occupational radiation protection. Safety guide

    International Nuclear Information System (INIS)

    2002-01-01

    Occupational exposure to ionizing radiation can occur in a range of industries, medical institutions, educational and research establishments and nuclear fuel cycle facilities. Adequate radiation protection of workers is essential for the safe and acceptable use of radiation, radioactive materials and nuclear energy. In 1996, the Agency published Safety Fundamentals on Radiation Protection and the Safety of Radiation Sources (IAEA Safety Series No. 120) and International Basic Safety Standards for Protection against Ionizing, Radiation and for the Safety of Radiation Sources (IAEA Safety Series No. 115), both of which were jointly sponsored by the Food and Agriculture Organization of the United Nations, the IAEA, the International Labour Organisation, the OECD Nuclear Energy Agency, the Pan American Health Organization and the World Health Organization. These publications set out, respectively, the objectives and principles for radiation safety and the requirements to be met to apply the principles and to achieve the objectives. The establishment of safety requirements and guidance on occupational radiation protection is a major component of the support for radiation safety provided by the IAEA to its Member States. The objective of the IAEA's occupational protection programme is to promote an internationally harmonized approach to the optimization of occupational radiation protection, through the development and application of guidelines for restricting radiation exposures and applying current radiation protection techniques in the workplace. Guidance on meeting the requirements of the Basic Safety Standards for occupational protection is provided in three interrelated Safety Guides, one giving general guidance on the development of occupational radiation protection programmes and two giving more detailed guidance on the monitoring and assessment of workers' exposure due to external radiation sources and from intakes of radionuclides, respectively. These Safety

  3. Occupational radiation protection. Safety guide

    International Nuclear Information System (INIS)

    2006-01-01

    Occupational exposure to ionizing radiation can occur in a range of industries, medical institutions, educational and research establishments and nuclear fuel cycle facilities. Adequate radiation protection of workers is essential for the safe and acceptable use of radiation, radioactive materials and nuclear energy. In 1996, the Agency published Safety Fundamentals on Radiation Protection and the Safety of Radiation Sources (IAEA Safety Series No. 120) and International Basic Safety Standards for Protection against Ionizing, Radiation and for the Safety of Radiation Sources (IAEA Safety Series No. 115), both of which were jointly sponsored by the Food and Agriculture Organization of the United Nations, the IAEA, the International Labour Organisation, the OECD Nuclear Energy Agency, the Pan American Health Organization and the World Health Organization. These publications set out, respectively, the objectives and principles for radiation safety and the requirements to be met to apply the principles and to achieve the objectives. The establishment of safety requirements and guidance on occupational radiation protection is a major component of the support for radiation safety provided by the IAEA to its Member States. The objective of the IAEA's occupational protection programme is to promote an internationally harmonized approach to the optimization of occupational radiation protection, through the development and application of guidelines for restricting radiation exposures and applying current radiation protection techniques in the workplace. Guidance on meeting the requirements of the Basic Safety Standards for occupational protection is provided in three interrelated Safety Guides, one giving general guidance on the development of occupational radiation protection programmes and two giving more detailed guidance on the monitoring and assessment of workers' exposure due to external radiation sources and from intakes of radionuclides, respectively. These Safety

  4. Occupational radiation protection. Safety guide

    International Nuclear Information System (INIS)

    1999-01-01

    Occupational exposure to ionizing radiation can occur in a range of industries, medical institutions, educational and research establishments and nuclear fuel cycle facilities. Adequate radiation protection of workers is essential for the safe and acceptable use of radiation, radioactive materials and nuclear energy. In 1996, the Agency published Safety Fundamentals on Radiation Protection and the Safety of Radiation Sources (IAEA Safety Series No. 120) and International Basic Safety Standards for Protection against Ionizing, Radiation and for the Safety of Radiation Sources (IAEA Safety Series No. 115), both of which were jointly sponsored by the Food and Agriculture Organization of the United Nations, the IAEA, the International Labour Organisation, the OECD Nuclear Energy Agency, the Pan American Health Organization and the World Health Organization. These publications set out, respectively, the objectives and principles for radiation safety and the requirements to be met to apply the principles and to achieve the objectives. The establishment of safety requirements and guidance on occupational radiation protection is a major component of the support for radiation safety provided by the IAEA to its Member States. The objective of the IAEA's occupational protection programme is to promote an internationally harmonized approach to the optimization of occupational radiation protection, through the development and application of guidelines for restricting radiation exposures and applying current radiation protection techniques in the workplace. Guidance on meeting the requirements of the Basic Safety Standards for occupational protection is provided in three interrelated Safety Guides, one giving general guidance on the development of occupational radiation protection programmes and two giving more detailed guidance on the monitoring and assessment of workers' exposure due to external radiation sources and from intakes of radionuclides, respectively. These Safety

  5. Occupational radiation protection. Safety guide

    International Nuclear Information System (INIS)

    2004-01-01

    Occupational exposure to ionizing radiation can occur in a range of industries, medical institutions, educational and research establishments and nuclear fuel cycle facilities. Adequate radiation protection of workers is essential for the safe and acceptable use of radiation, radioactive materials and nuclear energy. In 1996, the Agency published Safety Fundamentals on Radiation Protection and the Safety of Radiation Sources (IAEA Safety Series No. 120) and International Basic Safety Standards for Protection against Ionizing, Radiation and for the Safety of Radiation Sources (IAEA Safety Series No. 115), both of which were jointly sponsored by the Food and Agriculture Organization of the United Nations, the IAEA, the International Labour Organisation, the OECD Nuclear Energy Agency, the Pan American Health Organization and the World Health Organization. These publications set out, respectively, the objectives and principles for radiation safety and the requirements to be met to apply the principles and to achieve the objectives. The establishment of safety requirements and guidance on occupational radiation protection is a major component of the support for radiation safety provided by the IAEA to its Member States. The objective of the IAEA's occupational protection programme is to promote an internationally harmonized approach to the optimization of occupational radiation protection, through the development and application of guidelines for restricting radiation exposures and applying current radiation protection techniques in the workplace. Guidance on meeting the requirements of the Basic Safety Standards for occupational protection is provided in three interrelated Safety Guides, one giving general guidance on the development of occupational radiation protection programmes and two giving more detailed guidance on the monitoring and assessment of workers' exposure due to external radiation sources and from intakes of radionuclides, respectively. These Safety

  6. Radiation Safety (Qualifications) Regulations 1980

    International Nuclear Information System (INIS)

    1980-01-01

    These Regulations, promulgated pursuant to the provisions of the Radiation Safety Act, 1975-1979, require persons engaged in activities involving radiation to pass a radiation safety examination or to possess an approved qualification in radiation. The National Health and Medical Research Council is authorised to exempt persons from compliance with these requirements or, conversely, to impose such requirements on persons other than those designated. (NEA) [fr

  7. Radiation Safety for Sustainable Development

    International Nuclear Information System (INIS)

    2015-10-01

    The objective of radiation safety is Assessments of Natural Radioactivity and its Radiological. The following topics were discussed during the conference: AFROSAFE Championing Radiation Safety in Africa, Radiation Calibration, and Development and Validation of a Laser Induced Breakdown Spectrometry Method for Cancer Detection and Characterization. Young Generation in NUCLEAR Initiative to Promote Nuclear Science and Technology, Radiation Protection Safety Culture and Application of Nuclear Techniques in Industry and the Environment were discuss. Rapid Chemometric X-Ray Fluorescence approaches for spectral Diagnostics of Cancer utilizing Tissue Trace Metals and Speciation profiles. Fundamental role of medical physics in Radiation Therapy

  8. Radiation Safety Aspects of Nanotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Hoover, Mark [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Myers, David; Cash, Leigh Jackson [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Guilmette, Raymond [Ray Guilmette & Associates, LLC, Perry, ME (United States); Kreyling, Wolfgang [Helmholtz-Zentrum Munchen, (Germany); Oberdorster, Gunter [Univ. of Rochester, NY (United States); Smith, Rachel [Public Health England, Oxfordshire (United Kingdom). Centre for Radiation, Chemical and Environmental Hazards

    2017-03-27

    This Report is intended primarily for operational health physicists, radiation safety officers, and internal dosimetrists who are responsible for establishing and implementing radiation safety programs involving radioactive nanomaterials. It should also provide useful information for workers, managers and regulators who are either working directly with or have other responsibilities related to work with radioactive nanomaterials.

  9. Nuclear and radiation safety policy

    International Nuclear Information System (INIS)

    Mikus, T; Strycek, E.

    1998-01-01

    Slovenske elektrarne (SE) is a producer of electricity and heat, including from nuclear fuel source. The board of SE is ultimately responsible for nuclear and radiation safety matters. In this leaflet main principles of maintaining nuclear and radiation safety of the Company SE are explained

  10. Occupational radiation safety in mining

    International Nuclear Information System (INIS)

    Stocker, H.

    1985-01-01

    The first International Conference on Occupational Radiation Safety in Mining was held three years ago in Golden, Colorado, U.S.A., and it provided an excellent forum for an exchange of information on the many scientific, technical and operational aspects of radiation safety in mining. I am aware of the broad spectrum of epidemiological, engineering and related studies which have been pursued during the past three years with a view to achieving further improvements in radiation protection and I expect that the information on these studies will contribute significantly to a wider understanding of subject, and in particular, the means by which radiation safety measures in mining can be optimized

  11. Occupational safety meets radiation protection

    International Nuclear Information System (INIS)

    Severitt, S.; Oehm, J.; Sobetzko, T.; Kloth, M.

    2012-01-01

    The cooperation circle ''Synergies in operational Security'' is a joint working group of the Association of German Safety Engineers (VDSI) and the German-Swiss Professional Association for Radiation Protection (FS). The tasks of the KKSyS are arising from the written agreement of the two associations. This includes work on technical issues. In this regard, the KKSyS currently is dealing with the description of the interface Occupational Safety / Radiation Protection. ''Ignorance is no defense'' - the KKSyS creates a brochure with the working title ''Occupational Safety meets radiation protection - practical guides for assessing the hazards of ionizing radiation.'' The target groups are entrepreneurs and by them instructed persons to carry out the hazard assessment. Our aim is to create practical guides, simple to understand. The practical guides should assist those, who have to decide, whether an existing hazard potential through ionizing radiation requires special radiation protection measures or whether the usual measures of occupational safety are sufficient. (orig.)

  12. Radiation safety and gynaecological brachytherapy

    International Nuclear Information System (INIS)

    Crawford, L.

    1985-01-01

    In 1983, the Radiation Control Section of the South Australian Health Commission conducted an investigation into radiation safety practices in gynaecological brachytherapy. Part of the investigation included a study of the transportation of radioactive sources between hospitals. Several deficiences in radiation safety were found in the way these sources were being transported. New transport regulations came into force in South Australia in July 1984 and since then there have been many changes in the transportation procedure

  13. Safety performance indicators program

    International Nuclear Information System (INIS)

    Vidal, Patricia G.

    2004-01-01

    In 1997 the Nuclear Regulatory Authority (ARN) initiated a program to define and implement a Safety Performance Indicators System for the two operating nuclear power plants, Atucha I and Embalse. The objective of the program was to incorporate a set of safety performance indicators to be used as a new regulatory tool providing an additional view of the operational performance of the nuclear power plants, improving the ability to detect degradation on safety related areas. A set of twenty-four safety performance indicators was developed and improved throughout pilot implementation initiated in July 1998. This paper summarises the program development, the main criteria applied in each stage and the results obtained. (author)

  14. Radiation safety among cardiology fellows.

    Science.gov (United States)

    Kim, Candice; Vasaiwala, Samip; Haque, Faizul; Pratap, Kiran; Vidovich, Mladen I

    2010-07-01

    Cardiology fellows can be exposed to high radiation levels during procedures. Proper radiation training and implementation of safety procedures is of critical importance in lowering physician health risks associated with radiation exposure. Participants were cardiology fellows in the United States (n = 2,545) who were contacted by e-mail to complete an anonymous survey regarding the knowledge and practice of radiation protection during catheterization laboratory procedures. An on-line survey engine, SurveyMonkey, was used to distribute and collect the results of the 10-question survey. The response rate was 10.5%. Of the 267 respondents, 82% had undergone formal radiation safety training. Only 58% of the fellows were aware of their hospital's pregnancy radiation policy and 60% knew how to contact the hospital's radiation safety officer. Although 52% of the fellows always wore a dosimeter, 81% did not know their level of radiation exposure in the previous year and only 74% of fellows knew the safe levels of radiation exposure. The fellows who had received formal training were more likely to be aware of their pregnancy policy, to know the contact information of their radiation safety officer, to be aware of the safe levels of radiation exposure, to use dosimeters and RadPad consistently, and to know their own level of radiation exposure in the previous year. In conclusion, cardiology fellows have not been adequately educated about radiation safety. A concerted effort directed at physician safety in the workplace from the regulatory committees overseeing cardiology fellowships should be encouraged. Published by Elsevier Inc.

  15. Radiation safety: New international standards

    International Nuclear Information System (INIS)

    Gonzalez, A.J.

    1994-01-01

    This article highlights an important result of this work for the international harmonization of radiation safety: specifically, it present an overview of the forthcoming International Basic Safety Standards for Protection Against Ionizing Radiation and for the Safety of Radiation Sources - the so-called BSS. They have been jointly developed by six organizations - the Food and Agriculture Organization of the United Nations (FAO), the International Atomic Energy Agency (IAEA), the International Labour Organization (ILO), the Nuclear Energy Agency of the Organization for Economic Co-operation and Development (NEA/OECD), the Pan American Health Organization (PAHO), and the World Health Organization (WHO)

  16. Radiation safety standards and regulations

    International Nuclear Information System (INIS)

    Ermolina, E.P.; Ivanov, S.I.

    1993-01-01

    Radiation protection laws of Russia concerning medical application of ionizing radiation are considered. Main concepts of the documents and recommendations are presented. Attention was paid to the ALARA principle, safety standrds for paietients, personnel and population, radiation protection. Specific feature of the standardization of radiation factors is the establishment of two classes of norms: main dose limits and permissible levels. Maximum dose commitment is the main standard. Three groups of critical organs and three categories of the persons exposed to radiation are stated. Main requirements for radiation protection are shown

  17. Challenges in promoting radiation safety culture

    International Nuclear Information System (INIS)

    Mod Ali, Noriah

    2008-01-01

    Safety has quickly become an industry performance measure, and the emphasis on its reliability has always been part of a strategic commitment. This paper presents an approach taken by Malaysian Nuclear Agency (Nuclear Malaysia) and authority to develop and implement safety culture for industries that uses radioactive material and radiation sources. Maintaining and improving safety culture is a continuous process. There is a need to establish a program to measure, review and audit health and safety performance against predetermined standards. Proper safety audit will help to identify the non-compliance of safety culture as well as the deviation of management, individual and policy level commitment; review of radiation protection program and activities should be preceded. (author)

  18. The radiation safety standards programme

    International Nuclear Information System (INIS)

    Bilbao, A.A.

    2000-01-01

    In this lecture the development of radiation safety standards by the IAEA which is a statutory function of the IAEA is presented. The latest editions of the basic safety standards published by the IAEA in cooperation with ICRP, FAO, ILO, NEA/OECD, PAHO and WHO are reviewed

  19. Radiation safety - an IAEA perspective

    International Nuclear Information System (INIS)

    Persson, L.

    1993-01-01

    The activities of the IAEA relating to radiation safety cover: The preparation of International Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources - it is expected that the new Basic Safety Standards will be adopted by the sponsoring organizations in 1994. The radiological consequences of the Chernobyl accident: the thyroid cancer controversy - the hypothesis that must be tested is whether the reported increased incidence of thyroid cancer due to exposure to radioactive iodine released in the Chernobyl accident, and there are several questions that must be answered before a firm conclusion can be reached. Emergency Response Services (ERS): In March 1993, at the request of Viet Nam, which invoked the Energency Assistance Convention, a medical team organized by the IAEA went to Hanoi and assisted in arranging for an overexposed person to be transferred from Viet Nam to Paris for specialized medical treatment. In April 1993, the ERS was used to inform Member States of the consequences of an explosion at the Tomsk 7 fuel reprocessing plant in Siberia, Russia, which caused a radiation leak. Reassessing the long range transport of radioactive material through the environment: Data from the Chernobyl accident have been used for model validation in the Atmospheric Transport Model Evaluation Study (ATMES). A follow-up programme, the European Tracer Experiment (ETEX) with experimental studies of long range atmospheric movements over Europe has been established in order to increase knowledge and prediction capability. As part of the programme, a non-toxic atmospheric tracer will be released under suitable conditions in 1994. The Radiation Protection Advisory Teams Service (RAPAT): In many of the developing countries visited, the lack of an adequate infrastructure for radiation protection is the main obstacle to improved radiation protection. Strengthening radiation and nuclear safety infrastructures in successor states of the USSR: The

  20. Radiation safety research information database

    International Nuclear Information System (INIS)

    Yukawa, Masae; Miyamoto, Kiriko; Takeda, Hiroshi; Kuroda, Noriko; Yamamoto, Kazuhiko

    2004-01-01

    National Institute of Radiological Sciences in Japan began to construct Radiation Safety Research Information Database' in 2001. The research information database is of great service to evaluate the effects of radiation on people by estimating exposure dose by determining radiation and radioactive matters in the environment. The above database (DB) consists of seven DB such as Nirs Air Borne Dust Survey DB, Nirs Environmental Tritium Survey DB, Nirs Environmental Carbon Survey DB, Environmental Radiation Levels, Abe, Metabolic Database for Assessment of Internal Dose, Graphs of Predicted Monitoring Data, and Nirs nuclear installation environment water tritium survey DB. Outline of DB and each DB are explained. (S.Y.)

  1. Radiation safety without borders initiative

    International Nuclear Information System (INIS)

    Dibblee, Martha; Dickson, Howard; Krieger, Ken; Lopez, Jose; Waite, David; Weaver, Ken

    2008-01-01

    The Radiation Safety Without Borders (RSWB) initiative provides peer support to radiation safety professionals in developing countries, which bolsters the country's infrastructure and may lead the way for IRPA Associate membership. The Health Physics Society (HPS) recognizes that many nations do not possess the infrastructure to adequately control and beneficially use ionizing radiation. In a substantial number of countries, organized radiation protection programs are minimal. The RSWB initiative relies on HPS volunteers to assist their counterparts in developing countries with emerging health physics and radiation safety programs, but whose resources are limited, to provide tools that promote and support infrastructure and help these professionals help themselves. RSWB experience to date has shown that by providing refurbished instruments, promoting visits to a HPS venue, or visiting a country just to look provide valuable technical and social infrastructure experiences often missing in the developing nation's cadre of radiation safety professionals. HPS/RSWB with the assistance of the International Atomic Energy Agency (IAEA) pairs chapters with a country, with the expectation that the country's professional radiation safety personnel will form a foreign HPS chapter, and the country eventually will become an IRPA Associate. Although still in its formative stage, RSWB nonetheless has gotten valuable information in spite of the small number of missions. The RSWB initiative continues to have significant beneficial impacts, including: Improving the radiation safety infrastructure of the countries that participate; Assisting those countries without professional radiation safety societies to form one; Strengthening the humanitarian efforts of the United States; Enhancing Homeland Security efforts through improved control of radioactive material internationally. Developing countries, including those in Latin America, underwritten by IAEA, may take advantage of resources

  2. Radiation Safety of Electromagnetic Waves

    International Nuclear Information System (INIS)

    Hussein, A.Z.

    2009-01-01

    The wide spread of Electromagnetic Waves (EMW) through the power lines, multimedia, communications, devices, appliances, etc., are well known. The probable health hazards associated with EMW and the radiation safety criteria are to be reviewed. However, the principles of the regulatory safety are based on radiation protection procedure, intervention to combat the relevant risk and to mitigate consequences. The oscillating electric magnetic fields (EMF) of the electromagnetic radiation (EMR) induce electrical hazards. The extremely high power EMR can cause fire hazards and explosions of pyrotechnic (Rad Haz). Biological hazards of EMF result as dielectric heat, severe burn, as well as the hazards of eyes. Shielding is among the technical protective measures against EMR hazards. Others are limitation of time of exposure and separation distance apart of the EMR source. Understanding and safe handling of the EMR sources are required to feel safety.

  3. Internet applications in radiation safety

    International Nuclear Information System (INIS)

    Hill, P.; Geisse, C.; Wuest, E.

    1998-01-01

    As a means of effective communication the Internet is presently becoming more and more important in German speaking countries, too. Its possibilities to exchange and to obtain information efficiently and rapidly are excellent. Internet and email access are available now in most institutions for professional use. Internet services of importance to radiation safety professionals are described. (orig.) [de

  4. Investigation on regulatory requirements for radiation safety management

    International Nuclear Information System (INIS)

    Han, Eun Ok; Choi, Yoon Seok; Cho, Dae Hyung

    2013-01-01

    NRC recognizes that efficient management of radiation safety plan is an important factor to achieve radiation safety service. In case of Korea, the contents to perform the actual radiation safety management are legally contained in radiation safety management reports based on the Nuclear Safety Act. It is to prioritize the importance of safety regulations in each sector in accordance with the current situation of radiation and radioactive isotopes-used industry and to provide a basis for deriving safety requirements and safety regulations system maintenance by the priority of radiation safety management regulations. It would be helpful to achieve regulations to conform to reality based on international standards if consistent safety requirements is developed for domestic users, national standards and international standards on the basis of the results of questions answered by radiation safety managers, who lead on-site radiation safety management, about the priority of important factors in radioactive sources use, sales, production, moving user companies, to check whether derived configuration requirements for radiation safety management are suitable for domestic status

  5. Radiation safety assessment and development of environmental radiation monitoring technology

    CERN Document Server

    Choi, B H; Kim, S G

    2002-01-01

    The Periodic Safety Review(PSR) of the existing nuclear power plants is required every ten years according to the recently revised atomic energy acts. The PSR of Kori unit 1 and Wolsong unit 1 that have been operating more than ten years is ongoing to comply the regulations. This research project started to develop the techniques necessary for the PSR. The project developed the following four techniques at the first stage for the environmental assessment of the existing plants. 1) Establishment of the assessment technology for contamination and accumulation trends of radionuclides, 2) alarm point setting of environmental radiation monitoring system, 3) Development of Radiation Safety Evaluation Factor for Korean NPP, and 4) the evaluation of radiation monitoring system performance and set-up of alarm/warn set point. A dynamic compartment model to derive a relationship between the release rates of gas phase radionuclides and the concentrations in the environmental samples. The model was validated by comparing ...

  6. The practice of safety culture construction in radiation processing enterprise

    International Nuclear Information System (INIS)

    Kong Xiangshan; Zhang Yue; Yang Bin; Xu Tao; Liu Wei; Hao Jiangang

    2014-01-01

    Security is an integral part of the process of business operations. The radiation processing enterprises due to their own particularity, more need to focus on the operation of the safety factors, the construction of corporate safety culture is of great significance in guiding carry out the work of the Radiation Protection. Radiation processing enterprises should proceed from their own characteristics, the common attitude of security systems and security construction, and constantly improved to ensure the personal safety of radiation workers in the area of safety performance. (authors)

  7. Safety KPIs - Monitoring of safety performance

    Directory of Open Access Journals (Sweden)

    Andrej Lališ

    2014-09-01

    Full Text Available This paper aims to provide brief overview of aviation safety development focusing on modern trends represented by implementation of Safety Key Performance Indicators. Even though aviation is perceived as safe means of transport, it is still struggling with its complexity given by long-term growth and robustness which it has reached today. Thus nowadays safety issues are much more complex and harder to handle than ever before. We are more and more concerned about organizational factors and control mechanisms which have potential to further increase level of aviation safety. Within this paper we will not only introduce the concept of Key Performance Indicators in area of aviation safety as an efficient control mechanism, but also analyse available legislation and documentation. Finally we will propose complex set of indicators which could be applied to Czech Air Navigation Service Provider.

  8. Radiation protection and the safety of radiation sources

    International Nuclear Information System (INIS)

    1996-01-01

    These Safety Fundamentals cover the protection of human beings against ionizing radiation (gamma and X rays and alpha, beta and other particles that can induce ionization as they interact with biological materials), referred to herein subsequently as radiation, and the safety of sources that produce ionizing radiation. The Fundamentals do not apply to non-ionizing radiation such as microwave, ultraviolet, visible and infrared radiation. They do not apply either to the control of non-radiological aspects of health and safety. They are, however, part of the overall framework of health and safety

  9. Proceeding of Radiation Safety and Environment

    International Nuclear Information System (INIS)

    1996-01-01

    Scientific Presentation of Radiation Safety and Environment was held on 20-21 august 1996 at Center of Research Atomic Energy Pasar Jum'at, Jakarta, Indonesia. Have presented 50 papers about Radiation Safety, dosimetry and standardization, environment protection and radiation effect

  10. Regulatory control of radiation sources. Safety guide

    International Nuclear Information System (INIS)

    2004-01-01

    The basic requirements for the protection of persons against exposure to ionizing radiation and for the safety of radiation sources were established in the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (the Basic Safety Standards), jointly sponsored by the Food and Agriculture Organization of the United Nations (FAO), the International Atomic Energy Agency (IAEA), the International Labour Organization (ILO), the OECD Nuclear Energy Agency (OECD/ NEA), the Pan American Health Organization (PAHO) and the World Health Organization (WHO) (the Sponsoring Organizations). The application of the Basic Safety Standards is based on the presumption that national infrastructures are in place to enable governments to discharge their responsibilities for radiation protection and safety. Requirements relating to the legal and governmental infrastructure for the safety of nuclear facilities and sources of ionizing radiation, radiation protection, the safe management of radioactive waste and the safe transport of radioactive material are established in the Safety Requirements on Legal and Governmental Infrastructure for Nuclear, Radiation, Radioactive Waste and Transport Safety, Safety Standards Series No. GS-R-1. This Safety Guide, which is jointly sponsored by the FAO, the IAEA, the International Labour Office, the PAHO and the WHO, gives detailed guidance on the key elements for the organization and operation of a national regulatory infrastructure for radiation safety, with particular reference to the functions of the national regulatory body that are necessary to ensure the implementation of the Basic Safety Standards. The Safety Guide is based technically on material first published in IAEA-TECDOC-10671, which was jointly sponsored by the FAO, the IAEA, the OECD/NEA, the PAHO and the WHO. The requirements established in GS-R-1 have been taken into account. The Safety Guide is oriented towards national

  11. Radiation safety systems at the NSLS

    International Nuclear Information System (INIS)

    Dickinson, T.

    1987-04-01

    This report describes design principles that were used to establish the radiation safety systems at the National Synchrotron Light Source. The author described existing safety systems and the history of partial system failures. 1 fig

  12. Radiation safety for decommissioning projects

    International Nuclear Information System (INIS)

    Ross, A.C.

    1999-01-01

    Decommissioning of redundant nuclear facilities is a growth area in the UK at the present time. NUKEM Nuclear Limited is a leading-edge nuclear decommissioning and waste management contractor (with its own in-house health physics and safety department), working for a variety of clients throughout the UK nuclear industry. NUKEM Nuclear is part of the prestigious, international NUKEM group, a world-class organization specializing in nuclear engineering and utilities technologies. NUKEM Nuclear is involved in a number of large, complex decommissioning projects, both in its own right and as part of consortia. This paper explores the challenges presented by such projects and the interfaces of contractor, client and subcontractors from the point of view of a radiation protection adviser. (author)

  13. Radiation safety and vascular access: attitudes among cardiologists worldwide

    Energy Technology Data Exchange (ETDEWEB)

    Vidovich, Mladen I., E-mail: miv@uic.edu [Department of Medicine, Division of Cardiology, University of Illinois at Chicago, Chicago, Illinois (United States); Khan, Asrar A. [Department of Medicine, Division of Cardiology, University of Illinois at Chicago, Chicago, Illinois (United States); Xie, Hui [Division of Epidemiology and Biostatistics and Cancer Center, University of Illinois at Chicago, Chicago, Illinois (United States); Shroff, Adhir R. [Department of Medicine, Division of Cardiology, University of Illinois at Chicago, Chicago, Illinois (United States)

    2015-03-15

    Objectives: To determine opinions and perceptions of interventional cardiologists on the topic of radiation and vascular access choice. Background: Transradial approach for cardiac catheterization has been increasing in popularity worldwide. There is evidence that transradial access (TRA) may be associated with increasing radiation doses compared to transfemoral access (TFA). Methods: We distributed a questionnaire to collect opinions of interventional cardiologists around the world. Results: Interventional cardiologists (n = 5332) were contacted by email to complete an on-line survey from September to October 2013. The response rate was 20% (n = 1084). TRA was used in 54% of percutaneous coronary interventions (PCIs). Most TRAs (80%) were performed with right radial access (RRA). Interventionalists perceived that TRA was associated with higher radiation exposure compared to TFA and that RRA was associated with higher radiation exposure that left radial access (LRA). Older interventionalists were more likely to use radiation protection equipment and those who underwent radiation safety training gave more importance to ALARA (as low as reasonably achievable). Nearly half the respondents stated they would perform more TRA if the radiation exposure was similar to TFA. While interventionalists in the United States placed less importance to certain radiation protective equipment, European operators were more concerned with physician and patient radiation. Conclusions: Interventionalists worldwide reported higher perceived radiation doses with TRA compared to TFA and RRA compared to LRA. Efforts should be directed toward encouraging consistent radiation safety training. Major investment and application of novel radiation protection tools and radiation dose reduction strategies should be pursued. - Highlights: • We examined radiation safety and arterial access practices among 1000 cardiologists. • Radial access is perceived as having higher radiation dose compared to

  14. Development of safety performance indicators for HANARO

    International Nuclear Information System (INIS)

    Wu, Jong-Sup; Jung, Hoan-Sung; Ahn, Guk-Hoon; Lee, Kye-Hong; Lim, In-Cheol

    2007-01-01

    has made an effort to select operational safety performance indicators which are specific for a research reactor operation and utilization. The main frame is nearly the same structure recommended by IAEA-TECDOC-1141 except for the attitude of reactor utilization for a research and an application. The measuring elements of the HANARO Operational Safety Performance consist of 4 safety attitudes, 10 overall indicators, 22 strategic indicators and 42 specific indicators. The operational safety attitudes of HANARO include following categories; . Plant operates smoothly B. Plant operates with low risk C. Plant operates with a positive safety attitude D. Plant operates with a safe utilization. 42 specific indicators were selected to cover the most adequate parameters to monitor the safety attributes in HANARO. Through reviewing these indicators, we can obtain the following information; Plant safety status; - Safety parameter trends; - Safety information, for example, reactor operation status and radiation safety. These indicators will be very useful to review and evaluate the safety performance of the reactor operation and utilization. We will continuously pursue the trends of the operational safety attitudes for an effective safety management of HANARO. (author)

  15. Radiation safety requirements for radionuclide laboratories

    International Nuclear Information System (INIS)

    1993-01-01

    In accordance with the section 26 of the Finnish Radiation Act (592/91) the safety requirements to be taken into account in planning laboratories and other premises, which affect safety in the use of radioactive materials, are confirmed by the Finnish Centre for Radiation and Nuclear Safety. The guide specifies the requirements for laboratories and storage rooms in which radioactive materials are used or stored as unsealed sources. There are also some general instructions concerning work procedures in a radionuclide laboratory

  16. Radiation safety in welding and testing

    International Nuclear Information System (INIS)

    King, B.E.; Malaxos, M.; Hartley, B.M.

    1985-01-01

    There are a number of ways of achieving radiation safety in the workplace. The first is by engineering radiation safety into the equipment, providing shielded rooms and safety interlocks. The second is by following safe working procedures. The National Health and Medical Research Council's Code of practice for the control and safe handling of sealed radioactive sources used in industrial radiography (1968) sets out the standards which must be met by equipment to be used in industrial radiography

  17. Radiation protection and safety infrastructures in Albania

    International Nuclear Information System (INIS)

    Paci, Rustem; Ylli, Fatos

    2008-01-01

    The paper intends to present the evolution and actual situation of radiation protection and safety infrastructure in Albania, focusing in its establishing and functioning in accordance with BBS and other important documents of specialized international organizations. There are described the legal framework of radiation safety, the regulatory authority, the services as well the practice of their functioning. The issue of the establishing and functioning of the radiation safety infrastructure in Albania was considered as a prerequisite for a good practices development in the peaceful uses of radiation sources . The existence of the adequate legislation and the regulatory authority, functioning based in the Basic Safety Standards (BSS), are the necessary condition providing the fulfilment of the most important issues in the mentioned field. The first document on radiation protection in Albania stated that 'for the safe use of radiation sources it is mandatory that the legal person should have a valid permission issued by Radiation Protection Commission'. A special organ was established in the Ministry of Health to supervise providing of the radiation protection measures. This organization of radiation protection showed many lacks as result of the low efficiency . The personnel monitoring, import, transport, waste management and training of workers were in charge of Institute of Nuclear Physics (INP). In 1992 an IAEA RAPAT mission visited Albania and proposed some recommendations for radiation protection improvements. The mission concluded that 'the legislation of the radiation protection should be developed'. In 1995 Albania was involved in the IAEA Model Project 'Upgrading of Radiation Protection Infrastructure'. This project, which is still in course, intended to establish the modern radiation safety infrastructures in the countries with low efficiency ones and to update and upgrade all aspects related with radiation safety: legislation and regulations, regulatory

  18. Recent trends in particle accelerator radiation safety

    International Nuclear Information System (INIS)

    Ohnesorge, W.F.; Butler, H.M.

    1974-01-01

    The use of particle accelerators in applied and research activities continues to expand, bringing new machines with higher energy and current capabilities which create radiation safety problems not commonly encountered before. An overview is given of these increased ionizing radiation hazards, along with a discussion of some of the new techniques required in evaluating and controlling them. A computer search of the literature provided a relatively comprehensive list of publications describing accelerator radiation safety problems and related subjects

  19. Maintenance of radiation safety information system

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Ho Sun [Korea Institute of Nuclear Safety, Taejon (Korea, Republic of); Park, Moon Il; Chung, Chong Kyu; Lim, Bock Soo; Kim, Hyung Uk; Chang, Kwang Il; Nam, Kwan Hyun; Cho, Hye Ryan [AD center incubation LAB, Taejon (Korea, Republic of)

    2001-12-15

    The objectives of radiation safety information system maintenance are to maintain the requirement of users, change of job process and upgrade of the system performance stably and effectively while system maintenance. We conduct the code of conduct recommended by IAEA, management of radioisotope inventory database systematically using analysis for the state of inventory database integrated in this system. This system and database will be support the regulatory guidance, rule making and information to the MOST, KINS, other regulatory related organization and general public optimizationally.

  20. Operational Safety Performance Indicators and Balanced Scorecard in HANARO

    International Nuclear Information System (INIS)

    Wu, Jong-Sup; Jung, Hoan-Sung; Ahn, Guk-Hoon; Lee, Kye-Hong; Lim, In-Cheol; Kim, Hark-Rho

    2007-01-01

    Research reactors need an extensive basis for ensuring their safety. The importance of a safety management in nuclear facilities and activities has been emphasized. The safety activities in HANARO have been continuously conducted to enhance its safe operation. Last year, HANARO prepared two indicator sets to measure and assess the safety status of the reactor's operation and utilization. One is Safety Performance Indicators (SPI) and the other is Balanced Scorecard (BSC). Through reviewing these indicators, we can obtain the following information; - Plant safety status - Safety parameter trends - Safety information, for example, reactor operation status and radiation safety HANARO will continuously pursue the trends of SPI and BSC

  1. Radiation and waste safety: Strengthening national capabilities

    International Nuclear Information System (INIS)

    Barretto, P.; Webb, G.; Mrabit, K.

    1997-01-01

    For many years, the IAEA has been collecting information on national infrastructures for assuring safety in applications of nuclear and radiation technologies. For more than a decade, from 1984-95, information relevant to radiation safety particularly was obtained through more than 60 expert missions undertaken by Radiation Protection Advisory Teams (RAPATs) and follow-up technical visits and expert missions. The RAPAT programme documented major weaknesses and the reports provided useful background for preparation of national requests for IAEA technical assistance. Building on this experience and subsequent policy reviews, the IAEA took steps to more systematically evaluate the needs for technical assistance in areas of nuclear and radiation safety. The outcome was the development of an integrated system designed to more closely assess national priorities and needs for upgrading their infrastructures for radiation and waste safety

  2. Radiation safety and regulatory aspects in Medical Facilities

    International Nuclear Information System (INIS)

    Banerjee, Sharmila

    2017-01-01

    Radiation safety and regulatory aspect of medical facilities are relevant in the context where radiation is used in providing healthcare to human patients. These include facilities, which carry out radiological procedures in diagnostic radiology, including dentistry, image-guided interventional procedures, nuclear medicine, and radiation therapy. The safety regulations provide recommendations and guidance on meeting the requirements for the safe use of radiation in medicine. The different safety aspects which come under its purview are the personnel involved in medical facilities where radiological procedures are performed which include the medical practitioners, radiation technologists, medical physicists, radiopharmacists, radiation protection and over and above all the patients. Regulatory aspects cover the guidelines provided by ethics committees, which regulate the administration of radioactive formulation in human patients. Nuclear medicine is a modality that utilizes radiopharmaceuticals either for diagnosis of physiological disorders related to anatomy, physiology and patho-physiology and for diagnosis and treatment of cancer

  3. Radiation safety management system in a radioactive facility

    International Nuclear Information System (INIS)

    Amador, Zayda H.

    2008-01-01

    Full text: This paper illustrates the Cuban experience in implementing and promoting an effective radiation safety system for the Centre of Isotopes, the biggest radioactive facility of our country. Current management practice demands that an organization inculcate culture of safety in preventing radiation hazard. The aforementioned objectives of radiation protection can only be met when it is implemented and evaluated continuously. Commitment from the workforce to treat safety as a priority and the ability to turn a requirement into a practical language is also important to implement radiation safety policy efficiently. Maintaining and improving safety culture is a continuous process. There is a need to establish a program to measure, review and audit health and safety performance against predetermined standards. All those areas of the radiation protection program are considered (e.g. licensing and training of the staff, occupational exposure, authorization of the practices, control of the radioactive material, radiological occurrences, monitoring equipment, radioactive waste management, public exposure due to airborne effluents, audits and safety costs). A set of indicators designed to monitor key aspects of operational safety performance are used. Their trends over a period of time are analyzed with the modern information technologies, because this can provide an early warning to plant management for searching causes behind the observed changes. In addition to analyze the changes and trends, these indicators are compared against identified targets and goals to evaluate performance strengths and weaknesses. A structured and proper radiation self-auditing system is seen as a basic requirement to meet the current and future needs in sustainability of radiation safety. The integrated safety management system establishment has been identified as a goal and way for the continuous improvement. (author)

  4. Challenges in strengthening radiation safety and security programme in Malaysia

    International Nuclear Information System (INIS)

    Noriah, M.A.

    2010-01-01

    This paper illustrates the Malaysian experience in implementing steps in strengthening radiation safety and security through certification of radiation safety personnel, which is dedicated to meet the current and future needs in sustainability of radiation safety and security systems. Commitment from the workforce to treat safety as a priority and the ability to turn a requirement into a practical language is also important in implementing the radiation safety policy efficiently. Through this effort, we are able to create a basis for adequate protection of workers, the public and the environment and encourage licensees to manage radiation safety and security based on performance, and not on compliance culture, with the final objective of professing a safety culture through self regulation. This will certainly benefit an organisation with ultimate goals are to continuously strive for a healthy, accident free and environmentally sound workplace and community, while providing the technical support needed to meet the national mission. This will strengthen the radiation safety and security programme and could be used to assist in manpower development once Malaysia makes the decision to embark on a nuclear power programme. (author)

  5. Improving patient safety in radiation oncology

    International Nuclear Information System (INIS)

    Hendee, William R.; Herman, Michael G.

    2011-01-01

    Beginning in the 1990s, and emphasized in 2000 with the release of an Institute of Medicine report, healthcare providers and institutions have dedicated time and resources to reducing errors that impact the safety and well-being of patients. But in January 2010 the first of a series of articles appeared in the New York Times that described errors in radiation oncology that grievously impacted patients. In response, the American Association of Physicists in Medicine and the American Society of Radiation Oncology sponsored a working meeting entitled ''Safety in Radiation Therapy: A Call to Action''. The meeting attracted 400 attendees, including medical physicists, radiation oncologists, medical dosimetrists, radiation therapists, hospital administrators, regulators, and representatives of equipment manufacturers. The meeting was cohosted by 14 organizations in the United States and Canada. The meeting yielded 20 recommendations that provide a pathway to reducing errors and improving patient safety in radiation therapy facilities everywhere.

  6. Efficacy of a radiation safety education initiative in reducing radiation exposure in the pediatric IR suite

    International Nuclear Information System (INIS)

    Sheyn, David D.; Racadio, John M.; Patel, Manish N.; Racadio, Judy M.; Johnson, Neil D.; Ying, Jun

    2008-01-01

    The use of ionizing radiation is essential for diagnostic and therapeutic imaging in the interventional radiology (IR) suite. As the complexity of procedures increases, radiation exposure risk increases. We believed that reinforcing staff education and awareness would help optimize radiation safety. To evaluate the effect of a radiation safety education initiative on IR staff radiation safety practices and patient radiation exposure. After each fluoroscopic procedure performed in the IR suite during a 4-month period, dose-area product (DAP), fluoroscopy time, and use of shielding equipment (leaded eyeglasses and hanging lead shield) by IR physicians were recorded. A lecture and article were then given to IR physicians and technologists that reviewed ALARA principles for optimizing radiation dose. During the following 4 months, those same parameters were recorded after each procedure. Before education 432 procedures were performed and after education 616 procedures were performed. Physician use of leaded eyeglasses and hanging shield increased significantly after education. DAP and fluoroscopy time decreased significantly for uncomplicated peripherally inserted central catheters (PICC) procedures and non-PICC procedures after education, but did not change for complicated PICC procedures. Staff radiation safety education can improve IR radiation safety practices and thus decrease exposure to radiation of both staff and patients. (orig.)

  7. Radiation safety in nuclear medicine procedures

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Sang Geon; Kim, Ja Hae; Song, Ho Chun [Dept. of Nuclear Medicine, Medical Radiation Safety Research Center, Chonnam National University Hospital, Gwangju (Korea, Republic of)

    2017-03-15

    Since the nuclear disaster at the Fukushima Daiichi Nuclear Power Plant in 2011, radiation safety has become an important issue in nuclear medicine. Many structured guidelines or recommendations of various academic societies or international campaigns demonstrate important issues of radiation safety in nuclear medicine procedures. There are ongoing efforts to fulfill the basic principles of radiation protection in daily nuclear medicine practice. This article reviews important principles of radiation protection in nuclear medicine procedures. Useful references, important issues, future perspectives of the optimization of nuclear medicine procedures, and diagnostic reference level are also discussed.

  8. Radiation safety in nuclear medicine procedures

    International Nuclear Information System (INIS)

    Cho, Sang Geon; Kim, Ja Hae; Song, Ho Chun

    2017-01-01

    Since the nuclear disaster at the Fukushima Daiichi Nuclear Power Plant in 2011, radiation safety has become an important issue in nuclear medicine. Many structured guidelines or recommendations of various academic societies or international campaigns demonstrate important issues of radiation safety in nuclear medicine procedures. There are ongoing efforts to fulfill the basic principles of radiation protection in daily nuclear medicine practice. This article reviews important principles of radiation protection in nuclear medicine procedures. Useful references, important issues, future perspectives of the optimization of nuclear medicine procedures, and diagnostic reference level are also discussed

  9. Effective education in radiation safety for nurses

    International Nuclear Information System (INIS)

    Ohno, K.; Kaori, T.

    2011-01-01

    In order to establish an efficient training program of radiation safety for nurses, studies have been carried out on the basis of questionnaires. Collaboration of nurses, who are usually standing closest to the patient, is necessary in order to offer safe radiological diagnostics/treatment. The authors distributed the questionnaire to 134 nurses in five polyclinic hospitals in Japan. Important questions were: fear of radiation exposure, knowledge on the radiation treatment, understanding the impact on pregnancy, and so on. Most of the nurses feel themselves uneasy against exposure to radiation. They do not have enough knowledge of radiological treatment. They do not know exactly what is the impact of the radiation on pregnant women. Such tendency is more pronounced, when nurses spend less time working in the radiological department. Nurses play important roles in radiological diagnostics/treatment. Therefore, a well-developed education system for radiation safety is essential. The training for the radiation safety in medicine should be done in the context of general safety in medicine. Education programs in undergraduate school and at the working place should be coordinated efficiently in order to ensure that both nurses and patients are informed about the meaning of radiation safety. (authors)

  10. Interface between radiation protection and nuclear safety

    International Nuclear Information System (INIS)

    Bengtsson, G.; Hoegberg, L.

    1991-01-01

    Interface issues concern the character and management of overlaps between radiation protection and nuclear safety in nuclear power plants. Typical examples include the selection of inspection and maintenance volumes in order to balance occupational radiation doses versus the safety status of the plant, and the intentional release to the environment in the course of an accident in order to secure better plant control. The paper discusses whether it is desirable and possible to employ a consistent management of interface issues with trade-offs between nuclear safety and radiation protection. Illustrative examples are quoted from a major Nordic research programme on risk analysis and safety rationale. These concern for instance in-service inspections, modifications of plant systems and constructions after the plant has been taken into operation, and studies on the limitations of probabilistic safety assessment. They indicate that in general there are no simple rules for such trade-offs

  11. Systematic approach to training for competence building in radiation safety

    International Nuclear Information System (INIS)

    Asiamah, S.D.; Schandorf, C.; Darko, E.O.

    2003-01-01

    Competence building involves four main attributes, namely, knowledge, skills, operating experience and attitude to radiation safety. These multi-attribute requirements demand a systematic approach to education and training of regulatory staff, licensees/registrants and service providers to ensure commensurate competence in performance of responsibilities and duties to specified standards. In order to address issues of competencies required in radiation safety a national programme for qualification and certification has been initiated for regulatory staff, operators, radiation safety officers and qualified experts. Since the inception of this programme in 1993, 40 training events have been organized involving 423 individuals. This programme is at various levels of implementation due to financial and human resource constraints. A department for Human Resource Development and Research was established in 2000 to enhance and ensure the sustainability of the effectiveness of capacity building in radiation safety. (author)

  12. Radiation Safety in Industrial Radiography. Specific Safety Guide (Spanish Edition)

    International Nuclear Information System (INIS)

    2013-01-01

    This Safety Guide provides recommendations for ensuring radiation safety in industrial radiography used in non-destructive testing. This includes industrial radiography work that utilizes X ray and gamma sources, both in shielded facilities that have effective engineering controls and in outside shielded facilities using mobile sources. Contents: 1. Introduction; 2. Duties and responsibilities; 3. Safety assessment; 4. Radiation protection programme; 5. Training and qualification; 6. Individual monitoring of workers; 7. Workplace monitoring; 8. Control of radioactive sources; 9. Safety of industrial radiography sources and exposure devices; 10. Radiography in shielded enclosures; 11. Site radiography; 12. Transport of radioactive sources; 13. Emergency preparedness and response; Appendix: IAEA categorization of radioactive sources; Annex I: Example safety assessment; Annex II: Overview of industrial radiography sources and equipment; Annex III: Examples of accidents in industrial radiography

  13. Radiation Safety in Industrial Radiography. Specific Safety Guide

    International Nuclear Information System (INIS)

    2011-01-01

    This Safety Guide provides recommendations for ensuring radiation safety in industrial radiography used in non-destructive testing. This includes industrial radiography work that utilizes X ray and gamma sources, both in shielded facilities that have effective engineering controls and in outside shielded facilities using mobile sources. Contents: 1. Introduction; 2. Duties and responsibilities; 3. Safety assessment; 4. Radiation protection programme; 5. Training and qualification; 6. Individual monitoring of workers; 7. Workplace monitoring; 8. Control of radioactive sources; 9. Safety of industrial radiography sources and exposure devices; 10. Radiography in shielded enclosures; 11. Site radiography; 12. Transport of radioactive sources; 13. Emergency preparedness and response; Appendix: IAEA categorization of radioactive sources; Annex I: Example safety assessment; Annex II: Overview of industrial radiography sources and equipment; Annex III: Examples of accidents in industrial radiography.

  14. Radiation Safety in Industrial Radiography. Specific Safety Guide (French Edition)

    International Nuclear Information System (INIS)

    2013-01-01

    This Safety Guide provides recommendations for ensuring radiation safety in industrial radiography used in non-destructive testing. This includes industrial radiography work that utilizes X ray and gamma sources, both in … shielded facilities that have effective engineering controls and in outside shielded facilities using mobile sources. Contents: 1. Introduction; 2. Duties and responsibilities; 3. Safety assessment; 4. Radiation protection programme; 5. Training and qualification; 6. Individual monitoring of workers; 7. Workplace monitoring; 8. Control of radioactive sources; 9. Safety of industrial radiography sources and exposure devices; 10. Radiography in shielded enclosures; 11. Site radiography; 12. Transport of radioactive sources; 13. Emergency preparedness and response; Appendix: IAEA categorization of radioactive sources; Annex I: Example safety assessment; Annex II: Overview of industrial radiography sources and equipment; Annex III: Examples of accidents in industrial radiography

  15. Radiation Safety in Industrial Radiography. Specific Safety Guide (Arabic Edition)

    International Nuclear Information System (INIS)

    2012-01-01

    This Safety Guide provides recommendations for ensuring radiation safety in industrial radiography used in non-destructive testing. This includes industrial radiography work that utilizes X ray and gamma sources, both in shielded facilities that have effective engineering controls and outside shielded facilities using mobile sources. Contents: 1. Introduction; 2. Duties and responsibilities; 3. Safety assessment; 4. Radiation protection programme; 5. Training and qualification; 6. Individual monitoring of workers; 7. Workplace monitoring; 8. Control of radioactive sources; 9. Safety of industrial radiography sources and exposure devices; 10. Radiography in shielded enclosures; 11. Site radiography; 12. Transport of radioactive sources; 13. Emergency preparedness and response; Appendix: IAEA categorization of radioactive sources; Annex I: Example safety assessment; Annex II: Overview of industrial radiography sources and equipment; Annex III: Examples of accidents in industrial radiography.

  16. AFROSAFE Championing Radiation Safety in Africa

    International Nuclear Information System (INIS)

    Nyabanda, R.

    2015-01-01

    AFRASAFE is a campaign that was formed by Pan African congress of Radiology and imaging (PACOR) and other radiation health workers in Africa in Feb 2015. Its main objective is to unite with a common goal to identify and address issues arising from radiation protection in medicine in Africa. Through this campaign, we state that we shall promote adherence to policies, strategies and activities for the promotion of radiation safety and for maximization of benefits from radiological medical procedures. The campaign strengthens the overall radiation protection of patients, health workers and public. It promotes safe and appropriate use of ionizing radiation in medicine and enhances global information to help improve the benefit/risk dialogue with patients and the public. It enhances the safety and quality of radiological procedures in medicine, and encourages safety in diagnostic and therapeutic equipment and facilities. The issue of research in radiation protection and safety needs to be promoted. This presentation will outline the six strategic objectives and the implementation tools for radiation safety in medicine in Kenya, the challenges and way forward to achieve our goal. (Author)

  17. Dictionnary for radiation safety terminology

    International Nuclear Information System (INIS)

    1980-01-01

    The dictionnary of radiation protection terms has been compiled by CMEA member-country specialists under the auspisious of Scientific-Technical Council for Radiation Protection of the Permanent Commision for Peaceful Atomic Energy Applications as a means for better mutual understanding in collaborative activities. The dictionnary incorporates, along with Russian terms, the corresponding ones in the official languages of CMEA member-countries who participated in its compiling: Bulgarian, Hungarian, German, Spanish, Polish, Roumanian, Czech as well as English. The dictionnary consists of three sections: 1) Ionizing radiation; 2) Ionizing radiation interaction with materials. Ionizing radiation dosimetry; 3) Radiation protection. The first section contains 16 terms, the second - 25, the third - 110. The terms within the section are arranged in sense sequences

  18. Radiation Protection, Nuclear Safety and Security

    International Nuclear Information System (INIS)

    Faye, Ndeye Arame Boye; Ndao, Ababacar Sadikhe; Tall, Moustapha Sadibou

    2014-01-01

    Senegal has put in place a regulatory framework which allows to frame legally the use of radioactive sources. A regulatory authority has been established to ensure its application. It is in the process of carrying out its regulatory functions. It cooperates with appropriate national or international institutions operating in fields related to radiation protection, safety and nuclear safety.

  19. Winning public confidence in radiation safety standards

    International Nuclear Information System (INIS)

    Skelcher, B.W.

    1982-01-01

    Evaluations using cost/benefit analysis and the ALARA principle should take account of psychological as well as material considerations. Safety is a basic human need which has to be met. It is also subjective and therefore has to be understood by the individual. The professional health physicist has a duty to see that radiation safety is understood by the general public. (author)

  20. Radiation Safety (General) Regulations 1983 (Western Australia)

    International Nuclear Information System (INIS)

    1983-01-01

    The provisions of the Regulations cover, inter alia, the general precautions and requirements relating to radiation safety of the public and radiation workers and registration of irradiating apparatus or premises on which such apparatus is operated. In addition, the Regulations set forth requirements for the operation of such apparatus and for the premises involved. (NEA) [fr

  1. Health effects of radiation and the implications for radiation safety

    International Nuclear Information System (INIS)

    Gonzalez, A.J.; Anderer, J.

    1991-01-01

    In this Paper two elements of a multiphase analysis of radiation exposures in the living environment - the human health effects of ionizing radiation and the implications for radiation safety policy and practices - are presented. Part 1 draws together the current state of scientific knowledge and insight about the human health effects of radiation, describing these in terms of known cause-related deterministic effects and of the estimated incidence of stochastic effects as defined by biostatistics and biological models. The 1988 UNSCEAR report provides an authoritative basis for such an examination. Part 2 explores some of the major implications that the state-of-the-art of radiation biology has - or should have - for radiation safety policy and practices. (author)

  2. Safety Culture on radiation protection

    International Nuclear Information System (INIS)

    Sollet, E.

    1996-01-01

    It can be defined radiation protection culture as the set of technical and social standards applied to the management of the operation of a nuclear facility concerning the reduction of the exposure to radiation of workers and members of the public, together with the behaviour and attitudes of the individuals from the organization towards that objective. Because the basic principles of radiation protection are self-evident and are totally justified, and the thesis drawn from the article is that no effective radiation protection culture yet exists within the organization, it must be concluded that what is wrong from the system are the attitudes and behavior of the individuals. In this article some factors and elements needed to motivate all persons within the organization towards the creation of a radiation protection culture are delineated and presented. (Author)

  3. Moon manned missions radiation safety analysis

    Science.gov (United States)

    Tripathi, R. K.; Wilson, J. W.; de Anlelis, G.; Badavi, F. F.

    , from very simple shelters to more complex bases, are considered in full detail (e.g., shape, thickness, materials, etc) with considerations of various shielding strategies. In this first analysis all the shape considered are cylindrical or composed of combination of cylinders. Moreover, a radiation safety analysis of more future possible habitats like lava tubes has been also performed.

  4. Radiation safety in X-ray facilities

    International Nuclear Information System (INIS)

    2001-09-01

    The guide specifies the radiation safety requirements for structural shielding and other safety arrangements used in X-ray facilities in medical and veterinary X-ray activities and in industry, research and education. The guide is also applicable to premises in which X-ray equipment intended for radiation therapy and operating at a voltage of less than 25 kV is used. The guide applies to new X-ray facilities in which X-ray equipment that has been used elsewhere is transferred. The radiation safety requirements for radiation therapy X-ray devices operating at a voltage exceeding 25 kV, and for the premices in which such devices are used, are set out in Guide ST 2.2

  5. Radiation safety in X-ray facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-09-01

    The guide specifies the radiation safety requirements for structural shielding and other safety arrangements used in X-ray facilities in medical and veterinary X-ray activities and in industry, research and education. The guide is also applicable to premises in which X-ray equipment intended for radiation therapy and operating at a voltage of less than 25 kV is used. The guide applies to new X-ray facilities in which X-ray equipment that has been used elsewhere is transferred. The radiation safety requirements for radiation therapy X-ray devices operating at a voltage exceeding 25 kV, and for the premices in which such devices are used, are set out in Guide ST 2.2.

  6. Radiation protection and safety in industrial radiography

    International Nuclear Information System (INIS)

    1999-01-01

    The use of ionizing radiation, particularly in medicine and industry, is growing throughout the world, with further expansion likely as technical developments result from research. One of the longest established applications of ionizing radiation is industrial radiography, which uses both X radiation and gamma radiation to investigate the integrity of equipment and structures. Industrial radiography is widespread in almost all Member States. It is indispensable to the quality assurance required in modern engineering practice and features in the work of multinational companies and small businesses alike. Industrial radiography is extremely versatile. The equipment required is relatively inexpensive and simple to operate. It may be highly portable and capable of being operated by a single worker in a wide range of different conditions, such as at remote construction sites, offshore locations and cross-country pipelines as well as in complex fabrication facilities. The associated hazards demand that safe working practices be developed in order to minimize the potential exposure of radiographers and other persons who may be in the vicinity of the work. The use of shielded enclosures (fixed facilities), with effective safety devices, significantly reduces any radiation exposures arising from the work. This Safety Report summarizes good and current state of the art practices in industrial radiography and provides technical advice on radiation protection and safety. It contains information for Regulatory Authorities, operating organizations, workers, equipment manufacturers and client organizations, with the intention of explaining their responsibilities and means to enhance radiation protection and safety in industrial radiography

  7. Space radiation and astronaut safety

    CERN Document Server

    Seedhouse, Erik

    2018-01-01

    This brief explores the biological effects of long-term radiation on astronauts in deep space. As missions progress beyond Earth's orbit and away from the protection of its magnetic shielding, astronauts risk constant exposure to higher levels of galactic cosmic rays and solar particle events. The text concisely addresses the full spectrum of biomedical consequences from exposure to space radiation and goes on to present possible ways to mitigate such dangers and protect astronauts within the limitations of existing technologies.

  8. Radiation safety aspects at Indus accelerator complex

    International Nuclear Information System (INIS)

    Marathe, R.G.

    2011-01-01

    Indus Accelerator Complex at Raja Ramanna Center for Advanced Technology houses two synchrotron radiation sources Indus-1 and Indus-2 that are being operated round-the-clock to cater to the needs of the research community. Indus-1 is a 450 MeV electron storage ring and Indus-2 is presently being operated with electrons stored at 2 GeV. Bremsstrahlung radiation and photo-neutrons form the major radiation environment in Indus Accelerator Complex. They are produced due to loss of electron-beam occurring at different stages of operation of various accelerators located in the complex. The synchrotron radiation (SR) also contributes as a potential hazard. In order to ensure safety of synchrotron radiation users and operation and maintenance staff working in the complex from this radiation, an elaborate radiation safety system is in place. The system comprises a Personnel Protection System (PPS) and a Radiation Monitoring System (RMS). The PPS includes zoning, radiation shielding, door interlocks, a search and scram system and machine operation trip-interlocks. The RMS consists of area radiation monitors and beam loss monitors, whose data is available online in the Indus control room. Historical data of radiation levels is also available for data analysis. Synchrotron radiation beamlines at Indus-2 are handled in a special manner owing to the possibility of exposure to synchrotron radiation. Shielding hutches with SR monitors are installed at each beamline of Indus-2. Health Physics Unit also carries out regular radiological surveillance for photons and neutrons during various modes of operation and data is logged shift wise. The operation staff is appropriately trained and qualified as per the recommendations of Atomic Energy Regulatory Board (AERB). Safety training is also imparted to the beamline users. Safe operation procedures and operation checklists are being followed strictly. A radiation instrument calibration facility is also being set-up at RRCAT. The radiation

  9. Integration of radiation and physical safety in large radiator facilities

    International Nuclear Information System (INIS)

    Lima, P.P.M.; Benedito, A.M.; Lima, C.M.A.; Silva, F.C.A. da

    2017-01-01

    Growing international concern about radioactive sources after the Sept. 11, 2001 event has led to a strengthening of physical safety. There is evidence that the illicit use of radioactive sources is a real possibility and may result in harmful radiological consequences for the population and the environment. In Brazil there are about 2000 medical, industrial and research facilities with radioactive sources, of which 400 are Category 1 and 2 classified by the - International Atomic Energy Agency - AIEA, where large irradiators occupy a prominent position due to the very high cobalt-60 activities. The radiological safety is well established in these facilities, due to the intense work of the authorities in the Country. In the paper the main aspects on radiological and physical safety applied in the large radiators are presented, in order to integrate both concepts for the benefit of the safety as a whole. The research showed that the items related to radiation safety are well defined, for example, the tests on the access control devices to the irradiation room. On the other hand, items related to physical security, such as effective control of access to the company, use of safety cameras throughout the company, are not yet fully incorporated. Integration of radiation and physical safety is fundamental for total safety. The elaboration of a Brazilian regulation on the subject is of extreme importance

  10. WE-F-209-02: Radiation Safety Surveys of Linear Accelerators

    International Nuclear Information System (INIS)

    Martin, M.

    2016-01-01

    Over the past few years, numerous Accreditation Bodies, Regulatory Agencies, and State Regulations have implemented requirements for Radiation Safety Surveys following installation or modification to x-ray rooms. The objective of this session is to review best practices in performing radiation safety surveys for both Therapy and Diagnostic installations, as well as a review of appropriate survey instruments. This session will be appropriate for both therapy and imaging physicists who are looking to increase their working knowledge of radiation safety surveys. Learning Objectives: Identify Appropriate Survey Meters for Radiation Safety Surveys Develop best practices for Radiation Safety Surveys for Therapy units that include common areas of concern. Develop best practices for Radiation Safety Surveys of Diagnostic and Nuclear Medicine rooms. Identify acceptable dose levels and the factors that affect the calculations associated with performing Radiation Safety Surveys.

  11. Ionising radiation safety training in the Australian defence organisation (ADO)

    International Nuclear Information System (INIS)

    Jenks, G.J.; O'Donovan, E.J.B.; Wood, W.B.

    1996-01-01

    Full text: Training personnel in ionising radiation safety within the Australian Defence Organisation (ADO) requires addressing some unique features of an organisation employing both military and civilian personnel. Activities may include those of a civil nature (such as industrial and medical radiography), specific military requirements (for training and emergency response) and scientific research and development. Some personnel may be assigned to full-time duties associated with radiation, while others may be designated as radiation protection officers in remote units with few duties to perform in this role. A further complication is that most military personnel are subjected to postings at regular intervals. The ADO's Directorate of Defence Occupational Health and Safety has established an Ionising Radiation Safety Subcommittee to monitor not only the adequacy of the internal Ionising Radiation Safety Manual but also the training requirements. A training course, responding to these requirements, has been developed to emphasise: basic radiation theory and protection; operation of radiation monitors available in the ADO; an understanding of the Safety Manual; day-to-day radiation safety in units and establishments; and appropriate responses to radiation accidents and emergencies. In addition, students are briefed on a limited number of peripheral topics and participate in some site visits. Currently, two Courses are held annually, each with about twenty students. Most of the material is presented by ADO personnel with external contractor support. The three Courses held to date have proved sufficiently successful, both for the students and the ADO generally, to seek national accreditation through the Australian National Training Authority and, as a first step, competency standards have been identified

  12. Radiation protection databases of nuclear safety regulatory authority

    International Nuclear Information System (INIS)

    Janzekovic, H.; Vokal, B.; Krizman, M.

    2003-01-01

    Radiation protection and nuclear safety of nuclear installations have a common objective, protection against ionising radiation. The operational safety of a nuclear power plant is evaluated using performance indicators as for instance collective radiation exposure, unit capability factor, unplanned capability loss factor, etc. As stated by WANO (World Association of Nuclear Operators) the performance indicators are 'a management tool so each operator can monitor its own performance and progress, set challenging goals for improvement and consistently compare performance with that of other plants or industry'. In order to make the analysis of the performance indicators feasible to an operator as well as to regulatory authorities a suitable database should be created based on the data related to a facility or facilities. Moreover, the international bodies found out that the comparison of radiation protection in nuclear facilities in different countries could be feasible only if the databases with well defined parameters are established. The article will briefly describe the development of international databases regarding radiation protection related to nuclear facilities. The issues related to the possible development of the efficient radiation protection control of a nuclear facility based on experience of the Slovenian Nuclear Safety Administration will be presented. (author)

  13. Radiation safety of soil moisture neutron probes

    International Nuclear Information System (INIS)

    Oresegun, M.O.

    2000-01-01

    The neutron probe measures sub-surface moisture in soil and other materials by means of high energy neutrons and a slow (thermal) neutron detector. Exposure to radiation, including neutrons, especially at high doses, can cause detrimental health effects. In order to achieve operational radiation safety, there must be compliance with protection and safety standards. The design and manufacture of commercially available neutron moisture gauges are such that risks to the health of the user have been greatly reduced. The major concern is radiation escape from the soil during measurement, especially under dry conditions and when the radius of influence is large. With appropriate work practices as well as good design and manufacture of gauges, recorded occupational doses have been well below recommended annual limits. It can be concluded that the use of neutron gauges poses not only acceptable health and safety risks but, in fact, the risks are negligible. Neutron gauges should not be classified as posing high potential health hazards. (author)

  14. The IAEA safety standards for radiation, waste and nuclear safety

    International Nuclear Information System (INIS)

    Gonzalez, Abel J.

    1997-01-01

    This paper presents a brief description of the standards for radiation, waste and nuclear safety established by the International Atomic Energy Agency (IAEA). It provides a historical overview of their development and also summarizes the standards' current preparation and review process. The final paragraphs offer an outlook on future developments. (author)

  15. Radiation safety and care of patients

    International Nuclear Information System (INIS)

    Das, B.K.; Noreen Norfaraheen Lee Abdullah

    2012-01-01

    The objective of this chapter is to acquaint the reader with radiation safety measures which can be pursued to minimize radiation load to the patient and staff. The basic principle is that all unnecessary administration should be avoided and a number of simple techniques be used to reduce radiation dose. For example, the kidney excretes many radionuclides. Drinking plenty of fluid and frequent bladder emptying can minimize absorbed dose to the bladder. Thyroid blocking agents must be used if radioactive iodine is being administered to avoid unnecessary radiation exposure to the thyroid gland. When it is necessary to administer radioactive substances to a female of childbearing age, the radiation exposure should be minimum and information whether the patient is pregnant or not must be obtained. Alternatives techniques, which do not involve ionizing radiation, should also be considered. (author)

  16. Investigation of status of safety management in radiation handle works

    International Nuclear Information System (INIS)

    Amauchi, Hiroshi; Nishimura, Kenji; Izumi, Kokichi

    2007-01-01

    This report describes the investigation in the title concerning the system for safety management and for accident prevention, which was done by a questionnaire in a period of 1.5 months in 2005. The questionnaire including 55 questions for safety management system, 33 for instruments and safety utilization of radiation and 57 for present status of safety management in high-risk radiation works, was performed in 780 hospitals, of which 313 answered. The first 55 questions concerned with the facility, patient identification, information exchange, management of private information, safety management activities, measures to prevent accident, manual preparation, personnel education and safety awareness; the second, with management of instruments, package insert, system for reporting the safety information, management of implants, re-imaging and radiation protection; and the third, with the systems for patients' emergency, in departments of CT/MR, of IVR, of nuclear diagnosis and of radiation therapy. Based on the results obtained, many problems, tasks and advices are presented to various items and further continuation of efforts to improve the present status is mentioned to be necessary. Details are given in the homepage of the Japanese Society of Radiological Technology. (T.I.)

  17. Radiation safety for site radiography

    International Nuclear Information System (INIS)

    1986-01-01

    This guidance is an update of the 1975 Code of Practice for Site Radiography and is for the use of employers and their radiographers who carry out site work. The subject is discussed under the following headings: Administrative organization, Personnel requirements, Equipment (x-ray and gamma-ray equipment, security, pipeline crawler equipment and safety equipment) Work methods and monitoring, Carriage of sources, Contingency plans, Legal considerations. (U.K.)

  18. Monitoring System For Improving Radiation Safety Management

    International Nuclear Information System (INIS)

    Osovizky, A.; Paran, J.; Tal, N.; Ankry, N.; Ashkenazi, B.; Tirosh, D.; Marziano, R.; Chisin, R.

    1999-01-01

    Medi SMARTS (Medical Survey Mapping Automatic Radiation Tracing System), a gamma radiation monitoring system, was installed in a nuclear medicine department. In this paper the evaluation of the system's ability to improve radiation safety management is presented. The system is based on a state of the art software that continuously collects on line radiation measurements for display, analysis and logging. Radiation is measured by GM tubes; the signal is transferred to a data processing unit and then via an RS-485 communication line to a computer. The system automatically identifies the detector type and its calibration factor, thus providing compatibility, maintainability and versatility when changing detectors. Radiation levels are displayed on the nuclear medicine department map at six locations. The system has been operating continuously for more than one year, documenting abnormal events caused by routine operation or failure incidents. In cases where abnormal working conditions were encountered, an alarm message was sent automatically to the supervisor via his tele-pager. An interesting issue observed during the system evaluation, was the inability to distinguish between high radiation levels caused by proper routine operation and those caused by safety failure incidents. The solution included examination of two parameters, radiation levels as well as their duration period. A careful analysis of the historical data, applying the appropriated combined parameters determined for each location, verified that such a system can identify abnormal events, provide alarms to warn in case of incidents and improve standard operating procedures

  19. Radiation (Safety Control) Ordinance 1978

    International Nuclear Information System (INIS)

    1978-01-01

    This Ordinance provides for the control, regulation, possession, use and transport of radioactive substance and irradiating apparatus. The Director of Health is responsible for administration of the Ordinance, which contains detailed provisions concerning the terms and conditions of licences, duties of licensees, medical examinations, maximum radiation doses, precautions to be taken to avoid exceeding such doses. The Ordinance also lays down a system of record-keeping and registration as well as packaging specifications for the transport of radioactive substances. (NEA) [fr

  20. Radiation safety and inventory of sealed radiation sources in Pakistan

    International Nuclear Information System (INIS)

    Ali, M.; Mannan, A.

    2001-01-01

    Sealed radiation sources (SRS) of various types and activities are widely used in industry, medicine, agriculture, research and teaching in Pakistan. The proper maintenance of records of SRS is mandatory for users/licensees. Since 1956, more than 2000 radiation sources of different isotopes having activities of Bq to TBq have been imported. Of these, several hundred sources have been disposed of and some have been exported/returned to the suppliers. To ensure the safety and security of the sources and to control and regulate the safe use of radiation sources in various disciplines, the Directorate of Nuclear Safety and Radiation Protection (DNSRP), the implementing arm of the regulatory authority in the country, has introduced a system for notifying, registering and licensing the use of all types of SRS. In order to update the inventory of SRS used throughout the country, the DNSRP has developed a database. (author)

  1. Regulatory Control of Radiation Sources. Safety Guide

    International Nuclear Information System (INIS)

    2009-01-01

    This Safety Guide is intended to assist States in implementing the requirements established in Safety Standards Series No. GS-R-1, Legal and Governmental Infrastructure for Nuclear, Radiation, Radioactive Waste and Transport Safety, for a national regulatory infrastructure to regulate any practice involving radiation sources in medicine, industry, research, agriculture and education. The Safety Guide provides advice on the legislative basis for establishing regulatory bodies, including the effective independence of the regulatory body. It also provides guidance on implementing the functions and activities of regulatory bodies: the development of regulations and guides on radiation safety; implementation of a system for notification and authorization; carrying out regulatory inspections; taking necessary enforcement actions; and investigating accidents and circumstances potentially giving rise to accidents. The various aspects relating to the regulatory control of consumer products are explained, including justification, optimization of exposure, safety assessment and authorization. Guidance is also provided on the organization and staffing of regulatory bodies. Contents: 1. Introduction; 2. Legal framework for a regulatory infrastructure; 3. Principal functions and activities of the regulatory body; 4. Regulatory control of the supply of consumer products; 5. Functions of the regulatory body shared with other governmental agencies; 6. Organization and staffing of the regulatory body; 7. Documentation of the functions and activities of the regulatory body; 8. Support services; 9. Quality management for the regulatory system.

  2. Safety instruction for execution tasks involving ionizing radiations

    International Nuclear Information System (INIS)

    Fonseca, G.

    1985-01-01

    Basic directives are presented allow operations with ionizing radiations in industrial areas with high levels of safety. Contractual, technical, operational and administrative criteria are established for the safe performance of x-rays and gamographies and the use of fixed radiation based equipment (indicators of level, density, flow, etc) as well as precautions to be taken during project, procurement, transportation, assembly and maintenance of such equipment. Finally procedures are suggested for emergencies involving radioactive sources. (author)

  3. Radiation safety standards : an environmentalist's approach

    International Nuclear Information System (INIS)

    Murthy, M.S.S.S.

    1977-01-01

    An integrated approach to the problem of environmental mutagenic hazards leads to the recommendation of a single dose-limit to the exposure of human beings to all man-made mutagenic agents including chemicals and radiation. However, because of lack of : (1) adequate information on chemical mutagens, (2) sufficient data on their risk estimates and (3) universally accepted dose-limites, control of chemical mutagens in the environment has not reached that advanced stage as that of radiation. In this situation, the radiation safety standards currently in use should be retained at their present levels. (M.G.B.)

  4. Radiation safety in Australia's mineral sands industry

    International Nuclear Information System (INIS)

    Hughes, W.

    1989-06-01

    This brochure is part of a training package aiming to explain in simple terms what radiation is, how it affects people's lives and how, in the specific case of the mineral sand industry, the risk of ill-effects from low-level radioactivity could be effectively guarded against by simple and easily followed safety precautions. ills

  5. Legal framework for a radiation safety infrastructure

    International Nuclear Information System (INIS)

    Bilbao, A.A.

    2000-01-01

    In this lecture the legal framework for a radiation safety infrastructure are presented. The objective of this lecture are: Legal framework; Regulatory programme; Role of Regulatory Authority in emergency situations; Assessment of the effectiveness of the regulatory programme; Cost effectiveness of the regulatory framework; and Priority actions

  6. International basic safety standards for protecting against ionizing radiation and for the safety of radiation sources

    International Nuclear Information System (INIS)

    1997-01-01

    The purpose of the Standards is to establish basic requirements for protection against the risks associated with exposure to ionizing radiation (hereinafter termed radiation) and for the safety of radiation sources that may deliver such exposure. The Standards have been developed from widely accepted radiation protection and safety principles, such as those published in the Annals of the ICRP and the IAEA Safety Series. They are intended to ensure the safety of all types of radiation sources and, in doing so, to complement standards already developed for large and complex radiation sources, such as nuclear reactors and radioactive waste management facilities. For the sources, more specific standards, such as those issued by the IAEA, are typically needed to achieve acceptable levels of safety. As these more specific standards are generally consistent with the Standards, in complying with them, such more complex installations will also generally comply with the Standards. The Standards are limited to specifying basic requirements of radiation protection and safety, with some guidance on how to apply them. General guidance on applying some of the requirements is available in the publications of the Sponsoring Organizations and additional guidance will be developed as needed in the light of experience gained in the application of the Standards

  7. International basic safety standards for protecting against ionizing radiation and for the safety of radiation sources

    International Nuclear Information System (INIS)

    1996-01-01

    The purpose of the Standards is to establish basic requirements for protection against the risks associated with exposure to ionizing radiation (hereinafter termed radiation) and for the safety of radiation sources that may deliver such exposure. The Standards have been developed from widely accepted radiation protection and safety principles, such as those published in the Annals of the ICRP and the IAEA Safety Series. They are intended to ensure the safety of all types of radiation sources and, in doing so, to complement standards already developed for large and complex radiation sources, such as nuclear reactors and radioactive waste management facilities. For the sources, more specific standards, such as those issued by the IAEA, are typically needed to achieve acceptable levels of safety. As these more specific standards are generally consistent with the Standards, in complying with them, such more complex installations will also generally comply with the Standards. The Standards are limited to specifying basic requirements of radiation protection and safety, with some guidance on how to apply them. General guidance on applying some of the requirements is available in the publications of the Sponsoring Organizations and additional guidance will be developed as needed in the light of experience gained in the application of the Standards. Tabs

  8. Radiation Safety and Orphan Sources

    International Nuclear Information System (INIS)

    Janzekovic, H.; Krizman, M.

    2006-01-01

    The wide spread use of radioactive and particularly of nuclear materials which started in the last century very quickly also demonstrated negative sides. The external exposure and radiotoxicity of these materials could be easily used in a malevolent act. Due to the fact that these materials could not be detected without special equipment designed for that purpose, severe control over their use in all phases of a life cycle is required. An orphan source is a radioactive source which is not under regulatory control, either because it has never been under regulatory or because it has been abandoned, lost, misplaced, stolen or transferred without proper authorization. In the last ten years a few international conferences were dedicated to the improvement of the safety and security of radioactive sources. Three main tasks are focused, the maintenance of data bases related to events with orphan sources and the publications of such events, the preparation of recommendations and guidelines to national regulatory bodies in order to prevent and detect the events related to orphan sources as well as to develop the response strategies to radiological or nuclear emergency, appraisals of the national strategies of radioactive sources control. Concerning Slovenia, strengthening control over orphan sources in Slovenia started after the adoption of new legislation in 2002. It was carried out through several tasks with the aim to prevent orphan sources, as well as to identify the sources which could be potentially orphan sources. The comprehensive methodology was developed by the Slovenian nuclear safety administration (S.N.S.A.) based on international guidelines as well as on the study of national lesson learned cases. The methodology was developed and used in close cooperation with all parties involved, namely other regulatory authorities, police, customs, agency for radioactive waste management (A.R.A.O.), technical support organisations (T.S.O.), users of source, authorised

  9. Radiation Safety and Orphan Sources

    Energy Technology Data Exchange (ETDEWEB)

    Janzekovic, H.; Krizman, M. [Slovenian Nuclear Safety Administration, Ljubljana (Slovenia)

    2006-07-01

    The wide spread use of radioactive and particularly of nuclear materials which started in the last century very quickly also demonstrated negative sides. The external exposure and radiotoxicity of these materials could be easily used in a malevolent act. Due to the fact that these materials could not be detected without special equipment designed for that purpose, severe control over their use in all phases of a life cycle is required. An orphan source is a radioactive source which is not under regulatory control, either because it has never been under regulatory or because it has been abandoned, lost, misplaced, stolen or transferred without proper authorization. In the last ten years a few international conferences were dedicated to the improvement of the safety and security of radioactive sources. Three main tasks are focused, the maintenance of data bases related to events with orphan sources and the publications of such events, the preparation of recommendations and guidelines to national regulatory bodies in order to prevent and detect the events related to orphan sources as well as to develop the response strategies to radiological or nuclear emergency, appraisals of the national strategies of radioactive sources control. Concerning Slovenia, strengthening control over orphan sources in Slovenia started after the adoption of new legislation in 2002. It was carried out through several tasks with the aim to prevent orphan sources, as well as to identify the sources which could be potentially orphan sources. The comprehensive methodology was developed by the Slovenian nuclear safety administration (S.N.S.A.) based on international guidelines as well as on the study of national lesson learned cases. The methodology was developed and used in close cooperation with all parties involved, namely other regulatory authorities, police, customs, agency for radioactive waste management (A.R.A.O.), technical support organisations (T.S.O.), users of source, authorised

  10. Generic radiation safety design for SSRL synchrotron radiation beamlines

    Energy Technology Data Exchange (ETDEWEB)

    Liu, James C. [Radiation Protection Department, Stanford Linear Accelerator Center (SLAC), MS 48, P.O. Box 20450, Stanford, CA 94309 (United States)]. E-mail: james@slac.stanford.edu; Fasso, Alberto [Radiation Protection Department, Stanford Linear Accelerator Center (SLAC), MS 48, P.O. Box 20450, Stanford, CA 94309 (United States); Khater, Hesham [Radiation Protection Department, Stanford Linear Accelerator Center (SLAC), MS 48, P.O. Box 20450, Stanford, CA 94309 (United States); Prinz, Alyssa [Radiation Protection Department, Stanford Linear Accelerator Center (SLAC), MS 48, P.O. Box 20450, Stanford, CA 94309 (United States); Rokni, Sayed [Radiation Protection Department, Stanford Linear Accelerator Center (SLAC), MS 48, P.O. Box 20450, Stanford, CA 94309 (United States)

    2006-12-15

    To allow for a conservative, simple, uniform, consistent, efficient radiation safety design for all SSRL beamlines, a generic approach has been developed, considering both synchrotron radiation (SR) and gas bremsstrahlung (GB) hazards. To develop the methodology and rules needed for generic beamline design, analytic models, the STAC8 code, and the FLUKA Monte Carlo code were used to pre-calculate sets of curves and tables that can be looked up for each beamline safety design. Conservative beam parameters and standard targets and geometries were used in the calculations. This paper presents the SPEAR3 beamline parameters that were considered in the design, the safety design considerations, and the main pre-calculated results that are needed for generic shielding design. In the end, the rules and practices for generic SSRL beamline design are summarized.

  11. Safety performance indicators used by the Russian Safety Regulatory Authority in its practical activities on nuclear power plant safety regulation

    International Nuclear Information System (INIS)

    Khazanov, A.L.

    2005-01-01

    The Sixth Department of the Nuclear, Industrial and Environmental Regulatory Authority of Russia, Scientific and Engineering Centre for Nuclear and Radiation Safety process, analyse and use the information on nuclear power plants (NPPs) operational experience or NPPs safety improvement. Safety performance indicators (SPIs), derived from processing of information on operational violations and analysis of annual NPP Safety Reports, are used as tools to determination of trends towards changing of characteristics of operational safety, to assess the effectiveness of corrective measures, to monitor and evaluate the current operational safety level of NPPs, to regulate NPP safety. This report includes a list of the basic SPIs, those used by the Russian safety regulatory authority in regulatory activity. Some of them are absent in list of IAEA-TECDOC-1141 ('Operational safety performance indicators for nuclear power plants'). (author)

  12. Radiation Protection and Safety infrastructure in Albania

    International Nuclear Information System (INIS)

    Ylli, F.; Dollani, K.; Paci, R.

    2005-01-01

    On 1995 Albania Parliament approved the Radiation Protection Act, which established the Radiation Protection Commission as Regulatory Body and Radiation Protection Office as an executive office. The licensing of private and public companies is a duty of RPC and the inspections, enforcement, import - export control, safety and security of radioactive materials, are tasks of RPO. Regulations on licence and inspection, safe handling of radioactive sources, radioactive waste management and transport of radioactive materials have been approved. The Codes of practice in diagnostic radiology, radiotherapy and nuclear medicine have been prepared. Institute of Nuclear Physics carry out monitoring of personal dosimetry, response to the radiological emergencies, calibration of dosimetric equipment's, management of radioactive waste, etc. Based in the IAEA documents, a new Radiation Protection Act is under preparation

  13. Progress report: 1996 Radiation Safety Systems Division

    International Nuclear Information System (INIS)

    Bhagwat, A.M.; Sharma, D.N.; Abani, M.C.; Mehta, S.K.

    1997-01-01

    The activities of Radiation Safety Systems Division include (i) development of specialised monitoring systems and radiation safety information network, (ii) radiation hazards control at the nuclear fuel cycle facilities, the radioisotope programmes at Bhabha Atomic Research Centre (BARC) and for the accelerators programme at BARC and Centre for Advanced Technology (CAT), Indore. The systems on which development and upgradation work was carried out during the year included aerial gamma spectrometer, automated environment monitor using railway network, radioisotope package monitor and air monitors for tritium and alpha active aerosols. Other R and D efforts at the division included assessment of risk for radiation exposures and evaluation of ICRP 60 recommendations in the Indian context, shielding evaluation and dosimetry for the new upcoming accelerator facilities and solid state nuclear track detector techniques for neutron measurements. The expertise of the divisional members was provided for 36 safety committees of BARC and Atomic Energy Regulatory Board (AERB). Twenty three publications were brought out during the year 1996. (author)

  14. Radiation protection and safety of radiation sources international basic safety standards

    CERN Document Server

    International Atomic Energy Agency. Vienna

    2014-01-01

    The Board of Governors of the IAEA first approved Basic Safety Standards in June 1962; they were published by the IAEA as IAEA Safety Series No. 9. A revised edition was issued in 1967. A third revision was published by the IAEA as the 1982 Edition of IAEA Safety Series No. 9 ; this edition was jointly sponsored by the IAEA, ILO, OECD/NEA and the WHO. The next edition was International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources, published by the IAEA as IAEA Safety Series No. 115 in February 1996, and jointly sponsored by the FAO, IAEA, ILO, OECD/NEA, PAHO and the WHO.

  15. Basic Safety Standards for Radiation Protection

    International Nuclear Information System (INIS)

    1962-01-01

    Pursuant to the provisions of its Statute relevant to the adoption and application of safety standards for protection against radiation, the Agency convened a panel of experts which formulated the Basic Safety Standards set forth in this publication. The panel met under the chairmanship of Professor L. Bugnard, Director of the French Institut National d'Hygiene, and representatives of the United Nations and of several of its specialized agencies participated in its work. The Basic Safety Standards thus represent the result of a most careful assessment of the variety of complex scientific and administrative problems involved. Nevertheless, of course, they will need to be revised from time to time in the light of advances in scientific knowledge, of comments received from Member States and of the work of other competent international organizations. The Agency's Board of Governors in June 1962 approved the Standards as a first edition, subject to later revision as mentioned above, and authorized Director General Sigvard Eklund to apply the Standards in Agency and Agency-assisted operations and to invite Governments of Member States to take them as a basis in formulating national regulations or recommendations on protection against the dangers arising from ionizing radiations. It is mainly for this last purpose that the Basic Safety Standards are now being published in the Safety Series; but it is hoped that this publication will also interest a much wider circle of readers.

  16. Research on crisis communication of nuclear and radiation safety

    International Nuclear Information System (INIS)

    Cao Yali; Zhang Ying

    2013-01-01

    Insufficient public cognition of nuclear and radiation safety and absence of effective method to handle crisis lead to common crisis events of nuclear and radiation safety, which brings about unfavorable impact on the sound development of nuclear energy exploring and application of nuclear technology. This paper, based on crisis communication theory, analyzed the effect of current situation on nuclear and radiation safety crisis, discussed how to handle crisis, and tried to explore the effective strategies for nuclear and radiation safety crisis handling. (authors)

  17. Implementation of radiation safety program in a medical institution

    International Nuclear Information System (INIS)

    Palanca, Elena D.

    1999-01-01

    A medical institution that utilizes radiation for the diagnosis and treatment of diseases of malignancies develops and implements a radiation safety program to keep occupational exposures of radiation workers and exposures of non-radiation workers and the public to the achievable and a more achievable minimum, to optimize the use of radiation, and to prevent misadministration. The hospital radiation safety program is established by a core medical radiation committee composed of trained radiation safety officers and head of authorized users of radioactive materials and radiation machines from the different departments. The radiation safety program sets up procedural guidelines of the safe use of radioactive material and of radiation equipment. It offers regular training to radiation workers and radiation safety awareness courses to hospital staff. The program has a comprehensive radiation safety information system or radsis that circularizes the radiation safety program in the hospital. The radsis keeps the drafted and updated records of safety guides and policies, radioactive material and equipment inventory, personnel dosimetry reports, administrative, regulatory and licensing activity document, laboratory procedures, emergency procedures, quality assurance and quality control program process, physics and dosimetry procedures and reports, personnel and hospital staff training program. The medical radiation protection committee is tasked to oversee the actual implementation of the radiation safety guidelines in the different radiation facilities in the hospital, to review personnel exposures, incident reports and ALARA actions, operating procedures, facility inspections and audit reports, to evaluate the existing radiation safety procedures, to make necessary changes to these procedures, and make modifications of course content of the training program. The effective implementation of the radiation safety program provides increased confidence that the physician and

  18. The Radiation Safety Culture: Image Gently

    International Nuclear Information System (INIS)

    Applegate, E.K.

    2015-01-01

    Barriers to Implementing Safety include Silos of Knowledge, Time, training and Resources. Creating a Safety Culture in Healthcare include Decreased authority gradients, Checklists and audits (QA), Use of structured language (SBAR), Situation, Background, Assessment, Recommendation Team briefings and debriefings (immediate learning, team building tools), Lifelong learning (PQI). Use of Collective Learning Opportunities - QA and PQI that include Web sites: IG, WFPI, IAEA, ISR and Data Registries: ACR . The Key Principles of Radiation Protection: When do we learn them? For Occupational Workers:Time, Distance and Shielding while those of For Patients: Justification, Optimization and Dose Limits (dose reference levels)

  19. Safety performance indicators for the road network.

    NARCIS (Netherlands)

    Weijermars, W. Gitelman, V. Papadimitriou, E. Lima De & Azevedo, C.

    2010-01-01

    Within the 6th FP European project SafetyNet, a team has worked on the development of Safety Performance Indicators (SPIs) on seven road safety related areas. These SPIs reflect the operational conditions of the road traffic system that influence the system's safety performance. SPIs were developed

  20. Radiation protection and safety culture for cyclotron workers

    International Nuclear Information System (INIS)

    Gomaa, M.A.

    1998-01-01

    The main aim of the present study is to review radiation protection and safety culture measures to be applied to cyclotron workers. The radiation protection (measures are based on Basic Safety standards for the protection) of the health of workers and the general public against the dangers arising from ionizing radiation, while the safety culture are based on IAEA publications

  1. The radiation safety self-assessment program of Ontario Hydro

    International Nuclear Information System (INIS)

    Armitage, G.; Chase, W.J.

    1987-01-01

    Ontario Hydro has developed a self-assessment program to ensure that high quality in its radiation safety program is maintained. The self-assessment program has three major components: routine ongoing assessment, accident/incident investigation, and detailed assessments of particular radiation safety subsystems or of the total radiation safety program. The operation of each of these components is described

  2. Radiation safety handbook for ionizing and nonionizing radiation

    International Nuclear Information System (INIS)

    Kincaid, C.B.

    1976-10-01

    The Handbook is directed primarily to users of radiation sources throughout the Food and Drug Administration. Specific precautions regarding the possession and use of radiation sources in meeting the Agency's objectives are an inherent responsibility of all employees. In addition, the increased emphasis on occupational safety and health and the responsibilities placed on the Department by Public Law and Executive Order make it mandatory that all organizational levels and activities conform to the intent of this Handbook. The policies and procedures described in this document apply to all Agency operators and activities and are intended to protect employees and the general public

  3. Nuclear and radiation safety in Mongolia

    International Nuclear Information System (INIS)

    Batjargala, Erdev

    2010-01-01

    The main purpose of the paper is to assess legal environment of Mongolia for development of nuclear and radiation safety and security. The Nuclear Energy Agency, regulatory agency of the Government of Mongolia, was founded in the beginning of 2009. Since then, it has formulated the State Policy for Utilization of Radioactive Minerals and Nuclear Energy and the Nuclear Energy Law, regulatory law of the field. The State Great Khural of Mongolia has enacted these acts. By adopting the State Policy and Nuclear Energy Law, which together imported the international standards for nuclear and radiation safety and security, it is possible to conclude that legal environment has formed in Mongolia to explore and process radioactive minerals and utilize nuclear energy and introduce technologies friendly to human health and environment. (author)

  4. Radiation safety and protection on the nuclear power plants

    International Nuclear Information System (INIS)

    Nosovskij, A.V.; Bogorad, V.I.; Vasil'chenko, V.N.; Klyuchnikov, A.A.; Litvinskaya, T.V.; Slepchenko, A.Yu.

    2008-01-01

    The main issues of the radiation safety and protection provision on the nuclear power plants are considered in this monograph. The description of the basic sources of the radiation danger on NPPs, the principles, the methods and the means of the safety and radiation monitoring provision are shown. The special attention is paid to the issues of the ionizing radiation regulation

  5. Radiation Safety Awareness Among Medical Staff

    International Nuclear Information System (INIS)

    Szarmach, Arkadiusz; Piskunowicz, Maciej; Świętoń, Dominik; Muc, Adam; Mockałło, Gabor; Dzierżanowski, Jarosław; Szurowska, Edyta

    2015-01-01

    The common access to imaging methods based on ionizing radiation requires also radiation protection. The knowledge of ionizing radiation exposure risks among the medical staff is essential for planning diagnostic procedures and therapy. Evaluation of the knowledge of radiation safety during diagnostic procedures among the medical staff. The study consisted of a questionnaire survey. The questionnaire consisted of seven closed-ended questions concerning the knowledge of the effects of exposure to ionizing radiation as well as questions related to responder’s profession and work experience. The study group included a total of 150 individuals from four professional groups: nurses, doctors, medical technicians, support staff. The study was carried out in the three largest hospitals in Gdańsk between July and October 2013. The highest rates of correct answers to questions related to the issue of radiation protection were provided by the staff of radiology facilities and emergency departments with 1–5 years of professional experience. The most vulnerable group in terms of the knowledge of these issues consisted of individuals working at surgical wards with 11–15 years of professional experience. Education in the field of radiological protection should be a subject of periodic training of medical personnel regardless of position and length of service

  6. Organization of nuclear safety and radiation protection in Switzerland

    International Nuclear Information System (INIS)

    Pretre, S.

    1995-01-01

    In Switzerland an important distinction is made between radiation protection (in charge of the use of ionizing radiations for medical uses or non nuclear industry), and nuclear safety (in charge of nuclear industry, including prevention or limitation of any risk of nuclear accident). In the eighties, it has been decided to make two laws for these two topics. The law for radioprotection, voted in 1991 is enforced since 1994 by OFSP (Office Federal de la Sante Publique). It performs any radiation monitoring outside nuclear industry plants. The law for nuclear safety, that should be enforced by OFEN (Office Federal de l'ENergie), is still not voted. The only existing legislation is the 1959 atomic law. (D.L.). 1 fig., 1 map

  7. Innovation research on the safety supervision system of nuclear and radiation safety in Jiangsu province

    International Nuclear Information System (INIS)

    Zhang Qihong; Lu Jigen; Zhang Ping; Wang Wanping; Dai Xia

    2012-01-01

    As the rapid development of nuclear technology, the safety supervision of nuclear and radiation becomes very important. The safety radiation frame system should be constructed, the safety super- vision ability for nuclear and radiation should be improved. How to implement effectively above mission should be a new subject of Provincial environmental protection department. Through investigating the innovation of nuclear and radiation supervision system, innovation of mechanism, innovation of capacity, innovation of informatization and so on, the provincial nuclear and radiation safety supervision model is proposed, and the safety framework of nuclear and radiation in Jiangsu is elementally established in the paper. (authors)

  8. Safety of radiation sources in Slovenia

    International Nuclear Information System (INIS)

    Belicic-Kolsek, A.; Sutej, T.

    2001-01-01

    The Republic of Slovenia, a central European country which has been independent since 1991, has about 2 million inhabitants and an area of 20,256 km 2 . The Constitutional Law on Enforcement of the Basic Constitutional Charter on the Autonomy and Independence of the Republic of Slovenia, adopted on 23 June 1991 (Off. Gaz. of the R of Slovenia No. 1/91), provided that all the laws adopted by the Socialist Federal Republic (SFR) of Yugoslavia should remain in force in the Republic of Slovenia pending the adoption of appropriate legislation by the Slovene Parliament. Under the Slovene Constitution, all international treaties ratified by Slovenia constitute an integral part of Slovenia's legislation and can be applied directly. In Slovenia, all regular types of ionizing radiation source are being used for peaceful purposes and are covered by a system for their safe use and control. All radiation sources and radioactive materials are registered and under regulatory control. Inspections are carried out periodically by the Health Inspectorate of the Republic of Slovenia (HIRS) and, in the case of nuclear installations, the Slovene Nuclear Safety Administration (SNSA). Technical checks on radiation sources are carried out periodically by technical support organizations: the Jozef Stefan Institute and the Institute for Occupational Safety (IOS). (author)

  9. Nuclear and radiation safety in Kazakhstan

    International Nuclear Information System (INIS)

    Kim, A.A.

    2001-01-01

    Major factors by which the radiation situation in Kazakhstan is formed are: enterprises of nuclear fuel cycle, including uranium mining and milling activity and geological exploration of uranium; nuclear power plant and research reactors; residues of atmospheric and underground nuclear explosions, which were conducted for military and peaceful purposes at different test sites; mining and milling of commercial minerals accompanied by radioactive substances; use of radioactive sources in industry, medicine, agriculture and scientific research. Since 1991, after getting sovereignty, creation was started of an own legislative basis of the country for the field of atomic energy use. It includes laws, regulations and standards for nuclear and radiation safety of nuclear installations, personnel, involved in the activity with using of atomic energy, population and environment. An applicable system of state regulation in this area (including a central regulatory body in the field of atomic energy use) and various ministries, agencies and committees, was created. As a result of these reforms, regulatory activities were improved in the country. This paper presents the current matters of nuclear and radiation safety in Kazakhstan and some difficulties which Kazakhstan encountered during the transition to an independent state. (author)

  10. Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards. General Safety Requirements. Pt. 3 (Chinese Edition)

    International Nuclear Information System (INIS)

    2014-01-01

    This publication is the new edition of the International Basic Safety Standards. The edition is co-sponsored by seven other international organizations — European Commission (EC/Euratom), FAO, ILO, OECD/NEA, PAHO, UNEP and WHO. It replaces the interim edition that was published in November 2011 and the previous edition of the International Basic Safety Standards which was published in 1996. It has been extensively revised and updated to take account of the latest finding of the United Nations Scientific Committee on the Effects of Atomic Radiation, and the latest recommendations of the International Commission on Radiological Protection. The publication details the requirements for the protection of people and the environment from harmful effects of ionizing radiation and for the safety of radiation sources. All circumstances of radiation exposure are considered

  11. Radiation protection and safety of radiation sources: International basic safety standards. General safety requirements. Pt. 3 (French Edition)

    International Nuclear Information System (INIS)

    2016-01-01

    This publication is the new edition of the International Basic Safety Standards. The edition is co-sponsored by seven other international organizations — European Commission (EC/Euratom), FAO, ILO, OECD/NEA, PAHO, UNEP and WHO. It replaces the interim edition that was published in November 2011 and the previous edition of the International Basic Safety Standards which was published in 1996. It has been extensively revised and updated to take account of the latest finding of the United Nations Scientific Committee on the Effects of Atomic Radiation, and the latest recommendations of the International Commission on Radiological Protection. The publication details the requirements for the protection of people and the environment from harmful effects of ionizing radiation and for the safety of radiation sources. All circumstances of radiation exposure are considered

  12. Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards. General Safety Requirements. Pt. 3 (Arabic Edition)

    International Nuclear Information System (INIS)

    2015-01-01

    This publication is the new edition of the International Basic Safety Standards. The edition is co-sponsored by seven other international organizations — European Commission (EC/Euratom), FAO, ILO, OECD/NEA, PAHO, UNEP and WHO. It replaces the interim edition that was published in November 2011 and the previous edition of the International Basic Safety Standards which was published in 1996. It has been extensively revised and updated to take account of the latest finding of the United Nations Scientific Committee on the Effects of Atomic Radiation, and the latest recommendations of the International Commission on Radiological Protection. The publication details the requirements for the protection of people and the environment from harmful effects of ionizing radiation and for the safety of radiation sources. All circumstances of radiation exposure are considered

  13. Critical review of safety performance metrics

    NARCIS (Netherlands)

    Karanikas, Nektarios

    2016-01-01

    Various tools for safety performance measurement have been introduced in order to fulfil the need for safety monitoring in organisations, which is tightly related to their overall performance and achievement of their business goals. Such tools include accident rates, benchmarking, safety culture and

  14. Radiologic safety program for ionizing radiation facilities in Parana, Brazil

    International Nuclear Information System (INIS)

    Schmidt, M.F.S.; Tilly Junior, J.G.

    1997-01-01

    A radiologic safety program for inspection, licensing and control of the use of ionizing radiation in medical, industrial and research facilities in Parana, Brazil is presented. The program includes stages such as: 1- division into implementation phases considering the activity development for each area; 2-use of the existing structure to implement and to improve services. The development of the program will permit to evaluate the improvement reached and to correct operational strategic. As a result, a quality enhancement at the services performed, a reduction for radiation dose exposure and a faster response for emergency situations will be expected

  15. Communication on radiation safety: ability and sensibility

    International Nuclear Information System (INIS)

    Rozental, Jose de Julio; Ministry of Environment

    2001-01-01

    Nuclear Communication Issues today, combine aspects of nuclear science, public approach and psychological subjects. The principal objectives are to systematize nuclear public information and to prepare researchers or communicators in a position to comment on the nuclear issues of our stage. The programme should focused on progress of nuclear energy, public perception of risk, conflicts among scientists, as the radiation effect at low doses, and how nuclear industry and scientists may better communicate information concerning the potential for hazard to property, health and the environment. There will be occasions where the competent authority should have formal link with other organizations, as in case of abnormal situation or emergency. Particular attention should be paid to the exchange of distinct parts in order to avoid misinterpretation or mistakes when divulging information to the public.Communication is emphasized in the IAEA Basic Safety Standards, [1] as well as, the current approach created to enlarge the relationship between man, practices and protection by the encouragement of a better understanding and implementation of the Safety Culture concept. The application of this concept involves better protection on Radiation Safety to workers, public and environment not only reducing accidents, but also avoiding unnecessary stresses and strains due to intensified operations. This means an advance towards the humanization of practices, equally observed by industrialized and developing countries. Finally, this paper also comment about two very important lessons that there were not yet learned as in reality necessary, considering the goals for a competent Nuclear Communication: the psychological effects of Chernobyl accident in April 1986 resulted from the lack of public information; the psychological effects of the Radiological Accident in Goiania resulted from the misunderstanding of the basic concept of ionizing radiation, which was translated into fear and

  16. Liquid droplet radiator performance studies

    Science.gov (United States)

    Mattick, A. T.; Hertzberg, A.

    By making use of droplets rather than solid surfaces to radiate waste heat in space, the liquid droplet radiator (LDR) achieves a radiating area/mass much larger than that of conventional radiators which use fins or heat pipes. The lightweight potential of the LDR is shown to be limited primarily by the radiative properties of the droplets. The requirement that the LDR heat transfer fluid have a very low vapor pressure limits the choice of fluids to relatively few—several liquid metals and Dow 705 silicone fluid are the only suitable candidates so far identified. An experimental determination of the emittance of submillimeter droplets of Dow 705 fluid indicates than an LDR using this fluid at temperatures of 275-335 K would be ⋍ 10 times lighter than the lightest solid surface radiators. Although several liquid metals appear to offer excellent performance in LDR applications at temperatures between 200 K and 975 K, experimental determination of liquid metal emissivities is needed for a conclusive assessment.

  17. Safety guide data on radiation shielding in a reprocessing facility

    International Nuclear Information System (INIS)

    Sekiguchi, Noboru; Naito, Yoshitaka

    1986-04-01

    In a reprocessing facility, various radiation sources are handled and have many geometrical conditions. To aim drawing up a safety guidebook on radiation shielding in order to evaluate shielding safety in a reprocessing facility with high reliability and reasonableness, JAERI trusted investigation on safety evaluation techniques of radiation shielding in a reprocessing facility to Nuclear Safety Research Association. This report is the collection of investigation results, and describes concept of shielding safety design principle, radiation sources in reprocessing facility and estimation of its strength, techniques of shielding calculations, and definite examples of shielding calculation in reprocessing facility. (author)

  18. Performance standards of road safety management

    Directory of Open Access Journals (Sweden)

    Čabarkapa Milenko R.

    2016-01-01

    Full Text Available Road safety management controlling means the process of finding out the information whether the road safety is improving in a measure to achieve the objectives. The process of control consists of three basic elements: definition of performances and standards, measurement of current performances and comparison with the set standards, and improvement of current performances, if they deviate from the set standards. The performance standards of road safety management system are focused on a performances measurement, in terms of their design and characteristics, in order to support the performances improvement of road safety system and thus, ultimately, improve the road safety. Defining the performance standards of road safety management system, except that determines the design of the system for performances measurement, directly sets requirements whose fulfillment will produce a road safety improvement. The road safety management system, based on the performance standards of road safety, with a focus on results, will produce the continuous improvement of road safety, achieving the long-term 'vision zero', the philosophy of road safety, that human life and health take priority over mobility and other traffic objectives of the road traffic.

  19. A concept of radiation safety in radiodiagnosis and radiotherapy

    International Nuclear Information System (INIS)

    Stavitskij, R.V.; Vasil'ev, V.N.; Lebedev, L.A.; Blinov, N.N.

    1991-01-01

    Conceptual problems of up to date radiation safety dosimetric ensurance in radiation diagnostics and radiotherapy of nontumor diseases are as follows: selection of dosimetric criteria of nonequilibrium radiation influence with an account of probable remote radiation aftereffects; determination of dose-response dependence character by low radiation doses; development of optimal technological principles for radiation diagnostics and therapy; development of organizational and methodical approaches to decreasing dose loads by radiation diagnostics and therapy of nontumor diseases; optimization of studies by ALARA principle

  20. Performance evaluation of ventilation radiators

    International Nuclear Information System (INIS)

    Myhren, Jonn Are; Holmberg, Sture

    2013-01-01

    A ventilation radiator is a combined ventilation and heat emission unit currently of interest due to its potential for increasing energy efficiency in exhaust-ventilated buildings with warm water heating. This paper presents results of performance tests of several ventilation radiator models conducted under controlled laboratory conditions. The purpose of the study was to validate results achieved by Computational Fluid Dynamics (CFD) in an earlier study and identify possible improvements in the performance of such systems. The main focus was on heat transfer from internal convection fins, but comfort and health aspects related to ventilation rates and air temperatures were also considered. The general results from the CFD simulations were confirmed; the heat output of ventilation radiators may be improved by at least 20% without sacrificing ventilation efficiency or thermal comfort. Improved thermal efficiency of ventilation radiators allows a lower supply water temperature and energy savings both for heating up and distribution of warm water in heat pumps or district heating systems. A secondary benefit is that a high ventilation rate can be maintained all year around without risk for cold draught. -- Highlights: ► Low temperature heat emitters are currently of interest due to their potential for increasing energy efficiency. ► A ventilation radiator is a combined ventilation and heat emission unit which can be adapted to low temperature heating systems. ► We examine how ventilation radiators can be made to be more efficient in terms of energy consumption and thermal comfort. ► Current work focuses on heat transfer mechanisms and convection fin configuration of ventilation radiators

  1. Radiation Safety of Gamma, Electron and X Ray Irradiation Facilities. Specific Safety Guide (Spanish Edition)

    International Nuclear Information System (INIS)

    2015-01-01

    The objective of this Safety Guide is to provide recommendations on how to meet the requirements of the BSS with regard to irradiation facilities. This Safety Guide provides specific, practical recommendations on the safe design and operation of gamma, electron and X ray irradiators for use by operating organizations and the designers of these facilities, and by regulatory bodies. SCOPE. The facilities considered in this publication include five types of irradiator, whether operated on a commercial basis or for research and development purposes. This publication is concerned with radiation safety issues and not with the uses of irradiators, nor does it cover the irradiation of product or its quality management. The five types of irradiator are: - Panoramic dry source storage irradiators; - Underwater irradiators, in which both the source and the product being irradiated are under water; - Panoramic wet source storage irradiators; - Electron beam irradiation facilities, in which irradiation is performed in an area that is potentially accessible to personnel, but that is kept inaccessible during the irradiation process; - X ray irradiation facilities, in which irradiation is performed in an area that is potentially accessible to personnel, but that is kept inaccessible during the irradiation process. Consideration of non-radiation-related risks and of the benefits resulting from the operation of irradiators is outside the scope of this Safety Guide. The practices of radiotherapy and radiography are also outside the scope of this Safety Guide. Category I gamma irradiators (i.e. 'self-shielded' irradiators) are outside the scope of this Safety Guide

  2. Is road safety management linked to road safety performance?

    Science.gov (United States)

    Papadimitriou, Eleonora; Yannis, George

    2013-10-01

    This research aims to explore the relationship between road safety management and road safety performance at country level. For that purpose, an appropriate theoretical framework is selected, namely the 'SUNflower' pyramid, which describes road safety management systems in terms of a five-level hierarchy: (i) structure and culture, (ii) programmes and measures, (iii) 'intermediate' outcomes'--safety performance indicators (SPIs), (iv) final outcomes--fatalities and injuries, and (v) social costs. For each layer of the pyramid, a composite indicator is implemented, on the basis of data for 30 European countries. Especially as regards road safety management indicators, these are estimated on the basis of Categorical Principal Component Analysis upon the responses of a dedicated road safety management questionnaire, jointly created and dispatched by the ETSC/PIN group and the 'DaCoTA' research project. Then, quasi-Poisson models and Beta regression models are developed for linking road safety management indicators and other indicators (i.e. background characteristics, SPIs) with road safety performance. In this context, different indicators of road safety performance are explored: mortality and fatality rates, percentage reduction in fatalities over a given period, a composite indicator of road safety final outcomes, and a composite indicator of 'intermediate' outcomes (SPIs). The results of the analyses suggest that road safety management can be described on the basis of three composite indicators: "vision and strategy", "budget, evaluation and reporting", and "measurement of road user attitudes and behaviours". Moreover, no direct statistical relationship could be established between road safety management indicators and final outcomes. However, a statistical relationship was found between road safety management and 'intermediate' outcomes, which were in turn found to affect 'final' outcomes, confirming the SUNflower approach on the consecutive effect of each layer

  3. Survey and analysis of radiation safety management systems at medical institutions. Initial report. Radiation protection supervisor, radiation safety organization, and education and training

    International Nuclear Information System (INIS)

    Ohba, Hisateru; Ogasawara, Katsuhiko; Aburano, Tamio

    2005-01-01

    In this study, a questionnaire survey was carried out to determine the actual situation of radiation safety management systems in Japanese medical institutions with nuclear medicine facilities. The questionnaire consisted of questions concerning the Radiation Protection Supervisor license, safety management organizations, and problems related to education and training in safety management. Analysis was conducted according to region, type of establishment, and number of beds. The overall response rate was 60%, and no significant difference in response rate was found among regions. Medical institutions that performed nuclear medicine practices without a radiologist participating accounted for 10% of the total. Medical institutions where nurses gave patients intravenous injections of radiopharmaceuticals as part of the nuclear medicine practices accounted for 28% of the total. Of these medical institutions, 59% provided education and training in safety management for nurses. The rate of acquisition of Radiation Protection Supervisor licenses was approximately 70% for radiological technologists and approximately 20% for physicians (regional difference, p=0.02). The rate of medical institutions with safety management organizations was 71% of the total. Among the medical institutions (n=208) without safety management organizations, approximately 56% had 300 beds or fewer. In addition, it became clear that 35% of quasi-public organizations and 44% of private organizations did not provide education and training in safety management (p<0.001, according to establishment). (author)

  4. The first symposium of Research Center for Radiation Safety, NIRS. Perspective of future studies of radiation safety

    International Nuclear Information System (INIS)

    Shimo, Michikuni

    2002-03-01

    This paper summarizes presentations given in the title symposium, held at the Conference Room of National Institute of Radiological Sciences (NIRS) on November 29 and 30, 2001. Contained are Introductory remarks: Basic presentations concerning exposure dose in man; Environmental levels of radiation and radioactivity, environmental radon level and exposure dose, and radiation levels in the specific environment (like in the aircraft): Special lecture (biological effects given by space environment) concerning various needs for studies of radiation safety; Requirement for open investigations, from the view of utilization, research and development of atomic energy, from the clinical aspect, and from the epidemiological aspect: Special lecture (safety in utilization of atomic energy and radiation-Activities of Nuclear Safety Commission of Japan) concerning present state and perspective of studies of radiation safety; Safety of radiation and studies of biological effects of radiation-perspective, and radiation protection and radiation safety studies: Studies in the Research Center for Radiation Safety; Summary of studies in the center, studies of the biological effects of neutron beam, carcinogenesis by radiation and living environmental factors-complicated effects, and studies of hereditary effects: Panel discussion (future direction of studies of radiation safety for the purpose of the center's direction): and concluding remarks. (N.I.)

  5. Educational and experiential effects on radiographers' radiation safety behavior

    International Nuclear Information System (INIS)

    Tilson, E.R.

    1982-01-01

    Forty-four radiographers from 11 hospitals in Northern California were observed for radiation safety behaviors in six categories. A multiple regression analysis was performed to determine if there was a significant relationship between the six radiation safety behaviors and the radiographer's age, sex, type of professional training, years since completion of professional training, years of professional practice, time of day, and exposure frequency. The multiple regression analysis showed that there was a significant relationship between use of gonadal shielding and years since completion of professional training, years of professional practice, type of training, and age. The multiple regression analysis also showed that the number of repeated films due to technical error was significantly related to the type of professional training a radiographer received

  6. Annual health, safety and environmental performance report for 1992

    International Nuclear Information System (INIS)

    Orman, R.F.; Richards, S.

    1993-12-01

    This report summarizes the safety and environmental record of the operations of Atomic Energy of Canada Limited (AECL) during 1992. An introduction highlights the results and describes the facilities and organizational systems. Subsequent sections indicate the performance of the company with respect to personnel radiation exposures, occupational injuries, the handling of wastes and the release of materials into the environment. Programs in health, safety and environmental protection are presented, along with site remediation and emergency preparedness practices

  7. Annual health, safety and environmental performance report for 1992

    International Nuclear Information System (INIS)

    Orman, R.F.; Richards, S.

    1993-12-01

    This report summarizes the safety and environmental record of the operations of Atomic Energy of Canada Limited (AECL) during 1992. an introduction highlights the results and describes the facilities and organizational systems. Subsequent sections indicate the performance of the company with respect to personnel radiation exposures, occupational injuries, the handling of wastes and the release of materials into the environment. Programs in health, safety and environmental protection are presented, along with site remediation and emergency preparedness practices

  8. Radiation safety aspects in the use of radiation sources in industrial and heath-care applications

    International Nuclear Information System (INIS)

    Venkat Raj, V.

    2001-01-01

    The principle underlying the philosophy of radiation protection and safety is to ensure that there exists an appropriate standard of protection and safety for humans, without unduly limiting the benefits of the practices giving rise to exposure or incurring disproportionate costs in interventions. To realise these objectives, the International Commission on Radiation Protection (ICRP-60) and IAEA's Safety Series (IAEA Safety Series 120, 1996) have enunciated the following criteria for the application and use of radiation: (1) justification of practices; (2) optimisation of protection; (3) dose limitation and (4) safety of sources. Though these criteria are the basic tenets of radiation protection, the radiation hazard potentials of individual applications vary and the methods to achieve the above mentioned objectives principles are different. This paper gives a brief overview of the various applications of radiation and radioactive sources in India, their radiation hazard perspective and the radiation safety measures provided to achieve the basic radiation protection philosophy. (author)

  9. Radiation protection and safety of workers

    International Nuclear Information System (INIS)

    Lindhe, J.C.

    1997-01-01

    This section briefly reviews the principles applicable to radiation protection and safety of workers, and methods that could be used to minimise occupational exposure in reclamation work. In considering the clean up of areas shortly after an accident, a decision would have to be made whether to implement clean-up actions early and thus cause higher occupational doses, or wait until short-lived isotopes have decayed and/or weathering has reduced the radiation levels. For example, the decision may be to stabilise the contamination using sprays to prevent re-suspension followed by a delay before actual clean-up starts. The timing of such actions would depend on many factors, including weather conditions, the area involved, equipment available and the competence of the work force. Means of reducing occupational exposure while carrying out the tasks should, as far as possible, be clearly defined in 'work procedures'. In general, reductions in occupational exposure during operational tasks can be accomplished by the use of shielding and limiting the time that workers spend exposed to radiation. (au)

  10. Supervisor's experiments on radiation safety trainings in school of engineering

    International Nuclear Information System (INIS)

    Nomura, Kiyoshi

    2005-01-01

    Radiation safety training courses in School of Engineering, The University of Tokyo, were introduced. The number of radiation workers and the usage of radiation and radioisotopes have been surveyed for past 14 years. The number of radiation workers in School of Engineering has increased due to the treatment of X-ray analysis of materials, recently. It is important for workers to understand the present situation of School of Engineering before the treatment of radiation and radioisotopes. What the supervisor should tell to radiation workers were presented herewith. The basic questionnaires after the lecture are effective for radiation safety trainings. (author)

  11. Developing the radiation protection safety culture in the UK.

    Science.gov (United States)

    Cole, P; Hallard, R; Broughton, J; Coates, R; Croft, J; Davies, K; Devine, I; Lewis, C; Marsden, P; Marsh, A; McGeary, R; Riley, P; Rogers, A; Rycraft, H; Shaw, A

    2014-06-01

    In the UK, as elsewhere, there is potential to improve how radiological challenges are addressed through improvement in, or development of, a strong radiation protection (RP) safety culture. In preliminary work in the UK, two areas have been identified as having a strong influence on UK society: the healthcare and nuclear industry sectors. Each has specific challenges, but with many overlapping common factors. Other sectors will benefit from further consideration.In order to make meaningful comparisons between these two principal sectors, this paper is primarily concerned with cultural aspects of RP in the working environment and occupational exposures rather than patient doses.The healthcare sector delivers a large collective dose to patients each year, particularly for diagnostic purposes, which continues to increase. Although patient dose is not the focus, it must be recognised that collective patient dose is inevitably linked to collective occupational exposure, especially in interventional procedures.The nuclear industry faces major challenges as work moves from operations to decommissioning on many sites. This involves restarting work in the plants responsible for the much higher radiation doses of the 1960/70s, but also performing tasks that are considerably more difficult and hazardous than those original performed in these plants.Factors which influence RP safety culture in the workplace are examined, and proposals are considered for a series of actions that may lead to an improvement in RP culture with an associated reduction in dose in many work areas. These actions include methods to improve knowledge and awareness of radiation safety, plus ways to influence management and colleagues in the workplace. The exchange of knowledge about safety culture between the nuclear industry and medical areas may act to develop RP culture in both sectors, and have a wider impact in other sectors where exposures to ionising radiations can occur.

  12. Developing the radiation protection safety culture in the UK

    International Nuclear Information System (INIS)

    Cole, P; Marsh, A; Hallard, R; Broughton, J; Coates, R; Croft, J; Davies, K; Devine, I; Lewis, C; Marsden, P; McGeary, R; Riley, P; Rogers, A; Rycraft, H; Shaw, A

    2014-01-01

    In the UK, as elsewhere, there is potential to improve how radiological challenges are addressed through improvement in, or development of, a strong radiation protection (RP) safety culture. In preliminary work in the UK, two areas have been identified as having a strong influence on UK society: the healthcare and nuclear industry sectors. Each has specific challenges, but with many overlapping common factors. Other sectors will benefit from further consideration. In order to make meaningful comparisons between these two principal sectors, this paper is primarily concerned with cultural aspects of RP in the working environment and occupational exposures rather than patient doses. The healthcare sector delivers a large collective dose to patients each year, particularly for diagnostic purposes, which continues to increase. Although patient dose is not the focus, it must be recognised that collective patient dose is inevitably linked to collective occupational exposure, especially in interventional procedures. The nuclear industry faces major challenges as work moves from operations to decommissioning on many sites. This involves restarting work in the plants responsible for the much higher radiation doses of the 1960/70s, but also performing tasks that are considerably more difficult and hazardous than those original performed in these plants. Factors which influence RP safety culture in the workplace are examined, and proposals are considered for a series of actions that may lead to an improvement in RP culture with an associated reduction in dose in many work areas. These actions include methods to improve knowledge and awareness of radiation safety, plus ways to influence management and colleagues in the workplace. The exchange of knowledge about safety culture between the nuclear industry and medical areas may act to develop RP culture in both sectors, and have a wider impact in other sectors where exposures to ionising radiations can occur. (memorandum)

  13. Safety performance monitoring of autonomous marine systems

    International Nuclear Information System (INIS)

    Thieme, Christoph A.; Utne, Ingrid B.

    2017-01-01

    The marine environment is vast, harsh, and challenging. Unanticipated faults and events might lead to loss of vessels, transported goods, collected scientific data, and business reputation. Hence, systems have to be in place that monitor the safety performance of operation and indicate if it drifts into an intolerable safety level. This article proposes a process for developing safety indicators for the operation of autonomous marine systems (AMS). The condition of safety barriers and resilience engineering form the basis for the development of safety indicators, synthesizing and further adjusting the dual assurance and the resilience based early warning indicator (REWI) approaches. The article locates the process for developing safety indicators in the system life cycle emphasizing a timely implementation of the safety indicators. The resulting safety indicators reflect safety in AMS operation and can assist in planning of operations, in daily operational decision-making, and identification of improvements. Operation of an autonomous underwater vehicle (AUV) exemplifies the process for developing safety indicators and their implementation. The case study shows that the proposed process leads to a comprehensive set of safety indicators. It is expected that application of the resulting safety indicators consequently will contribute to safer operation of current and future AMS. - Highlights: • Process for developing safety indicators for autonomous marine systems. • Safety indicators based on safety barriers and resilience thinking. • Location of the development process in the system lifecycle. • Case study on AUV demonstrating applicability of the process.

  14. Nursing home safety: does financial performance matter?

    Science.gov (United States)

    Oetjen, Reid M; Zhao, Mei; Liu, Darren; Carretta, Henry J

    2011-01-01

    This study examines the relationship between financial performance and selected safety measures of nursing homes in the State of Florida. We used descriptive analysis on a total sample of 1,197. Safety information was from the Online Survey, Certification and Reporting (OSCAR) data of 2003 to 2005, while the financial performance measures were from the Medicare cost reports of 2002 to 2004. Finally, we examined the most frequently cited deficiencies as well as the relationship between financial performance and quality indicators. Nursing homes in the bottom quartile of financial performance perform poorly on most resident-safety measures of care; however, nursing homes in the top two financial categories also experienced a higher number of deficiencies. Nursing homes in the next to lowest quartile of financial performance category best perform on most of these safety measures. The results reinforce the need to monitor nursing home quality and resident safety in US nursing homes, especially among facilities with poor overall financial performance.

  15. Code of practice for safety in laboratory - non ionising radiation

    International Nuclear Information System (INIS)

    Ramli Jaya; Mohd Yusof Mohd Ali; Khoo Boo Huat; Khatijah Hashim

    1995-01-01

    The code identifies the non-ionizing radiation encountered in laboratories and the associated hazards. The code is intended as a laboratory standard reference document for general information on safety requirements relating to the usage of non-ionizing radiations in laboratories. The nonionizing radiations cover in this code, namely, are ultraviolet radiation, visible light, radio-frequency radiation, lasers, sound waves and ultrasonic radiation. (author)

  16. Review of radiation safety in the cardiac catheterization laboratory

    International Nuclear Information System (INIS)

    Johnson, L.W.; Moore, R.J.; Balter, S.

    1992-01-01

    With the increasing use of coronary arteriography and interventional procedures, radiation exposure to patients and personnel working in cardiac catheterization laboratories has increased. Proper technique to minimize both patient and operator exposure is necessary. A practical approach to radiation safety in the cardiac catheterization laboratory is presented. This discussion should be useful to facilities with well-established radiation safety programs as well as facilities that require restructuring to cope with the radiation environment in a modern cardiac catheterization laboratory

  17. A survey of radiation safety training among South African interventionalists

    Directory of Open Access Journals (Sweden)

    A Rose

    2018-04-01

    Full Text Available Background. Ionising radiation is increasingly being used in modern medicine for diagnostic, interventional and therapeutic purposes. There has been an improvement in technology, resulting in lower doses being emitted. However, an increase in the number of procedures has led to a greater cumulative dose for patients and operators, which places them at increased risk of the effects of ionising radiation. Radiation safety training is key to optimising medical practice.Objective. To present the perceptions of South African interventionalists on the radiation safety training they received and to offer insights into the importance of developing and promoting such training programmes for all interventionalists.Methods. In this cross-sectional study, we collected data from interventionalists (N=108 using a structured questionnaire.Results. All groups indicated that radiation exposure in the workplace is important (97.2%. Of the participants, the radiologists received the most training (65.7%. Some participants (44.1% thought that their radiation safety training was adequate. Most participants (95.4% indicated that radiation safety should be part of their training curriculum. Few (34.3% had received instruction on radiation safety when they commenced work. Only 62% had been trained on how to protect patients from ionising radiation exposure.Conclusion. Radiation safety training should be formalised in the curriculum of interventionalists’ training programmes, as this will assist in stimulating a culture of radiation protection, which in turn will improve patient safety and improve quality of care.

  18. Radiation safety actuality in Republic of Moldova

    International Nuclear Information System (INIS)

    Kuharuk, E.S.

    2011-01-01

    Radioecological monitoring issues and radiation safety are actual in the Republic of Moldova. Japan events show us the possibility of natural disasters. Republic of Moldova is surrounded by 8 NPPs, the closest being at the distance of 160 km. Moldovas territory is in seismic zone where underground earthquake shocks reaches 7 points or more. Thatis why radiation safety and radioecological monitoring is actual in our republic. Traces of Chernobyl were left in Moldovas soils. The fallouts of radio nuclides formed on the soil surfaces in the Republic of Moldova following the Chernobyl Nuclear Power Station Accident have been continuously affected by attacks of both natural and technicaly generated agents since the time of fallout. During the past decade a shift in emphasis has taken place regarding the need for more complete and accurate information on reservoir sedimentation. Classical sedimentation surveys involve repeated field measurement and, therefore, this is probably the most costly and time consuming method. The application of radio nuclides, particularly Cs 137, for water erosion and sedimentation studies in Republic of Moldova has not been attempted so far. This paper presents the results obtained on reservoir sedimentation rates in an area subjected to wide range in land degradation dy sheet-rill erosion. The profil characteristics support the assumption that in most undisturbed sites there is a sharp decline in Cs 137 activity with increasing dept. Such an asymmetrical distribution of the Cs 137 would suggest a standard pattern in the form of a cantilever. If the validity of this assamption is accepted it is possible to define two major types of Cs 137 cantilever distribution: shallow and deep buried cantilever. The main criterion in classifying these pattents lies generally in the shape of Cs 137 depth profile and particularly in burial magnitude of Cs 137 peak derived from Chernobyl. Hills area has been impacted by greatest sendimentation. This regional

  19. Indicators to monitor NPP operational safety performance

    International Nuclear Information System (INIS)

    Gomez-Cobo, Ana

    2002-01-01

    Since December 1995 the IAEA activities on safety performance indicators focused on the elaboration of a framework for the establishment of an operational safety performance indicator programme. The development of this framework began with the consideration of the concept of NPP operational safety performance and the identification of operational safety attributes. For each operational safety attribute, overall indicators, envisioned as providing an overall evaluation of relevant aspects of safety performance, were established. Associated with each overall indicator is a level of strategic indicators intended to provide a bridge from overall to specific indicators. Finally each strategic indicator was supported by a set of specific indicators, which represent quantifiable measures of performance. The programme development was enhanced by pilot plant studies, conducted over a 15 month period from January 1998 to March 1999. The result of all this work is compiled in the IAEA-TECDOC-1141, to be published shortly. This paper presents a summary of this IAEA TECDOC. It describes the operational safety performance indicator framework proposed and discusses the results of and lessons learned from the pilot studies. Despite the efforts described, it is clear that additional research is still necessary in areas such as plant-specific adaptation of proposed frameworks in order to suit individual data collection systems and plant characteristics, indicator selection, indicator definition, goal setting, action thresholds, analysis of trends, indicator display systems, analysis of overall safety performance (i.e., aggregation or combination of indicators), safety culture indicators, qualitative indicators, and use of additional indicators to address issues such as industrial safety attitude and performance, staff welfare, and environmental compliance. This is the rationale for a new IAEA Coordinated Research Project on 'Development and application of indicators to monitor NPP

  20. Radiation in the human environment: health effects, safety and acceptability

    International Nuclear Information System (INIS)

    Gonzalez, A.J.; Anderer, J.

    1990-01-01

    This paper reports selectively on three other aspects of radiation (used throughout to mean ionizing radiation) in the human environment: the human health effects of radiation, radiation safety policy and practices, and the acceptability of scientifically justified practices involving radiation exposures. Our argument is that the science of radiation biology, the judgemental techniques of radiation safety, and the social domain of radiation acceptability express different types of expertise that should complement - and not conflict with or substitute for - one another. Unfortunately, communication problems have arisen among these three communities and even between the various disciplines represented within a community. These problems have contributed greatly to the misperceptions many people have about radiation and which are frustrating a constructive dialogue on how radiation can be harnessed to benefit mankind. Our analysis seeks to assist those looking for a strategic perspective from which to reflect on their interaction with practices involving radiation exposures. (author)

  1. Assessment of radiation safety in well logging

    International Nuclear Information System (INIS)

    Alles, A.; Pérez, Y.; Duménigo, C.

    2015-01-01

    Radiation safety assessments required by current regulations are a means to verify compliance with the requirements. Different methods have been used for this purpose. In the paper the results of applying the method of risk matrices, applied for the first time in the practice of well logging are exposed. For each initiating event frequency of occurrence, the severity of its consequences and the probability of failure of the barriers identified were evaluated. Starting from these assumptions, the risk associated is determined for each of the identified accident sequences, using for this the SEVRRA code 'Risk Assessment System', originally designed for use in radiotherapy. As an result sequences increased risk associated with the practice of well logging were identified, which is the starting point for the further implementation of a coherent program of dose optimization in practice. [es

  2. Regulation on the organizatjon of radiation safety control bodies

    International Nuclear Information System (INIS)

    1975-01-01

    This is a basic document on matters of structure, organization, objectives, rights, and responsibilities of agencies enforcing compliance with radiation safety standards set up in Bulgaria. Under Public Health Law and Ministerial Council Decree No. 117, the organization and management of radiation safety in Bulgaria is entrusted to the Ministry of Public Health (MPH). Within its agency, the State Sanitary Control, authorities specialized in the area of radiation safety are as follows: the Radiation Hygiene Division (RHD) of the MPH Hygiene-and Epidemiology Bureau (HEB); the Specialized Radiation Safety Inspectorate of the Research Institute of Radiobiology and Radiation Hygiene (RIRRH); the Radiation Hygiene Sections of country HEBs; and State sanitary Inspectors assigned to large establishments in the country. (G.G.)

  3. Radiation safety aspects of fluorescent lamp starters incorporating radiation source

    Energy Technology Data Exchange (ETDEWEB)

    Sadagopan, Geetha [Radiological Physics and Advisory Division, Bhabha Atomic Research Centre, Trombay, Mumbai (India); Shukla, V.K. [Environmental Assessment Division, Bhabha Atomic Research Centre, Trombay, Mumbai (India)

    2000-05-01

    A fluorescent lamp starter is a switch applies the voltage to the fluorescent tube after sufficient preheating to allow the tube to conduct an electric current. Radioactive substances used in the starters are {sup 85}Kr, {sup 147}Pm, {sup 3}H and {sup 232}Th. In India, fluorescent lamp starters are classified as consumer products and users are outside regulatory control. However, regulatory control is exercised over the manufacturers at the production stage. Tritium activity measured in the lamp starters ranged from 400-4500 Bq with a mean activity of 1.78 kBq. Thorium activity measured varied from 0.44-3.3 mg. The results of radiation safety assessment of the workplace and radioactivity estimation in the starters are discussed in this paper. (author)

  4. Radiation safety aspects of fluorescent lamp starters incorporating radiation source

    International Nuclear Information System (INIS)

    Sadagopan, Geetha; Shukla, V.K.

    2000-01-01

    A fluorescent lamp starter is a switch applies the voltage to the fluorescent tube after sufficient preheating to allow the tube to conduct an electric current. Radioactive substances used in the starters are 85 Kr, 147 Pm, 3 H and 232 Th. In India, fluorescent lamp starters are classified as consumer products and users are outside regulatory control. However, regulatory control is exercised over the manufacturers at the production stage. Tritium activity measured in the lamp starters ranged from 400-4500 Bq with a mean activity of 1.78 kBq. Thorium activity measured varied from 0.44-3.3 mg. The results of radiation safety assessment of the workplace and radioactivity estimation in the starters are discussed in this paper. (author)

  5. Operational and safety requirement of radiation facility

    International Nuclear Information System (INIS)

    Zulkafli Ghazali

    2007-01-01

    Gamma and electron irradiation facilities are the most common industrial sources of ionizing radiation. They have been used for medical, industrial and research purposes since the 1950s. Currently there are more than 160 gamma irradiation facilities and over 600 electron beam facilities in operation worldwide. These facilities are either used for the sterilization of medical and pharmaceutical products, the preservation of foodstuffs, polymer synthesis and modification, or the eradication of insect infestation. Irradiation with electron beam, gamma ray or ultra violet light can also destroy complex organic contaminants in both liquid and gaseous waste. EB systems are replacing traditional chemical sterilization methods in the medical supply industry. The ultra-violet curing facility, however, has found more industrial application in printing and furniture industries. Gamma and electron beam facilities produce very high dose rates during irradiation, and thus there is a potential of accidental exposure in the irradiation chamber which can be lethal within minutes. Although, the safety record of this industry has been relatively very good, there have been fatalities recorded in Italy (1975), Norway (1982), El Salvador (1989) and Israel (1990). Precautions against uncontrolled entry into irradiation chamber must therefore be taken. This is especially so in the case of gamma irradiation facilities those contain large amounts of radioactivity. If the mechanism for retracting the source is damaged, the source may remain exposed. This paper will, to certain extent, describe safety procedure and system being installed at ALURTRON, Nuclear Malaysia to eliminate accidental exposure of electron beam irradiation. (author)

  6. Prospective safety performance evaluation on construction sites.

    Science.gov (United States)

    Wu, Xianguo; Liu, Qian; Zhang, Limao; Skibniewski, Miroslaw J; Wang, Yanhong

    2015-05-01

    This paper presents a systematic Structural Equation Modeling (SEM) based approach for Prospective Safety Performance Evaluation (PSPE) on construction sites, with causal relationships and interactions between enablers and the goals of PSPE taken into account. According to a sample of 450 valid questionnaire surveys from 30 Chinese construction enterprises, a SEM model with 26 items included for PSPE in the context of Chinese construction industry is established and then verified through the goodness-of-fit test. Three typical types of construction enterprises, namely the state-owned enterprise, private enterprise and Sino-foreign joint venture, are selected as samples to measure the level of safety performance given the enterprise scale, ownership and business strategy are different. Results provide a full understanding of safety performance practice in the construction industry, and indicate that the level of overall safety performance situation on working sites is rated at least a level of III (Fair) or above. This phenomenon can be explained that the construction industry has gradually matured with the norms, and construction enterprises should improve the level of safety performance as not to be eliminated from the government-led construction industry. The differences existing in the safety performance practice regarding different construction enterprise categories are compared and analyzed according to evaluation results. This research provides insights into cause-effect relationships among safety performance factors and goals, which, in turn, can facilitate the improvement of high safety performance in the construction industry. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. The Australian radiation protection and Nuclear Safety Agency

    International Nuclear Information System (INIS)

    Macnab, D.; Burn, P.; Rubendra, R.

    1998-01-01

    The author talks about the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA), the new regulatory authority which will combine the existing resources of the Australian Radiation Laboratory and the Nuclear Safety Bureau. Most uses of radiation in Australia are regulated by State or Territory authorities, but there is presently no regulatory authority for Commonwealth uses of radiation. To provide for regulation of the radiation practices of the Commonwealth, the Australian Government has decided to establish the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA) and a Bill has passed through the House of Representatives and will go to the Spring sitting of the Senate. The new agency will subsume the resources and functions of the Nuclear Safety Bureau and the Australian Radiation Laboratory, with additional functions including the regulation of radiation protection and nuclear safety of Commonwealth practices. Another function of ARPANSA will be the promotion of uniform regulatory requirements for radiation protection across Australia. This will be done by developing, in consultation with the States and Territories, radiation health policies and practices for adoption by the Commonwealth, States and Territories. ARPANSA will also provide research and services for radiation health, and in support of the regulatory and uniformity functions. The establishment of ARPANSA will ensure that the proposed replacement research reactor, the future low level radioactive waste repository and other Commonwealth nuclear facilities and radiation practices are subject to a regulatory regime which reflects the accumulated experience of the States and Territories and best international practice, and meets public expectations

  8. Safety and radiation protection in Indian nuclear power plants

    International Nuclear Information System (INIS)

    Ghadge, S.G.

    2008-01-01

    Full text: Nuclear energy, an important option for electricity generation is environment friendly, technologically proven, economically competitive and associated with the advantages of energy security and diversity. At present, India has an installed nuclear power generation capacity of 4120 M We with 6 more reactors are under construction/ commissioning at 4 sites. Nuclear power program, in India, as of now is primarily based on pressurized heavy water technology and these reactors are designed with safety features, such as, independent and diverse shut down systems, emergency core cooling system, double containment; pressure suppression pool etc. The principles of redundancy, diversity, fail-safe and passive systems are used in the design. The fundamental safety objective is to protect people and the environment from harmful effects of ionizing radiation. In this regard the prime responsibility for safety rests with the organization responsible for facilities and activities that give rise to radiation risks and is achieved by establishing and maintaining the necessary competence, providing adequate training and information, establishing procedures and arrangements to maintain safety under all conditions; verifying appropriate design and the adequate quality of facilities and activities and of their associated equipment; ensuring the safe control of all radioactive material that is used, produced, stored or transported, ensuring the safe control of all radioactive waste that is generated. 'Radiation Protection for Nuclear Facilities', issued by Atomic Energy Regulatory Board (the regulatory authority for NPPs in India) is the basic document for following radiation protection procedures in NPPs. Approved work procedures for all radiation jobs exist. Pre job briefing and post job analysis are carried out. Radiation protection is integrated with plant operation. Radiation levels indicate the performance of several systems. Several measures are adopted in design and

  9. Radiation safety of Takasaki ion accelerators for advanced radiation in JAERI

    International Nuclear Information System (INIS)

    Watanabe, Hiromasa; Tanaka, Susumu; Anazawa, Yutaka

    1991-01-01

    Building layout of Takasaki ion accelerator facility has been started since 1987, with the propulsion of research development of (1) cosmetic environment materials, (2) nuclear fusion reactors, (3) biotechnology, and (4) new functional materials. This paper deals with an AVF cyclotron and a tandem type accelerator, focusing on safety design, radiation safety management, and radioactive waste management. Safety design is discussed in view of radiation shielding and activation countermeasures. Radiation safety management covers radiation monitoring in the workplace, exhaust radioactivity, environment outside the facility, and the other equipments; personal monitoring; and protective management of exposure. For radiation waste management, basic concept and management methods are commented on. (N.K.)

  10. Radiation protection and safety aspects in the use of radiation in medicine, industry and research

    International Nuclear Information System (INIS)

    Bhatt, B.C.

    1998-01-01

    While ionizing radiations have significant and indispensable uses in several fields, it must be borne in mind that it may be harmful to the radiation workers and public if used indiscriminately and without due caution. Radiation doses received by these individuals should be kept well within the recommended limits through good work practices. It is therefore necessary to ensure safety of radiation workers, patients undergoing radiation diagnosis and treatment, public and environment so that maximum benefit is derived from the use of radiation with minimum and acceptable risk. General principles of radiation protection and safety in various applications of radiations are discussed

  11. Ordinance on the Implementation of Atomic Safety and Radiation Protection

    International Nuclear Information System (INIS)

    1984-01-01

    In execution of the new Atomic Energy Act the Ordinance on the Implementation of Atomic Safety and Radiation Protection was put into force on 1 February 1985. It takes into account all forms of peaceful nuclear energy and ionizing radiation uses in nuclear installations, irradiation facilities and devices in research, industries, and health services, and in radioactive isotope production and laboratories. It covers all aspects of safety and protection and defines atomic safety as nuclear safety and nuclear safeguards and physical protection of nuclear materials and facilities, whereas radiation protection includes the total of requirements, measures, means and methods necessary to protect man and the environment from the detrimental effects of ionizing radiation. It has been based on ICRP Recommendation No. 26 and the IAEA's Basic Safety Standards and supersedes the Radiation Protection Ordinance of 1969

  12. The main goals and principles of nuclear and radiation safety

    International Nuclear Information System (INIS)

    Huseynov, V.

    2015-01-01

    The use of modern radiation technology expands in various fields of human activity. The most advanced approach, methods and technologies and also radiation technologies are of great importance in industrial, medical, agricultural, construction, science, education, and etc. areas of the fastest growing Azerbaijan Republic. Ensuring of nuclear and radiation safety, safety standards, main principles and conception of safety play a crucial role. The following ten principles are taken as a basis to ensure safety measures. 1. Responsible for ensuring safety; 2. The role of government; 3. Leadership and management of security interests; 4. Devices and justification of activity; 5. Optimization of preservation; 6. Limiting of risks for physical persons; 7. The protection of present and future generations; 8. The prevention of accidents; 9. Emergency preparedness and response; 10. Reducing of risks of existing and unregulated radiation protection measures. The safety principles are applied together

  13. Radiation Protection, Safety and Security Issues in Ghana.

    Science.gov (United States)

    Boadu, Mary; Emi-Reynolds, Geoffrey; Amoako, Joseph Kwabena; Akrobortu, Emmanuel; Hasford, Francis

    2016-11-01

    Although the use of radioisotopes in Ghana began in 1952, the Radiation Protection Board of Ghana was established in 1993 and served as the national competent authority for authorization and inspection of practices and activities involving radiation sources until 2015. The law has been superseded by an Act of Parliament, Act 895 of 2015, mandating the Nuclear Regulatory Authority of Ghana to take charge of the regulation of radiation sources and their applications. The Radiation Protection Institute in Ghana provided technical support to the regulatory authority. Regulatory and service activities that were undertaken by the Institute include issuance of permits for handling of a radiation sources, authorization and inspection of radiation sources, radiation safety assessment, safety assessment of cellular signal towers, and calibration of radiation-emitting equipment. Practices and activities involving application of radiation are brought under regulatory control in the country through supervision by the national competent authority.

  14. Regulation on Radiation Safety of Guatemala

    International Nuclear Information System (INIS)

    2001-03-01

    This regulation includes all the requirements administrative, radiation protection, that licensees must meet in order to obtain authorization from the competent authority to apply and use radiation sources, equipment emiting ionizing radiation in different practices authorized

  15. Inter-comparison of safety culture within selected practices in Ghana utilising ionising radiation

    International Nuclear Information System (INIS)

    Faanu, A.; Schandorf, C.; Darko, E. O.; Boadu, M.; Emi-Reynolds, G.; Awudu, A. R.; Gyekye, P. K.; Kpeglo, D. O.

    2010-01-01

    The safety culture of selected practices and facilities in Ghana utilising radiation sources or radiation emitting devices has been assessed using a performance indicator, which provided status information on management and operating staff commitment to safety. The questionnaire was based on the following broad areas: general safety considerations, safety policy at the facility level, safety practices at the facility level, definition of responsibility, staff training, safety of the physical structure of the facility and the emergency plans. The analysis showed that the percentage levels of commitment to safety for the respective practices are as follows: conventional radiography, 23.3-90.0%; research reactor, 73.3 %; gamma irradiation facility, 53.3%; radiotherapy, 76.7%; X-ray scanner, 80.0%; gamma scanner, 76.7%; industrial radiography 86.7% and nuclear density practice, 78%. None of the practices or facilities was able to satisfy all the requirements that will ensure a 100% level of safety culture. (authors)

  16. Nuclear safety and radiation protection in the German Democratic Republic

    International Nuclear Information System (INIS)

    Sitzlack, G.; Scheel, H.

    1976-01-01

    The radiation protection organization in the GDR is outlined laying emphasis on the tasks of the National Board of Nuclear Safety and Radiation Protection. In addition to the basic tasks, the various forms of radiation protection monitoring, the management of radioactive wastes, and international responsibilities are briefly explained. (author)

  17. Study on development of education model and its evaluation system for radiation safety

    CERN Document Server

    Seo, K W; Nam, Y M

    2002-01-01

    As one of the detailed action strategy of multi object preparedness for strengthening of radiation safety management by MOST, this project was performed, in order to promote the safety culture for user and radiation worker through effective education program. For the prevention of radiological accident and effective implementation of radiation safety education and training, this project has been carried out the development of education model and its evaluation system on radiation safety. In the development of new education model, education course was classified; new and old radiation worker, temporary worker, lecturer and manager. The education model includes the contents of expanding the education opportunity and workplace training. In the development of evaluation system, the recognition criteria for commission-education institute and inside-education institute which should establish by law were suggested for evaluation program. The recognition criteria contains classification, student, method, facilities, ...

  18. Radiation Safety Culture in Medicine AFROSAFE_R_A_D

    International Nuclear Information System (INIS)

    Nyabanda, R.

    2017-01-01

    Ionizing radiation that include X-rays and Gamma rays Radio waves, infrared and visible light carries sufficient energy to free electrons from atoms or molecules. Becquerel first person to discover evidence of radioactivity, who shared a Nobel Prize for physics in 1903 with Marie and Pierre Curie. Prof Sievert and Louis Harold Gray are the Medical physicists who had major contribution in the study of the biological effects of radiation. Ionizing radiation causes displacement of an electron which can inflict damage on DNA either directly or indirectly. A radiation-safety campaign developed by the radiation health workers in Africa. Radiosensitive organs is highest in cells which are highly mitotic or undifferentiated. E.g basal epidermis, bone marrow, thymus, gonads, and lens cells. Relatively low radiosensitivity in muscle, bones, and nervous system tissues. A radiation-safety campaign developed by the radiation health workers in Africa. AFROSAFE Strategies Strengthen radiation protection of patients, health workers and public, Promote safe and appropriate use of ionizing radiation in medicine. Foster improvement of the benefit-risk dialogue with patients and the public. Enhance the safety and quality of radiological procedures in medicine, Promote safety in radiological equipment and facilities and Promote research in radiation protection and safety

  19. Radiation protection and safety guide no. GRPB-G-4: inspection

    International Nuclear Information System (INIS)

    Schandorf, C.; Darko, O.; Yeboah, J.; Osei, E.K.; Asiamah, S.D.

    1995-01-01

    The use of ionizing radiation and radiation sources in Ghana is on the increase due to national developmental efforts in Health Care, Food and Agriculture, Industry, Science and Technology. This regulatory Guide has been developed to assist both the Regulatory Body (Radiation Protection Board) and operating organizations to perform systematic inspections commensurate with the level of hazard associated with the application of radiation sources and radioactive materials. The present Guide applies to the Radiation Protection and Safety inspection and/or audit conducted by the Radiation Protection Board or Radiation Safety Officer. The present Guide is applicable in Ghana and to foreign suppliers of radiation sources. The present Guide applies to notifying person, licensee, or registrant and unauthorized practice

  20. Determination of Safety Performance Grade of NPP Using Integrated Safety Performance Assessment (ISPA) Program

    International Nuclear Information System (INIS)

    Chung, Dae Wook

    2011-01-01

    Since the beginning of 2000, the safety regulation of nuclear power plant (NPP) has been challenged to be conducted more reasonable, effective and efficient way using risk and performance information. In the United States, USNRC established Reactor Oversight Process (ROP) in 2000 for improving the effectiveness of safety regulation of operating NPPs. The main idea of ROP is to classify the NPPs into 5 categories based on the results of safety performance assessment and to conduct graded regulatory programs according to categorization, which might be interpreted as 'Graded Regulation'. However, the classification of safety performance categories is highly comprehensive and sensitive process so that safety performance assessment program should be prepared in integrated, objective and quantitative manner. Furthermore, the results of assessment should characterize and categorize the actual level of safety performance of specific NPP, integrating all the substantial elements for assessing the safety performance. In consideration of particular regulatory environment in Korea, the integrated safety performance assessment (ISPA) program is being under development for the use in the determination of safety performance grade (SPG) of a NPP. The ISPA program consists of 6 individual assessment programs (4 quantitative and 2 qualitative) which cover the overall safety performance of NPP. Some of the assessment programs which are already implemented are used directly or modified for incorporating risk aspects. The others which are not existing regulatory programs are newly developed. Eventually, all the assessment results from individual assessment programs are produced and integrated to determine the safety performance grade of a specific NPP

  1. Personnel radiation safety in nuclear power plants

    International Nuclear Information System (INIS)

    Elkert, J.

    1979-05-01

    The principal contributions to the radiation doses of the Swedish power reactor personnel are identified. The possi bilities to reduce these doses are examined. The radiation doses are analyzed according to different personnel categories, specific maintenance operations or inspections and to different radiation activities. Suggestions are given for reducing the radiation doses. (L.E.)

  2. Radiation Protection and Safety Department - annual report 1977

    International Nuclear Information System (INIS)

    Kiefer, H.; Koelzer, W.

    1978-03-01

    The duties cover tasks relative to radiation protection and safety on behalf of the institutes and departments of Kernforschungszentrum Karlsruhe and environmental monitoring for the whole Nuclear Research Center as well as own research and development work, mainly performed under the Nuclear Research Center and the Nuclear Safeguards Project. The centers of interest of R and D activities were: investigation of the atmospheric diffusion in the micro- and meso-scale, study of the radiological consequences of accidents in reactors under probabilistic aspects, implementation of nuclear fuel safeguarding systems, improvements in radiation protection measurement technology. This report gives details of the different duties, indicates the results of 1977 routine measurements, and reports about new results of investigations and developments of the working groups of the department. (orig.) [de

  3. Radiation safety, protection and recommendations in dentistry - a review

    International Nuclear Information System (INIS)

    Castelino, Renita

    2013-01-01

    Radiation is the transmission of energy through space and matter. Diagnostic radiology uses ionizing radiations which have sufficient energy to ionize atoms or molecules in biological and other systems. X-rays used in diagnostic radiology are a potent mutagenic agent, capable of inducing both gene mutations and chromosomal aberrations. X-rays are extensively used in medical and dental practice for the purpose of diagnosis and treatment. X-rays provide useful information and aid in diagnosis but at the same time they also have the potential to cause harmful effects. In dentistry X-rays are used mainly for diagnosis. Radiation in doses required for dentistry may not present any major risks, however these small doses are not necessarily risk free. Hence, no exposure to X-rays can be considered completely free of risk, so the use of radiation by dentists is accompanied by a responsibility to ensure appropriate protection. Several radiation safety measures have been recommended and advocated to reduce harmful effects. Dental professionals are the only practitioners who perform radiographical examination of their patients themselves. Although the exposure used in dentistry is low every effort should be made to reduce radiation in order to prevent the accumulated dose to the dentist in their lifetime. The dose reduction can be achieved in three main steps. They are decision making, optimising radiologic procedures and patient protection. The potential for undesirable effects must be balanced against the benefits obtained from radiographs. Therefore, the aim of the paper is to review important parameters that must be taken into consideration in the clinical set up to reduce radiation exposure to patients and dental personnel. (author)

  4. Towards a radiation safety culture at Universidad Nacional de Colombia

    International Nuclear Information System (INIS)

    Poveda, Jairo F.; Munera, Hector A.

    2008-01-01

    Full text: During the 20th century, nuclear and radiation techniques for research, teaching, and medical and engineering practice slowly appeared at the National University of Colombia, mainly at the Bogota, Medellin and Manizales branches. Each individual laboratory or researcher obtained the license for the use of the radioactive source, or radiation emitting apparatus. However, the University as a whole does not have as yet a Radiation Safety Manual, nor an inventory of laboratories using radiation. From the viewpoint of radiation safety and culture, this situation is undesirable, and may easily lead to inappropriate waste management practices, including the possibility of orphan sources (one such source has been already found). As part of the program of environmental management of dangerous wastes promoted by the National Division of Laboratories of our University, an office of radiation safety was created in the year 2006. This paper describes the situation that was found, the activities that have been carried out, some of the difficulties that we have met, and the plans that we have to help shape a safety culture at our institution. Currently we are pursuing an inventory of laboratories using radioactive sources and radiation emitting apparatuses, starting with the branches in Bogota and Manizales which are perceived as the most urgent to deal with. Fortunately, the branch in Medellin has been for about a decade under the care of a former radiation safety officer of our national Institute of Nuclear Affairs, who presently teaches there. During 2006 and 2007, 13 laboratories using radioactive sources were visited in the Bogota branch. Safety procedures and waste handling protocols were checked, safety manuals prepared and/or revised, and recommendations for safety culture provided. During 2008 we will visit Manizales, and will continue visiting a number of X-ray machines used in the Bogota branch for engineering, veterinary, and diagnostic, and surgery medical

  5. Safety performance of preliminary KALIMER conceptual design

    Energy Technology Data Exchange (ETDEWEB)

    Hahn Dohee; Kim Kyoungdoo; Kwon Youngmin; Chang Wonpyo; Suk Soodong [Korea atomic Energy Resarch Inst., Taejon (Korea)

    1999-07-01

    The Korea Atomic Energy Research Institute (KAERI) is developing KALIMER (Korea Advanced Liquid Metal Reactor), which is a sodium cooled, 150 MWe pool-type reactor. The safety design of KALIMER emphasizes accident prevention by using passive processes, which can be accomplished by the safety design objectives including the utilization of inherent safety features. In order to assess the effectiveness of the inherent safety features in achieving the safety design objectives, a preliminary evaluation of ATWS performance for the KALIMER design has been performed with SSC-K code, which is a modified version of SSC-L code. KAERI's modification of the code includes development of reactivity feedback models for the core and a pool model for KALIMER reactor vessel. This paper describes the models for control rod driveline expansion, gas expansion module and the thermal hydraulic model for reactor pool and the results of preliminary analyses for unprotected loss of flow and loss o heat sink. (author)

  6. Safety performance of preliminary KALIMER conceptual design

    International Nuclear Information System (INIS)

    Hahn Dohee; Kim Kyoungdoo; Kwon Youngmin; Chang Wonpyo; Suk Soodong

    1999-01-01

    The Korea Atomic Energy Research Institute (KAERI) is developing KALIMER (Korea Advanced Liquid Metal Reactor), which is a sodium cooled, 150 MWe pool-type reactor. The safety design of KALIMER emphasizes accident prevention by using passive processes, which can be accomplished by the safety design objectives including the utilization of inherent safety features. In order to assess the effectiveness of the inherent safety features in achieving the safety design objectives, a preliminary evaluation of ATWS performance for the KALIMER design has been performed with SSC-K code, which is a modified version of SSC-L code. KAERI's modification of the code includes development of reactivity feedback models for the core and a pool model for KALIMER reactor vessel. This paper describes the models for control rod driveline expansion, gas expansion module and the thermal hydraulic model for reactor pool and the results of preliminary analyses for unprotected loss of flow and loss o heat sink. (author)

  7. 10. Latin American Regional Congress IRPA Protection and Radiation Safety

    International Nuclear Information System (INIS)

    2015-01-01

    The 10.Latin American Regional Congress IRPA Protection and Radiation Safety was organized by the Radioprotection Argentine Society, in Buenos Aires, between the april 12 and 17, 2015. In this event, were presented almost 400 papers about these subjects: radiation protection in medicine and industry; radiological and nuclear emergencies; NORM (Natural Occurring Radioactive Materials); reactors; radiation dosimetry; radiotherapy; non-ionizing radiations; policies and communications; etc.

  8. Radiation sources safety and radioactive materials security regulation in Ukraine

    International Nuclear Information System (INIS)

    Smyshliaiev, A.; Holubiev, V.; Makarovska, O.

    2001-01-01

    Radiation sources are widely used in Ukraine. There are about 2500 users in industry, science, education and about 2800 in medicine. About 80,000 sealed radiation sources with total kerma-equivalent of 450 Gy*M 2 /sec are used in Ukraine. The exact information about the radiation sources and their users will be provided in 2001 after the expected completion of the State inventory of radiation sources in Ukraine. In order to ensure radiation source safety in Ukraine, a State System for regulation of activities dealing with radiation sources has been established. The system includes the following elements: establishment of norms, rules and standards of radiation safety; authorization activity, i.e. issuance of permits (including those in the form of licences) for activities dealing with radiation sources; supervisory activity, i.e. control over observance of norms, rules and standards of radiation safety and fulfilment of conditions of licences for activities dealing with radiation sources, and also enforcement. Comprehensive nuclear legislation was developed and implemented from 1991 to 2000. Radiation source safety is regulated by three main nuclear laws in Ukraine: On the use of nuclear energy and radiation safety (passed on 8 February 1995); On Human Protection from Impact of Ionizing Radiation (passed on 14 January 1998); On permissive activity in the area of nuclear energy utilization (passed on 11 January 2000). The regulatory authorities in Ukraine are the Ministry for Ecology and Natural Resources (Nuclear Regulatory Department) and the Ministry of Health (State sanitary-epidemiology supervision). According to the legislation, activities dealing with radiation sources are forbidden without an officially issued permit in Ukraine. Permitted activities with radiation sources are envisaged: licensing of production, storage and maintenance of radiation sources; licensing of the use of radiation sources; obligatory certification of radiation sources and transport

  9. A National Institute of Radiation Protection and Nuclear Safety?

    International Nuclear Information System (INIS)

    Hartley, B.M.

    1993-01-01

    The practice of radiation protection within Australia is fragmented on a number of different levels. Each state has its own radiation protection organisation. Within the Commonwealth there is also a large number of bodies which deal with different aspects of radiation protection or nuclear safety. There is also an interest in occupational radiation protection by Departments responsible for Occupational Health and Safety. It is estimated that this fragmentation affects the practice of radiation protection at a State level and also the role which Australia can play internationally. The establishment of a National Institute of Radiation Protection and Nuclear Safety is therefore proposed. Possible structures and organizational arrangements for such an institute are discussed. 4 refs., 4 tabs., 3 figs

  10. Nuclear safety and radiation protection in France in 2011

    International Nuclear Information System (INIS)

    2012-01-01

    The first part of this voluminous report describe the different ASN (Nuclear Safety Authority) actions: nuclear activities (ionising radiation and health and environmental risks), principles and stakeholders in nuclear safety regulation, radiation protection and protection of the environment, regulation, regulation of nuclear activities and exposure to ionizing radiation, radiological emergencies, public information and transparency, international relations. It also gives an overview of nuclear safety and radiation protection activities in the different French regions. The second part addresses activities regulated by the ASN: medical uses of ionizing radiation, non-medical uses of ionizing radiation, transport of radioactive materials, nuclear power plants, nuclear fuel cycle installations, nuclear research facilities and various nuclear installations, safe decommissioning of basic nuclear installations, radioactive waste and contaminated sites and soils

  11. Study of radiation safety education practices in acute care Texas hospitals

    International Nuclear Information System (INIS)

    Lemley, A.A.; Hedl, J.J. Jr.; Griffin, E.E.

    1987-01-01

    A survey study was performed to assess the extent of radiation safety education and training in acute care Texas hospitals for radiologic technologists and other hospital personnel. The findings revealed a self-perceived need by hospital administrative personnel and were interpreted to suggest a quantitative need for increased radiation safety education for several classes of hospital personnel. The findings are discussed relative to potential certification requirements for technologists and implications for the training of other personnel

  12. Sweden's Cooperation with Eastern Europe in Radiation Safety 2010

    International Nuclear Information System (INIS)

    Van Dassen, Lars; Andersson, Sarmite; Bejarano, Gabriela

    2011-09-01

    The Swedish Radiation Safety Authority implemented in 2010 cooperation projects in Russia, Ukraine, Georgia, Armenia, Lithuania and Moldova based on instructions from the Swedish Government and agreements with the European Union and the Swedish International Development Cooperation Agency, SIDA. The projects aim at achieving a net contribution to radiation safety (including nuclear safety, nuclear security and non-proliferation as well as radiation protection and emergency preparedness) for the benefit of the host country as well as Sweden. This report gives an overview of all the projects implemented in 2010

  13. Development of safety performance indicators in Japan

    International Nuclear Information System (INIS)

    Ohashi, H.; Tamao, S.; Tanaka, J.; Sawayama, T.

    2001-01-01

    For the purpose of safety regulations of operating nuclear power stations in Japan, the regulatory authorities utilize two types of regulations. One is the direct regulation, such as periodical inspection to inspect the function and performance of equipment important to safety, and the other is the audit type regulation such as preservation inspection to audit the compliance with the safety preservation rules. As performance indicators are expected to be an effective tool to evaluate the activities by audit type regulations, NUPEC is studying a comprehensive set of operational performance indicators to meet the effective evaluation method for the safety preservation activities in the audit type regulations under the frame of current safety regulation system. The study includes the establishment of comprehensive operational performance indicators applicable in Japan, the effective application of performance indicators to the current Japanese regulation, the clarification of the applicable scope of utilization, the possibility of applying the performance indicators. This report describes the present status of our performance indicator studies. After the completion of these studies the regulatory authorities will evaluate if and how the new set of comprehensive performance indicators could be introduced to Japanese regulatory scheme. (author)

  14. Monitoring and crisis system of radiation safety

    International Nuclear Information System (INIS)

    Bartok, J.; Borovansky, P.; Macica, J.; Petrovicova, M.

    2005-01-01

    In this paper we have briefly described our practical experiences with the most complex Radiation Monitoring System we have designed. This system consists of number of stations; those data are collected in the main crisis center of the whole system. The main center integrates RMS Central Database, the IMS Model Suite workstation and the Graphics workstation. The radiations probes of the RP series are the base for stationary , portable sets and for sets measuring underwater radiation. The radiation and meteorological data, which are necessary for reasonable interpretation of radiation data, are archived in RMS Central database. The Lagrangian trajectory model from the IMS Model Suite serves for radiation dispersion modeling. (authors)

  15. Radiation safety aspects pertaining to female patients and staff

    International Nuclear Information System (INIS)

    Patni, Nidhi

    2017-01-01

    Many organizations in the world are committed to gender parity. Increasing number of women is working in the fields of radiation medicine and in industries dealing with radiation. Women patients may be exposed to radiation in radiology, radiation oncology, nuclear medicine, interventional cardiology, dentistry etc. Radiation safety of women staff and women patients is different from their male counterparts because of conception and pregnancy. So, fetal health is a matter of concern in the above. Also, the excess relative risk of radiation induced cancers in females relates to higher risk of thyroid cancer and high radiosensitivity as compared to males

  16. INSAG's ongoing work on nuclear, radiation and waste safety

    International Nuclear Information System (INIS)

    Baer, A.J.

    1999-01-01

    The International Nuclear Safety Advisory Group (INSAG) is an advisory group to the Director General of the IAEA. It identifies current nuclear safety issues, draws conclusions from its analyses and gives advice on those issues. INSAG is currently working on four documents: a complete revision of INSAG-3, the classical paper on safety principles for nuclear plants, published in 1988; 'Safety Management', the effective system for the management of operational strategy; 'Safe Management of the Life Cycle of Nuclear Power Plants'; and the fourth document in preparation entitled 'The Safe Management of Sources of Radiation: Principles and Strategies'. The fourth document is aimed primarily at political decision makers who have no knowledge of radiation safety or of nuclear matters generally but are called upon to make important decisions in this field. INSAG has attempted to present them with a 'unified doctrine' of the management of all radiation sources, even though, for historical reasons radiation protection and nuclear safety have evolved largely independently of each other. The major conclusion to be drawn from the paper is that a systematic application of protection and safety principles, and of appropriate strategies, goes a long way towards ensuring the safe management of technologies involving radiation. Furthermore, the management of sources of radiation could benefit from the experience accumulated in other industries facing comparable challenges

  17. Food safety performance indicators to benchmark food safety output of food safety management systems

    NARCIS (Netherlands)

    Jacxsens, L.; Uyttendaele, M.; Devlieghere, F.; Rovira, J.; Oses Gomez, S.; Luning, P.A.

    2010-01-01

    There is a need to measure the food safety performance in the agri-food chain without performing actual microbiological analysis. A food safety performance diagnosis, based on seven indicators and corresponding assessment grids have been developed and validated in nine European food businesses.

  18. Radiation safety program in a high dose rate brachytherapy facility

    International Nuclear Information System (INIS)

    Rodriguez, L.V.; Hermoso, T.M.; Solis, R.C.

    2001-01-01

    The use of remote afterloading equipment has been developed to improve radiation safety in the delivery of treatment in brachytherapy. Several accidents, however, have been reported involving high dose-rate brachytherapy system. These events, together with the desire to address the concerns of radiation workers, and the anticipated adoption of the International Basic Safety Standards for Protection Against Ionizing Radiation (IAEA, 1996), led to the development of the radiation safety program at the Department of Radiotherapy, Jose R. Reyes Memorial Medical Center and at the Division of Radiation Oncology, St. Luke's Medical Center. The radiation safety program covers five major aspects: quality control/quality assurance, radiation monitoring, preventive maintenance, administrative measures and quality audit. Measures for evaluation of effectiveness of the program include decreased unnecessary exposures of patients and staff, improved accuracy in treatment delivery and increased department efficiency due to the development of staff vigilance and decreased anxiety. The success in the implementation required the participation and cooperation of all the personnel involved in the procedures and strong management support. This paper will discuss the radiation safety program for a high dose rate brachytherapy facility developed at these two institutes which may serve as a guideline for other hospitals intending to install a similar facility. (author)

  19. Test tools of physics radiography children as a support for safety radiation and safety patients

    International Nuclear Information System (INIS)

    Siti Masrochah; Yeti Kartikasari; Ardi Soesilo Wibowo

    2013-01-01

    Radiographic examination of the thorax children aged 1-3 years have a high sufficiently failure. This failure is caused by the movement and difficulty positioning the patient, resulting in the risk of repeat radiographs to patient safety particularly unnecessary radiation risks. It is therefore necessary to develop research on children design fixation devices. This research aims to create a design tool fixation on radiographs children to support radiation safety and patient safety. This research is a descriptive exploratory approach to tool design. The independent variables were the design tools, variable tool function test results, and radiographic variables controlled thorax. The procedure is done by designing data collection tools, further trials with 20 samples. Processing and analysis of data is done by calculating the performance assessment tool scores with range 1-3. The results showed that the design tool of fixation in the form of standard radiographic cassette equipped with chairs and some form of seat belt fixation. The procedure uses a tool fixation is routine radiographic follow thorax child in an upright position. Function test results aids fixation is to have an average score of 2.66, which means good. While the test results for each component, the majority of respondents stated that the reliability of the device is quite good with a score of 2.45 (60 %), convenience tool with a score of 2.60 (70 %), quality of the radiographs did not incontinence of the thorax radiograph with a score 2.55 (85 %), the child protection (security) with a score of 2.70 (70 %), good design aesthetic design with a score of 2.80 (80 %), addition of radiation from the others on the use of these tools do not need with a score of 2.80 (80 %), and there is no additional radiation due to repetitions with a score of 2.85 (90 %). (author)

  20. Innovative approach to training radiation safety regulatory professionals

    International Nuclear Information System (INIS)

    Gilley, Debbie Bray

    2008-01-01

    Full text: The supply of human resources required to adequately manage a radiation safety regulatory program has diminished in the last five years. Competing professional opportunities and a reduction in the number of health physics secondary schools have made it necessary to look at alternative methods of training. There are limited educational programs in the US that prepare our professionals for careers in the Radiation Regulatory Programs. The state of Florida's radiation control program embraced a new methodology using a combination of didactic and work experience using qualification journals, subject matter experts, and formalized training to develop a qualified pool of employees to perform the regulatory functions and emergency response requirements of a state radiation control program. This program uses a task-based approach to identify training needs and draws upon current staff to develop and implement the training. This has led to a task-oriented staff capable of responding to basic regulatory and emergency response activities within one year of employment. Florida's program lends itself to other states or countries with limited resources that have experienced staff attrition due to retirement or competing employment opportunities. Information on establishing a 'task-based' pool of employees that can perform basic regulatory functions and emergency response after one year of employment will be described. Initial task analysis of core functions and methodology is used to determine the appropriate training methodology for these functions. Instructions will be provided on the methodology used to 'mentor' new employees and then incorporate the new employees into the established core functions and be a useful employee at the completion of the first year of employment. New training philosophy and regime may be useful in assisting in the development of programs in countries and states with limited resources for training radiation protection personnel. (author)

  1. Annual health, safety and environmental performance report for 1993

    Energy Technology Data Exchange (ETDEWEB)

    Gallapher, J D; Wright, M G

    1994-05-01

    This report summarizes the occupational health and safety and the environmental protection record of the operations of Atomic Energy of Canada Limited (AECL) during 1993. An introduction highlights the results and describes the facilities and organizational systems. Subsequent sections indicate the performance of the company with respect to personnel radiation exposures, occupational injuries, the handling of wastes, and the release of materials into the environment. Programs in health, safety and environmental protection are presented, along with site remediation and emergency preparedness practices. (author). 14 figs.

  2. Annual health, safety and environmental performance report for 1993

    International Nuclear Information System (INIS)

    Gallapher, J.D.; Wright, M.G.

    1994-05-01

    This report summarizes the occupational health and safety and the environmental protection record of the operations of Atomic Energy of Canada Limited (AECL) during 1993. An introduction highlights the results and describes the facilities and organizational systems. Subsequent sections indicate the performance of the company with respect to personnel radiation exposures, occupational injuries, the handling of wastes, and the release of materials into the environment. Programs in health, safety and environmental protection are presented, along with site remediation and emergency preparedness practices. (author). 14 figs

  3. An evaluation of the uranium mine radiation safety course

    International Nuclear Information System (INIS)

    1984-07-01

    The report evaluates the Uranium Mine Radiation Safety Course focussing on the following areas: effectivenss of the course; course content; instructional quality; course administration. It notes strengths and weaknesses in these areas and offers preliminary recommendations for future action

  4. Basic elements of a regulatory programme for radiation safety

    International Nuclear Information System (INIS)

    Bilbao, A.A.

    2000-01-01

    In this lecture the objectives of IAEA TECDOC 1067: Organization and implementation of a national regulatory infrastructure governing protection against ionizing radiation and the safety of sources (1999) is presented

  5. Radiation safety status at a bio medical research centre

    International Nuclear Information System (INIS)

    Mishra, S.K.

    1998-01-01

    Radioisotopes are being used for biomedical research purpose at School of Life Science, Jawaharlal Nehru University for the last twenty five years. Present paper analyses the overall status of radiation safety at this Centre

  6. Requirements of radiation protection and safety for nuclear medicine services

    International Nuclear Information System (INIS)

    1989-01-01

    The requirements of radiation protection and safety for nuclear medicine services are established. The norms is applied to activities related to the radiopharmaceuticals for therapeutics and 'in vivo' diagnostics purposes. (M.C.K.) [pt

  7. Radiation safety in nuclear industry in retrospect and perspective

    International Nuclear Information System (INIS)

    Pan Ziqiang

    1993-01-01

    More than 30 years have passed since the starting up of nuclear industry in China from the early 1950's. Over the past 30-odd years, nuclear industry has always kept a good record in China thanks to the policy of 'quality first, safety first' clearly put forward for nuclear industry from the outset and a lot of suitable effective measures taken over that period. Internationally, there is rapid progress in radiation protection and nuclear safety (hereafter refereed to as radiation safety) and a number of new concepts in the field of radiation protection have been advanced. Nuclear industry is developing based on the international standardization. To ensure the further development of nuclear utility, radiation safety needs to be further strengthened

  8. Mining Behavior Based Safety Data to Predict Safety Performance

    Energy Technology Data Exchange (ETDEWEB)

    Jeffrey C. Joe

    2010-06-01

    The Idaho National Laboratory (INL) operates a behavior based safety program called Safety Observations Achieve Results (SOAR). This peer-to-peer observation program encourages employees to perform in-field observations of each other's work practices and habits (i.e., behaviors). The underlying premise of conducting these observations is that more serious accidents are prevented from occurring because lower level “at risk” behaviors are identified and corrected before they can propagate into culturally accepted “unsafe” behaviors that result in injuries or fatalities. Although the approach increases employee involvement in safety, the premise of the program has not been subject to sufficient empirical evaluation. The INL now has a significant amount of SOAR data on these lower level “at risk” behaviors. This paper describes the use of data mining techniques to analyze these data to determine whether they can predict if and when a more serious accident will occur.

  9. The safety of radiation sources and radioactive materials in China

    International Nuclear Information System (INIS)

    Liu, H.

    2001-01-01

    The report describes the present infrastructure for the safety of radiation sources in China, where applications of radiation sources have become more and more widespread in the past years. In particular, it refers to the main functions of the National Nuclear Safety Administration of the State Environmental Protection Administration (SEPA), which is acting as the regulatory body for nuclear and radiation safety at nuclear installations, the Ministry of Public Health which issues licences for the use of radiation sources, and the Ministry of Public Security, which deals with the security of radiation sources. The report also refers to the main requirements of the existing regulatory system for radiation safety, i.e. the basic dose limits for radiation workers and the public, the licensing system for nuclear installations and for radioisotope-based and other irradiation devices, and the environmental impact assessment system. Information on the nationwide survey of radiation sources carried out by SEPA in 1991 is provided, and on some accidents that occurred in China due to loss of control of radiation sources and errors in the operation of irradiation facilities. (author)

  10. Handbook on radiation safety. Spravochnik po radiatsionnoj bezopasnosti

    Energy Technology Data Exchange (ETDEWEB)

    Kozlov, V R

    1977-01-01

    The handbook reflects changes, in quotas, providing radiation safety in the Soviet Union, and in state standards. It includes the data, published in the soviet and foreign press up to 1975 on problems of ionizing radiation interaction with a substance, on terminology and units for measuring ionizing radiations and radioactivity, doses of background and admissible personnel irradiation in space, resulting from natural and artificial sources,from medical procedures. Given are the norms and sanitary rules of radiation protection when operating ionizing radiations sources at nuclear power plants, nuclear reactors, critical assemblies, placing and operating charged particle accelerators. Included is ample information on dosimetry of X-ray, gamma-, and neutron radiation, on dosimetry of charged particles, aerosols and gases, on radiometry and spectrometry of internal irradiation and radiation sources. Devices for ionizina radiation registration, model radiation sources, radionuclide solutions and their calibration are described.

  11. Improvement programme of safety performance indicators (SPIs) in Korea

    International Nuclear Information System (INIS)

    Lee, S.Y.

    2001-01-01

    KINS has developed and used Safety Performance Indicators (SPIs), which are count based and composed of 10 indicators in 8 areas, to monitor the trend of performance of NPPs in Korea since 1997. However, the limited usage of SPIs and the increasing worldwide interest on SPIs became the motivation of the SPI improvement programme in Korea. Korea is planning to establish plant performance evaluation programme through analysis of SPI and result of inspection. The SPI improvement programme is a part of the plant performance evaluation programme and includes study on performance evaluation areas, indicator categories, selection and development of indicators, redefinition of indicators and introduction of graphical display system. The selected performance evaluation areas are general performance, reactor safety and radiation safety. Each area will have categories as sub-areas and a total of six categories are selected. One or two indicators for each category are determined or will be developed to make a set of Safety Performance Indicators. Also, a graphic display system will be introduced to extend the usage of SPIs. (author)

  12. Radiation Safety of Accelerator Facility with Regard to Regulation

    International Nuclear Information System (INIS)

    Dedi Sunaryadi; Gloria Doloresa

    2003-01-01

    The radiation safety of accelerator facility and the status of the facilities according to licensee in Indonesia as well as lesson learned from the accidents are described. The atomic energy Act No. 10 of 1997 enacted by the Government of Indonesia which is implemented in Radiation Safety Government Regulation No. 63 and 64 as well as practice-specific model regulation for licensing request are discussed. (author)

  13. A proposal for an international convention on radiation safety

    International Nuclear Information System (INIS)

    Ahmed, J.U.

    1998-01-01

    One century has passed since harmful effects of radiation on living tissues were recognized. Organized efforts to reduce radiation hazards began in early 1920s. Major efforts by the ICRP since 1928, aided by ICRU, greatly helped in formulating principles, policies and guidance for radiation protection. The WHO formally recognized ICRP in 1956 and began implementing ICRP recommendations and guidance throughout the world. The IAEA, after it took office in 1957, began to establish or adopt standards of safety based on ICRP recommendations and provide for application of these standards in the field of atomic energy. Later on, other pertinent international organizations joined IAEA in establishing the Basic Safety Standards on radiation safety. The IAEA has issued, until now, nearly couple of hundred safety related documents on radiation safety and waste management. However, in spite of all such international efforts for three quarter of a century, there has been no effective universal control in radiation safety. Problems exist at the user, national, international and manufacturers and suppliers levels. Other problems are management of spent sources and smuggling of sources across international borders. Although, radiation and radionuclides are used by all countries of the world, regulatory and technical control measures in many countries are either lacking or inadequate. The recommendations and technical guidance provided by the international organizations are only advisory and carry no mandatory force to oblige countries to apply them. Member States approve IAEA safety standards and guides at the technical meetings and General Conference, but many of them do not apply these. An International Convention is, therefore, essential to establish international instrument to ensure universal application of radiation safety. (author)

  14. The international standard for protection from ionizing radiation and safety of radiation sources

    Energy Technology Data Exchange (ETDEWEB)

    Schlesinger, T [Israel Atomic Energy Commission, Yavne (Israel). Soreq Nuclear Research Center

    1995-06-01

    This document is a review in hebrew of the new 1994 international standard of the IAEA. The new standard title is `Basic safety standards for radiation protection and for the safety of radiation sources`, which were published in the ICRP Pub. 9.

  15. Radiation safety and workers safety: partners instead of rivals

    International Nuclear Information System (INIS)

    Lambotte, S.; Severitt, S.; Sobetzko, T.; Voelker, T.

    2008-01-01

    It is shown how important and paying it is to look upon working systems as a whole with regard to danger and load at the working place, and to use existing synergies. At many places, a change of approach in this direction is still necessary, in order to recognize the connection between the various fields of operational safety as well as the potential that is hidden behind an effective utilization of the instruments for workers safety. (orig.)

  16. Ionising radiation safety training in the Australian Defence Organisation (ADO)

    International Nuclear Information System (INIS)

    Jenks, G.J.; O'Donovan, E.J.B.; Wood, W.B.

    1998-01-01

    Training personnel in ionising radiation safety within the Australian Defence Organisation (ADO) requires addressing some unique features of an organisation employing both military and civilian personnel. Activities may include those of a civil nature (such as industrial and medical radiography), specific military requirements (for training and emergency response) and scientific research and development. Some personnel may be assigned to full-time duties associated with radiation. However, most are designated as radiation protection officers as a secondary duty. A further complication is that most military personnel are subjected to postings at regular intervals. The ADO's Directorate of Defence Occupational Health and Safety has established an Ionising Radiation Safety Subcommittee to monitor not only the adequacy of the internal Ionising Radiation Safety Manual but also the training requirements. A Training Course, responding to these requirements, has been developed to emphasize, basic radiation theory and protection, operation of radiation monitors available in the ADO, an understanding of the Ionising Radiation Safety Manual, day-to-day radiation safety in units and establishments, and appropriate responses to radiation accidents and emergencies. In addition, students are briefed on a limited number of peripheral topics and participate in some site visits. Currently, two Courses are held annually, each with about twenty students. Most of the material is presented by ADO personnel with external contractor support. The three Courses held to date have proved successful, both for the students and the ADO generally. To seek national accreditation of the course through the Australian National Training Authority, as a first step, competency standards have been proposed. (authors)

  17. Data base management system for a radiation safety program

    International Nuclear Information System (INIS)

    McKetty, M.H.; Roach, D.M.

    1991-01-01

    A data base management system (DBMS) has been developed that simplifies the retrieval of data concerning radioisotope use at a university and hospital. The system customizes software that is commercially available to perform several functions. Reports can be developed concerning receipt of radioactive materials, radioactive waste disposal, and research proposals submitted by investigators. Reports can be prepared that utilize the software's ability to perform numerical calculations. The main advantage of the DBMS is that it allows the easy retrieval of information that is used in the day-to-day operation of a radiation safety office; it also provides easy access and manipulation of data for the preparation of reports, budget proposals, and justifications for purchases

  18. New Radiation Safety Standards of the Russian Federation

    International Nuclear Information System (INIS)

    Kutkov, V.A.

    2001-01-01

    Full text: The new Radiation Safety Standards of the Russian Federation are a first step in an implementation of the 1990 Recommendations of the ICRP into the existing national system of providing a radiation safety of the public. In new System the radiation source is examined as a source of harm and danger for the public. So the System shall include not only the measures for limitation of actual exposures, but also an assessment of efficiency of radiation protection in the practical activity, based on the analysis of a distribution of doses received and on the assessment of actions initiated to restrict the probability of potential exposures. The occupational and public exposure doses are only the indices of the quality of management of the source. In this System a radiation monitoring is a feedback for assessing the stability of the source and how it is controllable. It is a tool for predicting the levels of potential exposure and the relevant danger associated with the source. It is important to underline that the System of Providing a Radiation Safety is an interrelated system. None of its parts may be individually used. In particular, the mere conformity with dose limits is not yet a sufficient evidence of the successful operation of the safety system, because the normal exposure doses reflect only a source-related harm. The problems of implementation of this System of radiation protection and safety into the contemporary practice in the Russia is discussed. (author)

  19. 2011 Annual Criticality Safety Program Performance Summary

    Energy Technology Data Exchange (ETDEWEB)

    Andrea Hoffman

    2011-12-01

    The 2011 review of the INL Criticality Safety Program has determined that the program is robust and effective. The review was prepared for, and fulfills Contract Data Requirements List (CDRL) item H.20, 'Annual Criticality Safety Program performance summary that includes the status of assessments, issues, corrective actions, infractions, requirements management, training, and programmatic support.' This performance summary addresses the status of these important elements of the INL Criticality Safety Program. Assessments - Assessments in 2011 were planned and scheduled. The scheduled assessments included a Criticality Safety Program Effectiveness Review, Criticality Control Area Inspections, a Protection of Controlled Unclassified Information Inspection, an Assessment of Criticality Safety SQA, and this management assessment of the Criticality Safety Program. All of the assessments were completed with the exception of the 'Effectiveness Review' for SSPSF, which was delayed due to emerging work. Although minor issues were identified in the assessments, no issues or combination of issues indicated that the INL Criticality Safety Program was ineffective. The identification of issues demonstrates the importance of an assessment program to the overall health and effectiveness of the INL Criticality Safety Program. Issues and Corrective Actions - There are relatively few criticality safety related issues in the Laboratory ICAMS system. Most were identified by Criticality Safety Program assessments. No issues indicate ineffectiveness in the INL Criticality Safety Program. All of the issues are being worked and there are no imminent criticality concerns. Infractions - There was one criticality safety related violation in 2011. On January 18, 2011, it was discovered that a fuel plate bundle in the Nuclear Materials Inspection and Storage (NMIS) facility exceeded the fissionable mass limit, resulting in a technical safety requirement (TSR) violation. The

  20. Towards an international regime on radiation and nuclear safety

    International Nuclear Information System (INIS)

    Gonzalez, A.J.

    2000-01-01

    The 1990s have seen the de facto emergence of what might be called an 'international regime on nuclear and radiation safety'. It may be construed to encompass three key elements: legally binding international undertakings among States; globally agreed international safety standards; and provisions for facilitating the application of those standards. While nuclear and radiation safety are national responsibilities, governments have long been interested in formulating harmonised approaches to radiation and nuclear safety. A principal mechanism for achieving harmonisation has been the establishment of internationally agreed safety standards and the promotion of their global application. The development of nuclear and radiation safety standards is a statutory function of the IAEA, which is unique in the United Nations system. The IAEA Statute expressly authorises the Agency 'to establish standards of safety' and 'to provide for the application of these standards'. As the following articles and supplement in this edition of the IAEA Bulletin point out, facilitating international conventions; developing safety standards; and providing mechanisms for their application are high priorities for the IAEA. (author)

  1. Report on nuclear and radiation safety in Slovenia in 1999

    International Nuclear Information System (INIS)

    Lovincic, D.

    2000-09-01

    The Slovenian Nuclear Safety Administration (SNSA) has prepared Report on Nuclear and Radiation Safety in Slovenia in 1999. This is one of the regular forms of reporting on the work of the Administration to the Government and National Assembly of the Republic of Slovenia.

  2. Growth of the Female Professional in the Radiation Safety Department

    International Nuclear Information System (INIS)

    Yoon, J.

    2015-01-01

    Currently in Korea’s Nuclear Power Plants (KHNP), the number of the female staffs has been increased as planned construction of new NPPs. However the role of the female staffs in NPPs is still limited as before. Because there is the prejudice which the operating and the maintenance work is unsuitable for female owing to the risk of the radiation exposure and the physical weakness. So female staffs mostly belong to the supporting departments. In particular, the proportion of the female staffs is significantly higher in the radiation safety department among those. The ratio is 15% and is twice higher, whereas the total percentage of the female workers in KHNP is 8%. In the past, the women staffs in the radiation safety department were usually charge of the non-technical duties like the radiation exposure dose management and the education for radiation workers. Although the ratio of the women about that is still higher, nowadays, the role of the female workers tends to diversify to technical supports like the radiation protection and the radioactive waste management while increased the proportion of female employees. This trend is expected to continue for many years to come. Thus, in Korea’s NPPs, it is expected that many women will demonstrate their professionalism especially in the radiation safety department than any other departments. This presentation contains the detailed duty and trend about female staffs in the radiation safety department in Korea’s NPPs. (author)

  3. Radiation safety requirements for training of users of diagnostic X ...

    African Journals Online (AJOL)

    Background. Globally, the aim of requirements regarding the use and ownership of diagnostic medical X-ray equipment is to limit radiation by abiding by the 'as low as reasonably achievable' (ALARA) principle. The ignorance of radiographers with regard to radiation safety requirements, however, is currently a cause of ...

  4. Radiation and ecological safety of nuclear fuel cycle installations

    International Nuclear Information System (INIS)

    Barbasheva, S.V.

    1995-01-01

    Nuclear power plants (NPP) and radioactive waste facilities safety issues are discussed; Chernobyl NPP personnel radiation doses for 1986 are indicated; radiation contamination of environment by Am-241 is investigated; data on radioactive contamination in southern part of Kiev Poles'e are considered

  5. Investigation of radiation safety and safety culture of medical sanitation vocation in Suzhou

    International Nuclear Information System (INIS)

    Tang Bo; Tu Yu; Zhang Yin

    2009-01-01

    Objective: To investigate the construction of radiation safety and safety culture of medical sanitation vocation in Suzhou. Methods: All medical units registered in administration center of Suzhou were included. The above selected medical units were completely investigated, district and county under the same condition of quality control. Results: The radiation safety and safety culture are existing differences among different property and grade hospitals of medicai sanitation vocation in Suzhou. Conclusion: The construction of radiation safety and safety culture is generally occupying in good level in suhzou, but there are obvious differences among different property and grade hospitals. The main reason for the differences in the importance attached to by the hospital decision-making and department management officials as well as the staff personal. (authors)

  6. Ultraviolet radiation, measurements and safety evaluations for radiation protection purposes

    International Nuclear Information System (INIS)

    Witew, B.; Fischer, P.G.

    1983-01-01

    In order to evaluate the effects of ultraviolet radiation, one has to study that photobiologically effective radiation which induces a just measurable threshold reaction. For practical radiation protection, one has to determine the permissible duration of exposure at the end of which the threshold reaction is induced. This time limit is derived by means of spectral measurements and determination of radiation intensity. Detrimental photobiological effects can be avoided, and favourable effects optimized, by observing the time limit. Thus these measurements are used to determine the threshold at which the desired effects of ultraviolet radiation will be accompanied by unwanted effects or damage to persons, as for instance in the use of ultraviolet radiation for operating room sterilization, arc welding work, or cosmetic purposes. (orig.) [de

  7. Ukraine International cooperation in nuclear and radiation safety: public-administrative aspect

    Directory of Open Access Journals (Sweden)

    I. P. Krynychnay

    2017-03-01

    Full Text Available The article examines international cooperation of Ukraine with other States in the sphere of ensuring nuclear and radiation safety and highlights the main directions of development and improvement of nuclear and radiation safety in Ukraine based on international experience, with the aim of preventing the risks of accidents and contamination areas radiological substances. Illuminated that for more than half a century of experience in the use of nuclear energy by the international community under the auspices of the UN, IAEA and other international organizations initiated and monitored the implementation of key national and international programs on nuclear and radiation safety. Of the Convention in the field of nuclear safety and the related independent peer review, effective national regulatory infrastructures, current nuclear safety standards and policy documents, as well as mechanisms of evaluation in the framework of the IAEA constitute important prerequisites for the creation of a world community, the global regime of nuclear and radiation safety. For analysis of the state of international cooperation of Ukraine with other States in the sphere of nuclear and radiation safety, highlighted the legal substance of nuclear and radiation safety of Ukraine, which is enshrined in the domestic Law of Ukraine «On nuclear energy use and radiation safety». Considered the most relevant legal relations. It is established that, despite the current complex international instruments, existing domestic legislation on nuclear and radiation safety, partly there is a threat of emergency nuclear radiation nature, in connection with the failure of fixed rules and programs, lack of funding from the state is not always on time and in full allows you to perform fixed strategy for overcoming the consequences of radiation accidents, the prevention of the threat of environmental pollution. Found that to improve and further ensuring nuclear and radiation safety of

  8. Building competence in radiation protection and the safe use of radiation sources. Safety guide (Spanish ed.)

    International Nuclear Information System (INIS)

    2010-01-01

    This Safety Guide makes recommendations concerning the building of competence in protection and safety within a national radiation protection infrastructure and provides guidance for setting up the structure for a national strategy. It relates to the training and assessment of qualification of new personnel and the retraining of existing personnel in order to develop and maintain appropriate levels of competence. It provides the necessary guidance to meet the requirements laid down in Safety Series No. 115, International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources. Contents: 1. Introduction; 2. Responsibilities for building competence in protection and safety; 3. Education, training and work experience; 4. A national strategy for building competence in protection and safety.

  9. Building competence in radiation protection and the safe use of radiation sources. Safety guide (Arabic ed.)

    International Nuclear Information System (INIS)

    2006-01-01

    This Safety Guide makes recommendations concerning the building of competence in protection and safety within a national radiation protection infrastructure and provides guidance for setting up the structure for a national strategy. It relates to the training and assessment of qualification of new personnel and the retraining of existing personnel in order to develop and maintain appropriate levels of competence. It provides the necessary guidance to meet the requirements laid down in Safety Series No. 115, International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources. Contents: 1. Introduction; 2. Responsibilities for building competence in protection and safety; 3. Education, training and work experience; 4. A national strategy for building competence in protection and safety.

  10. Nuclear power plant radiation: personnel safety aspects

    International Nuclear Information System (INIS)

    Roekmantara, Roestan

    1975-01-01

    Reactor using water as coolant, moderator, and heat transfer can produce a sufficiently great internal and external radiation caused by contamination. The process of contamination and actions that must be taken to avoid radiation workers from receiving more than the maximum permissible dose are presented. (author)

  11. Radiation protection in dentistry. Recommended safety procedures for the use of dental x-ray equipment. Safety code 30

    International Nuclear Information System (INIS)

    1994-01-01

    The Radiation Protection Bureau has prepared a series of documents on safety codes to set out requirements for the safe use of radiation-emitting equipment. This Safety Code has been prepared to provide specific guidance to the dentist, dental hygienist, dental assistant and other support personnel concerned with safety procedures and equipment performance. Dental radiography is one of the most valuable tools used in modern dental health care. It makes possible the diagnosis of physical conditions that would otherwise be difficult to identify. The use of dental radiological procedures must be carefully managed, because x-radiation has the potential for damaging healthy cells and tissues. Although no known occurrence of cancer or genetic damage has been observed from radiation doses delivered in modern dentistry, and until more evidence is available, one should practice radiation hygiene with the same care as would be dictated if a hazard were known to exist. The aim of radiation protection in dentistry is to obtain the desired clinical information with minimal radiation exposure to patients, dental personnel and the public. 15 tabs

  12. Radiation protection in dentistry. Recommended safety procedures for the use of dental x-ray equipment. Safety code 30

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    The Radiation Protection Bureau has prepared a series of documents on safety codes to set out requirements for the safe use of radiation-emitting equipment. This Safety Code has been prepared to provide specific guidance to the dentist, dental hygienist, dental assistant and other support personnel concerned with safety procedures and equipment performance. Dental radiography is one of the most valuable tools used in modern dental health care. It makes possible the diagnosis of physical conditions that would otherwise be difficult to identify. The use of dental radiological procedures must be carefully managed, because x-radiation has the potential for damaging healthy cells and tissues. Although no known occurrence of cancer or genetic damage has been observed from radiation doses delivered in modern dentistry, and until more evidence is available, one should practice radiation hygiene with the same care as would be dictated if a hazard were known to exist. The aim of radiation protection in dentistry is to obtain the desired clinical information with minimal radiation exposure to patients, dental personnel and the public. 15 tabs.

  13. Ordinance on the Finnish Centre of Radiation and Nuclear Safety

    International Nuclear Information System (INIS)

    1990-01-01

    This Ordinance was adopted in implementation of the 1983 Act setting up the Finnish Centre for Radiation and Nuclear Safety and the 1987 Nuclear Energy Act and entered into force on 1 November 1990. The Ordinance specifies the tasks of the Centre, as provided under both Acts, and gives it several supplementary responsibilities. In addition to its overall competence in respect of radiation safety, the Centre will carry out research into and supervise the health effects of radiation and maintain a laboratory for national measurements in that field. The Ordinance also sets out the Centre's organisation chart and the staff duties [fr

  14. The Advanced Light Source (ALS) Radiation Safety System

    International Nuclear Information System (INIS)

    Ritchie, A.L.; Oldfather, D.E.; Lindner, A.F.

    1993-08-01

    The Advanced Light Source (ALS) at the Lawrence Berkeley Laboratory (LBL) is a 1.5 Gev synchrotron light source facility consisting of a 120 kev electron gun, 50 Mev linear accelerator, 1.5 Gev booster synchrotron, 200 meter circumference electron storage ring, and many photon beamline transport systems for research. Figure 1. ALS floor plan. Pairs of neutron and gamma radiation monitors are shown as dots numbered from 1 to 12. The Radiation Safety System for the ALS has been designed and built with a primary goal of providing protection against inadvertent personnel exposure to gamma and neutron radiation and, secondarily, to enhance the electrical safety of select magnet power supplies

  15. Construction of data base for radiation safety assessment of low dose ionizing radiation

    International Nuclear Information System (INIS)

    Saigusa, Shin

    2001-01-01

    Data base with an electronic text on the safety assessment of low dose ionizing radiation have been constructed. The contents and the data base system were designed to provide useful information to Japanese citizens, radiation specialists, and decision makers for a scientific and reasonable understanding of radiation health effects, radiation risk assessment, and radiation protection. The data base consists of the following four essential parts, namely, ORIGINAL DESCRIPTION, DETAILED INFORMATION, TOPIC INFORMATION, and RELATED INFORMATION. The first two parts of the data base are further classified into following subbranches: Radiobiological effects, radiation risk assessment, and radiation exposure and protection. (author)

  16. Relationship between knowledge, attitude, behavior, and self-efficacy on the radiation safety management of radiation workers in medical institutions

    International Nuclear Information System (INIS)

    Han, Eun Ok

    2007-01-01

    Radiation safety managements in medical institutions are needed to protect certain radiation damages as a part of National Coalition. This study investigates the characteristics of self-efficacy that become the major factor on the knowledge, attitude, and behavior on the radiation safety management of radiation workers as an approach of educational aspects and analyzes the relationship between such factors to provide basic materials for improving the activity level of radiation safety managements. In order to implement the goal of this study, a survey was performed for 1,200 workers who were engaged in radiation treatments in medical centers, such as general hospital, university hospital, private hospital, and public health center for 42 days from July 23, 2006. Then, the results of the analysis can be summarized as follows: 1. Average scores on knowledge, attitude, and behavior in the radiation safety management were presented as 75.76±11.20, 90.55±8.59, 80.58±11.70, respectively. Also, the average score of self-efficacy was recorded as 73.55±9.82. 2. Knowledge levels in the radiation safety management showed significant differences according to the sex, age, marriage, education, and experience. Also, males of married, older, highly educated, and largely experienced represented high knowledge levels. Attitude levels in the radiation safety management showed certain significant differences according to the type of medical centers in which private hospitals showed a relatively low level compared to that of high levels in university hospitals. Behavior levels in the radiation safety management also represented significant differences according to the age, marriage, education, experience, and types of medical centers. Factors in married, general hospital, older, highly educated, and largely experienced showed high behavior levels. In addition, the self-efficacy showed certain differences according to the marriage and types of medical centers. Factors in married

  17. Relationship between knowledge, attitude, behavior, and self-efficacy on the radiation safety management of radiation workers in medical institutions

    Energy Technology Data Exchange (ETDEWEB)

    Han, Eun Ok [Daegu Health College, Daegu (Korea, Republic of)

    2007-06-15

    Radiation safety managements in medical institutions are needed to protect certain radiation damages as a part of National Coalition. This study investigates the characteristics of self-efficacy that become the major factor on the knowledge, attitude, and behavior on the radiation safety management of radiation workers as an approach of educational aspects and analyzes the relationship between such factors to provide basic materials for improving the activity level of radiation safety managements. In order to implement the goal of this study, a survey was performed for 1,200 workers who were engaged in radiation treatments in medical centers, such as general hospital, university hospital, private hospital, and public health center for 42 days from July 23, 2006. Then, the results of the analysis can be summarized as follows: 1. Average scores on knowledge, attitude, and behavior in the radiation safety management were presented as 75.76{+-}11.20, 90.55{+-}8.59, 80.58{+-}11.70, respectively. Also, the average score of self-efficacy was recorded as 73.55{+-}9.82. 2. Knowledge levels in the radiation safety management showed significant differences according to the sex, age, marriage, education, and experience. Also, males of married, older, highly educated, and largely experienced represented high knowledge levels. Attitude levels in the radiation safety management showed certain significant differences according to the type of medical centers in which private hospitals showed a relatively low level compared to that of high levels in university hospitals. Behavior levels in the radiation safety management also represented significant differences according to the age, marriage, education, experience, and types of medical centers. Factors in married, general hospital, older, highly educated, and largely experienced showed high behavior levels. In addition, the self-efficacy showed certain differences according to the marriage and types of medical centers. Factors in

  18. Radiation safety concerns during interventional radiology

    International Nuclear Information System (INIS)

    Victor Raj, D.; Livingstone, Roshan Samuel

    2001-01-01

    Interventional radiological procedures are on the increase by virtue of the fact that these procedures replace highly invasive surgical and other procedures. Radiation dose to patients and hospital workers are of significance since these procedures tend to impart large dose to them. Moreover, long term risk from radiation absorbed by patients is of concern since the life expectancy of major fraction of patients is long after undergoing the procedure. This study intends to measure radiation dose imparted to patients as well as personnel- radiologists, technologists, nurses, etc. and estimate the risk factor involved

  19. SAFETY

    CERN Multimedia

    Niels Dupont

    2013-01-01

    CERN Safety rules and Radiation Protection at CMS The CERN Safety rules are defined by the Occupational Health & Safety and Environmental Protection Unit (HSE Unit), CERN’s institutional authority and central Safety organ attached to the Director General. In particular the Radiation Protection group (DGS-RP1) ensures that personnel on the CERN sites and the public are protected from potentially harmful effects of ionising radiation linked to CERN activities. The RP Group fulfils its mandate in collaboration with the CERN departments owning or operating sources of ionising radiation and having the responsibility for Radiation Safety of these sources. The specific responsibilities concerning "Radiation Safety" and "Radiation Protection" are delegated as follows: Radiation Safety is the responsibility of every CERN Department owning radiation sources or using radiation sources put at its disposition. These Departments are in charge of implementing the requi...

  20. Thermal Radiation for Structural Fire Safety Design

    DEFF Research Database (Denmark)

    Hertz, Kristian Dahl

    2006-01-01

    The lecture notes give a short introduction of the theory of thermal radiation. The most elementary concepts and methods are presented in order to give a fundamental knowledge for calculation of the load bearing capacities of fire exposed building constructions....

  1. Performance and safety of hydraulic turbines

    International Nuclear Information System (INIS)

    Brekke, H

    2010-01-01

    The first part of the paper contains the choice of small turbines for run of the river power plants. Then a discussion is given on the optimization of the performance of different types of large turbines. Finally a discussion on the safety and necessary maintenance of turbines is given with special attention to bolt connections.

  2. [RADIATION SAFETY DURING REMEDIATION OF THE "SEVRAO" FACILITIES].

    Science.gov (United States)

    Shandala, N K; Kiselev, S M; Titov, A V; Simakov, A V; Seregin, V A; Kryuchkov, V P; Bogdanova, L S; Grachev, M I

    2015-01-01

    Within a framework of national program on elimination of nuclear legacy, State Corporation "Rosatom" is working on rehabilitation at the temporary waste storage facility at Andreeva Bay (Northwest Center for radioactive waste "SEVRAO"--the branch of "RosRAO"), located in the North-West of Russia. In the article there is presented an analysis of the current state of supervision for radiation safety of personnel and population in the context of readiness of the regulator to the implementation of an effective oversight of radiation safety in the process of radiation-hazardous work. Presented in the article results of radiation-hygienic monitoring are an informative indicator of the effectiveness of realized rehabilitation measures and characterize the radiation environment in the surveillance zone as a normal, without the tendency to its deterioration.

  3. Analysis of changes in environmental radiation, and three types of environmental radiation detector performance comparisons

    International Nuclear Information System (INIS)

    Park, J.H; Seo, J.H; Park, S.M; Yu, B.N; Park, J.H; Joo, K.S

    2013-06-01

    High-pressure ion chamber (GE Reuter-Stokes, HPIC), accuracy is high but the high price and do not have the ability nuclide analysis is a disadvantage. NaI(Tl) and PMT scintillation detector of radioactive materials can be divided. Environmental radiation measurements using a semiconductor with SiPM detector PMT to replace the value of the results were compared. SiPM detector using radiation environment were measured in the field to verify the accuracy and energy resolution. SiPMs performance as environmental radiation measurement equipment and radioactive material distinction as a personal dosimeter based technology, using the above results were prepared. The interest on the environmental radiation due to the Fukushima power plant crisis in Japan has been growing concern about the radiation environment of the relatively close proximity Korea is a very heightened state. Could be confirmed in the radiation environment of nuclear power plants around the analysis and performance of the next generation of environmental radiation meter. Fukushima power plants accident after 2 years, the equipment installed by this analysis meets the performance as a radiation detector could be confirmed as follows. CANA Inc. developed by radionuclides classification of using man-made and natural radionuclides and man-made radionuclides separated, ensure the value of the results were analyzed. Could be and alternative to the conventional detector energy resolution ( 137 CS<15%) and linearity (<15%) to satisfy the performance requirements of the measurement result of environmental radiation detector is considered. SiPM radiation environment changes and HPIC and NaI(TI) scintillation detector installed in Korea of the Fukushima power plant after the accident, radiation environment using a small alternative was to verify the accuracy of the measuring equipment. A big difference in performance as invisible by comparison with the large detector Assay miniaturization rough as a personal

  4. Food safety performance indicators to benchmark food safety output of food safety management systems.

    Science.gov (United States)

    Jacxsens, L; Uyttendaele, M; Devlieghere, F; Rovira, J; Gomez, S Oses; Luning, P A

    2010-07-31

    There is a need to measure the food safety performance in the agri-food chain without performing actual microbiological analysis. A food safety performance diagnosis, based on seven indicators and corresponding assessment grids have been developed and validated in nine European food businesses. Validation was conducted on the basis of an extensive microbiological assessment scheme (MAS). The assumption behind the food safety performance diagnosis is that food businesses which evaluate the performance of their food safety management system in a more structured way and according to very strict and specific criteria will have a better insight in their actual microbiological food safety performance, because food safety problems will be more systematically detected. The diagnosis can be a useful tool to have a first indication about the microbiological performance of a food safety management system present in a food business. Moreover, the diagnosis can be used in quantitative studies to get insight in the effect of interventions on sector or governmental level. Copyright 2010 Elsevier B.V. All rights reserved.

  5. Radiation processing of food to ensure food safety and security

    International Nuclear Information System (INIS)

    Gautam, Satyendra

    2016-01-01

    Radiation processing of food utilizes the controlled application of energy from ionizing radiations such as γ-rays , electrons and X-rays on food. Gamma-rays and X-rays are short wavelength radiations of the electromagnetic spectrum. The approved sources of gamma radiation for food processing are radioisotopes (Cobalt-60 and Caesium-137), electron beam (up to 10 MeV) and X-rays (up to 5 MeV) wherein the latter two are generated by machines using electricity. γ-radiation can penetrate deep into the food materials causing the desired effects. Irradiation works by disrupting the biological processes that lead to decay. While interacting with water and other biomolecules that constitute the food and living organisms, radiation energy is absorbed by these molecules. The interactions of radiation and radiolytic products of water with DNA impair the reproduction of microorganism and insects, and thus help in achieving the desired objectives pertaining to food safety and security

  6. Establishment of radiation protection and safety programme in Nuclear Medicine

    International Nuclear Information System (INIS)

    Chene, E.

    2014-04-01

    Radiation is useful because of its ability to penetrate tissue, allowing imaging of internal structures. However radiation may produce harmful biological effects. Observations of exposed human populations and animal experimentation indicate that exposure to low levels of radiation over a period of time may lead to stochastic radiation effects. Exposures to high levels of radiation above threshold also leads to deterministic effects. Establishment of radiation protection and safety programme and implement it without fail may help prevent deterministic effect and limit chances of stochastic effects. This is achieved by assigning responsibilities to the proposed organizational structure, management commitment to safety culture by providing continuous education and training to employees, regular reviewing and auditing of radiation safety policies. Occupational, public and environmental radiation exposure is further achieved by implementation of set local rules and operational procedures, proper management of radioactive waste and safe transport of radioactive material. Medical radiation exposure is achieved by justified procedures, optimization of doses, guidance levels, quality assurance and quality control programme through image quality, radiopharmaceutical quality and records keeping of radiation doses, calibration certificates of equipment used, equipment service and test certificates. Diagnostic radiopharmaceuticals must deliver the minimum possible radiation dose to the patient while therapeutic radiopharmaceuticals must deliver the maximum dose to the target organ or tissue, while minimizing the dose to non-target tissues such as the bone marrow. Special considerations shall be given to pregnant and breast-feeding patients. The proper facility design and shielding of a nuclear medicine facility shall further provide for the radiation protection to the worker, the patient, public and the environment. Precautions should be given to radioactive patients as there

  7. Radiation safety and formation of public opinion

    International Nuclear Information System (INIS)

    Qurbanov, M.

    2002-01-01

    Full text: Team-administrative system of long years has been a reason of environmental pollution and health consequences and still does. This includes soil pollution with pesticides, ecological condition of micro and macro flora of the Caspian Sea, soil pollution with oil, deforestation and etc. Scientists and environmental NGOs have given some information to public and public opinion has already been formed on this issue. But public opinion is not necessarily formed on radiation - the most important and invisible problem. The reason of this is that radiation danger has been hidden as a closed theme from the public. After the soviet collapse this problem is also being revealed. Number of NGOs have held the seminar on this issue and given some information to public. The researches cover the following problems:To hold the public monitoring in the fields polluted with oil and separate it from the other fields by determining the fields polluted with radiation. To take measures in order to prevent public entrance to these fields; To inform about the usage of radiation based equipment in the industrial fields and to hold the regular monitoring; To advertise the differential signs of radiation sources in the city landfill and other polluted zones; To broaden the advocacy on ultraviolet rays and their influence to human health; To disseminate the brochures and advertisement papers on high technical radiation and their influence to human health; To analyze the radio environmental condition around the Gabala Radar Station; To advocate the possible radiation danger in using the x-ray and other medical equipment; Analyze the possible radon danger in shipping materials; To create the idea on possible transition of radioactive gases and elements from neighbor countries; Creation of idea on possible danger around the high voltage. The formation of public opinion on mentioned problem will depend on combining the scientists' and NGOs activities

  8. Safety of radiation sources and other radioactive materials in Jordan

    International Nuclear Information System (INIS)

    Majali, M.M.

    2001-01-01

    Since joining the IAEA Model Project for upgrading radiation protection infrastructure in countries of West Asia, Jordan has amended its radiation safety legislation. The Regulatory Authority is improving its inventory system for radiation sources and other radioactive materials and also its notification, registration, licensing, inspection and enforcement systems. It has established national provisions for the management of orphan sources after they have been found. The system for the control of the radiation sources and other radioactive materials entering the country has been improved by the Regulatory Authority. (author)

  9. Conception and activity directions of journal ''Nuclear and radiation safety''

    International Nuclear Information System (INIS)

    Olena, M.; Volodymyr, S.

    2000-01-01

    In connection with the State Scientific and Technical Centre onr Nuclear and Radiation Safety (SSTC NRA) and Odessa State Polytechnic University the journal 'Nuclear and Radiation Safety' was established in 1998. In Ukraine many people are interested in nuclear energy problems. The accident in Chernobyl NPP unit 4 touches all Ukrainians and brings about strong and regular attention to nuclear and radiation safety of nuclear installations and nuclear technology, on the other side more than 50 per cent of electric power is produced in 5 NPPs and as following national power supply depends on stability of NPPs work. Main goals of the journal are: Support to Nuclear Regulatory Administration (NRA) of MEPNS of Ukraine, creation of information space for effective exchange of results of scientific, scientific and technical, scientific and analytical work in the field of Nuclear and Radiation Safety, assistance in integrated development of research for Nuclear and Radiation Safety by publication in a single issue of scientific articles, involvement of state scientific potential in resolving actual problems, participation in international collaboration in the framework of agreements, programs and plans. (orig.)

  10. New ICRP recommendations and radiation safety of an NPP

    International Nuclear Information System (INIS)

    Janzekovic, H.

    2007-01-01

    In March 2007 the fundamental radiation protection recommendations used world-widely in nuclear facilities were approved by the ICRP. Implementation of radiation safety standards in an NPP is a challenging issue related to all NPP phases from planning a site and its design to its decommissioning also because if neglected it could be very difficult if not impossible to implement improvement of radiation safety later during operation or decommissioning without a substantial cost. The standards are changing with a period of 15 years which is small regarding a prolonged lifetime of many NPPs and also foreseen lifetime of new NPPs, i.e. 60 years. The new recommendations are actually an upgrading of the ICRP 60. Among other changes new sets of wR and wT are given, as well as an update of around 50 different values related to doses. Two new concepts are also tackled i.e. terrorist attacks and protection of the environment. The influence of the new recommendations on the radiation safety of NPPs can be analysed by a selection of four renewed or new concepts: types of exposure situation, dose constraints, source-related approach and safety and security. Their implementation could lead to upgrading the radiation safety of future or existing NPPs as well as of decommissioning processes. Some of the concepts were already extensively and successfully used by designers of modifications or of new NPPs, as well as by operators. (author)

  11. Radon in the Workplace: the Occupational Safety and Health Administration (OSHA) Ionizing Radiation Standard.

    Science.gov (United States)

    Lewis, Robert K

    2016-10-01

    On 29 December 1970, the Occupational Safety and Health Act of 1970 established the Occupational Safety and Health Administration (OSHA). This article on OSHA, Title 29, Part 1910.1096 Ionizing Radiation standard was written to increase awareness of the employer, the workforce, state and federal governments, and those in the radon industry who perform radon testing and radon mitigation of the existence of these regulations, particularly the radon relevant aspect of the regulations. This review paper was also written to try to explain what can sometimes be complicated regulations. As the author works within the Radon Division of the Pennsylvania Department of Environmental Protection, Bureau of Radiation Protection, the exclusive focus of the article is on radon. The 1910.1096 standard obviously covers many other aspects of radiation and radiation safety in the work place.

  12. MO-AB-201-00: Radiation Safety Officer Update

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-06-15

    The role of the Radiation Safety Officer at a medical facility can be complicated. The complexity of the position is based on the breadth of services provided at the institution and the nature of the radioactive materials license. Medical practices are constantly changing and the use of ionizing radiation continues to rise in this area. Some of the newer medical applications involving radiation have unique regulatory and safety issues that must be addressed. Oversight of the uses of radiation start at the local level (radiation safety officer, radiation safety committee) and are heavily impacted by outside agencies (i.e. Nuclear Regulatory Commission, State Radiologic Health, The Joint Commission (TJC), etc). This session will provide both an overview of regulatory oversight and essential compliance practices as well as practical ways to assess and introduce some of the new applications utilizing radioactive materials into your medical facility. Learning Objectives: Regulatory Compliance and Safety with New Radiotherapies: Spheres and Ra-223 (Lance Phillips) Understand the radioactive materials license amendment process to add new radiotherapies (i.e., SIR-Spheres, Therasphere, Xofigo). Understand the AU approval process for microspheres and Xofigo. Examine the training and handling requirements for new procedures. Understand the process involved with protocol development, SOP in order to define roles and responsibilities. The RSO and The RSC: Challenges and Opportunities (Colin Dimock) Understand how to form an effective Committee. Examine what the Committee does for the Program and the RSO. Understand the importance of Committee engagement. Discuss the balance of the complimentary roles of the RSO and the Committee. The Alphabet Soup of Regulatory Compliance: Being Prepared for Inspections (Linda Kroger) Recognize the various regulatory bodies and organizations with oversight or impact in Nuclear Medicine, Radiology and Radiation Oncology. Examine 10CFR35

  13. MO-AB-201-00: Radiation Safety Officer Update

    International Nuclear Information System (INIS)

    2015-01-01

    The role of the Radiation Safety Officer at a medical facility can be complicated. The complexity of the position is based on the breadth of services provided at the institution and the nature of the radioactive materials license. Medical practices are constantly changing and the use of ionizing radiation continues to rise in this area. Some of the newer medical applications involving radiation have unique regulatory and safety issues that must be addressed. Oversight of the uses of radiation start at the local level (radiation safety officer, radiation safety committee) and are heavily impacted by outside agencies (i.e. Nuclear Regulatory Commission, State Radiologic Health, The Joint Commission (TJC), etc). This session will provide both an overview of regulatory oversight and essential compliance practices as well as practical ways to assess and introduce some of the new applications utilizing radioactive materials into your medical facility. Learning Objectives: Regulatory Compliance and Safety with New Radiotherapies: Spheres and Ra-223 (Lance Phillips) Understand the radioactive materials license amendment process to add new radiotherapies (i.e., SIR-Spheres, Therasphere, Xofigo). Understand the AU approval process for microspheres and Xofigo. Examine the training and handling requirements for new procedures. Understand the process involved with protocol development, SOP in order to define roles and responsibilities. The RSO and The RSC: Challenges and Opportunities (Colin Dimock) Understand how to form an effective Committee. Examine what the Committee does for the Program and the RSO. Understand the importance of Committee engagement. Discuss the balance of the complimentary roles of the RSO and the Committee. The Alphabet Soup of Regulatory Compliance: Being Prepared for Inspections (Linda Kroger) Recognize the various regulatory bodies and organizations with oversight or impact in Nuclear Medicine, Radiology and Radiation Oncology. Examine 10CFR35

  14. SGHWR fuel performance, safety and reliability

    International Nuclear Information System (INIS)

    Pickman, D.O.; Inglis, G.H.

    1977-05-01

    The design principles involved in fuel pins and elements need to take account of the sometimes conflicting requirements of safety and reliability. The principal factors involved in this optimisation are discussed and it is shown from fuel irradiation experience in the Winfrith SGHWR that the necessary bias towards safety has not resulted in a reliability level lower than that shown by other successful water reactor designs. Reliability has important economic implications. By a detailed evaluation of SGHWR fuel defects it is shown that very few defects can be shown to be related to design, rating, or burn-up. This demonstrates that economic aspects have not over-ridden necessary criteria that most be met to achieve the desirable reliability level. It is possible that large scale experience on SGHWR fuel may eventually demonstrate that the balance is too much in favour of reliability and consideration may be given to whether design changes favouring economy could be achieved without compromising safety. The safety criteria applied to SGHWR fuel are designed to avoid any possibility of a temperature runaway in any credible accident situation. the philosophy and supporting experimental work programme are outlines and the fuel design features which particularly contribute to maximising safety margins are outlined. Reference is made to the new 60-pin fuel element to be used in the commercial SGHWRs and to its comparison in design and performance aspects with the 36-pin element that has been used to date in the Winfrith SGHWR. (author)

  15. The increased use of radiation requires enhanced activities regarding radiation safety control

    International Nuclear Information System (INIS)

    Lee, Yun Jong; Lee, Jin Woo; Jeong, Gyo Seong

    2015-01-01

    More recently, companies that have obtained permission to use radioactive materials or radiation device and registered radiation workers have increased by 10% and 4% respectively. The increased use of radiation could have an effect on radiation safety control. However, there is not nearly enough manpower and budget compared to the number of workers and facilities. This paper will suggest a counteroffer thought analyzing pending issues. The results of this paper indicate that there are 47 and 31.3 workers per radiation protection officer in educational and research institutes, respectively. There are 20.1 persons per RPO in hospitals, even though there are 2 RPOs appointed. Those with a special license as a radioisotope handler were ruled out as possible managers because medical doctors who have a special license for radioisotope handling normally have no experience with radiation safety. The number of staff members and budget have been insufficient for safety control at most educational and research institutes. It is necessary to build an optimized safety control system for effective Radiation Safety Control. This will reduce the risk factor of safety, and a few RPOs can be supplied for efficiency and convenience

  16. The increased use of radiation requires enhanced activities regarding radiation safety control

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yun Jong; Lee, Jin Woo; Jeong, Gyo Seong [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2015-05-15

    More recently, companies that have obtained permission to use radioactive materials or radiation device and registered radiation workers have increased by 10% and 4% respectively. The increased use of radiation could have an effect on radiation safety control. However, there is not nearly enough manpower and budget compared to the number of workers and facilities. This paper will suggest a counteroffer thought analyzing pending issues. The results of this paper indicate that there are 47 and 31.3 workers per radiation protection officer in educational and research institutes, respectively. There are 20.1 persons per RPO in hospitals, even though there are 2 RPOs appointed. Those with a special license as a radioisotope handler were ruled out as possible managers because medical doctors who have a special license for radioisotope handling normally have no experience with radiation safety. The number of staff members and budget have been insufficient for safety control at most educational and research institutes. It is necessary to build an optimized safety control system for effective Radiation Safety Control. This will reduce the risk factor of safety, and a few RPOs can be supplied for efficiency and convenience.

  17. Economic aspects of radiation safety in hospitals

    International Nuclear Information System (INIS)

    Subrahmanian, G.; Venkataraman, G.

    1977-01-01

    Radiation protection procedures to be adhered to while using radiological equipment in hospitals both for the patients and the medical personnel are described in detail. The hazards resulting from careless handling of equipment and the need for adequately trained staff to handle the equipment is stressed. (A.K.)

  18. Research activities in radiation protection. Programme report 1996. Report on the departmental research programme of the Federal Ministry for Environment, Nature Conservation and Reactor Safety (BMU), performed under the scientific and administrative project management of the Federal Office for Radiation Protection (BfS)

    International Nuclear Information System (INIS)

    Schmitt-Hannig, A.; Thieme, M.; Goedde, R.

    1997-02-01

    On behalf of the Ministry for Environment, Nature Conservation and Nuclear Safety (BMU), the Federal Office for Radiation Protection is placing research and study contracts in the field of radiation protection. The results of these projects are used for developing radiation protection rules and to fulfill the special radiation protection tasks of the BMU, required by law. Planning, expert and administrative management, placing, assistance as well as expert evaluation of the results from these research projects lies within the responsibility of the Federal Office for Radiation Protection. This report provides information on preliminary and final results of radiation protection projects within the BMU Department Research Programme of the year 1996. (orig.) [de

  19. Critical Characteristics of Radiation Detection System Components to be Dedicated for use in Safety Class and Safety Significant System

    International Nuclear Information System (INIS)

    DAVIS, S.J.

    2000-01-01

    This document identifies critical characteristics of components to be dedicated for use in Safety Significant (SS) Systems, Structures, or Components (SSCs). This document identifies the requirements for the components of the common, radiation area, monitor alarm in the WESF pool cell. These are procured as Commercial Grade Items (CGI), with the qualification testing and formal dedication to be performed at the Waste Encapsulation Storage Facility (WESF) for use in safety significant systems. System modifications are to be performed in accordance with the approved design. Components for this change are commercially available and interchangeable with the existing alarm configuration This document focuses on the operational requirements for alarm, declaration of the safety classification, identification of critical characteristics, and interpretation of requirements for procurement. Critical characteristics are identified herein and must be verified, followed by formal dedication, prior to the components being used in safety related applications

  20. High Burnup Fuel Performance and Safety Research

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Je Keun; Lee, Chan Bok; Kim, Dae Ho (and others)

    2007-03-15

    The worldwide trend of nuclear fuel development is to develop a high burnup and high performance nuclear fuel with high economies and safety. Because the fuel performance evaluation code, INFRA, has a patent, and the superiority for prediction of fuel performance was proven through the IAEA CRP FUMEX-II program, the INFRA code can be utilized with commercial purpose in the industry. The INFRA code was provided and utilized usefully in the universities and relevant institutes domesticallly and it has been used as a reference code in the industry for the development of the intrinsic fuel rod design code.

  1. Radiation safety training for accelerator facilities

    International Nuclear Information System (INIS)

    Trinoskey, P.A.

    1997-02-01

    In November 1992, a working group was formed within the U.S. Department of Energy's (DOE's) accelerator facilities to develop a generic safety training program to meet the basic requirements for individuals working in accelerator facilities. This training, by necessity, includes sections for inserting facility-specific information. The resulting course materials were issued by DOE as a handbook under its technical standards in 1996. Because experimenters may be at a facility for only a short time and often at odd times during the day, the working group felt that computer-based training would be useful. To that end, Lawrence Livermore National Laboratory (LLNL) and Argonne National Laboratory (ANL) together have developed a computer-based safety training program for accelerator facilities. This interactive course not only enables trainees to receive facility- specific information, but time the training to their schedule and tailor it to their level of expertise

  2. Report on the Uranium Mine Radiation Safety Course

    International Nuclear Information System (INIS)

    1987-06-01

    Since 1981 the Canadian Institute for Radiation Safety (CAIRS) has administered a semi-annual course on radiation safety in uranium mines under contract to and in consultation with the Atomic Energy Control Board (AECB). The course is intended primarily for representatives from mining companies, regulatory agencies, unions, and mine and mill workers. By the terms of its contract with the AECB, CAIRS is required to submit a report on each course it conducts. This is the report on the June 1987 course. It lists the course objectives and the timetable, outlines for each lecture, the lecturers' resumes, and the participants. The students' evaluations of the course are included

  3. Computer-based and web-based radiation safety training

    Energy Technology Data Exchange (ETDEWEB)

    Owen, C., LLNL

    1998-03-01

    The traditional approach to delivering radiation safety training has been to provide a stand-up lecture of the topic, with the possible aid of video, and to repeat the same material periodically. New approaches to meeting training requirements are needed to address the advent of flexible work hours and telecommuting, and to better accommodate individuals learning at their own pace. Computer- based and web-based radiation safety training can provide this alternative. Computer-based and web- based training is an interactive form of learning that the student controls, resulting in enhanced and focused learning at a time most often chosen by the student.

  4. The Advanced Light Source (ALS) Radiation Safety System

    International Nuclear Information System (INIS)

    Ritchie, A.; Oldfather, D.; Lindner, A.

    1993-05-01

    The Advanced Light Source (ALS) at the Lawrence Berkeley Laboratory (LBL) is a 1.5 GeV synchrotron light source facility consisting of a 120 keV electron gun, 50 MeV linear accelerator, 1.5 Gev booster synchrotron, 200 meter circumference electron storage ring, and many photon beamline transport systems for research. The Radiation Safety System for the ALS has been designed and built with a primary goal of providing protection against inadvertent personnel exposure to gamma and neutron radiation and, secondarily, to enhance the electrical safety of select magnet power supplies

  5. Radiation Protection, Safety and Security Issues in Ghana

    International Nuclear Information System (INIS)

    Boadu, M. B.; Emi-Reynolds, G.; Amoako, J. K.; Hasford, F.; Akrobortu, E.

    2015-01-01

    The Radiation Protection Board was established in 1993 by PNDC Law 308 as the National Competent Authority for the regulation of radiation sources and radioactive materials in Ghana. The mandate and responsibilities of RPB are prescribed in the legislative instrument, LI 1559 issued in 1993. The operational functions of the Board are carried out by the Radiation Protection Institute, which was established to provide technical support for the enforcement of the legislative instrument. The regulatory activities include among others: – Issuance permits for the import/export of any radiation producing device and radioactive materials into/out of the country. It therefore certifies the radioactivity levels in food and the environmental samples. – Authorization and Inspection of practices using radiation sources and radioactive materials in Ghana. – Undertakes safety assessment services and enforcement actions on practices using radiation sources and radioactive materials in line with regulations. – Provides guidance and technical support in fulfilling regulatory requirement to users of radiation producing devices and radioactive materials nationwide by monitoring of monthly radiation absorbed doses for personnel working at radiation facilities. – Provides support to the management of practices in respect of nuclear and radioactive waste programme. – Calibrates radiation emitting equipment and nuclear instrumentation to ensure the safety of patients, workers and the general public. – Establish guidelines for the mounting (non-ionizing) communication masts. – Environmental monitoring (non-ionizing) programmes for communication masts. With the establishment of the national competent authority, facilities using radioactive sources and radiation emitting devices have been brought under regulatory control. Effective regulatory control of radiation emitting devices are achieved through established legal framework, independent Regulatory Authority supported by

  6. The Argentine Approach to Radiation Safety: Its Ethical Basis

    International Nuclear Information System (INIS)

    Gonzalez, A.J.

    2011-01-01

    The ethical bases of Argentina's radiation safety approach are reviewed. The applied principles are those recommended and established internationally, namely: the principle of justification of decisions that alters the radiation exposure situation; the principle of optimization of protection and safety; the principle of individual protection for restricting possible inequitable outcomes of optimized safety; and the implicit principle of inter generational prudence for protection future generations and the habitat. The principles are compared vis-a-vis the prevalent ethical doctrines: justification vis-a-vis teleology; optimization vis-a-vis utilitarianism; individual protection vis-a-vis de ontology; and, inter generational prudence vis-a-vis aretaicism (or virtuosity). The application of the principles and their ethics in Argentina is analysed. These principles are applied to All exposure to radiation harm; namely, to exposures to actual doses and to exposures to actual risk and potential doses, including those related to the safety of nuclear installations, and they are harmonized and applied in conjunction. It is concluded that building a bridge among all available ethical doctrines and applying it to radiation safety against actual doses and actual risk and potential doses is at the roots of the successful nuclear regulatory experience in Argentina.

  7. X-ray and nuclear radiation facilities: personnel safety features

    International Nuclear Information System (INIS)

    Mason, W.J.; Pipes, E.W.; Rucker, T.R.; Smith, D.N.; West, C.M.

    1976-10-01

    The Oak Ridge Y-12 Plant is a research and production installation. The nature and versatility of this work require the use of a large number and variety of x-ray and radiographic sources for nondestructive testing and material analyses. Presently, there are over 80 x-ray generators in the plant, which range in size from small, portable units which operate at a less than 50 kilovolts potential and 0.1 milliampere current to an electron linear accelerator which operates at 12-million electron volts and produces a radiation beam of such intensity that it could deliver a lethal dose to man in a fraction of a minute. There are also almost 50 gamma and neutron sources in use in the plant. These units range in size from a few millicuries to several hundred curies. Although the radiation safety at each of these facilities was considered adequate, the administrative and maintenance procedures became unduly complicated. Accordingly, engineering standards and uniform operating procedures were considered necessary to alleviate these complications and, in so doing, provide an improved measure of radiation safety. Development and implementation of these standards are described and the general philosophy and approach to these standards are outlined. Use of a matrix (type of installation versus radiation safety feature) to facilitate equipment classification and personnel safety feature requirements is presented. Included is a set of the standards showing formats, matrices, etc., and the detailed standards for each safety feature

  8. Enhanced safety of radiation workers: a regulatory approach

    Energy Technology Data Exchange (ETDEWEB)

    Gopalakrishnan, A [Atomic Energy Regulatory Board, Bombay (India)

    1994-04-01

    Radiation safety should not only be strictly implemented, but also believed and understood by the workers, the unions, the media and the general public as being fairly and adequately enforced. It is not at all sufficient that only those in the operational management levels satisfy themselves that workers` safety is properly taken care of, but it is necessary that the workers and their unions are also convinced about it and share this management view.

  9. Report on nuclear and radiation safety in Slovenia in 2000

    International Nuclear Information System (INIS)

    Lovincic, D.

    2001-09-01

    The Slovenian Nuclear Safety Administration (SNSA), in co-operation with the Health Inspectorate of the Republic of Slovenia, the Administration for Civil Protection and Disaster Relief and the Ministry of the Interior, has prepared a Report on Nuclear and Radiation Safety in the Republic of Slovenia for 2000. This is one of the regular forms of reporting on the work of the Administration to the Government and National Assembly of the Republic of Slovenia.

  10. Education and training on radiation safety for Asian countries

    International Nuclear Information System (INIS)

    Kitahara, Y.; Sakurai, N.; Kamei, M.

    1993-01-01

    The long-term program for development and Utilization of nuclear energy planned by Japan Atomic Energy Commission decided to promote the international corporation with Asian countries in nuclear fields. PNC (Power Reactor and Nuclear Fuel Development Corporation) has three programs in radiation safety field. They are STA program, JICA program and IAEA/RCA program. It is necessary to continue international cooperative activities to establish safety culture for development and utilization of nuclear energy in Asian countries

  11. Enhanced safety of radiation workers: a regulatory approach

    International Nuclear Information System (INIS)

    Gopalakrishnan, A.

    1994-01-01

    Radiation safety should not only be strictly implemented, but also believed and understood by the workers, the unions, the media and the general public as being fairly and adequately enforced. It is not at all sufficient that only those in the operational management levels satisfy themselves that workers' safety is properly taken care of, but it is necessary that the workers and their unions are also convinced about it and share this management view

  12. Nuclear and radiation safety in Slovenia. Annual report 2000

    International Nuclear Information System (INIS)

    Lovincic, D.

    2001-09-01

    The Slovenian Nuclear Safety Administration (SNSA), in co-operation with the Health Inspectorate of the Republic of Slovenia, the Administration for Civil Protection and Disaster Relief and the Ministry of the Interior, has prepared a Report on Nuclear and Radiation Safety in the Republic of Slovenia for 2000. This is one of the regular forms of reporting on the work of the Administration to the Government and National Assembly of the Republic of Slovenia. (author)

  13. Radiation protection and safety in the Australian Defence Organisation (ADO)

    International Nuclear Information System (INIS)

    Jenks, G.J.; O'Donovan, E.J.B.

    1995-01-01

    Very few organisations have to address such a diverse and complex range of radiation safety matters as the Australian Defence Organisation. The Australian Defence Force and the Department of Defence (its military and civilian branches) have to comply with strict regulations in normal peace time activities. The Surgeon-General, to whom responsibility for policy in radiation protection and safety falls, has established a Defence Radiation Safety Committee, which in turn oversees four specialist subcommittees. Their tasks include recommending policy and doctrine in relation to radiation safety, overseeing the implementation of appropriate regulations, monitoring their compliance. generating the relevant documentation (particularly on procedures to be followed), developing and improving any necessary training courses, and providing sound technical advice whenever and to whomever required. The internal Defence regulations do not permit radiation doses to exceed those limits recommended by the Australian National Health and Medical Research Council and precautions are taken to ensure during normal peace time duties that these levels are not exceeded. At times of national emergency, the Surgeon-General provides guidance and advice to military commanders on the consequences of receiving dose levels that would not be permitted during normal peace time activities. The paper describes the methods adopted to implement such arrangements

  14. The nuclear safety authority (ASN) presents its report on the status of nuclear safety and radiation protection in France in 2010

    International Nuclear Information System (INIS)

    2011-01-01

    After a presentation of the French nuclear safety authority (ASN) and of some events which occurred in 2010, this report present the actions performed by the ASN in different fields: nuclear activities (ionizing radiations and risks for health and for the environment), principles and actors of control of nuclear safety, radiation protection and environment protection, regulation, control of nuclear activities and of exposures to ionizing radiations, emergency situations, public information and transparency, international relationship. It proposes a regional overview of nuclear safety and radiation protection in France. It addresses the activities controlled by the ASN: medical and non medical usages of ionizing radiations, transportation of radioactive materials, electronuclear power stations, installations involved in the nuclear fuel cycle, research nuclear installations and other nuclear installations, safety in basic nuclear installation dismantling, radioactive wastes and polluted sites

  15. IAEA safety glossary. Terminology used in nuclear safety and radiation protection. 2007 ed

    International Nuclear Information System (INIS)

    2007-01-01

    In developing and establishing standards of safety for protecting people and the environment from harmful effects of ionizing radiation and for the safety of facilities and activities that give rise to radiation risks, clear communication on scientific and technical concepts is essential. The principles, requirements and recommendations that are established and explained in the IAEA's safety standards and elaborated upon in other publications must be clearly expressed. To this end, this Safety Glossary defines and explains technical terms used in IAEA safety standards and other safety related publications, and provides information on their usage. The primary purpose of the Safety Glossary is to harmonize terminology and usage in the IAEA safety standards for protecting people and the environment from harmful effects of ionizing radiation, and in their application. Once definitions of terms have been established, they are, in general, intended to be observed in safety standards and other safety related publications and in the work of the IAEA Department of Nuclear Safety and Security generally. The achievement of consistently high quality in its publications contributes to the authority and credibility of the IAEA, and thus to its influence and effectiveness. High quality in publications and documents is achieved not only by review to ensure that the relevant requirements are met, but also by managing their preparation so as to achieve high quality in their drafting. The Safety Glossary provides guidance primarily for the drafters and reviewers of safety standards, including IAEA technical officers and consultants and bodies for the endorsement of safety standards. The Safety Glossary is also a source of information for users of IAEA safety standards and other safety and security related IAEA publications and for other IAEA staff - notably writers, editors, translators, revisers and interpreters. Users of the Safety Glossary, in particular drafters of national

  16. IAEA safety glossary. Terminology used in nuclear safety and radiation protection. 2007 ed

    International Nuclear Information System (INIS)

    2007-06-01

    In developing and establishing standards of safety for protecting people and the environment from harmful effects of ionizing radiation and for the safety of facilities and activities that give rise to radiation risks, clear communication on scientific and technical concepts is essential. The principles, requirements and recommendations that are established and explained in the IAEA's safety standards and elaborated upon in other publications must be clearly expressed. To this end, this Safety Glossary defines and explains technical terms used in IAEA safety standards and other safety related publications, and provides information on their usage. The primary purpose of the Safety Glossary is to harmonize terminology and usage in the IAEA safety standards for protecting people and the environment from harmful effects of ionizing radiation, and in their application. Once definitions of terms have been established, they are, in general, intended to be observed in safety standards and other safety related publications and in the work of the IAEA Department of Nuclear Safety and Security generally. The achievement of consistently high quality in its publications contributes to the authority and credibility of the IAEA, and thus to its influence and effectiveness. High quality in publications and documents is achieved not only by review to ensure that the relevant requirements are met, but also by managing their preparation so as to achieve high quality in their drafting. The Safety Glossary provides guidance primarily for the drafters and reviewers of safety standards, including IAEA technical officers and consultants and bodies for the endorsement of safety standards. The Safety Glossary is also a source of information for users of IAEA safety standards and other safety and security related IAEA publications and for other IAEA staff - notably writers, editors, translators, revisers and interpreters. Users of the Safety Glossary, in particular drafters of national

  17. IAEA safety glossary. Terminology used in nuclear safety and radiation protection. 2007 ed

    International Nuclear Information System (INIS)

    2007-01-01

    In developing and establishing standards of safety for protecting people and the environment from harmful effects of ionizing radiation and for the safety of facilities and activities that give rise to radiation risks, clear communication on scientific and technical concepts is essential. The principles, requirements and recommendations that are established and explained in the IAA's safety standards and elaborated upon in other publications must be clearly expressed. To this end, this Safety Glossary defines and explains technical terms used in IAEA safety standards and other safety related publications, and provides information on their usage. The primary purpose of the Safety Glossary is to harmonize terminology and usage in the IAEA safety standards for protecting people and the environment from harmful effects of ionizing radiation, and in their application. Once definitions of terms have been established, they are, in general, intended to be observed in safety standards and other safety related publications and in the work of the IAEA Department of Nuclear Safety and Security generally. The achievement of consistently high quality in its publications contributes to the authority and credibility of the IAEA, and thus to its influence and effectiveness. High quality in publications and documents is achieved not only by review to ensure that the relevant requirements are met, but also by managing their preparation so as to achieve high quality in their drafting. The Safety Glossary provides guidance primarily for the drafters and reviewers of safety standards, including IAEA technical officers and consultants and bodies for the endorsement of safety standards. The Safety Glossary is also a source of information for users of IAEA safety standards and other safety and security related IAEA publications and for other IAEA staff - notably writers, editors, translators, revisers and interpreters. Users of the Safety Glossary, in particular drafters of national

  18. Radiation safety at the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    Hoffman, R.L.

    1997-01-01

    This is a report on the Radiation Safety Program at the West Valley Demonstration Project (WVDP). This Program covers a number of activities that support high-level waste solidification, stabilization of facilities, and decontamination and decommissioning activities at the Project. The conduct of the Program provides confidence that all occupational radiation exposures received during operational tasks at the Project are within limits, standards, and program requirements, and are as low as reasonably achievable

  19. Radiation safety. Handbook for laboratory workers in the USA

    International Nuclear Information System (INIS)

    Hotte, E.D.; Krueger, D.J.; Connor, K.

    2000-01-01

    The aim of the Handbook is to provide a source of information on radiation safety for those who are involved in the use of ionizing radiation in the laboratory. The potential reader may be a laboratory worker in the university or biomedical setting or the safety professional who desires a basic understanding of radiation protection within the research environment. The Handbook may be used as a reference by the radiation protection specialist or Radiation Safety Officer. To this end, liberal use is made of Appendices to make the Handbook a source of reference for a wide spectrum of readership while avoiding complicating the main body of the text. Each chapter or appendix is designed to stand alone. A complete reading of the Handbook will show that topics may be covered more than once. For example, one may read about the hazards and protective measures on handling radioiodine in Chapter 5 on Practical Radiation Protection as well as in Appendix 19 on Safe Handling of 125 I. Extensive use of figures, rather than tables has been made to present data, in the belief that these produce a good visual representation to a level of precision which is sufficient for most purposes of radiation protection in laboratories. The reader must remember that this Handbook should be taken as a guide only to the applicable regulations. You must consult the appropriate state or federal regulation directly or receive advice of a qualified radiation safety professional. Also, some information in the Appendices, such as commercially available training institutions or radioactive waste brokers, may change with time. Telephone numbers are given for the reader to call directly and check the services provided

  20. Radiation safety of sealed sources and equipment containing them

    International Nuclear Information System (INIS)

    1993-01-01

    The guide gives information and requirements concerning the technical construction, installation, use and licensing of devices containing sealed radioactive sources in order to ensure the operational safety. The requirements are in accordance with the international standards ISO 1677, ISO 2919, ISO 7205 and Nordic Recommendations on radiation protection for radionuclide gauges in permanent installation. The guide explains also the practical measures that must be taken into account when a radiation device is repaired, maintained or removed from the use. (8 refs.)

  1. Safety

    International Nuclear Information System (INIS)

    1998-01-01

    A brief account of activities carried out by the Nuclear power plants Jaslovske Bohunice in 1997 is presented. These activities are reported under the headings: (1) Nuclear safety; (2) Industrial and health safety; (3) Radiation safety; and Fire protection

  2. Radiation safety parameters following prostate brachytherapy

    International Nuclear Information System (INIS)

    Smathers, Sesalie; Wallner, Kent; Korssjoen, Tammy; Bergsagel, Carl; Hudson, Rick H.; Sutlief, Steven; Blasko, John

    1999-01-01

    Purpose: To determine the degree and variability of radiation exposure to the general public from patients after I-125 or Pd-103 prostate brachytherapy. Methods and Materials: Radiation exposure measurements were made from 38 consecutive, unselected patients with stage T1 or T2 prostatic carcinoma who had trans perineal I-125 or Pd-103 implants at the University of Washington in 1998. Results: The exposure rate at the anterior skin surface following a I-125 implant ranged from 2.2 to 8.9 mrem/hour (average: 5.0). The exposure rate at the anterior skin surface from a Pd-103 implant ranged from 0.5 to 4.9 mrem/hour (average: 1.7). Based on the current Nuclear Regulatory Commission (NRC) regulations the time required to reach the annual limit at the anterior skin surface would be 20 hours for I-125 and 59 hours for Pd-103. For exposure at the lateral skin surface, the times would exceed 500 hours for either isotope. Conclusions: This data suggest that patients need not be concerned about being a radiation risk to the general public following their procedure

  3. SGHWR fuel performance, safety and reliability

    International Nuclear Information System (INIS)

    Pickman, D.O.; Inglis, G.H.

    1977-01-01

    The design principles involved in fuel pins and elements need to take account of the sometimes conflicting requirements of performance, safety and reliability. The principal factors involved in this optimisation are discussed and it is shown from fuel irradiation experience in the Winfrith S.G.H.W.R. that the necessary bias toward safety has not resulted in a reliability level lower than that shown by other successful water reactor designs. Reliability has important economic implications and has to be paid for. By a detailed evaluation of S.G.H.W.R. fuel defects it is shown that very few defects can be shown to be related to design, rating or burn-up. This demonstrates that economic aspects have not over-ridden necessary criteria that must be met to achieve the desirable reliability level. It is possible that large-scale experience with S.G.H.W.R. fuel may eventually demonstrate that the balance is too much in favour of reliability and consideration may be given to whether design changes favouring economy could be achieved without compromising safety. The safety criteria applied to S.G.H.W.R. fuel are designed to avoid any possibility of a temperature runaway in any credible accident situation. The philosophy and supporting experimental work programme are outlined and the fuel design features which particularly contribute to maximising safety margins are outlined. Reference is made to new 60 pin fuel element to be used in the commercial S.G.H.W.R.'s and how it compares in design and performance aspects with the 36 pin element that has been used to date in the Winfrith S.G.H.W.R

  4. Radiation safety for the emergency situation of the power plant accident. Radiation safety in society and its education

    International Nuclear Information System (INIS)

    Kosako, Toshiso

    2012-01-01

    Great East Japan Earthquake and Tsunamis, and following Fukushima Daiichi Nuclear Power Accident brought about great impact on society in Japan. Accident analysis of inside reactor was studied by reactor physics or reactor engineering knowledge, while dissipation of a large amount of radioactive materials outside reactor facilities, and radiation and radioactivity effects on people by way of atmosphere, water and soil were dealt with radiation safety or radiation protection. Due to extremely low frequency and experience of an emergency, there occurred a great confusion in the response of electric power company concerned, relevant regulating competent authorities, local government and media, and related scholars and researchers, which caused great anxieties amount affected residents and people. This article described radiation safety in the society and its education. Referring to actual examples, how radiation safety or radiation protection knowledge should be dealt with emergency risk management in the society was discussed as well as problem of education related with nuclear power, radiation and prevention of disaster and fostering of personnel for relevant people. (T. Tanaka)

  5. Regulatory Control of Radiation Sources. Safety Guide (Arabic Edition)

    International Nuclear Information System (INIS)

    2012-01-01

    This Safety Guide is intended to assist States in implementing the requirements established in Safety Standards Series No. GS-R-1, Legal and Governmental Infrastructure for Nuclear, Radiation, Radioactive Waste and Transport Safety, for a national regulatory infrastructure to regulate any practice involving radiation sources in medicine, industry, research, agriculture and education. The Safety Guide provides advice on the legislative basis for establishing regulatory bodies, including the effective independence of the regulatory body. It also provides guidance on implementing the functions and activities of regulatory bodies: the development of regulations and guides on radiation safety; implementation of a system for notification and authorization; carrying out regulatory inspections; taking necessary enforcement actions; and investigating accidents and circumstances potentially giving rise to accidents. The various aspects relating to the regulatory control of consumer products are explained, including justification, optimization of exposure, safety assessment and authorization. Guidance is also provided on the organization and staffing of regulatory bodies. Contents: 1. Introduction; 2. Legal framework for a regulatory infrastructure; 3. Principal functions and activities of the regulatory body; 4. Regulatory control of the supply of consumer products; 5. Functions of the regulatory body shared with other governmental agencies; 6. Organization and staffing of the regulatory body; 7. Documentation of the functions and activities of the regulatory body; 8. Support services; 9. Quality management for the regulatory system.

  6. radiation safety culture for developing country: Basis for s minimum operational radiation protection programme

    International Nuclear Information System (INIS)

    Rozental, J. J.

    1997-01-01

    The purpose of this document is to present a methodology for an integrated strategy aiming at establishing an adequate radiation Safety infrastructure for developing countries, non major power reactor programme. Its implementation will allow these countries, about 50% of the IAEA's Member States, to improve marginal radiation safety, specially to those recipients of technical assistance and do not meet the Minimum radiation Safety Requirements of the IAEA's Basic Safety Standards for radiation protection Progress in the implementation of safety regulations depends on the priority of the government and its understanding and conviction about the basic requirements for protection against the risks associated with exposure to ionizing radiation. There is no doubt to conclude that the reasons for the deficiency of sources control and dose limitation are related to the lack of an appropriate legal and regulatory framework, specially considering the establishment of an adequate legislation; A minimum legal infrastructure; A minimum operational radiation safety programme; Alternatives for a Point of Optimum Contact, to avoid overlap and conflict, that is: A 'Memorandum of Understanding' among Regulatory Authorities in the Country, dealing with similar type of licensing and inspection

  7. ENSURING RADIATION SAFETY AT THE XXVII WORLD SUMMER UNIVERSIADE IN KAZAN BY ROSPOTREBNADZOR BODIES AND ORGANIZATIONS Communication 1. Ensuring radiation safety at the preparatory phase

    Directory of Open Access Journals (Sweden)

    G. G. Onischenko

    2013-01-01

    Full Text Available After the terrorist attack at theBostonMarathon, Federal and Republican executive bodies took increased security measures during the XXVII World Summer Universiade inKazan. Bodies and Organizations of the Federal Service for Surveillance on Consumer Rights Protection and Human Well-being (Rospotrebnadzor were participants of all preparatory activities and directly provided security of the Student Games inKazan. This report analyzes the experience of providing radiation safety by Rospotrebnadzor experts at the stage of preparation for the Universiade. So far, Rospotrebnadzor organizations had no experience of providing radiation safety of such large-scale events. Analysis of the performed work with account for both positive and negative experiences is especially important in the context of preparations for the safety providing of the Olympic Winter Games inSochiin 2014. 

  8. Safety assessment, safety performance indicators at the Paks Nuclear Power Plant

    International Nuclear Information System (INIS)

    Baji, C.; Vamos, G.; Toth, J.

    2001-01-01

    The Paks Nuclear Power Plant has been using different methods of safety assessment (event analysis, self-assessment, probabilistic safety analysis), including performance indicators characterizing both operational and safety performance since the early years of operation of the plant. Regarding the safety performance, the indicators include safety system performance, number of scrams, release of radioactive materials, number of safety significant events, industrial safety indicator, etc. The Paks NPP also reports a set of ten indicators to WANO Performance Indicator Programme which, among others, include safety related indicators as well. However, a more systematic approach to structuring and trending safety indicators is needed so that they can contribute to the enhancement of the operational safety. A more comprehensive set of indicators and a systematic evaluation process was introduced in 1996. The performance indicators framework proposed by the IAEA was adapted to Paks in this year to further improve the process. Safety culture assessment and characterizing safety culture is part of the assessment process. (author)

  9. Radiation Safety in Industrial Radiography. Specific Safety Guide (French Edition); Surete radiologique en radiographie industrielle

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-05-15

    This Safety Guide provides recommendations for ensuring radiation safety in industrial radiography used in non-destructive testing. This includes industrial radiography work that utilizes X ray and gamma sources, both in Horizontal-Ellipsis shielded facilities that have effective engineering controls and in outside shielded facilities using mobile sources. Contents: 1. Introduction; 2. Duties and responsibilities; 3. Safety assessment; 4. Radiation protection programme; 5. Training and qualification; 6. Individual monitoring of workers; 7. Workplace monitoring; 8. Control of radioactive sources; 9. Safety of industrial radiography sources and exposure devices; 10. Radiography in shielded enclosures; 11. Site radiography; 12. Transport of radioactive sources; 13. Emergency preparedness and response; Appendix: IAEA categorization of radioactive sources; Annex I: Example safety assessment; Annex II: Overview of industrial radiography sources and equipment; Annex III: Examples of accidents in industrial radiography.

  10. Radiation Safety in Industrial Radiography. Specific Safety Guide (Spanish Edition); Seguridad radiologica en la radiografia industrial

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-12-15

    This Safety Guide provides recommendations for ensuring radiation safety in industrial radiography used in non-destructive testing. This includes industrial radiography work that utilizes X ray and gamma sources, both in shielded facilities that have effective engineering controls and in outside shielded facilities using mobile sources. Contents: 1. Introduction; 2. Duties and responsibilities; 3. Safety assessment; 4. Radiation protection programme; 5. Training and qualification; 6. Individual monitoring of workers; 7. Workplace monitoring; 8. Control of radioactive sources; 9. Safety of industrial radiography sources and exposure devices; 10. Radiography in shielded enclosures; 11. Site radiography; 12. Transport of radioactive sources; 13. Emergency preparedness and response; Appendix: IAEA categorization of radioactive sources; Annex I: Example safety assessment; Annex II: Overview of industrial radiography sources and equipment; Annex III: Examples of accidents in industrial radiography.

  11. Radiation effect on rocket engine performance

    Science.gov (United States)

    Chiu, Huei-Huang; Kross, K. W.; Krebsbach, A. N.

    1990-01-01

    Critical problem areas involving the effect of radiation on the combustion of bipropellants are addressed by formulating a universal scaling law in combination with a radiation-enhanced vaporization combustion model. Numerical algorithms are developed and data pertaining to the Variable Thrust Engine (VTE) and the Space Shuttle Main Engine (SSME) are used to conduct parametric sensitivity studies to predict the principal intercoupling effects of radiation. The analysis reveals that low-enthalpy engines, such as the VTE, are vulnerable to a substantial performance setback due to radiative loss, whereas the performance of high-enthalpy engines such as the SSME are hardly affected over a broad range of engine operation. Combustion enhancement by radiative heating of the propellant has a significant impact on propellants with high absorptivity.

  12. Nuclear and radiation safety in Slovenia. Annual report 1997

    International Nuclear Information System (INIS)

    1998-01-01

    The Slovenian Nuclear Safety Administration (SNSA), in co-operation with the Health Inspectorate of the Republic of Slovenia, the Administration for Civil Protection and Disaster Relief and the Ministry of the Interior, has prepared a Report on Nuclear and Radiation Safety in the Republic of Slovenia for 1997. This is one of the regular forms of reporting on the work of the Administration to the Government and National Assembly of the Republic of Slovenia. Contributions to the report were furthermore prepared by competent authorities in the field of nuclear safety: the Agency for Radwaste Management (ARAO), the Milan Copic Nuclear Training Centre, etc. The report contains 17 chapters. (author)

  13. Report on nuclear and radiation safety in Slovenia in 1997

    International Nuclear Information System (INIS)

    1998-06-01

    The Slovenian Nuclear Safety Administration (SNSA), in co-operation with the Health Inspectorate of the Republic of Slovenia, the Administration for Civil Protection and Disaster Relief and the Ministry of the Interior, has prepared a Report on Nuclear and Radiation Safety in the Republic of Slovenia for 1997. This is one of the regular forms of reporting on the work of the Administration to the Government and National Assembly of the Republic of Slovenia. Contributions to the report were furthermore prepared by competent authorities in the field of nuclear safety: the Agency for Radwaste Management (ARAO), the Milan Copic Nuclear Training Centre, etc. The report contains 19 chapters.

  14. Space Weather Nowcasting of Atmospheric Ionizing Radiation for Aviation Safety

    Science.gov (United States)

    Mertens, Christopher J.; Wilson, John W.; Blattnig, Steve R.; Solomon, Stan C.; Wiltberger, J.; Kunches, Joseph; Kress, Brian T.; Murray, John J.

    2007-01-01

    There is a growing concern for the health and safety of commercial aircrew and passengers due to their exposure to ionizing radiation with high linear energy transfer (LET), particularly at high latitudes. The International Commission of Radiobiological Protection (ICRP), the EPA, and the FAA consider the crews of commercial aircraft as radiation workers. During solar energetic particle (SEP) events, radiation exposure can exceed annual limits, and the number of serious health effects is expected to be quite high if precautions are not taken. There is a need for a capability to monitor the real-time, global background radiations levels, from galactic cosmic rays (GCR), at commercial airline altitudes and to provide analytical input for airline operations decisions for altering flight paths and altitudes for the mitigation and reduction of radiation exposure levels during a SEP event. The Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) model is new initiative to provide a global, real-time radiation dosimetry package for archiving and assessing the biologically harmful radiation exposure levels at commercial airline altitudes. The NAIRAS model brings to bear the best available suite of Sun-Earth observations and models for simulating the atmospheric ionizing radiation environment. Observations are utilized from ground (neutron monitors), from the atmosphere (the METO analysis), and from space (NASA/ACE and NOAA/GOES). Atmospheric observations provide the overhead shielding information and the ground- and space-based observations provide boundary conditions on the GCR and SEP energy flux distributions for transport and dosimetry simulations. Dose rates are calculated using the parametric AIR (Atmospheric Ionizing Radiation) model and the physics-based HZETRN (High Charge and Energy Transport) code. Empirical models of the near-Earth radiation environment (GCR/SEP energy flux distributions and geomagnetic cut-off rigidity) are benchmarked

  15. 10 CFR 34.42 - Radiation Safety Officer for industrial radiography.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Radiation Safety Officer for industrial radiography. 34.42 Section 34.42 Energy NUCLEAR REGULATORY COMMISSION LICENSES FOR INDUSTRIAL RADIOGRAPHY AND RADIATION... Radiation Safety Officer for industrial radiography. The RSO shall ensure that radiation safety activities...

  16. Effects of radiation on scintillating fiber performance

    International Nuclear Information System (INIS)

    Bauer, M.L.; Cohn, H.; Efremenko, Yu.; Gordeev, A.; Kamyshkov, Yu.; Onopienko, D.; Savin, S.; Shmakov, K.; Tarkovsky, E.; Young, K.G.; Carey, R.; Rothman, M.; Sulak, L.; Worstell, W.; Parr, H.

    1992-01-01

    Continued rapid improvements in formulations for scintillating fibers require the ability to parameterize and predict effects of radiation on detector performance. Experimental techniques necessary to obtain needed information and calculational procedures used in performing predications for hadron scintillating fiber calorimetry in the Superconducting Supercollider environment are described. The experimental techniques involve control of the testing environment, consideration of dose rate effects, and other factors. These calculations involve the behavior of particle showers in the detector, expected levels of radiation, and parameterization of the radiation effects. A summary of significant work is also presented

  17. Effects of radiation on scintillating fiber performance

    International Nuclear Information System (INIS)

    Young, K.G.; Bauer, M.L.; Cohn, H.; Efremenko, Yu.; Gordeev, A.; Kamyshkov, Yu.; Onopienko, D.; Savin, S.; Shmakov, K.; Tarkovsky, E.; Carey, R.; Rothman, M.; Sulak, L.; Worstell, W.; Paar, H.

    1993-01-01

    Continued rapid improvements in formulations for scintillating fibers require the ability to parameterize and predict effects of radiation on detector performance. Experimental techniques necessary to obtain desired information and calculational procedures used in performing predictions for hadron scintillating fiber calorimetry in the Superconducting Supercollider environment are described. The experimental techniques involve control of the testing environment, consideration of dose rate effects, and other factors. The calculations involve the behavior of particle showers in the detector, expected levels of radiation, and parameterization of the radiation effects. A summary of significant work is also presented

  18. Radiation and electrical safety systems for PEP

    International Nuclear Information System (INIS)

    Smith, H.; Constant, T.; Crook, K.; Fitch, J.; Taylor, T.

    1981-02-01

    At SLAC, the Personnel Protection System (PPS) protects people from radiation hazards. For PEP, the system has been expanded to include protection against electrical and RF hazards. This paper describes the overall system design, giving particular attention to the novel features not found in similar systems in other areas of SLAC. These include the Restricted Access Mode to allow limited occupancy in the ring while high voltage or RF may be present, the automatic badge reader system for improving the efficiency of entry logging and control, and the solid state lighting control system for switching large lighting loads with minimum electro-magetic interference

  19. Radiation safety in 'install and operate type' irradiator

    International Nuclear Information System (INIS)

    Sahoo, D.K.; Kohli, A.K.

    2003-01-01

    Install and operate type irradiator has been designed to carry out radiation processing of various food products as well as medical products. It is a category 1 type batch irradiator. This paper brings out the radiation safety aspects of this irradiator. Comparison has been made with conveyor type category IV irradiators, which are more common in use for commercial purposes. The design has many features that make it a very safe, convenient and economical method for processing of all items that are permitted and amenable for gamma radiation processing. (author)

  20. Recommendations to improve radiation safety during invasive cardiovascular procedures

    International Nuclear Information System (INIS)

    Miranda, Patricia; Ubeda, Carlos; Vano, Eliseo; Nocetti, Diego

    2014-01-01

    In this paper we present guidelines aimed to improve radiation safety during invasive cardiovascular procedures. Unwanted effects upon patients and medical personnel are conventionally classified. A program of Quality Assurance is proposed, an aspect of which is a program for radiologic protection, including operator protection, radiation monitoring, shielding and personnel training. Permanent and specific actions should be taken at every cardiovascular lab, before, during and after interventions. In order to implement these guidelines and actions, a fundamental step is a review of current legislation. Specific programs for quality control and radiologic protection along with a definition of acceptable radiation exposure doses are required

  1. A bioethical perspective on radiation protection and ''safety''

    International Nuclear Information System (INIS)

    Maxey, M.N.

    1980-01-01

    Three problems of major concern to policymakers whose task it is to protect public health by setting standards for ''safe'' radiation management are reviewed. The first problem is to decide if current conceptual tools for assessing basic harms to valued living systems are ethically adequate. The second is how to set safety standards on the basis of informed consent to scientific evidence presented by experts who disagree in interpreting that evidence. The third problem is how to resolve conflicting philosophies about radiation protection. Principles which might serve as guidance in the formulation of social policies for radiation health protection are suggested. (H.K.)

  2. Radiation safety interlocks at the NSLS

    International Nuclear Information System (INIS)

    Dickinson, T.

    1985-07-01

    The function of the NSLS interlock systems is to insure that no one is in an area where there is hazardous radiation, and to turn off the radiation source if a person somehow gains access to such an area. The interlock systems for the high hazard areas meet the following design requirements: (1) The system is redundant, that is no single failure can render the system unsafe. This is done by providing 2 independent systems or circuits; (2) In so far as possible, the two circuits are physically different. This minimizes the possibility of related coincident failures; (3) The design is fail safe. This means that the most likely failure modes leave the system in a safe condition. For example, the following failures are safe: Loss of power in any part of the system, any combination of shorts to ground, and any combination of open circuits; and (4) The interlock system must be testable. Redundancy sometimes makes testing difficult, but testing schemes must be worked out, since an untested interlock is undependable

  3. Radiation safety aspects of high energy particle accelerators

    International Nuclear Information System (INIS)

    Subbaiah, K.V.

    2007-01-01

    High-energy accelerators are widely used for various applications in industry, medicine and research. These accelerators are capable of accelerating both ions and electrons over a wide range of energy and subsequently are made to impinge on the target materials. Apart from generating intended reactions in the target, these projectiles can also generate highly penetrating radiations such as gamma rays and neutrons. Over exposure to these radiations will cause deleterious effects on the living beings. Various steps taken to protect workers and general public from these harmful radiations is called radiation safety. The primary objective in establishing permissible values for occupational workers is to keep the radiation worker well below a level at which adverse effects are likely to be observed during one's life time. Another objective is to minimize the incidence of genetic effects for the population as a whole. Today's presentation on radiation safety of accelerators will touch up on the following sub-topics: Types of particle accelerators and their applications; AERB directives on dose limits; Radiation Source term of accelerators; Shielding Design-Use of Transmission curves and Tenth Value layers; Challenges for accelerator health physicists

  4. Performance of dynamic safety barriers-Structuring, modelling and visualization

    OpenAIRE

    Wikdahl, Olga

    2014-01-01

    The main objective of this master thesis is to discuss performance of dynamic safety barriers. A comprehensive literature review is performed in order to get understanding what dynamic safety barrier is. Three different concepts of dynamic safety barriers based on various meanings of dynamic were derived from the literature review: - dynamic safety barriers related to motion or physical force - dynamic safety barriers as updated barriers from dynamic risk analysis - dynamic safety ...

  5. Barrier performance researches for the safety evaluation

    International Nuclear Information System (INIS)

    Niibori, Yuichi

    2004-01-01

    So far, many researches were conducted to propose a scientific evidence (a safety case) for the realization of geological disposal in Japan. In order to regulate the geological disposal system of radioactive wastes, on the other hand, we need also a holistic approach to integrate various data related for the performance evaluations of the engineered barrier system and the natural barrier system. However, the scientific bases are not sufficient to establish the safety regulation for such a natural system. For example, we often apply the specific probability density function (PDF) to the uncertainty of barrier system due to the essential heterogeneity. However, the applicability is not clear in the regulation point of view. A viewpoint to understand such an applicability of PDFs has been presented. (author)

  6. Radiation safety and radiation protection problems on the TESLA Accelerator Installation

    International Nuclear Information System (INIS)

    Pavlovic, R.; Pavlovic, S.; Orlic, M.

    1997-01-01

    As we can see from the examples of many accelerator facilities installed throughout the world with ion beam energy, mass and charge characteristics and design similar to the TESLA Accelerator Installation, there is a great diversity among them, and each radiation protection and safety programme must be designed to facilitate the safe and effective operation of the accelerator according to the needs of the operating installation. Although there is no standard radiation protection and safety organization suitable for all institutions, experience suggests some general principles that should be integrated with all the disciplines involved in a comprehensive safety programme. (author)

  7. Nuclear data for radiation damage assessment and related safety aspects

    International Nuclear Information System (INIS)

    Kocherov, N.P.

    1989-12-01

    The IAEA Advisory Group Meeting on Nuclear Data for Radiation Damage Assessment and Related Safety Aspects was held at the IAEA Headquarters in Vienna, 19-22 September 1989. This report contains the conclusions and recommendations of this meeting. The papers which the participants prepared for and presented at the meeting will be published as an IAEA Technical Document. (author)

  8. Australian Radiation Protection and Nuclear Safety Regulations 1999

    International Nuclear Information System (INIS)

    1999-01-01

    This document contains statutory rules made under the Australian Radiation and Nuclear Safety Act 1998 defining how specified standards to be observed, practices and procedures to be followed and measures to be taken by controlled persons in relation to activities relating to controlled facilities, as well as in relation to dealings with controlled apparatus or controlled material

  9. Radiation safety in X-ray diagnostic installations

    International Nuclear Information System (INIS)

    Das, K.R.; Ambiger, T.Y.; Viswanathan, P.S.

    1977-01-01

    Safety measures to be strictly adhered to in handling X-ray equipment and exposing patients to X-radiation are described in detail. Hazards resulting from ignorance and careless handling are mentioned. Methods of shielding are indicated. (A.K.)

  10. Pakistan nuclear safety and radiation protection regulation 1990

    International Nuclear Information System (INIS)

    1990-01-01

    In this act regulations of nuclear safety and radiation protection in Pakistan has been explained. A legal and licensing procedure to handle protection of nuclear materials, processing storage of radioactive products has been described under this regulation. In these regulations full explanation of accidental exposure, delegation of powers and record keeping/waste disposal of radioactive has been given. (A.B.)

  11. Australian Radiation Protection and Nuclear Safety Regulations 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-11-01

    This document contains statutory rules made under the Australian Radiation and Nuclear Safety Act 1998 defining how specified standards to be observed, practices and procedures to be followed and measures to be taken by controlled persons in relation to activities relating to controlled facilities, as well as in relation to dealings with controlled apparatus or controlled material

  12. Dental radiographic units - radiation safety and patient doses

    International Nuclear Information System (INIS)

    Nagpal, J.S.; Varadharajan, Geetha

    2001-01-01

    Three models of dental radiographic machines have been examined for radiation safety. Using TL dosemeters, doses received by the patients at chest level and the gonads have been estimated. Care should be taken to shield gonads during dental radiographic examinations. (author)

  13. Nuclear and radiation safety assurance federal target programme management system

    International Nuclear Information System (INIS)

    Kryukov, O.V.; Vasil'ev, V.A.; Nikishin, D.A.; Linge, I.I.; Obodinskij, A.N.

    2012-01-01

    The Federal Program Nuclear and Radiation Safety Assurance for 2008-2015 is presented. Specifics of Federal target program management as well as changes to program management are discussed. Data on evaluation of management effectiveness is given. Further efforts to resolve the nuclear legacy problem in Russia are also presented [ru

  14. Research on international cooperation for nuclear and radiation safety

    International Nuclear Information System (INIS)

    Cheng Jianxiu

    2013-01-01

    This paper describes the importance and related requirements of international cooperation on nuclear and radiation safety, analyzes the current status, situation and challenges faced, as well as the existing weakness and needs for improvement, and gives some proposals for reference. (author)

  15. Pakistan nuclear safety and radiation protection ordinance-1984

    International Nuclear Information System (INIS)

    1984-01-01

    An act to provide the regulations of nuclear safety and radiation protection in Pakistan has been explained. A legal and licensing procedure to handle production of nuclear materials, processing, storage of radioactive products and wastes has been described under this regulation. (A.B.)

  16. Use of information technologies to contribute for optimizing the safety radiation management in Cuba

    International Nuclear Information System (INIS)

    Valdes Ramos, M.; Prendes Alonso, M.; Hernandez Saiz, A.; Manzano de Armas, J.

    2013-01-01

    This paper presents the results achieved in Cuba, with the development of a group of information management tools to implement radiation safety systemic and proactive approaches to safety and ICT supported. These tools were designed for different organisms with responsibility for the security at the country level, to the regulatory authority, for user entities, for individual monitoring services and other radiation protection services. It describes the philosophy of information management model used, the characteristics of the developed tools and their integration, the work performed for the homogenization of information available and the ability to capture and deliver data at different levels in decision making. The tools developed are based on the use of variables and indicators of importance to the safety and the systemic approach adopted allows to facilitate the optimization process for supervision of safety practices as well as contribute to the management of knowledge in radiation safety, through a synergistic combination of process data, information, information management systems, and the creative and innovative radiation safety experts

  17. Nuclear Safety and Radiation Protection in Europe - a common approach

    International Nuclear Information System (INIS)

    McGarry, Ann

    2010-01-01

    In Europe, the European Union has adopted directives and implemented other measures which form the basis of a common approach to nuclear safety and radiation protection across all Member States. In particular, there are EU directives setting out radiation protection standards and establishing a Community framework for the nuclear safety of nuclear installations. There are also arrangements in place to provide for an effective response to nuclear emergencies and to facilitate high quality research into nuclear and radiation protection related topics. Inevitably the stage of development in each area is somewhat different, but generally progress is ongoing in each area. From the point of view of a small country like Ireland, the development of common standards and arrangements across Europe is beneficial as they are based on the best available knowledge and expertise; they provide for greater transparency; they facilitate public confidence and make best use of the available resources. However, there are some areas in which common approaches could be further advanced. For example, the medical exposure of patients is increasingly of concern across Europe and the further development of common approaches in this area would be helpful. It would also be useful to develop a more integrated approach to nuclear safety and radiation protection regulation and to better integrate nuclear and radiation issues with other public health and environment concerns. (author)

  18. Radiation protection and radiation safety: CERN and its host states to sign a tripartite agreement.

    CERN Multimedia

    2010-01-01

    On 15 November CERN and its Host States will sign a tripartite agreement that replaces the existing bilateral agreements in matters of radiation protection and radiation safety at CERN. It will provide, for the first time, a single forum where the three parties will discuss how maximum overall safety can best be achieved in the specific CERN context.   CERN has always maintained close collaboration with its Host States in matters of safety. “The aim of this collaboration is especially to ensure best practice in the field of radiation protection and the safe operation of CERN’s facilities”, explains Ralf Trant, Head of the Occupational Health & Safety and Environmental Protection (HSE) Unit. Until today, CERN’s collaboration with its Host States was carried out under two sets of bilateral agreements: depending on which side of the French-Swiss border they were being carried out on, a different framework applied to the same activities. This approach has b...

  19. Practice specific model regulations: Radiation safety of non-medical irradiation facilities. Interim report for comment

    International Nuclear Information System (INIS)

    2003-08-01

    the infrastructure aimed at achieving its maximum efficiency, and extensively covers performance regulations. The BSS cover the application of ionizing radiation for all practices and interventions and are, therefore, basic and general in nature. Users must apply these basic requirements to their own particular practices. In this context, the preamble of the BSS states that: 'The Regulatory Authority may need to provide guidance on how certain regulatory requirements are to be fulfilled for various practices, for example in regulatory guideline documents.' There are certain requirements that, when applied to specific practices, can be fulfilled through virtually only one practical solution. In these cases, the regulatory authority would use a 'shall' statement for this solution. To meet other requirements, there may be more than one option. In these cases the regulatory authority would usually indicate the recommended option with a 'should' statement, which implies that licensees may choose another alternative provided that the level of safety is equivalent. This distinction has been maintained in this 'model regulations' for irradiation facilities in order to facilitate the decision of regulatory authorities on the degree of obligation

  20. Radiation safety of crew and passengers of air transportation in civil aviation. Provisional standards

    Science.gov (United States)

    Aksenov, A. F.; Burnazyan, A. I.

    1985-01-01

    The purpose and application of the provisional standards for radiation safety of crew and passengers in civil aviation are given. The radiation effect of cosmic radiation in flight on civil aviation air transport is described. Standard levels of radiation and conditions of radiation safety are discussed.

  1. Safety practices, perceptions, and behaviors in radiation oncology: A national survey of radiation therapists.

    Science.gov (United States)

    Woodhouse, Kristina Demas; Hashemi, David; Betcher, Kathryn; Doucette, Abigail; Weaver, Allison; Monzon, Brian; Rosenthal, Seth A; Vapiwala, Neha

    Radiation therapy is complex and demands high vigilance and precise coordination. Radiation therapists (RTTs) directly deliver radiation and are often the first to discover an error. Yet, few studies have examined the practices of RTTs regarding patient safety. We conducted a national survey to explore the perspectives of RTTs related to quality and safety. In 2016, an electronic survey was sent to a random sample of 1500 RTTs in the United States. The survey assessed department safety, error reporting, safety knowledge, and culture. Questions were multiple choice or recorded on a Likert scale. Results were summarized using descriptive statistics and analyzed using multivariate logistic regression. A total of 702 RTTs from 49 states (47% response rate) completed the survey. Respondents represented a broad distribution across practice settings. Most RTTs rated department patient safety as excellent (61%) or very good (32%), especially if they had an incident learning system (ILS) (odds ratio, 2.0). Only 21% reported using an ILS despite 58% reporting an accessible ILS in their department. RTTs felt errors were most likely to occur with longer shifts and poor multidisciplinary communication; 40% reported that burnout and anxiety negatively affected their ability to deliver care. Workplace bullying was also reported among 17%. Overall, there was interest (62%) in improving knowledge in patient safety. Although most RTTs reported excellent safety cultures within their facilities, overall, there was limited access to and utilization of ILSs by RTTs. Workplace issues identified may also represent barriers to delivering quality care. RTTs were also interested in additional resources regarding quality and safety. These results will further enhance safety initiatives and inform future innovative educational efforts in radiation oncology. Copyright © 2017 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.

  2. Building competence in radiation protection and the safe use of radiation sources. Safety guide

    International Nuclear Information System (INIS)

    2005-01-01

    An essential element of a national infrastructure for radiation protection and safety is the maintenance of an adequate number of competent personnel. This Safety Guide makes recommendations concerning the building of competence in protection and safety, which relate to the training and assessment of qualification of new personnel and retraining of existing personnel in order to develop and maintain appropriate levels of competence. This Safety Guide addresses training in protection and safety aspects in relation to all practices and intervention situations in nuclear and radiation related technologies. This document covers the following aspects: the categories of persons to be trained. The requirements for education, training and experience for each category. The processes of qualification and authorization of persons. A national strategy for building competence

  3. Establishment of database for radiation exposure and safety assessment

    Energy Technology Data Exchange (ETDEWEB)

    Choi, G. S.; Kim, J. H. [Science Culture Research Institute, Seoul (Korea, Republic of)

    2005-12-15

    The nuclear electric energy in our country plays a major role for the national industrial development as well as for the secure living of the peoples. It is, however, considered as a socially dreadful elements because of the radiation materials exposed into the environment. In effect, the DB is intended to serve for the reference to the epidemical study upon the low-level radiation exposure involving the nuclear facilities, radio-isotope business enterprises, and the related workers at the radiation sites. In connection with the development of nuclear energy, the low-level radiation, associated with the radioisotope materials exposed into our environment out of nuclear facilities, is believed to possibly raise significant hazardous effects toward human persons. Therefor, it is necessary to take a positive counter measures by means of comprehensive quantitative estimates on its possibilities. In consequence, the low-level radiation effects do not bring about the immediate hazard cases, however, appear to possibly pose the lately caused diseases such as cancer cause, life reduction, and creation of mutation, etc. Therefore, it is intended to set up the social security with the secure safety, by conducting an advanced safety study on the low-level radiation.

  4. Establishment of database for radiation exposure and safety assessment

    International Nuclear Information System (INIS)

    Choi, G. S.; Kim, J. H.

    2005-12-01

    The nuclear electric energy in our country plays a major role for the national industrial development as well as for the secure living of the peoples. It is, however, considered as a socially dreadful elements because of the radiation materials exposed into the environment. In effect, the DB is intended to serve for the reference to the epidemical study upon the low-level radiation exposure involving the nuclear facilities, radio-isotope business enterprises, and the related workers at the radiation sites. In connection with the development of nuclear energy, the low-level radiation, associated with the radioisotope materials exposed into our environment out of nuclear facilities, is believed to possibly raise significant hazardous effects toward human persons. Therefor, it is necessary to take a positive counter measures by means of comprehensive quantitative estimates on its possibilities. In consequence, the low-level radiation effects do not bring about the immediate hazard cases, however, appear to possibly pose the lately caused diseases such as cancer cause, life reduction, and creation of mutation, etc. Therefore, it is intended to set up the social security with the secure safety, by conducting an advanced safety study on the low-level radiation

  5. Radiation safety design of super KEKB factory

    International Nuclear Information System (INIS)

    Sanami, Toshiya

    2015-01-01

    The SuperKEKB factory, which was scheduled to start operation early 2015, is an electron-positron collider designed to produce an 80x10"3"4-1/cm"2/s luminosity, which is 40 times greater than the KEKB factory. Built to investigate CP violation and 'new physics' beyond the Standard Model, the facility consists of a 7-GeV electron/3.5-GeV positron linac, a 1.1- GeV positron damping ring, beam transport, and a 7-GeV electron/4-GeV positron collider. To meet this level of luminosity, the collider will be operated with a small beam size and a large crossing angle at the interaction point. According to particle tracking simulations, beam losses under these conditions will be 35 times more than those previously operated. To help optimise shielding configurations, leakage radiation and induced activity are estimated through empirical equations and detailed Monte-Carlo simulations using MARS15 code for the interaction region, beam halo collimators, emergency pathways, ducts, forward direction tunnels, and positron production target. Examples of shielding strategies are presented to reduce both leakage dose and airborne activity for several locations in the facility. (authors)

  6. Accelerators: radiation safety and regulatory compliance

    International Nuclear Information System (INIS)

    Bandyopadhyay, Tapas

    2013-01-01

    Growth of accelerators, both positive ions and electron, is very high in India. This may be because of the wide acceptance of these machines in the industrial purposes, medical uses, material science studies, upcoming ADSS facility and many other reasons. Most of cases for societal uses, accelerators have to be installed in the dense public domain. Accelerators for basic research and development purposes to be installed may in public domain or in isolated site. These accelerators are to be classified into different categories in terms of regulatory compliance. Radiation shield design, HVAC system required to be in place with design so that the dose and effluent discharge in the public domain is within a limit considering different pathways. INDUS I and II at Indore, K-130 and K500 machine at VECC, Pelletron at TIFR, IUAC, BARC, EBC at Mumbai are in operation. Apart from this accelerators, a series of medical accelerators in operation and yet to be operational which are generally producing PET isotopes for the diagnosis purposes. VECC is aiming to operate 30 MeV proton machine with about 500 μA beam current for the production of PET, SPECT isotopes for diagnosis purposes and also therapeutic use in near future. Detail requirement in terms of choice of sites, source term estimation for achieving optimum shield thickness, ventilation system, site layout and planning , radioactive effluent handling both gaseous and liquid, decommission aspects will be discussed. (author)

  7. Experimental test of liquid droplet radiator performance

    International Nuclear Information System (INIS)

    Mattick, A.T.; Simon, M.A.

    1986-01-01

    This liquid droplet radiator (LDR) is evolving rapidly as a lightweight system for heat rejection in space power systems. By using recirculating free streams of submillimeter droplets to radiate waste energy directly to space, the LDR can potentially be an order of magnitude lighter than conventional radiator systems which radiate from solid surfaces. The LDR is also less vulnerable to micrometeoroid damage than are conventional radiators, and it has a low transport volume. Three major development issues of this new heat rejection system are the ability to direct the droplet streams with sufficient precision to avoid fluid loss, radiative performance of the array of droplet streams which comprise the radiating elements of the LDR, and the efficacy of the droplet stream collector, again with respect to fluid loss. This paper reports experimental results bearing on the first two issues - droplet aiming in a multikilowatt-sized system, and radiated power from a large droplet array. Parallel efforts on droplet collection and LDR system design are being pursued by several research groups

  8. Legal and governmental infrastructure for nuclear, radiation, radioactive waste and transport safety. Safety requirements

    International Nuclear Information System (INIS)

    2004-01-01

    This publication establishes requirements for legal and governmental responsibilities in respect of the safety of nuclear facilities, the safe use of sources of ionizing radiation, radiation protection, the safe management of radioactive waste and the safe transport of radioactive material. Thus, it covers development of the legal framework for establishing a regulatory body and other actions to achieve effective regulatory control of facilities and activities. Other responsibilities are also covered, such as those for developing the necessary support for safety, involvement in securing third party liability and emergency preparedness

  9. Legal and governmental infrastructure for nuclear, radiation, radioactive waste and transport safety. Safety requirements

    International Nuclear Information System (INIS)

    2000-01-01

    This publication establishes requirements for legal and governmental responsibilities in respect of the safety of nuclear facilities, the safe use of sources of ionizing radiation, radiation protection, the safe management of radioactive waste and the safe transport of radioactive material. Thus, it covers development of the legal framework for establishing a regulatory body and other actions to achieve effective regulatory control of facilities and activities. Other responsibilities are also covered, such as those for developing the necessary support for safety, involvement in securing third party liability and emergency preparedness

  10. A management system integrating radiation protection and safety supporting safety culture in the hospital

    International Nuclear Information System (INIS)

    Almen, A.; Lundh, C.

    2015-01-01

    Quality assurance has been identified as an important part of radiation protection and safety for a considerable time period. A rational expansion and improvement of quality assurance is to integrate radiation protection and safety in a management system. The aim of this study was to explore factors influencing the implementing strategy when introducing a management system including radiation protection and safety in hospitals and to outline benefits of such a system. The main experience from developing a management system is that it is possible to create a vast number of common policies and routines for the whole hospital, resulting in a cost-efficient system. One of the key benefits is the involvement of management at all levels, including the hospital director. Furthermore, a transparent system will involve staff throughout the organisation as well. A management system supports a common view on what should be done, who should do it and how the activities are reviewed. An integrated management system for radiation protection and safety includes key elements supporting a safety culture. (authors)

  11. Medical management of radiation safety and control of ionizing radiation sources in Armenia

    International Nuclear Information System (INIS)

    Hovhannisyan, N.M.

    1998-01-01

    The events of the last 10 years, Spitak earthquake (1988) and collapse of the former USSR brought forth the changes of the political situation in Armenia and significant disorder in economy, industry, relations, including the radiation safety (RS) and control of the organization of the activities connected with the ionizing radiation sources (IRSs). In 1989 the Armenian Nuclear Power Plant was shut down, and in 1994 it was restarted. In Armenia there are about 750 X-ray rooms, 10 radionuclide diagnostic laboratories, 20 gamma and X-ray units; 95 enterprises in industry, science and technology use the IRSs with different purposes, there are 5 electron particle accelerators of different power capacity. About 6,000 individuals have constant contact to IRS: the roentgenologists, radiologists, the staff of NPP, accelerators, etc. Besides, more than 3,000 liquidators of the Chernobyl NPP disaster live in Armenia. Nowadays, the precise infrastructure of RS is established in Armenia. The regulating body is the 'State Atom Authority', performing the control, coordination and licensing of both enterprises and specialists. Ministry of Health Ministry of Internal Affairs, Ministry of Ecology perform the control of IRSs' delivery into the Republic of Armenia and then their proper use and waste disposal in Armenia. (author)

  12. The micro-processor controlled process radiation monitoring system for reactor safety systems

    International Nuclear Information System (INIS)

    Mizuno, K.; Noguchi, A.; Kumagami, S.; Gotoh, Y.; Kumahara, T.; Arita, S.

    1986-01-01

    Digital computers are soon expected to be applied to various real-time safety and safety-related systems in nuclear power plants. Hitachi is now engaged in the development of a micro-processor controlled process radiation monitoring system, which operates on digital processing methods employed with a log ratemeter. A newly defined methodology of design and test procedures is being applied as a means of software program verification for these safety systems. Recently implemented micro-processor technology will help to achieve an advanced man-machine interface and highly reliable performance. (author)

  13. Medical radiation safety in the angiography room

    International Nuclear Information System (INIS)

    Kudou, Tamaki

    2011-01-01

    Author's efforts for angiographic procedure and technique aiming to reduce patient's exposure are described on a case with radiation skin hazard and on considerations of regulations and investigations. The case is a male patient (45 years old at the first intracardiac catheter examination, stature 164 cm, body wt. 116 kg), who, due to the diagnosis of angina pectoris and cardiac infarction, has the 5-year history of 5 coronary angiography (CAG), 6 percutaneous coronary intervention (PCI) and 1 off-pump coronary arterial bypass grafting (CABG). Because of serious skin injury and pain development after later PCI (172.2 min) (Oct. 2006) and their exacerbation after the latest PCI (27.1 min) (Apr. 2007), skin transplantation is conducted (Nov.). The exposure dose at the later PCI above is estimated to be around 12 Gy. Based on the case, consideration is made on regulatory recommendations by FDA, IAEA, ICRP, and investigational results of fluoroscopic mode vs dose by members of Japanese Circulatory Technology. With those references where the fluoroscopy at 20 mGy/min is assumed, the dose 12 Gy estimated above is thought to be resulted from the fluoroscopic dose >50 mGy/min within about 4 hr. To reduce the exposure, the author gives 11 items to be noted in interventional radiology: short fluoroscopic time, low rate pulse, minimal acquisition, use of additional filter, dose optimization, long distance between focus and skin, short distance between image intensifier (I.I.) and/or flat panel detector (FPD), minimal field, to avoid the excess inch-up, continuous maintenance of equipment, and record/preservation of the dose indicated by the machine. (T.T.)

  14. Radiation safety design for SSRL storage ring

    Energy Technology Data Exchange (ETDEWEB)

    Khater, Hesham [Radiation Protection Department, Stanford Linear Accelerator Center (SLAC), 2575 Sand Hill Road, Menlo Park, CA 94025 (United States)]. E-mail: khater1@llnl.gov; Liu, James [Radiation Protection Department, Stanford Linear Accelerator Center (SLAC), 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Fasso, Alberto [Radiation Protection Department, Stanford Linear Accelerator Center (SLAC), 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Prinz, Alyssa [Radiation Protection Department, Stanford Linear Accelerator Center (SLAC), 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Rokni, Sayed [Radiation Protection Department, Stanford Linear Accelerator Center (SLAC), 2575 Sand Hill Road, Menlo Park, CA 94025 (United States)

    2006-12-15

    In 2003, the Stanford Synchrotron Radiation Laboratory (SSRL) had upgraded its storage ring to a 3rd generation storage ring (SPEAR3). SPEAR3 is deigned to operate at 500-mA stored beam current and 3-GeV energy. The 234-m circumference SPEAR3 ring utilizes 60-cm-thick concrete lateral walls, 30-cm-thick concrete roof, as well as 60- or 90-cm-thick concrete ratchet walls. A total of 3.5x10{sup 15}e{sup -}/y will be injected into the ring with an injection power of 4W and an injection efficiency of 75%. Normal beam losses occur due to both injection and stored beam operations in the total of 20 low loss as well as 3 high loss limiting apertures. During the 6-min injection period, an instantaneous power loss of 0.05W occurs at each low loss aperture. When averaged over the operational year, the loss of both the injection and the stored beams is equivalent to an average loss of 2mW at each low loss aperture. On the other hand, the average losses in the high loss apertures are 16mW for the injection septum, 47mW for the beam abort dump, and 13mW for the ring stoppers. The shielding requirements for losses in the new ring were based on a generic approach that used both FLUKA Monte Carlo particle generation and transport code and empirical computer codes and formulae.

  15. Radiation protection safety in Uganda -- Experience and prospects of the National Radiation Protection Service

    International Nuclear Information System (INIS)

    Kisolo, A.

    2001-01-01

    The Uganda National Radiation Protection Service (NRPS) is a technical body under the Atomic Energy Control Board, established by Law - the Atomic Energy Decree of 1972, Decree No. 12, to oversee and enforce safety of radiation sources, practices and workers; and to protect the patients, members of the public and the environment from the dangers of ionizing radiation and radioactive wastes. The Ionizing Radiation Regulations (Standards) - Statutory Instruments Supplement No. 21 of 1996 -- back up the Law. The Law requires all users, importers and operators of radiation sources and radioactive materials to notify the NRPS for registration and licensing. The NRPS is responsible for licensing and for the regulatory enforcement of compliance to the requirements for the safety of radiation sources and practices. There are about 200 diagnostic X-ray units, two radiotherapy centres, one nuclear medicine unit, several neutron probes, about three level gauges and two non-destructive testing sources and a number of small sealed sources in teaching and research institutions. About 50% of these sources have been entered in our inventory using the RAIS software provided by the IAEA. There are about 500 radiation workers and 250 underground miners. The NRPS covers about 50% of the radiation workers. It is planned that by June 2001, all occupational workers will be monitored, bringing coverage to 100%. The Government of Uganda is making the necessary legal, administrative and technical arrangements aimed at establishing the National Radiation Protection Commission as an autonomous regulatory authority. The Atomic Energy Decree of 1972 and Regulations of 1996 are being revised to provide for the National Radiation Protection Commission and to make it comply with the requirements of the International Basic Safety Standards Safety Series No. 115. (author)

  16. Radiation safety in industrial applications of nuclear techniques

    International Nuclear Information System (INIS)

    Lam, E.S.

    1981-01-01

    The hazards associated with the use of industrial equipment is one of the undesirable by-products of advanced technology. The use of nuclear techniques is a good example. Due to the usefulness of such techniques, one may accept the risks involved if they can be brought down to manageable levels. Most of the nuclear techniques in use in industries in Malaysia require only minimal safety precautions as they make use of only small amounts of radioactive material. However, some large sources are also being used and safety precautions have to be strictly enforced. The management plays a critical role in these industries. The requirements for radiation safety include the monitoring of workers and work areas, the medical surveillance of workers and the provision of barriers and other safety precautions. The management should also look to the training of the workers and be prepared for any emergencies that may arise. (author)

  17. Radiation safety in industrial applications of nuclear techniques

    Energy Technology Data Exchange (ETDEWEB)

    Lam, E S [Ministry of Health, Kuala Lumpur (Malaysia)

    1981-01-01

    The hazards associated with the use of industrial equipment is one of the undesirable by-products of advanced technology. The use of nuclear techniques is a good example. Due to the usefulness of such techniques, one may accept the risks involved if they can be brought down to manageable levels. Most of the nuclear techniques in use in industries in Malaysia require only minimal safety precautions as they make use of only small amounts of radioactive material. However, some large sources are also being used and safety precautions have to be strictly enforced. The management plays a critical role in these industries. The requirements for radiation safety include the monitoring of workers and work areas, the medical surveillance of workers and the provision of barriers and other safety precautions. The management should also look to the training of the workers and be prepared for any emergencies that may arise.

  18. Regulatory practices of radiation safety of SNF transportation in Russia

    International Nuclear Information System (INIS)

    Kuryndina, Lidia; Kuryndin, Anton; Stroganov, Anatoly

    2008-01-01

    This paper overviews current regulatory practices for the assurance of nuclear and radiation safety during railway transportation of SNF on the territory of Russian Federation from NPPs to longterm-storage of reprocessing sites. The legal and regulatory requirements (mostly compliant with IAEA ST-1), licensing procedure for NM transportation are discussed. The current procedure does not require a regulatory approval for each particular shipment if the SNF fully comply with the Rosatom's branch standard and is transported in approved casks. It has been demonstrated that SNF packages compliant with the branch standard, which is knowingly provide sufficient safety margin, will conform to the federal level regulations. The regulatory approval is required if a particular shipment does not comply with the branch standard. In this case, the shipment can be approved only after regulatory review of Applicant's documents to demonstrate that the shipment still conformant to the higher level (federal) regulations. The regulatory review frequently needs a full calculation test of the radiation safety assurance. This test can take a lot of time. That's why the special calculation tools were created in SEC NRS. These tools aimed for precision calculation of the radiation safety parameters by SNF transportation use preliminary calculated Green's functions. Such approach allows quickly simulate any source distribution and optimize spent fuel assemblies placement in cask due to the transport equation property of linearity relatively the source. The short description of calculation tools are presented. Also, the paper discusses foreseen implications related to transportation of mixed-oxide SNF. (author)

  19. Regulatory aspects of radiation sources safety in Albania

    International Nuclear Information System (INIS)

    Dollani, K.; Kushe, R.

    1998-01-01

    In this paper are presented the regulatory aspects of the radiation sources safety in Albania, based in the new Radiological Protection Act and Regulations. The radiation protection infrastructures and procedures are described as well as their functioning for the implementation of relevant activities such as licensing and regular inspection, personal dose monitoring, emergency preparedness which are developed in the frame of the IAEA Technical Co-operation Programme. The issue of the security of radiation sources is dealt in close relation with the preparation and use of the inventory of all radiation sources in the country. A special attention is paid to the identification and location of lost sources for their finding and secure storage. (author)

  20. Safety and radiation protection in mining and milling facilities

    Energy Technology Data Exchange (ETDEWEB)

    Magalhaes, Maisa H.; Schenato, Flavia; Cruz, Paulo R., E-mail: maisahm@cnen.gov.br, E-mail: schenato@cnen.gov.br, E-mail: pcruz@cnen.gov.br [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil); Xavier, Ana M., E-mail: axavier@cnen.gov.br [Comissao Nacional de Energia Nuclear (ESPOA/CNEN-RS), Porto Alegre, RS (Brazil). Escritorio de Porto Alegre

    2011-07-01

    Federal Legislation in Brazil establishes that the Brazilian Nuclear Energy Commission - CNEN - is responsible for the surveillance of the industrialization of nuclear ores and the production and commerce of nuclear materials in such way that activities such as buying, selling, import and export, are subject to previous licensing and surveillance. Regulation CNEN-NN-4.01 on Safety and Radiation Protection in Mining and Milling Facilities of conventional ores containing naturally occurring radioactive materials, NORM, was issued in 2004 establishing both a methodology for classification of these facilities into three Categories, taking into account both the contents of uranium and thorium in the ores and the applicable radiation and safety requirements based on a graded approach. Although the lack of a licensing process in the above mentioned Regulation made its implementation a difficult task, CNEN, by means of an initial survey, identified ca. 30 mining and milling industries of conventional ores containing uranium and thorium with concentrations above 10 Bq/g. More recently, a new juridical understanding of the legislation concluded that CNEN must issue licences and authorizations for the possession and storage of all ores with uranium and thorium concentrations above exemption levels. A proper surveillance programme encompassing 13 of these mining facilities was then put forward aiming at the improvement of their safety and radiation protection. This article presents an overview of NORM exploitation in Brazil and put forward suggestions for achieving viable solutions for the protection of workers, general public and environment from the effects of ionizing radiation. (author)

  1. Calculating the cost of research and Development in nuclear and radiation safety

    International Nuclear Information System (INIS)

    Matsulevich, N.Je.; Nosovs'ka, A.A.

    2010-01-01

    Methodological support assessing the cost of research and development in the area of nuclear and radiation safety regulation is considered. Basic methodological recommendations for determining labor expenditures for research and development in nuclear and radiation safety are provided.

  2. Safety and Radiation Protection at Swedish Nuclear Power Plants 2007

    Energy Technology Data Exchange (ETDEWEB)

    2008-07-01

    transparent basis for making decisions in safety matters. During the year it has however become apparent that further improvement measures are necessary. The plant has had a relatively large number of operational disturbances during 2007 which have been analysed in order to implement suitable measures. Modernisation projects follow the time schedules which were decided earlier for implementation in order to comply with the regulations. Some measures are already completed, others are underway, and the programme will continue until 2013. SKI is supervising the progress of the modernisation and the improvements to the physical protection of the plants. Forsmark Kraftgrupp AB has applied for permission to increase the thermal power in reactors Forsmark 1-3. The government hasn't yet granted permission for these power increases. SKI has approved trial operation for Ringhals 1 and Ringhals 3 at the increased power levels during the year. For Ringhals 3 this is the first stage of the planned power increases. Ringhals has also applied to increase the thermal power in Ringhals 4. The government has granted permission for the thermal power increase in Oskarshamn 3. SKI is currently performing a safety review of this application. Oskarshamn have made an application to increase the thermal power in Oskarshamn 2. During 2007 SKI has performed inspections to control how nuclear safeguards are managed by the nuclear power stations. In all 80 inspections have been carried out. Nothing has been found during these inspections to indicate that there are any deficiencies in the nuclear safeguard activities. No serious incidents or accidents have occurred resulting in abnormal radiation exposure of personnel. Radioactive releases from the plants have resulted in calculated doses to the most exposed person in the critical group that are well below the environmental impact goal of 10 microsievert. Forsmark, which in recent years has had recurrent problems with the measurement of airborne

  3. Safety and Radiation Protection at Swedish Nuclear Power Plants 2007

    International Nuclear Information System (INIS)

    2008-01-01

    transparent basis for making decisions in safety matters. During the year it has however become apparent that further improvement measures are necessary. The plant has had a relatively large number of operational disturbances during 2007 which have been analysed in order to implement suitable measures. Modernisation projects follow the time schedules which were decided earlier for implementation in order to comply with the regulations. Some measures are already completed, others are underway, and the programme will continue until 2013. SKI is supervising the progress of the modernisation and the improvements to the physical protection of the plants. Forsmark Kraftgrupp AB has applied for permission to increase the thermal power in reactors Forsmark 1 - 3. The government has not as yet granted permission for these power increases. SKI has approved trial operation for Ringhals 1 and Ringhals 3 at the increased power levels during the year. For Ringhals 3 this is the first stage of the planned power increases. Ringhals has also applied to increase the thermal power in Ringhals 4. The government has granted permission for the thermal power increase in Oskarshamn 3. SKI is currently performing a safety review of this application. Oskarshamn have made an application to increase the thermal power in Oskarshamn 2. During 2007 SKI has performed inspections to control how nuclear safeguards are managed by the nuclear power stations. In all 80 inspections have been carried out. Nothing has been found during these inspections to indicate that there are any deficiencies in the nuclear safeguard activities. No serious incidents or accidents have occurred resulting in abnormal radiation exposure of personnel. Radioactive releases from the plants have resulted in calculated doses to the most exposed person in the critical group that are well below the environmental impact goal of 10 microsievert. Forsmark, which in recent years has had recurrent problems with the measurement of airborne

  4. Basic safety standards for radiation protection. 1982 ed

    International Nuclear Information System (INIS)

    1982-01-01

    The International Atomic Energy Agency, the World Health Organization, the International Labour Organisation and the Nuclear Energy Agency of the OECD have undertaken to provide jointly a world-wide basis for harmonized and up-to-date radiation protection standards. The new Basic Safety Standards for Radiation Protection are based upon the latest recommendations by the International Commission on Radiological Protection (ICRP) which are essentially contained in its Publication No.26. These new Basic Safety Standards have been elaborated by an Advisory Group of Experts which met in Vienna from 10-14 October 1977, from 23-27 October 1978 and from 1-12 December 1980 under the joint auspices of the IAEA, ILO, WHO and the Nuclear Energy Agency of the OECD. Comments on the draft Basic Safety Standards received from Member States and relevant organizations were taken into account by the Advisory Group in the process of preparation of the revised Basic Safety Standards for Radiation Protection, which are published by the IAEA on behalf of the four sponsoring organizations. One of the main features of this revision is an increased emphasis on the recommendation to keep all exposures to ionizing radiation as low as reasonably achievable, economic and social factors being taken into account; consequently, radiation protection should not only apply the basic dose limits but also comply with this recommendation. Detailed guidance is given to assist those who have to decide on the implementation of this recommendation in particular cases. Another important feature is the recommendation of a more coherent method for achieving consistency in limiting risks to health, irrespective of whether the risk is of uniform or non-uniform exposure of the body.

  5. Safety of natural radiation exposure. A meta-analysis of epidemiological studies on natural radiation

    International Nuclear Information System (INIS)

    Osaki, S.

    2000-01-01

    People have been exposed every time and everywhere to natural radiation and ''intuitively'' know the safety of this radiation exposure. On the other hand the theory of no threshold value on radiological carcinogenesis is known widely, and many people feel danger with even a smallest dose of radiation exposure. The safety of natural radiation exposure can be used for the risk communication with the public. For this communication, the safety of natural radiation exposure should be proved ''scientifically''. Safety is often discussed scientifically as the risks of the mortality from many practices, and the absolute risks of safe practices on the public are 1E-5 to 1E-6. The risks based on the difference of natural radiation exposure on carcinogenesis have been analyzed by epidemiological studies. Much of the epidemiological studies have been focused on the relationship between radiation doses and cancer mortalities, and their results have been described as relative risks or correlation factors. In respect to the safety, however, absolute risks are necessary for the discussion. Cancer mortalities depend not only on radiation exposure, but also on ethnic groups, sexes, ages, social classes, foods, smoking, environmental chemicals, medical radiation, etc. In order to control these confounding factors, the data are collected from restricted groups or/and localities, but any these ecological studies can not perfectly compensate the confounding factors. So positive or negative values of relative risks or the meaningful correlation factors can not be confirmed that their values are derived originally from the difference of their exposure doses. The absolute risks on these epidemiological studies are also affected by many factors containing radiation exposure. The absolute risk or the upper value of the confidence limit obtained from the epidemiological study which is well regulated confounding factors is possible to be a maximum risk on the difference of the exposure doses

  6. Measuring safety culture: Application of the Hospital Survey on Patient Safety Culture to radiation therapy departments worldwide.

    Science.gov (United States)

    Leonard, Sarah; O'Donovan, Anita

    Minimizing errors and improving patient safety has gained prominence worldwide in high-risk disciplines such as radiation therapy. Patient safety culture has been identified as an important factor in reducing the incidence of adverse events and improving patient safety in the health care setting. The aim of distributing the Hospital Survey on Patient Safety Culture (HSPSC) to radiation therapy departments worldwide was to assess the current status of safety culture, identify areas for improvement and areas that excel, examine factors that influence safety culture, and raise staff awareness. The safety culture in radiation therapy departments worldwide was evaluated by distributing the HSPSC. A total of 266 participants were recruited from radiation therapy departments and included radiation oncologists, radiation therapists, physicists, and dosimetrists. The positive percent scores for the 12 dimensions of the HSPSC varied from 50% to 79%. The highest composite score among the 12 dimensions was teamwork within units; the lowest composite score was handoffs and transitions. The results indicated that health care professionals in radiation therapy departments felt positively toward patient safety. The HSPSC was successfully applied to radiation therapy departments and provided valuable insight into areas of potential improvement such as teamwork across units, staffing, and handoffs and transitions. Managers and policy makers in radiation therapy may use this assessment tool for focused improvement efforts toward patient safety culture. Copyright © 2017 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.

  7. Education of radiation safety specialists at Faculty of Medicine of Vilnius University

    International Nuclear Information System (INIS)

    Urbelis, A.; Surkiene, G.

    2004-01-01

    Vilnius University is the first institution of higher education in Lithuania that began to teach students on radiation safety. The special course of radiation hygiene was delivered to students in 1962-1992. In 1992 it was introduced residency of radiation hygiene and graduated students qualified for title of radiation hygiene specialist. The residency lasted one year and included six cycles: fundamentals of nuclear physics, statistics and noninfectious epidemiology, radiobiology, radiological research methods, controls of radiation safety and hygienic analysis of radiation safety. From 1994 Vilnius University has been educating and training professionals of public health. The specialists of radiation safety aren't been training as isolated branch. All courses is divided into two parts. The first one is included into bachelor, the second part - into master study. The bachelor study consists of 2 credits (16 hours for lectures and 32 hours for practical studies). The future bachelors study introduction of radiation safety, elements of nuclear physics, dose limit values, fundamentals of radiological protection, natural radiation. The master study consists of 2 credits (8 hours for lectures and 48 hours for practical studies). The future masters study specific problems of radiation safety in medicine and industry, the safety problems of nuclear power - stations, the problems of radioactive wastes, radiation biology, radiation risk. Radiation safety study model in Faculty of medicine of Vilnius University differs from study model in most European countries as it makes great play of radiation safety while usual model includes radiation safety as insignificant part of environmental health. (author)

  8. Radiation safety and quality control in the cyclotron laboratory

    International Nuclear Information System (INIS)

    Sharma, S.; Krause, G.; Ebadi, M.

    2006-01-01

    Radiation safety was determined to maintain quality control in the cyclotron laboratory. Based on the results of 438 runs in the Faraday cup (20 μA for 10 min), 20 runs on 18 O-water target (40 μA for 2 h) and 10 runs on 18 O-gas targets (30 μA for 45 min), we have established that occupationally exposed workers remain 10 ± 5 times below federal regulatory limits (FRLs) in the cyclotron vault, 30 ± 8 times below FRL in the radiochemistry laboratory and 200 ± 10 times below the FRL outside the cyclotron laboratory during beam operation. (The FRL for unrestricted area are <20 μSv in 1 h.) The non-occupationally exposed workers serving in offices in the vicinity of the cyclotron vault within 100 m distance remained 200 times below the FRL irrespective of beam being on or off, suggesting that routine beam operation of 40 μA for 2 h once a day during office hours is safe provided quality control and system performance measures as discussed in this report are strictly maintained. (authors)

  9. Nuclear Research Centre Juelich. 1986 annual work report of the Department for Safety and Radiation Protection

    International Nuclear Information System (INIS)

    Hille, R.; Frenkler, K.L.

    1986-02-01

    The Department for Safety and Radiation Protection continues to be responsible for coordinating radiation protection, safety and protection at the KFA. It supports the other institutes and departments in performing the safety tasks allotted to them. The principal tasks of the Department are in administrative and technical assistance to these organization units and in safeguards. Administrative assistance involves, for example, regulation of the radiation protection organization in the institutes, including the appointment of radiation protection officers (Strahlenschutzbeauftragte). Furthermore, this includes the central handling of the registration system with the authorities and dealing with outside firms thus considerably relieving the institutes of their administrative tasks. Handling licensing procedures and the central accountancy of radioactive materials is also to be mentioned in this context. Technical assistance largely consists of developing, maintaining and repairing radiation measuring instruments and in the monitoring of personnel by evaluating personnel dosimeters and incorporation controls for radioactive sources. The safeguards tasks of the Department concern the very staff-intensive physical protection, as well as environmental protection and industrial safety. (orig./HP) [de

  10. Nuclear Research Centre Juelich. 1987 annual work report of the Department for Safety and Radiation Protection

    International Nuclear Information System (INIS)

    Hille, R.

    1988-03-01

    The Department for Safety and Radiation Protection continues to be responsible for coordinating radiation protection, safety and protection at the KFA. It supports the other institutes and departments in performing the safety tasks allotted to them. The principal tasks of the Department are in administrative and technical assistance to these organization units and in safeguards. Administrative assistance involves, for example, regulation of the radiation protection organization in the institutes, including the appointment of radiation protection officers (Strahlenschutzbeauftragte). Furthermore, this includes the central handling of the registration system with the authorities and dealing with outside firms thus considerably relieving the institutes of their administrative tasks. Handling licensing procedures and the central accountancy of radioactive materials is also to be mentioned in this context. Technical assistance largely consists of developing, maintaining and repairing radiation measuring instruments and in the monitoring of personnel by evaluating personnel dosimeters and incorporation controls for radioactive sources. The safeguards tasks of the Department concern the very staff-intensive physical protection, as well as environmental protection and industrial safety. (orig./HP) [de

  11. 1988 annual work report of the Department for Safety and Radiation Protection

    International Nuclear Information System (INIS)

    Hille, R.

    1989-03-01

    The Department for Safety and Radiation Protection continues to be responsible for coordinating radiation protection, safety and protection at the KFA. It supports the other institutes and departments in performing the safety tasks allotted to them. The principal tasks of the Department are in administrative and technical assistance to these organization units and in safeguards. Administrative assistance involves, for example, regulation of the radiation protection organization in the institutes, including the appointment of radiation protection officers (Strahlenschutzbeauftragte). Furthermore, this includes the central handling of the registration system with the authorities and dealing with outside firms thus considerably relieving the institutes of their administrative tasks. Handling licensing procedures and the central accountancy of radioactive materials is also to be mentioned in this context. Technical assistance largely consists of developing, maintaining and repairing radiation measuring instruments and in the monitoring of personnel by evaluating personnel dosimeters and incorporation controls for radioactive sources. The safeguards tasks of the Department concern the very staff-intensive physical protection, as well as environmental protection and industrial safety. (orig.) [de

  12. 1989 annual work report of the KFA Department for Safety and Radiation Protection

    International Nuclear Information System (INIS)

    Hille, R.; Frenkler, K.L.

    1990-03-01

    The Department for Safety and Radiation Protection continues to be responsible for coordinating radiation protection, safety and protection at the KFA. It supports the other institutes and departments in performing the safety tasks allotted to them. The principal tasks of the Department are in administrative and technical assistance to these organization units and in safeguards. Administrative assistance involves, for example, regulation of the radiation protection organization in the institutes, including the appointment of radiation protection officers (Strahlenschutzbeauftrage). Furthermore, this includes the central handling of the registration system with the authorities and dealing with outside firms thus considerably relieving the institutes of their administrative tasks. Handling licensing procedures and the central accountancy of radioactive materials is also to be mentioned in this context. Technical assistance largely consists of developing, maintaining and repairing radiation measuring instruments and in the monitoring of personnel by evaluating personnel dosimeters and incorporation controls for radioactive sources. The safeguards tasks of the Department concern the very staff-intensive physical protection, as well as environmental protection and industrial safety. (orig.) [de

  13. A new radiation safety control system for Ganil

    International Nuclear Information System (INIS)

    Saint Jores, P. De; Luong, T.T.; Martina, L.; Vega, G.

    1991-01-01

    A second generation radiation safety control system has been installed to upgrade the initial system which was not flexible enough to support new ion beams and new experimental conditions required by the accelerator operation. The main reasons which necessitated the improvement of the safety control system are presented. The new system which controls the Ganil accelerator from the first quarter of 1990 is described. It uses a star structured architecture, VME standard processors and front-end modules activated by pDOS operating system and high level language (C and Fortran) tasks, associated with enhanced resolution color displays for real time synoptics. (R.P.) 4 refs., 4 figs

  14. Review of Radiation Safety in Medical X-Ray Diagnosis

    International Nuclear Information System (INIS)

    Koteng, O.A.

    2015-01-01

    Medical X-Ray machines have been used for more than a century for non-invasive diagnosis of patients for the benefit of mankind. The safety of operators and patients during such practice has improved with time, but, still cases of detrimental effects to Radiation Workers in Kenya including cancer related deaths have been reported in the recent past. An ongoing study is reviewing the safety status of the worker and patients during medical and dental exposures. The study was initiated following complaint of recurrent headaches by a radiographer working in a busy Kenyan hospital. (author)

  15. Radiation protection, safety and associated problems in industrial radiography

    International Nuclear Information System (INIS)

    Le Roux, P.R.

    1990-01-01

    Industrial radiography is an indispensable tool for non-destructive testing. Its use entails potential radiation exposure to the operator as well as to the public. Since such radiation has the potential to be harmful, there is a need to limit radiation exposure to a level at which the risk is believed to be acceptable to the individual and to society. The Radiation Protection Society and the Department of National Health believe that the level of protection provided for radiation workers should be comparable with that in other 'safe' industries. The total risk for radiation workers includes the risk of non-radiation related accidents in the various occupations, as well as the special risks of radiation exposure. Industrial radiographers have one of the poorest safety records of all non-medical radiation workers. Operator errors and management errors seem to be the primary contributors to most accidental high exposures. It is necessary to remember that industrial radiography has to be carried out in a wide variety of work places under many different working conditions, both by day and by night. High energy end emissivity (X-ray output or source activity) is required for the radiation to be transmitted through specimens, because these are normally constructed of thick and dense materials such as steel. Additionally, most radiographic sources must be portable to permit use in field locations. On the negative side it must be mentioned that studies undertaken abroad conclude that the most important factors contributing to unsafe operations are human related. Careful planning of the method of work is essential if unnecessary risks are to be avoided. The most effective way of reducing accidents would seem to be to train employees to adhere to established and well documented procedures, to exercise common sense and sound judgement, and to use the protective equipment and devices provided in the manner specified. 2 tabs., 3 refs

  16. Update on radiation safety and dose reduction in pediatric neuroradiology

    Energy Technology Data Exchange (ETDEWEB)

    Mahesh, Mahadevappa [Johns Hopkins University School of Medicine, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD (United States)

    2015-09-15

    The number of medical X-ray imaging procedures is growing exponentially across the globe. Even though the overall benefit from medical X-ray imaging procedures far outweighs any associated risks, it is crucial to take all necessary steps to minimize radiation risks to children without jeopardizing image quality. Among the X-ray imaging studies, except for interventional fluoroscopy procedures, CT studies constitute higher dose and therefore draw considerable scrutiny. A number of technological advances have provided ways for better and safer CT imaging. This article provides an update on the radiation safety of patients and staff and discusses dose optimization in medical X-ray imaging within pediatric neuroradiology. (orig.)

  17. Update on radiation safety and dose reduction in pediatric neuroradiology

    International Nuclear Information System (INIS)

    Mahesh, Mahadevappa

    2015-01-01

    The number of medical X-ray imaging procedures is growing exponentially across the globe. Even though the overall benefit from medical X-ray imaging procedures far outweighs any associated risks, it is crucial to take all necessary steps to minimize radiation risks to children without jeopardizing image quality. Among the X-ray imaging studies, except for interventional fluoroscopy procedures, CT studies constitute higher dose and therefore draw considerable scrutiny. A number of technological advances have provided ways for better and safer CT imaging. This article provides an update on the radiation safety of patients and staff and discusses dose optimization in medical X-ray imaging within pediatric neuroradiology. (orig.)

  18. Radiation protection training of radiation safety officers in Finland in 2008

    International Nuclear Information System (INIS)

    Havukainen, R.; Bly, R.; Markkanen, M.

    2009-11-01

    The Radiation and Nuclear Safety Authority (STUK) carried out a survey on the radiation protection training of radiation safety officers (RSO) in Finland in 2008. The aim of the survey was to obtain information on the conformity and uniformity of the training provided in different training organisations. A previous survey concerning radiation protection training was carried out in 2003. That survey determined the training needs of radiation users and radiation safety officers as well the radiation protection training included in vocational training and supplementary training. This report presents the execution and results of the survey in 2008. According to the responses, the total amount of RSO training fulfilled the requirements presented in Guide ST 1.8 in the most fields of competence. The emphasis of the RSO training differed between organisations, even for training in the same field of competence. Certain issues in Guide ST 1.8 were dealt quite superficially or even not at all in some training programmes. In some fields of competence, certain matters were entirely left to individual study. No practical training with radiation equipment or sources was included in the RSO training programme of some organisations. Practical training also varied considerably between organisations, even within the same field of competence. The duties in the use of radiation were often considered as practical training with radiation equipment and sources. Practical training from the point of view of a radiation safety officer was brought up in the responses of only one organisation. The number of questions and criteria for passing RSO exams also varied between organisations. Trainers who provided RSO training for the use of radiation in health care sectors had reached a higher vocational training level and received more supplementary training in radiation protection in the previous 5 years than trainers who provided RSO training for the use of radiation in industry, research, and

  19. Delivering a radiation protection dividend: systemic capacity-building for the radiation safety profession in Africa

    Directory of Open Access Journals (Sweden)

    Julian Hilton

    2014-12-01

    Full Text Available Many African countries planning to enter the nuclear energy “family” have little or no experience of meeting associated radiation safety demands, whether operational or regulatory. Uses of radiation in medicine in the continent, whether for diagnostic or clinical purposes, are rapidly growing while the costs of equipment, and hence of access to services, are falling fast. In consequence, many patients and healthcare workers are facing a wide array of unfamiliar challenges, both operational and ethical, without any formal regulatory or professional framework for managing them safely. This, combined with heighted awareness of safety issues post Fukushima, means the already intense pressure on radiation safety professionals in such domains as NORM industries and security threatens to reach breaking point. A systematic competency-based capacity-building programme for RP professionals in Africa is required (Resolution of the Third AFRIRPA13 Regional Conference, Nairobi, September 2010. The goal is to meet recruitment and HR needs in the rapidly emerging radiation safety sector, while also addressing stakeholder concerns in respect of promoting and meeting professional and ethical standards. The desired outcome is an RP “dividend” to society as a whole. A curriculum model is presented, aligned to safety procedures and best practices such as Safety Integrity Level and Layer of Protection analysis; it emphasizes proactive risk communication both with direct and indirect stakeholders; and it outlines disciplinary options and procedures for managers and responsible persons for dealing with unsafe or dangerous behavior at work. This paper reports on progress to date. It presents a five-tier development pathway starting from a generic foundation course, suitable for all RP professionals, accompanied by specialist courses by domain, activity or industry. Delivery options are discussed. Part of the content has already been developed and delivered as

  20. Radiation safety in sea transport of radioactive material in Japan

    International Nuclear Information System (INIS)

    Odano, N.; Yanagi, H.

    2004-01-01

    Radiation safety for sea transport of radioactive material in Japan has been discussed based on records of the exposed dose of sea transport workers and measured data of dose rate equivalents distribution inboard exclusive radioactive material shipping vessels. Recent surveyed records of the exposed doses of workers who engaged in sea transport operation indicate that exposed doses of transport workers are significantly low. Measured distribution of the exposed dose equivalents inboard those vessels indicates that dose rate equivalents inside those vessels are lower than levels regulated by the transport regulations of Japan. These facts clarify that radiation safety of inboard environment and handling of transport casks in sea transport of radioactive material in Japan are assured

  1. Radiation safety in sea transport of radioactive material in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Odano, N. [National Maritime Research Inst., Tokyo (Japan); Yanagi, H. [Nuclear Fuel Transport Co., Ltd., Tokyo (Japan)

    2004-07-01

    Radiation safety for sea transport of radioactive material in Japan has been discussed based on records of the exposed dose of sea transport workers and measured data of dose rate equivalents distribution inboard exclusive radioactive material shipping vessels. Recent surveyed records of the exposed doses of workers who engaged in sea transport operation indicate that exposed doses of transport workers are significantly low. Measured distribution of the exposed dose equivalents inboard those vessels indicates that dose rate equivalents inside those vessels are lower than levels regulated by the transport regulations of Japan. These facts clarify that radiation safety of inboard environment and handling of transport casks in sea transport of radioactive material in Japan are assured.

  2. to control the nuclear safety and the radiation protection

    International Nuclear Information System (INIS)

    Lacoste, A.C.; Bordarier, Ph.; Saint-Raymond, Ph.; Repussard, J.; Gouze, J.R.; Degos, L.; Massart, S.; Wiroth, P.; Thezee, Ch.; Petit, G.; Cahen, B.; Hubert, I.; Wiroth, P.; Thezee, Ch.; Petit, G.; Kaufer, B.; Taniguchi, T.; Revol, H.

    2005-01-01

    Publishing this dossier, the aim is to present the principles and the variety of issues linked to nuclear safety and radiation protection supervision, and the main strategic choices made to use efficiently and effectively A.S.N. supervision means. A.S.N. is responsible for nuclear safety and radiation protection supervision. A.S.N. has to be itself evaluated and supervised by external bodies. The Parliament Office for Evaluation of Scientific and Technological Options (O.P.E.C.S.T.) supervises it; the foreign peers watch and A.S.N. has to be the object of an international audit conducted by its peers under the leadership of I.A.E.A. by the beginning of 2007. (N.C.)

  3. Introduction of the activity of the radiation safety for KOMAC

    Energy Technology Data Exchange (ETDEWEB)

    Min, Yi Sub; Park, Sung Kyun; Park, Jeong Min; Cho, Yong Sub [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The 100 MeV linear proton accelerator as well as the various types of the ion accelerator have been operated and developed in KOMAC. These accelerators are classified as a radiation generator by the nuclear law of Korea. The operation of these accelerators included in the KOMAC site should be approved by Nuclear Safety and Security Committee (NSSC). This paper introduces the activity in terms of the radiation safety for these accelerator operations and their future plan. The model of the ion beam accelerator for analysis installed in KOMAC is a 5SDH-2, produced by National Electrostatics Corporation. This ion beam accelerator, devolved from Korea Institute of Geoscience and Mineral Resources (KIGAM), consists of two ion source, accelerating tanks and four beamlines. Ions in the ion beam accelerator are accelerated using a tandem method, that is, ions accelerated have been drawn out by the negative ions from the ion source and then changed into positive ions in the acceleration tube intermediate.

  4. Main results and tasks in studies on radiation safety ensurance when using nuclear power and radiation sources in national economy

    International Nuclear Information System (INIS)

    Semenov, A.P.; Ivanov, V.I.

    1978-01-01

    The basic problems and the results of work in the field of ensuring radiation safety for personnel engaged in work related to the use of nuclear energy and sources of ionizing radiation are discussed. Long standing observation of labour hygiene and health conditions of people engaged at research nuclear reactors have shown that the irradiation levels under normal operating conditions do not exceed the established standards. Radiation conditions in radiological laboratories have been studied. Much attention is given to studies of internal irradiation due to inhalation of radioactive aerosols. New methods and apparatuses have been developed for analysis of aerosols and control of intake of radioactive substances by man. Work has been done to improve the methods of emergency dosimetry and design of individual emergency dosimeters. Investigations have been performed to determine the safety levels in working with rare-metal ores containing naturally occurring radioactive substances and industrial radiochemical processes. It is of interest to study small load doses. Different documents for providing safety in working with sources of ionizing radiation have been developed

  5. Occupational radiation protection organisation, facility and design safety features

    International Nuclear Information System (INIS)

    Joshi, M.L.

    1998-01-01

    There is no absolute standard or excellence in radiation protection. The concept of excellence implies a continuous search for improvement in performance and full utilization of available resources. Radiation protection requires the commitment of all plant staff, including higher levels of executive management. The improvements in performance must therefore be based primarily on management rather than technical factors and must be aimed at more effective use of investments already made in plant facilities

  6. Radiation safety procedures in radioiodine therapy for thyroid cancer

    International Nuclear Information System (INIS)

    Rajashekharrao, B.; Samuel, A.M.

    1999-01-01

    During any administration of radioactive materials, it is imperative to always be conversant with any forbidden radiation health safety practices. This need is amplified when dealing with therapeutic amount of radionuclides. Among all the procedures dealing with the use of radiopharmaceuticals, it is easiest to think of 131 I, since this is the most widely used unsealed source of a radiopharmaceutical for treatment of thyroid cancer and hyperthyroidism and carries with it most of the problems associated with therapy applications

  7. Radiation safety in radioluminous paint workshop handling tritium activated paint

    International Nuclear Information System (INIS)

    Gaur, P.K.; Venkateswaran, T.V.

    1986-01-01

    This paper discusses the safety features related to a workshop when tritium activated luminous paint is handled by workmen. Salient features of the workshop and the methods employed for monitoring the radiation levels are briefly outlined and results are discussed. The importance of proper ventilation of the workplace and precautions to be taken in the storage of painted articles are highlighted. (author). 1 table, 3 figs

  8. Radiation Safety Act 1975 - No 44 of 1975

    International Nuclear Information System (INIS)

    1975-01-01

    This Act regulates the use of radioactive substances and irradiating apparatus, including particle accelerators as well as certain specified electronic products. The Act lays down a licensing and registration system for such substances and apparatus; it sets up a Radiological Council to administer the Act and to advise the Minister responsible for public health on matters of radiation safety. The radioactive Substances Act 1954 and the Amending Acts of 1960 and 1964 are repealed. (NEA) [fr

  9. Postgraduate educational course in radiation protection and the safety of radiation sources. Standard syllabus

    International Nuclear Information System (INIS)

    2003-01-01

    The aim of the Postgraduate Educational Course in Radiation Protection and the Safety of Radiation Sources is to meet the needs of professionals at graduate level, or the equivalent, for initial training to acquire a sound basis in radiation protection and the safety of radiation sources. The course also aims to provide the necessary basic tools for those who will become trainers in radiation protection and in the safe use of radiation sources in their countries. It is designed to provide both theoretical and practical training in the multidisciplinary scientific and/or technical bases of international recommendations and standards on radiation protection and their implementation. The participants should have had a formal education to a level equivalent to a university degree in the physical, chemical or life sciences or engineering and should have been selected to work in the field of radiation protection and the safe use of radiation sources in their countries. The present revision of the Standard Syllabus takes into account the requirements of the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (BSS), IAEA Safety Series No. 115 (1996) and recommendations of related Safety Guides, as well as experience gained from the Postgraduate Educational Course on Radiation Protection and Safety of Radiation Sources held in several regions in recent years. The general aim of the course, as mentioned, is the same. Some of the improvements in the present version are as follows: The learning objective of each part is specified. The prerequisites for each part are specified. The structure of the syllabus has been changed: the parts on Principles of Radiation Protection and on Regulatory Control were moved ahead of Dose Assessment and after Biological Effects of Radiation. The part on the interface with nuclear safety was dropped and a module on radiation protection in nuclear power plants has been included. A

  10. Postgraduate educational course in radiation protection and the safety of radiation sources. Standard syllabus

    International Nuclear Information System (INIS)

    2002-01-01

    The aim of the Postgraduate Educational Course in Radiation Protection and the Safety of Radiation Sources is to meet the needs of professionals at graduate level, or the equivalent, for initial training to acquire a sound basis in radiation protection and the safety of radiation sources. The course also aims to provide the necessary basic tools for those who will become trainers in radiation protection and in the safe use of radiation sources in their countries. It is designed to provide both theoretical and practical training in the multidisciplinary scientific and/or technical bases of international recommendations and standards on radiation protection and their implementation. The participants should have had a formal education to a level equivalent to a university degree in the physical, chemical or life sciences or engineering and should have been selected to work in the field of radiation protection and the safe use of radiation sources in their countries. The present revision of the Standard Syllabus takes into account the requirements of the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (BSS), IAEA Safety Series No. 115 (1996) and recommendations of related Safety Guides, as well as experience gained from the Postgraduate Educational Course on Radiation Protection and Safety of Radiation Sources held in several regions in recent years. The general aim of the course, as mentioned, is the same. Some of the improvements in the present version are as follows: The learning objective of each part is specified. The prerequisites for each part are specified. The structure of the syllabus has been changed: the parts on Principles of Radiation Protection and on Regulatory Control were moved ahead of Dose Assessment and after Biological Effects of Radiation. The part on the interface with nuclear safety was dropped and a module on radiation protection in nuclear power plants has been included. A

  11. Research activities in radiation protection. Programme report 1997. Report on the departmental research programme of the Federal Ministry for Environment, Nature Conservation and Reactor Safety (BMU), performed under the scientific and administrative project management of the Federal Office for Radiation Protection (BfS)

    International Nuclear Information System (INIS)

    Schmitt-Hannig, A.; Goedde, R.; Thieme, M.

    1998-03-01

    On behalf of the Federal Ministry for Environment, Nature Conservation and Nuclear Safety (BMU), the Federal Office for Radiation Protection (BfS) is placing research and study contracts in the field of radiation protection. The results of these projects are used for developing radiation protection rules and to fulfill the special radiation protection tasks of the BMU, required by law. Planning, expert and administrative management, placing, assistance as well as expert evaluation of the results from these research projects lies within the responsibility of the Federal Office for Radiation Protection. This report provides information on preliminary and final results of radiation protection projects within the BMU Departmental Research Programme of the year 1997. (orig.) [de

  12. Radiation safety practice in Sudan with respect to industrial radioisotope applications

    International Nuclear Information System (INIS)

    Ahmed, W.D.; Hassan, B.A.; Zeada, D.O.M.; Sirelkhatim, D.A.; Salih, S.A.; Hassan, M.S.

    2008-06-01

    The use of radioisotope technology in petrochemical industry in Sudan started in 2003, since then gamma scanning for distillation columns and tracer applications for leak detection was performed 6 times at a refinery 60 Km away from Khartoum, by Sudan Atomic Energy Commission II T group. This paper focuses on safety and radiation protection for this practice, also describes safety requirements, the emergency plan and evaluation of dose worker value which was done on these missions. The assessment of worker's doses performed showed that they are within an acceptable range. Recommendations are made to even bring them lower. The paper also sheds light on some problems raised and suggests remedial actions.(Author)

  13. Quality assurance and radiation safety in positron emission tomography

    International Nuclear Information System (INIS)

    Kmetyuk, Ya.V.; Radosh, H.V.; Bezshyyko, O.A.; Golinka-Bezshyyko, L.O.; Kadenko, I.M.; Kazinova, O.A.; Nagai, A.O.

    2012-01-01

    Scientific studies, clinical experience and economic analysis have shown that the positron emission tomography (PET) is clinically and cost effective cancer diagnostics method. Combined PET and computed tomography (PET/CT) has proven clinical utility, particularly in the diagnosis, staging or restaging malignant disease and metastases, surgical planning, radiation therapy planning and evaluation of treatment response. The use of PET/CT has grown substantially in the past few years, with an increasing number of hospitals and installations of PET/CT imaging centers each year. In the same time combination of 2 procedures, each of which impart a radiation dose and, as a result, increases the deleterious influence for health, creates additional radiation safety issues. In these conditions the role of quality assurance (QA) and quality control (QC) programs is getting more and more important. We considered main QA and radiation safety requirements for whole PET technology chain from radio-pharmacy facilities to PET/CT scanning and patient release criteria. All these issues were considered and assessed having the example of PET facilities and technology chain of All-Ukrainian Center for Radiosurgery of the Clinical Hospital 'Feofania'

  14. Radiation safety and protection in US dental hygiene programs

    International Nuclear Information System (INIS)

    Farman, A.G.; Hunter, N.; Grammer, S.

    1986-01-01

    A survey of radiation safety and protection measures used by programs teaching dental hygiene indicated some areas for concern. No barriers or radiation shieldings were used between operator and patient in four programs. Radiation monitoring devices were not worn by faculty operators in 16% of the programs. Fewer than half of the programs used thyroid shields for patients on a routine basis. Insufficient filtration for the kilovolt peak employed was used by 14% of the programs, and for 19% more the filtration was unknown or unspecified. Three programs used closed cones. Rectangular collimation was not used at all by 63% of the programs, and only 20% used E speed film routinely. Quality assurance for equipment maintenance and for film processing were in place at only 54% and 49% of the programs, respectively

  15. A bioethical perspective on radiation protection and 'safety'

    International Nuclear Information System (INIS)

    Maxey, M.N.

    1980-01-01

    Three problems of concern to radiation protection policy makers are analysed: 1) How to decide if current conceptual tools for assessing basic harm to valued living systems are adequate. Misconceptions confusing hazards and risks, problems arising from the use of the concepts 'risk-benefit' and 'harm-benefit' analysis, and value-conflicts are discussed. 2) How to set safety standards on the basis of informed consent to scientific evidence presented by experts who disagree in interpreting that evidence. 3) How to resolve value conflicts underlying disagreement, i.e. conflicting philosophies about radiation protection. It is concluded that any involuntary risks imposed by social policies for radiation protection must be congruent with, must not be in excess of, and may be reasonably less than, those involuntary risks imposed by the wide variations in naturally occurring toxic elements and harmful effects from our natural environment. (U.K.)

  16. An analysis of the awareness and performance of radiation workers' radiation/radioactivity protection in medical institutions : Focused on Busan regional medical institutions

    International Nuclear Information System (INIS)

    Park, Cheol Koo; Hwang, Chul Hwan; Kim, Dong Hyun

    2017-01-01

    The purpose of this study was to investigate safety management awareness and behavioral investigation of radiation/radioactivity performance defenses of radiation workers' in medical institutions. Data collection consisted of 267 radiation workers working in medical institutions using structured questionnaires. As a result, it was analyzed that radiation safety management awareness and performance were high in 40s, 50s group and higher education group. The analysis according to the radiation safety management knowledge was analyzed that the 'Know very well' group had higher scores on awareness and performance scores. The analysis according to the degree of safety management effort showed the high awareness scale and the performance scale in the group 'Receiving various education or studying the safety management contents through book'. The correlations between the sub-factors showed the highest positive correlation between perceived practician and personal perspective and perceived by patient and patient's caretaker perspective. Therefore, radiation safety management for workers, patients, and patient's caretaker should be conducted through continuous education of radiation safety management through various routes of radiation workers working at medical institutions

  17. An analysis of the awareness and performance of radiation workers' radiation/radioactivity protection in medical institutions : Focused on Busan regional medical institutions

    Energy Technology Data Exchange (ETDEWEB)

    Park, Cheol Koo [Dept. of Radiological Science, Graduate School of Catholic University of Pusan, Busan (Korea, Republic of); Hwang, Chul Hwan [Dept. of Radiation Oncology, Pusan National University Hospital, Busan (Korea, Republic of); Kim, Dong Hyun [Dept. of Radiological Science, College of Health Sciences, Catholic University of Pusan, Busan (Korea, Republic of)

    2017-03-15

    The purpose of this study was to investigate safety management awareness and behavioral investigation of radiation/radioactivity performance defenses of radiation workers' in medical institutions. Data collection consisted of 267 radiation workers working in medical institutions using structured questionnaires. As a result, it was analyzed that radiation safety management awareness and performance were high in 40s, 50s group and higher education group. The analysis according to the radiation safety management knowledge was analyzed that the 'Know very well' group had higher scores on awareness and performance scores. The analysis according to the degree of safety management effort showed the high awareness scale and the performance scale in the group 'Receiving various education or studying the safety management contents through book'. The correlations between the sub-factors showed the highest positive correlation between perceived practician and personal perspective and perceived by patient and patient's caretaker perspective. Therefore, radiation safety management for workers, patients, and patient's caretaker should be conducted through continuous education of radiation safety management through various routes of radiation workers working at medical institutions.

  18. Safety of radiation sources and security of radioactive materials. Proceedings of an international conference

    International Nuclear Information System (INIS)

    1999-01-01

    This International Conference, hosted by the Government of France and co-sponsored by the European Commission, the International Criminal Police Organization (Interpol) and the World Customs Organization (WCO), was the first one devoted to the safety of radiation sources and the security of radioactive materials and - for the first time - brought together radiation safety experts, regulators, and customs and police officers, who need to closely co-operate for solving the problem of illicit trafficking. The technical sessions reviewed the state of the art of twelve major topics, divided into two groups: the safety of radiation sources and the security of radioactive materials. The safety part comprised regulatory control, safety assessment techniques, engineering and managerial measures, lessons from experience, international cooperation through reporting systems and databases, verification of safety through inspection and the use of performance indicators for a regulatory programme. The security part comprised measures to prevent breaches in the security of radioactive materials, detection and identification techniques for illicit trafficking, response to detected cases and seized radioactive materials, strengthening awareness, training and exchange of information. The Conference was a success in fostering information exchange through the reviews of the state of the art and the frank and open discussions. It raised awareness of the need for Member States to ensure effective systems of control and for preventing, detecting and responding to illicit trafficking in radioactive materials. The Conference finished by recommending investigating whether international undertakings concerned with an effective operation of national systems for ensuring the safety of radiation sources and security of radioactive materials

  19. GT-MHR design, performance, and safety

    International Nuclear Information System (INIS)

    Neylan, A.J.; Shenoy, A.; Silady, F.A.; Dunn, T.D.

    1994-11-01

    The Gas Turbine-Modular Helium Reactor (GT-MHR) is the result of coupling the evolution of a low power density passively safe modular reactor with key technology developments in the U.S. during the last decade: large industrial gas turbines; large active magnetic bearings; and compact, highly effective plate-fin heat exchangers. This is accomplished through the unique use of the Brayton cycle to produce electricity with the helium as primary coolant from the reactor directly driving the gas turbine electrical generator. This cycle can achieve a high net efficiency in the range of 45% to 48%. In the design of the GT-MHR the desirable inherent characteristics of the inert helium coolant, graphite core, and the coated fuel particles are supplemented with specific design features such as passive heat removal to achieve the safety objective of not disturbing the normal day-to-day activities of the public even for beyond design basis rare accidents. Each GT-MHR plant consists of four modules. The GT-MHR module components are contained within steel pressure vessels: a reactor vessel, a power conversion vessel, and a connecting cross vessel. All vessels are sited underground in a concrete silo, which serves as an independent vented low pressure containment structure. By capitalizing on industrial and aerospace gas turbine development, highly effective heat exchanger designs, and inherent gas cooled reactor temperature characteristics, the passively safe GT-MHR provides a sound technical, monetary, and environmental basis for new nuclear power generating capacity. This paper provides an update on the status of the design, which has been under development on the US-DOE program since February 1993. An assessment of plant performance and safety is also included

  20. Safety Injection Tank Performance Analysis Using CFD

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jai Oan; Lee, Jeong Ik; Nietiadi Yohanes Setiawan [KAIST, Daejeon (Korea, Republic of); Addad Yacine [KUSTAR, Abu Dhabi (United Arab Emirates); Bang, Young Seok; Yoo, Seung Hun [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2016-10-15

    This may affect the core cooling capability and threaten the fuel integrity during LOCA situations. However, information on the nitrogen flow rate during discharge is very limited due to the associated experimental measurement difficulties, and these phenomena are hardly reflected in current 1D system codes. In the current study, a CFD analysis is presented which hopefully should allow obtaining a more realistic prediction of the SIT performance which can then be reflected on 1D system codes to simulate various accident scenarios. Current Computational Fluid Dynamics (CFD) calculations have had limited success in predicting the fluid flow accurately. This study aims to find a better CFD prediction and more accurate modeling to predict the system performance during accident scenarios. The safety injection tank with fluidic device was analyzed using commercial CFD. A fine resolution grid was used to capture the vortex of the fluidic device. The calculation so far has shown good consistency with the experiment. Calculation should complete by the conference date and will be thoroughly analyzed to be discussed. Once a detailed CFD computation is finished, a small-scale experiment will be conducted for the given conditions. Using the experimental results and the CFD model, physical models can be validated to give more reliable results. The data from CFD and experiments will provide a more accurate K-factor of the fluidic device which can later be applied in system code inputs.

  1. Nuclear Reactor RA Safety Report, Vol. 9, Radiation protection

    International Nuclear Information System (INIS)

    1986-11-01

    Instrumentation for Radiation protection existing at the RA reactor is dating mostly from the period 1957-1959 when the reactor has been built. With some minor exception it was produced in USSR. Radiation protection system was constructed based on specific design project, somewhat modified original USSR project which has been indispensable because of some modification of the building design. During the past 27 years no renewal of the instrumentation was done, only maintenance was performed. Instrumentation consists of old electronic devices which caused difficulties and even prevented regular maintenance because of lack of spare parts. Instrumentation for radiation protection at the RA reactor is classified as follows: centralized dosimetry system; stationary dosimetry instrumentation, movable and personal dosimetry systems. Apart from the scheme of dosimetry instrumentation this volume includes description of radiation protection procedures; protection devices; radiation doses and dose limit data; program for environmental radioactivity control; medical control procedures [sr

  2. Safety performance evaluation of converging chevron pavement markings : final report.

    Science.gov (United States)

    2014-12-01

    The objectives of this study were (1) to perform a detailed safety analysis of converging chevron : pavement markings, quantifying the potential safety benefits and developing an understanding of the : incident types addressed by the treatment, and (...

  3. A Study on Enhancement of Understanding of Radiation and Safety Management

    International Nuclear Information System (INIS)

    Yoo, Dong Han; Park, Ji Young; Lee, Jae Uk; Bae, Jun Woo; Kim, Hee Reyoung

    2014-01-01

    Concerns for radiation exposure have been increased from small and big radiation works or experiments with radiation generator (RG) or radiation isotopes (RI) at institutions using radiation in Korea. Actually, due to radiation exposure occurred on the process of handling RI, etc., The exposure should be maintained as low as reasonably possible. To do this, above all, suitable training and establishment of safety culture have to be preceded. In this respect, an education institution is a place where people learn first about handling radiations in various specialties with purposes including academic research, and the first learned habits and practices acts as the basis for safety management of radiation when they continue to do radiation work after going into the society. Hereford, it is needed to establish the right safety culture on radiation for its safe managing. In the present study, the direction for the right understandings and safety improvement are suggested through the radiation survey on education institutions and preparation of safety guidances for users. The basic guidance at the radiation experiment was prepared for the right understanding of the radiation to prevent radiation accidents from careless handling by workers based on the surveyed results for education institutions. It is expected to be used as fundamentals for improvement for radiation safety management of workers and researchers and, further, safety policy for national nuclear energy and radiations

  4. A Study on Enhancement of Understanding of Radiation and Safety Management

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Dong Han; Park, Ji Young; Lee, Jae Uk; Bae, Jun Woo; Kim, Hee Reyoung [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2014-10-15

    Concerns for radiation exposure have been increased from small and big radiation works or experiments with radiation generator (RG) or radiation isotopes (RI) at institutions using radiation in Korea. Actually, due to radiation exposure occurred on the process of handling RI, etc., The exposure should be maintained as low as reasonably possible. To do this, above all, suitable training and establishment of safety culture have to be preceded. In this respect, an education institution is a place where people learn first about handling radiations in various specialties with purposes including academic research, and the first learned habits and practices acts as the basis for safety management of radiation when they continue to do radiation work after going into the society. Hereford, it is needed to establish the right safety culture on radiation for its safe managing. In the present study, the direction for the right understandings and safety improvement are suggested through the radiation survey on education institutions and preparation of safety guidances for users. The basic guidance at the radiation experiment was prepared for the right understanding of the radiation to prevent radiation accidents from careless handling by workers based on the surveyed results for education institutions. It is expected to be used as fundamentals for improvement for radiation safety management of workers and researchers and, further, safety policy for national nuclear energy and radiations.

  5. Radiological protection, safety and security issues in the industrial and medical applications of radiation sources

    Science.gov (United States)

    Vaz, Pedro

    2015-11-01

    The use of radiation sources, namely radioactive sealed or unsealed sources and particle accelerators and beams is ubiquitous in the industrial and medical applications of ionizing radiation. Besides radiological protection of the workers, members of the public and patients in routine situations, the use of radiation sources involves several aspects associated to the mitigation of radiological or nuclear accidents and associated emergency situations. On the other hand, during the last decade security issues became burning issues due to the potential malevolent uses of radioactive sources for the perpetration of terrorist acts using RDD (Radiological Dispersal Devices), RED (Radiation Exposure Devices) or IND (Improvised Nuclear Devices). A stringent set of international legally and non-legally binding instruments, regulations, conventions and treaties regulate nowadays the use of radioactive sources. In this paper, a review of the radiological protection issues associated to the use of radiation sources in the industrial and medical applications of ionizing radiation is performed. The associated radiation safety issues and the prevention and mitigation of incidents and accidents are discussed. A comprehensive discussion of the security issues associated to the global use of radiation sources for the aforementioned applications and the inherent radiation detection requirements will be presented. Scientific, technical, legal, ethical, socio-economic issues are put forward and discussed.

  6. Assessment of radiation safety awareness and attitude toward biological effect of radiation for employees in nuclear workplace

    International Nuclear Information System (INIS)

    Youngchuay, U.; Jetawattana, S.; Toeypho, V.; Eso, J.

    2016-01-01

    This study demonstrated a potential relevance of data pertaining to the interaction of awareness in radiation biology and their attitude towards radiation hazards. The obtained information is useful in ascertaining the effectiveness of the ongoing radiation safety program and will be further used to determine the relationships between the radiation effective dose and cytogenetic approach in these groups of workers. (author)

  7. Guidelines for radiation safety in interventional cardiology (JCS 2006)

    International Nuclear Information System (INIS)

    Nagai, Ryozo; Awai, Kazuo; Iesaka, Yoshihito

    2006-01-01

    The guidelines are made for physicians in cardiovascular field who may be unfamiliar to radiation safety, to understand and know it easily. The introductory chapter describes the basic knowledge for management of radiation exposure and clinical feature of radiation-induced dermal damages like classification, clinical progress and case presentation. Following chapter is itemized, explained in a style of Q and A, and contains sections of; the fundamental knowledge's of radiation exposure management and of radiation skin damage, informed consent and measures for excessive exposure and skin damage crisis, factors influencing the exposure dose, contrivances to reduce the dose in patients, additional factors affecting the crisis of skin damage, contrivances to reduce the dose in medical personnel exposure, management of imaging instruments, methods to measure the exposure dose in patients, intervention in vessels other than the coronary artery, electro-physiological examinations and treatments, nuclear medical diagnoses, CT examinations, diagnosis and treatment of pregnant women, and present states in other countries. (T.I.)

  8. Radioactivity in consumer products : radiation safety and regulatory appraisal

    International Nuclear Information System (INIS)

    Murthy, B.K.S.; Venkataraman, G.; Subrahmanym, P.

    1993-01-01

    Use of radioactive materials in consumer products is in vogue almost since the discovery of radioactivity. There has been a rapid growth in the use of radioactive material in various consumer products such as Ionization Chamber Smoke Detectors (ICSD), Static eliminators, etc. In addition, there are certain manufacturing processes wherein the Naturally Occurring Radioactive Material (NORM) get incorporated in the consumer products. Certain phosphatic fertilizers, titanium dioxide pigments, phospho gypsum plaster boards are some examples in this category. The manufacture and use of these products result in radiation dose to the public apart from radiation exposure to the personnel involved in the manufacturing process. Appropriate radiation control measures have to be taken in the design, manufacture and use of consumer products to ensure that the radiation doses to the public and the population at large do not exceed the relevant limits. While appropriate regulatory controls and surveillance are established for manufacture and use of certain products, these are still to be recognised and established in respect of certain other processes and products. The current status of radiation safety and regulatory control and the lack of these in respect of some products are discussed in this paper. (author). 5 refs

  9. Development of safety performance indicators of regulatory interest (SAFPER) in Pakistan

    International Nuclear Information System (INIS)

    Khatoon, Abida

    2002-01-01

    Safety performance indicators provide a very useful tool for monitoring operational safety of a nuclear power plant. Utilities in many countries have developed plant specific indicators for the assessment of their performance and safety. Regulators can make use of some of these indicators for their regulatory assessment. In addition to these regulatory bodies in some countries have also developed programs for the formulation of safety performance indicators which are used in monitoring operational safety and regulatory decision making. Realizing its usefulness Directorate of Nuclear Safety and Radiation Protection (DNSRP-the regulatory body in Pakistan) has also initiated a country specific program for the development of Safety Performance Indicators (SAFPER) based on data provided by the utility and that collected during the course of regulatory inspections. Selected areas of NPP operation to be monitored are: - Significant events; - Safety systems performance; - Barriers integrity; - Environment protection; - Workers radiation safety; and - Emergency Preparedness. One of the objectives of this program is also to monitor the effectiveness of DNSRP regulatory activities. IAEA framework is taken as one of the bases for our program. Safety performance will be assessed on the basis of Performance Indicators and inspection findings. DNSRP program as shown in Appendix includes the indicators in use and under development. It is felt that the term Safety Performance Indicators may be termed as 'SAFPER Indicators' to be used by the Regulators, as it is clear from this presentation that utility safety performance indicators together with the regulatory effectiveness indicators constitute the measure for the adequate safety to the public and the environment. Additional research is still necessary for: - indicator definition for the proposed and under developed indicators; - data collection systems; - thresholds; - trend analysis; - goal setting (benefit from the trend can be

  10. Radiation safety in the cardiac catheterization lab: A time series quality improvement initiative.

    Science.gov (United States)

    Abuzeid, Wael; Abunassar, Joseph; Leis, Jerome A; Tang, Vicky; Wong, Brian; Ko, Dennis T; Wijeysundera, Harindra C

    Interventional cardiologists have one of the highest annual radiation exposures yet systems of care that promote radiation safety in cardiac catheterization labs are lacking. This study sought to reduce the frequency of radiation exposure, for PCI procedures, above 1.5Gy in labs utilizing a Phillips system at our local institution by 40%, over a 12-month period. We performed a time series study to assess the impact of different interventions on the frequency of radiation exposure above 1.5Gy. Process measures were percent of procedures where collimation and magnification were used and percent of completion of online educational modules. Balancing measures were the mean number of cases performed and mean fluoroscopy time. Information sessions, online modules, policies and posters were implemented followed by the introduction of a new lab with a novel software (AlluraClarity©) to reduce radiation dose. There was a significant reduction (91%, psoftware (AlluraClarity©) in a new Phillips lab. Process measures of use of collimation (95.0% to 98.0%), use of magnification (20.0% to 14.0%) and completion of online modules (62%) helped track implementation. The mean number of cases performed and mean fluoroscopy time did not change significantly. While educational strategies had limited impact on reducing radiation exposure, implementing a novel software system provided the most effective means of reducing radiation exposure. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  11. Radiological protection, safety and security issues in the industrial and medical applications of radiation sources

    International Nuclear Information System (INIS)

    Vaz, Pedro

    2015-01-01

    The use of radiation sources, namely radioactive sealed or unsealed sources and particle accelerators and beams is ubiquitous in the industrial and medical applications of ionizing radiation. Besides radiological protection of the workers, members of the public and patients in routine situations, the use of radiation sources involves several aspects associated to the mitigation of radiological or nuclear accidents and associated emergency situations. On the other hand, during the last decade security issues became burning issues due to the potential malevolent uses of radioactive sources for the perpetration of terrorist acts using RDD (Radiological Dispersal Devices), RED (Radiation Exposure Devices) or IND (Improvised Nuclear Devices). A stringent set of international legally and non-legally binding instruments, regulations, conventions and treaties regulate nowadays the use of radioactive sources. In this paper, a review of the radiological protection issues associated to the use of radiation sources in the industrial and medical applications of ionizing radiation is performed. The associated radiation safety issues and the prevention and mitigation of incidents and accidents are discussed. A comprehensive discussion of the security issues associated to the global use of radiation sources for the aforementioned applications and the inherent radiation detection requirements will be presented. Scientific, technical, legal, ethical, socio-economic issues are put forward and discussed. - Highlights: • The hazards associated to the use of radioactive sources must be taken into account. • Security issues are of paramount importance in the use of radioactive sources. • Radiation sources can be used to perpetrate terrorist acts (RDDs, INDs, REDs). • DSRS and orphan sources trigger radiological protection, safety and security concerns. • Regulatory control, from cradle to grave, of radioactive sources is mandatory.

  12. Communication's Role in Safety Management and Performance for the Road Safety Practices

    OpenAIRE

    Salim Keffane (s)

    2014-01-01

    Communication among organizations could play an important role in increasing road safety. To get in-depth knowledge of its role, this study measured managers' and employees' perceptions of the communication's role on six safety management and performance criteria for road safety practices by conducting a survey using a questionnaire among 165 employees and 135 managers. Path analysis using AMOS-19 software shows that some of the safety management road safety practices have high correlation wi...

  13. Radiation safety assessment of mobile telephone base stations

    International Nuclear Information System (INIS)

    Mohd Yusof Mohd Ali; Mohd Anuar Majid; Mohd Amirul Nizam

    2002-01-01

    Mobile telephone is fast getting popular among users and in fact it has become one of the fastest selling electronic products in the world. More base stations are expected to be built to meet such high demands and this has caused great concerned among members of the public, especially those living close to the stations, about the potential harmful health effects of radiofrequency (RF) radiation produced by such facilities. A project was initiated by MINT in early 2000 with aims to assess the radiation levels present in the areas around the base stations and to establish baseline data on the pattern and trend of the radiation emission from each different set up of the facilities. This paper highlights some basics facts about mobile telephones and preliminary findings of the project. The assessment has been carried out at 16 base station sites and the results indicate that the radiation levels present around these sites are very low. Their broadband readings vary between below the detection limit of 0.3μWatts/cm 2 to 11 μWatts/cm 2 and they are comparable to normal background radiation present in places away from any base stations. The highest level observed was 1.5% of the exposure limit recommended for members of the public. However, locations at close distance in front of the the antenna can be very serious in term of radiation exposure since the radiation level here can easily exceed the permissible exposure limit for public. Safety precaution needs to be taken when entering these areas and they should be out of bound for members of the public. (Author)

  14. Overview of physical safety of radiation sources in Brazil

    International Nuclear Information System (INIS)

    Lima, A.R.; Silva, F.C.A. da

    2017-01-01

    The threat of 'radiological terrorism' has been recognized worldwide after the event of September 11, 2001. Radioactive sources can be used for the development of DDR ('dirty bomb') devices. Studies show that the use of a DDR could cause health damage, psychosocial and economic and environmental damage. Brazil follows this worldwide concern, since it has a large medical-industrial park that uses radioactive sources. This paper presents an overview of the physical safety of radioactive sources in Brazil, based on the inventory of radiative facilities, regulatory aspects and international recommendations. For the preparation of the study, the database of radioactive sources of the regulatory body, the current normative status and the international recommendations were used. In Brazil there are approximately 2,500 radiative installations, with about 400 radioactive sources Category 1 and 2, which are the biggest concern in terms of physical safety. The Brazilian licensing standard addresses only some aspects of physical protection, not providing a clear orientation for the elaboration and implementation of physical protection systems, in accordance with international recommendations. For Brazil to be included in the world scenario of physical safety of radioactive sources, it is urgent to elaborate specific legislation with well-defined regulatory criteria. The lack of more detailed requirements makes it difficult to make a more careful regulatory assessment of the physical protection conditions of the facilities, either through the evaluation of plans and other physical protection documents or through regulatory inspections

  15. Radiation safety for baggage x-ray inspection systems

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-05-01

    This book is an outgrowth of a course on radiation safety aimed at technicians responsible for conducting maintenance on baggage x-ray inspection systems used in federally operated facilities. The need for a single reference book became apparent to the instructor in 1984. In an effort to provide a cohesive development of the subject, a set of lecture notes was prepared and revised annually since 1984, from which this book has evolved. This book is intended to present concepts necessary for an elementary but comprehensive knowledge of radiation safety. While some material coverage may appear somewhat detailed, it is a deliberate attempt to strengthen areas of demonstrated weaknesses observed in course attenders and to provide guidance on the numerous questions about man-made radiation asked by course attenders over the years. Numerical examples are included in most chapters for clarity and ease of understanding. The problems given at the end of most chapters provide the reader with the opportunity of applying the material presented in the chapters to situations of practical interest. It is important that these problems be considered an integral part of the course and students attempt to solve them. 36 refs., 9 tabs., 17 figs.

  16. Hardware, software and strategies for radiation safety awareness

    International Nuclear Information System (INIS)

    Iyer, M.R.

    2016-01-01

    The various components to be in place for a successful radiation safety awareness program calls for an in depth multi disciplinary R and D which is not often appreciated. Yes, there has been public suspicion about the safety of radiation and nuclear power. And a lot of ground is covered by nuclear agencies to remove those suspicions. The reasons for this are not far off to see. The concepts of LNT (Linear No-Threshold) and the resulting ALARA (As Low As Reasonably Achievable) used for radiological protection have been stumbling blocks for public acceptability of nuclear power. We cannot blame the public if often people get confused and easily get exploited by interested people. The lack of clear cut definition of what is safe and what is not is something that need to be removed from public mind and the message need to be forcibly conveyed to the public. The nomenclature for radiation protection is beset with some quibbling factors hinging on some basic scientific findings which has definitely not been proved in the last half a century or so is responsible for this. A format language, software based communication medium that is easily discernible to the public need to be developed

  17. Radiation safety for baggage x-ray inspection systems

    International Nuclear Information System (INIS)

    1994-05-01

    This book is an outgrowth of a course on radiation safety aimed at technicians responsible for conducting maintenance on baggage x-ray inspection systems used in federally operated facilities. The need for a single reference book became apparent to the instructor in 1984. In an effort to provide a cohesive development of the subject, a set of lecture notes was prepared and revised annually since 1984, from which this book has evolved. This book is intended to present concepts necessary for an elementary but comprehensive knowledge of radiation safety. While some material coverage may appear somewhat detailed, it is a deliberate attempt to strengthen areas of demonstrated weaknesses observed in course attenders and to provide guidance on the numerous questions about man-made radiation asked by course attenders over the years. Numerical examples are included in most chapters for clarity and ease of understanding. The problems given at the end of most chapters provide the reader with the opportunity of applying the material presented in the chapters to situations of practical interest. It is important that these problems be considered an integral part of the course and students attempt to solve them. 36 refs., 9 tabs., 17 figs

  18. Organizing of public movement for radiation safety of the population

    International Nuclear Information System (INIS)

    Mustafaev, I.

    2003-01-01

    Full text: The possibilities of organizing of public anti nuclear movement in the Caspian region are discussed. The potential of public organizations in the regional countries and international programs and projects supporting this movement is considered. The activity of the following organizations is mentioned: Public movement Semipalatinsk-Nevada (Kazakhstan); Antinuclear movement 'Narin'(Kazakhstan); 'Social - ecological union'(Russia); Association 'Fovgal', scientific-ecological society 'Ekoil'; 'Radioecological society (Azerbaijan); 'Anti-Radiation Movement'(Georgia); 'Radioecology-21'(Georgia). International organizations - Caspian Program ISAR, Scientific Program NATO, IAEA and others play an important role in maintenance of radiation safety of the region. Especially it is necessary to mention the project on Export control of the nuclear materials of double destination (USA). The necessity of support of this movement from public of region is mentioned and an important role in this plays public organizations. The contribution of 'Ruzgar'in organizing of public anti-nuclear movement during the implementation of joint projects 'Along the Caspian', creation of the movement 'For clean Caspian', 'The impact of Gabala radiolocation station on the environment'and others. The following issues are stressed: 1.Lobbying the adoption of legislative and normative acts and their harmonization in a scale of the Caspian region; 2.Creating the cooperation between regional countries for joint solution of regional problems of radiation safety; 3.Increasing of a level of public awareness about this issue and providing public participation in decision-making; 4.Organizing a struggle against 'radiophobia'

  19. The personnel protection system for a Synchrotron Radiation Accelerator Facility: Radiation safety perspective

    International Nuclear Information System (INIS)

    Liu, J.C.

    1993-05-01

    The Personnel Protection System (PPS) at the Stanford Synchrotron Radiation Laboratory is summarized and reviewed from the radiation safety point of view. The PPS, which is designed to protect people from radiation exposure to beam operation, consists of the Access Control System (ACS) and the Beam Containment System (BCS), The ACS prevents people from being exposed to the very high radiation level inside the shielding housing (also called a PPS area). The ACS for a PPS area consists of the shielding housing and a standard entry module at every entrance. The BCS prevents people from being exposed to the radiation outside a PPS area due to normal and abnormal beam losses. The BCS consists of the shielding (shielding housing and metal shielding in local areas), beam stoppers, active current limiting devices, and an active radiation monitor system. The system elements for the ACS and BCS and the associated interlock network are described. The policies and practices in setting up the PPS are compared with some requirements in the US Department of Energy draft Order of Safety of Accelerator Facilities

  20. Benchmarking road safety performances of countries.

    NARCIS (Netherlands)

    Wegman, F.C.M. & Oppe, S.

    2014-01-01

    In order to obtain political interest in road safety problems and to learn from other countries’ ‘good practices’, it is often helpful to compare one’s own safety situation with that of other countries. In a number of projects tools have been developed for such comparisons. These tools range from

  1. Indicators of safety culture - selection and utilization of leading safety performance indicators

    Energy Technology Data Exchange (ETDEWEB)

    Reiman, Teemu; Pietikaeinen, Elina (VTT, Technical Research Centre of Finland (Finland))

    2010-03-15

    Safety indicators play a role in providing information on organizational performance, motivating people to work on safety and increasing organizational potential for safety. The aim of this report is to provide an overview on leading safety indicators in the domain of nuclear safety. The report explains the distinction between lead and lag indicators and proposes a framework of three types of safety performance indicators - feedback, monitor and drive indicators. Finally the report provides guidance for nuclear energy organizations for selecting and interpreting safety indicators. It proposes the use of safety culture as a leading safety performance indicator and offers an example list of potential indicators in all three categories. The report concludes that monitor and drive indicators are so called lead indicators. Drive indicators are chosen priority areas of organizational safety activity. They are based on the underlying safety model and potential safety activities and safety policy derived from it. Drive indicators influence control measures that manage the socio technical system; change, maintain, reinforce, or reduce something. Monitor indicators provide a view on the dynamics of the system in question; the activities taking place, abilities, skills and motivation of the personnel, routines and practices - the organizational potential for safety. They also monitor the efficacy of the control measures that are used to manage the socio technical system. Typically the safety performance indicators that are used are lagging (feedback) indicators that measure the outcomes of the socio technical system. Besides feedback indicators, organizations should also acknowledge the important role of monitor and drive indicators in managing safety. The selection and use of safety performance indicators is always based on an understanding (a model) of the socio technical system and safety. The safety model defines what risks are perceived. It is important that the safety

  2. Indicators of safety culture - selection and utilization of leading safety performance indicators

    International Nuclear Information System (INIS)

    Reiman, Teemu; Pietikaeinen, Elina

    2010-03-01

    Safety indicators play a role in providing information on organizational performance, motivating people to work on safety and increasing organizational potential for safety. The aim of this report is to provide an overview on leading safety indicators in the domain of nuclear safety. The report explains the distinction between lead and lag indicators and proposes a framework of three types of safety performance indicators - feedback, monitor and drive indicators. Finally the report provides guidance for nuclear energy organizations for selecting and interpreting safety indicators. It proposes the use of safety culture as a leading safety performance indicator and offers an example list of potential indicators in all three categories. The report concludes that monitor and drive indicators are so called lead indicators. Drive indicators are chosen priority areas of organizational safety activity. They are based on the underlying safety model and potential safety activities and safety policy derived from it. Drive indicators influence control measures that manage the socio technical system; change, maintain, reinforce, or reduce something. Monitor indicators provide a view on the dynamics of the system in question; the activities taking place, abilities, skills and motivation of the personnel, routines and practices - the organizational potential for safety. They also monitor the efficacy of the control measures that are used to manage the socio technical system. Typically the safety performance indicators that are used are lagging (feedback) indicators that measure the outcomes of the socio technical system. Besides feedback indicators, organizations should also acknowledge the important role of monitor and drive indicators in managing safety. The selection and use of safety performance indicators is always based on an understanding (a model) of the socio technical system and safety. The safety model defines what risks are perceived. It is important that the safety

  3. Information report on the nuclear safety and radiation protection of the Aube storage Centre - 2012

    International Nuclear Information System (INIS)

    2013-07-01

    This report first present the site of the Aube Storage Centre (CSA), its storage areas, its buildings and equipment, describes the water treatment process, proposes some exploitation data for 2012 (deliveries, storage, compacting), and indicates highlights and works performed in 2012. The next part reviews measures related to nuclear safety: recall of safety principles and objectives, technical arrangements to meet safety objectives, inspections by the ASN, quality audits. The third part reviews measures related to safety and radiation protection: principles for radiation protection, staff dosimetry practices and results, personnel safety, works performed in 2012. The fourth part addresses incidents and accidents (none occurred in 2012) and other minor events classified according to the INES scale. The fifth part addresses the control of the environment and the releases by the centre: measurement locations, measurement results (in the atmosphere, in rivers, in underground waters, radiological control, control of ecosystems, assessment of the radiological impact), physical-chemical control of a local river, actions undertaken for the protection of the environment, highlights for 2012. The next chapter addresses the management of the various wastes produced by the Centre (radioactive wastes, conventional wastes) and the last part reports actions regarding information and transparency. Recommendations of the CHSCT are reported

  4. Integration of radiation protection in safety management: sharing best practices between radiation protection and other safety areas

    International Nuclear Information System (INIS)

    Kockerols, Pierre; Fessler, Andreas

    2008-01-01

    Full text: The Institute for Reference Materials and Measurements (IRMM) located in Geel is one of the seven institutes of the Joint Research Centre of the European Commission (EC, DG JRC). The institute was founded in 1960 as a nuclear research centre, but has gradually shifted its activities to also include 'non-nuclear' domains, mainly in the areas of food safety and environmental surveillance. As the activities on the IRMM site are currently quite diversified, they necessitate the operation of nuclear controlled areas, accelerators, as well as bio safety restricted areas and chemical laboratories. Therefore, the care for occupational health and safety and for environmental protection has to take into consideration various types of hazards and threats. Recently an integrated management system according to ISO-9001, ISO-14001 and OHSAS-18001 was implemented. The integrated system combines 'vertically' quality, occupational health and safety and environmental issues and covers 'horizontally' the nuclear, biological and chemical fields. The paper outlines how the radiation protection can be included in an overall health, safety and environmental management system. It will give various practical examples where synergies can be applied: 1-) the overall policy; 2-) The assessment and ranking of all risks and the identification, in a combined way, of the appropriate prevention measures; 3-) The planning and review of related actions; 4-) The monitoring, auditing and registration of anomalies and incidents and the definition of corrective actions; 5-) The training of personnel based on lessons learned from past experiences; 6-) The organisation of an internal emergency plan dealing with nuclear and non-nuclear hazards. Based on these examples, the benefits of having an integrated approach are commented. In addition, the paper will illustrate how the recent ICRP fundamental recommendations and more particularly some of the principles of radiation protection such as

  5. Report on nuclear and radiation safety in Slovenia in 2001

    International Nuclear Information System (INIS)

    Janzekovic, H.

    2002-01-01

    The Slovenian Nuclear Safety Administration (SNSA) has prepared a Report on Nuclear and Radiation Safety in Slovenia for 2001 as a regular form of reporting to the citizens of the Republic of Slovenia on the activities related to the nuclear fuel cycle and the use of the ionising sources. The report has been prepared in collaboration with the Health Inspectorate of the Republic of Slovenia (HIRS), the Administration for Civil Protection and Disaster Relief (ACPDR), the Pool for Assurance and Reinsurance of Liability for Nuclear Damage and the Pool for Decommissioning of the NPP Krsko and for the Radwaste Disposal from the NPP Krsko. The reports of the Agency for Radioactive Waste Management (ARAO), the Institute of Oncology, the Department of Nuclear Medicine of the Medical Centre Ljubljana and the technical support organisations are also included. The SNSA made no crucial modifications to the reports of the above mentioned institutions. The modifications were made just facilitate a reading of the reports.

  6. Nuclear and radiation safety in Slovenia. Annual report 2001

    International Nuclear Information System (INIS)

    Janzekovic, H.

    2002-01-01

    The Slovenian Nuclear Safety Administration (SNSA) has prepared a Report on Nuclear and Radiation Safety in Slovenia for 2001 as a regular form of reporting to the citizens of the Republic of Slovenia on the activities related to the nuclear fuel cycle and the use of the ionising sources. The report has been prepared in collaboration with the Health Inspectorate of the Republic of Slovenia (HIRS), the Administration for Civil Protection and Disaster Relief (ACPDR), the Pool for Assurance and Reinsurance of Liability for Nuclear Damage and the Pool for Decommissioning of the NPP Krsko and for the Radwaste Disposal from the NPP Krsko. The reports of the Agency for Radioactive Waste Management (ARAO), the Institute of Oncology, the Department of Nuclear Medicine of the Medical Centre Ljubljana and the technical support organisations are also included. The SNSA made no crucial modifications to the reports of the above mentioned institutions. The modifications were made just facilitate a reading of the reports. (author)

  7. Performance of balanced bellows safety relief valves

    International Nuclear Information System (INIS)

    Lai, Y.S.

    1992-01-01

    By the nature of its design, the set point and lift of a conventional spring loaded safety relief valve are sensitive to back pressure. One way to reduce the adverse effects of the back pressure on the safety relief valve function is to install a balanced bellows in a safety relief valve. The metallic bellows has a rather wide range of manufacturing tolerance which makes the design of the bellows safety relief valve very complicated. The state-of-the-art balanced bellows safety relief valve can only substantially minimize, but cannot totally eliminate the back pressure effects on its set point and relieving capacity. Set point change is a linear function of the back pressure to the set pressure ratio. Depending on the valve design, the set point correction factor can be either greater or smaller than unity. There exists an allowable back pressure and critical back pressure for each safety relief valve. When total back pressure exceeds the R a , the relieving capacity will be reduced mainly resulting from the valve lift being reduced by the back pressure and the capacity reduction factor should be applied in valve sizing. Once the R c is exceeded, the safety relief valve becomes unstable and loses its over pressure protection capability. The capacity reduction factor is a function of system overpressure, but their relationship is non-linear in nature. (orig.)

  8. Progress report: nuclear safety and radiation protection in 2006

    International Nuclear Information System (INIS)

    2007-01-01

    For the French Nuclear Safety Authority (Asn), the year 2006 was marked by two important nuclear laws being passed, one of which brought about a major change in its status. The year was a relatively satisfactory one with regard to nuclear safety, although the picture was more contrasted concerning radiation protection: in this area, more particularly in the medical field, the overall impression of good progress is offset by the declaration of a number of radiotherapy accidents. Given the benefits expected from radiotherapy treatment by the patient suffering from cancer, the conditions in which this activity is carried out are a subject of major concern for Asn, in the light of the serious risks linked to patient over-exposure. ( some important points as follows: the law on transparency and security in the nuclear field, the law on sustainable management of radioactive materials and waste, Asn: an independent administrative authority, EPR reactor project safety, I.R.R.S.: an international audit of Asn in 2006, harmonization of nuclear safety, cancer radiotherapy, improved information of the public after the T.S.N. law, taking account of organisational and human factors). (N.C.)

  9. LED radiation: possible photobiological risks and safety regulations. Pt. 2

    International Nuclear Information System (INIS)

    Horak, W.

    2008-01-01

    With all due euphoria regarding the new illumination possibilities, one can quite often observe a certain degree of uncertainty concerning eye hazard issues in conjunction with intense LED radiation. Moreover, the related general requirements for product- as well as for workplace-safety are rather new. Thus, the possible hazards by the optical radiation of LEDs will be analyzed in this two-port contribution. Part 1 aims to provide a review of these hazards as well as of the bases for their evaluation. The impact of these requirements on state-of-the-art LEDs will be examined in part 2. Compared with conventional light sources, it turns out that there are hardly any differences in this respect. (orig.)

  10. Optimization of radiation safety conditions in radon laboratories

    International Nuclear Information System (INIS)

    Kibal'nik, S.P.; Koroleva, T.M.

    1990-01-01

    The study was aimed at studying working conditions of personnel, engaged in production and supply of radon solution in medical and prophylactic institutions of the Kaliningrad region for the period 1962-1988. Data on examinations carried out at radon laboratories during this period by radiological group of the Kaliningrad sanitary epidemiological station were used as a basis for the study. Positive dynamics of indicators of radiation safety of the persons working at these objects is indicated, concrete measures and ways for improving working conditions of the personnel and role of sanitary epidemiological service in solving these problems are shown. 2 refs.; 1 tab

  11. Benchmarking Global Food Safety Performances: The Era of Risk Intelligence.

    Science.gov (United States)

    Valleé, Jean-Charles Le; Charlebois, Sylvain

    2015-10-01

    Food safety data segmentation and limitations hamper the world's ability to select, build up, monitor, and evaluate food safety performance. Currently, there is no metric that captures the entire food safety system, and performance data are not collected strategically on a global scale. Therefore, food safety benchmarking is essential not only to help monitor ongoing performance but also to inform continued food safety system design, adoption, and implementation toward more efficient and effective food safety preparedness, responsiveness, and accountability. This comparative study identifies and evaluates common elements among global food safety systems. It provides an overall world ranking of food safety performance for 17 Organisation for Economic Co-Operation and Development (OECD) countries, illustrated by 10 indicators organized across three food safety risk governance domains: risk assessment (chemical risks, microbial risks, and national reporting on food consumption), risk management (national food safety capacities, food recalls, food traceability, and radionuclides standards), and risk communication (allergenic risks, labeling, and public trust). Results show all countries have very high food safety standards, but Canada and Ireland, followed by France, earned excellent grades relative to their peers. However, any subsequent global ranking study should consider the development of survey instruments to gather adequate and comparable national evidence on food safety.

  12. Road safety performance indicators for the interurban road network.

    NARCIS (Netherlands)

    Yannis, G. Weijermars, W.A.M. Gitelman, V. Vis, M. Chazirisa, A. Papadimitriou, E. & Lima Azevedo, C.

    2013-01-01

    Various road safety performance indicators (SPIs) have been proposed for different road safety research areas, mainly as regards driver behaviour (e.g. seat belt use, alcohol, drugs, etc.) and vehicles (e.g. passive safety); however, no SPIs for the road network and design have been developed. The

  13. Nuclear Safety and Radiation Protection in France in 2005

    International Nuclear Information System (INIS)

    2006-04-01

    In 2005, the Asn pursued its significant investment in radiation protection and reaffirms its ambition to become as efficient in radiation protection as it is in nuclear safety as of 2009. 2005 was a year of great progress for the Asn as it consolidated its organisation and working methods, in accordance with the 2005-2007 strategic plan it set for itself. The Asn continued progress in the field of radiation protection has given rise to various new regulations to improve the legislative and regulatory framework in this area. The Asn plans to step up its efforts to ensure better monitoring of patient exposure to ionizing radiation and to provide better management of radon-related risks, particularly in housing. Fully aware that its newfound power in this area requires outside evaluation, the Asn has asked the International Atomic Energy Agency (IAEA) to organize an I.R.R.S. (Integrated Regulatory Review Service) assignment consisting of a peer-conducted audit. The IAEA has confirmed that this audit will take place in November 2006. (N.C.)

  14. Radiation cancer, safety standards and current levels of exposure

    International Nuclear Information System (INIS)

    Mole, R.H.

    1976-01-01

    Cancer can be induced by radiation in any tissue where cancer occurs naturally. The observation that antenatal diagnostic radiography causes a small but definite increase in childhood cancer is as good evidence as could be expected in support of the scientific expectation that there would be no threshold of dose for carcinogenesis. A linear relation between radiation dose and frequency of induced cancer is a necessary assumption for a system of radiological protection but is not necessarily a reasonable basis for realistic assessments of cancer risk. Indeed there are radiobiological and epidemiological reasons to the contrary. If the linear hypothesis is accepted then at the present time in the UK the routine practice of medicine is of about 2 orders of magnitude more important in causing cancer than environmental pollution by discharge of radio-activity. The acceptability of radiation safety standards for occupational exposure may be justified by comparison of radiation cancer risks with risks from fatal accidents in the safer industries. The acceptability of the corresponding standards for members of the public seems to require more public discussion of the concept of negligible risk. Emotional reactions to uncontrolled releases of radio-activity are based at least in part on a failure to appreciate the hypothesis of linearity

  15. Radiological protection for medical exposure to ionizing radiation. Safety guide

    International Nuclear Information System (INIS)

    2002-01-01

    radiotherapy owing to an ageing population. In addition, further growth in medical radiology can be expected in developing States, where at present facilities and services are often lacking. The risks associated with these expected increases in medical exposures should be outweighed by the benefits. For the purposes of radiation protection, ionizing radiation exposures are divided into three types: Medical exposure, which is mainly the exposure of patients as part of their diagnosis or treatment (see below); Occupational exposure, which is the exposure of workers incurred in the course of their work, with some specific exclusions; and Public exposure, which comprises all other exposures of members of the public that are susceptible to human control. Medical exposure is defined in the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (BSS, the Standards) as: 'Exposure incurred by patients as part of their own medical or dental diagnosis or treatment; by persons, other than those occupationally exposed, knowingly while voluntarily helping in the support and comfort of patients; and by volunteers in a programme of biomedical research involving their exposure.' This Safety Guide covers all of the medical exposures defined above, with emphasis on the radiological protection of patients, but does not cover exposures of workers or the public derived from the application of medical radiation sources. Guidance relating to these exposures can be found in the Safety Guide on Occupational Radiation Protection. In addition to the IAEA, several intergovernmental and international organizations, among them the European Commission, the International Commission on Radiological Protection (ICRP), the Pan American Health Organization (PAHO) and the World Health Organization (WHO), have already published numerous recommendations, guides and codes of practice relevant to this subject area. National authorities should therefore

  16. Radiological protection for medical exposure to ionizing radiation. Safety guide

    International Nuclear Information System (INIS)

    2005-01-01

    radiotherapy owing to an ageing population. In addition, further growth in medical radiology can be expected in developing States, where at present facilities and services are often lacking. The risks associated with these expected increases in medical exposures should be outweighed by the benefits. For the purposes of radiation protection, ionizing radiation exposures are divided into three types: Medical exposure, which is mainly the exposure of patients as part of their diagnosis or treatment (see below). Occupational exposure, which is the exposure of workers incurred in the course of their work, with some specific exclusions. And Public exposure, which comprises all other exposures of members of the public that are susceptible to human control. Medical exposure is defined in the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (BSS, the Standards) as: 'Exposure incurred by patients as part of their own medical or dental diagnosis or treatment. By persons, other than those occupationally exposed, knowingly while voluntarily helping in the support and comfort of patients. And by volunteers in a programme of biomedical research involving their exposure.' This Safety Guide covers all of the medical exposures defined above, with emphasis on the radiological protection of patients, but does not cover exposures of workers or the public derived from the application of medical radiation sources. Guidance relating to these exposures can be found in the Safety Guide on Occupational Radiation Protection. In addition to the IAEA, several intergovernmental and international organizations, among them the European Commission, the International Commission on Radiological Protection (ICRP), the Pan American Health Organization (PAHO) and the World Health Organization (WHO), have already published numerous recommendations, guides and codes of practice relevant to this subject area. National authorities should therefore

  17. Safety and regulation in the use of radiation in medicine: status in India and future perspective

    International Nuclear Information System (INIS)

    Gopalakrishnan, A.; Parthasarathy, K.S.; Ghosh, P.K.

    1996-01-01

    This paper briefly reviews the history of radiation protection, regulatory aspects and the status of radiation safety in radiotherapy, radiodiagnosis and nuclear medicine in India. The revised basic safety standards and the future developments envisaged in the safety and regulation are also mentioned. (author). 24 refs., 8 tabs

  18. Safety and radiation protection at the Swedish nuclear power plants 2000

    International Nuclear Information System (INIS)

    2001-04-01

    During 2000 no events occurred, or discoveries were made, that seriously affected the reactor safety at the Swedish nuclear plants. The basic safety strategy is designed so that hidden faults and deficiencies shall not lead to any serious consequences for the plants. It is of outmost importance that the safety work at the plants is performed with the best effort and quality in order to realize this strategy. Especially in the new economic situation of the utilities after deregulation of the electricity market. The total radiation dose to the personnel and contracted workers at the plants was the lowest ever recorded with all NPPs running (8.1 man Sv). Corrosion damages led to a stand-still of two reactors during a long period, and thorough analyses were performed before the Inspectorate allowed a restart

  19. Proceeding of Radiation Safety and Environment; Prosiding Presentasi Ilmiah Keselamatan Radiasi dan Lingkungan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    Scientific Presentation of Radiation Safety and Environment was held on 20-21 august 1996 at Center of Research Atomic Energy Pasar Jum'at, Jakarta, Indonesia. Have presented 50 papers about Radiation Safety, dosimetry and standardization, environment protection and radiation effect.

  20. Providing current radiation safety according to new version of 'Ukrytie' object regulation

    International Nuclear Information System (INIS)

    Borovoj, A.A.; Vysotskij, E.D.; Krinitsyn, A.P.; Bogatov, S.A.

    1999-01-01

    Main provisions are given of the 'Ukryttia' object's Regulation related to provision of radiation safety during the object's operation. The safety is provided due to the realization by the object's personnel of functions of global monitoring of current radiation conditions, as well as of the measures of operative or preventive suppression of radiation abnormalities sources

  1. Use of safety management practices for improving project performance.

    Science.gov (United States)

    Cheng, Eddie W L; Kelly, Stephen; Ryan, Neal

    2015-01-01

    Although site safety has long been a key research topic in the construction field, there is a lack of literature studying safety management practices (SMPs). The current research, therefore, aims to test the effect of SMPs on project performance. An empirical study was conducted in Hong Kong and the data collected were analysed with multiple regression analysis. Results suggest that 3 of the 15 SMPs, which were 'safety committee at project/site level', 'written safety policy', and 'safety training scheme' explained the variance in project performance significantly. Discussion about the impact of these three SMPs on construction was provided. Assuring safe construction should be an integral part of a construction project plan.

  2. A study on radiation shielding and safety analysis for a synchrotron radiation beamline

    International Nuclear Information System (INIS)

    Asano, Yoshihiro

    2001-03-01

    Methods of shielding design and safety analysis are presented for a beam-line of synchrotron radiation. This paper consists of the shielding and safety study of synchrotron radiation with extremely intense and low energy photon below several hundreds keV, and the study for the behavior of remarkable high-energy photons up to 8 GeV, which can creep into beam-lines. A new shielding design code, STAC8 was developed to estimate the leakage dose outside the beam line hutch (an enclosure of the beam, optical elements or experimental instruments) easily and quickly with satisfactory accuracy. The code can calculate consistently from sources of synchrotron radiation to dose equivalent outside hutches with considering the build up effect and polarization effect. Validity of the code was verified by comparing its calculations with those of Monte Carlo simulations and measurement results of the doses inside the hutch of the BL14C of Photon Factory in the High Energy Accelerator Research Organization (KEK), showing good agreements. The shielding design calculations using STAC8 were carried out to apply to the practical beam-lines with the considering polarization effect and clarified the characteristics of the typical beam-line of the third generation synchrotron radiation facility, SPring-8. In addition, the shielding calculations were compared with the measurement outside the shield wall of the bending magnet beam-line of SPring-8, and showed fairly good agreement. The new shielding problems, which have usually been neglected in shielding designs for existing synchrotron radiation facilities, are clarified through the analysis of the beam-line shielding of SPring-8. The synchrotron radiation from the SPring-8 has such extremely high-intensity involving high energy photons that the scattered synchrotron radiation from the concrete floor of the hutch, the ground shine, causes a seriously high dose. The method of effective shielding is presented. For the estimation of the gas

  3. A study on radiation shielding and safety analysis for a synchrotron radiation beamline

    Energy Technology Data Exchange (ETDEWEB)

    Asano, Yoshihiro [Japan Atomic Energy Research Inst., Kansai Research Establishment, Synchrotron Radiation Research Center, Mikazuhi, Hyogo (Japan)

    2001-03-01

    Methods of shielding design and safety analysis are presented for a beam-line of synchrotron radiation. This paper consists of the shielding and safety study of synchrotron radiation with extremely intense and low energy photon below several hundreds keV, and the study for the behavior of remarkable high-energy photons up to 8 GeV, which can creep into beam-lines. A new shielding design code, STAC8 was developed to estimate the leakage dose outside the beam line hutch (an enclosure of the beam, optical elements or experimental instruments) easily and quickly with satisfactory accuracy. The code can calculate consistently from sources of synchrotron radiation to dose equivalent outside hutches with considering the build up effect and polarization effect. Validity of the code was verified by comparing its calculations with those of Monte Carlo simulations and measurement results of the doses inside the hutch of the BL14C of Photon Factory in the High Energy Accelerator Research Organization (KEK), showing good agreements. The shielding design calculations using STAC8 were carried out to apply to the practical beam-lines with the considering polarization effect and clarified the characteristics of the typical beam-line of the third generation synchrotron radiation facility, SPring-8. In addition, the shielding calculations were compared with the measurement outside the shield wall of the bending magnet beam-line of SPring-8, and showed fairly good agreement. The new shielding problems, which have usually been neglected in shielding designs for existing synchrotron radiation facilities, are clarified through the analysis of the beam-line shielding of SPring-8. The synchrotron radiation from the SPring-8 has such extremely high-intensity involving high energy photons that the scattered synchrotron radiation from the concrete floor of the hutch, the ground shine, causes a seriously high dose. The method of effective shielding is presented. For the estimation of the gas

  4. Job Demands-Control-Support model and employee safety performance.

    Science.gov (United States)

    Turner, Nick; Stride, Chris B; Carter, Angela J; McCaughey, Deirdre; Carroll, Anthony E

    2012-03-01

    The aim of this study was to explore whether work characteristics (job demands, job control, social support) comprising Karasek and Theorell's (1990) Job Demands-Control-Support framework predict employee safety performance (safety compliance and safety participation; Neal and Griffin, 2006). We used cross-sectional data of self-reported work characteristics and employee safety performance from 280 healthcare staff (doctors, nurses, and administrative staff) from Emergency Departments of seven hospitals in the United Kingdom. We analyzed these data using a structural equation model that simultaneously regressed safety compliance and safety participation on the main effects of each of the aforementioned work characteristics, their two-way interactions, and the three-way interaction among them, while controlling for demographic, occupational, and organizational characteristics. Social support was positively related to safety compliance, and both job control and the two-way interaction between job control and social support were positively related to safety participation. How work design is related to employee safety performance remains an important area for research and provides insight into how organizations can improve workplace safety. The current findings emphasize the importance of the co-worker in promoting both safety compliance and safety participation. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  5. Assessment of patient radiation protection in external radiotherapy departments after inspections performed by the ASN 2008

    International Nuclear Information System (INIS)

    Franchi, Vincent; Marchal, Carole

    2009-10-01

    This report proposes an assessment of patient radiation protection in external radiotherapy. It is based on inter-regional syntheses of inspections performed by the ASN in external radiotherapy departments during 2008. It addresses 6 main themes related to patient radiation protection: human and material resources, organisation of medical physics, training in patient radiation protection, mastering of equipment (maintenance, internal quality controls of medical devices), safety and care quality management (formalization of the patient care process and definition of responsibilities, patient identity control, treatment preparation, and treatment execution), and risk management (a priori risk analysis, declaration, recording and internal processing of dysfunctions, improvements of care quality and safety management system)

  6. Radiation Safety System for SPIDER Neutral Beam Accelerator

    International Nuclear Information System (INIS)

    Sandri, S.; Poggi, C.; Coniglio, A.; D'Arienzo, M.

    2011-01-01

    SPIDER (Source for Production of Ion of Deuterium Extracted from RF Plasma only) and MITICA (Megavolt ITER Injector Concept Advanced) are the ITER neutral beam injector (NBI) testing facilities of the PRIMA (Padova Research Injector Megavolt Accelerated) Center. Both injectors accelerate negative deuterium ions with a maximum energy of 1 MeV for MITICA and 100 keV for SPIDER with a maximum beam current of 40 A for both experiments. The SPIDER facility is classified in Italy as a particle accelerator. At present, the design of the radiation safety system for the facility has been completed and the relevant reports have been presented to the Italian regulatory authorities. Before SPIDER can operate, approval must be obtained from the Italian Regulatory Authority Board (IRAB) following a detailed licensing process. In the present work, the main project information and criteria for the SPIDER injector source are reported together with the analysis of hypothetical accidental situations and safety issues considerations. Neutron and photon nuclear analysis is presented, along with special shielding solutions designed to meet Italian regulatory dose limits. The contribution of activated corrosion products (ACP) to external exposure of workers has also been assessed. Nuclear analysis indicates that the photon contribution to worker external exposure is negligible, and the neutron dose can be considered by far the main radiation protection issue. Our results confirm that the injector has no important radiological impact on the population living around the facility.

  7. Safety and Radiation Protection at Swedish Nuclear Power Plants 2005

    International Nuclear Information System (INIS)

    2006-05-01

    -to-date and documented safety analyses must be prepared and actively be included in both the preventive safety work and in connection with plant modifications. The licensees have implemented design analysis projects for a long period of time and clarified and stringent regulations for safety analyses have entered into force in 2005. As a result, updated safety reports exist for many of the facilities and schedules exist for the supplementary work that remains to be done. SKI's reinforced supervision of Barsebaeck 2 continued until the closure of the reactor on May 31, 2005. In SKI's opinion, BKAB mainly handled the lengthy facility closure in a satisfactory manner. The handling of nuclear waste at the nuclear facilities has mainly functioned well. The same applies to the operation of the Repository for Low and Intermediate-level Operational Waste (SFR-1) and the Central Interim Storage Facility for Spent Nuclear Fuel (CLAB). The overall evaluation of the Swedish Radiation Protection Authority (SSI) is that radiation protection at Swedish nuclear power plants has functioned well in 2005. The total radiation dose to the personnel at Swedish nuclear power plants was 9.2 manSv, which agrees with the average value of the total radiation doses over the last five years (9 manSv). No-one received a radiation dose in excess of the established dose limits and the radiation levels in the facilities are largely unchanged compared with previous years. The radiation doses to the public from the Swedish nuclear power plants continue to be low. SSI considers that continuous work is also needed in the future at the facilities to further reduce radioactive releases by applying the best available technique (BAT) and other measures. The control measurements that SSI is conducting on environmental samples from around the nuclear power facilities as well as on radioactive releases to water show a good agreement with the licensees' own measurements

  8. Safety and Radiation Protection at Swedish Nuclear Power Plants 2005

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-05-15

    other things. Up-to-date and documented safety analyses must be prepared and actively be included in both the preventive safety work and in connection with plant modifications. The licensees have implemented design analysis projects for a long period of time and clarified and stringent regulations for safety analyses have entered into force in 2005. As a result, updated safety reports exist for many of the facilities and schedules exist for the supplementary work that remains to be done. SKI's reinforced supervision of Barsebaeck 2 continued until the closure of the reactor on May 31, 2005. In SKI's opinion, BKAB mainly handled the lengthy facility closure in a satisfactory manner. The handling of nuclear waste at the nuclear facilities has mainly functioned well. The same applies to the operation of the Repository for Low and Intermediate-level Operational Waste (SFR-1) and the Central Interim Storage Facility for Spent Nuclear Fuel (CLAB). The overall evaluation of the Swedish Radiation Protection Authority (SSI) is that radiation protection at Swedish nuclear power plants has functioned well in 2005. The total radiation dose to the personnel at Swedish nuclear power plants was 9.2 manSv, which agrees with the average value of the total radiation doses over the last five years (9 manSv). No-one received a radiation dose in excess of the established dose limits and the radiation levels in the facilities are largely unchanged compared with previous years. The radiation doses to the public from the Swedish nuclear power plants continue to be low. SSI considers that continuous work is also needed in the future at the facilities to further reduce radioactive releases by applying the best available technique (BAT) and other measures. The control measurements that SSI is conducting on environmental samples from around the nuclear power facilities as well as on radioactive releases to water show a good agreement with the licensees' own measurements.

  9. Nuclear Malaysia. Towards being a certification body for radiation safety auditors

    International Nuclear Information System (INIS)

    Nik Ali, Nik Arlina; Mudri, Nurul Huda; Mod Ali, Noriah

    2012-01-01

    Current management practice demands that an organisation inculcate safety culture in preventing radiation hazard. Radiation safety audit is known as a step in ensuring radiation safety compliance at all times. The purpose of Radiation Safety Auditing is to ensure that the radiation safety protection system is implemented in accordance to Malaysia Atomic Energy Licensing Act 1984, or Act 304, and International Standards. Competent radiation safety auditors are the main element that contributes to the effectiveness of the audit. To realise this need, Innovation Management Centre (IMC) is now in progress to be a certification body for safety auditor in collaboration with Nuclear Malaysia Training Centre (NMTC). NMTC will offer Radiation Safety Management Auditor (RSMA) course, which provide in depth knowledge and understanding on requirement on radiation safety audit that comply with the ISO/IEC 17024 General Requirements for Bodies Operating Certification Systems of Persons. Candidates who pass the exam will be certified as Radiation Safety Management Auditor, whose competency will be evaluated every three years. (author)

  10. Nuclear safety and radiation protection consideration in the design of research and development facility

    International Nuclear Information System (INIS)

    Akbar, M.R.

    2010-01-01

    Nuclear safety is a critically important aspect that must be considered in the design of a nuclear facility in order to ensure the protection of the workers, public and environment. This paper looks at the methodology, approach and incorporation of this aspect, specifically into the design of a research and development facility. The Health, Safety and Environmental Basis of Design is an initial analysis of nuclear safety and radiation protection considerations that is performed during the conceptual design phase and sets the baseline for what the design of the facility must conform to. It consists of general nuclear safety design principles, such as defence in depth and optimisation considerations, and a hazard management strategy. Following the Health, Safety and Environmental Basis of Design, a Preliminary Safety Assessment Report is generated during the basic design phase in conjunction with various analyses in order to assess the impact of hazards on the workers and members of the public. This assessment follows a hazard graded approach where the depth of the analysis will be determined by the impact of the worst case accident scenario in the facility. The assessment also includes a waste management strategy which is an essential aspect to be considered in the design in order to minimize the generation of waste. The safety assessment also demonstrates compliance to dose limits and risk criteria for the workers and members of the public set by the regulatory body and supported by a legal framework. Measures are taken to keep risk as low as reasonably achievable and prevent transgression of the risk and dose limits. However, a balance needs to be maintained between 5 reducing these doses further and the cost of such a reduction, which is known as optimization. It is therefore imperative to have nuclear safety specialists analyse the design in order to protect the worker and member of the public from unwarranted exposure to nuclear radiation. (author)

  11. EURISOL-DS Multi‐MW Target: Radiological Protection, Radiation Safety and Shielding Aspects

    CERN Document Server

    Y. Romanets and R. Luís (ITN)

    The objective of this work was to carry out a detailed study and analysis of all aspects related toradioprotection and radiation safety of the spallation target area and the whole spaces reservedfor the fission targets and spallation target maintenance. Operational and no‐operationalconditions were considered for an evaluation of the radiation safety conditions.An analysis of the proposed shielding dimensions and configuration was performed for thesystem during operation time. Parameters as activation, dose rate, energy deposition, etc. aremore important for the no‐operation period, in order to evaluate the hazard level anddetermine the staff access type to the maintenance areas (direct or remote control).Such elements as the fission targets and the whole structure involved on it were studied in moredetail because of the disposal issues, after operation. Activation, dose rate and residual nuclideswere studied for each element of the assembly. All parameters were analyzed according to their...

  12. Incorporating Traffic Control and Safety Hardware Performance Functions into Risk-based Highway Safety Analysis

    Directory of Open Access Journals (Sweden)

    Zongzhi Li

    2017-04-01

    Full Text Available Traffic control and safety hardware such as traffic signs, lighting, signals, pavement markings, guardrails, barriers, and crash cushions form an important and inseparable part of highway infrastructure affecting safety performance. Significant progress has been made in recent decades to develop safety performance functions and crash modification factors for site-specific crash predictions. However, the existing models and methods lack rigorous treatments of safety impacts of time-deteriorating conditions of traffic control and safety hardware. This study introduces a refined method for computing the Safety Index (SI as a means of crash predictions for a highway segment that incorporates traffic control and safety hardware performance functions into the analysis. The proposed method is applied in a computation experiment using five-year data on nearly two hundred rural and urban highway segments. The root-mean square error (RMSE, Chi-square, Spearman’s rank correlation, and Mann-Whitney U tests are employed for validation.

  13. Performance of aerogel as Cherenkov radiator

    International Nuclear Information System (INIS)

    Bellunato, T.; Calvi, M.; Matteuzzi, C.; Musy, M.; Negri, P.; Braem, A.; Chesi, E.; Hansen, C.; Liko, D.; Joram, C.; Neufeld, N.; Seguinot, J.; Weilhammer, P.; Buzykaev, A.R.; Kravchenko, E.A.; Onuchin, A.P.; Danilyuk, A.F.; Easo, S.; Wotton, S.; Jolly, S.

    2004-01-01

    Aerogel with index of refraction around 1.03 has been studied as Cherenkov radiator in a test at CERN PS using a π - and a mixed π + /p beam of momenta between 6 and 10 GeV/c. The Cherenkov photons were detected by means of four large HPD tubes designed and constructed at CERN. Results on the photoelectron yield, the Cherenkov angle and its resolution, and the π/p separation are obtained. The performances measured demonstrate that a RICH with aerogel is a viable detector for experiments with high multiplicity of particles in the final state

  14. Safety assessment plans for authorization and inspection of radiation sources

    International Nuclear Information System (INIS)

    2002-05-01

    The objective of this TECDOC is to enhance the efficacy, quality and efficiency of the whole regulatory process. It provides advice on good practice administrative procedures for the regulatory process for preparation of applications, granting of authorizations, inspection, and enforcement. It also provides information on the development and use of standard safety assessment plans for authorization and inspection. The plans are intended to be used in conjunction with more detailed advice related to specific practices. In this sense, this TECDOC provides advice on a systematic approach to evaluations of protection and safety while other IAEA Safety Guides assist the user to distinguish between the acceptable and the unacceptable. This TECDOC covers administrative advice to facilitate the regulatory process governing authorization and inspection. It also covers the use of standard assessment and inspection plans and provides simplified plans for the more common, well established uses of radiation sources in medicine and industry, i.e. sources for irradiation facilities, industrial radiography, well logging, industrial gauging, unsealed sources in industry, X ray diagnosis, nuclear medicine, teletherapy and brachytherapy

  15. Radiation safety system (RSS) backbones: Design, engineering, fabrication and installation

    International Nuclear Information System (INIS)

    Wilmarth, J.E.; Sturrock, J.C.; Gallegos, F.R.

    1998-01-01

    The Radiation Safety System (RSS) Backbones are part of an electrical/electronic/mechanical system insuring safe access and exclusion of personnel to areas at the Los Alamos Neutron Science Center (LANSCE) accelerator. The RSS Backbones control the safety fusible beam plugs which terminate transmission of accelerated ion beams in response to predefined conditions. Any beam or access fault of the backbone inputs will cause insertion of the beam plugs in the low energy beam transport. The Backbones serve the function of tying the beam plugs to the access control systems, beam spill monitoring systems and current-level limiting systems. In some ways the Backbones may be thought of as a spinal column with beam plugs at the head and nerve centers along the spinal column. The two Linac Backbone segments and experimental area segments form a continuous cable plant over 3,500 feet from beam plugs to the tip on the longest tail. The Backbones were installed in compliance with current safety standards, such as installation of the two segments in separate conduits or tray. Monitoring for ground-faults and input wiring verification was an added enhancement to the system. The system has the capability to be tested remotely

  16. Safety assessment plans for authorization and inspection of radiation sources

    International Nuclear Information System (INIS)

    1999-09-01

    The objective of this TECDOC is to enhance the efficacy, quality and efficiency of the whole regulatory process. It provides advice on good practice administrative procedures for the regulatory process for preparation of applications, granting of authorizations, inspection, and enforcement. It also provides information on the development and use of standard safety assessment plans for authorization and inspection. The plans are intended to be used in conjunction with more detailed advice related to specific practices. In this sense, this TECDOC provides advice on a systematic approach to evaluations of protection and safety while other IAEA Safety Guides assist the user to distinguish between the acceptable and the unacceptable. This TECDOC covers administrative advice to facilitate the regulatory process governing authorization and inspection. It also covers the use of standard assessment and inspection plans and provides simplified plans for the more common, well established uses of radiation sources in medicine and industry, i.e. sources for irradiation facilities, industrial radiography, well logging, industrial gauging, unsealed sources in industry, X ray diagnosis, nuclear medicine, teletherapy and brachytherapy

  17. Radiation safety of gamma and electron irradiation facilities

    International Nuclear Information System (INIS)

    1992-01-01

    There are currently some 160 gamma irradiation facilities and over 600 electron beam facilities in operation throughout virtually all Member States of the IAEA. The most widespread uses of these facilities are for the sterilization of medical and pharmaceutical products, the preservation of foodstuffs, polymer synthesis and modification, and the eradication of insect infestation. The safety record of this industry has been very good. Nevertheless, there is a potential for accidents with serious consequences. Gamma and electron beam facilities produce very high dose rates during irradiation, so that a person accidentally present in the irradiation chamber can receive a lethal dose within minutes or seconds. Precautions against uncontrolled entry must therefore be taken. Furthermore, gamma irradiation facilities contain large amounts of radioactivity and if the mechanism for retracting the source is damaged, the source may remain exposed, inhibiting direct access to carry out remedial work. Contamination can result from corroded or damaged sources, and decontamination can be very expensive. These aspects clearly indicate the need to achieve a high degree of safety and reliability in the facilities. This can be accomplished by effective quality control together with careful design, manufacture, installation, operation and decommissioning. The guidance in this Safety Series publication is intended for competent authorities responsible for regulating the use of radiation sources as well as the manufacturers, suppliers, installers and users of gamma and electron beam facilities. 20 refs, 6 figs

  18. A new standard for core training in radiation safety

    International Nuclear Information System (INIS)

    Trinoskey, P.A.

    1997-02-01

    A new American National Standard for radiation worker training was recently developed. The standard emphasizes performance-based training and establishing a training program rather than simply prescribing objectives. The standard also addresses basic criteria, including instructor qualifications. The standard is based on input from a wide array of regulatory agencies, universities, national laboratories, and nuclear power entities. This paper presents an overview of the new standard and the philosophy behind it. The target audience includes radiation workers, management and supervisory personnel, contractors, students, emergency personnel, and visitors

  19. Operational safety performance of Slovak NPPs in 2005

    International Nuclear Information System (INIS)

    Tomek, J.

    2006-01-01

    In this presentation author presents operational safety performance of Slovak NPPs in 2005. Operation of Slovak NPPs in 2005 was safe and reliable, with: - high level of performance low risk; - minimal impact on the personnel, environment and public; - positive attitude to safety.

  20. Safety performance indicators. Topical issues paper no. 5

    International Nuclear Information System (INIS)

    Dahlgren, K.; Lederman, L.; Szikszai, T.; Palomo, J.

    2001-01-01

    Since its creation the nuclear industry has been struggling with the question of how safe is safe enough. Safety is a common goal to all involved in the design, operation and regulation of a nuclear installation. As a concept safety is not easy to define. However, there is a general understanding of what attributes a nuclear power plant should have in order to operate safely. The challenge lies in measuring the attributes. The new competitive open electricity market, in many countries throughout the world, is increasing the economic pressure on operators to lower operating costs without jeopardizing safety. Challenges are occurring at a rate that is unprecedented in the nuclear industry: competitiveness; downsizing; ageing; policy changes; reorganization; restructuring; mergers; globalization; and takeovers demand increasing attention to the management of safety. There are various means to measure safety performance, some of which are more qualitative in nature and others which through quantitative measures provide the means by which to evaluate performance trends with clear ties to safety. According to their use, indicators are generally considered in two groups: leading or proactive and lagging or reactive indicators. Leading indicators are most useful as a precursor to safety degradation for early management reaction. Lagging indicators are most commonly used to drive plant performance, to monitor and for benchmarking against similar plants. The actual values of the indicators are not intended to be direct measures of safety, although safety performance can be inferred from the results achieved. Each plant needs to determine which indicators best serve its needs. Selected indicators should not be static, but should be adapted to the conditions and performance of the plant, considering the cost-benefit of maintaining each individual indicator. It should be recognized that while indicators provide valuable information in the effective management of plant safety

  1. The German radiation protection infrastructure with emphasis on the safety of radiation sources and radioactive material

    International Nuclear Information System (INIS)

    Czarwinski, R.; Weimer, G.

    2001-01-01

    Through federalism, Germany has a complicated but well functioning regulatory infrastructure for the safety and security of radiation sources based on a clear legal system. The main features of this infrastructure include the legal framework, the authorization and control systems and the responsibilities of different regulatory authorities, which this paper will describe. In connection with the legal framework, the provisions to control the import/export of radiation sources are briefly discussed and some information is given about the registries of sources. Protection and response measures related to unusual events concerning radiation sources, including orphan sources, will be cited. Also, the education and training of different target groups and punitive actions are touched upon in the paper. Conclusions will be drawn for future national and international actions. (author)

  2. Provision of radiation safety at the designing of the industrial complex of solid radwaste management (ICSRM)

    International Nuclear Information System (INIS)

    Lobach, S.Yu.; Sevastyuk, O.V.

    2003-01-01

    The article presents the basic principles and criteria of the radiation safety provision, organization of the radiation control system, and dose calculation for the staff irradiation at the construction and operation of the Industrial complex of solid radwaste management (ICSRM)

  3. Legislation for radiation protection and nuclear safety in the Republic of Croatia

    International Nuclear Information System (INIS)

    Novosel, N.

    1994-01-01

    The main prerequisite of radiation protection and nuclear safety development and improvement in the Republic of Croatia are: national legislation for radiation protection and nuclear safety in accordance with international recommendations; and development of state infrastructure for organization and management of radiation protection and nuclear safety measures. In this paper I the following topics are present: inherited legislation for radiation protection and nuclear safety; modern trends in world nowadays; and what is done and has to be done in the Republic of Croatia to improve this situation

  4. A preliminary study on the design in architecture of nuclear and radiation safety standard system

    International Nuclear Information System (INIS)

    Song Dahu; Zhang Chi; Yang Lili; Li Bin; Liu Yingwei; An Hongzhen; Gao Siyi; Liu Ting; Meng De

    2014-01-01

    The connotation and function of nuclear and radiation safety standards are analyzed, and their relationships with the relevant laws and regulations are discussed in the paper. Some suggestions and blue print of overall architecture to build nuclear and radiation safety standard system are proposed, on the basis of researching the application status quo, existing problems and needs for nuclear and radiation safety standards in China. This work is a beneficial exploration and attempt to establish China's nuclear and radiation safety standards. (authors)

  5. Radiation Safety in the Neonatal Intensive Care Unit: Too Little or Too Much Concern?

    Directory of Open Access Journals (Sweden)

    Cheng-Chung Yu

    2010-12-01

    Full Text Available With rising numbers of extremely premature infants in the neonatal intensive care unit (NICU who require multiple radiologic examinations for their complex medical conditions, concerns the risk of radiation exposure become a more prevalent issue. The biological effects from cumulative doses of both primary and secondary radiation can be particularly troubling for very premature babies due to their inherent sensitivity to both iatrogenic and environmental insults. Similarly, radiologic studies performed in the NICU pose potentially significant exposure risks to caretakers and to the families of patients often present in the NICU during these examinations. The purpose of this article is to critically review the available literature regarding current exposure rates in the NICU, address the validity of radiation exposure concerns, and suggest areas for improvement. With few exceptions, studies reveal that there were only low doses of radiation derived from any single radiographic examination in standard NICUs and that the radiation dosage used was in compliance with recommendations made by the Commission of European Communities (EC and International Commission on Radiological Protection (ICRP. However, there were wide variations in the radiation dose per single examination (mean entrance skin doses ranged from 15 to 73.6 μGy and in the frequency (mean ranged from 3.2 to 31 examinations per infant of those examinations. Studies also reported low secondary exposure rates from scatter radiation to others present in the NICU during radiographic examinations. Key to limiting unnecessary radiation exposure in the NICU is the employment of proper radiation techniques and safety measures. Thus, adhering to recommendations made by the EC and ICRP can help to reduce the anxiety of patients' families and medical staff regarding their risks from the effects of ionizing radiation in the NICU.

  6. Overview of fourth generation reactors. Assessment in terms of safety and radiation protection

    International Nuclear Information System (INIS)

    Couturier, J.; Baudrand, O.; Blanc, D.; Bourgois, T.; Hache, G.; Ivanov, E.; Bonneville, H.; Meignen, R.; Nicaise, G.; Bruna, G.; Clement, B.; Kissane, M.; Monhardt, B.

    2012-01-01

    Based on a systematic analysis of the different concepts of fourth generation nuclear reactors, this report gives an overview of specific aspects regarding safety and radiation protection for six concepts: sodium fast reactors (SFR), gas fast reactors (GFR), lead fast reactors (LFR), molten salt reactors (MSR), very high or high temperature reactors (V/HTR) and supercritical water reactors (SCWR). This assessment is based on different studies and researches performed by the IRSN at an international level. For each reactor concept, the report proposes a presentation of the current status of development and its perspectives, describes the safety aspects which are specific to this concept, identifies and discusses elements for safety analysis, and assesses the concept with respect to the Fukushima accident and IAEA recommendations and predefined themes

  7. Performance Testing Methodology for Safety-Critical Programmable Logic Controller

    International Nuclear Information System (INIS)

    Kim, Chang Ho; Oh, Do Young; Kim, Ji Hyeon; Kim, Sung Ho; Sohn, Se Do

    2009-01-01

    The Programmable Logic Controller (PLC) for use in Nuclear Power Plant safety-related applications is being developed and tested first time in Korea. This safety-related PLC is being developed with requirements of regulatory guideline and industry standards for safety system. To test that the quality of the developed PLC is sufficient to be used in safety critical system, document review and various product testings were performed over the development documents for S/W, H/W, and V/V. This paper provides the performance testing methodology and its effectiveness for PLC platform conducted by KOPEC

  8. ASN report on nuclear safety and radiation protection in France in 2006, excerpts

    International Nuclear Information System (INIS)

    Lacoste, A.C.

    2007-01-01

    The main topics for the Nuclear Safety Authority (ASN) in 2006 were the following ones. 1) the 2006-686 bill on transparency and security in the nuclear field. This law constitutes an overhaul of the legislative framework applicable to nuclear activities. It creates the Nuclear Safety Authority as an independent administrative authority and defines its tasks. It contains significant advances in terms of transparency. 2) The 2006-739 bill concerning sustainable management of radioactive materials and waste. This law clearly states that the disposal in deep geological formations is the reference solution for high-level, long-lived radioactive wastes. 3) The EPR reactor project safety in which ASN completed technical examination of the preliminary safety case. In November 2006, ASN produced to French Authorities a draft decree concerning the EPR project on the Flamanville site. 4) An international audit of ASN was performed in 2006 by IAEA in order to assess the extent to which the standards IAEA recommends are taken into account and implemented. 5) ASN has contributed to the harmonization of nuclear safety in Europe and at world scale through its contribution to the work of the WENRA association. 6) In 2005 and 2006 4 serious radiotherapy accidents were reported in France. Cancer radiotherapy is a fully justified practice that demands a vigilant supervision of ASN. 7) ASN has amplified its means for informing the public about nuclear safety and radiation protection. And 8) ASN considers that people and organizations are fundamental factors in safety and radiation protection and that significant progress is still to be made in taking into account these factors in nuclear activities. (A.C.)

  9. Resolution No. 6/04 Regulations for the recognition of the competence of services for radiation safety

    International Nuclear Information System (INIS)

    2004-01-01

    This Regulation aims to establish the rules that govern the process to recognize the competence of services for radiation safety, they are no authorized under Resolution No. 25, dated May 29, 1998, the Ministry of Science, Technology and Environment, A uthorization Regulation Practices Associated with Use of Ionizing Radiation , in order to ensure that services that are related to the practices associated with the use of nuclear energy, with the requisite expertise. This Regulation applies to all natural or legal persons performing or purporting to perform service activities for radiation safety in the country. These services are: 2.1. Individual Radiation Monitoring Services, in one or more of the following areas: 2.1.1. Control of external exposure a) Electromagnetic Radiation. b) beta radiation. c) neutron radiation. 2.1.2. Control of internal contamination a) Determination of internal contamination by direct measurements. b) Determination of internal contamination by analysis of biological samples. c) Monitoring of air, personal and total. 2.2. Service environmental measurements and samples. 2.3. Service control radioactive contamination in foods. 2.4. Service measuring dose rate, surface contamination and air pollution. 2.5. Calibration and verification of equipment. 2.6. Service courses in radio-logical protection. 2.7. Consultancy services in radiation protection. 2.8. Service control radioactive contamination in scrap. 2.9. Service quality control equipment that is used in the practices associated with the use of ionizing radiation. 2.10. Any other service in the field of radiation safety in scope and interest of end-National Center for Nuclear Safety.

  10. Report for spreading culture of medical radiation safety in Korea: Mainly the activities of the Korean alliance for radiation safety and culture in medicine (KARSM)

    International Nuclear Information System (INIS)

    Yoon, Yong Su; Kim, Jung Min; Kim, Ji Hyun; Choi, In Seok; Sung, Dong Wook; Do, Kyung Hyun; Jung, Seung Eun; Kim, Hyung Soo

    2013-01-01

    There are many concerns about radiation exposure in Korea after Fukushima Nuclear Plant Accident on 2011 in Japan. As some isotope materials are detected in Korea, people get worried about the radioactive material. In addition, the mass media create an air of anxiety that jump on the people’s fear instead of scientific approach. Therefore, for curbing this flow, health, medical institute from the world provide a variety of information about medical radiation safety and hold the campaign which can give people the image that medical radiation is safe. At this, the Korean Food and Drug Administration(KFDA) suggested that make the alliance of medical radiation safety and culture on August, 2011. Seven societies and institutions related medical radiation started to research and advertise the culture of medical radiation safety in Korea. In this report, mainly introduce the activities of the Korean Alliance for Radiation Safety and Culture in Medicine(KARSM) for spreading culture of medical radiation safety from 2011 to 2012

  11. Report for spreading culture of medical radiation safety in Korea: Mainly the activities of the Korean alliance for radiation safety and culture in medicine (KARSM)

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Yong Su; Kim, Jung Min; Kim, Ji Hyun; Choi, In Seok [Dept. of Radiologic Science, Korea University, Seoul (Korea, Republic of); Sung, Dong Wook [Dept. of Radiology, Kyunghee University Hospital, Seoul (Korea, Republic of); Do, Kyung Hyun [Dept. of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul (Korea, Republic of); Jung, Seung Eun [Dept. of Radiology, College of Medicine, The Catholic University of Korea, Seoul (Korea, Republic of); Kim, Hyung Soo [Dept. of Radiation Safety, National Institute of Food and Drug Safety Evaluation, Korea Food and Drug Administration, Seoul (Korea, Republic of)

    2013-09-15

    There are many concerns about radiation exposure in Korea after Fukushima Nuclear Plant Accident on 2011 in Japan. As some isotope materials are detected in Korea, people get worried about the radioactive material. In addition, the mass media create an air of anxiety that jump on the people’s fear instead of scientific approach. Therefore, for curbing this flow, health, medical institute from the world provide a variety of information about medical radiation safety and hold the campaign which can give people the image that medical radiation is safe. At this, the Korean Food and Drug Administration(KFDA) suggested that make the alliance of medical radiation safety and culture on August, 2011. Seven societies and institutions related medical radiation started to research and advertise the culture of medical radiation safety in Korea. In this report, mainly introduce the activities of the Korean Alliance for Radiation Safety and Culture in Medicine(KARSM) for spreading culture of medical radiation safety from 2011 to 2012.

  12. Solar Passive Modification Increase Radiation Safety Standards Inside Accelerator Building

    International Nuclear Information System (INIS)

    Eid, A. F.; Keshk, A. B.

    2010-01-01

    Irradiation processing by accelerated electrons is considering one of the most important and useful industrial irradiation treatments. It is depending on two principle attachment elements which are architecture of irradiation building and the accelerator characteristic that was arranged inside irradiation building. Negative environmental measurements were recorded inside the main building and were exceeded the international standards (humidity, air speed, high thermal effects and ozone concentration). The study showed that it is essential to improve the natural environmental standards inside the main irradiation building in order to improve the work environment and to reduce ozone concentration from 220 ppb to international standard. The main goals and advantages were achieved by using environmental architecture (desert architecture) indoor the irradiation building. The work depends on passive solar system which is economic, same architectural elements, comfort / health, and radiation safety, and without mechanical means. The experimental work was accomplished under these modifications. The registered results of various environmental concentrations have proved their normal standards.

  13. DOE contractor radiation safety CBT [computer based training] course

    International Nuclear Information System (INIS)

    Gardner, P.R.

    1986-01-01

    Westinghouse Hanford Company developed a generic Radiation Worker safety CBT course for Department of Energy contractors. Task analysis concentrated on actual and potential tasks and included visits to fourteen different contractor sites. Team Design and Prototype verification formed the major portion of the development phase. Lesson entry was accomplished using the WISE author system from WICAT Systems, Inc. The course features graded task simulations for both Pretest and Final; fourteen Topics in five Lessons, each Topic keyed to ''Critical Acts'' and Questions in the Pretest and Final; Automatic, Intensive, and Manual modes of instruction available for each Lesson; Practical Problems and Sample Questions associated with each Topic; and provisions for local configuration in several areas. The course is deliverable on IBM PC compatible equipment. 2 refs

  14. A concurrent diagnosis of microbiological food safety output and food safety management system performance: Cases from meat processing industries

    NARCIS (Netherlands)

    Luning, P.A.; Jacxsens, L.; Rovira, J.; Oses Gomez, S.; Uyttendaele, M.; Marcelis, W.J.

    2011-01-01

    Stakeholder requirements force companies to analyse their food safety management system (FSMS) performance to improve food safety. Performance is commonly analysed by checking compliance against preset requirements via audits/inspections, or actual food safety (FS) output is analysed by

  15. Radiation Safety Professional Certification Process in a Multi-Disciplinary Association

    International Nuclear Information System (INIS)

    Wilson, G.; Jones, P.; Ilson, R.

    2004-01-01

    There is no one set of criteria that defines the radiation safety professional in Canada. The many varied positions, from university and medical to industry and mining, define different qualifications to manage radiation safety programs. The national regulatory body has to assess many different qualifications when determining if an individual is acceptable to be approved for the role of radiation safety officer under any given licence. Some professional organizations specify education requirements and work experience as a prerequisite to certification. The education component specifies a degree of some type but does not identify specific courses or competencies within that degree. This could result in individuals with varying levels of radiation safety experience and training. The Canadian Radiation Protection Association (CRPA), responding to a need identified by the membership of the association, has initiated a process where the varying levels of knowledge of radiation safety can be addressed for radiation safety professionals. By identifying a core level set of radiation safety competencies, the basic level of radiation safety officer for smaller organizations can be met. By adding specialty areas, education can be pursued to define the more complex needs of larger organizations. This competency based process meets the needs of licensees who do not require highly trained health physicists in order to meet the licensing requirements and at the same time provides a stepping stone for those who wish to pursue a more specialized health physics option. (Author) 8 refs

  16. Standards for radiation protection instrumentation: design of safety standards and testing procedures

    International Nuclear Information System (INIS)

    Meissner, Frank

    2008-01-01

    This paper describes by means of examples the role of safety standards for radiation protection and the testing and qualification procedures. The development and qualification of radiation protection instrumentation is a significant part of the work of TUV NORD SysTec, an independent expert organisation in Germany. The German Nuclear Safety Standards Commission (KTA) establishes regulations in the field of nuclear safety. The examples presented may be of importance for governments and nuclear safety authorities, for nuclear operators and for manufacturers worldwide. They demonstrate the advantage of standards in the design of radiation protection instrumentation for new power plants, in the upgrade of existing instrumentation to nuclear safety standards or in the application of safety standards to newly developed equipment. Furthermore, they show how authorities may proceed when safety standards for radiation protection instrumentation are not yet established or require actualization. (author)

  17. Research on Integration of NPP Operational Safety Management Performance Systems

    International Nuclear Information System (INIS)

    Chi, Miao; Shi, Liping

    2014-01-01

    The operational safety management of Nuclear Power Plants demands systematic planning and integrated control. NPPs are following the well-developed safety indicator systems proposed by IAEA Operational Safety Performance Indicator Programme, NRC Reactor Oversight Process or the other institutions. Integration of the systems is proposed to benefiting from the advantages of both systems and avoiding improper application into the real world. The authors analyzed the possibility and necessity for system integration, and propose an indicator system integrating method

  18. Concrete Shielding For Radiation Safety And Unexpected Dangerous Inside Cobalt-60 Industrial Irradiator

    International Nuclear Information System (INIS)

    Keshk, A.B.; Aly, R.A.

    2011-01-01

    The study shows a proposed destruction inside one of three cobalt-60 industrial irradiators to determine and reduce the negative results, to improve and modify emergency plan to face terrorism works. The results show the performance of concrete shielding (walls and ceiling) contains the bad effect of dynamic pressures. The explosion forces are prevented to destructive by performance of their concrete shielding, which will contain the most components of devastated systems inside each irradiator after explosion. Shield penetration like electrical cable tunnels, pushers holes, hole with removable plug, product boxes openings, lens opening and ozone duct are affected badly by destruction. Through probability of transporting, some of devastated parts of broken radioactive cobalt- 60 pencils from inside radiation concreter room to outside (surrounded environment) are maintained and causing very danger radiation exposure by gamma rays outside irradiator. A necessity needs to modify emergency plan to prevent any explosive materials to enter inside the main building (irradiation sale) and also discovering any explosive materials which are placed inside the product boxes before passing to inside irradiator. The minimizing radiation exposure (2 mrem/h) inside underground radiation shelters are maintained by reducing radiation dose exerted from a nuclear explosion of 20 kT about 1 km away to a safe value, and calculating the protective factors of radiation main building basements are more than 40 (safety factor) as they are located under ground level, are surrounded by sandy soil and are constructed by concrete. The study shows the proposed basements of the main building maintain success to use as under ground safe radiation shelter (during emergency) with separate safe radiation trace. It begins from the main opening of irradiation sale and leads to underground proposed shelter through modified main stair

  19. Safety issues in the handling of radiation sources in category IV gamma radiation facilities

    International Nuclear Information System (INIS)

    Kohli, A.K.

    2002-01-01

    There is potential for incidents/accidents related to handling of radiation sources. This is increasing due to the fact that more number of plants that too with much larger levels of activity are now coming up. Such facilities produce very high levels of exposure rates during irradiation. A person accidentally present in the irradiation cell can receive a lethal dose within a very short time. Apart from safety requirements during operation and maintenance of these facilities, safety during loading and unloading of sources is important. Category IV type irradiators are the most common. Doubly encapsulated Co-60 slugs are employed to form the source pencils. These irradiators employ a water pool for safely storing the source pencils when irradiation of the products is not going on or when human access is needed into the irradiation cell for some maintenance or source loading/unloading operations. Safety during loading/unloading operations of source pencils is important. In design itself care needs to be taken such that all such operations are convenient and any incident will not lead to a situation where it becomes difficult to come out. Different situations, which can arise during handling of radiation sources and suggested designs to obviate such tight situations, are discussed. (Author)

  20. EDF - The Inspector General's report on Nuclear Safety and Radiation Protection 2009

    International Nuclear Information System (INIS)

    2010-01-01

    After a first chapter in which the Inspector General states his own vision of facts and results regarding nuclear safety and radiation protection for 2009, the relationship with the ASN (Nuclear safety authority), and also gives his own impression on the whole EDF nuclear system, the next chapters more particularly address the following topics: safety management, radiation protection of interveners, abilities and education for new challenges, the exploitation quality, the implementation of new regulatory arrangements, the extension of exploitation duration, the EPR project, the doctors as actors of safety management, service providing or subcontracting companies and fleet performance, prevention and struggle against fire, the activity of British Energy which is part of the EDF group, events which occurred within the EDF group (exposure of an intervener, incidents involving fuel components, biases in work monitoring, a fire on a turbo generator, an incident in Dungeness), lessons drawn from other industrial events (in a Russian hydroelectric station and in a refinery in Texas), and visits in China and in Japan

  1. Education and Training in Radiation, Transport and Waste Safety Newsletter, No. 2b, May 2013

    International Nuclear Information System (INIS)

    2013-05-01

    The IAEA Strategic Approach to Education and Training in Radiation, Transport and Waste Safety (2011-2020) provides a framework for establishing a sustainable education and training infrastructure in Member States that addresses national needs for building and maintaining competence in radiation, transport and waste safety that is consistent with IAEA Safety Standards. For this purpose, IAEA's General Conference has encouraged Member States to develop a national strategy for education and training, underlining the fundamental importance of sustainable programmes for building competence in radiation, transport and waste safety, as a key component of safety infrastructure. Furthermore Member States that receive assistance from IAEA are obliged to apply IAEA Safety Standards which require, inter alia, governments to establish a national policy and strategy for safety, including provisions for acquiring and maintaining the necessary competence nationally for ensuring safety. IAEA's Division of Radiation, Transport and Waste Safety is assisting Member States to develop their own national strategies in Asia and the Pacific via the Regional project RAS/9/066 on ''Strengthening Education and training Infrastructure, and Building Competence in Radiation Safety'', which includes, inter alia, Regional Workshops on National Strategies for education and training in radiation transport and waste safety. IAEA's Regional Training Centres (RTCs) in Malaysia and Syrian Arabic Republic are key partners in the Asian and the Pacific region.

  2. Education and Training in Radiation, Transport and Waste Safety Newsletter, No. 2c, May 2013

    International Nuclear Information System (INIS)

    2013-05-01

    The IAEA Strategic Approach to Education and Training in Radiation, Transport and Waste Safety (2011-2020) provides a framework for establishing a sustainable education and training infrastructure in Member States that addresses national needs for building and maintaining competence in radiation, transport and waste safety that is consistent with IAEA Safety Standards. For this purpose, IAEA's General Conference has encouraged Member States to develop a national strategy for education and training, underlining the fundamental importance of sustainable programmes for building competence in radiation, transport and waste safety, as a key component of safety infrastructure. Furthermore Member States that receive assistance from IAEA are obliged to apply IAEA Safety Standards which require, inter alia, governments to establish a national policy and strategy for safety, including provisions for acquiring and maintaining the necessary competence nationally for ensuring safety. IAEA's Division of Radiation, Transport and Waste Safety is assisting Member States to develop their own national strategies in Europe via the Regional Project RER/9/109 on ''Strengthening Education and training Infrastructure, and Building Competence in Radiation Safety'', which includes, inter alia, Regional Workshops on National Strategies for education and training in radiation transport and waste safety. IAEA's Regional Training Centres (RTCs) in Greece and Belarus are key partners in the European region.

  3. Education and Training in Radiation, Transport and Waste Safety Newsletter, No. 2d, June 2013

    International Nuclear Information System (INIS)

    2013-06-01

    The IAEA Strategic Approach to Education and Training in Radiation, Transport and Waste Safety (2011-2020) provides a framework for establishing a sustainable education and training infrastructure in Member States that addresses national needs for building and maintaining competence in radiation, transport and waste safety that is consistent with IAEA Safety Standards. For this purpose, IAEA's General Conference has encouraged Member States to develop a national strategy for education and training, underlining the fundamental importance of sustainable programmes for building competence in radiation, transport and waste safety, as a key component of safety infrastructure. Furthermore Member States that receive assistance from IAEA are obliged to apply IAEA Safety Standards which require, inter alia, governments to establish a national policy and strategy for safety, including provisions for acquiring and maintaining the necessary competence nationally for ensuring safety. IAEA's Division of Radiation, Transport and Waste Safety is assisting Member States to develop their own national strategies in Latin America via the Regional Project RLA/9/070 on ''Strengthening Education and training Infrastructure, and Building Competence in Radiation Safety'', which includes, inter alia, Regional Workshops on National Strategies for education and training in radiation transport and waste safety. IAEA's Regional Training Centres (RTCs) in Argentina and Brazil are key partners in the Latin-American region.

  4. Education and Training in Radiation, Transport and Waste Safety Newsletter, No. 2a, May 2013

    International Nuclear Information System (INIS)

    2013-05-01

    The IAEA Strategic Approach to Education and Training in Radiation, Transport and Waste Safety (2011-2020) provides a framework for establishing a sustainable education and training infrastructure in Member States that addresses national needs for building and maintaining competence in radiation, transport and waste safety that is consistent with IAEA Safety Standards. For this purpose, IAEA's General Conference has encouraged Member States to develop a national strategy for education and training, underlining the fundamental importance of sustainable programmes for building competence in radiation, transport and waste safety, as a key component of safety infrastructure. Furthermore Member States that receive assistance from IAEA are obliged to apply IAEA Safety Standards which require, inter alia, governments to establish a national policy and strategy for safety, including provisions for acquiring and maintaining the necessary competence nationally for ensuring safety. IAEA's Division of Radiation, Transport and Waste Safety is assisting Member States to develop their own national strategies in Africa via the Regional project RAF/9/04 on ''Strengthening Education and training Infrastructure, and Building Competence in Radiation Safety'', which includes, inter alia, Regional Workshops on National Strategies for education and training in radiation transport and waste safety. AFRA Regional Designated Centres, in Algeria, Ghana and Morocco, equivalent to the IAEA's Regional Training Centres (RTCs) present in all the other regions, are key partners in the African region.

  5. Employing ionizing radiation to enhance food safety. A review

    International Nuclear Information System (INIS)

    Grolichova, M.; Dvorak, P.; Musilova, H.

    2004-01-01

    Food irradiation is employed to ensure food safety or food sterility, extend its shelf-life and reduce the losses due to sprouting, ripening or pests. In the Czech Republic mainly spices, mixed spices and dried vegetables are exposed to ionizing radiation. The leading suppliers of irradiated foodstuffs in Europe are Belgium, France and the Netherlands. In the USA, food irradiation is more common and there are also attempts to enforce irradiation not only for food safety, but also for technological purposes. Even though irradiation is a prospective technology, its application causes physico-chemical changes that may affect nutritional adequacy and sensory characteristics of irradiated food. In this paper, the chemical changes of basic food components (proteins, saccharides, fats) are reviewed. Some chemical changes lead to the formation of radiolytic products whose risks are still subject of scientific research. It is expected that the main use of gamma irradiation will be the treatment of diets for patients suffering from different disorders of the immune system, allergic patients or for the army and space flights. Irradiation may be a critical control point in the production of some types of foodstuffs

  6. An investigation into the actual condition of radiation safety control

    International Nuclear Information System (INIS)

    Katsurayama, Kosuke

    1976-01-01

    The result of investigation on the real condition of radiation safety control is reported with some considerations. The investigation was made in April, 1975, by means of questionnaires to 418 companies, and the responses were obtained from 126 companies, i.e. 11 research laboratories, 98 manufacturing factories, and 17 inspection facilities. The average integrated dose in the inspection facilities was 0.91 rem/year, the most among three. The exposure dose in most of the research laboratories and manufacturing factories investigated was within the limit of 0.5 rem/year, and that in the inspection facilities was distributed over from the background level to 5 rem/year. The ratios of the workers engaged in radiation operation and the workers possessing the licences related to non-destructive examination to all employees were investigated, but they were not at satisfactory level. Regarding the abandonment of radioactive isotopes, 63.5% of the companies answered deliver the radioactive isotopes to be abandoned to Japan Isotope Association, and 25.7% let equipment makers to take them back. As for the education and training of operators for the safe treatment of radioactive substances and the prevention of accidents, most of the companies answered gave the education once or twice a year, and to those who just entered the companies, but more substantial education in desirable. (Nishino, S.)

  7. Cryopump measurements relating to safety, pumping speed, and radiation outgassing

    International Nuclear Information System (INIS)

    Graham, W.G.; Ruby, L.

    1978-09-01

    A test cryopump has been constructed to investigate operation in close proximity to a neutral beam, to determine static and dynamic pumping speeds, and to study outgassing such as might be produced by a pulse of nuclear radiation. No difficulty was encountered in operating the cryopump close to a deuterium neutral-beam source suitable for a fusion-reactor injector. Static and dynamic pumping-speed measurements agreed well, but were somewhat lower than expectations, probably due to the unusual method chosen to supply liquid helium. Safety tests showed that hydrogen could not be ignited at any subatmospheric pressure resulting from a leak-up-to-air accident. The possible hazard of liquid-oxygen condensation in such accidents was not explored. Tests made with pulses of neutrons and gamma rays produced by a TRIGA showed that the cryopump could be partially outgassed by radiation pulses of sufficient intensity. However, the effect is ascribed to the gamma-ray component of the TRIGA pulse which is about 10 3 times that expected from a fusion reactor such as TFTR

  8. Romanian experience on safety and security of radiation sources

    International Nuclear Information System (INIS)

    Botgros, Madalina; Coroianu, Anton; Negreanu, Mircea

    2008-01-01

    Romania has established the first administrative structure for controlling the deployment of the nuclear activities in 1961 and the first Romanian nuclear law was published in 1974. In the present, it is in force the Law no. 111, published in 1996 and republished in 2003. Moreover, there are available facilities and services to the persons authorized to manage radioactive sources. The regulation for safety and security of radioactive sources was amended two times in order to implement the international recommendations for setting up the national system for accounting and control of radiation sources and to coordinate the recovery activities. As part of national control programme, the national inventory of sources and devices is updated permanently, when issuing a new authorization, when modifying an existing one, or when renewing an authorization system and records in the database. The government responsibility for the orphan sources is stated in the law on radioactive waste management and decommissioning fund. There is a protocol between CNCAN, Ministry of Internal and Ministry of Health and Family regarding the co-operation in the case of finding orphan sources. When a radiation source is spent, it becomes radioactive waste that has to be disposed off properly. Depending on the case, the holder of a spent source has the possibility either to return the radioactive source to its manufacturer for regeneration or to transfer it to the Radioactive Waste Treatment Facility. (author)

  9. Applying importance-performance analysis to patient safety culture.

    Science.gov (United States)

    Lee, Yii-Ching; Wu, Hsin-Hung; Hsieh, Wan-Lin; Weng, Shao-Jen; Hsieh, Liang-Po; Huang, Chih-Hsuan

    2015-01-01

    The Sexton et al.'s (2006) safety attitudes questionnaire (SAQ) has been widely used to assess staff's attitudes towards patient safety in healthcare organizations. However, to date there have been few studies that discuss the perceptions of patient safety both from hospital staff and upper management. The purpose of this paper is to improve and to develop better strategies regarding patient safety in healthcare organizations. The Chinese version of SAQ based on the Taiwan Joint Commission on Hospital Accreditation is used to evaluate the perceptions of hospital staff. The current study then lies in applying importance-performance analysis technique to identify the major strengths and weaknesses of the safety culture. The results show that teamwork climate, safety climate, job satisfaction, stress recognition and working conditions are major strengths and should be maintained in order to provide a better patient safety culture. On the contrary, perceptions of management and hospital handoffs and transitions are important weaknesses and should be improved immediately. Research limitations/implications - The research is restricted in generalizability. The assessment of hospital staff in patient safety culture is physicians and registered nurses. It would be interesting to further evaluate other staff's (e.g. technicians, pharmacists and others) opinions regarding patient safety culture in the hospital. Few studies have clearly evaluated the perceptions of healthcare organization management regarding patient safety culture. Healthcare managers enable to take more effective actions to improve the level of patient safety by investigating key characteristics (either strengths or weaknesses) that healthcare organizations should focus on.

  10. An Empirical Analysis of Human Performance and Nuclear Safety Culture

    International Nuclear Information System (INIS)

    Jeffrey Joe; Larry G. Blackwood

    2006-01-01

    The purpose of this analysis, which was conducted for the US Nuclear Regulatory Commission (NRC), was to test whether an empirical connection exists between human performance and nuclear power plant safety culture. This was accomplished through analyzing the relationship between a measure of human performance and a plant's Safety Conscious Work Environment (SCWE). SCWE is an important component of safety culture the NRC has developed, but it is not synonymous with it. SCWE is an environment in which employees are encouraged to raise safety concerns both to their own management and to the NRC without fear of harassment, intimidation, retaliation, or discrimination. Because the relationship between human performance and allegations is intuitively reciprocal and both relationship directions need exploration, two series of analyses were performed. First, human performance data could be indicative of safety culture, so regression analyses were performed using human performance data to predict SCWE. It also is likely that safety culture contributes to human performance issues at a plant, so a second set of regressions were performed using allegations to predict HFIS results

  11. IRSN's viewpoint on the safety and radiation protection of French nuclear power plants in 2007

    International Nuclear Information System (INIS)

    2009-01-01

    This report presents the viewpoint of the IRSN on the safety and radiation protection of EDF's nuclear power plants (NPPs) in operation during 2007. It does not aim to be exhaustive but rather to highlight the points the IRSN considers important for safety. Contributing to maintaining a high level of safety and radiation protection in nuclear facilities in service is one of the seven challenges of the objectives contract signed between the French Government and the IRSN. Safety demands constant vigilance on the part of all the players involved. It is never definitively acquired and must remain a priority and continuously progress, with the plant operator remaining the first entity responsible for the safety of its facility. For the IRSN, part of this mission firstly involves carefully examining and taking into consideration national and international experience feedback, and new scientific knowledge resulting from research. The implementation of improvements, whether technical or organizational or relating to human skills, then comes secondly. This report comprises four sections. In the first section, the IRSN presents the main trends that emerged from its overall review of the safety of the in-service nuclear power plants. The second section addresses the events that have marked the year due to their impact on safety. It also presents a synthesis of the radiation protection events. The third section is devoted to anomalies displaying a generic nature for several power plants. The last section covers the significant changes implemented or scheduled. These are generally modifications or plans of action intended to improve safety performance in the operation or design of the facilities. In spite of sometimes significant disparities in the results between power plants, the IRSN draws the following conclusions from its global review of the year 2007. First of all, no event had serious consequences in the fields of either safety or radioprotection. This good result must

  12. Plant safety and performance indicators for regulatory use

    International Nuclear Information System (INIS)

    Ferjancic, M.; Nemec, T.; Cimesa, S.

    2004-01-01

    Slovenian Nuclear Safety Administration (SNSA) supervises nuclear and radiological safety of Krsko NPP. This SNSA supervision is performed through inspections, safety evaluations of plant modifications and event analyses as well as with the safety and performance indicators (SPI) which are a valuable data source for plant safety monitoring. In the past SNSA relied on the SPI provided by Krsko NPP and did not have a set of SPI which would be more appropriate for regulatory use. In 2003 SNSA started with preparation of a new set of SPI which would be more suitable for performing the regulatory oversight of the plant. New internal SNSA procedure which is under preparation will define use and evaluation of SPI and will include definitions for the proposed set of SPI. According to the evaluation of SPI values in comparison with the limiting values and/or trending, the procedure will define SNSA response and actions. (author)

  13. Safety and Radiation Protection at Swedish Nuclear Power Plants 2004

    International Nuclear Information System (INIS)

    2005-05-01

    higher inspector presence than normal and more stringent reporting requirements. In SKI's opinion, Barsebaeck Kraft AB (BKAB), with the measures that have been implemented, is maintaining safety at the Barsebaeck nuclear power plant. In December, Studsvik Nuclear AB decided to close down the two reactors at Studsvik. Therefore, SKI immediately initiated an intensified supervision of the decommissioning process at the reactors. The handling of nuclear waste at nuclear power plants, including the operation of the Repository for Low and Intermediate-level Operational Waste (SFR-1) and the Central Interim Storage Facility for Spent Nuclear Fuel (CLAB) has largely functioned well for the most part. In 2004, the total radiation dose to the personnel at nuclear power plants was 6.4 manSv, which is lower than in 2003. The average value for the past five years is 9 manSv. The shutdown periods were shorter at a few reactors due to the fact that work progress surpassed expectations. Technical problems and unplanned repair work resulted in a somewhat higher dose than expected at a few reactors. No individual received a radiation dose greater than 20 mSv. The fuel defects that occurred in 2004 did not result in any significant impact on radiation protection. The dose to people living in the vicinity of the nuclear power plants in 2004 was below 1 per cent of the permitted dose. The control measurements that SSI conducts on environmental samples around nuclear power plants and on the radioactive releases to water show a good agreement with the licensees' own measurements

  14. Radiation processing of leafy vegetables to ensure their microbial safety

    International Nuclear Information System (INIS)

    Khade, H.D.; Jain, M.P.; Satyendra, Gautam

    2015-01-01

    Leafy vegetables which are consumed in raw form such as spinach, coriander and mint were found to be heavily burdened with microbial load including presumptive coliform, an indicator of pathogenic contaminations. Total aerobic plate counts in fresh spinach, coriander and mint samples collected from different location of Mumbai and nearby cities were found to be in the order of ∼ 10 7 to ∼ 10 8 CFU/g. In these samples yeast and mould count was in the order of ∼10 5 CFU/g and presumptive coliform in the order of ∼ 10 4 to ∼10 5 CFU/g. As per USFDA coliform load in the food commodity should be nil. The finding thus indicates that these fresh vegetables are not safe for raw consumption. Hence there is utmost need of process which can ensure the safety by reducing their microbial load below permissible level (<10 4 CFU/gm) and coliform load to nil without affecting the appearance and quality of such produce. In this study gamma radiation was used for hygienization of leafy vegetables. The sample were first cleaned in potable water followed by sodium hypochlorite wash (200 ppm for 20 min), air dried, packed in styrofoam based tray, wrapped with cling film and radiation processed at 1 to 2.5 kGy and stored at 4 and 10℃ . Post irradiation microbiological analysis of radiation processed samples was carried out at in 2 kGy irradiated samples total plate count was below ∼10 3 CFU/g and presumptive coliform count was below detectable level. Yeast and mould count in these samples also reduced to below ∼ 10 3 CFU/g. Based on the study the following combination treatment can be given to raw leafy vegetables, washing with potable water (5 min) → sodium hypochlorite (200 ppm 20 min) wash → Air drying → Packaging in styrofoam based tray and wrapping with cling film → Irradiation at 2 kGy → storage at 4℃ . Besides ensuring safety the treatment also resulted in increased shelf life extension of the commodities up to 20 days. (author)

  15. A collaborative effort of medical and educational facilities for radiation safety training of nurses

    International Nuclear Information System (INIS)

    Matsuda, Naoki; Yoshida, Masahiro; Takao, Hideaki

    2005-01-01

    The proper understanding of radiation safety by nursing staffs in hospitals are essential not only for radiation protection of themselves against occupational radiation exposure but for quality nursing for patients who receive medical radiation exposure. The education program on radiation in nursing schools in Japan is, however, rather limited, and is insufficient for nurses to acquire basic knowledge of radiation safety and protection. Therefore, the radiation safety training of working nurses is quite important. A hospital-based training needs assignment of radiation technologists and radiologists as instructors, which may result in temporary shortage of these staffs for patients' services. Additionally, the equipments and facilities for radiation training in a hospital might not be satisfactory. In order to provide an effective education regarding radiation for working nurses, the radiation safety training course has been conducted for nurse of the university hospital by the collaboration of medical and educational staffs in Nagasaki University. This course was given for 6 hours in Radioisotope Research Center, a research and education facility for radiation workers using radioisotopes. The curriculum of this course included basics of radiation, effects of radiation on human health, procedures in clinical settings for radiation protection and practical training by using survey meters, which were mainly based on the radiation safety training for beginners according to the Japanese law concerning radiation safety with a modification to focus on medical radiation exposure. This course has been given to approximately 25 nurses in a time, and held 13 times in May 2000 through October 2003 for 317 nurse overall. The pre-instruction questionnaire revealed that 60% of nurses felt fears about radiation diagnosis or therapy, which reduced to less than 15% in the post-instruction surveillance. The course also motivated nurses to give an answer to patients' questions about

  16. Evaluation of safety practices and performance in a brewery industry ...

    African Journals Online (AJOL)

    Evaluation of safety practices and performance in a brewery industry in Nigeria between 2000 – 2007. ... Journal of Applied Sciences and Environmental Management ... The study revealed that a total of 156 accidents were prevented in the period of the safety programme which translates to an average of 19.45 per year.

  17. On the safety performance of the advanced nuclear energy systems

    International Nuclear Information System (INIS)

    Li Shounan

    1999-01-01

    Some features on the safety performances of the Advanced Nuclear Energy Systems are discussed. The advantages and some peculiar problems on the safety of Advanced Nuclear Energy Systems with subcritical nuclear reactor driven by external neutron sources are also pointed out in comparison with conventional nuclear reactors

  18. A road safety performance indicator for vehicle fleet compatibility.

    NARCIS (Netherlands)

    Christoph, M. Vis, M.A. Rackliff, L. & Stipdonk, H.

    2013-01-01

    This paper discusses the development and the application of a safety performance indicator which measures the intrinsic safety of a country's vehicle fleet related to fleet composition. The indicator takes into account both the ‘relative severity’ of individual collisions between different vehicle

  19. Radiation safety considerations and compliance within equine veterinary clinics: Results of an Australian survey

    International Nuclear Information System (INIS)

    Surjan, Y.; Ostwald, P.; Milross, C.; Warren-Forward, H.

    2015-01-01

    Objective: To examine current knowledge and the level of compliance of radiation safety principles in equine veterinary clinics within Australia. Method: Surveys were sent to equine veterinary surgeons working in Australia. The survey was delivered both online and in hardcopy format; it comprised 49 questions, 15 of these directly related to radiation safety. The participants were asked about their current and previous use of radiation-producing equipment. Information regarding their level of knowledge and application of radiation safety principles and practice standards was collected and analysed. Results: The use of radiation-producing equipment was evident in 94% of responding clinics (a combination of X-ray, CT and/or Nuclear Medicine Cameras). Of those with radiation-producing equipment, 94% indicated that they hold a radiation licence, 78% had never completed a certified radiation safety course and 19% of participants did not use a personal radiation monitor. In 14% of cases, radiation safety manuals or protocols were not available within clinics. Conclusions: The study has shown that knowledge and application of guidelines as provided by the Code of Practice for Radiation Protection in Veterinary Medicine (2009) is poorly adhered to. The importance of compliance with regulatory requirements is pivotal in minimising occupational exposure to ionising radiation in veterinary medicine, thus there is a need for increased education and training in the area. - Highlights: • Application of the Code of Practice for Veterinary Medicine is poorly adhered to. • Majority of veterinary clinics had not completed certified radiation safety course. • One-fifth of participants did not use personal radiation monitoring. • Increased education and training in area of radiation safety and protection required to generate compliance in clinics

  20. Report on administrative work for radiation safety from April 2006 to March 2007

    Energy Technology Data Exchange (ETDEWEB)

    Komori, Akio; Kaneko, Osamu; Nishimura, Kiyohiko; Uda, Tatsuhiko; Asakura, Yamato; Kawano, Takao; Yamanishi, Hirokuni; Miyake, Hitoshi

    2007-10-15

    The National Institute for Fusion Science (NIFS) is proceeding with the research on magnetic confining nuclear fusion both experimentally and theoretically. During the experiment with deals with very hot plasma, X ray is generated. Therefore the experimental devices with their surroundings are administrated in conformity with the Industrial Safety and Health Law to keep workplace safety. The Radiation Control Safety Office of Safety Hygiene Protection Bureau carries out measuring the radiation dose level regularly, registering the employees who are engaged in plasma experiments, and training them. Non-regulated small sealed sources are used in some detectors. The treating of these sources is controlled by the Safety and Environmental Research Center. This report is on administrative works for radiation safety in the last fiscal year 2006. It includes (1) report on the establishment of radiation safety management system, (2) report on the establishment of training and registration system for radiation workers, and (3) results of radiation dose measurement and monitoring in the radiation controlled area and on the site by using Radiation Monitoring System Applicable to Fusion Experiment (RMSAFE). The report has been published annually. We hope that these reports would be helpful for future safety management in NIFS. (author)

  1. Personnel radiation safety. A case of hand lesion in a radiologist

    International Nuclear Information System (INIS)

    Pilipenko, M.Yi.; Kulyinyich, G.V.; Stadnik, L.L.

    2012-01-01

    The work featured the questions of norma and rules of radiation safety at work with ionizing radiation. The history of the question about the permissible doses is dabbler's. The changes in the skin when exceeding the tolerant dose are described. A case of severe local lesions of the hand caused by chronic occupational over irradiation, when the safety rules were neglected, is described

  2. Report on administrative work for radiation safety from April 2006 to March 2007

    International Nuclear Information System (INIS)

    Komori, Akio; Kaneko, Osamu; Nishimura, Kiyohiko; Uda, Tatsuhiko; Asakura, Yamato; Kawano, Takao; Yamanishi, Hirokuni; Miyake, Hitoshi

    2007-10-01

    The National Institute for Fusion Science (NIFS) is proceeding with the research on magnetic confining nuclear fusion both experimentally and theoretically. During the experiment with deals with very hot plasma, X ray is generated. Therefore the experimental devices with their surroundings are administrated in conformity with the Industrial Safety and Health Law to keep workplace safety. The Radiation Control Safety Office of Safety Hygiene Protection Bureau carries out measuring the radiation dose level regularly, registering the employees who are engaged in plasma experiments, and training them. Non-regulated small sealed sources are used in some detectors. The treating of these sources is controlled by the Safety and Environmental Research Center. This report is on administrative works for radiation safety in the last fiscal year 2006. It includes (1) report on the establishment of radiation safety management system, (2) report on the establishment of training and registration system for radiation workers, and (3) results of radiation dose measurement and monitoring in the radiation controlled area and on the site by using Radiation Monitoring System Applicable to Fusion Experiment (RMSAFE). The report has been published annually. We hope that these reports would be helpful for future safety management in NIFS. (author)

  3. Proceedings of the Seminar on Environmental and Radiation Safety Aspect at Non-nuclear Industry

    International Nuclear Information System (INIS)

    Mulyadi Rachmad; Muhammad Fathoni; Topo Suprihadi, PY.; Dumais, Johannes Robert; Eri Hiswara; Alatas, Zubaidah; Dahlan, Kgs.; Muhammad Isnaini

    2003-03-01

    The Seminar on Environmental and Radiation Safety Aspect at Non-nuclear Industry held on March 2003 in Jakarta. The purpose of this Seminar be able to information exchange among research workers in National Nuclear Energy Agency. The Seminar discussed about Science and Technology of Radiation Safety and Environment. There are 17 papers which have separated index. (PPIN)

  4. Proceedings of the First Seminar on Radiation Safety Technology and Nuclear Biomedicine

    International Nuclear Information System (INIS)

    Suprihadi, Topo

    2003-01-01

    The First Seminar on Radiation Safety Technology and Nuclear Biomedicine was held on 10-11 April 2001 at the Center for Research and Development of Radiation Safety and Nuclear Biomedicine have presented 19 papers about upgrading manpower resources, researcher, investigator, manager, and user of nuclear facilities, to go out against free market era

  5. A study on the radiation and environmental safety -Development of radiation protection and measurement technology-

    Energy Technology Data Exchange (ETDEWEB)

    Jang, See Yung; Lee, Tae Yung; Lee, Hyung Sub; Kim, Jan Ryul; Kim, Chang Kyung; Kim, Bong Hwan; Yoon, Kyung Soo; Jung, Kyung Kee; Jung, Duk Yun; Lee, Bong Jae; Chul, Yoon Suk; Lee, Kee Chang; Yoon, Yu Chang; Jung, Rae Ik; Lee, Sang Yoon; Han, Yung Dae; Kim, Jong Soo, I; Kim, Jong Soo, II; Suh, Kyung Won [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Kim, Jong Kyung [Han Yang Univ., Seoul (Korea, Republic of)

    1995-07-01

    Reference X- and neutron radiation fields have been established and evaluated to support the national radiation protection programme under which performance evaluation test for domestic personal dosimetry will be implemented by the ministerial ordinance 1992-15, and to provide a basic technical support in radiation protection dosimetry. Personal dose evaluation algorithm has been developed with the KAERI reference radiation fields which comply well with those in the new ANSI N13.11(1993) to evaluate accurate personal dose equivalents. A personal internal dosimetry algorithm which can estimate the intakes of radionuclides from the results of whole body direct bioassay and the resulting internal doses has been also developed and evaluated to be equally excellent compared with those being used in foreign countries. A BOMAB phantom for precise WBC calibration has also designed, fabricated and test-evaluated. A principal method for estimating the cost for radiation protection which is important in performing a cost-benefit analysis for the radiation protection optimization study based on the ALARA principle has been preliminarily investigated and suggested. 49 figs, 67 tabs, 50 refs. (Author).

  6. Developments of radiation safety requirements for the management of radiation devices

    International Nuclear Information System (INIS)

    Lee, Hee Seock; Choi, Jin Ho; Cheong, Yuon Young

    2002-03-01

    The approach of the risk-informed regulatory options was studied to develop the radiation safety requirements for the managements for radiation devices. The task analysis, exposure, accident scenario development, risk analysis, and systematic approach for regulatory options was considered in full, based on the NRC report, 'NUREG/CR-6642', and the translation of its core part was conducted for ongoing research. In this methodology, the diamond tree that includes human factors, etc, additionally with normal event tree, was used. According to the analysis results of this approach, the risk analysis and the development of regulatory options were applied for the electron linear accelerators and the qualitative results were obtained. Because the field user groups were participated in this study could contribute to the basis establishment of the risk-informed regulation policy through securing consensus and inducing particle interests. It will make an important role of establishing the detail plan of ongoing research

  7. Developments of radiation safety requirements for the management of radiation devices

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hee Seock [Pohang Accelerator Lab, Pohang (Korea, Republic of); Choi, Jin Ho [Gachun University of Medicine and science, Incheon (Korea, Republic of); Cheong, Yuon Young [Asan Medical Center, Seoul (Korea, Republic of)] (and others)

    2002-03-15

    The approach of the risk-informed regulatory options was studied to develop the radiation safety requirements for the managements for radiation devices. The task analysis, exposure, accident scenario development, risk analysis, and systematic approach for regulatory options was considered in full, based on the NRC report, 'NUREG/CR-6642', and the translation of its core part was conducted for ongoing research. In this methodology, the diamond tree that includes human factors, etc, additionally with normal event tree, was used. According to the analysis results of this approach, the risk analysis and the development of regulatory options were applied for the electron linear accelerators and the qualitative results were obtained. Because the field user groups were participated in this study could contribute to the basis establishment of the risk-informed regulation policy through securing consensus and inducing particle interests. It will make an important role of establishing the detail plan of ongoing research.

  8. International conference on national infrastructures for radiation safety: Towards effective and sustainable systems. Contributed papers

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    The International Atomic Energy Agency (IAEA), in co-operation with the World Health Organization (WHO), the International Labour Office (ILO), the European Commission (EC), and the OECD Nuclear Energy Agency (NEA), organized the International Conference on National Infrastructures for Radiation Safety: Towards Effective and Sustainable Systems. This book contains contributed papers submitted on pertinent issues, including stakeholder involvement, IAEA Model Projects on Upgrading Radiation Protection Infrastructure, Quality Assurance, education and training, regulatory activities, performance evaluation, source security, and emergency preparedness. The material in this book has not been edited by the IAEA. These contributed papers will be published on a CD ROM as part of the Proceedings of the Conference, along with the invited papers and discussions. The papers are grouped by topical sessions: Stakeholder Involvement in Building and Maintaining National Radiation Safety Infrastructure (National and International); Implementation Experience with The Model Projects (Views From The Countries, Positive and Negative Experiences); Resources and Services (Systematic Approach), Quality Assurance, International Support Of Services; Sustainable Education And Training: Developing Skills (National Systems And Regional Solutions); Needs for Education And Training at The International Level (Including IAEA Programmes Assisting in Establishing Adequate Infrastructures); Authorization, Inspection and Enforcement (Effectiveness and Efficiency Of The Activities Of The Regulatory Bodies), Independence of Regulatory Authorities; Performance Evaluation; Source Security and Emergency Preparedness (Infrastructure Requirements at the International, National And User's Level)

  9. International conference on national infrastructures for radiation safety: Towards effective and sustainable systems. Contributed papers

    International Nuclear Information System (INIS)

    2003-01-01

    The International Atomic Energy Agency (IAEA), in co-operation with the World Health Organization (WHO), the International Labour Office (ILO), the European Commission (EC), and the OECD Nuclear Energy Agency (NEA), organized the International Conference on National Infrastructures for Radiation Safety: Towards Effective and Sustainable Systems. This book contains contributed papers submitted on pertinent issues, including stakeholder involvement, IAEA Model Projects on Upgrading Radiation Protection Infrastructure, Quality Assurance, education and training, regulatory activities, performance evaluation, source security, and emergency preparedness. The material in this book has not been edited by the IAEA. These contributed papers will be published on a CD ROM as part of the Proceedings of the Conference, along with the invited papers and discussions. The papers are grouped by topical sessions: Stakeholder Involvement in Building and Maintaining National Radiation Safety Infrastructure (National and International); Implementation Experience with The Model Projects (Views From The Countries, Positive and Negative Experiences); Resources and Services (Systematic Approach), Quality Assurance, International Support Of Services; Sustainable Education And Training: Developing Skills (National Systems And Regional Solutions); Needs for Education And Training at The International Level (Including IAEA Programmes Assisting in Establishing Adequate Infrastructures); Authorization, Inspection and Enforcement (Effectiveness and Efficiency Of The Activities Of The Regulatory Bodies), Independence of Regulatory Authorities; Performance Evaluation; Source Security and Emergency Preparedness (Infrastructure Requirements at the International, National And User's Level)

  10. Strengthening the culture of safety and performance in nuclear installations

    International Nuclear Information System (INIS)

    Briant, V.S.; Germann, R.P.

    1997-01-01

    In mid-1995, the International Atomic Energy Agency (IAEA) in Vienna brought together a group of safety culture experts from around the world to explore and summarize those practices they viewed as important in establishing sound safety cultures in nuclear installations. This paper will summarize key findings of the Vienna team and also expand those ideas based on related work in which the authors are engaged. The paper includes a definition of safety culture, a description of three stages of safety culture, and five key practices essential to establishing and maintaining a sound safety culture. Additionally, the authors contradicts the conventional view of safety and production as trade-offs, supporting the Vienna team's conclusion that the principles, attitudes, and practices which bring about sustained levels of high performance are the same as those which enhance safety. Based on input from colleagues in several countries, this appears to hold true across geographical and ethnic boundaries. The authors also discuss how this information can be put to practical use to obtain an objective, measurable, and repeated assessment of the current state of the safety culture within a company, plant or work unit. With that information, leaders are then in the position to act on any of the several parameters which affect both safety and performance effectiveness. (author)

  11. Strengthening the culture of safety and performance in nuclear installations

    Energy Technology Data Exchange (ETDEWEB)

    Briant, V S [GPU Nuclear, Parsippany (United States); Germann, R P [Aberdeen Center for Team Learning, Matawan (United States)

    1997-07-01

    In mid-1995, the International Atomic Energy Agency (IAEA) in Vienna brought together a group of safety culture experts from around the world to explore and summarize those practices they viewed as important in establishing sound safety cultures in nuclear installations. This paper will summarize key findings of the Vienna team and also expand those ideas based on related work in which the authors are engaged. The paper includes a definition of safety culture, a description of three stages of safety culture, and five key practices essential to establishing and maintaining a sound safety culture. Additionally, the authors contradicts the conventional view of safety and production as trade-offs, supporting the Vienna team`s conclusion that the principles, attitudes, and practices which bring about sustained levels of high performance are the same as those which enhance safety. Based on input from colleagues in several countries, this appears to hold true across geographical and ethnic boundaries. The authors also discuss how this information can be put to practical use to obtain an objective, measurable, and repeated assessment of the current state of the safety culture within a company, plant or work unit. With that information, leaders are then in the position to act on any of the several parameters which affect both safety and performance effectiveness. (author) 9 refs., 5 tabs.

  12. Radiation protection aspects in the design of nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2008-01-01

    The IAEA's Statute authorizes the Agency to establish safety standards to protect health and minimize danger to life and property - standards which the IAEA must use in its own operations, and which a State can apply by means of its regulatory provisions for nuclear and radiation safety. A comprehensive body of safety standards under regular review, together with the IAEA's assistance in their application, has become a key element in a global safety regime. In the mid-1990s, a major overhaul of the IAEA's safety standards programme was initiated, with a revised oversight committee structure and a systematic approach to updating the entire corpus of standards. The new standards that have resulted are of a high calibre and reflect best practices in Member States. With the assistance of the Commission on Safety Standards, the IAEA is working to promote the global acceptance and use of its safety standards. Safety standards are only effective, however, if they are properly applied in practice. The IAEA's safety services - which range in scope from engineering safety, operational safety, and radiation, transport and waste safety to regulatory matters and safety culture in organizations - assist Member States in applying the standards and appraise their effectiveness. These safety services enable valuable insights to be shared and continue to urge all Member States to make use of them. Regulating nuclear and radiation safety is a national responsibility, and many Member States have decided to adopt the IAEA's safety standards for use in their national regulations. For the Contracting Parties to the various international safety conventions, IAEA standards provide a consistent, reliable means of ensuring the effective fulfilment of obligations under the conventions. The standards are also applied by designers, manufacturers and operators around the world to enhance nuclear and radiation safety in power generation, medicine, industry, agriculture, research and education

  13. Radiation protection aspects of design for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2005-01-01

    The IAEA's Statute authorizes the Agency to establish safety standards to protect health and minimize danger to life and property - standards which the IAEA must use in its own operations, and which a State can apply by means of its regulatory provisions for nuclear and radiation safety. A comprehensive body of safety standards under regular review, together with the IAEA's assistance in their application, has become a key element in a global safety regime. In the mid-1990s, a major overhaul of the IAEA's safety standards programme was initiated, with a revised oversight committee structure and a systematic approach to updating the entire corpus of standards. The new standards that have resulted are of a high calibre and reflect best practices in Member States. With the assistance of the Commission on Safety Standards, the IAEA is working to promote the global acceptance and use of its safety standards. Safety standards are only effective, however, if they are properly applied in practice. The IAEA's safety services - which range in scope from engineering safety, operational safety, and radiation, transport and waste safety to regulatory matters and safety culture in organizations - assist Member States in applying the standards and appraise their effectiveness. These safety services enable valuable insights to be shared and continue to urge all Member States to make use of them. Regulating nuclear and radiation safety is a national responsibility, and many Member States have decided to adopt the IAEA's safety standards for use in their national regulations. For the Contracting Parties to the various international safety conventions, IAEA standards provide a consistent, reliable means of ensuring the effective fulfilment of obligations under the conventions. The standards are also applied by designers, manufacturers and operators around the world to enhance nuclear and radiation safety in power generation, medicine, industry, agriculture, research and education

  14. Managing patient safety through NPSGs and employee performance.

    Science.gov (United States)

    Adair, Liberty

    2010-01-01

    Patient safety can only exist in a culture of patient safety, which implies it is a value perceived by all. Culture predicts safety outcomes and leadership predicts the culture. Leaders are obligated to continually mitigate hazard and take action consciously. Healthcare workers should focus on preventing and reporting mistakes with the National Patient Safety Goals (NPSGs) in mind. These include: accuracy of patient identification, effectiveness of communication among caregivers, improving safety of medications, reducing infections, reducing risk of falls, and encouraging patients to be involved in care. Poor performers and reckless behavior need to be mitigated. If employees recognize their roles in the process, feel empowered,and have appropriate tools, resources,and data to implement solutions, errors can be avoided and patient safety becomes paramount.

  15. Experimental test of liquid droplet radiator performance

    Science.gov (United States)

    Mattick, A. T.; Simon, M. A.

    The liquid droplet radiator (LDR) is a heat rejection system for space power systems wherein an array of heated liquid droplets radiates energy directly to space. The use of submillimeter droplets provides large radiating area-to-mass ratio, resulting in radiator systems which are several times lighter than conventional solid surface radiators. An experiment is described in which the power radiated by an array of 2300 streams of silicone oil droplets is measured to test a previously developed theory of the LDR radiation process. This system would be capable of rejecting several kW of heat in space. Furthermore, it would be suitable as a modular unit of an LDR designed for 100-kW power levels. The experiment provided confirmation of the theoretical dependence of droplet array emissivity on optical depth. It also demonstrated the ability to create an array of more than 1000 droplet streams having a divergence less than 1 degree.